The C Information Abstractor

Yih-Farn Chen and C. V. Ramamoorthy

Report No. UCB/CSD 86/300
June 1986

Computer Science Division (EECS)
University of California
Berkeley, California 94720

The C Information Abstractor

Yih-Farn Chen
C. V. Ramamoorthy

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

ABSTRACT

Program understanding is one of the most time-consuming processes in
software maintenance. This is partially due to the human inability to memorize
complex interrelations among the software entities of a large software system.
The situation worsens when the programs are not written by the software main-
tainers and little documentation is available. The basic idea in information
abstraction is to extract relational information among the software entities of
programs, store the information in a database, and make it available to users in a
form that can be easily understood. We have implemented an Information
Abstractor to extract relational information from C programs and store the infor-
mation into a program database. High level access utilities are provided so that
program maintainers or developers can easily retrieve the information they need
for understanding the software. Besides program understanding, we found that
the availability of the program database can also promote the research in four
software engineering areas: multiple software views, software reusability, software
metrics, and software restructuring.

1.0 Introduction

The cost of software maintenance typically represents more than sixty percent of the total
cost of a software life cycle Software Engineering Perspectives 1984 The primary sources of
maintenance problems include

(1) lack of good documentation

(2) inconsistency between the documents and the code

(3) ill-structured code caused by deadline pressures or dirty fixes
(4) the fast turnover of software personnel

Therefore, in many cases, software maintainers are faced with a blackboz system, one with inter-
nal structures unknown, which they have to understand, modify, and test.

The only reliable document that software maintainers can depend on is usually the program
source itself. However, a typical software system consists of tens to hundreds of software modules
and complex interrelations build up in the software if software objects reference one another
across the boundaries of functions (procedures) or software modules (see Figure 1).

This work was supported in part by Ballistic Missile Defense under contract No. BMDSC DASB860-85-C-0029 (1-
482427-25545).

[j Software Module = Global Object

Figure 1. Complex Interrelations among Software Modules

Take a typical function in C programs |2] for examplet:

DrawCurve()

{
POINT #p1;
ELT ®eil;

POINT *plisi;
char stext;

it (SEQ < 2) return;
plist = PTInit();
p1=POINTLIST;
do {
PTMakePoint (pl, &plist);
p1=PTNextPoint (p1);
} while ('Nullpoint(pl);
if (GRSetCurve(plist) !=0) return;
UEForget ();
el = DBCreateElt (CURVE, plist, CBRUSH, 0, text, &PICTURE) ;
DISCLearSetDisplay():
ClearPoints();
CHANGED=TRUE;

}

This function consists of the following references to objects defined outside the function boundary:
(1) Data types: POINT, ELT. (count = 2)

(2) Global Variables: SEQ, POINTLIST, PICTURE, CHANGED. (count = 4)

(3) Constants (macros): CURVE, BRUSH, TRUE. (count = 3)

(4) functions: PTInit, PIMake, PTNextPoint, GRSetCurve, UNForget, DBCreatElt, DIS-
ClearSetDisplay, ClearPoints, malloc. (count = 9)

Although this function is only twenty-one lines long, it consists of 23 external references. To fully
understand this function and be able to modify it, a software maintainer has to resolve all these
external references by locating the definitions of the objects referenced} and locating all the

1 This example is actually a simplified version of a function from a graphics editor called Gremlin. The original
function has more function calls than what we show here and no comments are associated with any statements.
4 The Gremlin program has 21 source files and near 12,000 lines of C code.

July 3, 1986

objects that may be affected by the modifications. Moreover, each referenced object may have its
own references to other objects as shown in Figure 1. Therefore, understanding and modifying
software is difficult without easy access to the following information:

(1) The location and contents of a software object.
(2) The relations between a software object and other objects.

Our goal was to develop an information abstraction system that can provide the above
information to software maintainers. This information has to be stored in such a form that it can
be easily retrieved and processed for obtaining various views of the program. Many ideas we pro-
pose in this paper can be applied to most programming languages; however, we decided to concen-
trate on the implementation of an Information Abstractor for C programs. C has become very
popular recently due to the popularity of Unixt programming environments. Most system pro-
grams and application programs on Unix system are written in C, and it is a common practice for
programmers to modify these programs to adapt to their particular needs. Therefore, tools that
help programmers understand C programs are in great demand.

Following our goal, we have implemented an information abstraction system for C pro-
grams. This system accepts C programs, extracts information about object locations and object
relations, and stores the information in a program database. High level commands are provided
to users for easy access to the program information. We discovered that the program database
not only aids in program understanding; it also promotes the following research tasks:

(1) Multiple Software Views: The locational and relational information stored in the database
simplifies the tasks of graphics packages that display multiple views of the programs using
multiple-window systems.

(72) Software Reusability: The database helps a programmer retrieve a function and all its
dependent objects and to reuse that function in other programs.

(3) Software Metrics: The database can be used to calculate several software metrics for
analyzing the program structure.

{(4) Software Restructuring: The software metrics provide some guidelines on software restruc-
turing, and the retrievability of software objects make the restructuring tasks (like moving
and clustering of functions) easier.

This paper examines the design considerations and various components of our information
abstraction system and discusses it’s future extemsions and applications. The rest of this paper is
organized as follows: Section 2 discusses some related work on program understanding tools. Sec-
tion 3 discusses the important design decisions made during the implementation of the C Informa-
tion Abstractor (CIA). Section 4 describes the performance and experience of CIA in using it as a
program understanding tool. Section 5 outlines our plan for future extensions to CIA. Section 6
describes the potential applications of CIA. Section 7 is the conclusion.

2.0 Related Work on Program Abstraction

Before we proceed to describe our abstraction system, we first examine several systems and
tools that have been built for abstracting information from programs. The major ideas and prob-
lems of these systems provide a guideline for the implementation of our system.

2.1 OMEGA System

The idea of storing program information into a database was proposed by Mark Linton and
implemented in his experimental system OMEGA|3]. The OMEGA implementation includes (1)
the design of a relational schema for a Pascal-like language called Model, (2} a program that takes
software text and translates it into the database representation, and (3) a simple interface for
viewing program information. One of the major goals of the OMEGA system is the ability to

t Unix is a trademark of Bell Laboratories

July 3, 1986

reconstruct the program from the program database. Therefore, detailed information about the
variables, expressions, statements, and relations among them have to be stored in the database.
This information takes significant time to process and requires a large database to be manipu-
lated. According to [3], the prototype implementation of OMEGA system has poor response time
in retrieving the body of a procedure. This is because the different objects within the procedures
have to be retrieved, and each retrieval requires a separate database query. Another limitation of
the OMEGA system is that it totally ignores comments, which usually contain information critical
to the understanding of the software. The reason for ignoring comments is obvious; most pro-
gramming languages (Smalltalk-80[4] is one exception) do not provide any means for a program-
mer to specify the linking between a comment and its associated object.

2.2 Program Slicing

Program Slicing|[5] is another proposed method for abstracting from programs. Given a sub-
set of program’s behavior, slicing reduces that program to a minimal form, which still produces
that behavior. For example, given the following Pascal-like program|6]:

[y

begin
read(X.Y)
diff=X-Y
sum=X+Y

it (Y=1)
then Z=sgum
else Z=diff
write(X,2)
end

O O®N;MeWN

and the slicing criteria ‘value of sum at statement 8,” the slice obtained is:

read(X,Y)
sum=X+Y

This is because only these two statements can affect the value of sum before statement 8. By
selecting different slicing criteria, a program can be represented in many forms.

Program slicing is good for program debugging; however, it is not eflective in obtaining
information regarding the interrelations among software objects in diflerent modules. Each com-
putation of program slicing only provides partial program information. When one tries to under-
stand a program in the beginning, one will have many questions regarding the structure and the
interconnection of components in the program. It takes many slicing computations to get the
information one needs. On the contrary, using the database approach as in OMEGA or our C
Information Abstractor, all information can be retrieved in a single scan of the program and
stored in the database. All later retrievals of information can go to the database directly without
redundant processing on the program.

2.3 Cflow

The Cflow(1) command available on Unix System V [7] analyzes a collection of C, YACC,
LEX, assembler, and object files and outputs an indented text showing the external references
used in the program. Following is a typical output generated by Cflow:

1 main: int(), <fi.c 4>

2 £: int(), <fi.c 11>

3 h: char (), <f2.c 12>
4 i: int, <f1.¢c 1>

5 g: int(), <£3.c 8>

The output shows the structure of the calling tree starting from the function main. For each
external reference, it shows its data type and the location (filename and line number) where the
referenced object is defined.

July 3, 1986

-5-

The major problem of tie Cliow command is that the output cannot be easily processed or
retrieved by databuse systems or similar utilities. Moreover, only the beginning line of each
object is specified; this makes it difficult to retrieve an object since the ending line number is not
provided. Finally, information about macro definitions, data types, and the files included are not
extracted; this information is also critical for understanding the program structure.

3.0 Our Approach

From the survey of related work, we feel that several features are desirable for a program
abstraction system:

(1) Global Information Abstraction: Emphasis should be placed on global references
rather than local references to objects inside a function or proceduret. This helps
reduce the size of the program database and increase the abstraction speed. A pro-
grammer can usually locate the local information he needs easily, but might have
difficulty in obtaining information about global interrelations or the location of an
externally referenced object. This information can only be obtained by scanning
through several program files or software modules, which is a time-consuming process
without adequate tools.

(2) Database Support: The information abstracted from programs should be stored in a
form that can be processed by database utilities. Different views of the programs or
program metrics can then be obtained by processing information in the database.

(3) Simple Database Queries: A simple query language using a simple syntax should be
provided. Normal users should not be forced to memorize the details of the database
schema of the program database.

(4) Efficiency: Fast retrieval of software objects is critical for the program understanding
process. This can be achieved by storing only the pointers (line numbers in the source
program files) in the database, then access objects in the source files using the pointers.

None of the existing systems we know provide all these features; therefore, we decided to build
our own information abstraction system.

Ideally, the program information can be abstracted from two sources: the design documents
and the source program. However, as mentioned previously, in many cases, the source program is
the only reliable document a software maintainer can get, since many software documents are
incomplete or inconsistent with the code. Therefore, our abstraction system only deals with pro-
grams. In the following subsections, we describe the structure of the C Information Abstractor
(CIA), our design philosophy, and various components of the CIA.

3.1 Overview of the C Information Abstractor

The structure of the C Information Abstractor is shown in Figure 2. The basic approach is
the following. We first define an object-attribute-relationship model (also known as the concep-
tual model) for the C program database. The degree of elaboration of the conceptual model is
determined by the amount of information to be extracted from the C programs. A set of abstrac-
tion rules is then derived from this model. The C parser then extracts the program information
according to the abstraction rules and stores the information in a set of data files, which can then
be accessed using the Information Viewer described in section 3.3, or can be loaded and accessed
using INGRES database utilities(8].

t However, abstracting local information may be necessary for calculating certain software metrics; e.g., complex-
ity of the internal control structure of a function.

July 3, 1986

views

INGRES — >

|

programs

. views
C Parser Info. Viewer [—»
1 v i
abstraction rules Database queries

Figure 2. Outline of the C Information Abstractor

3.2 C Parser

The main design philosophy of CIA is to recognize the importance of global software
objects, which can be referenced across file boundaries or function boundaries. Information about
local details are basically ignored. Following this philosophy, we designed a conceptual view (Fig-
ure 3) for the C program database. This conceptual view is obtained by integrating several useful
global views of the C programs.

gbtype [¢¢

Y
-
[
=}
0
(st
D ad
o
=

A

A
=
—
[]

gbvar

> macro
“«—> <«
many-to-one many-to-many

Figure 3. The Conceptual View of the C Program Database

Each box in Figure 3 represents an object. Five object types are defined: file, function,
gbvar, gbtype, and macrot. Objects of these five types can be accessed across file or function
boundaries in C programs. We define objects of these types as global objects. A special object
type comment, which is not shown in Figure 3, is also available for processing structured com-
ments, which will be described in Section 5.1. The comment object type has a one-to-one rela-
tionship associated with all the other object types.

Each object has its own attributes. Typical attributes are

t Macros are those identifiers defined in the ##define statements in C programs.

July 3, 1986

(1) the file where the global object is defined

(2) the beginning line number and ending line number of the object in that file

(3) the data type of that object

Attribute information is helpful, e.g., with several tens or hundreds of files, it is difficult for a pro-
grammer to find out where a mysterious global variable is defined and what it is about. Using the

attribute information described above, one can locate or retrieve the global variable in 2 much
easier manner.

Each arc between two boxes in Figure 3 represents a relationship. Definitions of the nine
relationships are shown in Table 1. The relationships listed are certainly not all the relationships
one can find among all the object types, but they provide most of the relational information a
programmer might need from a program database.

Table 1. Definitions of the Nine Relationships
num | oby_typel | obj_type2 | rel_type definition
1 file file m-to-m filel includes file2
2 function | function | m-to-m functionl calls function2
3 gbvar function | m-to-m gbvarl referenced in function2
4 macro function | m-to-m macrol referenced in function2
5 function | file m-to-m functionl referenced or defined in file2
8 macro file o-to-m macrol referenced or defined in file2
7 gbvar file m-to-m gbvarl referenced or defined in file2
8 gbhtype file m-to-1 gbtypel defined in file2
9 gbvar gbtype m-to-1 gbvarl defined as a gbtype2 variable

To see how the conceptual model can be used, we provide here an example C program that
manages a queue:

file: queue.c

#include <stdio.h>
#include <queue.h>

QUEUE #Queuelnit(name, length)

char sname; /+* queue name =/

int length; /* queue length ¢/

{
short i; /+ counts buffers #/
QUEUE #q: /* buffer to be added */
q = (QUEUE #) allocate_memory (1, sizeof (QUEUE));
g->putex = seminit(1, bq->mname); /+ set mutex sem to unlocked */
q->head = bq->tail = NIL; /+ set pointers to NIL #/
q->name = string; /*# copy name pointer #/
QueueCount ++;
return (q); /% return pointer s/

}

To understand the above program, a user need to obtain the following views:
(1) Which functions call the function Queuelnit?
(2) Where is the structure QUEUE defined?
(3) Which functions use the global variable QueueCount?
(4) Which files include the file queue.h?

July 3, 1986

(5) What is the global constant EIL?

The answers to all these questions can be found through the program database because the con-
ceptual model incorporates all these views.

One approach to building the C parser is to modify the C compiler so that it generates addi-
tional information besides the original compiling tasks. We abandoned this approach for two rea-
sons:

(1) The C compiler is too complex to make modifications for our purpose, and it is very
difficult to maintain.

(2) In most cases, we are trying to understand a program which has been compiled
correctly, so it is not necessary to process many program details that the compiler
must go through.

So we decided to write our own parser. Our parser scans the C programs according to the con-
ceptual model as shown in Figure 3, and is simpler than the one used in the C compiler. The set
of rules were implemented using the standard tools Lex[9] and Yacc[10], which are available on
most Unix systems. The parser generates ten data files: file.data, function.data, gbvar.data,
gbtype.data, macro.data, comment.date, filefile.data, funcfunc.data, macrfunc.data, and
gbvrfunc.data. All the attribute information in the five object files and the information of the ten
relationships are encapsulated in these ten data filest. These data files can be accessed by the
Information Viewer, which is described in the next section.

3.3 Information Viewer

Information Viewer (InfoView) is a set of programs that provides high level access to the
data files created by the C Parser (see Figure 2). Since InfoView is designed for accessing pro-
gram databases, the design considerations are different from normal relational database systems
(e.g INGRES) in several ways:

(1) Concurrency Control: The InfoView commands only perform read operations on the pro-
gram data files. Updates to the database are only performed by the C parser when a new
version of the source program is created. At that time, the whole database files will be
rewritten. Therefore, the Information Viewer does not provide any concurrency control.
However, in the future, our Information Abstractor may be used in a multi-user program-
ming environment where updates and read accesses to the database can perform con-
currently. At that time, concurrency control may be necessary.

(2) Object Retrieval: One of the goals of our system is the easy retrieval of software objects,
whose length can range from one to several hundred lines. Unfortunately, in traditional
relational database systems, it is difficult to store or retrieve objects of arbitrary length; e.g.,
portions of documents or programs. POSTGRES — the successor of INGRES — is an
attempt to provide better support for complex objects[11]; however, the system is still not
available. To solve the problem, we store the beginning line number and ending line number
of each software object in the database and use these line numbers to access the source file
in which it is defined}.

(3) Open Design: Most database systems provide a query language to users, but a user must
first enter the database environment in order to use the query language; thus, the advan-
tages of many Unix system features can not be used, e.g., pipelining and input/output
redirection. The Information Viewer is designed is such a way that every command can be
executed at the Unix command level; therefore, no startup time is involved and the retrieved
data can be easily processed by other Unix commands. Moreover, InfoView commands
access the data files directly, it is not necessary to load the data into the database first. The
same approach is used in the FFG database system|[12].

t It is not necessary to create a datafile for each relationship. For example, the relationship between gbtype and
file can be found in ghtype.data, the relationship between gbtype and gbvar can be found in gbvar.data.
t For each function, we also store the ending line number of its header.

July 3, 1986

-9.

The C parser stores data files in the same directory in which the source files are kept. The
name of this directory is stored as an environment variable to InfoView. A summary of the major
commands implemented in InfoView follows:

(1) swsre source_dir: switch the context of InfoView to a new source directory.

(2) view obj_type obj_name: print out the whole object.

(3) Info obj_type obj_name: print out an object’s attributes.

(4) rel obj_typel obj_type2 obj_namel obj_name2: print out the relations between

1

obj_typel and obj_type2 (see Table 1); if obj_name2 (obj_namel) is specified as '-’,
print out all the objects of obj_type2 that are related to obj_namel (obj_name2).

(5) header function_name: print out the header of the function.
(6) body function_name: print out the body of the function.

(7) summary function_name: print out the summary of the relations between a function
and other software objets.

These commands are useful for finding out where an object is defined, what it is about, and
the relationship it holds to other software objects. In the following, we use an example to show
how the Information Viewer can be used step by step to get the information a user might need for
understanding a function. In each step, the output follows the command line, which is shown in
bold face. Explanations of the steps follow the example.

[1] info function inouter
in_file data_type func_name static bline hline eline

inouter.c int inouter n 14 18 31

[2] header inouter

/+:+ purpose: handles input and output queues;; ¢:s/
inouter(inoutq, endq, runq)

JQUEUE #inoutq; /+ INOUTER’s input queue of JCB's s/
JQUEUE #¢endq; /% ENDER’s input queue of JCB’s ¢/
JQUEUE #rung; /* RUNNER’s input queue of JCB’'s */

[3] view gbtype JQUEUE
typedef struct jqueue JQUEUE; /+ job queue */

[4] view gbtype struct jqueue

struct jqueue { /* job queue &/
SEM scount; /* number of jobs on queue */
SEM smutex; /+ for exclusive access to queue %/
JCB #head; /+ first job on queue */
JCB stail; /* last job on queue */
char *name; /* pointer to queue name */
char cname[20]; /* name for count semaphore %/
char mname{20]; /* name for mutex semaphore ¢/
}

[5] rel function function incuter -

caller_file caller_func callee_file callee_func
inouter.c inouter iosim.c iosim
inouter.c inouter jqueue.c jget
inouter.c inouter jqueue.c jput

July 3, 1986

- 10 -

[6] rel function function - inouter
caller_file caller_func callee_file callee_func

main.c main inouter.c inouter

[7] rel gbvar function - inouter

var_name used_in_file used_in_func
queue_length inocuter inouter.c
Step 1: Find out the attributes of the function inouter.
Step 2: Take a look at the header of inouter.
Step 3: Find out what the data type JQUEUE is.
Step 4: Find out the structure of jqueue.
Step 5: Find out which functions are called by inouter.
Step 6: Find out which functions call inouter.
Step 7: Find out which global variables are used inside inouter.

Without the Information Viewer, a user will have to search through many files to get the above
information.

The query syntax used in InfoView is less complex than INGRES. For most database
accesses, users are not required to memorize the field names of each relation; they only have to
use the names of the five object types and names of the referenced objects to construct a query.
For example, compare the following two queries; both are used to print out the functions called by
the function main:

{(a) Information Viewer:
rel function function main -

(b) INGRES:
range of ff is funcfunc
retrieve (ff.all) where ff.caller_func=*main®

However, INGRES provides many powerful functions that are not available in the Informa-
tion Viewer; e.g. join operations, aggregate functions, etc. Therefore, we provide an utility com-
mand that creates an INGRES database schema (using the conceptual model shown in Figure 3),
and loads the data files automatically. A user can then invoke INGRES commands on the data-
base using sophisticated relational queries.

4.0 Performance

Our C Information Abstractor (CIA) has been implemented and successfully tested on
several programs. To illustrate the performance of CIA, we collected some data by running CIA
on the following source programs:

(1) Socket: a remote job execution program.

(2) Air: an air line reservation program — a typical student project.

(3) Grn: a typesetting preprocessor for picture files.

(4) Toy.os: an experimental operating system used by Berkeley studentst.

t The version we used has several modifications.

July 3, 1986

-11-

(5) Gremliin- a graphics editor for SUN workstations.

The data we collected are listed in Table 2 and Table 3. Table 2 lists the fcllowing items:
(1) the number of source files of the program, (2) the total number of functions in that program,
(3) the total number of lines in all the source files of that program, (4) the average function
length, (5) the number of relations extracted from the source files, (6) the number of cpu seconds
spent by our C parser on abstracting the program, and (7) the number of cpu seconds spent by
the C compiler on the same progcam. Both (6) and (7) are measured on a VAX 780. Table 3
shows the size of the output data files (excluding the comment.data file) created by CIA on the
five programs.

Table 2. The Perfcrmance of CIA on Five Programs

program || num. of | num.of | num.of | avg. func. | num.of abstraction | compilation
name files functione lines length relatione time time
Socket 6 7 414 34 84 17.7 25.8
Azrr 9 22 1083 34 184 18.4 41.0
Grn 6 28 1518 33 398 18.7 37.86
Toy.os 43 78 2378 20 8086 668.1 119.0
Gremlint 21 388 11438 17 3900 427 .2 904.8

Table 8. The Size of the Data files for Five Programs
datafile Socket | Air | Grn | Toy.os | Gremlin
filedata 6 9 6 43 21
gbvar.data 5 18 47 44 289
gbtype.data 8 2 Y 19 1
macro.data 7 10 62 58 208
function.data 7 22 26 75 888
filefile.data 25 28 9 78 147
SJuricfunc.data 6 26 41 217 874
gbuvrfunc.data & 19 | 117 120 871
macrfunc.data 14 65 81 151 1147
total 84 194 | 898 806 8900

As shown in Table 2, the time the C parser spent on the abstraction process strongly
depends on the number of functions. Because CIA ignores most details within functions except for
references to global objects, the number of functions has a larger impact on the abstraction time
than the number of lines does. We can also see from Table 2 that the abstraction time CIA spent
on a program is approximately half of the compilation time for the same program.

Table 3 reveals some structure information of the five programs:

Socket has a relatively large number of file-file bindings (25) because it uses a considerable
amount of header files for networking. This implies that it is relatively system-dependent,
because some Unix systems may not have all the header files it needs.

Air has only two data types, which implies that the data structure complexity of this pro-
gram is relatively low.

Grn needs to set up a global typesetting environment, thus it has a large number of global vari-
ables (47), macros} (62), and strong bindings between functions and global variables (117). This
implies that it is difficult to reuse a function of Grn in other application programs, since a large

t Gremlin has 21 source files and 85 icon data files. The icon data files are ignored by the information abstrac-
tor. Because Gremlin can only be compiled on SUN workstations, the compilation time is measured on a SUN-2
workstation instead of a VAX780.

t These macros are mainly constant definitions.

July 3, 1986

-12-

global environment needs to be built before using that function.

Toy.0s employs a large number of functions (75) and function-function bindings (217). To
reuse a function in Toy.os, a large number of functions have to be retrieved at the same
time.

Gremlin has problems similar to what Toy.os and Grn have.

The above discussion gives some hints as to how one uses the program database to calculate
some metrics, and how one interprets those metrics. In Section 6.3, we will further explore this
topic.

The utility commands of the Information Viewer were originally written in Unix shell
scripts[13]; we then transformed most of the commands to C programs for speed. Table 4 shows
the performance of four typical Information Viewer commands on the five program databases.
The running time is measured in the number of cpu seconds (on a VAX780). The four InfoView
commands are:

(1) 1ist function : print out the attributes of all functions

(2) info function main : print out the attributes of the function main

(3) rel function function main -: print out functions called by the function main
(4) view function main : print out the function main

Table 4. The Performance of Information Viewer on Five Programs
program list info rel view
Socket 0.1 0.1 0.1 0.3
Arr 0.2 0.1 0.2 0.6
Grn 0.2 0.1 0.2 03
Toy.oe 0.6 0.2 0.5 0.4
Gremlin 3.7 0.7 1.6 08

Each of the above InfoView commands accesses one datafile; the view command additionally
accesses one source file. In general, the speed of InfoView commands depends on the length of the
datafile accessed. As shown in Table 4, these commands are fast and there is no startup overhead
associated with these commands. This fact makes the InfoView system highly interactive.

5.0 Extensions

Through the experience in implementing and using the C Information Abstractor (CIA), we
found that several extensions are necessary. We have several ongoing plans for these extensions,
which are described in the following subsections.

5.1 Structured Comments

Some information cannot be automatically derived from the code, e.g., the assumptions
made by a programmer, the specific algorithm used by a particular function, and the computa-
tional complexity of an algorithm, etc. One possibility is to store the information in comments;
however, the C language does not provide a way to specify the association between the comments
and software objects like modules, functions, and global variables. Take an example from C pro-
grams:

int person;
/* number of persons; */
comnt() { ... };

How can the C Parser tell whether the comment is for the global variable person or for the func-
tion count? This makes it impossible for the InfoView to retrieve an object with its comments.
Because of the ineflectiveness of putting information into comments, many programmers do not

July 3, 1986

-13-

pay attention to it. The result is that software maintainers may spend several hours trying to
figure out a minor detail in a program written by other people.

Structured comments is a way to make associations between objects and comments by using
some simple comment placement rules. A structured comment has two possible forms: before
comment and after comment. A before comment should be placed before a software object; an
after comment should be placed after a software object. Each structured comment begins and
ends with a special marker. The general form of a before comment is shown here:

/%=
attributel: valuel;;
attribute2: value2;;

attributen: valuesn;;
*:5/

An after comment is basically the same, with the exception that it starts with /##: and ends
with :s¢/. With the help of an advanced editor, some normal comments in existing programs
can be transformed to structured comments very easily. We force these comment placement rules
in order to make the association between comments and software objects easier. For example,
given a piece of C program like the following:

int queune_length;
/+:% purpose: initializes a queue ;; s:s/
InitQueve() { ... }

Since the comment used is a before comment, the parser can easily identify that the comment is
intended for InitQueue rather than for queue_length. Therefore, the comment and the function
can be retrieved together by the view command in InfoView.

Besides making the association of comments and objects, we also suggest the idea of com-
ment attributes to organize the contents of comments in a structured way. Useful comment attri-
butes for function objects include: (1) purpose, (2) assumption, (3) condition, (4) assertion, (5)
algorithm, and (6) complexity. Here is an example:

/*:s
purpose: to sort an array of integers ;;
assumption: only positive integers are specified in the array ;;
condition: this function can only be called after arrayinit ;;
assertion: after execution, global variable SORTED is set to 1 ;;
algorithm: Quick sort, reference [Ullman 1984] ;;
complexity: O0(N+logN), N is the length of the array ;.

.8/

@sort (input_array)

int input_arrayl];

{....}

These attributes are optional, the programmer may select to use only a few of them that are
relevant to a particular object. The set of attributes to be recognized by the parser can then be
specified in the abstraction rules.

A set of new InfoView commands can be developed to take advantage of the structured
comments. For example,

(1) comment object_type object_name: retrieve the comment of an object.

(2) showattr object_type object_name attribute_name: retrieve a specific attribute of an object

July 3, 1986

-14 -

5.2 Incremental Updates of the Database

Current implementation of the CIA requires that the whole database be regenerated to get
the most up-to-date information if any of the source file is updated. This is acceptable if a user
just wants to understand a relatively steady program. However, if the software is still under
development, it is desirable to have the C Parser update only the portion of the database that is
relevant to the changes in the software, in a spirit similar to incremental compilation.

We plan to solve this problem by employing a strategy similar to the one used by the C
compiler. Each file can be processed independently by the C Parser, and a symbol table file that
records the object attributes and references is created. A final linking process combines symbol
tables for all the source files and creates the final data files. Whenever any change is made in a
file, it is only necessary to regenerate the symbol table for that file, and then performs the linking
process again to get a new set of data files.

5.3 Abstraction on Other Textual Forms

The Information Abstractor can handle all C source programs; however, Lex and Yacc files
are usually a part of many software on Unix systems. For example, the C Parser itself consists of
one Lex file, two Yacc files, and several C files. Therefore, we would like to extend the information
abstraction system to understand the structure of Lex and Yacc files and store information like
the relation between rules and tokens, and where rules and tokens are defined.

A software system usually consists of requirements, design documents, user manuals, test
cases, and source programs. The C Information Abstractor only handles the source programs;
however, an information abstractor can be developed to create a database for each type of struc-
tured text used in software systems. The relationship among these these software elements can
then be traced using these databases. The importance of this type of traceability is discussed
in|14] and[15).

8.0 Applications

We can explore many applications to take advantage of the program database. We will dis-
cuss four of them in this section: (1) Multiple Software Views, (2) Software Metrics, (3) Software
Reusability, and (4) Software Restructuring. The ideas we discussed in these subsections can be

applied to programs written in most programming languages — if an Information Abstractor is
available for each of the languages.

6.1 Multiple Software Views

A graphics program with the ability to provide multiple views of programs greatly simplifies
the task of program understanding. Using the program database, such a graphics interface can be
implemented easily. For example, in Figure 4, when a user is trying to understand the function
bput in bqueue.c, he needs to view the functions bginit and bget; when he switches to bqinit,
then he may need to know what the global variable state is. Views on these objects can be
retrieved from the source files very easily using InfoView commands and displayed on worksta-
tions that support window management. If a user wants to get a high level view of the object
bput, then another window could be created to display the the relations between bput and other
global objects. We are planning to build such a system on SUN workstations.

8.2 Software Reusabllity

Reusing a piece of software that has been tested will greatly reduce the development time
for a new software product; however, two necessary conditions for reusing a software object are:
(1) the limitation and functionality of that object must be well understood, (2) all software objects
that are referenced in that object must also be identified and retrieved at the same time.

Information described in (1) can best be provided by the programmer who wrote that piece
of program; and this information can be described using the structured comments described in the
Section 5. Information described in (2) can be easily derived from the program database.

July 3, 1986

-15 -

bqueue.c e init.c o queue.h
extern int A; bginit() [
bput(); state=1" i | int state;
int c; 1
bginit(); ...
bget(); ... Ll Retee
c:=A; l{)get()
}
}
Relations of bput to other objects
Junction
bput
Junction function gbuar
bginit bget A

Figure 4. Multiple Program Views
8.3 Software Metrics

In large software projects, metrics play an important role in estimating software quality,
amount of testing required, maintenance requirements, etc. Examples of software metrics are:

(M1) function-file binding: the number of relations between a function and global objects in
another file

(M2) file-file binding: the number of relations between global objects in two files
(M3) retrievability: the number of objects associated with a particular function
(M4) data structure complexity: the number of data types used in the program
(M5) the average length of functions

(M6) the average number of functions used in a software module

(M7) the number of calling paths starting from a function

(M8) the depth of a calling path

(M9) McCabe's cyclomatic number|[16]: the maximum number of independent paths in a pro-
gram

(M10)Halstead’s metrics{17]: the vocabulary, length (both in terms of unique operands and
operators) and the volume of the program.

These metrics are helpful in finding poorly structured software modules. For example, a large
value of (M1) indicates that a function should be moved to the file that has strong bindings with
it. A large value of (M2) indicates that two files should be merged. A large value of (M3) indi-
cates a function can not be reused without bringing together a large context. Similarly, (M4) to
(M8) reflects the program structure in various ways. Metrics (M1) through (M8) can be obtained
from the program database created by the C Information Abstractor (CIA). (M9) and (M10) can
be obtained by modifying the conceptual model used by CIA.

8.4 Software Restructuring

The metrics information usually leads to the conclusion that a program must be restruc-
tured. Since all global interrelations of the programs are stored in the database, the effort of res-
tructuring programs is greatly reduced. The C Information Abstractor can help trace the ripple
effects caused by a restructuring operation by examining the relations stored in the database.

July 3, 1986

- 16 -

A software restructuring process consists of several basic operations: moving, renaming,
deleting, and inserting a software object. Each operation requires careful examination of the
affected objects. For example, Figure 5 shows that a function p1 is to be moved from tl.c to t2.c:

t3.c

tl-c “-‘ t2.c extern pl();

int c; static p1() p2()
P10 { {
} p1();
! }

'. p3()
: {

int pl;

a:=pl;

}

Figure 5. Move the function p1 from tl.c to t2.c

Although the task looks simple, it is difficult for a programmer to do it right. One way a program-

mer might do is the following:

(1) Find out all global objects that are defined in t1.c and used in function pi — in this case, the global
variable c;

(2) 1f the global variable c is used in other places (other than the function p1) in tl.c, then declare
extern int c;

in t2.c; otherwise, move declaration “int ¢;” from tl.c to t2.c;

(3) Check if there is another procedure in t2.c which uses the same name p1 — in this case, yes;

(4) Rename the function pi, which just got moved from tl.c, to some new name pX,

(5) Check if there are functions in other files that reference the original p1 in tl.c —in this case, yes, in
t3.c;

(6) Replace the reference (to p1)in t3.c by a new reference to px — but be careful, don’t change the local
variable p1 in function p3.

As we can see, even a simple movement of function may end up with detailed checkings over
many functions and files. Similar checkings must be done for deletion and insertion of objects.
We would like to be able to handle these details automatically using the relational information
available in the program database.

7.0 Conclusion

We have implemented an information abstraction system for C programs. Through our
experience, we found that the idea of abstracting program information into a database provides
effective support for software understanding. However, a simple conceptual model for the program
database and efficient data retrieval commands were critical to the success of this abstraction sys-
tem. The successful implementation and the availability of the program database promotes more
research effort on several software engineering areas: Multiple Software Views, Software Reusabil-
ity, Software Metrics, and Software Restructuring.

July 3, 1986

.17 -

Acknowledgement

Many people contributed to the implementation of CIA. Mike Nishimoto and Lenora Eng

implemented the C Parser — the kernel part of CIA; Joo-Seok Song wrote some of the shell
scripts for the Information Viewer; Wen-Ling Chen converted some shell scripts to C programs
and maintained the INGRES database for Information Abstractor. We would also like to thank
Atul Prakash, Wei-Tek Tsai, Yutaka Usuda, Vijay Garg, Tsuneo Yamaura, Anupam Bhide,
Rajeev Aggarwal, Bruce Wachlin, Doyt Perry, Charles Fritz, Michael Buckley, and Robert
Yacobelis for valuable comments and discussion throughout the development of this project. Spe-
cial thanks are due to Ms. Bibbs for editorial advice.

References

1.

10.

11.

12.

13.

14.

15.

16.

C.V. Ramamoorthy, Atul Prakash, Wei-Tek Tsai, and Yutaka Usuda, “‘Software Engineer-
ing: Problems and Perspectives,” IEEE Computer, vol. 17, no. 10, pp. 191-209, October
1984.

Dennis M. Ritchie, “The C Programming Language - Reference Manual,” UNIX
Programmer’s Manual, vol. 2, 1984,

M. A. Linton, “Implementing Relational Views of Programs,” Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Develop-
ment Environments, May 1984.

A. Goldberg, Smalitalk-80: The Interactive Programming Environment, Addison-Wesley
Publishing Company, 1984.

M. Weiser, “Program Slicing,” IEEE Transactions on Software Engineering, vol. SE-10,
no. 4, pp. 352-357, July 1984.

Kathleen Jensen and Niklaus Wirth, Pascal User Manual and Report, Springer-Verlag,
1975.

AT&T Bell Laboratories, Uniz System V Programmer’s Manual, 1985.

M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The Design and Implementation of

INGRES,” ACM Transactions on Database Systems, vol. 1, no. 3, pp. 189-222, September
1976.

M. E. Lesk and E. Schmidt, “Lex - A Lexical Analyzer Generator,” Uniz Programmer’s
Manual, vol. 2, 1984.

Stephen C. Johnson, “Yacc: Yet Another Compiler-Compiler,” Uniz Programmer’s Manual,
vol. 2, 1984.

Michael Stonebraker and Lawrence A. Rowe, “The Design of Postgres,” UCB/ERL 85/95,
University of California, Berkeley, November 1985.

Doug Comer, “The Flat File System FFG: a database system consisting of primitives,”
Software - Practice and Ezperience, November 1982.

S. R. Bourne, “An Introduction to the UNIX Shell,” UNIX Programmer’s Manual, vol. 2,
1978.

Y. Usuda, “The Design and Implementation of Evolution Support Environment (ESE),”
Master Report, Computer Science Division (EECS), University of California, Berkeley, May
1985.

C. V. Ramamoorthy, Y. Usuda, W. -T. Tsai, and A. Prakash, “Genesis: An Integrated
Environment for Development and Evolution of Software,” COMPSAC, 1985.

Thomas J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineer-
ing, vol. SE-2, no. 4, pp. 308-320, December 1976.

July 3, 1986

-18 -

17. M.H. Halstead, Elements of Software Sciences, Elsevier, New York, 1977.

July 3, 1986

CIA(1) UNIX Programmer’s Manual CIA(1)

NAME
cia — information abstractor; a program to extract relations from C programs and place them into

a database.

SYNOPSIS
cla [—c][-d][—h“-i][—l][-m][-o][-p“-s][-u][-w][-D][—I][-U] filenamel filename2 ...

DESCRIPTION
The C Information Abstractor is a program which extracts relations from C source files and place
them into a C program database where they can be accessed with an information viewer; se€

infoview(1).

A conceptual model of the C program database used by cia(1). is shown below in Figure 1. This
model defines the objects and relations recognized by the information abstractor. For more details
on the specific relations, see infoview(1).

I TA |

many-to-one many-to-many

Many of cia’s options will rarely be used by the average programmer, while others were added
only for the cta administrator. They are as follows:

-m Print menu of commands for cia.

- Incremental compilation of files given to cia. Output files are of form filel.st, file2.st... To
combine all information, pass * gt files to cia. [Not implemented yet]

-u Incremental update of database. Once a file is modified but has already been run through
cia, use this option to rebuild the database by passing files modified or added to program
being parsed. [Not implemented yet]

-1 Output information about include files. See limitations below.

-5 Create another relation which will enable a user to see which system calls were made in
which functions.

-W Suppress output diagnostic messages of cia. These are messages telling users the stotus of
each file's parse. If syntax errors occur within cia, error messages will be printed regard-
less of this flag.

jon April 1986 1

UNIX progr3™ r's Manua\
{pitiahiz® gefine V2 ue cT0 Works exactly 1ike optio® in ce(1) ore 113 can P of
the form ° =€ sion °F _pname: p tbhe first cas¢e,) '\n'\\'\a\'\zed to
exp slony in the gecon ns ts '\n'ma\'\ze Lo one
ad includ: \ girecto™y t current directory and [UST [incl® directory e orde? of
search is
1) Current directo™y
2)-1 direc oties
3) incdir rector e STABTING UP.
4)]ustl'\ ude ctories
he order ical O tha £ ccl excep that jncd directo™ at 'msened after the
A d‘\rectot'\e pefore]usx[\ duecmt'\es.
- U define the st occunence pe Hivel macro
ClA ma'\menance options
- Debugg,'mg fag— atput simple deb“ggmg m(otmat'\on about rokens gLrind® an end—oi
files-
b Debugg,mg __output i} valued of str 25-
- Debug,g'mg 0 tput ow 1eve d bugti® in rmatio? about state changes within the
arser-
-0 eave O put pre- gocessot files 1B curred d“ecxory Files will wit »c0H {his
Lffix c2? b changed
- 1nput were ced b the PI¢& ocessot cio 30 do not peed 10 b ptocesse
2g 310 {ote pats’m nbeg,'m
gTAR G
Cla ¥ writte® AX-11]750 e inst yction ¢ the mach s differe® o Wil hav
to be € mpt Ometw'\se, cid be p\aced in directory. an pe TV atting thi
directo? in ser’ path (1) Cio st ated {0 directory” ere gource
files exist
An ol exists for 2d44ing include file jrecto e gearch b of the €\0 out aving b
use the .1 oplio® Create 2 e in the jrectory tainind the rce file whet j0 W) be run)
which a5 D€ full pat es of these 4 ector ply one€ directoty D pe place on
\ipe; 28 <imum of ab g 18 enf the cess0 of cio
OUTPU FILES
he output files of cia 21¢ the datab3st il used oY inf ouew(1 dispiay inf atio about
gource gles 10 s mem\ed\ comp'\\at\on files and pte—ptoces es 21€ o out ut and
have the fO * st * co, espect'we\y The databast file outp ate mmem.data,
expand.dam e 43t 1efile data, { nci\mc.dam, (\mct'\on 43 at.data,gbvﬁ pc.dat?
biype.da’ta, go.dat? acrf c.datd system.dat , and ook Enn'\es of each data-
base file ar¢"
comm 2
File pame com ent found
on Object €© n e\onged 0
~ame ©f biect
and 4 lines £ commen

[3]

UNIX Programmer’'s Manual

expand.data
1) File name of where expansion occurs
2) Name of macro expansion
3) Line number of expansion

file.data
1) File name passed cia
2) Number of lines in file

filefile. data
1) File name passed cia
2) Included files of that file

funcfunc.data
1) Function name
2) Name of file containing the function
3) Other functions called within the given function
4) File names of where these other functions can be found.

function.data
1) Function name
2) Name of file containing the function
3) Type of the function
4) Staticness of function
5) Begin line of [pre-comment for| function
6) Line where body of function starts
7) End line of [post-comment for| function

gbvar.data
1) Global variable name
2) Name of file containing the global variable
3) Type of global variable
4) Staticness of variable
5) Begin line of [pre-comment for] variable
6) End line of [post-comment for] global variable

gbvrfunc.data
1) Function name
2) Name of file containing function
3) Names of global variables found in function

gbtype.data
1) Name for a global type
2) Name of the file containing the declaration of that type
3) Begin line of [pre-comment for] type
4) End line of [post-comment for] type

macro.data
1) Name of macro
2) Name of the file containing the definition of macro
3) Begin and end line of macro

macrfunc.data
1) Name of function

4th Berkeley distributic April 1986

CIA(1)

CIA(1) UNIX Programmer’s Manyaj CIA(1)

5ystem.datgy
1) Name of functiop
ame of fije Containing functiop
3 System call withjp functiop

unknown.data
1) Name of functiop
Name of file Containing functiop
3) Unknowp word withjp functiop

ERROR MESSAGES

1) When Processing ap include file, information about jtg Contents ape Placed jj the databage

2) When Viewing Telations of Macros/globg) variab!es/[unctions used jp functions, cia might

3) Files Passed to ¢4 must pe individuaﬂy compilable, In other words, if the file cap Dot be

1) Pre—comments and post-comments €an not be used for Macros, conditiopy) statements, or
include files,

BUGSs
1) Some Versions of cia may not pe able ¢o handje T#if xxx” Statements Properly. 4 Mmight
Dot process mformation Inside of this king of constryct
2) Cia may pot Operate Properly jf , globa] Yariable jg declareq using (s option of po type
Specifier, For €xample, deﬁning a globa] Variable a4 follows:
Variable; or
Variable — 5;
may cayge Problems. his style of deﬁm’ng integer Variables js Bot alloweq inside fune.
tions apg 50 poses po problems ¢, cia.
3) At the end of files, software objects may not pe recognijzed by cia Or may show up as

4th Berkeley distn’bution April 1986

CIA(1) UNIX Programmer’s Manual CIA(1)

4) Hopefully no others.

FUTURE IMPROVEMENTS

1) Allow user to specify suffixes for pre-processor output file and incremental compilation
file.

2) Allow incremental updating of database.

3) Add more relations from data already available to cia.

1) Allow incremental compilation of database[if not done yet].

5) Most of the possibilities lie in the area of using the data produced by cia to perform
metrics and source manipulation within files. Workstation window commands are another
possibility.

6) The possibilities are endless.

SEE ALSO

infoview(1), cc(1)

AUTHOR
Cia was implemented by Michael Nishimoto with help from Lenora Eng. Program designers were
Michael Nishimoto and Yih-Farn Chen. The relational database schema was mainly designed by
Yih-Farn Chen with modifications by Michael Nishimoto. This manual is written by Michael
Nishimoto.

4th Berkeley distribution April 1986 5

INFOVIEW (1) UNIX Programmer’s Manual INFOVIEW (1)

NAME
infoview — a set of commands that access the C program database created by cia(1).

SYNOPSIS
swsarc source_directory
info | -u | object_type object_name
rel [-u | object_typel object_type2 object_namel object_name2
view | -n | object_type object_name [file_name]
list -u datafile_name
header function_name [file_name]
body function_name [file_name]
summary function_name [file_name]
see | -n | file_name begin_line end_line
pgm
infoview

DESCRIPTION
Information Viewer is a set of commands that access the C program database created by the C
information abstractor; see cia(1). The conceptual model of the C program database used by
cia(1) is shown in Figure 1. This model defines the objects and relations recognized by the infor-
mation abstractor.

A

gbtype

A\
A
\4

A

v
=2
et
o

A

function gbvar

A4
A

macro

“«—> >

many-to-one many-to-many

Figure 1. The Conceptual Model of the C Information Abstractor

Each box in Figure 1 represents an object. Five object types are defined: file, function, gbvar,
gbtype, and macro. Note that macros are those identifiers defined in the #define statements.
Each arc in Figure 1 represents a relationship. Definitions of the nine relationships are shown in
Table 1. The relationships listed are certainly not all the relationships one can find among all the
object types; but they provide most of the relational information a programmer might need from
the program database.

4th Berkeley distribution April 1986 1

INFOVIEW (1) UNIX Programmer’s Manual INFOVIEW(1)

| obj_typel | obj_type2 | rel_type definition

1 file file m-to-m | filel includes file2

2 function function m-to-m | functionl calls function2

3 ghvar function m-to-m | gbvarl referenced in function2

4 macro function m-to-m | macrol referenced in function2

5 function file m-to-m | functionl referenced or defined in file2
6 macro file m-to-m | macrol referenced or defined in file2
7 gbvar file m-to-m | gbvarl referenced or defined in file2

8 | gbtype file m-to-1 gbtypel defined in file2

9 gbvar gbtype m-to-1 gbvarl defined as a gbhtype2 variable

Table 1. Deflnitlons of the Nine Relationships

Swsrc switches the context of information viewer to a new source directory; the ten data files
created by cia(1) and source files in the specified source directory will be used by all the following
infoview commands.

Example: swsrc ~ [ditrofi/grn

Info gives the information about an object’s attributes. An object is specified by its object_type
and object_name. If several objects in different files share the same name, information about all
these objects will be listed. If "-u” option is specified, then the output will not be formatted.

Example: info function Queuelnit

Rel lists the relational information between two objects. All the nine relations listed in Table 1
are explicitly or implicitly stored in the ten data files created by cia(1). The rel command accesses
these data files and prints out the relational information requested. If -u” option is specified,
then the output will not be formatted. The two object types can be specified in any order. One
of the object names should be specified as ”-”. This is best explained by the following examples:

Examplel: rel function gbvar - queue
{print out all the functions that reference the global variable queue}

Example2: rel file file - stdio.h
{print out all the files that include the file stdio.h}

View prints out the specified object. If ”-n” option is given, then a line number will be printed
before each line. The file_name argument is necessary if two or more objects in different files
share the same name.

Examplel: view function InitDB db.c

Example2: view -n ghtype "struct buf”
List prints out the contents of the specified data file in a nice format. Any of the ten data files,
namely file.data, function.data, gbvar.data, macro.data, gbtype.data, comment.data, filefile.data,
funcfunc.data, gbvrfunc.data, macrfunc.date, can be printed. If "-u” option is specified, then the

output will not be formatted.

Example: list gbvar

o

4th Berkeley distribution April 1986

INFOVIEW(1) UNIX Programmer’s Manual INFOVIEW (1)

Header prints out the function header, which includes the comments and argument list, of the
specified function. If two or more functions in different files share the same name, an optional
filename can be specified.

Example: header PushStack stack.c

Body prints out the body of the specified function. If two or more functions in different files
share the same name, an optional filename can be specified.

Example: body PopStack

Summary prints out the summary of the relationships between a function and and other objects,
namely relationship 2, 3, and 4 listed in Table 1. If two or more functions in different files share
the same name, an optional filename can be specified.

Example: summary PushStack

See prints out a part of the specified source file, from begin_line to end_line. If ”-n” option is
specified, then the line number is shown before each output line.

Example: see -n main.c 23 45

Pgm tells you from which source directory the infoview commands are accessing the data files and
source files.

Infoview gives a listing of the commands and options of all the infoview commands.

SEE ALSO
cia(l)

AUTHORS
Most of the InfoView commands were originally written in shell scripts by Joo-Seok Song and
Yih-Farn Chen, and later translated to C programs by Wen-Ling Chen and Yih-Farn Chen.

4th Berkeley distribution April 1986 3

