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ABSTRACT

Microprocessor architecture is evolving rapidly as silicon integrated circuits
increase in density. On-chip cache memories are becoming an established feature
in 32-bit microprocessor designs because they significantly improve performance.
Microprocessor performance is degraded by bus contention between instruction
and data memory traffic. On-chip instruction caches reduce this contention prob-
lem by supplying many of the instructions executed by the microprocessor. The
SPUR instruction unit is a direct mapped cache with 512 bytes or 128 instruc-
tions. It is organized in sub-blocks to provide efficient instruction fetching and
prefetching from the external memory. The SPUR instruction unit is controlled
by two finite state machines: one for instruction fetching and one for instruction
prefetching. These control functions are implemented using PLA’s and standard
logic cells. The standard cells are implemented in domino logic to meet speed and
area constraints. SPICE simulations indicate that the slowest signal delay path
in the instruction unit is 14.7 ns. The SPUR instruction unit contains 39,400
transistors and occupies 4200 x 6000 ym in a 2 um technology. Area and speed
metrics for alternative instruction units indicate that implementations with either
larger sub-blocks or two-way associativity will satisfy the SPUR CPU speed
requirements. A two-way set-associative implementation would consume approxi-
mately 20% more silicon area.
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1. INTRODUCTION

Microprocessor architecture is evolving rapidly to incorporate advances in integrated circuit
technology. The most dramatic progress in technology has been achieved in the demsity of
transistors on a single chip. Computer architects must evaluate new alternatives to determine the

optimum way to use this increased density.

1.1 On-Chip Cache Memory Research

Research indicated that on-chip cache memories could provide significant performance
benefits before technology would support their implementation. Smith commented that more
research was necessary to best design on-chip caches [Smith82]. Goodman proposed that small
local cache memories were essential for single chip or single board central processor units (CPUs)
[Good83]. He argued that the bandwidth between the CPU and memory system would limit per-
formance unless local cache memory was provided. Furthermore, the local cache must not further
burden the bus resources. Goodman concluded that the amount of data transferred between the
local cache and external memory system should be reduced in designs limited by bus bandwidth.
Trace driven simulations by Hill demonstrated benefits of on-chip cache memories in several
different computer architectures [Hill84]. Hill also presented data to support ‘sub-block’ cache
memory organizations. Sub-blocks refer to the amount of data that is transferred between the
local cache and the external memory system. Two or more sub-blocks and an address tag are
contained in each block in the cache. Hill demonstrated that the use of sub-blocks in on-chip

cache design reduces bus traffic. However, sub-blocks also reduce the hit ratio of the cache.

1.2 On-Chip Cache Memory Implementations

A number of recent microprocessor designs have implemented on-chip cache memories. Two
examples are reviewed in this section. The Motorola MC68020 32-bit microprocessor contains a
256-byte instruction cache [Mac84]. The MC68020 instruction cache improves performance by

reducing the number of accesses that must be made to the external memory system. The
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MC68020 instruction cache only supports basic features. It is a direct mapped cache and does not
support prefetching from memory. However, even this basic design has a significant impact on
performance. System measurements indicate that 64% of the instructions executed by the
MC68020 are contained in the instruction cache [Mac85]. Furthermore, the overall system perfor-

mance improves by 30% when the instruction cache is enabled.

The Zilog 280000 microprocessor contains a 256-byte cache memory that supports more
complex features [Phil85]. For example, this cache may be configured in one of three ways:
instruction cache, data cache, or a unified cache (instructions and data). It also supports fully
associative mapping between the instructions address and cache blocks. Trace driven simulations
of this cache indicate that the hit ratio should be 60% to 70%. Overall performance of the

microprocessor should improve by 20% to 30% [Phil85].

1.3 MS Report Outline

This MS report describes an on-chip instruction cache designed for the SPUR project at U.C.
Berkeley. The objective of the SPUR (Symbolic Processing Using RISCs) project is to design and
build a multiprocessor workstation [Hill85]. A custom 32-bit RISC CPU, cache controller, and
floating-point processor are being developed to support the multiprocessing Lisp envirorment.
The instruction cache on the SPUR CPU is referred to as ‘the instruction unit’ to avoid confusion

with the external cache memory in the SPUR system.

The information in this MS report is organized from high-level architectural descriptions to
low-level circuit implementation details. Chapter 2 first provides a brief review of the SPUR CPU
microarchitecture. The architecture of the instruction unit and its interface to the CPU are then
described. The final section in Chapter 2 presents five examples to clarify the operation of the
instruction unit. Chapter 3 focuses on the implementation of the SPUR instruction unit. State
diagrams illustrate the two finite state machines that exist within the instruction unit. The next
section describes the implementation philosophy for the instruction umit control. The final three

sections of Chapter 3 discuss the circuit implementations of the control, instruction buffer, tag
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comparison, and prefetcher functional blocks. Finally, Chapter 4 examines several implementa-

tion parameters including: memory array size, sub-block size, and associativity.



2. THE SPUR INSTRUCTION UNIT ARCHITECTURE

The SPUR instruction unit architecture has been influenced by previous research at U.C.
Berkeley. For example, a VLSI cache chip was designed and implemented as a U.C. Berkeley gra-
duate class project [Hill82], [Patt83]. Hill studied trace driven simulations of cache memories suit-
able for on-chip implementations [Hill84]. The instruction unit architecture was further refined

when the functional description of the CPU was written {Kong86a), [Kong86b].

I was not at U.C. Berkeley to participate in the evolution of this architecture. Therefore, I
will not address many of the issues and ideas that were considered during its development. How-
ever, | describe the final instruction unit architecture in this chapter. In the next chapter I will
combine the implementation issues that I faced with this architectural information to provide a

cohesive description of the project.

2.1 Overview of the SPUR CPU

This section provides an overview of the SPUR CPU microarchitecture. This information is
needed to support the subsequent sections that examine the instruction unit architecture and
implementation. The CPU microarchitecture will be documented in a dissertation by Shing Kong.
The implementation issues for the execution unit will be written by Dave Lee and Wook Koh.

The clock generation circuits and PLA templates will be documented by Deog-Kyoon Jeong.

CPU Functional Description: At the highest level, the SPUR CPU contains two func-
tional units: the execution unit (EUnit) and the instruction unit (IUnit). These two functional
units contain separate control blocks as in a traditional board-level CPU implementation. The
SPUR CPU, however, takes advantage of the EUnit and IUnit integration by sharing four wide
busses. The pin count for these busses alone (102 pins) uses most of the available SPUR CPU sig-

nal pins. The instruction unit interface is presented in section 2.3.

The block diagram in Figure 2-1 shows the key functional blocks of the CPU. The EUnit
data path is naturally divided into two parts. The lower datapath performs most of the register

to register instructions and initiates branch and trap activities. The upper datapath maintains
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the program counter and register window pointers. It also calculates the destination address for

all compare and branch instructions. The following paragraphs describe each block in Figure 2-1

from left to right and bottom to top [Kong86a].

Reg_File:

Pipe_Reg:

In_Ext:
Shift:
ALU:

UPSW_KPSW:

Br_Cond:

Trap:

IUnit:

Mst_Ctr:

A 138 word by 40 bit register file which supports dual port reads and sin-
gle port writes. This register file is organized as 8 overlapping register
windows with 32 registers in each window.

This block contains three datapath latches. Each latch is 40-bits wide.
Two latches store data read and written from the register file to make it
available during the proper pipeline stage. The other latch stores data
that will be transferred to the Data_bus. The information on the

Data_bus is written to the external cache memory.

This block inserts and extracts bytes for tag manipulation.
This is a 3-bit shifter for the ALU.

Performs A+B, A-B, A XOR B, A AND B, and A OR B.

Special Registers for the User Process Status Word and the Kernal Process

Status Word.

Uses ALU information to evaluate the conditions for the compare and

branch instructions.
Generates trap requests for unusual conditions.

The IUnit receives instruction requests on the program counter bus
(PC_bus) from the EUnit. The [Unit sends instructions on the instruction
bus (Ins_bus) to the Mst_Ctr block. The IUnit also initiates fetches and

prefetches on the Add_bus and loads instructions from the Data_bus.

The master control block decodes the instruction OP codes into high-level
control signals for the rest of the CPU. High-level control signals from the

Mst_Ctr do not directly connect to the data path circuits. These signals
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Special_PC:
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provide communication between the Mst_Ctr block and other local control
blocks within the CPU. Since the CPU supports a four stage pipeline, the
master control must deliver each signal for an instruction during the
correct cycle. Further decoding and control is performed locally in many
of the other blocks. This will be clarified further in chapter 3 when the

IUnit control is described.
This block communicates with the external cache controller chip.

Special registers for the Current Window Pointer and the Saved Window

Pointer in the register file.

Three special program counters are maintained in this block: TrapPC,

CallPC, and KernalPC.

This block maintains the special program counters and the pipeline pro-
gram counters. It contains a 30-bit adder to calculate the destination

address for all the compare and branch instructions.

The program counter for each instruction in the execution pipeline is

stored in this block.

Execution Unit Plpeline: The pipeline design in the EUnit influenced almost all other

parts of the CPU microarchitecture. A four stage pipeline was selected to ideally allow one

instruction to execute every cycle. Instruction unit misses and external cache misses prevent the

ideal case from being achieved [Hill85]. A four phase non-overlapping clocking scheme was

selected to support the pipeline. The pipeline stages are listed below [Kong86a]:

Ins_Fet:

Execution:

Memory:

Instruction is fetched from the [Unit to the EUnit.

The instruction is executed. Instructions that access memory calculate the

effective address during this cycle.

All instructions that access memory do so in this cycle. This is a null

cycle for other instructions.
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Figure 2-1: CPU Block Diagram

Reg_Write: The register file is written into during this cycle.

Pipeline Suspension: Two suspension mechanisms are provided in the SPUR EUnit pipe-
line: global and partial [Kong86a]. The IUnit responds differently for each case. In the former,
everything in the pipeline is ‘frozen’. The IUnit continues to send out the last instruction repeat-
edly until the suspension ends. Partial suspension allows the instructions already in the pipeline to
complete execution. The [Unit feeds an internally generated ‘MISS’ instruction until the suspen-

sion ends.

Trap Request Handling: The trap request handling mechanism in the EUnit microarchi-

tecture is also coordinated with the [Unit. When a trap occurs, the instructions in the first three
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pipeline stages are ‘killed’ [Kong86a]. The IUnit then issues two internally generated instructions
to the EUnit. First, a TRAP_CALL instruction initiates execution of the trap handler software.
The next instruction executed, READ_PC, is also issued by the IUnit. This internally generated
instruction saves the program counter for the ‘killed’ instruction. The trap handler software

begins to execute after the READ_PC instruction.

2.2 SPUR Instruction Unit Architecture

The primary motivation for an on-chip instruction cache is to reduce contention for the
external cache [Hill85]. If the CPU was dependent on the external cache for both instructions and
data references, the pipeline would have to stall on every data reference. Other options such as
two cache ports on the CPU or using an interleaved external cache were rejected because of the
increased hardware cost [Hill86a]. The on-chip instruction unit relieves this external cache
bottleneck by providing the illusion of a parallel memory port for the execution unit. Therefore,
the execution unit may get an instruction and a data reference in the same cycle as long as there
is a hit in the [Unit. A second benefit is that the latency time for instructions is reduced for the
CPU. In the SPUR implementation, the [Unit has a latency time of approximately one half cycle.
The external cache has a one cycle latency time. The CPU control takes advantage of this
reduced late;xcy. Control signals sent to the [Unit from the CPU Mst_Ctr block arrive approxi-

mately one half cycle later than signals sent to the external cache.

Instruction Unit Organization: The [Unit is a 512-byte, direct mapped cache. It is
organized into 16 blocks with each block containing 32 bytes. The cache contains 128 instructions
(4-bytes per instruction). Therefore, each block contains 8 instructions which are referred to as
‘sub-blocks’. Several advantages of using sub-blocks on small on-chip caches memories have been
reported [Good83], [Hill84]. Perhaps the most significant advantage is that the memory traffic is
reduced because only required sub-blocks are loaded. This is important for the SPUR IUnit
because instruction memory traffic coinciding with data traffic forces the EUnit pipeline to stall.

Unfortunately, sub-blocks also cause the miss ratio to increase because several misses may occur



in the same block [Hill84].

Instruction Virtual Address Flelds: The [Unit divides the instruction address into three
address fields. The implementation of the instruction memory array and tag comparison logic is

based on the following address fields:
1. Sub-Block Address Field <3 bits> - selects one of 8 sub-blocks
2.  Block Address Field <4 bits> - selects one of 16 blocks

3.  Address Tag Field <23 bits> - highest order instruction address bits that identify the

present address tag for each block.

The advantages of using on-chip instruction cache memories have been demonstrated in
both simulations and system measurements [Good83|, [Hill84], [Mac85]. Implementing an on-chip
cache introduces several system problems that must be overcome. For example, self modifying
programs may alter the instruction stream stored in the main memory. The SPUR architecture
avoids this problem by requiring that software invalidates the [Unit before executing a modified
instruction stream. A similar problem is encountered when software changes the mapping of
process-specific addresses to global addresses [Hill86b]. This typically occurs as a result of a con-
text switch. The SPUR architecture solves this problem by requiring software to invalidate the

IUnit whenever this mapping is changed.

The CPU design is simplified because the SPUR architecture forbids modifications in the vir-
tual address space without software intervention Without this restriction, the EUnit pipeline and
the IUnit would have to check for self modifying code [Hill36b]. In other words, the EUnit would
have to determine whether instructions already in the pipeline had been modified and the IUnit

would have to determine if it had ‘stale’ instructions cached.

Prefetching on Misses: The sub-block organization in the IUnit supports a prefetching
algorithm that is initiated by misses. When a Miss occurs, the EUnit is passed a ‘MISS’ instruction
from the IUnit and a memory fetch is initiated. The external cache returns one instruction or

sub-block so that the EUnit may resume operation. The IUnit will then try to prefetch the
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remainder of the block in sequential order. In the ideal case, the prefetcher will prevent any addi-
tional misses within the same block. The conditions that must be satisfied in the ideal case are: (1)
the EUnit is executing sequential code in the same block, and (2) the EUnit must make no data
references to the external cache. The prefetcher does not burden the CPU to external cache inter-
face because it is overridden by either an instruction miss or a data reference. More detailed

sequences of operation are described in section 2.4.

The ‘prefetch-on-miss’ algorithm and sub-block architecture implemented in the SPUR IUnit
have several notable advantages and disadvantages. The primary advantage of only fetching a
sub-block is that the instruction miss can be satisfied more quickly by the external cache [Hill85)].
This assumes that the CPU package has a limited number of pins available and that a block is
always larger than a single instruction. The first assumption was confirmed in the SPUR CPU
implementation as the limited package pins had to be carefully allocated. Alternative data bus
widths between the IUnit and external cache are discussed in chapter 4. The second assumption is
also safe when considering the overhead for the address tag implementation. This overhead is

reduced by a factor of n when a group of n sub-blocks are used [Hill84).

The disadvantages of supporting sub-blocks are increased silicon area and decreased speed.
Each sub-block must have a valid bit in addition to its block valid bit. I estimate that 4% of the
total [Unit area was used by the sub-block valid bits and associated circuitry. Speed is reduced
because the sub-block valid bit must be read from the instruction array and sent to the IUnit con-
trol block. This is the critical signal delay path in the entire [Unit implementation (14.7 ns typi-
cal). The critical signal delay path would decrease by 2.2 ns if the sub-block valid bit was not

necessary. Simulation results are presented in section 3.4.

The SPUR IUnit prefetching algorithm continuously prefetches from one demand miss to the
next demand miss. When the prefetcher reaches the end of a block, it continues prefetching at
the beginning of the same block. At first glance, this algorithm could be viewed as wasteful since
the prefetcher may actually prefetch sub-blocks that are already valid (that it previously fetched

or prefetched). However, the prefetcher is always overridden when there is real work to do like
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instruction misses or data references, and the implementation is simplified because only a 3-bit

incrementer is required.

2.3 Instruction Unit Interface

The instruction unit interface serves several purposes. It coordinates the two finite state
machines in the IUnit, fetch and prefetch, with the CPU master control finite state machine. The
interface also allows the [Unit to monitor the external cache controller chip. Finally, the interface
provides four wide busses for instruction address and data movement. Previous work at U.C.
Berkeley has helped refine this interface. A single-chip instruction cache explored CPU to cache
interfaces so that on-chip caches could be effectively integrated when technology would permit

[Patt83],[Hill84].

The control signals and busses that make up the [Unit interface are listed in Table 2-1. All
signals or busses in the interface pass through the EUnit. However, the Cache_Busy and
Cache_Data_Valid signals are initiated by the external cache (ECache}. To avoid confusion, I will
always describe the state of signals as either true or false. If a signal is true, then the action or
condition indicated by that signals name is presently valid. For example, if I state that

Cache_Busy is true, this indicates that the external cache is presently busy.

2.4 Instruction Unit Operation Examples

This section will illustrate the architectural information presented so far with some exam-
ples. These examples emphasize the [Units operation. Therefore, simplifications are often made
about the EUnit or the external cache. The internal activity within the [Unit is also simplified in

order to avoid unnecessary detail. The internal operation is further discussed in Chapter 3.

Each of the following five examples include a verbal description and a table. The table sum-
marizes the IUnit operation during a sequence of CPU cycles. The IUnit inputs and outputs refer

to the signals and busses presented in the previous section. Internal actions taken by the IUnit



«12-

Signal or Bus Name | Functional Description

Execution Unit to Instruction Unit Signals

Reset_IUnit Resets the [Unit from any previous state
TUnit_KPSW_Set Single Bit in the KPSW sets the enabled condition
Prefetch _ KPSW_Set Single Bit in the KPSW sets the prefetch condition
Pipeline_Not_Suspended Indicates no Global Pipeline Suspension in EUnit
Load_OPCode Load Instruction is being executed by the CPU
Store_OPCode Store Instruction is being executed by the CPU
lowTOup_OPCode Lower and upper data paths are using the Add_bus
Invalidate_ OPCode Invalidate IUnit Instruction is being executed by the CPU
Invalidate_Trap EUnit is servicing a Trap that invalidates the IUnit
External Cache to Instruction Unlt Signals

Cache_Busy Indicates that the ECache is busy

Cache_Data_Valid Indicates that the ECache data is valid on the Data_bus

Instruction Unit to Execution Unit Signals
Fetch_Request Indicates that the IUnit is fetching an instruction
Prefetch_Request Indicates that the IUnit is prefetching an instruction

Instruction Unit / Execution Unit Busses

PC_bus <30 bits> Transfers program counter from EUnit to [Unit
Add_bus <30 bits> Counects [Unit and EUnit to the ECache address pads
Ins_bus <32 bits> Transfers instructions from the IUnit to the EUnit
Data_bus <40 bits> Connects [Unit and EUnit to the ECache data pads

Table 2-1: Instruction Unit Interface

are also indicated in the table. For clarity, all the sequence examples assume that the [Unit starts
in the same state: FET_normal and PF_prefetch. The IUnit is in the FET_normal state if the
last instruction requested by the EUnit was a hit. The PF_prefetch state indicates that the IUnit
is actively trying to prefetch sequential instructions. These instruction unit states are further

described in section 3.1.

IUnit Operation Example - Ideal Instruction Miss: An ideal instruction miss refers to
the shortest possible sequence to fetch a missed instruction. This corresponds to a two cycle deiay
in the SPUR CPU. In order for this ideal sequence to occur, the external cache must not be busy.
This operation example is described in full to clarify some of the cryptic notations used in Table

2-2.
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Cycle 1: During phil of cycle 1, the EUnit requests an instruction from the IUnit. The pro-
gram counter ( ins_add|i] ) is the address of the next instruction needed by the EUnit. The IUnit
detects that it does not contain this instruction (Miss) during phi2. The [Unit then initiates a par-
tial pipeline suspension in the EUnit by sending an internally generated MISS instruction (
ins[MISS| ) on the Ins_bus. During phi4, the instruction unit fetches the missed instruction with

address ( ins_add[i] ) from the external cache.

Cycle 2: The IUnit waits during phil and phi2 for the Data_Valid signal from the external
cache. A second internal MISS instruction is sent out during phi3. In phi4 the IUnit accepts the
fetched instruction ( insfi] ) from the external cache and writes it into its memory array. It also

initiates a prefetch for the next sequential instruction ( ins_add[i]+1 ).

Cycle 3: This cycle demonstrates a Hit in the IUnit. The EUnit again supplies the address of
the program counter ( ins_add|i] ) to the IUnit. Since this instruction was just fetched from
memory, the IUnit detects a Hit in phi2. During phi3, the requested instruction is sent to the
EUnit thereby ending the partial pipeline suspension. Finally, in phi4, the IUnit accepts the pre-
fetched instruction ( ins[ij+1 ) from the external cache and writes it into its memory array. It

again initiates a prefetch for the next sequential instruction ( ins_add|i]+2 } from the ECache.
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Instruction Unit Inputs Instruction Unit Outputs

Cycle 1 state(FET_normal, PF_prefetch)
EUnit requests ins_add[i] on the PC_bus phil
phi2 IUnit detects a Miss for ins_add]i]
ECache is not Busy phi3 IUnit sends ins[MISS] to EUnit
on the Ins_bus
phi4 IUnit sends ins_add|i} to ECache
on the Add_bus

Cycle 2 state(FET_memPending, PF_waiting)
IUnit ignores the PC_bus phil
. phi2 IUnit waiting for ECache Data
ECache data is valid phi3 IUnit sends ins|[MISS] to EUnit
on the Ins_bus
IUnit accepts ins[i] from ECache phi4 IUnit sends ins_add|i]+1 to ECache

on the Data_bus on the Add_bus

Cycle 3 state(FET_normal, PF_prefetch)
EUnit requests ins_add|i] on the PC_bus phil
phi2 IUnit detects a Hit for ins_add|i]
ECache data is valid phi3 IUnit sends ins[i] to EUnit
on the Ins_bus
IUnit accepts ins{i]+1 from ECache phi4 [Unit sends ins_add|i|+2 to ECache
on the Data_bus on the Add_bus

Table 2-2: [Unit Operation Example - Ideal Instruction Miss

IUnit Operation Example - Invalidate: The EUnit can invalidate the IUnit either by
executing an invalidate instruction or servicing a trap that causes invalidation. The IUnit
overwrites all block valid tags in phi2 of the cycle that receives the invalidate request. Table 2-3
shows that the instruction unit recovers quickly from an invalidate request. In the ideal case, an
invalidate request only suspends the pipeline for two cycles. This is because the IUnit may start a

fetch in phi4 of the cycle that receives the invalidate request.
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Instruction Unit Outputs

Cyele 1

state(FET_normal, PF_prefetch)

EUnit requests ins_add|i] on the PC_bus phil

EUnit Invalidates [Unit

phi2 All block valid tags are invalidated

ECache is not Busy phi3 IUnit sends ins[MISS] to EUnit
on the Ins_bus

IUnit sends ins_add|i] to ECache
on the Add_bus

[Unit ignores Data_bus phi4

Cycle 2
IUnit ignores the PC_bus phil
phi2 IUnit waiting for ECache Data
ECache data is valid phi3 IUnit sends ins[MISS] to EUnit
on the Ins_bus

IUnit sends ins_add[i]+1 to ECache
on the Add_bus

state(FET_memPending, PF_waiting)

IUnit accepts ins{i] from ECache phi4
on the Data_bus

Cycle 3
EUnit requests ins_add|i] on the PC_bus phil
phi2 IUnit detects a Hit for ins_add|i]
ECache data is valid phi3 IUnit sends ins|i| to EUnit
on the Ins_bus
IUnit sends ins_add|i]+2 to ECache
on the Add_bus

state(FET_normal, PF_prefetch)

IUnit accepts ins|i|+1 from ECache phi4
on the Data_bus

Table 2-3: [Unit Operation Example - Invalidate

IUnit Operation Example - Reset Followed by a Hit: The EUnit can put the IUnit
into a known state from any previous state by asserting the Reset signal. The IUnit starts a
sequence of actions as soon as Reset is true. The reset mechanism in the instruction unit is used
to support several system level activities. For example, traps, page faults, and system power-up

sequences use the [Unit reset feature.

The operation example, shown in Table 2-4, illustrates several other features supported by
the IUnit during resets. First, a reset request from the EUnit does not invalidate the instructions
cached in the IUnit. It does force the [Unit to ignore any pending fetches or prefetches. Secondly,
this example demonstrates the sequence of internally generated instructions sent from the IUnit to

the EUnit. During phi2 of cycle 1, the EUnit requests the IUnit to reset. In phi3 of the same
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cycle, the IUnit sends a TRAP_CALL instruction to the EUnit. The READ_PC instruction is sent
to the EUnit during phi3 of cycle n. The EUnit discontinued the reset on phi2 of this cycle. The
final IUnit feature that this example illustrates is the prefetch-on-miss algorithm. Cycle n+1 was
chosen to be an instruction Hit even though this is unlikely. The prefetcher remains idle until a
miss, invalidation, or global suspension occurs. In most typical sequences, however, a miss will

occur after a reset. Therefore, the prefetcher will resume its prefetching activities.

Instruction Unit Inputs Instruction Unit Outputs

Cyele 1 state(FET_normal, PF_prefetch)
EUnit requests ins_add|i] on the PC_bus phil
EUnit Resets [Unit phi2

phi3 IUnit sends ins[TRAP_CALL] to EUnit
on the Ins_bus

IUnit ignores Data_bus phi4

Cycle n state(FET _reset, PF_reset)
IUnit ignores the PC_bus phil
EUnit discontinues [Unit Reset phi2

phi3 IUnit sends insfREAD_PC] to EUnit
on the Ins_bus

[Unit ignores Data_bus phi4

Cycle n+1 state(FET_normal, PF_idle)
EUnit requests ins_add|i] on the PC_bus phil
phi2 IUnit detects a Hit for ins_add|i]
phi3 IUnit sends ins|i| to EUnit
on the Ins_bus

IUnit ignores Data_bus phi4 Prefetcher idle until a Miss,
Invalidate or Global Suspension occurs

Table 2-4: [Unit Operation Example - Reset Followed by a Hit

IUnit Operation Example - Trap: The trap sequence, shown in Table 2-5 is quite simi-
lar to the the preceding reset example. The EUnit uses the reset mechanism to initiate the
sequence of internally generated instructions: TRAP_CALL and READ_PC. In this example, the
IUnit detects a miss after the READ_PC instruction. This is a more realistic case since it is

unlikely that the trap handler instructions would be cached by the [Unit.
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Instruction Unit Outputs

Cycle 1 state(FET_normal, PF_prefetch)
EUnit requests ins_add|i] on the PC_bus | phil
EUnit Resets [Unit phi2
phi3 | IUnit sends ins|TRAP_CALL} to EUnit
on the Ins_bus
[Unit ignores Data_bus phi4
Cycle 2 state(FET _reset, PF_reset)
IUnit ignores the PC_bus phil
EUnit discontinues [Unit Reset phi2
phi3 | IUnit send ins[READ_PC| to EUnit
on the Ins_bus
IUnit ignores Data_bus phi4
Cyecle 3 state(FET_normal, PF _idle)
EUnit requests ins_add|i] on the PC_bus | phil
phi2 | IUnit detects a Miss for ins_add|i]
ECache is not Busy phi3 | IUnit sends ins|MISS] to EUnit
on the Ins_bus
IUnit ignores Data_bus | phi4 | IUnit sends ins_add[i] to ECache

on the Add_bus

[ Cycles 4 & 5

Same as Cycles 2 & 3 in Ideal Miss (Table 2-2)

|

Table 2-5: [Unit Operation Example - Trap

IUnit Operation Example - Global Plpeline Suspension The final IUnit operation
example is shown in Table 2-6. This sequence illustrates the interaction between the EUnit and
the [Unit during a global pipeline suspension. Cycle 1, which is an [Unit Hit, sends the requested
instruction ( ins|i} ) to the EUnit on phi3. The IUnit latches this instruction internally on phi2.
During phil of cycle 2, the EUnit signals a global pipeline suspension. The IUnit responds by
repeatedly sending out the last instruction ( ins|i] ) to the EUnit on phi3. The prefetcher could
remain active during a global pipeline suspension as shown in cycle 2. This is unlikely, however,

because any other request for the external cache disables the prefetcher. In cycle n, after the

pipeline suspension has ended, the IUnit resumes normal operation.
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Instruction Unit Outputs

Cycle 1 state(FET_normal, PF_prefetch)
EUnit requests ins_add|i] on the PC_bus phil
phi2 IUnit detects a Hit for ins_add]i]
ECache is not Busy phi3 IUnit sends ins|i] to EUnit
on the Ins_bus
phi4 IUnit sends ins_add[i]+1 to ECache
on the Data_bus
Cycle 2 state(FET _normal, PF_prefetch)
EUnit signals Global Pipeline Suspension phil
) phi2 IUnit does not read a new instruction
ECache data is valid phi3 IUnit sends ins(i| to EUnit
on the Ins_bus
IUnit accepts ins|ij+1 from ECache phi4 IUnit sends ins_add|i|+2 to ECache
on the Data_bus on the Add_bus
Cyele n state(FET _normal, PF_prefetch)
EUnit requests ins_add[i]+1 on the PC_bus phil
EUnit ends Global Pipeline Suspension
phi2 IUnit detects a Hit for ins_add|i]+1
ECache Data is valid phi3 IUnit sends insfi]+1 to EUnit
on the Ins_bus
IUnit accepts ins{i]+2 from ECache phi4 IUnit sends ins_add|i]+3 to ECache
on the Data_bus on the Add_bus

Table 2-6: [Unit Operation Example - Global Pipeline Suspension
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3. THE SPUR INSTRUCTION UNIT IMPLEMENTATION

The architectural decisions described in the previous chapters take on different meanings
when the implementation issues are also considered. The purpose of this chapter is to highlight
the implementation of the SPUR CPU instruction unit. It serves as a benchmark for future
instruction cache implementations. A layout plot of the IUnit is shown in Figure A-1 in Appendix
A. The information in this chapter is arranged in a hierarchical fashion for the convenience of
both casual readers and those hungry for details. First, a state machine description of the [Unit is
provided to clarify its operation. The IUnit is then dissected into four parts: control, instruction

bufler, tag comparison, and prefetcher.

3.1 Instruction Unit State Description

Two finite state machines exist within the [Unit: the fetch finite state machine (Fetch_FSM)
and the prefetch finite state machine (Prefetch_FSM). The input signals to these two finite state
machines are shown in Table 3-1. The first seven input signals (Reset > Flush) are simple deriva-
tives of the IUnit interface signals presented in section 2.3. The Miss signal is derived from two
signals internal to the IUnit: Block_Miss and Instruction_Miss. These signals are discussed further
in sections 3.4 and 3.5. The final signal, Starting_Prefetch, is the only connrection between the
Fetch_FSM and the Prefetch_FSM. Starting_Prefetch is used to implement the prefetch-on-miss
algorithm. The Fetch_FSM tells the Prefetch_FSM that it can begin prefetching after a Miss,

Flush, or a Global_Suspension are true.

In both the Fetch_FSM and Prefetch_FSM, the next state is determined by the input signals
in Table 3-1 and the previous state. A programmed logic array (PLA) determines the next state
during phi4. A new state officially begins on every phil. Two sets of dynamic latches are used in
conjunction with the PLA's. The first set of latches captures the next state on phi4. The second
set of latches, which bold the present state, are updated on phil. The PLA’s for the Fetch_FSM
and the Prefetch_FSM are shown in Figures A-2 and A-3 respectively in Appendix A. The finite

state machine descriptions for both PLA's are included in Appendix B.
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Signal Name Origin of Signal
Reset Same as Reset_[Unit signal B
IUnit_Enable Latched version of IUnit_KPSW_Set signal
Prefetch_Enable Latched version of Prefetch_ KPSW_Set signal
Global_Suspension Latched version of Pipeline_Not_Suspended
Memory_Busy Cache_Busy AND NOT(Cache_Data_Valid) OR

(Load_OPCode OR Store_OPCode OR lowTOup_OPCode)

Data_Valid Latched version of Cache_Data_Valid signal
Flush Invalidate_OPCode OR Invalidate_Trap
Miss Block_Miss OR Instruction_Miss
Starting_Prefetch Signal from the Fetch_FSM to the Prefetch_FSM

Table 3-1: Instruction Unit Control Input Signals

Fetch Finite State Machine: The Fetch_FSM controls most of the activities in the
instruction unit. The state of the Fetch_FSM is combined with other inputs to determine whether
the IUnit transfers instructions to the EUnit (Ins_bus), fetches instructions from the external
cache (Add_bus), or accepts data from the external cache (Data_bus). The Fetch_FSM is con-
trolled by seven of the input signals in Table 3-1. Reset, IUnit_Enable, Global_Suspension,
Memory_Busy, Data_Valid, Flush, and Miss. The Fetch_FSM consists of five states as shown in

Figure 3-1. Each state is briefly described below.

FET _reset: The Reset signal forces the Fetch_FSM into the FET_reset state from any previ-
ous state. It will remain in this state as long as Reset is true. The [Unit engages in the fol-

lowing activities while in the FET_reset state:

The [Unit ignores the program counter from the EUnit (PC_bus).

£

The IUnit does not read or write any instructions or address tags from its memory
arrays. Previous fetches or prefetches from the ECache are ignored.

3.  The [Unit sends out the READ_PC internal instruction repeatedly to the EUnit
(Ins_bus) during phi3. The TRAP_PC instruction has already been sent out on the
previous cycle. In other words, the TRAP_PC signal is generated after the Reset sig-
nal is true and before the IUnit moves into the FET _reset state.

4. No Fetches are initiated by the [Unit.

5.  The Fetch_FSM keeps Starting_Prefetch false so that the Prefetch_FSM does not ini-
tiate any prefetches.

FET_normal: The Fetch_FSM moves to the FET_normal state on the cycle after the Reset
signal is false. Changes on the Reset, Global_Suspension, Miss, or Flush signals move the

Fetch_FSM out of the FET_normal state. The IUnit performs the following activities while
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in the FET_normal state:

1.

Otherwise

The IUnit latches the program counter from the EUnit (PC_bus). In eflect, the IUnit
has accepted an instruction request from the EUnit.

The IUnit may read and write instructions and address tags from its memory arrays.
These actions are also dependent on other input signals. For example, the [Unit only
writes information into the instruction memory array when Data_Valid is true.

The IUnit passes one of three instructions to the EUnit while in the FET_normal state.
It passes the requested instruction to the EUnit (Ins_bus) if it detects a hit. It sends a
MISS instruction if 2 miss occurs or a TRAP_PC instruction if the Reset signal is true.

The IUnit initiates fetches from the external cache (Add_bus) if Miss or Flush are true
and Memory_Busy is false.

The Fetch_FSM keeps Starting_Prefetch false until Miss, Flush or Global_Suspension
are true.

From Any Previous State
Reset

FET _reset

NOT(Global_Suspension)

Global_Suspension
NOT(Reset)

FET_disabled

Data_Valid AND
[Unit_Enable

FET_normal Data_Valid AND
NOT(IUnit_Enable)

Equation 2 Equation 1
(FET_memPending)

NOT{(Memory_Busy) NOT(Data_Valid)

FET_memBusy

Otherwise

Equation 1: NOT(Global_Suspension) AND (Miss OR Flush)

AND Memory_Busy

Equation 2: NOT(Global_Suspension) AND (Miss OR Flush)

AND NOT(Memory_Busy)

Figure 3-1: Fetch State Diagram
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FET_memBusy: The Fetch_FSM moves to this state if Miss or Flush are true and the exter-

nal cache is busy (Memory_Busy==true). The [Unit activities while in this state are:

1. The IUnit ignores the program counter from the EUnit (PC_bus).

2.  The IUnit does not read or write any instructions or address tags from ils memory
arrays.

3.  The [Unit passes the MISS instruction to the EUnit (Ins_bus).

4.  Fetches may be initiated by the [Unit during this state if the Memory_Busy signal is
false. For example, assume a Miss occurred in the [Unit during the previous cycle and
Memory_Busy was true. Therefore, the Fetch_FSM moved into the FET_memBusy
state. The [Unit initiates a fetch as soon as Memory_Busy is false.

FET_memPending: The Fetch_FSM moves to this state if Miss or Flush are true, and the
external cache is not busy (Memory_Busy=false). In this state, the [Unit is waiting for a
fetch request from the external cache to be satisfied. The IUnit activities in the

FET_memPending state are:
The IUnit ignores the program counter from the EUnit (PC_bus).

2. The IUnit does not read any instructions or address tags from its memory arrays.
However, the [Unit may write into its instruction array if Data_Valid is true.

The [Unit passes the MISS instruction to the EUnit (Ins_bus).

No fetches may be initiated by the IUnit during this state. The IUnit is presently
waiting for its last fetch to be satisfied.

5. The Fetch_FSM signals the Prefetch_FSM that it can start making sequential pre-
fetches.

FET _Disabled: The Fetch_FSM moves to this state if the [Unit_Enable signal is false. The
FET_disabled state permits the CPU to function without the [Unit. The only activity that
the [Unit performs during this state is to pass instructions to the EUnit (Ins_bus). No pre-
fetches are initiated while the IUnit is in this state. The IUnit may pass either the last

requested instruction, a MISS or a TRAP_PC.

Prefetch Finite State Machine: The state of the Prefetch_FSM determines whether any
sequential prefetching will be done by the IUnit. The Prefetch_FSM PLA has six inputs: Reset,
IUnit_Enable, Prefetch_Enable, Memory_Busy, Flush, and Starting_Prefetch. The five states in

the Prefetch_FSM are shown in Figure 3-2.

PF_reset & PF_disabled: The Prefetch_FSM is forced into the PF_reset state from any other

state when the Reset signal is true. The Prefetch_FSM will move into the PF_disables state
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after a reset if [Unit_Enable or Prefetch_Enable is false. No Prefetching is initiated from

either of these states.

PF_idle: The idle state supports the prefetch-on-miss algorithm. The prefetcher will remain
in this state until the Fetch_FSM receives a Miss, Flush, or a Global_suspension. While in
the idle state, the Prefetch_FSM repeatedly latches in the address of the last instruction
that was fetched by the IUnit (Add_bus). It increments this address so that it is prepared to
prefetch the next sequential instruction if requested by the Fetch_FSM

(Starting_Prefetch==true).

PF_waisting & PF_prefetch: The Prefetch_FSM is attempting to prefetch sequential instruc-
tions while in either of these states. In both cases, the Prefetch_FSM latches in the address
of the last instruction that was either fetched or prefetched. It increments this address so
that it may initiate a prefetch. The Prefetch_FSM moves between these two states when
either the Memory_Busy signal and the Starting_Prefetch signal change. A new prefetch is
initiated on every cycle when both the Memory_Busy and the Starting_Prefetch signals are
false. Prefetches are initiated by sending the next sequential instruction address to the
external cache (Add_bus) and asserting the Prefetch_Request signal. The Prefetch_FSM
also writes incoming prefetched instructions into the instruction memory array when
Data_Valid is true. It will continue in this mode indefinitely until either Flush or Reset are

true.

3.2 Control Implementation Philosophy

Computer architects have often complained about the difficulties of control design in com-
puters. A familiar adage states that the control design only occupies 10% of the computer
hardware but requires 90% of the total design time. Fortunately, this has not been the case in
the SPUR CPU design. Careful planning on the CPU functional level has helped segment the con-
trol blocks into manageable pieces [Kong86a], [Kong86b]. The IUnit control implementation occu-

pies 8% of the total [Unit area and only required 50% of the total design time.
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From PF_waiting
OR PF_prefetch

NOT(Reset) AND Flush

il .
Starting_Prefetch
( pride )
x
Otherwise :
Equation 2: Equation 2
From Any 1 =

Previous State Equation 3: C PF. waiting
Reset J' -
PF_reset
C ) Equation 1:
Otherwise x

C PF_prefetch

NOT(Reset)

¥
PF_disabled ) Equation 1

Equation 1: NOT(Starting_Prefetch OR Memory_Busy)
Equation 2: Starting_Prefetch OR Memory_Busy
Equation 3: NOT(Reset) AND IUnit_Enable AND Prefetch_Enable

Figure 3-2: Prefetch State Diagram
Design Constraints: The implementation philosophy that I pursued was shaped by several
characteristics of the CPU design. The CPU floor plan was designed so that the upper and lower
datapaths were approximately the same width. The height of the cells in each datapath were
matched so that circuit designs could be shared. The height of the static memory cell used in
both the register file and the IUnit also match the datapath cells. The area allocated for the [Unit

was also an integral part of the CPU floor plan. The CPU upper and lower datapath layouts were
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already complete, and fixed the [Unit width dimension. Therefore, I was forced to establish some
tight pitches that influenced my approach. Secondly, there is a high probability that logic
changes will be made in the IUnit control. Therefore, the layout was planned to support these
changes. Finally, the IUnit control must issue low-level control signals during all four clock

phases. This constraint limited the amount of logic that could be implemented in PLA’s.

Generle IUnit Control Implementation: The two finite state machines PLA’s within
the IUnit are quite similar. This also holds true for the rest of their control functional blocks.
Figure 3-3 shows a generic block diagram which illustrates either the Fetch_FSM or the
Prefetch_FSM control functions [Kong86b]. The IUnit control inputs come from four sources: the
EUnit, the instruction memory array, the tag comparison block, and the other finite state
machine. Section 3.3 lists the input and output signals for both finite state machines. The Input
Logic & Latches in Figure 3.3 are conventional static gates. The State PLA’s were also simple to
implement because generation tools and templates had already been developed [Scott86], |Jeon86).

Therefore, the output logic implementation is the focus of the remainder of this section.

Output Logic Constraints: The output logic block was the most challenging part of the
IUnit control implementation. Several constraints complicated its design. First, a PLA could not
be used to implement the output logic because the output signals are used during the same phase
that they are evaluated. The targeted performance for this output logic was under 4 ns. Since
the logic equations in this block are likely to change, I tried to implement a layout that was struc-
tured and general. | hoped to implement the output logic with standard logic cells that could be
fit together in mosaics of all possible patterns. Ideally, changing one standard cell would not
effect the layout of any other cell. I also hoped to bus all input signals into this standard cell
mosaic so that any logic gate could be connected to any desired input. Unfortunately, the layout
area required for this completely general approach was not practical. The output logic would be

2.5 times taller than my available height.

Output Loglc Implementation: In my final implementation strategy I made tradeoffs

between speed, area, and a completely general approach. The output logic equations vary widely
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IUnit Control Input Signals

phil phi2 phi3
Logic & Logic & Logic &
Latches Latches Latches
— — ;—4
- State PLA
|
| State{ Latches — phi4
[ State| Latches P— phil
— *—r— phil
. phi2
Output Logic phi3
+— phi4

(\ % phil
phi2
o |
$ phi3
O

* phi4

[Unit Control Output Signals

Figure 3-3: Generic IUnit Control Block Diagram
in complexity. The simplest equations are just a buffered version of the present state. The most
complex output logic equation is shown below (MISS_To_InsBus). The ‘FET_..’ inputs signals

identify the present state of the Fetch_FSM. Therefore, only one of the following signals are true:
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FET_normal, FET_disabled, FET_memBusy, or FET_memPending. In the actual implementa-

tion, all signals proceeded by a NOT operator were inverted prior to the output logic gate.

MISS_To_InsBus= {FET_normal AND NOT(Reset) AND NOT(Global_Suspension)
AND (Miss OR Flush)}
OR {FET_disabled AND NOT(Reset) AND Global_Suspension}

OR {(FET_memBusy OR FET_memPending) AND NOT(Reset)}

Domsino Logic Standard Cells: This complex logic output equation emphasizes several
important points. If a completely general implementation approach were adopted, the same
amount of area should be reserved for all output logic equations. This approach consumed far too
much area. A circuit implementation must be selected that minimizes both delay time and area.
Domino logic gates were selected to best satisfy these criteria. Figure 3-4 shows a domino logic
gate implementation for the MISS_To_InsBus output logic equation. Two AND*OR domino logic
gates were used in this implementation. All the output logic equations use at most two series
domino logic gates to ensure adequate performance. No more than 5 NMOS devices are con-
nected in series in any logic gates to avoid threshold voltage shifts due to an excessive backgate
voltage. Layouts plots for two standard domino logic gates are shown in Figure A-4 in Appendix

A: 2 4 Input AND Gate and a 7 Input AND*OR Gate.

Standard Cell Mosaic Implementation: | made several implementation tradeoffs in my dom-
ino standard cells to improve the layout density. I did not bus all input signals through the
mosaic. Instead, I left several free routing channels to carry signals required at a later time. A
typical output logic mosaic is shown in Figure 3-5. The input signals are bussed through the logic
cells. This corresponds to the top and bottom of Figure 3-5. I shared area between outputs sig-
nals so that complex logic equations could use excess space from simple logic equations. This
technique is illustrated in Figure 3-5. Each output is allocated enough room for two logic cells.
For example, Output Signal 1 uses a 4 Input AND Gate and a 2 Input OR Gate. Output Signal 2

only requires one 3 Input AND Gate, therefore, one of its logic cells is free. The most complex
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Figure 3-4: Domino Output Logic Gate
logic gate that can fit into a single cell height is a2 4 Input AND. More complex AND*OR gates
can be implemented by using two single cell heights. Sharing area between output signals that
have complex and simple logic equations is also demonstrated in Figure 3-5. For example, Output
Signal 3 only uses one 3 Input AND Gate so it can contribute the space occupied by one logic cell
to another output. In this case, Output Signal 4 has a more complex logic equation that requires
one 6 Input AND*OR Gate and one 4 Input AND Gate. Therefore, it uses the free space avail-
able from Output Signal 3. In the extreme case, an output logic equation requires two AND*OR
gates. Fortunately, there are some outputs that do not require any logic cells. Sharing area

between output signals was effectively used to reduce the area of the output logic mosaic.

Limitations of the Qutput Logic Mosaic: There are several disadvantages with the output
logic mosaic approach that I implemented. First, changing the logic equation for one output may

effect other outputs. Hopefully, most logic changes will only require modifying the input
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Logic Cells Logie Cells Output Buffer

4 Input AND Gate 2 Input OR Gate Output Signal 1

free cell 3 Input AND Gate Output Signal 2

6 Input 3 Input AND Gate Output Signal 3

AND*OR

Gate 4 Input AND Gate Output Signal 4

7 Input 5 Input Outpht Signal 5
AND*OR AND*OR

Gate Gate Output Signal 6

Figure 3-5: Typical Output Logic Mosaic

connections. In addition, there would be little difficulty substituting a simpler output logic gate
for a more complex gate. However, problems could arise if more complex logic gates are needed.
In the worst case, a new custom logic gate could be packed into the available space. The general
purpose logic cells that I designed keep most of the metal 1 routing channels open. This makes
them easier to connect to any of the available inputs. If necessary, this routing area could be
packed with additional transistors. The second limitation of this approach is that the logic gate
inputs must be connected to the input signals by hand. This is an error prone and time consum-
ing process. I'm confident that software tools could be developed to automate the output logic
generation. Finally, it may be possible to redefine the control architecture to capture more of the
problem into the state PLA’s. The PLA’s are quite area efficient in comparison to the output
logic and are already supported by automatic generation tools. One possible approach is to use
PLA’s to perform all the output logic functions that can be evaluated one phase earlier than
necessary. Domino output logic could then be reserved for only those parts of the output logic

that must be evaluated during the final phase.
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3.3 Fetch and Prefetch Control Implementations

This section summarizes the implementation details of the Fetch_FSM and the
Prefetch_FSM. The layout of the IUnit control occupies 8% of the total area in the IUnit and
contains approximately 2300 transistors. The generic control block diagram, presented in the pre-
vious section, proved to be impractical in several cases. For example, the regularity of my output
logic implementation had to be abandoned to achieve adequate performance margins for some
output signals. This section is divided into three parts. First, a complete list of input and output
signals for the Fetch_FSM and Prefetch_FSM is reviewed. The output logic mosaics implemented
for both of these finite state machines is then presented. Finally, SPICE simulation results for the

worst case speed path in the control block are discussed.

Fetch and Prefetch Input and Output Signals: A complete list of the input signals
used by the Fetch_FSM and Prefetch_FSM are shown in Table 3-2. Input signals used by the
IUnit control arrive during all four phases. However, input signals that arrive during phi4 are
latched on the following phil to avoid race conditions between these signals and the PLA’s. All of
the input signals in Table 3-2 bave been introduced in previous sections except the Write_Fetch
signal.

The Write_Fetch signal connects the Fetch output logic to the Prefetch output logic.

Write_Fetch is important because potentially it is the slowest signal path in the IUnit control

design. The speed path is illustrated by the two following logic equations:

Write_Fetch = {NOT(Reset_IUnit) AND Data_Valid AND FET_memPending}

Write_Instruction
= {NOT(Reset) AND NOT(Flush)}
{AND Data_Valid AND PF_prefetch}

{OR Write_Fetch}
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Signal Timing Information

Signal or Bus Name phil ] phi2 phi3 phl4
EUnit and ECache Inputs to IUnit Control (see Table 2-1)

Enable_ KPSW_Set *Changes
Prefetch_KPSW_Set *Changes
Pipeline_Not_Suspended *Changes
Load_OPCode Changes

Store_OPCode Changes

lowTOup_OPCode Changes

Invalidate_ OPCode Changes

Invalidate_Trap Changes

Reset_IUnit Changes

Cache_Busy Changes

Cache_Data_Valid Valid

PC_bus <30 bits> EUnit Pre-Charge

Address_bus <30 bits> Pre-Charge EUnit Pre-Charge EUnit or IUnit
Data_bus <40 bits> EUnit Pre-Charge ECache Pre-Charge
IUnit Derlvatives of EUnit and Ecache Inputs (see Table 3-1)

[Unit_Epable Changes

Prefetch_Enable Changes

Global_Suspension Changes

Reset Changes

Flush Changes

Memory_Busy Changes

Data_Valid Changes

IUnit DataPath Inputs to IUnit Control

Block_Miss Valid

Instruction_Miss Valid

Fetch_FSM Outputs to Prefetch_FSM Inputs

Starting_Prefetch Valid

Write_Fetch Valid

*Signals arrive on phi4 but are not used until the following phil.

Change - indicates that the signal is always asserted. It only changes during the designated phase.

Valid - indicates that the signal may only be asserted true during the designated phase. Signal
is false during all other phases.

Table 3-2: Fetch and Prefetch Input Signals
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The Write_Fetch signal would normally be evaluated during phi4 because the Data_Valid
signal does not change until phi3. When using domino logic gates, it is essential that none of the
inputs make avhigh to low transition during the evaluation period. My standard domino gates
avoid this problem by always evaluating the logic function on the phase after the last signal
changes. The slow signal path arises because the Write_Instruction signal must wait for the
Write_Fetch signal. Therefore, this speed path essentially suffers from two delays through the

output logic: one for the Fetch_FSM and the second for the Prefetch_FSM.

This signal delay path was removed by using a static logic gate for the Write_Fetch signal.
This technique works because the Data_Valid signal is valid midway through phi3. The
Write_Fetch signal has enough time (15 ns) to propagate through the 3 input static gate and set-

tle at the input of the Write_Instruction output logic gate before the beginning of phi4.

The Fetch_FSM and Prefetch_FSM output signals, listed in Table 3-3, provide direct control
of the instruction memory array, tag comparison logic, and prefetcher. These output signals are

described in subsequent sections of this chapter.
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Signal Timing Information
Signal or Bus Name phil | phiz | phi3 ] phi4

Instruction Memory Array Control Signals

Invalidate_Block Valid

Enable_Block Valid

Read_Instruction Valid

Instruction_To_InsBus Valid
MISS_To_InsBus Valid
TRAPCALL_To_lnsBus Valid
READPC_To_InsBus Valid

Ins_bus <32 bits> IUnit
Read_MemLatch Valid
Write_Instruction Valid

Tag Comparison Logic Control Signals

Load_FetchPC Valid

Invalidate_Tag Vaiid

Bypass_Tag_Decoder Valid

Write_Tag Valid

Add_bus <30 bits> Pre-Charge EUnit Pre-Charge EUnit or [Unit

Prefetcher Control Signals

FetchPC_To_AddBus Valid
IncrementedPC_To_AddBus Valid
Load_ReferencePC Valid

Fetch_FSM Outputs to Prefetch_FSM Inputs
Starting_Prefetch Valid
Write_Fetch Valid

Outputs to the Execution Unit
Fetch_Request Valid
Prefetch_Request Valid

Valid - indicates that the signal may only be asserted true during the designated phase. Signal is
false during all other phases.

Table 3-3: Fetch and Prefetch Output Signals

Fetch and Prefetch Output Logic Mosalcs: The output logic implementation followed
the structured standard cell approach whenever possible. Actually, only the Write_Fetch signal

needed to use a static output gate. However, several other output signals had potential race
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problems. For example, the Fetch_Request and Prefetch_Request output signals are evaluated
during phi3. Both these signals are derived from the Memory_Busy signal. This signal does not
become valid until late in the phi2 cycle. Extra attention had to be given to this delay path to

ensure that Memory_Busy was valid before the beginning of phi3.

The output logic mosaics for the Fetch and Prefetch finite state machines are shown in Fig-
ure 3-5 and Figure 3-6 respectively. The Fetch output logic supports 14 output signals in the
same number of standard cell rows. The Prefetch output logic contains six output signals in eight
logic cell rows. The area consumed by the Fetch output logic mosaic set the critical dimension of
the IUnit control block. Figures A-5 and A-6 in Appendix A show the layout plots of the Fetch
and the Prefetch output logic mosaics respectively. Layout plots for the entire Fetch_FSM and
Prefetch_FSM blocks are shown in Figures A-7 and A-8. The output logic consumes about 50%

of the total control area in both of these plots.
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Loglc Cells
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Figure 3-6: Fetch Output Logic Mosaic
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Logic Cells
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Figure 3-7: Prefetch Output Logic Mosaic

Control Design Critical Signal Delay Path: The critical signal delay path in the [Unit
control implementation is in the output logic. The output logic is the only block within the IUnit
control that must evaluate outputs during every phase. Furthermore, these output signals must

be used during the same phase that they are evaluated.

SPICE simulations were performed on the MISS_To_InsBus output because it uses the most
complex domino logic gate. The schematic for this gate is shown in Figure 3-4. SPICE simula-
tions estimate a 2.9 ns (typical) delay time from the beginning of the evaluation phase to a valid
output signal. The delay time is measured from the rising edge of the clock to the rising edge of
the output signal. The delay time between these rising edges is measured at 2.5 volts. The

SPICE simulation data is included in Appendix C.
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3.4 Instruction Buffer Implementation

The instruction buffer is a special purpose on-chip memory. It stores 128 instructions and
their associated valid tags in 4224 static memory cells. The instruction buffer occupies 77% of the
total area in the IUnit and contains approximately 32,000 transistors. A layout plot of the instruc-
tion buffer is shown is Figure A-9 in Appendix A. The control of the instruction buffer is
simplified with the four phase clocking scheme implemented throughout the SPUR CPU. Two
phases are available for precharging, one phase is available for a read operation and one phase is
available for a write operation. This section briefly describes the instruction bufler on the block
diagram level. The timing of these blocks and their control signals is also summarized. Finally,
constraints that influenced the instruction buffer implementation and SPICE simulation results for

the critical signal delay path are presented.

Instruction Buffer Functional Description The functional blocks in the instruction
buffer are shown in Figure 3-8 [Kong86b]. The LArray is a 128 x 33 array of static memory cells.
The Decoders can access any single instruction in the IArray or one entire block (8 instructions).
This feature is used to invalidate an entire block in one access. The MemoryDatalatch stores
data from the Data_bus. It writes this data into the [Array one the next phase. Data read from
the IArray is stored in the InsReg. The InsMux is a four-way multiplexer that controls which
instruction is sent to the EUnit on the Ins_bus. The IBRead, [BWriteM, and IBWriteS registers
store addresses for read or write operations. The ‘M’ and ‘S’ subscripts denote master and slave
latches. The WordValid block contains the logic that writes and reads the sub-block valid bit
from the last row of memory cells. It informs the IUnit control whether an Instruction_Miss has

occurred during a read operation.

Instruction Buffer Timing: The control signals necessary to support read and write
operations are simplified by having four clock phases available. The timing for the functional
blocks is summarized in Table 3-4. The IArray is pre-charged during phil and phi3. New
addresses for read and write operations are sent during phil and phi3 from the IBRead and

IBWriteS registers to the Decoders. Normally, the InsReg is only updated on phi2 after a read
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Figure 3-8: Instruction Buffer Block Diagram

operation. The control implementation provides an additional signal so the InsReg can latch the

data being written into IArray if desired. This feature could be used for debugging or could allow

chips with defects in the IArray to still be used. The InsMux sends one of four instructions to the

EUnit over the Ins_bus. This instruction may be the instruction stored in the InsReg or three

hard wired instructions: MISS, READ_PC, or TRAP_CALL.

The control signal timing is also shown in Table 3-4. The purpose of most of these signals is

self evident from their name and connection in Figure 3-8.

Instruction Buffer Implementation Constralnts: Several implementation decisions

within the CPU had a significant impact on the instruction buffer implementation. Dave Lee had

already completed layout of the lower datapath in the EUnit. Most of the lower datapath was
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Signal Timing Information

Signal or Bus Name phil | phi2 | phi3 | phi4
Instruction Memory Array Functional Blocks
lArray Pre-Charge Read Pre-Charge Write
Decoders New Address Access IArray |New Address |Access IArray
MemDataLatch Pre-Charge IArray Latch Data_bus [Write [Array
nsReg Latch [Array {Latch IArray}

InsMux Drive Ins_bus
[BRead Latch PC_bus

Drive Address
TBWrite Drive Address |*Latch Add_bus
(WordValid Pre-Charge Read Valid Bit {Pre-Charge Write Valid Bit

Instruction Memory Array Signals

Invalidate_Block Valid

Enable_Block Valid

Read_Instruction Valid

Instruction_Miss Valid

Instruction_To_InsBus Valid

MISS_To_InsBus Valid
TRAPCALL_To_InsBus Valid

READPC_To_InsBus Valid

Read_MemLatch Valid
PC_bus <30 bits> EUnit Pre-Charge

Add_bus <30 bits> Pre-Charge EUnit Pre-Charge EUnit or [Unit
Data_Bus <32 bits> EUnit Pre-Charge ECache Pre-Charge
Instruction_bus <32 bits> [Unit

* Signals arrive on phi4 but are not used until the following phil.

{} Indicates that this feature is included for debugging, not normal operation.

Valid - indicates that the signal may only be asserted true during the designated phase. Signal is
false during all other phases.

Table 3-4: Instruction Bufler Timing

implemented to be consistent with the height of the register file. The register file contains 5520

memory cells and measures 4094 x 5729 umz. Wook Koh was also well into the upper datapath

layout before I started working on the IUnit. Functional blocks in the upper datapath were

designed assuming the IUnit would be approximately 6000 x 4000 umz. Any drastic change in the

size or the aspect ratio of the JUnit would force implementation changes in many other functional
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blocks. Alternative memory array implementations are discussed in Chapter 4.

Instruction Buffer Critical Signal Delay Path: The critical signal delay path in the
instruction buffer includes reading the sub-block valid bit from the lArray and driving it to the
[Unit control block. This is the slowest signal delay path in the IUnit. SPICE simulation results
show that the total time for this delay path is 14.7 ns (typical). A read operation from one of the
instruction memory cells into the InsReg takes 12.5 ns (typical). Therefore, the sub-block valid
bit increases the critical signal delay path in the IUnit by 17.6%. The SPICE simulation data and

assumptions are included in Appendix C. The delay time is broken into three components below:

Select Line Delay = 4.2 ns (select line = 2.5v)
Data Line Delay = 7.3 ns (data line = 2.5v)

Miss Line Delay = 3.2 ns (Instruction_Miss = 2.5v)

3.5 Tag Comparison & Prefetcher Implementations

The tag comparison and prefetcher support additional datapath functions in the [Unit. This
block occupies 15% of the total area in the TUnit and contains approximately 4600 transistors. A
layout plot of the Tag Comparison and Prefetcher block in shown in Figure A-10 in Appendix A.
This section provides a functional description of these blocks and timing information. SPICE

simulation results are presented at the end of this section.

Tag Comparison & Prefetcher Functional Description: The tag comparison block
maintains the address tag information for the IUnit. This block compares its address tags against
requested instruction addresses and informs the IUnit control whether a hit or miss occurs. The
tag comparison block must also support its 384 bit static memory cells. The prefetcher block
latches instruction address that are being fetched or prefetched on the Add_bus and increments
the three lowest order bits. This incremented instruction address is sent on the Add_bus when a

prefetch is initiated.
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The functional blocks within the tag comparison and prefetcher are shown in Figure 3-9.
The TArray is a 16 x 24 array of static memory cells identical to the IArray cells. The decoders
are also similar the instruction buffer decoders. The Comparator compares the address tag stored
in the TArray with the tag stored in the FetchPC latch. FetchPC bholds a program counter

address tag. It also bandles precharging in the TArray.

— PC_bus
—— Add_bus
"—{_r IncrementedPC F— IncrementedPC_To_AddBus
3
13 ,
ReferencePCS — phil
L ReferencePCM }— Load_ReferencePC
+— FetchPC_To_AddBus
| FetchPC Load_FetchPC
_]' Write_Tag
‘ 46 J46 .
)| Invalidate_Tag
t t
Incrementer Comparator Block_Miss
4 ,
- -
. TArray Valid
Decoders ------------ R »
16 16 Bits

Bypass_Tag_Decoders

Figure 3-9: Tag Comparison and Prefetcher Block Diagram
The BlockValid cell OR's the results of the Comparator with the block valid bit read from the
TArray. It informs the IUnit control block whether a Block_Miss has occurred. Only four func-

tional blocks are used in the prefetcher: ReferencePCM, ReferencePCS , Incrementer, and



-42-

IncrementedPC. Both the ReferencePCM and ReferencePCS are 30-bit latches. The Incrementer

is a simple wrap-around counter. It increments the three lowest order bits of the instruction

address stored in the ReferencePCS latch. The IncrementedPC is a simple buffer that writes the

incremented instruction address on the Add_bus.

Tag Comparison and Prefetcher Timing: The timing of the functional blocks and sig-

nals is summarized in Table 3-5. The purpose of these signals is self evident from their names and

connections in Figure 3-9.

Signal Timing Information

Signal or Bus Name phil phi2 phi3 phi4

Tag Comparison and Prefetcher Functional Blocks
TArray Pre-Charge Read Pre-Charge Write
Decoders New Address |[Access TArray New Address |Access TArray
Comparator Compares Tags

etchPC Latch PC_bus Drive Add_bus

Drive Decoder Drive Decoder

ReferencePC *Latch Add_bus
Incrementer Increment Address
IncrementedPC Drive Add_bus
Block Valid Pre-Charge Read Valid Bit Pre-Charge Write Valid Bit
Tag Comparison and Prefetcher Signals
Load_FetchPC Valid
Invalidate_Tag Valid
Bypass_Tag_Decoder Valid
Block_Miss Valid
FetchPC_To_AddBus Valid
IncrementedPC_To_AddBus Valid
Load_ReferencePC Valid
Write_Tag Valid
JAddress_bus <30 bits> Pre-Charge EUnit Pre-Charge EUnit or [Unit

C_bus EUnit Pre-Charge

* Signals arrive on phi4 but are not used until the following phil.

Valid - indicates that the signal may only be asserted true during the designated phase. Signal is
false during all other phases.

Table 3-5: Tag Comparison and Prefetcher Timing
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Comparator Implementation: A two level domino logic implementation of the compara-
tor was used to minimize its speed delay and area. Figure 3-10 shows the schematic of the com-
parator cell. The first level of domino logic gate provides a single bit comparison. The
Not_Bit_Match signal, shown in Figure 3-10, indicates whether the tag bit and the data bit are
the same. All 23-bits are OR’ed together in the second level of domino logic gate. The size of the
two series devices that implement the final OR function (m1 & m2) were optimized to give a fast
transition on the Match line. The speed of this signal was found to reach a maximum with dev-
ices of 40 um to 45 um wide. A layout plot of the Comparator is shown in Figure A-11 in

Appendix A.
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phi2 —°|E|

sl=S

Data_Line_L {>c ! —

To 22 Other VDD
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e l:Il:’— phi2 —

Match GND X
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i

Data_line

Tag_L

Tag

Not_Bit_Match

m2
Pl— phi2
ToBlock  OND
Valid

Figure 3-10:Comparator Schematic

Tag Comparison Critical Signal Delay Path: The critical signal delay path in the tag
comparison block occurs during a tag read and comparison operation. The signal delay path

involves the following signals: Decoders select line, memory cell data line, tag comparisnr Match

EAN
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signal, and the Block_Miss signal. The SPICE simulation results show that the total time for this
signal delay path is 9.3 ms (typical). SPICE simulation data and assumptions are included in

Appendix C. The delay time is broken into its four components below:

Select Line Delay - 2.5 ns (select line = 2.5v)
Data Line Delay - 1.7 ns (data line = 2.5v)
Comparator Delay - 3.2 ns (Match = 2.5v)

BlockValid Delay - 1.9 ns (Block_Miss = 2.5v)
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4. ALTERNATIVE INSTRUCTION UNIT IMPLEMENTATIONS

In this chapter, I examine instruction unit implementations that are similar to the SPUR
TUnit. I varied three IUnit design parameters: memory array size, sub-block size, and associa-
tivity. None of these alternatives would require any functional changes in the SPUR CPU. How-
ever, many of these alternatives would require large portions of the CPU layout to change. In
this chapter, I assume that the CPU layout is not a factor. In actual practice, this assumption
could not be further from the truth. Organizing a complex VLSI chip into an efficient implemen-
tation is one of the most difficult tasks that chip designers face. Poor planning often forces por-
tions of of the design to be re-implemented. As I stated previously in section 3.2, the SPUR
instruction unit size and aspect ratio were determined when the chip floor plan was established.
This chapter also assumes that the speed of the CPU is limited by the instruction unit. In the

SPUR CPU, the critical signal delay path occurs during a read in the register file.

I selected memory array size, sub-block size, and associative implementation alternatives
because they have been shown to significantly impact the performance of cache memories
[Smith82], [Good83], [Hill84]. Furthermore, these alternatives do not require drastic changes in
the control complexity of the IUnit. I compare these alternative implementations using two

metrics: silicon area and critical signal delay time.

4.1 Memory Array Size

Cache size has a direct impact on hit ratio [Smith82], [Hill84]. The improvement in hit ratio
is more pronounced in small cache memories such as the SPUR [Unit. Increasing the cache size in
an on-chip memory is accomplished by simply expanding the instruction memory array. However,

both the silicon area and speed of the cache are aflected by changes in the memory array size.

The critical signal delay times for five array sizes are shown in Table 4-1. These speed esti-

mates are based on SPICE simulations similar to the those discussed in section 3.4.
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Critical Signal Delay Path
Memory Select Line Data Line Miss Line Total
Array Size Delay (ns) Delay (ns) Delay (ns) Delay (ns)

Cache Size = 64 Instruction
64 x 33 Array | 4.2 | 4.4 | 2.7 | 11.3

Cache Size == 128 Instruction

64 x 65 Array 49 4.8 2.6 124
128 x 33 Array (SPUR) 4.2 7.3 3.2 14.7
Cache Size = 2506 Instruction

128 x 65 Array 4.9 7.7 4.1 16.8
256 x 33 Array 4.2 13.0 5.0 21.2

Table 4-1: Critical Signal Delay vs Memory Array Size

Table 4-1 illustrates that the critical signal delay path in the IUnit is directly related to the
memory array size and aspect ratio. This delay path includes the select line, data line, and miss
line delays. The delay times in Table 4-1 show that the select delay time does mot vary more
than 17% even when select line capacitance is doubled. The decoders have a fixed internal delay
time of 2.8 ns. The large output drivers in the decoders minimize the delay due to select line
capacitance. Alternatively, the data line delay varies by a factor of three in Table 4-1. This
delay time is due to the memory cell discharging the precharged data line. More elaborate sensing
schemes could reduce this delay time for the slower alternatives. However, these sense amp
designs would either require additional power, area or clock generation complexity depending on
the approach used. The final delay component, the Miss line delay, is affected by the fall time of
the data line. The memory array implemented in the SPUR [Unit is 2.3 ns slower than a square
64 x 65 memory array. However, if one instruction sub-blocks are used in the 64 x 66 array, then
some of this performance improvement is lost. An additional pass gate would be necessary to
select between the two miss signals. This would reduce the 2.3 ns advantage to 1.2 ns. Array size

and sub-block combinations are summarized in section 4.4.

Increasing the number of instructions in the SPUR IUnit to 512 instructions is not practical

with current technology using a static memory array. Research at U.C. Berkeley has investigated
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using one-transistor dynamic memory cells for on-chip cache memories [Chil85]. A test structure
was designed to evaluate the sensitivity of these memory cells in a standard 2 um logic process.
Simulations showed that the sensitivity of the design could tolerate the process variations
expected. Dypamic memory clocking circuits that can tolerate wide process variations have also
been investigated [Tham85]. Dynamic memory implementations are beyond the scope of this
report because significant changes in the [Unit control design would be necessary to support the

refresh operations.

4.2 DataPath Width / Sub-block Size

The sub-block size in the SPUR instruction unit was constrained by the number of package
pins that could be allocated to the data bus between the CPU and the external cache (32-bits).
Preliminary trace driven simulations show that the number of data references from the EUnit
may reach 30% [Hill86b]. This will impact the IUnits performance because prefetches are blocked

by EUnit data references.

Several implementation alternatives could reduce the number of prefetches that are blocked.
The sub-block size and CPU to external cache datapath could be increased to 64-bits. The
instruction unit could then fetch and prefetch two instructions on each access to the external
cache. Another alternative is to add a second memory port to the CPU. Prefetches would never
be blocked in this case. This alternative is not considered further because the present IUnit imple-
mentation would work with a second external cache memory port. It would add a significant

amount of complexity to the external cache implementation.
Cache Size = 128 Instructions; Sub-Block = 2 Instructions:

This implementation alternative would change both the instruction array and tag array
dimensions. The instruction array would be organized as 64 sub-blocks with two instructions and
one valid bit per sub-block (64 x 65). The number of blocks in the tag array would drop from 16
to 8. Several different designs could be used to select one of the two instructions in the sub-

blocks. This problem is simplied in the SPUR IUnit because a multiplexer (InsMux) and control
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signals are already available in the instruction buffer. Both instructions could be read from the
instruction array and latched (InsReg) during phi2. The InsMux could simply be expanded to a
five-way multiplexer to perform the final selection during phi3. The Instruction_To_InsBus signal
could be combined with the lowest order address bit to determine which instruction is transferred
to the Ins_bus. Timing during phi3 is not critical so there is no penalty from using a five-way
multiplexer. This multiplexor may not be included in future IUnit implementations. Simulated

delay times for two-way, four-way, and eight-way multiplexors are listed below:

Two-way multiplexor:
Data to Data Delay == 1.0ns
Signal to Data Delay = 1.0 ns

Four-way multiplexor:

Data to Data Delay = 1.2 ns

Signal to Data Delay = 1.1 ns
Eight-way multiplexor:

Data to Data Delay = 1.4 ns

Signal to Data Delay = 1.3 ns

An implementation with 128 instructions and 2 sub-blocks would differ from the present
[Unit in the following ways.
Area: The area of the [Unit would decrease by 8%. This is due to a 50% reduction in the tag
array and sub-block valid bits.
Speed: The critical signal delay path in this instruction array is identical to the the results
shown in Table 4-1 for a 64 x 65 memory array. The delay time for this alternative is
16% lower than the present [Unit implementation (From 14.7 ns to 12.4 ns). The critical
delay time through the tag comparison block only decreases by 4% (From 9.3 ns to 8.9
ns) despite the fact that the data line capacitance is reduced by 50%. However, the data

line delay is a small component of the total tag comparison delay time {see section 3.5).
Cache Size = 256 Instructions; Sub-Block = 2 Instructions:

Doubling the cache size with 2 instruction per sub-block would give an imstruction array

with dimensions 128 x 65. The following changes in area and speed would occur:
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Area: The area would increase by 1.7 times. This IUnit would measure 6000 lambda wide by
7700 lambda high. Assuming the rest of the CPU layout remained the same, an IUnit
this size could be incorporated in a technology with a scaling factor of lambda = 0.7

um.

Speed: The critical signal delay path in the [Unit would increase by 14% (From 14.7 ns to 16.8
ns). This is caused by the select line capacitance doubling. The tag comparison signal

delay path is identical to the SPUR IUnit in this example (16 blocks).

4.3 Two-way Assoclatlvity

Associativity is an important parameter in cache design because it forces design tradeoffs
between hit ratio, cost, and performance [Smith82]. Trace driven simulations have shown that hit
ratios do not improve significantly for cache designs with associativity greater that four or eight
[Smith82], [Good83]. Simulations for small cache memories indicate that most of the benefit in hit

ratio is obtained with a two-way associative cache [Hill86b).

This section presents several two-way associative cache implementations for the SPUR
[Unit. The two options that I examine are: 128 vs 256 instructions. In both cases, I do not
include area estimates for the replacement algorithm implementation. Simple random replace-
ment algorithms could be implemented in less that 2% of the total IUnit area. A least-recently-
used algorithm would affect the total [Unit area by approximately 4% to 8%. Neither of these

replacement algorithms would impact the critical signal delay path in the IUnit.
Cache Size=128 Instructions; Associativity=2

Several features of the SPUR IUnit implementation are useful for a two-way associative
implementation. For example, instructions are read from the [Unit during phi2 but are not sent
to the EUnit until the following phase. The four-way instruction multiplexer in the SPUR IUnit is
also useful in a two-way associative design. It can simply be expanded to a five-way multiplexor

to support selection between the two instruction paths.
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A block diagram showing a simple two-way associative implementation is shown in Figure

4-1. The instruction arrays are identical to the 64 x 33 array described in section 4.1. Miss signals

are generated from each of these arrays, Instructionl_Miss and Instruction2_Miss. Block miss sig-

nals are generated by the two tag comparison blocks. The Blockl_Miss and Block2_Miss signals

shown in Figure 4-1 is analogous to the Block_Miss signal in the IUnit. All four miss signals

would be latched by the control block at the end of phi2. The IUnit control would be complicated

slightly to accommodate these new signals. Two additional static latches and static gates are

necessary. The output logic must add an extra output signal for the InsMux. The following

changes in area and speed result in this two-way associative design.

Area:

Speed:

The area of this two-way associative IUnit implementation would be about 17% larger
than the SPUR IUnit. The area for the two instruction arrays is 12% larger than a sin-
gle array. The area for two tag arrays that contain 8 blocks is 50% larger than one sin-

gle array that contains 16 blocks.

In general, two-way associative caches are slower than direct mapped caches. Delay is
added because instructions must pass through a multiplexer to select one of two instruc-
tions. This multiplexor must be clocked by one of the miss signals : Instructionl_Miss or
Instruction2_Miss. Therefore, a series time delay (miss delay + multiplexor) is present in
a typical two-way associative cache that is not present in a direct mapped cache. This
series delay path is already present in the SPUR [Unit, therefore, a two-way associative
implementation will not be inherently slower. The critical speed delay path in the two-
way associative [Unit is the same as a direct mapped implementation except that one
additional signal delay occurs in the control block. Despite this additional gate delay,
the critical signal delay path in the twb-way associative design is 9% faster than the
present IUnit (From 14.7 ns to 12.9 ns). The data line capacitance in each memory
array is reduced by 509 which more than offsets the additional gate delay. The delay
time introduced by using a five-way multiplexor is not significant. The IUnit has an

entire phase to transfer the instruction through the multiplexor onto the Ins_bus. The
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Figure 4-1:Two-Way Associative [Unit Implementation

present delay would increase by about 25% (From 7.5 ns to 9.3 ns). However, this time

is significantly faster than the critical signal delay path.
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Cache Size= 256, Associativily=2

The same design discussed in the previous example would also support a cache with twice

the number of instructions. The following changes in area and speed would result:

Area:Two memory arrays with dimensions 64 x 66 dimensions would provide the best implemen-
tation. The Tag arrays are identical in size to the JUnit. The total area of this implementa-

tion would be 2.0 times larger than the present IUnit.

Speed.The critical signal delay of this two-way implementation is equivalent to the present IUnit.
The key parameter is the data line capacitance. Using two separate memory arrays for the
associative implementation reduces the data line capacitance by 50%. This configuration
has two series delays: a pass gate to select one miss signal from each memory array and the

gate delay in the IUnit control.

4.4 Alternative Implementation Summary

IUnit implementation alternatives are summarized in Table 4-2. All of the implementations
with 128 instructions were faster than the SPUR IUnit implementation. In all cases, the speed
improvement was due to reduced data line capacitance. Either the aspect ratio of the memory
array changed or the memory array was split in half. The speed estimates in Table 4-2 indicate
that either an [Unit with two instruction sub-blocks or a two-way associative implementation

would have been fast enough for the SPUR CPU.

The diflerence in area between the two-way associative alternative and the other two option
was more pronounced. In fact, it would not have been possible to fit the two-way associative

implementation in a2 2 um version of the CPU. It would fit onto the 1.6 um version of the CPU.
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IUnit Configuration Normalized Implementation Metrics
Number of | Degree of Number of Silicon Critical
Sub-Blocks | Assoclatlvity | Memory Arrays Area Signal Delay
Array Dimension 84 x 33
1 1 1 0.62 0.77
1 1 2 1.08 0.91
2(2) 1 2 1.05 0.77
1 2 2 1.17 0.91
Array Dimension = 64 x 85
1(1) 1 1 0.97 0.91
2(2) 1 1 0.92 0.84
1(1) 1 2 1.8 1.01
2(2) 1 2 1.7 0.95
1(1) 2 2 2.1 1.01
Array Dimension = 128 x 33
1 (SPUR) | 1 | 1 [ 10 | 1.0
Array Dimension = 128 x 65
1(1) 1 1 1.8 1.25
2(2) 1 1 1.7 1.14
Array Dimension = 256 x 33
1 | 1 | 1 { 18 | 1.44

(1) These implementations would require an array (n x 66) to support the two sub-block valid bits.
(2) This area estimate does not include the extra pad and bus area.

Table 4-2: Implementation Metric Summary
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5. CONCLUSIONS AND SUGGESTIONS FOR FURTEER RESEARCH

I believe that the density of integrated circuit technology will continue to advance into the
next decade. Therefore, many of the design tradeoffs that we are now facing will change. For
example, I think that microprocessors will routinely have both on-chip data and instruction

caches. The size of these on-chip caches will continue to be an important tradeofl.

I have formed several opinions about the design of on-chip cache memorys during this pro-
ject. On-chip cache memory designs must be optimized for a synchronous environment. Unlike
board level cache designs, improving speed in an on-chip instruction cache does not necessarily
improve the performance of the entire chip. A better approach is to design the on-chip cache to
be slightly faster than the critical signal delay path in the entire chip. Architectural features that
improve the hit ratio of the cache should then be considered. Any additional control complexity

must also be taken into consideration.

Control design continues to be the most time consuming and error prone part of IC design.
1 think the IUnit control design could have been simplified with several custom software tools.
For example, the individual cells in the output logic mosaics could have been placed automati-
cally. More importantly, a software tool could analyze the logic equations and move non-critical
equations into the PLA. This tool must understand timing relationships in order to partition the
logic for either the PLA or the domino output logic. Creating these tools was beyond the scope of

this report, but I believe that this would be an interesting research topic.

In conclusion, I implemented an on-chip instruction cache for the SPUR CPU. The instruc-
tion unit contains approximately 40 unique circuits and layouts. A variety of circuit design tech-
niques were used from simple static gates to dynamic logic gates and latches. The simulated criti-
cal signal delay time of the instruction unit is less than 15 ns (typical). The layout efficiency of
the instruction memory array was approximately 62% which is similar to industry standard static

memory chips. The design and layout took approximately 4 man-months (40 hour weeks).



-55-

ACKNOWLEDGEMENTS

The SPUR project was well established when I joined the group one year ago. Members of
the research team were busy molding their architectural ideas into a final design. Despite the fast
paced nature of the project, I found the group members sincerely interested in sharing their ideas
with me. I would particularly like to thank the CPU design team: Shing Kong, Dave Lee, and
Wook Koh. They have provided invaluable technical guidance during my participation on this
project. John Keller deserves credit for introducing me to the SPUR project and providing
encouragement throughout the year. 1 also want to thank Mark Hill for contributing to this

research paper with both ideas and manuscript reviews.

My research advisors, David Hodges and Randy Katz, have belped direct both my course
work and involvement on the SPUR CPU. Without their guidance, and extremely quick readings

of this report, I would not have finished my MSEE program in one year.

I would also like to acknowledge Hewlett Packard for supporting me through the Resident
Fellowship Program and the management at the Northwest IC Division. The moral support of

Bob Tillman, Skip Rung, Sam Angelos and many others helped me strive for this goal.

Finally, my strength (and sanity) throughout the entire year has been preserved by my wife,
Alesia. She has helped smooth out some of the discouraging times and enhance the good times.

Most importantly, she gave birth to our son Scott this year, who brings me a smile on every day.



-56-

REFERENCES

[Chil85] Brian Childers: "On-Chip Memory For Microprocessors”, MS Report, Department of
Electrical Engineering & Computer Science, University of California, Berkeley, 26 pages, Jan.
1985.

[Good83] James Goodman: "Using Cache Memory to Reduce Processor- Memory-Traffic”, Proc.
Tenth International Symposium on Computer Architecture, pp 124-131, June 1983,

[HilI82] Mark Hill, Dimitris Lioupis, Chris Nyberg, Tim Sippel: "RISC Cache Project”, Graduate
class project for CS292x, Computer Science Division, Department of Electrical Engineering &
Computer Science, University of California, Berkeley, 17 pages, June 1982.

[Hill84] M.D. Hill: "Experimental Evaluation of On-Chip Microprocessor Cache Memories”, Proc.
Eleventh International Symposium on Computer Architecture, June 1983.

[Hil85] M.D. Hill et. el.: "SPUR: A VLSI Multiprocessor Workstation”, Computer Science Divi-
sion, Department of Electrical Engineering & Computer Science, University of California, Berke-
ley, 1985.

[Hili86a] M.D. Hill: Informal implementation notes on SPUR Instruction Unit, U.C. Berkeley,
1986.

[Hillg6b] M.D. Hill: private communication, U.C. Berkeley, 1986.
[Jeong86] D K. Jeong: Developed PLA templates compatible with MPLA, U.C. Berkeley, 1986.

[Kong86a] S. Kong, R. Duncombe, D. Lee, W. Koh: "The SPUR CPU: An Architectural Descrip-
tion”, Version 2.0, Computer Science Division, Department of Electrical Engineering & Computer
Science, University of California, Berkeley, 43 pages, June 1986.

[Kong86b] S. Kong: N.2 Description of the SPUR CPU, U.C. Berkeley, 1986.

[Mac84] D. MacGregor, D. Mothersole, and B. Moyer: "The Motorola MC68020”, IEEE Micro,
August 1984, pp. 101-118.

[Mac85] D. MacGregor, Jon Rubenstein: "A Performance Analysis of MC68020-based Systems,
IEEE Micro, pp. 50-70, December 1985.

[Patt83] D.A. Patterson, P. Garrison, M.D. Hill, et al: »Architecture of a VLSI Instruction Cache
for a RISC”, Proc. Tenth International Symposium on Computer Architecture, pp 108-116, June
1983,

[Phil85] D. Phillips: "The Z80000 Microprocessor”, [IEEE Micro, pp. 23-36, December 1985.

[Scott86] W. Scott, R. Mayo, G Hamachi, J. Ousterhout: "1986 VLSI Tools: Still More Works by
the Original Artists”, Computer Science Division, Department of Electrical Engineering & Com-
puter Science, University of California, Berkeley, Jan. 1986.



- 57 -

[Smith82] A.J. Smith: "Cache Memories™, Computing Surveys, pp 473-530, Sept. 1982.

[Tham85] K.S. Tham: A Self-Timed One Transistor Dynamic Ram”, MS Report, Department of
Electrical Engineering & Computer Science, University of California, Berkeley, 26 pages, Jan.
1985.



APPENDIX A: LAYOUT PLOTS
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Figure A-1:Instruction Unit Layout Plot
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Figure A-2:Fetch State PLA Layout Plot
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Figure A-3:Prefetch State PLA Layout Plot
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Figure A-4:.Domino Output Logic Gate Layout Plot
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Figure A-5:Fetch Output Logic Layout Plot
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Figure A-6:Prefetch Output Logic Layout Plot
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Figure A-7:Fetch Control Layout Plot
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APPENDIX B: PLA DESCRIPTIONS
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FETCH PLA ALGORITHM:
—~7 INPUTS / 5 OUTPUTS (not including 3 state inputs and outputs)

INPUTS: resetIB_C2 flush_VC2 ibMiss_C2 memBusy_VC3 LatchDataValid_C3
LatchNotSpd_C1 LatchluEn_C1;

OUTPUTS: resetIB normal membusy mempend disabled;
—Always reset to fet_reset when resetIB_C2 is asserted.
RESET ON resetIB_C2 TO fet_reset (resetIB);

~Describe state transitions.

fet_reset: IF NOT resetIB_C2 THEN fet_normal (normal)
ELSE LOOP (resetIB);

fet_normal: CASE (flush_VC2 ibMiss_C2 memBusy_VC3 LatchNotSpd_C1 )
1?11 => fet_membusy (membusy);
0111 => fet_membusy (membusy);
1?01 => fet_mempend (mempend);
0101 => fet_mempend (mempend);
ENDCASE => LOOP (normal);

fet_membusy: [F NOT memBusy_VC3 THEN fet_mempend (mempend)
ELSE LOOP (membusy);

fet_mempend: CASE (LatchDataValid_C3 LatchluEn_C1)
10 => fet_disable (disabled);
11 => fet_normal (normal);
ENDCASE =>LOOP (mempend);

fet_disable : IF LatchNotSpd_C1 THEN fet_normal (normal)
ELSE LOOP (disabled);
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PREFETCH PLA ALGORITHM:
—6 INPUTS / 5 OUTPUTS (not including 3 state inputs and outputs)

INPUTS: resetIB_C2 flush_VC2 memBusy_VC3 LatchluEn_C1
LatchStartingPF_C3 LatchluPre_ClI;

OUTPUTS: resetPF idle disabled waiting prefetch;
—~Always reset to pf_reset when resetIB_C2 is asserted.
RESET ON resetIB_C2 TO pf_reset (resetPF);
~Describe state transitions.

pf_reset: CASE (resetIB_C2 LatchluEn_C1 LatchluPre_C1)
17?7 => LOOP (resetPF);
011 => pf_idle (idle);
ENDCASE => pf_disabled (disabled});

pf_idle:  CASE (resetIB_C2 flush_VC2 LatchStartingPF_C3)
1?7 => pf_reset (resetPF);
01? => LOOP (idle);
001 => pf_waiting (waiting);
ENDCASE => LOOP (idle);

pf_disabled: IF resetIB_C2 THEN pf_reset (resetPF)
ELSE LOOP (disabled);

pf_waiting: CASE (resetIB_C2 flush_VC2 LatchStartingPF_C3 memBusy_VC3)
1??? => pl_reset (resetPF);
01?? => pf_idle (idle);
001? => LOOP (waiting);
0001 => LOOP (waiting);
ENDCASE => pf_prefetch (prefetch);

pl_prefetch: CASE (resetIB_C2 flush_VC2 LatchStartingPF_C3 memBusy_VC3)
1??? => pf_reset (resetPF);
01?? => pf_idle (idle);
001? => pf_waiting {waiting);
0001 => pf_waiting (waiting);
ENDCASE => LOOP (prefetch};



APPENDIX C: SPICE SIMULATION DATA
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SPICE PARAMETER FILE

RRRURRRA R R RAR SRR R RN R F AR LR R R R R ER R R R R R R AR R R ER AR AR R R R AR LR AR R R AR R R R RS RRE RN

TYPICAL Device parameters for the HP CMOS40 Process

*

*

* Released 2/6/86 by Rich Duncombe

* NOTE: These parameters are sntended for digital design only.
*

RRRRRER R R R R R AR R R R R R R R R R R R R R E R AR R R AR R R RE R R R R R R R R AR R AR AR RERRR R R R R R R
*®

* Use N and P models for W >= jUand L <= 2U
®

August+ NSUB=4E16 TPG=+1 X J==.25U LD = 20U UEXP=.16 VMAX =5.5E{ JS=1000U
+ CGSO=220P CGDO=220P CJ=230U CJSW=260P CGBO=400P
®

August+ NSUB=2.0E16 TPG=-1 XJ=.20U LD=.05U UEXP=.15 VMAX =9.0E4 JS=1000U
+ CGSO=220P CGDO=220P CJ=670U CJSW=215P CGBO=400P
z

* Use NBIG and PBIG models for W >= {Uand L >= 2U

*

August+ NSUB=(FE16 TPG=+1 XJ=25U LD =.20U UEXP=.02 VMAX =5.5E4 JS=1000U
+ CGSO=220P CGDO=220P CJ=280U CJSW=260P CGBO=400P
t ]

August+ NSUB=2.0E16 TPG=-1 X J=.20U LD =.05U UEXP=.05 VMAX =9.0E4 JS=1000U
+ CGSO=220P CGDO=220P CJ=670U CJSW=215P CGBO=400P
*®

* Use NMIN and PMIN models for W <= U and L <= 2U

®

August+ NSUB=(E16 TPG=+1 XJ=.25U LD=.20U UEXP=.18 VMAX =5.5E4 JS=1000U
+ CGSO=220P CGDO=220P CJ=280U CJSW=260P CGBO=400P
2

August+ NSUB=2.0E16 TPG=-1 X J=.20U LD=.05U UEXP=.15 VMAX =9.0E4 JS=1000U
+ CGSO=220P CGDO=220P CJ=670U CJSW=215P CGBO==400P
2

RRRRERRR R R R R AR R R R R R R R R R R R R R R R R R R AR AR R R R R R R R R R AR R RRIRRRRERRRR R
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DOMINO LOGIG GATE: MISS_To_InsBus Signal

I*¥#ERRR0Q /05 /36 F#*EREER SPICE 0G.6  §/15/83 *HHRER¥)0:09:4 1 *
0DOMINO CRITICAL SPEED PATH (VDD=5, TYP PARAMS)

0**** TRANSIENT ANALYSIS TEMPERATURE = 27.000 DEG C

0*t*##*t*#**######t##ltltt###tt####t#t######‘*R#*##*#I#####**#t*#l#*#**#

OLEGEND:

* MISS_To_InsBus
+:phi8
X
TIME  V{(21)

(*)--------==- -2.000d+00 0. d+00 2.000d+00 4.000d+00 6.000d+00

2y — 0. d+00 2.000d+00  4.000d+00  6.000d+00 8.000d+00
1.000d-09 -2.081d-05 +
1.100d-09 -1.664d-05 +
1.200d-09 -1.251d-05 +
1.800d-09 -8.624d-06 +
1.400d-09 -5.047d-06 +
1.500d-09 -1.640d-06 +
1.600d-09 1.552d-06 +
1.700d-09 4.642d-06 +
1.800d-09 7.6034-06 +
1.900d-09 1.096d-05 +
2.000d-09 1.480d-05 +
2.100d-09 5.671d-04 . +
2.200d-09 9.149d-04 . +
2.800d-09 1.2184-03. +
2.400d-09 1.8184-08. +
2.500d-09 1.414d-08 . +
2.600d-09 1.462d-08 .
2.700d-09 1.509d-08 .
£.800d-09 1.5884-08 .
£.900d-09 1.567d-08 .
8.000d-09 1.601d-08 .
8.100d-09 1.685d-08 .
8.200d-09 1.701d-08 .
8.800d-09 1.766d-03 .
8.400d-09 1.8564-08 .
8.500d-09 1.946d-03 .
8.600d-09 2.114d-08 .
8.700d-09 2.281d-03 .
8.800d-09 2.491d-08 .
8.900d-09 2.700d-08 .

L I I L L 2 O TR TR T AT SRR SR TEE TR RN R Y

+ +
+

LR B B B T AR B
+



4.000d-09
4.100d-089
4.200d-09
4.800d-09
4.400d-09
4.500d-09
4.600d-09
4.700d-09
4.800d-09
4.900d-09
5.000d-09
5.100d-09
5.200d-09
5.800d-09
5.400d-09
5.500d-09
5.600d-09
5.700d-09
5.800d-09
5.900d-09
6.000d-09
6.100d-09
6.200d-09
6.800d-09
6.400d-09
6.500d-09
6.600d-09
6.700d-09
6.800d-09
6.900d-09
7.000d-09
7.100d-09
7.200d-09
7.800d-09
7.400d-09
7.500d-09
7.600d-09
7.700d-09
7.800d-09
7.900d-09
8.000d-09

2.886d-08 .

2.649d-08 .
2.2084-08 .
1.665d-08 .

-2.288d-08 .

-6.281d-08 .
-1.474d-02 .
-2.9254-02 .

2.758d-02 .
7.8414-02 .

2.867d-01 .
8.949d-01 .

6.099d-01 .

8.2484-01 .

1.059d+00 .
1.2984+00 .
1.582d+00 .
1.772d+00 .
2.010d+00 .
2.247d+00 .
2.471d+00 .
2.696d+00 .
2.891d+00 .
8.086d+00 .
8.252d+00 .
8.4184+00 .
8.556d+00 .
8.695d+00 .
8.810d+00 .
8.926d+00 .
4.021d+00 .
4.117d+00 .
4.196d+00 .
4.275d+00 .
4.840d+00 .
4.405d+00 .
4.458d+00 .
4.512d+00 .
4.555d+00 .
4.599d+00 .
4.685d+00 .

% B % % % B % N %
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IBUFFER CRITICAL SIGNAL DELAY PATH:
1*%#*42408/08/86 ******** SPICE 2G.6 3/15/83 ********04:48:46%****
OIBUFFER CRITICAL SPEED PATH (VDD=5, TYP PARAMS)

0**** TRANSIENT ANALYSIS TEMPERATURE = 27.000 DEG C

0#“#"‘**8"#*“t“tttttttt‘*t#t‘t‘tttttttt“ttttttt‘tttt‘tt‘ttt#‘t*t“

OLEGEND:

*. phi2phi4
+: Select Line
=: Data Line
$: Instruction_Miss Line
X
TIME V(7)

(*+=$)———— 0. d+00 2.000d+00 4.000d+00 6.000d+00 8.000d+00

-----------------------------

4.5004-09
5.0004-09
5.500d-09
6.000d-09 0. d+00 X .
6.500d-09 1.250d+00 + * .
7.000d4-09 2.500d+00 + .o®
7.500d-09 3.750d+00 +

8.000d-09 5.000d+00 +

8.500d-09 5.000d+00 +

9.000d-09 5.000d+00 +

9.500d-09 5.000d+00 . +

1.0004-08 5.000d+00 . + .
1.050d-08 5.0004+00 . + .
1.100d4-08 5.000d+00 . .+
1.150d-08 5.000d+00 . .+
1.2004-08 5.000d+00 . . +
1.2504d-08 5.000d+00 .
1.300d-08 5.000d+00 .
1.350d-08 5.000d+00 .
1.400d-08 5.000d+00 .
1.4504-08 5.0004+00 .
1.500d4-08 5.000d+00 .
1.650d-08 5.000d+00 .

0. d+00 0. d+00X
5.000d-10 0. d+00 X
1.000d-09 0. d+00X
1.500d-09 0. d+00X
2.000d-09 0. d+00X
2.500d-09 0. d+00X
3.000d-09 0. d+00X
3.500d-09 0. d+00 X
4.000d-09 0. d+00X

0.

0.

0.

*

+

R
+ Ny
++ 7 n""xxxxxxxxxxxxxxxxxxxxxx

bl b bd b a5 b bl b



1.600d-08 5.000d+00 . . = +X
1.650d-08 5.000d4+00 . . = +X
1.7004-08 5.000d+00 . . = +X
1.750d-08 5.000d+00 . N +X

1.8004-08 5.000d+00 .
1.850d-08 5.000d+00 . =
1.900d-08 5.000d+00 . =
1.9504-08 5.000d4+00 . =
2.000d-08 5.000d+00 . =
2.050d4-08 5.000d+00 . =, .
2.1004-08 5.000d+00 . =, $.
2.150d-08 5.000d+00 . =

2.2004-08 5.000d+00 . X

2.250d-08 5.000d+00. §$ =

2.300d-08 5.000d+00. $§ =

2.350d-08 5.000d+00 .$ =

2.400d-08 5.000d+00 .$§ =

2.450d-08 5.0004+008% =

2.5004-08 5.000d+00 $§ =

2.550d-08 5.000d+00$% =

2.600d-08 5.000d+00$§ =

2.650d-08 5.000d+00 § =

2.700d-08 5.000d+00 § =

2.750d-08 5.000d+00 § =

2.800d-08 5.000d+00 § =

2.850d-08 5.000d+00 § =

2.900d-08 5.000d+00 $ =

2.950d-08 5.000d+00 $§ =

3.000d4-08 5.000d+00 § =

o
b bd bd bd bd bd b b be bd bd ba b4 bd B b4 P be 5d ba 32 D4 B4 b4 4
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TAG COMPARISON CRITICAL SPEED PATH
1#‘#####08/08/86 RRFRRERR SPICE 2G6 3/15/83 #####t##o5:05:47#$$tt
O0TAG CRITICAL SPEED PATH (VDD =35, TYP PARAMS)

0%*** TRANSIENT ANALYSIS TEMPERATURE = £7.000 DEG C

0#####t##l#*###ttttt##l#t###t###*####*t#t###ttt##t####t###t##i###t*##t!#

OLEGEND:

*: phi2phi{

+: Select Line
=:Data Line

$: Match Line

0: Block_Miss Line

(*$ J-----meeeee 0. d+00 2.000d+00  4.000d+00  6.000d+00 8.000d+00

[ ) — -2.000d+00 0. d+00 2.000d+00  4.000d+00 6.000d+00
0. d+00
5.000d-10
1.000d-09
1.500d-09
2.000d-09
2.500d-09
8.000d-09
8.500d-09
4.000d-09
4.500d-09
5.000d-09
5.500d-09
6.000d-09
6.500d-09 1.250d+00 . *
7.000d-09 2.500d+00 .
7.500d-09 8.750d+00 .
8.000d-09 5.000d+00 .
8.500d-09 5.000d+00 .
9.000d-09 5.000d+00 .
9.500d-09 5.000d+00 .
1.000d-08 5.000d+00 .
1.050d-08 5.000d+00 .
1.100d-08 5.000d+00 .
1.150d-08 5.000d+00 .
1.200d-08 5.000d+00 .
1.250d-08 5.000d+00 .
1.800d-08 5.000d+00 .
1.850d-08 5.000d+00 .
1.400d-08 5.000d+00 .
1.450d-08 5.000d+00 .

SOOI R
a
+
S
S
»*

Dy g P

Q.
Ny
S
© O © © by b g b 244 X B4 34 3 34 34 3 B 3 B4 B

b St B
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|
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Lo T v T e T v, T s W e T e S e S
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bt
+++++1



1.500d-08
1.550d-08
1.600d-08
1.650d-08
1.700d-08
1.750d-08
1.800d-08
1.850d-08
1.900d-08
1.950d-08
2.000d-08

-C8-

[~
I

5.000d+00 . $
5.000d+00. $
5.000d+00. $§
5.000d+00 . $
5.000d+00 .$
5.000d+00 .$
5.000d+00 $
5.000d+00 $
5.000d+00 $
5.000d+00 $
5.000d+00 $

.............................
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