A Unified Theory of Inference for Text Understanding

By

Peter Norvig
B.5. (Brown University) 1978

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY

in
COMPUTER SCIENCE

in the
GRADUATE DIVISION
OF THE
UNIVERSITY OF CALIFORNIA, BERKELEY

J 2
B . e’y
Approved:. /. A A P
Chairman Date

--

--

A Unified Theory of Inference
for Text Understanding

Peter Norvig

Copyright © 1987

A Unified Theory of Inference for Text Understanding
Peter Norvig
Abstract

Natural languages, such as English, are difficult to understand not only because of
the variety of forms that can be expressed, but also because of what is not explicitly
expressed. The problem of deciding what was implied by a text, of *‘reading between
the lines” is the problem of inference. For a reader to extract the proper set of inferences
from a text (the set that was intended by the text’s author) requires a great deal of general
knowledge on the part of the reader, as well as a capability to reason with this
knowledge. When the ‘“‘reader’’ is a computer program, it becomes very difficult to
represent this knowledge so that it will be accessible when needed.

Past approaches to the problem of inference have often concentrated on a particu-
lar type of knowledge structure (such as a script) and postulated an algorithm tuned to
process just that type of structure. The problem with this approach is that it is difficult to
modify the algorithm when it comes time to add a new type of knowledge structure.

An alternative, unified approach is proposed. This approach is formalized in a
computer program named FAUSTUS. The algorithm recognizes six very general classes
of inference, classes that are not dependent on individual knowledge structures. Rather,
the classes describe general kinds of connections between concepts. New kinds of
knowledge can be added without modifying the algorithm. Thus, the complexity has
been shifted from the algorithm to the knowledge base. To accommodate this, a power-
ful knowledge representation language named KODIAK is employed.

The resulting system is capable of drawing proper inferences (and avoiding
improper ones) from a variety of texts, in some cases duplicating the efforts of other sys-
tems, and in other cases improving on them. In each case, the same unified algorithm is
used, without tuning the program specifically for the text at hand.

Acknowledgements

I would like to thank first the members of my thesis committee: Charles Fillmore,
Lotfi Zadeh, and especially my advisor, Robert Wilensky, who suggested the topic for
this work, and provided guidance throughout.

Robert Wilensky also deserves thanks for providing a stimulating environment to
do Al research. The following members of the Berkeley Al Research group contributed
to many of the ideas in this thesis, and were interesting people to have around: Rick
Alterman, Yigal Arens, Michael Braverman, Margaret Butler, David Chin, Charley Cox,
Joe Faletti, Paul Jacobs, Marc Luria, Tony Maida, Jim Martin, Jim Mayfield, Lisa Rau,
and Nigel Ward. Berkeley’s strength extends beyond the CS Department, and I have
benefited from an exposure to various members of the Cognitive Science community,
particularly Charles Fillmore, Paul Kay, and George Lakoff.

I would like to thank my parents, Gerda Norvig and the late Torsten Norvig, for
kindling my interest in language and science, and for giving me the opportunities to do
these things. I can’t thank them enough, but at least I can say ‘‘Hi Mom.”” I am also
pleased to be able to acknowledge my siblings, Marc and Laura. Besides my family, the
people who have been the most important to me in recent years are Gary and Rachel
Atkinson, Katy Hayes Dauhoa, Tom Hahn, Melanie Killen, Krys and Steve Upstill, and
Gay White. Thanks, guys.

Finally, I would like to thank the taxpayers of the United States for providing me
with financial support, which was administered by the National Science Foundation
under grants IST-8007045 and IST-8208602, the Office of Naval Research under contract
N00014-80-C-0732, the Defense Advanced Research Projects Agency (DOD), ARPA
Order #4871, monitored by Space & Naval Weapons Systems Command under contract
#N00039-84-C-0089. I was also supported by grant 1-443952-58941 from the Alfred P.
Sloan Foundation, and by the Computer Science Department of the University of South-
ern California. I am grateful for the computer and secretarial support I have received,
particularly from Sharon Tague.

Table Of Contents

Chapter 1: Introduction ..occoovieieieeeeeee e Creraetateaeeaeesaraearennnneans

Making Proper Inferences from Texts cocvueeeenee.e. Creeas ettt e st a e nenae s

The FAUSTUS Approach to Inferencing — e st s e e eseneaeas

Comparison to Previous Approaches ccovenene.

...................... L Y T YR T T}

Advantages of the FAUSTUS Approach ... et et ee e s et eaanesanas
The FAUSTUS Algorithm ..o st te e resaaesaasenneran

An Annotated Example ...

........................ AAtANe MRt ransann

Chapter 2: Previous Research covvveveeevvveeeen, cetatesrasaerannrrareseeesessenanns

Previous Research in Common Sense Inferencing

Procedural Inference Molecules .ovvviveiveeeeeeereeene. reereaesteteteea e se st aaransaaans
Reference Resolution Inferences ... e erst bt aasenteannnas rereserrensessenteen it ee e nraaas
Concept Coherence Cerre et e aasareeean v errraestas s ee e e et et e raneas creesresrreseeaesneannaaras
Case Relation Based Inferencing ... erereeseeseeieaeantaeeernnansann reeeerraaseeiaae e rateanannne srreaeans
How Many Cases Are There? rrerbestae e aeaae e raaeeaens reietasetr ot ne st saeasananestaaas
What Type of Cases Are There?cccoviiciveneiriesenne et eesheesbe s ee et st e naaaas
Script-Based Story Understanding ... ettt ra et a s etaeanas Crertsesaeetns et ee e e anaaensaaans .
Goal/Plan Based Story Understanding ...o.ooveeeeveeeneaneeee bt seresanessesanns
Story Skimmers reeoeeteaeesereesiaans e rrs e teeearteeesrneananean eerreesebeoseteee e aaesnnnaeaanns
Integrated Story Understanding Systems ..ovoveeiovevvierenneene. b s s r e e s nans
Story Understanding Principles ... creeresert et e e ae st s aeanrann Crreoseaseatanseee et ee e ranraas
Story Grammars e e saeas e nee et

Point Based Story Understanding ...occovveevieierenvcevenne.. resrrenes e ssn e e

Previous Research in Memory Models
Network Models of Hurnan Memory
The Spreading Activation Model ...ooviieieieiiireeeeeee.

ettt ennnarannsoerennnn T TR T T T Tesssatenten

4eddensaasaneratrennns D T T Y TR T P PP Teasstttbaatran

Other Network-Like Memory Models .voveeeceereeeeee e, rtesreteenate et aeanraeaannas
Connectionist Models of Memory — .vvviveeeeeeeeeeeeeeeee Frsreeetreae st e st e e e srassraenaaan
Marker-Passing-Based Research ... reosers st an e seasesananans reessrervesesiensesanesesrereaans "
How Large Must a Memory Be? ... reeeerbeenarereraaeranaas reessassostaeaeene e aaeranna
Summary of Previous Research b e anaaas ettt et aa s e s taeen
Chapter 3: Knowledge Representation ...oceeeeeeeeeeeeeenvvevevennnn. bt s e i aes
Criteria for Representation Languages e eeaee s tee e te e eearaaanas rreeraese e teneanranaeraaeas
The KODIAK Representation Language — reeesetbbeneeneeaeeeeaaasantns et teer et neeeaenaeeaaaes
The Three Primitive Object Types .ococvvceveeennnne. ettt e e ate e e eanaaan et raeeeseaens
The Eight Primitive ASSOCIQONS veeeeeeiereirisree e ettt e et aee e et aes -
The Dominate Association cccccceveennenene et rete s ae et e aennas ceree s eeneneeseaaenannes
The Instance Association ...voeeeveeeeeneeeenne ettt e s atasa e rarae e aaens rereene e e
The Argument Association ... i etersree e nrerseesereraas bt et re e aeae e naenaeeas

The Fill Association ...

......

G0 =1 e —

—

20
21
21
24
28
29
31
33
33
35
37
37
39
42
44
44
45
45
48
49
50
51
52

53
35
58
59
60
60
63
63
64
64

The Constrain Association ccocvvevnenee. rrresreeeres e snae e r e e eeans
Number Restrictions and Quantifiers cooveeeeevceeevrereeennns rrveesrartessaans
The Equate Association coevveneee. e eneeeas
The Differ Association oeeemeeesieienenen. et aessanaean
The View Association ... rtnsertseenat e ene e naeenns rreesertes e reeeareaaanas
The Relational Regress Problem oovevveeenennee. devaserettseen e snaeesaaenans
Modeling Facts About The Domain .o.vceeveeeiveneenen. e ae e
Representing Input Text coveeunn. crteees et e asaenaaanas e snasta e nanans
Viewing One Concept As Another ettt e e ernaesesans
Representing Creation Time and Story TimMe .o ecseeroneen
Representing Semantic Cases cocveeenne e e anaeas
Ambiguity, Vagueness, and Polysemy ... e eat s e saer e sana e nnaas
Summary Of KODIAK FEAUIES .oiviiiiiiieeeeee et eeeeeeeee e ree e se s

Chapter 4: The Inferencing Algorithm ... et sanas SRRV

An Example ... bt s enaeas crrehr et e aenane eeerreseesssaananes
Step 0: Representing the Knowledge Baseccoouee.ne... ettt
Step 1: Representing the Input TEXt ocvvvvveevcereerareeerenns rervessssastoneaseantan

Non-Marker-Passing Inferences e resestaete s eesesaeaas reerrersbaeaeaanannns

Step 2: Passing Markers ccovcvceneiiinnenne. et et eneean
Anti-Promiscuity Cutoffs b ree e aensares
Step 3: Suggesting Inferences - FAUSTUS’ Inference Classes ...

Elaboration Inferences rererernereaaeestenannns eerereenr————————————— e etteott——n
Referential Inferences ... reerrreretnmreenesatnnnnran reeererrirttaaeennnetennans enrrreareatenesrsearesentns]

................

4esssassannrrensaaans

.............. ELETE T
.....................
d4tatadneanaransaress
BLatssaEsatadreraane
t0bestunreansansiras
L e
.......... X TETT YY)
.....................
Adeerranrantassnnsnns

arsnsaresananen

4ddeboaneracenstnvan

------------------ ans

P Y TR TP T TR

----- tatterrareraanan

....... Basstteninrans

---------- sacasieanar

............. drteenen

s

View Application Inferences ccocevevivieeeeene et eaneas ettt enaaes

Concretion Inferences ererrrresuansensaeesnaaes eerreerrteerannasratnnnannn

Summary ... ettt seaaeaee bt eeeneas ettt ee e

Chapter 5: Further Examples ...o.ocoovueveevevenennn. Crseeeee et ananas ceeraenaenean
Unconstrained Sentence-Based Inferencing .ovivvvovevevevveenereen. O
Script-Based Inferencing v et enees e
Plan-Based Inferencing et er e erreeesteeeesrerenesraanna rererereaeans
Coherence Relation-Based Inferencing ... rerevesetensentaeeesnnaaaannen

Chapter 6: Implementation Details ccooenn........
Implementation of KODIAK ... st saaans et et aaes -
Implementation of FAUSTUS ... et e ssaa s ettt an y
Statistics: Time and Space Requirements —............ Ceoreerraeeesatsraara s

Step 4: Evaluating Suggestions ccoocoeueuenee.. ceesrbeesareeenanassraeans
Evaluating Competing Elaboration Suggestions —c.oe...... vreresreneneean
Evaluating Competing Reference Suggestions —.............. reerariseeneenaans
Evaluating Competing View Application Suggestions —........... revrrenenns
Evaluating Competing Concretion Suggestions —............... Crraretaeeerenes

............... tesenn

........... essaeruen

................ eean

............... Baaeen

............ trevranva

.....................

Atbeatiasveanatnsiaan

.....................

64
65
68
68
69
69
71
74
753
77
77
79
81

83
83
91
94
95
%6
97
99
100
105
111
113
119
122
122
122
123
123

124
124
128
138
140

144
144
146
148

Chapter 7: Conclusions .oeeceeeeeeneneen. rrerreesteeseeeereentesneeanas reerrerraeesteannerreesaeeansain e 150
Problems Ceeresrseresaeeeeete st aeaeaan

Teateseatttreaarararsaestereans PR 150

References Cesreseiteraarsinseesatataan S Peetarestitatn e tsarrassastnatan Sersrritseateitaneaaras 153

Chapter 1:
Introduction

Making Proper Inferences from Texts

This thesis addresses the problem of understanding written English texts. The
reader of a text is faced with a formidable task: recognizing the individual words of the
text, deciding how they are structured into sentences, determining the explicit meaning of
each sentence, and also making inferences about the likely implicit meaning of each sen-
tence, and the implicit connections between sentences. This study is primarily concerned
with the problem of inferencing, and touches on lexical and syntactic issues only in that
they interact with the problem of inferencing.

An inference is defined to be any assertion which the reader comes to believe to
be true as a result of reading the text, but which was not previously believed by the
reader, and was not stated explicitly in the text. Note that inferences need not follow log-
ically or necessarily from the text; the reader will often jump to conclusions that seem
likely but are not 100% certain. The terms logical inference and plausible inference will
be used to differentiate between inferences that are certain and non-certain.

People are very good at interpreting texts and making inferences. They generally
do not notice when the text is under-specified and they have to make inferences to
resolve ambiguities, or to gain a fuller understanding of the text. As an example, con-
sider the following text, excerpted from a book of fairy tales [9]. It will be referred to as
text (1).

In a poor fishing village built on an island not far from the coast of China,
a young boy named Chang Lee lived with his widowed mother. Every
day, little Chang bravely set off with his net, hoping to catch a few fish
from the sea, which they could sell and have a litle money to buy bread.

A reader of text (1) should be able to make inferences like these:

(2a) There is a sea which is used by the villagers for fishing,
surrounds the island, and forms the coast of China.

(2b) Chang intends to trap fish in his net, which is a fishing net.

(2¢) The word which in which they could sell refers to the fish.

(2d) The word they in they could sell refers to Chang and his mother.

There are four important properties of the inferences listed in (2): they are non-explicit,
plausible, relevant, and easy. To elaborate:

o The inferences are not explicitly stated in the text.

e They are plausible; not only is it possible for a reader to believe (2a-d) after reading (1),
but it seems likely that any reader would.

o They are relevant, in that they serve to tie together concepts mentioned in the text.

o They are easy inferences; they seem to be made without conscious effort.

Inferences that meet these four criteria will be called proper inferences. To understand a
text, a reader must make the proper inferences, and avoid making improper inferences.
A representative set of improper inferences for (1) is listed below:

(3a) The villagers fish on a river in the middle of the island.
The island is on a lake which is near the coast.
(3b) Chang will use the net, which is a butterfly net,
as a deposit on a motor boat to go out fishing.
(3¢c) The word which in which they could sell refers to the sea.
(3d) The word they in rhey could sell refers to the fish.
(3e¢) The square root of 169 is 13.
(3f) Chang has a grandmother (who is perhaps deceased).
(3g) Chang lived with his mother.
(3h) Chang is wearing blue pants.

Most readers find it difficult to take seriously the inferences in (3a-d). They often
have to go back to the text to see that (3a-d) are indeed possible at all; that they are not
explicitly contradicted by the text. In fact, each of (3a-d) is perfectly consistent with
everything stated in the text, they are just less plausible than the corresponding inferences
in (2a-d). There are also other problems with some of them: in (3b) the motor boat seems
irrelevant, and (3a) is a convoluted example that would fail on both the relevance and
casiness criteria.

While (3e) is highly plausible, in fact is 100% certain, it is completely irrelevant.
Although (3f) refers to a character in the story, it stll is not a relevant inference because
it does not tie together concepts from the text; it just adds peripheral information. We
could go on from (3f) and infer that Chang’s grandmother had a grandfather, and that he
had a pancreas, and that his pancreas secreted insulin, and so on. In each case we have a
highly plausible inference which is connected in some way to either the text itself or a
previous inference. However, it is not enough for a fact to be inducible, or even deduci-
ble, from the text. The intuition is that we don’t think of (3¢,f) after reading the text.
This intuition is formalized by the relevance criterion, which says that (3e,f) are not
proper inferences because the connection between them and the text fails to add anything
to the interpretation of the story. _

Example (3g) is not considered an inference because it was stated explicitly in the
text.

Text (1) was taken from a book where it was accompanied by some pictures. The

.2.

illustrator presumably made inference (3h), because that is how Chang is depicted. I will
speak of (3h) as an idiosyncratic inference. People bring many such inferences to the
interpretaton of a text, but are still able to distinguish idiosyncratic inferences from
proper ones. In order to draw a picture, it was necessary to choose some attire for Chang,
but another choice, say, brown shorts, would have done as well. On the other hand, the
picture in question also showed Chang with a fishing net; here a butterfly net could not
have been substituted. The reader is aware that the author of the text intended for him to
infer that the net is a fishing net, but did not have any intention one way or the other with
regards to the color of Chang’s clothes. Herb Clark [30] makes a similar distinction,
speaking of authorized and unauthorized inferences.

There is an implicit contract between the author and reader wherein the author
agrees to make explicit enough of the story so that the reader, if he searches for the set of
proper inferences, will be able to recover the information. the author wanted him to
recover about the story, and make sense of the text. In a perfectly-structured text there
will always be easy, plausible connections between each pair of adjacent sentences.
When these connections are missing, or when inferences prove to be incorrect, it is usu-
ally a signal that the writer is being humorous, ironic, mysterious, has a different view of
the world, or is just being confusing. Indeed, much of what makes texts interesting is the
intentional flaunting of this implicit contract.

Note that plausibility is a relative term. In the phrase which they could sell from
(1), it is more plausible that which refers to the fish than to the sea, and that they refers to
Chang and his mother rather than the fish. When faced with a choice of possible
referents, it is possible to decide which is better using default assumptions like the actors
of selling events should be people, and the object of selling events should be products
which are conventionally bought and sold. When faced with no good referent, some-
times these assumptions have to be violated. Given sentence (4) below, the reader would
be forced to infer that which refers to the sea and they refers to the fish, even though this
constitutes a very unusual event in the real world. In the domain of fairy tales, it is more
common to have animals acting in a manner similar to human beings, but this would still
be an unusual event. The point is that the sentence is acceptable, despite its unlikeliness,
and moreover, it is easier to determine the better of two proposed interpretations of the
sentence than it is to decide if any single interpretation is acceptable. In other words,
there appears to be no threshold of acceptability.

(4) The fish hoped to acquire a sea which they could sell.

It should be clear by this point that making proper inferences requires a great deal
of knowledge. The reader must know the meanings of individual words, as well as the
grammatical rules of the language. More importantly, the reader must have specific
world knowledge about the subject matter. For text (1), this would include knowledge of
spatial relations (in, on, near), geography (village, island, coast, sea, China), familial
relations (boy, mother, widow); commercial transactions (buy, sell, have, money), as well
as other sources of knowledge. Collectively this will be called common sense knowledge,
to distinguish it from expert and grammatical knowledge. Without this knowledge, we
would be unable to decide among alternative interpretations of the text. For example,

.3-

inference (2b) above, Chang intends to trap fish in his net, comes from our knowledge of
nets, not from the structure of the sentence. If the sentence had been (5) instead, we
would not make the inference that Chang intends to trap fish in his dog.

(5) Chang set off with his dog, hoping to catch a few fish.

The FAUSTUS Approach to Inferencing

My approach to the problem of making inferences from texts has five main com-
ponents. First, I formally define the notion of proper inference, in terms of the three cri-
teria of ease, plausibility and relevance. I characterize the class of proper inferences, and
compare this class to inferences described by other researchers. Second, I present an
algorithm for making proper inferences and avoiding improper ones, given a text and a
knowledge base. The algorithm is implemented in a program called FAUSTUS (Fact
Activated Unified STory Understanding System). The algorithm employs a marker-
passing mechanism that finds key concepts, a collision classification mechanism that
determines a set of potential inferences, and an evaluation mechanism that determines
which potental inferences should actually be made.

As we have just seen, a suitable knowledge base is a prerequisite to making
proper inferences. Building the knowledge base comprises the third and fourth com-
ponents: first defining a knowledge representation formalism, and then using the formal-
ism to model facts about the world. The representation language is called KODIAK (Key-
stone to Overall Design for Integraton and Applicaton of Knowledge), and was
developed jointly with Robert Wilensky [140] and others in the Berkeley Al Research
group. The fifth and final component is an evaluation of the strengths and weaknesses of
the basic approach, and of the implementations (FAUSTUS and KODIAK).

The name FAUSTUS serves three purposes: it obeys the time-honored Al conven-
tion of naming systems with inscrutable yet cute acronyms; it conveys the key idea of
achieving understanding through knowledge (or facts); and finally it alludes to the
difficulty, the hubris, of this goal of achieving all knowledge.

The system is diagramed schematically in Figure 1. First, input sentences are
converted to KODIAK representations by a program called a conceptual analyzer. Arens
and Wilensky’s PHRAN program [133] was used where possible. For some input, PHRAN
was not up to the task, so a representaton was constructed by hand instead. A major flaw
with this approach is the lack of interaction between the understanding component and
the analyzer component, but that was not the topic of this thesis, so I have settled for a
one-way connection. The understanding component, FAUSTUS, takes in representations
and immediately stores them in the story memory. In addition, it makes inferences,
based on what is known about the story so far as well as what is known in the general
knowledge base. These inferences are also added to the story memory.

Story

Memory
input Conceptual KODIAK. FAUSTUS
sentences Analyzer representation
Knowledge
Base

Figure 1: Overview of the FAUSTUS System

Comparison to Previous Approaches

Chapter 2 will cover related systems in detail, while in this section I will intro-
duce just enough previous research to show where FAUSTUS fits in; what it is a reaction
to, and what problems it attempts to solve. There have been several recent Al programs
that each attack the problem of finding inferences by describing a new type of knowledge
structure (script, plan, TAU, plot unit, etc.), showing its pervasiveness in actual texts and
efficacy for understanding them, and then designing an inferencing algorithm based on
the new type of knowledge structure. For example, Cullingford’s [33] Script Applier
Mechanism (SAM) made inferences by way of one main technique: identifying a scripz
for the situation being described, and inferring the default actions in the script. Asa vari-
ant of this idea, the FRUMP program, developed by DeJong [34], was based on the notion
of sketchy scripts: scripts with less allowable variation and less detail than Cullingford’s
scripts. This allowed FRUMP to process a wider range of input texts, but to extract less
information from the texts, and to accept less variation from the pre-stored scripts. The
FRUMP program was tested with stories taken directly off the UPI newswire, and was
able to correctly summarize over half the news stories that referred to scripts it had
knowledge of.

The scriptal approach worked when a script could be idendfied, and when the
story followed the script closely, but failed otherwise. Wilensky’s [131] Plan Applica-
tion Mechanism (PAM) could handle stories that deviated more from stereotypical situa-
tions. PAM's control structure had a main loop that reacted to each input sentence by
classifying it as either a goal or an action. For every acton, PAM would try to find a plan
it could be a part of, such that that plan could be explained as arising from a known goal.
This assured that many plan/goal connections were found, but it was difficult to find
other types of connections. Alterman’s NEXUS system [3] made event-concept coherence
inferences, and had a similar architecture where it was searching for certain specific types
of connections.

These programs were able to make some inferences beyond the scope of their
main type of knowledge szucture. For example, SAM, PAM and NEXUS each resolved
definite noun phrase and pronominal references, but only as a side-effect of the matching
process. This meant some references went unresolved; these programs had no instruc-
tions to ‘‘look harder’’ when no referent turned up as a result of the matching process. It
also meant that it was difficult to integrate syntactic knowledge or other knowledge about
constraints on the possible referents into the algorithm.

Each of these programs makes a trade-off between top-down and bottom-up pro-
cessing. FRUMP was almost exclusively top-down; after deciding what script was
relevant, it tried only to fit new input into the existing script swucture. In contrast, PAM
and NEXUS were more bottom-up in their approach. Both programs read one statement at
a time, and tried to explain the new input by finding a connecton to previous statements.

To put these programs in perspective, each was designed primarily as an experi-
ment to discover more about the particular knowledge structure they were concentrating
on. Each of the programs was successful from this point of view, but none of them could
serve as a basis for an extensible system to which it would be easy to add new knowledge
without redesigning the entire algorithm. Each program was tied too closely to the par-
ticular processing algorithm to allow such extensibility.

There have been attempts to allow flexible control structures. Charniak [23] pro-
posed a demon-based system with arbitrarily complex procedures that could look either
forward or backwards to find connections. Dyer [37] describes another demon-based
system that makes use of multiple knowledge sources. Although both systems theoreti-
cally allow for the addition of new sources of knowledge, both still suffer from three
problems:

e They often require what is intuitively the same piece of knowledge to be duplicated in
several places in the system, in several forms. I term this the knowledge-duplication
problem.

e They process different types of knowledge in very different ways. I will call this the
non-uniformity problem.

e There is little provision for sharing between different knowledge sources, or for

-6-

weighing different types of knowledge sources in coming to an interpretation. This is the
knowledge incompatibility problem.

The work that is closest to my effort is presented by Chamniak in [28]. He
presents an understanding program that uses marker passing to parse, disambiguate and
find inferences. The major difference is that I propose a specific set of path shapes and
associated inference classes, while Charniak uses a more general resolution theorem-
proving based approach. Another difference is that Charniak’s knowledge base is four to
ten times smaller (depending on how you count nodes and links).

Advantages of the FAUSTUS Approach

The FAUSTUS approach removes the complexity from the rules in the processing
system, and places it in the knowledge network. There are several advantages to this
approach.

e Declarative knowledge, when organized properly, can be used in several ways, while
procedural knowledge by definition can only be used one way. If we are going to go to
the trouble of building a large knowledge base, it would be desirable for the knowledge
to be applicable to other tasks, such as language production and planning, rather than
having all the knowledge being specific to language understanding.

e Another difficulty is dealing with multiple possible inferences at the same tme. The
FAUSTUS processing algorithm keeps a queue of potentdal inferences. Because the
knowledge base and the possible inferences are in a declarative form, it is relatively easy
10 combine them, to consider several inferences at the same time (as when two or more
possible inferences each suggest a referent for the same pronoun). If the knowledge
needed to make inferences were represented procedurally, it would be more difficult to
inspect, compare, and merge inferences together. If the procedures were going to have
any interaction, they would have to be written as co-routines, and would have to know
some of the details of other procedures. This is often confusing and difficult, and would
probably require the knowledge base modeler to modify existing inference rules to
interact with new rules as they are added.

e It was possible to define the notion of easy, plausible, relevant inferences, and to make
some guarantees about the inferences made, guarantees that could not be made with pre-
vious systems.

e FAUSTUS employs a general inferencing algorithm that is not dependent on any particu-
lar knowledge structure and is relatively simple. Of course, text understanding is stll a
difficult task. The complexity has not disappeared; it has just moved from the algorithm
to the knowledge base. Understanding goal-based stories sdll requires knowledge of
plans and goals; understanding script-based stories stll requires. knowledge of SCTipts.
The difference is that FAUSTUS is designed to allow incremental additions to the
xnowledge base, without having to redesign the entre processing algorithm. Thus, I
draw on work done by other researchers in describing new knowledge structures, but I

-7-

incorporate them in a declarative form. This is possible because of the representational
power of the KODIAK formalism.

e While similar in many ways to Quillian’s [93] spreading activation model, FAUSTUS has
the advantage of being able to incorporate grammatical constraints into the marker pass-
ing process, rather than checking them only as an afterthought. This helps avoid spurious
inferences. This capability is discussed in the first section of Chapter 5.

e FAUSTUS can handle texts based on *‘script-like’’ knowledge, as described in
(109, 110]. It is not a single-minded script-application program, though, and is capable
of reading the word ‘‘restaurant’ without necessarily expectng the restaurant SCTipt to
occur. It can also make selective connections between the events that are actually men-
tioned in the text without making all possible script-related inferences.

e FAUSTUS also handles what have been called plan-based inferences, coherence-based
inferences, and several other types. Each of these is covered in Chapter 5. The impor-
tant point is that, although these different inference classes have been proposed by previ-
ous researchers, FAUSTUS makes no distinction between the classes. Yet it has been pos-
sible to extend the program to handle these classes because of the generality of the infer-
ence types it does distinguish.

The FAUSTUS Algorithm

In this section I briefly present the inferencing algorithm as a six-step process.
This presentation will be repeated in Chapter 4 in more detail.

Step 0: Construct a knowledge base defining general concepts like actions,
locations, and physical objects, as well as specific concepts like fishing, islands, and nets.
This is done once and the same knowledge is applied to all texts, whereas steps 1-5 apply
to an individual text. The knowledge base is in the form of a semantic network, in the
KODIAK formalism, as will be discussed in Chapter 3.

Step 1: Construct a semantic representation of the next picce of the text. This
is done by the PHRAN conceptual analyzer or by hand. In some cases, the resulting
representation is vague, and FAUSTUS resolves some particular kinds of ambiguities in
the input using two non-marker-passing inference classes.

Step 2: Pass markers from each concept in the semantic representation of the
input text to adjacent nodes, following along links in the semantic net. Markers start out
with a given amount of marker energy, and are spread recursively through the network,
spawning new markers with less energy, and stopping when the energy value hits zero.
Each marker points back to the marker that spawned it, so we can always trace the
marker path from a given marker back to the original concept that initated marker pass-
ing.

Step 3: Suggest Inferences based on marker collisions. When two or more

.8-

markers are passed to the same concept, a marker collision is said to have occurred. For
each collision, look at the sequence of links along which markers were passed. Each link
has a primitive link type associated with it, and the list of primitive link types determines
the shape of the marker path that lead to the collision. We look at the two halves of the
marker path involved in the collision, and if the total path shape matches one of five pre-
specified shapes, then an inference is suggested. Suggested inferences are kept in a list
called the agenda, rather than being evaluated immediately. (Primitive link types will be
discussed below, and in more detail in Chapter 3.)

Step 4: Evaluate potential inferences on the agenda. The result can be either
making the suggested inference, rejecting it, or deferring the decision by keeping the
suggestion on the agenda. If there is explicit contradictory evidence, an inference can be
rejected immediately. If there are more than one potential inferences competing with one
another, as when there are several possible referents for a pronoun, then if none of them
is more plausible than the others, the decision is deferred. If there is no reason to reject
or defer, then the suggested inference is accepted, and new concepts are added to the
model of the text.

Step 5: Repeat steps 1-4 for each piece of the text.

Step 6: At the end of the text there may be some suggested inferences remaining
on the agenda. Evaluate them to see if they lead to any more inferences.

I now illustrate these steps with a specific example, taken from story (1) above. I
will show how the program infers from the first sentence that there is a body of water
which surrounds the island, and serves as the location for the village’s fishing.

Step 0 says to construct a knowledge base. A portion of this is shown in Figure 2.
The complete knowledge base is more than 60 times larger than this portion. The
representation language is discussed in Chapter 3; for now, suffice it to say that concepts
(depicted in boxes) are associated with each other by primitive representational links.
The link ‘S’ means ‘has as a slot,’ ‘D’ means ‘is dominated by (is a sub-category of),’
and ‘C’ means ‘is constrained to be a member of this category.’ Thus, Figure 2 says the
following: a coast has (at least) two things associated with it: a land-border which must
be a land-mass, and a water-border which must be a body-of-water. An island is a kind
of land mass, and it is surrounded by something which must be a body-of-water. Finally,
an instance of fishing must have a location, which is a body-of-water.

Step 1 is to construct a representation of the input sentence. This consists of an
interconnected network of individual concepts, which are marked as being instances of
more general concepts in the knowledge base. This would include an instance of the
action of fishing, and an instance of the concept island. To indicate that these instances
stem from the input, they are given names consisting of the concept followed by the
number of the input sentence in which they appeared. In this case, that would be
fishing.1 and island.1.

After constructing the representation of the input, Step 2 is to pass markers from

.9.

land
border

e

—
- T_
N

island

——

Figure 2: Part of the Knowledge Base Network

each concept in the input to neighboring concepts in the network, and recursively on to
other concepts, following primitive links. An arbitrary number of markers can end up
being passed from each concept in the input. In fact, since the passing is recursive, there
would be an infinite number of markers if not for a set of rules that limit where and when
markers can be passed. The exact rules for marker passing are covered in Chapter 4, and
the implementation of the rules in Chapter 6.

Step 3 is to suggest inferences based on marker collisions. Figure 3 shows a col-
lision at the concept body-of-water. Marker collisions denote concepts that are related to
two different concepts in the text. Thus, they are relevant to the text, in some way. Just
how relevant, and what inference they suggest, is determined by the shape of the marker
path. In Figure 3, both halves of the marker collision have the shape —-]-5S-=C—o. It
happens that such a path shape does have a suggested inference associated with it. The
suggestion is to find or introduce a new concept and two new relations relating it to the
two concepts in the input. This is shown in Figure 4, where the suggested new concepts
are depicted in italic font.

If the suggested inferences were evaluated immediately, some would be accepted,
only to have a better suggestion turn up later. Therefore, the suggestions are stored in a
queue called the agenda, and are evaluated along with potential competing suggestorns.
This is Step 4. The suggestions that are eventually accepted are printed out by the pro-
gram, and changes are made to the network to reflect the inference. The suggestion from

.10 -

fishing island

| __Lﬁ
fishing. 1 island.1 ‘
e

Figure 3: A Marker Collision

C C
Jocation surrounded
by
/S S
fishing island
[body swrounded .
‘ fishing.1 o location.] —— of water.] htt— by P island.1

Figure 4: Inference Suggested by Marker Collision

Figure 4 is accepted, because there is nothing to contradict it, and no similar competing
suggestion. The actual output from the program is as follows:

-11-

Inferring: there is a BCDY-OF-WATER such that
it is the LOCATION of the FISHING and
it is the SURROUNDER of the ISLAND.
This is a DOUBLE-ELABORATION inference.

In summary, the FAUSTUS algorithm breaks down into three main components:

e A set of rules for marker passing. These determine how far, and along which links,
markers are spread.

e A list of six important path shapes, which determine the inference classes. Each has a
suggested inference associated with it

e A set of evaluation rules for deciding when to accept a suggested inference. This is
necessary when there are multiple competing suggestions that would contradict one
another.

The number of basic inference classes, six, is quite small compared to other sys-
tems. There are no inference rules that refer to domain concepts. That is, no rule is asso-
ciated with a concept like ‘person’ or ‘island.’ Instead, the inference classes refer to gen-
eral representational primitives like ‘is an instance of’ and ‘participates in a relation.’
These primitive associations are depicted by the links in Figures 2 and 3.

An Annotated Example

This example shows the inferences that are generated by FAUSTUS in the course
of processing text (1). FAUSTUS does not receive the text directly as input, instead it is
passed a semantic representation of each input sentence; these are shown below as capi-
talized expressions in parenthesis. The output from FAUSTUS is in typewriter font.
The output is annotated with comments, in regular font, explaining what is going on.
Chapter 5 will go over several examples like this one, showing in more detail how each
inference is made.

(1] Input: In a poor fishing village built on an island
near the coast of China,

Rep: (VILLAGE (MOD ¢ FISHING) (MOD €= POOR)
{LOCATION ¢~ A ISLAND) WHERE
(BEING-AT (FIGURE ¢« ~ VILLAGE) (GROUND ¢ A ISLAND))
(BEING-NEAR (FIGURE & °~ VILLAGE)
(GROUND ¢~ A COAST (OF ¢~ CHINA))})

Inferring: a MOD of the VILLAGE is probably the PREDOMINANT-OCCUPATION

because the FISHING fits it best.
This is a RELATION-CONCRETION inference.

-12-

Inferring: the VILLAGE is a FISHING-VILLAGE.
This is a CONCRETION inference.

The input says that the village is modified by the concept ““fishing’’ in some unspecified
manner. The program determines that fishing should be interpreted as the predominant
occupation of the village. It is able to do this because of a collision between two marker
paths that begin at ‘‘village’’ and end at ““job.”” One path follows the links that say vil-
lage.1 is a village, a village is a kind of polity, polities can have a predominant occupa-
tion, occupations are jobs of some kind, and fishing can be a job. The other half goes
from village.1, which has a mod relation, which is filled by fishing.1, which is a kind of
fishing, which can be a job. Associated with a path of this shape is the suggested infer-
ence that ‘‘mod’’ should be interpreted as ‘‘predominant-occupation.”” Once this
assumption is made, the village can be further classified as a fishing-village. The
knowledge base contains other facts about fishing-villages, such as the fact that they are
usually near water. Both these inferences are called concretion inferences, because they
take an abstract representation (like ‘‘mod’’) and interpret it as a more concrete one (like
*‘predominant-occupation .

Inferring: a MOD of the VILLAGE is probably the AVERAGE-INCOME
because the POOR fits it best.
This is a RELATION-CONCRETION inference.

Rejecting: a MOD of the VILLAGE is probably the OVERALL-QUALITY
because another possibility, AVERAGE-INCOME, is more specific.

Determining how *‘poor’’ modifies ‘‘village’* is difficult not only because the modifying
relation is vague, but also because ‘‘poor’’ is ambiguous between “low in wealth’’ and
“‘low in overall quality.”” The knowledge base says that people have incomes, polities
have average incomes, and objects in general can have an overall quality level. Markers
from the instance of ‘‘poor’” in the input are therefore propagated to the concepts for
people, polities, and things. Markers propagating from ‘‘village’’ reach polity and thing,
and thus there are marker collisions at those two concepts. Each collision suggests an
inference, but when FAUSTUS tries to evaluate the first of these two, it notices there is
another inference competing with it, in the sense that accepting one of the two means
rejecting the other. The evaluation rule in this case says to accept the inference associ-
ated with the relation that has the most specific constrainer, if there is one. In this case,
the constrainer of average-income is ‘‘polity,”” which is more specific than the con-
strainer of overall-quality, which is *‘thing.”” Thus, the average-income interpretation is
accepted, and the overall-quality interpretation is rejected.

Notice that the possibility of interpreting ‘‘poor’’ as referring to income rather
than average-income was never considered, because there was no person mentioned in
the input, and thus no marker collision that would suggest that interpretation.

Another possible interpretation is that ‘‘poor’’ modifies ‘““fishing’’ rather than

“‘village.”” The whole phrase would then mean ‘a village where the fishing was not
good.” This interpretation can not be considered by FAUSTUS because the input it gets -

-13-

the output of the parser — has already specified the association between modifiers. The
parser can return a representation that is ambiguous as to how something is modified, but
it can not return a representation that is ambiguous as to what modifies what

Inferring: the CHINA is viewed as a GEOGRAPHICAL-ENTITY.
This is a VIEW-APPLICATION inference.

Inferring: a OF of the COAST is probably the LAND-BORDER
because the CHINA fits it best.
This is a RELATION-CONCRETION inference.

Here we see a view application inference. The knowledge base defines China as a coun-
try, which is a political entity. However, political entities can not have coasts; only geo-
graphical entities can. Part of the knowledge base is a general mapping, called a view,
stating that political entities can be viewed as the geographical location they have jurisd-
iction over. So FAUSTUS infers that in this situation, China is being viewed as a geo-
graphical entity. After that is done, the ambiguous modifier ‘‘of’’ can be resolved: coasts
have two components, a land-border and a water-border; China is known to be a land-
mass, and thus can only fill one of those roles. What it means to view one concept as
another is covered in Chapter 3, while view application inferences are discussed in
Chapter 4.

Inferring: there is a BODY-OF-WATER such that
it is the LOCATION of the FISHING and
it is the SURROUNDER of the ISLAND.
This is a DOUBLE-ELABORATION inference.

Inferring: there is a BODY-OF-WATER such that
it is the LOCATION of the FISHING and
it is the WATER-BORDER of the COAST.
This is a DOUBLE-ELABORATION inference.

Here we see the first inferences that create something new, rather than just further speci-
fying some ambiguous input. The first of these is the inference discussed in the previous
section and diagrammed in Figure 4. Although no body of water was explicitly men-
tioned in the text, concepts that implicitly refer to a body of water were mentioned. In
particular, there are three marker paths, starting at the fishing, the island, and the coast,
that all collide at the concept body-of-water. Each of these is of the —[-535-5C— path
shape shown in Figure 4. The three paths considered in pairs result in three collisions,
and each collision suggests an inference. These are called double-elaboration infer-
ences because they elaborate on two concepts at the same time by relating them to a
third. Two of the suggested inferences are accepted, and lead to the results printed
above. The third suggestion was that the body-of-water is the surrounder of the island
and the the water-border of the coast. This suggestion is now redundant because both of
its components have already been adopted. Thus, FAUSTUS ignores it. Chapter 4 has a
section covering elaboration inferences.

.14 -

[2] Input: a young boy named Chang lLee lived with his widowed mother.

Rep: (INHABITING (EXPERIENCER « A BOY (MOD & YOUNG-AGE)
(NAMED ¢ CHANG))

(WNITH « A WIDOW MOTHER (OF & ~ BOY))

(LOCATION « ~ VILLAGE))

Inferring: the EXPERIENCER of the INHABITING must be the INHABITER
This is a RELATION-CLASSIFICATICN inference.

This is an example of a non-marker-passing inference. The input describes an inhabiting
state with the experiencer being the boy. The definition of inhabiting in the knowledge
base says that it is a kind of *‘being-at’’ state, with an inhabiter that plays the role of the
experiencer of the state and the figure of the being-at. In other words, by definition any
experiencer of an inhabiting must be an inhabiter. FAUSTUS recognizes this fact and
prints the message. It is a non-marker-passing inference because it was detected
automatically, by virtue of the definiton of inhabiting, rather than by a search procedure
involving markers.

Inferring: a WITH of the INHABITING is probably the CO-INHABITER
because the MOTHER fits it best.
This is a RELATION-CONCRETION inference.

Inferring: a OF of the MOTHER is probably the OFFSPRING
because the BOY fits it best.
This is a RELATION-CONCRETION inference.

Inferring: the BOY must be a SON, because it is a COFFSPRING
This is a RELATION-CONSTRAINT inference.

Inferring: the INHABITING is a FAMILY-LIVING.
This is a CONCRETION inference.

Here there are two more cases of resolving ambiguous modifiers via concretion infer-
ences. A ‘‘with’’ can mark an accompanier, an instrument, Or a manner, but in this case
there is a very specific type of accompanier, the co-inhabiter, that is compatible with
“‘with.” The mechanism for discovering this is a collision at ‘“‘inhabiting’’ between a
marker path originating at the instance of inhabiting, and the path originating at the
instance of with. The path goes through the concept accompanier, and the suggested
inference is that the “‘with” is actually an instance of accompanier. Once it is esta-
blished that the inhabiting situation holds with the mother and son as partcipants, then it
can be inferred that the inhabiting is an instance of family-living, a more specific situa-
ton known in the knowledge base.

(3] Input: Every day, little Chang set off with his net,

Rep: (TRAVELING (ACTOR & CHANG (MOD ¢ SMALL-SIZE))

.15 -

(WITH « A NET (OF « "~ BOY)))

Inferring: the ACTOR of the TRAVELING must be the TRAVELER
This is a RELATION-CLASSIFICATION inference.

Inferring: a WITH of the TRAVELING is probably the ACCOMPANIER
because the NET fits it best.
This is a RELATION-CONCRETION inference.

In this case, there is no specific information on how ‘‘with a net’” could modify an
instance of traveling, so the default, the ‘‘accompanier case,’” is selected. Note that the
phrase ‘‘every day’’ is ignored completely in the semantic translaton. FAUSTUS does not
have a sophisticated model of time, and does not deal well with the notion of habitual
action.

(4] Input: hoping to catch a few fish from the sea,

Rep: (WANTING (EXPERIENCER & ~ BOY)
(WANTED « CATCHING (ACTOR & - BOY)
(PATIENT « SOME FISH)
(SOURCE & THE SEA)))

Inferring: the EXPERIENCER of the WANTING must be the WANTER
This is a RELATION-CLASSIFICATION inference.

Inferring: the CATCHING must be a GOAL-SITUATION, because it is a WANTED
This is a RELATION-CONSTRAINT inference.

Here we see both types of non-marker-passing inferences. First, the experiencer of a
wanting state has a more specific name, wanter, which is reported by FAUSTUS. In addi-
tion, the catching is explicitly described in the input as being the wanted of a wanting.
Things that fill the wanted slot are constrained to be goal-situations, that is, situations that
have been considered but have not actually come to pass. FAUSTUS asserts that the catch-
ing must belong to this category.

Inferring: the CATCHING is a CATCHING-FISH.
This is a CONCRETION inference.

Inferring: the SEA refers to the BODY-OF-WATER.
This is a REFERENCE inference.

Inferring: the NET is a INSTRUMENT of the CATCHING-FISH.
This is a SINGLE-ELABORATICN inference.

Inferring: the NET must be a FISHING-NET,

because it is a CATCHING-FISHSINSTRUMENT
This is a RELATION-CONSTRAINT inference.

.16 -

The first thing done here is to make the concretion inference that a catching action where
the padient is some fish is actually an instance of catching-fish. This is detected because
of a marker collision between one marker that starts at fish.4 and goes through fish to
catching-fish and then up to catching, and another marker that starts at fish.4, goes to
catching.4, and up to catching. The action catching-fish is more specific than catching,
and includes other information besides the fact that fish are caught. For instance, it is
known that fish are caught either inanetorona line. Another connection is found by a
marker collision at the concept trapping-device. One marker goes from net.3 up the
hierarchy to net and to trapping-device. The other marker starts at catching.4, goes t0
catching, then to the slot catching$instrument (the insgument of a catching action) and
on to that slot’s constrainer, trapping-device. Note that the two markers did not originate
at the same time; such an inference serves to tie sentences together. After it is asserted
that the net is the inscument of the catching, a non-marker-passing inference notices that
the net can only satisfy the constraint on instruments of catching-fish if it is interpreted as
a fishing net.

(5] Input: which they could sell
Rep: (SELLING GOAL (ACTOR & THEY) (PATIENT ¢« WHICH))

Inferring: the ACTOR of the SELLING must be the SELLER
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the SELLING must be the THING-SQLD
This is a RELATION-CLASSIFICATION inference.

Inferring: ‘THEY' refers to the FAMILY.
This is a REFERENCE inference.

Rejecting: ‘THEY’ refers to the FISH.
because the FISH is not a SENTIENT-AGENT.

FAUSTUS represents the word “‘they’’ as a group of unspecified nature. So markers are
passed from the the representation for they.5 up the hierarchy to the concept group.
Other marker paths that collide at group originate at the representation for the fish stated
in input [4], and the family inferred in input [2]. These later two paths collide with the
first one at group, cach suggestng a possible referent for “‘they.”” The reference is
resolved because fish are not considered capable of performing a selling acdon. Note
that if the program had not previously inferred the existence of the family (which was
never mentioned explicitly), this inference could not be made.

Inferring: ‘WHICH’ refers to the FISH.
This is a REFERENCE inference.

Rejecting: ‘WHICH’ refers to the SEA.
pecause it could not be 2 THING-SOLD.

.17-

Rejecting:
because

Rejecting:
because

Rejecting:
because

Rejecting:
because

Rejecting:
because

Rejecting:
because

Rejecting:
because

Rejecting:
because

Rejecting:
because

The reference inference for the word ‘‘which’’ has many more possible referents. Ten
different collisions each suggest a referent, and the evaluadon algorithm must choose
between them. Several possibilities can be rules out because they can’t play the role of
thing-sold, a role that the word ‘‘which’’ is explicidy filling. Of the remaining possibil-
ity, exactly one, the fish, was more recently mentioned than all the others. Thus, it is

‘WHICH’ refers to
it could not be a

‘WHICH’ refers to
it could not be a

‘WHICH’ refers to
it could not be a

‘WHICH’ refers to
it could not be a
‘WHICH’ refers to
FISHE is

‘WHICH'
FISH is

refers to

‘WHICH’ refers to

FISH is
‘WHICH’ refers to
FISH is
‘WHICH’ refers to
FISH is

the BOY.
THING-SOLD.

Chang. .
THING-SOLD.

the MOTHER.
THING-SOLD.

the FAMILY.
THING-SOLD.

the VILLAGE.

more recent.

the ISLAND.

more recent.

the COAST.

more recent.

the CHINA.

more recent.

the NET.

more recent.

selected as the referent, and the others are rejected.

Inferring: there is a HAVING such that
it is a RESULT of the CATCHING and
it is a PRECONDITION of the SELLING

This is a DOUBLE-ELABORATION inference.

Here we have the introduction via a double elaboration inference of a new ‘‘having’’
state, wherein the family has possession of the fish. This state was inferred because it
mediates between two other actions: it is the result of catching the fish, and is a precondi-

tion for selling them.

{6] Input: and have a little money

Rep:

(HAVING GOAL

(EXPERIENCER ¢«

.18 -

* GROUP) (PATIENT « A MONEY))

Inferring: the EXPERIENCER of the HAVING must be the HAVER
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the HAVING must be the HAD
This is a RELATION-CLASSIFICATION inference.

Rejecting: the HAVING mentioned in [6] is a PRECONDITION of the SELLING.
because of a mis-match.

Inferring: the HAVING mentioned in [6] is a RESULT of the SELLING.
This is a SINGLE-ELABORATION inference.

Inferring: the MONEY is the PRICE of the SELLING.
This is a SINGLE-ELABORATION inference.

Here another instance of ‘‘having’’ is explicitly mentioned. FAUSTUS finds two single-
elaboration connections between having and selling, but since the selling acdon above
already has its precondition met, this one can only be the result.

{71 Input: to buy bread.
Rep: (BUYING GOAL (ACTOR & ~ GROUP) (PATIENT ¢ BREAD))

Inferring: the ACTOR of the BUYING must be the BUYER
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the BUYING must be the THING-BOUGHT
This is a RELATION-CLASSIFICATION inference.

Inferring: the BUYING is a PRECONDITION of the HAVING mentioned in [(6].
This is a SINGLE-ELABORATION inference.

Inferring: the MONEY is the PRICE of the BUYING.
This is a SINGLE-ELABORATION inference.

Note that single-elaboration paths have found that the money can fil! the price role in
both the buying and selling. A more realistic interpretation might be that the money goes
into the family cache, and is used a little at a time to buy bread, but FAUSTUS assumes
that exactly the same money that was received from selling the fish is then used to buy
bread.

The rest of this thesis is laid out as follows. Previous research is covered in
Chapter 2. Chapter 3 presents the knowledge representation language KODIAK, while the
inferencing algorithm is described in Chapter 4, and the way the algorithm is used to
duplicate inferences made by other systems is covered in Chapter 5. Finally, details
about the implementation of the program are included in Chapter 6, and Chapter 7 gives
some conclusions.

.19 -

Chapter 2:
Previous Research

Chapter 1 described the topic of this thesis: using common sense knowledge to
make inferences from texts. This chapter will review some of the relevant past research
on this topic. This will include research into both inferencing techniques and knowledge
representation techniques, even when the two have been studied independently. Since I
am defining the field so broadly and there has been much previous research done, I will
not attempt to cover every relevant research effort. Rather, I will concentrate in detail on
a few representative approaches.

This chapter will present related work and comment on some of the strengths and
weaknesses of the work, but will not present solutions to the problems uncovered. That
will come in subsequent chapters, with chapter 3 covering the knowledge representation
formalism in detail and chapter 4 covering the inferencing algorithm. Chapter 5 shows
how examples that were processed by other systems (including some that are presented in
this chapter) can be handled by the FAUSTUS system.

Before presenting the previous research, I will attempt to classify the work I
cover, as well as the work I ignore. First, I make a division between inferencing and
representation techniques, while acknowledging that the two are often intertwined.

There has been a large body of work in many fields on the subject of inferencing,
but I will concentrate on work related to the three criteria for common sense inferences:
plausibility, ease, and relevance. The first two criteria separate my work from most
expert system research; there they are dealing primarily with inferences that are difficult
to make, and require long chains of reasoning. There are millenia of work in mathemati-
cal logic, but most of that fails to meet the relevance as well as the ease criteria; in
almost all logics, proofs are acceptable regardless of their length, and it is always permis-
sible to conjoin or disjoin any two terms to infer a third. There are some exceptions to
this approach within logic, notably Anderson and Belnap’s [5] work on relevance logic.

It turns out that most previous work relating to common sense inferencing in Al
has been done under the guise of natural language processing. This does not imply that
common sense inferences are language-specific. For example, when we read about a
character going into a store, we may infer that the character wants to buy something.
This inference stems from knowledge about stores and buying, not from any linguistic
knowledge about the word buying. In fact, the knowledge that people buy things in
stores can be used in many places. It can be used to understand motivations for going to
the store. We can also turn the fact around; if we know someone wants a commodity, we
can reason he may go to a store to get it. This reasoning can go on in reading a story, in
viewing a silent movie with no words at all, in interpreting someone’s actions in the real
world, or in planning our own course of action.

-20-

I will call the type of knowledge that enables these inferences common sense
knowledge. Knowledge of this type has been incorporated into natural language under-
standing systems, planning programs, some €xpert systems, and language generation pro-
grams. All will be examined in turn.

Previous Research in Common Sense Inferencing

The research covered in this section attempts to find plausible inferences from
single sentences (or in some cases from pairs of sentences), but not from connected
discourse. As we shall see, there are many approaches to this problem.

Procedural Inference Molecules

Rieger [95] recognized that understanding a situation can involve making many
different types of inferences. Furthermore, when presented with a situation, it is not
immediately clear what inferences will be important. In Rieger’s model, the under-
stander takes an input and represents it in conceptual space. From there the understander
starts generating inferences, each inference spreading out from the input or from the pre-
vious inference in a ‘‘multi-dimensional inference space.” When two contradictory
inferences are generated, the system has to stop and resolve the contradiction. The pro-
cess is seen by Rieger as an exercise in bi-directional search, using well-understood algo-
rithms (see, for example, Nilsson’s {86]).

Rieger makes a point of classifying the types of inferences that can be generated.
As an example, consider the situation where person P obtains object X somehow. Infer-
ences about this situation would be made by posing questions from the sixteen inference
classes shown in Figure 1.

For every concept in the knowledge base, sixteen inference molecules must be
defined, one for each inference class. Each molecule is a LISP procedure, written in the
form of a discrimination net of tests. The overall control structure is to observe the input,
and for each concept mentioned in the input, call the sixteen inference procedures. Each
procedure increases or decreases activation of a particular inference, and when the
activation reaches a threshold, the system does a ‘‘careful’” test and assert.

Figure 2 below is part of the normative inference molecule for the concept own,
adapted slightly from [95]. This procedure is intended to figure out just how likely it is
that a person P owns an object x. There is a certain amount of appeal to this approach.
If we are asked Does John own a hammer? and if we know John is a carpenter, then we
can in fact be moderately confident in answering yes. However, there are also quite a
few problems with this approach.

There are several problems associated with the use of a discrimination net. The
discrimination net approach often poses counter-intuitive questions. When asked Does

.21-

Normative — [s it normal that P has a X?

Specification — From where would P obtain X?

Causative - Why does P obtain X?

Resultative — What does P obtaining X lead to?

Motivational = What results of P obtaining X were intended by P?
Enabling — What would have to be true for P to obtain X?

Missing Enablement - Why would P fail to obtain X?

Enablement Prediction — What could P be able to do now that he has X?
Action Prediction — What plans might P invoke to obtain X?

Function - Infer P will use X for its normal purpose, if it has one.
Intervention — How could C keep P from obtaining X?

Knowledge Propagation - If X knows P obtains X, what else will X know?
State Duration — How long is P likely to keep his X?

Feature — What does P obtaining X tell us about P or X?

Situation — In a particular circumstance, is it more likely for P to obtain X?
Utterance Intent - Why would the author tell me that P obtains X?

Figure 1. Rieger’s Sixteen Inference Classes

is P a member of a pure communal society, or an infant?
if so, very unlikely that P owns X otherwise, is X living?
if so, is X a person?
is P a slave owner, and could X be a slave?
if so, likelihood is low but non-zero
otherwise likelihood is zero
otherwise, is X an animal or plant?
if so, is X domestic in P’s culture?
if so, does P have a fear of X's, or an allergy to X’'s?
if so likelihood is low
otherwise, likelihood is moderate
otherwise, does X have a normal function?
if so, does P do actions like this function?
if so likelihood is moderately high

Figure 2: Normative Inference Molecule for (owNs P X)

John own a hammer? it does not seem that we immediately ask ourselves if John lives in

.22.

a communal society. The net is organized in a manner that assumes we can answer the
top-level questons before we get to the more specific questions near the leaves of the
mee. In some cases, we may have specific information that is relevant, but which never
gets used because we cannot answer a question that would lead to the node where the
question is asked. In other words, discrimination nets are by definition oriented towards
top-down processing, and therefore they sometimes ignore useful bottom-up information.
Other problems with discrimination nets are discussed by Barsalou and Bower in [11],
although most of their comments do not apply to the kind of discrimination net Rieger is
using.

Another major problem is that information is not easily shared in this approach.
While it is certainly true that if P is allergic to X he is less likely to own X, this is not
only a fact about owning. P would also be less likely to be near X, to be holding X, or to
like X if he were allergic to it. In Rieger’s approach we would have to rewrite the same
information four times under owning, holding, being near, and liking. In fact, we might
have to rewrite it up to sixty-four dmes, since there are sixteen inference molecules for
each concept, and often the same information must be re-expressed under different infer-
ence classes. For example, if asked does John own six different hammers? the normative
inference molecule for own could infer that the probability is very low, unless John is a
carpenter. However, we would also like to be able to infer, given that John bought six
hammers, that he probably is a carpenter. This would be a causative inference. Thus, the
single fact that carpenters own hammers must be represented in several different places.
Even definitions, like the fact that buying something causes the buyer to own it, need t0
be represented multiple times (in this case, as a causative and resultative inference).

Another criticism is that the inference classes are ad-hoc, and serve no purpose
other than to remind the knowledge engineer what types of things to consider. One prob-
lem is that each inference class hides a varying number of possible inferences. Some
classes give rise 10 one type of inference, but others can be used in multiple ways. Take
the ‘feature’ class, for instance. John bought a Mercedes implies something different
about John than John bought a Pinto. In these examples, a feature of the object deter-
mines something about the agent, but the opposite is also possible. In the art collector
bought a painting we attribute greater value to the painting than in the child bought a
painting.

In addition, inference molecules are unwieldy to modify. Because the inference
molecules are stuctured like programs rather than like data, adding a new piece of
knowledge means editing an existing program, with all the possibilities of introducing
bugs due to unforeseen interacdons among components.

The final criticism of this approach is that it biases the researcher towards
explaining individual sentences. The whole mechanism is geared towards explaining,
say, John bought a hammer, rather than explaining a complex passage where buying is
mentioned in several places. As researchers attempted to handle mult-sentential pas-
sages, several new problems arose. One of the most vexing was the reference resolution
problem, to be described in the next section.

Rieger is a prime example of drawing distinctions that are not drawn in the
FAUSTUS model. Other authors draw different sets of distinctions. For example, it is
common to treat pronominal reference resolution or word sense disambiguation as a
separate process. In FAUSTUS an attempt has been made to describe inference processes
at a higher level: asserting that any two concepts are co-referential, asserting that a con-
cept should be classified under a more specific category, and so on. These general
inferencing processes can then be applied to a variety of situatons, as long as the
knowledge base provides the proper support. The upshot of this is that this chapter will
be reporting on research as it was conceived by previous researchers, not necessarily
along the lines that are advocated by FAUSTUS.

Reference Resolution Inferences

Reference resolution is the process of deciding what a pronoun or an ambiguous
word or phrase in a text refers to. For example, in the phrase he saw him the pronouns he
and him are ambiguous; they could be referring to any male. The syntax tells us they
refer to different males (otherwise himself would have been used), but nothing more.
The references can be resolved by consulting the context set up by the interpretation of
previous sentences to find likely candidates. Almost any information about the likely
candidates could be crucial in deciding the referent; reference resolution shares much
with inferencing in general.

Charniak studies reference resolution extensively in his thesis, [23]. He tries to
tie in reference resolution with other kinds of inference, claiming that the information
which is used to ‘‘fill in the blanks'’ can be directly used to help with reference. By this
he means that there is a certain amount of inference that must be done to understand each
sentence and relate it to previous sentences, and that these inferences are also useful for
reference resolution.

Charniak goes on to categorize the known types of information that can be used
to resolve reference problems. First, there is descriptive information. The pronoun he
must refer to a male, while she must refer to a female, and the red ball, clearly enough,
must refer to a ball that is red. Charniak points out that other phrases, like Jack’s house
are less precise. Jack’s house could be the house he lives in, or the one he owns and rents
to someone else.

The concept of recency also plays a role in resolving references. Concepts that
have been mentioned or alluded to recently can be referred to with elliptical construc-
tions, while concepts that are not in context cannot be. Chamniak estimates that perhaps
90% of pronouns could be resolved correctly by picking the most recent referent with
matching gender and number, and then backing up if this choice leads to a contradiction.
However, a quick computation, using Charniak’s own thesis as the source material, gives
a figure closer to 50% for that heuristc.

In addition, selectional restrictions can come into play. In She landed the 747
safely, the pronoun she might refer to Captain Smith or co-pilot Jones, but it could not

-24-

normally refer to a female dog that happened to be on board, because pilotng a 747 can
only be performed by well-trained humans. While it is easy to specify restrictions that
are normally appropriate, it is much rarer to find a restriction that is universally applica-
ble. There are three reasons for this. First, in fiction, and especially fantasy, it is reason-
able for animals to act like humans, and for other restrictions to be violated. By
definition, fiction must differ from reality, and it is very difficult to say a priori in exactly
what way it can be different, and what things cannot change. Second, we need a
mechanism to express hypothetical or counterfactual statements. The passage *‘It is false
that a dog can pilot a 747" is a perfectly reasonable and understandable sentence, yet it
seems 1o violate a selectional restriction. Third, expressions that seem to violate selec-
tional restrictions when interpreted literally often have a valid metaphorical interpreta-
ton. Wilkes [143] recognizes that selectional restrictions cannot be absolute, and for-
mulates a system of ‘preferences’ rather than ‘restrictions’.

Finally, according to Charniak, there may be other semantc considerations that
determine reference resolution. Charniak presents the following example:

(1) Today was Jack’s birthday. Penny and Janet went to the store. They were going to
get presents. Janet decided to get a top. ‘‘Don’tdo that’’ said Penny. ‘‘Jack hasa
top. He will make you take it back."’

Here the problem is to decide what the pronoun iz refers to in the last line.
Recency would suggest the top that Jack owns, while it is only detailed knowledge about
owning, tops, wanting, and gift giving that can lead to the determination that it refers to
the top that Janet is considering buying. The most important fact is that unwanted gifts
are sometimes rewrned to the store at which they were bought. Charniak’s algorithm
calls for the program to invoke this fact and expect the possibility of the new top being
returned to the store. The phrase take it back matches this possibility, with the result of
the match being both that iz is identified as the new top, and also that the destination is
the store. Thus, the same process that resolves pronoun references also adds additional
information to the construal of the story. As a conclusion, Chamniak suggests that the
best referent *‘might be the referent which allows the most links to what has aiready hap-
pened.’’ This sentiment will be echoed by many other researchers; the problem is in
determining exactly what the links are. (Charniak ends up rejecting this approach,
mainly because he feels it is too computationally expensive. However, he never imple-
mented the final version of his thesis model, so the computational complexity is
unknown.)

Herb Clark [30] also discusses the problem of reference resolution. He presents
example sentence pairs like the following, and discusses the reference relation between
the first and second sentence in each pair.

(2a) Imet a man yesterday. The man told me a story.

(2b) Imeta man yesterday. He told me a story.

(2c) Imet a man yesterday. The bastard stole all my money.
(2d) I met two people yesterday. The woman told me a story.
(2¢) I walked into the room. The ceiling was high.

.25.

(2f) I walked into the room. The windows looked out to the bay.
(2g) 1 walked into the room. The chandelier sparkled brightly.
(2h) John was murdered yesterday. The murderer got away.

(2i) John died yesterday. The murderer got away.

(2j) John fell. What he wanted to do was scare Mary.

(2k) John fell. What he did was trip on a rock.

(21) John fell. What he did was break his arm.

(2m) John is a Republican. Mary is slightly daft too.

Sentences (2a-d) are characterized as ‘‘direct reference’’ involving identity, pro-
nominalization, epithets and set membership, respectively. For example, in (2b), the pro-
noun ke in the second sentence refers back to the man mentoned in the first sentence.
Some authors will speak of the word ke referring to the phrase a man, but since we are
more interested in the semantics of the referring relationship than in the syntax, we will
adopt the more common terminology where phrases refer to objects, and where pairs of
phrases can be co-referential. Sentences (2¢-g) are examples of ‘‘indirect reference by
association’’ with necessary, probable, and inducible parts, while (2h,i) are ‘‘indirect
reference by characterization’ involving necessary and optional roles. Finally, (2j)
involves a reason, (2k) a cause, (21) a consequence and (2m) a concurrence.

While these examples demonstrate the pervasiveness of the reference problem,
the classification system does not shed any light on how to resolve a particular reference.
Clark starts to address this question by positing what he calls the given-new contract [29]
between the author and reader of a text, or the speaker and listener of an utterance. The
idea of the given-new contract is that each sentence conveys some old information and
some new. The speaker implicitly agrees to construct each sentence so that the listener
can compute from memory the unique antecedent that was intended for the given infor-
mation, and so that the new information is genuinely new.

Clark then suggests the following rule for resolving references: “‘Build the shor-
test possible bridge that is consistent with the Given-New Contract.”’ In other words, the
listener should make the inference that requires the least assumptions to connect the
given and new information in a way that is consistent with the situadon. For instance,
another example of a concurrence relation shows up in the sentence pair: Alex went to a
party last night. He's going to get drunk again tonight. The concurrence bridge is the
inference that he got drunk at the party last night. However, Clark claims, we could have
made the bridging inference that ‘‘every time he goes to a party he meets women, and all
women speak in high voices, and high voices always remind him of his mother, and
thinking about his mother always makes him angry, and whenever he gets angry, he gets
drunk.” Clearly this chain was not intended by the speaker, and thus the listener is not
authorized to make this inference, in Clark’s terminology. The listener is authorized to
make only the simplest possible bridging inference.

Clark’s theory is relatively complete, in that it addresses the three crucial points
of a theory of inference. First, he has a classification of the possible types of inferences.
Second, he has a criterion for generating inferences: make inferences that serve to con-
nect given and new information. Finally, he has a metric for deciding among competing,

.26 -

contradictory inferences: the bridge with the smallest number of links is preferred.

This is not completely satisfactory, though. There is no way to decide which of
two competing bridges of the same number of links is to be preferred, and there is no
allowance for, say, a bridge of three straightforward links to be preferred over one with
two highly unusual links. In other words, it seems desirable to have a metric for link
strength, and Clark offers no such metric. Even if one could be developed for individual
links, it is not clear how these measures should be combined; the strength of a chain may
not be the purely additive sum of the strengths of its links. This is illustrated by trying to
interpret flicked the light switch in the following text:

(3a) John got a book.
(3b) He sat on a couch.
(3c) He flicked the light switch.

One interpretation is that he flicked the switch on, which makes the room brighter,
thereby illuminating the book, which enables John to attend to the writing in the book,
which enables him to understand the contents. This is a bridge of length four which
makes use of pre-existing knowledge of switches, lights, reading, and books. Another
interpretation is that he flicked the switch off, which makes the room dark, which enables
him to sleep on the couch. This is a bridge of length two, which uses pre-existing
knowledge of switches, lights, sleeping, and couches. However, even though the second
path is shorter, it seems less appealing.

Another problem with this approach is that it assumes given and new information
can be distinguished by syntax and intonation alone. In some cases this will work; in
(4a) the given information is that someone left and the new information Mel performed
that action. In (4b) the opposite holds. However (4c) is ambiguous between the two
interpretations. When spoken, (4c) might be disambiguated by intonation, but it could
also be spoken with neutral intonation.

(4a) It was Mel who left.
(4b) What Mel did was to leave.
(4c) Mel left.

Lockman and Klappholz [71] consider a broad range of inference types, classify-
ing them under the heading contextual reference. They include pronominal reference,
identity reference, and in general most of the categories considered by Clark. However,
they go beyond that, and include examples like (5a) below, where the walking in the
second sentence is co-referential with the going to school in the first sentence.

(5a) Mary went to school early today. She walked the entire three miles.
(5b) Mary went to school early today. She walked up the stairs.
(5c) Mary went to school early today. She arrived at 7:00.

A distinction is made between references that hold between complete sentences,
and those that hold between parts of sentences. There is also a reference from she to

.27

Mary and from the enrire three miles to the distance-traveled of the event in the first
sentence, even though the distance is not explicitly mentioned in the first sentence.
Lockman and Klappholz are especially interested in this type of reference, and they are
not concerned with any inference that can be made solely on the basis of syntactic rules.
There are two main types of connections between sentences in their theory: expansion,
where a sentence provides more information about the preceding one, as in (5a), and tem-
poral continuation, where the second sentence is an event that occurs after the first, as in
(5b). Expansion comes in two types, expansion of the entire sentence, as in (5a), and
expansion of a component of the sentence, as in (5¢), where the second sentence refers to
the arriving component of the going to school, and not to the entire event.

Lockman and Klappholz provide some notion of control structure. For each sen-
tence, they prefer to find a connection to the preceding sentence, but allow the sentence
to refer back to preceding sentences. They provide an ordering for searching backwards
for an antecedent if the preceding sentences does not provide a satisfactory connection.
Unfortunately, they have little to say about how one can decide if an antecedent is satis-
factory. Similarly, they provide no way to tell the difference between an expansion and a
continuation. Their theory says (5a) and (5b) should be classified differently, but they do
not say how to make that classification, and there do not seem to be any syntactic clues to
distinguish them.

As we go from Chamiak in 1972, to Clark in 1975, to Lockman and Klappholz in
1980, there is an expansion of the term reference. At first it applies primarily to pro-
nouns, then to arbitrary noun phrases, and finally to verb phrases and complete sentences.
The term is also expanded in that originally the antecedent had to appear explicitly in the
text, while the later authors allow implicit antecedents. It would be possible to continue
in the vein of Lockman and Klappholz, and oy to frame all semantic relations between
components as references, but other authors have resisted that trend, and have come up
with different terminology for semantic relations, as we shall see in the following sec-
tions.

Concept Coherence

Alterman (3] presents a story understanding program, NEXUS, that finds connec-
tions between events and states mentioned in the text. He defines seven concept coher-
ence relations that form the connections. The relations are subclass, subsequence, coor-
dinate, antecedent, precedent, consequent, and sequel. Rather than having an ency-
clopedic knowledge base which attempts to completely define concepts, Alterman calls
his knowledge base a dictionary. In this dictionary he defines concepts in terms of the
seven coherence relations and in terms of default values for case arguments, but does not
try to add any other type of information about the concepts. The idea is that this set of
relations can be used to make an analysis of the text at an interesting level; other
processes besides NEXUS could be used to make a more complete analysis of the text, and
to find other classes of inferences.

The control structure is to take each input state or event in turn, and do breadth-

.28 -

first search through the dictionary of concepts, looking for a connection to an existing
event or state. When a connection is found, it is checked for consistency, and as soon as
a consistent connection is found, the search is stopped and an inference is made. There
are rules that cut down the size of the search space by pruning paths that cannot lead to a
valid inference, and there is a mechanism that does pronominal reference resolution as a
side-effect of the matching process.

In other words, the theory of inference embodied in NEXUS is that events and
states are connected by the seven coherence relations, and processing a story means
finding the shortest path along these relations that will connect each line in the story to
some other line in the story. Each line is expected to have exactly one connection to the
rest of the story, no more, no less. Although implemented as a bi-directional breadth-first
search procedure, NEXUS could also be seen as a spreading activation or marker-passing
approach, which looks for the shortest path between nodes.

Alterman resolves the question of deciding if an event is an expansion of a previ-
ously mentioned event with a rule that states that before doing the search for a connec-
tion, each new event is first checked to see if it could be a expansion of the previous
event. If there is no explicit contradiction, it is assumed that the new event is in fact an
expansion.

Hobbs [55, 56] and Mann [75] independently proposed classifications of the types
of coherence relations that can hold between sentences. For instance, one sentence can
provide an example for the previous sentence, or it can be an elaboration or a generaliza-
tion. Although both researchers have interesting classification schemes, neither of them
is very useful for generating inferences. The systems seem better suited to explaining the
options that an author has in constructing a text to make a point than to the task of under-
standing the connection between two sentences. For example, one of Hobbs’ classes is
parallel structure. An example of a sentence with this structure is set stack A empty and
set link variable P to T. Tt is important for the author to know that there is a parallel sen-
tence structure, which uses the word and, and which can be used to join two similar
ideas. However, for the reader, recognizing the parallel structure does not add any
interesting inferences that he could not have made if the two clauses were presented
independently.

Case Relation Based Inferencing

Case relations on verbs have had great importance in natural language systems,
frame-based representation languages, and in the development of linguistics. This sec-
tion covers some of the history of systems that have used cases, and discusses a few of
the theoretical problems.

An early example of a natural language processing system that used case frames
extensively is presented by Hendrix in [52]. It is representative of a simplistic approach

.29.

to handling case relations, yet it treated them seriously, and derived much of its power
from them. The system consists of a parser, a simple generator, a modeling system, and
a lexicon. As an example, the lexical entry for buy indicates that it is a verb, that it refers
to the exchange event (which they call a canonical verb), and that it has the following
case frame:

BUY:
(OK (HUMAN ORGANIZATION) BUYER)
{(OK (PHYSOBJ) THINGBT)
(FROM (HUMAN ORGANIZATION) SELLER)
(FOR (MONEY) THINGGIVEN)
(AT (PLACE) LOC)
(IN (PLACE) LOC)
(OK (DAYPART) TIME)
(IN (DAYPART) TIME)

Here the first element of each list is the preposition expected to mark a noun
phrase in the input (or ok for an unmarked noun phrase), the third element is the deep
case that that noun phrase should map into, and the second element is a disjunction of
possible types; the noun phrase must be one of those types to be a valid filler.

Another approach to detecting inferences from single sentences using case rela-
tions was work done by Simmons [119-121]. While this work covered a number of
points, the part relating to case relations was similar enough to Hendrix’s that we will not
discuss it further.

There were many problems with Hendrix’s system. The only way it could distin-
guish the subject and dative cases, both marked by ok was by the ordering of entries in
the case frame: BUYER comes before THINGBT (the thing bought). Thus, the system
could not handle passives, where the order is reversed. There was a great deal of redun-
dancy; the fact that either humans or organizations can be actors in certain types of
actions is represented twice in this case frame alone, and will be mentioned many other
times in other verbs. Also, the case relations specifying that an event can occur at a par-
ticular time and place need to be repeated many times over. One of the motivating ideas
behind case systems is to capture generalizations, but Hendrix’s approach misses impor-
tant generalizations. This happens mainly because the level of description is too close to
the surface verbs.

Charniak’s Case-Slot Identity Theory [25] addresses most of these problems. In
this theory, there is no need to translate between surface and deep cases (the deep cases
are called slots as is the custom in many frame-based representation languages) because
surface cases and slots are one and the same. Redundancy is eliminated because slots are
inherited. For example, there is a concept called transitive-act which has an agent and a
patient slot. Once transitive-act is defined, it is simpler to define more specific actions.
For example:

[frame: transitive-act

.30 -

slots: agent patient ...}

[frame: reading
isa: transitive-act
slots: language ...]

Here reading inherits the agent and patient slots from transitive-act and
adds a new slot, language. Charniak used this example for expository purposes; a more
complete specification might have transitive-act declare only the patient slot, and
inherit the agent slot from act, which in tum inherits the location and time slot
from event, or some such. Similarly, as Chamiak points out, the language slot should
be inherited from the linguistic-communication frame.

The question remains: what is the status of the language slot? Charniak claims
that since it is a slot, and cases and slots are identical, it must be a full-fledged case, just
like agent or patient. However, Charniak does not explain how the language case is
associated with the word in, as in Fredrica read a book in French. He could make this
association with an explicit declaration, as in Hendrix’ PRULES, but this would fail to
capture the meaning behind the word in. Another solution would be to have the
linguistic-communication frame inherit from something like the transfer-along-
conduit frame (see [94]) which has a medium-of-transfer slot which is mapped to
the word in. In general, Charniak represented slots well, but failed to provide a natural
association between surface forms and underlying meaning. He also failed to address the
question posed in the next section.

How Many Cases Are There?

Consider the following quote from Fillmore’s influential article The Case for
Case [42] :

The sentence in its basic structure consists of a verb and one or
more noun phrases, each associated with the verb in a particular case
relationship. The ‘explanatory’ use of this framework resides in the
necessary claim that, although there can be compound instances of a sin-
gle case (through noun phrase conjunction), each case relationship occurs
only once in a simple sentence.

Fillmore is making a very strong claim, that each case occurs only once in a sim-
ple sentence. This claim is worth investigating, for two reasons. First, if we adopt the
claim, it can help us disambiguate case reladons, because we will know that each new
case relation must be distinct from the previous relations of each simple sentence.
Secondly, by comparing acceptable and unacceptable sentences we can tell if two uses
mark the same case or not. Fillmore tells us that two noun phrases denoting the same
case must be conjoined. Conversely, Zwicky and Sadock [150] say that conjunction can-
not occur with an ambiguous case marker.

-31-

Consider the sentences in (6) (some of these are from [54]). Sentences (6a-d)
show that the preposition with can mark the instrumental case (in two ways), the accom-
panier case, or the manner case. Sentences (6e.f) together support the analysis that (6a,b)
both mark the instrumental case, and hence cannot be used as two separate case relations,
but must be conjoined into one noun phrase. Conversely, (6g,h) show that the instrument
and manner cases are distnct. The curious example is in (6i,j). If there are distinct
instrumental and accompanier cases, then (6i) should be acceptable, and (6j) should be
rejected. However, most informants reject (6i), suggesting a problem with Fillmore’s
claim (unless (61) is rejected for some reason unrelated to the single-case claim).

(6a) John painted the wall with latex paint.

(6b) John painted the wall with a roller.

(6¢c) John painted the wall with Mary.

(6d) John painted the wall with reckless abandon.

(6e) 7?John painted the wall with latex paint with a roller.

(6f) John painted the wall with latex paint and a roller.

(6g) John painted the wall with latex paint with reckless abandon.
(6h) ?John painted the wall with latex paint and reckless abandon.
(61) ?John painted the wall with latex paint with Mary.

(65) ?John painted the wall with latex paint and Mary.

There is an alternative analysis of this situation. An important rhetorical rule (see
[49]) can be stated simply as do not be repentive. It is this rule that makes (7a) below
unusual, while (7b) is much better. It may be that part of the reason why (6e,i) sound bad
is the repetition of the word with. As evidence for that, compare (7¢c) with (6e). Simply
substituting using for with makes the sentence much better, even though the same case
relations seem to be represented. Fillmore would not have to accept this as evidence, as
the using clause makes (7c) a complex sentence, and his claim mentons only simple sen-
tences. In this analysis, (6h) is still bad because it conjoins two semantically distinct
slots, but there is no explanation why (6g) seems better than (6e) or (6i).

Case-slot identity claims that there is an inscrumental slot somewhere high in the
hierarchy (perhaps on action), and that both painting-implement and applied-
paint are specializations of the instrumental slot. Thus, it predicts that (6e) above
should be acceptable, or at least it makes no claims as to why (6e) is unacceptable.

(7a) ?Ann got a book. Bob got a book. Cathy got a book.
(7b) Ann got a book. Bob got a book, too. So did Cathy.
(7c) John painted the wall with latex paint using a roller.

Another problem shows up when two different case relations necessarily have the
same filler. For example, the definition of selling states that the actor and the donor
are one and the same. The do not be repetitive rule blocks us from mentioning the over-
loaded case twice. Thus, (8a) is acceptable, but (8b) is not.

(8a) John sold the book to Mary.
(8b) ?John sold the book from John.

.32.

What Type of Cases Are There?

So far we have seen two approaches to handling case relatons. Hendrix
emphasizes grammatical relations like subject, object, and indirect object, and tries to fit
semantics into that framework. Chamiak, on the other hand, emphasizes semantic rela-
tions like agent, recipient, and donor, and fits the grammatical information on top of that.
We have yet to see a completely satisfactory way to handle both at the same tume. To
make matters worse, there are other components that also come into play. Katz [60] dis-
tinguishes the grammatical, semantic, and rhetorical components, where the later include
notions like given, new, topic, and comment. Fillmore adds a fourth way of looking at
sentences, the orientation, where a concept can be either in perspective or out of perspec-
tive. Using an example common to Fillmore and Hendrix, the commercial-event, the
speaker can put the buyer in perspective by choosing the verb buy, as in (9a), the seller
by choosing the verb sell, as in (9b), or both the buyer and to an extent the money with
the verb pay, as in (9¢). Orientaton is a matter of degree; in (9a) and (9b) we could
elevate the money by mentioning it in a for clause, but the money would still not be as
prominent as the subject.

(9a) Iraq bought some bombs from Peru.
(9b) Peru sold some bombs to Iraq.
(9c) Iraq paid $1M for some bombs.

The rhetorical component is similar to the idea of orientation. One example of a
rhetorical case is the notion of topic. Often, the grammatical case subject is both the
semantic agent and the rhetorical fopic. Topic is important for problems such as pronoun
disambiguaton. In (10a) there are two possible referents for he, but most informants
interpret the pronoun as referring to John, since John is the topic of the first sentence.
This preference to choose the topic can be overruled, as in (10b), where she refers to
Mary because it does not agree in gender with John, or in (10c), where he is interpreted
by most informants as referring to Bill, because of the added information which fits
better.

(10a) John is over there talking with Bill. He’s an old friend of mine.
(10b) John is over there talking with Mary. She’s an old friend of mine.
(10c) John is over there talking with Bill. He's a good listener.

Script-Based Story Understanding

The basic idea of a schema goes back to Bartlett [12]. Itis also present in Nor-
man and Rumelhart’s work [87]. Minsky’s idea of a frame [83] is similar to the schema
idea. Although frames were originally conceived for work in computer vision, they have
wide applicability, and in fact several natural language systems using frames were built
at MIT by Winston [144, 145] and others [44, 118]. Chamiak’s Ms. Malaprop program
[24] is constructed along similar lines. The notion of a script, or stereotypical sequence

.33

of actions with variable actors, objects, and locations, was proposed and developed by
Schank and Abelson [110]. They use the example of the restaurant script to explain the
concept. The idea is that unless you knew what typically happens in a restaurant, you
would not be able to understand a story like (13). You would not know that John
intended to eat some food, or who they referred to in they didn’t have any, or that he
probably got angry and left without eating or paying.

(13) John went to a restaurant. He ordered a hamburger. The waiter said they didn’t
have any. John asked for a hot dog. When the hot dog came, it was burnt. He left
the restaurant.

The two major problems to contend with are script recognition and script appli-
cation. Recognition is the process of deciding what scripts, if any, are applicable to the
current situation. Application involves tracking the current situation in term of the appli-
cable script(s), deciding how each new input relates to the script, and making default
inferences for parts of the script that are not explicitly mentioned. For example, in (13)
the recognition problem is to notice that the eat-at-restaurant script is appropriate.
Once the eat-at-restaurant sCTipt is recognized, script application would lead to
inferences such as identifying the waiter as ‘‘the waiter who is employed by the restau-
rant and who was assigned to provide service for John’’. Other inferences are that John
probably sat down at a table and looked at 2 menu before ordering, and that he probably
was dissatisfied with the restaurant. Cullingford’s [33] SAM (Script Applier Mechanism)
program was able to make inferences like these, although it did not seriously address the
script recognition problem.

Although limited, the scriptal approach had four main points going for it:

e It emphasized the role of real world knowledge as the source of intelligent understand-
ing.

e It had a well-defined control structure whereby inferences were made as they were
needed to track progress through the script.

o [t showed how context could influence the interpretation of subsequent input.
o It dealt with probable inferences, rather than strict logical deductions.

Scripts, and indeed, world knowledge in general, seem to have gotten more credit
than they deserved. For example, in [38], Dyer states that scripts are useful in word
sense disambiguation. He claims as evidence the fact that ordered and to go have dif-
ferent meanings in a restaurant than in the military, as seen in (14a,b). But these exam-
ples have nothing to do with scripts, per se. Both of them can be understood unambigu-
ously, out of context, by virtue of the restrictions on semantic case frames of the various
senses of the verbs. In other words, it is not the fact that the ordering is occurring in a
restaurant or in a military context that gives it its meaning. Rather it is the object of the
ordering (a pizza or a person) that determines the interpretation. This is shown in
(14c.d).

.34-

(14a) John ordered a pizza to go.

(14b) The general ordered the private to go.

(14c) At the restaurant, the customer ordered the waiter to go.

(14d) Working late at the pentagon, the general ordered a pizza to go.

Dyer points out two other major problems of scripts. First, there was no sharing
of structure. There was knowledge of tipping imbedded in the restaurant script, but it
was unrelated to tipping in other situations, like taking taxis or getting a haircut. Simi-
larly, knowledge about eating could not be shared between the restaurant script and the
eat-at-home script.

The second problem was a lack of intentionality. The restaurant script said that
the customer looks at the menu and then orders his meal, but it does not explain that the
menu tells him what the restaurant has to offer, and thus helps him decide what to order.
Dyer solves these two problems by re-representing scripts as MOPs. MOPs are Memory
Organization Packets, as described by Schank in {1 14].

There is another problem of sharing memory that scripts did not cover: represent-
ing the commonality between the restaurant script from the customer’s point of view vs.
the waiter’s point of view, or the cook’s. Each has very different scripts, but there is also
a great deal of information that is shared. '

Another important frame-based story understander was Charniak’s Ms. Malaprop
system [24]. Charniak used frames to represent all knowledge in this system, so he
avoided the uniformity problem of SAM, but otherwise the system suffered from many of
the same problems, and was eventually abandoned.

The major limitation of script-based processing is that it only works for situations
for which a known script exists. Whenever the story deviates from a stereotypical situa-
tion, which interesting stories must do, script application become impossible. This
should not be seen as a limitation of the concept of a script, but rather on the process of
script application. SAM had only this one process at its disposal, and therefore it should
not be expected to do all of story understanding. Schank and Abelson pointed out this
limitation and suggested that goals and plans could be used where scripts failed.

Goal/Plan Based Story Understanding

As a reaction against the limitation of script-based systems, Wilensky (131]
designed the PAM (Plan Applier Mechanism) program to track the goals and plans of the
characters in the story. This allowed PAM to process a broad class of stories that could
not be handled by the script-based approach, and was also a means of controlling infer-
ence. The algorithm was to try to interpret each input as either a goal for one of the char-
acters in the story, a plan for achieving a goal, or as an expected input based on previous
processing. Each new goal or plan generated expectations for what might come next.
These were stored in a discrimination net, and matched against all input. Each new input
could be explained by matching an expectation, or by being a plan for some known goal,

-35.

or by being a plan for something which was in turn explainable. Thus, the resulting
representation of the input text included a set of intentional explanations for each action
in the text. The following story is from [131] :

(15a) John was lost.
(15b) He pulled over to a farmer standing by the side of the road.
(15c) He asked him where he was.

PAM processes this story as follows. From (15a) it infers that John will have the
goal of knowing where he is. From that it infers he is trying to go somewhere, and that
going somewhere is often instrumental to doing something there. From (15b) PAM infers
that John wanted to be near the farmer, because he wanted to use the farmer for some
purpose. This rather vague inference constitutes the explanaton of (15b). Finally (15¢)
is processed. It is recognized that asking is a plan for knowing, and since it is known that
John has the goal of knowing where he is, there is a match, and (15¢) is explained. As a
side effect of the matching process, the three pronouns (He, him and he) in (15c) are
disambiguated.

Wilensky’s model has the following important characteristics:

e There was an underlying theory of human planning behaviour. Although not shown in
this example, there was a great deal of detail on what happens when several goals
interact.

e There was an assumption that planning behaviour is important in many stories. The
important points in a story were taken to be the interesting goal interactions between the
characters, or the resolution of a single character’s quest to achieve his goal.

e There was a theory of inference. PAM was able to make a fairly long chain of infer-
ences to find a connection between an action (e.g. Willa picked up the Michelin Guide)
and a known goal (e.g. Willa was hungry). PAM would not attempt to infer any connec-
tion between, say, two states (e.g. Willa was hungry. and Willa was angry.), and would
not waste time trying to make inferences that could not lead to an intentional explanation.

Granger [45] adopted Wilensky’s intentional explanation approach, and added the
capability to learn new inference rules from the text, and to recover from incorrect infer-
ences. His system, ARTHUR, (A Reader THat Understands Reflectively) could process
stories like the following:

INPUT STORY:
MARY PICKED UP A MAGAZINE.
SHE SWATTED A FLY.

INPU? QUESTION:
WHY DID MARY PICK UP A MAGAZINE?

- 36 -

OUTPUT ANSWER:
AT FIRST I THOUGHT IT WAS BECAUSE SHE WANTED TO READ IT,
BUT ACTUALLY IT’S BECAUSE SHE WANTED TO GET RID OF A FLY.

PAM could understand some stories where a character changed his goal or plan,
by keeping its expectation vague, or by entertaining several explanations simultaneously.
However, it could not back up and retract an erroneous inference once it was committed
to the inference. Granger’s program added the ability to recover from such a mistake.
Such a capability is becoming more standard in Al programs, due to works like Doyle’s
on truth maintenance system [335, 36].

Story Skimmers

All the programs mentioned so far processed only a small number of texts, and
adding a new text to the repertoire usually meant a great deal of work on the part of the
. programmers of the system. DeJong’s FRUMP (Fast Reading Understanding and Memory
Program) system [34] was designed to be different The program interpreted news
stories taken directly off of the UPI news wire. The approach was to use sketchy scripts,
which were knowledge structures similar to Cullingford’s scripts, but without as much
detail. Sketchy scripts include only the important likely events in a situaton. The sys-
tem has the same two subproblems that Cullingford’s program had (script recognition
and script application) but in DeJong’s case it is not necessary to process all of the input.
Once a script is selected, predictions are made for the likely events in that script, and the
program ignores any input that does not fit the predictons.

Liebowitz’s PP (Integrated Partial Parser) operated in a manner similar to FRUMP,
but it also had the ability to generalize and to ‘‘learn’’ new scripts.

Both programs owe at least part of their success to the fact that newspaper stories
follow prescribed formats, and have the specific purpose of reporting the important facts
relating to a story.

Integrated Story Understanding Systems

There have been attempts to put several of these capabilities together. The most
notable in this class is Dyer’s BORIS [38] system (Better Organized Reasoning and Infer-
ence System). It used a demon-based control structure and was able to find many dif-
ferent classes of inferences on the same text. BORIS incorporates and distinguishes
seventeen classes of knowledge: object primitives, scripts, settings, goals, plans, affects,
themes, interpersonal relationships, physical states, events, social acts, memory organiza-
tion packets, thematic abstraction units, scenes, scenarios, reasoning, and beliefs.

These structures interact in certain predefined ways. For example, inferences can
be made to connect events to goals (as in Wilensky’s approach), but emotional affect can

-37.

never be directly related to settings. Thus, if given the passage ‘‘At the restaurant Bill
punched John in the mouth. John got mad.” and the question “‘How did John feel at the
restaurant?’’, BORIS would not be able to directly recall John’s affect. Instead, it would
have to first infer the eat-at-restaurant scenario from the restaurant setting, then
recall that the punching event occurred as an unexpected event in the restaurant scenario,
then infer some goal of John’s, and finally infer his affect.

Thus, Dyer has a theory of memory search which is dependent on the knowledge
structures and their interconnections. He has adequate representational power to cover a
wide range of input. He has some guidelines on how to generate possible inferences.
However, the inference demons can be criticized as being ad-hoc. Here are some sample
inference demons:

(16a) IF an ACT at the DESTINATION SETTING oY a transition
scenario is enabled by that SETTING
THEN build an ENABLES link between the GOAL achieved
and the CHANGE OF PROXIMITY goal in the transition scenario

(16b) IF the word just read is a pronoun and a HUMAN
is found with matching GENDER and CASE
THEN bind the concept to that HUMAN

(16c) IF the word just read is a name, then
IF character exists with matching GENDER and FIRST-NAME
THEN return that CHARACTER
ELSE create a new CHARACTER

(16d) IF the word just read is ‘glass’ then
IF it is followed by a LIQUID
THEN glass is used as a MEASURE (e.g. a glass of coke)
ELSE glass is used as a MATERIAL (e.g. a glass plate)

(l16e) IF the story refers to a MEAL and
a HUMAN is found modified by the preposition ‘with’
THEN that HUMAN is an EATER in the MEAL

There is a great range in the specificity of these rules. The first one is fairly gen-
eral. It could be used to infer from John went to Shea stadium that he intended to watch
a ball game, and that he went to the stadium in order to watch the game. The same rule
could be applied to numerous other situations. The rule is automatically self-extensive in
that every time the system learns about a new action that is enabled by a setting, the rule
will automatically apply to the setting. However, the rule can only be used in one way; it
cannot be used to infer from John wanted to watch a ball game that he should go to a ball
park, or even to infer that John is watching the game from John is at Shea stadium.

Some rules are incomplete. For example, (16b) and (16¢) do not state what to do
if several matching humans are found. Other rules are just plain wrong. For example,

-38 -

(16¢) cannot handle Aricia is a pretty name and (16d) would fail on glass wine glass. Of
course, it is always possible to come up with new examples that a particular system can-
not handle, and it should not be considered a fundamental flaw that BORIS could not han-
dle these particular examples. A more serious problem is that many rules are written at a
too specific level. For example, rather than having one rule saying that the preposition
with can be used to designate an accompanier in an event, there would have to be many
rules similar to (16e), approximately one for each verb. In addition to its lack of general-
ity, (16e) is still wrong in that it would interpret Bill was talking with the waiter as mean-
ing the waiter was an eater in the meal.

Dyer also addresses the problem of deciding what is an adequate explanation for
an event (although not for a concept in general). There are two main traditional
approaches: (1) settle for the first adequate explanation found, and (2) search for all pos-
sible explanations. A problem not addressed by Dyer is deciding when an explanation is
adequate, but leaving that aside, he correctly points out that searching for all possible
explanations is computationally prohibitive, while settling on the first explanation can
lead to an incomplete interpretation of the text, since some events have multiple motiva-
tions. Dyer decides the best approach is a modification of strategy (1): find the first
explanation ar each of four levels: scriptal, goal/plan, thematic, and role. For example, in
the main example story Dyer uses, two old friends meet for lunch to discuss some busi-
ness. The meeting wouid be understood three ways: in terms of the restaurant script, the
friendship theme, and the businessman role. While this approach may be a good heuris-
tic in many cases, it will fail in others. An event could just as easily have multiple expla-
nations at the same level. For example, in ‘‘John was hungry when it started to rain. He
ducked into a restaurant.’”’, a single action can be interpreted as a plan towards two
goals: staying dry and having food.

In summary, Dyer’s work is more a model of memory organization than it is a
model of story understanding or inference. The types of knowledge structures and the
connections between them are well worked out, but the class of inferences covered is
under-specified, due to the arbitrary nature of the inference demons. Dyer’s is the only
work discussed here that can infer multiple connections between concepts in the story,
but there is no clear statement of what inferences will be found. One view is that this is
just in the nature of natural language understanding: it is a complex task, and one should
not expect simple statements of principles. Another view is presented in the next section.

Story Understanding Principles

A slightly different tradidon of research concentrates on characterizing the con-
straints on the story understanding process, rather than describing an algorithm in detail.
For example the following principles were presented in Wilensky’s [136] and in an ear-
lier version of FAUSTUS [88].

The Principle of Coherence: Build a coherent construal of the input.

The Principle of Concretion: Always use the most specific interpretation of the

.39.

input as is possible.

The Principle of Least Commitment: Make only the minimal assumptions
necessary to interpret the input.

The Principle of Exhaustion: Make sure that all of the input is accounted for in
the construal of the text.

The Principle of Parsimony: Construct representations which maximize the con-
nections between inputs.

The Principle of Poignancy: Determine the point of what is being said.

The principle of coherence instructs the understander to find connections between
various parts of the text. Causal relations are particularly important here. The principle
of concretion says to go beyond a strict interpretation of the text, and induce details. The
principle of least commitment limits the understander from inventing characters, objects,
events and explanations that are unrelated to the text. The principle of exhaustion
assures that an explanation does not use just part of the input, if using more of the input
could produce a better, or more complete explanaton. The parsimony principle says to
find connections in such a way that the connectivity is maximized and the number of new
objects introduced is minimized. Finally, the principle of poignancy assumes that the
story teller has a reason for presenting the text, and that this is worth discovering.

The difficulty with applying these principles to any particular text is that they
contradict each other, and it is never clear how to resolve the contradictions. Wilensky
suggests a ceteris paribus interpretation of each principle. Given this approach, the prin-
ciple of concretion, for example, would be interpreted as if it were always use the most
specific interpretation that is consistent with the other principles. Consider the principle
of least commitment, which was originally suggested by David Marr (76] for use in com-
puter vision programs. This principle instructs the understander not to jump to unneces-
sary conclusions. The principle shows up often in Al research. Sacerdoti’s non-linear
planner, NOAH [102, 103], was also based on the least-commitment strategy, although he
did not formulate it as a principle. In the abstract, the principle sounds like a good idea,
but it contradicts the principle of concretion and the principle of parsimony, which each
instruct the understander to make unproven assumptions, if the assumptions will lead to a
more specific or better connected interpretation.

Accepting the ceteris paribus interpretation, we stll need some type of com-
parison mechanism for mediating the contradictions between principles. For example, in
interpreting John went from New York to San Francisco in six hours it would be a proper
use of the principle of concretion to assume he went by plane, but it would be a violation
of the principle of least commitment to assume he sat in seat 3A of a Boeing L1011.
Some mechanism must determine there is enough evidence for the first inference but not
for the second.

The parsimony principle has a particularly long geneology. In the early

.40 -

fourteenth century, William of Occam proclaimed “‘it is vain to do with more what can
be done with less.”” This principle is now known as Occam’s Razor. Paul Kay and
Charles Fillmore [43,61] formulate a parsimony principle for inferencing, as well as
what they call the parsimony promotion principle:

Whenever it is possible to link two separate scenarios into a single larger
scenario by imagining them as sharing a common participant, the ideal reader does so.

Select schemata in such a way as to give the parsimony principle the widest pos-
sible scope of operation.

Kay illustrates these principles with the following example:

(17) One day a chef went to Fisherman’s Wharf and bought some fish from a fisher-
man.

He claims that an ideal reader of (17) will make the following inferences:

(17a) The chef will cook the fish at his restaurant.

(17b) The fisherman caught the fish.

(17c) The fisherman is a commercial fisherman.

(17d) The chef used the restaurant’s money.

(17¢) The purpose of the chef’s trip was to buy fish.
(17f) The transaction took place on Fisherman’s Wharf.

These inferences are not explicitly stated in the text, and they are all probable but
not necessary inferences. The parsimony principle applies to this sentence because it
involves four separate schemata: chef-cooking, traveling, commercial-event,
and fishing. These end up being linked together in various ways: the chef in the
chef-cooking is the traveler in the traveling event and the buyer in the
commercial-event; the fishisthe foodin the commercial-event, the merchandise
in the commercial-event, and the catch in the fishing. The parsimony promotion
principle leads to the interpretation of the fisherman as a commercial fisherman rather
than a sport fisherman, since that interpretation leads to more sharing of participants
between schemata.

There are limits to the parsimony principle that are not addressed by Kay. For
instance, it would not be valid to envision the fisherman as the diner in the chef’s restau-

rant, or the chef as the first mate on the fisherman'’s boat, even though such envision-
ments would link scenarios.

Granger [45] independently presents his own parsimony principle as follows:

The best representation of a story is the one requiring the fewest number of goals
to explain the actions of a story character.

.41-

Wilensky's parsimony principle is thus a generalization of Granger’s. The intent
of Granger’s principle is similar to Kay’s and it has similar problems in its applicability.
The principle could be applied 0 (17) to infer (17a) and (17¢). This would be 2 parsi-
monious explanation because we know that chefs normally have the goal of acquiring
food to cook in their restaurants. It is certainly a more parsimonious explanation than an
interpretation where the chef went to Fisherman’s Wharf with the goal of visiting the
Wax Museum, and then just happened to see some nice fish, which he bought to take
home to his mother in law. However, we can invent even more parsimonious explana-
tions. Perhaps the chef has only the single goal of, say, impressing his girl friend, or of
serving God, and all his actions are in service of this goal. The parsimony principle as
Granger states it gives no limits to interpretations of this sort.

Drew McDermott’s TOPLE story understanding system (79] presented a calculus
for measuring parsimony, although he did not use those terms. He dealt with structures
called belief rings, and distinguishes tension-causing and tension-reducing elements
within the belief structures. McDermott draws a parallel between his approach and the
ideas of good form and stable organization of the Gestalt psychologists [64].

Finally, Fillmore [43] acknowledges Harvey Sacks [104] and Yorick Wilks
[142, 143] as having independently formulated similar parsimony principles.

Story Grammars

The above research has been primarily aimed at the ‘‘understanding’’ part of
story understanding, and has all but ignored the *‘story’’ part. How does the fact that one
is reading a story (as opposed to watching the news or reading a journal article) affect the
interpretation? The basic ability to do common sense inferencing, to recognize a situation
and the implications of that situation, is a necessary precondition to understanding a
story, but it is not the only precondition. There are some inferences that the reader makes
precisely because he is reading a story, inferences that he would not make if he observed

in the real world the same situation that is reported in the story.

Consider what we must know to understand a typical murder mystery story. First,
we know that poison can kill people and that murder is a crime. These are facts that are
of relevance to every day life; we avoid swallowing poison, or giving it to our friends.
Secondly, we know some things about the capacity for being mystified. We know that
problems hold our interest if they deal with important issues (such as life and death), and
if they are neither too obvious nor too obscure. Thus, a story which relates events in
chronological order, starting with the butler buying poison and sneaking it into the
master’s food is not a good murder mystery. We expect that the identty of the murderer
will be kept hidden until the end of the story, but that there will be ample clues along the
way. Third, we know something of the structure of mystery stories. We know that if it
seems obvious who the murderer is early in the story, then the author is probably trying
to mislead the reader, and the real murderer will be someone else. Such facts are
relevant to understanding a story, but not to, say, witnessing or planning an actual
murder. At another level is language specific knowledge. We must be able to

.42-

understand the words and grammatical patterns of English. Note that the first levels did
not require this; we can understand a pantomime Or silent movie; or understand the
consequences of drinking poison without any recourse to language.

There have been many attempts to define the concept of ‘‘storiness,”” going back
to Propp’s [92] analysis of folk tales (as formalized by Lakoff [66]) and contnuing
more recently with Rummelhart [101], Thorndyke [126, 127], and Mandler & Johnson
[72,74]. The initial idea was that just as sentences can be decomposed into words
according to grammatical rules, so stories must be decomposable according to story-
grammar rules. The question then is what are the components of a story? For spoken
sentences the lowest level components are phonemes, which are combined into words,
which fit into categories such as noun and verb, and can be combined into higher level
categories such as noun phrase and verb phrase. This type of analysis is compelling for
sentences because it is relatively easy to isolate and classify words, and because the
grammatical structure can lead to much of the meaning of the sentence. However, note
that the grammatical structure of a sentence does not determine the complete meaning of
the sentence.

In the case of stories, a grammatical analysis is more problematic, because there
is no easy way to classify the components. Wilensky & Black [132] point out that story
grammars have relied on constructs such as causes, initiations, and motivations, which
are on quite a different level than nouns, verbs and adjectives. In parsing a sentence, one
can appeal to the lexicon to determine that shoelace is a noun, but in ‘‘parsing’’ a story
there is no similar recourse to determine that Mary was sad could be a motivation for a
subsequent action on her part. This could only be determined by some unspecified
understanding process. The problem is that there is a circulanity; the story cannot be
parsed until it is understood, but story grammarians claim that the understanding is
achieved through parsing.

On the other hand, Wilensky & Black seem to concentrate on the problem of
understanding situations that are described in a straightforward fashion, and do not really
address the difference in understanding a story text based on that situation. Thus, they
have no explanation of how formulaic expressions like once upon a time or they lived
happily ever after make their way into stories. This is one of the complaints made by
Mandler & Johnson in [73]. Wilensky provides a more complete exposition of story
points and a criticism of story grammars in [137].

What is needed is a theory of understanding that takes into account the sgucture

of stories. Unfortunately, most current models have been either theories of understand-
ing that ignore storiness, or theories of storiness that ignore the understanding process.

-43-

Point Based Story Understanding

Wilensky’s {111,135, 137] theory of story points was proposed as an alternative
to the story grammar approach. The theory concentrates on human dramatic situations
that involve interacting goals. The important points of a story are defined to be the
interesting goal interactions. A story point analysis of a text could produce a summary of
the important points, once a thorough interpretation of the goal structure was made.

Lehnert’s [70] theory of plot units is very similar. The main difference is that
she allows affect, as well as plans and goals, to figure into the analysis. She uses
Roseman’s [99] weatment of affect, which identifies five dimensions of affect (desirabil-
ity, attainment, certainty, deservedness and agency) and about thirteen primary emotions
(joy, hope, relief, erc). A character’s emotional reaction to an event can be predicted by
ranking the event on each of these dimensions. Similarly, given a character’s affective
state, likely consequences can be predicted.

One problem with Lehnert’s approach is that it depends only on positive or nega-
tive changes, and does not recognize that some feelings are more important than others.
Thus, the passage ‘‘John got a new pencil. Then it broke.”’ would be given exactly the
same plot unit analysis as ‘‘John married Mary. Then she died.” Wilensky’s story points
theory suffers from the same problem. In both cases, the analysis would be that John had
a recurring goal, achieved subsumption of that goal, and then suffered a loss of his goal-
subsumption state. There would be no indication that the death of a spouse is more
important than the loss of a pencil. Wilensky mentions that the value of a point is a func-
tion of the goals involved, but he does not elaborate on determining how important par-
ticular goals are, other than to say the importance of goals are given. Another difficulty
with both theories is that for long stories there is no good way to compare different parts,
and decide which parts are more important. Lehnert has a summarization mechanism
that generates as a summary the plot unit or units most heavily connected to other units.
However, she does not allow the summary to abstract away from the literal text, nor does
she distinguish storiness from coherency.

Schank [112] had the idea of allocating inferencing resources based on the
interestingness of the text at hand. Some concepts, like death, sex, and money are intrin-
sically interesting, in this theory, while other concepts could be interesting if a personal
relatedness was perceived by the understander. Under this theory, the understander
would make more inferences about interesting concepts, and hence they would figure
more prominently in the resulting interpretation of the text.

Previous Research in Memory Models

This section will review research in Al and psychology on models of human
memory. There are a number of reasons why Al researchers should be concerned with
results in psychology. From a scientific point of view, one of the goals of Al is to better

understand human cognition. From an engineering point of view, humans are the best,
and only, example of working intelligent systems, and thus are worth examining.
Finally, because language is a means of communicating mental concepts between
humans, understanding language requires an understanding of human mental processes.
At the end of this section is a short discussion of how these results from psychology have
been applied to computer models of knowledge representaton.

Network Models of Human Memory

Network models depict semantic memory as a large network of associated con-
cepts. The concepts are normally called nodes, and the associations are called links. In
most models there are a small number of different types of links. In some models the
links themselves are full-fledged concepts, in others they are primitive elements, with
semantics known to the processes that interpret the network. All other concepts are
defined circularly, in terms of their links to other concepts.

In any memory model, the representation of concepts must be related to processes
like recall, memorizing, inference, learning, and forgetting. Most research to date has
concentrated on recall and inference.

Quillian’s model, presented in [93] and [31], is one of the first memory models,
yet is fairly representative. Although the model explains some experimental data well, it
was not intended to account for data. Instead, the model was designed primarily to facili-
tate programming of a language understanding system, TLC, the Teachable Language
Comprehender.

Quillian’s memory system had five primitive link types: superordinate, modifier,
conjunction, disjunction, and property. Using these, the concept client can be defined
as a node with a superordinate link to person, and a modifier link to a node which
might be called employs-professional. This node is in turn defined with a superordi-
nate link to employs, and a property link saying that its first argument is profes-
sional, and its second another property with superordinate by and first argument
client. Quillian chose not to give the nodes names in the actual network, using an
external dictionary instead, but the system is easier to understand if names are explicitly
used.

The Spreading Activation Model

Quillian’s system viewed memory search as a process of spreading activation.
Given two or more starting concepts, a search procedure spreads out from each of the
starting nodes along links to adjacent nodes. An activation tag is left at each node visited
by this procedure. Eventually, an intersection will occur where one node receives tags
from two starting nodes. At this point an evaluation procedure is invoked to determine if
the intersecting occurred because of some inference which should be made, or if the

.45-

intersection is purely accidental, and should be ignored.

The idea of blindly spreading out from the starting point and searching for infer-
ences is similar to Rieger’s approach. The difference is that in Quillian’s case, no infer-
ence is actually made untl there is an intersection.

TLC atternpted to deal with three classes of inferences: word sense disambigua-
tion, property composition, and anaphoric references. It attacked these problems with a
single mechanism. For example, if TLC is processing the phrase lawyer's client, it first
builds a node for lawyer. Activation tags are spread from this entry, but as there has been
no previous input, there is no chance for an intersection. In processing client activation
tags are again spread to neighboring nodes, and an intersection occurs along the path
client - employs - professional - lawyer. At this point a decision process is
called which checks the syntactic relation of the words in the text to determine if this
path should be incorporated into the representation of the text, or if the path is purely
coincidental. In this case, the path would be accepted. Other paths might be rejected.
For example, the phrase the fall leaves might lead to an intersection where leaves are
recognized as an object of to fall, but that path would be rejected in favor of the path
where the season fall is a modifier of leaves. One important limitation of Quillian’s
approach is that he did not make a clear distinction between words and the concepts they
represent.

Although not shown in these examples, the same mechanism that infers connec-
tions such as the one between lawyer and client is used to choose the best sense of ambi-
guous words, and to resolve anaphoric references. For each word in the text, TLC sets up
a new node which initally has a set of pointers to candidate senses. The candidates are
all the dictionary entries for the word, and any existing instances of those entries that
were mentioned previously in the text. The system spreads activation tags from each
candidate; the one that first connects in an acceptable path is declared the winner. Thus,
if TLC were to continue processing with the phrase she argued a case the word she
would initally have three candidate senses, the lawyer, the client, and the generic
female. The same process that connects she to argued would pick out the lawyer dis-
cussed previously as the correct sense.

The Quillian model is defended and extended in Collins and Loftus [32]. To
explain various psychological data they introduced refinements to the model. In their
extended theory activation tags have strengths associated with them, which decay over
time and distance. An intersection is redefined as a node where the accumulated activa-
tion exceeds a certain threshold of activation.

The theory was extended primarily to counter the feature model of Rips, Shoben
and Smith [96,97]. They showed, for instance, that subjects were faster at answering Is a
robin a bird? than Is a penguin a bird? According to Collins and Quillian’s [31] presen-
tation, the response time should be proportional to the number of links raversed in the
memory search. If in both cases the only relcvant traversal was the superordinate link to
bird, then both questions should take the same time to answer. Rips, Shoben and Smith
thus propose a feature model, where instead of comparing superordinate links, one

- 46 -

compares the properties of the the two concepts at hand. The decision is made through a
two-step process that first compares a small set of ‘‘defining’’ features, and then if a deci-
sion has not been made, compares the complete set of features.

Collins and Loftus point out that Quillian did not intend the superordinate link to
be the overriding, or even the primary factor used to determine matches. Instead,
categorization can in general be determined by weighing any number of pieces of posi-
tive and negative evidence. Besides superordinate links, properties can be contrasted,
prototypes or examples can be compared, counterexamples can be searched for, and so
on. Following these provisions, a network model can perform similarly to a feature-set
model. One can be considered a notational variant of the other. This should not be
surprising to anyone who has ever artempted a computer implementation of such a
model; one obvious way to implement features is with property lists, which are just nodes
and links. McDermott expands on this point in [81]. ’

There were stll some problems with the Quillian model. His syntactic rules were
impoverished. He could not easily extend the test for lawyer’s client to handle the
lawyer’s new client. Quillian’s networks were missing many of the representational capa-
bilities of more recent proposals, and I think many of the problems with his system stem
not from his basic approach, but from the lack of representational expressiveness he had
at his disposal at the time. This showed up at three levels. One, there was confusion
about levels of description, about the intensional/extensional distinction, and about the
representation of sets. These types of problems are discussed in [14,15,147]. Two, the
vocabulary of domain-level concepts that, for example, Dyer uses in (38] (scripts, plans,
goals, plot units, service triangles, etc.) was unavailable then. And finally, a new way of
looking at categorization has developed since then, due to works like [67, 68,98, 149].

Quillian freely admits that certain types of knowledge, such as mental imagery
and perceptual-motor capabilities, were *‘far beyond our present scope.”” These remain
beyond the scope of current research to this day. Despite these shortcomings, the Quil-
lian model had a number of important points, some of which have been lost in the inter-
vening 15 years.

e The emphasis is on a very extensive memory network, rather than on complex process-
ing strategies. The processing consists mainly of searching memory for closely related
concepts.

e Word sense disambiguation, property composition, and anaphoric reference resolution
all emerge from this searching strategy.

e The strategy employs an automatic, autonomous search procedure coupled with a con-
trolled decision procedure.

e Processing is based on semantic relatdonships. Syntax serves a secondary role.

-47 .

Other Network-Like Memory Models

Although Quillian’s model is typical of many proposition-based network models
of semantic memory, it is by no means the only such model. Kintsch presents a mode!
[63] that has more examples worked out than Quillian, and has more of a background in
psychology. He covers a number of important concepts, like quantification, modality,
presupposition, and time. However, as a ten-year old work, the findings are not up to
date, and are not worth discussing here. Similar remarks apply to Norman and
Rumelhart’s model [87].

John Anderson has presented two major models of semantic memory. The HAM
model [4], developed with Gordon Bower, included a computer implementation that
could accept statements like In a park a hippie touched a debutante and questions like
Who was touched by the hippie? and produce answers like The deburante. The model
was motivated largely by experimental results on list-learning tasks, and thus had less to
do with inference and understanding than the other models discussed here.

The ACT model [6-8] is in Anderson’s words a model of factual memory, and is
not primarily a model of semantic memory. Like HAM, it is more concerned with the
mathematical specifics of encoding, storage, and retrieval than with higher-level infer-
ence processes.

Another important knowledge representation formalism of the 1970’s is Schank’s
Conceptual Dependency model [105, 110]. While representations in this formalism look
quite different than Quillian or Rumelhart’s diagrams, the differences are largely
cosmetic. One difference that is important is Schank’s commitment to reductionism. In
[106], he describes fourteen primitive acts which can be combined, he claims, to specify
all verbs of action. The key point was that there are a well-defined set of inferences that
can be made from each primitive act. For example, when something is moved, its loca-
tion is no longer the source location but rather becomes the destination location. The
problem with primitive acts is that there are many non-primitive acts that have inferences
associated with them that cannot be derived from a composition of the primitives. For
example, it is a fact that if a person moves through the air for a distance of 300 miles, he
probably was in an airplane. This is not a fact about the primitive concept moving, how-
ever, so in CD there is no good place to store this fact, and no good way to represent it.

Schank extended and modified Conceptual Dependency greatly in his theory of
Dynamic Memory [113]. Here he was concemned with the types of memory confusions
one makes over a period of time, and with how one recalls and reconstructs past events.
For example, why is it that we could confuse what happened while waiting in the
dentist’s office with what happened in the doctor’s office? How do one remember the
last time renting a car? Much of the theory is an attempt to make up for the unfortunate
decision to utilize the primitive acts to the extent of ignoring perfectly good non-
primitive concepts. Like Conceptual Dependency, the Dynamic Memory theory has a
tendency to categorize and enumerate rather than to explain or motivate. Kolodner
extended this work, concentrating on episodic memory, in [65].

.48 -

Connectionist Models of Memory

Fahlman's NETL architecture [40] led to a small renaissance of the spreading
activation approach. The trend at that time had been to consider inferencing as a prob-
lem in heuristc search, and to discover ways of limiting the search space to avoid the
combinatorial explosion. Fahlman’s conclusion was that syntax-directed heuristcs could
never reduce search effectively in the general case, but special-purpose paraliel hardware
could allow blind search to take place in a reasonable amount of time. This was a popu-
lar approach because it matched, on some level, the architecture of the brain, and also
because it matched the architecture of supercomputers that are just starting to be
designed.

Fahlman concentrated on question verification (e.g. Does a nautilus have a
shell?) and retrieval (e.g. Whar kinds of molluscs are there?) rather than on making
plausible inferences. His system was designed to do all processing in parallel, but for the
types of inferences we are concerned with in this report, that is clearly not possible. To
choose a pronominal referent, for example, it is possible to gather candidates in parallel,
but choosing between them requires sequential comparisons. To see this, recall
Charniak’s example of the birthday-present story, given as (1) above. The last sentence
is He will make you take it back. A parallel process could decide that possible referents
for it are the top Jack already has and the top Janet is considering buying. The parallel
process could even give some score to each referent indicating how plausible it is. How-
ever, only a sequential process could compare these scores and pick out the best referent.

Waltz and Pollack [128, 129] work in a new sub-field called connectionist pars-
ing. They take spreading activation models to an extreme, allowing them to do all the
work, with no higher-level decision processes. This requires highly tuned weighungs for
values of activation and inhibition between nodes. It is not clear yet if this approach will
be feasible for more than very simple examples. Small and Cottrell [123, 124] have done
similar work in connectionist parsing. The idea is to train a network to automatically
acquire the ‘‘right’” weights. This is done by presenting sample inputs, letting the net-
work compute an output, and then using a process called back-propagation to reconcile
any difference between the network’s output and the expected output. The obvious
advantage of such a system is that the experimenter need not understand the internal
workings of the resulting system; indeed, he may not be able to understand it, even if it
does work. The disadvantage lies in the fact that language understanding and common-
sense inferencing appear to require many levels of processing, and it is not known if con-
nectionist models will ever be able to generate the necessary intermediate levels between
the input and output. Connectionists are encouraged by the intuition that human brains
seem to have a connectionist architecture, and infants learn to reason and comprehend
with only a few years of leaming time. However, this neglects the four million or so
years of evolution required to generate the initial configuraton of the brain.

.49 -

Marker-Passing-Based Research

Granger, Eiselt and Holbrook [46] present an integrated parser/understander
called ATLAST. This system has three main components: the capsulizer, which takes care
of lexical access and local syntax; the proposer, which searches for inferences by spread-
ing activation; and a filter, which evaluates inferences and handles more complex syntax.
Each component runs in parallel, and can communicate with the others. For example, the
filter can tell the proposer to stop looking once it has accepted an inference.

Charniak [28] presents the system that is perhaps most similar to FAUSTUS. The
Wholy Integrated Marker Passer, or WIMP, parses, disambiguates and draws inferences
from texts. The examples presented have all been one or two sentences. WIMP passes
markers and finds marker collisions in a manner very similar to FAUSTUS. The rules for
passing are somewhat different, involving what Charniak calls zorch strength. The idea
is that marker energy is divided equally among all paths leading out of a node. When
this energy falls below 1 it is truncated to 0, and marker passing stops. Collision evalua-
tion is different as Charniak uses a more general and formal resolution theorem-proving
based approach, while I give a set of pre-defined marker paths which have interesting
inferences associated with them. Conflicting suggested inferences are settled by accept-
ing the one with the shortest path length (or maximum path zorch, in his terms). Another
difference is that Charniak passes markers only from open-class words, while I pass
markers from all input, including prepositons, and thus can disambiguate vague case
relations. Finally, WIMP’s knowledge base is much smaller than FAUSTUS’s, and it seems
the program has only been tested on one to three sentence texis. This system is a con-
tinuation of earlier papers [26,27] which propose that spreading activation could be a
good starting point for a model, like Quillian’s, that made maximal use of semantic infor-
mation, and only checked syntax when necessary. However, Chamiak uses an ATN
parser which is much more powerful than Quillian’s ad hoc syntactic formalism.

Hendler [51] extends Chamiak’s approach to address the problem of problem
solving in a spreading activation model. He is primarily concerned with avoiding back-
tracking in planning; this is done by having a marker-passing mechanism make appropri-
ate suggestions as to what to try first.

Granger [47, 48] is doing similar research, but he concentrates on the problems of
lexical access and word sense and case slot disambiguation, rather than on higher level
inferences.

One important unanswered question is how these systems will scale up as the size
of the knowledge base is increased. This is a problem both in terms of execution speed,
and in terms of unpredicted interactions as new concepts are added to the knowledge
base. In the case of connectionist models, we will not know how easy it is to add a large
number of concepts until the next generation of hardware becomes available. Waltz’s
models takes on the order of several minutes to run a small example with a few dozen
nodes. Charniak’s 1985 model [27] has about 75 generic concepts, and runs somewhat
faster, since spreading activation models are at a higher level than connectionist ones.

.50 -

The FAUSTUS data base has roughly 8 times as many concepts as Charniak’s, and the
transition in FAUSTUS from 60 to 600 concepts resulted in a qualitatively different sys-
tem. A system with 10 times more concepts would be qualitatively different again.

How Large Must a Memory Be?

Many Al researchers have tried to speculate as to how many facts or concepts are
known by the average person, and how many are needed to perform ‘‘intelligently.’”” In
[82], Minsky concludes that ‘‘a million, if properly organized, should be enough for a
very great intelligence. If my argument does not convince you, multiply the figures by
ten.”’ It is not clear if the last sentence is meant to be applied recursively, or only once.
John McCarthy has stated that as few as 100,000 facts might do. David Waltz gave the
figure of two million, which is ordinary in its magnitude, but extraordinary in that he
seems 1o be the first to start an estimate with anything other than the digit ‘1’. There are
several ways of arriving at an estimate, or at least of setting bounds. For a lower bound,
a small dictionary has about 20,000 words; someone who knew half of the words, knew
only one ‘fact’ about each word, and knew nothing else would have 10,000 facts. As a
more realistic estimate, Elizabeth Bates has estimated that the average person has a voca-
bulary of 40,000 words; this would include proper nouns and names that are not in a dic-
tionary. If we accept this estimate and guess that one knows an average of 10 facts about
each word, and if one knows twice as many non-verbal facts as verbal ones, then we
arrive at a figure of 1,200,000 facts.

A 32 year old adult who learned one fact per second throughout her life would
have acquired a billion facts. This does not account for forgetting, for generalization of
learned facts, or for the reduced rate of learning during sleep. In addition, one fact per
second seems to be a high rate of learning; as Simon points out [122], there have been a
wide variety of psychological experiments that show a maximum learning time of about
one syllable every ten seconds, and that is achieved only when the subject is concentrat-
ing on the learning task. On the other hand, these experiments dealt with nonsense syll-
ables; presumably meaningful information would be learned faster. As a rough estimate,
assume that the rate-of-acquisition argument leads to an upper bound of about one billion
facts. The number of neurons in the human brain is about ten billion. Most current neu-
rological theories assume that informaton is stored by patterns of neuron activation,
rather than in individual neurons, and it is unknown what these patterns are like. But if
we arbitrarily assume ten neurons per fact, we arrive at an upper bound of a billion facts
from two different sources.

In summary, if we accept the given assumptions, we can be almost certain that the
total number of facts in a human mind is between 10" and 10! , and fairly confident that
it is between 10° and 10°. To &y to narrow the gap between these bounds any more
seems a little premature, since we are not even sure what exactly should count as an indi-
vidual ‘fact,” let alone a million of them, and since even Al systems that are called
“‘large’’ number their facts in the thousands, not millions or billions. There has been lit-
tle or no published speculation along these lines; the estimates in these paragraphs from
McCarthy, Waltz, and Bates are from personal communication.

-51-

Summary of Previous Research

A theory of inference must be able to answer three questions: what classes of
inferences are supported? What control stucture is used to generate individual infer-
ences? If contradictory inferences are suggested, how is the conflict resolved? Most of
the researcher reported here attempts to handle the first question. Rieger, Lockman &
Klappholtz, Clark, and Kay make this the primary thrust of their work. Most of the Al
researchers address the second question. Unfortunately, the third question remains
elusive; no researcher makes it the main point of his work, and some fail to address the
question at all.

There is a trend among the Al text understanding systems (Alterman, Cullingford,
Wilensky, Granger, DeJong, Lehnert) that should not go unnoticed. In each case, a new
type of knowledge structure (e.g. coherence relation, script, plan, plot unit) was
developed, along with a set of inference rules appropriate for that knowledge structure.
However, in each case the inference rules were in the form of a new top-level inferencing
algorithm; there was no way to incorporate different types of rules in one system. For
example, Wilensky’s PAM was designed as an improvement on Cullingford’s SAM, but
PAM had a completely new top-level algorithm that could not easily incorporate the class
of inferences that SAM made. Furthermore, PAM could not make certain inferences that
should have been within its power to make. For example, PAM could find the connection
between the two sentences in (18a) and determine who he refers to because the sentences
involve a character’s actions and affect. PAM could not determine what iz refers to in
(18b) because there are no goals or plans involved. Yet both examples are similar in that
the first sentence causes the second. PAM could not represent this commonality.

(18a) Bill hit John. He cried.
(18b) The ball hit the vase. It broke.

Dyer’s work is an exception to this trend towards championing a single new
knowledge structure, since he allows inference rules for various knowledge types at vari-
ous levels to be operating in the same system. However, Dyer suffers from the same
problem as Rieger; he presents very specific inference rules that can only be used in one
particular context, even though they represent knowledge that should be applicable in a
variety of ways. Furthermore, he has no unified control structure; instead he relies on
demon activation to do the right thing.

I have pointed out two flaws in past systems that both stem from the same source:
the inability to represent knowledge in a neutral declarative fashion and use that
knowledge whenever it is applicable. In the next chapter I present a knowledge represen-
tation system that allows representations to exist at the proper level of abstraction, and
allows commonalities in representation to be reflected by commonalities in processes.

.52.

Chapter 3:
Knowledge Representation

An important claim made in chapter 1 was that the inferencing algorithm for a
text understanding system could be made simpler, if the system could represent declara-
tively a variety of knowledge structures that were handled procedurely in other systems.
In this chapter I formulate the criteria that such a knowledge representation language
(henceforth, RL) would have to meet, and describe KODIAK, a RL which meets these cri-
teria.

There is a distinction to be made between what goes into the RL itself, that is,
what are the primitives of the language, and what sorts of concepts are represented using
these primitives. The first process, RL design, is the topic of this chapter. The second
process is often referred to as modeling the domain of interest. Some of the concepts
modeled in the FAUSTUS system will be discussed in chapter 5.

Another important trichotomy separates the RL, which is a descriptive notation,
from the operations that manipulate those descriptions, and the application programs that
use those operations. The combination of RL and operators I call the representation sys-
tem (RS). This terminology is not in general use; in fact sometimes even those who warn
most strenuously of the dangers of confusing descriptive issues with processing issues are
guilty of using the term *‘representation language’’ to mean RL at some times and RS at
others. For example, one will often find mention to ‘‘an efficient knowledge representa-
tion language.”” In my terminology this would be nonsensical; a RL can lend itself to
efficient implementation of a RS, which can in tumn lead to efficient implementation of a
parser, or theorem prover, or whatever, but the RL itself cannot be “‘efficient’ or
“‘inefficient.”’

A RL capable of supporting a text inferencing system must be able to represent
three types of knowledge. First, the RL must be able to define terms and describe facts
about the domain. Second, it must allow for the representation of the meaning of the
input text. It must be able to represent the meaning of the text as far as it is known, and
represent ambiguities in the text until they are resolved. Third, the RL must be able to
represent inferences derived from the text. There is by no means universal agreement on
this characterization of RL’s. Some RL designers, such as Brachman and Moser [16, 85],
feel there should be two distinct languages, one for defining terms in the domain, and
another for making assertions involving those terms. In a separate article [18], Brachman
argues that text can be represented within the assertional RL, making use of a syntaxon-
omy, a taxonomy of syntactic entities. A similar approach is taken in [125]. Moser does
not discuss the representation of text; perhaps he would favor a third language for that.

Another issue of debate is the range of applicability of a RL. It is often easier to

define RL’s, and to build models in a RL, if the use of the representations is restricted.
For example, in one large natural language understanding project being developed jointly

-53.

at BBN and ISI, there are two separate representations of English grammar, an ATN
grammar for parsing and a systemic grammar for generation of language. The idea is
that each representation is better for the task it was designed for, and that it would be
more difficult to specify a single grammar that could handle both tasks. If the goal is to
apply available technology and produce a working program, this may be the best
approach. However, if the goal is to make the most effective use of knowledge, then it
would be better to have a system where the same knowledge base can be used for a
variety of purposes: to understand stories about a given situation, to generate stories or
answer questions about that same situation, or to act in a reasonable fashion when faced
with a similar situation. Herb Simon defines understanding as: understanding a piece of
knowledge K means using K whenever it is appropriate to do so.

KODIAK [138] is a RL which was designed to allow the modeling of a large
knowledge base that could be applied to a variety of tasks. In other words, representa-
tions in KODIAK should be constructed to address the question how can I accurately
model my conception of the domain rather than the question how can I describe the facts
[need to ger this particular application to work. An earlier version of FAUSTUS had a
knowledge base that it shared with a common-sense planning program, PANDORA [41].
The PHRAN parser used in FAUSTUS has always shared its syntactic knowledge with the
language generation program, PHRED [59]. When the generator was redesigned as
Jacobs’ ACE, sharing knowledge was still a priority. KODIAK is also used as the RL for
UC [139], a consultation system that answers natural language questions about the UNIX
file system. Thus the idea of sharing knowledge between systems that perform different
tasks is well established at Berkeley, and is also an important thrust of recent work at
Brown [54, 146].

Few other researchers have addressed the problem of sharing linguistic and real-
world knowledge to this extent. However, there have been several attempts to allow one
grammar to serve for both parsing and generating tasks. The programming language
PROLOG is designed so that a procedure can in some cases solve for any one of its miss-
ing arguments, when the others are supplied. For example, we might be able to write ‘X
= Y + Z and solve for any of X, Y or Z whenever the other two are given. In actual
practice, PROLOG does not always perform this way, and in fact simple arithmetic is one
of the areas in which it fails to exhibit the desired behaviour. However, several gram-
matical formalisms have been been developed that can be manipulated by PROLOG in just
this manner. Pereira and Warren [91] introduced definite clause grammars or DCG'’s,
which are designed for parsing using PROLOG, but could also be used for generation.
More recently [130], they describe extraposition grammars, and show how they can be
applied to the problem of translating natural language queries to a data base. Martin
Kay’s functional unification grammar [62] has the property of reversibility with respect
to ranslation; sentence a in language A can translate to sentence b in language B if and
only if b can also translate to a. Jacob’s ACE formalism [57] has the explicit goal of pro-
viding a direction-independent association between language and meaning, which is also
somewhat independent of the grammatical formalism used.

KODIAK, like Conceptual Dependency (CD) theory [105], repr=sents a conceptual
level of analysis that is independent of the actual words and syntactic constructions in the

-54.

sentence. It is a meaning representation language, not a word or sentence representation
language. Thus, the output of the conceptual analyzer, and the input to FAUSTUS is a
meaning representation, not a syntactic parse tree.

Unlike CD, a single KODIAK knowledge base does not claim to be an interlingua,
a universal language to represent any thought expressible in any language. Rather, the
knowledge encoded in a KODIAK knowledge base is designed as a model of one particu-
lar person’s conceptual knowledge. Different people in different cultures speaking dif-
ferent languages and having different experiences will conceptualize the world dif-
ferently, so we should not expect there to be one ‘‘correct’”” representation of all
knowledge.

One guiding principle is that any concept that is important enough to have a word
denoting it is important enough to be modeled as a full-fledged concept, not just as a
composition of other concepts. Thus, we have explicit representations for concepts like
buying and selling; we are not forced to decompose them into primitive actions as one
would in CD.

Conversely, if a concept is represented in KODIAK, it means the concept is of
some import. Other representation languages like KL-ONE that were concerned primarily -
with defining terms explicitly often ended up generating spurious intermediate level
categories, such as left-handed-person-with-two-supervisors-and-red-hair. In
KODIAK there is a difference between forming a category like this, and forming a
description that happens to fit into several categories.

CD also makes a commitment to the idea of reductionism: providing a small set of
primitive concepts that can be composed to represent any other concept. This is closely
related to the interlingua issue, but they are ultimately orthogonal issues. KODIAK makes
no such commitment to reductionism; in fact it promotes a proliferation of concepts, each
defined recursively in terms of the others, but with no pre-determined set of primitive
concepts.

Criteria for Representation Languages

The most basic criterion of a RL is what McCarthy and Hayes [78] call episzemo-
logical adequacy. By that they mean the RL must have sufficient expressive power to
represent the concepts the modeler wants to define. If, for example, the modeler is
interested in the domain of algebra, then it would be useful for the RL to have mechan-
isms for dealing with sets and numbers built in as primitives. This notion has been re-
discovered by a number of researchers; McDermott [80] calls it analytic adequacy and
Woods [148] calls it expressive adequacy.

As another example of expressive power, in KL-ONE one can assert a minimum
and maximum on the number of role fillers (of each role) that a concept can take. For
example, we can say that a mammal has a minimum of two and a maximum of four legs,
and that a person has exactly two legs. A language with more expressive power might

allow the modeler to assert that all animals have an even number of legs (except perhaps
starfish). However, adding expressive power like this can have repercussions in terms of
efficiency and inferential power of various operations in the RS. If the only restriction
allowed on the number of role fillers is a maximum and a minimum, then there is an easy
algorithm for determining if all instances of a given category must be instances of
another category. This is called the subsumption relation in KL-ONE.

Determining subsumption becomes more difficult if we allow more expressive
power. Suppose we wanted to define the concept prime-pose !0 mean a pose that an
animal adopts whereby a prime number of legs are bent and a prime number of legs are
straight. Let us also define prime-animal as an animal that is capable of adopting the
prime-pose. Then, asking the RS if all animals with more than two legs are prime-
animals would be equivalent to asking it to prove Goldbach’s conjecture, a well-known
and long unsolved problem in mathematics. This is unfortunate, because we would like
all operations in the RS to be easily computable. For more examples of how easy it is for
the computational complexity of queries to the RS to get out of hand as we increase the
expressive power of the RL, see [17]. He also gives a proof of a subsumption algorithm
there.

Epistemological adequacy is a matter of degree, rather than of an absolute
adequate/inadequate distinction. But just as important as the number of concepts we can
represent is the ease with which they can written, extended, shared, and modified. There
is a parallel here between RL’s and programming languages. The ‘‘epistemological ade-
quacy’’ of ADA or COMMON LISP is no better than machine language, yet much time and
effort has been spent in developing these new languages, because they make it easier to
express complex algorithms and data structures.

McCarthy and Hayes also introduce the criterion of heuristic adequacy. A prob-
lem solver meets this criterion if it can use the facts it has represented whenever it is
appropriate to do so. As mentioned above, the approach taken in KODIAK is to encourage
the domain modeler to define concepts in a form that is neutral with respect to the
intended use. If this is done consistently, heuristic adequacy will take care of itself.

Efficiency of operations in the RS is another criterion, but it is not one I will be
overly concerned with, since it is not directly a property of the RL. The data bases
involved in understanding short texts are (unfortunately) still quite small, and the
inferencing mechanisms I am using are designed to be efficient, so that a wide range of
RS implementations will all be efficient enough. In general, it behooves the RS designer
to worry about efficiency to a degree, but it is important to maintain the distinction
between efficiency issues and representation issues. For example, in the PEARL represen-
tation language [134], there was a mechanism for saying that every time an instance of a
given concept was created, allocate storage and fill in the default value for certain rela-
tions involving that concept, but do not allocate storage for other relations. But this set
of relations with pre-allocated storage is also the set of relations that is used in matching
one instance with another. This means that a representation issue is mixed up with an
implementation issue. A similar confusion occurs in the FRL language [100]. In
KODIAK, all relations can come into play for matching purposes, regardless of how they

.56 -

are implemented.

The next criterion is inferential adequacy, what McDermott called power. For
most RL'’s, inference takes the form of logical proof: if the assertions P and Q are in the
knowledge base, and if it is given that P & Q — R, then the system had better be able to
deduce R, and not deduce 'R. In other words, completeness and consistency are the
guidelines against which inferential adequacy is judged. Unfortunately, this is a very
harsh judge; if there are more than a few dozen facts in the system, then it is strongly
believed that there cannot be any algorithm that can solve this problem in the general
case, without taking years of computing time. Technically, we say that the satisfiability
problem for predicate calculus is NP-complete, and therefore it is in practice impossible
to guarantee completeness and consistency for any RS with more than a handful of asser-
tions. We must accept some degradation in either the epistemological or inferential ade-
quacy of any RS. For humans, the balance is tipped heavily towards epistemological
adequacy; we rarely have trouble finding some way to think about a concept, but there
are many, many valid logical deductions that we are not able to deduce. Humans also
seem to have an ability to handle contradictory assertions without much trouble. This is
in marked contrast to propositional logic, where ‘‘contamination’ by an inconsistent
belief is a constant problem. If P and P are both believed true, then any proposition can
be proved true.

In the domain of text understanding, logical deductions are not as important as
plausible inferences. Also, I am not interested in proofs of general properties, but rather
in specific inferences involving individual concepts. Thus, if I were to adopt the
definition of animal that asserts an even number of legs, and defined prime-pose as
above, I would only be interested in questions like could Clyde, an elephant with four
legs, adopt the prime-pose? Obviously, it is easier to answer a question like this than to
prove Goldbach’s conjecture. Since my plausible inferencing algorithm looks only at
paths of length less than n, where n is small, it does not matter if the computations are
expected to grow exponentially for large n.

I have chosen not to explicitly define a logic which could, for example, deduce R
from P & Q and (P & Q — R). Instead, I have defined an inferencing mechanism for
making plausible inferences triggered by connections along short paths, and now need to
define plausible and short. The idea of conceptual distance makes sense for RL’s that
are based on, or can be interpreted as, semantic nets. KODIAK is such an RL. The con-
ceptual distance between two concepts is defined as the shortest path between the nodes
representing those concepts, where the length of a path is computed by summing a cost
function over the links in the path. Conceptual distance is asymmetric; to reuse an old
example, the distance from island 0 body-of-water is less than the distance from
body-of-water 10 island. This is because part of the definition of island states that
every island is surrounded by a body-of-water, but not every body-of-water need
surround an island. The distance from A to C is always greater than or equal to the sum
of the distances from A to B and B to C, if we assume B was in the network throughout.
However, introducing a new concept B’ to the network can conceivably produce a shorter
path between A and C. Thus, conceptual distance is non-monotonic; it can change over
time. The distance from A to A is always zero. Note that conceptual distance is distinct

.57.

from similarity. The concepts island and body-of-water may be close, but that does
not imply any similarity between the two. On the other hand, similar objects will nor-
mally be conceptually close.

Consider the task of the domain modeler. She or he must represent the concepts
of interest using whatever primitives are in the language, along with new concepts she
defines. In doing this she has certain intuitions about how to represent each concept.
However, she also has intuitions on the conceptual distance between pairs of concepts.:
When there is a grave discrepancy between her intuidve judgement of distance and the
distance computed by the system, she has three choices: change the function for comput-
ing the distance between concepts, change the representation of one or both concepts, or
ignore the discrepancy and hope that her inwitions were wrong, and that the system is
still able to make the right plausible inferences involving these concepts. In modeling
concepts for FAUSTUS, I found the first choice was quickly ruled out after a brief shake-
down period, because changing the cost function would effect the distance between every
other pair of concepts in unpredictable ways. In many cases I was able to detect model-
ing errors when a path between two concepts was too short and triggered an erroneous
inference, or was too long and missed an important plausible inference. In other cases
there seemed to be no good way to change the distance between two concepts without
perverting their meanings in some way.

Wilensky [141] re-iterates the principle of epistemological adequacy, extends the
notion of heuristic adequacy, and introduces the criteria of interpretability and unifor-
mity. Interpretability is the inverse of epistemological adequacy. The idea is that any-
thing that can be stated in the language must have a ‘‘meaning’’ or interpretation,
although that meaning may be false or nonsensical in the real world. The principle of
uniformity states that a single language that can express anything is better than a collec-
tion of ad hoc languages.

Wilensky also introduces the principle of cognitive correspondence: ‘‘a particular
representation for a particular item must be supported by its correspondence to how that
item is cognized.”* In previous systems, there was always the assumption that, for exam-
ple, *‘John ate lunch’’ would be represented in predicate form as eat (John, lunch)
rather than lunch (eat,John). The cognitive correspondence principle recognizes that
both choices are possible, that the choice between them is not arbitrary, and that the rea-
son for preferring to associate verbs with predicates is an underlying cognitive reality of
such an association.

The KODIAK Representation Language

Now that we have an understanding of the criteria for evaluation RL’s, we can
investigate the RL used in the FAUSTUS system, KODIAK, and discuss the design deci-
sions that went into KODIAK. The KODIAK language was developed jointly by Robert
Wilensky and several members of the BAIR group at Berkeley. The version described
here differs in some details from the version discussed by Wilensky in [141].

.58.

Representations in the KODIAK language are composed of instances of three types
of primitive objects, and eight primitive associations between those objects. When seen
as a semantic network, the objects are called nodes and the associations links. Represen-
tations are formed by inserting links between nodes. When seen as a programming sys-
tem, the primitive types are operators of no arguments that return new objects, and the
associations are operators of two arguments that assert relations between the objects.
Objects have names as a convenience for the system modeler, but the names are not used
for purposes other than identification. The primitive object and link types are shown in
Figure 1 along with a brief description of each one.

The Three Primitive Object Types

An absolute is any concept that can be modeled in its own right, that is, any con-
cept that it makes sense to speak of as an individual entity. Absolutes need not represent
physical objects; they can be actions, events, situations, or abstract ideas. Examples
include person, island, action, walking, and talking. Attached to the concept
person will be primitive associations to describe assertions that are true of all instances
of person, but also information that is true for most instances but not all, or is true for
only a few instances. In NETL [40] the concept that I call person would be called
typical-person. The intent in KODIAK is to model the general idea of persor, but to
be able to distinguish typical instances from non-typical instances and from non-
instances. There is no attempt to define a set of necessary and sufficient conditions for
defining person; instead we describe person as best we can, and rely on the inferencing
algorithm to classify any instances as a person OF non-person. In general classification
will depend not only on the properties of person, but on the properties of similar

Absolutes - concepts, €.g. person, action, purple, government
Relations - relations between concepts, €.g. actor-of-action
Aspectuals - formal parameters for the relations, e.g. actor

Dominate - a concept is a subclass of another class
Instance - a concept is an instance of some class

View - a concept can be seen as another class
Constrain - fillers of an aspectual must be of some class
Argument - associates aspectuals with a relation

Fill - an aspectual refers to some absolute

Equate - two concepts are co-referential

Differ - two concepts are not co-referential

Figure 1: Primitives in KODIAK

.59.

concepts as well. For example, if the only types of animal defined in the model were
person, mouse, and fish, then when confronted with a description of a gerbil, the sys-
tem would probably classify itis a mouse.

A relation is a concept that holds between two instances of absolutes. For exam-
ple, given the absolutes talking and person, we could define the talker-of-talking
relation to hold between instances of talking and instances of person. Each relation
can be thought of as a function of two parameters; the formal parameters are called
aspectuals. In this case, the aspectuals might be called talker and talkers-action.
The definition would say that every talking action must have exactly one talker, who
must be a person. However, not every person need be related to a talkers-action,
and some may be related to more than one.

The Eight Primitive Associations

The Dominate Association

The primitive association dominate is used to define hierarchical relationships
between concepts. For example, the assertion (dominate animal elephant) means
that elephant inherits all relations and aspectuals from animal, although further asser-
tions may be made to differentiate elephants from other animals. If we had defined a
part-of relation to hold between animal and animal-head, then elephant would
also have to participate in a part-of relation with an animal-head, but we could
further differentiate the relation to require an elephant-head.

The description above defines individual dominate links, but there is more that we
can say about groups of dominate links. For example, not only can we can assert that the
concepts male-person and female-person are dominated by person, but furthermore
we can assert every person must be one or the other, but not both. Together male-
person and female-person form an exhaustive partition of the concept person. Itisa
partition because no instance of person can belong to both categories, and it is exhaus-
tive because there are no other possible categories; every person must be one or the
other. This information is used by the matcher: if person.l is a male-person, and
serson.2 is @ female-person, then the matcher can conclude that they cannot refer to
the same person. Partitions are implemented with an optional third argument to the dom-
inate relation, as described below.

Another example of an exhaustive partition is old-person and young-person,
for some suitable definition of old. Note that there is nothing to be said about matching
overlapping concepts; concepts that appear in distinct partitions. Given that person.1is
a male-person, and person.2 is @ old-person we cannot decide if person.l and
person.2 are the same or different. An example of a non-exhaustive partition would be
the various species of animal: dog, cat, elephant, mouse, etc. Here there is
always a chance that there is another kind of animal that we have not heard of yet, and so

-60 -

knowing that a given animal is not a dog, cat, or elephant is not enough to prove that it
must be a mouse. On the other hand, if we know that animal x is a dog, then we want to
be able to conclude that it is not a cat, and make no conclusion about it being, say, a
male-animal OFf female-animal.

We are now in a position to see just how partitions are represented in KODIAK.
Two different implementations were tested. In the first implementation, we would have
assertions such as these:

(dominate person male-person p)
(dominate person female-person p)
(dominate person old-person q)
(dominate person young-person qg)
(dominate animal elephant r)

{exhaustive-partition p)
(exhaustive-partition q)
{(non-exhaustive-partition r)

Here, p, a, and r are partition indicators. Partition indicators support two operations.
First, they can be tested for equality. The system can determine that male-person and
female-person are in the same partition with respect to person, but that old-person
is in a different partition. The other operator is partition type: p and g can be declared
to be exhaustive partitions, while r is non-exhaustive. The current implementation of
KODIAK provides two user interfaces (one textual, the other graphical) to make such
declarations easy. As an implementation detail, partition indicators were implemented as
integers, rather than symbols, since all that is important is that they be atomic.

While this implementation was reasonable and worked adequately, the introduc-
tion of a new data type, partition indicators, tended to complicate code that would other-
wise be more straightforward. Therefore, a second implementation was tried which
made use of differs links rather than partition indicators. To duplicate the information
given above in this implementation, the following assertons would be used:

(dominate person male-person)
(deminate person female-person)
(dominate person old-person)
(dominate person young-person)
(dominate animal elephant)

(differs male-person female-person)
(differs ocld-person young-person)
(dominate animal other-species-of-animal)

(differs elephant other-species-of-animal)

Partitions are indicated by enumerating each pair of differing members. Non-

-61-

exhaustive partitions are indicated by inventing a new absolute, in this case other-
species-of-animal as a catch-all. The disadvantage of this approach is that it requires
on the order of ° differs links for a partition of n objects, while the previous approach
requires only n assertions. In practice, partitions are small, and the second approach
seemed to perform just as well, although no formal benchmarks were taken.

For relations and aspectuals, the hierarchical relationships are even more compli-
cated than they are for absolutes. Suppose we would like to represent the fact there is a
concept called event that can have any number of participants. Furthermore, an
action is a kind of event, where the actor is one of the participants,anda talk-
ingis a kind of action where the talker is the actor. There may be other partici-
pants in an action besides the actor, but there can be no other actors ina talking
besides the talker. Participant dominates actor, which in turn dominates
talker, but we say that talker specializes actor, while actor does not specialize
participant. In other words, the talker is rhe actor, but the actor is only a participant.
This is diagrammed below in Figure 2. The (s) attached to a D link indicates specializa-
tion, while the lack of an (s) indicates a non-specializing link. Specialization is imple-
mented with the exhaustive/non-exhaustive partidoning mechanism described above.
The ability to represent this difference turns out to be important for handling prepositions
and other case-relation related problems, as we shall see in chapter 3.

participant

/

D

/

actor D

D(s)

talker ulkee

Figure 2: Specializing and Non-Specializing Dominate Links

-62-

The Instance Association

The other primitive hierarchical association is instance. The assertion
(instance elephant Clyde) means that Clyde inherits all relations and aspectuals
from elephant, and furthermore all the constraints on the aspectuals of elephant must
hold for any of the fillers of the inherited aspectuals of Clyde.

Inheritance through the dominate/instance hierarchy is transitive; every concept
that is dominated by elephant is also dominated by animal, and every concept that
dominates animal dominates elephant. If Clyde is an instance of elephant, then
Clyde is also an instance of every concept that dominates elephant. However, it is not
the case that every concept that has animal as an instance also has elephant as an
instance, or vice-versa.

It is important to keep the absolute persen distinct from the absolutes set-of-
all-people and homo-sapiens. We can assert that a person has two legs, that the
set-of-all-people has cardinality of about 4 billion, and that homo-sapiens 1S an
instance of species, and is dominated by hominidae. The three concepts are related to
each other by primitive associations, but are separate concepts. If we apply the rules for
inheritance strictly, it becomes obvious that these must be distinct concepts. Otherwise,
if we asserted that homo-sapiens evolved one million years ago, and that Fred is an
instance of homo-sapiens, we would be forced to conclude that Fred evolved one mil-
lion years ago. Other researchers (e.g. [10,39]) have tried to avoid this dilemma by
positing more complicated inheritance rules, involving meta-properties that are not inher-
ited, or are inherited differently than other properties. In KODIAK inheritance always
works the same way, but we are forced to introduce new concepts for species and
set-of-all-pecple and so on.

The Argument Association

The argument primitive association is used to pair aspectuals with relations.
Every relation must have exactly two aspectuals, and every aspectual is associated with
one unique relation. For example the talker-of-talking relation would have two
aspectuals as arguments, which might be called talker and talking-action. An
instance of talking might then be related to an instance of person by an instance of
the talker-of-talking relation. This would also entail two instances of the aspectu-
als, and, as we shall see in the next paragraph, two fill associations. It should be noted
that this formulation of relations and arguments differs in detail from the formulation
given by Wilensky in [140, 141].

-63-

The Fill Association

The fill primitive association holds between an aspectual and an absolute that is
used to fill the value of that aspectual. Both the aspectual and the absolutes must be
instances: if the aspectual is an instance of aspectual a then the absolute must be an
instance of each of the constrainers of A, as defined by the consirain association, which
will be covered in the next section. Using the example from the paragraph above, the top
diagram in Figure 3 depicts the arguments and constrainers of the talker-of-talking
relation, and then shows the fillers of an instance of that relation, talker-of-
talking.l. In the diagrams below (and throughout this thesis), the conventon is that
aspectuals appear as circles, and absolutes as rectangles. In Figure 3, relations as double
circles, but that convention is not adopted throughout. Associations appear as arTows
labeled with a single character: D, I, V, C, A, F, =, or . The second and third diagrams
in Figure 3 are abbreviations representing the same information as in the top diagram, but
in less explicit notations.

The Slot Pseudo-Association

The middle diagram in Figure 3 uses the slot notation, labeling a link with an S.
The intent is that we can consider talking to b= 1 frame with a talker slot which must
be filled by a person. This is just a convenient aotation; the actual implementation is in
terms of relations, aspectuals, and argument links. The bottom diagram in Figure 3 takes
this one step further, placing the aspectual name as the label on the link. These notations
will be used freely in diagrams, but they should always be construed as abbreviations for
underlying A and F links. The abbreviations have the advantage of making the diagrams
less cluttered, but they have the disadvantage of a built in bias: the arrow says that per-
son.1isthe talker of talking.l, butitcould as easily have said that talking.1l is a
talking-action Of person.l.

The Constrain Association

The constrain primitive association holds between an aspectual and an absolute,
and asserts that all fillers of instances of the aspectual must be instances of the absolute.
If there is more than one conswaint put on a single aspectual, then fillers of the aspectual
must satisfy all the constraints simultaneously. There is no way to represent a disjunc-
tion of constraints directly. For example, there is no direct way to say that the limbs of
an animal must be filled by either arms or legs. Instead, we would have to have paral-
lel hierarchies for absolutes and aspectuals, each saying that arm and leg are dominated

by limb.

.64 -

talking

talking.! person.1
\ . . /
alker.1

person

talking rl_— S /ulker\ C person
-
; talking.1 talker person.l
| I—

Figure 3: The talker-of-talking Relation

Number Restrictions and Quantifiers

By now we see that relations in KODIAK are rather complex entties. Besides the
relation itself, there are the arguments, which are aspectuals, and the constrainers, which
are absolutes. KODIAK is designed to represent each of these components as a distinct
manipulatable object. With this we can describe relations to the point where, if a relation
held in a model of the world, we would know what kinds of objects it would have to hold
between. What is missing is an indication of which relations are likely or unlikely to
hold. For instance, we would like to be able to say that a// islands must participate in a

surrounding relation with a body-of-water, but that only some bodies-of-water need sur-
round islands. In KODIAK his is done by adding a quantifier to the appropriate constaint
link. The allowed quantifiers are all, most, some, and none. To the matcher, the
quantifiers all and none are significant in ruling in or out a match, while to the marker
passing mechanism, the cost of traversing an inverse constrain link is less if the quantfier
is all or most than if it is some or none. The four quantifiers were chosen because of their
use in these two procedures; as far as the current implementation of FAUSTUS is con-
cerned, a more complete quantifier system would be of no additional use. Of course,
there could be other applications that depend critically on a better-defined quantifier sys-
tem. For such applications, extensions could be made.

Number restrictions in KODIAK are handled the same way as in KL-ONE; for each
aspectual a minimum and maximum number may be specified. These determine the
number of fillers that an instance must have, if they do in fact have any. There is an
interaction between quantifiers and number restrictions. For example, we can say that
only some reptiles have ears, but if they do have any, they must have exactly two.
Similarly, we can assert that only some bodies-of-water participate in surrounding rela-
tions with islands, but those that do can participate in any number of such relanons.
Number restrictions are inherited through the hierarchy; If aspectual B is dominated by
aspectual A, then the maximum number restriction on B must be less than or equal to the
maximum number restriction on A, and the minimum must be greater than or equal for
specializing aspectuals. For non-specializing aspectuals, this constraint on the minimum
number restrictions does not hold.

Some examples should make this clearer. In Figure 2 above, the talker aspec-
tual is dominated by actor, and the dominate relation is a specializing dominate. This
means that a talker is the actor of a talking action. There is only 1 actor for an action,
and it would be an error for the number restriction on talker to be anything more or less
than 1. In contrast, a non-specializing dominate asserts that, for instance, an accom-
panier is a participant in a situation. So it is not an error that the minimum number res-
triction on accompanier is less than on participant; it is assumed that a situatdon will have
some other kind of participant. Of course, it is possible for two or more people to act
together, but in that case we say there is one single group that is playing the role of the
actor.

(number-restrict actor 1 1)
(number-restrict talker 1 1)
(number-restrict participant 1 <o)
(number-restrict acccmpanier 0 o)

As another example, consider the water-surrounding-island concept. It
requires exactly one surrounded island, and one or more surrounding bodies of water.
Thus, we can state that Great Britain is surrounded by the Adantc and the North Sea, but
stating that both Hawaii and Oahu are surrounded by the Pacific would require two dif-
ferent assertions (or one water-surrounds-archipelago assertion). Below we have
some of the low level calls needed to state these facts; again recall that the KODIAK user

-« 66 -

interfaces make it unnecessary to work at this level.

(quantifier (constrain surrounded-island island) all)
(quantifier (constrain surrounding-water body-cf-water) some)
(number-restrict surrounded-island 1 1)

(number~-restrict surrounding-water 1 o9)

We also have some flexibility in specifying how an instance manifests a particular
aspectual. Consider the problem of dealing with anomalies like three legged elephants.
In languages with strict classification, like KL-ONE, we can form the concept elephant
and the concept quadruped, but it would be incorrect to try to state a relation between
them, in the KL-ONE formalism itself. To say that most but not all elephants have four
legs means going outside the language and using a distinct assertional language.

In KODIAK we have the flexibility to say that most elephants have four legs, but
somehow this does not capture completely the relation between elephants and their legs.
The number of legs is not a statistical property. Suppose we defined the typical Ameri-
can family as having four children, and asserted that the Jones are an American family
with three children. In this case there is no need for an explanation as to why the Jones
only have three children, and it does not make any sense to ask which child is missing?
In contrast, if we assert that Clyde is an elephant with three legs, then we expect an
explanation of some sort: perhaps Clyde had a birth defect or an amputation. Also, it
makes sense to say Clyde is missing his left front leg. Therefore, rather than asserting that
most elephants have four legs, in KODIAK we assert that all elephants have four legs, but
we describe the way in which animals have legs: that there are specific places on the
body where legs are expected, and that they are attached by tendons, ligaments, and skin.
We include the fact that there are non-standard ways to ‘‘have’ a leg. One way is to
have a missing leg because of a birth defect, and another way is to have a missing leg
because of an amputation, just as one way to have a child is to have a deceased child, or
an adopted child.

If we came across a new animal that looked just like an elephant except it had an
extra pair of legs protruding from its midsection, it would not fit the definition of
elephant. We might want to classify it as an elephant, reasoning that it came closer to
being an elephant than anything else, but that would be a matter of classification rather
than definition.

Of course, some properties are in fact properly represented using the quantifier
most rather than a/l. For example, it would be a mistake to assert that all birds can fly.
Instead we assert that most birds can fly. This gets inherited by all subcategories of bird,
but we can still say that a penguin is a bird, and no penguins can fly.

Ideally, the KODIAK knowledge base could update itself automatically to account
for inconsistencies. If the modeler originally asserted that all birds can fly, and then
added the fact that penguins can not fly, the system could change the quantifier for birds
flying from all to most. While such an approach might work for examples like this, in
general the problem of learning new concepts is complex; it is not obvious what to

.67 -

change, what variables to generalize over. FAUSTUS is concerned only with the problem
of interpreting input text properly, and thus we will not be concerned with the problem of
learning new generalizations about the domain. This means that the domain modeler will
have to be more careful, and will be expected to do a certain amount of debugging.
FAUSTUS checks for certain inconsistancies in the domain model and prints appropriate
error messages, but it doesn’t make or suggest corrections on its own.

The Equate Association

The equate primitive association comes in two kinds; one that holds between two
absolutes, and one that holds between two aspectuals. The first kind means that the two
absolutes are co-referential. If we had one concept representing Bill’s girlfriend, and
another for John's sister, and then learned they were one and the same, we would insert
an equate link between them. The other use of equate is to assert that two aspectuals
must be filled by the same absolute. For example, the concept suicide can be defined
as a kind of killing where the killer and the victim are equated. (There may be
additional facts about suicide that further differentiate it from killing. For example,
killing can be done accidently, while suicide, it seems, can not.) Equate is an equivalence
relation; it is symmetric, transitive, and reflexive. The equate association can also be
used to model more complex facts about the domain, as we shall see shortly.

The Differ Association

In contrast to equate is the differ primitive association. This is used to assert that
two absolute instances are explicitly not co-referential, or that two aspectuals cannot be
filled by the same instance. Differ is symmetric, but is neither transitive nor reflexive.

Unlike PLANNER, CONNIVER, FRL, PEARL, OPSS, and many other RLs, there is no
notion of variable in KODIAK. Aspectuals can be used to achieve some of the purposes
of variables: they can be defined to be equal or different, and they can have quantifiers
associated with them. The scope of every aspectual is universal; for example there is
only one node denoting the actor of an action; to represent the actor of, say, a driv-
ing action, we would have to create a different node, which we could name driver, and
which would be dominated by actor. Then to represent a particular instance of driving
with a particular driver, we would have to create another node, say, drziver.l, which
would be an instance of driver. The lack of variables leads to a proliferation of con-
cepts, but it makes it easy to refer to these concepts unambiguously.

At this point, one might ask why the equate and differ links are included as primi-
tives of the system, and why, for instance, a ‘‘similar-to’’ link is not included. The
answer is that together the two link types provide the basic capability that other systems
derive from the use of symbols, and the eq and neq predicates, to use LISP terminology.
In a language like FRL, two frames match if they are in the same branch of the type
hierarchy and if all their slot fillers match. Two slot fillers match if they are either

<68 -

frames that match, or are the same symbol. In KODIAK, there is no notion of slots, and no
notion of bottoming out at symbols. Two concepts match if they are the same concept or
are equated, they fail to match if they differ, and otherwise we have to look at the rela-
tions they participate in to see if they match, or if any of their ancestors differ.

The View Association

The final primitive association is called view. It is used to interpret one concept
as if it were another type of concept. The representation of views is more complex than
the other representational primitves, involving both an association and a relation with
accompanying aspectuals. Views will be explained below, after the semantics of
KODIAK relations have been presented in more detail.

The Relational Regress Problem

The relational regress problem as follows: Anytime we have a relation holding
between two absolutes, it is possible to re-model that relation as an absolute in its own
right, with two new relations holding between it and the two original absolutes. We need
a principied means of deciding when to stop — when to use relations and when to use
absolutes. Consider the problem of modeling the situation wherein a person knows a
fact. One solution is simply to define a relation, knows, that holds between a person
and a fact. We would further assert that a person can know any number of facts, and a
fact can be known by any number of people, and we could add more semantics to define
knows in terms of believes and true. Another solution is to represent knowing as a
kind of stative-situation where the be-er of the situation is a person who we
will call the knower, and the object is a fact we will call the xnown. In other words,
we define a new absolute, knowing, and two relations involving that absolute. We could
go yet another step, first defining the knowing situation as an absolute, and then defining
wnown as an absolute which is another situation wherein something is known and knower
as a situation wherein somebody knows. We would then need to define four new rela-
tions to mediate between these three new absolutes. Figure 4 depicts the three possible
representations graphically, using the abbreviated notation.

The answer to the relational regress problem is suggested by the fact that abso-
lutes can participate in other relations, while relations cannot participate in other rela-
tions; they are unqualified. Thus, if we adopted the first representation shown in Figure 4
above, and if we wanted to say that person.32 knows fact.37, it would have to be an
unqualified instance of knowing. On the other hand, if we adopted the middle solution,
we would be able to represent person.32 knowing fact.37 for a period of time, but
then forgetting it. This is possible because stative-situation has a duration rela-
tion associated with it. Another important consideration is that it makes sense to have a
knowing situation where the knower is unspecified, as in Someone must know who the
murderer is or where the known fact is unspecified, as in John knows something. For

.69 -

. |
fact < knows person
—
fact e knoWn ————of knowing preae KROWET ———— person
fact knowing person
: known/ \knower /
Ja 790@ component e
known knower

Figure 4: Three Levels of the Relational Regress

these two reasons we see the first representation in Figure 4 is too restrictive, and we
need at least the second. The first permits only assertions of the form ‘‘there is a situa-
tion wherein X knows Y,”’ while the second allows ‘‘there is a situation wherein X
knows Y, and furthermore this situation held from last Tuesday until the present.”’

The third possibility from Figure 4 permits some rather bizarre representations.
We could use it to assert ‘‘there is a single situation wherein X knows Y on Monday and
Z knows W on Tuesday.” It seems wrong to call something like this a single situation,
so it must be that this representation is not restrictive enough. The second representation
of knowing correctly captures the intuition that these should be represented as two dis-
tinct knowing situations. It is through tests like the duration test and this multiple
instance test that the modeler determines how to represent concepts. The guiding princi-
ple is as follows:

Represent as relations the inalienable intrinsic properties of an absolute,
and represent other properties through separate stative absolutes.

.70 -

Modeling Facts About The Domain

Suppose we wanted to model two simple facts about the action of giving:

(1) A precondition of giving is that the giver has the object given.
(2) The result of a giving is that the recipient has the object given.

person thing

\

situation

57 C
AN

participant
stative
g patient

|

‘S/ i
=

giver has
given \ /
Vd
S
givee has
giver- given
has-given s

haver

= givee

giver

Figure 5: Modeling Facts About the Concept Giving

.71 -

givee
has given
had

given =

givee
given = has given

giving givee has
result ¢ > given

giving f—S

ivee has - ‘ . i
s given gving thing
resuit given
/ \ of giving of giving
c A A A A - €
givee - givee
has given = giving = has given
with had had
A

A//_/
Figure 6: Details of Equate Links

had of
givee has given

The relation between having and giving is shown in Figure 5. The concept
having is defined to be a kind of stative situation,in particular it is a being, where
the be-er is called the haver. The be-erisa participant ina situation, and thus
must be a person. Besides having participants, situations can also have a
patient, and the patient of a having is called the had, and must be a thing. The
other kind of situation is an event, and one kind of event is an action. ActionSs
have pre-conditions and a result. They also have an actor, which is a partici-
pant (although that link is not shown in the diagram). Giving is an aciion where the
actor is called the giver, the patient is called the given, and there is another par-
ticipant called the givee. (In the current world model, giving is also dominated by

.72

transferring, but that is not shown here.) Giving also hasa pre-condition, namely
giver-has-given and a result, givee-has-given, which are both kinds of having.
However, the result of a particular instance of giving can not be just any instance of a
giver-has-given, it has to be one with the right object and the right recipient. We
would not want the result of John giving a book to Mary to be that Bill has a pencil.
Equate links are used to make the proper description. The equate links assert that the
haver of the result of a giving must be the same as the givee of that giving, and
the object given must be the same as the object had by the givee. Two similar equate
links hold for the precondition.

Since Figure 5 makes use of the abbreviated slot notation, it will be useful to look
at the equate links in more detail in Figure 6. One of the facts represented in Figure 5 is
that, in a giving event, the thing given is the same as the thing which the recipient (the
givee) has as a result of the giving. This is shown as the equate link between given
and givee-has-given-had. It is shown as a single equate link in the top of Figure 6.
In the middle of Figure 6, we show a portion of the network from Figure 5. This can be
read as ‘‘the thing given in a giving is the same as the thing had in the result of a giv-
ing.”’

The single equate link in the slot notation is actually just an abbreviation for a
more complex structure involving three equate links. This is shown in the bottom of Fig-
ure 6. The equate link on the right is the same equate we have seen before. It says that
the given object is the same as the object had by the givee. We also need the equate
link in the middle stating that this is true only when we are dealing with the given and
the result of the same giving, and the one on the left stating that the hac and the
inverse result must be for the same instance of having, namely the one involving the
givee.

There is also a more lisp-like interface for representing concepts. The facts relat-
ing to giving can be expressed in the following form:

(A GIVING (T TRANSFERRING)
(giver SENTIENT-AGENT (T donor actor))
(givee SENTIENT-AGENT (T recipient))
(given INANIMATE (T transferred))
(givingSresult GIVEE-HAS-GIVEN (T result))
(givingSprecondition GIVER-HAS-GIVEN (T precondition))
(= given (had givingSresult))
(= given (had giving$precondition)))

Here the first line means that giving is dominated by transferring. The second line means
that giver is a slot of giving which is constrained to be a sentient-agent. Furthermore,
giver is dominated by donor and actor. The next four lines describe more slots, and the
last two lines describe the two equate relations.

.73.

Representing Input Text

So far we have discussed how to describe facts, that is, concepts from the domain
model, which are represented in long-term memory. Some new considerations come into
play when we attempt to represent input text in KODIAK. First of all, there is a gross
difference in the types of links that are used. Definitions usually make use of dominate,
constrain, argument, equate, and differ links, while input text is represented primarily
with instance, argument, and fill links.

More importantly, the representations of input sentences produced by the concep-
tual analyzer are not guaranteed to be well-formed KODIAK forms. Consider sentences
(4a-d), and their representations in KODIAK. In each case KODIAK will detect a constraint
violation in that the representations involve relations where the constraints are not
satisfied by the fillers of the aspectuals.

(4a) The man arrested the criminal. .
(arresting (actor ¢ the man) (patient ¢ the criminal))
(4b) The commissioner arrested the criminal.
(arresting (actor ¢ the commissioner) (patient & the criminal))
(4c) The Red Sox killed the Yankees.
(killing (actor & the RedSox) (patient ¢ the Yankees))
(4d) The chair laughed.
(laughing (actor ¢ the chair))

First of all, each of these representations purports to attach general slots to
specific actions. For instance, (4a) specifies an actor. But the correct name for the
actor of an arresting is arrester, not actor. KODIAK allows the representation shown,
and reports that the actor is interpreted as the arrester. This is called a relation
classification inference.

There is another problem with (4a), however. There is a constraint violation in
that an arrester is constrained to be a law-enforcement-official, whereas in this
sentence the arrester was specified just as a man. In this case, FAUSTUS can satisfy the
constraint simply by making the new assertion that the man is in fact a law-
enforcement-official as well as being a man. This is called a constraint classification
inference. (This assumes a mode! where citizen’s arrest does not exist, or where it has to
be marked explicitly, as in The man performed a citizen’s arrest.)

Compare (4a) with (4b). In (4b), we should make the same inference as in (4a),
that the actor is a law-enforcement-official. However, in this case we would want
to make the additional inference that the commissioner is @ police-commissioner,
and not, say, the commissioner of baseball. This is called a relation concretion infer-
ence. Both (4a) and (4b) involve inferring new instance links, but in (4b) we add a link
that is not strictly necessary.

The option of inferring a new instance link is not always open. In (4¢) there is a

.74-

constraint violation because the actor and patient of a killing are baseball teams, which
are organizations, whereas they should be an animate-agent and a living-thing,
respectively. Since organizations and living-things are mutually exclusive
categories in the hierarchy, there is no link that could be added to resolve this violation.
Instead, something must be changed, as we shall see in the next section.

Viewing One Concept As Another

One way to correct for the constraint violation in (4¢) is to view the teams as
referring to the players on the teams, thereby interpreting the sentence as if it were The
players on the Red Sox team did something that caused the players on the Yankees ream
to die. The other possibility is to reinterpret the relaton. That is, we could view the
killing as an instance of defeat-convincingly, thereby interpreting the sentence as
The Red Sox baseball team defeated the Yankees baseball team by a wide margin. Both
these reinterpretations are made possible only by the existence of a view link— a represen-
tation that it is possible to view one type of object as another. In the first case, there is a
metonymic view stating that the name of an organization can be used to stand for the
members of the organization. In the second case, a view states that one meaning of the
word kill is to defeat-convincingly.

Figure 7 shows the representation of the view wherein an organization stands for
the members of that organization. The V link in the figure indicates that a organization
can be viewed as a group of people. Thisisa referential-view, meaning thatin this
view the organization is used to refer to the group of people. However, it is not the case
that any organization can be used to refer to any group of people; rather, an organization
refers to the people who are members of that organization.

The notation may seem complex, but actually there is a reason behind every link
and node in Figure 7. First, the V link is there to indicate that a view can exist between a
organization and a group-of-people. However, unlike, say, a D link which specifies
that every instance of one concept must be an instance of another, the view link is con-
tingent. Thus, we must be able to differentiate between assertions that are true of all
organizations and assertions that only hold for organizations that are being viewed as
people. That is why we need the organization-viewed-as-people and people-
via-organization-view nodes. There is an important relation between these two
nodes: the organization that is the source of the view must be the same as the organiza-
tion that the people are members of. This is represented with the equate link, and an
organization-of relation (shown here with the abbreviated slot notation).

Not only is the V link contingent, it is also non-unique. There might be several
ways in which one concept could be viewed as another. For that reason, we need the
arrow from the V'’ to a relation that indicates exactly how the organization is to be
viewed as a people. In this.case it is via the organization-for-people-view, which is
akind of referential-view.

Since views are just a special kind of reladon, they can form a hierarchy of their

.75.

view

A7 ~A
-
viewed viewed

object l as
referential I
view
A R || opeewrer
refening object ‘ oL .
object refered 0 ’ .
l organization
)]
organization organization-for- l people-via-
viewed as people people-view organization-view
viewed people
organization viewed-as
D D
organization v people

Figure 7: The Organization for People View

own. There are three main types of views: referential views, transferential views, and
focusing views. Each will be covered in detail in chapter 5.

In general, views can be chained together; to interpret (5) we first map the xrem-
lin t0 soviet-government by applying the place-for-organization-view, and
then map soviet-government 10 soviet-leaders by applying the organization-
for-people-view.

(5) The Kremlin took offense at Reagan’s latest remarks.

There have been several Al systems that provided support for the idea of viewing
one concept as another, or of reinterpreting input to match constraints. The MERLIN sys-
tem [84] allowed forced matches where one concept could be viewed as another, but this
was done through a general syntactic matching procedure, rather than by applying stored
views. Winston [144] had a similar procedure for understanding similes. Carbonell (20}
has done work on analogical reasoning, and has recognized the importance of processing
metaphorical language [19,21]. The KRL language [13] allowed multiple views of an

.76 -

object, but did not distinguish between true ISA relations and views; thus it is not clear
how easy it would be to work with the system in practice. KODIAK is the first representa-
tion language that I know of to have a design goal the explicit representation of views
that prescribe how certain concepts can be interpreted as others.

The question remains of how to choose between multple applicable views.
Chafe [22] makes a claim for the centrality of verbs in determining what a sentence says.
He claims that when faced with an anomalous sentence like (4d), the chair laughed,
“‘what we do is to interpret chair as if it were abnormally animate, as dictated by the
verb. What we do not do is to interpret laugh in an abnormal way as if it were a different
kind of activity, performed by inanimate objects.”’ KODIAK has no such notion of cen-
trality of verbs, and could take either one of Chafe’s alternatives, depending on what
views are available. That is why it is important to represent views explicitly, rather than
relying on some general processing mechanism to derive new interpretatons on the fly.

Representing Creation Time and Story Time

All objects in the KODIAK knowledge base (including links) have a creation fime
associated with them, which marks the time they were introduced to the system. For
objects in the permanent knowledge base, the creation time is zero, and for objects in the
representation of the text, or inferred from the text, the creation time is the number of the
input sentence that was last processed when the object was created. There are a set of
time relations (before, after, erc.) adapted from Allen’s time model [1,2] that are
semi-primitives in that the KODIAK interpreter can look at the creation-time slot to evalu-
ate these relations. It is possible to specify temporal ordering information explicity, and
a sentence like After the party, John went home would be represented with a after rela-
tion. If no temporal ordering is specified in the input, it is assumed that the order of sen-
tences in the text is the same as the order of events in the underlying story.

Each object also has a creation status, which tells if the object was a fact in the
knowledge base, an input from the text, a necessary inference or a possible inference.
Creation status is useful when there is conflicting information: it allows the program to
give more weight to a known fact than to a possible inference. Both links and concepts
have a creation status.

Representing Semantic Cases

In Chapter 2, I mentioned that there are at least three types of case roles: gram-
matical case, semantic case, and rhetorical case. KODIAK is well-suited to capture the
different types of case relations, because of its ability to represent multiple inheritance
between relations. We could represent in KODIAK the fact that the “‘I’” in / smeared mud
on the wall is both subject and agent, (and perhaps topic as well) and that the agent of a
smear is the smearer. In some frame-based RL’s, such distinctions cannot be
expressed.

.77,

Despite the capability provided by KODIAX, I have chosen to implement only
semantic case relations in the knowledge base used by FAUSTUS, for two reasons. First,
the conceptual analyzers (‘‘parsers’”) available to the project cannot produce representa-
tions with rhetorical or orientatonal cases, and by definition an analyzer eliminates
grammatical information. Second, as indicated in Chapter 2, some of the interactions
between the cases are extremely subtle. I leave the problem of incorporating the dif-
ferent types of cases as an important issue for future research.

The PHRAN conceptual analyzer is capable of interpreting straightforward case
relations. For example, in John gave Mary a book, PHRAN determines that John is the
actor, Mary is the recipient, and the book is the (semantic) object. Given that level of
analysis, FAUSTUS then determines that the actor of a giving is the giver, that the actor is
also the donor, and similar inferences for the other cases.

Representing semantic case relations by themselves is still a complex task. It is
not enough to isolate a small number of cases, such as the actor of an action and the des-
tination of a motion. The problem is that there is information that would get lost if only a
few distinguished cases were recognized. For example, in driving the actor (the
driver), the object (the passengers), and the instrument (the vehicle) all end up at the des-
tination. This is not true for other forms of movement, like throwing or guided-
missile-launching, where the actor does not move. If we did not have detailed
knowledge about the case relations, we would make errors in inferencing in instances
like this. Of course, it is not important that we use the name driver; the name actor
of driving would do as just as well, although it is a little more verbose. The important
thing is that there be a separate concept about which we can assert the necessary informa-
tion.

Difficulties arise when there are ambiguous case markers, ambiguous attachment
points, or vague cases. Consider sentences (6a-d). Each sentence has a similar form, but
in (6a) the noun phrase following wirh is an accompanier, in (6b) it is an instrument, in
(6¢c) a manner, and in (6d) a modifier attached to the object, spaghetti, not the action of
eating. Because of the nature of the representations passed from PHRAN the problem of
attachment cannot be addressed by FAUSTUS. It must receive a representation where
pesto is attached to either spaghetti or eating; there can be no representation that is
neutral between the two. However, it is possible to claim that the senses of with in (6a-c)
are polysemous variants of one root with, and to make FAUSTUS choose between them.
That is in fact what has been done; the representation for (6a-c) each are of the form
shown in (6e). FAUSTUS is able to take this representation and arrive at a more specific
interpretation of the sentence in each case. The derails are covered in Chapter 4 in the
section ‘‘Concretion Inferences.’”

(6a) John ate spaghetti with Frank.
(6b) John ate spaghetti with a fork.
(6¢c) John ate spaghetti with gusto.
(6d) John ate spaghetti with pesto.

(6e) (eating (actor ¢ John) (object ¢- spaghetti)

.78 .

(with & ...))

Ambiguity, Vagueness, and Polysemy

FAUSTUS starts with a semantic representation of the input text, and makes infer-
ences based on that representation. That makes the representation an important object of
study, and makes this chapter necessary. So far we have been acting largely as if the pro-
cess of translating from text to representation is straightforward and automatic. This is
far from true, for a variety of reasons.

There will be some sentences that cannot be satisfactorily handled by this stict
pipeline process of syntactic analysis first, inferencing second. In general, the pipeline
approach will fail for ambiguous input, but will succeed for vague input. A good intro-
duction to the difference between ambiguity and vagueness is Zwicky and Sadock’s
Ambiguity Tests and How to Fail Them [150] (although their definition of ambiguity
includes some examples that would be considered vague in my system). For example,
consider the following sentences:

(7a) They saw her duck.

(7b) Her duck was seen by them.

(7c) They saw two ducks.

(7d) When Mary was in the hospital, John took her flowers.

(7e) When Mary was in the hospital, flowers were taken to her by John.
(7f) When Mary was in the hospital, her flowers were taken by John.

In sentence (7a) her can be either an objective or genitive pronoun, and duck can
be a verb or a noun. One test for ambiguity involves applying the passive transformation,
yielding (7b). The fact that (7b) has only one interpretation means that (7a) was ambigu-
ous, and not just vague. Another test involves conjunction; the fact that (7c) cannot refer
10 one water fow] and one ducking movement also supports the analysis that (7a) is ambi-
guous.

Another example is (7d), which can undergo two different transformations to
arrive at (7e,f), each of which has a different interpretation. This means that (7d) is
ambiguous too. (7a,b) are from [150], while (7d) is adapted from Burns and Allen.

Now suppose we accept the interpretation of (7a) where duck refers to a water
fowl. Then the sentence is still vague, in that it does not specify if the duck is male or
female, large or small, alive or cooked. (8a) is the representation for her duck under this
interpretation; it is unspecified with respect to gender, size, and other characteristcs.
(8b) is the representation for the other interpretation of her duck; there is no representa-
tion that PHRAN can return that is unspecified between the two of them.

(8a) (a water-fowl (possessor ¢~ a female))
(8b) (a downward-movement (actor ¢ a female))

.79.

I have also made allowances to treat certain polysemous words as if they were
vague, rather than ambiguous. Polysemes are words with many related senses, as
opposed to homonyms, which are words with unrelated senses. For example, 10 have is a
highly polysemous verb, as indicated by the small sampling of senses in (9) below. The
fact that (9e) is unacceptable indicates that (9a-d) use different senses of the word had,
not just one vague sense. Nevertheless, we would like to be able to make inferences
about sentences like these without requiring the parser to do all the work. This is done
by introducing the notion of an abstract polysemous concept. These are objects that can
be returned by the parser as valid representations, but which are marked as requiring con-
cretion to a more specific sense. That is, the inferencing mechanism is required to choose
a particular sense at some later time.

(9a) Gayle had dinrer.

(9b) Gayle had a Fiat.

(9¢) Gayle had a hard time.

(9d) Gayle had a baby.

(9e) *Gayle had dinner, a Fiat, a hard time and a baby.

Note that even after we have concreted an abstract polysemous concept to a par-
ticular sense, there can still be vagueness in that sense. In (9b) we do not know if Gayle
owned the Fiat, was leasing it, or merely had permission to use it. It would be reasonable
to answer Did she own or rent the car? with [do not know, but it would not be reason-
able to answer Did she eat, give birth tc, or own the car? with I do not know. Abstract
polysemous concepts capture the difference between these two cases, and force the sys-
tem to commit itself to an answer to the later question. At the same time, the system can
take advantage of the commonality between the various senses of having: each sense
takes an actor and an object, and denotes some relation between them.

This same type of ambiguity can show up without an explicitly ambiguous word
in the sentence. For example the phrase John's girifriend has many of the same proper-
ties as John has a girlfriend, and would be handled the same way in FAUSTUS. Jacobs
[58] and Wilensky [141] suggest that this can be handled by a *‘relation as possession’’
view. This has not been completely worked out in my version of KODIAK.

Ambiguity also shows up as a problem in arrachment of a phrase to the rest of the
sentence. In (10) the phrase with a telescope can be attached to the hill, the man, or the
seeing. When PHRAN encounters ambiguities like this, it arbitrarily chooses one interpre-
tation. In some cases I have been forced to add ad hoc semantic/linguistic patterns to
PHRAN to help it resolve ambiguous sentences correctly. For still other sentences, I have
bypassed the parser completely, coding by hand my best guess as t0 what the semantic
analysis would have been, had PHRAN been able to make the correct choice.

(10) Isaw the man on the hill with a telescope.

-80 -

Summary Of KODIAK Features

The components of the KODIAK language are objects, which are divided into con-
cepts and links. There are three primitive concept types, absolute, aspectual and relation,
and eight primitive link types: argument, fill, dominate, instance, view, equate, differ,
and constrain. Representations are formed by connecting concepts with links. However,
in addition to these basic eleven primitives, there are several addidonal features in
KODIAK, enough to make it worthwhile to list them all here. First, each object has a
creation time associated with it, saying when it entered the knowledge base, and a crea-
tion status stating if it is a given fact, an input, or an inference.

Aspectuals have number restrictions which tell how many times an instance of a
class of absolute can enter into a particular relation. Aspectuals can also have quantifiers
which tell how common it is for instances of a class of absolute to enter into a particular
relation.

In an earlier implementation, every dominate link had a parrition indicator asso-
ciated with it; other links with the same indicator determined the set of concepts in a
given partition. Each partition indicator was marked as being exhaustve or non-
exhaustive. In the current implementation, this feature is not supported; the same effect
is achieved using differs links.

View links are more complicated than other links in that they are associated with
a relation (which must be dominated by view). Thus, views are in a sense three-place
predicates, while all other links are two-place.

Finally, there are three additdonal ways of storing information with concepts.
This information has no effect on the meaning of the representations, but is used by the
marker passing algorithm, and by the input/output interfaces to the knowledge base.
First, each concept has a list of markers associated with it. A marker is itself a fairly
complex data structure; each marker has a pointer to the concept it marks, the previous
concept it came from and the link it raveled along to get there. Markers have no effect
on the interpretation of a concepts meaning, but they are used by the FAUSTUS text
interpretation algorithm, as discussed in chapter 4.

Second, every concept has a name, which exists solely for the user’s convenience,
and has no meaning to KODIAK.

Third, every object (including links) has an association list or a-list on which it
can store arbitrary information. This is used in a variety of ways. Certain concepts are
marked as being promiscuous, meaning they are connected to many other concepts. This
idea and terminology is due to Charniak (26]. Promiscuity is discussed in chapter 4.
Each object also has a creation time associated with it. A creation tme of 0 means the
object is part of the initial knowledge base; a creation time of 1 means the object was
created due to the first input, and so on. Since most objects have creation time 0, it
would be somewhat wasteful to allocate space to store this information in every object.

-81-

Instead, the program arranges that O is the default, and stores positive creation times in
the a-list. Similarly, the object’s srarus is defined to be ‘‘given’’ if its creation time is 0,
“‘input’’ if its creation time is positive, and ‘‘inferred’’ if there is an entry in the a-list
stating it was derived from an inference. Finally, the a-list is used to store information on
which suggestions are relevant to a concept; e.g. which suggestions have referents for a
given reference, or elaborations for a given concept.

.82.

Chapter 4:
The Inferencing Algorithm

In Chapter 1 we saw that the task of understanding a text can be broken down into
two components: making proper inferences, and avoiding improper ones. In Chapter 2
we saw that top-down algorithms, such as DeJong’s text-skimmer FRUMP, tended to miss
proper inferences when the input did not correspond to what was expected. In contrast,
bottom-up inferencing schemes, such as Rieger’s, tended to generate too many infer-
ences, many of them irrelevant.

In this Chapter I will present the inferencing algorithm used in the FAUSTUS sys-
tem, and show how it balances the conflict between these two tendencies. Another prob-
lem brought out in many of the programs presented in Chapter 2 is that they de the pro-
cessing algorithm to one particular knowledge structure, and therefore make it difficult to
modify or extend the system. The FAUSTUS algorithm is designed to address this prob-
lem as well. The goal of the algorithm can be stated simply as follows:

Make those and only those inferences that serve as a connection tying
together two concepts, such that the connection is a simple one, and is the
most plausible such connection.

In this definition the conflict between too few top-down inferences and too many
bottom-up inferences has been restated as a conflict between simplicity, connectivity and
plausibility. The resolution of the conflict is to use marker passing to spread out from the
input in a bottom-up fashion, but to only make inferences based on marker collisions,
thus regaining some of the guidance provided by top-down algorithms.

In simplest terms, the algorithm is to read the input, translate it into a conceptual
network representation, and pass markers to neighboring concepts in the network. When
two markers reach the same concept, suggest an inference based on the path the markers
took to get there. After passing markers and suggesting inferences, evaluate each sug-
gested inference and accept each inference unless there is a reason to reject it.

An Example

To make things less abstract, I use as an example a simple three-line text,
presented as (1). This example will show some of the marker path shapes, collisions
types, and inferences involved in processing the text.

(1a) Bill had a bicycle.

(1b) John wanted it.
(Ic) He gave it to him.

-83.

Understanding text (1) means making inferences like the following:

(2a) The word iz in (1b) refers to the bicycle.

(2b) The word he in (1c) refers to Bill.

(2c) The word it in (1c) refers to the bicycle.

(2d) The word him in (1c) refers to John.

(2e) Bill having the bicycle is a precondition for giving it.

(2f) The giving results in John having the bicycle.

(2g) This new having satisfies John’s goal of wanting the bicycle.
(2h) John wanting the bicycle was the reason for Bill giving it.

Different readers might have slightly different interpretations; the point of (2a-h)
is that they give a likely interpretation and indicate the range and depth of the inferences
that should be made.

The trace of FAUSTUS’ processing of this text follows. In this trace, an option to
the program has been set to increase the verbosity of the output. After possibly setting
options, the user calls the function do-story, which pops up a menu from which the
user chooses the story to be processed. The interaction with the menu is not shown in the
trace. The actual computer output is in typewriter font; commentary is in regular
roman font.

> (do=-story)
Bill’s Bicycle
{ 1] Bill had a bicycle.
Rep: (HAVING (EXPERIENCER ¢ BILL) (PATIENT « A BICYCLE))
After the title of the text, ‘[1)’’ labels the first line of the English text as it is presented
to the conceptual analyzer, and ‘‘Rep:’’ labels the resulting representation as it is

presented to FAUSTUS.

Inferring: the EXPERIENCER of the HAVING must be the HAVER
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the HAVING must be the HAD
This is a RELATICN-CLASSIFICATION inference.

Int: (HAVING.1 (T HAVING) (haver « PERSON.1l) (had ¢ 3ICYCLE.1))
Above we see two non-marker-passing inferences made as during the process of turning

the analyzer’s representation into a KODIAK network. The resulting internal KODIAK

representation is labeled with ‘‘Int:’’. There is a straightforward one-to-one

-84-

correspondence between the ‘‘Rep:’” and the ““Int:’’ — the difference is that the later
refers to individual concepts, and has been made more specific by relation classification
and relation constraint inferences. The meaning of these terms will be covered later in
this chapter.

At this point, markers are passed from the concepts in the internal representation to
neighboring concepts. The blank space following the *‘Passing Markers and Suggesting
Inferences:’’ below indicates that no inferences were suggested. When marker passing is
complete, some summary statistics are printed. Then, since there are no suggestions to
evaluate, we move on to the second input sentence.

Passing Markers and Suggesting Inferences:

Concepts marked: 195 new, 195 total
Collisions: 91 new, 91 total
Suggested inferences: 0 new, 0 total
Accepted inferences: 0 new, 0 total

[2] John wanted it.
Rep: (WANT-TO-HAVE (EXPERIENCER & JOHN) (PATIENT « IT))

Inferring: the EXPERIENCER of the WANT-TO-HAVE must be the WANTER
This is a RELATICN-CLASSIFICATION inference.

Inferring: the PATIENT of the WANT-TO-HAVE must be the THING-WANTED
This is a RELATION-CLASSIFICATION inference.

Int: (WANT-TO-HAVE.Z2 (T WANT-TO-HAVE) (want-to-have$wanter ¢ PERSON.2)
(thing-wanted & INANIMATE.2))

Again there are two inferences made in the course of going from the analyzer’s Rep to
FAUSTUS’s internal (Int: ...) form. At this point we are ready to pass markers:

Passing Markers and Suggesting Inferences: 1 2

Each tme there is a marker collision that leads to a suggested inference, FAUSTUS
numbers the suggestion, prints the number, and places the suggestion on an agenda. We
see above that inferences number 1 and 2 have been suggested. The next step is to evalu-
ate the suggestions:

Evaluating Suggestions:

Rejecting: the HAVING is a OUTCOME of the WANT-TO-HAVE.
because of a mis-match.
This is a SINGLE-ELABORATION inference.
It is #1, due to the collision:

WANT-TO-HAVE .2—elaboration—STATIVEe«ref«HAVING.1

Inferring: ‘IT’ refers to the BICYCLE.
This is a REFERENCE inference.
It is #2, due to the collision:
BICYCLE.loref—INANIMATE«refe« INANIMATE. 2

Wanting to have something can lead to having it, and the marker passing mechanism
found a connection which suggests that Bill’s having the bicycle is an outcome of John's
wanting it. When it comes time to evaluate this suggestion, however, FAUSTUS checks it
more carefully and decides there is a mis-match: the outcome should be a having with
John as the haver, not Bill. Therefore, the suggestion is rejected.

The other suggestion was triggered by a collision at the concept INANIMATE. A bicycle
is a kind of inanimate object, and the representation for ‘it’ is also an inanimate. Since
‘i’ needs a referent, this type of collision suggests that ‘it’ refers to the bicycle. When
we evaluate this suggestion, there is no evidence to contradict it, and no competing
referents for ‘it’, so the suggestion is accepted.

Now we print the statistics for the second sentence and move on to the third:
Concepts marked: 25 new, 220 total

Collisions: 108 new, 199 total

Suggested inferences: 2 new, 2 total

Accepted inferences: 1 new, 1 total

{ 31 He gave it to him.

Rep: (GIVING (ACTOR & HE) (PATIENT & IT) (RECIPIENT « HIM))

Inferring: the ACTCOR of the GIVING must be the GIVER
This is a RELATION-CLASSIFICATION inference.

Inferring: ‘HE’ must be a SENTIENT-AGENT, because it is the GIVER
This is a RELATION-CONSTRAINT inference.

Inferring: the PATIENT of the GIVING must be the GIVEN
This is a RELATION-CLASSIFICATION inference.

Inferring: the RECIPIENT of the GIVING must be the GIVEE
This is a RELATION-CLASSIFICATION inference.

Int: (GIVING.3 (T GIVING) (giver « MALE.3) (given « INANIMATE.3)
(givee & MALE.3B))

In this sentence there are three relations, actor, patient, and recipient. Each gets
classified as a more specific relation, namely, giver, given, and givee. Again, these are

. 86 -

called relation classification inferences. We also have here an instance of the other kind
of non-marker-passing inference, the relation constraint inference. The idea is that any-
thing that plays the role of a giver must be a sentient-agent — a person or some kind of
agency Or organization acting as a person. In the input, the giver is identified only as ‘he’
— a male animal, but not necessarily a person. FAUSTUS makes the inference that ‘he’
does in fact refer to a sentient-agent (and therefore, a person).

Passing Markers and Suggesting Inferences: 3456789 1011

Marker passing results in nine collisions that spawn suggestions. These suggestions are
numbered 3-11. The next step is to evaluate them, along with any suggestions that may
be remaining from the previous iterations. In this case, it turns out that the previous
suggestions were all either accepted or rejected, but in general some suggestions can be
deferred and wied again.

Evaluating Suggestions:

Inferring: the ‘IT’ mentioned in (3] refers to the BICYCLE.
This is a REFERENCE inference.
It is #5, due to the collision:
BICYCLE.1-+ref-»INANIMATEé—refe—INANIMATE.3

Inferring: there is a HAVING such that
it is the RESULT of the GIVING and
the WANT-TO-HAVE is the SATISFIES of it.
This is a DOUBLE-ELABORATION inference.
It is #8, due to the collision:
GIVING.3—elaboration—HAVINGeelaborationeWANT-TO-HAVE. 1l

Suggestion #5 is straightforward; since only one inanimate object, the bicycle, has been
mentioned, it is the only candidate for the referent of ‘it.” FAUSTUS therefore accepts the
suggestion that they are co-referential. Suggestion #8 is a double-elaboration collision
with origins at the want-to-have in sentence 2 and the giving in sentence 3. The sugges-
tion is that there is a new ‘having’ situation wherein Bill has the bicycle, and this is the
result of the giving and satisfies Bill’s goal of wanting-to-have it.

Inferring: the WANT~-TC-HAVE is the REASON of the GIVING.
This is a SINGLE-ELABORATION inference.
It is #9, due to the collision:
GIVING.3—>elaboration—STATIVE«ref«WANT-TO-HAVE.2

Inferring: the HAVING mentioned in [1] is a PRECONDITION of the GIVING.
This is a SINGLE-ELABORATION inference.
It is #10, due to the collision:

GIVING.3—elaboration—STATIVE«ref«HAVING.1

Rejecting: the HAVING mentioned in [1l] is a RESULT of the GIVING.

.87-

because of a mis-match.

This is a SINGLE-ELABORATION inference.

It is #11, due to the collision:
GIVING.3-»elaboration-eSTATIVE«—refe—HAVING.l

Suggestions #9 - #11 are all single elaboration inferences related to the giving action.
These are due to marker collisions along the paths representing the following three facts:
that somebody wanting something can be a reson for giving it to them; that having some-
thing is a necessary precondition of giving it; and that giving something results in some-
one else having it. The first two of these are accepted, thereby forming connectons
berween the third sentence and the first two. Suggestion #11 is that Bill having the bicy-
cle is the result of his giving it. The evaluation routine notices a mis-match in that the
result of the giving was already filled (by inference #8) with an instance of having where
John has the bicycle. Therefore, suggestion #11 is rejected.

Inferring: ‘HIM’ refers to John.
This is a REFERENCE inference.
I+ is #3, due to the collision:
PBRSON.2—»ref-»SENTIENT—AGENT@-refe—MALE.38

Rejecting: ‘HIM’ refers to Bill.
This is a REFERENCE inference.
It is #4, due to the collision:
PERSON. 1> ref—SSENTIENT-AGENT¢re feMALE. 3B

Rejecting: ‘HE’ refers to John.
This is a REFERENCE inference.
It is #6, due to the collision:
PERSON.2—ref 3SENTIENT-AGENT¢ref«MALE. 3

Inferring: ‘HE’ refers to Bill.
This is a REFERENCE inference.
It is #7, due to the collision:
PERSON.1—ref—SENT IENT-AGENTéref—MALE.3

There are two reasons why a suggestion can be rejected. The first is a mis-match
between two objects, as in #11 above. The other reason is that there are several mutually
exclusive suggestions, of which only one can be accepted. It may be that none of the
suggestions involves mis-matches, but we still want to be able to choose the ‘‘best’’
alternative. As examples of this, both John and Bill have been suggested as possible
referents of the pronoun ‘him’ in sentence 3. They are also both possible referents of the
pronoun ‘he’. At the time these suggestions were made, there was no reason to prefer
one over the other. FAUSTUS tries to delay making a decision until more information is
available, so it makes two passes over the suggestions, taking care of these suggestions in
the second pass. That is the reason why #3 comes after #11 above. In this particular
case, the wait was worthwhile, because inferences #3 and #11 have added the informa-
tion necessary to choose between the referents in each case. Inference #11 said that Bill

.88 -

having the bicycle was a precondition of the giving. But for this particular kind of
precondition for giving, the knowledge base states that the haver of the having must be
the same as the giver of the giving. The haver is Bill, so when the suggestions are
evaluated, the matcher quickly rules out John in #6 and accepts Bill in #7. Similarly,
inference #8 says that the result of the giving is a state where John is the haver of the
bicycle, and that the haver and the givee are the same. Therefore, the matcher accepts
John in #3 and rejects Bill in #4.

Note that it is a fact about English that the referents for ‘he’ and ‘him’ in sentence 3 are
necessarily distinct, and would necessarily be co-referential if ‘himself” were used
instead of ‘him.’ FAUSTUS does not make use of this information. Other programs, such
as Wilensky’s PAM and Alterman’s NEXUS also handled examples like this without mak-
ing use of this information.

After evaluating all the suggestions, the program prints the following statistics and stops.

Concepts marked: 59 new, 279 total
Collisions: 34 new, 233 total
Suggested inferences: 9 new, 11 total
Accepted inferences: 6 new, 7 total

Now that we have seen an example of the algorithm in action, we can define it
more precisely. The algorithm is a six step process:

Step 0: Construct a knowledge base with good conceptual coverage of the sub-
ject matter that the text is likely to cover. The knowledge base is in the form of a seman-
tic network, in the KODIAK formalism, as discussed in Chapter 2.

Step 1: Construct a semantic representation of the next piece of the text. The
PHRAN conceptual analyzer is used for this, when possible. For some texts, PHRAN was
unable to handle the input sentences correctly, and a representation was constructed by
hand. Check the relations in the semantic representation for constraint violations, and
make classifications or concretions as necessary to resolve the conflicts.

Step 2: Pass markers from each concept in the semantic representation of the
input text to adjacent nodes, following along links in the semantic net. Each of the eight
primitive link types in KODIAK has a cost associated with traversing it. Markers start off
with a constant energy value, and are propagated recursively until the total cost of
traversing links exceeds the given energy value.

Step 3: Suggest Inferences based on marker collisions. When two or more
markers are passed to the same concept, a marker collision is said to have occurred. Col-
lisions suggest possible inferences, but the type of inference suggested is dependent on
the shape of the marker path (and is independent of the marker energy). Each marker
keeps track of where it came from, so it is possible to trace backwards from any marker
to its origin. This trace is called the marker’s path. The shape of the path is the

.89 -

sequence of link types traversed along the path. Suggested inferences are kept in a list
called the agenda, rather than being evaluated immediately.

Step 4: Evaluate potential inferences on the agenda. The result can be either
making the inference, rejecting it, or deferring the decision by keeping the potential
inference on the agenda. If there is explicit contradictory evidence, an inference can be
rejected immediately. If there are more than one potential inferences competing for the
same actual inference, as when there are several possible referents for a pronoun, then if
none of them is more plausible than the others, the decision can be deferred. If there is
no reason to reject or defer, then the inference is accepted, and new concepts are added to
the model of the text. Note that the checks for plausibility can involve a complex
pattern-matching procedure. The details are given below in the section on Step 4 below.

Step 5: Repeat steps 1-4 for each piece of the text.

Step 6: At the end of the text there may be some potential inferences remaining
on the agenda. Evaluate them to see if they lead to any more inferences.

One way to categorize and evaluate the FAUSTUS system is as a theory of infer-
ence. Chapter 2 presents three components that such a theory must contain. It must have
a classification of the types of inferences handled by the theory, a control structure for
determining which inferences will be considered, and an evaluation metric for resolving
conflicts and for deciding which inferences will actually be made. This last component is
important for situations in which we have to choose between two possible inferences,
such that accepting either one would contradict the other. Examples of this are when
there are several potential referents for a pronoun, or several fillers for a case slot. It
turns out that it is much easier to make the most plausible choice by looking at the set of
potential inferences all at once than by looking at them one at a time. It also turns out
that sometimes the best referent or filler does not come along until some time after the
reference or case slot is first mentioned. For these reasons, we need the complication of
queuing potential inferences on the agenda, rather than evaluating them as soon as they
are suggested.

In the following sections, I will discuss how FAUSTUS handles these three com-
ponents. This will be done in the context of a specific example text, presented in the next
section.

Another way to evaluate the FAUSTUS system is to see how well the inferences
generated by the algorithm satisfy the four criteria for proper inferences set out in
Chapter 1. Recall that the first, implicit criterion was non-explicitness, and the three
main criteria were relevance, easiness, and plausibility.

First, the algorithm avoids making inferences that were explicitly mentioned in
the text because the marker passing algorithm has a simple rule that prohibits traversing a
link that is part of the representation of the input. Thus, aithough markers start at the set
of concepts representing the input, there is no intramural marker passing in this set; every

.90 -

marker starts its path by going up an instance link to the category above.

Second, the inferences are guaranteed to be relevant to at least two concepts in
the model of the text, because inferences are only triggered when collisions occur. In
other words, I am defining relevance by saying that an inference is relevant if and only if
it is related (by marker paths) to two or more concepts in the model of the text.

The third criterion is easiness. This is guaranteed by making the inital energy
value on markers small in comparison with the cost of traversing links. Thus, only short
paths will be generated before a marker path runs out of energy. The degree to which the
length of a path corresponds to a human reader’s intuitive judgement of the ease with
which a inference can be made can be argued, but at least there is an explicit definition of
easiness, which guarantees an upper bound on the amount of computing time required.

The final criterion is plausibility. Every inference that has been suggested due to
a marker collision will be accepted, unless there is specific evidence contradicting it.
Contradictions are checked by a unification-like matching routine and can involve things
like mis-matching types on constraints or too many fillers for an aspectual. The matcher
is discussed in the section on Step 4 below. Thus we see that the FAUSTUS inferencing
algorithm guarantees that all inferences will be implicit inferences, not known facts, and
that they will be easy, relevant, and plausible, at least according to the definitions of
these terms laid out above.

Step 0: Representing the Knowledge Base

To make these inferences requires some knowledge about bicycles, people, hav-
ing, wanting, giving, and so forth. Representing this knowledge is step O in the algo-
rithm. The representation of these concepts is in no way dependent on the text of story
(1). In fact, when it came time to make FAUSTUS process this text, the only information
that had to be added was the fact that a bicycle is a vehicle; all the other knowledge had
already been defined for use in other texts.

I show a pictorial representation of a section of the knowledge network in Figures
1 and 2. The diagram follows the graphical notation for the KODIAK representation
language described in Chapter 3, and can be paraphrased in English as follows. First, for
Figure 1: In the lower half we see wanting is a kind of stative situation, which has a
wanter and a wanted-state. One kind of wanting iS wanting-to-have, where the
wanted-state is constrained to be a particular kind of having, namely wanter-has-
thing, which requires that the haver of the having must be the same person as the
wanter of the wanting and the thing had in the having must be the same as the
wanted-thing of the wanting-to-have. In the upper left, Bill and John are names,
and there is a mapping from names to the people they refer to. The upper right shows
that a bicycle is a kind of vehicle, and a vehicle is a artifact and also a
functional-object whose purpose is traveling. Every functional-object has a
purpose, which must be an action of some kind. Finally, in the lower right we see that
a certain kind of event can have a result, which is a kind of stative. In addition,

-91-

funcuonal
object

wantng-

to-have-
wanter

wanting
w have

—

wanted
thing

wanted
st

wanting-

o-have-
wanted

OIS ‘

<
-

it

vehicle
|
D
bicycle
\
)
D
]

-

traveiling i

C

has-thing

Figure 1: Domain Knowledge: Person, Bicycle, Result, and Wanting

there is something called a cause, and one particular type of cause can hold between
events and the results of those events. There is also a particular before relation,

called

cause-before-effect which holds between the cause and the effect.

Before has special semantics to the KODIAK interpreter in that it can only hold if the time
of the before part is less than the time of the after part. The time of a state or event
can be determined either by assertions that come explicitly in the input text, or by the
default assumption that the order of presentation of the text is the same as the order of
events in the world. In other words, when KODIAK is trying to determine if A occurred

-92.

before B, it checks first to see if they participate in any explicit before Or aftex rela-
tion, and if they do not, it goes on to look at the input times associated with A and B.

Figure 2 describes the relationship between giving and having. It also appears
as Figure 5 in Chapter 2, and is described in detail there.

Figure 3 describes two complex events related to giving, namely gift-giving

:w

thing event

141

]

situation
s7 g \
S
!
suative

T (-

participant

' given

giving

S S = = s
giver

giver givee
has-given has-given
had had

UQB
o]
(w o
(g

/ s
giver has c S \
given \ /
S
givee has c giving
giver- given result
! has-given s

o>
L3
<
n
-

givee-
has-given
haver

= givee

Figure 2: Domain Knowledge: Having and Giving

-93.

event

D D D
f
gft lending
gving fnct object
T < X
$ s 4 s /S s
D
|
sepl gving stepl
c c D//' ‘\D c c
¥ N~ AN - | N
buying pving giving out S using lent returning
gift i ; lent object |

returmng-
lent-object
psuent

functuonai
abject

Figure 3: Domain Knowledge: Gift Giving and Lending

and lending-functional-object. Gift-giving is defined as having two steps;
buying-gift and giving-gift. The two steps are defined in more detil in the
FAUSTUS knowledge base, but the detail is not shown here. The other event is
lending-functional-object, which has three steps. First the lender gives out the
object; then the lendee uses it for its intended purpose; then he returns it. One fact about
this situation is depicted: the patient of the lending is the same as the object given, the
object lent, and the object returned.

Step 1: Representing the Input Text

Now that we have seen the representation of some of the background knowledge
necessary to understand text (1), we move on 1O step 1 of the algorithm: the representa-
tion of input text. The three sentences are represented in Figure 4, in the abbreviated
notation. Not all of the instance links are shown; bicycle.l should be an instance of
bicycle, male.3b should be an instance of male, and so on. The notation having.l,
for example, means that the event was mentioned in sentence 1; unless mentioned other-
wise it will be assumed that this occurred before events in sentence 2.

.94 -

Non-Marker-Passing Inferences

In Chapter 3 I stated that certain inferences happen immediately, when the input
text is processed, rather than as a result of the marker passing algorithm. Such inferences
fall into two classes: relation classification inferences and relation constraint inferences.
Both of these are demonstrated in the following sentence, an excerpt from text (5), which
will be shown in its entirety below.

(2] A girl started talking to him.
Rep: (TALKING (ACTOR & A GIRL) (PATIENT ¢« HIM))

Inferring: the ACTOR of the TALKING must be the TALKER
This is a RELATION-CLASSIFICATION inference.

‘Inferring: the PATIENT of the TALKING must be the TALKEE
This is a RELATION-CLASSIFICATION inference.

Inferring: ‘HIM’ must be a PERSON, because it is the TALKEE
This is a RELATION-CONSTRAINT inference.

Int: (TALKING.Z2 (T TALKING) (talker « GIRL.2) (talkee ¢« MALE.2))

having Bill giving male
! | ! !
I
L | | i

having. | actor.] ———» Bill.l giving.3 — actor.3 —3m male.3

patient.} patient.3
‘ —~—_———————
bicycle. 1 recipient.3 thing.3

male.3b

wanling to .
L— expeniencer.2 John.2
have.2 pe -
—

patient.2

thing.2

Figure 4: Representation of Input Text

-95.

Relation classification is the simpler of the two classes of non-marker-passing
inferences. The girl is specified as the actor of a talking. FAUSTUS reports that the actor
of a talking is called a talker. This is important because there are facts about talkers
that are not true about actors in general. Technically speaking, this is a logical inference,
as defined in Chapter 1. Every actor of a talking is necessarily a talker as a matter of
definition. This is as opposed to the plausible inferences we have been talking concen-
trating on up to now. In a similar manner, the patient of the talking is classified as a
talkee.

The other class of non-marker-passing inference is the relation constraint infer-
ence. In the example above, him is specified as the patient of a talking event. Him maps
to the concept male, which is defined as an animal whose gender is the male sex, while
talking is defined as a kind of communication where the talker and talkee must be peo-
ple. Therefore, if this male is to be a talkee, he must be a male person, not just a male
animal of any kind. FAUSTUS makes the inference that this is the case. Note that these
assertions are made during the process of constructing the internal KODIAK representation
of the input, which is denoted with the Int: line. After that point markers are passed
from each of the concepts in the intemal representation, and plausible inferences are sug-
gested.

Step 2: Passing Markers

The next step is to pass markers from each of the new concepts in Figure 4 to
neighboring concepts in the network. Markers will end up being propagated to a large
number of concepts, including some not represented in Figure 4. Think of marker pass-
ing as spawning new markers which get spread around the network, and not as moving a
single marker from node to node. The exact rules for propagating markers through the
network are as follows. Start at each concept mentioned in the input with a constant
amount of marker energy. The normal value for this parameter is 5. Next, start passing
markers from each input concept to its neighboring concepts recursively until the marker
energy is depleted. Never pass markers along links that are part of the representation of
the text, and never pass markers back along the link just followed. Other than that, the
links to pass along depend on the type of the concept and the cost in marker energ
depends on the type of link.

From aspectuals, pass markers along constrainer links and inverse argument links,
at a cost of one unit of marker energy. From relations, pass markers to aspectuals, also at
a cost of one unit of marker energy. From absolutes, pass markers along constrainer
links to the constrained aspectual, but only when the quantifier on the link is all or most.
For example, there is a2 water-surrounds-island concept which states that all islands
are surrounded by water, but only some bodies of water surround islands. The marker
passing algorithm would traverse the link from island t0 surrounded 0 body-of-
water, but would not go the other way from body-of-water 1O surrounder 1O
island. This is an example of an asymmetry in conceptual distance: the distance from
island 10 body-of-water is less than the distance from body-of-water to island.

-96 -

We also pass markers to parents in the hierarchy (along D and I links) at no cost.
The reason there is no cost associated with this link is that we do not want to allow inter-
mediate nodes in the hierarchy to eclipse a potential inference. Suppose we had the
assertion that lassie is an instance of animal. This could lead to inferences like las-
sie has-as-part a head. But note we could have represented lassie asan instance
of collie, which is a kind of large-deg, which is a kind of dog, which is a kind of
canine, which is a kind of mammal, which is a kind of animal. Now there is a chain of
five links between lassie and animal, but she is stll just as much an animal as
before. To make sure this fact is reflected, we make the cost of traversing dominate links
zero. Another way to look at this is that the marker passing scheme directly reflects the
fact that dominate is transitive. Of course, there are other relations that are transitive, but
that have no such privileged status. This means that FAUSTUS will in general fail to make
certain inferences involving other transitive relations. However, there is some evidence
that this is not unreasonable; that people do not automatically find the transitive closure
of all relations. Langacker [69], for example, points out the oddity of sentences like A
body has 56 knuckles and 20 nails as opposed to A finger has 3 knuckles and I nail. This
is evidence that people are reluctant to apply has transitively.

Ordinarily, markers are not passed along view links. However, when there is a
constraint violation, markers can pass from the concepts associated with the offending
relation along view links, at a cost of one unit. This aspect is covered below in the sec-
tion on view application inferences.

Marker passing continues to spread from each concept in the representation of the
input until the marker energy reaches zero. The point of marker passing is to detect
marker collisions, concepts that receive markers from two different origin concepts,
along two different marker paths. Marker collisions suggest possible inferences, accord-
ing to the rules laid down in the section on Step 3 below.

Anti-Promiscuity Cutoffs

Without some restraints, the marker passing mechanism as described would end
up checking an enormous number of potential inferences. For example, every situa-
tion can have a set of preconditions, which are constrained to be statives, which is
dominated by situation. If we allowed the marker passing mechanism to work
unchecked, we would get elaboration collisions for every pair of instances of situation
mentioned in the text, each collision suggesting that one is the precondition of the
other. The problem is clear: at a lower level, we have definitions that say what types of
stative can be a precondition for what type of action, but these distinctons are lost as
we go up the hierarchy. They will be discovered again, and most of the potential infer-
ences will be rejected, when the matching routines are applied. Unfortunately, that
requires a lot of wasted computation. Worse than that is the possibility of introducing
improper inferences. This problem is important because one of the design decisions in
FAUSTUS was to have a two-step filtering process where not too many unreasonable
inferences get suggested.

.97.

This problem is addressed by Charniak [27], who suggests the anti-promiscuity
rule: do not pass markers to concepts that have more than n links attached to them, for
some reasonably large value of n. I will call this the static anti-promiscuity solution.
The problem with this approach is that adding new nodes to the middle of the hierarchy
can disturb the link counts, and change the computation unpredictably. For example,
suppose there is a high-level concept called thing, which dominates fifty different con-
cepts. This is just the type of concept we would like to identify as a promiscuous one.
However, now suppose we add two new concepts into the hierarchy just below thing,
namely animate-thingand inanimate-thing. Then thing will no longer be promis-
cuous under Charniak’s formulation. It may be that the effect of having thing be prom-
iscuous is achieved if animate-thing and inanimate-thing still have enough links to
be promiscuous, and if marker passing only proceeds up the hierarchy. But then the
introduction of other intermediate nodes would just push the problem down one level.

Because of this difficulty, I have adopted the dynamic anti-promiscuity solution,
which works as follows. First run the algorithm on a representative sample of texts.
Then count the markers that accumulate at each concept, and declare the m concepts with
the most markers as promiscuous concepts. In this approach, the introduction of new
concepts like animate-thing and inanimate-thing will not change the total number
of markers that ultimately arrive at thing. Both solutions have an element of arbitrari-
ness; Chamiak must choose a value for n and a topology of the netowrk, while I must
both choose a value for m and a representative sample of texts.

Another change in dynamic anti-promiscuity is that I do not stop passing markers
to promiscuous concepts; I just stop making certain classes of potential inferences at
those concepts. This solution is appealing for several reasons. First, if we are assuming
a parallel implementation of marker passing, then there is no cost in continuing passing
markers. Even in a sequential simulation of parallelism, the promiscuous nodes are near
the top of the hierarchy, and thus the cost of continuing to spread is not high. The
sequential part of the algorithm~ sifting through the collisions and evaluating inferences—
would be slowed down by a proliferation of markers, so that is where the anti-
promiscuity rule comes in to play. Spurious elaboration inferences can be ruled out, but
we can still consider other inference classes, like referential inferences, that seem to
require marker collisions at very high levels in the hierarchy.

To see that high-level collisions are sometimes important, consider the first two
sentences of text (1), repeated here as (3). The word ir involves the representation of
something like physical-object, or perhaps something even more abstract; it can
sometimes refer to a situation or an idea. If physical-object were marked as a prom-
iscuous concept, then under Chamniak’s scheme there would be no way to get the colli-
sion that would generate the inference that ir refers back to the bicycle. In my scheme, a
collision would be detected at a promiscuous concept, but this would be a referential col-
lision, a type that allows collisions at promiscuous concepts, if exactly one of the marker
origins is explicitly marked as a reference. Reference collisions like the one at person
from Bill and John are thrown out because person is a promiscuous concept. We will
see other collision types that also refuse to suggest an inference if they occur at a promis-
cuous concept.

.98 .

3) Bill had a bicycle. John wanted it.

We can now state the complete set of constraints on the generation of elaboration
path inferences. First, unlike referendal inferences, if the collision occurs at a promiscu-
ous concept, then no inference will be suggested. Also, if the slot in question is already
filled, there is no sense suggesting that it be filled again. In the case of a double elabora-
tion collision, the inference will only be suggested if the two origins are different; we
would not suggest that a situation could be a precondition or result of itself. In the case
of a double elaboration inference, the suggested inference will only be satisfied by creat-
ing a new instance which fills both slots. Creating two new instances, one for each slot,
would violate the relevance criteria for inferences in that the new instances would only
be connected to one other concept in the representation of the text. Furthermore, it
would violate a kind of parsimony principle— we don’t want to introduce two new objects
when one would do.

In [28], Charniak presents a theory of marker passing which requires what he
calls predictive power for inferences. Inferences are only made when the number of true
predictions resulting from the inference is at least as many as the number of new assump-
tions required. This rule is in accordance with the rules of relevance and parsimony, but
by Charniak’s own admission, there are several ‘‘ugly’’ details. Part of the problem is .
that it is not clear what should count as an assumption, or as a prediction. Iagree that the
details can be quite ugly; in my model I have no general theory of predictive power;
instead I have different constraints on what can be introduced by each inference class.

Step 3: Suggesting Inferences - FAUSTUS’ Inference Classes

When a marker collision is detected. the first thing that happens is the marker
paths leading to the collision are classified according to their marker path shape. Each
half of the path is classified independently, and then the collision evaluation function
dispatches on the combination of two shape classes to a pre-defined inference class which
may or may not suggest a potential inference to put in the agenda. There are currently
five path shapes, and six inference classes. The inferences can suggest adding a new
absolute to the construal of the text, adding a new relation between absolutes, construing
one object to be co-referential with another, or classifying some absolute or relation to be
a member of some class. In effect, the claim is that these are the only kind of inferences
that need be made (for a certain level of understanding of the text), and that the six infer-
ence classes are sufficient to generate the appropriate construals.

In story-understanding systems such as BORIS [38] and in most expert-system
programs, there can be hundreds of inference rules, and adding new knowledge means
adding new rules. In FAUSTUS, adding new knowledge is done declaratively, without
changing or adding any of the six basic inference classes. Thus, the term inference class
in FAUSTUS is very different from the inference rule in traditional expert systems.

Potential inferences take the form of entries on an agenda, or queue of suggested
inferences. Each entry in the agenda has an inference class, and some specific

.99.

information that depends on the type. For example, the suggestion of finding a referent
for a pronoun would have information giving a list of possible referents. Each sugges-
tion, regardless of its type, can have an invocation time before which it cannot be
invoked, and an expiration time after which it is automatically removed from the agenda.
Each suggested inference also keeps track of how long it has been in the agenda, its
scheduling priority, and the two marker paths that led to the collision that placed it on the
agenda. When a suggested inference is run, it does one of three things: succeeds and
builds new representations into the world model, fails and removes itself from the agenda
without building any representations, or defers and puts itself back into the agenda.

The implementation of FAUSTUS checks for collisions between two paths of
exactly the right shape. It would also be possible to check all collisions by examining the
two halves of the path that led to the collision, and seeing if their concatenation is one of
the valid path shapes. In Chapter 6, I explain why it was deemed more efficient to look
for path halves rather than complete paths, and why this will not miss any important col-
lisions. However, this was an implementation decision, and the important thing is that
certain paths, however they are recognized, suggest certain inference classes.

There are also two inference classes that are not associated with path shapes, but
occur as an immediate result of interpreting the input.

FAUSTUS supports a simple regular-expression definition language for defining
interesting path shapes. In this notation, the arrow (—) means that the markers follow a
link of the given type from one concept to the next. The link types are I for instance, D
for dominate, V for view, C for constrain, F for fill, A for argument, = for equate and =
for differ. The markers must traverse the links jn the right direction; inverse links are
denoted by the superscript (). For example, A" means an inverse argument link, a link
from an argument to its relation rather than from a relation to its argument. The other
convention in this notation is that a (*) is the Kleene star operator, denoting any number
of repetitions of the preceding link type.

The possible inference classes with their associated path shapes are shown in Fig-
ure 5. Each inference class will be discussed in turn in the sections that follow.

Elaboration Inferences

Elaboration inferences are those that build a new relation between two absolutes,
filling in a slot of some absolute with another absolute. As we shall see, there are two
varieties of elaboration inferences; one creates a new instance as one of the absolutes, the
other uses existing instances. The definition of the elaboration path shape is as follows:

4) origin»>1—-D*—C!' oAl 5 A5 C—D* - collision
In other words, the elaboration path starts at a concept mentioned in the text, fol-

lows an I link, then any number of D links, then an inverse C link and an inverse A link
to arrive at a relation. From there the path goes along an A link to an argument, up a C

- 100 -

Inference Classes Path 1 Path 2

Double Elaboration Elaboration Elaboration
Elaboration Elaboraton Ref
Reference Resolution Ref Ref

View Application Constraint ~ View
Concretion Elaboration Filler
Relation Concretion Elaboration Filler

Path Name Path Shape
Elaboraton origin - 1 = D* = S — C — D* — collision

Ref origin — I = D* — collision

View origin—»I—»D"‘—-»V—»D*—fC'l — A1 5 collision
Constraint origin » [- D* - C™ — A~ — collision

Filler origin =» F~ — A1 5 A F—o1— D* - collision

Non-Marker-Passing Inference Classes
Relation Classification
Relation Constraint

Figure 5: Path Shapes and Inference Classes

link to the constrainer of the argument, and then again along any number of D links to
arrive at the concept where the collision occurred. The combination of going down an
inverse C link and then along two A links is an ‘S’ link in the abbreviated notation, so the
elaboration path could also be defined as (5):

(5) origin » [—=D* - S — C — D* — collision

Once the path shape is defined, the next step is to define how this shape interacts
with others. It turns out there are two relevant path collisions that can suggest inferences:
when two elaboration paths collide, or when an elaboradon path collides with a referen:
path. Referent paths will be covered in the next section. Their shape is defined with
equation (6), which denotes a path starting at a concept mentioned in the input, and trav-
eling up the taxonomic hierarchy, first by an instance link and then by any number of
dominate links.

(6) origin — I = D* — collision
When an elaboration path and a referent path collide, the suggested inference is
that the concept at the origin of the referent path might be the filler of the slot in the ela-

boration path. For example, Figure 6 shows a referent path from having.1 colliding at
having with an elaboration path from giving.3. The suggested inference is that

-101 -

having.l might be a precondition of giving.3. In this particular case, the suggested
inference will eventually be accepted, because there is no evidence to contradict it, and
no better alternatdve filler for that slot.

\

participant |

giver

givee has < c giving \

given

haver

ge-h-g
haver

having.!

Figure 6: Elaboration/Referent Path Collision

-102 -

Figure 7 shows the result of an elaboradon inference: a new relation, giving-
preconditionl.3, is built (at the bottom middle of the diagram) indicating that hav-
ing.1is in fact a precondition of giving.3.

Not all suggested inferences are accepted. There is another collision at having
suggesting that having.l is the result of giving.3. This elaboration inference will be
rejected when it comes time to evaluate it because the match is not satisfied. There is an
after relation that must hold between a situation and its result, but having.l
occurs before, not after giving.3.

The other type of inference involving an elaboration path is the double elabora-
tion inference, when two elaboration paths collide. Although there are no good examples
of this in the sample text, it does show up in the Fisherboy story, text (1) of Chapter 1, in
the phrase hoping to catch a few fish from the sea, which they could sell. The connection
between catching the fish and selling the fish is an instance of having the fish.
Unlike the previous examples, there is no direct link between the two, and there are no
instances of having mentioned in the text. Instead, there is a two-step connection: the
having is a result of the catching and a precondition of the selling. One might guess
that this difference would require completely different marker paths and inference classes
than the case of simple elaborations, but it turns out that the same shape marker paths are
involved. Markers pass from catching Vi@ result t0 having-quarry 0 having, and
from selling via precondition tO0 having-merchandise 10 having. Both of these
paths have the shape I - § — C — D, which matches the specification in (8). The colli-
sion causes the potential inference to be queued, and eventually a new instance of hav-
ing is created to fill both parts of the connection.

Double elaboration inferences always wait in the queue one time unit before they
are evaluated. The reason for this is that the next sentence might provide an explicit filler
for the slots, in which case it would be incorrect to make up a new instance for that pur-
pose. The raison d’etre of the agenda is to delay making any decisions until pairs of
inferences like these have time to hook up with each other.

Double elaboration inferences solve a problem that Charniak [23] addressed with
a much more complicated approach. He was concerned with texts like the following:

(7 Janet was going to get a present for Jack.
She needed some money.

(8) Janet needed some money.
She was going to get a present for Jack.

In both cases, the reader should infer that Janet needed the money because of getting the
present. Charniak’s solution was to attach to the concept get-present a procedure, or
demon, which would look for an instance of needing-money, and if found, assert that
the needing and getting are causally related. As (7) and (8) show, the demon must be
able to look both forwards and backwards. The problem with this shows up in cases like
9):

- 103 -

thing event
/ S
/D
_ "] pre-
situation c condition D

' o])
RERER O
) h-vlins e T s
SN
/// \] | p é J 5

giver has

- NI

gr-h-g 7

I
giving \
resuit
haver
st - >
giving)

having.! F S et giving.3

precond
13

Figure 7: Elaboration Inference Made

%) Janet was going to get a present for Jack.
She went to get her piggy-bank.

. 104 -

Here, the demon on get-present will not find the need-money it is looking for, and
thus can make no inference. But this is not the only demon around. In Charniak’s for-
mulation there is also a demon on get-piggy-bank which is also looking for an instance
of need-money, and, once found, will assert that needing money is the reason for getung
the piggy-bank. To make the right inferences in the case of (9), Charniak must introduce
a complicated mechanism called demon-demon interaction.

In FAUSTUS, we take a declarative, rather than a procedural approach to such
problems. There is no need for demons, and thus there is no need to instruct demons
which direction to look, or how they should interact with one another. Instead, we need
only add to the knowledge base an enables relation between have-money and get-
present, and a reason relation between gec-piggy-bank and have-money. Once that
is done, the double elaboration inference class will find the right connection in (9), and
instantiate the right inferences.

Referential Inferences

Referential inferences allow, among other things, a pronoun or definite noun
phrase to refer to a concept previously represented in the text model. Referential infer-
ences add equate (=) links to the representadon. Equation (6), repeated below as (10),
defines the referential path:

(10) origin —» I — D* — collision

There are actually three distinct classes of referential paths, although all of them
fit the specification in (10). The difference is in the dererminer associated with the con-
cept at the origin of the path. If the determiner is indefinite, the path is classified as a
reference path; if the determiner is definite, the path is a referent path, and if the deter-
miner is unspecified, the path is classified as simply a ref path. Noun phrases in English
usually have a article, like a or the which can give an indication of how they are used, but
verb phrases usually have no such surface indication. Whenever a reference or ref path
collides with a referent or ref path the potential inference suggested is that the concept at
the origin of the first path is a reference to the concept at the origin of the second path. If
more than one referent is suggested they are all considered in turn when the suggested
inference is taken off the agenda and run.

To understand how the referential path inferences work, consider text (11).

(11a) A boy was walking down the street with a friend.
(11b) A girl came up to talk to him.

The sole reference path starts at the concept male.2, which is the interpretation
of the word Aim in (11b). This reference path collides with referent paths originating at
boy.1 and friend.1. Each of these collisions results in a suggestion that the origin of
the reference path (the concept male.2) refers to the origin of the referent path. This
reference path will participate in other collisions, such as the ones from street.l and

- 105 -

girl.2, but these will generate no suggestion, since they are mutually exclusive with the
concept male.2.

After processing (11b), it is time to evaluate the suggested inferences. For each
reference, we first count the number of suggested referents that still match the referent.
If there is exactly one, it is accepted, and an equate link is added to show this. If there
are more than one possibility, as in this case, we find the subset of the possibilities that
match the reference in the highest number of features or relations. A boy is defined as a
child, a male, and a person, whereas a friend is defined as a person who participates in a
friendship relation. Therefore, boy.1 matches male.2 on two counts, male and person,
while friend.1 matches only as a person. So in this case, the inference would be that
him refers to the boy.

Suppose there were no unique referent chosen by the process above. The next
step is to fall back on the ideas of recency and focus. Recency is the number of sentences
that have passed since a possible referent was last mentioned, and focus is the idea that
concepts that have served as slot fillers for salient case slots like actor and patient are
more likely to be referents than concepts that were fillers of peripheral case slots, or no
slots at all. For example, suppose that in (11a), the boy was walking down the street with
his father tather than his friend. Then there would be two possible referents for the him,
both matching as a male and as a person. They also would have the same recency, since
this is scored only by sentence number, not by position within sentence. The only distin-
guishing factor is that the boy fills an actor slot, and actor is defined to be a
focused-slot, so the boy would be chosen as the referent over the father. One more
rule for resolving reference collisions is that ref/ref collisions are ignored if they occur at
a promiscuous node.

A trace of FAUSTUS making some reference inferences follows:

> (do=-story)

Walking Down the Street

{ 1] A boy was walking down the street with a friend.
Rep: (WALKING (ACTOR ¢ A BQY) (PATH & THE STREET) (WITH « A FRIEND))

Inferring: the ACTOR of the WALKING must be the WALKER
This is a RELATION-CLASSIFICATION inference.

Int: (WALKING.1 (T WALKING) (walker « BOY.l) {(path « STREET.l)
(with « FRIEND.1))

Passing Markers and Suggesting Inferences: 1

- 106 -

Inferring: a WITH of the WALKING is probably the ACCOMPANIER
because the FRIEND fits it best.
This is a RELATION-CONCRETION inference.
It is #1, due to the collision:
WALKING.l—filler—PERSON&elaborationeWALKING. 1

[2] A girl started talking to him.
Rep: (TALKING (ACTCR & A GIRL) (PATIENT ¢ HIM))

Inferring: the ACTOR of the TALKING must be the TALKER
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the TALKING must be the TALKEE
This is a RELATION-CLASSIFICATION inference.

Inferring: ‘HIM’ must be a PERSON, because it is the TALKEE
This is a RELATION-CONSTRAINT inference.

Int: (TALKING.2 (T TALKING) (talker ¢« GIRL.2) (talkee « MALE.2))
Passing Markers and Suggesting Inferences: 2 3
Evaluating Inferences:

Inferring: ‘HIM’ refers to the BOY.
because it is the best match.
This is a REFERENCE inference.
It is #2, due to the collision:
BOY.l1—-ref—PERSONe—ref«MALE.2

Rejecting: ‘HIM’ refers to the FRIEND.
because it is not the best match.
This is a REFERENCE inference.

It is #3, due to the collision:
FRIEND.l-3ref—5PERSON«refeMALE.2

Here, because the boy is male, it matches ‘him’ better than the friend, which is not
marked for gender (that is, is not an instance of either male or female).

> (do=-story)

Walking Down the Street #2

- 107 -

[1] A boy was walking down the street with his father,
Rep: (WALKING (ACTCR « A BOY) (PATH & THE STREET) (WITH & A FATHER))

Inferring: the ACTOR of the WALKING must be the WALKER
This is a RELATION-CLASSIFICATION inference.

Int: (WALKING.1l (T WALKING) (walker « BOY.1l) (path &« STREET.1)
(with & FATHER.1))

Passing Markers and Suggesting Inferences: 1

Inferring: a WITH of the WALKING is probably the ACCOMPANIER
because the FATHER fits it best.
This is a RELATION-CONCRETION inference.
It is #1, due to the collision:
WALKING.l—filler—PERSON«elaborationeWALKING.1

{ 2] A girl started talking to him.
Rep: (TALKING (ACTOR & A GIRL) (PATIENT « HIM))

Inferring: the ACTCOR of the TALKING must be the TALKER
This is a RELATION=-CLASSIFICATION inference.

Inferring: the PATIENT of the TALKING must be the TALKEE
This is a RELATION-CLASSIFICATION inference.

Inferring: ‘HIM’ must be a PERSON, because it is the TALKEE
This is a RELATION-CONSTRAINT inference.

Int: (TALKING.Z2 (T TALKING) (talker ¢« GIRL.2) (talkee « MALE.2))
Passing Markers and Suggesting Inferences: 2 3
Evaluating Inferences:

Inferring: ‘HIM’ refers to the BOY.
because it is in focus.
This is a REFERENCE inference.
It is #2, due to the collision:
BOY.l—ref -PERSONérefe«MALE.2

Rejecting: ‘HIM’ refers to the FATHER.
because it is not in focus.
This is a REFERENCE inference.

It is #3, due to the collisicn:
!

- 108 -

FATHER.l-ref H5PERSONe«ref«MALE.2

In this case, both the boy and the father match ‘him’ equally well, since they are both
males. The evaluation procedure thus moves on to the next criterion, which is participa-
tion in a focused case relation. The boy was the actor in the previous sentence, sO he is
in focus, and the father is not.

It is an open research question how to combine evidence from various sources;
FAUSTUS uses a fairly primitive counting procedure that does not try to answer questons
like how much focus is necessary to offset one time unit of recency?. The idea of a best
match comes from counting up the number of features, or relation fillers, that two con-
cepts have in common. Either two concepts do not match at all, or they have a small
number of features in common — usually in the range zero to two. If there are several
matches with the same count, then we look to see if there is exactly one that is more
recent than the others. If not, we award one point for each participation in a focused case
relation and again see if the tie is broken.

One complication in telling references from referents is that the surface article in
English is not as reliable as one might hope it would be. Normally, definite noun phrases
like him or the boy are references, while indefinite noun phrases like a boy are referents. '
However, this rule does not always hold; the article the can be used to refer to a specific
entity that had not previously been mentioned in the text, as long as it is a well-known
entity, such as the sun or the president. It can also refer to some role in a known script or
other type of knowledge structure, as when we refer to the waiter in a restaurant. This
type of inference is handled routinely by FAUSTUS; it is just an elaboration/reference col-
lision involving an instance of waiter and the waiter-of-restaurant concept.

Another complication is that some phrases are not marked with any article at all
in English. This is particularly true for verb phrases. In passages like (12), the ralked in
the second sentence refers to the same event as the discussed in the first sentence, but
neither event is explicitly marked as definite or indefinite. FAUSTUS is able to make the
inference that the two actions are co-referential, using the same mechanism that works
for pronouns. The idea of treating actions under a theory of reference is covered in [71].
A trace of FAUSTUS processing (12) follows:

(12) The president discussed Nicaragua. He talked for an hour.

> (do-stcry)

The President

[1] The president discussed Nicaragua.

Rep: (DISCUSSING (ACTOR ¢ THE PRESIDENT) (CONTENT &« NICARAGUA))

- 109 -

Inferring: the ACTCR of the DISCUSSING must be the TALKER
This is a RELATION-CLASSIFICATION inference.

Int: (DISCUSSING.1 (T DISCUSSING) (talker « PRESIDENT..) (content
« NICARAGUA.1l))

[2] He spoke for an hour.
Rep: (TALKING (ACTOR « HE) (DURATION ¢ AN HOUR))

Inferring: the ACTOR of the TALKING must be the TALKER
This is a RELATION-CLASSIFICATION inference.

Inferring: ‘HE’ must be a PERSON, because it is the TALKER
This is a RELATION-CONSTRAINT inference.

Int: (TALKING.Z2 (T TALKING) (talker « MALE.2) (duration « HOUR.2))
Evaluating Inferences:

Inferring: ‘HE’ refers to the PRESIDENT.
This is a REFERENCE inference.
It is #1, due to the collision:
PRESIDENT.l—ref—PERSONeref«MALE.2

Inferring: the NICARAGUA is a COUNTRY such that
it is the HABITAT of ‘HE’ and
it is the COUNTRY of the PRESIDENT.
This is a DOUBLE-ELABORATION inference.
It is #3, due to the collision:
MALE.2-»elaboration—PLACE—elaboratione-PRESIDENT.1

Inferring: the TALKING refers to the DISCUSSING.
This is a REFERENCE inference.
It is #4, due to the collision:
DISCUSSING.l—oref—>TALKING«ref«TALKING.2

Inferring: the DISCUSSING refers to the TALKING.
This is a REFERENCE inference.
It is #5, due to the collision:
DISCUSSING.1—-ref95TALKINGe—ref«TALKING.Z2

Although this example was meant only to illustrate action/action co-reference,
several inferences are made. First, FAUSTUS realizes that he refers to the president. That
is straightforward. But next there is a double-elaboration inference, where Nicaragua is
taken to be both the residency of the president, and the country which he presides over. I

-110 -

did not expect this inference to occur; like most readers, I interpreted the text as referring
to the president of the United States. However, this is because I am living in the U.S..
and the current U.S. president is a salient figure. FAUSTUS does not have this context
available to it. Nowhere was it specified to FAUSTUS that the texts are being read in the
U.S., so given that (lack of) context, inference #3 is quite reasonable.

View Application Inferences

In Chapter 3 we introduced the necessity of viewing one concept as another in
order to make the right interpretation. An example of this shows up in the sentence The
Red Sox killed the Yankees. There is a constraint violation in that the Killed-0f-
Killing relation should hold between an instance of killing and an animal, but the
Yankees are defined as a baseball team, which is an organization, and not an animal. To
resolve this constraint violation, we need to either interpret the Yankees as a kind of
animal, or the killing as a kind that holds between organizations. Views are applied to
make interpretations like this, but they are only applied as needed. Ordinarily, markers
are not passed along view links. However, if an input representation contains a con-
straint violation, then the markers originating at each of the concepts involved in the vio-
lation are free to traverse view links.

The path shapes used in view application inferences are as follows, and a diagram
of the collision is shown in Figure 8.

(13) origh—>I—>D*—>V >D* = ¢! 5 A1 5 collision
(14) origin—-)I—»D"‘—)C'1 — A~ — collision

Path (13) is a view path, and (14) denotes a constraint path. These work in tan-
dem much as the referent and reference paths do; there is an inference associated with the
intersection of a constraint path and a view path, but neither of them interact with any of
the other types of paths. The inference routine associated with their intersection checks
to see if viewing the concept at the origin of (13) as an instance of the concept at the col-
lision could rectify the constraint violation that started this passing along view links. If
so, the suggested inference is to apply the view.

A trace of FAUSTUS processing the kill example follows:

> (do-story)

Baseball

[1] The Red Sox killed the Yankees.

Rep: (KILLING (ACTCR « THE RED-SOX) (PATIENT ¢ THE YANKEES))

-111-

defeated of

defeat conv.
defeat 7 Y sports
convincingly A A participant
o= S
defeat
v conv. w/ D
I defeated l
iy baseball
killing \eam
? killed of ,
1 killing.1 l
killing. 1 Yankees.1

A7 A
— L,
F‘ ‘/F

Figure 8: View Application Path Collision

Inferring: the ACTOR of the KILLING must be the KILLER
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the KILLING must be the KILLED
This is a RELATION-CLASSIFICATION inference.

Int: (KILLING.1 (T KILLING) (killer « RED-SOX.1l) (killed « YANKEES.1))
Passing Markers and Suggesting Inferences: 1 2
Evaluating Inferences:

Inferring: the KILLING is viewed as a DEFEAT-CONVINCINGLY,
where the YANKEES is the DEFEATED of it.
This is a VIEW-APPLICATION inference.
It is #1, due to the collision:
KILLING.l—>view—Defeated-Of-Defeat-Convincingly«-constraint«YANKEES..

Inferring: the KILLING is viewed as a DEFEAT-CONVINCINGLY,
where the RED-SOX is the DEFEATER of it.
This is a VIEW-APPLICATION inference.
It is #2, due to the collision:
KILLING.l—oview—sDefeater-Of-Defeat-Convincinglyé«constraint«RED-SOX..

When more than one view is applicable, we have to choose between them. Hav-
ing multiple applicable views is rarer than having multiple possible referents, but it is
still important to account for this case. The rule for choosing among multiple applicable
views is as follows:

The first step is to see if one of the applicable views is dominated by
another. If so, consider only the most specific, and eliminate the more
general view from consideration. If this fails, the next step is to defer
making a decision for one time unit. On the next time around, it may be
that newly inferred links to the concepts involved will enable a choice to
be made.

As an example of multiple applicable views, consider the sentence The chairman
moved the meeting up a week. Moving something up should take as object a direction or
distance, not a time duration. To understarid this sentence, we need a view that maps
time onto a physical direction or distance scale. There are two such views, one that
measures distance from the current time into the future, and one that measures time from
some landmark in the future back to the current time. Applying the first view would
mean interpreting the sentence as meaning the meeting was postponed, while the second
view would have the meeting occurring earlier than originally planned. FAUSTUS’s rules
would be unable to disambiguate such an example.

There are cases where a view should be applied even when there is no constraint
violation. For example, in Lend! killed Becker ar Wimbledon, there is a valid literal
interpretation, but the preferred interpretation stll views killed as defeat convincingly.
Similarly, it is literally true that no man is an island, entire of itself; but in processing the
Donne quote it would be best to interpret island as an isolated-entity, rather than a
land-mass, even without considering the constraint violation in every man is a piece of
the Continent. FAUSTUS does not handle such cases.

Paul Jacobs [59] used views to handle certain very general relationships in
language. The problem he addressed was generating English sentences. James Martin
[77] shows that a system that has representations for common conventional metaphors
can acquire new knowledge easily from user input that refers to these metaphors. Nei-
ther address the problem of multiple applicable views, or of applying views when the
literal reading is valid.

Concretion Inferences

In the KL-ONE language, much attention is paid to the process of classification
(see Schmolze and Lipkis [117]). For example, when given an instance of traveling
with an automobile as instrument, the KL-ONE classifier could conclude the travel-
ing must also be an instance of driving. When given a description of an animal with
four legs, a trunk, large ears, tusks, and grey skin, the classification algorithm could con-
clude that the animal must be 2 quadruped, but no more. We would like to be able to do
more than that, and infer that the animal is probably an elephant. This is a plausible

-113 -

inference, not a logical consequence of the taxonomy, and thus is beyond the scope of
KL-ONE classification. Such an inference is called a concretion inference in FAUSTUS. It
refers to the process of interpreting a concept as something more concrete — less abstract
~ than is strictly warranted by the representation. Making a concretion inference means
adding a dominate or instance link from the concept to a category. Concretion was first
discussed in [136] and [88, §9].

To demonstrate how concretion works in FAUSTUS, we will be examining the fol-
lowing sentence:

(15) John cut the lawn.

FAUSTUS’ processing of this sentence is as follows:

> (do=-story)

Cutting

{ 1] John cut the grass.
Rep: (CUTTING (ACTOR & JCHN) (PATIENT « THE GRASS))

Inferring: the PATIENT of the CUTTING must be the THING-CUT
This is a RELATION-CLASSIFICATION inference.

Int: (CUTTING.1 (T CUTTING) (actor « PERSON.1) (thing-cut & GRASS.1))
Passing Markers and Suggesting Inferences: 1
Evaluating Inferences:
Inferring: the CUTTING is a LAWN-CUTTING.
This is a CONCRETION inference.

It is #1, due to the collision:
GRASS.1—filler—CUTTING«elaboration«GRASS.1

In (15), FAUSTUS infers that this is an instance of lawn-cutting, not just any
kind of cutting. This is important, because there are several specific facts associated with
cutting the lawn. For example, it is likely that John used a lawnmower as an instrument,
and that he cut the blades of grass horizontally, to a roughly uniform height. If we
stopped at cutting, and did not make the concretion inference, we could not make the
lawnmower interpretation. It would be just as likely that the instrument was a chainsaw,
and that he hacked the turf into two large pieces.

-114 -

Concretion inferences are suggested as the result of collisions between an ela-
boration path and a filler path. The elaboration path shape has been seen before as (5),
but is repeated here as (16), and the filler path is defined in (17). A diagram of the colli-
sion is shown as Figure 9. The details of the collision are that, if the origins of the two
paths are the same, and the collision occurs at 2 non-promiscuous concept, then suggest
that the concept at the bottom of the I link in the filler path (in this case, cutting.1)is
an instance of the concept at the start of the S link in the elaboration path (in this case,
lawn-cutting). When it comes time to evaluate the suggeston, FAUSTUS checks that
the one concept could still be an instance of the other (it has not been made incompatible
by the addition of new information). If several incompatible concepts have been sug-
gested as concretions of the same concept, FAUSTUS tries to find the best match by count-
ing matching features, using the same mechanism that was used for finding the best
referent. However, there is no tie-breaking formula for concretion inferences (recency
and participating in central case relations is not important). In case of a tie, no inference
is made.

(16) origin - I — D* —->IS — C — D* = collision
(17) origin »F ' =A™ 5 A 5 F—1- D* - collision

In this example it was the absolute — the cutting — that was the object of concre-
tion. It is also possible to concrete the relation between two absolutes. This is done by a
relation concretion inference. Relation concretion inferences are suggested by the same
shape marker collision as ‘regular’ concretion inferences, but under slightly different cir-
cumstances. To see examples of relation concretion, we turn to the ‘‘Spagherd Dinner”’
texts, given in Chapter 3 as (6a-d), and repeated here as (18a-d). The problem is that the
relation with is ambiguous. It can be an accompanier, instrument, manner or just a

cutting
D/
lawn L
grass re— C — cutting’s S — lawn
thing cut cutung
thing
grass.! le——F cut S cutting. 1

Figure 9: Concretion Path Collision

-115.

default ‘‘along with’’ modifier.

(18a) John ate spaghetti with Frank.
(18b) John ate spaghett with a fork.
(18¢c) John ate spaghetti with gusto.
(18d) John ate spaghetti with pesto.

In the FAUSTUS output shown below, each line in (18a-d) is processed as a
separate text. In (18a), which is Story #1 below, there is a concretion collision at the
concept person. Compare this collision to the one in Figure 9, where the suggested
inference is that cutting.1 is an instance of lawn-cutting. In Figure 10 a
corresponding suggeston is not made, because the elaboration path does not go through a
sub-category on the path to the person. Instead, the suggestion is that the with relation
should be categorized as an accompanier. Another collision, at phys-obj, suggests
that the relation be interpreted as an instrument. In cases where there are multiple pos-
sibilities, the evaluation rules favor the more specific interpretation. Since person is
more specific than phys-ob3j, the accompanier interpretation is accepted, and the
instrument rejected. In (18b), only the instrument interpretation is suggested, so it is
accepted.

> (do-story)

Spaghetti Dinner #1

[1] John ate spaghetti with Frank.

action —3S @——— C—» person

eating.1 l—3 with F Frank.1

Figure 10: Marker Collision for ‘‘Spaghetti Dinner #1"’

- 116 -

Rep: (EATING (ACTOR « JOHN) (PATIENT ¢ SPAGHETTI) (WITH ¢« FRANK))

Inferring: the ACTOR of the EATING must be the eater
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the EATING must be the eaten
This is a RELATION-CLASSIFICATION inference.

Int: (EATING.1 (T EATING) (eater ¢ PERSON.l) (eaten ¢ SPAGHETTI.1)
(with & PERSON.1B))

pPassing Markers and Suggesting Inferences: 1 2

Inferring: a WITH of the EATING is probably the ACCCOMPANIER
because Frank fits it best.
This is a RELATION-CONCRETION inference.
It is #1, due to the collision:
EATING.l1—filler—PERSON«elaborationeEATING.1

Rejecting: a WITH of the EATING is probably a INSTRUMENT
because ancther interpretation, ACCOMPANIER, is more specific.
This is a RELATION-CONCRETION inference.
It is #2, due to the collision:
EATING.1-filler—PHYS-0BJ¢<elaboration«EATING.1

Here the word ‘‘with’’ was interpreted as the accompanier of the eating action. The out-
put ‘‘a WITH of the EATING is...”” may not be perfect English, but it is analogous to
(and generated by the same print subroutine as) the phrase “‘the ACTOR of the EATING
must be...”” The meaning of the former is that there is a WITH relation that holds
between the EATING and Frank, and that this relation is being classified as the ACCOM-
PANIER relation. The phrase ‘‘a WITH’’ [relation] is used instead of ‘‘the WITH"”
[relation] because there may be more than one such relation. ‘“The ACTOR’’ indicates
that there can be only one actor for an action.

> (do-story)

Spaghetti Dinner #2

1] John ate spaghetti with a fork.
Rep: (EATING (ACTCR ¢ JOHN) (PATIENT ¢« SPAGHETTI) (WITH ¢« A FORK))

Inferring: the ACTOR of the EATING must be the eater
This is a RELATION-CLASSIFICATION inference.

-117 -

Inferring: the PATIENT of the EATING must be the eaten
This is a RELATION-CLASSIFICATION inference.

Int: (EATING.1 (T EATING) (eater « PERSON.l) (eaten « SPAGHETTI.1)
(with & FORK.1))

Passing Markers and Suggesting Inferences: 1

Inferring: a WITH of the EATING is probably a INSTRUMENT
because the FORK fits it best.
This is a RELATION-CONCRETION inference.
It is #1, due to the collision:
EATING.1—ofiller—5PHYS-OBJ«elaboratione«EATING.1

We now go on to the next text, where again there is only one suggestion:

> (do-story)

Spaghetti Dinner #3

(1] John ate spaghetti with gusto.
Rep: (EATING (ACTOR ¢ JOHN) (PATIENT ¢« SPAGHETTI) (WITH & GUSTO))

Inferring: the ACTOR of the EATING must be the eater
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the EATING must be the eaten
This is a RELATION-CLASSIFICATION inference.

Int: (EATING.1 (T EATING) (eater « PERSON.l) (eaten & SPAGHETTI.1)
(with « GUSTO.1l))

Passing Markers and Suggesting Inferences: 1

Inferring: a WITH of the EATING is probably the MANNER
because the GUSTO fits it best.
This is a RELATION-CONCRETION inference.
It is #1, due to the collision:
EATING.1—-filler—ATTITUDE«elaboratione«EATING.1

> (do-story)

Spaghetti Dinner #4

-118 -

[1] John ate spaghetti with pesto.
Rep: (EATING (ACTOR & JOHN) (PATIENT ¢ SPAGHETTI (WITH ¢« PESTO)))

Inferring: the ACTOR of the EATING must be the eater
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the EATING must be the eaten
This is a RELATION-CLASSIFICATION inference.

Int: (EATING.1 (T EATING) (eater « PERSON.l) (eaten & SPAGHETTI.1l))
Passing Markers and Suggesting Inferences: 1

Inferring: a WITH of the SPAGHETTI is probably the SAUCE
because the PESTO fits it best.
This is a RELATION-CONCRETION inference.
It is #1, due to the collision:
PESTO.1—9filler—FO0D«elaborationePESTO.1

In #4, the “‘with’’ modifies the spaghetti, not the eating. Thus the accompanier,
instrument, and manner interpretations are not open, since they only hold for actions.
The only possibility remaining is the default ‘‘along with’’ interpretation. However,
there is a specific version of this relation, which represent the fact that sauces go with
other foods. This is the interpretation accepted. Charniak [28] has shown that marker-
passing techniques can be used to decide the proper attachment for prepositional phrases,
but FAUSTUS cannot address this problem since it is not integrated with the parser, and
there is no way to get the parser to produce a representation that is neutral as to attach-
ment.

Step 4: Evaluating Suggestions

As stated earlier, suggestions are placed on a queue called the agenda, and then
evaluated after marker passing has been completed for an input. This section explains
the details of how the queue is maintained, and how individual suggestions are evaluated.

First, I review the FAUSTUS inferencing algorithm to put the evaluation mechan-
ism in perspective. The marker passing mechanism spreads markers from concepts in the
representation of the input to concepts in the knowledge base, and detects marker colli-
sions. Each collision is classified according to its marker path shape. Each collision is
then tested according to the rules for its class. If the collision passes the tests, a sugges-
tion is placed on the agenda. Each suggestion contains an indication of where it came
from (the marker paths leading to the collision), the inference class, the time it entered
the agenda, the particular inference being suggested, a priority, and a list of other sugges-
tions it may be in competition with.

-119 -

After marker passing has completed, the suggestions on the agenda are evaluated.
The result can either be an inference — something new to add to the representation of the
text — or it can be a decision to reject the suggestion and make no inference, or to defer
and try the suggestion again after the next input.

The main reason for maintaining an agenda rather than just evaluating each
suggestion as soon as it is detected is that some suggestions cannot be evaluated in their
own right, but must be compared to other, competing suggestions. For example, in text
(1), the bicycle story, there were two competing suggestions, one that ‘he’ referred to
John, and the other that ‘he’ referred to Bill. Both suggestions are plausible, and either
one would be accepted if evaluated separately. Therefore, we have to evaluate them
together, and choose the best possibility. Evaluation becomes a question of relative plau-
sibility, rather than absolute yes/no acceptance.

All the inference classes offer the possibility of competing inferences. Referents
can compete for the same reference, fillers can compete to elaborate the same aspectual,
and we can have multiple possible views or concretions of a concept. When a suggestion
is put in the agenda, the suggeston also places a pointer to itself in the a-list of the
appropriate concept. For example, when the suggestion that ‘he’ refers to John is placed
in the agenda, a pointer to the suggestion is placed under the *‘referent’’ indicator in the
a-list of the concept representing this instance of ‘he.” Later, when the suggestion that
‘he’ refers to Bill is placed in the agenda, it looks at this a-list entry, sees there is some-
thing already there, and keeps track of the fact that these two suggestions are now com-
peting with one another. The agenda evaluation procedure can then arrange to evaluate
competing suggestions together as a group, and can apply the rules for making a choice
among alternatives. The procedure also arranges to evaluate all single suggestions before
those with competing alternadves. The rationale for this is that we want to have all pos-
sible information available when we are forced to make a choice. By waiting as long as
possible, it may be that other suggestions have added information to the representation of
the text that can help make the choice.

FAUSTUS has provisions for ordering suggestions according to a priority factor,
which can take into account the length of time waiting in the agenda, the inference class,
and the list of competing suggestions. Currently this feature is used for only two cases.
First, competing sets of suggestions are put at the end of the agenda, as stated above.
Second, we place all single elaboration inferences before double elaborations. This
means the system will prefer to fill slots with existing objects rather than invent new
ones.

It is useful to think of the suggestion mechanism as a three-part filter. Out of the
infinite number of possible inferences that could be made, we filter out completely
irrelevant ones by only considering inferences due to particular types of marker colli-
sions. Then, out of all the possible inferences due to collisions, we filter out impossible
ones. For example, if ‘John,” ‘Mary,” and ‘he’ have been mentioned in the text, then
there will be a referentia! collision with markers originating at ‘Mary’ and ‘he’ and col-
liding at the concept animal. But this will not suggest an inference because ‘Mary’ and
male are in mutually disjoint portions of the hierarchy. Finally, the third filter is a more

-120 -

stringent check of suggestons at evaluation time. A suggestion is made unless there is a
blatant contradiction — such as two concepts being in mutually disjoint categories — but
the suggestion is only accepted after a full check for more subtle contmradictions. As an
example, consider again text (1), repeated here as (19):

(19a) Bill had a bicycle.
(19b) John wanted it.
(19¢c) He gave it to him.

Two suggestions will be that ‘he’ refers to ‘John’ and to ‘Bill.” Neither of these
suggestions could be eliminated by checking the hierarchy, as both John and Bill are
males. However, another suggestion is the following inference, which was accepted:

Inferring: the HAVING mentioned in {1] is a PRECONDITION of the GIVING.
This is a SINGLE-ELABORATION inference.
It is #10, due to the collision:
GIVING.3—elaboration—STATIVE«ref«HAVING.1

This states that the having of the bicycle enables the giving of the bicycle. Giving is
defined as a kind of transferring, and transferring is defined as follows. :

(A TRANSFERRING (T ACTION-PROCESS)
(donor SENTIENT-AGENT (T participant))
(recipient SENTIENT-AGENT (T participant))
(transferred INANIMATE (T patient))
(transferringSresult RECIPIENT-HAVING-OBJECT (T result) 1 1)
(transferringSprecondition DONOR-HAVING-OBJECT (T precondition) 1 1)
(= recipient (haver transferringSresult))
(= transferred (had transferring$result))
(= donor (haver transferring$precondition))
(= transferred (had transferring$precondition))
(# TAKING GETTING GIVING))

The important line here is the third from the bottom, which says that the donor of a
transferring event must be the same as the haver of the precondition of the transferring.
So after inference #10 is asserted, the donor of the giving, ‘he,’ is equated with the haver
of the having, ‘Bill.” The evaluation procedure checks equate links, and thus can accept
Bill and reject John as the referent of ‘he.’

Actually, the matching procedure does more than check equate links. Two con-
cepts match if they are the same identical object, or if they are equated. They fail to
match if they are connected by a differ link, or if they are in disjoint portions of the
hierarchy. Otherwise, they match if there are no mis-matches among the relations they
participate in. This is harder to compute in KODIAK than in frame-based languages.
because we have to consider not only the slots of a concept, but also the slots the con-
cepts fills. The match procedure looks at all the relations for one concept, and finds the
corresponding relation(s) for the other concept. This comparison may result in an

-121-

immediate match, if one concept has a relation filled by some instance, and the other con-
cept just has a constraint saying that kind of concept is acceptable. It may result in an
immediate mis-match, if the conswaint is violated. Or, it may result in the need for a
recursive match berween two concepts involved in the relaton. In that case, the pro-
cedure first checks to see if a match has been requested between these two concepts
before. If so, the recursion is stopped, to avoid infinite loops. The recursive match
makes the assumption that it should return true, with the expectation that eventually the
original call to match will return something. If it returns true, then the assumption was
warranted, and if not, then the whole match fails, and we stll have the correct result.

I now cover the evaluation rules for resolving competing suggestions. For each
inference class there is a preliminary check using the match procedure, where some of
the competing suggestions can be ruled out immediately. If there is only one suggestion
that survives this check, then it is accepted. Otherwise, the following rules hold.

Evaluating Competing Elaboration Suggestions

If more than one filler is suggested for a slot, and one matches the constrainer of
the slot in more respects than any others, then it is accepted. This can happen, for exam-
ple, if the constrainer is dominated by two different concepts, and if only one of the pos-
sible fillers is explicitly dominated by both (even if the others are compatible with, or
match, both dominators). If there is no best match, all suggestions are deferred.

Evaluating Competing Reference Suggestions

Reference suggestions can also be resolved by finding one referent that matches
better than any other. If there is no best match, the next step is to choose the most
recently mentioned of the top-scoring matchers. If there are stll several possibilities,
then if exactly one referent participates in a focused slot relation (such as the actor of an
action), then it is chosen. Otherwise, the suggestions are deferred.

Evaluating Competing View Application Suggestions

Since views are related to each other hierarchically, it may be that one suggested
view is just a specialization of another. If this is the case, choose the more specific appli-
cable view. After that, the rule is to pick the view where the resulting (viewed-as)
category matches the source concept the best. If there is no best match, defer making a
decision.

- 122 -

Evaluating Competing Concretion Suggestions

Concretion suggestions are somewhat different in that a given concept can be
concreted in several directions at once, so not all concretions for a concept are neces-
sarily in conflict. Thus, the evaluation rule for this class partitions the competing sugges-
tions according to the hierarchy, and chooses the best match from each partition. There
is no tie-breaking procedure; the default is to defer and make no decision.

Summary

In this chapter, we have seen how to create the knowledge base and to represent
individual inputs. The marker-passing, inference suggestion, and suggestion evaluation
parts of the inferencing algorithm were also presented. The algorithm makes use of six
inference classes motivated by specific marker path shapes, as well as two non-marker-
passing inference classes. The next chapter will present several texts that can be pro-
cessed using this algorithm.

2123

Chapter 5:
Further Examples

As discussed in Chapter 2, there have been many past efforts to make inferences
from text. In this chapter, I will show how the FAUSTUS system is capable of equaling
the inferencing capabilities of some of these systems. For some of the examples, I intro-
duce a new analysis of the text. In other examples, the contribution here is not in making
a new analysis, but rather in FAUSTUS’ ability to integrate the capabilities of several sys-
tems into one. If FAUSTUS can process stories about Bill’s bicycle, Chang’s fishing, and
John’s dining, if it is possible to share knowledge between the stories, and if the
knowledge added to process a new story does not interfere with the processing of an old
story, then that is a significant finding.

The purpose of this chapter is four-fold: it provides examples that add detail to
the ideas expressed in Chapters 3 and 4; it shows that FAUSTUS can be applied to a wide
range of problems; it shows how FAUSTUS can accommodate different knowledge
sources in a uniform manner, and finally it shows some problems that FAUSTUS cannot
handle. The example texts were taken from or suggested by work done by previous
researchers. We will proceed in roughly chronological order.

Unconstrained Sentence-Based Inferencing

Several early Al systems addressed the problem of generating all plausible infer-
ences from a single sentence input. One of the first was Quillian’s Teachable Language
Comprehender [93], or TLC, which took as input single noun phrases or simple sentences,
and related them to what was already stored in semantc memory. For example, given
the input ‘‘lawyer for the client,”’ the program could output *‘at this point we are discuss-
ing a lawyer who is employed by a client who is represented or advised by this lawyer in
a legal matter.”” The examples given in [93] show an ability to find the main relation
between two concepts, but not to go beyond that. One problem with TLC was that it
ignores the grammatical relations between objects until the last moment, when it applies
‘‘form tests’’ to rule out certain inferences. For the purposes of generating inferences,
TLC treats the input as if it had been just “‘Lawyer. Client’’. Quillian suggests this could
lead to a potential problem. He presents the following examples:

enemy'’s lawver lawyer’s enemy
wife’s lawyer lawyer’s wife
client’s lawyer lawyer’s client
lawyer for the enemy enemy of the lawyer
lawyer for the wife wife of the lawyer
lawyer for the client client of the lawyer

2124

In all the examples on the left hand side, the lawyer is employed by someone. However,
among the examples on the right hand side, only the two mentioning clienz should
include the employment relation as part of the interpretation. While he suggests a solu-
tion in general terms, Quillian admits that TLC as it stood could not handle these exam-
ples.

In trace output #1 below, the for relation in lawyer for the client is first classified
as an emploved-by, because a lawyer is defined as a professional-service-
provider, which includes an employed-by slot as a specialization of the for slot
After that a double elaboration inference finds that an employing-event can mediate
between an emplover and an employee. The second example shows that, like TLC,
FAUSTUS can find this connection without the for relation.

In the third and fourth examples, we see FAUSTUS’ solution to Quillian’s quan-
dary. In order to get the right connection for examples like #3, lawyer for the enemy,
Quillian had to define the employ-lawyer relation to hold between a lawyer and any per-
son. In FAUSTUS I define the employing relation as holding between an employer and an
employee, and state separately that a client is an employer, and a lawyer is an employee.
In #3, then, it is the interpretation of the for relation that adds the assertion that the
enemy is an employer. After that, the double elaboration inference is free to go through.
In #4, the enemy is not interpreted as an employer, so no inference is made.

The important point is that FAUSTUS has a better way of combining information
from syntax and semantics. Both TLC and FAUSTUS suggested inferences by spreading
markers from all components of the input, and looking for collisions. The difference is
that TLC used syntactic relations only as a filter to eliminate certain suggestions, while
FAUSTUS incorporates the meaning of these relations into the representation before
spreading markers.

> (do-story)

Quillian #1

[1] lawyer for the client
Rep: (LAWYER (FOR ¢ THE CLIENT))

Inferring: a FOR of the LAWYZR must be the EMPLOYED-BY
This is a RELATION-CLASSIFICATION inference.

Int: (LAWYER.1 (T LAWYER) (employed-by « CLIENT.1))
Inferring: there is a EMPLOYING-EVENT such that

the CLIENT is the EMPLOY-ER of it and
the LAWYER is the EMPLOY-EE of it.

-125-

This is a DOUBLE-ELABORATION inference.
It is #2, due to the collision:
CLIE‘T.l—eelaboration—»EMPLOYING-EVENTe—elaboratione—LAWYER.l

> (do-story)

Cuillian #2

[1] Lawyer.

Rep: (LAWYER)

Int: (LAWYER.1 (T LAWYER))

[2] Client.

Rep: (CLIENT)

Int: (CLIENT.2 (T CLIENT))

Inferring: there is a EMPLOYING-EVENT such that
the CLIENT is the EMPLOY~ER of it and
the LAWYER is the EMPLOY-EE of it.
This is a DOUBLE-ELABORATION inference.

It is #2, due to the collision:
CLIENT.2-+elaboration—»EMPLOYING—EVENTe—elaboratione—LAWYER.l

> (do-story)

Quillian #3

{ 1] lawyer for the enemy

Rep: (LAWYER (FOR ¢ THE ENEMY))

Inferring: a FOR of the LAWYER must be the EMPLOYED-BY
This is a RELATION-CLASSIFICATICN inference.

~
1
i

Int: (LAWYER.1 (7 LAWYER) (employed-by & ENEMY.1))

inferring: there is a EMPLOYING-EVENT such that

the ENEMY is the EMPLOY-ER of it and
the LAWYER is the EMPLOY-EE of it.

-126 -

This is a DOUBLE-ELABORATION inference.
Tt is #2, due to the collision:
ENEMY.l—eelaboration—+EMPLOYING-EVENT«-elaboratione—LAWYER.l

> (do-stozry)

Quillian #4

{ 1] enemy of the lawyer
Rep: (ENEMY (OF ¢ THE LAWYER))
Int: (ENEMY.1 (T ENEMY) (of ¢ LAWYER.1))
Passing Markers and Suggesting Inferences: 1
Inferring: a OF of the ENEMY is probably a RELATED-TC
because the LAWYER fits it best.
This is a RELATION-CONCRETION inference.

It is #l,‘due to the collision:
ENEMY.l—filler—93PERSON«elaborationeENEMY.1

A more elaborate inferencing program was the MARGIE system of Schank, Gold-
man, Rieger, and Riesbeck [107]. MARGIE performed two separate tasks; paraphrasing
sentences, which we will not be concerned with here, and generating inferences, which is
relevant. The program took one complete sentence (with restricted syntax) at a time, and
generated a list of plausible inferences. An example follows:

INPUT: John told Mary that Bill wants a book. OUTPUT1: A book about what? OUT-
PUT2: Mary knows that Bill wants a book. OUTPUT3: Bill wants to come to have a
book. OUTPUT4: Bill wants someone to cease to have a book. OUTPUTS: Bill wants
to read a book. Each of these inferences is reasonable, although it is not clear
they necessarily constitute the best set of inferences. For example, it is appropriate in
output 1 to wonder about the subject of the book, but it would also be appropnate to
wonder if Bill wants a particular title (he wants Lord Jim), or if he wants a particular
physical instance of a book (he wants that one on the table). Output 4 is particularly
suspect; Bill probably does not care if someone else is deprived of a book, and would be
just as happy if the book appeared out of thin air without anyone ceasing to have it.

In summary, there are a large number of quibbles one could make about the infer-
ences made by MARGIE. One reason for this is that the input is an isolated sentence, and
it is not at all clear what the purpose of the sentence is. If the sentence were imbedded in
a larger context, it would be easier to decide which inferences were relevant.

-127.

FAUSTUS, it turns out, can make none of the inferences listed in outputl-5.
FAUSTUS was based on the assumption that the input will be coherent, and the program’s
job is to find relations between concepts in the input. In this example, outputl-5 consist
mostly of speculations of where the text might go next, rather than how the text itself
coheres. FAUSTUS does not spontaneously generate inferences like outputl-5, but rather
waits until they are needed to tie the text together. Thus, if the next sentence were She
gave one to him, FAUSTUS would infer that she refers to Mary, one refers to a book, and
him refers to Bill. Furthermore, Mary gave it because Bill wanted it, there is a new situa-
tion wherein Bill has the book, and this situation is the result of Mary giving the book,
and satisfies Bill’s wanting the book. This set of inferences is isomorphic to the set gen-
erated by sentence 3 in the Bill’s bicycle story presented as the first example in Chapter
4.

Despite the fact that FAUSTUS was not designed to handle single-sentence inputs
it does perform adequately on the Lawyer/Client examples above. We would like an
explanation of why it can handle those examples, but not the book example. The differ-
ence is precisely the existence of the mediating relation employing-event, which forms
a bridge between lawyer and client. If there were a wanting-to-read that described
the situation wherein someone wants a book in order to read it, then FAUSTUS could
duplicate output5. The program could correctly infer that it is Bill, not John or Mary,
who wants to read a book, and that the book he wants to read is the same book he wants
to have.

Script-Based Inferencing

Scripts had to be introduced originally as a separate type of knowledge structure
to extend the semantics of Schank’s Conceptual Dependency knowledge representation.
CD relied heavily on a small set of primitive acts, and it was difficult to organize and
contain the inferences that arise from non-primitives. There was a primitive, INGEST
which provided a place to store information about substances entering a body, but there
was no good place to store information about a specific kind of ingest, like eating, let
alone eating at a restaurant. Thus, scripts were introduced as an extension of primitive
acts, and MOPs as an extension of scripts. In KODIAK, there are no such arbitrary dis-
tinctions, SO eating-at-a-restaurant is just another event, much like eating or
walking, except that it is more complex, involving multiple agents and multiple sub-
steps, with relations between the steps. Scripts needed the notion of tracks, like the fast-
food track of the restaurant script, to accommodate variation. In KODIAK possible vari-
ants in a script are represented using the normal inheritance hierarchy mechanism.

We do not need any additional mechanisms or formalism to define scripts, or
tracks of scripts, but we do still need to represent the same knowledge, in one fashion or
another. The following is FAUSTUS’ representation of some knowledge related to eating
at a restaurant. Because there are many related facts, I use the textual description (as
described in Chapter 3) rather than diagrams. In this notation the first line of each
expression defines a new absolute. For example, (A EAT-AT-RESTAURANT (T EATING

-128 -

CONTRACTUAL-EVENT) means that eat-at-restaurant is an absolute dominated by the con-
cepts eating and contractual-event. A line of the form (diner SENTIZNT-AGENT (7
eatez)) says that diner is a slot of eat-at-restaurant, it is dominated by eater, and is con-
strained to be a sentient-agent. If there are numbers at the end of such an expression, as
in (eating$result EATER-IS-FULL (T result) 12 1), they are interpreted as fol-
lows. The first ‘number,” 1?7, means that as a result of a given act of eating, at most one
person gets full. The expression 1? is an abbreviation for the range 0 to 1. The second
number, 1, means that for a given eater-is-full situation, it can be the result of exactly one
eating. An equation of the form (= food-role (patient ordering-food-step))
means that whatever fills the food-role of an eat-at-restaurant must also fill the patient
slot of whatever fills the ordering-food-step slot. In the definitions below, facts about
food, eating, transferring things from one place to another, and contractual obligations
are defined separately from the eat-at-restaurant scenario, but are referred to by it. Thus,
my representation is closer to the MOPS approach than to scripts.

{A EAT-AT-RESTAURANT (T EATING CONTRACTUAL-EVENT)
(diner SENTIENT-AGENT (7 eater))
(waiter-role WAITER (T participant))
(food-role Foop (T patient))
(eat-at-restaurant$setting RESTAURANT (T setting))
(going-to-restaurant-step TRAVELING-TO-RESTAURANT (T step) 1 1?)
(ordering-food-step ORDERING-R-FCOD (T step) 1 1)
(food-arrives-step TRANSFERRING-R-FOOD-TO-TABLE (T step) 1 1?)
(main-restaurant-step EATING-R-FOOD " step) 1 12)
(pay-for-food-step PAYING-FOR-R-FOOD (T step) 1 17)
(leaving-restaurant-step TRAVELING-FROM-RESTAURANT (T step) 1 1?)
(= eat-at-restaurantSsetting (destination going-to-restaurant-step))
(= eat-at-restaurant$setting (scurce leaving-restaurant-step))
(= food-role (patient ordering-food-step))
(= food-role (patient food-arrives-step))
(= food-role (patient main-restaurant-step))
(= food-role (merchandise pay-for-food-step))
(= diner (traveler going-to-restaurant-step))
(= diner (traveler leaving-restaurant-step))
{= diner (partyl eat-at-restaurant))
(= waiter-role (party2 eat-at-restaurant))
(= food-arrives-step (partyls-obligation eat-at-restaurant))
(= pay-for-food-step (partyZs-obligation eat-at-restaurant)))
(A EATING (T ACTION-PROCESS)
(eater SINTIENT-AGENT (T acter))
(eaten FoCD (T patient))
(eatingSresult EATER-IS-fULL (T resulc) 12 1)
{eatingSprecondition EATER-IS-HUNGRY (T precondition) 1 1)
(= eater (experiencer eating$result))
(= eater (experiencer eating$precondition))
(# EAT-AT-HCME EAT-AT-RESTAURANT))

-129 .

(a roop (T FUNC-0BJ)
(foodSpurpose EATING (T purpose) 1+)
(foodSwith-other-food FOCD (T with-modifier) 0+)
{(food$sauce SAUCE (T foodSwith~other-food) 0+)
(# FISH HAMBURGER SPAGHETTI HOT-DOG SAUCE SCUP OTHER-FOCD))

(n FORK (T FUNC-OBJ)
{forkSpurpose EATING (7 purpose) 1l+))

(A FIsH (T ANIMAL FOOD)
(fishSbeody-zovering SCALY (T body-covering))
(fishShabitat BODY-OF-WATER (T habitat)))

(A STORE (T BUILDING FUNC-OBJ)
(# RESTAURANT SHOE-STORE FISH-MARKET))

(A RESTAURANT (T STORE)
(restaurantSpurpose EATING (T purpose)))

(A TRANSFERRING (T ACTION-PROCESS)
(donor SENTIENT-AGENT (T participant))
(recipient SENTIENT-AGENT (T participant))
(transferred INANIMATE (T patient))
(transferringSresult RECIPIENT-HAVING-OBJECT (T result) 1 1)
(transferring$precondition DONOR-HAVING-CBJECT T precondition) 1 1)
(= recipient (haver transferringSresult))
(= transferred (had transferring$result))
(= donor (haver transferringS$precondition))
(= transferred (had transferring$precondition)))

(A CONTRACTUAL-EVENT (T EVENT)
(partyl SENTIENT-AGENT (T participant))
(party2 SENTIENT-AGENT (T participant))
(partyls-obligation OBLIGATION (T step) 1+)
(party2s-obligation OBLIGATION (T step) 1+)
(= partyl (actor partyls-obligation))
(= partv2 (actor party2s-obligation)))

(A COMMERCIAL-EVENT (T CONTRACTUAL-EVENT)
(customer SENTIENT-AGENT (T party2))
(merchant SENTIENT-AGENT (T partyl))
(merchandise comMopITy (T prop))
(price MONEY (T prop))
(customers-obligation OBLIGATION (T partyls-obligation))
(merchants-obligation CBLIGATICON (T party2s-obligation))
(= customer (donor customers-obligation))
(= merchant (recipient customers-cbligation))

- 130 -

(= price (given customers-obligation))

(= customer (recipient merchants-obligation))
= merchant (denor merchants-obligation))

(= merchandise (given merchants-cbligation))
(# STCRE-TRANSACTION FREELANCE-TRANSACTICN))

(A PAYING (T COMMERCIAL-EVENT TRANSFERRING)
{payer SENTIENT-AGENT (T actor customer donor))
(payee SENTIENT-AGENT (T recipient merchant)))

(A WAITER (T PERSON EMPLOYEE)
(waiterSoccupation WAITERING (T occupation) 0+))

The theory of scripts addressed two basic problems: script recognition and script
application. Recognition means deciding what script(s) are appropriate to a given situa-
tion. In SAM, finding the proper script was accomplished by some ad hoc tricks involv-
ing keywords, but this was not intended as a serious proposal. The point of the program
was script application: given a script to apply to a situation, SAM tried to make a set of
inferences. FAUSTUS is able to do better at script recognition. Without specifically mark-
ing words like “‘restaurant’’ or ‘‘waiter’’ as keywords which invoke scripts, the program
is able to use information associated with these words when appropriate, and find con-
nections to events in the text. Unlike SAM, FAUSTUS does not automatically infer an
entire script whenever it sees a keyword. Thus, FAUSTUS could handle John walked past
a restaurant without inferring that he ordered, ate, and paid for a meal.

As for script application, FAUSTUS performs adequately, but for different reasons
than SAM. Consider the following example:

> (do-story)

The Waiter

{ 1] John was eating at a restaurant with Mary.
Rep: (EATING (ACTCR « JCHN) (SETTING &« A RESTAURANT) (WITH « MARY))

Inferring: the ACTOR of the EATING must be the EATER
This is a RELATION-CLASSIFICATICN inference.

Int: (EATING.1 (T SATING) (eater « PERSON.1l) (setting ¢ RESTAURANT.1)
(with « PERSON.1B))

Passing Markers and Suggesting Inferences: 1 2

Evaluating Inferences:

-131-

Inferring: a WITH of the EATING is probably the ACCOMPANIER
because Mary fits it best.
This is a RELATION-CONCRETICN inference.
It is #1, due to the collision:
EATING.l1—filler—PERSCN¢«elaboration«EATING.1

Inferring: the EATING is a EAT-AT-RESTAURANT.
This is a CONCRETION inference.
It is #2, due to the collision:
RESTAURANT.1—>filler—EATING—elaborationeRESTAURANT.1

[2] The waiter spilled soup all over her.

Rep: (SPILLING (ACTOR ¢ THE WAITER) (PATIENT ¢ SOUP) (RECIPIENT ¢
HER))

Inferring: the ACTOR of the SPILLING must be the SPILLER
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the SPILLING must be the SPILLED
This is a RELATION-CLASSIFICATION inference.

Inferring: the RECIPIENT of the SPILLING must be the SPILLEE
This is a RELATION-CLASSIFICATION inference.

Int: (SPILLING.Z2 (T SPILLING) (spiller « WAITER.2) (spilled & SOQUP.2)
(spillee « FEMALE.2))

Passing Markers and Suggesting Inferences: 3 4 3 6 78 9 10 11
Evaluating Inferences:

Inferring: there is a EAT-AT-RESTAURANT such that
the SOUP is the FOOD-ROLE of it and
the RESTAURANT is the SETTING of it.
This is a DOUBLE-ELABORATION inference.
It is #3, due to the collision:
SOUP .2—elaboration—EAT-AT-RESTAURANT«elaboration«RESTAURANT.1

Inferring: there is a EATING such that
the SOUP is the EATEN of it and
it is the PURPOSE of the RESTAURANT.
This is a DOUBLE-ELABORATICN inference.
It is #4, due to the collision:
SOUP .2—>elaboration—EATING«elaboration«RESTAURANT.1

Inferring: there is a EAT-AT-RESTAURANT such that

-132-

the WAITER is the WAITER-ROLE of it and

the SOUP is the FOOD-ROLE of it.

This is a DCUBLE-ELABORATICON inference.

It is #5, due to the collision:
WAITER.2—elaboration—EAT-AT-RESTAURANT«elaborationeSOUP.2

Inferring: there is a COMMERCIAL-EVENT/a EAT-AT-RESTAURANT such that
the SOUP is the MERCHANDISE of it and
the RESTAURANT is the SETTING of it.
This is a DOUBLE-ELABORATION inference.
It is #7, due to the collision:
SOUP.2—+elaboration—»CCNTRACTUAL-EVENTe—elabo:ation«-RESTAURANT.l

Inferring: there is a EMPLOYING-EVENT/a COMMERCIAL-EVENT such that
the WAITER is the EMPLOY-EE of it and
the SOUP is the MERCHANDISE of it.
This is a DOUBLE-ELABCRATION inference.
It is #9, due to the collision:
WAITER.2—elaboration—CONTRACTUAL-EVENT«elaborationeSOUP.2

Inferring: there is a BUYING/a STORE-TRANSACTION such that
the SOUP is the THING-BOUGHT of it and
the RESTAURANT is the SETTING of it.
This is a DOUBLE-ELABORATION inference.
It is #10, due to the collision:
SOUP.2—+elabora:ion—»CCMMERCIAL-EVENTe-elaboratione—RESTAURANT.1

These inferences are shown graphically in Figure 1 and 2 (before and after). The
set of inferences made seems reasonable, but it is instructive to contrast them with the
inferences SAM would have made on this text. SAM would first notice the word restau-
rant and fetch the eat-at-restaurant script. This script is essentially a linear list of every-
thing that happens in a typical visit to a restaurant, with some allowance for variation.
The text is processed by comparing each input to the successive steps in the script.
When the input matches a step, the input is unified with that step. This can lead to the
resolution of pronominal references and other inferences. In addition, all intervening
steps are also inferred. Thus, from the second sentence, SAM would infer that John and
Mary entered the restaurant, walked to a table, sat down, got a menu, read the menu, and
ordered soup. This approach does not allow for varying level of detail; it forces the pro-
gram to make all conceivable inferences.

Since FAUSTUS has no global control, there is nothing to tell it to fill in all steps of
a script. Instead, it can only make inferences that tend to connect other parts of the
representation of the story. In this story, it finds connections to the waiter and soup, but
makes no inferences about entering or leaving the restaurant. These are still implicit in
the definition of eat-at-restaurant, and we could in principle ask for the filler of the actor
slot of the entering-restaurant-step, and FAUSTUS would build a representation showing

-133 -

.

\
If Restaurant.1

soup.2

pauent
|

spilling.2

recipient

her.2

Figure 1: ‘‘The Waiter’": Input

-134-

eatat
restaurant
—— waiter-role ——_
food-role/))
esien T eating. 1 <———]
actor winh seuing puql)ose
John.1 Mary.1 Resaurant.1
setting
soup.2
merchandise
pauent commercial
! event
spilling.2
~ i
actor recipient
waiter.2 ' her.2 employee

Figure 2: *‘The Waiter’’: Inferences

that John entered the restaurant. FAUSTUS has no natural language query system to facili-
tate this, although there are KODIAK functions that can be called to make these queries.

We can also see that FAUSTUS handles failed scripts properly. Given the nonse-
quitur story (1), taken from [110], FAUSTUS makes the usual relation classification infer-
ences, and resolves the pronominal references, but suggests no other inferences.

(la) John went to a park.
(1b) He asked the midget for a mouse.
(1c) He picked up the box and left.

> (do-story)

The Midget in the Park

{ 1] John went to a park.

Rep: (TRAVELING (ACTOR ¢ JOHN) (DESTINATION « A PARK))

Inferring: the ACTOR of the TRAVELING must be the TRAVELER
This is a RELATION-CLASSIFICATION inference.

Int: (TRAVELING.1 (T TRAVELING) (traveler & PERSON.1)
(destination & PARK.1l))

passing Markers and Suggesting Inferences:
[2] He asked the midget Zfor a mouse.
Rep: (ASKING (ACTOR ¢ HE) (PATIENT & THE MIDGET) (CONTENT ¢« A MOUSE))

Inferring: the ACTOR of the ASKING must be the TALKER
This is a RELATION-CLASSIFICATION inference.

Inferring: ‘HE’ must be a PERSON, because it is the TALKER
This is a RELATION-CONSTRAINT inference.

Int: (ASKING.2 (T ASKING) (talker « MALE.2) (patient ¢ MIDGET.2)
{content & MCUSE.2))

Passing Markers and Suggesting Inferences: 12
Evaluating Inferences:
Inferring: ‘HE’ refers to John.
because it is the best match.
This is a REFERENCE inference.
It is #1, due to the collision:
PERSON.l1—ref—aPERSONe«ref«MALE.2
Rejecting: ‘HE’ refers to the MIDGET.
because it is not the best match.
This is a REFERENCE inference.
It is #2, due to the collision:
MIDGET.2—ref5PERSONe—ref«MALE.2
[3) He picked up the box

Rep: (GRASPING (ACTOR ¢ HE) (PATIENT & THE BOCX))

Inferring: the ACTOR of the GRASPING must be the TAKER
This is a RELATION-CLASSIFICATICN inference.

Inferring: ‘HE’ must be a SENTIENT-AGENT, because it is the TAKER

- 136 -

This is a RELATION-CONSTRAINT inference.

Inferring: the PATIENT of the GRASPING must be the TCOK
This is a RELATICN-CLASSIFICATION inference.

Int: (GRASPING.3 (T GRASPING) (taker ¢« MALE.3) (took ¢« BOX.3))
Passing Markers and Suggesting Inferences: 3 4
Evaluating Inferences:
Inferring: the ‘HE’ mentioned in [3] refers to John.
because it is the best match.
This is a REFERENCE inference.
It is #3, due to the collision:
PERSON.l—oref—PERSONe&ref«MALE. 3
Rejecting: the ‘HE’ mentioned in (3] refers to the MIDGET.
because it is not the best match.
This is a REFERENCE inference.
It is #4, due to the collision:
MIDGET.2—ref 9PERSON«ref«MALE.3
{ 4] and lefct.

Rep: (DEPARTING (ACTOR & ~ MALE))

Inferring: the ACTOR of the DEPARTING must be the MOVER
This is a RELATION-CLASSIFICATION inference.

Int: (DEPARTING.4 (T DEPARTING) (mover & MALE.3))

Passing Markers and Suggesting Inferences:

The question remains of how well FAUSTUS can handle script recognition. It has
an advantage over SAM in that it need not instantiate a complete script every tme it hears
a keyword, like ‘‘restaurant’” in ‘‘John walked past a restaurant.”” Problems arise when
more than one script is applicable at the same time. The program is good at recognizing
clues for a script locally, but cannot make a good global choice between two or more
scripts when there are multiple clues for each possibility. Consider the following exam-
ples:

(2a) Mary walked down the aisle.
(2b) She picked up a can of tuna from the first pew.

The idea is that we want to be able to disambiguate (2a). The ‘‘tuna’’ leads to a double-

137 -

elaboration collision that suggests there is a supermarket-shopping event such that the
walking down the aisle is a step of it, and the tuna is the merchandise of the shopping.
Another collision suggests the walking is a step of a church-wedding event, where the
pew is a fixture of the church. FAUSTUS is unable to reason that it is more likely for a can
of tuna to unexpectedly be in a church than for a pew to be in a supermarket. FAUSTUS
does not realize that the two suggestions are in competition with each other, and would
accept whichever suggestion happened to be evaluated first, and reject the other one.
This does not seem like a major failing, as texts like (2) are problematic even for human
understanders.

Plan-Based Inferencing

In the previous section we saw that FAUSTUS was able to make what have been
called ‘‘script-based inferences’’ without any explicit script-processing control structure.
This was enabled partially by adding causal information to the representation of script-
like events (like eating at a restaurant). The theory of plans and goals as they relate to
story understanding, specifically the work of Wilensky [131], was also an attempt to use
causal information to understand stories that could not be comprehended using scripts
alone. Consider story (3):

(3a) John was lost.
(3b) He pulled over to a farmer standing by the side of the road.
(3¢c) He asked him where he was.

Wilensky's PAM program processed this story as follows: from (3a) it infers that
John will have the goal of knowing where he is. From that it infers he is rying to go
somewhere, and that going somewhere is often instrumental to doing something there.
From (3b) PAM infers that John wanted to be near the farmer, because he wanted to use
the farmer for some purpose. This rather vague inference constitutes the explanation of
(3b). Finally (3c) is processed. It is recognized that asking is a plan for knowing, and
since it is known that John has the goal of knowing where he is, there is a match, and (3¢)
is explained. As a side effect of the matching process, the three pronouns in (3¢c) are
disambiguated. Besides resolving the pronouns, the two key inferences are that John has
the goal of finding out where he is, and that asking the farmer is a plan to achieve that
goal.

In FAUSTUS, we can arrive at the same interpretation of the story by a very dif-
ferent method. (3a) does not generate any expectations, as it would in PAM, and FAUSTUS
cannot find a connection between (3a) and (3b), although it does resolve the pronominal
reference, because John is the only possible candidate. Finally, in (3¢), FAUSTUS makes
the two main inferences. It recognizes that being near the farmer is related to asking him
a question by a precondition relation (and resolves the pronominal references while
making this connection). FAUSTUS could find this connection because both the asking
and the being-near are explicit inputs. The other connection is a little trickier. The goal
of knowing where one is was not an explicit input, but ‘‘where he was’’ is part of (3¢),
and there is a collision between paths starting from the representation of that phrase and

-138 -

another path starting from the asking that lead to the creation of the plan-for between
John’s asking where he is and his hypothetical knowing where he is.

The important conclusion, as far as FAUSTUS is concerned, is that both script- and
goal-based processing can be reproduced by a system that has no explicit processing
mechanism aimed at one type of story or another, but just looks for connections in the
input as they relate to what is known in memory. For both scripts and goals, this
involves defining situations largely in terms of their causal structure. This approach fails
when the connections are tenuous; that is, when the story makes large jumps.

There are examples of goal-based stories that PAM handles that FAUSTUS can not.
Another of Wilensky's examples is shown here as (4):

(4a) Willa was hungry.
(4b) She picked up the Michelin guide.

From this PAM infers that Willa will use the Michelin guide to choose a restaurant
and find out where it is, rather than, say, to eat the guide. Making this inference is a
multi-step process (in Wilensky’s notaiion it is seven steps) and thus is beyond FAUSTUS’
ability. Of some consolation is the fact that the inference is also beyond the ability of
some humans.

One way to make FAUSTUS handle (4) would be to include a direct mediating
relation between being hungry and picking up a restaurant guide. As Wilensky points
out, it is virtually impossible, and certainly impractical to list all such possible relations
in advance. Wilensky’s alternative is to explicitly track the goals of each character,
arriving at the answer by a problem-solving approach. It would be against the spirit of
FAUSTUS to allow an inferencing procedure designed specifically for plans and goals to
drive the understanding process.

There is a way to modify FAUSTUS that does not involve adding a knowledge-
class-specific inferencing mechanism. As we saw in the MARGIE example above, one of
the things FAUSTUS does not do is to make forward inferences from an input without any
connections to other representations. However, certain assertions seem to strongly sug-
gest forward inferences, and it is probably a mistake for FAUSTUS to ignore them. Thus,
after reading Willa was hungry, it seems natural to infer she will want to eat something.
Similarly, after reading John told Mary something, one would not be out of line to infer
that Mary now knows what John told her. The problem of where to draw the line still
remains. We still do not want to infer that Mary has a grandmother, or that she has a
pancreas that secretes insulin. FAUSTUS draws the line as strictly as possible by ruling
out all such forward inferences. A better approach would be to tease apart presupposi-
tions, assertions, probable implications, and improbable implications, and just make the
salient inferences. This is a topic for future research.

-139 -

Coherence Relation-Based Inferencing

In this section we turn to inferences based on coherence relations, as exemplified
by this example proposed by Kay and Fillmore (61]:

(5) An alpinist bought a pair of boots from a cobbler.

From the definition of buying one could infer that the alpinist now owns the
boots that previously belonged to the cobbler and the cobbler now has some money that
previously belonged to the alpinist. However, a more complete understanding of (3)
should include the inference that the transaction probably took place in the cobbler’s
store, that the boots probably are ones that he made (or perhaps bought with intent to
sell) and that the alpinist will probably use the boots in his avocation, rather than, say,
give them as a gift to his sister. The first two of these can be derived from concretion
inferences once we have described what goes on at a shoe store. The problem is that we
want to describe this in a neutral manner-- to describe not ‘‘buying at a shoe store’’
which would be useless for ‘‘selling at a shoe store’’ or ‘‘paying for goods at a shoe
store’’ but rather the general *‘shoe store transaction.”” This is done by first defining the
commercial-transaction absolute, which dominates store-transaction On the one
hand, and buying, selling and paying on the other. Each of these last three is also
dominated by action. Assertions are made to indicate that the buyer of buying is
both the actor of the action and the merchant of the commercial-transaction
The next step is to define shoe-store-transaction as a kind of store-transaction
where the merchandise is constrained to be shoes and the merchant is constrained to
be a cobbler.

Some of the information described above is shown in Figure 3, along with a
representation of sentence (5). The figure highlights the two paths in the collision that
leads to the inference that the buying is @ shoe-store-transaction.

The complete trace of FAUSTUS processing the two examples from Kay is shown
below. In addition, I show a trace of a non-sequitur example with no coherence. This
demonstrates that FAUSTUS can avoid making spurious inferences.

> {(do-story)

The Cocbbler and the Alpinist

{ 1] A cobbler sold a pair of boots to an alpinist.

Rep: (SELLING (ACTCR « A COBBLER) (PATIENT « A BOOT)
(RECIPIENT « A ALPINIST))

Inferring: the ACTOR of the SELLING must be <he SELLER

2140 -

commercial
event

//////D D\\\\\\\\\N—_———_—___‘

. store
buying shoes event

| C !

L_q [shoesiorr
shoe store ! merchandise ‘l event

buying.! l cobbler merchant
[~ objeat

boots.1

donor 1 C

actor /

shoe store

cobbler.| merchant
alpinist. 1

Figure 3: The shoe-store-event

This is a RELATION-CLASSIFICATICN inference.

Inferring: the PATIENT of the SELLING must be the THING-SOLD
This is a RELATICON-CLASSIFICATION inference.

Inferring: the RECIPIENT of the SELLING must be the SELLEE
This is a RELATICN-CLASSIFICATION inference.

Int: (SELLING.1 (T SELLING) (seller « COBBLER.1l) (thing-scld « BOCT..)
(sellee « ALPINIST.1))

Passing Markers and Suggesting Inferences: 12 3 4 5 6 7 8 39 10
Evaluating Inferences:
Inferring: the SELLING is a SHOE-STCRE-TRANSACTION.

This is a CONCRETION inference.

It is #1, due to the collision:
BOOT.1—filler-»COMMERCIAL-EVENT«elaboration«BOQCT.1

- 141 -

Inferring: there is a WALKING such that
it is the PURPOSE cf the BOOT and
the ALPINIST is zhe MOVED of it.
This is a DOUBLE-ELABORATION inference.
It is #3, due to the collision:
BOOT.l—elaboration—MOVING—elaboration«ALPINIST.1

Inferring: the SELLING is a SHCE-STORE-TRANSACTION such that
the COBBLER is the MERCHANT of it and
the BOOT is the MERCHANDISE of it.
This is a DOUBLE-ELABCRATION inference.
It is #4, due to the collision:
COBBLER. 1—elaboration—SHOE-STORE~TRANSACTIONeelaborationeBOOT.1

> (do-story)

The Chef and the Fisherman

[1] A chef bOuéht a fish from a fisherman on fisherman’s Wharf.

Rep: (BUYING (ACTOR « A CHEF) (PATIENT « A FISH) (DONCR ¢« A FISHERMAN)
(SETTING « FISHERMANS~-WHARF))

Inferring: the ACTOR of the BUYING must be the BUYER
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the BUYING must be the THING-BOUGHT
This is a RELATICN-CLASSIFICATION inference.

Inferring: the DONOR of the BUYING must be the BUYEE
This is a RELATION-CLASSIFICATICN inference.

Int: (BUYING.1 (T BUYING) (buyer « CHEF.l) (thing-bought ¢ FISH.1)
(buyee ¢ FISHERMAN.l) (setting ¢ FISHERMANS-WHARF.1))

Passing Markers and Suggesting Inferences: 1 2 3 4 5 6 7 8 9 10
Evaluating Inferences:
Inferring: the BUYING is a FISH-MARKET-TRANSACTION.

This is a CONCRETION inference.

It is #1, due to the collision:
FISHERMAN.1—5filler—COMERCIAL-EVENT«elaboration«FISHERMAN.1

-142.

Inferring: there is a COMMERCIAL-FISHING such that
the FISH is the FISHED of it and
it is a OCCUPATICN of <he FISHERMAN.
This is a DOUBLE-ELABCRATION inference.
It is #4, due to the collision:
FISH.l—elaboration—oFISHING«elaktoration«FISHERMAN.1

Inferring: the BUYING is a FISH-MARXET-TRANSACTICN such that
the FISH is the MERCHANDISE of it and
the FISHERMAN is the MERCHANT of it.
This is a DOUBLE-ELABCRATICON inference.
It is #6, due to the collision:
FISH.l—elaboration—FISH-MARKET-TRANSACTICN«elaboratione«FISHERMAN.L

> (do-story)

The Lawyer and the Doctor

[1] A lawyer bought a fish from a doctor.
Rep: (BUYING (ACTOR « A LAWYER) (PATIENT « A FISH) (DONOR ¢ A DOCTOR))

Inferring: the ACTOR of the BUYING must be the BUYER
This is a RELATION-CLASSIFICATION inference.

Inferring: the PATIENT of the BUYING must be the THING-BOUGHT
This is a RELATION-CLASSIFICATION inference.

Inferring: the DCNOR of the BUYING must be the BUYEE
This is a RELATICN-CLASSIFICATICN inference.

Int: (BUYING.1 (T BUYING) (buyer « LAWYER.1l) (thing-bought « FISH.1)
(buyee &« DCCTCR.1))

Passing Markers and Suggesting Inferences:

- 143 -

Chapter 6:
Implementation Details

This chapter presents some of the details of the actual FAUSTUS program. I dis-
cuss the implementation of KODIAK first, then FAUSTUS, and conclude with some statis-
tics on the time and space requirements of the system. The programs are written in Com-
mon Lisp on a Texas Instruments Explorer lisp machine. Versions of the KODIAK pro-
gram also run in Zetalisp on Symbolics lisp machines and in Franz Lisp under UNIX as
part of the UC project at Berkeley.

Implementation of KODIAK

For completeness, I will briefly describe the implementation of KODIAK, although
there were less design considerations of import here, and the implementation did not
bring to light as many issues. The basic data type is object, which has subtypes link and
concept, which in turn has subtypes aspectual, absolute, and relation. All data types
were defined using the defstruct facility.

Links have three fields: the concept they are attached ro and from, and the rype of
link (I, D, A, etc). Concepts are more complex, being composed of a name field, a list of
markers, and two alists. The first of these lists the links attached to the concept, with
each link type being a separate key in the alist. The second alist lists directly the con-
cepts that are at the other ends of these links. This is redundant information, and thus
wastes some space, but being able to map over these lists made the code somewhat fas-
ter, and certainly simpler than constantly having to find the other end of links.

Aspectuals, absolutes, and relations have no fields beyond those inherited from
concept, but type checking is used to distinguish between them in many places.

The basic type object has one field, an a-list. This is used to hold the following
facts about an object:

¢ Creation time.

¢ Creation status (inference, input, or given).

e Candidates for inference, such as the list of possible fillers of a slot.
e An indication that the object is a promiscuous concept.

e Number restrictions on aspectuals.

e The determiner (a, the) associated with certain inputs.

- 144 .

For most objects, each of these is nil (or some other default value). Thus, it was decided
that it would be a waste of space to allocate separate fields for each one within each
object. Instead, entries are stored in the a-list only for those concepts that have values
different from the default.

Functions were defined to store and retrieve from any of the entries in the links-
and linked-to- alists. For example, for the D link type, the following functions were
defined.

e dominate - asserts that one concept dominates another

e dominate-p - asks if two concepts are in a dominate relation

e dominateds - returns a list of concepts dominated by the argument

e dominators - returns a list of concepts that dominate the argument

e links-to-dominateds - returns the links rather than the concepts themselves

e links-to-dominators - returns the links rather than the concepts themselves

Similar functions are defined for each link type. This was done with a function defining
macro, so that the definitions are in the form of a table, given below, which provides
documentation for the user. The last argument to def-link-fncs indicates if the predicate
for that link type is transitive. For example, the definition of constrain-p will be con-
structed so that it holds if there is a constrain link between the absolute and the aspectual,
or if there is some concept which constrains the aspectual, and which is dominated by the
absolute.

(def-link=-fncs argument (aspectual relation) relations aspectuals
(def-link=-fncs £fill-in (concept aspectual) £filled fillers
(def-link-fncs equate (conceptl conceptl) equates equates
(def-link-fncs differ (conceptl concept2) differs differs
(def-link-fncs constrain (absolute aspectual) constrains constrainers
(def-link-£fncs dominate (upper lower) dominateds dominators
(def-link-£fnes instance (upper lower) instances categories
(def-link-£fncs view (target source) view-sources view-targets

There are also predicates that search the D and I link hierarchy to ask if one con-
cept is above or below another by an arbitrary number of connected links, and to return a
list of all the parents or children of a concept. This is complicated by the existence of
multiple inheritance. The algorithms used keep a queue of concepts that have already
been visited, to avoid returning a list with multiple occurrences of the same concept, and
to make sure that the list is a valid topological sort of the lattice. Another possibility
would be to pre-compute the complete list of recursive dominators for each concept, but I
wanted to avoid a lot of pre-computation, as the next paragraph explains.

KODIAK of course includes a facility for defining a knowledge base. There was a
strong motivation to allow for fast updating of the knowledge base, because it was

-145-

o

1

v L)

assumed that most of the debugging time would be spent changing the knowledge base.
This assumption proved true throughout the course of the project. Inidally, it was easier
to write functions to load the entire knowledge base at once, making consistency checks
at the end. The plan was that at some point the knowledge base would become large
enough that I would have to write functions to allow incremental updating of a few con-
cepts at a time. However, even though the knowledge base grew to moderate size, it was
still possible to do a load in under 40 seconds, so I never wrote the incremental updating
code.

There is also a graphical interface to the knowledge base, but this has been used
only for viewing the network, not for modifying it.

The final important algorithm is one that, given an absolute and an aspectual,
finds all the slots of that absolute that the aspectual could be referring to. For example,
with the absolute eat-at-restaurant and the slot participant, the function find-
slots would return the list (diner accompanier waiter). Diner and waiter are slots of
eat-at-restaurant directly, but accompanier comes from the concept action, which dom-
inates eat-at-restaurant. Thus, to find all the slots, the function must either search up the
hierarchy from eat-at-restaurant, or down from participant. The later approach was
chosen. But eat-at-restaurant is also defined as an action and a contractual-event, and we
want to make sure not to include actor of action or partyl or party2 of contractual-event
in the resulting list; since these refer to the diner and the waiter, and we don’t want to be
redundant. Therefore we have to be careful in our search to include only the most
specific answers. Find-slots was defined as the most specific subset of concepts below
the slot, satisfying the predicate that each candidate slot must be one of a pair of aspectu-
als such that the constrainer of the other one is a recursive parent (or is equal t0) the
parent in question. The function most-specific-below was then defined as follows. This
function proved useful for a variety of purposes.

(defun most-specific-below (concept predicate)
wReturn the most specific subset of the children of concept satisfying the predicate.”
{when (funcall predicate concept)
(or (delete=-duplicates
(mapcan #’ (lambda (c) (most-specific-below ¢ predicate))
(children concept)))
(list concept))))

There are a number of miscellaneous functions within KODIAK,
bringing the total to about 150 data types and functions.

Implementation of FAUSTUS

The FAUSTUS program of course makes use of the functions and data types
defined in KODIAK. It also defines three new data types: story, marker, and suggeston.
A story has a title and a text field. The text is an alternating list of strings and transla-
tions of those strings into KODIAK representation. A marker has fields for the marker it is

-146 -

associated with, the link traversed to get to that concept, the previous marker in the
marker chain, and the shape of the marker path from the origin to the current concept. A
suggestion has fields for the suggested inference number, the time the suggestion was
entered into the queue, the time it must wait before being considered, the time after
which it is automatically discarded, and its priority in the queue. It also has fields to
record the two marker paths that lead to the collision. Specific types of suggestions have
fields relevant to what is being suggested. For example, a reference suggested inference
has fields for the reference and referent.

New stories are defined with the macro defstory, which takes as arguments a title
and any number of elements representing the text of the story. If the title represents a
new story, it is pushed on a global list of stories. If the dtle is of a known story within
that list, the text of that story is updated.

The main function, do-story, takes two optional arguments, one indicating the
story to do, and the other an indication that the knowledge base needs to be reloaded
before starting the story. If these arguments are not provided, a menu pops up asking the
user to choose from the global list of stories, and another menu asks if the knowledge
base needs to be reloaded. The function do-story then processes each line of the story in
turn, building the KODIAK representation for the line, passing markers, and then running
the agenda of suggested inferences.

As mentioned above, every concept has a field for the markers attached to it.
This is implemented as an alist, where the key for each entry in the list is the marker
shape. The important marker shapes are those that participate in collisions that lead to
inferences, and those already have names. In addidon, I made up names for marker
shapes corresponding to intermediate points along such paths. The advantage of this will
become evident in a moment.

Given a concept, ¢, and a marker path of shape s leading to ¢, we pass markers
from c by first looking at the alist of links from c. For each link type / among the keys of
the alist, we consult a simple finite state automaton (FSA) with current state s and transi-
tion /. The entry in the FSA may be nil, meaning that no such link can lead to a valid
path shape, and we can ignore all the links in this element of the alist. Alternately, the
FSA entry may be a symbol representing a new path shape, meaning we should pass
markers to each concept in this element of the alist, and the resulting path shape will be
the new entry. From there we have to recursively pass markers again. For example, the
FSA says that if / is D and s is elaboration, ref, constraint, or filler, then the resulting path
is valid, and the new shape will still be s. If s was any other shape, then no D link should
be considered. Finally, the FSA entry may be a predicate, in which case we have to go
through each link in the alist entry, applying the predicate to each one to see if we should
in fact continue passing markers. The predicate, when given an individual link to con-
sider, should either return nil or a new path shape. This capability is needed, for exam-
ple, to allow us to only pass along inverse C links with a quantifier of most or all.

Thus, one advantage of having alists for both markers and links is that we can
quickly zero in on the combination of markers that will lead to valid path shapes, without

- 147 -

having to exhaustvely consider all possibilities. As it turns out, even though the marker
passing algorithm was described as using the concept of marker energy, the finite state
automaton can be defined in such a way that we don’t need to keep wack of marker
energy at all. The arithmetic is essenually compiled away into the ransitions between
states in the FSA.

The other advantage of alists of markers is in resolving collisions. When we add
a marker to a concept, we push or create the proper alist entry, and check for meaningful
collisions. We don’t have to look at all the previous markers, just ones with a marker
shape that combines with the current marker shape to suggest an inference. Thus, if the
new marker has the ref shape, we only look at the previous ref shape markers (suggesting
referendal inferences) and the previous elaboration shape markers (suggesting single ela-
boration inferences). All other previous markers are ignored. The intermediate marker
shapes introduced for the sake of the FSA above never suggest inferences, so we don’t
need to waste any time on them.

A different approach to finding interesting marker collisions would be to allow
collisions to occur anywhere along the path, as long as the two halves of the collision add
up to the correct whole. The efficiency advantages listed above would be largely lost if
we were to take this approach, so I look for collisions at one particular point, involving
two specified shapes for the component paths. This means less searching, although it
means I have to be diligent to define the marker passing rules (in the form of the FSA) to
insure that no potential path will be cut off before it reaches the designated collision
point. It turned out to be fairly easy to implement those precautions.

When it comes time to run the agenda, evaluating the suggested inferences, there
are quite a few rules to consider. These were explained in Chapter 4, and the implemen-
tation is fairly straightforward, so it will not be mentioned here. FAUSTUS also contains a
sub-facility for generating semi-English paraphrases of KODIAK concepts. This is seen in
the output traces, and again is of no theoretical or technical import.

Statistics: Time and Space Requirements

The size of FAUSTUS’ knowledge base is shown in the list below. In some ways it
is hard to compare this to other systems, since KODIAK encourages 2 proliferation of con-
cepts. For example, what counts as a relation, two aspectuals, and two arguments links in
KODIAK might be recorded as a single relation in another system. A reasonable number
for comparison is the total number of absolutes, relations, and equate links, since equates
in some way represent a certain kind of ‘‘fact’ in the system that is not captured by the
other counts. Currently, the total of these three is 627. A list of counts for various types
of objects in the knowledge base follows:

. 148 -

Type Count

Absolutes 346
Relations 216
Aspectuals 432
D links 1113
C links 432
A links 432
V links 11
= links 82
= links 573
Total concepts 990
Total links 2643
Total objects 3633

The next table gives the number of markers, collisions, and inferences generated
over the course of two separate texts, ‘‘John was lost”” and ‘‘Bill’s Bicycle.”” Most of
the concepts that were marked once were also the site of a collision. Only about 5% of
the collision sites result in suggested inferences, but a much larger percentage (about
half) of the suggested inferences are accepted. This is good news for a potential parallel
implementation, in that only the suggested inferences — 5% — need be evaluated sequen-
tially. The marker passing and rejecting of collisions could conceivably be done in paral-
lel.

Text: Lost Bicycle
Concepts marked: 261 279
Collisions: 247 233
Suggested inferences: 13 11
Accepted inferences: 6 7

It turns out that the majority of markers are on aspectuals, as the following table
shows. It was taken from the processing of the ‘‘Bill’s Bicycle’’ text.

Relations Absolutes Aspectuals
Collisions: 32 48 153
Marked: 50 55 174

Running times range from under 2 seconds for single sentence texts to about 1
minute for 4 and 5 sentence texts and two minutes for the 7 input Fishing Village text.
The number of collisions, and hence total processing time, is roughly proportional to the
square of the length of the text. It takes 40 seconds to re-load the knowledge base.
These times are for compiled Common Lisp on a Texas Instruments Explorer.

The KODIAK program is 822 lines (38K bytes) of source code, while FAUSTUS is
1005 lines (46K), and the knowledge base is 1013 lines (27K).

- 149 -

Chapter 7:
Conclusions

In a sense, FAUSTUS was an experiment in self-deprivation. In a rule- or demon-
based system, such as BORIS, one occasionally gets the suspicion that the system designer
can just add one more rule to account for each new difficulty as it arises, as long as he or
she is careful about interactions with previous rules. One way to do that is to make the
new rule very specific, so that it accounts for just the one situation at hand. To instill
confidence in its overall abilities, a system should have some way of constraining such ad
hoc rules.

In FAUSTUS, the basic inference classes were decided upon early on. While there
was certainly a great deal of debugging involved in getting the code for these right, it was
never a possibility to alter the rules for the sake of making another example run. Thus,
debugging consisted of changing facts in the knowledge base: redefining concepts and
the relations between them. Since these concepts and relations were not tied to particular
processing rules, there was less temptation to add ad hoc patches, as it would be obvious
in the representation that this was done. The result was a more robust knowledge base,
one that was not slanted towards particular examples.

FAUSTUS was also an experiment in taking the idea of relevant inferences to an
extreme. In this regard, the experiment can be considered a success. With no automatic
forward inferences and no top-down control structure to guide inference, FAUSTUS was
able to duplicate the performance of a variety of systems predicated on processing
specific knowledge classes. This is a testimony both to the power of the unified approach
to knowledge representation, and also to the high degree of coherency in the texts stu-
died.

Another point of success was that it was possible, over the course of the project,
to extend the knowledge base to new examples, without having to make extensive
changes for each addition. In other words, it was possible to settle on a representation for
core concepts such that these representations were usable and exteasible over a variety of
texts.

Problems

FAUSTUS is missing some desirable capabilities that exist in other current sys-
tems. It cannot back up from choosing an inference that later proves to be incorrect. It
does not integrate parsing and inferencing. However, there is no inherent reason why the
knowledge-based approach could not be extended to include these capabilities.

There were three problems that arose during the course of the project that seem

- 150 -

more significant than the ones mentioned above, and which constitutes significant areas
for future research. The first is that the program has no notion of what constitutes a com-
plete construal of the input. For each text, FAUSTUS will find a certain set of inferences,
but will not be able to say if the text is coherent, confusing, or nonsensical. This has
several ramifications. First, FAUSTUS is unable to search harder for an explanation for an
unusual event, because it has no notion that events need explanations. Thus, while PAM
was able to find a chain of seven inferences mediating between Willa was hungry and She
picked up the Michelin guide, FAUSTUS does not know to search for such a chain. What
FAUSTUS needs is a theory of interestingness, as in [112,115] or [53] to coax the
inferencing process into investigating some areas in more detail than others. This theory
of interestingness should include provisions for forgetting the earlier part of long texts, or
more precisely, focusing, in the sense of Grosz’ [50], on the currently active parts.
Without such a capability, FAUSTUS could not handle texts much longer than the ones
presented here.

The second major problem is in the power of the representation language. In the
quest to get the representations just right, a number of important representational issues
had to be addressed, while others had to be side-stepped. For example, the notion of
quantifier scope was not addressed. Sentence (1) below is usually interpreted as meaning
there are different languages spoken by each of the participants, while sentence (2) refers
to two specific languages. KODIAK has no way of representing the difference between
these two interpretations.

(1) Everyone here speaks two languages.
(2) Two languages are spoken by everyone here.

Another representational problem is specifying degrees of usualness or unusualness.
KODIAK provides quantifiers to say that some or most concepts of a category participate
in a given relation, but we would like to have more flexible representation mechanisms.
Future research should consider the representation of prototypical knowledge, of meta-
phors and metonymies, of case frame relations, and of the relation between syntactic and
semantic knowledge.

The final major problem is choice. FAUSTUS contains rules for choosing between
suggestions that are explicitly marked as competing with each other. There is room for
improvement on these, but for the most part, the rules seem adequate. The real problem
is when suggestions that aren’t marked as explicitly competing end up affecting each
other. For example, finding the proper pronominal referent from a set of possibilities
may be affected if one of the possibilities is elaborated. On the other hand, choosing the
proper elaboration of a slot from a set of possibilities may be affected if one of the possi-
bilities is equated to a reference. In general it is a combinatorially hard problem to
decide which choices to consider first, and which combination of choices yields the best
interpretation. Another way of looking at it is that marker passing finds suggested infer-
ences locally, but does not make suggestions for a global interpretation.

Despite these problems, the FAUSTUS project has shown it is possible to develop
an algorithm to draw proper inferences from a range of texts, using only a small set of
inference classes and a conceptual knowledge base.

References

38

10.

11

13.

14.

15.

16.

17.

18.

Allen, J. F., ““Modelling Events, Actions, and Time’’, Proceedings of the Fourth
Annual Conference of the Cognitive Science Sociery, Ann Arbor, 1982, 5-6.

Allen, J. F. and Hayes, P. J., *‘A common-sense theory of time’’, Proceedings of the
9th IJCAI, Los Angeles, 1985, 528-531.

Alterman, R., ““A Dictionary Based on Concept Coherence’’, Al Journal 25, 2
(1985), 153-186.

Anderson, J. and Bower, G., Hwman Associative Memory, Winston-Wiley,
Washington, D.C., 1973.

Anderson, A. R. and Belnap, N. D., Entailment: The Logic of Relevance and
Necessiry, Princeton University Press, Princeton, NJ, 1975.

Anderson, R. C., Spiro, R. J. and Montague, W. E., Schooling and the Acquisition of
Knowledge, Erlbaum Associates, Hillsdale, N.J., 1976.

Anderson, J., ‘A Spreading Activation Theory of Memory”’, Journal of Verbal
Learning and Verbal Behavior 22, 3 (1983), 261-295. :

Anderson, J., The Architecture of Cognition, Harvard Univ. Press, Cambridge, MA,
1983.

Anonymous, My big book of fairy stories, G.G.S. Lid., Manchester, 1972.

Attardi, G. and Simi, M., ‘‘Consistency and Completeness of OMEGA, a Logic for
Knowledge Representation’’, Proceedings of the Seventh IJCAl, Vancouver, 1981,
504-510.

Barsalou, L. W. and Bower, G. H., ‘‘Discrimination Nets as Psychological
Models’’, Cognitive Science 8 (1984), 1-26.

Bartlett, F. C., Remembering: A Study in Experimental Social Psychology,
Cambridge University Press, Cambridge, 1932.

Bobrow, D. and Winograd, T., ‘‘An Overview of KRL: A Knowledge
Representation Language’’, Cognitive Science I (1977), 346.

Brachman, R. J, “What's in a concept: structural foundations for semantic
networks’’, Int. J. Man-Machine Studies, 1977, 127-152.

Brachman, R. J., “What IS-A Is and Isn’t: An Analysis of Taxonomic Links in
Semantic Nets’’, Computer 16, 10 (1983), 30-36.

Brachman, R. J., Levesque, H. J. and Fikes, R., ““KRYPTON: Integrating
Terminology and Assertion’’, Proceedings of AAAI-83, Washington, D.C., 1983,
3L

Brachman, R. J. and Levesque, H. J., ‘‘The tractbility of subsumption in frame-
based description languages’’, Proceedings of the National Conference on Artificial
Intelligence, Austin, TX, 1984, 34-37.

Brachman, R. J. and Schmolze, J. G., ‘‘An overview of the KL-ONE knowledge
representation system’’, Cognitive Science 9, 2 (1985), 171-216.

- 153 -

19.

20.

21

23.

24.

25.

30.

31

32.

33.

34.

35.

36.

Carbonell, J. G., ‘‘Metaphor: An Inescapable Phenomenon in Natural Language
Comprehension’’, in Strategies for Natural Language Processing, W. G. Lehnent
and M. H. Ringle (editor), Lawrence Erlbaum Associates, Hillsdale, NJ, 1982, 415-
454.

Carbonell, J. G., ‘“‘Derivational Analogy and its Role in Problem Solving’’,
Proceedings of AAAI-83, Washington, D.C., 1983, 64.

Carbonell, J. G. and Minton, S., ‘‘Metaphor and Common-Sense Reasoning’’,
Report CMU, Dept. of Computer Science, Carnegie-Mellon University, Pittsburgh,
PA-CS-83-110, 1983.

Chafe, W. L., Meaning and the Structure of Language, Univ. of Chicago Press,
Chicago, 1970. ‘

Charniak, E., ‘“Toward a Model of Children’s Story Comprehension’’, Al-Tech.
Rep.-266, MIT Al Labs, Cambridge, MA, 1972.

Chamniak, E., “‘On the use of framed knowledge in language comprehension’”,
Artificial Intelligence 11,3 (1978), 225-266.

Charniak, E., *“The Case-Slot Identity Theory’’, Cognitive Science 5, 3 (1981),
285-292.

Charniak, E., *‘Passing Markers: A Theory of Contextual Influence in Language
Comprehension’’, Cognitive Science 7, 3 (1983), 171-190.

Chamiak, E., “‘A Single-Semantic-Process Theory of Parsing’’, unpublished ms.,
Brown University Dept. of Computer Science, Providence RI, 1985.

Chamiak, E., ‘‘A neat theory of marker passing’’, Proceedings of the Fifth National
Conference on Artificial Intelligence, 1986, 584-588.

Clark, H. H. and Haviland, S. E., ‘‘Psychological processes as linguistic
explanation’’, in Explaining linguistic phenomena, D. Cohen (editor), Hemisphere
Publishing, Washington D.C., 1974.

Clark, H. H., “‘Bridging’’, in TINLAP, R. C. Schank and B. Nash-Webber (editor),
Cambridge Mass, 1975, 169-174.

Collins, A. M. and Quillian, M. R., ‘‘Retrieval time from semantic memory”’,
Journal of Verbal Learning and Verbal Behavior 8 (1969).

Collins, A. M. and Lofts, E. F., ‘A spreading activation theory of semantic
processing’’, Psychological Review 82, 4 (1975).

Cullingford, R. E., “‘Script Applicatdon: Computer understanding of newspaper
stories’’, Research Report #116, Yale University Computer Science Dept., 1978.

DeJong, G., “‘An Overview of the FRUMP System’’, in Strategies for Natural
Language Processing, W. G. Lehnert and M. H. Ringle (editor), Lawrence Erlbaum
Associates, Hillsdale, NJ, 1982, 149-177.

Doyle, J., ““A Truth Maintenance System’’, Ariificial Intelligence 12, 3 (1979),
231-272.

Dovle, J., ““The Ins and Outs of Reason Maintenance’’, Proceedings of the 8th
IJCAI, Karlsruhe, West Germany, 1983, 349-351.

- 154 -

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51

52.

Dyer, M. G. and Lehnert, W. G., “"Queston Answering for Narrative Memory'’, in
Language and Comprehension, J. L. Ny and W. Kintsch (editor), North-Holland,
Amsterdam, 1982.

Dyer, M. G., *‘In-Depth Understanding”’, Research Report #219, Yale University
Computer Science Dept., 1982.

Etherington, D. W. and Reiter, R., “‘On Inheritance Hierarchies With Exceptions’,
Proceedings of AAAI-83, Washington, D.C., 1983, 104.

Fahlman, S. E., NETL: A System for Representing and Using Real-World
Knowledge, MIT Press, Cambridge, 1979.

Faletti, J., “PANDORA -- A Program for Doing Commonsense Planning in
Complex Situations’’, Proceedings of AAAI-82, Piusburgh, 1982.

Fillmore, C. J., ““The Case for Case’’, in Universals in Linguistic Theory, E. W.
Bach and R. T. Harms (editor), Holt, Rinehart & Winston, New York, 1968, 1-88.

Fillmore, C. J., ‘‘Ideal Readers and Real readers’’, Report #5, Berkeley Cognitive
Science, 1983.

Goldstein, 1. P. and Roberts, B., ‘‘Using Frames in Scheduling”, in Artificial
Intelligence: An MIT Perspective, vol. I, P. H. Winston and R. H. Brown (editor),
MIT Press, Cambridge, MA, 1982, 255-286.

Granger, R. H., “‘Adaptive Understanding: Correcting Erroneous Inferences’, 171,
Yale Univ. Dept. of Computer Science, New Haven, CT, 1980.

Granger, R. H., Eiselt, K. P. and Holbrook, J. K., ““The Parallel Organizatiuon of
Lexical, Syntactic, and Pragmatic Inference Processes’’, First Conference on
Theoretical Issues in Conceptual Information Processing, Atlanta, GA, 1984,

Granger, R. H., Eiselt, K. P. and Holbrook, J. K., *‘Parsing with parallelism: a
spreading-activation model of inference processing during text understanding’’,
Technical Report #228, Dept. of Information and Computer Science, UC Irvine,
1984,

Granger, R. H., Holbrook, J. K. and Eiselt, K. P., “‘Interaction effects between
word-level and text-level inferences: on-line processing of ambiguous words in
context’’, Proceedings of the Sixth Annual Conference of the Cognitive Science
Sociery, Boulder, CO, 1984.

Grice, H. P., “‘Logic and conversation’’, in Syntax and Semantics, Vol. lll: Speech
Acts, P. Cole and J. L. Morgan (editor), Academic Press, New York, 1975.

Grosz, B., *‘The representation and use of focus in dialogue understanding’’, Ph.D.
dissertation, University of California at Berkeley, 1977.

Hendler, J., Integrating Marker-Passing and Problem-Solving: A Spreading
Activation Approach to Improved Choice in Planning, Department of Computer
Science, Univ. of Maryland, College Park, MD, 1986.

Hendrix, G. G., Thompson, C. W. and SLocum, J.,, ‘‘Language processing via
canonical verbs and semantic models’’, Proceedings of the 3rd IJCAl, Stanford,
1973.

53.

35.

56.

57.

58.

59.

60.
61.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Hidi, S., Baird, W. and Hildyard, A., ‘*That’s Important but is it Interesting? Two
Factors in Text Processing’’, in Discourse Processing, A. Flammer and W. Kintsch
(editor), North-Holland, Amsterdam, 1982.

Hirst, G. and Charniak, E., ‘““Word Sense and Case Slot Disambiguation™,
Proceedings of AAAI-82, Pittsburgh, 1982, 95-98.

Hobbs, J. R., ‘‘Coherence and coreference’’, Cognitive Science 3, 1(1979), 67-90.

Hobbs, J., “‘Towards an Understanding of Coherence in Discourse™, in Strategies
for Natural Language Processing, Lehnert and Ringle (editor), Lawrence Erlbaum
Associates, Hillsdale, NJ, 1982.

Jacobs, P. S. and Rau, L. F., ‘“‘Ace: Associating Language with Meaning’’,
Proceedings of the ECAI, Pisa, Italy, 1984.

Jacobs, P. S., ‘A Knowledge-Based Approach to Language Generation’’, PhD
Thesis, also Report No.86/254, Computer Science Div., University of California,
Berkeley, 1985.

Jacobs, P. S., ““PHRED: A generator for natural language interfaces’’, Report No.
85/198, Computer Science Div., University of California, Berkeley, CA, 1985.

Katz, J. J., Semantic Theory, Harper and Row, New York, 1972.

Kay, P., Three Properties of the Ideal Reader, Berkeley Cognitive Science Program,
1981. -

Kay, M., ‘‘Functional unification grammar: a formalism for machine translation’’,
10th International Conference on Computational Linguistics, Stanford, CA, 1984,
75-78. 22nd ACL.

Kintsch, W., The Representation of Meaning in Memory, Lawrence Erlbaum
Associates, Hillsdale, NJ, 1974.

Koffka, K., in Principles of Gestalt Psychology, Harcourt, Brace & World, NY,
1963.

Kolodner, J. L., Retrieval and Organizational Strategies in Conceptual Memory: A
Computer Model, Lawrence Erlbaum Associates, Hillsdale, NJ, 1984.

Lakoff, G. P., “‘Structural Complexity in Fairy Tales’’, The Study of Man 1 (1972),
128-150.

Lakoff, G. and Johnson, M., Metaphors We Live By, University of Chicago Press,
Chicago, 1980.

Lakoff, G., ‘‘Categories and Cognitive Models’’, Berkeley Cognitive Science
Report No. 2, University of California, Berkeley, Berkeley, CA, 1982.

Langacker, R., *‘An Introduction to Cognitive Grammar’’, Cognitive Science 10, 1
(1986), 1-40.

Lehnert. W. G., “‘Plot Units: A Narrative Summarization Strategy’’, in Strategies
for Natural Language Processing, W. G. Lehnert and M. H. Ringle (editor),
Lawrence Erlbaum Associates, Hillsdale, NJ, 1982, 375-414.

Lockman, A. and Klappholz, A. D., ‘‘Toward a procedural model of contextual
reference resolution’’, Discourse Processes 3 (1980), 25-71.

73.

74.

75.

76.

71.

78.

79.

80.
81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Mandler, J. M. and Johnson, N. S., ‘““Remembrance of Things Parsed: Story
Structure and Recall’’, Cognitive Psychology, 1977, 111-131.
Mandler, J. M. and Johnson, N. S., “‘On Throwing Out the Baby with the

Bathwater: A Reply to Black and Wilensky’s Evaluaton of Story Grammars’’,
Cognitive Science 4,3 (1980), 305-312.

Mandler, J. M., ‘“‘Recent Research on Story Grammars’’, in Language and
Comprehension, J. L. Ny and W. Kintsch (editor), North-Holland, Amsterdam,
1982. ‘

Mann, W. C. and Thompson, S. A., ‘‘Relational Propositions in Discourse’’, Report
#ISI/RR-83-115, ISI, Marina Del Ray, CA, 1983.

Marr, D. and Marr, D., “‘Arnificial Intelligence — A personal view'’, Artificial
Intelligence 9 (1977), 37-48. '

Martin, J. A., ‘““*Views from a kill’*, Proceedings of the Cognitive Science Sociery,
Amherst, Mass., 1986.

McCarthy, J. and Hayes, P. J., ‘“Some philosophical problems from the standpoint
of artificial intelligence’’, in Machine Intelligence 4, Melizer and Michie (editor),
Edinburgh, 1969, 463-502.

McDermott, D., ‘‘Assimilation of new information by a natural language
understanding system’’, MIT AI Tech. Rep.-291, 1974.

McDermott, D., *‘Planning and acting”’, Cognitive Science 2 (1978), 71-109.

McDermott, D., ““Artificial Intelligence Meets Natural Stupidity”’, in Mind Design,
J. Haugeland (editor), MIT Press, Cambridge, MA, 1981, 143-160.

Minsky, M., in Semantic Information Processing, MIT Press, Cambridge, Mass,
1967.

Minsky, M., “‘A framework for representing knowledge™, in The psychology of
computer vision, P. Winston (editor), McGraw-Hill, 1975.

Moore, J. and Newell, A., “How Can Merlin Understand?”’, in Knowledge and
Cognition, L. W. Gregg (editor), Lawrence Erlbaum Associates, Baltimore, 1973,
201-252.

Moser, M. G., “‘An Overview of NIKL, The New Implementation of KL-ONE™’,
Report No. 5421, Bolt, Beranek and Newman, Inc., Cambridge, MA, 1983.

Nilsson, N. ., Problem-Solving Methods in Artificial Intelligence, McGraw-Hill,
New York, 1971.

Norman. D. A. and Rumelhart, D. E., Explorations in Cognition, Freeman, San
Francisco, 1975.

Norvig, P., ‘‘Frame Activated Inferences in a Story Understanding Program’’,
Proceedings of the 8th IJCAl, Karlsruhe, West Germany, 1983.

Norvig, P., *‘Six Problems for Story Understanders’’, Proceedings of AAAI-83,
Washington, DC, 1983.

Norvig, P., “‘A Unified Theory of Inference for Text Understanding’’, Ph.D Thesis,
University of California, Berkeley, 1986.

91.

93.

94.

9s.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

Pereira, F. C. N. and Warren, D. H. D., “‘Definite clause grammars for language
analysis--- a survey of the formalism and a comparison with augmented transigon
networks'’, Artificial Intelligence 13,3 (1980), 231-278.

Propp, V., Morphology of the folkiale, University of Texas Press, Austn, 1968.

Quillian, M. R., *“The teachable language comprehender: A simulation program and
theory of language’’, Communications of the ACM, 1969, 459-476.

Reddy, M., “‘The Conduit Metaphor’, in Metaphor and Thought, A. Ortony
(editor), Cambridge Univ. Press, Cambridge, 1979.

Rieger, C. J., ‘‘Understanding By Conceptual Inference’’, Tech. Rep.-353,
University of Maryland Computer Science Dept., 1975.

Rips, L. J., Shoben, E. J. and Smith, E. E., “*Semantic distance and the verification
of semantic relations’’, Journal of Verbal Learning and Verbal Behavior 12 (1973),
1-20.

Rips, L. J., Shoben, E. J. and Smith, E., “‘Structure and process in semantic

memory: A featural model for semantic decisions’’, Psychological Review 81, 3
(1974), 214-241. :

Rosch, E. and Lloyd, B. B., Cognition and Categorization, Lawrence Erlbaum
Associates, 1978.

Roseman, L, Cognitive aspects of emotion and emotional bevavior, Dept. of
Psychology, Yale University, New Haven, CT, 1979. Unpublished manuscript.

Rosenberg, S., ““HPRL: A Language for Building Expert Systems’’, Proceedings of
the 8th IJCAI, Karlsruhe, West Germany, 1983, 215-217.

Rumelhart, D., ‘“‘Notes on a schema for stories’’, in Representation and
Understanding, D. G. Bobrow and A. Collins (editor), Academic Press, New York,
1975, 211-236.

Sacerdoti, E., ““The non-linear nature of plans’’, Fourth IJCAI, Tsibilisi, 1975, 206
-214.
Sacerdoti, E., in A Structure for Plans and Behavior, NY, 1977, Elsevier.

Sacks, H., “‘Ca the analyzability of stories by children”, in Directions in
Sociolinguistics, J. Gumperz and D. Hymes (editor), Holt, Rinehart and Winston,
1972.

Schank, R. C., ‘“‘Conceptual Dependency: A Theory of Narural Language
Understanding’’, Cognitive Psychology, 1972, 552-631.

Schank, R. C., “‘The fourteen primitive actions and their inferences’’, AIM-183,
Stanford University Computer Science Department, Stanford, California, 1973.

Schank, R. C., *‘Identification of conceptualizations underlying natural language’’,
in Computer Models of Thought and Language, R. C. Schank and K. M. Colby
(editor), Freeman, San Francisco, CA, 1973, 187-247.

Schank, R. C. and Abelson, R. P., “‘Scripts, plans and knowledge’’, Advance
papers, 4th [JCAI, 1975, 151-157.

Schank, R., “SAM- A story understander’’, Yale University Computer Science
Research Report #43, 1975.

- 158 -

110.

111

112.

113.
114.

115.

116.

117.

118.

Schank, R. C. and Abelson, R. P., Scripts, Plans, Goals and Understanding,
Erlbaum, Hillsdale, N.J., 1977.

Schank, R. C. and Wilensky, R., ‘A goal-directed production system for story
understanders’’, in Partern-Directed Inference Systems, D. A. Waterman and F.
Hayes-Roth (editor), Academic Press, New York, 1978.

Schank, R. C., ‘“‘Interestingness: Controlling Inference’’, Artificial Intelligence 12,3
(1979), 273-298.

Schank, R. C., “‘Language and Memory’, Cognitive Science 4,3 (1980), 243-284.

Schank, R. C., “MOPs and Learning’’, Proceedings of the Third Annual
Conference of the Cognitive Science Society, Berkeley, 1981, 166-169.

Schank, R. C., Collins, G. C., Davis, E., Johnson, P. N., Lytinen, S. and Reiser, B.
J., ““What's The Point’’, Cognitive Science 6, 3 (1982), 255-276.

Schank, R. C., “‘Reminding and Memory Organization: An Introduction to MOPs”’,
in Strategies for Nawral Language Processing, W. G. Lehnert and M. H. Ringle
(editor), Lawrence Erlbaum Associates, Hillsdale, NJ, 1982, 455-494.

Schmolze, J. G. and Lipkis, T. A., ‘‘Classification in the KL-ONE Knowledge
Representation System’’, Proceedings of the 8th IJCAI, Karlsruhe, West Germany,
1983, 330-332.

Sidner, C., ‘‘Disambiguating References and Interpreting Sentence Purpose in

Discourse’’, in Artificial Intelligence: An MIT Perspective, vol. 1, P. H. Winston
and R. H. Brown (editor), MIT Press, Cambridge, MA, 1982, 231-254.

_ Simmons, R. E., Klein, S. and McConlogue, K., ‘‘Indexing and dependency logic

for answering English questions’’, American Documentation 5 (1964), 196-204.

_Simmons, R. F., “‘Answering English questions by computer’’, in Auromated

Language Processing: The State of the Art, H. Borko (editor), Wiley and Sons, New
York, 1967, 15-30.

_Simmons, R. F. and Slocum, J., ‘‘Generating English discourse from semantic

networks’’, Comm. of the ACM I5 (1972), 891-905.

_ Simon, H. A., The Sciences of the Artificial, MIT Press, Cambridge, MA, 1969.
_Small, S. L., “Exploding Connections: Unchunking Schematic Knowledge’’,

Proceedings of the Fourth Annua! Conference of the Cognitive Science Society.
Ann Arbor, 1982, 169-173.

_Small, S., Cottrell, G. and Shastri, L., “Toward Connectionist Parsing "',

Proceedings of AAAI-82, Piusburgh, 1982, 247-250.

_Sondheimer, N. K., Weischedel, R. M. and Bobrow, R. J., ‘Semantic Interpretation

Using KL-ONE"’, Proceedings of Coling, Stanford, CA, 1984.

. Thomdyke, P. W., ‘‘Cognitive structures in comprehension and memory of

narrative discourse.”’, Cognitive Psychology, 1977.

. Thomndyke, P. W., “‘Pattern-directed processing of knowledge from texts’’, in

Pattern-Directed Inference Systems, D. A. Waterman and F. Hayes-Roth (editor),
Academic Press, New York, 1978.

128.

129.

130.

134.

135.

136.
137.

138.

140.

141.

142.
143.

144.

Waltz, D. L. and Pollack, J. B., ‘‘Phenomenologically plausible parsing’’,
Proceedings of the National Conference on Artificial Intelligence, Austn, TX,
1984, 335-339.

Waltz, D. L. and Pollack, J. B., ‘‘Massively parallel parsing: A strongly interacuve
mode! of natural language interpretation’’, Technical Report, Coordinated Science
Laboritory, University of Illinois, Urbana, Ill, 1984.

Warren, D. H. D. and Pereira, F. C. N., ‘“An efficient easily adaptable system for
interpreting natural language queries’’, American Journal of Copmputational
Linguistics 8, 3-4 (1982), 110.

. Wilensky, R. W., Understanding Goal-based Stories, Yale University Computer

Science Research Report, New Haven, CT, 1978.

. Wilensky, R. W. and Black, J. B., *‘An Evaluation of Story Grammars’’, Cognirive

Science, 1979.

. Wilensky, R. and Arens, Y., ‘A Knowledge-based Approach to Natural Language

Processing’’, Memorandum No. UCB/Electronics Research Lab./M80/34, UC
Berkeley Electronics Research Lab., Berkeley, 1980.

Wilensky, R., Deering, M. and Falett, J., ““PEARL: An Efficient Language for
Artificial Intelligence Programming’’, Proceedings of the Seventh IJCAI,
Vancouver, BC, 1981.

Wilensky, R, ‘‘Points: A Theory of the Structure of Stories in Memory”’, in
Strategies for Natural Language Processing, W. G. Lehnert and M. H. Ringle
(editor), Lawrence Erlbaum Associates, Hillsdale, NJ, 1982, 345-374.

Wilensky, R., Planning and Understanding, Addison-Wesley, Reading, MA, 1983.

Wilensky, R., ‘‘Story grammars versus story points’’, J. of The Behavioral and
Brain Sciences 6, 4 (1983), Cambridge Univ. Press.

Wilensky, R., “KODIAK: A Knowledge Representation Language’’, Proceedings
of the 6th National Conference of the Cognitive Science Sociery, Boulder, CO,
1984.

. Wilensky, R., Arens, Y. and Chin, D. N., ““Talking to UNIX in English: An

Overview of UC”’, Communications of the ACM 27, 6 (1984).

Wilensky, R., ‘‘Knowledge Representation: A Proposal and Critique™, First
Annual Workshop on Theoretical Issues in Conceptual Information Processing,
Atlanta, Georgia, 1984, 148-159.

Wilensky, R., ‘‘Some Problems and Proposals for Knowledge Representation’’,
Report No. UCB/Computer Science Dpt. 86/294, Computer Science Division, UC
Berkeley, 1986.

Wilks, Y., ““Understanding without proofs’’, Proceedings of the Third IJCAI, 1973.

Wilks, Y., “‘Preference semantics’’, in The Formal Semantics of Natural Language,
E. L. Keenan (editor), Cambridge Univ. Press, Cambridge, 1975, 329-350.

Winston, P. H., ‘‘Learning by Creating and Justifying Transfer Frames’’, in
Artificial Intelligence: An MIT Perspective, vol. I, P. H. Winston and R. H. Brown
(editor), MIT Press, Cambridge, MA, 1982, 347-376.

- 160 -

145.

146.

147.

148.

149.

150.

Winston, P. H., “‘Learning New Principles From Precedents and Examples’’,
Artificial Intelligence 19, 3 (1982), 321-350.

Wong, D., “‘Language Comprehension in a Problem Solver’’, Proceedings of the
Seventh [JCAI, Vancouver, 1981, 7-12.

Woods, W. A., ““What’s in a link?"’, in Representation and Understanding, D. G.
Bobrow and A. Collins (editor), Academic Press, New York, 1975, 35-82.

Woods, W. A, ““What’s Important About Knowledge Representation?’’, Computer
16, 10 (1983), 22-29.

Zadeh, L. A., “°A note on prototype theory and fuzzy sets’’, Cognition 12 (1982),
291-297.

Zwicky, A. M. and Sadock, J. M., ‘‘Ambiguity Tests and How to Fail Them’’, in
Syntax and Semantics, vol. 4 , J. P. Kimball (editor), Academic Press, NY, NY,
1975.

- 161 -

