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ABSTRACT

Adaptive subdivision is a method of creating polygonal approxi-
mations to spline surfaces. An adaptive subdivision algorithm takes
as input a spline surface and a tolerance ¢, and outputs a piecewise
planar approximation to the surface that is guaranteed to differ from
the actual surface by a distance no greater than . These algorithms
proceed by recursively "splitting” the surface into smaller subsur-
faces, ultimately approximating subsurfaces with planar polyhedra.
These algorithms are therefore characterized by the mathematics
behind the splitting of a surface, the test that is used to determine
when to stop the recursion, and the method by which a subsurface is
approximated by polyhedra. Algorithms of this type are currently
known for spline techniques such as Bézier and B-splines.

The purpose of this paper is two-fold. First, we describe the
Beta-spline curve and surface technique and derive the equations
governing the splitting of Beta-spline curves and surfaces. Second,
we present a very general adaptive subdivision algorithm that can be
used with a variety of surface techniques. It incorporates splitting
criteria based on flatness and prevents cracks from occurring between
approximating polyhedra. The testing required to determine when
surface splitting can stop can be very expensive and methods for
reducing these costs are examined. The tolerance controlling the
splitting process may itself be adaptive, so that as an object moves
farther away the tolerance is automatically increased. These ideas
have all been used in the implementation of a surface design and
rendering system.
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1. Introduction

Most popular rendering algorithms rely on planar polygonal data descriptions
due to their compact representations and geometric simplicity. Unfortunately,
they are not sufficiently flexible for many of today’s graphics applications. For
instance, suppose that a common object such as a glass is modeled as a set of abut-
ting triangles. When the glass is rendered from the viewpoint of an observer very
far away, the triangular approximation may lead to a large number of sub-pixel
sized triangles; the approximation is too accurate to resolve on a discrete medium
such as a frame buffer. At the other extreme, as the eyepoint is moved toward the
object, the approximation will begin to visibly break down. When viewed from a
sufficiently close distance, the silhouette edges of the glass will show discontinui-
ties in slope, detracting from the realism of the rendering.

Fortunately, there is an alternative to polygonal modeling. If the glass is
defined using modern spline surfaces, we obtain a mathematical function describ-
ing the object. The mathematical model is, in essence, a description that is
infinitely detailed. Of course when the object is rendered it must be approximated,
possibly by polygons, but the accuracy of the approximation can be governed by
viewing parameters. Thus, if viewed from a great distance, it is sufficient to gen-
erate a small number of approximants from the mathematical definition. The
number of approximants can be increased as the distance to the viewer decreases.
This technique guarantees that the object will always appear to be smooth without
unwarranted or invisible detail.

Adaptive subdivision is a method of approximating a surface by polygons to a
given tolerance in an intelligent fashion (Lane!8 ). This is a definite improvement
over earlier subdivision schemes that always subdivided the surface down to the
size of a pixel (i.e., Catmull® ). In regions of relative flatness, a good characteriza-
tion of the surface can be achieved with a small number of large polygons. Regions
that are highly curved require a large number of small polygons. Since the surface
is approximated with planar polygons, the object can be designed with all the
advantages of surfaces but rendered using all of the available polygon rendering
algorithms. Therefore, subdivision plays the important role of bridging the gap
between modern surface definitions and efficient polygon based renderers.

The ideas of surface modeling, subdivision, and user friendliness can be incor-
porated in a design system with which someone unfamiliar with mathematics and
computers can design and render complex objects. Moreover, the result of such a
design session is not merely a "pretty picture”; it is a model describing the object
in a concise mathematical form, making this type of system well tailored to
CAD/CAM applications.

This paper describes the surface technique we use, its corresponding subdivi-
sion algorithm, and a method for preventing the "cracks" that have plagued previ-
ous subdivision algorithms.



1.1. Notation

Before delving into the mathematical details, the introduction of notational
conventions will prove to be useful.

. Scalars are represented in italics, as in x and Y.

. Vectors are denoted by boldface type, i.e. V= (V,V,V,) defines a three
dimensional vector V. The boldface convention also holds for vector-
valued functions. If L(u) represents a vector-valued function of u, L(u)
can be written in component form as

L{u) = (L,(u),L:,(u),Lz(u))

. Sequences of vectors appear in boldface surrounded by <>. For exam-
ple, <V> = (V,V,, - ,V,) is a sequence of m vectors.

« A matrix is denoted by a boldface character ornamented with a diacriti-

cal bar as in
—_ X -
- [ ]
y X

2. Basic Beta-splines

The next few sections briefly introduce the Beta-spline technique for curves
and surfaces. For a more complete treatment see Barsky .34

The Beta-spline, developed by Barsky,! is a departure from its predecessors in
that its derivation is based on fundamental geometric measures rather than
abstract algebraic quantities. In particular, previous spline formalisms have
assumed that derivatives (usually first and second derivatives) must be continuous
for the curve or surface to appear smooth. Because of the parametric form of these
techniques, conservation of first and second derivative is overly constraining; it is
sufficient to require that the unit tangent and curvature vectors be continuous.
Since the constraining equations are more relaxed, new design freedom is gained
without resorting to a higher order polynomial. To be specific, two new degrees of
freedom, bias (8;) and tension (B2) are obtained using a cubic Beta-spline. For
appropriate values of bias and tension the Beta-spline reduces to a uniform cubic
B-spline, demonstrating that the Beta-spline is actually a generalization of the B-
spline.

The shape parameters (bias and tension) associated with a Beta-spline may be
constant over the entire extent of the curve or surface, or may be allowed to
vary.87 This paper only addresses the subdivision and rendering of Beta-splines
with constant shape parameters.



2.1. Beta-spline Curves

Given a sequence of vertices in three-space <V> = (Vo,Vy, - -+ ,Vn), the Beta-
spline curve defined by the sequence is composed of m —2 curve segments, the itt of

WhiCh» QL(BI’B2;L‘)’ iS

QL(BIrBZ;u) = 2 v1+rbr(ﬁ1’32;u); OSU,S].,I: = 21 T 1m_1 (21)

r=-2

Q.(B1,B2;1) can also be expressed in matrix form as

vl—2

vt—'l
Q:(B1.Bzn) = [boa(Br.Bau) b1(Br,Bau) bo(B1.B2u) bi(B1,Bau)] v, (2.2)

vt+l

b,(B1,B3;u) is a cubic polynomial called the k'® Beta-spline basis function. The
four basis functions are derived so as to preserve continuity of unit tangent and
curvature vectors. From Barsky,! they are:

2 3
b_a(B1.Bau) = —gl-(l—u)s (2.3)

b_y(B1,Bauw) = %(2B§u(u2—3u +3)+2B8%ud —3u?+2) +281 (1’ — 3u +2)+ By(2u® ~3u’ +1)

bo(B1,B25u) %(2Bfu2(—u +3)+2Bu(—u?+3)+Bou(—2u +3)+2—u’+1)

2u°®

b1(B1.Bgu) = 3

where § = 28} +4B1+4B,+B2+2, By is the bias and B, is the tension.

A sequence such as <V>, used to define a spline, is called a control polygon.
Intuitively, a Beta-spline control polygon governs the general behavior of the
curve. The curve itself can be thought of as a smoothly blended approximation of
the control polygon (Figure 2.1).

Equations (2.1) (2.3) show that a Beta-spline curve is composed of a set of
smoothly joined cubic curve segments; in other words, a Beta-spline curve is a
piecewise cubic polynomial. Note that each curve segment is defined by only four
adjacent vertices of the control polygon. For instance, the i** curve segment is
defined by the vertices V,_3,V,_,V,,V.4y. The i +1* segment depends only on the

vertices V,_,, V., V.41, and V., This fact has some very important and useful
consequences, as follows.

First, a Beta-spline defined by a control polygon of more than four vertices is
equivalent to a set of Beta-splines, each with a control polygon of exactly four ver-
tices. The equivalence allows derivations of the properties of the Beta-spline to



Figure 2.1.
A control polygon and the corresponding Beta-spline curve with B, = 1 and
B, = 0. Crosses denote control vertices and triangles denote the joints
(points where the polynomial segments meet).

concentrate on a spline comprised of a single segment.

Second, if a single vertex is moved, only four curve segments will be affected.
More specifically, movement of the j® vertex only alters Q, -2, Q-1 Q,, and Q..
This is known as the property of local control.

Third, the basis functions guarantee that the curve segments will join
smoothly, independent of the positions of the control vertices. The basis functions
also ensure that the curve will not leave the region defined by the convex hull of
<V>'" The convex hull of <V> can be found by imagining a rubber band
stretched around <V>. The area within the boundaries of the rubber band defines
the convex hull. This property allows bounding regions for the curve to be easily
calculated, a fact that greatly increases the efficiency of many algorithms dealing
with the curve form.

What makes Beta-splines different from the user’s point of view are the shape
parameters B, and 8,. Both parameters apply tension to the curve, but they differ
in rather subtle ways. B, measures the relative amount of bias, or asymmetry.

= Actually, a stronger statement can be made. A given curve segment is guaranteed to
remain within the convex hull of the four vertices that define it. Therefore, the whole curve.
due to the equivalence property above, remains within the union of the convex hull of each of
the curve segments.



When B,=1 the curve is said to be unbiased. As B, is increased, the curve begins
to skew to one side and approach the control polygon in an asymmetric fashion.
Replacing B, by its reciprocal value causes the curve to be skewed an equal
amount in the opposite direction. Figure 2.2 shows three curves defined by the
same control polygon. The top curve has 8,=1, the one in the middle has 8,=1/2,
and the one on bottom has 8,=2. Observe that the two lower curves have begun to
approach the control polygon, but in a non-uniform way. Note also that the joints
of the lower curves have been skewed in opposite directions.

Figure 2.2.
The effect of bias (B,) on a Beta-spline curve. Note how the lower curves ap-
proach the control polygon asymmetrically, and how the endpoints have
been biased in opposite directions.

The tension parameter (8;) measures the amount of symmetric tension applied
to the curve. When B8,=0, the curve is said to be untensed. As B, is increased, the
curve Qu) flattens and uniformly approaches the control polygon <V>; in the
limit of infinite tension, Q/u) becomes indistinguishable from <V>.

The extra freedom provided by the shape parameters means that the design
procedure using Beta-splines is somewhat more flexible than the procedure for B-
splines. A typical design application using B-splines involves the definition of a
control polygon, generation of the corresponding curve, then movement of existing
vertices or insertion of new vertices to refine the curve in regions of particular
interest. A design process exploiting Beta-splines does not always require that
vertices be moved or added; the shape parameters can also be used to refine the
curve. For example, Figure 2.3 shows that tension provides the designer with an
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intuitively pleasing parameter not available with other polynomial splines, cubic
or otherwise.

Figure 2.3.
The effect of tension (B) is shown by the diagrams above. The value of B2
is 0 for the top curve, 5 for the middle curve, and 20 for the bottom curve.

When 8,=1 and B,=0, the Beta-spline basis functions reduce to the uniform cubic
B-spline basis functions. In other words, a uniform cubic B-spline is an unbiased,
untensed Beta-spline.

2.2. Beta-spline Surfaces

A Beta-spline surface is described by an array of vertices in three-space
<V> = (Vgo,Vor, - Vo). In a manner analogous to the Beta-spline curve, a
Beta-spline surface is composed of a set of surface patches, the ij** patch
S.,(B1.Byu,v) defined as

SLJ(B]’ﬁz;u‘U) = 2 2 Vt+rJ+sbr(Bl’B2;u)bs(BlvBZ;v) (24)

r=-2s=-2
which in matrix form is

S, (B1.Byuv) = | (2.5)
b—z(Bl-l_gz;N
_ |o-itBuBz
(b_g(B1.Bai) b1 Br.Baiu byl Br,Baiu) byB1.Bau)lV,, bo(B1.Ba:t)

by BBt



where

vt—2J-2 vx-—2.,1—l V:-ZJ vl—2J+l
vl-lJ-—Z vl‘lJ—l vl-lJ vx-lJ+l
Y VLJ-Z vlJ—l vlJ sz+l

vz+1J—2 vl+lJ—l vl+lJ vl+lJ+l

<i
|

A sequence such as <V>, used to define a surface, is called a control hull or
control graph. An example of a control graph is shown in Figure 2.4 together with
the surface defined by it. Note that the connectivity of the graph is implicitly
determined by considering the graph as a two-dimensional array of vertices; two
vertices share an edge if and only if they are adjacent in the array.

Figure 2.4.
A control graph and the corresponding Beta-spline surface with By =1 and

B: = 5.

For each property of Beta-spline curves, there is a corresponding property for
Beta-spline surfaces. Of particular interest are the properties of local control, con-
vex hull, and the behavior of the shape parameters.

When a vertex of a Beta-spline control graph is perturbed, only sixteen
patches are affected. If the i,j*t vertex is moved, only the patches

S 4, +sBLByuv); r = -2.-101 s=-2-101 (2.6)
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will be altered. Local control of the surface implies that the surface definition need
not be entirely recomputed when a vertex is moved (a common operation in the
design process). In fact, the algorithm for updating the surface in response to a
vertex perturbation need only be concerned with the patches given in (2.6). More-
over, Barsky® has shown that a patch (or curve) affected by a vertex perturbation
can be updated in an incremental way, requiring only one multiplication and one
addition for each point on the surface (or curve).

Figure 2.5.
The figures above demonstrate the property of local control for Beta-spline
surfaces. The two surfaces are identical except for the position of one of the
vertices. Note that only a small region of the surface is affected.

Equation (2.6) shows that sixteen patches are dependent on a particular ver-
tex. It is also the case that each patch depends on only sixteen vertices, arranged
in a 4 by 4 array surrounding the patch. This implies that a Beta-spline surface
defined by a control graph of size larger than 4 by 4 can be expressed as a set of
surfaces, each composed of a single patch defined by a control graph of size exactly
4 by 4.

Since the Beta-spline curve possesses the convex hull property, it is also
displayed by the Beta-spline surface. The convex hull of a control graph is
obtained by imagining a rubber membrane stretched taut around the graph; the
volume within the membrane is the convex hull. The region of space that can be
occupied by a single Beta-spline patch is the convex hull of its control graph. For
a Beta-spline surface composed of more than one patch, the convex hull of the
aggregate is the union of the convex hulls of the individual patch control graphs.




.10 -

The convex hull property can be exploited in many ways. It can, for example, be
used in conjunction with subdivision (to be explained in section 3.1) to develop a
fast occlusion algorithm. If two control graphs do not occlude one another, neither
can the surfaces they define. If the graphs do interfere, subdivision can be used as
a means of resolving the interference.

As might be expected, bias and tension alter the shape of a surface in the
same way they did for curves. For instance, as the tension is increased on a sur-
face, the surface begins to uniformly approach the control graph. Intuitively, the
surface takes on more polygonal character as the tension is increased. In the limit
of infinite tension the surface converges to the control graph.

3. Subdivision of Spline Curves

3.1. Mathematical Derivation

Let Cla,bl(u) be the spline curve computed from a linear combination of some
set of basis functions W,(u) when the parameter uela,bl; i.e.

Clablu) = DV, W.(w); asusb (3.1)
r=0

When no brackets are shown, as in C(u), C[0,1](x) is implied.

The subdivision problem for curves may be mathematically stated as: 12 Find
the control polygons

<VE> = (Vk---VE) (3.2)
and
<VE> = (VE.. - VE) (3.3)
such that
Cl0,u"Wu) = C4{0,1)(uD (3.4)
and
Clu’ 1)) = CR0,11®) (3.5)

where
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cL{o13ub = EVSLW,,(uL); O=sul=1 (3.6)
5=0
and
cRro,1u®) = ﬁvfw,mﬂ); 0=uf=1 (3.7)
r=0

The quantity u«” is called the subdivision point. If " = 1/2, the curve is said to
have undergone midpoint subdivision.

When C(u) is subdivided we obtain two new curve segments Cl(u) and C*w)
whose union is exactly C(z). The superscripts are inspired by the fact that if the
vertices of <V> trace out a polygon from left to right, then <VE> is the subdi-
vided polygon on the left, <V®> is the right subdivided polygon. In keeping with
this convention, all quantities superscripted with L refer to the left.subcurve, and
superscript R refers the right subcurve.

The subdivision constraint equation (3.4) can be expressed in terms of a single
parameter u, instead of the two parameters u and u’ by noting that

Cl0,u")u) = C[0,1)(u"u) | (3.8)
Thus, (3.4) becomes
Cl0,1)(u"w) = CH{0,1](u) (3.9)
Equation (3.5) can also be written in terms of a single parameter by noting that
Clu’,1(u) = C[0,1)(u" +(1—u"u) (3.10)
Substitution of (3.10) into (3.5) gives
Cl0.1)(u" +(1—u ) = CF[0,1)w) (3.11)
If we let W(u) represent a row vector of the basis functions, i.e.

W(u) = [Wo(u) Wl(u) cc Wm(u)]

then the reparametrized constraint equations (3.9) and (3.11) can alternately be
written in matrix form as

W'V = W)VE (3.12)
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and
W' +(1-u)wV = W)V (3.13)

respectively, where

V=[V,V, - V)
vi= (v vh o Vel
VR = [VEVE ... VEIT

Since polynomial basis_functions can always be linearly reparametrized by
matrix multiplication, 1215 W(z"«) and W' +(1—u")u) can be expressed as

Wiu'u) = WL (3.14)
and
W' (1-uu) = WwR (3.15)
for some m-by-m matrices L and R. Substitution of (3.14) into (3.12) results in
WLV = Wu)V- (3.16)
Thus, the left subdivided control polygon V! is given by
Vi =LV (3.17)

In a similar fashion, the right subdivided control polygon VE can be shown to be
given by

VR = RV (3.18)

In other words, the matrices that reparametrize the basis functions also subdivide
the control polygon. This result is independent of the type of polynomial spline
being used.!2
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3.2. Subdivision Schema for Curves

Using subdivision we can obtain a piecewise linear approximation to the
curve to any desired accuracy as follows. Let us for the moment assume that the
basis functions are constructed so that the curve lies within the convex hull of the
control polygon and interpolates the first and last control vertices. With these
assumptions, if the control polygon defining the curve is flat to within a given
tolerance, the curve can be adequately approximated by the linear segment V,V,,.
If the polygon fails the flatness test, the polygon is subdivided into two parts, both
of which are approximated by recursive application of the algorithm. The union of
all the linear segments thus produced forms the piecewise linear approximation to
the original curve.!

It is important to note that although we are conceptually subdividing the
curve, in practice we are using the properties of the basis functions to subdivide
the control polygon. This obviates the need to explicitly compute points on the
curve by direct evaluation of (3.1). Instead, the endpoints of the subdivided control
polygons can be thought of as implicitly obtained evaluations.

A pseudo-code version of the recursive subdivision algorithm is

Approximate_Curve( <V>, &)
<V>: Control Polygon;
¢: flatness;

begin
if <V> is within ¢ of flatness then
Output the line from V, to V,
else
Subdivide(<V>, <VLi>, <VE&>)
Approximate_Curve(< VL >, g)
Approximate_Curve(<V®>, ¢)
end

Recursive subdivision with flatness testing can be thought of as being an
adaptive approximation algorithm in that the local flatness of the curve drives the
recursion. In a region where the curve is relatively flat, only one linear segment
will be produced. If the curve has a region of high curvature, the algorithm will be
forced to generate a large number of small linear segments to properly represent
the curve.

Older methods have approximated curves by stepping along in parametric
space by some constant increment. However, a given distance in parametric space
can correspond to an arbitrarily large distance in geometric space since the
geometric distance is proportional to the distance between vertices of the control
polygon. In other words, the older methods approximated the curve using a
parametric tolerance. The adaptability of the subdivision algorithm allows an

i R. Goldman has recently shown that this process is guaranteed to converge to the original
curve.
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approximation in terms of a purely geometric tolerance. Intuitively, the subdivi-
sion algorithm generates an approximation that is uniformly good over the entire
extent of the curve; the older method does not.

Although Beta-spline curves have the convex hull property, they do not inter-
polate the endpoints of the control polygon. Thus, a flat control polygon cannot be
approximated by a line segment connecting the first and last vertices; instead, the
endpoints of the curve must be explicitly computed. The line segment joining the
curve endpoints can be used as a piecewise linear approximant, but from an algo-
rithmic point of view it is more efficient to convert the Beta-spline control polygon
into an equivalent Bézier control polygon, then subdivide the Bézier polygon to
obtain the linear approximation to the curve. This method is more efficient
because it obviates the need to explicitly compute the endpoints of a curve segment
once a flat control polygon is obtained. For these reasons, we now turn to the sub-
division of Bézier curves. The conversion of Beta-spline curves into Bézier curves
will then be discussed in section 3.4.

3.3. Subdivision of Bézier Curves
A Bézier curve is constructed from a control polygon as defined in equation

(3.1) where the i‘* Bézier basis function B,(z) taking the place of W.(x). The Bézier
basis functions may be compactly defined as

By(u) = ['?]u‘(l—u)’"" (3.19)

where l’:‘] is the familiar binomial coefficient.

A Bézier curve interpolates the endpoints of the control polygon and obeys the
convex hull property; thus, we can compute the control polygons <V“> and
<VER> then recursively subdivide to obtain a piecewise linear approximation.

We now develop the equations governing the subdivision of Bézier curves at
an arbitrary subdivision point u°, the derivation of which is based on work
recently done by Barsky.2 For simplicity we will initially consider the subdivision
of cubic Bézier curves, then generalize the result to arbitrary order.

Let the control polygon for the cubic curve to be subdivided be denoted by
<VO> = (VO VI VI VD). Locate the vertex Vg by dividing the segment V{V? such
that

. _ 1Vevi

= 3.20
VeV (320

u

The vertices V! and V} are obtained by a similar division of the segments V{V}
and V{V{ respectively. The construction continues by obtaining the vertices A4
and V? by dividing the segments V4Vi and VIv} respectively. Finally, the vertex
V3 is located by dividing the segment V2V2 The properties of the Bézier basis
functions can be used to show that
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Figure 3.1.
The geometric construction of the subdivided polygons
C<Vl> = (VOVLVEVY and <VE> = (V3 ViV V] for a cubic Bezier con-
trol polygon.
C[0,1)u") = V§ (3.21)

Moreover, we can identify <V.> as the sequence (V3,V§,VE V), and <VE> as the
sequence (V3 VIV, VJ).
The geometric construction can be made algebraic by noting that

Vi= -V e Vi =012 j=1---3-i (3.22)

In fact, this form holds for all Bézier curves of any degree m. The generalized
expression2 is

Vi= (1-u)V{ e VT i=01,.,m -1 j=1---m=i (3.23)

Equation (3.23) represents a recurrence relation for the vertices of the various con-
trol polygons in terms of the vertices of <V®>. Since the relation is linear, the
recurrence can be unraveled, solved for the vertices comprising <VL> and <VF>,
and written in matrix form as

Vi = LgV (3.24)
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and
VE = B,V (3.25)
where the i j" entry of Lg, denoted as L, is
Ly = [Jurra-uny (3.26)
Similarly, R, ;, the ij** entry of Rp, can be expressed as
R, = [ﬁ :;l](u‘)'-lu—u’)m-l (3.27)
For cubic Bézier curves, the subdivision matrices become
1 0 0 0
T (1—u) u 0 O (3.28)
BT la-u"? 20 -u’ u”’ '
1=u)® 301 —uw”) 31— @'’
and
(1—u")?® 31 —u"u" 30 —-uHw"? (")
_ 0 A-u"? 20-uMu’ @?
RB = 0 O (l_ua) uc (3.29)
0 0 0 1
For the special case of midpoint subdivision (' = —;—), the cubic Bézier subdivision
matrices Ly and Rp reduce to
1 0 0 O
1 1
— 2 2 00 330
Lg = 111, (3.30)
4 2 4
1331
8 8 8 8

and
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3

1

13 3 1
8 8 8 8
° ¥ 3
T2 2
0 0 0 1

3.4. Subdivision of Beta-spline Curves

In section 3.1 it was shown that discovery of the reparametrization matrices L
and R is sufficient to subdivide polynomial spline curves. Thus, to subdivide a
Beta-spline curve we seek the matrices Lg and Ry, such that

b(B1,Bau"u) = b(B1,Baully (3.32)
and
b(BBgu" +(1—u"u) = b(By,BxuRg (3.32)

where b represents a row vector of the Beta-spline basis functions parametrized as
indicated. We now set out to derive the Beta-spline subdivision matrices Lg and
ﬁﬂ.

Since the Beta-spline basis functions span the space of cubic polynomials, we
can write the cubic Bézier basis functions as a linear combination of them. Thus,
there exists a matrix T such that

B(x) = b(B,,B2u)T (3.33)

Now, from equation (3.14), the matrix L reparametrizes the Bézier basis func-
tions, as given by

B(u"u) = B(u)Lg (3.34)

Substituting (3.34) twice into (3.33), parametrized once in terms of u, and once in
terms of u u, gives

b(B1,Bzu” )T = b(B1,B2u)TLs (3.35)
Multiplying both sides of (3.35) on the right by T~! yields

b(B,Bau’u) = S(.Buﬁz;uﬁ'iﬂ'f_l (3.36)



Therefore, we can identify 1—43 as

A similar procedure can be used to show that
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L, = TLyT!

R, = TRT™!

(3.37)

(3.38)

All that remains to be done is the determination of the matrix T that maps the
Beta-spline basis functions into the cubic Bézier functions. This determination can
be done rather easily by writing the both sets of basis functions as cubic polynomi-
als, which in matrix form become

b(B.Bzu) = (1 u u? u31C(B,.82)

Bu) = [1uu?u®D

where
co—2B1,B2) co-1B1.B2) coolB1.B2) co1(B1.B2)
G B ¢ -2B1B2) c1-1(BLBY crolBrB c11(BLBY
(B1B2 = ca—2BuB2) ca-1BLBD c20(B1.BY c2.1(B1,82)
ca.-2(B1,B2) 3 -1(B1,B c3oB1.B2) €31(B1.B2
283  (4BE+4B.+B2) 2 0
1 -6} 6B.(BE-1) 681 0
= 51 6B} 3(—-28i-2Bi-By 3282+ 8 0
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Substitution of (3.39) and (3.40) into (3.33), followed by solution for T, yields
T = € YB,,8,D (3.43)

Thus, the Beta-spline subdivision matrices can be written as

Ly = C'(8,,8)DLsD 'C(B1B (3.44)

and

Rg = C'(81,82DR5D ™ 'C(B1,B2) (3.45)

The subdivision matrices can be used to subdivide a Beta-spline control
polygon V into left and right subpolygons according to

Using Vaxima,®!3 an algebraic manipulation system, explicit algebraic
expressions have been derived for the components of Lg and Rg for the special case
of midpoint subdivision. The results are listed in component form in Appendix 2.

3.5. Converting Beta-spline Curves to Cubic Bézier Curves
Given a Beta-spline control polygon V, we wish to find the equivalent Bézier
control polygon W. That is, W must satisfy ’
B(u)W = b(BLBzu)V (3.46)
Substitution of (3.33) into (3.46) yields
b(B1,B2;w)TW = b(B1,Bzu)V (3.47)

Thus,

W=T1V (3.48)
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In words, W when blended with the- Bézier basis, generates the same curve as
the control polygon V when blended with the Beta-spline basis set. So, given a
Beta-spline control polygon and values for 8, and B,, an equivalent Bézier control
polygon can be constructed using (3.48).

4. Subdivision of Tensor Product Surfaces

4.1. Mathematical Derivation

Let S, la,b;c,d)(u,v) denote a spline surface constructed from a set of basis
functions W,(z) when uela,b] and vele,d], i.e.

Sla.bic.dlw) = O DV, W, wW,w); asusb, csvsd (4.1)

r=08=0

When no brackets are shown, as in S(u,v), S[0,1;0,1)(u,v) is implied.

Surfaces of the form (4.1) are called tensor product surfaces. Beta-spline sur-
faces, as described in section 2.2, are examples of such surfaces.

When a spline surface is to be subdivided, the subdivision may split the sur-
face along either or both parametric directions. To split the surface along the u
direction at the parametric value «", the control graphs <WLU> and <WRY> must
be found so that their corresponding surfaces $“¥(u,v) and $*Y(uv) satisfy

S[0,1;0,1)u"u,v) = StY[0,1;0,1](u,v) (4.2)
and
$00,1:0,1)(u" +(1 —uu,v) = S*Y0,1;0,1)(u,v) (4.3)

A similar set of constraints define the surfaces S*V(x,v) and SRV(y,v) produced by
splitting S(x,v) along the v direction. The superscript LU is meant to suggest the
"left" part of the » direction, and RU is meant to be mnemonic for the "right" part
of the u direction. Similar mnemonics apply for the superscripts LV and RV. The
surface can be subdivided in both directions by dividing first say in the u direction,
then subdividing S*V(u,v) and $®Y(u,v) in the v direction. The surfaces thus
obtained are denoted by SLULY, SLURV gRULV and SRURV Tt is relatively easy to
show that the choice of which direction to subdivide in first is arbitrary. That is,
SLURV ig the same surface as S®VLU,

Just as for curves, the control graphs produced by the subdivision are
guaranteed to converge to the surface.l4 If a graph is deemed flat to within a given
tolerance, a small number of polygons will adequately characterize it. One might
at first be tempted to approximate a "flat" control graph by a single four-sided
polygon using the vertices at the extreme corners of the graph. This procedure is
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usually inadequate since the four points do not necessarily lie in the same blane.
For this and other reasons, to be discussed in section , we use four triangles to
approximate a flat control graph.

The decision of which direction (if any) the surface is to be subdivided is
determined by the flatness of the graph. It often happens that a graph is highly
curved along say the u direction, but relatively flat in the v direction. In this
situation it is sufficient to subdivide only in the u direction, to subdivide in both
directions would be unnecessary. '

A pseudo-encoding of the surface subdivision algorithm is

Approximate_Surface( <V>, ¢)
parameters
<V>: Control_Graph;
e: Flatness;
local_variables
<VLY> <VRV> <VLU> <VRU>: Control _Graph;
begin
if <V> is within ¢ of flatness in the u direction then
if <V> is within e of flatness in the v direction then
Output four triangles to approximate <V>
else :
Subdivide_Along_V(<V>, <VLV> < VRV >)
Approximate_Surface( <ViV>, e)
Approximate_Surface( < VEV> ¢)
endif
else
Subdivide_Along_U(< V>, <ViU>, <VERU>)
Approximate_Surface( <VV>, ¢)
Approximate_Surface( <VFU>, )
endif
end
The routines Subdivide_Along_U and Subdivide_Along_V perform a midpoint sub-
division of the first argument, placing the left sub-graph in the second argument,
the right sub-graph in the third.

Although it is possible to directly subdivide Beta-spline control graphs, it is
more efficient to first convert to a cubic Bézier form, then subdivide the Bézier con-
trol graph. Section 4.2 discusses the subdivision of surfaces. In section 4.3, the
conversion of a Beta-spline control graph into an equivalent Bézier control graph is
presented.

4.2. Subdivision of Cubic Bézier and Beta-spline Surfaces

The constraint equation (4.2) for subdividing a patch into the LU subpatch
can be written in matrix form for a Beta-spline surface as

B(BerZ;u‘u)VBT(BI,B%U) = B(Bl,Bgzu)le_)T(Bl,Bz;v) (4.4)
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where
V_g_2 V_oi-2 Vo2 Vi
7 - V_g-1 Voy-1 Vo1 Vi1 4.5)
T 1V_oae Voo Voo Vi '
Vog: V_our Vau Vi
and
vy, Vi, VY, Vi,
v v i v
(4.6)

ViU =t Ly LU LU ylLU
Vi8e Ve Ve Vie

Ly L U yLU
vy, viY, ved Vi

Since the Beta-spline subdivision matrix I—.ap, derived in section is a matrix that
reparametrizes the Beta-spline basis functions, we can substitute (3.32) into 4.4)

to get
b(81,B2;1)LsVb (B1,8z0) = b(B1.B2uI VEUBT(B,B20)
Thus, we can identify V-V as
T » (4.7
In a similar fashion, it can be shown that
VAU = RgV (4.8)

A subdivision in the v direction can be developed by considering the v subdivision
constraint, which for the left supatch of a Beta-spline is

S(Bl,ﬂz;u )VBT(Bl,Bz;U‘U) = B(ﬁ[,ﬂg;u )VLVBT(Bl,Bg;U) (49)

But

BT(By,B20"v) = (b(B1,ByvLgT = LEbT(B1,B20) (4.10)
B 8
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so that (4.9) becomes
B(Bxyﬂz;U)VifisT(Bth;U) = b(B,BxuI VDT (B1B0)
Thus we can identify V-V as
ViV = VL (4.11)

A similar analysis shows that

VRV = VRE 4.12)

_ To subdivide a Bézier control graph, simply replace Ep with Lz, and I_{g with
Rp in equations (4.7), (4.8), (4.11), and (4.12).

To reiterate the results of this section, subdivision of a Beta-spline patch in
the u direction is accomplished by applying the subdivision matrices Lg or R; to
the left of the matrix describing the control graph. To subdivide a surface in the v
direction, apply the transpose of the subdivision matrices to the right of the control
graph matrix.

4.3. Converting Beta-spline Surfaces to Cubic Bézier Surfaces
Given the Beta-spline control graph V, we wish to determine the Bézier con-

trol graph W such that

b(8,,B2:u)VbT(B1,82;v) = Buw)WBT () (4.13)

Two substitutions of (3.33) into (4.13), once in terms of u and once in terms of v,
gives

B(B,,Ba;u) VT (B1,B0) = b(By,Byu) TWT b (By,Baiu) (4.14)
Thus,

wW=T"'WVT7’ (4.15)

5. Stopping Criterion

In the previous sections, we developed a recursive method for subdividing
spline curves into smaller and smaller pieces. We wish to approximate these pieces
with line segments when they become “close” enough to linear. Closeness will be
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measured by some error metric. A user specified tolerance provides a threshold for
the metric. The error metric and its associated tolerance provide the stopping cri-
terion for the subdivision. Spline surfaces are approximated using a similar cri-
terion with polygons instead of line segments. We refer to line segments and
polygons as approximating primitives. Other approximating primitives are possible
but we only consider linear ones because of the resulting efficiencies.

Subdivision is performed locally, so that each curve can be subdivided
independently of its neighbors. For a given curve, the endpoints of its approximat-
ing line segment are equal to the endpoints of the curve. In this way, the line seg-
ments corresponding to neighboring curves remain continuous. A surface is
approximated by a quadrilateral defined by the four parametric corners of the sur-
face. Ensuring continuity of the approximating polygons is more complex and
crack prevention techniques are required.

One could consider more global schemes of approximation where the endpoints
of an approximating line segment do not interpolate the endpoints of a subdivided
curve. This might help in calculating globally optimal or minimal approximations
but the computational efficiences of the local techniques described here seem to be
more important.

The precision of a curve approximation is related to how “close” the curve is to
the approximating primitives. Areas of greater curvature will require more primi-
tives to provide a given degree of accuracy (Figure 5.1). Calculating the deviation
of a curve from a straight line or of a surface from a planar polygon corresponds to
measuring the flatness of the object. Flatness is a natural geometric criterion for
quantifying the precision of our approximations. Use of a flatness measure as the
error metric in our stopping criterion will allow us to create approximations of a
given precision. In addition, the subdivision cost will only be incurred where it is
needed to meet the desired accuracy. However, the cost of flatness testing can be as
great as, or even greater, than that of the aetual subdivision calculations, and thus
it is important to reduce the testing costs as much as possible.

We will use the notion of flatness to define our stopping criterion. Intuitively,
stopping criteria measure the deviation of an approximating primitive from the
object it is approximating. A criterion defines an acceptable region about an
approximating primitive. The size of this region will vary with the desired accu-
racy or tolerance of the approximation. We recursively subdivide a curve or sur-
face until it is contained within the acceptable region for the associated approxi-
mating primitive. We then take the approximating primitive as representing the
object. A flatness criterion measures the distance of the object from a linear
approximating primitive. Thus, a flatness criterion ensures that a linear approxi-
mation stays within a given distance of the true curve or surface.

Calculating whether or not the curve or surface lies within an acceptable
region can be quite difficult. These tests can be performed much more easily on the
control graph. If the parametric formulation is such that the curve or surface is
contained within the convex hull of the control graph, then determining if the con-
trol graph is contained within the acceptable region will be a sufficient, although
not necessary, condition for the object meeting the criterion. The splines that we
will consider satisfy the convex hull property. Since the control graph “surrounds”
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Figure 5.1.
Example of a linear approximation to a.curve that demonstrates the rela-
tionship of curvature to the approximation.

the object, there may be cases where an unnecessarily large error is calculated. It
would be ideal if the control graph could provide a necessary and sufficient condi-
tion for flatness testing.

For a curve, the acceptable region is defined about the approximating line seg-
ment between the endpoints of the curve. In two dimensions, this region is a bar
about the line segment with semi-circular ends whose half-width is equal to the
tolerance (Figure 5.2). In three dimensions, the acceptable region is a cylinder
with hemi-spherical ends. Thus, the flatness criteria for a curve calculate the max-
imum distance of the vertices of the control polygon from the approximating line
segment.

For a surface, the acceptable region is defined about the approximating qua-
drilateral comprising the corners of the surface. However, this quadrilateral will
in general be non-planar. In this case, we define a planar quadrilateral about
which to specify the acceptable region. The planar quadrilateral will lie on the
plane that most closely matches the non-planar quadrilateral, that is, the plane
that minimizes the maximum distance to each of the four corners of the non-planar
quadrilateral. This is simply a least squares plane approximation to the non-
planar quadrilateral.}’ The corners of the planar quadrilateral are the points on
this plane that are closest to the corners of the non-planar quadrilateral. The
acceptable region is then defined to be a slab of thickness equal to twice the toler-
ance, centered about the planar quadrilateral, with half-cylinder sides, and
quarter-spherical corners. To avoid the cost of the least squares calculations, an
approximation to the planar quadrilateral can be made. The planar quadrilateral
can be constructed by choosing three corners of the surface. The fourth corner of
the quadrilateral is defined to be the point on the plane, defined by the three
chosen points, that is closest to the unchosen corner of the surface. This may give
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Figure 5.2.
Acceptable region based on flatness for a two dimensional curve approxi-
mated by a line segment.

different error values than the ideal region but in practice operates very well.

There is another approximation in evaluating the flatness criterion that can
be made to save computational cost. The error metric evaluation consists of testing
whether vertices are contained within the acceptable region. It is less costly, but
still generally effective, to simply calculate the distance of a vertex from the primi-
tive without considering the boundaries of the primitive. For curves, this
corresponds to testing only the distance of vertices from the line containing the
approximating segment. Similarly for a surface, the distance between vertices and
the plane defined by three chosen points is measured. In certain cases these
approximations will produce errors.

Another natural measure for a stopping criterion is based on length for curves
and area for surfaces. For example, the difference in length between a curve and
its approximating line segment could be an error metric. However, this measure 1s
not as uniform as a distance criterion. The length of a curve may lie completely on
one side of the line segment, thus giving a large deviation, or it may lie equally on
both sides, giving a smaller deviation (Figure 5.3). A given tolerance will allow a
wide range of deviations from the approximating primitive. This can create obvious
visual discrepancies. Thus, subdivision is not controlled as well as with a distance
criterion. It is also no cheaper computationally and thus has no advantages over a
distance metric.

The flatness tests defined so far are applied to an entire surface. A test of this
type is referred to as a global test. However, surface flatness can be measured with
respect to the two different directions corresponding to the parameters u and v.
The surface may be curved only in a single direction and flat in the other, e.g. a
parametric cylinder. Thus, the test for a stopping criterion should be directionally
selective to prevent unnecessarily subdividing a surface in a flat parametric
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Figure 5.3.
A stopping criteria based on distance will allow the same approximation to
be used for curves of equal length that have unequal deviations from the ap-
proximating line segment.

direction. We call such a test a directional test.

The control graph of a spline surface patch contains four control polygons in
both « and v. To measure the flatness along a given parametric direction, the
directional test checks the control polygons in that direction. If all of them are flat,
then it is not necessary to subdivide across that parameter (subdividing along a
single parameter is described in a previous section). When the surface is flat in

_both directions, we additionally verify that the surface as a whole is flat using the
global test. Even if a patch is flat in both parameters the surface may not be. For
instance, a twisted patch can be constructed from flat control polygons (Figure 5.4).

The tolerance for the subdivision is a user-supplied value reflecting the accu-
racy required of the approximation. The tolerance may be a geometric tolerance
such as when machining a part. This is the meaning of the tolerance we have been
discussing so far. However, for purposes of display a visual tolerance is what is
wanted. In a normal perspective rendering of an object, the size of the object in the
image depends on its distance from the viewer. The farther away it is, the larger
the geometric errors that can be visually tolerated. Thus, given a visual tolerance
we can multiply it by the distance of the object to give the appropriate geometric
tolerance. An object’s visual tolerance may vary across the surface corresponding
to differences in depth. Our approach allows the tolerance to adapt in this way.

Again, care must be taken to prevent cracks between neighboring approximating

polygons.

Once it has been determined that an object is not flat and therefore must be
subdivided, the particular parametric point at which to subdivide must be chosen.
The parametric point that is selected can greatly influence the effectiveness of the
subdivision and hence the amount of subdivision performed. Since there exists an



Figure 5.4.
Flat control polygons can be used to construct a twisted patch that is not
flat. Both the control polygon and rendered surface corresponding to the
twisted patch are shown.

extremely fast method for subdividing at the parametric midpoint, that is where
we subdivide. In general, this will not produce an optimal approximation in terms
of the cost of the subdivision or the number of output polygons. We know how to
subdivide spline curves at arbitrary parametric values (see previous section), and
are investigating ways to select better subdivision points.
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Several types of stopping criteria have been used in the past. Catmull? subdi-
vided until the patches were of pixel size. This is a visually based criterion but it
ignores the properties of the surface that is being approximated. This method will
generally subdivide unnecessarily since pixels do not measure flatness. However,
there was no problem with cracks because the subdivision was carried out to the
pixel level. Nydeggerl? used the difference in normals at the corners of a patch to
determine when to stop. Such a criterion can produce good results, but it is a very
local measure since the normals at the corner of a patch may not necessarily reflect
the flatness, or lack of it, of the entire patch. Nydegger also saved a tree represent-
ing the subdivision and fixed any resulting cracks. Clark!? based his criterion on
what he called “curvature in parametric space” or bilinearity (the linearity of all of
the geometric values in their parameters). The actual criterion was based on the
magnitude of the parametric second derivative. The problem is that the bilinearity
measure is not directly related to the geometric properties of the surface. Lack of
“parametric curvature” in no way guarantees geometric flatness so that the result-
ing linear approximation may be poor. Clark’s method did prevent cracks from
appearing in the subdivision. The stopping criterion we use is similar to that of
Lane and Carpentex';17 however, they did not address the issue of preventing
cracks and thus were unable to take full advantage of adaptively subdividing
based on flatness. Instead, the’y were sometimes forced to subdivide to the pixel
level, bypassing the savings of adaptive subdivision.

We have integrated stopping criteria based on flatness, directionally sensitive
testing, crack prevention, and adaptive tolerances, allowing us to produce accurate
approximations while avoiding unnecessary costs. We have also reduced the
number of tests that are performed.

6. Crack Prevention

Ensuring continuity of the polygons that approximate a surface has
difficulties not appearing with curves. If the subdivision is performed to the same
level of recursion for each patch, or if the subdivision is carried out to the “pixel
level” during display, then cracks do not appear between adjacent polygons. How-
ever, when the resultant polygons are larger than a pixel and the subdivision is
based on a local criterion like flatness, a given patch may be subdivided more than
a neighboring patch, creating the possibility of cracks (Figure 6.1). Subdividing
using directional tests compounds the problem. Any algorithm performing adap-
tive subdivision of surfaces should deal with the crack problem.

In a sense, our adaptive subdivision algorithm is generating a quadrilateral
mesh approximating a surface. The mesh points are recursively output four at a
time, corresponding to the four corner points of the flat patch being approximated.
Associated with the quadrilateral are four line segments corresponding to the four
flat boundaries of the patch. Any mesh points that are generated later in the sub-
division and that lie on such a boundary must also lie on the corresponding line
segment. If they do not, cracks will appear along the boundary.

To prevent cracks, neighboring patches must determine that their shared
boundary becomes flat at the same recursion level. They can then use the same
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Figure 6.1.
Unequal subdivision of neighboring patches can cause cracks to occur in the
polygonal approximation.

line segment to represent that boundary. This line segment is also passed down to
any subpatches sharing the boundary. When such a subpatch is to be added to the
mesh, the flat boundary segment is used to “correct” the approximating quadrila-
teral so that no cracks appear. A boundary test is used to provide this control. It
is only performed on boundary control polygons and ensures that patches sharing a
boundary will determine that boundary to be flat at the same time.

Information that is passed down about flat boundaries during the recursive
subdivision must be kept with the patch. When approximating a patch, we choose
its corner points to define the approximating quadrilateral, except when there is
flat boundary information. In this case, we choose points that lie on the associated
line segment rather than the patch corner points. Thus, the additional information
overrides the patch corner points (Figure 6.2). We refer to flat boundary informa-
tion that is passed down as the corner information since it is used to correct the
corner points of a patch on output.

~ Note the important property that corner information will be set at the first
detection of flatness of a boundary. Corner information, once set, cannot be
changed. It can be demonstrated that this method prevents cracks. There are two
cases to consider. The first is that of two surfaces who share a border. The corner
information for the common boundary will be set at the same recursion level and
to the same value. The neighbors will also pass down these values to their chil-
dren so that neighboring descendants will have corner information appropriate to
prevent cracks along common boundaries. The second case is that of neighbors
that share a corner but not a boundary. If the corner lies on the interior of a flat
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represent corner information

Figure 6.2.
Cracks in the polygonal approximation can be prevented by the use of corner
information.

boundary segment, cracks will be prevented as before. If the corner does not lie on
the interior of a flat boundary segment, the output point corresponding to the
corner will be the actual surface point. Thus both patches will use the same value
and there will be no crack. A rigorous proof of the crack prevention property of
our algorithm can be constructed inductively from the above arguments.

Some researchers have suggested that cracks can be alleviated by making the
subdivision stopping tolerance small enough to prevent the cracks from being visi-
ble when rendered.l? Besides being an extremely ad hoc criterion, such a method
defeats part of the gains of adaptive subdivision since it may force more subdivi-
sion than is really necessary. The approach we have taken is to modify the subdivi-
sion process to prevent cracks from occurring. This approach has also been taken
by Nydegger!® and Clark.10

Nydegger constructed a subdivision tree representing the entire state of the
recursive subdivision. In general, this can have a prohibitive cost. There were two
methods considered for fixing cracks that had been generated. The first was to
simply fill the cracks with polygons. This technique is clearly unacceptable as the
crack filling polygon may cause a singularity; e.g. it may be perpendicular to its
neighbors. Nydegger too discarded this technique. The second method he used was
to reexamine and modify the subdivision tree by adding vertices to fill the cracks
in a reasonable manner. This second method yielded much better results but at a
high cost; half of the subdivision tree may have to be reexamined and modified.
Generally the technique is very space inefficient with high overhead in the addi-
_ tional tree traversal. Nydegger estimates a 50% time increase in cost for crack
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fixing.

The crack prevention method of Clark is similar to ours. He did not construct
a subdivision tree but modified the subdivided surfaces to prevent cracks. He
tested each boundary of the control graph and if it was flat, it was approximated
by a line segment connecting the corners. Any new control vertices generated from
that boundary by subdivision were forced to lie on the approximating line segment.
Subdivision continued until the entire control graph was flat, in which case the
four corners of the surface were output as a polygon. An important difference from
our technique is that Clark forces the border control polygon corners of all subse-
quent offspring to actually lie on any flat boundary segments. This introduces an
.error in the subdivision process since the patch definition is actually changed. This
creates a less accurate polygonal approximation than our approach. This error will
be dependent on the tolerance used. Clark also used bilinearity as the error metric
in his criterion. Bilinearity is unreliable since it does not quantify geometric
flatness; very curved surfaces may satisfy the criterion and flat surfaces may not.

A valuable aspect of our method is its simplicity and generality. By using a
border test and corner information, cracks can be prevented with little additional
cost. This technique also supports the use of adaptive tolerances.

6.1. Adaptive Tolerance:

When rendering an object, a visual, rather than geometric, tolerance is used.
The farther away an object is, the greater the error in the approximation that is
visually tolerable. In this case, the user specified tolerance gives the maximum
error allowed in the image after perspective projection. Thus, the input tolerance is
scaled by the minimum depth value of the object to obtain the geometric tolerance
for the subdivision. This scaling can be performed once for the entire object, creat-
ing a single tolerance used for all of the patches making up the object. However,
the visual tolerance can be calculated for each patch, or even at each subdivision
level, providing a level of geometric detail which varies across an object. This will
allow the tolerance to vary corresponding to the properties of the object in combi-
nation with the viewing parameters. When an object’s visual extent is large, the
geometric tolerances may vary widely across the object. Thus, it is important to
adapt the tolerance to reduce the number of output polygons and the amount of
work performed, while maintaining the desired precision in the approximation.

When an adaptive visual tolerance is used, additional care must be taken to
prevent cracks. The only requirement is that neighboring patches must use the
same tolerance on their common borders. This, in conjunction with the border test
and corner information, will prevent cracks as before. In the most general case,
where the tolerance is varied across subdivision levels, each patch will have five
geometric tolerance parameters: one for each of the four borders and one for both
the directional and global tests. The border tolerances will be based on the
minimum distance from the viewer of the control vertices for each border, and the
directional and global tolerance will be the minimum over the entire control graph.

There are simple approximations that can be used to reduce the cost of calcu-
lating the adaptive tolerances. The tolerance can be calculated by only considering
the corner points of the patch. It can also be calculated for each patch of the object,
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rather than for each subdivision level. In general, the additional costs involved in
calculating the adaptive tolerances can be a very small percentage of the total sub-
division cost.

6.2. Corner Information

There are many ways to create and use the corner information, as well as to
pass it to offspring. The simplest one is:

1) whenever a boundary becomes flat, fix the overriding corner information
values to be the boundary endpoints;

9) when a patch is subdivided, take any fixed corner information values, find
the midpoint of the corresponding line segment, use this as a fixed corner
value for the associated offspring, and pass along any other fixed corner
values as appropriate.

This is a very simple process which corresponds, in some sense, to subdividing at
the parametric midpoint. However, the actual parametric subdivision. may
correspond more exactly to a point not in the middle of the flat boundary segment.
If more exactness is desired, then a closest point calculation should be used. In
this case, when a boundary has become flat and a subdivision is performed, the
subdivision point along the boundary is calculated and the point on the flat boun-
dary segment closest to it is passed down as a fixed corner value for the offspring.
This gives a closest approximation in distance.

7. Testing Methods

The method of flatness testing is critical to generating an accurate approxima-
tion while reducing the number of polygons. However, testing is costly and the
number of tests performed must be reduced as much as possible. The recursion
that results during subdivision creates a corresponding recursion or subdivision
tree. We want to minimize the number of nodes in that tree, and at the same time
keep the cost per node small. There are several ways in which the number of tests
performed can be reduced. Our techniques will incorporate these factors, and thus
reduce the total cost of performing adaptive subdivision.

The primary strategy is a simple and important one. We order the tests so
that the need for performing a subdivision is determined as early as possible.

Initially, we test only the border control polygons. As soon as a border control
polygon of a particular parametric direction is found not to be flat, the associated
direction is subdivided.

When both borders of a given direction are flat, the interior control polygons
of that direction are tested. Again, as soon as an interior control polygon is found
that is too curved, the corresponding direction is subdivided.

When all of the control polygons in both parametric directions are flat, we
perform a global test. If the patch as a whole is not flat, we alternate subdivision
directions rather than subdividing in both directions. Such an object can sometimes
require subdivision in both directions, but we have chosen to reduce the number of
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output polygons and alternate directions at the risk of performing more tests.
Situations that would require subdivision in both directions should be unusual. To
improve the selection of the parametric direction in which to subdivide, the max-
imum error value for each direction can be calculated and the subdivision direction
selected by taking the maximum.

Once a given border control polygon is flat, the corresponding control polygon
of any subdivided offspring will also be treated as flat. Flags are set to prevent
. retesting border control polygons that have become flat. Also, when a given
parametric direction becomes flat, it is treated as flat for all offspring. Additional
flags are used to prevent retesting of the associated interior control polygons. The
flags are checked before performing any tests. ’

7.1. More Complicated Strategies to Reduce Testing Cost

The minimum depth of subdivision required by all of the offspring of a given
border control polygon for a patch is maintained. This information is shared among
neighboring patches so that some of the testing of that border does not have to be
redone. If minimum subdivision depth information about a given border is known,
then a patch sharing this border must be subdivided to the specified recursion level
in the respective parametric direction. Thus, no testing on the given border need
be done until the minimum subdivision level is reached. Once the minimum
number of subdivisions has been carried out, testing must be done on the border,
since more than the minimum number of tests may be needed. These savings only
apply to a border for which the minimum subdivision depth is known; for example,
the opposite border of the associated direction may have to be tested as in the
usual case.

The sharing of testing information is straightforward. To prevent cracks, we
must know the exact subdivision level at which a border becomes flat; thus, this
information can be passed back up the subdivision tree from children to their
parents. The parents can then pass the information down to other offspring who
share these borders, and up to their parents and so on. The information that is
passed up and down the subdivision tree is the minimum number of subdivision
levels required by each border.

The recursive method for calculating the minimum number of subdivisions
required of a border is also simple. A leaf node of the subdivision tree simply
returns the number of tests each border required. At a non-leaf recursion level,
the minimum for each border is found by taking the minimum of the values
returned by all offspring sharing the border. These minimum values are then
passed on to any new offspring sharing the border as well as returned to the parent
who can then pass them on, etc. This sharing of subdivision information is accom-
plished without the need of a subdivision tree, thereby avoiding high storage costs.

There is another way in which testing can be reduced. A surface can either
be subdivided completely in one direction then the other, or it can be subdivided in
both directions simultaneously. These two choices correspond to creating a deep,
narrow tree or a shallow, wide tree respectively. If subdivision is performed com-
pletely in one parametric direction and then the other, less cost will be incurred
when each direction requires about the same level of subdivision, but greater worst
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case cost will arise. It also favors symmetrical, equally curved shapes, which is not
the expected case. If testing in both directions is performed, then less testing will
be incurred when only one parametric direction requires subdivision and unequally
curved objects will be favored in general. For these reasons, we choose to check
both directions simultaneously, at each subdivision level, until they become flat.

7.2. A Possible Testing Alternative

We have chosen the above methods for flatness testing because they reduce
testing cost and the number of output polygons.

If the input surfaces are of a particular type or certain constraints are
satisfied, it may be possible to gain performance improvements with a modified
testing strategy. One important case occurs when the flatness of a particular
direction of a surface is directly reflected by the flatness of the two associated bord-
ers. This corresponds to surfaces which are not very bumpy or twisted. Such a
testing alternative is:

1) test only the border polygons and subdivide based upon them.

2) when all of the borders are flat, convert to the global test. There are two
variations at this point:

a) subdivide in both parametric directions, or

b) alternate parametric directions.

This method ignores the interior control polygons with respect to directional test-
ing. If the borders of the patch directly reflect the total curvature of the patch,
then this method will provide superior performance since it avoids the directional
tests. However, in general, this method will incur greater testing costs because a
global test is more expensive then a directional test and is being used in its place.
This strategy may also produce a larger number of polygons.

8. The Algorithm

We have discussed the algorithmic aspects of the stopping criterion, crack
prevention, adaptive tolerances, and testing strategies. We use border, directional,
and global tests that are based on flatness to determine when to stop the subdivi-
sion. These techniques are adaptive to the geometric properties of the surface and
the viewing parameters, and the resulting approximation is without cracks. This
algorithm incorporates our techniques to reduce the number of tests performed and
the number of output polygons. We give a brief outline of the algorithm:

Subdivision proceeds in a depth-first manner. If a visual tolerance is used,
the geometric tolerance value is varied during the subdivision. Each
recursive call returns the number of subdivisions required of each border.
This information is then passed down to neighbors to reduce retesting.
We keep the flatness information for each border separate for this purpose.
Subdivision of a patch proceeds in both parametric directions simultane-
ously. Once a border or parametric direction of a surface becomes flat, no
testing of the associated characteristic is performed for any offspring.
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Initially, only the border control polygons are tested. To prevent cracks,
each border must be tested at least once to determine exactly when it
becomes flat, even if testing information is shared. When both borders of
a given parametric direction are flat, we begin to test the interior control
polygons. As soon as we find an interior control polygon that is not flat, we
subdivide in the respective direction. Once the interior control polygons in
a given direction are all flat, we stop testing that direction. When both
directions are flat, the global test is applied. Even if all of the control
polygons satisfy the tolerance, the control graph may not be flat (Figure
5.4). When the global test is not satisfied, we subdivide along a single
parameter, alternating directions as we go. We save flags indicating when
borders and directions become flat to prevent retesting.

Our subdivision stopping criterion has three parts: a border test to determine
if a border of a patch is flat, a directional criterion that determines if a patch is flat
in a particular parametric direction, and a global criterion that determines if the
patch as a whole is flat. We use flatness-based criteria, but the algorithm can
actually be used with general criteria and patch formulations similar in spirit to
Lane and Carpenter.l®6 We only require that neighboring patches calculate the
same border criterion value on their common border. We also force the method to
be able to directly generate the cormer points approximating the surface. Bézier
surfaces are an important example of a formulation that satisfies these constraints

The tests that we use are applied to control polygons and control graphs. The
border test and directional test that we have described are really one and the
same; that is, the border test simply tests the border control polygon and the direc-
tional test applies the same test to the interior control polygons in a particular
parametric direction. When we spoke of the border or directional test, we were
referring to the use of the control polygon flatness test in two different situations.
In general, this need not be the case; that is, the two tests may be different. It is
also possible to allow distinct tolerances for the different tests. This is what is
done to provide an adaptive tolerance for rendering.

Given another parametric formulation with border, directional, and global
stopping criteria, and a subdivision method that could directly generate the corner
values, we can easily integrate our testing reduction, crack prevention, and adap-
tive tolerance techniques.

9. Cost

There are some definite costs attributable to adaptive subdivision and crack
prevention. We will examine the space and time costs separately. We do this in
the framework of subdividing bicubic spline surfaces using all of our techniques.
We will also try to make some comparisons with a subdivision algorithm that only
performs global testing. Such an algorithm subdivides in both parametric direc-
tions while a surface is not flat, and does not prevent cracks, use adaptive toler-
ances or reduce testing. This will serve to indicate the savings over methods not
containing these techniques. Refer to the previous sections for an outline of our
algorithm.
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9.1. Space

Our analysis is based on a unit of storage corresponding to a single floating
point value.

To reduce the number of tests performed, there is additional space required.
The algorithm must remember when a border or interior control polygon becomes
flat to prevent retesting it. The depth of testing required by each border is kept to
be returned to the parent for sharing purposes. Shared testing information that
has been passed down must also be retained. Finally, a flag is kept to denote which
parameter to subdivide along when the border and interior control polygons are
flat but the patch as a whole is not. We list this additional information with the
number of such values in brackets:

1) flag denoting whether or not border control polygons are flat [4]

2) flag denoting whether or not directions are flat [2]

3) depth of testing perférmed for each border [4]

4) minimum subdivision level for each border passed from neighbors [4]

5) current parametric direction in which to subdivide when doing global sub-

division [1].
This can be thought of as simply being part of the description of a patch. A bicubic
spline patch in three dimensions requires 16 numbers for each of its dimensions
incurring a total of 48 units of storage. The additional storage we require is the
sum of the bracketed values above and is equal to 15 units. This represents about
a 30% increase in storage. We have counted all of the additional information as
equivalent but all of the information is integer rather than real data and can gen-
erally be stored in smaller units. As the order of the patches increases, the percen-
tage of additional storage required drops.

The only other-additional space is that for the corner information. The
amount of storage used depends entirely on the surface characteristics. If, at the
start, a border is flat in a given parametric direction, corner information can be set
immediately at the beginning of the subdivision recursion. However, the best case
is that no corner information is calculated. This will occur if a patch becomes flat
411 of a sudden” that is, all of the borders and the entire patch become flat at the
same recursion level. This would require almost no additional space. For example,
assuming that the corner information is represented by a pointer which can be
NIL, then in the best case we will use an “address” for each node of the subdivision
tree. If we use the same assumptions as above, we require one additional unit of
storage versus 48 units, making up about a 2% increase in space usage for corner
information.

The worst case space usage occurs when every patch has corner information
for all of its boundaries at all subdivision levels. This is not an average case; it
means that every patch has flat borders and is twisted about two diagonally oppo-
site corners and/or is puffy in the center like a down blanket. There are four
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corner points to be determined, and each one requires three values for x, y, and z;
thus, in the worst case 12 units of storage are used for the corner information.
Using the previous assumptions, this represents a worst case increase in space
usage of 25% for corner information.

Thus, assuming worst case conditions for corner information, we incur a total
storage increase of about 31% + 25% = 56% per node of the subdivision tree. An
important point to remember is that we do not require the entire subdivision tree to
produce test savings or to prevent cracks. The space for both the control graph and
the corner information can be freed immediately upon reaching the last subdivi-
sion level. At any instant, only storage for a single path from the root of the subdi-
vision tree to a leaf is required. In fact, a method that keeps the entire tree, like
Nydegger’s, would require exponentially greater space. Thus the amount of space
being used at one time is a small fraction of the space representing the entire sub-
division tree. When performed in a depth first manner, space usage due to recur-
sion is not likely to ever be a problem. However, the algorithm does not prevent
one from saving the recursion tree and incurring the storage cost if desired.

9.2. Time

The worst case asymptotic order of the adaptive subdivision algorithm 1is
unchanged from a purely global subdivision criterion. This worst case behavior
occurs with a surface that must be subdivided equally in both directions. Since per-
forming the border and directional tests may be more costly than a single global
test (see Appendix 1), there may be additional constant cost from directional test-
ing. However, the best case performance of the adaptive method, when a surface
needs to be subdivided in only one parametric direction, will produce the square
root of the cost of the purely global subdivision. Generally, surfaces will be
unequally curved so that this is an extremely important factor for an efficient sub-
division algorithm. The order of our algorithm is clearly unaffected by the crack
prevention technique as there is simply a small additional constant cost at each
subdivision for handling corner information.

9.2.1. Testing

In our algorithm, the subdivision criterion must be locally tested. Since there
are eight control polygons defining a patch (four in each direction), the control
polygon tests may have to be applied eight times, rather than a single global test
for the whole patch. However, since we have structured the flatness testing so that
our algorithm remembers when a border control polygon is flat, we no longer test
that border for all of its offspring. Similarly, we prevent retesting of flat
parametric directions. The testing cost may actually be substantially reduced by
the use of local tests since the cost of the flatness test for a single control polygon
is less than that of the global flatness test. For instance, if one border control
polygon is initially flat while the other only becomes flat after many levels of sub-
division, we prevent retesting the first polygon for all subdivisions levels except
the first.

When a surface is curved in only one direction, best case behavior is exhibited
by our algorithm. With only global testing, we would be subdividing unnecessarily
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in a flat direction. Thus, we would be increasing the number of tests performed as
well as the number of subdivisions. In this case, directionally sensitive testing is
an overwhelming improvement. If the object requires n levels of subdivision, our
adaptive method would produce a 2-ary tree of depth n while the global method
would produce a 4-ary tree of the same depth. Thus, the number of nodes in the

2
subdivision tree is 2" for our method versus 4" = [2"] for the global one. Global

testing will incur the square of our cost and will generate an equally greater
amount of data than directional testing does.

When a surface is equally curved in both directions, at each level of the subdi-
vision there will be four offspring. This produces the worst case behavior of our
algorithm when compared with a purely global method. Testing both parametric
directions will generally be equivalent to a single global test since rarely will all
eight control polygons be checked. Thus, the real increase in cost results from the
global flatness test performed at the deepest recursion level. We must apply a
final global test since the error over the entire patch can be the sum of the direc-
tional errors. However, since the leaves of the recursion tree may represent about
75% of the nodes of the tree (since we have a 4-ary tree) and we are doubling their
cost by performing both the directional and global tests, this corresponds to a 75%
increase in the number of tests performed.

Even though in the worst case we can get a 75% increase in the number of
tests performed over a purely global method, we expect the average case behavior
to be substantially better. In the best case, we perform the square root of the
number of tests performed by a global method. The reduction in the number of
tests performed in the average case is important.

Directionally sensitive subdivision is a crucial part of data reduction. If direc-
tionally sensitive subdivision is to be performed at all, parametric polygons must
be tested for flatness and thus control polygon tests cannot be avoided. Since
cylindrical shapes are common and they produce best case results, the use of this
technique can have tremendous benefits, overriding any additional worst case test-
ing costs.

Another important method for reducing execution cost and data is the adap-
tive visual tolerance. The time cost of calculating the tolerance can be very small
and may have a large effect. For instance, if the object’s visible regions vary in dis-
tance from the viewer by a factor of two, then the geometric tolerance may vary by
that same factor. This holds in general for any variation in depth across an object.
It is clear that the amount of subdivision, and hence the size of the approximation
produced, are directly related to the tolerance. The gains in performance and data
reduction are very data and view dependent and we will not analyze them.

Testing cost can also be reduced by sharing the testing results among neigh-
bors. This can be done with very little storage overhead. When the minimum sub-
division level of a border has been reported, subdivision of the border can be per-
formed to the given level without the need of testing. A patch can have four
offspring with four common borders between them. The testing information of
these four borders can be shared. Once the minimum number of tests has been per-
formed on a border, testing must be performed, since an offspring’s border can
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require more than the minimum number of subdivisions. The border test must be
performed for each leaf of the subdivision tree. Thus, we may only have to perform
the final test that verifies the flatness of a shared border. This can result in a 25%
reduction in the number of tests for a shared border in a 4-ary tree, and a 50%
reduction in a 2-ary tree.

Another technique that we use is to perform subdivision in breadth-first
rather than depth-first manner. By considering different subdivision depths for
each direction and examining the subdivision trees that result, the relationship
between subdividing in breadth-first versus subdividing depth-first can be deter-
mined. Preventing delays in subdivision, by testing both parametric directions at
once, can reduce the number tests by 25% for a surface curved in only one direc-
tion. However, in the worst case situation of the equally curved surface, it will
actually increase the number of tests by about 18%. On average we expect perfor-
mance improvements. Heuristics can be used to improve performance when a sur-
face is equally curved in both parametric directions.

9.2.2. Corner Information

The cost of using the corner information is again variable. The best case is
that there is no corner information and therefore no cost; that is, the patch became
flat all at once. The worst case is that corner information is specified for all boun-
daries and that we are performing closest point calculations, rather than midpoint
calculations, to provide the least amount of error in the final approximation.

The passing down of corner information is simple; it is just a copy operation.
There will be a maximum of four points in the corner information. If a new flat
boundary segment is added, the current corner information must be checked since
any previous corner information has priority. Therefore, in the worst case there
will be the four copy operations and four closest point calculations at each subdivi-
sion level. These four intersection calculations cost about half as much as the
flatness test of a control polygon.

By examining the worst case subdivision tree and assuming minimal testing
costs to maximize the effect of crack prevention, we find that crack prevention
could add about 15% in time costs.

The average case cost for crack prevention should be very small. If we simply
interpolated midway between corner points rather than performing closest point
calculations, this would reduce the time cost to about a 2% increase for crack
prevention, due to the simplification of the calculations. Although it adds distor-
tion, in practice this tradeoff is very useful.

One way to reduce the cost of the closest point calculations is to only do the
midpoint calculations once and share them with the bordering neighbor. However,
this adds new overheads in space and time because it requires saving the subdivi-
sion tree (like Nydegger) and updating its contents to ensure that the information
is passed to the appropriate neighbor. The costs are high and outweigh the
benefits.
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10. Integration with Hidden Surface Removal Algorithms

One of the main reasons for doing adaptive surface subdivision is to enable
polygonally-based hidden surface removal algorithms to render Beta-spline sur-
faces with various shading techniques. An adaptive visual tolerance is one particu-
lar method of reducing the number of output polygons with respect to the render-
ing process. An approach that we have taken is to separate the task of data gen-
eration from hidden surface algorithms as much as possible for the sake of simpli-
city. This does not mean that the hidden surface algorithm will not communicate
with the data generation mechanisms in sophisticated ways. Hidden surface remo-
val algorithms can call such polygon generators for data in ways that will allow for
efficiencies based on visibility constraints. They can also ask the subdivision sys-
tem to maintain the information over frames to allow for minimal updates.

~ The types of extensions we are investigating to provide greater efficiencies for
hidden surface removal are:

1) the specification of a polygonal window in image space within which subdi-
vision is to take place; this would be the case where certain parts of the sur-
face were obscured

2) subdivision in scanline order

3) saving the subdivision in a minimal way, useful in frame-to-frame calcula-
tions so that operations like transformations can be applied to the previous
subdivision rather than requiring resubdivision

Our method has been integrated into a Beta-spline surface subdivision system
which is being extended to include such facilities and make it an efficient hidden
surface utility.

The subdivision system can produce a variety of information. Besides non-
planar quadrilaterals, it can output triangulated versions of the quadrilaterals (for
simple rendering), normal vectors (for lighting), parametric values (for texture
mapping), and even fractal values (for perturbing the resulting object). To prevent
visual asymmetries for large tolerances, we often create four, rather than two, tri-
angles from the quadrilaterals approximating a surface. The average of the four
points of the quadrilateral is used as the common vertex of the four triangles.

The actual implementation of our Beta-spline surface subdivision system is a
pipeline of processes. The Beta-spline surfaces are designed on an interactive vec-
tor refresh system. The surfaces are then sent to a process that converts them to an
equivalent Bézier representation for given values of bias (8,) and tension (By). The
Bézier representation is then passed to the subdivider which outputs polygons with
auxiliary information as requested. The polygons are then given to a rendering
system with the final image appearing on a raster display (Figure 10.1).
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Figure 10.1.

Block diagram showing the components of the Beta-spline surface subdivi-
sion system.

11. Conclusions

There are several differences between this work and previous work: we are
subdividing spline surfaces and performing directionally sensitive subdivision
while reducing testing, preventing cracks and using adaptive tolerances.

The ability to subdivide splines enables their straightforward use in
computer-aided geometric design and image synthesis systems which require the
abilities to intersect objects and render them with polygonally based methods.

The properties of testing metrics were examined and various flatness criteria
justified. We have also considered the reduction of testing costs. This is an impor-
tant issue because testing costs are generally as great as, or even greater than, the
subdivision itself.

The method of using a visually adaptive subdivision tolerance is an important
way for reducing the number of output polygons and controlling the level of detail
of the rendered object.

The crack prevention techniques are simple to implement and do not allow
cracks to be generated by the subdivision. Thus, retention or reexamination of the
subdivision tree is not required. They also prevent cracks from appearing in the
approximation without creating unnecessary distortion.

We have presented a simple time/space efficient method for adaptive subdivi-
sion of spline surfaces without cracks. This provides natural looking polygonal
approximations that can be generated with little additional space and time over-
head. It can also be used in conjunction with hidden surface removal algorithms for
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more powerful control of the subdivision process. The method has been imple-
mented and is busily generating polygonal approximations (Figure 11.1).

Figure 11.1.
An image created using the Beta-spline surface subdivision system
described in the paper.
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