Integrating Noninteractive Document Processors
into an Interactive Environment”

Pehong Chen!
Michael A. Harrison

Computer Science Division
University of California
Berkeley, CA 94720

April 27, 1987

Abstract

Conventional document preparation involving noninteractive processors is usually car-
ried out in an unintegrated fashion. In this paper we describe an integrated environment
based on a host of TpX-related processors, using the interactive text editor EMACS as
its backbone. The major focus of our design is to derive a class of simple and clean ab-
stractions which result in a generic document structure that applies across various TEX
dialects. From the user’s point view, the notion of “dialects” is hidden. There are only
few object types to deal with. All external programs are controlled at the editor top level
and the user interface is coherent and straightforward. The resulting environment has
been widely used and has proved very effective in improving user productivity.

1 Introduction

This paper describes a document preparation environment based on GNU Emacs [18] and
the TgX [9] family of processors. EMACs is an extensible interactive text editor [17]. TgX
and its auxiliary programs are noninteractive document compiling facilities. Both of these
systems are widely distributed and are in the public domain. By integrating all TgX-related
software with EMacs, we have been able to create an environment which effectively reduces
the overhead involved in the edit-format-debug cycle.

Conventional document preparation involving noninteractive processors is usually carried
out in an unintegrated fashion. Normally, the user creates the document using a text editor,

*Sponsored in part by the National Science Foundation under Grant MCS-8311787, and by the Defense
Advanced Research Projects Agency (DoD), ARPA Order No. 4871, monitored by Space Naval Warfare
Systems Command, under Contract No. N00039-84-C-0089.

t Additional support has been provided by an IBM Graduate Fellowship.

executes the formatter and other pre- and post-processing programs at the top level of oper-
ating system, collects bugs, returns to the text editor to correct them, and the cycle continues
until no more syntax errors are found. Then the author has to rely on hardcopy output to
fix up the document appearance (semantic errors).

The only close interaction between the user and the system exists in text editing. However,
the text editor knows nothing about the source language’s syntax, not to mention its seman-
tics. Error checking is dependent completely upon these noninteractive processors. Whenever
an error is corrected, the whole document needs to be reformatted. In some circumstances
even the entire output needs to be printed in order to catch any problems with the target
appearance. A typical scenario is running the ordinary troff family of processors [8] with the
visual editor vi [7] under UNIX. The TEX family offers more flexibility because TEX produces
output files in the DVI format! [6]. There are standard utilities which can “split” a DVI file
into component files, hence it is possible to print individual pages without reformatting the
entire document as troff would. Furthermore, we have developed output previewers on our
workstations, thereby eliminating any hardcopy dependence during the debugging phase.

A customizable text editor like EmMacs provides the necessary ingredients for integrating
all this together. Using the Lisp subsystem supported by EMacs one can define modes which
“understand” properties specific to particular languages. The most common customization
is a set of editing facilities such as indentation, abbreviation expansion, delimiter matching,
etc. These are not syntax-directed per se, but do help the user detect or avoid some errors in
an early stage of the cycle. But editing is just one of many aspects of document preparation.
There are separate tasks such as spelling checking, bibliography making, cross referencing,
indexing, etc. which are either preprocessing or postprocessing relative to the formatting job.
Each of these tasks requires at least one stand-alone program to handle an input file which
may or may not be a byproduct of formatting.

In our EMacs-based TgX environment, the editor is responsible for as much of this as
possible. If something must be handled by an off-line program, it spawns the process so that
the job is still under its control. In other words, all the user has to deal with in preparing a
document is the interface provided by the special editor mode. This environment facilitates
not just editing but the preparation of bibliography and index files as well. With simple ab-
stractions, it hides the notion of different formatter types so that operations with respect to
various TgX dialects become generic. It also mimics a separate compilation scheme, yielding
an improved debugging cycle. The resulting system is a host of about 8,000 lines of Lisp
programs organized as two Emacs modes: TgX-mode [4] which handles document prepara-
tion in general and BBTpX-mode (3] which helps maintaining bibliography database files in
particular. The programs have been distributed to a number of academic and industrial sites
since 1985.

In this paper we identify some key issues in the design of this environment. First we review
what is available in the unintegrated situation and why integration is desirable. We then show
the basic abstractions which turn out to be the most important factor in making the system
a coherent working environment. In the following section we discuss major features of our

1DVI stands for DeVice Independent format.

environment and explain their implications to batch-oriented document preparation. Finally
some novel algorithms are described in the appendices.

2 The Unintegrated Environment

There are some primitive tools for producing documents available from either the UNIX
TeX distribution? or the UNIX environment itself. But these tools are unintegrated and
the collection is incomplete. In several instances, we have developed new software to handle
the desired tasks. This section identifies some key issues and important properties of the
processors involved.

2.1 Formatting

Before introducing the different TEX-based formatters, we need to clarify the notion of pro-
cedurality. This has to do with the granularity of control the user is allowed to possess over
the formatting functions. Equivalently, one can think of this as the amount of information
a system must know a priori in terms of the document’s style and structure. At one end
of the spectrum we have what may be called the pure procedural scheme which requires the
user to specify exactly how the formatting ought to take place. Appearing at the other end
is the pure declarative (or descriptive) scheme in which based on some predefined attributes
the user specifies just what a document should be and the formatting details associated with
various document styles are hidden.

The “purest” form of TEX is called initex in which no macros have been defined. But
initex is too primitive to be very useful by itself. One must define macros based on the
initex primitives to create higher level abstractions. The various TEX dialects are essentially

initex preloaded with their corresponding macro packages. There are now four primary TEX
dialects:

1. Plain TgX [9]: This is initex preloaded with a macro package called plain.tex. In
the appropriate context, the name TEX often refers to plain TgX. It is by and large a
procedural language. No document styles are predefined, hence the user has full control
over the document appearance. It has a very nice subsystem for specifying mathematical
formulas, but preparing tables is especially difficult.

2. BTEX [10]: This is a more declarative system. One must specify a predefined style for
each document. It is in this respect that IWTpX is similar to Scrise [1]. Many plain
TEX commands, if not overridden, are automatically imported to IATEX. The table
specification subsystem is much improved over that in plain TEX and is syntactically
similar to tbl [11].

2The distribution is organized by the TEX User’s Group, P.O. Box 9506, Providence, RI 02940. Users of
different operating systems receive the distribution tape from different sources, however.

3. SHTEX [10, Appendix A}: This is a variant of ISTEX specially tailored to the production
of technical slides. It inherits some of the functionality of WTgX but is loaded with a
host of larger sized fonts for projection legibility.

4. ApS-TEX [16]: In the “procedurality” spectrum, this is in between plain TEX and
I¥TEX. A richer mathematical subsystem is available since it was designed to be used
for typesetting by the American Mathematical Society.

Normally the user formats a document by invoking one of the processors listed above. In
the Emacs world, it is unrealistic to create one mode for each TEX dialect because all TgX
dialects use the same convention that a source file name terminates with .tex extension.
EMacs, on the other hand, depends on language-specific file name extensions to load the
appropriate mode.3. What is needed here is an operator overloading mechanism such that
type becomes implicit and relevant operations become generic. By doing so only a single TEX
mode is needed and the user is alleviated from remembering what type of document is being
processed.

2.2 Spelling Checking

Spelling checking in UNIX can be done by the program spell and its auxiliary processors
spellout and spellin. The spell program compares each unique word in the input file
against a dictionary and returns a file containing the misspelled words. The two auxiliary
processors spellout and spellin respectively checks out and checks in words in the input
file against a specified hashed spelling list. They help to maintain a customized dictionary
in a hashed form so that “false drops” such as people’s names, technical jargon, etc. can be
recognized by the spelling checker.

Many syntactic constructs do not have to go through the spelling checker at all. For
TgX-based documents, it would be redundant to check all the commands (anything started
with a backslash ‘\’), comments (from ‘)’ to end of line), special symbols, etc. There are
two programs (detex and delatex)* which filter out unnecessary words from a plain TgX or
DTEX document as far as spelling checking is concerned. One could conceivably write a third
filter for AAS-TEX, but detex appears to work satisfactorily.

It is important to integrate the spelling checker and these filters with an editor so that
misspelled words may be corrected interactively. It is also desirable to have an integrated
on-line dictionary lookup facility so that the user doesn’t have to abort the on-going error
correction process to find out the right spelling. Furthermore, the system should allow the user
to construct customized dictionaries for different documents. The spelling checking subsystem
in TpX-mode achieves all this based on these utility programs and the basic abstractions given
in Section 3.

3This is called gutoloading in EMACS.
*Several people have written utilities of this kind. The ones we are using are due to Howard Trickey of
AT&T Bell Laboratories. It is available in the UNIX TgX distribution.

2.3 Bibliography Making
The making of a bibliography comprises the following steps:
1. Entering bibliography entries in a database.

2. Making citations to these entries in a document source file. The citations should be in
a symbolic form.

3. Extracting the specified entries from database and create the actual bibliography or
reference file with respect to the current document.

4. Replacing all symbolic citations in the source by the actual keys that appear in the
bibliography/reference file.

IATEX has a companion system called BieTgX [13] which handles Step 3. BIBTgX defines a
number of entry types (e.g. BOOK, ARTICLE, INPROCEEDINGS, etc.) and entry fields (e.g. TITLE,
AUTHOR, PUBLISHER, etc.) There is a fixed mapping between the types and fields. That is, each
entry type is associated with a predefined suite of fields, some of which are mandatory (i.e.
unfilled fields are considered errors) while some are optional (i.e. unfilled fields are discarded).
Furthermore, it supports several built-in bibliography styles which define the appearance of
the resulting bibliography/reference file as well as that of the actual reference entries (numeric
or alphabetic);® additional styles may be defined by the user.

To resolve citations from symbolic references to actual ones, a four-pass IWTpX/BTEX
is involved. First the program latex is used to collect all symbolic references from the
source. Then the bibliography processor bibtex must be invoked to extract the entries from
database files and create the actual bibliography source file. Next latex is executed to
obtain the symbolic/actual cross reference information. Finally it is used again to do the
actual replacement. The actual keys appear in the output file while the symbolic references
in the source remain intact.

This bibliography subsystem was designed specifically for BTEX, but it would be desirable
to import the same facility to plain TEX and ApS-TEX documents. Also, the preparation of
database entries ought to be automated and a lookup or query interface should be available for
the user to make citations in editing sessions. In our environment, this becomes all possible
with a preprocessing mechanism built entirely on top of Emacs. None of the processors
involved need to be modified.

2.4 Indexing

The following steps are involved in index preparation.

1. Placing index commands (\index{key}) in the document source which may comprise
multiple files. An index command takes a single argument: the key to be indexed.

5Built-in styles include one that gives an order based on the last name of the first author, one that’s based
on the citations’ order of appearance in the document source, and two other variants.

2. Creating a raw index file whose entries each consists of two arguments: the index key
and the page on which the index command appears.

3. Processing the raw index file. This means all index keys are sorted alphabetically.
Page numbers under the same key are merged and successive numbers are collected into
intervals (e.g. 1, 2, 3, 4, 5 is replaced by 1-5). Subitems within an entry, if any,
are properly handled.

4. Formatting the processed index. The result is the actual index.

LTEX provides hooks to do tasks associated with Steps 2 and 4. It recognizes the index
commands and generates a raw index file as a byproduct of formatting. Also, it has an index
environment defined in various styles that allows the alphabetized version to be formatted into
the final result. Exporting these hooks to TEX and AmS-TEX is relatively straightforward.
There are no provisions, however, for handling tasks associated with Steps 1 and 3. As a
result, we have designed and implemented a fairly general purpose index processor called
makeindex that handles not just the index of TEX documents but their glossaries as well. It
can also be used as an index postprocessor for any raw index files generated by systems other
than TgX. We also implemented a subsystem in TgX-mode for placing index commands in
the document source in a systematic and efficient way (Step 1). Section 4.4 describes some
key features of these systems. A more detailed discussion on the design tradeoffs is given
in [5].

2.5 Printing and Previewing

TEX achieves device independence by representing its output in a simple generic format called
DVI [6]. A device driver is needed to convert a DVI file to a specific printer language.
Specifying a printer option in the UNIX spooling scheme (1pr) will invoke the right printer
driver. There is a program called dviselect® which extracts designated pages or page ranges
from a given DVI file and produces a new one. We also wrote a tool called dvisplit which
allows one to print designated chapters or sections from a given DVI file. Together, these
tools reduce the printing overhead if debugging is dependent on hardcopy.

To eliminate hardcopy dependence, window system-based previewing tools have been de-
veloped for our workstations which include a DVI previewer called dvitool {12} for the the
SUN window system [2] and a similar program called dvi2x [14] which runs under the X
window system [15]. Both of these tools read a DVI file on a page by page basis. Specific
optimizations are taken into account so that inter- and intra-page scrollings are efficient. In
addition to a fairly complete set of scrolling functions, they allow text being displayed to be
magnified or shrunk in a wide range of steps. Font information may be queried by simple
mouse clicking. There is a repositioning mechanism in both tools that points the document
to its original position prior to a reread operation which may be invoked by the user because

This program is written by Chris Torek of Maryland University. It is available in the UNIX TgX
distribution.

the document has been reformatted. This simple feature turns out to contribute significantly
to the reduction of document debugging overhead.

In our EMacs-based environment, printing and previewing are both controlled by the
TEX-mode top level, which also keeps track of other operations such as formatting, spelling
checking, bibliography making, indexing, etc.

3 Basic Abstractions

The major focus of our design is to derive a class of simple and clean abstractions. There are
several aspects to this problem. First, what is the generic document structure that applies
across various TEX dialects? Second, what are the objects that must be made explicit and
what are their interrelationships? Finally, how can the notion of different dialects be hidden?
Also of importance is the user interface which in this context refers to the the set of editing
commands that maps the collection of operators to the class of objects. Because so many
processors are involved, the critical user interface issue is coherence in terms of command
naming and key bindings. We have created two Emacs modes: TpX-mode and BBIpX-
mode. The former is used to edit TgX documents and to control all the jobs described in the
previous section. The latter is used to edit BIBTgX database files which works hand in hand
with TgpX-mode in doing citation lookups and error corrections.

3.1 Document Structure and Separate Processing

There are two levels of structure involved: source and target. At the source level, TEX-mode
makes the distinction between a document and a file by acknowledging that multiple files may
be included in a TpX-based document. TEX and I#TgX use the \input and \include com-
mands to include external files in the current document. This allows us to view a document
as a tree of files with edges being the connecting commands. This document tree has a root
called the master file (level 0) which may include external files (level 1), each of which may
in turn include more files (level 2), and so forth. Operations involving the entire document
must be started from the master file. The processing sequence is the preorder traversal of
the tree. In TgX-mode, each individual file has a link to the master file to assure that any
global commands initiated in its buffer will always start from the master. By default, a file
points to itself as is the case for single file documents. The link to the master file also makes
it possible to separately compile any component file or a part of it.

The next important abstraction at the source level is a file, or when loaded in Emacs, a
buffer. Objects of even smaller granularity include regions and words. A region is a piece
of text, including any white space, bounded by a marker and the current cursor position
(i.e. point in Emacs). A word in TgX-mode is a piece of text with no white space in it.
Superimposing any further logical structure is infeasible because such structure would vary
in different dialects. INTEX probably has the most complex logical structure while plain TgX
has a very limited one. For our purposes, the file level tree structure plus internal regions
and words are sufficient.

At the target level, there are fewer abstractions. One is the entire DVI file which represents
all the pages processed. The only other abstraction might be a subsequence of the pages
processed. While an arbitrary substring of a DVI file is not a legal DVI file, it is a trivial
matter to create one by providing the correct enclosing environment. Normally DVT files
themselves are not visited in EMacs because they are binary data. Therefore, in a buffer
bound to the TEX source foo.tex, the implicit operand for operations such as preview and
print will be foo.dvi instead of foo.tex. With this abstraction, it is possible to preview or
print a DVI file partially as well as'in its entirety from an Emacs buffer visiting a corresponding
document source.

3.2 Document Types and Generic Operators

TeX-mode maintains the notion of document type which may be either TgX, BTgX, SULTEX,
or AMS-TEX in our current version. The type information is needed when the user tries to
execute operations involving programs which are type-specific, such as invoking a formatter
(i.e. tex, latex, slitex, or amstex) and using a document filter (i.e. detex or delatex).
However, such information is implicit to the user except for the first time — once specified
it will be saved as a comment line in the document to be read by later invocations. The
user can also specify a default document type in his Emacs startup file so that even the
one time inquiry becomes unnecessary. This is useful for users who never use more than
one TgX dialect. In other words, from the user’s point of view, operations in TgX-mode are
generic. For instance, an operation is known as format at all times instead of as tex, latex,
slitex, or amstex under different situations. TEX-mode uses operator overloading implicitly
by consulting the type information.

3.3 User Interface and Job Control

By and large, the two modes obey the naming convention that a function name consists
of three parts: prefix (tex- or bibtex-), generic operator, and abstract object. The cor-
responding key binding will be the C-¢ prefix,” followed by C- and the first letter of the
middle part, then the first letter of the last part. One example is the TgX-mode function
tex-format-document with its corresponding key binding being C-¢ C-fd. BIBTgX-mode deals
with a simpler set of objects such as bibliography entries and their component fields. The
function to duplicate the previous entry, for instance, is called bibtex-dup-previous-entry
which is bound to C-c¢ C-dp. There are minor variations of this convention due to the constraint
of limited keys, but the usage is generally unform.

This user interface is very simple and gives good mnemonric clues. For example, in TgX-
mode all spelling functions begin with the C-c C-s prefix, bibliography making functions with
C-¢ C-b, indexing facilities with C-¢ C-i, formatting with C-c C-f, printing with C-c C-p, etc. A
context-sensitive menu is displayed according to the nature of the current operation. The
interfaces to these menus are uniform across the different contexts.

7C-¢ means Control ¢. That is, typing the ¢ key while holding down the Contirol key. The notation here is
that C- stands for the control key.

Every job needed in the entire course of document preparation is initiated from TEX-
mode or BBTgX-mode. In TgX-mode, most generic operators take the current document, file
(buffer), or region as an operand, but some apply to words. In BBTgX-mode, objects include
the current bibliography file, an entry, and fields in an entry. From the user’s point of view,
not only the typing overhead is greatly reduced, but the need to swap context both mentally
and physically between the editor and operating system top level is eliminated.

4 The Integrated Environment

The integration is achieved by building a system of Lisp programs on top of Emacs. The envi-
ronment is functionally divided into several subsystems for such tasks as delimiter matching,
spelling checking, bibliography making, indexing, job control, etc. Only the most essential
functions are loaded initially; subsystems are loaded on demand.® Some major system features
are as follow.

4.1 Delimiter Matching

TgX-mode supports several delimiter matching schemes. By matching we mean the motion
of cursor from the closing delimiter momentarily to the opening delimiter position. Such
motion is normally triggered when the closing delimiter is typed. The bouncing cursor usually
prevents unbalanced delimiters and thus reduces the overhead in debugging. EMacs has built-
in mechanisms for matching delimiter pairs with different opening and closing symbols (e.g.
(..., {...}, etc)

Matching becomes more complex when the opening and closing delimiters are identical.
For instance, math mode and display math mode in TEX are respectively represented by a
pair of single and double dollar signs ($...$ and $§...$$). Math mode may occur inside
display math mode, such as in a table environment, but not vice versa. Matching these types
of delimiters is very difficult. A correct mechanism not only has to know which self-inserting
$ or $$ is an opening delimiter and which is a closing one but also must retain enough
information so that the second $ in $$ does not match its preceding $. In TgX-mode we have
a mechanism which does this type of matching correctly. A description of the underlying
algorithm is included in Appendix A at the end of this paper.

It is a common practice in TgX to include a piece of text in a pair of braces with a leading
command. This comes in two forms: \foo{...} and {\foo ...}. The former means the text
in the braces is the argument of \foo. The latter means the command \foo is setting a global
register (e.g. current font type, size, etc.), and the pair of braces denotes its scope. Both
cases agree in that syntactically there is a prefix (e.g. \foo{ and {\foo) and a suffix (e.g.
‘¥ in both cases). TgX-mode provides an assorted set of commands to include neighboring
words or the current region in a pair of these “extended delimiters”.

Oune of the most commonly used commands in BTEX is a pair of \begin and \end that
embraces a large piece of text under a certain environment. Environments can be nested in

8 Again, this is done by the autoload mechanism in Emacs.

10

the obvious way, just as in any block-structured language. With several levels of environments
- in place, proper indentations become essential to readability. TEX-mode has a facility that
opens and closes BTX environments automatically with proper indentations inserted.

Finally all delimiter matching schemes mentioned above can be customized. A new pair of
delimiters may be defined statically by putting the information in EmMacs’ profile (.emacs) to
have it available for every TEX-mode session. Alternatively, the user can enter the information
interactively to TgX-mode so that a new delimiter pair is bound for only one particular EmMacs
session.

4.2 Spelling Checking

Based on the abstractions mentioned earlier, the spelling of an entire document can be checked
and corrected interactively, as can individual buffers (files), regions, and words. These com-
mands all share the same prefix (C-cC-s), followed by a one letter suffix of d, b, r, and w,
respectively. The interface for correcting misspelled words is identical in all four cases: the
current erroneous word is displayed, followed by a list of options. Aside from the obvious op-
erations such as scrolling down to the next or up to the previous misspelled word in the list,
visiting the next or the previous instance of current error, and query replacing all instances
of current error with a new string, there is an option which allows the user to do a dictionary
lookup based on arbitrary prefix, infix, or suffix searching. The returned matches will be
placed in a new buffer. The user can visit the buffer and select the correctly spelled word
which will then be zapped into the replacement prompt and the correction session begins.
Correction is based on the standard Emacs query replace mode. That is, for each instance of
the pattern found, the user can decide whether or not to replace it by the replacement string.

Except word checking, which is essentially an on-line dictionary lookup facility, other types
of objects are checked more or less in the same manner. In the case of a region, the piece of
text in question is first copied into a temporary buffer and then screened by the document
filter detex or delatex, with result “piped to” spell for checking. This is a special case of
the buffer command which does the same thing for the entire buffer (file). In the document
case, each component file is checked according to the preorder traversal of the document
inclusion tree.

Another import feature of the spelling interface is the support for automatic construction
and invocation of customized dictionaries. There are several levels of detail involved. First
the user can define a global list of words which are likely to appear in most of his documents
but are not included in the system dictionary. Whenever spelling checking is invoked in TgX-
mode, this per user spelling list will be added to the system dictionary and the resulting new
dictionary will be the basis of spelling checking.

Perhaps more useful is the per document spelling list. This is a list of words created as a
result of an interactive spelling checking session. At the end of such a session, an option can
be invoked to collect all the uncorrected words (assumed to be correct) plus those defined
in the global spelling list and hash them into an extended version of the system dictionary.
When the same document’s spelling is to be checked later, these words will not appear in
the correction list any more. New words can be added to this list incrementally as other

11

QINBOOK{,
S======s=sSSSssssssssIssssssaass REQUIRED FIELDS ====ss===sssssssSsssszsssss
-------------- Exclusive OR fields: specify exactly one ----=---------
AUTHOR = {},
EDITOR = {},
-------------- Inclusive OR fields: specify one or both ---===--------
CHAPTER = {},
PAGES = {},
------------- Rest of required fields: specify every one ------==-----
TITLE = {},
PUBLISHER = {},
YEAR = {1,
======s====sss==s===sssss====== (PTIONAL FIELDS ===== s===s===s= ==
VOLUME = {},

SERIES = {7,
ADDRESS = {3},
EDITION = {},
MONTH = ,
NOTE = {}

Figure 1: A skeleton bibliography entry of type INBOGK.

component files of the same document are spelling checked. In fact, for each customized
dictionary an unhashed list of words is maintained by TEX-mode so that words can also be
removed from or added to the spelling list by hand. Based on time stamps, the hashed list
is applied directly in spelling checking if it is newer than the unhashed list; otherwise the
unhashed list is first used to derive the hashed list which is then applied.

The increase in these customized dictionaries’ hash table size is negligible because the
number of words likely to be added are very small compared to those already incorporated
in the system dictionary. Therefore, it would be fair to assume the time required to consult
each word against a customized dictionary is equal to that against the system dictionary. The
primary gain in maintaining customized dictionaries is a significant saving in user interaction
time because fewer “false drops” will appear in the correction list after the first run. Ap-
pendix B gives some detailed information on the algorithms used in maintaining customized
dictionaries.

4.3 Bibliography Making

This is an area where the two major editing modes TgX-mode and BBTgX-mode work hand
in hand to provide a friendly on-line bibliography/citation facility. The user uses BIBTpX-

12

mode to prepare BiBTEX database files, TEX-mode to make citations and to generate actual
bibliography files, and the combined system to detect and correct any errors in the database
or the citations. The same system not only works with BTEX for which BiBTgX was originally
created, but with plain TEX and ApS-TEX documents as well.

4.3.1 Bibliography Database Manipulation

A BisTgX database file is one that has a file name extension of .bib and contains one or more
BisTRX entries. BBTEX-mode uses a form-based user interface for the preparation of these
entries. It supports all standard BiBTEX bibliography entry types as built-in functions so that
to insert a new entry the user only has to specify a type which in this case corresponds to
an Emacs function. A skeleton instance of the specified type will be generated automatically
with the various predefined fields left empty for the user to fill in. A host of supporting
functions such as scrolling, field copying, entry duplicating, ..., etc. is provided to facilitate
this content-filling process.

Figure 1 is an instance of the entry type INBOOK. The user invokes an entry like this by

typing
M-x @Qinbook RET"

where M-x is the command to call on Emacs’ Meta-X prompt (i.e. holding down the meta
or escape key and type x) and RET means carriage return. Function name completion is
supported at this prompt; hence only the shortest distinguishable prefix needs to be typed
before RET. In the skeleton entry, banner lines are displayed to give hints regarding the nature
of specific fields. These banners, along with all unfilled optional fields, will be removed when a
cleanup command is issued in the mode. The cleanup operation will also catch any mandatory
but unfilled fields so that correcting errors of this kind does not have to wait till bibtex is
executed.

There is an extended abbreviation mechanism in the mode. BiBTgX has a simple abbre-
viation scheme: any unquoted text of a field is regarded as an abbreviation and a macro
expansion will be performed at compile time. We call this a field abbreviation. In BBTgX-
mode, chunks of fields may be collected to form a group abbreviation. A typical use of this
is when a number of articles in the same journal or proceedings are to be included in a .bib
file. In that situation, most of the fields will be identical except perhaps the TITLE, AUTHOR,
and PAGES fields. With a group abbreviation defined, the user can invoke a new entry, enter
just these three entries and replace others by the group expansion.

One would normally like to put all abbreviation definitions in a central place and not
repeat them in each individual .bib files. BiBTgX itself does not not support file inclusion.
What BBTgX-mode does is to allow the user to define a list of default abbreviation files,
making it possible to browse and interpolate abbreviations defined externally. The interface
is very similar to that of the spelling checking subsystem. Same options are bound to the
same keys as much as possible.

The user can debug, preview, or create a hardcopy draft of any BiBTpX data file. This is
done by executing the BisTgX processor on a temporary file which contains citations to every

13

entry of the target .bib file. If there are any errors, a correction mechanism will position the
cursor to the spot, prompting for fixes. At the end of a successful session, a draft is created
in the formatted form, which can then be previewed or printed.

4.3.2 Symbolic Citations

Each bibliography entry in the database requires a symbolic name such as knuth:tex. In the
document source, this entry would be referenced by the command \cite{knuth:tex}. The
user can certainly enter this command manually, but that requires him either to remember
what actually appears in the database entry or to manually visit the data file, locate the entry,
and look up the name. With the TEX-mode lookup facility, neither is necessary. All that is
needed is to specify a data file name and a keyword related to the entry such as Knuth, TeX,
the publisher’s name, or any regular expression. A list of matching entries will be returned.
The user can confirm an entry, in which case the \cite command plus the entry name is
inserted at current cursor position. Alternatively, a request can be made to show the content
of an entry, or to scroll and inspect the next/previous match, to create a new entry, or even
to change the search key. A search path may be specified so that when a wildcard file name
is given, every data file in the path is looked up.

4.3.3 Bibliography Processing

In the BTEX/BieTEX combination, the input to the bibliography processor bibtex is a file
generated by latex which contains all citations made in the document. Note that collecting
citation entries has nothing to do with formatting per se. In TgX-mode, these entries are
collected prior to formatting. The bibliography processor bibtex is then spawned to process
these entries. Finally symbolic-to-actual substitutions are done by the editor at the source
level. It also interpolates the actual bibliography file generated by bibtex at the appropriate
place (usually before the end of document). Hidden from the user is a file of cross references
to be used to recover symbolic references from actual numbers when new citations are added
to the document and a new bibliography/reference file is needed.

There are two important issues with respect to this source-level bibliography making
scheme. The first is related to the incremental growth of citations in a document. Recall that
all citations are done initially in a symbolic form. A TgX-mode bibliography making session
will replace all of them by their actual counterparts in the document source. As new citations
are entered, the document will have mixed symbolic and actual references. Our approach is
to keep the most recent symbolic/actual cross reference information in a file. Thus whenever
a new bibliography is called for, the cross reference information is first consulted to recover
symbolic citations from actual numbers. The cycle continues by collecting citation keys,
spawning bibtex, performing symbolic-to-actual substitutions, and so forth.

The second problem has to do with the efficiency of the symbolic-to-actual substitution
mechanism. In a text editor, replacing a target string by a source string requires a series of
operations composed of (1) locating the target pattern, (2) erasing the target string, and (3)
inserting the source string. Locating the target pattern is normally based on string matching.

14

Since the same entry can be cited at multiple places, the search has to cover each and every
file included in the document. This is an extremely expensive operation.

The pattern matching overhead is completely avoided in TgX-mode’s symbolic-to-actual
substitution mechanism. The trick is that in the first citation collecting sweep, each entry’s
position® is recorded. Moving the cursor to a designated position is very fast. The substi-
tution mechanism processes entries in each component file in reverse order so that current
replacement will not destroy the recorded position of the next entry. That is, the last instance
of a symbolic citation is visited and replaced by an actual reference first, then the previous
entry, and so on.

4.3.4 Evaluation

The integrated bibliography handling facility is superior than what is available in the unin-
tegrated situation. Some noticeable advantages are the following:

o BBTgX-mode alleviates the user from any concerns regarding the format of bibliography
entries. The form-based user interface makes the preparation of bibliography database
files an easy task.

e Based on the two corporating modes, errors in both the database and document citations
can be corrected interactively. The system will position the cursor to the spot in question
and the user will have a menu of options to correct the mistake.

e Due to the lookup facility, the user does not have to memorize or type in the exact
entry names in order to make citations. The system prompts you one by one the
matching entries found in the specified bibliography database. The selected entry will
be interpolated into the source automatically.

e Recall that in the BTEX paradigm, a total of three separate passes of latex plus an
intermediate pass of bibtex is required to process the bibliography in a document
(see Section 2.3). The bibliography handling subsystem in TgX-mode turns this into
a strictly preprocessing job relative to formatting. Due to the automatic invocation of
bibtex, the error correcting facility, and the automatic substitution mechanism, only
one or two runs of latex’s are needed to produce the final output — depending on the
presence of non-citation symbolic references.

e Once the bibliography/reference file has been created, there is an inspection facility
which allows the user to examine the content of a citation entry interactively, yielding
an effective link between a citation’s context and its content. This is available for
citation entries in both symbolic and actual forms.

¢ The same mechanism not only works for WTgX documents for which BisTpX was origi-
nally designed, but for any TgX dialect as well.

°In EMACS, each character is assigned an offset relative to the beginning of buffer. This offset is what we
mean by the position here.

15

4.4 Index Preparation

We have designed and implemented two major subsystems for doing indexing in any TgX-
based document. One subsystem provides a systematic approach to placing index commands
in the document source, while the other deals with transforming the index from raw entries
(generated by the formatter) to the final result (sorted form). We describe some of the key
features of the two subsystems below. Detailed information can be found in [5].

4.4.1 Index Placing Subsystem

TEX-mode’s index placing facility is based on a very simple framework. All the author needs
is to specify a pattern and a key. The editor then finds the pattern, issues a menu of options
and inserts the index command, along with the key as its argument, upon the user’s request.
As a special case, when the pattern and key are identical, neighboring words of the current
cursor position or the text in the current region can be inserted as the index argument in one
TgX-mode command.

There are two query-insert modes to operate with: one based on single key-pattern pair
and the other on multiple key-pattern pairs. In the former mode, the user specifies a pattern
and a key, and for every instance of the pattern found, he decides whether to insert the index
command with the specified key, or a variant of it. In the latter mode, each key-pattern pair
in a global list is processed in a way identical to that of the former mode.

Placing index commands is a task that has been performed traditionally in an ad hoc
fashion. It is often tedious and time-consuming. Our facility offers a systematic and efficient
approach to this effort. It has been used in producing indexes for a book and a number of
manuals and has proved very useful and effective.

4.4.2 Index Processor

Our index processor makeindex transforms raw index entries generated by the formatter
into the final index file. The tasks performed in this transformation include permutation
(entries are sorted alphabetically), page number merging, multi-level indexing (three levels
of subindexes are recognized), style handling (customizable input and output formats), and
various special effects such as cross referencing (see and see also), setting page numbers in
different fonts, etc.

Due to the style handling facility, makeindex is largely independent of the typesetting
system and independent of the format being used. There is an interface in TgX-mode to
makeindex much the same as that to other external programs such as spell and bibtex.

4.5 Formatting

In TgX-mode, the user can format the entire document, a component file in a document, or
an arbitrary region in a buffer. All of these share the same command prefix (C-cC-f) and
are distinguished by the mnemonic suffix of d, b, and r which denote, respectively, the entire
document, the current buffer, and the current region. Given the master file linkage in each

16

component file, formatting the entire document is relatively straightforward. As mentioned
earlier in Section 3.1, the document master file will automatically be visited from where the
format-document operation will be initiated.

Separately formatting component files is more involved. The notion of master file plays an
important role in separate formatting. A document preamble and similarly a postamble can
be associated with the master file to contain the document’s global context. To separately
compile a component file or its subregion, a mechanism is available in TgX-mode that includes
in a temporary file the document’s preamble and postamble with the selected text inserted
in between. The system will then run the formatter on this temporary file. This technique
is primarily for debugging purposes as there is no provision for linking separately generated
DVI files into one big DVI file.!® However, for users wanting only a quick look at a relatively
small portion of a document in the debugging phase, this automatic facility turns out to be
of value.

A similar mechanism to selectively format parts of the document is available in BTRX.
The command \includeonly appearing in the beginning of the document specifies to ’TpX
that only its arguments are to be formatted. Each of these should be an argument of the
command \include which interpolates a component file at where it appears. Like our facility
in TgX-mode, unless these component files are specifically set up to start at a new page,
separately formatted files cannot be merged in any obvious way.

Our separate formatting mechanism has a number of advantages over that of BTgX. First,
it works for any TEX dialect as long as the file inclusion command is known (so that the file
inclusion tree can be built). Second, our granularity is finer; any piece of text in a document
can be separately formatted for a quick look at its result. From the point of view of document
debugging, this is more practical than always having to reformat an entire component file.
Third, there is no need in our mechanism to change any command arguments. In ITpX,
the user has to make a change to the argument list of \includeonly each time a different
component file is to be separately formatted.

4.6 Previewing and Printing

In TpX-mode, separate processing exists not just in document formatting, but in its preview-
ing and printing. Similar to the format command, the commend C-¢ C-d followed by either d,
b, or r formats the object given and displays its result using the DV previewer available in a
particular window system.

The DVI file associated with the current document can be previewed or printed in its
entirety. TEX-mode can also invoke dviselect or dvisplit so that a partial document can
be obtained. When this partial previewing/printing is requested, the system will prompt the
user for a string of arbitrary page ranges. These pages will then be extracted to form a new
DVI file on which the previewer or the print scheme operates.

197t would be feasible and in fact easy to combine these separately formatted output files to yield the final
result if each component starts at a new page. This is normally not the case for certain document styles.

17

4.7 Miscellaneous

There are a number of small features which enhance efficiency substantially. In both TgX-
mode and BIBTEX-mode, there is a mechanism which positions the cursor to the the exact line
and column where an error occurs. Also supported is the ability to comment or uncomment
out a region of text. This is a useful feature for something which is relevant in some situations
but irrelevant in others as far as formatting is concerned. Both dvitool and dvi2x have the
ability to reposition the newly read document to the page where it previously was at. This
saves a lot of user time as that particular spot may be the only place of interest at a particular
document debugging stage. When a formatting operation is started, the old pending session,
if any, will automatically be terminated before the new session begins. All of these features
are individually straightforward in concept, but together they contribute to a considerable
gain in user productivity.

5 Conclusions

In the work described in this paper, we did not attempt to rewrite an editor or a document
formatter. Rather, we focused on integrating TEX and related programs under a coherent
user interface, using EMACs as the backbone. A customizable editor like Emacs, which offers
not just editing functionality but computing capabilities in general and full Lisp support in
particular, provides the vital glue to integrating a host of noninteractive processors together.
Mode-specific editing is a standard practice in EmMacs. Our approach goes beyond mode-
specific editing, providing a number of useful document processing facilities in an integrated
fashion.

With very simple abstractions, we have been able to create an effective document prepara-
tion environment that is robust enough to handle different TEX dialects with diverse charac-
teristics. There are only two fundamental concepts: document type and master file. But the
system based on these concepts produces surprisingly flexible and powerful results. Yet these
concepts are transparent to the user most of the time. Under our basic construct, utilities
originally developed for one version of TgX have been easily adopted to other dialects. Most
importantly, the user can enjoy substantial productivity improvements using this integrated
system.

What we see as an important implication of TgX-mode/BIBTgX-mode is the importance
of a programmable editor layer in document preparation environments. Supporting a pro-
gramming language like Lisp at the editor level has significant benefits in terms of document
pre- and post-processing. Tasks like spelling checking, bibliography making, indexing, job
control, etc. need not be built into the system kernel. Instead, they can be separated and
implemented on top of the editor’s programming substrate. The same functionality can be
realized this way, but at the same time better interactive behavior is achieved and greater
flexibility is created. This has been proved by the system we built. We believe the techniques
will apply to more elaborate document preparation environments as well.

18

6 Acknowledgements

We are grateful to the following people who have made valuable comments and suggestions
during various stages of the development: Fred Douglis, Jim Larus, Rusty Wright, Art Wer-
schulz, and Ben Zorn.

References

[1] Secribe Document Production System User Manual. Unilogic Ltd., Pittsburgh, Pennsyl-
vania, April 1984.

[2] SunView Programmer’s Guide, Release A of 17. Sun Microsystems, Mountain View,
California, February 1986.

[3] Pehong Chen. GNU Emacs BBTgX-mode. Technical Report 87/317, Computer Science
Division, University of California, Berkeley, California, 1986.

[4] Pehong Chen. GNU Emacs TgX-mode. Technical Report 87/316, Computer Science
Division, University of California, Berkeley, California, 1986.

[5] Pehong Chen and Michael A. Harrison. Automating Indez Preparation. Technical Re-
port 87/347, Computer Science Division, University of California, Berkeley, California,
March 1987. Submitted for publication.

[6] David Fuchs. Device independent file format. TUGBoat, 3(2):14-19, October 1982.

[7] William Joy. An Introduction to Display Editing with Vi. 1980. Appears in UNIX
4.2BSD User’s Manual.

[8] Brian W. Kernighan, Michael E. Lesk, and Joseph F. Ossanna. Document preparation.
The Bell System Technical Journal, 57(6):2115-2135, July—August 1978.

[9] Donald E. Knuth. The TgX Book. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1984. Reprinted as Vol. A of Computers & Typesetting, 1986.

(10] Leslie Lamport. BTgX: A Document Preparation System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[11] Michael E. Lesk. Tbi—A Program to Format Tables. Computer Science Techincal Re-
port 49, AT&T Bell Laboratories, Murray Hill, New Jersey, September 1976. Also
available in UNIX User’s Manual.

[12] Jeffrey W. McCarrell. An Overview of DVITool. VORIEX internal report, Computer
Science Division, University of California, Berkeley, California, December 1986.

[13] Oren Patashnik. BrBTgXing. Computer Science Department, Stanford University, Stan-
ford, California, March 1985.

19

[14] Steve Procter. Documentation on DVI2X. VORIEX internal report, Computer Science
Division, University of California, Berkeley, California, March 1987.

[15] Robert W. Scheifler and Jim Gettys. The X window system. ACM Transactions on
Graphics, 6(3), 1987.

[16] Michael D. Spivak. The Joy of TgX. American Mathematical Society, 1985.

[17] Richard M. Stallman. EMACS: the extensible, customizable self-documenting display
editor. In Proc. of the ACM SIGPLAN/SIGOA Symposium on Text Manipulation,
pages 147-156, Portland, Oregan, June 8-10 1981. A somewhat extended version ap-
pears in Interactive Programming Environments, Barstow et al. (eds.), McGraw-Hill
Book Company, 1984, pp. 300-325.

[18] Richard M. Stallman. GNU Emacs Manual, Fourth Edition, Version 17. Free Software
Foundation, Cambridge, Massachusetts, February 1986.

A Matching Identical Delimiters

Automatic delimiter matching refers to the momentary bouncing of cursor from the self-
inserting closing symbol to the opening symbol position. Matching delimiters with distinct
opening and closing symbols is relatively straightforward in most screen-oriented text editors.
In Emacs, for example, one simply modifies syntax entries to achieve this effect.

Matching delimiters with identical opening and closing symbols (call them id_delim’s) is
virtually unsupported in most text editors. In TEX-mode, there is an underlying facility for
matching arbitrary id_delim’s — the most obvious ones being "...", |...|, and of course,
TEX’s math mode ($...$) and display math mode ($$...3$$).

For each class of id_delim’s, TgX-mode maintains a buffer-specific doubly-linked list of
markers pointing to their respective positions. Whenever a new id_delimis typed, its marker
is inserted into the list according to the positional order. During the search for the correct
insertion point, every preceding id_delim in the list is verified. The marker is removed
from the list if it no longer points to an id_delim (i.e. the corresponding symbol has been
deleted from the buffer). Also maintained in this insertion search is an even-odd count which
designates the parity of the newly entered id_delim. If it is an even-numbered delimiter,
bouncing will take place; otherwise, only its symbol is inserted in the buffer.

A fundamental assumption is that the text between the opening and closing id_delim’s
always stays in one paragraph. The list of pointers is reconstructed whenever a new paragraph
is started. In TgX, there is usually a blank line between paragraphs; thus locating the
beginning of a paragraph is quite straightforward in a text editor like Emacs. Based upon
this assumption a significant amount of searching overhead is avoided in maintaining the list.

In general, this scheme works for any id_delim's. The situation becomes more compli-
cated in TEX’s two mathematical modes where pairs of single and double dollar signs can
be mixed. In addition to performing what has been described previously, a two-character
look-behind is necessary for every $ typed to distinguish the two modes. Basically, $...$

20

within $$...$$ is legal in TgX, but not the opposite. A heuristic is involved to determine
when to coerce $ to $3.

B Maintaining Customized Dictionaries

An unhashed spelling list is a file (the .usl file) containing words assumed to be correct. A
hashed spelling list is a file (the .hsl file) which contains a hashed version of the words listed
in the .usl file. The .hsl file is machine dependent under UNIX; a hash table created on
machine A will not work on machine B. On the contrary, the .usl file is machine independent
because it is simply a list of words in ASCII representation. There are two levels of spelling
lists:

1. per user spelling lists. The following code can be included in one’s Emacs profile:

(setq tex-usl-default <file-name>)
(setq tex-hsl-default <file-name>)

2. per document spelling lists. For a document rooted at foo.tex, foo.usl and foo.hsl
will be created at the end of a spelling correction session upon request.

The algorithm that determines which file to use as the spelling list is as follows. Again,
for a document rooted at foo.tex,

1. If foo.hsl exists and is newer than foo.usl, it is used as the spelling list.

2. If foo.hsl doesn’t exist and tex-hsl-default is non-nil, the file bound to this default
is used.

3. Otherwise, if foo.usl exists, a new foo.hsl is created by adding words in the file
bound to tex-usl-default, if any, and those in foo.usl to the system hashed list
(/usr/dict/hlista).

4. Otherwise, no customized spelling list is used.

At the end of a spelling correction session, the user can invoke an incremental spelling
list saving facility. First, an option to reexamine uncorrected words is available; the user can
remove whatever not supposed to go into the list. Then, the incremental saving takes place.
The algorithm is as follows.

1. If foo.hsl exists and is newer than foo.usl, uncorrected words from this buffer are
added to the hashed list.

[AV]

If foo.usl exists, uncorrected words are merged into the file; otherwise a new file
foo.usl is created to hold these words.

3. If foo.hsl doesn’t exist, a new foo.hsl is created by adding words in the new foo.usl
and those in the file bound to tex-usl-default, if any, to the system hashed list
(/usr/dict/hlista).

