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ABSTRACT

For the class of replacement algorithms known as stack algo-
rithms, existing analysis techniques permit the computation of
memory miss ratios for all memory sizes simultaneously, in one pass
over a memory reference string. We extend the class of computa-
tions possible by this methodology in two ways. First, we show how
to compute the eflects of copy-backs in write-back caches. (The key
observation here is that a given block is clean for all memory sizes
less than or equal to C blocks and is dirty for all larger memory
sizes.) Our technique permits efficient computations for algorithms
or systems using periodic write-back and/or block deletion. The
second extension permits stack analysis simulation for sector (or
sub-block) caches, in which a sector (associated with an address tag)
consists of sub-sectors (or sub-blocks) which can be loaded indepen-
dently. (The key observation here is that a sub-sector is present
only in caches of size C or greater.) Load forward prefetching in a
sector cache is shown to be a stack algorithm and is easily simulated
using our technique. Running times for our methods are only
slightly higher than for a simulation of a single memory size using
non-stack techniques.
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1. Introduction

Analysis of memory system performance is one of the most important aspects
of computer system design. Frequently this analysis is done using the technique of
trace-driven simulation, where a trace of memory references from a similar system
is used as input to a simulation of the system under study. This technique has
been applied to all levels of the memory hierarchy, from microprocessor caches to
file system design.

Trace driver simulation became much more practical with the discovery by
Mattson, Gecsei, Slutz, and Traiger [Matt70] that, for certain replacement poli-
cies, the performance of all memory sizes could be determined with a single pass
through the trace file. Their stack analysis technique relies on the inclusion pro-
perty of these policies, such that the contents of any size memory is a subset of
the contents of any larger memory. Thus, the contents of all memories can be
represented by a stack, where the top k items in the stack are the contents of a
memory of size k. Policies which obey this property are known as stack algo-
rithms. An equivalent characteristic of stack algorithms is that each possess a
total priority ordering of all blocks at any instant in time which is independent of
memory size.

Until now, stack analysis has not been known to apply to some important
situations, forcing the designer to fall back on the one-size-at-a-time method. One
example of this is the write-back policy, where a write to a block causes the block
to be marked ‘‘dirty’" in the cache, but the write to secondary storage is delayed
until some later time. Write-back is particularly desirable where memory
bandwidth may be a limiting resource, such as in a shared-bus multiprocessor.
The alternative policy, write through, where all modifications go directly to secon-
dary storage, severely restricts the performance improvement due to caching.
Even with write-back, in many cases a write can cause twice the memory accesses
of a read; one to fetch the block prior to modification and another to rewrite the
block (copy-back). However, discussions of stack analysis have either ignored
writes altogether, or considered only write through.

The problem with stack analysis of write-back is that it appears to violate
the inclusion property. For example, suppose that a dirty block which is at level
k in the stack is read. It must come to the top of the stack, but it is now clean
for some sizes and dirty for others. We will show that by maintaining a “‘dirty
level” for each block that the stack analysis technique can be extended to analyze
write-back. This dirty level is the smallest memory in which the block is dirty.
This is the lowest level in the stack to which the block has been pushed since its
last write, or infinity if the block has never been written.
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Stack analysis can be similarly extended to analyze sector or sub-block caches
[Hillg4, Lipt68]. In a microprocessor cache, access time, on-chip data path widths,
and pin-counts favor small blocks, whereas the size of associative lookup circuitry
and tags favor fewer, larger blocks. A possible compromise is to break each block
into independent sub-blocks, any or all of which may be present. Again, we will
show that stack analysis can be applied by maintaining additional data with each
block.

The remainder of this section is a review of previous stack analysis tech-
niques and definition of terms. Section 2 presents the stack algorithm for write-
back, followed in Section 3 by several simple extensions to handle deletions,
periodic write-back, and .cache flush. Section 4 similarly presents the algorithm
for sector caches, including an extension for a useful form of prefetch. Section 5
presents a comparison of the time required to perform analysis using the stack
technique. Finally we will show how stack analysis makes possible other useful
measurements, exemplified by a computation of the probability of a write-back as
a function of memory size.

1.1. Cache Memories

Analysis of memory systems has been an important part of the design of com-
puter systems. The early concentration on virtual program memory [Bela66] has
been replaced by recent emphasis on high-speed processor caches, and by file-
system buflering or caching. In reality, a typical memory system can be viewed as
a hierarchy of memory types, where the upper levels of the hierarchy are faster,
but generally more costly. The goal of the memory system designer is to find the
proper mix of memory types and sizes to provide a desired effective access time,
subject to cost and design constraints. Although many of the analysis techniques
discussed generalize to multi-level hierarchies, for the remainder of this paper we
restrict our discussions to a two-level hierarchy, and refer to the top level as the
cache.

Caches are effective because of the principle of locality [Denn72]. This prin-
ciple says that the items most likely to be referenced next are those “‘near” the
itemns which have been recently referenced. The two aspects of locality are “tem-
poral” locality and ‘‘spatial” locality. Temporal locality implies that an item
which has been recently referenced has a good chance of been referenced again in
a short time. Spatial locality implies that items close to a referenced item are also
likely to be referenced. This is particularly evident in the sequential reference
behavior observed in instructions and within files.

There are a large numbers of design parameters to any cache, most of which
must be considered in any analysis of that design. We briefly present definitions
of a number of these. For more detail see [Smit82].

-2 J. Thompson, A. J. Smith
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Blocking

The cache may be divided into fixed-size blocks, or variable-size seg-
ments. Unless otherwise specified we assume blocks, although most of
the algorithms presented can be generalized to analyze segment caches.
Blocks are also referred to as pages in the context of virtual memory,
and lines or sectors in the context of processor cache. The cache block
or line size may be equal to the amount of data retrievable in one
memory cycle, or several memory cycles may be required to fetch a
block. A larger block size reduces per-block overhead and provides a
form of prefetch, discussed below.

Replacement Policy
In fixed memory-space systems, the replacement policy determines which
block to remove when the cache is full and a new block must be fetched.
Commonly used policies include the Least Recently Used (LRU) policy,
First-In First-Out (FIFO), Least Frequently Used (LFU), and Random
(RAND). An optimal policy, MIN, exists, but is unrealizable in practice
because it requires knowledge of the future [Matt70]. The MIN policy
does not consider writes or deletes, and is known to be non-optimal if
writes are considered [Yu76]. There are also variable space algorithms,
where the replacement policy more generally determines when a block is
to be removed. We are concerned here only with fixed space policies.
Write Policy

The write policy determines when a modification is presented to the
secondary storage. Writes may always go directly to the secondary
storage using the write through policy. Alternatively, the write may go
to the cache to be written at some later time, usually when the block is
about to be replaced, which is called write-back or copy-back. Clearly
write-back can never cause more accesses than write through, and usu-
ally far fewer. On the other hand, since it deals in blocks rather than
words, write-back may increase the number of bytes written. It also
requires that cache consistency be considered if several caches can share
access to secondary storage, as is the case in a multi-processor bus. In
addition, dirty blocks may remain in the cache for a long time, leading
to reliability issues in large volatile caches. The decrease in memory
traffic from write-back makes it very valuable in systems with limited
memory bandwidth, such as shared-bus multiprocessor systems.

Fetch on Write
If a block becomes resident in the cache due to a write (which it may for
either write-back or write through), it may be necessary to first fetch the
block from secondary storage. This fetch on write is needed, for exam-
ple, if only a portion of the block is being modified by the write. The
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alternative is to keep track of the portion(s) of the the cache block
which are “valid”, which becomes difficult when several disjoint portions
of the block are written. Even when fetch-on-write is in effect, there are
situations where it can be avoided. Two examples are when the entire
block is being overwritten, or when the contents of the rest of the block
are predictable, such as when the block is a “‘new” block in a file system.

Prefetch

Because of spatial locality, a reference to a block often implies that the
next physical block will soon be referenced. It is possible to take advan-
tage of this anticipated reference and to prefetch the next block in
advance. This reduces the delay when the next block is actually refer-
enced. Prefetch is advantageous when it can be overlapped with pro-
cessing of other references, or when two or more blocks can be fetched in
much less time than all of them individually, as is the case with disk
secondary storage. While it reduces the delay, prefetch will increase
memory traffic unless all prefetched blocks are referenced before they
are replaced. It may also result in memory pollution, where a soon-to-
be-referenced block is displaced to make room to prefetch an unneces-
sary block [Smit78b].

1.2. Metrices

The performance of a memory system can be measured in several ways.
Perhaps the most common is the miss ratio, which is the fraction of references
which were not satisfied by the cache. Conversely, the hit ratio is the fraction
which were satisfied by the cache. The miss ratio is a latency metric since it
determines the apparent access time of the memory system. For a multi-level
hierarchy, the effective access time is given by } ¥k, where ¢; is the access time to
the ith level, and &, is the hit ratio to the ith level. The access time to each level
includes any queuing delays.

The actual computation of miss ratios during simulation varies with the
parameters of the cache. Let N be the total number of references, and m(C) be
the number of misses in a cache of size C. If all references are assumed to be
reads, then the miss ratio for a cache of size C is given by

MRg(C)= m(C)/N (1.1)
hence the name.

With write through, where every write is a “‘miss’ (i.e. causes an access to
secondary storage), the miss ratio is

MRy{C) = (m(C)+W)/N (1.2)

where m,(C) is the number of reads which “miss”’, and W is the number of write
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references.

When write-back is used, this becomes
MRys(C) = (m,(C}+dp(C))/N (1.3)
where dp(C) is the number of dirty blocks ‘“‘pushed” from a cache of size C.

If write fetch is also considered, a write could result in two accesses to secon-
dary storage, one to fetch the block and another later to write it. The miss ratio
is now given by

MRugwr(C) = (m(C)+dp(C))/ N (1.4)

where we have used the fact that a write fetch is actually just a read reference
and occurs if the block reference ‘‘misses’.

All of the expressions so far assume that the processor must wait for the
write to secondary storage to complete before continuing. It is often reasonable to
buffer the writes so that the processor can continue almost immediately. In this
case delay occurs only if there are enough accesses to create contention. (In
[Smit79], it is observed that when memory bandwidth is sufficient, four store-
through buffers are sufficient to largely eliminate queuing for writes.) Under this
assumption, the write-back miss ratio with write fetch is again simply

MRy#{C) = m(C)/N. (1.5)

A related metric is the fraffic ratio, which is the ratio of traffic between
cache and secondary storage compared to the traffic which would be present
without a cache [Hill84]. The traffic ratio is increasingly important for analyzing
shared bus systems such as multi-processor architectures or a network file system.
Although buffering may eliminate write-back from consideration in the miss ratio,
the write traffic is not eliminated, so writes must be considered in the traffic ratio.
Also, prefetch may result in increased traffic, since some prefetched blocks may
not actually be referenced.

The traffic ratio is dependent on the same factors as the miss ratio and, in
addition, depends on the size of data blocks transferred. Suppose that the proces-
sor accesses B, bytes per average memory reference. The traffic without a cache
is then B, times the number of references. Frequently the cache block size, B, is
larger than B,. We assume that each cache miss causes B, bytes to be
transferred. Then a large cache block size may act as a form of prefetch and
reduce the miss ratio, but it may also increase the amount of traffic.

J. Smith
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The general form of the traffic ratio computation is
TR(C,B.) = [m,(C)+my(C) W +/(C)+ dp(C)|*B./ N*B, (1.6)

where Wy is 1 if write fetch is used, O otherwise; m,(C) is the number of write
misses (i.e. write fetches); and f(C) is the number of prefetches. Notice that the
traffic ratio is identical to the miss ratio when there is no prefetching, no write
buffering, and the cache block size is the same as B,.

A third important metric is the transfer ratio, which is the ratio of secon-
dary storage accesses with and without cache. This metric has also been called
the transaction ratio [Gibs86], and the swapping ratio [Kubo75]. The amount of
data transferred per access may be fixed (e.g. one double-word per memory cycle)
or variable {e.g. disk 1/0). Thus, for example, a disk cache can fetch two blocks
with one I/0, potentially increasing the traffic, but without increasing the number
of accesses. The transfer ratio is similar to the traffic ratio, but is more appropri-
ate for those systems where there is a relatively high cost for a memory access,
but a small incremental cost per unit of data transferred. This is typically the
case for disk and local area network accesses, within certain limits on message
size. The transfer ratio also affects the access time if there are enough transfers to
create contention, particularly in multiple processor systems with shared memory.
A general expression for the transfer ratio is

T(C) = [m,(C)+m,(C) WS + dp(C)]/ N (1.7)

which is almost proportional to the traffic ratio with constant block sizes.

1.3. Trace Driven Simulation

One common method to calculate these metrics is to use trace-driven simula-
tion. Memory references are gathered from a system assumed to be similar to the
system being modeled. These events are then used to drive a simulation of the
system under study with varying design parameters. To the extent that the
traces apply to the modeled system, simulation is a relatively simple way to
observe the effect of changes to the memory hierarchy. Unfortunately, it could
take a large number of simulations if only a single combination of memory sizes
could be simulated at a time.

In a classic paper, Mattson, et al. showed that for certain replacement poli-
cies, the miss ratios for all memory sizes could be calculated in a single pass of the
reference trace [Matt70]. These policies are collectively known as stack algo-
rithms. The technique depends on the inclusion property of these policies. For
these algorithms, the memory at any time can be represented as a stack, with the
most recently referenced on top. The upper & elements of the stack are the
blocks present in a memory of size k. The current stack level of any block 1s
therefore the minimum memory capacity for which the block is resident. If 2
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block is referenced while at level k, it is a “hit”, and therefore resident, for all
sizes k¥ and larger. The level at which the block is found is referred to as its stack
distance. Using stack analysis, it is possible to compute the miss ratio of equation
(1.1) for all sizes by recording the hits to each level. The miss ratio for a cache
size C is:

C
MRR(C) = (N—£ hits(i))/ N (1.8)

where N is again the total number of references. Notice that, since hits(i} is never
negative, this is a non-increasing function of memory size. All stack algorithms
possess this characteristic, whereas non-stack algorithms may show points at
which performance declines with increased memory [Bela69].

The simplest example of a stack algorithm is the Least Recently Used (LRU)
policy. The stack always contains the blocks in order of last reference, with the
most recently referenced block on the top. For any memory size C, the LRU
block for that memory size is the block at level € in the stack. When a block at
level k is referenced, it is not in any memory smaller than &, and therefore it must
be fetched. The block which must be removed from any memory of size j, j
smaller than k, is the block at level j. The stack is updated by simply “pulling”
the referenced block out of the stack and placing it on top. All blocks down to
level k are effectively ““pushed’” down one level. Since the referenced block was in
all memories k or larger, all blocks below level ¥ remain unchanged. Figure 1.1
illustrates these operations for the case where the referenced block is at stack level
4, and the case where the block is not currently in the stack.

S Sy S

St
X\J———-
s(1) 5(1) (1)

5(2)

5(3)

s(4) “(4) Q: o(4)
o(5) o(5) «(5) \1 «(5)

z, in the stack at level 4 z,; not in the stack

Figure 1.1 Examples of stack maintenance using LRU replacement.
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More generally, Mattson, et al. [Matts70] showed that any stack algorithm
possesses a ‘‘priority function” which imposes a total ordering on all blocks at any
given time, independent of memory size. Notice that LRU imposes such an order-
ing based on the time of last reference. However, in the more general case the
relative priority of two blocks may change without either of them being refer-
enced. It is no longer the case that the block at level j is necessarily the one to be
pushed from that size memory. This complicates the stack update procedure, but
only slightly. First, the referenced block must still be pulled to the top of the
stack, and the block which was at the top must be pushed. In the memory of size
two, either the block at level two or the block pushed from level one will be
pushed, depending on their relative priorities. (Ties are broken by some arbitrary
rule.) In the three-block memory, either the block at level three or the one
pushed from size two will be pushed. The block which was not pushed from level
two can not have the lowest priority of the three blocks, since is is known to have
a higher priority than the one which was pushed. Similar logic applies for all lev-
els down to level k, the original level of the referenced block; only the block
currently at the level and the one pushed from above need to be compared to find
the block to be pushed. The contents of all sizes larger than k are again
unchanged. Figure 1.2 illustrates the operations required to maintain the stack.

Sy S, Sea S,
X~
s(1) 5(1) 5(1) s(1)
5(2) X 5(2) 5(2) 5(2)
5(3) X 5(3) 5(3) 5(3)
5(4) s(4) s(4) 5(4)
s5) | s(5) s(5) | 5(5)
z, in the stack at level 4 z ot in the stack

Figure 1.2 Examples of stack maintenance using a stack
replacement algorithm.
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The stack analysis algorithm is formally presented below. This algorithm
will be used as the basis for the extensions in Sections 2 and 4. Let:

X = z,,z,.zy be a trace, where z, is the reference at time ¢.

§, = the memory stack, with &,(C) = the block at stack level C.
8:{C) = ¢ for all C.

A = the stack distance of z,, that is, s, ,(A)=2,

y:(C) = the block pushed from memory of size C.

rhy(C)= a.count of the number of hits to level C.

ALGORITHM 1: GENERAL STACK ANALYSIS ALGORITHM

1. FOR 1<t<N DO For all events
2 IF z,¢S,, THEN A= If not referenced before.
3 ELSE DO

4. FIND A SUCH THAT s,,(A)=z, Find the stack distance
5 rhy(A)=rh,(A)+1 Update the read hits
6 IF a#1 If the stack needs updating
7 ye()=2,1(1) Calculate push set.

FOR 2<i<A DO y,(i)=pmin|y(i=1),84(s)]
FOR i2A DO y(i)=¢

8. 8,(1)=z, Establish new stack.
FOR i>1 DO a,(i)=2,4 (i) + pe(i=1) = g:(i)

NOTES:

1. In step 5, all counts which are not incremented are assumed to remain
unchanged at the next time interval, i.e. rh (i)=rh, (i), i #A.

2. In step 7, pmin returns the block with the lowest priority, as defined by
the replacement algorithm.

3. In step 8, plus and minus have the intuitive meaning of adding a
member to a set, or removing a member. In this context, adding a
member which is already present, or subtracting a member which is not
present, have no effect. The same is true of adding or subtracting ¢.

Notice that, in practice, it is possible to search the stack for the referenced
block and update the stack simultaneously, since the priority function can not
depend on where (or even if) the referenced block is in the stack. The update
stops when the referenced block is found. The block being pushed takes the place
of the referenced block, which is inserted on top of the stack.

As an example, consider the application of the Least Frequently Used policy
to the reference string {AAABBCCDB]}. The contents of the stack after each
reference are shown in Figure 1.3, where the number beside each block is the
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priority, i.e. the number of uses of the block. Notice that a block may be pushed
several levels because of a reference, as seen at time 8 Note too that blocks
below the level where the referenced block is found are unchanged, even though
they may have higher priorities, as seen after the last reference.

Time 1 2 3 4 8
Reference String A é_ A B B C C 2_ B

Al A2 A3 Br B2 C1 C2 D1 B3

Memory A3 A3 A3 A3 A3 A3
Stack B2 B2 B2 Di
c2 Q2

Figure 1.3 Memory contents using Least Frequently Used policy

1.4. Non-Stack Algorithms

The prohibition against a priority function which depends on memory size
prevents some otherwise simple policies from being stack algorithms, such as the
First-In First-Out (FIFO) rule [Matt70]. Another common technique which is not
a stack algorithm is the use of prefetch. Suppose that the prefetch policy is to
fetch the following block along with any fetched block, but not to prefetch if the
referenced block is already present. This is typical of a demand fetch policy,
where no fetch should take place unless the referenced block is missing. Assume
an arbitrary stack algorithm for replacement. It is easy to construct counter-
examples which violate inclusion, because the priority of a prefetched block
depends on when it is fetched, which varies with memory size. For example, con-
sider the examples of Figure 1.4, where the contents of a larger memory is clearly
not a subset of a smaller memory after the final reference.

It is possible to construct prefetch policies which are stack algorithms. For
example, the policy which always prefetches the next block, regardless of whether
the referenced block is resident, is a stack algorithm. This policy is a form of One
Block Lookahead, or OBL [Smit78b]. From the point of view of the stack this is
equivalent to the insertion of a reference to the next block after each reference.
However, this is only a practical policy when it is possible to test for whether the
next block is in the cache simultaneously with the reference to the current block.
Otherwise the cache must do double the work of searching and updating the
cache.

10 - J. Thompson, A. J. Smith
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Time 1 2 3
Reference A C A
Size
1 A C A
Memory 2 AB CD AB
Contents 3 AB CDA ACD
(a)
Time 1 2 3 4 5
Reference A B C A D
Size
1 A B C A D
Memory 2 AB BA CD AB DE
Contents 3 AB BA CDB ABC DEA
4 AB BA CDBA ACDB DACB

(b)

Figure 1.4 Memory contents using one block prefetch always,
showing lack of inclusion.

A practical prefetch policy which obeys inclusion is described by Horspool
and Huberman [Hors83]. Their algorithm adds the condition that the following
block (z,+1) is only prefetched if its stack distance is less than that of the refer-
enced block (z;). This prevents the loss of inclusion seen in Figure 1.4(a) above.
It has the added benefit of reducing memory pollution, since it ensures that z,+1
was referenced after the prior reference to z,, increasing the chances that it will
be referenced after the current reference to z,. In addition, their algorithm
adjusts the priority of z,+1 whether or not z, is fetched, preventing the anomaly
seen in Figure 1.4(b). Their algorithm also allows prefetched blocks to “age”
down the stack at a rate k times faster than referenced blocks, where k is some
small constant. They refer to their class of prefetch policies as OBL/k policies,
and also discuss variable-space counterparts, VOBL/K. The combination of fac-
tors decreases the miss ratio by 10-30% compared to LRU, with far fewer pre-
fetches than OBL.

1.6. Extensions to Stack Analysis

There have been several important extensions to the stack analysis technique.
Mattson, et. al. [Matt70] showed how the hit ratio can be computed for an arbi-
trary number of levels, assuming a common block size and replacement policy.
Gecsei [Gecs74] showed how it could be generalized to multiple levels with
different block sizes for LRU and certain related policies. Traiger and Slutz
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[Trai73] showed that it is possible to compute miss ratios for variable block sizes,
and variable associativity, in a single pass. See also [Shed76} and [Slut72].

Coffiman and Randell [Coffi71] investigated the “extension problem”, that is,
to predict the performance of memory sizes greater than C, given only the misses
from memory size C instead of a full trace. For LRU, a trace of “‘pushes’” and
“pulls” was sufficient; for other stack algorithms, the priority ranking for the
block pushed and all blocks not in the memory of size C was also required. A
trace of misses only was shown to be sufficient to provide good approximations to
the performance of larger memories in [Smit77].

A more recent extension by Silberman [Silb83] showed that stack analysis can
be applied to a ‘‘delayed-staging hierarchy” in which the processor directly
accesses several levels of the memory hierarchy. When a referenced block is not
in a higher level cache, it is supplied to the processor (at the speed of the highest
level cache to contain the block) and begins “migrating” into the higher caches.
The time elapsed until it becomes ‘“‘staged” (resident) in a higher cache is equal to
the sum of the access times of the caches below it. Further, the displacement of a
block in the higher level cache is also delayed, creating a situation where the
stack level of a block may be a function of the size of several lower level caches,
and the time since last reference of one or more other blocks. Silberman showed
that stack analysis can be applied to this class of hierarchy by maintaining the
time and cache depth of last “‘migration’” for each block. This information is used
at the time of each reference to compute the stack distance of the block for
different sizes of each level, considering the delayed staging times. This idea of
maintaining additional information about each block will be seen again in our
write-back algorithm.

2. Write-Back Stack Algorithm

We turn now to the development of a stack analysis algorithm for write-
back. We begin by discussing the problems with write-back stack analysis, then
present a general non-stack algorithm for computing the write-back ratios. We
then prove that the algorithm obeys a form of inclusion, and derive a correspond-
ing stack algorithm.

2.1. The Write-Back Problem

In write-back, a write access to the secondary storage occurs whenever a
dirty block is “‘pushed”. The main problem with write-back is maintaining the
“state'” (clean or dirty) of each block in the stack. A single dirty bit is sufficient
in the real cache, however it clearly is not for the simulation stack. Consider a
read to a dirty block at level k. For sizes k¥ and larger the block is still dirty,
since it has not been written; for sizes 1 to & it is clean. The inclusion property 1s

J. Thon A. J. Smith
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violated since the contents of the larger cache is “‘different’ in the sense that the
block has different attributes in some larger sizes. A second problem is accounting
for the “dirty pushes’”. Each miss from a memory of size C causes a push from
each smaller memory; that pushed block may be dirty. On first inspection, this
suggests that counts need to be maintained and updated for every memory size
from which a dirty block is pushed. We will show that a surprisingly simple tech-
nique solves both of these problems.

2.2. A Non-stack Algorithm

We begin by assuming that write-back is not a stack algorithm, and imagin-
ing a general algorithm for computing write-back miss or transfer ratios. The
algorithm is based on the stack analysis algorithm from Section 1.2, but maintains
a separate set of dirty blocks for each cache size in order to solve the problem of
the non-inclusion of dirty bits. In addition to the symbols defined in Section 1.3,
let:

z, if z,i5 a2 write
w = W,W,.WyxN where W=
¢ otherwise

D,(C) = the set of dirty blocks in a memory of size C.

= {z :z is dirty in memory of size C'}.

the dirty block pushed from a memory of size C
¥(C) if y(C)ED(C)

¢ otherwise

~

-
Q

-
I

dp,(C)= the number of blocks written back from a memory of size C.

When a block is written it must be added to each dirty set. A block is
removed from a set if and only if a dirty block is pushed from memory. We
define Algorithm 2 by adding steps 7A and 8A to Algorithm 1. Note that if write
fetch is not used then line 5 of Algorithm 2 must be conditioned on a read, i.e. IF
wy=¢ THEN rh,(A)=rh(A)+1.
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ALGORITHM 2. GENERAL NON-STACK WRITE-BACK ALGORITHM

1. FOR 1<t<N For all events
2 IF z,¢ S,y THEN A= If not referenced before.
3 ELSE

4. FIND A SUCH THAT &,,(A)=z, Find the stack distance
5 rhy(A)=rh(A)+1 Update the read hits
] IF A#1 If stack needs updating
7 vi(l)=2.4(1) Calculate push set.

FOR 2<i<A DO y(i)=pmin|y,(i—1),8¢~ (i)
FOR 124 DO yi)=¢

TA. FOR 2<i<A DO Calculate dirty push set
IF y(i)€Dy (i) THEN If block 18 dirty
poli)=y(i) _ Include in dirty push set
dp(i)=dp.y ()+1 Count dirty pushes
ELSE pi)=¢
8. 8(1)=z, Establish new stack.
FOR i>1 DO &,(i})=8.,(s) + ye(§=1) = y.(5)
8A. FOR i21 DO D(i)=D (i) + wy — p¢l7) FEstablish new dirty set.

2.3. Dirty Set Inclusion Property

The inclusion property of stack algorithms states that if a block is present in
memory of size C then it is present in size C+1, and therefore in all larger sizes.
This can be formally stated as M,(C)C M,(C+1), for all ¢t and C. We now show
that a similar condition applies to dirty sets, that is, if a block is dirty in a
memory of size C then it is dirty in all larger sizes.

PROPOSITION 2.1: D,(C)C D,(C+1), for all t and C.

PROOF: Choose an arbitrary ¢. The condition certainly applies at the
start of the simulation. Assume it to be true at time t—1. We will operate on the
sets in ways which preserve the subset relation and show that it holds at time ¢.

Doy (C)C D, (C+1)
Adding the possibly null block w, to both sets does not affect the subset relation.
D (C)+wC D, (C+1)+w,
Similarly, the relation holds if the block p, is removed from the smaller set.
Dy (C)+w—p(C)C Dy (C+1)+w,
Finally, removing the same block from both sets preserves the subset relation.
D1 (C)+w=p(C)=p(C+1)C D 4 (C+1)+w—p(C+1)

Note that the right-hand side is exactly D,(C+1) as computed by line 8A, while the
left-hand side differs from D,C) only by the term p,(C+1). There are three
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possible values for p,(C+1) none of which affect the set on the left-hand side:
a) if y(C+1) is not dirty then p,(C+1)=¢;
b) if y,(C+1)=y,(C) then p(C+1)=p.(C);
¢) if y.(C+1)#ye(C) then p(C+1)7#p.(C). However, it must be true that
y(C+1)=8,,(C+1), that is, the block pushed from size C+1 was the block at

level C+1. But s,,(C+1)¢ M, (C), and therefore p,(C+1)¢ D, (C), so again it
has no effect.

Removing this term gives
Dy (C)Hw;—p(C)CS Dy (C+1)+w —pi(C+1)
which is exactly equal to

D(C)S D(C+1)

With these facts we can simplify the algorithm considerably. First,
D,(C)C D((C+1) implies that there is a minimum size at which a block is dirty (if it
is dirty at all). Intuitively, this is the smallest memory from which the block has
not been pushed since its last write reference, and therefore the smallest memory
size in which it is still dirty. This is also the largest stack distance the block has
attained since it was last written. Therefore the separate D,(C) can be replaced
by a single array. Let di(z) be the dirty level of block z; infinity if the block has
never been written. A block at level & (i.e. s(k)=z) is dirty if and only if di(z)<k.
We can set the dirty level to 1 when a block is written and update it as the block
is pushed.

2.4. Writes Avoided

Before defining the new algorithm, let us also reconsider the way dirty pushes
are counted. In Algorithm 2, dp is updated as each block is pushed. Also, recall
that the purpose of write-back is to avoid the physical write to secondary storage
for each write reference which is required when using write through. We can
count the number of write-backs required in two ways. One is to count them
directly. The other is to count the total number of writes, and then to subtract
the number of times that no additional write-back is required, since the block was
already dirty or is being deleted. When a write does not require a write back, we
increment the count of writes avoided. This is analogous to the way reads are
computed in the basic stack analysis algorithm, where a read is avoided for all
sizes larger that the current stack distance.

Ignoring deletes for now, a write is avoided only when a dirty block is
overwritten, since both the previous and current modification can be written by
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the next physical write (copy-back). Therefore we can say that the previous write
has been avoided for all sizes equal to or greater than the current dirty level.
Notice that we now only care about the dirty level for the block being referenced
and therefore we only need to adjust di for the referenced block. If it is found at
level A which is below its dirty level (i.e. A>dl(z,)), we can reason that the block
has been pushed (while dirty) from all levels between dl(z,) and 4, therefore the
proper value for di(z,) is A.

We now define wa(C) to be the writes avoided at level C, that is, the number

of writes for which the referenced block was still dirty in memory sizes C and
larger. The combined algorithm is shown below.

ALGORITHM 3: WRITE-BACK STACK ALGORITHM

1. FOR 1<t<N DO . For all events
2 IF z,¢S,, THEN A= If not referenced before.
3 ELSE

4. FIND A SUCH THAT s&,,(48)=z, Find the stack distance
5. rho(A)=rh ,(A)+1 Update the read hits
6 IF di{z,)<A THEN di(z,)=4 Set the "real” dirty level.
7 IF A5#1 If stack needs updating
8 ye()=8,.,(1) Calculate push set.

FOR 2<i<A DO y(i)=pminly(i—1),8¢ (1)}
FOR i>4 DO y(i)=¢

9. 8(1)=z, Establish new stack.
FOR i>1 DO a,(i)=s.(i) + y:(i=1) = w:(i)
10. IF w,#¢ THEN ' Skip if a read.
11. IF di(z,)#2 THEN
wa (dl(z,))=wa,,(dl(z,))+1 Count writes avoided.
12. dl(z¢)=1 Block 13 dirty.
13. W=W,_,+1 Count of write references.

For the special case of LRU, this algorithm is particularly simple. As in the
standard stack analysis algorithm for LRU, updating the stack is a matter of
removing the referenced block and inserting it at the top of the stack. The fact
that only the referenced block affects the statistics is particularly useful for this
case, since no work needs to be done while searching for the referenced block.
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2.6. Dirty Push Computation
Using Algorithm 3, the number of dirty pushes which have occurred by time

¢t for a memory of size C is given by

c
dp (C)=W,— }wa,(i) — |D(C)! (2.1)

[ /

where the count of write references by time ¢ is
¢
W,=}'(1:w;i=z)
{==]

and the count of dirty blocks resident in the cache of size C is the size of the set

Dy(C) = {z:z=4,(4), ALC, dl(z)}<C}

The first two terms of (2.1) are obvious, but we should elaborate on the need
for the third term. It should be clear that each block which is still dirty has
avoided the most recent write for all sizes in which it is still dirty and should
therefore be subtracted from the count of writes. This argument applies at any
point during the trace, and at the end of the simulation. Since the relevant
metrics are those gathered during the trace period, regardless of any activity
which occurs after the trace ends, we should consider each remaining dirty block
as having avoided a write. To simplify the computations, we make a final scan of
the memory stack and update wa(d!(z)) for each dirty block z. Of course, the
effect of this should be small if the total number of trace events is large.

Using this expression for the number of dirty pushes leads to a simple re-
currence for computing the traffic ratio. Recall that equation (1.7) for computing
the transfer ratio from Section 1.2 is

T(C) = |m,(C)+m (C)™WS + dp(C)]/N
Assuming write-fetch, the first two terms can be replaced by the stack analysis

computation of the miss ratio given by (1.8), giving

C
T(C)=[IN = Lrh(i)] + dp(C)]/N

(=)

Substituting (2.1) for dp(C), assuming that the final scan has updated wa, this
simplifies to

c c
T(C)= [N = Lrh(i)] + W, = Jwa(i)]/N

(] =]

C
T(C) = [(N+W,) = 3 (rh(i)+wa(i))}/ N (2.2)
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or
T(0) = (N+W,)/ N (2.3)
T(C) = T(C-1)-[(rk(C)+wa(C))/ N]

Notice that since rh(i) and wa(i) are both non-negative, this function also
decreases as memory size increases, just as the miss ratio does.

2.6. Warm Start

If the simulation results are gathered starting from an empty stack, the
results can be biased by the fact that many of the early references will be misses
in all cache sizes. In fact, until the memory contains k blocks there is no chance
of a hit at level k, producing a higher than expected miss ratio. In some situations
this cold-start miss ratio is appropriate, for example when a single-program
address trace is used to derive multi-programming metrics [East78]. In other
situations, the desired metrics are those for a system in steady-state. In these
cases it is common to warm start the simulation to reduce startup eflects. A
warm start consists of allowing the simulation to run until it is assumed to be in
steady-state, often either for a fixed number of events or until the memory con-
tains a fixed number of blocks, then stopping. Without changing the state of the
simulation, all statistics are cleared. The simulation then resumes from its current
state. The final metrics are those gathered after the warm start.

Warm start using the write-back algorithm can produce an anomaly in the
transfer ratio. This is caused by the final scan of memory which considers all dirty
blocks as having avoided a write — a write which may have occurred before the
warm start. Suppose, for example, that the write-back simulation is warm
started, and suppose that W, and we are zeroed. Then immediately after warm
start, the value of dp(C) calculated using (2.1) may be negative for some values of
C, as shown in Figure 2.2, where the number in parentheses is the dirty level of
the block. Of course, a ‘“‘negative push’ is meaningless. We can keep the
numbers positive by setting W, to the number of dirty blocks in the cache at
warm start, but then dp is immediately non-zero for some cache sizes. Another
alternative would be to zero both we and di, but then it will be a long time before
any dirty block could be pushed from large sizes — in conflict with the reason to
warm start in the first place.
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Level Stack we dp
1 Al) 0 1
2 B4 0 -1
3 Cloo) 0 -1
4 D(4) 0o -3
5 E(5) 0 -4

Figure 2.2 Count of dirty pushes after zeroing W, and va.

Since the third term of (2.1) increases with C, the second term of (2.1), the
sum of wa, must decrease for larger C if we want the computed value of dp to be
zero immediately after warm start. This can only happen if some wae are nega-
tive. The solution we use is to zero wa at warm start, then decrement wa(di(z))
for all dirty blocks z. With this solution dp(C) is zero immediately after warm
start for all C, as it intuitively should be. See Figure 2.3a. Now suppose that a
total miss causes all blocks to be pushed (Figure 2.3b). The result is that dp(C) is
zero except for those sizes from which a dirty block is pushed — consistent with
the result from a simulation of a single cache size, or a real cache

Level Stack wa dp Level Stack ws dp
1 A(l) -1 0 1 F(oo) -1 1

2 B(4) 0 0 2 A1) 0 0

3 C(o0) 0 0 3 B(4) 0 0
4 D(4) -2 0 4 Cloc) -2 1
5 E(5) -1 0 5 D(4) -1 1
6 E(5) 0 0

(a) (b)

Figure 2.3 Count of dirty pushes (a) after warm start with W,=4
and, (b) after all blocks are pushed one level.

Note, however, the unexpected result that the transfer ratio due to dirty
pushes is no longer a monotone decreasing function of size. In fact, if the warm
start of Figure 2.3(a) were followed by the unlikely event of five total misses, the
resulting transfer ratio would be increasing with cache size. It seems that the
rate of dirty pushes may be exaggerated for larger cache sizes by the fact that
there are more dirty blocks in the larger cache. (There may also be a higher pro-
bability that blocks pushed from larger caches are dirty. See Section 5.2) This
“error’ for large sizes is bounded by the number of dirty blocks in the stack
divided by the number of references after warm start. It can therefore be made
arbitrarily small by increasing the number of references after warm start. In most
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cases, locality will cause the write-back traffic ratio to assume its normal decreas-
ing form.

3. Extensions

In addition to write-back, several intermediate and related policies can be
analyzed using our technique.

3.1. Write Through

This policy is trivially included in the algorithm by setting di(z,) to infinity
instead of one after a write. If fact, since the total number of write requests is
known, both the write-back and write through transfer and traffic ratios are avail-
able simultaneously. It is also possible to simulate a combination of policies, pro-
vided the choice of policy is not a function of memory size. For example, some
blocks could be write through and others write-back, a scheme used in some real
caches, for example the Fairchild CLIPPER processor [Cho86] and the NEC disk
cache [Toku80]. An example of an algorithm for such a cache is given as Algo-
rithm 4 below.

ALGORITHM 4: MIXED WRITE-BACK/WRITE-THROUGH STACK ALGO-
RITHM

1. FOR 1<t<N DO For all events
2. IF z,¢S,, THEN A= If not referenced before.
3 ELSE

4 FIND A SUCH THAT s,,(A)=z, Find the stack distance
5. IF w,=¢ If this i3 a read
6. rh(A)=rh (A)+1 Update the read hits
7 IF di(zy)<A THEN di(z,)=4 Set the "real” dirty level.
8 IF a1 If stack needs updating
9 ye(l)=8,(1) Calculate push set.

FOR 2<i<A DO y(i)=pmin|yi—=1),8;(i)]
FOR i>A DO y,(i)=¢

10. 8(1)=1z, Establish new stack.
FOR i21 DO s(i)=2, (i) + vali=1) — y.ls)

11. IF w,#¢ AND BLOCK IS WRITE-BACK THEN If write-back.

12. IF di(z4)3%00 THEN Update dirty pushes.
wa,(dl(z))=wa,(d!(z,))+] Count writes avoided.

13. di(z)=1 Block 1s dirty.

14. W,=W,_,+1

15. ELSE di(z,)= Write-through or read
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3.2. Periodic Write-Back

With large caches, there may be a very long delay before a block is removed
by replacement. We have mentioned that reliability considerations may dictate
that a dirty block be written before this time. Suppose that all dirty blocks are
written every n seconds instead. An example of this is the UNIX file system pol-
icy of writing all dirty file system buffers to disk every 30 seconc/is. Alternatively,
suppose only certain blocks are written, for example by a policy to write a block
after it has been unreferenced for n seconds. These policies are all stack algo-
rithms, provided that the write happens for all memory sizes where the block is
dirty, in order to maintain inclusion in the dirty set.

A forced write-back is implemented in the algorithm by setting di(z) to
infinity for each written block. It has no effect on writes avoided, except that the
write which made the block dirty can not subsequently be avoided. The effect of
this is to increase the calculated number of dirty pushes. Consider the third term
in (2.1) for any C where the block is dirty: the block was dirty and included in
D(C); it is now clean and not in the term; the net increase to dp,(C) is 1.

3.3. Deletions

A important consideration in file system studies is the existence of deletions
in the reference string. If a file is deleted, the blocks of that file should be
removed from the cache without write. With a write-back cache and short file
lifetimes, it is likely that file blocks will be created and deleted without ever being
written to the next level [Oust85). Deletions also occur in processor caches when
blocks are invalidated, but generally not without writing the block first if it is
dirty. This case is discussed is Section 3.4.

Deletion of blocks from the cache was discussed by Mattson et al. [Matt70]
in the context of a “‘call back’ hierarchy, where cache blocks may be invalidated
by a write directed to a lower level. The example used by Mattson is a virtual
memory system in which all 1/O occurs to blocks residing in an “I/O Subsystem',
pot the CPU memory. If an I/O is addressed to a block which is in CPU memory,
that block must be invalidated. Greenburg [Gree74] also discusses deletions, and
implemented an algorithm to approximate the effect of deletion. Olken [Olke81]
proposes an exact algorithm, and discusses implementation using various data
structures. None of these consider the effect of write back.

If a deleted block were simply deleted from the stack, the stack level for all
lower blocks would be reduced. This would have the undesirable effect of calling
these blocks back into a memory from which they had been pushed. Instead,
what Mattson called a “marker” block is inserted in the stack replacing the
deleted block.
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We refer to the marker blocks as “‘gaps” in the stack, corresponding to a
vacant block in all larger caches. The next push from above the gap will fill it
with the pushed block. Thus a gap will stop the sequence of pushes, just as
finding the referenced block stops the pushes in the normal case. However, since
the referenced block must still be pulled to the top, it may have to be replaced in
the stack by another gap. Thus, a reference to a block below the first gap will
seem to “‘migrate” the gap down the stack. As an example, consider the sequence
of Figure 3.3. After block D is deleted, a gap is left at level 4. References above
level 4 will not affect the gap. However, a reference below level 4 will “‘migrate”
the gap to a lower level. From the point of view of the ‘‘real” cache, the gap
represents the same vacant block, which was in all memory sizes 4 or larger.
Since block F is already resident in memories of size 6 or larger, the reference to
F has not fetched any block to fill the gap. Therefore the gap still exists in these
sizes.

Delete Reference Reference

Stack  Initial D B F
Level Stack (above gap)  (below gap)

1 A A B F

2 B B A B

3 C C C A

4 D v 5 C

5 E E E E

6 F F F y

Figure 3.3 The migration of gaps in the stack.

The effect of deletions on the transfer ratio is to introduce another way in
which a write can be avoided, particularly evident in large cache sizes. If a block
is written then deleted before it is pushed, the copy-back is avoided. The write is
avoided for all sizes greater than the current dirty level, thus satisfying the inclu-
sion property. It is therefore a simple matter to increment the appropriate
wa(dl(z,)) on deletion. In addition, the count of read hits must exclude deletes,
since a deleted block is never fetched. This is seen in lines 6 and 7 below.

The complete, though somewhat complicated, algorithm for write-back with
deletions is given as Algorithm 5 below. Let:

v = a gap marker in the stack.
T = the level of the first gap in the stack.
A' = min(AT), the level at which pushes stop.
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ALGORITHM 5: WRITE-BACK STACK ALGORITHM WITH DELETES
1. FOR 1<t<N DO For all events
2 IF z,¢S,, THEN &A= If not referenced before.
3 ELSE '
4. FIND A SUCH THAT s,(8)=z; Find the stack distance
5 IF di(z)<A THEN di(z;)=4 Set the "real” dirty level.
6 IF z, IS A DELETE THEN
wa(dl(z,))=wa e (dl(ze))+1 Count writes avoided.
s {A)=7 Store a gap in the stack.
BREAK Process nezxt reference
7. ELSE rh(A)=rh(A)+1 Update the read hits
8. F=min(i: 8, ()="7) Level of the first gap.
9. A'=min(AT) Level where pushes stop.
10. IF A'#1 If stack needs updating
11. yi(1)=2e4(1) Calculate push set.
FOR 2<i<Aa' DO y¢(£)=pmin[y¢(i—1),s,,_1(i)]
FOR i>A' DO yli)=¢
12. FOR i>1 DO a,(i)=s (i) + 3:(i—1) — vel) Establish new stack.
13. 8,(1)=z, Pull reference to top.
14. IF A'=T THEN ¢,(A)=7 Migrate the gap
15. IF w,#¢ THEN Skip if a read.
16. IF di(z,)%c THEN
wa(dl(z,))=wa -y (d(z,))+1 Count writes avotded.
17. di(z,)=1 Block is dirty.

3.4. Flush Back

In some situations a block should be written and removed from the cache
before it is a candidate for replacement. An example is the wholesale flush of a
local processor cache in a multiprocessor system. A more selective example Is
where an individual block is flushed from a private cache on a multi-processor bus
so that another processor can acquire the block [Katz85]. Flushing the cache
periodically is also used in some processor simulations to approximate multipro-
gramming effects [Smit82]. It should be clear that this can be simply implemented
as a periodic write-back followed by a delete. The contents of wa is unchanged.

4. Sector Cache Simulation

We now consider the study of sub-block or sector caches, and show that they
too can be simulated using stack analysis by a technique similar to that used for
write-back.
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4.1. Backgrouad

A typical cache consists of blocks or sectors of data, each with associated tags
identifying the virtual addresses contained in the block. See Figure 4.1(a). If
smaller blocks are used the total space for tags increases (Figure 4.1(b)), since
each of the blocks requires its own tags. Regardless of size, each block also
requires a valid bit indicating whether the block contains valid data.

An alternative arrzngement is the sub-block or sector cache. In a sector
cache each cache block/sector is divided into a fixed number of sub-blocks/sub-
sectors. (Throughout this section we will use IEEE-proposed terminology for such
caches, referring to sectors and sub-sectors.) Tags are associated with the sector
as a whole. See Figure 4.1(c). Transfers between the cache and secondary
storage are done in units of sub-sectors. In addition, there must be a valid bit for
each sub-sector to indicate whether or not the sub-sector data is present.

Tags v Long Sector J
(a)
Tags V\ Short Sector ‘ Tags lV Short Sectﬂ
Tags V\ Short Sector r Tags i\’ Short SectorJ
(b)
Tags iV, \Vz VJlVJ Sub-Sector 1 Sub-Sector 2 Sub-Sector 3 Sub-Sector 44}
(c)

Figure 4.1 Alternative layouts for a block/sector in a cache.

Sector caches are motivated by two factors. The first is 2 need to reduce the
number of tags to be searched. This was the motivation when it was first used in
the IBM 360/85 cache [Lipt68]. The reduced number of tags also reduces the chip
area needed for tags in a VLSI cache. A second reason for sub-sectors is to reduce
the size of each data transfer. On a cache chip with limited pins for parallel data
transfer, a large sector size would require multiple cycles, where a smaller sub-
sector could be transferred in one parallel access. Similarly, on-chip data path
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widths favor a small sector. The smaller sub-sectors may also be used to reduce
memory bus traffic when the bus is a potential constraint {Good83].

A sector cache tends to have a higher miss ratio than the same size cache
with sub-sector-sized blocks because the of the rigidity in the assignment of sub-
sectors. It may also have a higher miss ratio than the same size cache using
sector-sized blocks because each sub-sector can cause a fault. However, misses
that fetch smaller sectors may “cost” less than larger sectors, is some cases. At
the same time, the sector cache reduces the traffic ratio compared to the non-
sector cache with large blocks by not loading sub-sectors which are not needed, as
would be the case if the entire sector were loaded. The performance of sub-sector
processor cache is studied by Hill and Smith [Hill&4].

The disk cache in the IBM 3880 Control Unit is also a form of sector cache
[Gros85]. The sector size is a full track, with a variable number of sub-sectors —
one for each disk record. This organization was chosen so that the cache could be
a physical and logical copy of the disk contents, while offering the advantages of
caching. To avoid holding up the processor waiting for a full track to be
transferred, the disk is positioned to the requested record which is then
transferred to both the processor and controller cache. After signaling completion
of the requested 1/O, the controller continues to read to the end of the track into
cache, anticipating further sequential requests. This form of prefetch is called
load forward, and is discussed in Section 4.3.2.

4.2. The Stack Simulation Problem

The problem with stack simulation of a sector cache is that the valid bits do
not obey inclusion. For example, suppose sub-sector 1 of a sector is referenced
and becomes valid. Now suppose that the sector is pushed to level k in the stack,
then sub-sector 2 is referenced. The entire sector must be pulled to the top of the
stack in order for sub-sector 2 to become valid in all cache sizes, but sub-sector 1
is valid for some sizes (k and larger), and invalid for others.

Our solution is to replace the valid bit with a valid level for each sub-sector.
The valid level is the minimum memory size for which the sub-sector is still valid;
infinity if the sub-sector has never been referenced. As in the case of write-back,
the valid levels only need to be updated when the sector is referenced. A refer-
ence to any sub-sector will pull the entire sector to the top of the stack. Since
valid levels are only updated for the sector being referenced, it is possible for valid
levels to be less than the stack level of the sector as a whole. If a sub-sector has a
valid level less than the current stack level, the valid level is set to the current
level, since the sector as a whole is invalid in smaller cache sizes. The formal
algorithm is similar to the one for write-back, and is presented below. The terms
are somewhat different from those used previously.
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Let:
X = (zuy)(z2¥2)-(znyn) De 3 series of references, where (z,y) is a refer-
ence to sector z, sub-sector y at time ¢.

(z.*) = any sub-sector of sector z.
B = number of sub-sectors per sector.

vl, = the valid level of sub-sector (z,y).

ALGORITHM 6: SUB-SECTOR STACK ALGORITHM

1. FOR 1<t<N DO For all events
2 IF (z(,*)¢ Siey THEN A=c0 If sector not in stack
3. ELSE
4 FIND A SUCH THAT 8,(A)=(z¢,%) Find the stack distance
5 FOR 1<j<B DO

vz, 5)=maz (vl (ze,5),8) Fiz valid levels
6 A,=vly(z,y¢) Stack distance for (z,y)
7. rh(A,)=rh 1 (8,)+1 Update the read hits
8. IF A%l If the stack needs updating
9 yi(1)=e,4(1) Calculate push set.

FOR 2<i<A DO yo(i)=pminly(i-1),82 (F)]
FOR i>A DO y(i)=¢

10. s:(1)=(z¢.¥¢) Establish new stack.
FOR i>1 DO &,(i)=8,1(i) + y(i=1) — y:(5)
11. vl (z,y)=1 (z,y) valid in all sizes.

Notice that the miss and transfer ratios are based on the valid level of the
referenced sub-sector — not the stack level of the sector as a whole. For example,
in Figure 4.2, a reference to sub-sector Al is a hit at level 4, since the sub-sector
is not present in sizes smaller than 4. On the other hand, a reference to sub-
sector B2 is a hit at level 2, since the sector as a whole is absent from size 1.

Stack  Sector Sub-sector

Level 1 2 ii_
1 A 4 1 0o
2 B 2 1 oo
3 C 1 1 1
4 D 1 ) 1)

Figure 4.2 Valid levels in a sector cache.
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4.3. Extensions

4.3.1. Write Back

The first obvious extension is to consider write back with a sector cache.
Since these are independent they can be combined by maintaining a dirty level in
" addition to the valid level. The dirty level could be associated with the entire sec-
tor, however since part of the motivation for the sub-sector cache is to reduce bus
traffic, it is more logically associated with each sub-sector. The algorithm is simi-
lar to those already presented.

4.3.2. Load Forward

Load forward is a form of prefetch associated with sector caches [Hill84].
After loading a requested sub-sector, successive sub-sectors are loaded until the
end of the sector. As with any prefetch, this reduces the miss ratio because of the
strong probability of sequential references. However, unlike normal prefetch,
there is no chance that load forward can cause memory pollution [Smit78b] by
displacing a soon-to-be-referenced sector.

Under certain conditions, load forward is a stack algorithm. We will present
a formal algorithm assuming it is not a stack algorithm, then develop the condi-
tions under which it is a stack algorithm. Again, imagine a non-stack algorithm
which keeps a separate memory set M(C) for each size C. For simplicity we ignore
writes. In addition to symbols previously defined, let:

(z,y)t = (z.y) plus the set of all sectors/sub-sectors prefetched with sub-sector
(z.y). For the moment we will not Festrict it to load forward.

M,(C)= the set of valid sub-sectors in memory of size C.

= {(z.y):(z,y) in memory of size C at timet }

s(C) = the set of valid sub-sectors of the sector at stack level ¢. Note that
there can be sub-sectors which are valid at larger levels but not at C.

= {(z,y):(z,y)EMg(C) ] (zr‘)iMl(J) ’ IS‘SB ’ fOl' an J<C}
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ALGORITHM 7: GENERAL NON-STACK LOAD-FORWARD ALGORITHM
1.FOR 1<t<N DO For all events
2. IF (z4,*)¢Sea THEN &= If sector not in stack
3 ELSE
4 FIND A SUCH THAT (z,*)€51(8) Find the sector distance
5. FIND A,=min(C:(z,¥)€ M{(C)) Find the sub-sector distance
6. rhe(A,)=rhe1(8,)+1 Update the read hits
7. IF A#1 If the stack needs updating
8 y1)=24(1) Calculate push set.

FOR 2<i<A DO el )=pmin{y(i—1),8 ()]
FOR i>A DO y,(i)=¢
9. FOR 1<i<A, DO M(i)=Mu.(i) + (z.9)F — veli) Establish new memory.

We want to show inclusion, that is, M,(C)C M,(C+1) for all t and . We can
immediately think of a situation where this will be violated. For example, sup-
pose (z.y) prefetches (z,z), and these sub-sectors are valid at the levels shown in
Figure 4.3(a). Now let (z,y) be referenced. For all sizes less than k, (z.y) is
fetched, prefetching (z.z). For sizes greater than k, peither sub-sector is fetched.
The valid levels, which are shown in Figure 4.3(b), violate inclusion since (z,z) is

not present for sizes between k and I.

1 Memory Size‘ L
i

— &~

X,y
(x.y) valid levels

(x,2) —

(a) Before reference to (x,y)

L . Memory Size1 .
v k !
| .

(x.y) I~ ,
valid levels [

(x2) — — —

(b) After reference to (x,¥)

Figure 4.3 A situation where load-forward can violate inclusion

However, suppose the initial configuration is reversed, as shown in Figure
4.4(a). The result of a reference to (z,y) is that (z,2) is prefetched for all sizes less
that ¢ (although it only needs to be accessed from secondary storage for sizes less
than k), resulting in both sub-sectors becoming valid in all sizes. See Figure
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4.4(b). Therefore a necessary condition for inclusion is that the first configuration
can never occur.

{ . Memory SizeI L
' k i
|
X, —
() valid levels [
(x,2) —
(a) Before reference to (x,y)
1 . Memory Size‘ .
! k !
I
Xy) 0
() | valid levels N
(x,2) I l " g
(b) After reference to (x,y)

Figure 4.4 A situation where load-forward preserves inclusion.

Stated formally, this leads to the following proposition.

PROPOSITION 4.1: Using Algorithm 7, if (z,2)€(z,y)* and (z,y)€ My(C),
then (z,z)€ M,(C) and inclusion holds.

PROOF: Choose an arbitrary size C. It is certainly true at the start when
the cache is empty. Assume the induction hypothesis that the condition holds at
time t-1. We will show that it holds after the reference at time ¢t. Consider the
possible configurations of (z,y) and (z,z) which could lead to (z,y) present at time t.
Case 1:

Neither (z,y) nor (z,z) present at time t-z, and (zy) is referenced. Both sub-

sectors are fetched, and the condition holds.

Case 2:
' Sub-Sector (z,z) present, but not (z,y), and (z,y) referenced. Both are again
fetched, and the condition holds.
Case 3:

Both present, and (z,y) referenced. As shown earlier, both become valid in all

sizes, and the condition holds.

Case 4:
Both present, and (z,z) referenced. Sub-sector (z,z) will become valid in all
sizes. Although (z,y) is unchanged, the condition still holds.
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Case 5:
Both present and another sector referenced. If sector x is not pushed from
size C, then the condition still holds. If the sector is pushed from size C, then
neither (z.y) not (z,z) will be present, and the condition holds.

Case 6:

A more subtle case, where both are present and sub-sector (z,w) is referenced.

If neither (z,y) nor (z,z)€(z,w)* then neither is affected, and the condition

holds. If (z,z)€(z,w)*, or if both are, then the condition holds. However, if

(z,y)€(z.w)*, but not (z,z), then the new configuration violates the condition.

Similarly, if neither is present, or (z,z) alone is present, there is no problem

unless (z,y)€(z,w)* and (z,z) is not. /

The proposition is therefore true if the prefetch sets obey the transitive con-
dition that if (z,z)e(z,j)*’ and (z,y)€(z,w)* then (z,z)€(z,w)*. This condition is
satisfied by load forward if it loads the entire rest of the sector {but not if it loads
just the next sub-sector, say).

We can now show that Algorithm 7 satisfies inclusion.

PROPOSITION 4.2: If Algorithm 7 is used then M,(C)C M,(C+1) for all ¢
and C.

PROOF: It is certainly true at the start. Assume it is true at time t-1 for
an arbitrary size C. Again we perform operations on each set which preserve the
subset relation to show that it is true at time ¢.

M, (C)C M, (C+1)
M (C)-y:(C)C M1 (C+1)
M1 (C)=yi(C)-y(C+1)C My (C+1)=y,(C+1)

By an argument similar to the one used to prove Proposition 2.1, y,(C+1) can have
three possible values, none of which affect the subset relation:

a)  y(C+1)=¢

b) y(C+1)=yC)

¢) y(C+1)#y.(C), in which case y(C+1)=2,,(C+1), which is not in M,(C).

Therefore
M4 (C)=y(C)C M1 (C+1)-yi(C+1)
M (C)+(z,5) =3:(C) C Mo, (C+1)+(z.¥) -y (C+1)

For C<A,-1, these are exactly the computations from line 10. For ¢>4,, the
proposition is true by the induction hypothesis, since the contents of memory are
unchanged. For ¢=A -1, the algorithm uses (z,y)* on the left-hand side, but not
on the right. But (z,y)*< M,(C+1) by the prior proposition, therefore the right-
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hand side is M,(C+1), giving
M,(C)C M,(C+1)

as was to be shown.

Because of inclusion, we can convert Algorithm 6 to a load forward algorithm
using valid levels, as follows. /

ALGORITHM 8&: STACK ALGORITHM FOR LOAD FORWARD

1. FOR 1<t<N DO For all events
2. IF (z¢,*)¢Ses THEN A= If sector not in stack
3. ELSE

4. FIND A SUCH THAT &,(A)=(z,%) Find the sector distance
5. FOR 1<j<B DO vly(z,j)=maz(vle(2.,5),8) Fiz valid levels
6. A,=vly(ze.90) Find sub-sector distance
7. rhe(Ay)=rheq (8,41 Update the read hits
8. IF as# If the stack needs updating
9. yi(1)=2.1(1) Calculate push set.

FOR 2<i<A DO y(i)=pmin|y(i=1),e1(i)]
FOR i>A DO y(i)=¢

10. s ()=(z.¥)* Establish new stack.
11. FOR y<i<B DO vlz,i)=1 (z,y)* valid in all sizes.

5. Experimental Results

5.1. Run-Time Comparison

As we stated earlier, the chief advantage of stack analysis is that it allows the
desired metrics to be calculated for all cache sizes in a single pass of the trace
data. Although the overhead of maintaining the memory stack usually makes
stack analysis take longer than the simulation of a single cache size, it should take
only a fraction of the time required to produce a reasonable curve using several
single-size simulations. We have used our write-back stack algorithm in the
analysis of a variety of trace data, and find that this time savings does not always
occur. For example, file system traces typically exhibit much poorer locality than
single program address traces. This results in excessive run times using the
straight-forward implementation of the stack simulator. In a companion paper we
present several techniques to reduce the execution time of stack analysis by using
a tree-based representation of the stack [Thom87].

Table 5.1 shows the execution times for simulations using several traces of
various types. The trace files are described in more detail in Section 5.2. All
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simulations use LRU replacement. The first column shows the time required to
compute a poiat on the the miss or transfer ratio curve using a simple simulation
of a single cache size. The second column is the time for stack analysis to com-
pute the entire curve using a naive implementation which searches the simulation
stack from the top to find the stack distance of the referenced block. The third
column shows the time required using the best stack implementation presented in
[Thom87]. In most cases this implementation uses a hash table to locate the refer-
enced block and a binary tree to determine the stack distance. All times are in
seconds for simulations of approximately 500,000 events running on a VAX
11/750. We see that the stack algorithm takes on the average 22% more time for
memory address traces and twice as long for the file system traces, as compared to
the single-size simulation. However, it reduces the execution time by as much as
90% for the program address traces, and at least 80% for the file system traces,
when compared to the time required to approximate the miss/transfer ratio
curves using ten non-stack simulations.

Comparison of Execution Times (CPU seconds)
Trace Single Size | Simple Stack | Best Stack
Simulation Simulation Simulation
Program Address Traces
FGO1 351 487 429
FGO2 306 357 357
MVS 369 878 460
LISPCOMP 328 512 428
RISCR 225 248 225
SPICE 277 342 342
VAXIMA 359 737 475
UNIX File System Traces
ERNIE 598 20,787 1,317
ARPA 612 19,416 1,246
CAD 622 31,375 1,111

Table 5.1 Comparison of execution times for stack analysis and
single-size simulations, in CPU seconds.

5.2. Write-Back Probability

Before the discovery of our write back stack algorithm, an attempt was made
to estimate write-back trafic in the following way. FEach time a miss occurs
(ignoring gaps) a block is pushed from all cache sizes. The write-back traffic
should be approximately equal to the miss ratio times the probability that the
block pushed from cache is dirty [Smit85a). Smith estimated for program data
addresses that half of all pushes are dirty, but with wide variations between pro-
grams. It was also reasoned that the probability that a push was dirty increases
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with cache size, since the pushed block will have been resident longer and hence
bhave a higher probability of having been writter.

Write-back stack analysis allows us to compute the probability of a dirty
push directly and to compare this to the previous approximation. Although the
probability of a dirty push is not needed directly in the computation of transfer
ratios using equation (2.5), it is useful in its own right, for examp/le as a parameter
of a queuing model of a memory system.

5.2.1. The Trace Data

The traces used in these comparisons consist of instruction and data
addresses from the execution of programs on one of several machines. They
represent a variety of different applications in three different languages. The
traces are: FGO1 (IBM 370, Fortran execution, factor analysis), FGO2 (IBM 370,
Fortran execution, analysis of satellite data), MVS (standard MVS operating sys-
tem workload at Amdahl Corp.), LISPCOMP (VAX, LISP compiler, written in
LISP), SPICE (VAX, Spice circuit simulator, written in Fortran), VAXIMA (VAX
symbolic algebraic manipulation program derived from Macsyma, written in
LISP), and RISC (simulated execution of a C compiler for a RISC-architecture
processor). All traces except MVS represent the execution of a single program.
Most have been used in previous studies [Smit85a]. We used a 16-byte block size
for all traces, as used in [Smit85a], and as is shown to be a good choice in
[Smit86]. The simulations using these traces considered only data caching;
instruction fetches were ignored because they are never writes, and to compare
the write back results to those of Smith [Smit85a].

Two sets of experiments were done with each program address trace. First,
each was simulated as if it were a stand-alone program. This provides a charac-
terization of each program, but generally gives an optimistic prediction of the
actual performance of the program in a multi-programming environment [East78].
In the second experiment we used the technique proposed by Smith [Smit82] to
approximate the effects of multiprogramming by writing all dirty blocks and flush-
ing the cache after a fixed time quantum, in our case every 20,000 memory refer-
ences. The simulations without flushing were warm started; the others were not,
producing some variation in the number of read/write events shown in Figure 5.2
for the same trace file.

By way of comparison, we also ran simulations using UNIX 4.2 BSD file sys-
tem traces generated on three university research computers. The traces are
identified by machine: ARPA is a VAX 11/780 used for operating system research
and development and text processing; ERNIE is a VAX 11/780 used by staffl and
graduate students for program development and text processing; CAD is a VAX
11/750 used for computer aided design research. All three machines are also used

-33- J. Thompson, A. J. Smith



Stack Algorithms for Write-Back and Sector Memories

General Trace File Characteristics
File Number of | Types of Events | Unique Mean Stack Dirty Mean
Events Read Write | Blocks Size Blocks Dirty
Program Address Traces
FGOIN 233727 66.5% 33.5% 2675 970.03 1341 (50.1%)  501.21 (51.7%)
FGO2N 182290 79.4% 206% 1049 614.51 660 (62.9%)  403.03 (65.6%)
MVSN 244292 63.4% 36.6% 4972 2672.71 3499 (70.4%) 1688.25 (63.2%)
LISPCOMPN 224856 62.1% 37.9% 1764 1370.19 660 (37.4%)  423.03 (30.9%)
RISCRN 45975 81.3% 18.7% 902 675.92 500 (55.4%)  310.02 (45.9%)
SPICEN 190460 63.2%  36.8% 602 555.75 347 (57.6%)  322.11 (58.0%)
VAXIMAN 238237 651% 34.9% 4326 3035.69 1263 (29.2%)  717.78 (23.6%)
Average 194262 68.7%  31.3% 2327 1413.54 1181 (50.8%)  623.63 (44.1%
Program Address Traces with Flushing
FGO1 234696 658% 34.2% 5203 154.91 3018 (57.0%) 88.56 (57.2%)
FGO2 182839 70.3% 20.7% 4530 133.45 2106 (46.5%) 60.90 (45.6%)
MVS 244168 63.4%  36.6% | 17174 424.75 8921 (51.9%)  221.79 (52.2%)
LISPCOMP 237867 62.1% 37.9% | 11875 317.33 2889 (24.3%) 78.67 (24.8%)
RISCR 50336 81.2% 188% 4357 107.46 1186 (27.2%) 29.60 (27.5%)
SPICE 194174 63.3% 36.7% 5642 164.37 2253 (39.9%) 66.67 (40.6%)
VAXIMA 238211 65.4%  34.6% | 14011 353.99 3556 (25.4%) 91.79 (25.9%)
Average 197470 68.6% 31.4% 8983 236.61 3418 (38.0%) 91.14 (38.5%)
UNIX File System Traces
ERNIE 475471 74.7%  25.3% | 85119 8870.06 | 60024 (81.1%) 4021.80 (45.3%)
ARPA 492040 72.0%  28.0% | 93930 705439 | 81002 (86.2%) 3471.87 (47.9%)
CAD 489962 56.8,  43.2% | 103488  11370.72 | 87180 (84.2%) 4554.18 (40.1%)
Average 485824 67.8%  32.2% | 94179 0168.06 | 79068 (84.0%) 4015.95 (43.8%)

Table 5.2 General characteristics of trace files.

extensively for electronic mail. These traces were analyzed in detail by
Ousterhout et al. [Oust85]. The trace events show logical file creation, deletion,
opens, closes, and seeks. Actual reads and writes are not recorded, however each
close or seek event includes the range of bytes read or written since the last posi-
tioning event for the file. The simulator recreates reads and writes in block size
units based on this information. These traces tend to overestimate the miss ratio,
since some of the simulated reads/writes were actually several small requests. For
these simulations we used a block size of 4086 bytes, consistent with common
UNIX 4.2BSD usage. There is no information on program paging, or file system
overhead activity such as directories. All files are identified by a logical identifier;
there is no data on physical location [Oust85].

5.2.2. General Characteristics

Table 5.2 shows the general characteristics of the traces. We
approximately 500,000 events from each file after warm start, but only counted
the data references, ignoring instruction fetches for the program address traces.

processed
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We initially speculated that writes would be a more significant percentage of the
file system traces. However when instruction fetches are excluded from the traces
to simulate a data-only cache the fraction of writes are comparable. We conclude
that writes are a factor which should not be overlooked in any cache design.

The fourth column shows the pumber of unique blocks seen in each trace file.
This number is exaggerated by cache flushing because a block reloaded after a
flush is considered a new block. It is clear, however, that the file system traces
come from a much larger population of blocks. The next column shows the mean
stack size, that is, the stack distance of the least recently used block averaged
over all trace references. These two columns together indicate the range of
interesting cache sizes for study. For example, program address traces with flush-
ing seldom use more than a few hundred blocks, whereas 10,000 blocks may be
too few for a file system simulation. Notice that deletions and the resulting gaps
tend to reduce the mean stack size compared to the pumber of unique blocks for
the file system traces.

The final two columns indicate the extent of write activity. The column
labeled dirty blocks shows the number of blocks which are ever written. This
figure is also shown as a percentage of the pumber of unique blocks. The fraction
of the blocks in the cache which are dirty will obviously affect the chances that a
block must be written when it is pushed. The file system traces have far more
dirty blocks (84% compared to 50%). The final column shows the mean number
of dirty blocks in the cache, shown also as a percentage of the mean stack size.
Although there is a wide variation between the individual program address traces,
we find that on the average, the fraction of the cache which is dirty is about the
same, near 449, for both programs and files. The reason for the relatively low
value for the file system traces, compared to the fraction of written blocks, is that
most blocks are deleted before they are pushed very far down the stack, and most
of the deleted blocks have been written. The blocks which “survive'’ seem to be
equally likely to have been written.

In Figure 5.1 we show the probability that a pushed block is dirty as a func-
tion of size. We see that on the average the projected increasing trend holds,
although the probability for our traces was closer to 409%. However, the trend for
individual traces is not consistent, and some show a distinct downward trend.
Tables 5.3-5.5 show the same data, as well as the percent of references which are
writes and the percent of blocks which are ever written. Notice that the two
traces which show the strongest downward trend are the two LISP traces,
LISPCOMP and VAXIMA. These are also the only two which have a higher per-
cent write than percent dirty. We believe there is a relation between these obser-
vations, as explained below.
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Figure 5.1 Probability that a pushed block is dirty, by memory size.
Probability of Dirty Push
Program Address Traces With Flushing
File Name FGOl FGO2 LISPCOMP MVS RISC SPICE VAXIMA  Avg
Percent Writes | 34.19 20.75 37.94 36.59 18.79 36.75 34.63 31.38
Percent Dirty 57.02 46.49 24.33 5194 27.22 3993 25.38 38.90
Cache Size
1 33.83 23.57 36.10 38.73 18.93 39.55 33.36 32.01
2 36.88 28.98 34.86 39.50 19.81 38.06 31.18 32.75
4 40.71 36.40 35.41 41.14 20.80 44.40 33.80 36.09
8 45.31 38.77 37.77 44.35 22.29 48.77 33.09 38.62
16 50.99 39.76 35.44 46.34 22.75 45.87 29.83 38.71
32 58.58 36.02 30.33 48.95 24.16 39.78 28.62 38.06
64 55.09 33.99 25.80 4999 2429 3839 26.55 36.30
128 53.67 46.68 23.03 4896 26.53 38.57 25.42 37.55
256 57.26 45.86 23.06 4865 26.84 39.77 23.99 37.92
512 57.76 46.03 24.37 51.33 26.84 39.80 25.09 38.75
1024 57.76 46.03 24.37 50.07 26.84 39.80 25.06 38.56
2048 57.76 46.03 24.37 49.07 26.84 39.80 25.06 38.42

Table 5.3 Probability that a pushed block is dirty as a function of cache size.
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Probability of Dirty Push

Program Address Traces Without Flushing

File Name FGO1 FGO2 LISPCOMP MVS RISC SPICE VAXIMA  Avg
Percent Writes | 33.55 20.63 37.94 36.62 18.74 36.80 34.86 31.31
Percent Dirty 50.13 62.92 37.42 70.37 55.43 57.64 29.20 51.87

Cache Size

1 33.44 23.50 36.15 38.77 18.87 39.59 33.64 31.99

2 36.46 28.88 34.91 30.52 19.65 38.12 31.46 32.71

4 40.57 36.25 35.51 41.16 20.66 44.45 34.08 36.10

8 45.29 38.61 37.81 4439 2224 48.77 33.44 38.65

16 50.77 39.53 35.43 46.38 22.35 45.83 30.13 38.63
32 58.48 35.36 30.22 48.98 23.65 39.26 28.94 37.84
64 53.79 32.54 25.29 50.13 22.51 36.72 26.90 35.41
128 51.06 54.33 21.83 48.52 23.49 36.09 24.63 37.14
256 51.93 56.27 20.82 4785 3290 36.40 22.66 38.40
512 49.40 65.61* 22.80 53.07 55.60* 35.10* 22.25 43.40
1024 49.67 80.00* 31.15* 61.28 0.00 0.00 20.25 48.47
2048 44.50°* 0.00 0.00 62.24 0.00 0.00 18.88* 41.87
4096 0.00 0.00 0.00 74.54 0.00 0.00 24.78% 49.66

* Based on fewer than 500 pushes.

Table 5.4 Probability that a pushed block is dirty as a function of cache size.

Probability of Dirty Push
UNIX File System Traces
File Name ARPA CAD ERNIE Avg
Percent Writes | 26.79  39.14 24.05 29.99
Percent Dirty 86.24 84.24 81.09 83.86
Cache Size
1 27.42 33.52 24 .42 28.45
2 27 .88 33.97 2493 28.93
4 28.14 34.44 25.06 29.21
8 28.37 35.06 25.21 29.55
16 28.83 34.68 25.36 29.62
32 30.02 34.32 25.76 30.03
64 31.24 34.69 27.00 30.98
128 31.47 33.57 29.79 31.61
256 28.56 30.74 30.55 29.95
512 30.22 30.11 34.14 31.49
1024 32.47 29.92 34.62 32.34
2048 37.19 33.52 36.52 35.74
4096 48.52 36.19 40.42 41.71
8192 50.70 44.39 42.32 45.80
16384 0.00 28.36 0.00 28.36

Table 5.5 Probability that a pushed block is dirty as a function of cache size.
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First, notice that the probability of a dirty push from a single-block cache is
close to the probability of a write, for all traces. This is certainly reasonable since
most blocks are pushed from the single-block cache shortly after they are refer-
enced. For other small cache sizes (in the range 2-15), the chance that a block
has been written does increase as predicted, and most of the traces exhibit an
upward trend. However, some blocks are never written, and the chance that a
clean block will ever be written decreases as it is pushed down the stack.

At the other extreme, notice that without flushing (Table 5.4) the number of
pushes eventually reaches zero for cache sizes which hold all the blocks of the pro-
gram. Therefore, when flushing is used (Table 5.3), all of the pushes from large
cache sizes are due to flushing. The probability that a block flushed from a large
cache is dirty should be very close to the fraction of blocks which are dirty, as it
is.

Since we can predict the probability of a dirty push from both small and
large caches, we naturally expect that the trend should be from the percentage of
writes to the percentage of dirty blocks. This explains the observed results, but
suggests that they may be an artifact of the flushing methodology. We believe
this is not the case and offer another explanation.

In Table 5.6 we classify all blocks into one of four classes: read only,
read/write (in no particular order), write only, and write once/read (e.g. a vari-
able which is initialized and subsequently only read). The latter class we expect to
be small in program address traces and larger in the file system traces. The table
also classifies all events as to the class of block they reference. Both of the LISP
traces show a surprisingly large fraction of read-only blocks. At the same time
these blocks receive a relatively low fraction of references. Therefore a few
“dirty” blocks are receiving most of the references, and therefore are more likely
to stay near the top of the stack. Thus the blocks being pushed from larger
caches are more likely to be from the large class of clean, read-only blocks. This
generally explains the decline in the probability of a dirty push, independent of
whether we use flushing. We can not say whether this phenomena is characteris-
tic of LISP programs in general.

In passing we note that the UNIX file system traces also show an increasing
trend in the probability that a pushed block is dirty, although not nearly as much
as might be predicted based on the fact that 85% of all blocks are eventually
written. The difference again is caused by deletions, leaving about half of the
remaining blocks dirty. We also note that the class of write once/read is very
common for file system blocks, as predicted.
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Percentage of Blocks and Reference By Class
Blocks References
File Read Read/ Write Once/ Write | Read Read/ Write Once/  Write
Only  Write Read Ornly | Only  Write Read Only
Program Address Traces
FGO1 49.87 5.27 0.07 4478 | 1514 8240 , 015 2.31
FGO2 37.08 53.77 0.76 838 | 4749 5176 0.02 0.74
MVS 2063 2830 0.24 4184 | 1669 78.90 0.03 4.38
LISPCOMP | 62.59  37.14 0.11 0.17 | 19.51 8042 0.00 0.06
RISCR 44.57  53.55 0.00 1.88 | 3402 64.20 0.00 1.78
SPICE 4236 51.83 0.17 565 | 1293 8596 0.00 1.11
VAXIMA 7080 28.18 0.16 085 | 2405 75.89 0.01 0.05
Average 48.13 36.86 0.22 14.70 | 2426 74.22 0.03 1.49
Program Address Traces {With Flushing)
FGO1 42.68 21.31 0.11 35.59 | 16.85 80.91 0.03 2.21
FGO2 53.51 30.50 0.71 1527 | 4889 48.70 0.069 2.32
MVS 48.06 34.00 0.52 17.42 | 19.76 75.05 0.12 5.06
LISPCOMP | 75.67 23.36 0.27 0.70 | 2146 78.32 0.04 0.18
RISCR 72.78 2397 0.41 2.84 | 37.22 60.49 0.22 2.07
SPICE 60.07 25.90 1.13 1291 {1463 83.10 0.10 217
VAXIMA 7462 2345 0.23 1.71 | 2600 73.72 0.05 0.22
Average 6110 26.07 0.48 1235 | 2640 71.47 0.09 2.03
UNIX File System Traces

ERNIE3 18.91 7.89 32.66 40.54 | 4877 2142 20.56 9.25
ARPAS 13.76 6.06 40.24 39.94 | 33.09 2825 28.33 10.32
CAD4 15.76 6.56 36.73 40.95 | 28.36  36.61 2262 12.41
Average 16.14 6.84 36.54 40,48 | 36.74 2876 23 84 10.66

Table 5.8 Percentage of blocks and references by block class.

8. Conclusions

In this paper we have shown how stack analysis can be extended to two
important new areas. The ability to collect transfer ratios for all memory sizes in
a single pass reduces simulation time by as much as 90%, and makes this metric
much more reasonable to collect. The transfer ratio is increasingly important in
the study of shared-memory systems, particularly for file systems. Equally impor-
tant, the ability to easily simulate sector caches, including writes and a form of
prefetch, opens up a variety of new cache designs to efficient analysis.
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