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Abstract

The world of electronic publishing software seems to divide into two camps: the con-
ventional batch-oriented programming language approach versus the more elaborate direct
manipulation paradigm. In this paper we indicate which aspects of document prepara-
tion are more conveniently handled under which model and point out several instances
of a hybrid approach which takes advantage of multiple representations. We introduce
a framework for analyzing the structure of multiple representation systems in general.
Based upon this simple but robust framework, a top-down design methodology is derived.
The design of a fairly sophisticated document development environment is discussed as a
case study of the methodology.

1 Introduction

With advances in laser printer technology and the proliferation of high-performance worksta-
tions featuring high resolution displays, pointing devices in addition to the regular keyboard,
and windowing environments, recent years have witnessed an explosive growth in the devel-
opment of electronic publishing software. An important aspect of this development has been
the exploitation of user interfaces commonly referred to as the WYSIWYG (what-you-see-
is-what-you-get) type in document development, or as direct manipulation [37,58] in a more
general context.

A key characteristic of WYSIWYG systems is the departure from a source language speci-
fication of document semantics (appearance). The system usually supports a diverse collection
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of objects such as text, graphics, tables, formulas, etc. Editing, formatting, and related fa-
cilities for manipulating these objects are integrated in such a way that many events happen
paturally and automatically. Operators are often encapsulated in a palette or menu-driven
user interface so that a desired task can be accomplished by a few simple keystrokes or mouse
clicks. These systems are highly interactive; the result of invoking an operation is instanta-
neously observed, thereby creating an illusion that the user is “directly” manipulating the
underlying object.

This approach differs substantially from the traditional source language model in which
documents are specified with interspersed textual commands much the same as ordinary high-
level language programs. By and large, a document is first prepared using a text editor, the
formatting and other related processors are then executed, usually in batch-mode, and the
result is obtained. Superficially, the differences between the two models seem to stem from the
degree of interactiveness and the level of integration. The former is the canonical interpreter
versus compiler issue, and there is nothing prohibiting a document composition language
from being incremental or interpreted to gain better interactive behavior. Integration is not
the dominating issue either; with proper editor support, it has been shown that an effective
integrated environment based on batch processors can be created [26).

A major distinguishing factor, therefore, is the explicit user manipulation of the docu-
ment target appearance versus the manipulation of a programmable source representation.
Advocates of the direct manipulation model claim that WYSIWYG systems bridge the gap
between the user’s perception and the actual task domain. Such systems relieve the user
from any concerns of detail and are very easy to use. On the other hand, critics argue that
the friendly user interface comes at the expense of generality and flexibility, or in another
word, “power”. A full-fledged symbolic language obviously offers more “expressiveness” than
the finite set of operators likely to be incorporated in a direct manipulation user interface.
Naturally, one should ask, what is the right approach?

As many have recognized (e.g. [18]), we believe the right approach is that of a hybrid model
which employs multiple representations. There are certain aspects of document preparation
that are best suited to a source language representation while others are easier to deal with
using direct manipulation techniques. Welike to view the direct manipulation user interface as
simply another specification language. Thus, by blending a variety of languages including that
of direct manipulation (encapsulated as palettes, menus, etc.) in an integrated environment,
the user interface becomes a matter of choice, dictated by convenience or preference.

The primary purpose of this paper is to establish a framework for the analysis and design
of multiple representation document development environments. We indicate which aspects
of document preparation are more conveniently handled under which model and discuss sev-
eral approaches to the hybrid paradigm which exploits multiple representations. First we
identify the domain of basic tasks involved in the entire course of document development and
review the pros and cons of the two individual models with respect to each identified task.
We then examine a somewhat orthogonal issue generally referred to as the “degree of pro-
cedurality” (or equivalently the “degree of descriptiveness”) which represents a sliding scale
between “how” and “what” to do from a user’s perspective. All these issues are summed up



subsequently by our design methodology based upon an abstract structure which captures the
multiple views of representations, transformations, and user interfaces of document prepara-
tion. Finally we describe the design of VORTEX (for Visually-ORiented TEX) [25], a multiple
representation document development environment being built at Berkeley, as a case study
of this methodology.

2 Task Domain

There are quite a few tasks that an effective document development environment must be
able to accomplish. Understanding them is important because evaluating the two individual
models relies on the underlying task being clearly identified. These tasks can be divided into
two major categories: writing and reading. The following is a list of what tasks we consider
essential: items 1 through 6 belong to the writing category, item 7 belongs to the reading
category, and item 8 covers both. It is by no means an exhaustive list, however.

1. Editing. This involves the editing of text and graphics in general and various classes
of special objects like tables, mathematical or chemical formulas, data-driven statistical
charts, fonts, bitmap images, musical scores, animation scenes, digitized audio signals,
and so forth. Many of these objects are intermixed. For instance, tables and formulas
are two special cases of text, graphics may appear in the middle of running text, text
is likely to be included in graphical illustrations, and so on.

2. Formatting. The primary issue in formatting is document appearance, or equivalently,
the layout of specific pages. At a global perspective, certain types of documents must
obey certain styles. Consequently, some default styles must be provided to cover a
wide range of commonly used documents. On the other hand, it is also desirable to
support customization so that uncommon styles can be defined by the user. At a finer
granularity, either the system or the user must be able to control the placement of
objects within a page. This may be as trivial as setting a piece of text in a certain font,
or as complicated as floating text around an arbitrarily shaped object according to a
specified flow.

3. Preprocessing. This refers to operations which must be performed prior to foi“:n:mt'cing°
Typical examples include spelling checking, writing style verification, bibliographical
citations, etc. It may also include graphics, table, mathematics, or any other processing
filters not integrated with their main formatting engine.

4. Postprocessing. These are tasks which cannot be carried out until the main document
body has been formatted. Things like cross references and indexes depend on certain
object permutations (e.g. page, section, or figure numberings); they cannot take place
unless such numbering has been resolved by the formatting process.

5. Imaging. Another important task is imaging the formatted result onto either the display
or the printer. This normally involves interpreting the document’s certain intermediate
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representation (its internal data structure or output file format) and rendering the bits
onto the workstation display or translating it into a specific printer language.

. Filing. This task concerns the filing of documents. There are two important issues. The

first has to do with how to effectively save the internal state so that future invocations
can be carried out incrementally. The second issue focuses on information interchange
and system dependence, namely whether or not the filed document can be transmitted
across and processed on different machine architectures.

. Dynamic Reading. From the reader’s point of view, a hardcopy document generated

by the print medium is fixed and static. Electronic media such as a workstation-based
environment provide an alternative which does not have to be reminiscent of its static
print counterpart. A good deal of “dynamics” can be exploited in an integrated doc-
ument development system. For example, instead of thumbing through the pages for
a reference as one would do when reading a printed document, in an integrated envi-
ronment it is possible to display and examine the target of a reference in a separate
window when the source of the reference is being read. This kind of context-sensitive
browsing, along with a number of other features not available in the print medium,
require complex system support and deserve further investigation.

. Annotations and Narrations. Annotations and narrations can be embedded in a docu-

ment to convey more information than what is available in the main document body.
This additional information can be represented in the form of text, graphics, voice,
etc. in an electronic environment. More than one author can be involved in creating
such information and the reader can be granted appropriate permission of access. For
instance, in an instructional environment, a different set of narrations can be presented
according to the level of a particular student. In a publication process, an author can
be working with a paper annotated with comments from different referees while anno-
tations intended for the editor are hidden from him or her. Providing these features
will involve security and general distributed systems issues.

Pros and Cons — A Comparison

Most of the tasks listed in the last section can be carried out using direct manipulation
techniques or by some programming language source code. In some cases, one approach may
be more appropriate than the other, while in other cases a combined approach may make
more sense. An analysis based on each task in the domain is given in the remainder of this
section.

3.1 Text Editing

Display-oriented editors can be regarded as direct manipulation systems when the underlying
task is restricted to text editing. The popular screen editors vi [38] and GNU Emacs [60]



Figure 1: Snoopy. The picture of Snoopy created using a direct manipulation graphics editor.

are typical examples of this kind. They are superior to the old-fashioned line-oriented text
editors because a full screenful of text can be directly manipulated.

Emacs also supports a source representation; a Lisp programming subsystem is embed-
ded underneath direct manipulation. Each simple operation corresponds to a Lisp primitive
upon which more complex operations can be coded, which can then be bound to user level
commands in terms of a few keystrokes or mouse clicks. This makes Emacs customizable and
extensible and thus a very powerful text editing tool [59].

3.2 Graphics Specification

The repertoire of techniques for specifying and generating graphics is very rich. Some of
the techniques are language-based, others exploit direct manipulation user interfaces, while
a few have employed a hybrid model. There are relative strengths and weaknesses for each
approach, as described below.

3.2.1 WYSIWYG Graphics Editing

In general, it is easier to specify freehand drawings such as the Snoopy shown in Figure 1
using a WYSIWYG graphics editor like MacPaint (8] than directly programming it with a
graphics language like pic [39] or ideal [64]. Also, it is more convenient to create technical
drawings such as the one shown in Figure 2 with a direct manipulation editor like MacDraw [7]
than with a noninteractive graphics programming language when visual feedback concerning
operations such as object placement and orientation is essential.



K

I

e
i
H
H
i
H
H
H
H
H
:
} H
y ¢ ¢ !
I [ W Ry SN D SN G

!

Figure 2: Layout of Windowed Tezt. A technical diagram created by a direct manipulation
graphics editor. This diagram is intended for explaining an exotic page layout, or windowed
text, in document formatting. The window in the center is a piece of graphics. The two large
boxes on top and bottom contain a paragraph’s lintel (leading text) and its sill (trailing text)
which may each contain multiple lines. Each narrow box in the two sides holds a single line
of text. Finally, the dotted arrows represent the flow of text.



MacPaint is a typical example of graphics editors specifically designed for creating artistic
drawings. Once specified, the notion of objects disappears in these editors; all that’s left is a
raster image. Drawings of this kind are obviously confined by the device resolution with which
they are created. By contrast, MacDraw represents another class of editors more suitable
for creating technical diagrams. In MacDraw, objects and their structure are maintained
throughout the editing session. When the drawing is done, it is the description of the objects
and their structure, rather than the image, that gets saved. The advantage is that the image
can be reproduced on a variety of devices with different resolutions.

A significant intermediate system is the Adobe Illustrator [2,27] which accepts a raster
image, but allows the user to recover the underlying mathematical description by tracing the
image. From that point on, the drawing can be manipulated in an object-oriented fashion,
thereby making it possible for the user to fine tune images of any kind.

There is no question, however, that drawings created by any type of direct manipulation
editors can also be described by graphics programming languages or some meaningful textual
representations. In fact, drawings created with most of these editors will eventually be trans-
lated into a source language representation or some textual format for filing and document
interchange purposes. The issue here is that in order to create such pictures efficiently, di-
rect responses from the drawing apparatus in terms of its underlying objects’ placement and
orientation are crucial. Direct manipulation interfaces, in this respect, act as an interactive
agent between the user and the task domain and are more effective than attempting to do
the programming at the source level.

3.2.2 Graphics Programming

Direct manipulation editing breaks down when a great deal of regularity, a finer degree of
control, any sort of naming, or other basic building blocks of programming languages are
required. Figure 3 demonstrates the superiority of a graphics programming language in
expressing something of high regularity. This is a circle repeated many times in rotation.
The PosTScRIPT source code needed to describe it is a “one liner” shown at the bottom of
the figure. One can imagine how cumbersome it would be to create this picture by direct
manipulation.

Another good example which shows the advantage of working with programs is the Pico
picture editor [36]. It is an interactive editor for digitized graphic images. Instead of directly
manipulating the pixels involved as many bitmap editors do, Pico treats a raster image as
a two-dimensional array of pixels. Typical operations such as changing contrast, masking or
enhancing pixels, and merging, fading, or transforming the image are defined in terms of a
C-style expression language. The user edits images by entering programs expressed in this
language with references to the pixel array. This programming approach is able to produce
startling effects on images very difficult to arrive at with WYSIWYG bitmap editors.

As yet another example, suppose we were to create a page which contains a Snoopy and
recursively the same page nested within itself like Figure 4, no WYSIWYG graphics editor
known to us will be able to realize that by any obvious means. With a programming language



36 { 60 0 45 0 360 arc stroke 10 rotate } repeat

Figure 3: Rotated Circles. A set of rotated circles and the corresponding PoSTSCRIPT code
used to generate it. PosTSCRIPT has a postfix syntax, so the one line code here means iterate
a procedure 36 times. In each iteration first a circle centered at (60,0) with a radius of 45 is
drawn (in points), then the coordinate system is rotated by 10 degrees.
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Figure 4: Recursive Snoopy. The picture of Snoopy recursively appears within itself. This
is created by drawing Snoopy first with the graphics editor Gremlin [52], then passing its
output through a Gremlin-to-PosTSCRIPT translator (due to John Coker), and adjusting the
resulting PosTSCRIPT code. The idea is borrowed from an example given in [54].
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like INTERPRESS [16], PosTScRIPT [14], or DDL [4], however, such a page can be defined as a
procedure which recursively invokes itself to a specified depth. We previously argued that it is
easier to create pictures like Snoopy with a WYSIWYG editor and that generating a textual
representation for the drawings is not difficult. The ideal approach here is to draw Snoopy
by direct manipulation first, generate the corresponding code next, and finally perform some
adjustments to realize the recursive invocations.

This is one flavor of the hybrid model which utilizes WYSIWYG as the frontend interface
and a textual representation for off-line filing. This has the advantages of being more compact
and device independent over filing the bitmap images. CricketDraw [3,50], for example, and
a host of WYSIWYG graphics editors for the Macintosh can generate a filing representation
either in PICT, Macintosh’s standard graphics description format,! or in PoSTSCRIPT. Some
adjustments may be done on this textual representation before the drawing is filed or sent off
to the printer for hardcopy.

3.2.3 Achieving Accuracy

An important issue arises in graphics specification when certain geometric properties of graph-
ical objects must be satisfied or when their precise placement is required. In direct manip-
ulation editors, the most naive solution to precise placement is to echo the current cursor
coordinates on demand. A more commonly used technique is to provide the user with a rect-
angular grid. Sometimes a gravity facility which automatically attracts the cursor to fixed
positions in the grid may be useful. Yet a more powerful paradigm based on the ruler and
compass metaphor [17] also increases the desirable accuracy.

The other possibility is to apply a class of techniques known as the constraint-based ap-
proach which requires the user to specify a set of parameters that satisfies certain algebraic
or logical equations. Given the constraints, the system tries to solve the equations simultane-
ously and returns the corresponding graphical objects. There may be more than one solution
to the same set of constraints, hence a mechanism for selecting the desired solution must be
provided.

One common criticism against this approach is that defining constraints is often counter-
intuitive, which makes it difficult for inexperienced users to add new kinds of constraints to
the system. This is actually due to the multiple representation issue inherent in this type of
system; no matter what the user interface appears on the surface, there is an underlying source
program that realizes the constraints. Switching back and forth from a highly-encapsulated
graphical interface to a more primitive textual one is difficult for casual users. Some recent
developments have focused on graphical specification of constraints with the goal of closing
the gap between the task domains [19]. :

The constraint-based approach has been incorporated in interactive systems like Sketch-
pad [61], ThingLab [20], and Juno {49], as well as in textual programming languages like
METAFONT [42] and ideal [64]. Juno, in particular, is interesting because in addition to 2
WYSIWYG type interface, the underlying constraint definition language is also made explicit

in terms of QuickDraw commands, Macintosh’s built-in graphics primitives.
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to the user — both representations are editable and changes will propagate automatically
— although the language capability is somewhat restricted from the programming language
point of view.

8.2.4 The Hybrid Approach

Clearly the ideal approach is one that exploits the prompt visual feedback available in direct
manipulation as well as the programming capability provided by the source language model.
This is exemplified by the Tweedle graphics editor [15]. In Tweedle, the user is allowed to edit
objects in the WYSIWYG manner; also supported is a text editor for editing the underlying
procedural language description. Each object in the graphical representation corresponds to
a piece of code in the textual representation. Changes made to either representation will be
mapped to the other automatically.

This approach differs from the off-line hybrid model mentioned earlier in that the textual
representation (program) is manipulated interactively. Any modification to the source pro-
gram is immediately re-evaluated, which then updates the graphical representation, and vice
versa. A great number of language design and user interface issues are involved in creating
such a system. Typical problems include variable naming and binding, object sharing and
linking, and most importantly, the internal state to be maintained in order to incrementally
reevaluate the objects.

The programming side of the hybrid approach can be realized using a visual interface
in which program constructs like variables, conditionals, procedures or macros, iterations,
recursions, etc. are encapsulated as menu items in the standard WYSIWYG fashion. The
user is still required to switch back and forth between editing programs (graphical rather
than textual in this case) and editing the actual drawings (results of program evaluation).
These graphical programs are equivalent to the textual ones in every respect. So a multiple
representation system’s emphasis is not so much on having something textual per se, but on
explicitly maintaining one representation which is programmable. This is a very important
point and will be reiterated later in Section 6.

3.3 Formatting and Layout

Traditional document development systems like the troff [53] family (with auxiliary proces-
sors tbl [46], eqn [41), etc.), TEX [43], Scribe [56], and SGML [32] are largely noninteractive
language compilers. A document described in such a language has a textual source represen-
tation which contains its content as well as formatting commands. A target representation
can be created by passing the source through the formatter. Normally, the task of editing (or
simply browsing) either representation is separated from the task of formatting.

By contrast, in direct manipulation systems such as Bravo [45], Star [1], Interleaf Pub-
lishing System 6], or FrameMaker [5], formatting is an integral part of document editing.
Here, the document is reformatted as it is edited. The distinction between source and target
representations is vague or even nonexistent; no textual commands would be used to describe
the formatting information.
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Each of these trains of development has important advantages and disadvantages. By
and large, the output quality produced by language-based systems is higher than that by
WYSIWYG editors. This is because most such compilers are batch-oriented, which means
their formatting strategies can be better optimized. Direct manipulation systems are limited,
in this respect, by certain performance requirements in response time. In order to achieve
better quality, some WYSIWYG systems like Cedar’s Tioga [62,63], Andrew’s text editor [48],
and MSWord [13] provide an option which performs some off-line formatting optimizations
before the final hardcopy is generated. This formatted version can be previewed on the screen,
but not edited. In other words, systems like Tioga are essentially WYSIWYG galley editors.
These systems assure that “what you see is an approximation to what you get” when higher
quality formatting is taken into account.

As mentioned earlier, an important advantage of the source language model is the “ex-
pressiveness” or “programmability” provided by symbolic languages. Suppose a document
processing system is a set of operations defined on a collection of objects. With respect to
simple operations, there may be little difference between the two models. The major difference
becomes noticeable in cases where higher level abstractions such as macros and conditionals
are desired. These are normally available as first-class citizens in a document formatting lan-
guage. But in most WYSIWYG editors, manipulating complicated cases like these are either
impossible or very cumbersome.

On the other hand, the most common criticisms against language-based systems center
around (1) the unnecessary overhead they always pay in reprocessing the whole document
with only few changes, and (2) the low degree of interaction and poor interface they provide
to the user. It is in these areas that the direct manipulation model seems to prevail. As
highly interactive systems, WYSIWYG editors are incremental in nature; they only perform
the minimal work required to reformat a document and display the new image immediately.
This immediate response is crucial to certain operations requiring visual feedback.

For instance, consider the task of laying out a page of windowed text. In a layout-driven
WYSIWYG system like PageMaker [11], Ready-Set-Go! [12], or FrameMaker [5], one would
do this simply by dragging the mouse, specifying the text blocks involved, and defining their
links for the flow of text, as illustrated in Figure 2. The interface to the task domain is direct
and straightforward.

Creating an exotic layout like this is quite difficult, if not impossible, in some rigid
language-based systems like Scribe and SGML. In more flexible systems such as troff and

TEX, however, such things are possi-
which handle the general case of win-
gree of wizardry. In TgX, for instance,
layout pages differently, but the code
text is quite involved. But once it has
graph such as the present one is rel-

ble, but nontrivial. Defining macros
dowed text requires a very high de-
“output routines” can be redefined to
required to produce general windowed
been figured out, generating a para-
atively straightforward. Based on the

macros defined in [35], producing the present paragraph is reduced to calling a pair of window
opening and closing macros at the beginning and end of the paragraph (see Figure 5).

The standard direct manipulation approach to this kind of irregular page layout and
the way it is handled in TEX are somewhat different. In the WYSIWYG approach, the
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\beginwindow\lintel 2\lines \side 2.5in \window 6\lines
Creating an exotic page layout like this is quite difficult,
if not impossible, in some rigid language-based systems like ..

RS AR T T N T T AR R R e D R R TR
Figure 5: Producing Windowed Tezt in TgX . This piece of text shows how one could create
a windowed paragraph with a lintel (text above the window) of 2 lines tall, a 2.5-inch wide
block at each side, and a window of 6 lines tall (whose width is the width of the paragraph
minus 2 times the width of the side block). Naturally, the remaining text forms the sill. The
principal macros involved are \beginwindow which takes these settings as parameters and
\endwindow which outputs the formatted text. The actual code corresponding to these two
macros is much more complex and is very difficult for a casual user to generate. The example
here is based on the work of Alan Hoenig [35].

OSANNSR L

abstractions of text blocks and their links are general enough to cover a variety of situations.
For example, creating a circular window would be based on the same interface used to create
a rectangular one as shown in Figure 2, so would a layout whose text first fills up every line
on the left side and then the right, instead of running across the window for each line. In
TgX, producing a circular window requires modifying \beginwindow to accept a much more
complicated parameter passing scheme. As for the other case, a new set of macros must be
defined for that purpose specifically. The real issue, however, is a visual approximation to the
ultimate page layout. It is clear that direct manipulation is more appealing in this respect.

3.4 Pre- and Post-Processing

There are a number of tasks that must be performed either before or after formatting which
we collectively call pre- and post-processing facilities. A common nature of these facilities is
that they each requires a stand-alone processor for its intended task. For instance, a spelling
checker, a bibliography processor, and an index processor are needed for checking spelling,
resolving citations, and permuting index entries, respectively. The traditional approach is,
of course, language-based and batch-oriented: an intermediate file is generated as a deriva-
tive of the main document; this file is then passed to a designated processor, and the result
is incorporated back into the main document. This approach applies not only to standard
noninteractive document compilers like troff and TgX, but to a number of WYSIWYG en-
vironments as well. For example, index processing in MSWord, FrameMaker, and Tioga are
all handled by a noninteractive off-line program.

Direct manipulation, from the processing point of view, requires too much overhead for a
relatively minimal payoff. For instance, in compliance with the direct manipulation paradigm,
an index entry, whenever entered into the document body, must immediately appear in the
index section (with its page number) in alphabetical order with respect to other entries already
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there. This requires extensive support in the internal data structure, but does contribute
toward any significant improvement in generating the final index. The same criticism applies
to the processing of similar objects such as bibliography, glossary, table of contents, cross
references, etc.

In spite of the need for stand-alone processors, which seem inevitably batch-oriented,
there are other aspects of these pre- and post-processing facilities that require more interac-
tive support. These include, among others, correcting misspelled words in the manuscript,
browsing the bibliography database to make citations, and placing index commands into the
document body in a systematic fashion. All of them require a close integration with the
document editor. If these objects are not maintained in the internal representation, a good
manuscript level pattern matching mechanism (e.q. regular expression search, query replace,
query insert, etc.) is imperative.

Notice that in a direct manipulation system, the tags for marking citations, cross refer-
ences, and index entries cannot appear directly in the document under manipulation because
their original forms may not correspond to any physical appearance. A common solution is to
put them in “shadow pages” instead of the WYSIWYG representation. Thus, a shadow doc-
ument is the original document plus these tags whose markers can be displayed upon request
for editing purposes. As a result, users operating under this extended direct manipulation
model are actually dealing with dual representations of the document, although the varia-
tion between the “source” and “target” is not as significant as that in a true language-based
system.

3.5 Imaging and Filing

The on-line imaging mechanism of most direct manipulation systems is based on immediate
interpretation of their internal representation. Their off-line filing representation is some
textual description of the internal structure, but not necessarily in any real programming
language. This textual description can in turn be passed to a device-specific printer driver
for a hardcopy. Similarly, most language-based systems generate their output in some generic
representation; device drivers are needed for either screen previewing or hardcopies. Typical
examples include TgX’s DVI format (28] and the ditroff format [40]. A common feature of
this type of device independent “virtual machine” is that its imaging model is extremely
simple-minded; its basic construct resembles low-level assembly code more than a high-level
programming language.

Recently, a new breed of programming languages known as page description languages
(PDLs) has emerged as the preferred representation for imaging as well as filing. There are
currently three major players in the arena: INTERPREsS {16], PosTScRIPT [14],? and DDL [4].
Advantages of PDLs in general include high-level program constructs, arbitrary transforma-
tions at the imaging level, uniform treatment of graphics and text (fonts), device indepen-
dence, etc.

Many systems have subscribed to PDLs as the off-line filing representation because PDLs

2A comparison between INTERPRESS and POSTSCRIPT can be found in [55).
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are supported by an increasing number of printers. The on-line imaging mechanism in WYSI-
WYG systems, nevertheless, is still based on lower-level descriptions. The result is a discrep-
ancy between the on-line imaging and the potentially more powerful one given by the off-line
representation. This problem can be resolved by providing a PDL server on-line and rep-
resenting the internal structure as the PDL. In reality, a PDL server (interpreter) can be
realized as, in ascending degree of generality, a client level application for graphics specifi-
cation (e.g. PosTScrIPT in VORTEX, see Section 6.2), the underlying imager of a window
system (e.g. INTERPRESS in Cedar), or even the window system server itself (e.g. POSTSCRIPT
in NeWS [10]).

Another aspect of off-line filing concerns saving a snapshot of the internal state so that
future invocations can take place incrementally. This is analogous to saving object files for a
source program. It can also be viewed as a checkpointing mechanism which provides backups
as well as a means to support undo operations. The issue here is the standard space/time
tradeoff. The simplest approach is to save the entire core image and reload it when a rollback
or reinvocation is requested. The penality, of course, is tremendous storage overhead. A
more “source-based” approach would take more time abstracting only the essential parts and
saving them structurally in a textual format. Again, it takes time to recover the state when a
rollback or reinvocation happens, but the filing representation would be much more compact.

3.6 Dynamic Reading and Annotations

So far we have focused on document composition, or the writing side of document preparation
as a whole. The other half of the story, which has too often been ignored, concerns effective
reading of a document. This is an area where the language-based model does not seem
to carry over. Traditionally reading is a “direct manipulation” process. When references
are involved, however, we rely on a somewhat “indirect” approach. For instance, when a
bibliography reference is of interest, we need to go to the bibliography section and look up
the cross reference information available there.

This static notion of documents still dominates our way of reading even in the era of
electronic media. On our favorite document preparation systems, we are still artificially cre-
ating bibliographies and indexes for our books. Part of the reason is being able to generate
hardcopies consistent with the tradition. But if hardcopy compatibility as an issue is relaxed,
then one should think seriously about what exactly are the purposes of references like the
bibliography and index. Their foremost function is to allow the reader access relevant infor-
mation efficiently. Creating separate bibliography and index sections is the best one can do
with the static print medium.

In an integrated document development environment, much of this linking information
can be stored internally. Therefore, instead of requiring the reader to actually “read” the
section which contains the references (indirect accessing), it is possible to access references
in a direct and context-sensitive way. For instance, when a citation is of interest, a menu
of options would allow the reader to (1) inspect the content of the bibliography entry in a
separate window so that the reading of the main document is not hindered, or (2) visit the
actual document referenced by the citation (this can occur recursively). If an object of a
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different nature is selected, its context gets reflected in the menu immediately.

Operations like these can go beyond “what you see is what you get”. With the “shadow
document” approach mentioned earlier, for example, annotations can be associated with key
concepts and embedded in the document invisibly. Thus the information a document is able
to convey is much more than “meets the eye”. More elaborate hypertext operations are
possible [65]. Some candidates include local features like filtering (restricted reading) and
fisheye viewing (focused reading) [29], or more global issues like document navigation and
dissemination, and so on.

Another important aspect of an electronic document is that its presentation is not confined
to a single medium of static image. Thus, a document may comprise dynamic pictures
(animation) with voice narrations, and more. All of this requires extensive internal support
and the user interface must be based on a clever blending of the two models.

4 Procedurality vs. Descriptiveness

Document processing systems can also be classified according to their “degree of procedural-
ity” which refers to the granularity of control the user is allowed to possess over a specific
task. Equivalently, one can think of this as the amount of information a system must know
a priori in terms of the document’s style and structure. Consider formatting for example,
at one end of the spectrum we have what may be called the pure procedural scheme which
requires the user to specify exactly how the formatting ought to be carried out at the physical
layout level. At the other end is the pure descriptive (or declarative) scheme in which the
user specifies just what a document should be at the logical structure level; formatting details
associated with various document styles are hidden from the user.

The notion of procedurality is orthogonal to the two models mentioned previously; both
procedural and descriptive schemes exist in both models. For instance, in the source language
model, troff and initex (i.e. TEX with no macro packages preloaded) are pure procedural
languages. Scribe and SGML, on the other hand, are pure descriptive systems. On the direct
manipulation side, MacWrite [9] is tilted toward the procedural approach in that restrictions
on the user’s control over the document appearance are minimal. Systems like Mint [34] and
Lara [33] are simply WYSIWYG versions of Scribe and thus may be classified as descriptive.

There are systems with a combined flavor of both schemes. Pure procedural languages
can usually be shifted toward the descriptive end using their abstraction mechanisms. For
example, the ms macro package [47] for troff and the plain macro package for TEX both
provide some higher order structures on top of their primitives. Although the low level
control is still accessible, they are essentially dialects of the original languages with a higher
degree of “descriptiveness”.

Yet a better example is BTEX [44] which is an attempt to emulate Scribe in the world
of TgX. Like Scribe, BTEX recognizes a number of predefined document styles. Based on
these styles, the user specifies a document by invoking generic entities such as chapters and
sections. Exactly how these chapters and sections will be formatted is hidden from the user.
But unlike Scribe, BTEX also allows some low level functions which do not contradict with
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its style definitions to be imported from TEX. It is reasonable to classify a system like BTEX
as standing half way between the two extremes.

There are pros and cons for both schemes. The first consideration is the issue of device
independence. Some SGML advocates argue that by associating different formatting functions
for different devices to the same document style, a descriptive system yields better device
independence than a procedural system does [31]. Depending on the definition of device
independence, this may or may not be true. Rather than maintaining it explicitly at the
source level, a procedural system like TEX achieves device independence by generating its
output in some generic format (DVI) which can then be translated to a variety of device
(printer or screen) languages. Since device independence is achievable in both schemes with
a comparable amount of support, it is not obvious which is superior in this respect.

The true merit of the descriptive scheme is that it relieves the user from dealing with details
of formatting. The system is normally more compact and thus easier to implement. The major
limitation, however, is with its rigidness. In particular, manipulating document styles requires
mastering a set of functions different from the one known to the user. Hence it is generally
difficult for a casual user to perform fine tuning if the formatted result is unsatisfactory. A
direct manipulation approach is more appealing in this respect. Instead of programming in
a style definition meta-language, all descriptive attributes can be encapsulated in property
sheets with an obvious form-based user interface. Then the question becomes whether or not
every bit of detail in controlling the formatting information can be parameterized descriptively.

In contrast, it is in the issue of fine control when a procedural system demonstrates its
strength. Another unique advantage of a procedural system like TEX is its extensibility:
macros can be used to define high level structures or even emulate descriptive properties (e.g.
LTEX). On the other hand, emulating procedural properties in a descriptive system like SGML
is very difficult. The tradeoff here is “power” versus “ease of use”. The two schemes seem to
complement each other in many respects. In any event, the degree of procedurality serves as
a basis for evaluating different approaches of the hybrid model in document processing.

5 Design Methodology

We have raised a number of issues; some are orthogonal and others are somewhat contra-
dictory. The most essential question concerns the relationships of the two models, the task
domain, the various representations, their transformations, and the notion of procedurality.
This section tries to answer this question and to establish a general framework for analyzing
and designing multiple representation systems. The framework differs from some more com-
plex models like Sandewall’s Theory of IMS [57] in that our framework (1) is less complex and
therefore much easier to follow, and (2) addresses more properly the multiple representation
aspect of document preparation, with possible extensions to similar software environments.
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The basic structure of multiple representation document development systems, or the
representation domain, is illustrated in Figure 6. As shown in the figure, it includes four
generic representations:

1. S: a source representation supporting high-level programming constructs such as ab-
straction mechanisms (e.g. macros, procedures, or variables), control structures (e.g.
conditionals, iterations, or recursions), etc. A document in TEX or troff is a represen-
tation of this type.

2. O: a structural view of the basic objects involved in the system. This representation
may be one with built-in descriptive logical components such as a document in SGML,
or one with object-based input/output such as a drawing under MacDraw, or one with
a hierarchical structure like the internal representation of VORTEX.

3. T: a representation corresponding to the objects’ physical structure after processing.
This representation is usually device-independent.

4. D: the actual device-dependent image representation.

This basic structure may be augmented to include derivatives of the four generic represen-
tations as required by a particular task. It must be pointed out that S is not the exclu-
sive representation of the source language model mentioned earlier. For instance, SGML, a
language-based system, is classified as having a primary representation of O rather than S.
The distinction here stems from the availability of program constructs.

The basic structure also has an abstraction for various types of user interfaces (U'); possible
distinctions are keyboard/command-based versus mouse/menu-driven versus their combina-
tion, textual versus graphical, etc. Figure 6 shows U as a single entity, but it may be refined
to reflect these distinctions or be specified according to more sophisticated guidelines such as
those described in [51].

There are several important aspects of this structure which underscore and unify all the
issues in question:

e Whether or not a representation (solid box) exists.

e Whether or not an existing representation is made explicit to the user (i.e. if there is
a dashed line connecting the solid box and the dashed box); if so, whether or not the
relation is bidirectional.

e Whether or not a transformation (solid line) exists between two existing representations;
if so, whether or not such a transformation is bidirectional.

More precisely, an instance of the fundamental structure (call it ), or the representation
instantiation, is described by a quadtuple

Q=(I,0,T,A)
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S: Prog Source Rep
0: Logical (Strucwral)
Object Representation
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sintertace:
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D: Device-Specific image Rep

Figure 6: Fundamental Structure of Multiple Representation Systems. The legend is the fol-
lowing: the four solid bozes are the various representations in question, solid lines connecting
these boxes each refers to a transformation between the two representations, the dashed boz
on the right stands for the user interface abstraction, and finally, the dashed lines each in-
dicates a link between the various representations and the user interface. The figure shows
that all four are connected among themselves; they are also connected with the user interface.
The real situation, however, is that the connections are directional and for certain systems
some of the nodes and edges in the graph may be absent.
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where
I =0Osullp Uully UIlp, set of one or more representations,
© = {Uy,U,,---}, set of user interface abstractions,
I'={m = m; | m,7; €I}, set of interrepresentational transformations,
A={r—0ord—-rx|rellb €O}, setof user interface relations.
and

IIs = { 51, S2,--- }, one or more programmable source representations,
IIp = { 01,02, -}, one or more structural object representations,

Ny = {T1,Tz2,-- -}, one or more physical target representations,

IIp = { Dy, D,,--- }, one or more device image representations,

Intuitively, 7, — 73 (71,72 € II) means representation 7, can be directly transformed to
representation 7. This can be illustrated graphically by an arrowhead at the end of the solid
line connecting 7; and w2. Similarly, * — 6 means representation 7 € II can be explicitly
viewed by the user with interface § € ©, and § — 7 means representation 7 € II can be
accessed or manipulated by the user through interface § € ©. For convenience, m; — 73,
73 — 7; can be abbreviated as 7, « %3, and m; — 7z, ¥z — T3 a5 T — T = 733

The design of a multiple representation system, therefore, is to derive a representation
instantiation (Q) for each member of the task domain as shown in Figure 7. Defining an Q
requires identifying (1) the representations to be maintained (II), (2) the specification of a
user interface abstraction (@), (3) the set of inter-representational transformations among
members of II, and finally (4) the set of user interface relations from II to © and vice versa.

Given this framework, it becomes natural to analyze systems belonging to either language-
based or direct manipulation camp, or to discriminate procedural systems from descriptive
ones. For instance, a language-based batch system implies the existence of a representation
S or O and some unidirectional relations from this representation to T or D.* A direct
manipulation system, on the other hand, will be based on an instance of Q@ having 7 « 6 in
I' (v € Il and 6 € ©), with the added criterion that feedback from the system be immediate
in order to create the sensation of directness. Furthermore, the property of procedurality
usually means that either § = T, S — D, or T — D isin T, and that either U — S or
U — T isin A (i.e. either § or T is user manipulable). Finally in a descriptive system, IIs
will normally be empty and IIp will be the only set of manipulable representations.

Based on these observations, it is interesting to compare WYSIWYG graphics editors such
as MacPaint, MacDraw, and Ilustrator. MacPaint can be described by

O-D, U—-0,DeU

because the user creates drawings with some object-level menus (I — O}, but once specified,
objects are transformed into a device-dependent image (O — D) which can be viewed and

3This is solely for the convenience of notational abbreviations. No transitivity is implied in 7 — %2 — 73
(i.e. it does ot imply 1 — x3).

4Our notational conventions are obvious here; we assume S € IIs, O € lo, T€ O, D€ llp, U € O, and
similarly with subscripted ones used later.
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Task Domain Representation Domain
Text Editing g S: Prog Source Rep
Graphics §
Formating/
Layout 0 Logical (Structural)
Object Representation
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Imaging §
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Dynamic ¥ R L ~ A atics
§ D: B o Image Rep:

Figure 7: Task and Representation Domains. The gray vertical bar represents the boundary
between the task domain on the left and the representation domain on the right. A multiple
representation system is a mapping from the task domain to the representation domain.
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manipulated by the user (D « U). By contrast, MacDraw corresponds to
O«T, T=D 0.

There are two major differences here: (1) in MacDraw the user views and manipulates draw-
ings at the object level, and (2) drawings in MacDraw are device-independent due to the
presence of a target representation. Finally, Illustrator is close to

O~«T,T»D, D—-0,0-UU-D.

The crucial difference between Hlustrator and MacDraw is U — D — O which underscores
Dlustrator’s capability for the user to unravel geometric objects from bitmaps by tracing the
image.

More importantly, this framework facilitates the analysis of existing multiple representa-
tion systems and the design of new ones. The basic criterion here is that at least two members
of II must be manipulable. Emacs, for example, can be viewed as a system having Qgmacs
for text editing, with the majority of remaining members in the task domain mapped to the
empty set, where QEmacs is defined as follows:

OEmacs = DsUTo ULz UTIp = {S}u {0} u {1, T2} u{D},
OEmacs = {U},

rEmaa:{s—’s’O_'SvSHTth ""TZ,T2HD9 }7
AEmacs ={U = S, U—=0,U-T,UeT,,}

To interpret this specification, one can think of S as the Lisp code under which Emacs
operates, O as the collection of user-level objects such as characters, words, lines, regions, etc.,
T, as the one-dimensional text stream (where linefeed is just an ordinary ASCII character),
and T, as the corresponding two-dimensional text array {where linefeed causes a line break).
The combination of T; and T forms the overall target representation T'.

Thus QEmacs Says that the user can view both source and two-dimensional target rep-
resentations (S — U and T — U) and manipulate either the one-dimensional text stream
(U — T1), the two-dimensional text array (U — T2), the objects (U = 0), or the program
(U — §). Operations on objects get transformed into code (O — S) which is then evaluated
and represented in the one-dimensional text stream (§ — Ti). Both O are Tj are implicit
since they are not explicitly exposed to the user (i.e. 00 O = Uor T} — 0).

T is split into Tj and T because the user operates on the one-dimensional text stream
as well as the two-dimensional text array, although the actual screen appearance is two-
dimensional. Normally, next-line, previous-line, and a host of common operations are
two-dimensional. But things like forward-char and backward-char are one-dimensional; at
the boundary of current line they move to the adjacent boundary of the next or previous
line linearly. Furthermore, the actual internal representation is one-dimensional because a
character is addressed by an offset relative to the beginning of buffer instead of by a two-
dimensional coordinate.

One interesting point is that a recursion can be observed in Qg macs — although its is not
explicitly shown — the editing of S is essentially Qg macs- In other words, S can be expanded
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Figure 8: Graphical Specification of QEmacs. The task of text editing has been singled out by
the darkened box on the left. The shaded boxes represent other tasks involved in the overall
system which are not the focus of current instantiation. Empty boxes are those tasks which

play no roles in the system.

to a secondary I gmacss S — S is equivalent to the composite of the rest of I'Emacs, and
S « U is, in effect, the composite of the rest of Agmacs-

An Q may be specified graphically. Figure 8 shows Qgmac,’s corresponding graphical
specification. Figure 9 is an instance of a design reflecting some major features of Tweedle
mentioned earlier in Section 3.2.4. Because Tweedle supports both a textual form of proce-
dural language as well as an object level graphical representation, the task domain includes
primarily text editing and graphics specification. The text editing side of the story is identi-
cal to that of Emacs discussed above. Figure 9 illustrates an ) corresponding to its graphics
specification task only.

The representations and transformations involved are quite self-explanatory except that
there is no transformation from O to T because no object level evaluation is available in
Tweedle — graphical objects always get transformed into code which is then evaluated. One
can normally expect low level primitives in terms of registering cursor positions or mouse
clicks be provided by the underlying window manager. It must be pointed out that the
editing of S is another instance of QEmac,- This is an example which shows, as an integration
mechanism, how one 2 may be plugged in as a component of another Q.

This framework is by no means complete or precise, but it does establishes a good ap-
proximation of what is to be accomplished by a multiple representation system. We envision
a top-down methodology based on this framework can be of use to designers. The design
process starts with identifying the task domain. For each element in the task domain, the
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Figure 9: Representation Instantiation of Tweedle’s Graphics Specification.

representation domain is instantiated with the specification of an . Within each Q, finer
issues are then sorted out, and that may go down deep as stepwise refinement requires.

From a more global perspective, the collection of these ’s may be thought of as a multi-
dimensional space with a similar overall structure in each dimension. Interrelationships and
commonality among these “dimensions” in terms of issues as high level as user interfaces or
as low as code sharing can be extracted and exploited. The final step of the design process
is integration which reflects conceptually how these “dimensions” are integrated. In practice,
integration is realized by means of sharing subsets of the Qs involved as connection stubs
in the global space. These stubs may be certain representations (I U ©) or transformations
(T U A). For instance, one ! may be a member of another Qs T' or A, and many of the
representations (II) may be shared among various tasks.

6 Case Study

This section discusses the principal properties of VORIEX, a document development envi-
ronment based on the multiple representation paradigm, as a case study of the methodology
introduced previously. Also included in the discussion as comparisons are some key ideas from
the tnt editor/formatter [30] and two other on-going projects Lilac [21] and Quill [22], both
of which focus on the same set of issues as VORIEX does. Here, we concentrate on properties
insofar as specifying Q is concerned; issues of finer granularity are deliberately omitted for
clarity.

Based on the top-down methodology, we start identifying the task domain as containing
everything listed in Section 2 plus a few derivatives (to be described later). We then have
to define an  for each member of the task domain. Before we give the specifics of these
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Q’s and their interrelationships, we need to mention that VORIEX’s source language for for-
matting and layout is TEX. Since graphics in TEX is virtually undefined, we have chosen
PosTSCRIPT as our graphics specification language. Both of these tasks are maintained in
multiple representations.

6.1 Text Editing

Text editing in VORITEX is Emacs-based. Despite some differences in the fine points, QEmacs
given in the last section would suffice in describing VORTEX’s multiple representational view
of text editing. Like Emacs, language-specific modes will be available for editing code in TEX
or PostScripT. The underlying Lisp subsystem is not confined to the the task of editing; it
also serves as the basis of system integration and a host of computation-related jobs, as it
will become clear later on.

6.2 Graphics Specification

VORTEX’s graphics is based on PosTScripT. Like Tweedle, a program representation as well
as a graphical view of the objects are implicitly maintained by the system and explicitly
manipulated by the user. Therefore, the Q defined in Figure 9 also describes VORTEX's
graphics subsystem. In detail, however, the actual representations are distinct due to the
differences between PosTScrRIPT and Tweedle’s underlying language Dee.

A PoSTSCRIPT imaging server (interpreter) is available for rendering images in the graph-
ics editor. The same server also interacts with VORTEX’s main document display module.
When a picture is encountered in the displayer, the corresponding code is transmitted to
the PosTSCRIPT server. It in turn hands back the graphics as a raster image, which is then
incorporated into the document’s device representation.

6.3 Formatting/Layout

For the task of specifying a document’s textual content in general and its formatting and
layout information in particular, VORTEX provides a source level program (in TEX) as well as
a target level view to the user. Operations performed on one representation will be propagated
to the other automatically. The idea is to take advantage of the “expressiveness” of a source
programming language and also the immediate visual response given by a direct manipulation
user interface to the target representation. There are two base editors, one for editing the
source representation, the other for the target, both of which are based on an extension to
the Emacs editing paradigm.

Figure 10 shows the representation instantiation (Q) of VORIEX's formatting and layout.
It says that the document’s source representation (S) is transformed into an internal object
structure (O), which then becomes the physical layout (T) of the document after formatting.
This target representation can be interpreted by a displayer on-line, or translated off-line into
a file format such as DVI or a program in certain printer language like PosTScripT. Both
S and T may be manipulated by the user. The bidirectional transformation between S and
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Figure 11: Representation Instantiation of VORIEX’s Formatting and Layout.

U is an extended version of Qgmees- Changes to S are reflected in itself directly and are
propagated to T through O. Changes to T, however, are first propagated to S and finally go
through the § — O — T cycle to be reflected back to itself.

Propagating changes from source to target is straightforward in concept because that is
exactly what TEX does. The subtlety here is that instead of a batch-oriented implementation,
VORTEX needs to be incremental, which generates a number of interesting issues not encoun-
tered in the batch version. The fact that TgX is macro-based complicates this problem even
more.

In VORIEX, a close relationship is maintained between the source representation (5) and
the two internal representations (O and T). Incremental formatting is based on marking and
sweeping dirty nodes in S and O and on comparing newly generated code with what is stored
in T. The strategy here is, in principle, similar to IBM’s Interactive Composition and Editing
Facility, Version 2 (ICEF2) [24].
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(defun create-windowed-par (begin end lintel-ht side-wd window-ht)
(goto-char (target-to-source begin))
(insert "\\beginwindow"
*\\lintel " lintel-ht *\\lines *
*\\side " side-wd "in"
"\\window " window-ht "\\lines\n")
(goto-char (target-to-char end))
(insert "\\endwindow\n"))

TS : : T Y O R A R P N RS

Figure 11: Reverse Mapping of Page Layout. This is the Lisp function to be triggered when
a paragraph like Figure 2 is laid out in the target editor. This function operates in the source
representation. The first two arguments, given in target positions, must be translated into
source positions via internal representation accessing before used. The next three arguments
represent, respectively, lintel height, side block width, and window height, as required by the
windowed text environment shown in Figure 5.

R

6.4 Reverse Mapping

The next major issue concerns identifying the set of WYSIWYG operations visible to T' and
realizing the reverse mapping mechanism which propagates side effects back to S. We believe
page layout, object placement, attribute update, and similar operations would benefit most
from prompt visual feedback and are therefore reasonable candidates to be incorporated in
the WYSIWYG interface to T. For instance, a page layout specified at the target level in
direct manipulation like Figure 2 would correspond to the TEX source code of Figure 5 by
the reverse mapping facility.

The question is how to carry out reverse mappings systematically. In VORTEX this is
realized by associating each target level operation having any side effects with a Lisp function
at the source editor. Whenever such an operation is executed in the target editor, the corre-
sponding Lisp function gets invoked and evaluated by the source editor. The user interface
is quite flexible in that it can be either command-driven (with the standard Emacs keyboard
binding scheme), menu-driven (with mouse as the primary input mechanism), or a combina-
tion. It is also extensible; new instances of reverse mapping can be added to the system by
the user which will turn out consistent with the overall interface structure.

All of these are made possible with the support of a Lisp programming subsystem within
the environment. Reverse mapping is programmed on top of the system’s editing primitives
for source level pattern matching and some extended functionality for internal representation
accessing. Thus, to lay out something as exotic as Figure 2 in the middle of a page, the
corresponding Lisp function may look like what is shown in Figure 11. In the code, begin
and end represent the beginning and end, in target positions, of the paragraph to which a
window is to be opened. The function goto-char positions the cursor to the point given as
argument in the source editor, where the positions are translated by target-to-source from
target to source via internal data structure accessing. Finally, inserting the text for opening
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and closing the windowed paragraph is straightforward.

The reverse mapping of page layout is relatively trivial compared to things related to
macro unraveling. A macro and its arguments in the source representation (S) may not
have a one-to-one correspondence with the expanded text which ultimately appears in the
target representation (T'). Typically there are three cases in a macro expaansion: (i) text as
arguments of a macro in S gets carried over to T, (ii) text in 5 is consumed by the expansion
and therefore disappears in T, (iii) new text originally not in S gets introduced in T by the
expansion. When the expanded text is selected in T, what are the semantics of target-level
operations using the selected text as an operand?

As a premise, the selection mechanism must be able to tell if the text is part of an expanded
macro. Since internal representation accessing primitives are available to the Lisp subsystem
and since the object and target representations (O and T') are tightly coupled, one can easily
identify if any selected text is in the proper scope of a macro. To handle the semantics, we can
first eliminate case (ii) because disappeared text will not be selected in T anyhow. Depending
on the user’s intention, there are three possibilities:

1. The interest is in plain text only regardless of how the macro is expanded. Thus,
including the text introduced by a macro, all “characters” seen by the user can be used
as the operand, but no other attributes (e.g. typeface, size, etc.) will be associated
with it. Operations of this type must be non-destructive with respect to the selected
text itself. A plausible operation belonging to this group is copy.

9. If the selected text is carried over from S, destructive operations such as insert, delete,
move, and so on are legitimate. Side effects are first reflected in S (the cursor will be
“warped” to the source editor window) and eventually get reflected in T through the
S = 0 = T cycle.

3. If the text is introduced, such destructive operations will be disabled with some warning
messages. Ome step beyond this will be a query asking the user if the intention is to
modify the definition of the macro in question. If so, the macro unraveling Lisp code can
scroll to the most recent spot in context where the macro is defined and let the user do
the modification at the source level. A more elaborate approach is to incorporate certain
rules which correlate encapsulated operators and operands in T with the underlying TEX
code to be inserted to the macro definition in .

Reverse mapping on the basis of per target level operation is somewhat special to VORTEX.-
By contrast, in Quill [22], the underlying source language is the fully descriptive SGML. There
are two levels of internal representations (O and T) maintained in Quill as in VORTEX. Unlike
VORTEX, however, Quill’s external source representation is hidden during editing (i.e. no
connections between S and U). The only role SGML plays is off-line filing and document
interchange. In other words, reverse mapping becomes unnecessary in Quill. Its logical object
representation (O) is a mirror of an SGML document; each nodein O corresponds to an SGML
markup tag. Thus, when the document is to be filed, all that is needed is to traverse O and
the corresponding file in SGML can be generated.
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As was argued in Section 4, the tradeoff boils down to complexity versus flexibility. Com-
pared to Quill, VORTgX’s overall architecture is more complex due to TEX’s low degree of
descriptiveness and its macro-based abstraction mechanism. On the other hand, VORTEX is
more flexible; to create a WYSIWYG type page layout like Figure 2 and be able to map it
back to the source is simply beyond Quill’s model. Imposing logical document structure is
also possible in VORTEX. Although O does not carry any logical meaning in VORTEX, docu-
ment structure and style like those defined in BTEX can be realized by the reverse mapping
facility which operates at the source level. Since the user interface is customizable, one can
effectively hide the procedural aspects of TgX in VORTEX.

6.5 Pre- and Post-Processing

The pre- and post-processing facilities by and large follow a trilogy of (1) placing task-specific
markup tags (commands) in the document body, (2) processing an auxiliary file containing
information related to these tags, and (3) incorporating the results back to the main document.
In many cases, these tags do not appear in the target representation; instead, they create links
between different objects. These links frequently destroy the strict top-down hierarchy of the
document’s internal logical structure (O).

In VORTEX, all three steps are again built on top of the Lisp programming subsystem.
Since a source representation is explicitly maintained, there is no need to hide these tags in the
“shadow”. The advantage of operating at the source level is that the internal representation
does not have to increase its structural complexity. Tags such as citations retrieved from
a bibliography database are directly inserted into the document source. The programming
layer also has control over external processors. Thus, when the off-line processing is finished,
the result can be interactively incorporated back to the source representation by the top-level
of a Lisp program which initiated the processing.

6.6 Imaging and Filing

VORIEX s on-line imaging mechanism is based on direct interpretation of the target represen-
tation. Both its source in TEX and a translation of T (e.g. in DVIor PosTScrIPT) can be filed
as the off-line representation. It is also possible to base the on-line displayer completely on a
PDL like PosTSCRIPT because such a server is already available for rendering graphics. The
Q for on-line imaging has been covered in Section 6.3; the one for off-line filing and imaging
is a straightforward batch approach.

6.7 Dynamic Reading

Given a full-blown PDL as the graphics image server (PosTSCRIPT in this case), VORIEX is
able to present pictures dynamically. This may happen in one of two modes: playback and
synthetic. In playback mode, the document displayer constantly gets notifications from the
PoSTSCRIPT server with new raster images of the same picture. In processing each notifi-
cation, the old picture is erased and replaced by a new image. If this happens frequently
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enough, it becomes, in effect, animation. In synthetic mode, the displayer simply executes
a PosTSCRIPT program which takes care of itself in terms of any dynamics involved. The
premise, however, is that the document displayer be the PosTSCRIPT server itself. From the
multiple representation’s viewpoint, the playback mode is closer to direct manipulation be-
cause scenes as raster images are the basic manipulable objects, while the synthetic mode is
more like language-based due to its programming aspects.

Furthermore, given the Lisp programming subsystem, the ability to access internal struc-
ture through some lower level primitives, and an extensible user interface, VORIEX is capable
of providing the user with some dynamic viewing functionality. This is tightly coupled with
the pre- and post-processing facilities mentioned earlier. For instance, one can select a ref-
erence and have the content of the reference displayed in a separate window. This type of
context-sensitive browsing applies to objects like citations, cross references, indexes, and the
like. What is special here is that no hard links are built into the internal representations
for browsing purposes. Each operation is realized as a user-level function which performs
primarily pattern matching in the source manuscript with the aid of internal representation
accessing primitives.

6.8 Integration

Conceptually the ’s described above can be thought of as a multi-dimensional space which
reflects the structure of the overall system. In reality, the system is integrated by means of
sharing certain representations (Il U ©) or transformations (I'U A). For instance, QEmacs i
essentially S — S « U in the Q of both graphics specification and formatting/layout; the
Q corresponding to dynamic reading just mentioned constitutes part of ' — U in format-
ting/layout. Also, the internal representations of formatting/layout are shared by tasks such
as reverse mapping, pre- and post-processing, and so on.

In particular, text and graphics integration in VORIEX employs a “cut-and-paste” model.
The manipulation of text and graphics each operates under a distinct context. The integration
is based on the PosTSCRIPT imaging server. From the document formatter and displayer’s
point of view, graphics is just a piece of raster image. Therefore, text within graphics will
not be formatted the way regular text is; it all depends on how the graphics imager treats
text and fonts.

Quill represents a fundamentally different model in which arbitrary nesting of text and
graphics is permitted and their processing is uniform. The uniformity is achieved by sharing
a common object representation (O) between graphics specification and formatting. Like
text, graphics nodes in O will eventually be mapped to their SGML counterparts [23]. These
nodes can be arbitrarily nested, a context sensitive menu will be displayed when a node of a
particular type is selected. The integration mechanism here is based on representation sharing
rather than a transformation plug-in as is in VORIEX.

VORIEX’s Lisp programming subsystem provides the essential glue for integrating the bulk
of tasks together in a coberent manner. This includes reverse mapping, the many phases of
pre- and post-processing, dynamic reading, and so forth. Most importantly, it also serves as
the backbone behind job control and user interface customization. For a complex environment
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like VORTEX, a user-level programmable source representation like the Lisp substrate reduces
a great deal of complexity from the system’s internal representations as well as its overall
integration mechanism which may otherwise be ubiquitous and difficult to manage.

7 Conclusions

We have reviewed a large number of document development systems for text and graphics alike
from the perspectives of both language-based and direct manipulation models. The central
theme is that program constructs and visual feedback are complementary to each other and
that a hybrid approach would be most desirable. Yet our concern goes beyond superficial
feature level comparison and focuses on devising a systematic analysis for the general notion
of multiple representations.

A complete document development environment involves multiple tasks, multiple rep-
resentations internally and externally, and multiple transformations among the tasks and
representations. As familiar as it may sound, what does it mean to be WYSIWYG, given this
intrinsic complexity? What does it mean to be language-based? What about procedurality,
descriptiveness, and other important concepts, all of which are confusing? In this paper we
have established some ground work for analyzing all these issues. With the Q framework, the
basic structure of a multiple representation system becomes readily crystallized.

The design methodology based on the Q framework is simple but robust. It requires
the designer to first define the task domain. For each member of the domain, an  is then
instantiated. Finally all these Q’s are integrated by sharing certain representations or trans-
formations. Although this approach is not meant to be a formal mathematical model and an
Q itself is insufficient to describe every detail of the task, it does provide a good deal of in-
sight into the structuring of complex document development environments. We are currently
working on enhancing this framework to convey more information without sacrificing its sim-
plicity. Being pursued in parallel is the implementation of VORTEX which will ultimately offer
a proper validation for the design methodology discussed here.
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