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Abstract

The traditional use of memory and a symmetrical set of registers for storage of tem-

porary results of scientific programs requires more execution time, hardware, and instruction-

stream bandwidth than necessary. Novel register organizations that can be easily integrated

into traditional supercomputer architectures can reduce all of these requirements.

Execution speed can be more than doubled by storing temporary results in an asym-
metrical set of general-purpose registers or an asymmetrical set of vector registers, instead of
in memory and a small register-set. Faster access and a hardware cost one fourth that of

traditional vector registers can be had by using a vector register that incorporates a pipelined,

random-access-memory chip. 1f a large enough set of registers is used, the need to store tem-

porary results in memory and then reload them for later use can be eliminated; this saves

both instruction-stream bandwidth and execution time.
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CHAPTER 1

Introduction

1.1. Problem Description

Most computations produce many temporary results in the course of execution. For
example, if the statement W = X *Y+Z is executed on a load-store architecture, it might be

compiled into a code sequence similar to that shown in figure 1.1.

R1 < mem|X]|
R2 «~ mem[Y]
R3 «~ R1 = R2
R4 — mem|Z]
R5 «~ R3 + R4
mem|{W] «~ RS

Figure 1.1: Hypothetical Code Sequence for W= XsY+2.
The temporary results of the loads or the multiply may be of no interest to the programmer,
but they are necessary for correct execution of the program, and the efficiency of their storage

can have a significant impact on the running time of the program.

The critical path of the code in figure 1.1 includes a load, a multiply, an add, and a
store. The load time includes the time to fetch either X or Y from memory and write it into
R1 or R2. The multiply time includes the time to read R1 and R2, compute their product,
and write the result to R3. The add time includes the time to read R3 and R4, compute their
sum, and write it to R5. The store time includes the time to read R:’; and copy it to W in
memory. The time to execute the code sequence is at least the sum of times to execute each
of the operations ip the critical path; this includes three register read times and three register

write times.
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In this code sequence, at most three operations can execute concurrently, and most of
the time only one or two operations can execute concurrently. Thus, this code sequence has

little parallelism: it is relatively serial instead.

1024
The inner product of two 1024-element vectors Y, (X|i]*Y]i]) can be computed using 2

=t

binary summation tree to add all the products. The 2048 load operations can execute con-
currently, the 1024 multiply operations can execute concurrently, and, for each level of the
summation tree, the add operations can execute concurrently. A program that uses a binary

summation tree to compute the inner product is very parallel.

Parallel execution of this inner product can require thousands of temporaries. If the
temporaries are stored in memory, the time to perform the computation includes the time to
store and then load the temporary results at each level of the summation tree. In addition,
the program must include explicit store and load instructions that store and then load the

temporary results.

If the temporary results are stored in registers, rather than in memory, the extra load
and store instructions can be avoided; in addition, temporaries can be accessed much faster
from registers than from memory. However, accessing one of thousands of registers is slower
than accessing one of a few registers, because data must propagate over physically longer
paths between registers and functional units, and they must be routed through more levels of
logic when they are selected. Furthermore, the addresses for many regist~ers are longer than

for few registers, requiring more instruction-stream bandwidth.

Thus, it appears that if an architecture is capable of executing many operations con-
currently, the optimal choice of the number of registers depends on the characteristics of the
programs running on an architecture: serial applications need few registers (and would in fact

run slower with many registers than with few registers), while parallel applications need many



registers. The apparent conflict between the temporary storage requirements for serial appli-

cations and the requirements for parallel applications is the subject of this dissertation.

To resolve the conflict, this dissertation describes an approach in which registers are
implemented and used asymmetrically. A small set of registers that can be accessed: with low
latency is used for serial programs or serial sections of programs, while a larger set of registers
that have longer-latency, high-bandwidth access are used for parallel programs or parallel sec-
tions of programs. Instruction-stream bandwidth requirements for addressing large sets of
registers are reduced by structuring their addressing mechanisms in ways that match the tem-
porary result usage of scientific programs, addressing many of the registers implicitly. Tem-
porary results are allocated to the asymmetrical registers using a straightforward proce;iure

based on critical-path analysis of programs.

1.2. Thesis Statement

The traditiona! use of memory and a symmetrical set of registers for storage of tem-
porary results of scientific programs requires more execution time, hardware, and instruction-
stream bandwidth than necessary. Novel register organizations that can be easily integrated

into traditional supercomputer architectures can reduce all of these requirements.

Execution speed can be more than doubled by storing temporary results in an asym-
metrical set of general-purpose registers or an asymmetrical set of vector registers, instead of
in memory and a small register set. Faster access and a hardware cost one fourth that of
traditional vector registers can be had by using a vector register that incorporates a pipelined,
random-access-memory chip. If a large enough set of registers is used, the need to store tem-
porary results in memory and then reload them for later use can be eliminated; this saves

both instruction-stream bandwidth and execution time.



1.3. Approach

The claims in the previous section are proved in four steps. A set of benchmark pro-
grams is analyzed to determine the hardware requirements for fast execution. Datapath res-
trictions are analyzed to show why these hardware requirements cannot be met using tradi-
tional symmetrical register structures and to show how asymmetrical organizations can be
used to circumvent some of the restrictions. Asymmetrical storage structures that take
advantage of these analyses are synthesized to show how practical storage structures can be
implemented. Finally, an existing supercomputer architecture is modified, to incorporate new
datapath structures and storage structures, to show that the modification can be easily done

and to show the impact on performance.

1.4. Research Contributions
The research reported in this dissertation provides the following contributions:

(1) A procedure, based upon a hardware-independent partitioning of the program depen-
dency graphs, is presented for analyzing programs. The hardware requirements and exe-
cution times of programs can be estimated from the partitionings of their dependency
graphs, and analyses of these condensed specifications of programs are both faster and
more generally applicable than analyses of the full dependency graphs. This analysis
procedure is used to determine the proper architectural parameters for scientific pro-

gram execution.

(2) Analyses and simulations of the Livermore Kernels®” show that execution with a small
set of fast registers and a large set of slower registers is as fast as execution with a large
set of fast registers. At least 256 registers are necessary for many programs to run as
fast as they can with an unlimited number of registers; this is often more than a factor

of two faster than execution using only eight registers.



(3)

(4)

()

(6)

(7)

An analysis of pipelined execution shows that the optimal number of levels of logic in
each pipeline stage grows as the square root of the number of levels of logic to perform
the function, divided by the square root of the number of independent data to be pro-
cessed at a time. If several identical pipelines are used together, the optimal number of
levels of logic in each stage decreases by the square root of the number of identical pipe-
lines. This analysis allows pipelined functional units to be designed so that their

latency /throughput tradeoffs match the characteristics of particular workloads.

An analysis of pipelines with variable bandwidth and latency shows that they are not
practical to implement. The logic necessary to control the number of clocked pipeline

stages increases the pipeline latency more than switching out stages reduces it.

An organization of registers into a close/distant hierarchy allows some registers to be
accessed quickly, while other registers are accessed more slowly. The access bandwidth

of the close/distant registers is as high as that of a set of registers that are all fast.

Vector registers are presented that provide high-bandwidth access and high-density
storage of all elements, with fast access to some elements. Relative to traditional vector
registers, these new vector registers are longer for the same latency and bandwidth;
alternatively, they provide lower-latency, higher-bandwidth access for the same length.

In addition, they require one fourth the hardware for the same length and bandwidth.

A novel pipelined, random-access-memory organization is described. It increases the
bandwidth of access by a factor of four over traditional random access memory, costing
less th;n a 509 increase in access latency and less than a 50% reduction in storage den-
sity. This pipelined, random access memory is more advantageous than interleaved
memory because its performance is independent of access pattern. It is particularly
well-suited to vector register implementations and for memory systems that are tradi-

tionally implemented using interleaved memory banks.



(8) An improved supercomputer architecture using an asymmetrical organization of regis-

ters and using the new vector registers is specified.

1.5. Terminology Conventions

An operation is an atomic transformation of the architectural state. It takes ome or
more operands and produces a result visible to the programmer. Examples of operations
include loads from memory to general-purpose registers, logical ANDs, floating-point multi-

plies, and conditional branches.

A micro-operation is an atomic transformation of the microarchitectural state, which
may or may not be visible to the programmer. An example of a micro-operation that is
programmer-invisible is the fraction add of a floating-point add operation, which changes the

state of one or more pipeline stages but does not produce a result that can be directly mani-
pulated by other operations. An example of a micro-operation that does change the state of
the architecture is copying the output of the floating-point adder to a general-purpose regis-

ter.

An fnstruction is the specification of one or more operations to be performed. Examples
of instructions are a simple add instruction, which specifies one add operation to be per-
formed, and a vector load instruction, which usually specifies many load operations to be per-

formed.

In the context of circuits, a latch is a logical circuit with feedback; when the data inputs
_ are enabled (usually by one or more clock inputs), the output is a combinational function of
the inputs, and when the data inputs are disabled, the output is a function independent of the
current inputs. Latches are distinguished from master-slave flip-flops, which can be con-
structed using two latches and for which the output does not change except at the transition

from enabled data inputs to disabled data inputs.



In the context of a microarchitecture, a latch is a storage device that is programmer-

invisible. Latches are situated between stages of all pipelines.

A register is a programmer-visible storage element that has fast access and a relatively
short address. The program counter and general-purpose registers of a traditional architecture
are examples of registers. All the elements of a vector register together constitute the register.

Registers can be implemented using either latch circuits or master-slave flip-flops.

A device is any circuit element that can contain data of interest. Examples of devices

are latches, functional units, and registers.

A load operation copies the contents of a memory location to a register, and a store

operation copies the contents of a register to a memory location.

A write is a micro-operation where a datum is copied to a register. A read is a micro-

operation where the contents of a register are copied to some other device.

A clock tick is the minimal time interval for signal synchronization; it is limited by the
maximum time required for data to propagate from the output of a latch, through wires and
zero or more levels of logic, to the input of another latch, and to become stable at that latch’s
output. Typically, a clock tick (or simply tick) is long enough to allow from four to 25 levels
of logic between latches. Ticks are usually measured in units of the basic gate-delay for the

logic technology used.

1.6. Organization of this Dissertation

In Chapter 2, previous work that is relevant to supercomputer design is surveyed. Work
that this dissertation builds upon is touched upon here, but is analyzed in detail in the chapter

in which it is used.

In Chapter 3, the program characteristics of supercomputer applications are analyzed.

The notion of dependency graph partitioning is introduced as a means to analyze the pro-



grams. Bounds are established on the execution times of programs and on the number of
storage locations that are required. The eflects of various temporary storage characteristics
on program execution time are measured by simulation. The results of these analyses and
simulations are used to determine the architectural requirements of supercomputers for

scientific program execution.

In Chapter 4, datapath designs are analyzed, including limitations on clock speed, device
selection time, latch design, and pipeline latency /throughput tradeoffs. Earlier results in data-
path design are analyzed in detail. An asymmetrical allocation of devices to circumvent some

of these limitations is presented.

In Chapter 5, novel storage devices and access mechanisms are introduced. An
asymmetrical-register-access mechanism is presented, along with an asymmetrical-register-
allocation procedure. Several designs for asymmetrical vector registers are presented, which
provide a range of capabilities, including those of the Cray-1,2! the Cray X-MP,22 the NEC
SX-2,10 as well as capabilities in excess of all of these. A design for a high-bandwidth random
access memory (RAM) with pipelined access is presented. This pipelined RAM provides two to
four times the bandwidth of traditional RAMs with similar technological parameters; this
costs one additional input pin, up to a 50% increase in access latency, and up to a 50% reduc-
tion in storage density. This pipelined RAM is well-suited for asymmetrical vector register
implementations and those applications that traditionally use interleaved memory.

In Chapter 6, several existing supercomputer designs are critically analyzed, including
the Cray-1254 the Cray X-MP,2 the Cray-2,3 the ETA-10,3%348¢ the HEP-1,%% and the
NEC S$X-2.40:49,108 The emphasis is on the functional unit organization and on the charac-

teristics of storage for temporary results.

In Chapter 7, the architectural integration of the storage structures for temporary

results is demonstrated by an example of a supercomputer architecture that incorporates the



asymmetrical-register-access mechanisms and vector register design discussed in Chapter 5.

This architecture is a modification of the Cray-2 architecture, analyzed in Chapter 6.

In Chapter 8, results are summarized, conclusions are drawn, and future work is dis-

cussed.



CHAPTER 2

Survey of Previous Work

While this thesis focuses on the temporary storage aspects of supercomputer design,
many other areas must also be considered. This chapter is devoted to discussions of the work
applicable to optimization and scheduling, application characteristics and program structure,
datapath design issues, storage design issues, instruction issuing and instruction formats, and

some of the past and current supercomputers.

The results that this dissertation directly use are touched upon in this chapter, but are
analyzed in detail in the chapters that use them. With this organization, the necessary termi-
nology and definitions can be introduced before the results are analyzed; this improves both

brevity and clarity.

2.1. Optimization and Scheduling

Optimization and scheduling can have a greater influence on the execution speeds of
programs for supercomputers than for slower computers. Programs for supercomputers with
vector instructions must be run through a vectorizer to determine which operations should be
performed in vector mode and which should be performed in scalar mode. This is in addition
to the general optimization techniques applied to all computers. Supercomputers also require
that operations be scheduled for these reasons: to avoid dependency conflicts due to over-
lapped execution, and to avoid hardware resource conflicts among the multiple functional

upits and vector functional units.

10
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2.1.1. Optimization

Most program transformations do not produce optimal code, because the process is NP-
complete in most cases. Although code is only improved, the term optimization has been used

universally.

Muchnick and Jones?! described general program optimization techniques in their book
on program flow analysis, and Chow!® described a portable, global optimizer in his PhD
thesis. Both of these works concentrate on the issues of optimization of programs executing
on serial computers; while many of the techniques described can be applied to supercomput-
ers, some (such as evaluation-stack-height reduction) tend to slow execution on many super-
computers (assuming a sufficient quantity of registers, what is wanted is tree-height reduction;
stack-height reduction tends to increase the height of the expression tree for parallel or over-
lapped execution). David Kuck's excellent text on computer architecture3® describes optimiza-
tion techniques that are applicable to supercomputers and parallel architectures. These
include tree-height reduction, solving linear recurrences to increase execution parallelism, and

data and control dependence transformations to allow more parallel execution.

Agerwala? surveyed the state of microcode optimization in 1975, and noted that much
of the effort concentrated on optimal solutions using exhaustive methods, rather than on prac-
tical engineering solutions. Landskov, et al.8! discussed local microcode-compaction algo-
rithms, including linear compaction, critical-path compaction, branch-and-bound techniques,
and list scheduling. Garey and Johnson4? discussed the NP-completeness aspects of program
“and microprogram optimization. Most optimizations are NP-complete, although for a few
specific cases (such as determining register sufficiency for loops), polynomial-time solutions
exist. The NP-completeness of optimization is significant because the problem sizes are large;

hundreds or thousands of operations must be scheduled for optimization to be effective.
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2.1.2. Scheduling

Scheduling resources is an extremely difficult problem. French’s text3% provides a very
readable introduction to job-shop scheduling. Gonzalez*! surveyed deterministic processor
scheduling of uniprocessors and multiprocessors, concluding that efficient, optimal algorithms
exist for only a few special cases and suggesting that further efforts be directed towards the
study of heuristics. He advocated the use of statistical methods as a new approach to the
problem. Shapiro® considered the specific task of scheduling tasks that are coupled in time,
with the constraint that the scheduling must be performed in real time. The sub-optimal
methods used included sequencing, nesting, and fitting. He found that sequencing (the fastest
method to schedule) produced results almost as good as fitting (the slowest method to

schedule) and considerably better than nesting.

2.1.2.1. Static Scheduling

Program scheduling is NP-complete, and, although small loops have been optimally

scheduled, most effort has been directed towards developing good heuristics.

Arya%8 showed that scheduling pipelined processors (in particular, the Cray-1 S) is NP-
complete, and he presented an optimal solution using integer linear programming. He
transformed the scheduling problem into an integer-linear-programming problem, and then
used a commercial, integer-linear-programming package to find a solution. His proof that the
scheduling problem cannot be solved using normal linear programming was similar to that
described by Papadimitriou and Steiglitz” in their book om combinatorial optimization;
Arya's transformation of the problem to an integer-linear-programming problem was also

similar to that described in their book.

Much of the work in pipeline-processor scheduling has been in the development of
efficient heuristics. Berlekamp described his personal techniques for loop optimization on the

CDC 6600,% and described a program used to support loop tuning.? Nelson wrote a time-
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tabling program’ to aid in speeding up programs on the Cray-1. Weiss and Smith!10
described scalar compilation techniques for the Cray-1 scalar unit. Their techniques included
loop unrolling and software pipelining, and their approaches were similar to those described by
Berlekamp for the CDC 6600 and to those described by Foster and Riseman for the CDC
3600. Weiss and Smith claimed execution rates comparable to that of the vector unit of the
Cray-1 with the Cray vectorizing compiler for Livermore Kernels 1-14.57 However, their ver-
sion of the compiler was obsolete at the time, because it failed to vectorize kernels that CIVIC
version 131e24 was able to vectorize. Furthermore, they reported speedups of at most 3.2
over execution without the use of vector instructions, and they did not compare execution

speed to execution using vector instructions.

Foster and Riseman3® described their experiences in code percolation as a means to
avoid issue stalls, noting that it achieved 93.5% of the parallelism achieved by an infinite
issue stack, at least for their programs for the CDC 3600. They also reported that condi-
tional branches tend to inhibit potential parallelism;85 without the conditional branches, they

found concurrency on the order of 50 instructions.

Kohler53 described a general heuristic for scheduling that concentrated on the critical

paths of programs. He reported results within a factor of two of optimal.

Rau, et.al.83 described a novel use of memories within the crosspoint switches between
functional units. These memories hold results until they are used, and they drastically reduce
the complexity of static operation scheduling for a microprogrammed processor. With the
new memories, operations can be scheduled to execute any time after their operands are avail-

able, rather than exactly when their operands become available.

2.1.2.2. Dynamic Scheduling

Dynamic scheduling necessarily must limit the window in which instructions are

scheduled, but it can use dynamic information to improve the quality of schedules. Much of
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the effort has concentrated on minimizing the hardware required to schedule operations.

Keller5! surveyed instruction issuing techniques as they apply to dynamic scheduling,

and established bounds on sizes and complexities of the scheduling hardware.

Thornton?® 1% described the scoreboarding mechanism of the CDC 6600 that allows
instruction execution to overlap without violating instruction-dependency constraints.
Tomasulo!03 described his famous algorithm for the IBM System /360 Model 91 floating-point
unit that allows instruction result registers to be dynamically reassigned during execution.
Weiss and Smith1%9 investigated several dynamic scheduling strategies, ranging from that used
in the Cray-1 to the Tomasulo algorithm. The Tomasulo algorithm is the most complex and
produces the fastest execution, while the strategy used for the Cray-1 is the least complex and
produces the slowest execution. The complexity and performance used in Weiss and Smith’s
own strategy was between these extremes. Acosta, et.al.! proposed dynamic scheduling
hardware that allows parallel issuing of instructions. For Livermore Kernels 1-14, they

reported speedups of 1.7-2.8 over serial-dispatch schemes.

Nonlinear pipelines, which use some pipeline stages more than once for each operation,
must be scheduled so that different operations do not request the same resources at the same
times. An excellent introduction to pipeline scheduling theory is provided in Peter Kogge's
book on pipelined architectures.52 Shar's PhD thesis®® discusses static pipelines (those that
perform only a single set of functions at a time), and Thomas’ PhD thesis’® discusses dynamic

pipelines (those that can be reconfigured while performing operations).

2.2. Application Characteristics and Program Structure

Supercomputer applications tend to have many floating-point operations and some
degree of parallelism. They differ in distributions of operations, degrees of parallelism, and

memory usages.
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Probably the best known set of supercomputer benchmarks is the collection of Liver-
more Kernels 1-14,57 program kernels characteristic of the workload at Lawrence Livermore
National Laboratories. These are discussed in more detail in Chapter 3. Other benchmarks
include: Dongarra’'s LINPACK,?® a collection of linear algebraic codes for matrix decomposi-
tion and matrix-vector multiplies; BMK,%8 a collection of benchmarks characteristic of the
workload at Los Alamos National Laboratory; Simple,%® an unclassified hydrodynamics code;
and EISPACK,4! a collection of codes for computing eigenvalues and eigenvectors. Two other
benchmarks, Whetstone?® and Dhrystone,!%® are of little interest because they are totally syn-
thetic and bear no similarity to actual programs, other than the authors’ assumed frequencies
of various types of operations. Nothing in the way of operation distributions or address

sequences can be determined or predicted from Whetstone or Dhrystone.

Other typical supercomputer applications include Fourier transforms, matrix transfor-
mations, image generation, and mathematical function evaluation. An excellent introduction
to the fast Fourier transform is found in the text by Brigham.!3 It includes discussions of
Fourier transforms, discreet Fourier transforms, and fast Fourier transform algorithms for
arbitrary factors. Lambiotte and Voight8® discussed transformations of the obvious serial
algorithm for tridiagonal-matrix factorization into more parallel algorithms that perform
extra work, but which can execute faster on pipelined computers with long-latency operations.
If sparse matrices are factored using Gaussian elimination, they become full and can no longer
fit in main memory. Nour-Omid and Parlett?® discussed conjugate-gradient methods for
sparse-matrix manipulations that do not generate full matrices but that require more arith-
metic operations than does Gaussian elimination. With proper element preconditioning,
conjugate-gradient methods converge on solutions faster than Gaussian elimination methods
that produce matrices that do not fit in main memory. Dipp€ and Swensen?’ discussed the
problem of image generation, with an emphasis on ray-tracing methods. They described a

paraliel algorithm for ray-tracing that reduces the total number of operations performed.
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Elementary mathematical function implementation is discussed in Cody and Waite's text on
the subject,’” with an emphasis on trigonometric, log and antilog functions for fixed-point,
floating-point, decimal, and non-decimal machines. Many more numerical algorithms are dis-
cussed in the text by Press, et.al.,7® but with fewer details than Cody and Waite's text pro-
vides. Kung®® studied several types of scientific programs, noting that the memory size must
grow much faster than the processing speed increases if input and output time is to remain

constant.

The structure of program parallelism has been discussed by several authors. Berlekamp
discussed critical and noncritical paths in loops executing on the CDC 6600, and showed how
to use this information to efficiently schedule instructions.9 Tjaden and Flynn!%! analyzed
programs for the IBM 7094, and described three kinds of dependencies: data dependencies that
are caused by one instruction using another’s result, procedural dependencies that are caused
by an instruction following a branch that depends on another instruction’s result, and opera-
tional dependencies that are caused by resource-usage conflicts. They found that ap 86%
improvement in performance was possible by issuing instructions in parallel. Foster and Rise-
man3885 showed how several independent chains of dependent instructions can be interleaved
(or percolated), allowing many instructions to issue without stalling and to execute in parallel.
They found that data-dependent conditional branches were the major obstacle to parallel exe-
cution; if an oracle could predict their outcome, as many as 51 instructioqs could execute in
parallel, on the average. Tjaden and Flynn!92 described a system of ordering matrices to
represent dynamic program concurrency. Their simulations show moderate speedups when
these matrices are used. Lambiotte and Voight8" analyzed the performance of several algo-
rithms for factorization of tridiagonal matrices on pipelined computers. They found that by
performing extra work (beyond that required by Gaussian elimination), the dependency chain
present in the obvious Gaussian-elimination algorithm can be broken; in addition, they

presented efficient algorithms for asymptotic cases, as well as for smaller matrices.
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Bucher!4 apalyzed the performance of several vector operations on the Cray-1 S and on
the Cyber 205. She noted that the slowest characteristic execution speed of a computer will
become the performance bottleneck, unless that characteristic represents a negligibly small

fraction of the total workload.

Berlekamp described parallel operations in Galois field computations in the patent dis-
closure for his Galois field computer.!9 Dipp€ and Swensen?? described several forms of paral-
lelism present in computing ray-traced computer graphics images. They showed that space

subdivision of the problem requires far less computation than time subdivision.

Acosta, et. al.! discussed a hardware scheme to maintain dynamic dependency informa-
tion about programs. When there is sufficient parallelism, several instructions can be issued in

parallel.

Thornton!® described features included in the CDC 6600 to support multiprogramming,
specifically base and limit registers, a fast exchange jump, and several peripheral processors.
Larson82 described multi-tasking support hardware in the Cray X-MP, including shared
memory and inter-processor communication registers. A different approach is taken by the
HEP-1,2® which supports the concurrent execution of several processes at once, and has a syn-

chronization mechanism built into the memory system.

2.3. Datapath-Design Issues

2.3.1. Plpelining

Most of the recent supercomputers have been pipelined, and work has been done on

pipeline clocking and control, latch design, and hardware allocation.

Peter Kogge’s definitive text on pipelining5? discusses all aspects of pipelined computer
design, from components and clock circuits to pipelined architectures and instruction sets.

Blaauw also discussed pipelining to a limited extent in his text on functional ubit
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implementation.!! Ramamoorthy and Li presented a pipelining survey, with a particularly
good comparison of the Control Data Corporation Star-100 and the Texas Instruments

Advanced Scientific Computer.80

Shar®® and Thomas®® discussed optimal control strategies for nonlinear, pipelined func-
tional units. Cotten discussed clocking and control of pipelines,!® and also proposed the more
general “maximum-rate” pipelining,2® where a pipeline can contain more data than it has

latches.

Hallin and Flynn discussed pipelining of arithmetic functions,*® and advocated use of a
latch designed by Earle to achieve high computational-efficiency. Kunkel and Smith5? dis-
cussed the clocking requirements of various pipelined circuits, and investigated the optimal
number of logic levels between pipeline stages. For the Livermore Kernels and functional
upits like those in the Cray-1, they concluded that between eight and ten levels of logic

between stages is optimal.

2.3.2. Arlthmetic Unit Design

The work in arithmetic unit design has concentrated on minimizing the execution times

for expected workloads and efficient partitioning of hardware.

Blaauw described most of the important hardware algorithms for arithmetic units in his
text on digital systems,!! including algorithms for addition and multiplication that speed up
carry propagation. He used APL as an implementation-independent language for presenta-
tion. Swartzlander has collected many of the landmark papers in computer arithmetic into

one volume.%

Cottenl9:20 discussed the clocking, control, and logic partitioning of pipelined functional
upits. Shar5® and Thomas® discussed the control of pipelined arithmetic units, and showed

how to achieve maximum utilization of the hardware. Kunkel and Smith5? compared several
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partitionings of arithmetic unit functionality for the Cray-1 running the Livermore Loops, and
concluded that between eight and ten gates of logic between logic stages is optimal for that

architecture and problem set.

Thornton described the specific arithmetic units in the CDC 6600 in his wonderful book
about that computer.}® Anderson described some aspects of the floating-point execution unit
of the IBM System/360 Model 91 computer,* and Watson!%? described the Texas Instruments
Advanced Scientific Computer, with its four homogeneous arithmetic pipelines that can be
configured to perform the functions needed by the applications. Lincoln% presented an
interesting comparison between the CDC Star-100 and its successor, the Cyber 205, citing
technology as a major reason for changing the design. Finally, Russell®® described some
aspects of the Cray-1 arithmetic units, noting that the short pipelines allow vector execution

to be efficient even for short vectors.

2.3.3. Decoding Delays

In his text on computer architecture,® Kuck showed that log,(k) levels of devices are
needed to decode or multiplex one of k things, where f is the fan-in or fan-out of each device.
Meade%® noted that larger memories tend to have longer access times than smaller memories,
because the former have longer cables and, hence, longer propagation delays. Tjaden and
Flynn!0! noted that logic decoding time increases with n, where n is the number of instruc-
tions simultaneously issued each clock tick. Thus, the length of each clock tick temds to

increase as more instructions are simultaneously issued.

2.3.4. Components

Supercomputer design has always been driven by advances in components.31:32:85 Thorn-
ton%9:190 discussed the circuits and three-dimensional “‘cordwood” logic modules used in the

CDC 6600. Lincoln®® attributed the refinement of the tramsistor and the cordwood module
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with the success of the CDC 6600. He noted the use of freon cooling to allow more dense
packaging of the logic. He also discussed the limitations that small scale integrated (SSI) cir-
cuits imposed upon the CDC Star-100’s design, where functionality had to be limited in order
to keep the parts count small enough (for reliability reasons), and he discussed how the availa-
bility of large scale integrated (LSI) circuits enabled the Cyber 205 to take its final form. He
also described numerous problems that LSI circuits caused, particularly those problems caused

by too few logic module types.

Russell®® described the four chip types used in the Cray-1 (two speeds of OR/NOR
gates, a 16 X4 RAM chip, and a 1K X1 RAM chip), and discussed at length the power distri-
bution and cooling system used for this computer; in fact, he stated that the cooling system is

the only part of the Cray-1 that is patented.

Bloch!? discussed component advances and their influence on computers, as did

Vacca,19% who concentrated on packaging issues of components and logic partitioning.

2.4. Storage-Design Issues

Much work has been done in memory system design, including caches, interleaving, vir-

tual memory, and the tradeoffs between caches and registers.

Pohm and Agrawal”? discussed many aspects of memory design in their text, including a
history of cache memories, swapping algorithms, effective cycle-times and_ access-times, hit
ratios, and organizations of memory hierarchies. Smith?! surveyed cache memories, with an
emphasis on caches for the large [BM and Amdahl computers. He noted that cache

bandwidth should be at least two or three times the average data-rate in order to be effective.

Takahashi, et.al.%7 described the memory system of the ETL Mk-6 developed in the
Electrotechnical Laboratory in Tokyo; the top section of the arithmetic stack in the ETL

Mk-6 is implemented in fast tunnel-diode memory. Meade®® advocated mapping the “relative
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value” of data to various levels of the memory hierarchy, so that frequently-accessed data are
available faster than less-frequently-accessed data. Both of these ideas reflect the conven-
tional wisdom that frequently-accessed data should be available quicker than less-frequently-
accessed data. What they ignore, however, is the tradeoff between the latency and bandwidth

of access.

Lincoln® advocated virtual memory for supercomputers, citing as reasons: the easier
task of memory management, convenient debugging of large programs, and easier develop-
ment of large programs. The computers of Seymour Cray, however, do not have virtu:;l
memory, but are much more common in supercomputer installations. This seems to suggest
that convenience of use is not an overriding consideration for the institutions that purchase

supercomputers.

Smith, et.al.92:93 described a new architecture that decouples memory access mechan-
isms from execution mechanisms. Their architecture compares favorably to the Cray-1 on
scalar compilations of the Livermore Loops, but it is not clear from their studies how their

architecture compares to vector execution of the same loops.

Kung5® discussed the memory requirements for multiprocessors with private memory.
He considered several types of scientific computations when inter-processor communication
rates are held constant and execution rates are increased by a factor of a. For matrix compu-
tations, memory size must be increased by a factor of a? (where d is the dimensionality of the
matrix or mesh). For FFT or sorting computations, the memory size required is that of the
original memory raised to the power of a. If memory size is not increased, inter-processor

communication time will dominate the total time for the computation.

Many studies of interleaved-memory-bank contention have been performed. Rau®
noted that the memory bank interference problem is the dual of paging; page “hits” are

desired in a virtual memory system, while ‘“faults” are wanted to avoid memory bank



interference. He developed an access model based on a least-recently-used (LRU) replacement
policy that is superior to random models; be advocated a cache to ‘“sequentialize” accesses to
memory banks {and hence decrease their bit rate), and noted that, for random memory bank

requests, deep interleaving performs no better than shallow interleaving.

Oed and Lange™ reported minimum-conflict access patterns for the Cray X-MP memory
system using GCD methods to prove their results. Unfortunately, they did not show how to
improve the performance of the memory system when access patterns are fixed by the pro-
gram. They showed several access patterns with linked conflicts, where one’access pattern
forces another to wait, causing the patterns to interfere with each other in the same way
again. Cheung and Smith!® investigated bank conflicts for the Cray X-MP, and found all
bank conflicts for all access patterns with unit stride. They showed that having a busy time
for a bank that is different than the number of sections results in fewer linked conflicts. (A
sections is a collection of memory banks that are independent of each other, but that share
common data paths to and from the CPU.) They advocated mapping the memory sections
selection to bits 3 and 2 of the address, rather than bits 1 and O, citing a 7% reduction in sec-

tions conflicts for access patterns with unit stride when this is dome. (A sections conflict

occurs if two or more requests to different banks in the same sections arrive simultaneously.)

Bailey? simulated memory bank conflicts for vector access patterns, and reported that
deep interleaving substantially reduces memory bank interference for sequeﬁtial vector access
patterns. He also reported a large increase in bank interference when vector strides greater
than unity are used. Note that Bailey's results, which deal with sequential access, are not in

conflict with Rau’s results, which deal with random access.

Swensen and Patt% proposed a novel organization for vector registers that allows them

to be very large and still have low latency.
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Sites® discussed the relative advantages and disadvantages of caches and registers in
the context of on-chip local storage for microprocessors (although he also discussed the
requirements for supercomputers). He claimed that the stale data problem is probably the
bardest design problem in systems that make copies of data (this is even true for single-
processor designs). He suggested renaming memory locations as a hint to caching strategies,
and advocated a top-of-stack cache using a ‘‘dribble-back” algorithm for memory updating.
He noted that, ideally, data should be fetched from memory just far enough in advance that

they arrive when needed.

Ditzel and McLellan2® described a stack cache where the top of the stack is allocated to
a small local memory. General addresses accessing the top of stack are mapped to stack-cache
addresses when they are loaded into the instruction cache. They do not consider the tradeoff

between latency and bandwidth of access.

2.5. Instruction Issuing and Instruction Formats

The work in instruction issuing mechanisms and instruction formats has concentrated.on
increasing the rate at which operations can be started by buffering 2 small number of instruc-
tions in high speed memory, by allowing instructions to issue out of program order, and by

specifying operations more efficiently.

Strategies for issuing instructions have been investigated by many researchers.
Takahashi, et.al.97 described an instruction stack of 60 instructions implemented in tunnel-

diode memory and running at CPU speed.

Thornton® 190 described the eight-word instruction stack in the CDC 6600. Up to four
instructions can be stored in each word, so 32 instructions are held in the stack. Berlekamp®
reported that the instruction-stack loading algorithm of the CDC 6600 limited loops to 27
instructions or less. Thornton described the scoreboarding mechanism that allows later

instructions to begin executing, even if earlier instructions are stalled and awaiting operands.
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Tomasulo, et.al.103 described the reservation stations, operand tags, and common data
bus that allow the IBM System/360 Model 91 to execute instructions out of order if earlier
instructions are stalled because of data dependency conflicts. The reservation stations allow
instructions to await operands without keeping the functional units busy, so instructions on

the Model 91 can start in cases where instructions on the CDC 6600 would stall.

Tjaden and Flynn!0! discussed a simulation of the IBM 7090 with an enhanced
instruction-issuing mechanism that allows parallel issuing of instructions. They reported a
potential program speedup of 1.86. Riseman and Foster8% described simulations of the CDC
3600 with an infinite instruction stack and parallel issuing of instructions. They reported an
average program speedup of 1.76 when conditional branches inhibit parallel issuing. Tjaden
and Flynn!92 described a dynamic dependency-checking scheme using ordering matrices to
represent program concurrency. Each instruction is described by a pair of binary vectors that
completely describe the sources and sinks specified by the instruction, and tasks are
represented as square matrices of dependency relationships. By using linear-algebraic-like
operations, the concurrency can be exposed. Keller®! surveyed instruction issuing mechanisms
for existing computers, and described a generalization of the Tomasulo algorithm that does
not rely on a single common data bus. Rau8! examined the instruction buffers and instruction
stacks of several high speed computers, concluding (among other things) that prefetch of

instructions performs better than block fetches of instructions.

Weiss and Smith!% reported on simulations of several instruction issuing mechanisms,
including those of the Cray-1, the CDC 6600, and the Tomasulo algorithm. They reported
that for scalar compilations of Livermore Kernels 1-14, the Tomasulo algorithm gives a total
speedup of 1.58 over the Cray-1 algorithm, the CDC 6600 algorithm gives a speedup of 1.28
over the Cray-1 algorithm, and their own algorithm gives a speedup of 1.38 over the Cray-1

algorithm. They noted that the better algorithms require more hardware and could result in
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a slower issue rate. Their work is flawed, however, because all their examples could have been

scheduled statically, requiring no run-time scheduling hardware.

Patt, et.al.’® described a microarchitecture that uses a generalization of the Tomasulo
algorithm to execute a window of instructions as concurrently as data dependencies allow.
This is useful when instruction timing cannot be predicted at compile time. This microarchi-

tecture is intended to implement a number of dissimilar ISP architectures.

Maurer8® presented a theoretical basis for instruction sets, but provided no insight into
instruction set design. Tjaden and-Flynn!0! advocated adding explicit dependency tags to the
instruction format to facilitate checking for dependency. They reported an 86% performance
improvement when the IBM 7094 is so modified, without compiler techniques or programmer
assistance. In light of the current state of compiler optimization and scheduling, their
approach is not cost effective. Smith, et.al.92.93 described a simulated architecture with
separate memory access instructions and execution instructions. They reported faster execu-

tion for their architecture than for the Cray-1, at least for scalar loops.

Flynn, et.al.38 advocated complex instruction formats that better match the parse trees
generated by compilers. They cited as advantages fewer redundant temporary registers and
denser code. However, they required as many as 2500 opcodes—orders of magnitude more

than conventional instruction formats require—and their instructions were harder to decode.

Flynn, Mitchell, and Mulder¥” reported on studies comparing the instruction-stream
bandwidths and data-stream bandwidths of versions of a computer with d.iﬂ'erent, numbers of
registers, caches, and instruction formats. They concluded that by adding a 16-bit register
format and a register-memory format to a computer with a fixed 32-bit register-register for-
mat, the instruction-stream bandwidth requirements are reduced by one third to one half.
They also reported that increasing the complexity of the instruction formats reduces the total

memory-bandwidth requirements more than does increasing the number of registers.

Cnwy
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Minimal-redundancy coding of data streams was discussed by Huffman in his landmark

paper on the subject.4®

2.6. Other Factors

The design of any large system tends to be influenced by factors beyond the technical.
Thornton!® discussed many of the design decisions for the CDC 6600 as well as some of the
mistakes made, including a logic simplification error that caused the pass instruction to ini-
tiate a divide (this error was corrected). Lincoln®? discussed many of the human issues of a
large project, includfng the effects of egos, high stress, and the murder of project leaders.*

Swensen® discussed problems peculiar to development in a university environment.

Polya’ discussed the process of problem solving in general in his delightful book. He
suggested first understanding the problem to make sure it can be solved, devising a plan,
perhaps using the solutions of similar problems, carrying out a plan with checks at each step,
and checking the result for correctness and to see if it can be used to help solve other prob-
lems. Huff*? listed many pitfalls of statistical analyses, including sampling biases, different
methods of calculating averages, and statistical error. His advice is particularly well-suited

for reporting the results of computer performance studies.

2.7. Past and Present Supercomputers

The evolution of supercomputers from the CDC 6600 and the IBM System 360 Model 91
to the Cray X-MP, ETA-10, and the NEC SX-2 has involved increases in clock speed, memory

capacity, and the addition of vector instructions.

* A deranged ex-employee shot and killed the designer of the Floating Point unit of an experimental CDC
STAR project. The incident was so upsetting that for several months the managers were unable to deal with the
work he had left behind.
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The CDC 6600 is described in detail in Thornton’s book on that machine,!% and a brief
description is also found in his paper.99 The CDC 6600 featured multiple functional units that
supported overlapped execution, ten peripheral processing units to handle input and output
tasks, a set of 24 registers, and a 100-nanosecond clock period. Berlekamp®9 described the
machine from the point of making it run as fast as possible, and discussed weak points in the
design, such as blocking of loads and stores in order to prevent pathological memory hazards

and the effective shortening of the instruction stack from eight to seven words.

The CDC 7600 bears a strong resemblance to its predecessor, the CDC 6600, so
Thornton's book is still relevant. The CDC 7600 reference manual!® describes the hardware
in detail. The primary differences between the CDC 6600 and the CDC 7600 are the fully
pipelined functional units on the CDC 7600, the availability of up to five additional peripheral
processors, and the shortening of the clock period to 27.5 nanoseconds.

The IBM System/360 Model 91 is described primarily io three articles published at the
time of its announcement, those of D. Anderson, et.al.> S. Anderson, et.al.,* and Tomasulo.!03
Kogge also has a fairly extensive discussion of this machine in his text.52 This computer had a

60 nanosecond clock period and supported data forwarding and hardware reservation stations

that allowed out-of-order execution of instructions.

The CDC Star-100 was one of the first vector computers, storing its vectors in main
memory and streaming them into pipelined functional units. Ramamoorthy and Li described
the CDC Star-100 in their survey,80 as did Kogge in his text.52 Lincoln® discussed some of the
reasons for design choices made in that machine. Lambiotte and Voight8 considered the
Star-100 from the perspective of algorithm optimization.

The Texas Instruments ASC is described in a paper by Watson,197 as well as in

Ramamoorthy and Li's survey.80 An excellent comparison of the TI ASC and the CDC Star-

100 is included in this survey. The main features of the TI ASC were its vector instructions,
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vector storage in memory and up to four homogeneous multifunctional units.

Russell described the architecture and implementation of the Cray-1,8% and the details of
the hardware imple'mentation were discussed by Kolodzey.5* Many details of the architecture
are described in the hardware reference manual.2! Kogge®? also covered the Cray-1 in his text,
and Bucher presented extensive measurements of the Cray-1 in her paper.l¥ The Cray-1 is

analyzed in more detail in Chapter 6 of this dissertation.

The Cray X-MP is described in a paper by Larson 82 as well as in its hardware reference
manual,?2 and is also analyzed in Chapter 6 of this dissertation. Dongarra30 reported on
measurements of the Cray X-MP and other supercomputers. The Cray-2 is described in its

hardware reference manual,2® and is analyzed in Chapter 6 of this dissertation.

Lincoln described the evolution of the Cyber 205 from the Star-100,%4 and gave reasons
for many design choices. Bucher!# described measurements of the Cyber 205 for benchmark
programs at Los Alamos National Laboratories. The ETA-10,33:3484 3 descendent of the
Cyber 205, is described in its hardware reference manual and is analyzed in Chapter 6. The
ETA-10 representé a very different approach to supercomputing than the other supercomput-

ers discussed, in that it has complex instructions and memory-to-memory vector instructions.

The HEP-128 is described in its hardware reference manual, and is analyzed in Chapter
6. It has thousands of registers, multiple pipelined functional units, and hardware support for
multiple instruction streams, but it also bas an incongruously slow 100-nanosecond clock
period.

The NEC SX-240,49,104,108,111 js faster than the Cray-1, the Cray X-MP and the Cray-2,
for some applications. It is analyzed in detail in Chapter 6 of this dissertation. Among its
features are a six-nanosecond clock, multiple copies of pipelined functional units, and hundreds

of registers.



CHAPTER 3

Program Characteristics

The hardware requirements for fast execution depend on the characteristics of the pro-
grams to be executed. For example, the extent to which various operations should be sup-
ported depends on the relative frequencies of the various operations, and the support for
parallel execution depends on the degree of program parallelism. The temporary storage

requirements also depend on the characteristics of the programs.

Scientific programs are of interest in this thesis. Livermore Kernels 1-1457 are chosen as

the representative benchmarks because of their conciseness and widespread availability.

The programs are analyzed at the level of their dependency graphs. This eliminates
apomalies introduced by specific compilations for specific machines, as well as anomalies
imposed by specific programming languages. Exotic parallelization techniques such as factor-
ing of expressions, as described by Kuck,5 are not performed on the programs or dependency
graphs.

The analysis technique reported here partitions the dependency graphs into sets of
operations that can execute independent of each other. These partitions are then analyzed as
to size, distributions of operations, and other characteristics. Any two programs with the

same partition structure should have the same hardware requirements and execution times.

The execution times of programs are predicted from the partition structures. Upper and
lower bounds for execution times are established for varying operation-execution times and
degrees of parallel execution, but ignore implementation-dependent hardware resource

conflicts.

29
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The analyses and predictions are then tested by simulating execution, varying the
relevant parameters, such as operation-execution times, amount of parallel execution allowed,
and numbers and speeds of temporary storage locations. Arbitrary machine-specific restric-

tions on execution are avoided, although only simple operation scheduling is performed.

Based upon the results of the analyses and simulations, conclusions are drawn about the

hardware support necessary, with an emphasis on temporary storage requirements.

3.1. Livermore Kernel Benchmark Descriptions

The Livermore Kernels®? are a collection of small program kernels intended to represent
the workload at Lawrence Livermore National Laboratories. The iteration counts for the loops
range from 20 to 1024. Most operations in these kernels are floating-point operations, except
for some integer or logical operations performed in kernels 13 and 14 in conjunction with

array indexing. The kernels are listed in Appendix B, with a summary listed in table 3.1.

Table 3.1: Livermore Kernels 1-14, with Iteration Counts and Operation Counts.

Kernel Title Iterations | Operations
1 Hydro Excerpt 400 3204
2 MLR, Inner Product 40 800
3 Inner Product 1024 4098
4 Banded Linear Equations 128 1542
5 Tri-Diagonal Elimination, Below Diagonal 997 4981
6 Tri-Diagonal Elimination, Above Diagonal 997 4986
7 Equation of State Excerpt 120 2408
8 PDE Integration 20 2062
9 Integrate Predictors 100 2808

10 Difference Predictors 100 © 2900
11 First Sum 999 2998
12 First Difference 1000 3001
13 2-D Particle Pusher 128 3456
14 1-D Particle Pusher 150 3601
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3.2. Dependency Graphs
Dependency graphs are directed acyclic graphs, with the nodes of the graphs represent-
ing operations and the arcs of the graphs representing data dependencies or control dependen-

cies.

Each operation changes the architectural state of the machine; that is, the change is
visible to the assembly-language programmer. For example, a multiply or add writes a regis-
ter with a product or sum of two other registers, a load writes a register with the contents of

a memory location, and a branch writes a program counter with a program address.

Several operations can start simultaneously on some computers. For example, when k
Cray-1-style vector instructions are running overlapped, k operations start each clock tick
(one from each vector instruction).21-23 A single instruction can also start several operations
simultaneously. For example, NEC SX-2 vector instructions start four operations each clock
tick, so k NEC SX-2-style vector instructions running overlapped could start 4k operations

each clock tick.40

As discussed in Chapter 1, an instruction is the specification of one or more operations

to be performed. Instructions are only considered peripherally in these analyses.

An operation starts or begins execution when some subset of its required operands and
hardware resources become available. For these analyses, all operands and resources must be

available before an operation can start.

An operation finishes when it completes execution and writes its result, making its last
change to the architectural state of the machine.

Each operation is performed as a collection of micro-operations, each of which may or

may not change the architectural state of the machine. For example, a store is performed as

three micro-operations:
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(1) a relative address is read from a register (an address register or the instruction register);
(2) a datum is read from an architectural register;
(3) the datum is written into memory at the physical address.

Micro-operations (1) and (2) can execute in parallel, while micro-operation (3) must wait for

both (1) and (2) to finish before it can execute.

3.2.1. Dependency-Graph Generatlon

Dependency graphs of programs are generated semi-automatically, using a degree of

sophistication similar to that of current vectorizing compilers.

Loops executed n times are unrolled so that all n iterations can execute concurrently, if
data dependencies allow them to do so. The loop test operations are pot included in the
dependency graph if n is known at compile time. Scalar temporaries are duplicated, if neces-
sary, to allow several iterations to run concurrently. Intermediate values that are not avail-
able outside loops are not maintained or stored, so machine states after exceptions may not
be consistent with serial execution models. (Of course, an actual compilation would need to

include code to guarantee a consistent state following an exception.)

Simple code transformations are performed, particularly those involving application of

associative properties of arithmetic. For example, the loop

fori=1ton
g =g + zli]

is transformed to the statement

¢ =g+ Yzl

=]
and the sum is performed using a binary summation tree. This transformation allows speed-
ups with parallel hardware, yet, since it adds no extra operations to the original program, it

does not slow down execution with serial hardware (it does require more temporaries,
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bowever, but these do not necessarily slow the overall execution rate).

More complex transformations, such as the parallelizations of tri-diagonal elimination
described by Lambiotte and Voight, 8 increase parallelism but add extra operations, and
would, thus, slow execution with serial hardware. Although these complex transformations
could be performed, they are not performed during dependency graph generation for these
analyses. If they were performed, more program parallelism might be exposed.

The degree of sophistication during dependency graph generation is roughly equivalent
to that of current vectorizing compilers, such as Cray Research’s CIVIC, version 131e.2¢ It
represents a lower bound on parallelism that can be extracted using parallelizing or vectoriz-

ing compilers.

3.3. Program Partitioning

Programs in the form of a dependency graph are partitioned in the following manner.
(1) An eager partitioning of the dependency graph is formed such that:

(a) partition O contains all operations that depend on no operation;

(b) for all partitions from 1 to p—1 partition i contains all operations that depend
only on operations in partitions 0 to i —1, and that depend on at least one opera-
tion in partition {—1.

The eager partitioning represents the execution order of operations on a parallel com-

puter with unlimited resources and uniform operation-execution times with an eager exe-

cution strategy.
(2) A lazy partitioning of the dependency graph is formed such that:

(a) partition p—1 contains all operations that source no operations;
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(b) for all partitions from p—2 to O, partition ¢ contains all operations that source
only operations in partitions p—1 to ¢ +1 and that source at least one operation in

partition i +1.

The lazy partitioning represents the execution order of operations on a parallel computer
with unlimited resources and uniform operation-execution times with a lazy execution

strategy.

The critical path of the dependency graph is formed, and is defined as the intersection of

eager partition O with lazy partition 0, eager partition 1 with lazy partition 1, and so on.
The critical path contains elements from all p partitions.

A scheduled partitioning of the dependency graph is formed by allocating operations to

partitions such that:

(a) stores are executed as eagerly as possible;

(b) operations with more sources than sinks are executed as eagerly as possible;
(c) all other operations are executed as lazily as possible.

This partitioning tends to reduce the lifetimes of intermediate results. Operations in the
critical path have the same partitions for all partitioning methods, but some non-
critical-path operations may have different partitions than they did with either eager

partitioning or lazy partitioning.

Other scheduled partitionings are also possible; for example, operations not in the criti-
cal path could be allocated to partitions such that partition sizes are as uniform as pos-

sible.
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3.3.1. Partitioning Example

The partitioning process is illustrated in the following example, based on Livermore Ker-

nel 6 with n = 3.

for i = 2 downto 1
z[i] = z[i] = z[i] * z[i+1]

There are 11 operations: five loads from arrays, two multiplies, two subtracts, and two stores

to an array. The dependency graph for this program is shown in figure 3.1.

Figure 3.1: Dependency Graph for Livermore Kernel 8 with n = 3.

This dependency graph has a critical-path length of six operations; the six operations are
circled and numbered. The dependency graph can be partitioned into six sets of independent
operations; each partition contains one or more operations that are in the critical path. The
eager partitioning, the lazy partitioning, the critical path, and a scheduled partitioning are
shown in table 3.2. “L” indicates an array load, “+" indicates a multiply, *=" indicates a

subtract, and *‘S"" indicates an array store.
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With the eager partitioning, all five array loads can start immediately, but the multi-

plies, subtracts, and stores depend on operations in earlier partitions.

Table 3.2: Eager, Lazy, and Scheduled Partitioning and Critical Path for the Ex-
ample in Figure 3.1.

Partitioning Method
Partition || Eager | Lazy Critical Path | Scheduled
0 5L 2L 2L 2L
1 1+ 1+, 1L 1= 1%, IL
2 1- 1-, 1L 1- 1-, 1L
3 1+, 1S | 1=, 1L 1= 1+ 1L, 1S
4 1- 1- 1- 1—-
5 1S 25 1S 18

With the lazy partitioning, three of the loads are moved to the partitions just before

they are used, and the second store is moved down to the last partition.

The intersection of the eager and lazy partitioning is the critical path of the program:

the two initial loads, the multiplies and subtracts, and the last store.

In this scheduled partitioning of the program, all operations except stores are executed

lazily; stores are executed eagerly.

This analysis shows that, for programs with this dependency graph structure and
scheduled partitioning, at most three operations can be running at a time, that at most two
memory operations can be in progress at one time, and that multiplies and subtracts do not
overlap. This analysis can be used to make architectural decisions; parallei or pipelined arith-
metic functional units would be under-utilized for programs like this, as would be more than
two memory ports. Furthermore, no more than two registers would be needed to hold tem-

porary results.
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3.3.2. Prediction of Execution Times from Partitions

Theoretical upper and lower bounds on the execution times of programs can be esta-

blished. These assume no hardware conflicts, although there is a limit on the maximum

number of operations that can start simultaneously. The predictions are thus independent of

the anomalies of particular hardware configurations, and reflect the pature of the programs

themselves. Hardware requirements for conflict-free execution can be determined later by

examining the distributions of operations in the partitions.

Deflnition:

Definition:

Definition:

Definitlion:

Definition:

Definition:

Deflnition:

Lemma 3.1:

Start-limst is the maximum number of operations that can be started each
clock tick. Typically, a start-limit that is greater than one is achieved by
overlapping the execution of several vector instructions, each of which start

one operation every clock tick.

Etime; is the execution time of operation j.

Opcount, is the number of operations in partition i.

First; is the first operation started in partition 1.

Earliest; is the first operation in partition ¢ to finish. Earliest; could be

different than first; if earliest; had a shorter execution time than first;.

Last, is the last operation started in partition 1.

Latest; is the last operation in partition i to finish. Latest; could be different

than last, if latest; had a longer execution time than last;.

With eager partitioning, some operation in partition i must finish before the

first operation in partition ¢+1 can start.



Proof:

Lemma 3.2:

Proof:

Lemma 3.3:

Proof:

Lemma 3.4:
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Every operation in partition i+1 depends on at least one operation in parti-
tion i (by the definition of eager partitioning), so it must wait for that opera-

tion to finish before that operation’s result is available as an operand. ||}

With lazy partitioning, some operation in partition i cannot start until all

operations in partition {—1 finish.

Every operation in partition i —1 sources at least one operation in partition §
(by the definition of lazy partitioning), so an operation in partition # must

wait for latest;_, to finish before it can start. [ |
The execution time of all operations in partition 1 is at least

opcount;

start-limit

+ etime,, ticks.

Assume all operations that source operations in partition i+ have finished by
the time the first operation in partition i starts. All operations in partition ¢

must still start before they can finish, and that requires

opcount;

stort-limit
clock ticks. The latest operation must finish, and that happens no sooner than

when the last operation started finishes, which takes an additional elime,:,
ticks. If some operations sourcing operations in partition i+ had not finished,
this could only delay the execution of operations in partition { and increase

the execution time. [}

The execution time of all operations in all p partition is at least

?
Y opcount;

=1

start-limit

+ etimey,, ticks.



Proof:

Lemma 3.5:

Proof:

Theorem 3.8:

Proof:
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Assume that the execution time elimey,, of the last operation in partition ¢
can be overlapped with the starting of operations in partitions i+1 through p,
1<i <p, and that operations from two adjacent partitions can be started
during the same clock tick if start-limit 2> 2. Then, only the execution time
of the last operation in partition p cannot be overlapped with later operations,
and in the best case, only the start times of the last operations in partition p
cannot be overlapped with operations from adjacent partitions. If this
assumption is not true for all 1 <i <p, then less overlap occurs, and the total

execution time is greater. |}

Assuming all operations in partitions before i have finished, the execution

time of all operations in partition 1 is at most

opcount;

—— + EliMeeq, ticks.
start-limit )
All operations in partition i are independent and can execute concurrently (by

the definition of partitioning), but they must all start before they can finish,

and that requires

opcount;

start-limit
clock ticks. The latest operation must finish, and that happens no later than

elime g, ticks after the last operation in partition i starts. B

The execution time of all operations in all p partition is at most

P [ opcount; . .

E ——— + EliME e, || ticks.
=1 start-limit '

Assume that first;,, depends on all operations in partition ¢, for 1 <1 <p, so

first;4, cannot start until latest; finishes. From Lemma 3.5, this is no more

than
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opcount;
start-limst
Executing all operations in partition p requires an additional

+ elime g, ticks.

opcount,
start-limit

If the assumption is not true, some execution can be overlapped, and the total

+ etimey, ticks.

execution time is less. [l

The pessimistic model of execution assumed in theorem 3.6 allows no overlap of
critical-path-operation execution and operation starting. A more optimistic model of execution
allows the critical-path-operations from each partition to start first, so their execution can run

in parallel with the starting of other operations.

The minimum number of operations that must start each partition before operations in
the next partition can start are given by the lazy partitioning of the dependency graph. The
cumulative minimum number of operations started in each partition is just the sum of lazy

partition sizes.

i
Definitlon:  Minstarts; = Y, lazy;.
j=1
The maximum number of operations in each partition that have all their operands and
can start are given by the eager partitioning of the dependency graph. The cumulative max-

imum number of operations started in each partition is just the sum of eager partition sizes.

i
Definition:  Mazstarts, = Y, eager;.
=}

While the earliest operation in a partition executes, several other operations in the par-
tition may be able to start without additional time penalty. The allowable overlap of starts
and execution is determined by the execution time of the earliest operation in each partition

and by the start-limit of the computer being modeled.
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Definition:  Overlap; = elimegnicst,* start-limit.

The cumulative number of operations started is the sum of operations started each par-
tition; this number must be between minstarts and mazatarts. Subject to these constraints,
starts; is the sum of starts;_, and overlap;.

Definitlon:  Starts, =0

Definition:  Starts; = min(mazstarts;, max(starts,_, + overlap;, minstarts;)).

Under this model of execution, the time spent in each partition is either the time to exe-
cute the earliest operation in the partition, or the time to start enough operations to reach

minstarts for this partition, which ever is greater.

minstarts; — starts;_,

Definition: Time; = max |etiMmepriicet,s —
) start-limit

Theorem 3.7: The execution time of all operations in p partitions is at least

ol minstarts, — starts,_;
Z time; + —
il start-limit

+latest,_,

Proof: In the best case, for { between 1 and p—1, an operation in partition i+1 can
start after the first operation in partition i finishes, (using Lemma 3.1), or
after enough operations start so that starts; 2> minstarts;. If overlap; is large
enough and if mazstarts; is large enough, extra operatio;ls can be started in
partition i, reducing the number of operations that must be started in later
partitions. After they all start, the operations in partition p must still exe-

cute, and this execution time is specified by Lemma 33. B

Remark: Note that minstarts; < starts; < mazstarts;, by definition. Then
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minstarts; — mazstarts;_,

max | etime g iicet.: < time;, and
cartiest, start-limit =
ti < et lazy;
ime; < max | etime g iogt, ————|
= curtionty start-limit

so this model of execution is at least as fast as a lazy model of execution.

3.3.3. Partition-Size Analysis

The kernels fall into one of two groups: parallel kernels and serial kernels. The parallel
kernels 1, 2, 3, 4, 7, 8, 9, 10, and 12 have mean scheduled-partition sizes between 47 and 1868
operations, and have mean critical-path widths between 47 and 1099 operations. All are vec-
torized by the CIVIC compiler.?4 The serial kernels §, 6, 11, 13, and 14 have mean scheduled-
partition sizes between 2.5 and 8.9 operations, and have mean critical-path widths of 1.0.
Kernels 5, 6, and 11 are not vectorized because of potential dependency conflicts, and kernels
13 and 14 are not vectorized because of indirect array indices.2? Partition size data are

presented in table 3.3.

Table 3.3: Partition Sizes and Critical-Path Widths.

Partition Size Critical-Path Width
Kernel | Max. Mean Std. Dev. | Max. Mean Std. Dev.

1 800 534.00 206.05 800 467.17 163.06
2 320 133.33 106.33 320 113.33 111.47
3 2048 292.71 581.30 2048 292.64 581.34
4 768 140.18 238.81 768 139.91 238.98
5 3 2.50 0.50 2 1.00 0.02
6 3 2.50 0.50 2 1.00 0.02
7 360 200.67 77.71 121 120.08 "0.29
8 720 294.57 216.53 360 173.14 93.43
9 800 401.14 295.53 707 329.57 276.75
10 300 263.64 67.42 200 109.09 30.15
11 3 3.00 0.08 2 1.00 0.03
12 1001  1000.33 0.58 1001  1000.33 0.58
13 257 8.86 21.94 2 1.02 0.12
14 9 5.94 2.25 3 1.01 0.10

The execution times of serial kernels, bounded by theorems 3.6, and 3.7, tend to be

dominated by the execution times along the critical paths, rather than by the start times,
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because typical execution times are larger than typical partition sizes for serial kernels. Con-
versely, the execution times of parallel kernels tend to be dominated by start times, rather
than by execution times, because partition sizes are so much larger than execution times. For
example, kernel 1 would need to start over 76 operations each clock tick before the time to
start operations in each partition would be as small as a typical operation-execution time of

seven clock ticks.

Thus, serial programs need low execution times for fast execution, while parallel pro-

grams need high start-limits for fast execution.

3.3.4. Memory-Reference Analysis

If most memory references are loads from addresses known at compile time, longer
memory access times can be tolerated by starting loads well before they are needed. The
analysis summarized in table 3.4 indicates that memory references with addresses that are

data-independent account for from 29% to virtually all memory references.

Table 3.4: Fraction of Memory References with Data-Independent Addresses.

Kernel | Fraction of References
1 0.67
2 0.91
3 1.00
4 1.00
5 0.67
6 0.67
7 0.75
8 0.61
9 091

10 0.50
11 0.50
12 0.50
13 0.22
14 0.27

For kernels 13 and 14 the low fraction of independent memory references slow the execution

on computers with high-latency memory. Thus, the Cray-2,2® with memory twice as slow as
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the Cray X-MP,22 is much worse suited for applications with this kind of memory reference

characteristics.

Most memory references in these kernels are array references, suggesting that two types
of memory references should be supported. A high-bandwidth, higher-latency érray reference
mechanism could be used when addresses are known ahead of time. When addresses are gen-
erated in the critical path, a lower-bandwidth, low-latency memory reference mechanism
would be used. Ideally, any variable should be accessible by either type of memory reference,
but this would be difficult to implement. More likely, separate scalar and vector memories

would be used.

3.3.5. Temporary-Storage-Requirement Analysis

Storing temporary results in main memory wastes memory bandwidth and increases the
execution time if the results are used in the critical path. Table 3.5 summarizes the analysis

of result lifetimes.

Table 3.5: Result Lifetimes (in Partitions) for Short-Result-Life Scheduling and
Eager-Execution Scheduling.

Shortlife Heuristic Eager Execution
Kernel | Max. Mean Std. Dev. | Max. Mean  Std. Dev.
1 1 1.00 0.00 4 1.29 0.70
2 1 1.00 0.00 3 1.11 0.45
3 1 1.00 0.00 12 1.00 0.17
4 1 1.00 0.00 9 1.02 0.35
5 1 1.00 0.00 1992 498.63 642.77
6 1 1.00 0.00 1994  499.13 643.42
7 10 1.58 2.03 10 1.91 2.25
8 3 1.13 0.50 3 1.20 0.54
9 1 1.00 0.00 3 1.11 0.42
10 1 1.00 0.00 9 2.89 2.67
11 1 1.00 0.00 999  250.38 322.28
12 1 1.00 0.00 1 1.00 0.00
13 385 19.82 66.23 384 19.72 65.98
14 595 1.63 10.37 598 28.51 100.39

Each result is usually used in the partition after its generation, especially with short-result-life
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scheduling; however, some results are used up to 595 partitions after generation. The short
lifetimes of so many results suggests that some temporary storage could be optimized for
speed, density, etc., without regard for long-term data integrity. For example, capacitive
storage devices without refresh mechanisms might be practical in some technologies. Alterna-
tively, results might propagate through short delay lines before they are used, rather than

waiting in registers.

An analysis of the number of times each result is used is summarized in table 3.6. Most
results are only used once, although some are used as many as 720 times. Kernel 10 shows

fewer than one mean use of each result because its stores are not used within the loop.

Table 3.6: Number of Times Each Result Used.

Number of Uses
Kernel | Max. Mean  Std. Dev.
1 400 1.37 12.22
2 1 0.95 0.22
3 1 1.00 0.02
4 1 1.00 0.04
5 2 1.00 0.63
6 2 1.00 0.63
7 720 1.64 15.49
8 120 1.45 3.80
9 100 1.25 5.28
10 2 0.97 0.81
11 2 1.00 0.82
12 2 1.00 0.82
13 5 1.37 1.31
14 150 1.54 2.62

The frequency of results that are used once suggests that specializ;ed mechanisms for
transmitting results could be used. For example, operands could be specified implicitly or
three-operand complex instructions (like z+y+z) could be used. Three-operand complex
instructions could reduce by 20% the number of instructions required to perform the opera-
tions: load a pair of array elements, subtract the product of a scalar and one element from the

other element, and store the difference in another array.
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3.4. Execution Simulation

Execution of each of the kernels is simulated using the mechanism described here.

Results are summarized in tables C.1-C.14 in Appendix C.

All operations have a count of the number of operands required. Operations that

depend on no other operations have operand counts of zero.

A ready list contains operations that have all necessary operands and are ready to rumn.

Initially, the ready list contains all operations that depend on no other operations.

Each clock tick, up to start-limit operations in the ready list are started and added to
an active list of operations that are executing. Operations in the critical path are selected
before operations not in the critical path, but no attempts are made to schedule operations
more cleverly (clever scheduling heuristics might select operations based upon when dependent
operations could start, for example). The execution time for the operation is included in the

active list entry for the operation.

Each clock tick, the remaining execution time.entry of each operation in the active list
is decremented. When an operation’s execution time reaches zero, the operation finishes, and

it is removed from the active list.

Every operation that depends on a just-finished operation has its operand-count entry
decremented, and when an operand-count entry reaches zero, the operation is added to the

ready list.

A count is kept of the number of clock ticks from the time the first operation starts

until the last operation finishes; this is the total execution time.

The variable parameters in these simulations are the start-limits and the execution
times. Start-limits of one, two, four, and eight are used to determine the sensitivity of kernel

execution times to start-limits. In gemeral, the parallel kernels are more sensitive to the
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start-limit than serial kernels, as predicted in section 3.3. The very-serial kernels 5, 6, and 11

are practically insensitive to the start-limit.

Execution times are taken from the Cray-1S operation-execution times,2! except that all
hardware conflicts except for start-limits are ignored. When start-limits are increased, a con-
stant cost is sometimes added to all operation-execution times to reflect greater operation-
start-hardware complexity. This cost as modeled grows as the log, of the start-limit. The
simulations show that the serial kernels actually run slower when more operations start each
clock tick, if starting more operations at a time increases their execution times. Uniform exe-
cution times of 1, 2, 4, 8, 16, 32, and 64 ticks per operation are also used. The simulations
show that increasing the start-limit does not speed up execution very much, once the product
of the start-limit and the operation-execution-time is as large as the mean partition size, as

predicted in section 3.3.

The results of the simulations are presented in Appendix C, along with the execution-
time bounds set by theorems 3.6 and 3.7. No schedule can achieve an execution time outside
these bounds. Root-mean-square differences between bounds and simulation times are sum-
marized in table 3.7. The differences show how closely the pai theoretical upper and lower
bounds on execution time. The generally low differences between simulated execution times
and lower bound predictions indicate that the naive scheduling is close to optimal for many
different execution parameters. Differences between the predicted upper bopnds and simulated
execution times are higher, especially for serial programs. This is because the execution model
assumed for theorem 3.6 allows no execution overlap between partitions, although some over-
lap is present in the simulations of each kernel. For parallel kernels, the execution time is
dominated by the time to start all the operations in each large partition, so execution overlap
is relatively uninfluential. In contrast, the execution time of the serial kernels is dominated by

operation-execution time, so any overlap of execution is significant.
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Table 3.7: Root-Mean-Square Differences Between Execution Simulations and
Bounds Set by Theorems 3.8 and 3.7, for Livermore Kernels 1-14.

Bounds

Kernel | Upper | Lower
1 128% | 22%
2 214% | 4.1%
3 7.7% 1.5%
4 121% | 2.9%
5 55.9% | 0.0%
6 55.9% | 0.0%
7 20.5% | 0.1%
8 19.6% | 2.5%
9 146% | 1.8%
10 26.1% | 0.8%
11 63.2% | 0.0%
12 6.9% | 0.0%
13 62.9% | 10.5%
14 67.8% | 9.9%

3.4.1. Dependence of Performance on Number of Registers

The simulations discussed above assume an unlimited supply of fast registers for tem-
porary results. The dependence of performance on the pumber of registers available is meas-

ured in the following manner.

The simulator is modified so that a finite number of registers is available. When any
operation except a store finishes, it writes its result to either a register or to memory. If a
register is available, the operation finishes execution after the normal number of clock ticks,
the register is allocated, and the count of available registers is decremented. If no register is
available, the result must be written out to memory. This extends the execution time by a
store time, and also uses an additional operation’s worth of start-bandwidth. This accounts
for an extra store operation for a load-store architecture, or the addition of a full address
specification on the instruction-stream bandwidth for a memory-to-memory or general-address
architecture. Note that this register-allocation proceedure is not optimal because it does not

take into account how many times each result is used. However, the results summarized in
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table 3.6 show that most results are only used once, so the chance of allocating the last avail-

able register to the wrong operation is small.

If an operation other than a load reads all operands from registers, it executes in the
pormal amount of time. If an operation must read one or more operands from memory, its
execution time is extended by a load time, and it uses an additional operation's worth of

start-bandwidth for every operand in memory.

After all sinks of a result in a register have started, the register is deallocated and made

available for another operation’s result.

Operations are scheduled to minimize the length of time that each result is allocated to
a register, rather than to minimize running time, so in some cases the kernels execute more
slowly than the other simulations. The results of the limited-register simulations are shown in

figures 3.2a through 3.2n.
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Figure 3.2a: Ratio of Execution Time with Limited Reglsters to Execution Time
with Unlimited Registers, for Livermore Kernel 1.
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Figure 3.2b: Ratlo of Execution Time with Limited Registers to Execution Time
with Unlimited Registers, for Livermore Kernel 2.
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Figure 3.2c: Ratlo of Execution Time with Limited Registers to Execution Time
with Unlimited Registers, for Livermore Kernel 3.
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Figure 3.2d: Ratlo of Execution Time with Limited Registers to Execution Time
with Unlimited Registers, for Livermore Kernel 4.
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Figure 3.2¢: Ratlo of Execution Time with Limited Registers to Execution Time
with Unlimited Registers, for Livermore Kernel 5.
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Figure 3.2f: Ratlo of Execution Time with Limited Registers to Execution Time
with Unlimited Registers, for Livermore Kernel 0.
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Figure 3.2g: Ratlo of Execution Time with Limited Registers to Execution Time
with Unlimited Registers, for Livermore Kernel 7.
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Figure 3.2h: Ratio of Execution Time with Limited Registers to Execution Time
with Unlimited Registers, for Livermore Kernel 8.
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Figure 3.21: Ratio of Execution Time with Limited Registers to Execution Time
with Unlimited Registers, for Livermore Kernel 9.
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Figure 3.2j: Ratio of Execution Time with Limited Registers to Execution Time

with Unlimited Registers, for Livermore Kernel 10.
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Figure 3.2k: Ratio of Execution Time with Limited Registers to Execution Time

with Unlimited Registers, for Livermore Kernel 11.
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Figure 3.21: Ratio of Execution Time with Limited Registers to Execution Time

with Unlimited Registers, for Livermore Kernel 12.
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Figure 3.2m: Ratio of Execution Time with Limited Registers to Execution Time

with Unlimited Registers, for Livermore Kernel 13.
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Figure 3.2n: Ratio of Execution Time with Limited Registers to Execution Time
with Unlimited Registers, for Livermore Kernel 14.

The results do not vary significantly when the register-allocation heuristics are varied, sug-
gesting that the allocation heuristics are reasonably good. The figures show the ratio of simu-
lated execution time with n registers to the execution time with an unlimited number of regis-

ters, for n equal to 4, 8, 16, 32, 64, 128, 256, 512, 1024, and 2048.

The very-serial kernels 5, 6, and 11 run as fast with four registers as they do with an
unlimited number of registers. The narrow critical-path widths and small partitions-sizes of
these kernels insure that few operations are executing concurrently, and that most results are
used immediately after they are generated. The moderately-serial kernel 13 requi}'es approxi-
mately sixteen registers to run at near to its ultimate speed, but the execution speed with the
minimal-register schedule never reaches the speed of the kernel with a minimal-execution-time

schedule that happens to require more registers.

The moderately serial kernel 14 requires approximately 128 registers to reach its ulti-
mate speed for a start-limit of one, but this is 309% slower than the execution speed of the
kernel with a minimal-execution-time schedule. Kernels 13 and 14 both have narrow critical

paths, but they also have many operations that can execute concurrently. Schedules that do
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not attempt to conserve registers allow the pon-critical-path operations to start long before
their results are needed. This ties up registers until the results are used, but it also insures
that most of the critical-path operations run without interference from non-critical-path

operations.

The parallel kernels require between eight and 256 registers in order to run at their ulti-
mate speeds, depending on the start-limits. With only eight registers, most of the parallel
kernels run 2-2.5 times longer than with an unlimited number of registers. Most of the paral-
lel kernels have wide critical paths, and their execution times are often limited by the time
required to start all the operations. Thus, many operations are executing at a time, and each
operation is allocated a result register. Also, operations do not always start as soon as data
dependencies allow because of the limited start-bandwidth, and result registers cannot be

freed until the operations that use the results start.

The fact that programs scheduled to use few registers run slower than programs
scheduled without regard to register usage provides a motivation for machines with many
registers. Also, if the machine has a sufficient number of registers, scheduling time can be

spent increasing execution speed, rather than minimizing register usage.

It should be noted that the Cray-1 has a total of 512 vector register elements; therefore
much vectorizable code could potentially execute as fast as it could with an unlimited number
of registers. However, unvectorized loops like kernel 14 could not make eflective use of the
vector registers, and therefore, more registers or a more general register structure than the

Cray-1 has are needed for the fastest execution of Livermore Kernels 1-14.

When the number of registers is restricted to four, execution times of most kernels are
increased by a factor of 1.5 to 3. The execution times of the kernels would be even greater
with fewer registers, suggesting that pure memory-to-memory scalar architectures are terribly

inefficient, at least for programs with characteristics similar to Livermore Kernels 1-14.
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3.4.2. Fast-Register Requirements

During serial sections of programs, when few operations are ready to execute, the
operation-execution times dominate the total execution time, so register access should be as
fast as possible. During parallel sections of programs, however, longer register access times

can be tolerated by overlapping the execution of more operations.

Fast register requirements are tracked by modifying the execution simulator in the fol-
lowing manner. Assume slow registers take P, more ticks than fast registers to read, and P,
more ticks than fast registers to write. Then, if an operation reads any operands from slow
registers, its execution time is increased by P, ticks. In addition, each time an operation

writes a result to a slow register, its execution time is increased by P, ticks.

Initially, all operations are assumed to use slow registers. Each clock tick, if there are
fewer than start-limit critical-path operations in the ready list, the active list is searched for
operations that are within P, ticks of finishing and that allow critical-path operations to be
added to the ready list when they finish. One such operation is retroactively allocated a fast
register and removed from the active list, and one or more critical-path operations that it
sources are added to the ready list. This process is repeated until there are start-limit
critical-path operations in the ready list, or until no more almost-finished active operations

remain.

When an operation using a fast-register operand starts, it does so without a slow-
register-read penalty; the fast register is then released. Thus, fast registers are allocated and

reserved from the time they are written until they are first used.

The maximum number of fast registers reserved at a time is tracked for execution with
start-limits of one, two, four, and eight, for all 14 kernels. A count of the number of times
fast registers are reserved is also maintained, as an indication of the importance of fast regis-

ters to fast execution of the program. For example, if fast registers are allocated 2000 times
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even though only two fast registers are required, the fast registers speed up at least 2000
critical-path operations, and, thus, have a significant effect on performance. If fast registers
are allocated only ten times, they only speed up the computation rarely, and they have 2

neglible effect on performance.

These data are shown for P, = P, = 1 in table 3.8. The maximum number of registers
used is no more than start-limit, because at most start-limit fast registers are reserved at a

time, and all are freed when the start-limit critical operations start the next clock tick.

Table 3.8: Number of Fast Registers Required and Number of Times Fast Regls-
ters Used (Reservation from Write to First Result Read, Slow-Register Read and
Write Penalties = 1).

Number Parallel Starts
1 2 4 8
Max | Times | Max | Times | Max | Times | Max | Times
Kernel | Req Used | Req. | Used | Req. | Used | Req. Used
1 1 2 2 3 4 5 8 9
2 1 1 2 2 4 4 8 68
3 1 9 1 9 1 9 1 9
4 1 11 1 11 1 11 1 11
5 1 1993 1 1992 1 1992 1 1992
6 1 1995 1 1994 1 1994 1 1994
7 1 2 2 3 4 5 8 9
8 1 2 2 3 4 5 8 9
9 1 1 2 2 4 4 8 8
10 1 8 2 16 4 32 8 64
11 1 1000 1 999 1 999 1 999
12 0 0 0 0 0 0 0 0
13 1 364 2 391 2 391 2 391
14 1 606 2 606 2 607 2 607

Kernels 5, 6, 11, 13, and 14, with very narrow critical paths, can make use of no more
than one or two fast registers, although they use them for the result of almost every critical-

path operation. One or two fast registers speed up the execution of these kernels significantly.

Kernels 3 and 4 rarely use fast registers, and kernel 12 never uses a fast register. Kernels
3 and 4 essentially execute summation trees, and virtually all operations are in the critical

path, so there can be a shortage of critical-path operations only at the bottom of their sum-
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mation trees. Every operation in kernel 12 is in the critical path, which is many times wider
than the largest start-limit of eight. Kernels 3, 4, and 12 do not peed fast registers for fast

execution.

Traditionally, a register is reserved for an operation from the time the operation starts
until its result is used, rather than from the time a result is written until it is used. This trad-
itional reservation scheme requires that a destination be available before each operation
starts, while the time-of-write reservation scheme requires that a destination be available
before the operation finishes. Time-of-start reservation thus forces each destination register

to sit unused while its operation executes.

If the execution timing of the operations of interest can be predicted at compile time,
operation scheduling and reservation checking can be performed at compile time, and there is

no disadvantage to time-of-write reservation.

If timing is mot predictable at compile time, some run-time checking is necessary for
operations to start sooner than worst-case timing requires. Time-of-write reservation requireé
checking and updating reservations twice for each operation (before it starts and before it
finishes), while time-of-start reservation requires checking and updating reservations only once
(before the start of each operation). Thus, with overlapped execution of operations and
unpredictable execution times, time-of-write reservation requires checking and updating reser-

vation status twice each clock tick, a significant disadvantage over time-of-start reservation.

The next analyses are the same as the previous analyses, except that registers are
reserved from the time the operation starts until the result is used. Results are summarized in

table 3.9.

These results are essentially the same as for time-of-write register reservation, except
that kernel 2 can use as many as 40 or more fast registers if n and start-limit are high

enough. The reason for this behavior is that kernel 2 computes the inner products of sub-
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vectors of length five, and the unbalanced summation tree causes some results to wait longer

before they are used. Better scheduling of this kernel would eliminate the anomalous behavior.

Table 3.9: Number of Fast Registers Required and Number of Times Fast Regils-
ters Used (Reservation from Start to First Result Read, Slow-Register Read and
Write Penalties = 1).

Number Parallel Starts
1 2 4 8
Max | Times | Max | Times | Max | Times | Max [ Times
Kernel | Req. Used Req. Used Req. Used Req. Used
1 1 2 2 3 4 5 8 9
2 1 1 2 2 4 4 40 68
3 3 9 3 9 3 9 3 9
4 4 11 3 11 3 11 3 11
5 1 1993 1 1992 1 1992 1 1992
6 1 1995 1 1994 1 1994 1 1994
7 1 2 2 3 4 5 8 9
8 1 2 2 3 4 5 8 g9
9 1 1 2 2 4 4 8 8
10 1 8 2 16 4 32 8 64
11 1 1000 1 999 1 999 1 999
12 0 0 0 0 0 0 0 0
13 2 364 2 391 2 391 2 391
14 2 606 2 606 2 607 2 607

These results summarized in tables 3.8 and 3.9 show that slower register-access times
can be tolerated if fast registers are available for use in the narrower critical paths of the pro-
gram. Traditional time-of-start register reservation can be used without requiring more regis-

ters than would be needed for the more difficult time-of-write register reservation.

Execution times of all kernels with mostly slow registers are shown in table 3.10, along
with the times for execution with all fast registers. The number of fast registers are the same
as they are in table 3.9, and the slow-register penalty is one clock tick for read and one clock
tick for write. Almost without exception, the programs run no slower with mostly slow regis-
ters than with all fast registers. In the worst case, kernel 3 with a start-limit of eight requires

3% more time to execute with mostly slow registers than with all fast registers.
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Table 3.10: Times for Simulated Execution with Unlimited Fast Reglsters and
with Few Fast Registers and Unlimited Slow Registers (Slow-Register Read and
Write Penalties = 1).

Number Parallel Starts
1 2 4 8

All Few All Few All Few All Few
Kernel | Fast | Fast |{Ratio | Fast | Fast |Ratio | Fast | Fast |Ratio Fast | Fast |Ratio
3216 3217 1.00 1614 1615 1.00 813 814 1.00 413 414 1.00
802 803 1.00 402 403 1.00 202 203 1.00 106 108 1.02
4120 4121 1.00 2078 2081 1.00 1060 1065 1.00 554 561 1.01
1554 1553 1.00 788 791 1.00 410 415 1.01 224 231 1.03
12963 12863 1.00 | 12962 12964 1.00 12062 12964 1.00 | 12962 12964 1.00
12976 12976 1.00 | 12975 12877 1.00 12975 12977 1.00 12975 12677 1.00

2410 2411 1.00 12086 1207 1.00 604 605 1.00 303 304 1.00

2064 2065 1.00 1033 1034 1.00 518 519 1.00 260 261 1.60

2810 2811 1.00 1408 1407 1.00 704 705 1.00 353 354 1.00
10 2602 2903 1.00 1452 1453 1.00 727 728 1.00 365 366 1.00
11 6009 6009 1.00 8008 6010 1.00 6008 6010 1.00 6008 6010 1.00
12 3003 3004 1.00 1503 1504 1.00 753 754 1.00 378 379 1.00
13 3458 3459 1.00 2484 2488 1.00 2484 2488 1.00 2484 2488 1.00
14 3794 3796 1.00 3793 3793 1.00 3793 3793 1.00 3793 3793 1.00

O 00~ N O e N -

The simulated execution times using an unlimited number of registers are within 3% of
the lower bounds on execution time predicted by theorem 3.7, for all kernels except kernels 13
and 14, as summarized in Appendix C. Furthermore, the simulated execution time for kernel
13 with unlimited registers and a start-limit of one achieves the lower bound, and the simu-
lated execution time for kernel 14 with unlimited registers and a start-limit of one is within

5% of the lower bound. Therefore, these results are not simply artifacts of the simulator.

The results of simulations when the read penalty P, is increased to two are summarized
in tables 3.11 and 3.12. The numbers of fast registers required are essentially thei same as for
the case when P, = 1, except that kernel 2 uses many fast registers when start-limit is four,
as well as when it is eight. The execution times are somewhat higher for P, = 2, representing
a worst case degradation of 5% for kernel 4 and a ‘worst case degradation of 12% for kernel
14. For most of the kernels most of the time, however, the execution times and fast register

usages are the same as for P, = 1.
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Table 3.11: Number of Fast Registers Required and Number of Times Fast Re-
gisters Used (Reservation from Start to First Result Read, Slow Register Read
Penalty = 2, Slow Reglster Write Penalty = 1).

Number Parallel Starts
1 2 4 8
Max | Times | Max | Times | Max | Times | Max | Times
Kernel | Req. | Used Req. | Used Req. Used Req. | Used
1 1 2 2 3 4 5 8 9
2 1 1 2 2 4 4 40 68
3 4 10 4 10 4 10 4 10
4 4 10 4 12 4 12 4 12
5 1 1993 1 1992 1 1992 1 1992
6 1 1995 1 1994 1 1994 1 1994
7 1 2 2 3 4 5 8 9
8 1 2 2 3 4 5 8 9
9 1 1 2 2 4 4 8 8
10 1 8 2 16 4 32 8 64
11 1 1000 1 999 1 999 1 999
12 0 0 0 0 0 0 0 0
13 2 393 2 391 2 391 2 391
14 2 606 2 458 2 459 2 459

Table 3.12: Times for Simulated Execution with Unlimited Fast Registers and
with Few Fast Registers and Unlimited Slow Registers, Slow Reglster Read
Penalty = 2, Slow Register Write Penalty = 1.

Number Parallel Starts
1 2 4 8
All Few All Few All Few All Few
Kernel | Fast | Fast |Ratio | Fast | Fast |Ratio | Fast | Fast | Ratio Fast | Fast |Ratio
1 3216 3218 1.00 1614 1616 1.00 813 815 1.00 413 415 1.00
2 802 804 1.00 402 404 1.00 202 204 1.01 106 109 1.03
3 4120 4121 1.00 2078 2082 1.00 1060 1067 1.01 554 564 1.02
4 1554 1555 1.00 788 793 1.01 410 418 1.02 224 235 1.05
5 12063 12063 1.00 | 12862 12965 1.00 | 12962 12965 1.00 | 12962 12865 1.00
6 12976 12976 1.00 | 12675 12978 1.00 | 12975 12978 1.00 12975 12978 1.00
7 2410 2412 1.00 1206 1208 1.00 604 606 1.00 303 305 1.01
8 2064 2066 1.00 1033 1035 1.00 518 520 1.00 260 262 1.01
9 2810 2812 1.00 1406 1408 1.00 704 708 1.00 353 355 1.01
10 2602 2904 1.00 1452 1454 1.00 727 729 1.00 365 367 1.01
11 6008 6009 1.00 6008 6011 1.00 6008 6011 1.00 6008 6011 1.00
12 3003 3005 1.00 1503 1505 1.00 753 755 1.00 378 380 1.01
13 3458 3460 1.00 2484 2490 1.00 2484 2490 1.00 2484 2490 1.00
14 3794 3950 1.04 3793 4238 1.12 "3793 4238 1.12 3793 4238 1.12
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Table 3.13: Number of Fast Registers Required and Number of Times Fast Re-
gisters Used (Reservation from Start to First Result Read, Slow Register Read
Penalty = 4, Slow Register Write Penalty = 1).

Number Parallel Starts
1 2 4 8
Max | Times | Max | Times | Max | Times | Max | Times
Kernel | Regq. Used Regq. Used Req. Used Req. Used
1 1 2 2 3 4 ) 8 9
2 1 1 2 2 28 40 40 68
3 5 12 5 12 5 12 5 12
4 5 14 ) 14 5 14 5 14
5 1 1993 1 1992 1 1992 1 1992
6 1 1995 1 1994 1 1994 1 1994
7 1 2 2 3 4 5 8 9
8 1 2 2 3 4 5 8 9
9 1 1 2 2 4 4 8 8
10 1 8 2 16 4 32 8 64
11 1 1000 1 999 1 999 1 999
12 0 0 0 0 0 0 0 0
13 2 382 2 391 2 391 2 391
14 2 606 2 606 2 607 2 607

Table 3.14: Times for Simulated Executlon with Unlimited Fast Registers and
with Few Fast Registers and Unlimited Slow Registers, Slow Register Read
Penalty = 4, Slow Register Write Penalty = 1.

Number Parallel Starts
1 2 4 8

All Few All Few All Few All Few
Kernel | Fast | Fast |Ratio | Fast | Fast [Ratio | Fast | Fast Ratio | Fast | Fast |Ratio

3216 3220 1.00 1614 1818 1.00 813 817 1.00 413 417 1.01
802 806 1.00 402 408 1.01 202 204 1.01 106 112 1.06
4120 4122 1.00 2078 2085 1.00 1060 1072 1.01 554 571 1.03
15654 1554 1.00 788 797 1.01 410 424 1.03 224 243 1.08
12063 12963 1.00 | 12062 12667 1.00 |12962 12067 1.00 | 12062 12967 1.00
12976 12976 1.00 |12975 12980 1.00 {12975 12980 1.00 | 12975 12980 1.00
2410 2414 1.00 1208 1210 1.00 604 608 1.01 303 307 1.01
2064 2068 1.00 1033 1037 1.00 518 522 1.01 260 264 1.02
2810 2814 1.00 1406 1410 1.00 704 708 1.01 353 357 1.01
10 2902 2906 1.00 1452 1456 1.00 727 731 1.01 365 369 1.01
11 6009 6009 1.00 6008 6013 1.00 6008 6013 1.00 6008 6013 1.00
12 3003 3007 1.00 1503 1507 1.00 753 757 1.01 378 382 1.01
13 3458 3462 1.00 2484 2494 1.00 2484 2494 1.00 2484 2494 1.00
14 3794 4551 1.20 3793 4398 1.16 | '3793 4395 1.16 3793 4394 1.16

00 =3 O U b GO N =

Results when the read penalty P, is increased to four are summarized in tables 3.13 and

3.14. For P, = 4 the execution times are as much as 20% greater than execution times when
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P, = 1, so slow registers with access times that are this slow are not nearly as useful as faster
registers.

These results suggest that three different register speeds could be useful: a small set of
sub-clock-tick registers for the most critical operations, a larger set of 1-tick registers for
moderately critical operations, and an even larger set of 2-tick registers for the non-critical

operations.

The results summarized in figures 3.2a-3.2n and in tables 3.9-3.14 suggest that a small
set of high speed registers supplementing a large set of slower registers provide the same per-

formance as an unlimited set of high speed registers. This performance is about a factor of

three faster than if only eight registers are provided.

3.5. Summary of Program Characteristics and Hardware Requirements

The important program characteristics of the Livermore Kernels$? are summarized
below. The diversity of program characteristics suggests that this set of program kernels

represents a significant fraction of scientific programs.

(1) Serial programs need short operation-execution times for fast execution, while parallel

programs need to start many operations at a time for fast execution.

(2) Many memory accesses can be started well before their results are needed, so higher-

latency, high-bandwidth memory can be used for them.

(3) Several hundred temporary results could be maintained by some programs with some
schedules, so several hundred temporary storage locations that are faster than main

memory could be effectively used to speed up execution.

(4) Most results are used immediately after they are generated, so much of the temporary
storage could be optimized for speed and density, without regard for long-term data

integrity.



(5)

(6)

(7)

(8)

(9)
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Most results are only used once, so specialized or implicit result-transmission could be

used much of the time.

Hardware requirements and execution times of programs can be accurately predicted
from the partitionings of the dependency graphs. Analyses of these condensed
specifications of programs are both faster and more generally applicable than analyses

and simulations of the full dependency graphs.

Programs executing with mostly slow registers and a few fast registers can run essen-

tially as fast as programs executing with all fast registers, for programs that can be vec-

torized and for those that cannot be vectorized.

More registers than the Cray-1 provides or a more general access mechanism are needed
for maximum performance of scientific programs, especially for those programs that can-

not be vectorized.

Computers with pure memory-to-memory scalar architectures have a maximum execu-
tion speed that is at most one third to one half the speed of computers with many

programmer-addressable registers.



CHAPTER 4

Datapath Design

The time to execute an operation includes the time to read the operands from registers,
propagate the data to the functional units, generate a result, propagate the result to the desti-
nation, and write the result. In an efficient datapath design, signal-propagation delays and
device-selection delays are minimized, and functional unit latency /throughput ;radeoﬁs are
optimized for the functions and expected workload. Signal-propagation delays include
electrical-propagation delays which are largely determined by the propagation media and dev-
ice placement, and gate delays. Device-selection delays are determined by the gate delays and
fan-in and fan-out limitations of gates. Minimizing pipeline latency and maximizing pipeline
throughput require trading off the number of pipeline stages with the pipeline latch overhead,

and optimal choices depend on both the functions implemented and the workload characteris-

tics.

The results developed in this chapter are used in Chapter 5, where temporary storage

structures are developed, and in Chapter 7, where an architecture is proposed.

4.1. Signal-Propagation Delays

Signals must propagate through gates and wires before they reach their destinations.
Gate delays are determined by the gate technology and by the loading of the output. All
delays are measured in terms of the basic gate delay for the technology used, and all wires are
assumed to behave as properly terminated transmission lines, so end effects such as those
caused by gate input capacitance are not considered; the effects of capacitive loading can be
included by increasing the basic gate delay to that of a gate with ap ‘‘average’’ output load-

ing. Signal-propagation delays in wires are determined by the speed of the propagation

67
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media, the placement of devices, and the wiring technology. Propagation speed is determined
by the propagation medium, and is limited by the speed of light in a vacuum; speeds for

several popular interconnection media are shown in table 4.1.

Table 4.1: Propagation Speeds and Delays for Various Medla.

Medium Speed Delay
light in vacuum 30 X 105m/s 33 ps/cm
coax (foam) 2.5 X 10.m/s 40 ps/cm
microstrip (teflon) 2.4 X 108 m/s 43 ps/cm
stripline (teflon) 1.8 X 108 m/s 51 ps/ecm
microstrip (glass-epoxy) 1.7 X 10°m/s 59 ps/cm
stripline (glass-epoxy) 1.3 X 108 m/s 71 ps/cm.
chip interconnect 42 %X 10°m/s 240 ps/cm

For propagation between random pairs of devices, the propagation distances grow as a
function of the number of devices. In a plane, distances grow at a rate between the square
root and linearly with the number of devices. In three dimensions, distances grow at a rate

between the cube root and the square root of the number of devices.

Consider the plane first, which includes both printed-circuit and integrated-circuit wir-
ing. Suppose there are k devices, each with area a, and suppose that each device is connected
to ¢ other devices with wires of width w and average length [, using p wiring planes that are

independent of the devices and of each other. The area of devices is ka, while the area of wir-

. . ckl . , . . . .
ing 1s =£u Assuming the average wire length is r, the radius of the circle containing k dev-
P

ices s

1/2

(4.1)

ka
r = |—
'ﬂ

if wire area is negligible compared to device area. Assuming the average wire length is equal
to the radius, the propagation distance grows at a rate no slower than the square root of the
number of devices. If wire area is not negligible, the radius of the circle containing the wiring

for k devices is
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1/2
ckrw ckw
y = = — (42)
pr

pm
so the propagation distance grows at a rate at least linear with the number of devices.

Now consider a three-dimensional enclosure. Suppose there are k devices, each with
volume v, and suppose that each device is connected to ¢ other devices with wires of cross-

sectional area a and average length r. The radius of the sphere that contains k devices is

3k 1/8
r o= [_”, Y (4.3)
4n

so, if wire volume is negligible, the average propagation distance grows at a rate no slower
than the cube root of the number of devices. The radius of the sphere containing just the wir-

ing is

sckra | [3cka |°
r o= [ [od ra] — ' [od a] ’ (4‘4)
4 4n

s0, if wire volume is not negligible, the average propagation distance grows at a rate at least

as fast as the square root of the number of devices.

As the number of registers, latches, functional units, etc. increase, the longer propaga-
tion delays increase operation execution times, which increase the total execution times of

serial sections of programs, as was shown in Chapter 3.

The execution time of every operation is the sum of register access times and computa-
tion times: since every operation accesses a register at least once (and many operations access
registers both at the beginning and at the end of their execution), its execution time is at least

etime; = tyoe + Leomp (4.5)
The register access time is the sum of register selection time and propagation time between

register and functional unit
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Suppose that the number of registers is increased by a factor of c. Assume that the
selection time ¢ does not increase as the pumber of registers increases, and that the propa-
gation time increases at the most optimistic rate of ¢1/3: the new register access time

baoer, = toclt + ¢/ *tprop: (4.7)
so all execution times are increased by at least (¢P=1)t ppop:
etime; = elime; + (cM3=1)t prop- (4.8)

The upper bound on computation time given by theorem 3.6 is increased to

E ° t'. + etime, + (Clla—l)t tick 9
. . latest; prop ICKS, (4- )
1 start-limit

an increase of p(cl/"‘--l)tl,“,p ticks. The lower bounds on computation time given by theorem

3.7 is similarly increased by p(c*/3=1)tp ticks.

Suppose tprop is 25 ticks {on the Cray X-MP this corresponds to 2125 picoseconds, or 36
centimeters propagation distance) and that ¢ is 256, increasing the register count from eight
to 2048. This increases the upper and lower bounds on computation by 1.3p ticks. Livermore
Kernel 12, with three partitions, would run at least four ticks longer with the extra registers.
Livermore Kernel 5, with 2666> partitions, would run at least 1994 ticks longer, a 21%
increase, and Livermore Kernel 11, with 1001 partitions, would run at least 1338 ticks longer,
a 2297 increase. Thus, paralle]l programs are hardly aflected by the longer propagation times

due to more registers, while serial programs are considerably slowed by the longer propagation

times.

The propagation times discussed above assume random placement of devices, which is
reasonable if all devices are treated uniformly. However, it is possible to organize devices
pon-uniformly, so that many devices can be accessed without increasing access times of all of

them.
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This can be accomplished by grouping together those devices among which communica-
tion is very important, while allowing other devices to be further apart. Since the volume of a
sphere grows as the cube of the radius, the available space for devices increases rapidly as
they are moved away from the center of communication. This space allocation tends to
create one or more physical clusters of devices, with much communication within the centers

of the clusters and less communication among clusters.

Most wiring technologies do not allow devices to be connected via the shortest possible
paths. For example, in ’printed-circuit technology, microstrip lines must be routed around pins
and other lines, so lines are usually longer than the Euclidean distances between pairs of dev-
ices. Most wiring between boards is via connectors at the board edges, rather than directly
through the boards. Cabling may be longer than their minimum lengths, and may be routed
along the periphery of the computer to facilitate servicing. In a successful high-speed design,

extra wiring delays are kept small, but they are always present.
4.2. Data Routing

4.2.1. Basic Selection Delays

Data routed among sources and destinations are subject to logic delays in addition to
signal-propagation delays. In his text on computer architecture, Kuck®® shows that the longest

path of a k-way fan-in or fan-out of signals, using components with a fan-in or fan-out of [,

requires [log,(k).l component delays.

For example, sending a datum from one source to up to eight destinations using gates

with maximum fan-out=2 requires three levels of logic, as shown in figure 4.1.
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Figure 4.1: Fanning a Datum Out from One Source to Eight Destinations, Using

Gates with a Maximum Fan-Out of 2.

For another example, multiplexing eight data down to one using gates with maximum
fan-in =3 requires one gate delay to AND the data with a select signal, plus two levels of OR

logic to fan the eight signals down to one, as shown in figure 4.2.
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Figure 4.2: Multiplexing Eight Data Down to One, Using Gates with a Maximum
Fan-In of 3.

Without a pure OR or pure AND function, a level of inverters would be necessary after

each NOR or NAND gate in the OR fan-in tree, increasing the total pumber of gate delays

for the multiplexer to [2logrw_m(k)]. If the eight-to-one multiplexer above is constructed
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using only NAND or NOR gates with fan-in=3, it would require four gate delays.

The delay in computing the data select signals S; is not included in the multiplexing
time because multiplexer addresses are often data-independent, so they can be computed at
compile time and specified sufficiently far ahead in the instruction stream that their.decoding
does not slow the computation. Those cases when device addresses are data dependent and

decoding times are important are considered below.
A j-bit address determines which data input is selected by a 27:1 multiplexer. The initial

selection gate of the multiplexer can AND each data input with up to fan-in—1 select inputs,

so the j bits of address can be decoded as fan-in—1 separate d:2¢ partial decoders, where

d = l(r J ) ] Each of these partial decoder outputs is used by gfar-in—2 gelection gates,
an-in—

requiring an additional fan-out tree of height

[IOSrmut[Q’m“"ZH _p= | fominm? g (4.10)
log,(fan-out)
Within each partial decoder, the ‘(f J 1)‘ inputs are decoded using AND trees of
an-in—

J

——2_||. Each input or its complement is used by ofeo-ln—1 AND gates,
(fan-in—1)

height logm_,n[

fan-in—1

so fan-out trees of height [ ] precede the fan-in tree. Thus, the decoder delay

log,(fan-out)

before the selection gate of a multiplexer is

fan-in—1 J fan-in—2
— 1+ Jlog —J ||+ |20 - 4.11
[logz(fan-out) l mﬂn[ (fan-in—1) ] [logz(fan-out) ] (4.11)
gate delays. This analysis assumes that pure OR gates and pure AND gates are available.

A 4:1 multiplexer including the decoder circuitry, using gates with maximum fan-out=2

and fan-in == 3, is shown in figure 4.3.
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Figure 4.3: 4:1 Multiplexer with Decoding Circuitry, Using Gates with a Max-
imum Fan-Out of 2 and a Maximum Fan-In of 3.

A, and A, are each fanned out to four signals using two levels of gates. The fan-in is equal to
j+1, 50 no partial decoding is necessary before the select gates. Finally, the selected signals

are ORed using an OR fan-in tree of height two.

4.2.2. Unbalanced Selection Trees

The fan-in trees and fan-out trees described in the previous section all are as balanced as
possible, and this minimizes the maximum tree heights. It is possible to construct unbalanced

fan-in and fan-out trees that allow shorter paths for some signals.

With unbalanced fan-out trees, the first fan-out’ —a signals are generated after i gate
delays, followed by a fan-out’ — b signals generated after i + j gate delays, followed by b fan-
out® — ¢ signals generated after + + 7+ k gate delays, and so on. An unbalanced fan-out tree is
shown in figure 4.4 for fan-out=2, i =2,a=2, j=2, and b =0. Thus two signals are avail-

able after two gate delays, and eight signal are available after four gate delays.
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i

Figure 4.4: Unbalanced Fan-Out Tree, Fanning a Datum Out from One Source to
Ten Destinations, Using Gates with a Maximum Fan-Out of 2.

With unbalanced fan-in trees, fan-in‘ — o signals can be selected after i gate delays, fol-
lowed by a fan-in — b signals selected after i + j gate delays, followed by b fan-in* — ¢ signals
selected after ¢ + j+k gate delays, and so on. An unbalanced fap-in tree is shown in figure 4.5

for fan-in=2, i =2,a=2, j=2,and b=2.

o

Fligure 4.5: Unbalanced Fan-In Tree, Fanning Data from Eight Sources In to One,

Using Gates with a Maximum Fan-In of 2.

Here two signals are available after two gate delays, and six signals are available after four

gate delays.

It is difficult to design a decoder that has a shorter delay for some outputs because all
address bits are usually equally important, so the AND fan-in trees must all have equal
breadths and, hence, depths. However, addresses are often data-independent, so decoding

times are not very important, as discussed in the previous section. Also, the delay through

log,(k)

———"——1|, which is much smaller than the [logm_m(k)] delay
(fan-in—1)

AND fap-in trees is logm.ml
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through the OR fan-in trees for multiplexers if k is large enough, so reducing decoding times
is less important than reducing multiplexing times.

For those cases where addresses are data-dependent and where decoding times must be
reduced for some devices, redundant address representations, similar to Huffman encoding,‘®
can be used. For example, a four-bit address can be used to specify one of eight devices, using

the mapping shown in table 4.2:

Table 4.2: Mapping of Address Bits to Devices.
a, ag device

P—‘Hb—‘b—lo—lt—loof

——m o000~ ol8
OO = O ONX X
—_O O O X X
A DG W= O

The decoding circuitry for devices O and 1 use only the two address bits oo and a, whereas

the decoding circuitry for devices 2 through 7 use all four address bits.

Two disadvantages of redundant addresses are that their maximum lengths are longer
than non-redundant addresses and that they have variable lengths. Variable-length addresses
require that instructions have variable lengths and variable formats, both of which complicate
the instruction fetching and decoding process. If all addresses have the maximum length, with
some bits of some addresses ignored, an instruction-stream bandwidth that is higher than is
necessary for non-redundant addresses is required. Because decoding time is relatively

insignificant, as discussed above, redundant addresses are not considered further.

4.2.3. Data-Routing Delays

For the following examples, AND, OR, NAND, and NOR gates are assumed. They have

maximum fap-in =25, and maximum fan-out=32. These characteristics are typical of modern



ECL circuits.3%70.89
Consider selection from among eight devices, using three-bit addresses. A 1:8 fan-out

tree has a delay of [10332(8)]=1 gate delays. An 8:1 multiplexer has a delay of

[1055(8)] +1 = 3 gate delays. A 3:8 decoder has a delay of

+ |logg 3 +

4

_i._l —
log,(32)

4
log,(32)

gate delays.
Now consider selection from among 2048 devices, using 11-bit addresses and only bal-

anced fan-in and fap-out trees. A 1:2048 fap-out tree has a delay of [Iog32(2048)] = 3 gate

delays. A 2048:1 multiplexer has a delay of [1055(2048)]+1 = 6 gate delays. An 11:2048

4 11 3 _

gate delays. Note that the fan-out and fan-in delays are more than double those for the

decoder has a delay of

eight-device case, while the decoding delay is only one more than for the eight-device case.

Now consider fan-out and fan-in trees that are unbalanced, so that eight devices can be
accessed quickly and 2040 devices are accessed less quickly. A signal can be fanned out to the

eight fast-access devices in one gate delay, so the signal can be fanned out to the remaining

2040 devices in

1+ 1og3213%9)‘ =3

gate delays. One of the eight fast-access devices can be selected in three gate delays, while

one of the remaining 2040 devices can be selected in



3+ log5l20840] =7

gate delays.
The delays for fanning out, multiplexing, and decoding are summarized in table 4.3.

Table 4.3: Delays for Fanning Out, Multiplexing, and Decoding.

Number of Devices
balanced unbalanced
Function 8 2048 first 8 last 2040
fan-out 1 3 1 3
multiplexer {l 3 6 3 7
decoder 2 3 3 3

Thus, unbalanced fan-in and fan-out trees make it is possible to access a few devices very
quickly and still access many more devices through the same data paths, almost as fast as if

balanced fan-in and fan-out trees are used.

4.3. Pipeline Design and Analysis

A logical function implemented using L levels of logic can be pipelined into S < L stages
of logic, with a pipeline latch after each stage. The throughput of the unpipelined logical
function is 1/L results per gate delay, so a theoretical throughput of S/L results per gate
delay could be achieved by pipelinin.g into S stages. In practice, the overhead for a pipeline

latch limits S to a fraction of L.

Earle latches and polarity-hold latches have the advantage that the gates in the latches
can perform useful logical functions. A simple Earle latch is shown in figure 4.6. When C is
high and C is low, the D input appears at the output. When C is low and C is high, the out-
put feeds back and is latched. The middle gate eliminates the hazard caused by C going low

before C goes high.
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Figure 4.6: Earle Latch Implemented Using AND Gates and OR Gates.

An Earle latch that computes the exclusive-OR of X and Y is shown in figure 4.7, e
and XYC are computed by the top two AND gates, and are summed by the OR gate to form
Q= X¥+ XY when C = 1. When C =0, Q feeds back to the output. The logic bazard
caused by C going low before C goes high is prevented by the two AND gates computing
XYQ and XTYQ. If the fan-in of the OR gate is less than five, a fan-in tree must be used

instead of the single OR gate.

.

&

e

Figure 4.7: Earle Latch that Computes the Exclusive-OR of X and Y.

A polarity-hold latch is shown in figure 4.8. Relative to the Earle latch of figure 4.6, an
OR gate input and an AND gate is saved for each data input to each polarity-hold latch,
reducing the number of gates and the beight of the OR fan-in trees. Proper operation is
insured if C always stays high until C goes high. Polarity-hold latches are used almost

universally in modern supercomputers, so further discussion will concentrate on them.
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Figure 4.8: Polarity-Hold Latch Implemented Using AND Gates and OR Gates.

4.3.1. Clocking Constraints for Polarity-Hold Latches

Kunkel and Smith57 have examined the latch overhead of polarity-hold latches as a
function of gate delay uncertainty and clock skew. Their work is briefly summarized in this

section.

If unintentional clock skew is zero the clock period must be at least
Chigh+ Ciow = 2t max+ Proax (4.12)
provided C falls no later than (¢ gy —tqu) before C rises, where
Cpgn = duration of C=1.
Cow = duration of C=0.
t max = maximum gate delay.

t i = minimum gate delay.
P = maximum delay between pipeline stages besides the latch delays.

This bound is based on the constraints that C' remains high long enough for D to propagate
to Q and then to feed back, and that C' does not remain high so long that data flows from

one latch through the following latch. It further relies on the assumption that Cygy = Crow-

If unintentional clock skew is nonzero, the clock period must be at least

thﬁ-cb,, 2 th+ntm+(jc'._bc'. y (413)
provided C falls no later than (tpay—tpy) + Ug o before C rises, where:

n = number of gate delays between latches.

Uc,_,c. = unintentional skew between clocks for stages t—1 and 1.

UC,C = unintentional skew between C and C within a latch.

If n is too small, the last constraint must be met by adding delay between pipeline latches.
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Thus
th + wa Z (n +2)tmx + Ucl,_hci (414)
U, + 2U.
tn>dogq S0 00
r rl max
or
th + wa 2 (n +2)tm|.x + (4—(71 +4)f‘ )tw + 2UC.-_|,C.~ + 2ch’c (415)

Uc,,c. + 2Ucr

ifn<i—4+

r rl max

This bound assumes that wire delays (rather than gates) are used to add intentional delays

between stages.

If one gate is used to generate C, then Ugp = 1/2(1 =r)tmax. If k levels of logic are
used to fan out the clock, then Ug,_ o, = k(1 =7 )tmax- This concludes the summary of
Kunkel and Smith's work.

The smallest value of n that does not require extra delay to be added is a function of
the gate-delay uncertainty r and the clock uncertainties. If two levels of logic are used to fan
out the clocks to each pipeline, then Uc_,c, = 2(1—7)tmx Table 4.4 shows the smallest

values of n that require no extra delays for various values of r.

Table 4.4: Smallest Numbers of Levels of Logic n that Require No Extra Delays,
for Various Gate-Delay Uncertainties r.
r 01 02 03 04 05 06 07 08 .09

moapm 163 28 16 1 7 5 3 2 1

Typically » ranges between 0.3 and 0.6 for high-speed integrated circuits.

The wire delays between latches can be used to some advantage besides insuring correct
circuit operation. For example, the wire delays can be implemented linearly, so that pipelines
are physically stretched out, rather than clustered tightly. Then, the long pipelines can be

looped out from a cluster of logic, so only the entrances and exits to the pipelines are adjacent



to the central cluster. Most of the logic for the pipelines would be away from the center where
there is more space, as discussed at the end of section 4.1. The pipelines around a central clus-

ter might resemble petals of a flower, as shown in figure 4.9.

¥ Routing <
and

Register
Files

Shift FU

Figure 4.9: Radlal Arrangement of Functional Units in a CPU, Minimizing Pro-
pagation Distances to and from Registers and Functional Units.

4.3.2. Latency-Throughput Tradeoffs for Pipelines

The latency of a pipeline is the product of the clock period and the number of stages
(Chigh+ Cow)S, where 5§ = L/(n +2). The time to produce /N independent results is the time
to start each operation through the pipeline plus the time to drain the pipeline, Tor a total

time of T = (N+L/(n +2))(Chgn+ Crow). Substituting p = n +2, T can be expressed as

T = (N+L/p)(Ptmax + Uc,,c) (4.16)

Ue_.c + 2U,
ipri-‘z-}- (i L g} C.C’
r

rl max

or

T = (N+L/p)(ptmax + (4= (P +2)r Mmax + 2Uc,c, + 2Uc) (4.17)
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UC,«-,,C,— + 2UC.C

ifp<i—2+
r

rl max

The total processing time is minimized when -32 = 0, or when

P
LWa o |72 [2L{(2=tmast Ucie, + Ue) |2
p = max|2, . ' (4.18)
Nt max N(1=r)t max
The optimal number of stages is
S = [il . (4.19)
p

The optimal number of pipeline stages grows as the square root of the number of levels of
gates to implement a logical function, a quantity fixed by the hardware algorithm. The
optimal number of pipeline stages also grows as the square root of the number of independent
operations, but this quantity is application dependent. For this reason it would be useful to
be able to change the length of a pipeline to match the program characteristics: a short pipe-
line with a slow clock when there is little program parallelism, and a long pipeline with a full-

speed clock when there is much program parallelism. This is examined below.

4.3.2.1. Varlable-Speed Plpelines

Consider a variable-speéd pipeline that runs at either full speed or half speed. During
full-speed operation, all latches are controlled by the same system clock. During half-speed
operation, some of the latches remain open (C is high, C is low), and the remaining latches
are controlled by a clock running at one half the system clock rate. Durir;g half-speed dpera-
tion, the pipeline has less than one half its full-speed latency because the latch overhead is
less.

Suppose L =50 and r =03, and that Ucg_c = 2(1 = 0.3)t mux = 1.4t s, and
Ucp = 1/2(1=0.3)t pay = .35t max. These values would be typical of the floating-point pipe-

lies of the Cray-1,2! if they were implemented with 100K ECL integrated circuits. 3580
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Optimal values of p, S, and the corresponding clock periods C' and latencies [ for various

values of N are shown in table 4.5.

Table 4.5: Optimal Numbers of Levels of Logic p per Stage and Numbers of
Stages S for Various Numbers of Independent Operations N, with Corresponding
Clock Perlods C and Latencies L when the Logical Function Requires 50 Levels
of Logic and the Gate Speed Uncertainty is 0.3.

N
1 2 3 5 6 14 20 31 55 123
25 17 13 10 9 6 5 4 3 2
2 3 4 5 6 9 10 13 17 25

244 188 160 139 132 11.1 10.4 9.7 9.0 83
49 56 64 62 79 100 104 126 153 207

-

The overbead terms are larger for pipeline stages with fewer gates than for pipeline
stages with more gates, and there are more of them; pipelines with many stages have more
latency than pipelines with fewer stages. The overhead terms are due to wire delays before
the pipeline latches, which prevent data from flowing from one latch through the following

latch while C is still high.

This delay in the form of wire pads can be switched in and out using the circuit shown
in figure 4.10. An extra gate has been added to the polarity-hold latch, and an extra input
has been added to the data AND gates. During full-speed operation P=1and P=0, s0
data must pass through' the wire pad before it enters the OR gate. During half-speed opera-
tion P =0 and P = 1, so data can bypass the wire pad and enter the OR gate directly.
(The P input to the top AND gate may not be necessary if care is taken in the design of the
control so that a one-glitch cannot emerge from a wire pad after switching from full-speed to

half-speed operation.)
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Figure 4.10: Polarity-Hold Latch with Wire-Pad Switching-Clrcuit.

Theorem 4.1: Adding a wire pad switch circuit to each polarity-hold latch of a pipeline

Proof:

implementing a logical function of L levels of logic increases the depth of logic

in the pipeline to at most

2Llog(fan-in—1)
log((fan-in—2)(fan-in—1)/2)

levels of logic.

Assume the logical function is fully pipelined into L/2 stages, with each
polarity-hold latch implemented as a set of AND gates feeding a single OR
gate. One input to each of the AND gates is used for the C or C input, so
fan-in—1 inputs are left for data. One input to the OR gate is used for the
latch output feedback AND gate, so fan-in—1 inputs are left for data. Thus,
each polarity-hold latch combines up to (fan-in—l)2 data inputs to produce
one output, so L /2 polarity-hold latches can combine up to (fan-in—l)’“ data

inputs to produce one bit of output.

When a wire pad switch circuit is added to a polarity-hold latch, another
input to each data AND gate is required for the P or P ioput, so fan-in—2
inputs are available for data. For each original padded AND gate an unpad-
ded AND gate must be added, which requires half of the fan-in—1 inputs to
the OR gate. Thus, ea'ch polarity-hold latch with a wire pad switch circuit can

combine up to (fan-in—2)(fan-in—1)/2 data inputs.
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Combining the original (fan-in—l)" data inputs then requires no more than

. Llog(fan-in—1)
lo _ _ fan-in—1)*) = 4.20
£((fan- In—2)fan-in 1)/2)(( )*) log((fan—in—Q)(fan-in-1)/2) ( )

stages, or

2Llog(fan-in—1)
log((fan-in—2)(fan-in—1)/2)
levels of logic. If the logical function represents the combination of fewer than

(4.21)

(fan-in)* inputs, or if the logical function is not fully pipelined, then fewer lev-

els of logic are required. [Jj

Using theorem 4.1 and assuming that gates have an ECL fan-in of five, the length of a

pipeline would increase to as much as 1.55 times the original length, if wire pad switch circuits

are added. This would increase the latency of the pipeline by as much as 55%, which would

nullify the potential benefits of a variable-speed pipeline. When the extra gate cost for the

wire pad switch circuit is considered, variable-speed pipelines seem even less attractive. They

are not be considered any further.

Corollary 4.2:If a pipeline implementing a logical function of L levels of logic using

Proof:

polarity-hold latches is re-implemented using Earle latches, the depth of logic

- increases to no more than

2Llog(fan-in—1)
log((fan-in—1)?/2)

levels of logic.

Under the same assumptions as for theorem 4.1, at most (fan-in—l)L data
ipputs must be combined. For each original AND gate another AND gate is
required, with the latch output replacing the C input; these require half the

fan-in—1 inputs to the OR gate. Thus, no more than

) Llog(fan-in—1)
108/ (tan o1 Yran oy /2y (faD-iD—1)¢) = 4,22
(fan-to—1)Tan-1o—1)/2) ) og((fan-in—1)%/2) (4.22)

stages, or



2Llog(fan-in—1)
log((fan-in—1)%/2)
levels of logic are required. |

For a fan-in of five, the length of a pipeline would increase to as much as 1.33 times the
original length, if Earle latches are used instead of polarity-hold latches. Pipelines with
polarity-hold latches require more care in the design of the clock circuits than do pipelines
with Earle latches, but their lower latencies and gate counts outweigh this disadvantage. For

this reason, polarity-hold latches are used almost universally in modern supercomputers.

4.3.2.2. Tuning Pipeline Parameters to Workloads

The best single choice of the number of pipeline stages S depends on the distribution of
parallelism of the workload. Assume a hypothetical workload that has partitions with
instances of groups of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, and 2048 operations of some
type. Assume further that each value of N is equally important; that is, for every partition
with 2048 operations of some type, there are two with 1024 partitions, four with 512 parti-
tions, etc.

Table 4.5 shows the pipeline characteristics for several values of S. Only those values of
S for which pS —L is small are included; if pS —L is too large, the pipeline latency is dispro-
portionately large.

Table 4.6 shows the processing times for the various quantities of data N and for vari-
ous numbers of pipeline stages S.

Table 4.7 shows the processing times for the various values of N and S, relative to the

shortest processing time for each value of N. Small groups of operations are processed fastest

by short pipelines, while large groups of operations are processed fastest by long pipelines.
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Table 4.8: Processing Times for Various Quantities of Data N and for Various
Numbers of Stages S.

Number of Data
Stages | 1 2 4 8 16 32 64 128 256 512 1024 2048

73 97 146 244 439 829 1610 3172 6295 12541 25034 50020
75 94 131 206 357 658 12590 2462 4869 9682 19307 38558
80 06 128 192 320 576 1088 2112 4160 8256 16448 32832
83 07 125 180 291 514 959 1848 3627 7186 14303 28536
92 105 132 184 290 501 924 1768 3458 6837 13596 27112
111 122 144 188 277 455 810 1520 2941 5783 11466 22832
114 124 145 187 270 436 769 1435 2766 5428 10753 21403
13 135 145 164 203 281 436 746 1367 2609 5092 10058 19991
17 162 171 189 225 297 441 729 1305 2457 4761 9369 18585
25 215 294 240 273 340 473 738 1269 2332 4457 8706 17205

4 83 100 133 199 332 598 1129 2191 4316 8566 17065 34063

—
Do ook W

Table 4.7: Processing Ratlos for Various Quantities of Data N and for Varlous
Numbers of Stages S.

Number of Data
Stages | 1 2 4 8 16 32 64 128 256 512 1024 2048

100 1.03 1.17 1.36 1.63 190 221 250 270 281 2.88 291
103 1.00 105 1.14 132 151 173 194 209 2.17 222 2.24
1L10 1.02 102 107 1.19 132 149 166 178 1.85 189 1.91
1.14 1.03 100 100 1.08 1.18 132 146 1.56 1.61 1.64 1.66
126 1.12 106 102 1.07 1.15 1.27 139 148 1.3 1.56 1.58
152 130 1.15 104 103 1.04 111 120 1.26 1.30 1.32 1.33
156 132 1.16 1.04 100 100 1.05 113 119 1.22 124 1.24
185 154 131 1.13 104 100 102 1.08 1.12 1.14 116 1.16
17 202 182 151 1.25 1.10 101 100 1.03 1.05 107 1.08 1.08
25 295 238 192 152 126 108 101 1.00 1.00 100 1.00 1.00

4 114 106 106 1.11 1.23 137 1.55 173 185 192 1.96 1.98

Lt aned
S eoooe 0w

The weighted mean of the entries of a particular row is the measure of the relative
“goodness” of a choice of pipeline length for the workload. The lower the mean, the closer
that single pipeline approaches the performance of several pipelines, each used for the small
range of operation group sizes for which it is optimal. The weighted means for the hypotheti-
cal workload are shown in table 4.8. A pipeline with ten stages, each with five levels of logic,

is optimal, and is only 18% slower than a collection of pipelines of all the lengths.
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Table 4.8: Weighted Mean Processing Ratios for Various Numbers of Stages, As-
suming Uniformly Distributed Workload.

Stages | Mean Ratio
2 2.01
3 1.62
4 1.44
5 1.31
6 1.29
9 1.22
10 1.18
13 1.21
17 1.27
25 1.43

4'/25 1.06

The parallelism within Livermore Kernels 1-14%7 varies over a wide range; some parti-

tions have only one fioating-point operation, while others have as many as 1000 floating-point

operations. The number of instances of groups of parallel floating-point operations of each

size are tabulated in table 4.9.

Table 4.9: Numbers of Instances of Groups of Parallel Operations of Each Range

of Sizes, with Weights.

Range Number Weight
1 5867 5.73
2 435 0.85
3-4 285 1.11
5-8 10 0.08
9-16 0 0.00
17-32 10 0.31
33-64 8 0.50
65-128 14 1.75
129-256 0 0.00
257-512 5 2.50
513-1024 3 3.00
1025-2048 0 0.00

The only foating-point operations in these kernels are adds, subtracts, and multiplies. Statis-

tics for these are grouped together, although collected separately (thus a partition with 100

adds and 100 multiplies counts as two instances of groups of 100 operations). The weight of

each range of parallel group sizes is the product of the group size and the number of

instances, normalized by dividing by 1024. Thus, the importance of each instance of a group
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is proportional to the number of operations that it represents. The distribution of weights
indicate that overall performance of pipelined functional units depends on the performance for
very small groups and the performance for relatively large groups of operations, in roughly
equal proportion.

The weighted mean processing ratios for the workload distribution of Livermore Kernels

1-14 are shown in table 4.10.

Table 4.10: Welghted Mean Processing Ratlos for Various Numbers of Stages S,
Assuming the Workload Distribution of Livermore Kernels 1-14.

Stages | Mean Weighted Ratio
2 1.88
3 1.57
4 1.44
) 1.33
6 1.35
9 1.35
10 1.33
13 1.42
17 1.55
25 1.85
4'/25 1.06

The best performance is again for S = 10, but it is now 33% slower than a collection of pipe-
lines of all lengths. This is due to the concentration of weights towards the extremes of group

sizes.

4.3.2.3. Replicated Pipelines

Much better performance with the Livermore Kernels workload can be ha;i with two
separate pipelines for each operation. Full-speed pipelines with S = 25 and running at an
8.3-gate-delay clock can execute the parallel operations fast, while half-speed pipelines with
S = 4 and running at a 16.6-gate-delay clock can execute the serial operations fast. Tables
4.6 and 4.7 list processing times and processing ratios for the half-speed pipeline as the entry

with § = 4.
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The full-speed pipeline should be used for groups of operations larger than 16, while the
half-speed pipeline should be used for groups of operations between one and 16 in size.
Weighted mean processing ratios for this pair of pipelines are shown in tables 4.8 and 4.10 as

the entries with S = 4'/25.

The weighted mean processing ratio for both workloads are both 1.06, superior to the
weighted mean processing ratio of any single pipeline for either workload. The cost of this
performance is twice the pipeline hardware plus increased complexity of the functional unit

routing networks.
Another alternative is to use several identical pipelines to increase throughput without

increasing latency. If the number of pipelines for each function is increased from one to D, the

total processing time is reduced to Tp = (Chgpt Cww) The optimal choice for p is

Nis
D
increased by a factor of (D)%

1/2

DLU: ¢

(B Ut}

Nt cax

(4.24)

1z lzDL((z-r)thqu_l,q + Uqp)
p = max|2, , -

N =7)tmax

Of course, the hardware cost is increased by a factor of D plus the cost to route data to and

from the pipelines, which grows by a factor of logranwlD )-

4.3.3. Concessions to Slow Chip 1/O

The bandwidth of chip I/O pins is often considerably below that bossible within the
chip. If the pipeline clock rate is limited to the chip 1/O rate, the pipeline bandwidth is low.
Under these circumstances, the number of stages S should be small, so that pipeline latency is
low. Pipeline bandwidth can only be increased through duplication of pipelines, as discussed

in the previous section.

Chip 1/O bandwidth requirements can be reduced by storing some values in registers on

the chip. Some operations, such as multiplying a vector by a scalar, lend themselves to this



approach. Depending on the degree of integration available on each chip, it may be possible to
store parts of matrices on each chip. Some algorithms, such as parallel conjugate gradient
methods for solving LU factorization problems, have clusters of computations on limited sets

of data with limited communication among clusters.”®

As an alternative to implementations with slow clocks and few stages, nonlinear pipe-
lines can be used. These have been used in such systems as the floating-point execution unit
of the IBM System/360 Model 91,4 and have been extensively discussed by Davidson, Kogge,
Shar, and Thomas.52:88.98 Nonlinear pipelines use some pipeline stages more than once for
each operation, so operations cannot start each clock tick. They have the advantage of
greater hardware efficiency, relative to the linear pipelines used in most modern computers,

when new operations cannot be started every clock tick.

Nonlinear pipelines could be implemented with internal clocks running several times fas-
ter than the rate at which data are transferred and new operations start. They would be able
to take advantage of the ratio of on-chip to ofl-chip speed, and their re-use of pipeline stages
would provide savings in chip area, so that more complex functions could be implemented on
a chip. The hardware savings would allow more pipelines to be included in the CPU, increas-

ing the execution bandwidth.

4.4. Summary of Datapath-Design Properties

(1): Propagation distances grow at a rate between the square root of the number of devices
and linearly with the number of devices in a plane. Propagation distances grow at a
rate between the cube root of the number of devices and the square root of the number

of devices in three-space.

(2): With unbalanced fan-in trees, fan-in® —a signals can be selected after i gate delays,

a fan-ind — b signals can be selected after i +; gate delays, and so on. With unbalanced

fan-out trees, fan-out'—a signals can be generated after i gate delays, afan-outf—-b



(3):

(4):

():

(6):

(7):
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signals can be generated after { + j gate delays, and so on.

Device decoding time is often negligible, relative to fan-out times or device multiplexing

time.

LUCi—-l'Ci e

The optimal number of levels of logic per pipeline stage is , where L is the

max

number of levels of logic required to implement the function, Ug,_ ¢, is the clock uncer-
tainty, N is the number of independent sets of operands processed at a time, and ¢ma is
the maximum gate delay.

Variable-speed pipelines are not practical to implement, because the logic required to
switch the number of pipeline stages increases the depth of the pipeline too much. For

typical ECL gates, the length of the pipeline is increased by up to 55%.

A pipeline implemented using Earle latches requires up to 33% more levels of logic than

a polarity-hold latch implementing the same function, for typical ECL gates.

With D identical pipelines, the optimal number of levels of logic per pipeline stage is

DLU:_c |'*
Nt zax )




CHAPTER b5

Temporary Storage Devices and Access Mechanisms

The results presented in Chapter 3 establish the need for hundreds of temporary regis-
ters, and also show that most of the registers can have access times that are longer than one
clock tick without a performance penalty. The results presented in Chapter 4 show how some
devices in a set can be accessed faster than others. In this chapter, structures for temporary
result storage are presented that provide both low latency and high bandwidth. Addressing

and allocation issues are also discussed.

The temporary structures discussed include general-purpose registers, vector registers,
and random-access-memory devices. Some of the general-purpose registers have fast access
times and most of them have slower access times, but all can be accessed with high
bandwidth. The vector registers support high-bandwidth access to all elements, with low-
latency access to a small set of important elements. The random-access-memory devices pro-

vide high-bandwidth access to all locations, but do not necessarily provide low-latency access.

All of the structures discussed support many registers, and computers with many regis-
ters have long context-switch times. This is not a major disadvantage for supercomputers,
however, becalrlse time-critical terminal and disk input and output operations are L.ypically ser-
viced by other computers dedicated to the tasks. In a time-sharing environment, the
minimum running time quantum can be increased to the point where context-switch time is
insignificant relative to running time. For procedure and function calls, most of the registers
are not saved; the large number of registers allows different subsets of registers to be allocated
to different procedures and functions. Of course, this philosophy complicates the register allo-

cation process; however, if computational performance is considered less important than ease
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of compiler construction or compiler execution time, register usage can always be restricted to

a subset of the registers that are saved before every call.

5.1. Close/Distant General-Purpose Registers

The analyses summarized in Chapter 3 indicate that 256 registers are sufficient for fast
execution of Livermore Kernels 1-14, as long as four to eight of them have one-tick access
times. However, this requires considerable scheduling effort to achieve, and some of the ker-
nels run longer when scheduled to minimize register usage rather than execution time, so more
registers could be used to simplify the effort required to achieve fast execution. Consider the
design of a set of 1024 general-purpose registers, a subset of which can be accessed in one
clock tick. This subset of registers has capabilities similar to those of the Cray-1 and Cray
X-MP, either of which can read two scalar registers, compute 2 logical combination of them,

and write the result back to a scalar register in one clock tick using eight levels of

logic 21,22,54

The organization of such a set of registers is shown in figure 5.1. This register set can
support up to two register reads and one register write each clock tick. At the left of figure
5.1 are 960 registers, organized as 30 sets of 32 registers each. A collection of 30 pairs of 32:1
multiplexers select the contents of any two registers. The multiplexer outputs are held in 30
pairs of latches controlled by the system clock. In the middle of the figure, 59 additional regis-
ters and the 30 pairs of latches feed a pair of 89:1 multiplexers, the outputé of which are held
in a pair of latches controlled by the system clock. At the right of figure 5.1, five additional
registers plus the pair of latches plus / other functional unit outputs are selected by a pair of
(7+/)1 multiplexers. The outputs of these last two multiplexers feed a logical functional unit
that performs operations like AND, OR, exclusive-OR, etc. The logical functional umnit output
feeds back to the five close registers, and is also held in a latch controlled by the system clock.

The output of this latch is fanned out to the 59 middle registers and to the 960 distant
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registers. In addition, a pair of 7:1 multiplexers can send the contents of any of the registers

to the other functional units in the CPU.
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Figure 5.1: Organization of Close/Distant Registers.

Distant registers can be read and sent to the logical functional unit in two clock ticks,
middle registers can be read and sent to the logical functional unit in one clock tick, and close
registers can be read and sent to the logical functional unit in less than one clock tick. Read

addresses reach the distant multiplexers directly from the operation start hardware, shifted six
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bits toward the zeroes position. Read addresses reach the middle multiplexers after a one-tick
delay from the operation start hardware, and are mapped into an appropriate form for the
89:1 multiplexers. Read addresses reach the close multiplexers after a two-tick delay from the
operation start hardware, and are mapped into an appropriate form for the (7+/):1 multi-

plexers.

The output of the logical functional unit can be written to any close register in the same
clock tick and to the middle and distant registers in the next tick. Decoded write addresses
reach the close registers at the same time that the read addresses reach the close multiplexers.
Decoded write addresses reach the middle and distant registers one tick after read addresses

reach the close multiplexers.

Instructions with operation specifications must reach the start hardware at least two
ticks before operations are actually started, in order to x:ead distant operands in time. This
increases the delay following a conditional branch before operations start again. This also
forces any hardware reservation mechanisms to check the availability of registers as much as
two ticks in the future, or longer if reservation checking takes more than ome tick. With

many close/distant registers there is, thus, a strong motivation to perform as much hardware

reservation checking as possible at compile time.

5.1.1. Logic Design

Consider the logic required for a functional multiplexer that selects two of k registers
and combines them logically. Each output bit can be expressed as a sum of products of regis-
ter data, address bits, and function-control bits. Function-control bits and register-address
bits are data independent, so they can be decoded down to as little as one bit for each pro-
duct, one or more clock ticks before the logical operations are performed. Therefore the AND
gates need not have more than three inputs each. With k registers and with logical functions

of two inputs, there are 2k? unique nonzero products. If the outputs of f other functional
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units are input to the multiplexer, but are not combined with any of the register contents, f
additional products of two terms are required. Thus, selecting two of k registers and combin-
ing them logically or selecting one of f functional unit outputs requires a sum of 2k? products

of three terms and f products of two terms.
Using gates with a fan-in of five, the products can be computed in one level of logic, but
the sum requires [log5(2k2+f)] levels of logic. For k between four and seven and f no larger

than 16, the sum can be performed in three levels of logic, so a minimum of four gate delays
are required to select from two of seven registers and combine them logically. This is a lower

bound on the clock period to perform this function.

Each register can be implemented as a polarity hold latch if a level of AND gates for the
clock inputs is inserted into the OR fan-in tree before the final OR gate. Although the clock
signals could be ANDed with the data at the first level of AND gates, this would increase the
uncertainty of delay from clock to output of each latch, and could result in an overall slower
clock rate. Using the extra level of AND gates has the additional benefit that most of the
logic can be shared among the various fast registers; the initial level of AND gates and the
first two levels of OR gates are shared, while a level of AND gates and an OR gate are dedi-
cated to each bit of each register. Figure 5.2 shows an implementation of this function for

two registers and one other functional unit input using gates with a maximum fap-in of three.

Returning to the original example of the close/distant register set with the logical func-
tional unit, the functions of selecting and modifying two of seven registers are implemented in
one pipeline stage of five levels of logic. Note that this pipeline has three fewer levels of logic

per stage than the Cray-1.

Using the analyses of section 4.3.1, with a ratio r of minimum to maximum gate propa-
gation delays of 0.3, a pipeline with five levels of logic corresponds to a clock with a 10.4

gate-delay period; if r is 0.6, the clock can have a period of 6.8 gate delays. This is
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approximately half the clock period of the Cray-1.%4
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Figure 5.2: Implementation of a Polarity Hold Latch that Performs Selection and
Logical Combination.

Five of the 7+/ data inputs to the functional multiplexer are used for close registers, f
data inputs are used for other functional units, and the remaining two inputs are used for
middle and distant registers. The middle stage consists of 59 middle registers, a pair of 89:1
multiplexers, and a pair of latches. The 59 middle registers are implemented using polarity

hold latches or other equally fast circuits.

Each multiplexer is directly connected to its latch, and both are implemented as five-
level-of-logic polarity hold latches. The first three levels of logic consist of a level of AND
gates for selection followed by two levels of OR gate fan-in. The last two levels of logic con-
sist of a level of AND gates accepting data and clock inputs plus a single OR gate. With a
fan-in of five, four data inputs plus the feedback input can be ORed by this last gate. The

two-level OR fan-in trees can multiplex 25 signals down to one, so up to 100 inputs can be
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selected and latched by either middle multiplexer-latch. Of the 89 data inputs used for each

multiplexer-latch, 59 are used for middle registers and 30 are used for distant registers.

The distant stage consists of 960 distant registers organized as 30 groups of 32 registers
each, 30 pairs of 32:1 multiplexers, and 30 pairs of latches. The distant registers are imple-
mented using the same circuits as the middle registers. Each of the 60 distant multiplexer-
latches are implemented as five-level-of-logic polarity hold latches that compute a 32:1 multi-

plexing function.

The bandwidth of the set of registers described is two reads and up to one write every
clock tick, supporting a start-limit of one. Higher bandwidths supporting larger start-limits
can be implemented, but increasing the bandwidth by b requires b2 times as many product
terms for the functional multiplexer. In effect, the functional multiplexer is replicated b times
and each close register may be written with the output of any of the b functional unit out-
puts. This extra selection delay increases the number of levels of logic by 108y 1o(b?), increas-
ing the minimum clock period proportionately. Note that this increase in the clock period is

necessary regardless of whether close/distant registers or traditional registers are used.

For close/distant registers where each functional multiplexer has ¢ close register inputs,
two middle and distant register inputs, and f other functional unit inputs, 2(b{c+2))°+f
inputs must be multiplexed down to one and latched in one clock tick, where two levels of

logic are taken up by AND gates. Thus, the clock must have a period long enough- to accom-

modate at least [logm,m[sz(c +2)%+ f”+2 levels of logic. Assuming ECL’s fan-in of five, up
to 16 other functional unit inputs can be included without increasing the number of levels of
logic. The numbers of levels of logic required for up to 16 other functional unit inputs and for
various values of bandwidth b and numbers of close registers ¢ are shown in table 5.1. In
eight levels of logic as many as 16 close registers could be accessed with a start-limit of four,

or as many as nine close registers could be accessed with a start-limit of eight.



101

Table 5.1: Numbers of Levels of Logic Required If All Inputs are Multiplexed
Down to One Output, for Fan-in = 5, Up to 16 Other Functional Unit Inputs,
with Various Numbers of Close Registers, and for Various Values of Bandwidth.

Read Number of Close Registers
Bandwidth |2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 5 5 5 5 6 6 6 6 6 6 6 6 6 6 7
2 6 6 6 6 6 7 7 T 7 7 7 7 7 77
3 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8
4 6 7 7 7 7 7 8 8 8 8 8 8 8 8 8
5 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9
6 7 7 7 8 8 8 8 8 8 8 8 9 9 9 9
7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9
7 8 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9

5.1.2. Close/Distant-Register Allocation

Close, middle, and distant registers should be allocated such that close registers are used
for the most time-critical temporary results, middle registers are used for less time-critical

temporary results, and distant registers are used for even less time-critical temporary results.

As long as an operation is separated from its source operations by at least
start-limit * (operation-time + write-time + read-time)
other operations, it can start without any wait. (Note that even if data forwarding is used,
the result must be written into some latch, and the destination operation must select from
some number of source latches and registers, so a write time and a read time must still be
included in the inter-operation separation.) Operations are allocated distant result-registers,
and are scheduled so that they are separated from their source operations where possible.
Based upon the studies summarized in Chapter 3, there should always be enough distant regis-
ters for all temporary results. For pairs of operations which cannot be scheduled far enough
apart, the available middle registers are allocated to the more time-critical temporary results,

and the available fast registers are allocated to the most time-critical temporary results.

Registers allocated for temporary results that are used by fewer operations are freed

sooner than those allocated for temporary results that are read by more operations. Thus,
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temporary results with shorter lifetimes should have higher priorities for middle and fast regis-
ter allocation, other factors being equal. However, if the start-limit is greater than ome, a
temporary result that is used by several operations during the same clock tick should have
higher priority than one used by fewer operations the same clock tick, because fast access to

the former enables more operations to start.

The use of registers with different speeds undoubtedly complicates the task of automatic
register allocation. However, the use of a large number of registers simplifies some aspects of
register allocation, because there should always be enough registers available for temporary

results. Therefore, the net effect may be only a slight increase in compiler complexity.

5.1.3. Instruction-Stream Bandwidth Considerations

A disadvantage of architectures with high instruction-stream-bandwidth requirements is
that to achieve the same performance as architectures with lower instruction-stream-
bandwidth requirements, they require larger instruction buffers; the larger instruction buffers
cost more in terms of hardware, space, and power dissipation. Another disadvantage is that
for computers with a single memory system for instructions and data, the instruction-stream
interferes with the data stream to a greater extent. Fortunately, instruction-stream access is
very regular and predictable for scientific programs, so it is possible to construct efficient
instruction buffers with high performance. Higher instruction-stream bandwidth requirements
can be tolerated if they lead to greater overall execution speed, but their costs ~in terms of

hardware speed and performance are not negligible.

Architectures with many close/distant registers have longer register addresses than
architectures with only a few registers, but their overall instruction bandwidth requirements
are often less. Assuming seven-bit opcodes, a start-limit of ome, and ten-bit close/distant
addresses, a three-address instruction for close/distant registers has 37 bits. If small register

sets have three-bit addresses, a three-address instruction for small register sets has only 16
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bits. If memory addresses have 32 bits, a memory load or store instruction with a small regis-
ter set has 42 bits, 2 memory load or store instruction with a close/distant register set has 49
bits, and a three-address memory-to-memory instruction has 103 bits. In addition to the rea-
sons discussed in Chapter 3, pure memory-to-memory scalar architectures are poorly suited to
scientific calculations because of their excessive requirements for instruction-stream

bandwidth.

Each time the number of temporary resplts exceeds the number of registers in 3 small
register set, a temporary result must be spilled, or written out to main memory, only to be
loaded again before it can be used. Architectures with many close/distant registers require
less instruction-stream bandwidth than architectures with small register sets whenever

37«nonmem + 49+ mem < 16s«nonmem + 42+ mem +42%8pill |
where nonmem is the fraction of non-memory-referencing operations, mem is the fraction of
memory-referencing operations, and spill is the ratio of temporary result spills and reloads to
operations. Instruction-stream-bandwidth requirements for architectures with close/distant
registers and for architectures with small register sets are shown in table 5.2 for Livermore
Kernels 1-14. Except for the serial kernels 5, 6, and 11, the instruction-stream bandwidth
requirements are higher for a small set of registers that spills than for a close/distant set of
registers. Nevertheless, the bandwidth requirements are high, and it is desirable to reduce the

instruction-stream bandwidth requirements of close/distant registers even further.

This can be accomplished for serial applications if a short instruction format is used
when all operands are in close registers. For very-serial applications like Livermore Kernels 5,
6, and 11, all non-memory operands are in close registers, so close/distant addressing requires

no more instruction-stream bandwidth than does small register set addressing.
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Table 5.2: Instruction Stream Bandwidth Requirements in Bits per Operation for
Close/Distant Registers and for a Set of 8 Reglsters, for Livermore Kernels 1-14.

Kernel | nonmem | mem | apill | Close/Distant BW | Small Set BW
1 0.62 0.38 | 1.61 41.56 93.19
2 0.45 055 | 1.38 43.60 88.05
3 0.50 0.50 1.47 43.00 90.73
4 0.50 0.50 | 1.43 43.00 89.05
5 0.40 0.60 0.00 44.20 31.60
6 0.40 0.60 0.00 44.20 31.60
7 0.80 020 | 1.78 39.70 96.06
8 0.70 0.30 1.67 40.60 94.01
9 0.61 0.39 | 1.58 41.68 92.73
10 0.31 069 | 1.28 45.28 87.69
11 0.33 0.67 0.00 45.04 33.34
12 0.33 0.67 | 1.32 45.04 88.90
13 0.33 0.67 | 1.46 45.04 94.55
14 0.54 0.46 0.45 42.52 46.97

5.2. Fast/Bulk Vector Reglsters

Vector instructions specify a series of identical operations to be performed on one or
more vectors, producing a vector (or occasionally a scalar) result. Vector registers are used to
hold the temporary results of vector operations; they can provide access to temporary results

with lower latency and higher bandwidth than main memory.

Consider a vector register set that consists of eight vector registers, each containing 64
elements that bave the machine's word size. In traditional usage, an entire vector register is
addressed as a unit. When a vector register is read or written, the individual elements are
accessed sequentially, one element per clock tick, starting with element zero. Usually only
one sequence of element accesses can be in progress in each vector register at a time, either
reading or writing; however, in some cases, a sequence of reads and a sequence of writes can

be in progress in a vector register at the same time.

Traditionally, vector registers are implemented using many small fast random-access-

memory (RAM) chips, as shown in figure 5.3.
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Figure 5.3: Implementation of a Traditional 64-Element Vector Register.
A six-bit counter generates element addresses, which are partially decoded and sent to fdur
sets of 16X 4 fast RAM chips. For 64-bit words each vector register uses 64 RAM chips,
organized as four sets of 16 chips. When a vector element is read, the outputs of one set of
RAM chips is selected and sent to a vector functional unit. When a vector element is written,
the datum is distributed to the sets of RAM chips and one set is enabled for writing. The
timing of a write followed by a read of a seven-element vector is shown in figure 5.4. Ele-
ments zero through six are written successively to RAM sets a, b, ¢, d, a, b, and ¢, starting

at tick zero, one element per clock tick. Read timing is similar, and starts at tick seven.

The RAM chips described are fast enough to be accessed in one clock tick, so they are
necessarily small, and many of them are required. However, vector access patterns are

predictable, so RAMs this fast are not necessary.
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Clock Tick
RAM | O 1 2 3 4 5 6 7 8 9 10 11 12 13
a: W, W, R, R,
b: W, Wy R, Ry
c: W, W, R, R,
d W, R,

Figure 5.4: Vector Register Access Timing for a Write and a Read of a 7-
Element Vector.

Element zero of a vector register must be accessed in the same clock tick that the vec-
tor access begins. Element one must be accessed by the tick following the one in which the
vector access begins, and, in general, element j must be accessed no later than j ticks after

the vector access begins.

The first few elements need low-latency access, but the remaining elements can tolerate
a longer access latency if their access bandwidth is sufficiently high. Consider a fast/bulk vec-
tor register with a set of small fast RAMs for the first few elements, and two or more sets of
slower bulk RAMs for the remaining elements, as shown in figure 5.5. The first two elements
are stored in the set of fast RAMs, shown implemented using 16X 4 RAM chips. These are
addressed by a seven-bit counter, but are only enabled when addresses are less than two. The
remaining elements are stored in the two sets of bulk RAMs, shown implemented using 64X 4
RAM chips. These have a two-tick access time, are addressed by a separate seven-bit counter,
and are only enabled when addresses are at least two. Address and data latches are used at

the bulk-RAM inputs to hold them stable for the two-tick access times.

The timing of a write followed by a read of a seven-element vector is shown in figure 5.6
for this fast/bulk vector register. Vector elements are received from a vector functional unit
in sequential order, so they must be written in that order. Elements zero and one are written
to the fast-RAM set a one tick apart. Element two is written to bulk-RAM set B at tick two,
and it keeps that RAM set busy through tick three. At tick three element three is written to

bulk-RAM set C, keeping it busy through tick four. By tick four, bulk-RAM set B is free so



107

element four can be written there. This interleaved write access continues until tick six, when

element six is written to bulk RAM set B, keeping it busy through tick seven.
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Figure 5.5: Implementation of a Fast/Bulk Vector Register with 128 Elements.

Clock Tick
RAM | O 1 2 3 4 5 6 7 8 9 10 11 12 13
a: W, W, R, R,
B: w, - W, - W, - R, - R, = Ry =
C: Wy = W, — Ry, — Ry —

Figure 5.8: Fast/Bulk Vector Register Access Timing for a Write Followed by a
Read of a 7-Element Vector. :

At tick seven, element zero is read from fast-RAM set a, and at tick eight, element one

is read from fast-RAM set a. At the same time, the read access of element two begins from

bulk-RAM set B; the read is completed at tick nine. The read access of element three begins

at tick nine, and completes at tick ten. This interleaved read access continues until the read

access of element six completes at tick thirteen.
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Note that the external interface to the fast/bulk vector register is identical to that of

the traditional vector register discussed before; the write access begins at tick zero, the first

read access begins at tick seven, and the last read access completes at tick thirteen.

Bulk read accesses begin one tick before they complete to allow for their longer latency.

For reads, therefore, the bulk address counter betr is loaded with the constant one, while the

fast address counter ctr is loaded with the constant zero; both betr and ctr count together,

so their outputs always differ by ome. For writes, elements must be written in the order

received, so betr is loaded with the constant zero and the two counter outputs are the same.

As the example shows, bulk-RAM set B can still be busy by the time a vector read begins, so

the first two elements are stored in fast RAM, giving bulk-RAM set B time to recover after a

write before it is pre-read.

Theorem 5.1: In general, with one access per clock tick, a fast-RAM access time of one

Proof:

tick, 2 bulk-RAM read access time of tgyccess ticks, a bulk-RAM busy time of
t Bbusy ticks, and assuming a vector read can begin immediately after a vector
write begins, at least gy, sets of bulk RAM are required with at least

t Bbusy + L Baccess — 2 €lements in fast RAM.

Clearly tgpugy sets of tgpuq-tick-busy-time RAM are needed to keep up with

an access bandwidth of one element per tick.

The first element in bulk RAM must be read tg,ces—1 ticks before it is
needed, in order for it to be delivered on time. However, its bulk-RAM set
could have been written as little as one tick before the vector read began,
keeping it busy until ¢gp,e—1 ticks into the vector read. Thus, in the worst
case, a bulk-RAM element would not be delivered until tghusyt ¢ Baccess — 1
ticks after the beginning of a vector read, SO tpgpusy+!Bacoess ™ 2 elements

must be stored in fast RAM. |



109

Corollary 5.2: If slow RAM sets with access time g coms ticks and with busy time gy, are
added to a fast/bulk vector register, at least tspuy sets of slow RAM are

required, with at least tspyey + ! saccess — 2 €lements stored in faster RAM.

Proof: The minimum number of slow RAM sets is determined by bandwidth con-

siderations as it was for bulk-RAM sets in theorem 5.1.

Similar to the bulk-RAM case, the first slow-RAM element could be delivered
as late as !spuey+lsacces— 1 ticks after the beginning of a vector read, so
tsbusy+ tsaccess— 2  elements  must be stored in faster RAM. If

t Bbuey + t Bacces — 2 €lements are stored in fast RAM, bulk RAM must contain

at least tsbusy T t 5 access — tBbusy—theess elements. l

5.2.1. Advantages of Fast/Bulk Vector Registers

The advantages of fast/bulk vector registers over traditional vector registers are that
fast/bulk vector registers allow longer vector registers for the same latency and bandwidth of
access, they support lower latency and higher bandwidth for the same length vector registers,
and they require fewer RAM chips for the same length and for the same latency and

bandwidth of access.

The fast/bulk vector register shown in figure 5.5 has 128 elements, yet its external inter-
face timing is identical to that of the traditional 64-element vector register shown in figure
5.3. All other factors being equal, RAM access time increases as the square root of the
number of bits, because, for large enough RAMs, access time is dominated by physical signal
propagation time across the two-dimensional array of bit cells. Thus, when the access time of
the bulk RAMs is doubled, their size is quadrupled. If the bulk-RAM access time is significant
relative to the clock period, doubling the access time requires doubling the number of sets of

bulk RAM to maintain the same access bandwidth, so the net eflect is to increase the size of
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the vector registers by a factor of eight. Longer vector registers allow computations to run in
less time because of fewer pipeline startup penalties. With vector registers of length 1024 or
more, Livermore Kernel 3 could run with only one vector instruction per partition, and only

one vector startup penalty per partition.

The fast elements of a fast/bulk vector register could be implemented using several
registers, rather than fast RAM. In four levels of logic using ECL gates with a fan-in of five, a
polarity hold latch implementing a 20:1 multiplexing function could be implemented. If there
are no more than 20 fast element registers and bulk-RAM sets, a fast/bulk register could run
at one half the latency and twice the bandwidth of the traditional vector registers of the

Cray-1.

The fast/bulk vector register shown in figure 5.5 uses 16 fewer RAM chips than the
traditional vector register of figure 5.3, for 64-bit words. Since quadrupling the size of the bulk
RAMs doubles their access time, twice as many are needed to maintain the same bandwidth;
however, for a long enough vector register, the change to larger bulk RAMs halves their
pumber. The savings in RAM chips are partially offset by the extra address and data latches
necessary to pipeline the vector accesses. The number of these extra latches is proportional to

the number of sets of bulk RAMs.

The main reason for having several sets of bulk RAM is to increase the total bulk-
RAM-access bandwidth. If a RAM chip existed that had high-bandwidth access, but not neces-
sarily low-latency access, fast/bulk vector registers could be implemented very efficiently. An
extra bulk-RAM counter would still be required in order to start bulk-RAM reads far enough
in advance, but only one set of bulk-RAMs would be required. Furthermore, high
bandwidth/higher latency RAM chips would eliminate the need for the address and data

latches. Such a RAM chip is presented in section 5.3.
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5.2.2. Vector-Access Extensions

5.2.2.1. Parallel Vector Access

Vector registers with bandwidths in excess of one element per clock tick can be imple-
mented as traditional or fast/bulk vector registers with word sizes that are multiples of the
machine word size. For example, a vector register with a bandwidth of four elements per clock
tick for a computer with a 64-bit word size would have a word size of 256 bits, four times the

machine word size.

During each clock tick, four parallel elements would be sent to four replicated pipelined
functional units and four parallel results would be written to four parallel destination ele-
ments. Vector element counters would count by four, rather than by one; this would be
accomplished by shifting the output of the original counter two bit positioqs away from the
one's position. For vector lengths that are not multiples of four, extra operations would be
performed at the ends of vectors, but this would impose no time penalty with parallel func-

tional units.

Memory accesses would also proceed in parallel, four elements at a time for this exam-
ple. The memory system would be responsible for inhibiting writing to extra memory loca-

tions if vector lengths were not multiples of four.

5.2.2.2. Simultaneous Read and Write Access to a Vector Reglster

On the one hand, the Cray-1 vector registers and the fast/bulk vector registers
described above restrict access to either a vector read or a vector write, but not both at the
same time. Furthermore, elements must be accessed at a steady rate, one per clock tick. On
the other hand, each Cray X-MP vector register allows a vector write and a vector read to be
in progress at the same time, so that each element can be read as soon as it is written, and

the access rate need not be steady.



The Cray X-MP vector registers are frequently used as FIFOs between functional units,
buffering results between chained vector operations. However, they differ from pure FIFOs

because they can be read an arbitrary number of times after they are written.

Fast/bulk vector registers can be generalized to support this fast FIFO-like access, pro-
viding comparable access speedups and hardware savings. This is done by supplementing a set
of bulk-RAM banks with a fast shift-register that buffers data between the write input and

the read output. A generalized fast/bulk vector register is shown in figure 5.7.
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Figure 5.7: Generallzed Fast/Bulk Vector Reglster Supporting Simultaneous
Read and Write Access.

The bulk-RAM banks have busy times of two ticks, so four banks are necessary to sup-
port an access bandwidth of a read and a write per tick. Separate address counters allow read

and write accesses to proceed independently. The output of the generalized fast/bulk vector
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register can be selected from the data input itself or from the outputs of the shift-register.

Initially the write counter is set to zero, and the read counter is set to one more than
the bank-busy time plus the bank access time; in this case it is set to five. The corresponding

counter is incremented after each access.

As each element is written, it can be forwarded directly to the output latch or to the
shift-register, depending on the difference between the write address and the read address. If
the actual read address is equal to the actual write address (that is, if rctr = wctr+5), then
the element being written is copied to the output latch. If the difference between the actual
addresses is one or two, the new element is shifted into the shift-register. If the difference is

larger, the element is written into its RAM bank, but is not copied to any latch.

As each element is read. several events occur. The desired element is always available in
the output latch, so it is sent to its destination. Unless the difference between the actual read
and write addresses prior to the read was one, the older unread element of the shift-register is
copied to the output latch. If the difference was five or more, a bulk-RAM bank read is ini-

tiated; when this completes the element is shifted into the shift-register.

When the read counter reaches the current vector length, it is reset to zero. The five
final read accesses then initiate bulk RAM bank reads that prime the shift-register and output

latches with the first five vector elements, so subsequent vector reads can start without delay.

Note that the shift-register shown uses one more shift-register cell than is absolutely
necessary. Without it, the multiplexer before the output latch would need inputs for all the
bulk-RAM banks, as well as for the data input and the shift-register outputs. The extra
inputs might require more levels of logic in the multiplexer, which could require a longer clock

period.

In general, there must be twice the number of banks as the bank-busy time to support

the access bandwidth of a read and a write each tick. The shift-register must have as many
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elements as the sum of the busy time and the access time of the bulk RAMs, in order to bold

enough data for the first few reads.

Internal details of a bulk-RAM bank are shown in figure 5.8.
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Figure 5.8: Internal Detalls of a Bulk-RAM Bank.

The bulk-RAM bank consists of bulk RAM, latches to hold data and addresses during the

multi-tick access times, and some control circuitry. It is essentially the same as an interleaved

main memory bank.

If the bank is free and a write is requested, the control circuitry recognizes the bank

address, the upper bits of the address are copied to the right address latch, the input data are

copied to the top latch, and the write access begins. If a read access to the bank is requested

the following tick, before the bulk RAM is free, the read address is copied to the left address
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latch and a read access begins the following tick. If both a read access and a write access are
requested at the same time, the data input is copied to the top latch, one address is copied to
the right latch and an access begins, while the other address is copied to the left latch and its

access is deferred for the bulk-RAM busy-time.

Because vector read and write accesses are sequential, and because the bulk-RAM banks
are interleaved, it is impossible for any bank to be accessed more frequently than once for a
read and once for a write in the interval of twice the busy time. Thus, two address buffers
and one data bufler for each bank are sufficient, regardless of the bank-busy time or the bank

read-access time.

With the constraints that read accesses to elements must follow write accesses and that
no more than one read access can start each tick, the write data forwarding and pre-reading
insures that data are always available for read accesses. The latency of access for generalized

fast/bulk vector registers is, therefore, one tick, regardless of the vector register's length.

The generalized fast/bulk vector registers can be extended to support one vector write
and two vector read accesses simultaneously. This is done by increasing the interleaving
depth from twice the bank-busy time to three times the bank-busy time; it requires adding
another read counter, a shift multiplexer, a shift-register, an output multiplexer and an output
latch for the second read access, and adding an extra address latch to each bulk-RAM bank.
This access is more general than any access supported by the Cray-1,2! thé Cray X-MP,2° the
Cray-2,2% and the NEC SX-2.40 This extension can be applied to an arbitrary number of
simultaneous vector reads by adding more RAM banks, multiplexers, shift-registers, and

latches.

5.3. Plpelined Random-Access-Memory Chips

The fast/bulk vector registers discussed in the previous section require several banks of

RAMs to achieve the necessary access bandwidth. The latency of access is not as important
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as the bandwidth, however, because the fast registers can hide the latency. What is needed is
a random-access-memory chip supporting high-bandwidth access, but not necessarily low-

latency access.

Access to random-access-memory chips can be pipelined, allowing higher-bandwidth
access than similar chips implemented without pipelined access. These pipelined RAM chips,
or PRAM chips, are well suited for temporary storage for vector operations, particularly when

used in a fast/bulk vector register implementation.

5.3.1. Memory-Access Delays

The sequence of delays associated with RAM chip read access is shown in figure 5.9.
(1)  receive address
(2) decode address
(3) propagate selects
(4) enable bit cell output
(5) propagate data

(6) multiplex data
(7) transmit datum

Figure 5.9: Sequence of Delays for Read Access.
Assume the RAM chip is organized with 2k % 1 bits in a square array. On the one hand, select
and data propagation times tend to dominate for larger RAM chips, because they grow as thfs
square root of the number of bits. Decoding and multiplexing times, on the other hand, grow
as the log of the square root of the number of bits, and address receiving and transmission
times are independent of the number of bits. Data propagation times tend to be longer than
select propagation times, because the many individual bit cells are usually smaller and less

powerful than the few select line drivers.

The sequence of delays associated with RAM chip write accesses is shown in figure 5.10.
This sequence is shorter than the read sequence because both addresses and datum are avail-
able at the same time and can propagate in parallel. Also, the bit cells only receive data, and

do not drive long capacitive bit lines.
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(1) receive address and receive datum

(2) decode address and fan out datum

(3) propagate selects and propagate datum
(4)  write bit cell

Figure 5.10: Sequence of Delays for Write Access.

The read or write access latency is the sum of the delays along the respective sequences.
For traditional RAM chips, the bandwidth is the reciprocal of the latency, as only one access
can be in progress at a time. If one or more pipeline latches are inserted in the sequences, the

bandwidth increases to the reciprocal of the latency of the longest delay between latches.

A limited degree of access pipelining has been applied to programmable-read-only-
memory (PROM) chips, where a register is inserted before the output of the chip, allowing

data to be used while a new word is read.%®

5.3.2. Limited Memory-Access Pipelining

Easy places to insert pipeline latches are at the output of the address decoders and write
datum fan-out tree, and in the output of the read multiplexer. The address decoders and read

multiplexers can be implemented as polarity bold latches.

A chip read is, thus, performed as a pipelined function of three stages: receive and
decode; propagate selects, enable cell output, propagate data, and partially multiplex data;
finish multiplexing data and transmit datum. A chip write is a pipelined function of two
stages: receive address and datum, decode and fan out; propagate enables and datum and

write cell.

The cost of this pipelined access is a clock input pin and the extra area required for the
pipeline latches. Assuming four-or-six-transistor fast RAM cells are used, each RAM cell has
roughly the same area as a gate. A polarity hold latch at the last stage of an address decoder
can contribute only an AND gate to the function, 5o it costs two extra gates for each decoded

output bit. Typically, half of the address bits are decoded and the other half are used to
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control the select multiplexer, so 242%/2 extra gates are required for decoder output latching
for RAMs with 2% bits. A polarity hold latch can perform a multiplexing function, so only the
feedback AND gate is extra, and, therefore, multiplexer latching costs 2k/2 extra gates. A
polarity hold latch can contribute only its OR gate to datum fan-out, so if one input fans out

to 2%/2 data lines, the cost is at most 2+2%/2 extra gates.
The total overhead of pipeline latches is, thus, 5%2%/2 gates or bit cells. The overhead is
shown in table 5.3 as a fraction of the ok bits stored in the RAM, as a function of the pumber

of bits in the RAM.

Table 5.3: Fraction of Area Overhead Due to Pipeline Latches, as a Function of
the Number of Bits.

Bits Overhead
16 1.25
64 63

256 31

1024 .16

4096 .08

16384 .04
65536 .02

For small RAMs, the latch overhead is large, but the bit-cell area of these RAMs is relatively
insignificant; the pin pad area often limits the minimum size of the chip. For RAMs larger
than 1024 bits, the latch overhead is less than 10%, and the increase in access bandwidth
easily justifies this cost.

This limited degrée of pipelining has been implemented by GigaBit Logic in their
12G014 256X 4 pipelined static RAM.43:45 This RAM has latches at the data, control, and
address inputs, and at the data outputs, and is able to operate with a 2.5 nanosecond cycle
time. The busy time of this RAM is, thus, 2.5 nanoseconds, while the access time is 3.5
panoseconds. The output latches can also be forced into a transparent mode, so that a
slightly shorter access time can be achieved at the expense of a cycle time that is as long as

the access time. It is possible to pipeline RAM chips to a greater degree than GigaBit does;
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5.3.3. Signal-Propagation Pipelining

For larger RAMs, physical signal propagation can be pipelined as well. The chip area
devoted to bit-cells is partitioned into a small number of regions, with pipeline latches
between regions. Figure 5.11 shows the placement of pipelined propagation latches for reads
and writes for an eight-region chip, each region containing one eighth of the chip’s bit-cells.
Data and address lines within each region are distributed to all the bit-cells in the region. The
pipeline latches are placed so that any path from address decoder to chip region to data mul-
tiplexer encounters the same number of latches. Also, the path from data input to any partic-
ular chip region encounters the same number of latches as the path from address input to that

same chip region, so addresses match their data without requiring external skewing.

Regions are located in rows 0 through n-1 and columns O through m-—1. Address
inputs are conceptually located to the left of the top row at (0,—1), data inputs are conceptu-
ally located above the left column at (—1,0), and data outputs are conceptually located below
the right column at (n,m—1). For any row of regions, a signal traveling from column z; to
column z; must pass through j—i pipeline latches, and for any column of regions, a signal
traveling from row y; to column y; must pass through j—1 pipeline latches. The delay from
an address or data input to region (z,y) is, thus, z +y +1 stages, and the delay from an

address input to data output is n +m stages.
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Figure 5.11: Placement of Pipelined-Propagation Latches for an Eight-Region
Pipelined RAM Chip.

Pipeline RAM allows several accesses to be in progress at the same time, so there is a
potential danger that a read access following a write access to the same location will access
old data instead of the new data. Similarly, there are potential dangers of write-after-read
conflicts and write-after-write conflicts. All these conflicts are caused by reads and writes

occurring out of sequence.

Theorem 5.3: There can be no read-after-write, write-after-read, or write-after-write access

conflicts with any pipelined RAM.

Proof: None of these conflicts can occur because the delay from address inputs to
any location is a function of the region (and hence of the location) only, so
all accesses to that location must proceed in strict sequence. The delay from

address inputs to data outputs is constant for all regions, so read data



appears at the output in the same sequence that their addresses appeared at

the inputs.

For pipelined RAMs without pipelined propagation, the numbers of latch
delays to any location or from any location are independent of the location,

so none of the conflicts can occur. i}

Read access delays are independent of location, so sequences of reads are delivered in
proper sequence. In fact, read access delays are independent of the history of accesses and the
bandwidth of access is access-pattern independent, so pipelined RAM is superior to interleav-
ing.

This aggressively-pipelined RAM chip has three times the number of latches as the ear-
lier example, so the latch overhead is proportionately higher. In addition, clock lines must be
sent to latches in the middle of the chip, which costs additional chip area. For a 1024-bit

RAM the overhead could be as high as 50%.

There are additional advantages to this aggressive pipelining scheme that partially miti-
gate the large overhead. First, the pipelined propagation reduces the length of the bit and
select lines, and this in turn reduces the capacitance, resistance, and inductance propor-
tionately; the combination of the reduced impedances decreases the propagation time by the
square of the reduction in length, rather than linearly. Second, as each bit c_ell drives a smaller
capacitance, it can be made smaller for the same speed, so more bit cells can be packed in the

same area.

Despite these advantages, a PRAM chip will never have the density of traditional RAM
chips, but they are intended for specialized high-performance applications, rather than for
optimal storage density.

The latency of access for pipelined RAM chips is longer than for non-pipelined RAM

chips because of the latch overhead. At the inputs and outputs of the RAM chip, the pipeline



latches implement necessary logical functions, so their contribution to the access latency is
small. For propagation to and from the regions of bit cells, the latches increase the propaga-
tion delay by inserting gates in the propagation path; however, they also decrease the propa-
gation delay by allowing the gates to drive lines with reduced impedances, as discussed above.
The net eflect is technology and process dependent, but each latch can be assumed to increase
the propagation delay by at most two gate delays. Assuming that a non-pipelined RAM of
the same size would have an access latency of 16 gate delays, a pipelined RAM with four
regions and four pipeline stages would have an additional latency of eight gate delays, a 50%

increase.

The efiect of this increase in access latency is negligible for the intended applications;

pipelined RAMs are used when access bandwidth is more important than access latency.

5.3.4. PRAM Applications

Pipelined random-access-memory is well suited to any application that traditionally
makes use of interleaved random-access-memory and that does not require the shortest possi-
ble access latency. The property of access bandwidth that is independent of access pattern
makes PRAM suitable for some applications with access patterns that cannot take advantage

of interleaving.

An obvious application for PRAM is in the main memory system of a supercomputer,
where storage density is traditionally sacrificed in favor of access bandwidth. Interleaving is
still required to support simultaneous access of memory by one or more CPUs. However,
memory banks implemented using PRAM have a busy time of at most one tick, as opposed to
four to 60 ticks for traditional memory banks, so much less interleaving is required for the

same performance.

There are no restrictions on access patterns, so arrays can be allocated and accessed

without regard for performance implications. Also, accessing memory using a list of random
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addresses can be as fast as using sequential access. Thus, the use of PRAM for main memory

implementation should simplify algorithm development and code optimization.

Generalized fast/bulk vector registers can be implemented efficiently using PRAM.
Assuming that small PRAM chips can run at twice the clock rate of the CPU, only a single

bulk PRAM bank is necessary, as shown in figure 5.12.
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Figure 5.12: Fast/Bulk Vector Register with 84 Elements, Implemented Using
Pipelined RAM Chips.

The PRAM chips have an access time of eight half ticks, and an effective busy time of zero
because a read and a write access can be started each half tick. No additional latches for the

PRAM bank are necessary because the PRAM chips are pipelined internally.

If the PRAM chips must be clocked at the same rate as the rest of the CPU, then two
banks of them are pecessary, with one additional address latch to bold simultaneously-arriving

addresses. However, no other additional latches are required because of the internal pipelining
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of PRAM chips.

If the PRAMs are implemented as 64 X 4-bit chips, and assuming medium scale integra-
tion (MSI) logic chips, the geperalized fast/bulk vector register in figure 5.12 uses as many
chips as the traditional vector register in figure 5.3; the extra muitiplexers and latches
required by the fast/bulk vector registers use as many chips as the extra sets of fast RAMs in
the traditional vector register. However, the fast/bulk vector register has twice the access
bandwidth of the traditional vector register. Furthermore, if the lengths of the vector regis-
ters are increased, the chip count for the traditional vector register grows four times as fast as
the chip count for the fast/bulk vector register; if the lengths of the vector registers are
increased to 1024 elements, the fast/bulk vector register implemented using PRAM chips has
one fourth the number of chips of the traditional vector register. Thus, fast/bulk vector
registers implemented using PRAM chips can have twice the access bandwidth and can

require one fourth the hardware required by traditional vector registers.

More general access patterns than sequential can be supported by fast/bulk vector regis-
ters if they are implemented using PRAM. For example, random-access reading and writing
at full bandwidth is possible. This would allow loading and storing vector elements using
out-of-order memory accesses, which might be required because of memory bank conflicts. Of
course, more generalized vector access would require more complex address generation and

checking circuitry.



CHAPTER 6

Analyses of Some Existing Supercomputers

8.1. Cray-1

8.1.1. Description

The Cray-121:54.72:80 is 3 supercomputer in which all functions are pipelined with up to
eight levels of logic and with a clock period of 12.5 nanoseconds. An instruction can be issued
every clock tick. There are twelve independent functional units which perform shifts, logical
operations, integer add, floating-point add, floating-point multiply, floating-point reciprocal
approximation, population count, address add, and address multiply. Three of the functional
units are dedicated to vector operations, three are shared between vector and scalar opera-
tions, four are dedicated to scalar operations, and two are dedicated to address operations.

The machine has 64-bit data words and 24-bit addresses.

Vectors of up to 64 elements are supported in hardware, with eight vector-registers (V
registers) of 64 elements each that can be accessed by vector instructions. During a vector
read, one element is read from the V register every clock tick, for up to 64 ticks. During a
vector write, one element is written to the V register each clock tick. Normally, only a single
element can be read from or written to a vector register each tick, although in very restricted
circumstances one element can be read from a V register and one element can be written to
the same V register each tick. The eight V registers are independent, so during any clock tick

a total of up to eight elements can be read from or written to the eight vector registers.

The results of vector instruction a cannot normally be used until all of its operations

complete. However, if a vector instruction b follows a by no more than the chain slot time for
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a, then b can use the results as they are written to the destination V register. This chairing

allows b to start before all operations of ¢ finish. No instruction can chain to a vector store.

There are eight scalar registers (S registers) of which any two can be read and any one
can be written each clock tick. These scalar registers are supplemented with 64 intermediate
storage registers (T registers). One word can be transferred between an S register and a T

register each clock tick.

There are also eight address registers (A registers) of which any two can be read and
any one can be written each clock tick. The address registers are supplemented with 64 inter-
mediate storage registers (B registers). One word can be transferred between an A register and

a B register each clock tick.

With a full configuration of memory, four million words are organized in 16 interleaved
banks. Each bank has a four-tick busy time and an 11-tick load time. There is only one port
connecting memory with the central processing unit (CPU) and input/output (I/O); that is,

during any clock tick only one word can be transferred between memory and CPU or I/O.

8.1.2. Analysis

If the reported gate delay of .75 nanoseconds® is, in fact, the maximum gate delay {n,,,
then the clock has a period of 16.7 gate delays; with eight levels of logic per pipeline stage,
the clock period is 1.3 times the minimum predicted by the results presented in Chapter 4, so
extra physical signal-propagation delays (beyond those necessary for correct pipeline opera-
tion) must add 30% to the clock period. This is consistent with the claim that physical
signal-propagation delays account for half the total circuit delays.* Better packaging alone

would, thus, appear to offer as much as a 30% improvement in performance.

The Cray-1 has a peak start-limit of eight. That is, it is possible for eight operations,

each producing one result, to start execution each clock tick so that eight results can be pro-
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duced each clock tick. This can be achieved by overlapping the execution of 2 vector load, six
vector instructions using all six of the vector functional units, and a scalar instruction. For
example, the code sequence shown in figure 6.1 produces nonsense results, but it serves to

illustrate how overlapped vector instructions can start several operations each clock tick.

V0 A0, Al ; load

V1 S1 =F VO : floating-point multiply

V2 S2 +F V1 : floating-point add

V3 [HV2 - floating-point reciprocal approximation
V4 S3 + V3 ; integer add

V5 S4 & V4 : logical AND

V6 V5 < A2 ; left shift

S5 S5 + S4 ; scalar integer add

Figure 8.1: Code Sequence Producing a Start-Limit of Eight.
In the first instruction vector register VO is loaded with 64 elements from memory locations at
(AO) + ((Al) * i), where ¢ ranges from 0 to 63. Address register AO is the base address, and
address register Al is the vector stride or interval between successive vector elements in
memory. In the second instruction, every element of VO is multiplied by the contents of
scalar register S1, and the results are written to vector register V1. In the third instruction,
the contents of S2 is added to every element of V1, and the sums are written to V2. In the
fourth instruction, V3 is written with the half-precision reciprocals of the elements of V2. In
the fifth instruction, V4 is written with the integer sums of the elements of V3 and S3. In the
sixth instruction, V5 is written with the logical AND of V4 and S4. In the seventh instruc-
tion, V6 is written with the elements of VS, shifted left by the amount specified by address
register A2. In the eighth instruction, S5 is written with the integer sum of S5 and S4.

Operation timing is shown in figure 6.2.

The vector load instruction begins at tick 0, and a new load operation starts each clock
tick (through tick 63). The first load operation finishes at tick 9, and its result is written to
element zero of VO; this result is chained to the floating-point multiply instruction, which then

begins execution. At this point, two operations are starting each tick: a load and a multiply.
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The first product is chained to the floating-point add instruction at tick 18, which then begins
execution. At this point, three operations start each tick: a load, a multiply, and an add.
The sequence of chaining continues until the vector shift begins at tick 50. At this point,
memory and all vector and floating-point functional units are busy, each starting a new opera-
tion every clock tick. for a total of seven operations starting each tick. A scalar integer add
is started at tick 51, increasing the total of operations starting each tick to eight. Other
scalar or address instructions could start in subsequent clock ticks, keeping the number of
starts at the limit of eight through tick 63, when the last load of the first vector load instruc-

tion starts.

Clock Tick
0 9 18 296 - 42 - 46 -+ S50 51 - 63
L, — — — — —_ - = —
*F, — — — — —_ - —
+F, — — —_ —_ = —
H, = — e = e o— = =
+, — - = —

+e

Figure 6.2: Operation Timing for Code Sequence Producing a Start-Limit of
Eight.

The total start-limit is much smaller, in practice, because each parallel vector operation
requires a separate functional unit, and the Cray-1 has only one of each type. Most real pro-
grams do not contain the diversity of operations found in the nonsense example of figure 6.1.
The operation types found in each of the vectorizable Livermore Kernels are shown in table
6.1. Although they are vector operations, stores cannot be chained to, nor can they run over-
lapped with loads, so they do not contribute to the start-limit (kernels 3 and 4 each have only
one scalar store, which could not significantly contribute to the total start-limit, even if stores
could overlap with loads). The execution of the subtracts and adds in kernel 8 cannot overlap

because they use the same functional unit.
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Table 6.1: Operation Types and Actual Start-Limits for Vectorizable Livermore

Kernels Executing on the Cray-1.

i Kernel Operations Actual Start-Limit

load, *, +, (store)
load, =, +, (store)
load, *, +

load, =, +

load, *, +, (store)
load, *, +, -, (store)
load, *, +. (store)
load, -, (store)

load, -, (store)

OO © 00 ~1 Wb WD =
TS tD OO W WL WW

[y

For scalar execution, the start-limit is at most one, because only one scalar operation
can be started each tick, and some operations are delayed because of scalar result bus
conflicts. For example, if a scalar shift instruction (which executes in two ticks) immediately
follows a scalar integer add instruction (which executes in three ticks), they would finish at
the same time; however, as only one scalar result can be written each tick, the shift instruc-
tion would stall for one or more ticks before issuing. A stalling instruction also prevents later
instructions from issuing on the Cray-1. Result bus conflicts are not a serious problem, how-
ever, because they usually can be predicted at compile time, and instructions can be reordered

to improve performance.

The Cray-1 would achieve higher start-limits and faster execution for the vectorizable
kernels if it had replicated functional units or functional units that could perform more than
one type of operation. For example, if the reciprocal-approximation functional unit could also
perform multiplies, and if the integer add unit could also perform floating-point adds, then
configuring the functional units such that there were two multipliers and two adders would
double the maximum execution rate and nearly halve the execution time of the vectorizable
kernels. However, the circuitry required to switch between functions would increase the
latency of the functional units, and this would reduce performance for serial applications.

Although more expensive than multifunctional units, replicated functional units offer increased
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performance for parallel applications without significant degradation of serial applications, as

discussed in Chapter 4.

The Cray-1 has 584 registers available for storing full-size temporary results, of which
the 512 vector register elements and the eight scalar registers are readily available for use in
computations. The T registers serve as a buffer between memory and the registers, but they
cannot be accessed directly for operations; rather, they must be explicitly transferred to or
from a scalar register using a separate instruction. The choice of 520 readily available regis-
ters corresponds well with the register usage analysis of Chapter 3, where all of the kernels
run as fast with 256 registers as they do with an unlimited number of registers. However,
kernel 14 needs as many as 128 registers to run within 10% of its unlimited-register speed,
but it cannot be vectorized with current compiler technology. The problem with the Cray-1
is that scalar access of vector registers is very inefficient, so either the Cray-1 needs more

general-purpose registers or more general access to vector registers.

The ratios of memory operations to all operations for Livermore Kernels 1—14, listed in
table 5.2, range from 20% to 69% with an overall average of 53%. The memory bandwidth of
the Cray-1 is one half of the combined bandwidths of the floating-point multiplier and adder,
so memory can only keep up during the computationally-intensive kernels 1, 7, 8, and 9.
Twice the Cray-1's memory bandwidth is necessary for memory to keep up with arithmetic in
kernels 2, 3, 4, 10, 12, and 14, and four times the bandwidth is necessary for kernel 13. The

memory bandwidth limitation of the Cray-1 is its most serious flaw.

8.1.3. Execution Rates

The simulator described in Chapter 3 has been modified to restrict the number of opera-
tions that can start each tick to the limit imposed by the functional units of the computer.
For example, if there is one pipelined floating-point multiplier that can accept an operation

each clock tick, only one multiply can start each clock tick. The execution rates: for
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Livermore Kernels 1-14 are computed using the times from the simulations and assuming a

clock period of 12.5 nanoseconds. These are summarized in table 6.2.

Table 6.2: Simulated Execution Rates for Livermore Kernels 1-14 Executing on
the Cray-1.

Kernel | Floating Point Ops | Ticks MFLOPS
1 2000 1228 130
2 360 442 65.2
3 2048 2134 78.6
4 768 836 73.5
5 1992 12963 12.3
6 1994 12976 12.3
7 1920 1107 139
8 1440 878 131
9 1700 1231 110

10 900 2002 36.0
11 999 6009 13.3
12 1000 2003 39.9
13 1152 2486 371
14 1800 3794 38.0

These execution rates are higher than the fastest measured execution rates for these ker-
nels, because the simulations ignore overhead operations and additional restrictions on data-
path usage, such as functional unit recovery times or result bus conflicts. Nevertheless, the
timings provide a uniform mechanism for comparing the performance of several different

supercomputers.

6.2. Cray X-MP

8.2.1. Description

The Cray X-MP152230.82 j5 a descendent of the Cray-1 with several important
differences. The clock period has been reduced to 8.5 nanoseconds, and the single CPU of the
Cray-1 has been replaced with four CPUs in the same physical space. Processors can com-
municate via shared memory or through a set of eight shared scalar registers, eight shared

address registers, and 32 one-bit semaphore registers. A test and set instruction operates on
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these semaphore registers, and provides the only hardware support for synchronization.

Memory has been expanded to eight million words, arranged in four sections of 16 banks
of 128 kilowords each. The scalar load time is 14 clock ticks, up from 11 ticks in the Cray-1.

Each CPU has four ports to memory: two for loads, one for stores, and one for I/O transfers.

The functional units are essentially the same as in the Cray-1, except that a second logi-
cal unit is housed in the floating-point multiplier, the use of which can be enabled in software.
This can provide improved performance for programs with many logical operations but few

floating-point multiply operations.

The vector registers can support an independent read operation and an independent
write operation at the same time, which allows chaining to be generalized to work with any

interval between source instruction and destination instruction.

There is no restriction on the number of scalar register results that can be written each
clock tick, and there is no restriction on the number of address register results that can be

written each clock tick. Result bus conflicts have been eliminated.

Vector gather-instructions and scatter-instructions bave been added that allow loading
or storing a vector indirectly through a vector of element addresses stored in a vector register;
there are no restrictions on the addresses of the vector elements. During the execution of a
vector gather-instruction or scatter-instruction, the elements are accessed sequentially, start-

ing with element zero and ending with element VL—1, where VL is the current vector length.

6.2.2. Analysis

The arithmetic-pipeline lengths for the Cray X-MP are the same as for the Cray-1 but
the clock period is 32% shorter. It is possible that the denser packaging, that allows four
CPUs and twice the memory to be packed into the same size space, also reduces interconnec-

tion lengths enough to reduce the clock period by 30%. That is, if the maximum gate delay



133

t max for the Cray X-MP is still .75 nanoseconds, then its pipelines are running at the theoreti-

cal maximum rate predicted by the results of Kunkel and Smith, summarized in Chapter 4.

The start-limit for each CPU of the Cray X-MP is larger than for the Cray-1 because
two loads and a store can start each clock tick, instead of one load or one store, and opera-
tions can chain to stores. Table 6.3 shows actual start-limits for the vectorizable Livermore
Kernels running on a single processor of the Cray X-MP. The start-limits increase from two

or three to four or five.

Table 6.3: Operation Types and Actual Start-Limits for Vectorizable Livermore
Kernels Executing on the Cray X-MP.

Kernel Operations Actual Start-Limit

load, =, +, store
load, *, +, store
load, =, +

load, *, +

load, *, +, store
load, *, +, -, store
load, =, +, store
load, -, store

load, -, store

—
(4]
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The second logical unit allows larger start-limits for computations involving many logi-
cal operations, without increasing the length of either the logical pipeline or the multiply pipe-
line. This is possible because only the inputs to the two functional units are shared—not the

outputs or internal logic.

The limited memory bandwidth of the Cray-1 has been tripled in the Cray X-MP. For
most of the Livermore Kernels the memory bandwidth is high enough to keep up with arith-
metic operations, but for kernel 13 even higher bandwidth is necessary; the major flaw of the

Cray-1 has been almost eliminated.
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8.2.3. Execution Rates

The simulated execution rates for Livermore Kernels 1-14 on the Cray X-MP are sum-

marized in table 6.4.

Table 6.4: Simulated Execution Rates for Livermore Kernels 1-14 Executing on
the Cray X-MP.

Kernel | Floating Point Ops | Ticks MFLOPS | Cray-1 MFLOPS
1 2000 1229 191 130
2 360 231 183 65.2
3 2048 1113 216 78.6
4 768 455 199 73.5
) 1992 12965 18.1 12.3
6 1994 12978 18.1 12.3
7 1920 1109 204 139
8 1440 865 196 131
9 1700 1080 185 110
10 900 1016 104 36.0
11 999 6011 19.6 13.3
12 1000 1022 115 399
13 1152 2878 47.1 37.1
14 1800 4249 49.8 380

The execution rates for many of the kernels are 509 faster than for the Cray-1 because
of the 509 increase in the clock rate. However, kernels 2, 3, 4, 10, and 12 run almost three
times faster on the Cray X-MP because of the additional memory bandwidth of the Cray X-
MP. Kernels 13 and 14 run only 30% faster on the Cray X-MP because the memory latency

of the Cray X-MP is only slightly less than that of the Cray-1.

The overall throughput of the four-processor Cray X-MP running independent computa-
tions is four times that listed above, because the memory system has enough bandwidth to

support simultaneous accesses by all four processors.

6.3. Cray-2



135

8.3.1. Description

The Cray-223 is another descendent of the Cray-1, but there are many important
differences. Four background processors and a single foreground processor are immersed in
liquid fluorocarbon in an enclosure much smaller than that of the Cray-1 or Cray X-MP. The
background processors execute programs and the foreground processor controls the system;
only the background processors is discussed, and the following description applies to any one

of the four background processors.

All functions are pipelined with a clock period of 4.1 nanoseconds in the Cray-2, but
pipelines have more stages than the Cray-1 or the Cray X-MP have. Instruction issue takes
two ticks, rather than one, so the scalar processing speed is not significantly faster than that

of the Cray X-MP.

The Cray-2 has fewer functional units than does the Cray-1. Address add, address mul-
tiply, scalar shift, scalar logical, vector logical, and vector floating-point add perform essen-
tially the same functions as the corresponding functional unit of the Cray-1. However, the
scalar integer unit performs scalar integer add and subtract and scalar population count, and
the vector integer unit performs vector integer add, subtract, vector population count, and
vector shift operations. The floating-point multiply unit performs floating-point multiplies,
reciprocal approximations, and reciprocal-square-root approximations. Timing information is
scarce, but it appears that pipelines in the Cray-2 have twice as many stages as they do in the

Cray-1 or the Cray X-MP.

The eight vector registers, each with 64 elements of 64-bit words, support no chaining at
all. There are eight scalar registers and eight 32-bit address registers, but no B or T registers.
These have been replaced by 16 kilowords of local memory, which has a four-tick access time.
Vector transfers between local memory and vector registers can only have a stride of one;

that is, successive elements accessed must be adjacent in local memory. In contrast, vector
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transfers between main memory and vector registers can have any constant or variable stride

on either the Cray X-MP or the Cray-2.

The Cray-2 has 256 million words of main memory shared among the five processors,
organized in 128 interleaved banks. Memory has a 57-tick busy time and a 59-tick scalar load

time. Each processor has only one port to main memory.

Vector gather-instrucitons and scatter-instructions similar to those in the Cray X-MP
are also present in the Cray-2 architecture. All elements must be transferred between a vec-
tor register and memory in strict sequential order; in order to prevent some address sequences
from overloading the memory bandwidth, gather-instructions and scatter-instructions operate

at one fourth the normal rate, transferring just four elements every 16 ticks.

Synchronization among processors is supported by eight shared semaphore-bits.

8.3.2. Analysis

The Cray-2 has a peak start-limit of six, which can be achieved by keeping the memory
port and the four vector functional units busy and then starting a scalar instruction. However,
the lack of chaining makes it all but impossible to keep the four functional units busy comput-
ing useful results without running out of vector registers. Even if each arithmetic operation
reads only one vector register and writes to another one, this only allows four vector opera-
tions to be in progress at a time, because vector registers cannot be shared by instructions
unless chaining is supported. In the absence of chaining, eight vector registers are too few.
The scalar start-limit for the Cray-2 is one half because scalar operations can only be issued

every other clock tick.

The local memory is useful for temporary storage of vector results because it has a
much faster access time than main memory, and instructions for transfers between vector

registers and local memory are shorter than instructions for transfers between vector registers
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and main memory. However, local memory cannot be used directly in vector operations, and,
without chaining each transfer to and from local memory, it incurs a substantial time penalty.
Local memory has a longer access time than the B and T registers of the Cray-1 and the Cray

X-MP, but it does allow computed addresses to be used; B and T addresses are fixed in their

instructions.

The memory latency of the Cray-2 is extremely long, leading to slow execution of
memory-intensive applications like Livermore Kernels 13 and 14. The memory bandwidth
with one processor accessing it is at least as poor as it is for the Cray-1 because each proces-
sor has only one memory port. In addition, the 57-tick busy time of each of the 128 main
memory banks limits memory accesses to at most 2.25 accesses per clock tick, and a single
processor could exceed the bandwidth of main memory with a vector load or store instruction
with a stride of four. Even if they all accessed memory with only unit stride, just three pro-
cessors could exceed the bandwidth of main memory. The main memory latency and

bandwidth of the Cray-2 are entirely inadequate for the processors.

8.3.3. Execution Rates

The simulated execution rates of the Livermore Kernels running on the Cray-2 are listed
in table 6.5. Parallel kernels 1, 7, 8, and 9 run almost twice as fast on the Cray-2 as they do
on the Cray X-MP because of the clock rate of the Cray-2 is twice as fast. Serial kernels 5, 6,
and 11 run slower because the functional unit pipelines of the Cray-2 are lc;nger than those of
the Cray X-MP, so their overhead is larger. Serial kernels 13 and 14 run slower because the
memory latency of the Cray-2 is twice that of the Cray X-MP. The other kernels run approx-
imately the same speed on the two machines, because the lack of adequate memory
bandwidth on the Cray-2 nullifies the speedup due to higher computational bandwidth. These
simulations do not make use of the Cray-2's local memory for storing arrays. If the arrays of

kernels 13 and 14 could fit in local memory, performance on these kernels would increase to
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87.3 MFLOPS and 119 MFLOPS, respectively, due to the reduced access latency of local

memory.

Table 6.5: Simulated Execution Rates for Livermore Kernels 1-14 Executing on
the Cray-2.

Kernel | Floating Point Ops | Ticks | MFLOPS X-MP MFLOPS
1 2000 1299 367 191
2 360 497 172 183
3 2048 2325 210 216
4 768 991 185 199
5 1992 35919 13.2 18.1
6 1994 35955 13.2 18.1
7 1920 . 1178 388 204
8 1440 946 362 196
9 1700 1299 312 185

10 900 2002 107 104
11 999 18045 13.2 19.6
12 1000 2003 119 115
13 1152 10346 26.5 47.1
14 1800 14726 29.1 49.8

The Cray-2 has insufficient memory bandwidth even for one processor, so system
throughput with all four background processors is considerably less than four times the
throughput with one processor, at least for workloads with a moderate number of memory
accesses. However, for programs with small working sets, the local memories of the proces-

sors can be used to reduce the main memory bandwidth requirements to some degree.

6.4. NEC SX-2

6.4.1. Description

The NEC SX-240,49,60,104,108,111 j5 3 sypercomputer with a six nanosecond clock, 3.3 volt
current-mode logic, and a gate delay of .25 nanoseconds. One instruction can be issued every
clock tick. There are 20 pipelined functional units; the vector execution unit has four parallel
multiply /divide functional units, four parallel add/subtract functional units, four parallel logi-

cal functional units, and four parallel shift functional units. All the parallel functional units of
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a given type are used together. The scalar unit has a multiply /divide functional unit, an
add/subtract functional unit, a logical functional unit, and a shift functional unit. Each func-
tional unit can accept a new operation each clock tick, except for divides, where a new opera-
tion is accepted every second clock tick. Pipeline lengths are not published, but based upon
analyses of published performance data for the Livermore Kernels, it appears that the multi-
ply pipelines and add pipelines have no more than 11 stages each. The machine has 64-bit
data words and 32-bit addresses, and supports 32-bit, 64-bit, and 128-bit floating-point for-

mats.

There are 40 vector registers of 256 elements each, implemented using 3.5 nanosecond
056% 4 RAM chips. The set of vector registers appears to support an access bandwidth of at
least 16 vector element reads and 16 vector element writes each clock tick. Vector operations

can be chained together. There are 128 scalar registers in the scalar execution unit.

The machine has a main memory of 32 million words, interleaved in 512 banks. Main
memory has a busy time of at least seven clock ticks, and an access time of at least seven
clock ticks. Vector loads access eight elements each clock tick, and vector stores access four
elements each clock tick. All four or eight elements must be from the same vector instruction,

and vector loads and stores cannot execute at the same time.

Scalar memory accesses are through a 64 kilobyte cache implemented using 3.5

nanosecond 256 X 4 RAM chips, but with otherwise unspecified parameters:

6.4.2. Analysis

With the reported gate delay of .25 nanoseconds and a clock period of six nanoseconds,
the clock period is extremely long, allowing as many as 23 levels of logic in each pipeline
stage. If the parallel pipelines were implemented with this many levels of logic, performance
would be optimized for relatively short vectors. However, judging from the large physical size

of the arithmetic processor (2.8 cubic meters for just the processor versus less than 1.4 cubic
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meters for five processors, memory, and power supplies for the Cray-2), a large fraction of the
pipeline delay is due to physical signal-propagation time, and scalar execution speed suffers as
a result. Shorter physical paths between modules could allow a faster clock, which would pro-

duce equal vector performance at a lower cost than the replicated functional units.

The NEC SX-2 has a peak start-limit of 25. This can be achieved by starting a vector
load, four vector arithmetic operations, and a scalar operation. Start-limits of 12 or 16 could

be achieved for the vectorizable Livermore Kernels, as shown in table 6.6.

Table 6.8: Operation Types and Actual Start-Limits for Vectorizable Llvermore
Kernels Executing on the NEC SX-2.

Kernel Operations Actual Start-Limit
1 load, *, +, (store) 16
2 load, *, +, (store) 16
3 load, =, + 16
4 load, *, + 16
7 load, *, +, (store) 16
8 load, =, +, -, (store) 16
9 load, *, +, (store) 16
10 load, -, (store) 12
12 load, -, (store) 12

Load operations can start eight at a time, and multiply and add operations can each start
four at a time. The NEC SX-2 would achieve higher start-limits with these vectorizable ker-
nels if vector loads and stores could execute at the same time. Also, supporting two different
vector loads at the same time, as well as stores, would allow memory-to-memory vector

operations to run without interruptions.

The NEC SX-2 has 10240 vector register elements, which is more than adequate for the
applications analyzed in Chapter 3. A higher access bandwidth supporting a faster system

clock would be possible using the fast/bulk vector registers described in Chapter 5.

The 128 scalar registers are adequate for most serial applications. The access time for
128 registers is necessarily long, but with such a slow clock speed (in terms of gate delays),

they probably can be accessed within one (long) clock tick. Also, the instruction format has
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32 bits to accommodate 7-bit register addresses, which requires twice the instruction stream

bandwidth of the Cray X-MP.

Overall, the NEC SX-2 appears to be an extremely fast supercomputer, at least for
parallel applications, but that speed is achieved using brute force, rather than through archi-
tectural innovation. With better organization and packaging, a computer with a faster clock

and equal or better performance could be implemented using a fraction of the hardware.

8.4.3. Execution Rates

Simulated execution rates for the Livermore Kernels are shown in table 6.7. The enor-
mous execution rates of the NEC SX-2 for parallel kernels are due to its parallel functional
units that allow starting up to 16 operations each tick and to its fast clock rate (relative to
the other computers). Performance for the serial applications is roughly the same as on the
Cray X-MP, because both memory latency and pipeline lengths are assumed to be approxi-
mately the same.

In terms of overall system bandwidth, the four-processor Cray X-MP and the NEC §X-2
are much closer in performance; the Cray X-MP has more bandwidth for serial and
moderately parallel workloads, while the NEC SX-2 has more bandwidth for very parallel

workloads.



Table 8.7: Simulated Execution Rates for Livermore Kernels 1-14 Executing on
the NEC SX-2.

Kernel | Floating Point Ops | Ticks | MFLOPS X-MP MFLOPS
1 2000 344 969 191
2 360 106 566 183
3 2048 410 833 216
4 768 217 590 199
5 1992 21935 15.1 18.1
6 1994 21957 15.1 18.1
7 1920 314 1019 204
8 1440 244 984 196
9 1700 304 932 185
10 900 272 552 104
. 11 999 11012 15.1 19.6
12 1000 283 589 115
13 1152 4318 44.5 47.1
14 1800 6678 449 49.8

8.5. HEP-1

8.5.1. Description

Although not fast enough to be considered a supercomputer, the HEP-128 has several
interesting characteristics that warrant consideration. It is designed to support multiple
instruction streams using a single processor, reminiscent of the Peripheral Processing Units of
the Control Data 6600.99:100 Most of the functional units are pipelined with eight stages, so
the basic execution time is eight 100 nanosecond clock ticks. Each clock tick an instruction
from one of a set of parallel instruction streams is selected for execution. With eight or more
instruction streams, an instruction can be selected and issued every clock tick, regardless of

the instruction dependencies within each instruction stream.

Functional units include a floating-point add functional unit, a multiply functional unit,
an integer functional unit, a divide functional unit, a scheduler functional umit, a bardware
access functional unit, a process creation functional unit, and a system performance instru-
ment. The floating-point add functional unit performs floating-point adds and subtracts and

normalization. The multiply functional unit performs floating-point and integer multiplies.
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The integer functional unit performs integer adds and subtracts, format conversion opera-
tions, logical operations, shifts, and compare operations. All these functional units have eight
pipeline stages and can accept new operations each clock tick. The divide functional unit is
pot pipelined and executes in 17 clock ticks. It performs floating-point and integer divide
operations. Up to eight divider functional units may be installed in a processor. The
scheduler functional unit performs memory loads and stores. When the load time exceeds
eight clock ticks, the scheduler functional unit notifies the destination instruction stream when
the datum arrives. The hardware access functional unit is used to access 1/O devices. The
process creation functional unit provides a low-overhead mechanism for creating new instruc-
tion streams. The system performance instrument is used to keep track of process informa-

tion for accounting purposes, but it can be used to measure performance as well,

There are 2048. registers that support two operand reads, one result write, and an extra
read or write each clock tick. In addition, 4096 constant registers are available for read-only

access by user processes.

Each re‘gister and data memory location has a three-state synchronization control
mechanism, where the location can be marked empty, reserved, or full. This allows different
instruction streams to communicate with very low overhead. The hardware simply requeues
those instructions that unsuccessfully attempt to access a register or memory location, so that

they automatically busy-wait.

8.5.2. Analysis

The HEP-1's most serious shortcoming is its clock period of 100 nanoseconds, which is
surprising because ECL gates are used for its implementation. The primary reason for the
long clock period is that four register accesses are made to 25 nanosecond RAM chips each
clock tick. The clock period could be reduced by using pipelined RAM chips for the register

implementation. Instruction issuing is pipelined on the HEP-1 so the register addresses are
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known in advance. Thus, although register access bandwidth must be high, access latency can
be relatively long. These characteristics are exactly what the pipelined RAM chips described

in Chapter 5 provide.

Since most of the functional units have exactly eight pipeline stages, the instructions
that use them can never cause result bus conflicts because, at most, one instruction is issued
each clock tick. The divide functiopal unit and memory can cause result bus conflicts because
they do not complete after exactly eight clock ticks. These operations are allocated a
separate 25 nanosecond phase of every clock period on the chance that they may need to
write a result. If a divide and a memory operation attempt to write results at the same time,

one operation stalls.

Better use of the register set’s bandwidth would be achieved by inhibiting the system
clock every time a divide result or memory load operation writes to the register set and a
write cycle is unavailable. This could allow the clock period to be reduced by 25%, and extra
clock cycles, due to clock inhibition, would be inserted only when the extra register bandwidth
is actl'lally peeded. If the clock is implemented with three phases, only one phase of one third

the clock period would need to be inserted for extra writes.

8.5.3. Execution Rates

Simulated execution rates for the Livermore Kernels running on the HEP-1 are shown in
table 6.8. The execution rates for all the kernels are a fraction of the rates for~ the Cray-1,
because the clock rate is one eighth that of the Cray-1 and because the start-limit is one.
Note that for many kernels, the HEP-1 executes in roughly as many ticks as the Cray-1 does;

if the HEP-1 could be made to run with as fast a clock, it would be competitive.
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Table 6.8: Simulated Execution Rates for Livermore Kernels 1-14 Executing on
the HEP-1.

Kernel | Floating Point Ops | Ticks MFLOPS || X-MP MFLOPS
1 2000 1625 12.3 191
2 360 454 7.9 183
3 2048 2162 9.5 216
4 768 858 9.0 199
5 1992 15956 1.2 18.1
6 1994 15972 1.2 18.1
7 1920 1229 15.6 204
8 1440 1231 117 196
9 1700 1633 10.4 185

10 900 2002 4.5 104
11 999 8012 1.2 19.6
12 1000 2003 5.0 115
13 1152 3458 3.3 47.1
14 1800 3951 4.6 49.8

The system throughput of the HEP-1 is not significantly higher than the throughput for
one instruction stream, because the parallelism present in all but kernels 5, 6, and 11 allows
the HEP-1 to start some operation every clock tick; most kernels use the entire operation

start bandwidth of the machine.
8.86. ETA-10

8.8.1. Description

The ETA-10333484 is implemented using Advanced Large Scale Integration CMOS that
is chilled in liquid nitrogen, and has a clock period of seven nanoseconds. The system can be
configured with 64 to 256 megawords of shared memory, two to 18 input}output units, a one
megaword communication buffer for transfers from I/O ports and CPUs, and two to eight
CPUs. Data can be manipulated as bits, 8-bit bytes, 32-bit words, and 64-bit words. Data
types include floating-point, fixed point, character, and decimal. Memory is accessed using

virtual addresses.

Each CPU has a private memory, 256 registers, a scalar execution unit, an¢ a vector

execution unit. Private memory is four megawords in size, implemented as 16 banks of 32-bit
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words. Each memory bank has an access time of 14 ticks and a busy time of seven ticks.
The 256 registers are implemented as two 256-element register files, and two words can be
read and one can be written each clock tick. Shortstop circuitry in the scalar datapath, simi-
lar to the data forwarding in the IBM System/360 Model 91,108 allows results to be routed
directly from the output of a functional unit to the input of another functional unit, reducing
the temporary storage latency by four clock ticks. The scalar unit has six data-manipulation
functional units: an integer/logical unit, a floating-point adder, a floating-point multiplier, a
divide/square root functional unit, a front-end functional unit for multiplies and divides, and a
binary /BCD converter. Scalar functional unit times appear to be very short, perhaps only

three clock ticks. An instruction can be issued every clock tick.

The vector unit has two pipes, each of which contain an adder, a shifter, a logical unit, a
divider, and a multiplier. In addition, one pipe has extra hardware to support operations like
the sum of all elements, the product of all elements, the maximum of all elements, and the
inner product of two vectors. Each pipe can be involved in one complex memory-to-memory
transformation to a set of vectors at a time. For example, a pipe can read two vectors, multi-
ply one by a scalar and subtract it from another, and then write the result back to memory.
These complex transformations are implemented using several instructions, and data are
“shortstopped’” between functional units (the instructions are chained together, to use Cray's
terminology). The use of “shortstopping™ essentially inserts a delay line between functional
units, as suggested in section 3.3. Vectors can be any length between one and 65536 ele-
ments. The vector processing times are quite long, due to the extensive setup, alignment, and
routing among functional units that is performed. Consequently, vector processing is only

efficient for long vectors.

Instructions are either 16, 32, or 64 bits in length, and most vector-instruction require 64

bits. Complex instructions, like the inner product of two vectors, are supported by the
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hardware. Ip addition, the architecture has a number of data flag branch instructions that
allow the program to branch to a section of code when an exceptional condition occurs,
without the overhead of explicitly testing the condition. These instructions can begin execu-
tion a variable number of ticks after the event occurs, so they behave like the imprecise inter-
rupts of the IBM System/360 Model 91.3 A vector control stream behaves like the vector
mask register on the Cray architectures, except that, besides inhibiting the write of a
masked-out result, it also prevents any flags from being set by that result’s possible excep-

tional result.

8.6.2. Analysis

The ETA-10 represents a substantially different approach to supercomputing, than any
of the other machines described, with its complex instruction set and combination of
memory-to-memory vector instructions and register-to-register scalar instructions. Neverthe-

less, the analyses of this dissertation can still be applied.

The ETA-10 vector unit has a peak start-limit of ten, which can be achieved by starting
two loads, one store, and two arithmetic operations in each of the two pipes. The scalar unit
has a peak start-limit of one, because one instruction (specifying one operation) can be started
each clock tick. Actual start-limits of eight or ten can be achieved for the vectorizable Liver-
more Kernels, as shown in table 6.9. The ETA-10 allows four load operations to be started
each tick, as well as two store operations each tick. Each pipe can have ui: to two arithmetic
operations starting each tick, so, for many of the Livermore Kernels, the peak start-limit can
be achieved. With 256 scalar registers, the ETA-10 has enough temporary storage for most

serial applications.
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Table 6.9: Operation Types and Actual Start-Limits for Vectorizable Livermore
Kernels Executing on the ETA-10.

Kernel

Operations

Actual Start-Limit

1

W

D O © 00 =3

et

load, *, +, store
load, *, +, store
load, *, +
load, *, +
load, *, +, store

load, *, +, -, store
load, *, +, store

load, -, store
load, -, store

10
10
8
8
10
10
10
8
8

8.6.3. Execution Rates

The simulated execution rates for Livermore Kernels 1-14 on the ETA-10 are summar-

ized in table 6.10.

Table 8.10: Simulated Execution Rates for Livermore Kernels 1-14 Executing on

the ETA-10.

Kernel | F.P. ops | Ticks | MFLOPS X-MP MFLOPS

1 2000 700 408 191

2 360 220 234 183

3 2048 812 360 216

4 768 432 254 199

5 1992 5993 47.5 18.1

6 1994 5999 47.5. 18.1

7 1920 640 429 204

8 1440 501 411 196

9 1700 621 391 185
10 900 560 230 104

1 999 3014 47 .4 19.6
12 1000 580 246 115
13 1152 2485 66.2 47.1
14 1800 3341 77.0 49.8

The execution rates for vectorized loops is roughly half that of the NEC SX-2, because the

ETA-10 has approximately the same speed clock but half the peak and actual start-limits.

For scalar loops the speed is 509 to three times faster than the NEC SX-2, because of the

shorter scalar execution pipelines.
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The overall throughput of the eight-processor ETA-10 is over three gigaflops (GFLOPS)

for the vectorized kernels. This is possible because each CPU has its own private high

bandwidth memory that receives no interference from other CPUs.



CHAPTER 7

Architectural Integration

As ap example of how close/distant register accessing, fast/bulk vector registers, and
pipelined RAM (PRAM) chips can be integrated into a supercomputer architecture, the Cray-
2 architecture is modified to incorporate 32 integrated vector/scalar registers with 4096 ele-
ments each. Data registers are organized in a close/distant hierarchy, so that some of them
can be accessed in one clock tick while the rest can be read in two clock ticks and written in

one clock tick.

The Cray-2, with its fast clock and long pipelines, is oriented towards fast vector execu-
tion, rather than towards fast scalar execution. The architectural modifications are intended
to further increase the machine's vector performance, while neglecting scalar performance. In
addition to the integrated vector/scalar registers, the add functional unit and the multiply
functional unit are replicated so that two adds and two multiplies can be started each clock
tick. Smaller, faster memory is used to support the bandwidth requirements of the four pro-

Cessors.

7.1. Cray-2 Architecture

The Cray-223 has four background processors and one foreground processor. These, plus
a large memory, are immersed in liquid fluorocarbon in a small enclosure. Synchronization

among processors is supported by 8 shared semaphore bits.

All functions are pipelined with a clock period of 4.1 nanoseconds, and pipelines are
perhaps twice as long as those in the Cray-1 or the Cray X-MP. The functional units include

an address adder, an address multiplier, a scalar shifter, a scalar logical unit, a vector logical

150
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unit, a vector floating point adder, a scalar integer unit, a vector integer unit, and a floating
point multiply /divide unit.

Each of the eight vector registers have 64 elements of 64-bit words, but they support no
chaining at all. There are also eight scalar registers and eight 32-bit address registers. Six-
teen kilowords of local memory with a four-tick access time can be used to store temporary

results.

The Cray-2 has 256 million words of main memory shared among the five processors
and organized in 128 interleaved banks. Memory has a 57-tick b{xsy time and a 59-tick scalar

load time. Each processor has only one port to main memory.

The Cray-2 is a load-store architecture with three-address instructions. Cray-2 instruc-
tions are specified using one, two, three, or five 16-bit parcels. The first parcel is used to
specify the opcode and the operand registers, and any additional parcels are used to specify
16-bit, 32-bit, and 64-bit constant data or addresses. The opcode is generally seven bits long,
although some flag control instructions and some single-operand instructions use the three
least significant bit; as an additional part of the opcode. Figure 7.1 shows the four instruction
formats of the Cray-2, with the field sizes shown above them.

7 3 3 3
[opcode]i ]j !k

7 3 3 3 16
opeete [T 7 18] (1]
7 3 3 3 16 16

[peote 11 [ [¥] [mi] [mz]

7 3 3 3 16 16 16 16
et [T G 15] 1] [m2] [me] [mi]

Figure 7.1: Instruction Formats of the Cray-2.

Each of the i, j, and k fields select one of eight registers of the type determined by the



opcode. In addition, k can specify part of the opcode, as discussed above. The ¢ field usually
specifies the destination of the instruction, and the j and k fields usually specify the source
operands; however, for transfers of S registers or V registers to and from local or common
memory, the i field always specifies the S register or V register and the j and k fields specify
the address registers. For transfers of A registers to and from memory, the i field always
specifies the destination of the transfer, and the k field always specifies the source of the

transfer: a register or a memory address.

The complete instruction set of the Cray-2 is shown in table 7.2 at the end of the

chapter. The entry z in an {, j, or k field indicates that those three bits are don't-cares.

7.2. LARC (Large Asymmetrical-Register Computer) Architecture

The Larc retains most of the architectural features of the Cray-2, except that the scalar
and vector registers are replaced with more integrated registers, the scalar functional units are
replaced with more vector functional units, and the large low-bandwidth memory is replaced

with a smaller memory that can support three ports per processor.

7.2.1. Hardware Description

Each CPU has an address add and an address multiply functional unit, two integer func-
tional units, two floating-point add functional units, and two multiply /reciprocal functional
units. Except for the address add and multiply functional units, there are no functional units
reserved for scalar operations. Each functional unit is the same as in the Cray-2, as described
in Chapter 6. The replicated functional units are independent, and can be used for indepen-
dent instructions at the same time. This is in contrast to the single-instruction parallel-
execution (SIPE) functional units of the NEC §X.2,40,49,106 which must be used together for
the same instruction. The replicated functional units are included because the same opera-

tions are present in several different partitions in many of the parallel Livermore Kernels®
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With replicated functional units, longer chains of vector operations can execute without

interruptions due to busy functional units.

The Larc has 32 integrated full-width scalar/vector registers (F registers) of 4096 ele-
ments plus eight 32-bit scalar address registers (A registers). A vector-length register is asso-
ciated with each F register, in addition to a global vector-length register for each CPU, and
the vector mask register is 4096 bits long to match the maximum vect'or length. The F regis-
ters have enough bandwidth to allow chaining together vector instructions with any interval
between instructions. Access to the first eight F registers and to all A registers can be made

in one clock tick, while read access to the remaining F registers takes two clock ticks.

The longest vector length for the parallel kernels analyzed in Chapter 3 is 1024, and as
many as 25 separate vector registers can be required. Serial kernels can require as many as

16 scalar registers.

These requirements are met by the set of 32 integrated F registers, each with 4096 ele-
ments. When the vector length for an F register is set to one, its first fast register is used as a
scalar register, and when its vector length is greater than one, it behaves as a vector register.
Access to the first element of each vector register is made shorter by using an unbalanced
multiplex‘er with a fast path for new data to the output latch of the vector register. As
described in Chapter 5, the fast registers and PRAM storage allow full chaining of vector

instructions, with no restructions on the chain-slot interval. . .

A pre-read instruction also allows starting vector reads at other than element zero. This
is useful for applications like kernel 7, which operates on seven offset copies of the same vec-
tor. After a pre-read operation, the read counter is set to the pre-read address and is not

reset at the beginning of a vector instruction’s execution, as it normally is.

The vector mask (VM) register is 4096 bits long, corresponding to the maximum vector

length of 4096 elements. It can be written to or read from an F register, using up to the first
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64 elements. Writing a new VM can be overlapped with reading or using an old VM, to allow

vector masks to be used while they are being updated.

With 32 vector registers and with replicated functional units, it is possible that several
vector operations with different vector lengths can be executing at the same time. For this
reason, and because integrated registers are also used as scalar registers, each integrated regis-
ter has a vector length associated with it. In addition, there is a global vector length register

(GVL) for the entire CPU.

When an F register is the destination of a scalar operation (such as copying an A regis-
ter to an F register), the F register's vector length is set to one. If an F register is the desti-
nation of a vector instruction without an F-register source (such as a vector load), its vector
length is set to (GVL). If an F register is the destination of a vector operation with ope F-
register source (such as reciprocal-square-root approximation), the vector length of the desti-
nation F register is set to the source vector length. If an F register is the destination of a vec-
tor operation with two F-register sources (such as adding the elements of two vectors
together), the destination's vector length is set to that of the smaller of the F-register
operands, unless one of the operands has length one, in which case the vector length is set to
that of the larger of the two sources. This special case allows all elements of a vector to be
operated upon by a scalar, supporting vector scaling and other operations. In addition, the
vector length of any F register can be explicitly set to any value between one and 4096. The
VM register has no vector length associated with it; in use, its length is determined by the

length of the shorter mon-scalar F-register operand if there is one or by (GVL) if there is no

F-register operand.

F registers 0-7 and all A registers can be accessed in one clock tick, while F registers
8-31 require two ticks to read. With just eight of each type of register to be accessed in one

clock tick, a short clock cycle is possible, and the analyses in section 3.4.2 indicate that hav-
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ing some registers with two-tick access times does not significantly slow the execution of pro-

grams.

7.2.2. Larc Instruction Formats

The eight A registers are addressed normally with three-bit fields. However, with 16-bit
parcels and a seven-bit opcode, there is not enough room for three five-bit fields to directly
address the 32 F registers. The alternatives are to increase the length of instructions, or to
address some F registers using short addresses and to address the others with longer

addresses.

The NEC SX-2 uses a 32-bit instruction format for its short instructions; this allows its
eight-bit register addresses to be specified directly. This also requires twice the instruction
stream bandwidth, as does a 16-bit instruction format, and an instruction buffer twice the size
for the same performance. Increasing the basic instruction size from 16 bits to 22 bits to
accommodate five-bit register addresses would not require excessive instruction stream
bandwidth, but instructions would not necessarily align on 64-bit-word boundaries, complicat-
ing branches and instruction fetching. A separate instruction memory could have any word

size desired, but this would depart significantly from the original architecture.

It would be possible to use a 16-bit instruction format when only registers 0-8 are
addressed, and to use a 32-bit instruction format if any of the registers specified include the
other 24 registers. However, this treats the registers pon-uniformly and réquires two formats
for each instruction. Another way to address the 32 F registers is to address one F register
explicitly using a five-bit specifier, and specify the remaining register or registers indirectly,
using fewer bits. This method also requires two formats for most instructions, but it allows ali
registers to be addressed using a 16-bit instruction format. This method is chosen for the

Larc architecture.
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The F register destination is explicitly specified using five bits. Each time an instruction
with an F register destination issues, its address is added to a queue of F register addresses.
F-register source specifiers are two bits long and they select which of the last four F registers
written is to be used as the operand. If the desired F register is not one of the last four writ-
ten, a two-parcel instruction must be used. The sequence of F registers written can be deter-
mined at compile time, so the correct specification can be determined then, as well. In addi-
tion, each F-register destination can be determined before the instruction actually issues, so
the queue can be updated enough in advance that instructions can be issued without delays.
Furthermore, results tend to be used soon after they are written, so very often the desired
result is one of the last four written. This indirect addressing mechanism is also used when A

registers are specified in the same instruction as F registers.

The instruction formats of the Larc are shown in figure 7.2.

7 3 3 3
[opcode]i lj[kJ

75 2 2

[opcode [T [ [k |

7 3 3 3 16
[opcode[i]j]kj[ ml ]

7 4 6 5 5

5
[opcode][] w ] [u | J [KJ

3 3 3 16

7 16
pote [T 5 1%]) [ mi_] [=2]

7 3 3 3 16 16 16 16
ot [T 1] [mt ] [m2] (3] [=1]

Figure 7.2: Instruction Formats of the Larc.

The i field has three bits, as in the Cray-2 architecture, but the ; and k fields bave either

three bits or two bits, depending on the instruction format. If the first field is a three-bit ¢
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field, the j and k fields also have three bits, but if the first field is a five-bit I field, the j and
k fields have two bits each. The J and K fields in the two-parcel instruction format have five

bits each. Don't-care fields of four bits are indicated by w, and don't-care fields of six bits are

indicated by u.

The instruction formats of the Larc are slightly more complex than those of the Cray-2;
however, for a given type of register specification, the address specification comes from at
most two places. The instruction format can be determined from the first seven bits of the
opcode, so elaborate decoding hardware is unnecessary for fast instruction issuing. Further-
more, address specification decoding time can be pipelined into the instruction fetch process so
instructions can be issued at a fast rate. Branch latency may be higher with this more com-
plex address specification mechanism, due to a potentially longer instruction issue pipeline,
but branches are relatively infrequent in applications for which vector execution is appropri-

ate.

The complete instruction set of the Larc is shown in table 7.3 at the end of the chapter.
Six-bit, five-bit, four-bit, three-bit, two-bit, and one-bit don't-care fields are indicated by u, v,
w, z, y, and z, respectively. The opcodes saved by eliminating explicit scalar-register instruc-
tions and scalar-vector-register instructions are used to specify one-parcel and two-parcel F-

register instructions.

The pre-read instructions discussed above use opcodes 104 and 105, and the register-
specific vector-length instructions use opcodes 106, 107, 110, and 111. These allow vector
lengths to be set to either constant values or to the contents of an A register. In addition,
vector-element-access instructions have been added, using opcodes 130, 131, 132, and 133.
These allow transfers of particular vector elements to and from the first element of an F regis-

ter.
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Except for these additions, the instruction set of the Larc is functionally identical to
that of the Cray-2. Thus, more registers can be added to an architecture without a significant

impact on the instruction set.

7.3. Discussion

By combining scalar and vector registers into integrated registers, a larger number of
registers of each type are made available. During serial execution up to 32 scalar registers are
available for temporary results, and during parallel execution up to 32 vector registers can be
used. The large number of registers allows computations to execute without running out of
temporary storage, saving time and memory bandwidth that would otherwise be spent saving
and restoring temporary results. They also allow more instructions to execute overlapped.
The long vector register length made possible by their fast/bulk organization allows most vec-
tors to be processed by a single sequence of vector instructions, reducing both instruction

stream bandwidth requirements and pipeline start-up costs.

The unrestricted chaining made possible by the high-bandwidth integrated registers
allows multiple operations on vectors to be overlapped. This, coupled with the replicated
independent functional units and the higher memory bandwidth, allows a high start-limit for

many programs, that results in faster execution.

The higher memory-bandwidth is achieved by using memory banks with shorter busy
times. This requires highe;-power RAM chips, less-dense RAM chips, or PRAM ;hips. In all
these cases, the main memory size is smaller than it would be if the highest-density RAM
chips were used: perhaps one fourth the size. However, a smalier, high-bandwidth memory
system can be supplemented with a large, high-bandwidth backing store. During transfers to
and from the backing store, the memory bandwidth available to the CPUs may be reduced to
that of a larger direct-access memory, but most of the time the full memory bandwidth is

available for computations. This approach aflects programming convenience for applications
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that require random access to data sets larger than the main memory size. However, an
application requiring more than n memory locations is also likely to require more than 4n

memory locations, so the inconvenience of a smaller memory is negligible.

The replicated functional units would require extra hardware that would require more
space and power. Some of this could be recovered from the scalar functional units eliminated
from the CPU; the net effect to increase the amount of hardware by approximately 10%.
Additional space and cooling area could be obtained by stretching out the functional units
radially, as described in Chapter 4. This would allow the entrances and exits of pipelines to
be physically adjacent to the center of the CPUs, while most of their hardware is towards the
periphery where there is more space. The longer pipelines used in the Cray-2 and in the Larc

lend themselves to this radial stretching.

7.4. Execution Rates

Simulated execution rates of the Livermore Kernels executing on the Larc are shown in
Table 7.1. The same simulator that was used in Chapter 6 is used here. Execution rates for
serial kernels 5, 6, and 11 are the same as on the Cray-2, because the same long arithmetic
pipelines are used for both machines. Execution rates for kernels 13 and 14 are almost twice
those of the Cray-2, because main memory with lower Jatency is used in the Larc (execution
rates for kernels 13 and 14 using local memory for array storage would be identical to those
of the Cray-2 using local memory). Execution rates of all other kernels are a factor of 1.5-3
times higher for the Larc than the Cray2, because memory has adequate bandwidth and half
the latency and because there are two multipliers and two adders in the Larc, which increase

its actual start-limit for the parallel applications.
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Table 7.1: Simulated Execution Rates for Livermore Kernels 1-14 Executing on

the Larc.

Kernel | Floating Point Ops | Ticks MFLOPS || Cray-2 MFLOPS | Ratio
1 2000 868 549 367 1.49

2 360 268 320 172 1.86

3 2048 1272 382 210 1.82

4 768 578 316 185 1.70

5 1992 35889 13.2 13.2 1.00

6 1994 35925 13.2 13.2 1.00

7 1920 668 684 388 1.76

8 1440 548 626 362 1.72

9 1700 716 565 312 1.81

10 900 1032 208 107 1.94
11 999 18015 13.2 13.2 1.00
12 1000 1050 269 119 2.26
13 1152 6545 41.9 26.5 1.58
14 1800 10317 41.5 29.1 1.42

The system throughput of a four-processor Larc is four times that of one processor,

because memory bandwidth is adequate to handle all four processor’s simultaneous memory

accesses. The system throughput of the Larc is more than twice that of the NEC SX-2 and

almost equal to that of an eight-processor ETA-10; the Larc exceeds 2.7 GFLOPS for some

applications.



161

Table 7.2: Cray-2 Instruction Set.

Opcode Extension Mnemonic Description

000zxjk err Error exit

001zik exit Normal exit

002izk r, Al Ak Register jump to (Ak) with return address in Ai
003zzz ml m2 j exp Unconditional jump to ml m2

004zzz ml m2 jcs exp Jump to m1 m2 if Semaphore clear, set Semaphore
005zzz m! ml jss exp Jump to m1 m2 if Semaphore set, set Semaphore
006zzz ssm Set Semaphore

007zzz csm Clear Semaphore

010zzk ml1 m2 jz Ak, ezp  Branch if (Ak]) is zero

0llzzk ml m2 jn Ak, ezp  Branch if (Ak) is nonzero

012zzk ml m2 ip Ak, ezp  Branch if (Ak) is positive

013zzk ml m2 jm Ak, ezp  Branch if (Ak) is negative

0l4zjz ml m2 jz Sj, exp Branch if {Sj) is zero

0l5zjz ml1 m2 jn Sj, ezp Branch if (Sj) is nonzero

016zjz ml m2 ip Si, exp Branch if (Sj) is positive

017zjz ml m2 jm Sj, ezp  Branch if (Sj) is negative

020ijk Ai Aj+Ak  Integer sum of (Aj) and (Ak) to Al

021ijk Ai Aj-Ak Integer difference of (Aj) and (Ak) to Ai
022ijk Al AjsAk Integer product of (Aj) and (Ak) to Al
023i}k Al AjsAk Integer product of (Aj) and (Ak) to Al
024ijz Ai Sj Copy (S}) to Al

025izz Ai VL Copy (VL) to Al

026ijk Al exp Load Ai with 6-bit value

0271k Al exp Load Ai with 6-bit negative value

030zzk VM Vk, z Set VM from zero elements of {Vk)

031zzk VM Vk, n Set VM from nonzero elements of (Vk)
032zzk VM Vk, p Set VM from positive elements of (Vk)
033zzk VM Vk, m  Set VM from negative elements of (Vk)
034zjz VM §j Copy (Sj) to VM

035zz0 dri Disable halt on memory field range error
035zz1 eri Enable halt on memory field range error
035222 dfi Disable halt on floating-point error

035zz3 efl Enable halt on floating-point error

036zzk VL Ak Copy (Ak) to VL

037zzk VL Ak Copy (Ak) to VL

040izz  ml Al exp Load Ai with 16-bit positive value

04lizz  ml Al exp Load Ai with 16-bit negative value

042izz ml ml Al ezp Load Ai with 32-bit value

043izz ml m2 Al ezp Load Al with 32-bit value

044izz  ml Al [ezp] Read from location ezp in Local Mem. to Al
045zzk ml [ezp] Ak Write (Ak) to location ezp in Local Mem.
046irk Al [Ak] Read from location (Ak) in Local Mem. to Ai
047zjk Ak |Aj] Write (Aj) to location Ak in Local Mem.




Table 7.2: Cray-2 Instruction Set (Continued).

Opcode Extension Mnemonic Description

050irzz ml m2 Si ezp Load Si with a 32-bit positive value

05lizz ml m2 Si exp Load Si with a 32-bit negative value

052izz ml m2 Si ezp Load Si left side with a 32-bit value

053izz ml m2 m3 m4 Siezp Load Si with a 64-bit value

054izz ml Si [ezp] Read from location ezp in Local Mem.

055zjz ml lezp) Si Write (Sj) to location ezp in Local Mem.

056izk Si [Ak] Read from location (Ak) in Local Mem.

057izk [Ak] Si Write (Si) to location (Ak) in Local Mem.

060ijk Si (Aj, Ak) Read from Common Mem. at loc. (Aj) + (Ak) to Si
061ijk (Aj, Ak) Si  Write (Si) to Common Mem. at loc. (Aj) + (Ak)
062izk Si {Ak) Read from Common Mem. at location (Ak) to Si
063izk (Ak) Si Write (Si) to Common Mem. at location {Ak)
064izk ml m2 Si (Ak, ezp) Read from Common Mem. 16cation (Ak)+ezp to Si
065izk ml m2 (Ak, ezp) Si  Write (Si) to Common Mem. at location (Ak)+ezp
066izz ml m2 Si (exp) Read from Common Mem. location ezp to Si
067izz ml m2 (exp) Si Write (Si) to Common Mem. at location ezp
070ijk Vi (Aj, Ak) Read from Common Mem. loc. (Aj) with stride (Ak) to Vi
07lijk (Aj, Ak) Vi Write (Vi) to Common Mem. loc. (Aj) with stride {Ak)
072ijk Vi (Ak, Vj)  Gather from Common Mem. locations (Ak)+(Vj) to Vi
0731k (Ak, Vj) Vi Scatter (Vi) to Common Mem. locations (Ak)+(Vj)
074izk Vi [Ak] Read from Local Mem. location (Ak) to Vi

075izk |Ak} Vi Write (Vi) to Local Mem. location (Ak)

076i)k pass ezp Pass -

077ijk pass exp Pass

100ijk Si Sj&Sk Logical product of (Sj) and (Sk) to Si

101ijk Si #Sk&Sj Logical product of (Sj) and complement (Sk) to Si
102ijk Sj«Sk Logical difference of (Sj) and (Sk) to Si

103ijk Sj!Sk Logical sum of {Sj) and (Sk) to Si

104ijk Si Sj+Sk Integer sum of (Sj)+(Sk) to Si

105ijk Si Sj-Sk Integer difference (Sj)-(Sk) to Si

106ij0 Si pSj Population count of (Sj} to Si

106ij1 Si g5j Population count parity of (Sj) to Si

107ijz Si 2§j  Leading zero count of (Sj) to Si

110ijk St Si<ezp Shift (Si) left ezp==64-jk places to Si

1113k Si Si>ezxp Shift (Si) right ezp=jk places to Si

112ijk Si Si,Sj<Ak Shift (Si and Sj) left (Ak) places to Si

11313k Sj,Si> Ak Shift (Si and Sj) right (Ak) places to Si

114izz Si VM Transmit (VM) to Si

115izz Si rt Transmit real-time clock to Si

116ijk Si ezp Load Si with 6-bit positive value

117ijk Si ezp Load Si with 6-bit negative value

120ijk Si Sj+1Sk Floating-point sum of (Sj) and (Sk) to Si

121ijk Si Sj-fSk Floating-point difference (Sj)-(Sk) to Si

122izk Si fix,Sk Convert {Sk) from floating-point to integer to Si
123izk Si fit, Sk Convert (Sk) from integer to floating-point to Si
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Table 7.2: Cray-2 Instruction Set (Continued).

Opcode Extension Mnemonic Description

124ijk Si SjsfSk Floating-point product of (Sj) and (Sk) to Si

125ijk Si Sj«fSk Floating-point product of (Sj) and (Sk) to Si

126ijk Si Sj*iSk Reciprocal iteration of 2-(Sj)+(Sk) to Si

127ijk Si Sj=qSk Reciprocal square root iteration [3-(S})*(Sk)}/2 to Si
130izk Si Ak Transmit (Ak) to Si with no Sign extension

131izk Si +Ak Transmit (Ak) to Si with Sign extension

132ijz Si /hSj Floating-point reciprocal approx. of (Sj) to Si

133ijz Si *q5) Floating-point reciprocal square root approx. of (Sj) to Si
134zzz pass Pass

135zzz2 pass Pass

136zzz pass Pass

137zzz pass Pass

140ijk Vi Sj&Vk Logical products of (Sj) and (Vk) to Vi

141ijk Vi Vj&Vk Logical products of (Vj) and (Vk) to Vi

142ijk Vi SjsVk Logical differences of (Sj) and (Vk) to Vi

143ijk Vi VjsVk Logical differences of (Vj) and (Vk) to Vi

144i3k Vi §j'Vk Logical sums of (Sj) and (Vk) to Vi

145ijk Vi VjiVk Logical sums of (Vj) and (Vk) to Vi

146ijk Vi SjiVk&VM  Transmit (Sj) if VM bit=1; (Vk) if VM bit=0 to Vi
147ijk Vi VjIVK&VM  Transmit (Vj) if VM bit=1; (Vk) if VM bit=0 to Vi
150ijk ViVi<Ak  Shift (Vj) left (Ak) bits with zero fill to Vi

151ijk Vi Vi> Ak Shift (Vj) right {Ak) bits with zero fill to Vi

152ijk Vi Vj,Vij<Ak Double shift (Vj) left (Ak) places to Vi

153ijk Vi Vj,Vi>Ak Double shift (Vj) right (Ak) places to Vi

154ijk Vi SjsfVk Floating-point products of (Sj) and (Vk) to Vi
155ijk Vi VjsfVk Floating-point products of (Vj) and (Vk) to Vi
15613k Vi VjsiVk Reciprocal iteration of 2-(Vj}*(Vk) to Vi

157ijk Vi VjsqVk Reciprocal square root iteration [3- (Vi)*(Vk})]/2 to Vi
160ijk Vi Sj+Vk Integer sums of (Sj) and (Vk) to Vi

161ijk Vi Vi+Vk Integer sums of (Vj) and (Vk) to Vi

162ijk Vi Sj-Vk Integer differences of (Sj) and (Vk) to Vi

18313k Vi Vj-Vk Integer differences of (Vj) and (Vk) to Vi

164ij0 Vi pVj Population counts of (Vj) to Vi

164ij1 Vi qV} Population count parity of (Vj) to Vi

165ijz Vi zVj Leading zero count of {Vj) to Vi

166izk Vi /hVk Floating-point reciprocal approx. of (Vk) to Vi
1671k Vi sqVk Floating-point reciprocal square root approx. of {(Vk) to Vi
170ijk Vi Sj+fVk Floating-point sum of (Sj) and (Vk) to Vi

171ijk Vi Vj+{Vk Floating-point sum of (Vj) and (Vk) to Vi

1721k Vi Si-fVk Floating-point differences of (Sj) and (Vk) to Vi
173ijk Vi Vj-fVk Floating-point differences of (Vj) and (Vk} to V1
174izk Vi fix,Vk Integer form of floating-point (Vk) to Vi

175izk Vi fit,Vk Floating-point form of integer (Vk) to Vi

176ijk Vi ci,Sj&Sk Enter Vi with compressed iota Sj and Sk

177ijk Vi c1,Sj&Sk Enter Vi with compressed iota Sj and Sk
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Table 7.3: Larc Instruction Set.

Opcode Extension Mnemonic Description

000zjk err Error exit

001zjk exit Normal exit

002izk r, Al Ak Register jump to (Ak) with return address in Ai
003zzz ml m2 j exp Unconditional jump to m1 m2

004zzz ml m2 jes exp Jump to ml m2 if Semaphore clear, set Semaphore
005zzz ml m2 jss exp Jump to ml1 m2 if Semaphore set, set Semaphore
006zzz ssm Set Semaphore

007zzz csm Clear Semaphore

010zzk ml1 m2 jz Ak, exp Branch if (Ak) is zero

0llzzk ml m2 jn Ak, ezp Branch if (Ak) is nonzero

012zzk ml m2 jp Ak, exzp  Branch if (Ak) is positive

013zzk ml m2 jm Ak, exp  Branch if (Ak) is negative

014lw ml m2 jz Fi0, ezp  Branch if (Fi0) is zero

015w ml m2 jn Fi0, ezp  Branch if (Fi0} is nonzero

016w m! m2 jp Fi0, ezp  Branch if (Fi0) is positive

0171w ml m2 jm Fi0, ezp  Branch if (Fi0) is negative

020ijk Al Aj+Ak Integer sum of (Aj) and (Ak) to Al

021ijk Al Aj-Ak Integer difference of {Aj) and (Ak) to Ai
022ijk Al AjsAk Integer product of (Aj) and {Ak) to Ai
023ijk Al AjsAk Integer product of (Aj) and (Ak) to Ai
0241zk Ak Fi0 Copy (Fi0) to Ak

025izz Ai GVL Copy (GVL) to Ai

026ijk Al ezp Load Al with 6-bit value

02713k Al exp Load Ai with 6-bit negative value

030lw VM Fi, z Set VM from zero elements of (Fi)

031w VM Fi, n Set VM from nonzero elements of (Fi)
032Iw VM Fi, p Set VM from positive elements of (Fi)
0331w VM Fi, m Set VM from negative elements of (Fi)
034w VM Fio0 Copy (Fi0) to VM

035zz0 dri Disable halt on memory field range error
035zz1 eri Enable halt on memory field range error
035222 dfi Disable halt on floating-point error

035223 efi Enable halt on floating-point error

036zzk GVL Ak Copy (Ak) to GVL

037zzk GVL Ak Copy (Ak) to GVL

040izz m1} Ai exp Load Ai with 16-bit positive value

04lizz ml Aj exp Load Ai with 16-bit negative value

042izz ml m2 Aj exp Load Aj with 32-bit value

043izz ml m2 Al exp Load Ai with 32-bit value .
044izz  ml Aj [exp] Read from location ezp in Local Mem. to Ai
045zzk ml [exp] Ai Write (Ak) to location ezp in Local Mem.
046izk Ai [AK] Read from location Ak in Local Mem. to Ai
047z)k Ak [Aj] Write {Aj) to location Ak in Local Mem.
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Table 7.3: Larc Instruction Set (Continued).

Opcode Extension Mnemonic Description

050w ml m2 Fi0 ezp Load Fi0 with a 32-bit positive value

051w  ml m2 Fi0 ezp Load Fi0 with a 32-bit negative value

052w ml m2 Fi0 ezp Load Fi0 left side with a 32-bit value

053w ml m2 m3 m4 Fil exp Load Fi0 with a 64-bit value

0701k Fi (A}, Ak) Read from Common Mem. loc. (Aj), stride (Ak) to Fi
071lw  uJK Fi (Aj, Ak) Read from Common Mem. loc. {Aj), stride (Ak) to Fi
0721k {Aj, Ak) Fi Write (Fi) to Common Mem. loc. (Aj) with stride (Ak)
073lw  uJK (Aj, Ak) Fi Write (Fi) to Common Mem. loc. (Aj} with stride (Ak)
0741jk Fi (Ak, Fj) Gather from Common Mem. locations {Ak)+{Fj) to Fi
0751w wJK Fi (Ak, Fj) Gather from Common Mem. locations (Ak)+(Fj) to Fi
0761}k {Ak, Fj) Fi Scatter (Fi) to Common Mem. locations (Ak)+(Fj)
077w uwJK (Ak, Fj) Fi Scatter (Fi) to Common Mem. locations (Ak}+(F))
1001zk - Fi [Ak] Read from Local Mem. location {(Ak) to Fi

1011zk |Ak] Fi Write (Fi) to Local Mem. location (Ak)

102ijk pass ezp Pass

103ijk pass ezp Pass

1041jk pr Fi, exp Pre-read first exp elements of Fi

105Izz ml pr Fi, exp Pre-read first exp elements of Fi

1061zk VLi Ak Set Vector Length of Fi to (Ak)

1071zk AK VLi Set AK to Vector Length of Fi

1101k VLi jk Set Vector Length of Fi to ezp

111w ml VLi jk Set Vector Length of Fi to exp

1121zk ’ Fi0 Ak Transmit (AkO) to Fi with no Sign extension

11312k Fi0 +Ak Transmit (AkO) to Fi with Sign extension

114w Fi VM Transmit (VM) to Fi

1151w Fi0 rt Transmit real-time clock to Fi0

11615k Fi0 ezp Load Fi0 with 4-bit positive value

11715k Fi0 exp Load Fi0 with 4-bit negative value ’
1205k Fi Fj&Fk Logical products of (Fj) and (Fk) to Fi

121lw uwJK Fi Fj&Fk Logical products of (Fj) and (Fk) to Fi

1221k Fi FjsFk Logical differences of (Fj) and (Fk) to Fi

123lw  uJK Fi FjsFk Logical differences of (Fj) and (Fk) to Fi

1241}k Fi FjlFk Logical sums of (Fj) and (Fk) to Fi

125w uwJK Fi FjlFk Logical sums of (Fj) and (Fk) to Fi

1261jk Fi Fj!Fk&VM Transmit (Fj) if VM bit=1; (Fk) if VM bit=0 to Fi

127w uwJK Fi Fj!'Fk&VM Transmit (Fj) if VM bita=1; (Fk) if VM bit=0 to Fi
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Table 7.3: Larc Instruction Set (Continued).

Opcode Extensicn Mnemonic Description

1301k Fi, Ak Fjo Transmit Fj0 to element (Ak) of Fi

131w wJK Fi, Ak Fj0 Transmit FjO to element (Ak)} of Fi

132[;k Fi0 Fj, Ak Transmit element (Ak) of Fj to Fi0

133w uJK Fio Fj, Ak Transmit element (Ak) of Fj to Fi0

13415k Fi Fj <Ak Shift (Fj) left (Ak) bits with zero fill to Fi

135Iw wJK Fi Fj<Ak Shift (Fj) left (Ak) bits with zero fill to Fi
13615k Fi Fj>Ak Shift (Fj) right (Ak) bits with zero fill to Fi
137w wJK Fi Fj>Ak Shift (Fj) right (Ak) bits with zero fill to Fi
1401jk Fi Fj,Fj<Ak Double shift (Fj) left (Ak) places to Fi

141w uwJK Fi Fj,Fj<Ak Double shift (Fj) left (Ak) places to Fi

1421k Fi FjFj>Ak Double shift (Fj) right (Ak) places to Fi

143lw . uwJK Fi Fj,Fj>Ak Double shift (Fj) right (Ak) places to Fi

1441jk Fi FjfFk Floating-point products of (Fj) and (Fk) to Fi
1451w wJK Fi Fj«fFk Floating-point products of (Fj) and (Fk) to Fi
14613k Fi Fj#iFk Reciprocal iteration of 2-(Fj)¢(Fk) to Fi

147w uwJK Fi FjsiFk Reciprocal iteration of 2-(Fj)#(Fk) to Fi

1501jk Fi FjsgFk Reciprocal square root iteration (3-(Fj)¢(Fk)]/2 to Fi
1511w uwJK Fi FjsqFk Reciprocal square root iteration [3-(Fj)s(Fk)]/2 to Fi
15215k Fi Fj+Fk Integer sums of (Fj) and (Fk) to Fi

153lw  wJK Fi Fj+Fk Integer sums of (Fj) and (Fk) to Fi

15413k Fi F}-Fk Integer diferences of (Fj) and (Fk) to Fi

1551w wJK Fi Fi-Fk Integer differences of (Fj) and (Fk) to Fi

15610k Fi pFk Population counts of (Fk) to Fi

15611k Fi qFk Population count parity of {Fk) to Fi

15710y  uK Fi pFk Population counts of (Fk) to Fi

15711y uwvK Fi gFk Population count parity of (Fk) to Fi

160Iyk Fi zFk Leading zero count of (Fk) to Fi

161w uvK Fi zFk Leading zero count of {Fk) to Fi ’
1621yk Fi /hFk Floating-point reciprocal approx. of (Fk) to Fi
163w urK Fi /hFk Floating-point reciprocal approx. of (Fk) to Fi
164Iyk Fi sqFk Floating-point reciprocal square root approx. of (Fk) to Fi
165w uvK Fi «qFk Floating-point reciprocal square root approx. of (Fk) to Fi
1661k Fi Fj+{Fk Floating-point sum of (Fj) and (Fk) to Fi

167w uwJK Fi Fj+{Fk Floating-point sum of (Fj) and (Fk) to Fi

1701}k Fi Fj-fFk Floating-point differences of (Fj) and (Fk) to Fi
171w uwJK Fi Fj-fFk Floating-point differences of (Fj) and (Fk) to Fi
1721yk Fi fix Fk Integer form of floating-point (Fk) to Fi

173w wK Fi fix,Fk Integer form of floating-point (Fk) to Fi

1741yk Fi fit,Fk Floating-point form of integer (Fk) to Fi

175lw  uvK Fi fit,Fk Floating-point form of integer (Fk) to Fi

17615k Fi ci,Fj0&Fk0 Enter Fi with compressed iota Fj0 and FkO
1771w wJK Fi ci Fj0&Fk0 Enter Fi with compressed iota Fj0 and Fk0




CHAPTER 8

Concluding Remarks

8.1. Summary of Results

8.1.1. Summary of Program Characteristics

As discussed in section 3.3.3, the serial programs of the Livermore Kernels%? need short
operation execution times for fast execution, while the parallel programs need to start many
operations at a time for fast execution. (Cf. theorem 3.6, theorem 3.7.) Short execution times

and many starts at a time are not necessarily required at the same time.

Many memory accesses can be started well before their results are needed, so higher-
latency, high-bandwidth memory can be used for them. This requires a large enough set of
fast-access temporary storage to hold the results of memory reads before they are used. (Cf.
section 3.3.4.) Several hundred temporary results can be maintained by some programs wi‘th
some schedules, so several hundred temporary storage locations that are faster than main
memory can be effectively used to speed up execution. (Cf. sections 3.3.5 and 3.4.1.) Most
results are used immediately after they are generated, so much of the temporary storage can
be optimized for speed and density without regard for long-term data integrity. (Cf. section
3.3.5.) Also, most results are only used once, so specialized or implicit result transmission can
be used much of the time. (Cf. section 3.3.5.)

Most of the temporary storage can be slow, relative to fast registers. Most programs
that use a few fast registers but mostly use registers that have two to four times the access
time of fast registers can execute essentially as fast as programs that use all fast registers.

(Ct. section 3.4.2.)
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As discussed in section 3.4.2, computers with pure memory-to-memory architectures and
no vector addressing mechanism have a maximum execution speed that is at most one third
to two thirds the speed of computers with many programmer-addressable registers. This is
because of the long access times for main memory and because of the instruction-stream
bandwidth required to specify full memory addresses. The instruction stream and memory
bandwidth problem can sometimes be eliminated by using complex vector instructions, such
as X = ¥ —a+T, that do not require storing any temporary or intermediate results. However,
there are far more complex instructions than there are basic instructions that perform the
same function, so instruction sets must be larger. Furthermore, complex instructions do not

save memory bandwidth when temporary results are re-used.

The hardware requirements and a close approximation of the execution times of pro-
grams can be predicted from the partitionings of the dependency graphs. Analyses of these
condensed specifications of programs are both faster and more generally applicable than ana-

lyses and simulations of the full dependency graphs. (Cf. sections 3.3 and 3.4.)

8.1.2. Datapath Design

Physical signal propagation delays, logic propagation delays, selection delays, and pipe-
line latch overhead limit the speed at which computers can execute. The influence of the
parameters that affect execution speed can be analyzed, and optimal choices of the parame-

ters can be made for a given workload.

As discussed in section 4.1, propagation distances in a plane grow at a rate between the
square root and linearly with the number of devices, and in three dimensions distances grow
at a rate between the cube root and the square root of the number of devices. (Cf. equations
4.2 and 4.4.) With a large enough number of devices and random communication among
them, propagation delays dominate the execution time. However, by clustering devices that

communicate with each other and by stretching linear pipelines out radially, propagation
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delays can be kept small.

As discussed in section 4.2, data selection and routing delays grow as the log of the
number of devices, and, in practice, multiplexing delays dominate. By locating the subset of
devices logically closer to the roots of the fan-in and fan-out trees, the delays to or from a
subset of the devices can be made smaller than the delays to or from the other devices. This

technique facilitates the implementation of fast and slow registers discussed above.

As discussed in section 4.3.2, if many data are processed at a time, pipelines should have
many stages with few levels of logic in each; however, if few data are processed at a time,
pipelines should have few stages, with many levels of logic in each. The optimal number of
levels of logic in each pipeline stage grows as the square root of the number of gate delays to
perform the function divided by the number of data processed at a time. (Cf. equation 4.18.)
However, for typical gate characteristics, the shortest practical pipeline stage has approxi-

mately four levels of logic.

T . . 4 . .
Pipelines with variable numbers of stages are not practical to implement, because the
logic to switch the number of stages increases the pipeline latency more than switching out

stages reduces it. (Cf. theorem 4.1.)

If several identical pipelines are used, the optimal number of pipeline stages increases by
the square root of the number of identical pipelines. (Cf. equation 4.24.) Identical pipelines
that are independent can be used eflectively by more programs than identical pipelines that

must be used together for the same instruction. (Cf. section 4.3.2.3))

As discussed in section 4.3.3, if functional units are implemented on a single chip, the
maximum chip-I/O rate may be much smaller than the maximum clock rate on the chip.
Storing a small number of values on the functional unit chips reduces the 1/O requirements
for some applications. Nonlinear pipelines running at fast clock rates can offer more efficient

use of the hardware than linear pipelines running at slower clock rates, and the reduced



initiation rate of nonlinear pipelines matches the reduced 1/O rate well.

8.1.3. Temporary Storage Devices and Access Mechanisms

Registers can be organized in a close/distant hierarchy that allows some registers to be
accessed quickly, while other registers are accessed more slowly. However, the bandwidth of
the set of registers is the same as if they all had fast access times. This close/distant access
structure allows an efficient implementation of the fast and slow registers discussed above.

(Cf. section 5.1.)

Vector registers can be implemented using high density, relatively slow memory, as long
as the first few elements are stored in fast registers or memory. (Cf. theorem 5.1.) These
fast/bulk vector registers provide low-latency access to the first few elements, while providing
high-bandwidth access to all elements. The advantages of fast/bulk vector registers over
traditional vector registers are that they provide longer vector registers for the same access-
latency and access-bandwidth, they support lower-latency, higher-bandwidth access for the
same length vector regist'ers, and they can require fewer chips to implement for the same

length and for the same access-latency and access-bandwidth. (Cf. section 5.2.1.)

As discussed in section 5.2.2.2, fast/bulk vector registers can be generalized to provide
multiple-port access so that they can support general chaining between vector instructions.
All elements of the vector are stored in high-density, relatively-slow memory, and a few vec-
tor elements are also stored in fast régisters. The fast registers are used to chain writes to

reads.

Access to random-access-memory (RAM) can be pipelined, increasing the bandwidth of
access by a factor of four or more and increasing the access-latency by 50%. {Cf. section
5.3.3.) Pipelined random-access-memory (PRAM) chips have approximately one half the den-
sity of non-pipelined RAM chips using the same technology. (CI. section 5.3.3.) PRAM is

better than interleaving because its access-bandwidth is independent of the history of access,



so Do restrictions on access patterns are necessary. (Cf. theorem 5.3.) PRAM is particularly
well-suited for vector storage or for memory systems that are traditionally implemented using

interleaved memory banks. (Cf. section 5.4.)

8.1.4. Architectural Integration

The lengths of vector registers can be increased with virtually no changes to the archi-
tecture: only vector mask registers and provisions for setting the vector length must be

changed. (Cf. section 7.2.)

Adding unrestricted chaining to the vector registers is invisible at the architectural level,
but it increases the potential execution rate significantly. (Cf. section 7.4.) If functional units
are replicated and a large number of vector registers are made available, provisions for simul-

taneous vector instruction execution with several different vector lengths are useful. (Cf. sec-

tion 7.2.)

8.2. Discusslion

Close/distant general-purpos; registers should be allocated to results rather than to vari-
ables. If a supercomputer architecture contains more general-purpose close/distant registers
than active variables and temporary results, allocating some register to every active variable
or temporary result is trivial. The number of close registers is limited, however, and they
should be allocated to the variables and temporary results that are used in the most-critical
paths. A result is either used in critical-path operations or it is not, but a variable can be
used in critical-path operations during parts of its lifetime, and it can be used non-critical-
path operations during other parts of its lifetime. Rather than tracking when a variable is
used in critical-path operations and when it is used in non-critical-path operations, it is more
straightforward to track the results that the variable contains. There are more results than

variables, but result lifetimes are usually much shorter than variable lifetimes, so sets of
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active results may be smaller than corresponding sets of active variables; this should simplify

the register-allocation procedure.

With implicit addressing of registers based upon the history of use, as discussed in
Chapter 7, the instruction-stream bandwidth required to address large sets of registers is
small. With a close/distant organization of registers, execution speeds are as fast as if all
registers are fast. Register allocation for close/distant registers, although different than tradi-
tional practice, is not unreasonably difficuit. Scheduling for fast execution with a large set of
registers may be easier than scheduling with a small set of registers. Therefore, it appears
that the only cost of large sets of close/distant registers is the extra hardware required to
implement them. As hardware cost is considered secondary to performance for supercomput-

ers, the additional cost of large sets of close/distant registers is reasonable.

Generalized fast/bulk vector registers using PRAM should be implemented as monolithic
integrated circuits. If the shift-registers, multiplexers, and counters are included in the chips,
the number of pins drops dramatically. The performance limitation of a monolithic fast/bulk
vector register is the speea with which elements of the shift register can be selected, and not
the access-latency of the PRAM; probably a one-bit to four-bit slice of a vector register could
be implemented in each chip. Vector registers that can support two vector reads at a time
could also be implemented by including two sets of shift-registers, multiplexers, and counters.
The availability of fast, monolithic vector registers will allow vector registerg and vector
instructions to be included in lower-cost computer architectures, and not just in supercomput-

ers.

If PRAM chips are used to implement main memory, memory interference due to
memory-bank busy times drops dramatically. Only simultaneous access of the same memory
bank cap cause an access conflict, and the conflict lasts only one clock tick (less, if the PRAM

chips operate at a higher clock rate than the rest of the system). Considerably less memory
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interleaving is required for good memory-system performance. Algorithms that access
memory with irregular patterns can do so as fast as algorithms that access memory with reg-

ular access patterns. This reduction of access-pattern constraints should simplify algorithm

development.

8.3. Conclusions

It is possible to increase the execution speed of supercomputers by using more registers,
organized in a close/distant hierarchy, and by using generalized fast/bulk vector registers.
With these small architectural changes, the average execution speed of the Cray-2 is increased

by over 50%, for Livermore Kernels 1-14.

If enough registers are available to hold all the active temporary results, no time is
wasted spilling results to memory, and operations can be scheduled to maximize execution
speed rather than to keep register usage low. A close/distant organization of registers allows
low-latency access of the results of critical-path operations. Implicit addressing reduces the

instruction-stream bandwidth required to address many registers.

Generalized fast/bulk vector registers provide hardware support for long vectors, they
allow full chaining of vector instructions, and they reduce the hardware requirements of vec-
tor registers. The lower-latency access reduces the execution time for short vectors, and the
higher-bandwidth access supports full chaining of vector instructions, which reduces the execu-
tion time for all vectors. The smaller hardware requirements for each ve;ctor register allow

either more vector registers or longer vector registers.
These techniques can also be applied to multiprocessors and general-purpose computers.

The communication buffers between multiprocessors are used like vector registers,
except that one processor writes to the buffer, and a different processor reads from the buffer.

Short messages should be transmitted with low latency, but long messages may need to be
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stored in the buffer for long periods of time. Thus, low latency and high capacity are needed:
these properties are precisely what fast/bulk vector registers provide. The buffers should be
large, to allow for messages several megabytes long, and they should have the same width as
the machine’'s word-size. For sending messages to several destinations at a time, the buffers

could be constructed to support several vector reads at a time, as discussed in section 5.2.2.2.

General-purpose computers often support some overlap of execution, although not as
much as supercomputers do. With more overlap of execution, more registers are necessary to
hold the temporary results, but the generally-serial programs executed by general-purpose
computers require low-latency access of the temporary results. These requirements are sup-
ported by close/distant register organizations. Just as it does for supercomputers, implicit
addressing reduces the instruction-stream bandwidth required for general-purpose computers

to address many registers.

8.4. Future Work

Livermore Kernels 1-14,%7 while representative of some scientific programs, do not
represent all important programs. In particular, they contain no conditional branches, nor do
they contain many operations besides loads, stores, adds, and multiplies. It would be useful to

analyze programs that represent other workloads.

Design tradeoffs for pipelines with limited 1/O rates are only discussed briefly in Chapter
4. The subject of non-linear pipelines is a rich one, which deserves a more thorough investiga-
tion. In particular, the relative merits of non-linear pipelines with fast clocks and short-stage

pipelines with slow clocks should be studied, with an emphasis on single-chip implementations.
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APPENDIX B

Livermore Kernel Descriptions

Livermore Kernel 1: Hydro Excerpt
for k = lton
zlk] = q + ylk] * (r = z[k+10] + ¢ * z|k+11})

With n = 400, there are 3204 operations in six partitions.

Livermore Kernel 2: MLR, Inner Product
for k =1tons*5by 5
tplk] = z[k] ¢ z[k] + z[k+1] * z[k+1] + z[k+2] * z[k+2]
+ z[k+3] s z[k+3] + z[k+4] » z[k+4]

With n = 40, there are 800 operations in six partitions.

Livermore Kernel 3: Inner Product
for k =1ton
g =gq + zlk] » z|k|
With n = 1024, there are 4098 operations in 14 partitions.

Livermore Kerne! 4: Banded Linear Equations
for | = 7 to 107 by 50
for j=1ton
z{l=1] = z|l-1] = z[l+j-1] * y[J]
With n = 128, there are 1542 operations in 11 partitions.

Livermore Kernel 5: Tri-Diagonal Elimination, Below Diagonal
fori=2ton

z[i] = z[i] * (y[i] - z|i-1))
With n == 997, there are 4981 operations in 1994 partitions.

Livermore Kernel 8: Tri-Diagonal Elimination, Above Diagonal
for i = n—1 downto 1
zli] = z[i] = z[i] * z[i+]]
With n = 997, there are 4986 operations in 1996 partitions.

186



Livermore Kernel 7: Equation of State Excerpt
form = 1lton
zlm| = ulm| +r s (zlm]+r = y[m])
4+t x(u|m+3] +r s (u[m+2] +r s u[m+1])
+t*(ulm+6] +r«(u[m+5] + 1« u[m+4])))

With n = 120, there are 2408 operations in 12 partitions.

Livermore Kernel 8: PDE Integration
for kx = 2to 3
for ky = 2ton

dullky] = ullkz ky+1,nl1] = ullkz ky—1ni1]

du2ky] = w2lkz ky+1,nl1] = u2[kz ky—1.nll]

du3lky] = u3lkz ky+1.nll] - u3|kz ky—1,nl1]

ullkz ky,ni2] = u1]kz ky nil]
+ all = dullky] + a12 « du2[ky] + a13 * du3[ky]
+ sig * (ullkz+1ky,nl1] — 2. = ullkz ky,nll] + ullkz—1,ky,nl1])

u2lkz ky,nl2] = u2lkz kynll] ‘
+ a2l s dullky] + a22 » du2lky] + a23 * du3[ky]
+ sig » (u2lkz+1kynll] — 2.+ u2lkz ky,nll] + u2lkz—1,ky,nl1])

u3lkz ky,nl2| = u3lkz ky,nll]
+ a31 * dullky] + a32  du2(ky] + a33 « du3[ky]
+ sig * (u3[kz+1,ky,nll} = 2. % u3lkz ky,nll] + u3lkz —1,ky,nl1])

With n = 20, there are 2062 operations in seven partitions.

Livermore Kernel 9: Integrate Predictors
fori=1ton
pz{l,i] = bm28 » pz[13.i] + bm27  pz{12,i] + bm26 + pz|11,i]
+ bm25 * pz[10,i] + bm24 » pz(9,i] + bm23 * pz(8,1]
+ bm22 * pz|7,i] + c0 * (pz[5,i] + pz[6,5]) + pz(3,5]

With n = 100, there are 2808 operations in seven partitions.
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Livermore Kernel 10: Difference Predictors

fori=1ton
ar = cz[5,1]
br = ar — pz[5,i]

pz[5,i] = ar
er = br — pz|(6,1]
pz|6,i] = br
ar = cr — pz[7,i]
pz|7i] =cr
br = ar — pz[8,i]
pz|8,i] = ar

= br — pz(9,i]
pz[9,i] = br
ar = cr — pz[10,i]
pz|10,i] = cr
br = ar — pz|11,i]
pz|ll,i] = ar
er = br — pz[12,4]
pz|12,i] = br
pz|14,i] = cr — pz[13,i]
pz[13,i] = cr

With n = 100, there are 2900 operations in 11 partitions.

Livermore Kernel 11: First Sum
for k = 2ton
zlk] = z[k—1] + y[k]

With n = 999, there are 2998 operations in 1001 partitions.

Livermore Kernel 12: First Diff.
fork =1ton
z|k] = ylk+1] - ylk]

With n = 1000, there are 3001 operations in three partitions.
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Livermore Kernel 13: 2-D Particle Pusher
forip=1ton

i1=p|Lip]
j1 = p(2,ip}
p[3.ip] = p[3.ip] + b[i1,71]
pl4.ip] = pl4.ip] + ¢[i1,71]
p{Lip| = p[Lip] + p[3,ip]
pl2,ip] = pl2.ip] + p[4,ip]
i2 = p(1,ip]
j2 = p|2,ip]
p(Lip] = p[Lip] + y[i2+32]
p(2,ip] = p[2.ip] + 2[s2+32]
12 =12 + e[i2+32]
j2 = j2 + flj2+32]
Ri2,72] = h|i2,52] + 1.0

With n = 128, there are 3456 operations in 390 partitions.

Livermore Kernel 14: 1-D Particle Pusher
for k =1ton
iz = grdlk|

i = 1iT

vz|k] = vz k] + ez[iz] + (zz[k]-zi) + dez|iz]

zz[k] = zzlk] + vz[k] + fiz
ir = zz|k]

ri = 1r

rzl = zzlk| - ri

ir = ir AND 63

zzlk) =ri +rzl

rhlir] = rhiir] + 1.0 — rzl

rhlir+1] = rhfir+1] + rz1l

With n = 150, there are 3601 operations in 606 partitions.
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APPENDIX C

Execution Time Predictions and Simulations

The upper and lower bounds on execution time are computed from Theorems 3.6 and
3.7, and are displayed with the simulation times. Root mean square differences between

bounds and simulation times for all values of the parameters are shown below each table.
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Table C.1: Execution Time Simulations and Bounds for Livermore Kernel 1, with
Differences Between Simulated and Theoretical Times.

Bounds

Op times | Starts | Cost | Ticks Upper (diff) Lower (diff)
Cray-1 1 0 3216 || 3252 1.1% | 3206 -0.3%
2 1614 || 1651 2.3% | 1604 -0.6%

4 813 850 4.6% 803 -1.2%

8 413 450 9.0% 403 -2.4%

4 1 815 856 5.0% 804 -1.3%

8 415 456 9.9% 404 -2.7%

2 1 1616 || 1657 25% | 1605 -0.7%

4 2 817 862 5.5% 805 -1.5%

8 3 419 468 11.7% 406 -3.1%

1 1 0 3205 || 3210 0.2% | 3205 0.0%
2 1603 | 1609 0.4% | 1603 0.0%

4 802 808 0.7% 802 0.0%

8 402 408 1.5% 402 0.0%

2 1 3207 || 3216 0.3% | 3206 -0.0%
2 1605 | 1615 0.6% | 1604 -0.1%

4 804 814 1.2% 803 -0.1%

8 404 414 2.5% 403 -0.2%

4 1 3211 || 3228 05% | 3208 -0.1%
2 1609 || 1627 1.1% | 1606 -0.2%

4 808 826 2.2% 805 -0.4%

8 408 426 4.4% 405 -0.7%

8 1 3219 | 3252 1.0% | 3212 -0.2%
2 1617 || 1651 2.1% | 1610 -0.4%

4 816 850 4.2% 809 -0.9%

8 416 450 8.2% 409 -1.7%

16 1 3235 || 3300  2.0% | 3220 -0.5%
2 1633 || 1699 40% | 1618 -0.9%

4 832 898 7.9% 817 -1.8%

8 432 498 15.3% 417  -35%

32 1 3267 || 3396 39% | 3236 -0.9%
2 1665 | 1795 78% | 1634 -1.9%

4 864 994  15.0% 833 ~ -3.6%

8 464 504  28.0% 433 -6.7%

64 1 3331 || 3588 77% | 3268 -1.9%
2 1729 || 1087 14.9% | 1666 -3.6%

4 928 || 1186 27.8% 865 -6.8%

8 507 786  55.0% 493 -2.8%

RMS bound differences = 12.8% (upper) 2.2% (lower)



Table C.2: Execution Time Simulations and Bounds for Livermore Kernel 2, with
Differences Between Simulated and Theoretical Times.

Bounds
Op times | Starts | Cost | Ticks || Upper  (diffjy | Lower (diff)

Cray-1 1 0 802 844 5.2% 802 0.0%
2 402 444 10.4% | 402 0.0%

4 202 244  20.8% 202 0.0%

8 106 144 35.8% 103 -2.8%

4 1 203 250 23.2% 203 0.0%

8 110 150  36.4% 105 -4.5%

2 1 403 450 11.7% 403 0.0%

4 2 204 256  25.5% 204 0.0%

8 3 118 162 37.3% 109 -7.6%

1 1 0 801 806 06% | 801 0.0%
2 401 406 1.2% 401 0.0%

4 201 206 2.5% 201 0.0%

8 101 106 5.0% 101 0.0%

2 1 802 812 1.2% 802 0.0%
2 402 412 2.5% 402 0.0%

4 202 212 50% | 202 0.0%

8 102 112 9.8% 102 0.0%

4 1 804 824 2.5% 804 0.0%
2 404 424 50% | 404 0.0%

4 204 224 9.8% | 204 0.0%

8 104 124 19.2% 104 0.0%

8 1 808 848 5.0% 808 0.0%
2 408 448 9.8% 408 0.0%

4 208 248  19.2% 208 0.0%

8 114 148  29.8% 111 -26%

16 1 816 896 9.8% | 816 0.0%
2 416 496  19.2% 416 0.0%

4 228 206 29.8% | 222 -2.6%

8 144 196 36.1% 133 -7.6%

32 1 832 992 19.2% | 832 0.0%
2 456 592 20.8% | 444 -2.6%

4 288 392  36.1% 266 -7.6%

8 232 202 25.9% 205  -11.6%

64 1 912 || 1184 29.8% | 888 -2.6%
2 576 784  36.1% 532 -7.6%

4 464 584  25.9% 410 -11.6%

8 424 484 14.2% 389 -8.3%

RMS bound differences = 21.4% (upper) 4.1% (lower)
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Table C.3: Execution Time Simulations and Bounds for Livermore Kernel 3, with
Differences Between Simulated and Theoretical Times.

Bounds
Op times | Starts | Cost Ticks || Upper (diff) Lower (diff)
Cray-1 1 0 4120 || 4189 1.7% | 4115 -0.1%
2 2078 || 2141  3.0% | 2073 -0.2% |
4 1060 1118 55% | 1055  -0.5%
8 554 607 9.6% 549  -0.9%
4 1 1068 | 1132 6.0% | 1062 -0.6%
8 563 621 10.3% 557  -1.1%
2 1 2085 |l 2155 34% | 2079 -0.3%
4 2 1076 || 1146 6.5% | 1069 -0.7%
8 3 582 649 11.5% 574 -1.4%
1 1 0 4099 | 4112 0.3% | 4099 0.0%
2 2051 2064 0.6% | 2051 0.0%
4 1028 || 1041 1.3% | 1028 0.0%
8 517 530 2.5% 517 0.0%
2 1 4102 | 4126 0.6% | 4101 -0.0%
2 2056 | 2078 1.1% | 2055 -0.0%
4 1034 || 1055 20% | 1033 -0.1%
8 524 544 3.8% 523  -0.2%
4 1 4112 || 4154 1.0% | 4109 -0.1%
2 2068 || 2106 18% | 2065 -0.1%
4 1048 | 1083 33% | 1045 -0.3%
8 540 572 5.9% 537 -0.6%
8 1 4136 | 4210 1.8% | 4129 -0.2%
2 2096 || 2162 3.1% | 2089 -0.3%
4 1080 | 1139 5.5% | 1073  -0.6%
8 576 628 9.0% 569 -1.2%
16 1 4192 || 4322 31% | 4177  -0.4%
2 2160 | 2274 53% | 2145 -0.7%
4 1152 || 1251 86% | 1137 -1.3%
8 656 740 12.8% 641 -2.3%
32 1 4320 || 4546 5.2% | 4289 -0.7%
]l 2 2304 || 2498 8.4% | 2273 -1.3%
4 1312 || 1475  12.4% | 1281 -2.4%
8 832 964 15.9% 801 -3.7%
64 1 4608 | 4994 8.4% | 4545 -1.4%
2 2624 || 2046 12.3% | 2561 -2.4%
4 1664 || 1923 156% | 1601  -3.8%
8 1216 1412 16.1% | 1153  -5.2%

RMS bound differences = 7.7% (upper) 1.5% (lower)
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Table C.4: Execution Time Simulations and Bounds for Livermore Kernel 4, with
Differences Between Simulated and Theoretical Times.

Bounds
Op times | Starts | Cost | Ticks || Upper  (diff)y | Lower (diff)
Cray-1 1 0 1554 || 1615 3.9% | 1547 -0.5%
2 788 845 7.2% 784 -0.5%
4 410 460 12.2% 405 -1.2%
8 224 268 19.6% 219 -2.2%
4 1 417 471 12.9% 411  -1.4%
8 232 27¢  20.3% 226 -2.6%
2 1 794 856 7.8% 780  -0.6%
4 2 424 482 13.7% 417  -1.7%
8 3 248 301 21.4% 240 -3.2%
1 1 0 1543 || 1553 0.6% | 1543 0.0%
2 772 783 1.4% 772 0.0%
4 387 398 2.8% 387 0.0%
8 196 206 5.1% 195 -0.5%
2 1 1544 1564 1.3% | 1544 0.0%
2 774 794 2.6% 774 0.0%
4 391 409 4.6% 390 -0.3%
8 201 217 8.0% 200 -0.5%
4 1 1548 || 1586 25% | 1547 -0.1%
2 782 816 4.3% 780 -0.3%
4 402 431 7.2% 399  -0.7%
8 214 239 11.7% 211 -1.4%
8 1 1564 1630 4.2% | 1559 -0.3%
2 804 860 7.0% 798  -0.7%
4 428 475  11.0% 421 -1.6%
8 244 283  16.0% 237 -2.9%
16 1 1608 || 1718 6.8% | 1595 -0.8%
2 856 948 10.7% | 842 -1.6%
4 488 563  15.4% 473 -3.1%
8 312 371 18.9% 297 -4.8%
32 1 1712 || 1894 10.6% | 1683 -1.7%
2 976 || 1124 15.2% 946 -3.1%
: 4 624 739  18.4% 593  -5.0%
8 464 547 17.9% 433 -6.7%
64 1 1952 || 2246 15.1% | 1891 -3.1%
2 1248 || 1476 18.3% | 1186 -5.0%
4 928 |l 1091 17.6% 865 -6.8%
8 800 899 12.4% 737 -7.9%

RMS bound differences = 12.1% (upper) 2.9% (lower)
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Table C.5: Execution Time Simulations and Bounds for Livermore Kernel 5, with
Differences Between Simulated and Theoretical Times.

Bounds
Op times | Starts | Cost | Ticks Upper (diff) Lower (diff)
Cray-1 1 0 12963 || 26902 107.5% | 12962 -0.0%
2 12962 || 24412  88.3% 12962 0.0%
4 12962 || 24163  86.4% | 12962 0.0%
8 12062 || 24039  85.5% | 12962 0.0%
4 1 14956 || 26157  74.9% 14956  0.0%
8 14956 || 26033  74.1% 14956  0.0%
2 1 14956 || 26406  76.6% 14956  0.0%
4 2 16950 || 28151  66.1% | 16950  0.0%
8 3 18944 | 30021 58.5% 18944  0.0%
1 1 0 4982 6975  40.0% 4982  0.0%
2 2492 4485  80.0% 2492  0.0%
4 1995 4236 112.3% 1995  0.0%
8 1995 4112 106.1% 1995 0.0%
2 1 4984 8069  80.0% 4983 -0.0%
2 3989 6479 62.4% 3989  0.0%
4 3989 6230  56.2% 3989  0.0%
8 3989 6106  53.1% 3989  0.0%
4 1 7978 12957  62.4% 7977 -0.0%
2 7977 10467  31.2% 7977  0.0%
4 7977 10218  28.1% 7977  0.0%
8 7977 { 10094  26.5% 7977  0.0%
8 1 15954 20933  31.2% 15953 -0.0%
2 15953 || 18443  15.6% | 15953  0.0%
4 15053 || 18194  14.0% | 15953 0.0%
8 15953 || 18070 13.3% 15953  0.0%
16 1 31906 || 36885 15.6% | 31905 -0.0%
2 31905 || 34395 78% | 31905 0.0%
4 31905 | 34146 70% | 31905 0.0%
8 31905 || 34022 6.6% | 31905 0.0%
32 1 63810 | 68789 78% | 63809 -0.0%
2 63809 | 66299 39% | 63809 0.0%
4 63809 || 66050 3.5% | 63809 0.0%
8 63809 || 65926 33% | 63809 0.0%
64 1 127618 || 132597 39% | 127617 -0.0%
2 127617 | 130107 20% 1127617  0.0%
4 127617 || 129858 1.8% | 127617 0.0%
8 127617 | 129734 1.7% | 127617 0.0%

RMS bound differences = 55.9% (upper) 0.0% {lower)
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Table C.8: Execution Time Simulations and Bounds for Livermore Kernel 8, with
Differences Between Simulated and Theoretical Times.

Bounds
Op times | Starts | Cost Ticks Upper (diff) Lower (diff)
Cray-1 1 0 12976 || 26928 107.5% 12975 -0.0%
2 12975 || 24436  88.3% | 12975 0.0%
4 12975 || 24187 86.4% | 12975 0.0%
8 12975 24062  85.4% 129075  0.0%
4 1 14971 26183  74.9% 14971  0.0%
8 14971 | 26058  74.1% 14971  0.0%
2 1 14971 | 26432  76.6% 14971  0.0%
4 2 16967 | 28179  66.1% | 16967  0.0%
8 3 18963 || 30050  58.5% 18963  0.0%
1 1 0 4987 6082  40.0% 4987 0.0%
2 2495 4490 80.0% 2494 -0.0%
4 1997 4241  112.4% 1997  0.0%
8 1997 4116 106.1% 1997  0.0%
2 1 4989 8978  80.0% 4988 -0.0%
2 3993 6486  62.4% 3993 0.0%
4 3993 6237 56.2% 3993  0.0%
8 3993 6112  53.1% 3993 0.0%
4 1 7086 || 12970  62.4% 7985 -0.0%
2 7985 || 10478  31.2% 7985  0.0%
4 7985 || 10229  28.1% 7985  0.0%
8 7985 || 10104  26.5% 7985  0.0%
8 1 15970 || 20954 31.2% | 15969 -0.0%
2 15069 || 18462  15.6% 15969  0.0%
4 15969 | 18213  14.1% | 15969  0.0%
8 15969 18088  13.3% 15969  0.0%
16 1 31938 || 36922 156% | 31937 -0.0%
2 31937 || 34430 78% | 31937 0.0%
4 31037 || 34181 70% | 31937 0.0%
8 31937 || 34056 6.6% | 31937 0.0%
32 1 63874 || 68858 78% | 63873 -0.0%
2 63873 | 66366 39% | 63873 0.0%
4 63873 || 66117 3.5% | 63873 0.0%
8 63873 | 65992 3.3% 63873  0.0%
64 1 127746 | 132730 39% | 127745 -0.0%
2 127745 || 130238 2.0% | 127745 0.0%
4 127745 || 129989 1.8% | 127745  0.0%
8 127745 || 129864 1.7% | 127745 0.0%

RMS bound differences = 55.9% (upper) 0.0% (lower)
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.
Table C.7: Execution Time Simulations and Bounds for Livermore Kernel 7, with
Differences Between Simulated and Theoretical Times.
Bounds
Op times | Starts | Cost | Ticks || Upper (diffy | Lower  (dif)
. Cray-1 1 0 2410 || 2517 4.4% | 2410 0.0%
2 1206 | 1316 9.1% | 1206 0.0%
4 604 715  18.4% 604 0.0%
8 303 415 37.0% 303 0.0%
4 1 605 727 20.2% 605 0.0%
. 8 304 427  40.5% 304 0.0%
2 1 1207 |l 1328 10.0% | 1207 0.0%
4 2 606 739 21.9% 606 0.0%
8 3 306 451  47.4% 306 0.0%
1 1 0 2409 || 2420 0.5% | 2409 0.0%
2 1205 Il 1219 1.2% | 1205 0.0%
. 4 603 618 2.5% 603 0.0%
8 302 318 5.3% 302 0.0%
2 1 2410 || 2432 09% | 2410 0.0%
2 1206 || 1231 2.1% | 1206 0.0%
4 604 630 4.3% 604 0.0%
8 303 330 .8.9% 303 0.0%
¢ 3 1 7412 | 2456 18% | 2412 0.0%
2 1208 || 1255 3.9% | 1208 0.0%
4 606 654 7.9% 606 0.0%
8 305 354 16.1% 305 0.0%
8 1 2416 || 2504 3.6% | 2416 0.0%
. 2 1212 | 1303 7.5% | 1212 0.0%
4 610 702 151% 610 0.0%
8 309 402 30.1% 309 0.0%
16 1 2424 || 2600 7.3% | 2424 0.0%
2 1220 || 1399 14.7% | 1220 0.0%
4 618 798  29.1% 618 0.0%
< 8 320 498  55.6% 319 -0.3%
32 1 2440 || 2792 14.4% | 2440 0.0%
2 1236 || 1591 28.7% | 1236 0.0%
4 640 990 54.7% 638  -0.3%
8 400 690 72.5% 399 -0.3%
64 1 2472 || 3176  28.5% | 2472 0.0%
N 2 1280 || 1975 54.3% | 1276 -0.3%
4 799 || 1374 72.0% 798 -0.1%
8 784 || 1074 37.0% 783  -0.1%
RMS bound differences = 29.5% (upper) 0.1% (lower)
i .
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Table C.8: Execution Time Simulations and Bounds for Livermore Kernel 8, with
Differences Between Simulated and Theoretical Times.

Bounds

Op times | Starts | Cost Ticks || Upper (diff) Lower (diff)
Cray-1 1 0 2064 | 2117 2.6% | 2064 0.0%
2 1033 || 1087 5.2% | 1033 0.0%

4 518 572  10.4% 518 0.0%

8 260 315  21.2% 260 0.0%

4 1 519 579 11.6% 519 0.0%

8 261 322 23.4% 261 0.0%

2 1 1034 1094 5.8% | 1034 0.0%

4 2 520 586 12.7% 520 0.0%

8 3 263 336 27.8% 263 0.0%

1 1 0 2063 | 2069 0.3% | 2063 0.0%
2 1032 || 1039 0.7% | 1032 0.0%

4 517 524 1.4% 517 0.0%

8 259 267 3.1% 259  0.0%

2 1 2064 i 2076 0.6% | 2064 0.0%
2 1033 || 1046 1.3% | 1033 0.0%

4 518 531 2.5% 518 0.0%

8 260 274 5.4% 260 0.0%

4 1 2066 || 2090 1.2% | 2066  0.0%
2 1035 1060 2.4% | 1035 0.0%

4 520 545 4.8% 520 0.0%

8 262 288 9.9% 262 0.0%

8 1 2070 || 2118 2.3% | 2070 0.0%
2 1039 || 1088 4.7% | 1039 0.0%

4 524 573 9.4% 524 0.0%

8 266 316 18.8% 266 0.0%

16 1 2078 || 2174 46% | 2078 0.0%
2 1047 || 1144 9.3% | 1047 0.0%

4 532 629 18.2% 532 0.0%

8 276 372  34.8% 274  -0.7%

32 1 2094 || 2286 9.2% | 2094 0.0%
2 1063 || 1256 18.2% | 1063 0.0%

4 552 741  34.2% 548 -0.7%

8 326 484 48.5% 204 -9.8%

64 1 2126 || 2510 18.1% | 2126 0.0%
2 1103 || 1480 34.2% | 1095 -0.7%

4 652 965  48.0% 588  -9.8%

8 494 708  43.3% 463 -6.3%

RMS bound differences = 19.6% (upper) 2.5% (lower)
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Table C.9: Execution Time Simulations and Bounds for Livermore Kernel 9, with
Differences Between Simulated and Theoretical Times.

Bounds

Op times | Starts | Cost Ticks || Upper (diff) Lower (diff)

Cray-1 1 0 2810 | 2867 2.0% | 2810 0.0%
2 1406 || 1464  4.1% | 1406  0.0% |

4 704 762 8.2% 704 0.0%

8 353 412  16.7% 353 0.0%

4 1 705 769 9.1% 705 0.0%

8 354 419 18.4% 354 0.0%

2 1 1407 1471 45% | 1407 0.0%

4 2 706 776 9.9% 706 0.0%

8 3 356 433  21.6% 356 0.0%

1 1 0 2809 || 2815 0.2% | 2809 0.0%

2 1405 1412 0.5% | 1405 0.0%

4 703 710 1.0% 703 0.0%

8 352 360 2.3% 352 0.0%

2 1 2810 | 2822 0.4% | 2810 0.0%

2 1406 | 1419 0.9% | 1406 0.0%

4 704 717 1.8% 704 0.0%

8 353 367 4.0% 353 0.0%

4 1 2812 || 2836 09% | 2812 0.0%

2 1408 || 1433 18% | 1408 0.0%

4 706 731 3.5% 706 0.0%

8 355 381 7.3% 355 0.0%

8 1 2816 | 2864 1.7% | 2816 0.0%

2 1412 | 1461 3.5% | 1412 0.0%

4 710 759 6.9% 710 0.0%

8 359 409 13.9% 359 0.0%

16 1 2824 | 2920 3.4% | 2824 0.0%

2 1420 1517 6.8% | 1420 0.0%

4 718 815 13.5% 718 0.0%

8 374 465 24.3% 371  -0.8%

32 1 2840 || 3032 6.8% | 2840 0.0%

2 1436 1629 13.4% | 1436 0.0%

4 748 927 23.9% 741 -0.9%

8 429 577  34.5% 410 -4.4%

64 1 2872 | 3256 13.4% | 2872 0.0%

2 1496 || 1853 23.9% | 1482  -0.9%

4 858 || 1151 34.1% 819 -4.5%

8 584 801 37.2% 532 -8.9%

RMS bound differences = 14.6% (upper) 1.8% (lower)
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Table C.10: Execution Time Simulations and Bounds for Livermore Kernel 10,

with Differences Between Simulated and Theoretical Times.

Bounds
Op times | Starts | Cost Ticks || Upper (diff) Lower {diff)
Cray-1 1 0 2002 | 3007 3.6% | 2902 0.0%
2 1452 || 1557 72% | 1452 0.0%
4 727 832 14.4% 727 0.0%
8 365 470 28.8% 365  0.0%
4 1 728 843 15.8% 728 0.0%
8 366 481 31.4% 366 0.0%
2 1 1453 1568 7.9% | 1453 0.0%
4 2 729 854 17.1% 729 0.0%
8 3 368 503 36.7% 368 0.0%
1 1 0 2901 2911 0.3% | 2901 0.0%
2 1451 1461 0.7% | 1451 0.0%
4 726 736 1.4% 726 0.0%
8 364 374 2.7% 364 0.0%
2 1 2002 | 2922 0.7% | 2902 0.0%
2 1452 || 1472 1.4% | 1452 0.0%
4 727 747 2.8% 727 0.0%
8 365 385 5.5% 365 0.0%
4 1 2004 || 2944 1.4% | 2904 0.0%
2 1454 1494 2.8% | 1454 0.0%
4 729 769 5.5% 729 0.0%
8 367 407 10.9% 367 0.0%
8 1 2008 || 2988 2.8% | 2908 0.0%
2 1458 || 1538 5.5% | 1458 0.0%
4 733 813 10.9% 733 0.0%
8 371 451 21.6% 371 0.0%
16 1 2916 | 3076 5.5% | 2916 0.0%
2 1466 || 1626  10.9% | 1466 0.0%
4 741 901 21.6% 741 0.0%
8 379 539  42.2% 379 0.0%
32 1 2932 || 3252 10.9% | 2932 0.0%
2 1482 || 1802 21.6% | 1482 0.0%
4 757 1077  42.3% 757 0.0%
8 409 715  74.8% 395 -3.4%
64 1 2064 || 3604 21.6% | 2964 0.0%
2 1514 || 2154 42.3% | 1514 0.0%
4 817 1429  74.9% 789  -3.4%
8 729 | 1067 46.4% 717 -1.6%

RMS bound differences = 26.1% (upper) 0.8% (lower)



Table C.11 Execution Time Simulations and Bounds for Livermore Kernel 11,

with Differences Between Simulated and Theoretical Times.

Bounds
Op times | Starts | Cost | Ticks | Upper (diff) Lower  (diff)
Cray-1 1 0 6009 |l 13995 132.9% | 6008 -0.0%
2 6008 || 12497 108.0% | 6008 0.0%
4 6008 | 12247 103.8% | 6008  0.0%
8 6008 || 12122 101.8% | 6008  0.0%
4 1 7009 | 13248 89.0% 7009  0.0%
8 7009 || 13123  87.2% | 7009 0.0%
2 1 7000 |l 13498  92.6% | 7009  0.0%
5 4 2 8010 || 14249 77.9% | 8010 0.0%
8 3 9011 |l 15125 67.9% | 9011  0.0%
1 1 0 2099 || 3999  33.3% 2999  0.0%
2 1500 || 2501 66.7% 1500  0.0%
4 1002 2251 124.7% 1002  0.0%
8 1002 || 2126 112.2% 1002 0.0%
2 1 3000 || 5000 66.7% | 3000 0.0%
2 2003 || 3502  74.8% 2003  0.0%
4 2003 | 3252 62.4% 2003  0.0%
8 2003 || 3127 56.1% | 2003 0.0%
4 1 4006 || 7002  74.8% | 4005 -0.0%
2 4005 || 5504  37.4% | 4005 0.0%
4 4005 || 5254  31.2% 4005  0.0%
8 4005 || 5129  28.1% | 4005 0.0%
8 1 8010 || 11006  37.4% | 8009 -8.0%
2 8009 | 9508 18.7% | 8009  0.0%
4 8009 | 9258 15.6% 8009 0.0%
8 8009 || 9133  14.0% | 8009 0.0%
16 1 16018 || 19014 18.7% | 16017  -0.0%
2 16017 || 17516 9.4% | 16017  0.0%
4 16017 || 17266 7.8% | 16017  0.0%
8 16017 | 17141 7.0% | 16017 0.0%
32 1 32034 || 35030 9.4% | 32033 -0.0%
2 32033 || 33532 47% | 32033 _ 0.0%
4 32033 || 33282 3.9% | 32033 0.0%
8 32033 | 33157 3.5% | 32033  0.0%
64 1 64066 || 67062 4.7% | 64065 -0.0%
2 64065 || 65564 2.3% | 64065  0.0%
4 64065 || 65314 1.9% | 64065  0.0%
8 64065 || 65189 1.8% | 64065 0.0%

RMS bound differences = 63.2% (upper) 0.0% (lower)
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Table C.12: Execution Time Simulations and Bounds for Livermore Kernel 12,
with Differences Between Simulated and Theoretical Times.

Bounds
Op times | Starts | Cost | Ticks | Upper  (diffj | Lower (diff)
Cray-1 1 0 3003 || 3020 0.6% | 3003 0.0%
2 1503 || 1520 1.1% | 1503 0.0%
4 753 770 2.3% 753 0.0%
8 378 395 4.5% 378 0.0%
4 1 754 773 2.5% 754  0.0%
8 379 398 5.0% 379  0.0%
2 1 1504 || 1523 1.3% | 1504 0.0%
4 2 755 776 2.8% 755  0.0%
8 3 381 404 6.0% 281 0.0%
1 1 0 3002 || 3004 0.1% | 3002 0.0%
2 1502 || 1504 0.1% | 1502 0.0%
4 752 754 0.3% 752  0.0%
8 377 379 0.5% 377  0.0%
2 1 3003 || 3007 0.1% | 3003 0.0%
2 1503 1507 0.3% | 1503 0.0%
4 753 757 0.5% 753  0.0%
8 378 382 1.1% 378  0.0%
4 1 3005 || 3013 0.3% | 3005 0.0%
2 1505 1513 0.5% | 1505 0.0%
4 755 763 1.1% 755  0.0%
8 380 388 2.1% 380 0.0%
8 1 3009 | 3025 0.5% | 3089 0.0%
2 1509 || 1525 1.1% | 1509  0.0%
4 759 775 2.1% 759  0.0%
8 384 400 4.2% 384 0.0%
16 1 3017 || 3049 1.1% | 3017 0.0%
2 1517 || 1549 21% | 1517 0.0%
4 767 799 4.2% 767  0.0%
8 392 424 8.2% 392 0.0%
32 1 3033 | 3097 2.1% | 3033 0.0%
2 1533 || 1597 4.2% | 1533  0.0%
4 783 847 8.2% 783  0.0%
8 408 472 15.7% 408 0.0%
64 1 3065 | 3193 4.2% | 3065 0.0%
2 1565 || 1693 82% | 1565 0.0%
4 815 943 15.7% 815 0.0%
8 440 568 29.1% 440 0.0%

RMS bound differences = 6.9% (upper) 0.0% (lower)
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Table C.13: Execution Time Simulations and Bounds for Livermore Kernel 13,
with Differences Between Simulated and Theoretical Times.

Bounds
Op times | Starts | Cost | Ticks || Upper (diff) Lower (diff)

Cray-1 1 0 3458 || 7087 104.9% | 3458 0.0%
2 2484 5551 123.5% 1849 -25.6%

4 2484 || 4720  90.0% 1849 -25.6%

8 2484 4181 68.3% 1849 -25.6%

4 1 2874 5110 77.8% 2239 -22.1%

8 2874 || 4571 50.0% | 2239 -22.1%

2 1 2874 5041 106.7% 2039 -22.1%

4 2 3264 5500 68.5% 2629 -19.5%

8 3 3654 5351 46.4% 3019 -17.4%

1 1 0 3457 | 3846 11.3% | 3457 0.0%
2 1729 || 2310 33.6% 1729 0.0%

4 865 1479  71.0% 865 0.0%

8 433 940 117.1% 433 0.0%

2 1 3458 4236 22.5% 3458 0.0%
2 1730 | 2700  56.1% 1730 0.0%

4 866 1869 115.8% 866 0.0%

8 781 1330 70.3% 781 0.0%

4 1 3460 [ 5016 45.0% 3460 0.0%
2 1732 || 3480 100.9% 1732 0.0%

4 1561 2649  69.7% 1561 0.0%

8 1561 2110  35.2% 1561 0.0%

8 1 3464 || 6576  89.8% 3464 0.0%
2 3121 5040 61.5% 3121 0.0%

4 3121 4209  34.9% 3121 0.0%

8 3121 3670 17.6% 3121 0.0%

16 1 6243 || 9696  55.3% | 6241  -0.0%
2 6241 8160  30.7% | 6241 0.0%

4 6241 7329 17.4% 6241 0.0%

8 6241 6790 8.8% 6241 0.0%

32 1 12483 [ 15936  27.7% | 12481  -0.0%
2 12481 || 14400 15.4% | 12481 0.0%

4 12481 || 13569 8.7% | 12481 0.0%

8 12481 | 13030 4.4% | 12481 0.0%

64 1 24963 || 28416 13.8% | 24961  -0.0%
2 24961 | 26880 7.7% | 24961 0.0%

4 24961 || 26049 4.4% | 24961 0.0%

8 24961 | 25510 2.2% | 24961 0.0%

RMS bound differences = 62.9% (upper) 10.5% (lower)
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Table C.14: Execution Time Simulations and Bounds for Livermore Kernel 14,
with Differences Between Simulated and Theoretical Times.

Bounds
Op times | Starts | Cost Ticks || Upper (diff) Lower (diff)

Cray-1 1 0 3794 || 10234 169.7% | 3603  -5.0%
2 3703 || 8659 128.3% | 2888 -23.9%

4 3793 || 7797 105.6% 2888 -23.9%

8 3793 7294 92.3% 2888 -23.9%

4 1 4399 || 8403  91.0% | 3494 -20.6%

8 4399 || 7900  79.6% | 3494 -206%

2 1 4399 || 9265 110.6% | 3494 -20.6%

4 2 5005 | 9009  80.0% | 4100 -18.1%

8 3 5611 || 9112  62.4% | 4706 -16.1%

1 1 0 3602 | 4207 16.8% | 3602 0.0%
2 1802 2632 46.1% 1802 0.0%

4 903 || 1770  96.0% 902  -0.1%

8 607 | 1267 108.7% 607 0.0%

2 1 3604 | 4813  33.5% | 3603  -0.0%
2 1806 || 3238 79.3% | 1803  -0.2%

4 1213 | 2376  95.9% 1213 0.0%

8 1213 1873 54.4% 1213 0.0%

4 1 3611 || 6025 66.9% | 3605  -0.2%
2 2426 || 4450  83.4% | 2425  -0.0%

4 2425 || 3588  48.0% 2425 0.0%

8 2425 || 3085  27.2% 2425 0.0%

8 1 4851 || 8449  74.2% | 4849  -0.0%
2 4850 || 6874  41.7% | 4849  -0.0%

4 4849 6012 24.0% 4849 0.0%

8 4849 || 5509 13.6% 4849 0.0%

16 1 9699 || 13297 37.1% | 9697  -0.0%
2 9698 || 11722  209% | 9697  -0.0%

4 9697 || 10860 120% | 9697 0.0%

8 9697 || 10357 6.8% | 9697 0.0%

32 1 19395 || 22993  18.6% | 19393  -0.0%
2 19394 | 21418  10.4% | 19393  -0.0%

4 19393 || 20556 6.0% | 19393 0.0%

8 19393 || 20053 3.4% | 19393 0.0%

64 1 38787 || 42385 9.3% | 38785  -0.0%
2 38786 || 40810 5.2% | 38785  -0.0%

4 38785 || 39948 3.0% | 38785 0.0%

8 38785 || 39445 1.7% | 38785 0.0%

RMS bound differences = 67.8% (upper) 9.9% (lower)





