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Abstract

We consider electrons heated in a local resonance zone of a magnetic well created either by a

linear mirror or a finite aspect ratio torus. If the heating has sufficient strength to drive a significant

non-isotropy in the electron distribution function, an electrostatic potential variation along a field line is

developed to maintain charge neutrality. We determine analytically the buildup of this space varying

potential for times shorter than ion transit times, and find a limit to the number of electrons within the

well that can be heated. We also determine the subsequent evolution of the potential on ion transit and

collision time scales. The theory is applied both to large mirror ratio devices characteristic of magnetic

mirror confinement and to small mirror ratio devices characteristic of Tokamaks. In the former

configuration the theory is compared toexperimental observations of potential build-up and decay in the

MMX device and shown to be consistent with the experiments. In the latter configuration, using the

expected parameters of the MTX experiment it is found that A<D - 0.3 Te is built up on the hot-

electron-transit time scale, dropping to about 0.2 7, on the ion-transit time scale, and then decaying

further on a collisional time scale. Here Ta is the election temperature before heating. The potential

has both poloidal and toroidal variation. Possible consequences include enhanced neoclassical transport

and ionheating, andparametric excitation of low-frequency modes.
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I. Introduction

The role of electron cyclotron resonance heating (ECRH) in creating a non-equilibrium, anisotro

pic, hot electron distribution and thereby creating potentials which affect other plasma species, is well

known. This process is used as part of the overall mechanism in a tandem mirror for creating a poten

tial barrier to the flow of warm electrons. In this configuration the potential is the desired result and

steps must be taken to prevent the natural tendency of the plasma to collisionally relax to a

configuration in which the potentials are much smaller. In other situations the potentials are the inad

vertent consequence of the heating process in which the hot-electron distribution is created for other

reasons. These potentials may influence the heating, itself, or the transport, in ways that are sometimes

deleterious to the overall operation of the device. The EB'H and the RFC-XX are examples of dev

ices employing ECRH heating in which the potentials are inadvertent consequences of the heating. In

the RFC-XX, for example, the heating is not azimuthally symmetric and is thought to be the source of

radial E x B drifts and thus enhanced radial diffusion. ECRH in a tokamak is inherently non-

azimuthally symmetric and would thus also give rise to radial drifts. There are other circumstances in

which the resultant potentials may be beneficial, as will be discussed below.

Short-pulse ECRH, in which heating occurs on a time scale short compared to that of collisional

processes, tends to give rise to large anisotropics and thus large induced potentials. In particular, on

time scales during which the ions cannot move very high potentials are possible, which can have pro

found effects on the heating, itself. Short-pulse ECRH has been employed in a multiple-mirror experi

ment (MMX) in which potential barriers are created for the purpose of investigating trapped particle

modes. The potentials have also been measured using a new type of electron beam, time-of-flight,

potential diagnostic. The potential measurements were, in turn, used to study the transient dynamics of

the various plasma species after the heating pulse. The details of the heating process and build-up of

the potential were not considered, being replaced by the simplest assumption of a uniform heating of

the electron distribution. High intensity short-pulse ECRH is also planned for Tokamak experiments

such as MTX. In this device, also, both the short and longer time-scale potentials may affect the

operation of the experiment and should therefore be considered.



In this work we consider the transient potentials associated with short-pulse ECRH, applicable

both to magnetic mirror devices and to tokamaks. We will reconsider the conclusions of our previous

experimental study in the light of our new viewpoint We also will consider the effect of the poten

tials on the proposed tokamak experiment MTX employing short-pulse ECRH. The basic mechanism

which we consider is the following: Electrons are heated in resonance zones to form a nonuniform

(sloshing) density distribution nh(z,t). To preserve charge neutrality, the unheated (cold) electron den

sity is /i,(z,r) = rii-nh{z,t), where /i, is the background ion density. Assuming a Boltzmann cold elec

tron distribution, a (negative) potential forms: A<t>(z,/) = Tt ln[/j,(z ,/)/«,•]. Both nh and <D build up to

steady state values /!*,(?) and <D,(z) on the cold electron transit timescale. Since n^ cannot

significantly exceed «,-, not all electrons can be heated on this timescale. On an ion transit timescale,

ions move into the potential well, modifying nh and <D. Further modifications of nh and <D are on an

ion or hot electron thermalization timescale.

The width of the resonance zone is a key parameter in determining the fraction of the cold elec

trons that can be heated before the potential buildup excludes the remaining electrons. This width may

be determined either by the natural resonance width over which electrons can be heated, or by the

parallel energy distribution of the unheated electrons which determines, for a given perpendicular

energy gain, the spread in resonance turnings after passing through the exact resonance. The former is

a property of the nonlinear dynamics of the heating, independent of the initial distribution, and is

important in the strong heating limit when the final energy is orders of magnitude larger than the initial

energy. The latter is a property of the distribution function of the unheated electrons and is most

important when the final energy does not greatly exceed the initial energy.

For the development in the Sec. n we first take the width of the resonance zone to be a given

parameter, and, using some simplifying assumptions, we determine the equilibrium hot and background

electron distributions. A simple physically reasonable estimate is also made for the buildup time of this

equilibrium. We then consider some experiments of interest to estimate the widths of the resonance

regions, heating, and expected electron equilibrium distributions. We shall see that in the caseof weak

mirrors and fairly high initial electron temperature, characteristic of short-pulse heating in Tokamaks,

the initial and final velocity distribution functions determine the resonance width. In Sec. in we make
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a more detailed calculation, assuming that the hot-electron velocity distribution is an anisotropic

Maxwellian. The calculations are then applied to the proposed short-pulse ECRH tokamak heating

experiment MTX. In Sec. IV we examine the longer-time effect associated with ion motion. Then, in

Sec. V we re-examine the assumptions of the MMX potential-measuring experiment within the context

of our present theory. Because the final energies are orders of magnitude larger than the low initial

energy, the natural resonance width is used in the calculation. In Sec. VI we apply the theory to the

MTX tokamak. In Sec. VII we discuss some further implications of our work.

n. Model for the Potential

In this section we make the simplest set of physically reasonable assumptions for calculating the

equilibrium potential and its buildup rate. In the next section we redo the calculation using an explicit

anisotropic Maxwellian distribution for the hot electrons.

We make the following assumptions:

1. There is initially a uniform density of ions and electrons, nt(t = Oj) = nt(t = 0>s) = n0 = const,

and the ion distribution remains fixed.

2. There is a parabolic field B(x) = B0
L2

3. The ECRH resonance zone, where electrons are heated and reflected, lies between s = I and

s = l+w, where / is the position of exact resonance, and w <cl.

4 The ECRH pulse is sufficiently long that the cold electrons form a Boltzmann distribution along

the magnetic field lines in response to the potential.

5. The ECRH pulse is sufficiently long that the hot electrons make enough transits to form a quasi-

steady-state distribution (required only for buildup rate calculation).

6. The hot electrons are not affected by the potential.

If we assume a fraction x\ of the total electrons in the mirror region within / are heated and turn

ing within [/, l+w], then the incremental density within the parabolic mirror for turningbetween si and

Ji + ds\ is



where

dnk(sj{) =
Rl\nidsi

K(S2S2)ia *

whereR(s) =B (s)fBr and Br is the value of B at resonance (5=/). Integrating over the range of turn

ings we have the hot electron density profile

Tl/l,/

-i/+w
cosh

S(s)=R(s)<

cosh"1 - cosh"1 —

I <s < l+w ,

, 0<j </,

The hot-electron density from (2) is sketched in Fig. 1(a).

Assuming quasineutrality, n, = nif the cold electrons within the ECRH cell form a Boltzmann

distribution along the field lines in the self-consistent negative potential given by

<Sfr)-*(0) nt-nh(s)

ni-nh(0)

(1)

(2a)

(2b)

(3)

where "0" refers (conveniendy, for mirrors) to the bottom of the well and where T€ is the background

"cold" electron temperature. O has a logarithmic singularity at nk(l) = nit as shown in Fig. 1(b).

Clearly nocold electrons can penetrate to this position and the heating stops. At this point the fraction

of cold electrons heated is, from (1) and (2),

tw=k(w/2/)1'2. (4)

If we further assume that the hot electrons are sufficiendy energetic compared to the cold elec

trons that they form an equilibrium distribution given by (2), with T| in (1) a function of time given by

the cold electron dynamics, then we have the following simple picture for the build-up: For T| <T|m,

there is a flux of cold electrons into the ECRH zone T =n,(/^K, where d, = (kTe/2nm)in. Thus at

s = /, we obtain



dnhldt = - dn.ldt = (VtuwX(/,OS(0 , (5)

which yields

*«(/.0 = ««>exp(-ccO, (6)

where a = (x>tfn)(2/wl)v2 is the rate of conversion of cold to hot electrons. The hot electron density

and potential buildup are then given by

nh(*,0 = nh ^Al-e-«)S(s), (7)

and

<E(j ,0-0(0,0 _ ni-nh(sj)

*,--«* (0,0
(8)

At ^ = /, <D(/,0 = -ctf Tc. Thus the steady state potential at the singularity point s = / builds up

linearly with time.

In addition to the heating of electrons originating in the ECRH cell there may also be some entry

of electrons from regions external to the ECRH cell. For example, in the multiple-mirror experiment

(MMX) there is a large reservoir of such electrons in other mirror cells. Since all electrons entering the

resonance zone are (by definition) heated, this introduces excess electron charge into the ECRH cell

which rapidly builds up an additional potential to essentially cut off this external flow. More exactly,

the equilibrium requires a balanceof flows of negative and positive charge species. The potential there

fore adjusts itself to balance the electron flow into the cell against the loss of hot electrons and the ion

flow into the cell. For strong heating, in which the characteristic change in electron energy in travers

ing the resonance zone is large compared to the initial electron temperature, the short time electron loss

is negligible. Thus we expect a difference of potential of <&(0) - <&«* ~ -4 7*« to be rapidly esta

blished, to make external electron and ion flows into the cell equal After the ECRH is turned off the

Boltzmann distribution of the background cold electrons would be expected to reestablish itself

throughout the device so that this potential difference rapidly collapses.



We now estimate w for a particular device with low initial temperature and high final tempera

ture (the strong heating case). For ECRH heating in a quadratic well, the effective energy gain per pass

o

through the resonance zone goes as

exp (-jc2*) , (9)

where

8s 2-SLl
2tt

(10)

8s is the distance from the turning to the resonance, and d . is the perpendicular velocity at resonance.

Thus x = 1 sets the scale length 8s of the resonance zone. For the MMX experiment, to be considered

in Sec. IV, we use the values co =Inx 1010 rad/sec, ^ =2x 107 m/sec (E , =2keV) andL =0.3

m to obtain, at x = 1, 8s = 0.23 cm. Setting L = / and 8s = w, then from (4) we obtain T|m = 0.2,

Le., 20% of the electrons within [-/ < s < /] are heated.

We compare the 8s obtained above with the penetration through the resonance As, due to the

finite £ || at resonance. Assuming u, =Ej_ IB and E =Ej_ +Ea to be constants in the turning

(usual mirror assumptions), using the magnetic field gradient scale length L = //(Rq1-!). wnere

R0 = R(0) and assuming As •< /, we have

Ac l_ E II
^-J^TZ' (11)

Taking E± » 2 keV, £ N= 10 eV and L =0.3 m, as before, we find As =0.05 cm, which is consider

ably less than the natural resonance width given by (10). We contrast this result with a tokamak exam

ple to be considered in detail in the next section. There, the initial electron temperature is of the order

of 1 keV and the final temperature is of the order of 5 keV, with the scale length given by lf(Rol-l)

where Rq1 =1.1 from the aspect ratio. For those values, we have w =As =2/ (the length of the mir

ror!) and t\M > 1, implying that all electrons are heated. However, for that case our approximations are

not satisfactory, leading to the treatment given in the next section. The scale lengths are so different

both because of the smaller mirror ratio and because of the higher background "cold" electron tempera-



ture.

DX Bi-Maxwellian Model

In this section we model the hot-electron distribution function as a bi-Maxwellian at the point

along a field line where the ECRH is resonant:

fh =C exp HE±ITL +EnIT „)] (12)

where E . andE u are the perpendicular and parallel energies at the resonance point, T, and T n are

perpendicular and parallel temperatures, and C is a normalization constant to be determined. The tem

peratures 7. and 71| are prescribed in the present calculation, but in principle are determined by a

competition between ECRH heating and collisions as well as the temperature of the initial electron dis

tribution. Note that the connection between the results to be obtained with this model and those of Sec.

His via Eq. (11).

As in the preceding section we assume that the hot electrons are collisionless on the transit time

scale so that the hot-electron distribution is everywhere given by (12) since E. and E {\ are constants

of motion (related to local variables through consistency of energy and magnetic moment). As in Sec.

n we assume that hot electrons are sufficiently energetic to be unaffected by potential variations. Then

the local hot-electron density is given by

m

2T

dE, dE

nh(s) =—-j^ J /
m * v ||

oo

nR(s) \dze-* f -^=—i { {e-E± [1-X(1-/?
m ~ ei- de (13)

(s))]) 1/2

where Xa T. ITn, z. =E , IT, , and e = E nITn +e, . The range of e, integration has a max

imum given by e | = e for R<1 and e, = d[l+X(R-l)] for R > 1 (the difference being due to

electrons at the resonance position which do not reach position s for R > 1). Hence we obtain
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where

3/2

nh =

2nT

m
CXg(R)

g(R)='
l+lMi-R)]112

R

l+\MR-D]

, R * 1,

(14)

(15)

We normalize the hot-electron distribution so that the total number of hot electrons on a flux tube is a

fraction t\ times the total electron number, this determines C so that

«a =Vfio8<JR) (16)

with

(17)

and () denotes aJ<fr/S average along afield line.

One may observe from (15) and (16) the expected peaking of the hot-electron density at the reso

nance position (where g = 1). One may also observe that, depending on values of X and A, the max

imum relative variation in hot-electron density occurs for heating at either the bottom or top of the

magnetic well.

In contrast to the model discussed in Sec. II, the hot electron density is non-zero everywhere;

however, for X» 1, the density drops off rapidly with R > 1. As in Sec. n, on a time-scale short com

pared to ion transit times, the ion density is constant ( nt = n0) and the cold Boltzmann electrons estab

lish a potential variation along field lines

<!>-<&. =lnJlC^=ln±^i,
Tt «,-/iA(0 l-Tfc(/?0

where s* denotes some convenient reference point (*• =0 in Sec. II).

•9-
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The potential becomes singular at R = 1 when i[ = 1. From (17) it follows that this always

occurs for T| < 1, as it can be seen from (10) that (g >< 1. Thus, as in Sec. n, if the ECRH is on long

enough the heating process extinguishes itself when less than all of the cold electrons are converted to

hot; additional fueling can occur only on the time scale of the ion motion.

For the particular case of heating of the top of a sinusoidal well B~l <* 1+ 8 cos sIsq, a simple

exact solution is obtainable. For this B (s)y we average g(R) to obtain

<*> =

arctan
\-K

l+K

(1-^2)172

2l 1-4
n (K2-l)1'2

where %- {(K-l)f(K+l)]112 and K = (2X5)172. Top-of-well heating is of interest for tokamaks because

1/2

, K <\
(19)

K>\

it minimizes trapped-particle effects on current drive and, as will be discussed in Sec. V, it minimizes

toroidal variations of the ECRH-driven potential.

As in Sec. II, if the pulse is on for many hot-electron transit times, we can derive the approach to

the logarithmically singular steady state described by (18) with r\ = 1. The flux of cold electrons into

the heating zone isT = ntrx>t, where n„ and t), are the cold-electron density and the thermal speed at

the resonance point Hot electrons are created from this flux. These hot electrons spread themselves

according to the weight function g(R). Thus in the limit nhl/xb »r, where xb is the hot-electron

bounce (or transit) time, the hot-electron density evolves as

<*»h _ TgjR)
<*' " (g)jds/R '

Since nt + nh = nL ^ n0 = const, we have, as in Sec. II, exponential decay nt

now a =a)«/«g )JdsIR). Thus we have the density

nh{Rj) = s(/?)(no-«,r) = giR^od-e^)

and potential variation

-10-
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*-*• l-g(l-g^)
(22)

IV. Potential Evolution on Longer Timescales

As has been noted, the analyses of Sees, n and m become invalid for times of the order of ion

transit times. On the ion transit timescale, the ions find themselves in the nonuniform potential set up

by the (rapid) electron dynamics. Their distribution function when expressed in terms of constants of

motion (total energy and magnetic moment) now hasexplicit spatial dependence. Consequently the ion

density evolves in time, becoming spatially and temporally nonuniform, and taking on a sloshing char

acter with oscillations on the ion-transit time scale. After several ion transit times, however, the ions

phase mix and settle into an intermediate time-scale "quasi-steady-state" spatially nonuniform density

which slowly changes on the ion or hot-electron collisional time scales. We approximately evaluate

this phase-mixed state for heating at the top of a square well magnetic field. The model magnetic field

and potential profiles, and the resultant trapped and passing regions in the ion velocity spaces, are

sketched in Fig. 2. We assume that the ECRH heating pulse was on for a time short compared to the

ion transit time scale. We assume that, before the ECRH pulse, the ion distribution function is

Maxwellian fm(y)% and that during the evolution of the potential, the distribution functions in the

trapped portions of velocity space at the top and bottom of the well, expressed as functions of local

velocity, do not change. Thus the final trapped-ion density ntJ in region j (=1,2) is given by

J« i>/«s(v) over the trapped portion of velocity space in region j. Taking note of the trapped ion

boundary in cell 1 (see Fig. 2), (\>„A))2 = 1-/T1 -<|»//?e, where esmv2/2rif $ = AWTit and

R sBi/Bi, we have:

ntl =noJr3S>r3 j d\ exp(-D2/D2)
trapptd

.-1/2= 2*l(*rUZ« ]dezme-*+ j dz -l-d-*-1*
1/2

,-e •

where zu - <y(l-/?). These integrals can be expressed in terms of an error function and a Dawson

integral,
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nt\ = «o[l - exp(-<j»)Gi(<J))]

where

G!((J>) = ^exp((t>1/2)-2 1-/?

Rn

1/2

Daw

r ^

R§

\-R

1/2

and the Dawson integral is defined as

Daw(y) 3 e !<*«'
Similarly the trapped density in cell 2 is

nt2 =rt07T1'2 fdee172*-* +Jdz [e1/2 - (l-/?)1/2(e-e)ly2]<

where e = /f eu,or

«»2 = «o[l-^2((l>)]

where

G2(4>) = 1 -(1-/? )I/Zexp
/?4>

" l-R

(23)

(24)

It follows that {nQ-ntj)t,j ions from cell y become passing ions on the same flux tube, where

C>j =Lj/Bj and L, is the length of cell j. But we do not yet know how these are distributed axially.

We determine this from the approximation that after phase mbcing, the distribution function can be

taken as Maxwellian in total energy (kinetic + potential) independent of axial position s. This approxi

mation implies that npj = constx G;, where the constant is determined from the prescription that the

total ion density be as given above,

2 npj£>j = £(n0-rtr/)Cy
J J

where the sum is over regions 1,2. Adding together passing and trapped densities, we obtain the final

total ion densities

•12-



f C.G1G2(l-e-») 1
B2=flT- cg^, ;• (26)

The potential variation is then determined from quasineutrality. Assuming, as in Sees, n-m, that

the hot-electron density is unaffected by the potential, we can use the hot-electron density found in Sec.

m and thus obtain

A* nz-nh2 n2-n0f\g(R)
exp — = = *— (27)

*• «i-«ai n\-tiQT\

As noted earlier this potential decays on the hot-electron and ion collisional time scales. If these time

scales are disparate one may ask for the potential on the shorter time scale. If the hot-electroncollision

time is shorter, the potential decays to zero on that time scale. If the collision time is shorter, then on

that time scale the ion density relaxes to a Boltzmann distribution,

iij = n0 exTX-O/r^)

where the normalization constant n0 is set by number conservation: n0 = /»</<exp(-<b/7i)>. The

quasineutrality condition can be written in the form

extfO/r,) = ^r : (28)

where we have defined O = 0 at the resonance point This is generally an integral equation for <2>. If

we again introduce the square well approximation with heating at the magnetic field maximum, thenwe

can write

- *o(Ci+Q
"°= Ci^exp^/r,) ' <29>

and (28) becomes an algebraic, though transcendental, equation for the potential <X> in region 2. Finally

this potential decays on the hot-electron time scale.

13-



The description given by (28) is also the appropriate one for steady-state potentials in a device

with continuously heated electrons (where the electron collisional time scale is effectively infinite pro

vided the steady-state hot-electron distribution function has been adequately modeled). The physics in

this case is that of a steady-state tandem-mirror thermal barrier with ECRH heating and Maxwellian

ions (no pumping).

V. Interpretation of MMX ECRH Experiment

Measurements of potentials created by short-pulse ECRH, in a single cell of a multiple-mirror

device, have been made in the configuration shown in Fig. 3. Because of the short time-scale of the

pulse, all measurements are made after the completion of the pulse, and are thus recording the fast-time

scale equilibrium, before ions can move significantly, and the subsequent slower time scale evolution

characteristic of the ion motion and collisional processes.

The experimental configuration, as shown in Fig. 3, consists of a quadrupole stabilized set of

magnetic mirrors of length 75 cm with midplane fields of B0 = 0.18 T. The central cell (with midplane

at A/67), together with mesh-covered endplates at T6 and T7 having openings spaced to fit the elliptical

flux surfaces, form a cavity for electron cyclotron resonance heating. A 3 usee, 250 kW, 9.0 GHz, if

heating pulse creates the magnetically confined, hot electron density nh in this cell.

Diagnostics include Langmuir probes to measure plasma radial profiles, plasma density, and elec

tron temperature in the mirror cells without hot electrons, an 8 mm microwave interferometer to meas

ure the density in the cell containing hot electrons (the interferometer has been calibrated against a

Langmuir probe measurement of the plasma density in M& in the absence of ECRH), and high

impedance emissive probes to measure plasma potentials. The temperature of the "tail" of the hot elec

tron distribution is determined by measuring the x-ray flux in the 1-10 keV range using a cooled, Si(Li)

detector with a beryllium window having 91 percent transmissivity at 2 keV. The total stored energy of

the plasma is determined using a diamagnetic loop. The potential in the ECRH cell is measured using

an electron beam time-of-flight diagnostic. ' A 100-200 volt, 0.5 mA, 1/8" diameter electron beam is

injected in the midplane of cell M78, propagates along the magnetic axis of the ECRH cell and is

detected in the midplane M& of the following cell. To determine the beam time-of-flight, the beam

-14-



current is modulated at a frequency of 10 MHz, and the phase delay of the signal received at the collec

tor is measured.

In a typical experiment, the tail of the electron distribution was measured from pulse height

analysis of the x-rays to be 2 keV. The total energy measurement from the diamagnetic loop, combined

with the plasma density and profile measurements, gave an average hot electron energy, after the ECRH

pulse, of Th ~ 770 eV. Uncertainties in this latter measurement may be as much as a factor of two. In

a previous study we took the electron distribution to be Maxwellian, with an average energy Th = 500

eV. The decay of the hot electrons at this temperature, together with a smaller effect due to the trap

ping of ions in the ECRH cell, gave good agreement with the measured decay in the potential in the

ECRH cell, as shownin Fig. 4. Although not specifically discussed in the previous paper, the choiceof

Th = 500 eV, together with the diamagnetic loop and x-ray measurements, implies a two-temperature

distribution. Taking the hotter component to have a temperature of 2 keV (from the x-ray pulse height

analysis) and the averaged temperature to be 770 eV (from the diamagnetic signal and average density),

then energy conservation implies that slighdy under 20 percent of the electrons are heated to the higher

energy. This result is consistent with ourcalculations in Sec. II which indicate thatabout 20 percent of

the electrons can be heated to the characteristic ECRH energy before the buildup of the potential

excludes the remaining electrons from entering the main heating zone. Further details regarding the

experiment and its interpretation can be found in reference 5.

VI. Application to MTX

We consider application of the results of Sees, in and IV to a tokamak heated by pulsed ECRH,

such as the MTX experiment to be constructed at Lawrence Livermore National Laboratory. MTX

consists of the ALCATOR-C tokamak plus a free-electron maser (FEM). The FEM produces 100 to

200 joule pulses of duration xp = 50 ns with a 5 kHz repetition rate. The microwaves will enter the

plasma as a beam of rectangular cross section of about 4 cm x 20 cm. The r.f. field is sufficient to

raise the perpendicular energy of a 1 kev electron to as much as 10 keV on a single pass through reso

nance.
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14 -3
We consider application of the FEM to an MTX plasma with a density of 10 cm and a range

of background electron temperatures Te. We evaluate the hot-electron anisotropy Xa T± IT u by tak

ing T || = Tt and T, to be half the maximum amplitude of the energy oscillations of electrons in the

intense microwave field. * From Refs. 6 and 10, this implies, for fundamental ordinary-mode heating

in MTX, X - 5T'^OceV). The pulse duration limits the hot-electron fraction to about the ratio of xp

to the mean electron toroidal transit time, giving T| = 0.25 T?2 (keV). Since ion transit times, which

-4 ...
are about 10 sec at 1 keV, are long compared to the pulse length and electron transit times, it is

appropriate to apply the potential calculations of Sees, m and IV. For heating on the inside of the flux

surface (at the field maximum) at 8 a minor radius/major radius = 0.1, we find from (17)-(19) that, on

the hot-electron transit time scale (-10 sec) the potential variation is as shown by the curve labeled

"e" in Fig. 5. We note that the expected range of electron temperatures is about 1-2 keV, the lower

figure being the value obtained in ohmic ALCATOR-C discharges. Over this range, Q>ITt ~ 0.3-0.4.

Results at lower Tt are relevant to startup. Note that <t>/Tt increases with increased Tt; this is because

the increase in the hot-electron fraction (due to the increased number of electrons passing through the

microwave beam during the time xp) more than compensates for the decreased anisotropy. As T,

approaches about 10 keV, the calculated potential diverges due to the choking off of the flow of cold

electrons as described in Sees. II and III. However, because T. is not extremely large compared to

the computed potential, our calculation, which assumes that the hot electrons are unaffected by the

potential, is of doubtful validity beyond T, ~ 4 keV.

On the time scale of several ion transits, the potential relaxes to that given by the curve labeled

"it" in Fig. 5, Le., <D/T, = 0.2 for Tt in the range of 1-2 keV. This curve was obtained using (27) with

Ci = C2.andri =7,.

For completeness we note that, were the hot-electron time scale and inter-pulse period long com

pared to the ion-collision time (which is not the case), or were we to maintain a hot electron fraction

and anisotropy equal to those discussed above by continuous heating (which could happen only if hot

electrons were lost in a time short compared to their relaxation time) the potential would, on the ion-

collision time scale, settle down to the values given by the curve labeled "ic" in Fig. 5. This is
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obtained from (28) and (29), again with 5i = C2 and Tg = T,.

Vn. Discussion and Conclusion

The application of intense, short pulses of ECRH to a plasma in a nonuniform magnetic field can

generate sizable potentials on the transit time scale of the heated electrons. These potentials can affect

the heating process itself to limit the fraction of the electrons heated. A negative potential is formed by

the sloshinghot electrons in the presence of transiting cold electrons which form a Boltzmann distribu

tion along the field lines. The potentials relax to successively smaller values on the ion-transit and

ion-collision time scales and decay on the hot-electron collisional time scale. The same mechanism

forms potentials in continuously heated plasmas, but typically at much smaller levels, because the hot-

electron anisotropy is much smaller.

We investigated the shape and magnitude of the potential profile in for two different distributions

of hot-electron turning points. First, in Sec. n, we assumed that the hot-electron turnings were uni

formly distributed over a width determined from the ECRH dynamics. Second, in Sec. m, we assumed

that the hot-electron distribution function is bi-Maxwellian, yielding a non-uniform turning distribution.

In confinement devices with a sufficiently large combination of mirror ratio and hot electron

anisotropy (sufficiently strong heating), both formulations predict that the flow of cold electrons from

within the mirror into the heating zone is effectively shut off by the potential build-up after only a

small fraction of the electrons are heated. This prediction was compared with the experimental obser

vations of electron heating in a short-pulse ECRH experiment, MMX, and found to be consistent with

them.

The potential structures we have calculated are fundamentally variations along field times. How

ever, if the microwave source is localized in directions transverse to field lines, there may be potential

variations in those directions as well. Of particular interest are axisymmetry-breaking potential varia

tions (toroidal in a tokamak, azimuthal in a mirror), as such variations are likely to significantly

enhance neoclassical transport Consider a tokamak with a toroidally localized microwave source. To

the extent that the hot electrons are all passing (this is most true for heating resonant on the inside of

the flux surface) then on an irrational flux surface, the hot electrons distribute over the entire flux
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surface, producing only a poloidal density and hence potential variation. Trapped hot electrons can fill

the flux surface only on the (slow) drift time scale. If this time scale is comparable to or longer than

hot-electron and ion collision times (as is the case for MTX), the potential must vary toroidally as well

as poloidally. Heating on a flux surface with resonance not at the inside direcdy produces trapped hot

electrons. Even for resonance at the inside, the combination of cyclotron heating and collisions produce

some trapped hot electrons. Thus there will always be some toroidal potential variation, but it can be

minimized (on irrational surfaces) by heating at the field maximum. On a rational surface, a field line

does not cover the flux surface; hence, in the neighborhood of a rational surface, potential variation is

confined to field Lines which pass through the microwave beam, so that the potential takes on a helical

structure.

The presence of these potentials can have other consequences. One is parametric coupling of the

time-varying potential to low-frequency modes of the plasma. Difficulties associated with such coupling

might be avoided by changing the repetition rate. A conceivably beneficial effect is enhanced heating.

On the ion-transit time scale, ions flowing into the potential wells set up by the hot electrons are

accelerated, which, for large AO/T,, may result in a two-stream instability and thus lead to rapid energy

transfer from the passing to the trapped ions. For smaller potentials the streaming and background ion

populations equilibrate on an ion-ion scattering time scale. Either mechanism provides a faster process

of converting hot-electron energy to ion energy than direct electron-ion energy equilibration.
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FIGURE CAPTIONS

Fig. 1. (a) Normalized hot-electron density S(s) and (b) potential <&(s) versus axial position s.

Fig. 2. Square well model (a) and ion velocity distribution function boundaries (b) for determin

ing the potentials on ion transit timescales.

Fig. 3. MMX experimental configuration, including a schematic (not to scale) of two magnetic

field lines 180 degrees apart The mirror midplanes (M) and throats (T) are indicated.

Fig. 4. Spatially average barrier depth (<&)/Tt vs time t for a medium diamagnetic loop voltage

discharge. The solid line is the simulation result and the crosses give the measured result,

with the height of each cross indicating the standard deviation of the phase delay measure

ment

Fig. 5. Expected potential buildup of AO = <D(£n»x) - ^(Bnun) versus cold electron temperature

Tt for the MTX experiment, on the (e) hot-electron transit timescale, (it) ion transit times

cale and (ic) ion collisional timescale.
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