

Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

NONLINEAR RELAXATION ALGORITHMS FOR CIRCUIT

SIMULATION

by

Resve A. Saleh

Memorandum No. UCB/ERL M87/21

15 April 1987

NONLINEAR RELAXATION ALGORITHMS FOR CIRCUIT SIMULATIl

by

Resve A. Saleh

Memorandum No. UCB/ERL M87/21

15 April 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

NONLINEAR RELAXATION ALGORITHMS FOR CIRCUIT SIMULATION

by

Resve A. Saleh

Memorandum No. UCB/ERL M87/21

15 April 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ABSTRACT

Circuit simulation is an important Computer-Aided Design (CAD) tool in the design

of Integrated Circuits (IC). However, the standard techniques used in programs such as

SPICE result in very long computer run times when applied to large problems. In order to

reduce the overall run time, a number of new approaches to circuit simulation have been

developed and are described in this dissertation. These methods are based on nonlinear

relaxation techniques and exploit the relative inactivity of large circuits. Simple waveform

processing techniques are described to determine the maximum possible speed improvement

which can be obtained by exploiting this property of large circuits. Three simulation algo

rithms are described, two of which are based on the Iterated Timing Analysis (ITA) method

and a third based on the Waveform-Relaxation Newton (WRN) method. New programs

which incorporate these techniques have been developed and used to simulate a variety of

industrial circuits. The results from these simulations are also provided. The techniques

are shown to be much faster than the standard approach. In addition, a number of parallel

aspects of these algorithms are described and a general space-time model of parallel task

scheduling is developed.

ACKNOWLEDGEMENTS

I thank Prof. A. Richard Newton, my research advisor for both the Masters and Ph.D.

degrees, for his encouragement and guidance during the course of this work. He provided

me with many opportunities to work on a variety of research projects over the past few

years, both at the University of California and at a number of industrial locations. His

dedication and dynamic energy inspired me to do my best work and I thank him for one of

the most enjoyable working relationships I've ever had. Based on my experiences in thesis

writing. I present the following theorem, without proof, for his other students, both now

and in the future: A Ph.D. thesis is guaranteed to converge in a finite number of "Newton"

iterations if. and only if. the initial draft is close enough to the final dissertation.

I also thank Prof. Alberto Sangiovanni-Vincentelli who provided me with a lot of

assistance and motivation (both on and off the tennis court). His door was always open for

discussions, and he contributed many useful ideas to this work. Prof. Don O. Pederson was

a constant source of inspiration and offered me a lot of good advice during the course of my

graduate studies. I thank him for giving me the benefit of his many years of experience

and. along with Prof. Newton and Prof. Sangiovanni-Vincentelli. for providing an excellent

research environment for the students in the Berekely CAD group. I also thank Prof. Ole

Hald for reviewing this dissertation.

A number of graduate students in the CAD group made substantial contributions to

the body of work presented in this dissertation. Jacob White. Ken Kundert. and Peter

Moore were all involved in the development of the SPLICE3 program. I enjoyed many

fruitful discussions and collaborations with Jacob While and I thank him for all his help

and his insights into the theoretical aspects of the work. Those who provided other pro

gramming assistance, engaged in useful discussions and read early versions of this disserta

tion were Giorgio Casinovi. Ron Gyurscik. Tammy Huang. Seung Hwang. George Jacob.

Young Kim. Ken Kundert. Tony Ma. Kartikeya Mayaram. Peter Moore. Tom Quarles. Rick

Spickelmier. Don Webber. Nick Weiner and Jacob White.

Jeff Deutsch. George Jacob and Morgan Hua helped in the development of the parallel

version of SPLICK3. Jeff Deutsch also spent many long hours discussing parallel aspects of

this work with me and 1 thank him for his contribution. A number of people at Shiva

Multisystems also deserve mention for help on parallel processing aspects. In particular.

Bob Floyd. Dierdre Ryan. Howard Ko. John Chan and Dileep Devekar provided software

support and technical assistance. In addition. Susan Eggers at U.C. Berkeley and Dave

Smart and Kyle Gallivan of the University of Illinois contributed to the chapter on parallel

processing.

Tai Sato. Takayasu Sakurai. Shuji Ohtsubo. Nobu Matsumoto. Kiichiro Tamaru. Yuki-

masa Uchida. Tetsuya Iizuka. and Takeshi Shima of Toshiba Corporation provided technical

support and an excellent working environment for the development of the SPLICE2 pro

gram and Hiroyuki Kinoshita provided the modified routines for the MOS level 3 model

now used in SPL1CE2 and SPLICE3. and a number of other programs at U.C. Berkeley. To

these and other friends in Japan, "Domo arigato gozaimashita!". I would also like to thank

K. Shimizu and Toshiba Corporation for the financial support and making it possible to

spend an exciting and memorable summer in Japan. Jim Kleckner, of SDA systems, pro

vided me with a lot of help in the early stages of this project with programming and useful

discussions about the SPLICE2 program and I thank him for his assistance and encourage

ment.

Finally. I thank my wife. Lynn, my parents. Ehsanes and Shahid-ara Saleh, and John

and Rosemary Hilchie for all their moral support during the course of my graduate studies

and beyond.

Funding for this research was provided by the Natural Sciences and Engineering

Research Council (NSKRC) of Canada, the Hewlett-Packard Company and Toshiba Cor

poration, and computer resources were provided by Digital Equipment Corporation.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: RELAXATION-BASED CIRCUIT SIMULATION 7

2.1 THE CIRCUIT SIMULATION PROBLEM 7

2.1.1 Equation Formulation 7

2.1.2 Numerical Techniques for Transient Analysis 12

2.1.3 Overview of Standard Circuit Simulation 14

2.2 RELAXATION xMETHODS 15

2.2.1 Linear Relaxation 15

2.2.2 Nonlinear Relaxation 19

2.2.3 Waveform Relaxation 22

2.2.4 Partitioning for Relaxation Methods 24

CHAPTER 3: TIME-STEP CONTROL FOR CIRCUIT SIMULATION 27

3.1 INTRODUCTION 27

3.2 CONSTRAINTS ON STEP SIZE 29

3.2.1 Numerical Integration Method 29

a. Accuracy Constraint 31

b. Stability Constraint 32

c. Stiff-Stability Constraint 34

3.2.2 Solution of Nonlinear Equations 36

3.3 TIME-STEP CONTROL IMPLEMENTATION ISSUES 38

3.3.1 LTE Time-Step Control 39

3.3.2 Iteration Count Time-Step Control 41

3.4 LATENCY AND MULTIRATE BEHAVIOR 42

3.4.1 Maximum Speed-up if Latency is Exploited 48

3.4.2 Maximum Speed-up if Multirate Behavior is Exploited 50

3.4.3 Experimental Results 52

3.5 EFFICIENCY OF RELAXATIONS METHODS 54

CHAPTER 4s ITERATED TIMING ANALYSIS (ITA), 57

4.1 INTRODUCTION 57

4.2 EQUATION FLOW FOR NONLINEAR RELAXATION 57

4.3 TIMING ANALYSIS ALGORITHMS 59

4.4 SPLICE1.7 - FIXED TIME STEP ITA 64

4.5 SPLICE3.1 - GLOBAL-VARIABLE TIME-STEP ITA 67

4.5.1 Circuit Partitioning 67

4.5.2 Global-Variable Time-Step Control 72

4.6 LATENCY AND EVENT SCHEDULING 74

4.6.1 Latency Detection 74

4.6.2 Electrical Events and Event Scheduling 81

4.6.3 Latency in the Iteration Domain 86

4.7 SIMULATION RESULTS 89

4.7.1 Speed Improvement Due to Latency Exploitation 89

4.7.2 Global-Variable Time Step ITA vs. Direct Methods 89

4.8 CONCLUSIONS 91

CHAPTER 5: EVENT-DRIVEN MULTIRATE INTEGRATION ALGORITHMS 93

5.1 INTRODUCTION 93

5.2 BASIC CONCEPTS OF EVENT-DRIVEN MULTIRATE METHODS 95

5.3 PREVIOUS WORK IN EVENT-DRIVEN MULTIRATE METHODS 100

5.3.1 Gear's Methods 100

5.3.2 Circuit Simulators Using Event-driven Multirate Schemes 107

a. Time-Step Control in SAMSON 107

11

b. Time-Step Control in MOTIS2 108

c. Time-Step Control in SPLICE2 109

5.4 A NEW MULTIRATE SCHEME FOR ITA 115

5.4.1 The Basic Technique 117

5.4.2 Refinements to the Basic Technique 120

5.4.3 Selective-Backup Strategy , 120

5.4.4 Summary 124

5.5 INCREMENTAL REPARTITIONING 125

5.6 SIMULATION RESULTS USING MULTIRATE ITA 129

5.7 CONCLUSIONS 132

CHAPTER 6: MULTIRATE INTEGRATION USING WAVEFORM-NEWTON 133

6.1 INTRODUCTION 133

6.2 MOTIVATION FOR A NEW APPROACH 134

6.3 WAVEFORM-NEWTON (WN) 135

6.3.1 The Space of Continuous Functions 135

6.3.2 Derivation of the Waveform-Newton Method 138

6.3.3 Application to Circuit Simulation 142

6.3.4 Waveform-Newton Algorithm 144

6.4 WAVEFORM RELAXATION-NEWTON (WRN) 146

6.4.1 An Efficient Time-Step Control for WRN 147 .

6.4.2 Choice of Integration Method 150

6.4.3 Waveform Limiting Techniques 153

6.4.4 Simulation Results 155

6.5 CONCLUSIONS 156

CHAPTER 7: PARALLEL ASPECTS OF ITA AND WAVEFORM-NEWTON 158

7.1 INTRODUCTION 158

7.2 BASIC CONCEPTS OF PARALLEL COMPUTATION 159

Ill

7.2.1 Classification of Computers 159

7.2.2 Communication Between Processors 159

7.2.3 Mutual Exclusion 165

7.3 SYNCHRONOUS AND ASYNCHRONOUS RELAXATION 167

7.4 PARALLEL ITA ALGORITHMS 171

7.4.1 MSPLICE - A Multiprocessor Implementation of SPLICE1.7 172

7.4.2 PSPLICE - A Parallel Implementation of SPLICE3.1 174

a. Tasks and Task Scheduling 174

b. Granularity of the Computation 179

c. Synchronization at Time Points 182

d. Gauss-Seidel/Gauss-Jacobi Algorithms 184

7.5 PARALLEL WAVEFORM-NEWTON 193

7.6 GENERALIZED SPACE-TIME SCHEDULING MODEL 196

CHAPTER 8s CONCLUSIONS 201

REFERENCES

IV

CHAPTER 1

INTRODUCTION

Circuit simulation continues to be an important tool in the design of Integrated

Circuits (IC). It is certainly one of the most heavily used Computer-Aided Design

(CAD) tool in terms of CPU-time in the IC design cycle. The success of this form of

simulation is primarly due to its reliability and its ability to provide precise electrical

waveform information for circuits containing complex devices and all associated parasi-

tics. This detailed form of analysis with guaranteed accuracy is usually referred to as

circuit-level simulation. A number of higher-level simulation tools have also been used

[New78a. Bry80. Hil80. Sak81. Kle84. Rao85] to verify circuit functionality and to

obtain first-order timing characteristics. These techniques were developed to cope with

the ever-increasing number of devices integrated on a single silicon chip. While these

higher-level tools provide enough information to design working circuits, there is still a

significant time lag between a functioning circuit and a circuit which meets the design

specifications, particularly in the case of high-performance custom integrated circuits.

In fact, circuit simulation is the only tool which provides enough detail to ensure that

circuits of this type will meet specifications over a wide range of operating conditions.

At the present time, the most popular circuit simulation tool is the SPICE2 pro

gram [Nag75] developed in the early 1970's at the University of California at Berkeley.

There are many thousands of copies of this program in use. as well as a number of ver

sions of "alphabet-SPICE" (e.g.. HSPICE. PSPICE. GSPICE) being marketed commer

cially. This program offers a wide variety of analysis types including DC solution,

time-domain transient analysis. AC analysis, noise and distortion. Of these, the time-

domain transient analysis is the most computationally expensive in terms of CPU-time.

The SPICE program was originally designed to simulate circuits containing up to 100

transistors. However, at some companies it has been routinely used to simulate circuits

containing over 10.000 transistors at great expense! The program is accessed over

50,000 times per month at a number of companies with a "job mix" that conforms to the

80-20 rule. That is. 80% of the SPICE runs are small circuits which consume only 20%

of the total CPU-time used each month, while 20% of the jobs are very large and con

sume 80% of the CPU-time used each month.

The circuit simulation problem in the time-domain involves the solution of a sys

tem of nonlinear first-order ordinary differential equations. The standard approach to

circuit simulation uses direct methods to solve the circuit equations. Briefly, a numeri

cal integration method is used to to convert the nonlinear differential equations into a

set of nonlinear difference equations, which are then converted to linear equations using

the Newton method, and solved using a sparse LU decomposition technique. There are

two limitations in this approach which make it somewhat inappropriate for large cir

cuits. A fundamental problem is that the sparse linear solution dominates the run time

for large circuits [NeSa83]. The other limitation is due to the fact that, at each time

point, all variables in the system are solved using a common time-step based on the

fastest changing component in the system, even though some components may be chang

ing very slowly [NeSa83]. This can be inefficient for both small and large circuits, but

it is more significant for very large problems where most of the components are either

changing very slowly or not changing at all.

A variety of techniques have been investigated to improve the performance of cir

cuit simulators. Current research can be broadly classified into three areas: algorithmic

development, improvements in the efficiency of model evaluation, and hardware-

assisted approaches. Early work in the area of algorithmic development included tim-

ing analysis [Cha75. New78a. DeM80], which is a simplified form of relaxation-based

circuit simulation, and tearing methods, which have been applied to both linear [San77,

Yan80. SakSl] and nonlinear [Rab79] equation levels to exploit the inactivity of large

circuits. More recently, the relaxation-based approaches have been the focus of inten

sive research. The Waveform Relaxation method [Lel81. Whi83] has been implemented

in a number of programs including RELAX [Lel81. Whi83], SWAN [DeMa85], TOGGLE

[Hsi85], RealAx [Mar85] and MOSART [Car84]. Iterated Timing Analysis [Kle83.

Sal84] has been implemented in SPLICE [Sal82. Kle83] and ELDO [Hen85]. The

relaxation-based simulation techniques are the central focus of this dissertation.

Model evaluation is usually associated with the calculation of the current and

conductance values for complex devices such as MOS and bipolar transistors. The

simulation time in SPICE2 for small and medium size circuits is dominated by model

evaluation [New78b]. A number of researchers have attempted to reduce the computa

tion time by using look-up tables for active devices [Cha75. New79. Shi82. Bur83]. In

this approach, a number of tables of device characteristics are generated prior to the

analysis and simple table look-up operations are performed during the analysis in place

of expensive analytical evaluations which often involve the evaluation of many tran

scendental functions.

In the hardware-assisted approaches, the use of special-purpose microcode to

reduce the time required to solve the sparse linear equations has been investigated

[Coh8l]. Vector processors have also been applied to the matrix solution to exploit the

structural regularity and relative inactivity of large circuits [Vla8l]. The relaxation-

based approaches have been implemented on a number of parallel processors [Deu84.

Whi85. Mat85. Web87]. Recently, a special-purpose board for model evaluation has

been described [Gyu85]. A simulation engine has also been developed [Auc85] which

uses the timing analysis algorithm of the MOTIS program [Cha75]. In addition, an

approach which combines relaxation algorithms and special-purpose hardware has been

reported [Whi86].

In this dissertation, a number of new circuit simulation algorithms based on non

linear relaxation [OrRh70] are presented. These algorithms are analyzed to determine

the maximum speed improvement that can be obtained over direct methods under ideal

conditions. The ideal speed-up is compared to the actual speed-up of the SPLICE3 pro

gram which uses a number of algorithms described in this dissertation. The nonlinear

relaxation schemes are also extended to function spaces and applied to the circuit simu

lation problem. This new approach, called Waveform Relaxation-Newton [Whi85b],

and its implementation in the SPLAX program are also described. The simulation tech

niques in the SPLICE3 program have been implemented on a parallel processor in the

PSPLICE program. The results from this program and parallel aspects of other relaxa

tion algorithms are also presented in this dissertation.

In Chapter 2. the transient analysis problem is formulated and the numerical tech

niques used to solve the problem are described. The linear Gauss-Jacobi (GJ) and

Gauss-Seidel (GS) methods are described and their convergence properties are presented.

Then the nonlinear relaxation methods, the main focus of this dissertation, are

described. The advantages of this approach over linear relaxation are outlined. Finally,

the Waveform Relaxation (WR) method is described and its convergence properties are

presented. The requirement for partitioning to improve the convergence speed of relax

ation methods is briefly introduced at the end of the chapter.

The focus of Chapter 3 is time-step control for circuit simulation. Initially, the

constraints imposed on the step size by the numerical methods are presented. Next, the

issues associated with the implementation of an efficient time-step control scheme are

described. Two properties of waveforms called latency and multirate behavior are

defined and simple experiments are provided to compute upper bounds on the speed

improvement if these two properties are exploited under ideal conditions. The efficiency

of the relaxation-based techniques in exploiting latency and multirate behavior is also

examined.

In Chapter 4. a number of algorithms based on nonlinear relaxation methods are

described. A technique which combines nonlinear relaxation [OrRh70] with event-

driven, selective-trace [SzTh75] to exploit waveform latency is described. This approach

is referred to as Iterated Timing Analysis or ITA [Sal82]. Its name is derived from the

original work on timing analysis pioneered in the MOTIS program [Cha75]. A prelim

inary version of ITA was implemented in the prototype mixed-mode simulator

SPL1CE1.7 [Sal84] and an advanced version in SPLICE2 [Kle84]. A new robust version

of ITA has been implemented in the SPLICE3.1 program. The details of the implemen

tation of ITA in all of the above programs are provided in Chapter 4. A number of

issues concerning latency and event scheduling are also presented.

The results presented in Chapter 3 provide a strong incentive to exploit the mul

tirate property of circuits. In Chapter 5. a new approach to multirate integration based

on the ITA method is described. Initially, a number of previous implementations of

event-driven multirate integration schemes and their limitations are described. Then

the new multirate ITA scheme is presented. In this new scheme, the basic ITA approach

is modified to solve different components in the system using different time-steps by

iterating across a "ragged" boundary in time. This method retains the inherent advan

tage of ITA of relatively inexpensive iterations. In addition, time moves incrementally

forward and the components are solved using event-driven techniques. Therefore, it is

well-suited for use in mixed-mode simulation programs [New78a, SakSl. Sal83. Kle84]

since they also use event-driven techniques for simulation at higher levels of abstrac

tion. A new method for limiting the effect of a step rejection using a selective backup

strategy is introduced. Simulation results using this technique are provided.

A waveform-based approach to multirate integration is described in Chapter 6.

This approach is based on the WR algorithm and uses a technique called "Waveform-

Newton" to solve the iteration equations presented by the Waveform Relaxation

method. The combined Waveform Relaxation-Newton (WRN) algorithm can be viewed

as a function space extension of the nonlinear relaxation methods used in ITA. The

motivation for using the Waveform-Newton method is given and the equations for the

method are derived. An iterative step size refinement strategy which improves the

accuracy of the numerical integration as the relaxation iterations approach convergence

is also described.

In Chapter 7, the parallel aspects of the ITA and WRN methods are explored. The

basic concepts of parallel computation are described briefly, followed by a description

of the asynchronous computation model. Next, the implementation of ITA on mul

tiprocessors is described, including a description of MSPLICE and a new program called

PSPLICE. A novel technique for parallelizing Waveform-Newton is also described. To

close the chapter, a generalized space-time model for scheduling is developed as a

framework for the analysis of parallel circuit simulation algorithms.

Conclusions and directions for future work are provided in Chapter 8.

CHAPTER 2

RELAXATION-BASED CIRCUIT SIMULATION

2.1. THE CIRCUIT SIMULATION PROBLEM

2.1.1. Equation Formulation

General-purpose circuit simulation programs such as ASTAP [Wee73] and SPICE2

[Nag75] provide a variety of analysis types including DC analysis, time-domain tran

sient analysis, AC analysis, noise analysis and distortion analysis. By far the most

CPU-intensive of these analyses is the time-domain transient analysis. The transient

analysis problem involves computing the solution of a system of coupled nonlinear

differential-algebraic equations over some interval of time. [0.7*]. The most general

form for the equations describing the circuit behavior is:

F(x(t).x(t).u(t)) = 0 x(Q)=X (2.1)

where, x U) € IR" is the vector of unknowns, and may be a mixture of node voltages.

branch currents, capacitive charges or inductive fluxes, u(t) € IR' is a vector of

independent sources. F: IR" XlR" XlR' -* IR" . and the initial conditions. x(0). are

specified by the vector X.

Equations of this form arise as a result of the properties of general electronic cir

cuits. For example, the current through a capacitor is a function of the time derivative

of the voltage across the capacitor and therefore Eqn. (2.1) is dependent on x {t). Since

many devices have nonlinear relationships between their currents and voltages. F is

also usually nonlinear. And finally, as a circuit is constructed from a collection of

sparsely connected elements. F is a sparse function of the components of x. These cir

cuit properties all have some impact on the numerical techniques used to solve the tran-

8

sient simulation problem, and the resulting efficiency with which the solution is

obtained.

There are a number of different ways to formulate the circuit equations described

by Eqn. (2.1). The most popular of these are Nodal Analysis (NA) [DeKu69], Modified

Nodal Analysis (MNA) [Ho75] and SparseTableau Analysis (STA) [Hac7l]. These for

mulations are all based on the application of Kirchoff's Current Law (KCL), Kirchoff's

Voluge Law (KVL) and the branch constitutive equations [DeKu69]. Nodal Analysis is

the simplest of the three approaches. It uses KCL. which requires that the sum of the

currents entering each node equals the sum of the currents leaving each node. In a cir

cuit containing n +1 nodes, if KCL is written for every node in the circuit, a system of

n equations is obtained assuming that one node is defined as a reference node. The

currents in each equation can be replaced with the branch constitutive relations which

are functions of the branch voltages (by assumption in NA). and KVL can be used to

replace the branch voltages by node voltages. KVL requires that the sum of the vol

tages around any loop in a circuit be identically zero. The n node voltages are the unk

nown variables in this formulation. Note that it must be possible to represent the ele

ment and input source currents in terms of their terminal voltages in order apply Nodal

Analysis. This requirement excludes current-controlled devices, floating voltage

sources1 and inductors and therefore limits the scope of the NA technique. However,

inductors and floating voltage sources can be included in NA by simply reorganizing

their branch equations as described in [McC75. Whi85c]. Since the other current-

controlled devices are not frequently used in the simulation of integrated circuits. NA

is an adequate formulation technique for most practical circuits.

1These are voltage sources with neither terminal connected to the ground node.

The formulation used throughout the rest of this dissertation is Nodal Analysis.

The NA equations are formulated as follows: First. KCL is applied at each node in a cir

cuit with n nodes and b branches to produce a matrix equation of the form:

A i = 0 (2.2)

where A € IR" xb is the reduced incidence matrix with entries of either +1. -1 or 0 and

i € IR* is the vector of branch currents in the circuit. Element aik of A is +1 if a par

ticular branch current. ik. leaves node i. -1 if it enters node i and 0 if it is not incident

at node i. If the set of branch currents are divided into the capacitor currents. ic . and

the currents through the resistive elements. ir. then Eqn. (2.2) can be rewritten as:

Acic =-A,.ir (2.3)

where A =[AC IAr] and i =[ic .ir Y.

Each of the currents due to the nonlinear resistive elements can be replaced by

their branch constitutive relations which are all functions of the branch voltages by

assumption. The branch voltages. vb. can be replaced by the node-to-datum voltages,

v . using the relation:

Arv=vb (2.4)

which follows from KVL [ChLi75]. Then, the right-hand side of (2.3) can be written

as:

A,.ir = -

where f k(v) is the sum of all the currents through the resistive elements connected to

node k as a function of the node voltages, v.

The left-hand side of Eqn. (2.3) represents the capacitor currents. The nonlinear

capacitors are often specified in terms of their stored charge, q . as function of the vol

tage across the capacitor. vc, as follows:

/i(v)
/ 2(v)

(2.5)

10

q =q (vc)

The current flowing through the capacitor can be obtained by taking the time-derivative

of charge, which can then be related to the capacitance by applying the chain-rule:

., ^ dq(vc) dvc
hap =a (vc)=—r- ir- = c (yc)vc

Ac ic —

dvc dt

Hence, each of the components of tc. in Eqn. (2.3) can be replaced by C (vc)vc . If Eqn

(2.4) is used to replace the branch voltages by node voltages, then Acic can be

transformed into the following:

Cn(v) . . Clw(v)

Cni(v) . . C„„(v)

An important assumption which is used to guarantee convergence of relaxation-based

simulation techniques (to be described shortly) is that a two-terminal capacitor exists

between each node and some reference node. These are referred to as grounded capaci

tors. This assumption is easily satisfied by circuits where lumped, parasitic capacitances

are present between circuit interconnect and ground or on the terminals of active circuit

elements. Therefore, in the capacitance matrix above, all C„ *s are non-zero. Note that

Cjj is zero if a capacitor does not exist between nodes i and j in the circuit.

By combining Eqns. (2.5) and (2.7). one obtains:

Cn(v) . . ClH (v)

C„i(v) . . C„„(v)

This equation can be written in the compact form:

(2.6)

(2.7)

/i(v)
(2.8)

/,, (v)

C(v(0.u(f))vU) = -/(v(r)*(*)). t € [0.n (2.9)

v (0)=V.

where v (t) € IR" is the vector of node voltages at time t . v (r) € IR" is the vector of

time derivatives of v(t). u{t) € IR' is the input vector at time I, C(x(t).u(t))

11

represents the nodal capacitance matrix, and:

/ (v (t),u (t))=[/ 2(v (t).uU)).••• ./„ (v (t)m it))7

where f k(v(f).uU)) is the sum of the currents charging the capacitors connected to

node k.

Eqn. (2.9) is a set of coupled first-order nonlinear differential equations which

uses voltage as a state variable. This is commonly referred to as the capacitance formu

lation of the transient analysis problem. Alternatively, charge may be used as a state

variable rather than voltage. The proper choice of voltage or charge as the state vari

able depends on the nature of the capacitors in the circuit. If all capacitances are linear,

then either voltage or charge may be used as the state variable. However, in circuits

with nonlinear capacitors, such as MOS circuits, charge must be used as the state vari

able due to considerations of charge conservation [War. Yan83. Whi85c]. That is. in

order to keep the total charge in the system constant during the simulation process,

charge must be used as the state variable. Examples of charge conservation problems

arising from the use of Eqn. (2.9) aregiven in [War78. Yan83. Whi85c].

The charge formulation of the circuit equations in normal form is given by:

q(t)=i(q(t))

where qk (v) is the sum of the charges due to the capacitors connected to node k and

ik (q) is the sum of the currents charging the capacitors at node k . This equation can be

solved to obtain the node charges as a function of time. However, information about

charge is of little interest to the circuit designer. The designer would prefer to have

information about the node voltages from the simulator. Therefore, it is preferable to

write the charge formulation as

which is obtained by combining Eqn. (2.6) and Eqn. (2.9). This assumes that q is an

12

invertible function of v. The charge formulation, including the input sources, u (t). is

given by:

q(v(t),u(t)) = f(v(t).u(t)). (2.10)

Both the formulations given by Eqns. (2.9) and (2.10) will be used throughout this

dissertation.

2.1.2. Numerical Techniques for Transient Analysis

Eqns. (2.9) and (2.10) formulated above for the transient analysis of circuits must

be solved using numerical techniques since, in general, it is difficult to obtain closed-

form solutions. The first step is to apply a numerical integration method to discretize

the time-derivative, x U). An integration method divides the continuous interval of

time. [0.7*], into a set of M discrete time points defined by:

*o=0. tn+l=tn + /i„ . tM = 7\ (2.11)

An algebraic problem is solved at each time point. t„ +i. to obtain a sequence approxima

tion to the exact solution. The quantity h„ is referred to as a time-step. The selection

of proper time-steps for a given problem is an important issue which is described in

detail in Chapter 3. An example of a first-order implicit integration method is the

backward-Euler (BE) method. To solve x U)=/ (x (t)) using BE. the following expres

sion is used:

xUn+1) = xu„) + h„f ua„+1)) (2.12)

This equation is implicit in that x Un +\) appears on both sides of the equation.

A numerical integration method converts a set of nonlinear differential equations

into a set of nonlinear algebraic equations. These algebraic equations must be solved

using some numerical method at each time point. The most commonly used method to

solve nonlinear equations is the Newton-Raphson method [OrRh70]. To solve a system

of nonlinear equations, given by F(x)=0, using the Newton-Raphson method, the

13

following iterative equation is used:

JF{xkKx'+l-xk)= -F(xk) (2.13)

where Jf (x) is the Jacobian matrix and k is the iteration counter for the method. Each

term in the Jacobian matrix. gtj. is given by:

*>'W ai4)
where F, is the i th component of F and x} is the j th component of x. Eqn. (2.13) is

iterated until ||x*+1x*|| <€2 and ||F(jc*+1)1I <€2. Note that if the problem is linear,

then the Newton method produces the correct solution in one iteration.

The Newton method described above converts the set of coupled nonlinear alge

braic equations into a set of coupled linear equations given by Ax = b . where x € IR" .

b € IR" . A € IR"v" and A is assumed to be nonsingular. The matrix A is relatively

sparse, typically having three elements per row [NeSa83]. There are essentially two

approaches to solving a sparse linear system. One approach is to use direct methods

(such as LU decomposition) which attempt to exploit the sparse nature of the matrix

during the computation. The implementation of these methods involves carefully chos-

ing a data structure and the use of special pivoting strategies to minimize fillins

[Kun86]. A second approach to the sparse linear problem is to use relaxation methods.

The relaxation process involves decoupling the system of equations and solving each

equation separately. An iterative method is applied between the equations until con

vergence is obtained. In effect, the problem of solving one large system containing n

variables is converted to the problem of solving n subsystems each containing one vari

able.

14

2.1.3. Overview of Standard Circuit Simulation

The standard approach to circuit simulation is based on direct methods and uses

the following steps:

1. MNA is used to formulate the system of differential-algebraic equations
for the circuit.

2. Implicit integration methods are applied to convert the differential equations
into a sequence of algebraic equations, which are nonlinear in general.

3. A damped Newton-Raphson method is used to convert the nonlinear equations
into linear equations.

4. Direct sparse-matrix techniques are used to solve the linear equations generated
by the Newton-Raphson method.

The details of the implementation of this approach in SPICE2 may be found in [Nag75].

This approach has proven to be very reliable and can be used across a variety of

different technologies and element types. The most computationally intensive part of

this approach is the Newton-Raphson iteration. It is composed of two phases: the for

mulation phase and the solution phase. These two phases, represented by steps 3 and 4

above, are repeated at each time point until convergence is obtained. In the formulation

phase, the elements in the circuit are processed by calculating their contribution to the

Jacobian matrix and the right-hand side vector in Eqn. (2.13) to form the system of

linear equations. This is also referred to as the function evaluation (or model evalua

tion) and load phase, and can be very time-consuming because of the complexity of the

equations describing the elements in the circuit. For small to medium size circuits con

taining MOS devices, the model evaluation and load times dominate the total CPU-time

for the simulation [New78].

In the second phase of the Newton iteration, the linear equations generated in the

first phase are solved using direct methods such as LU decomposition. While this por

tion has a negligible contribution to the total run time for small circuits, it can in fact

15

dominate the run time for very large circuits (i.e. greater than 1000 nodes in the circuit

for SPICE2) [NeSa83]. Therefore, any technique which attempts to reduce overall cir

cuit simulation run times must reduce both the model evaluation time and the linear

equation solution time to be effective.

2.2. RELAXATION METHODS

Relaxation-based circuit simulators, such as SPLICE [Sal83, Kle84] and RELAX

[Lel81, Whi83], use iterative methods at some stage of the solution process to solve the

circuit equations. The success of these programs is due to the fact that they offer the

same level of accuracy as direct methods, assuming identical device models, while

significantly reducing the overall simulation run time. The reduction in run time is

accomplished by computing fewer solution points for each waveform, thereby reducing

the total number of model evaluations, and by avoiding the direct sparse-matrix solu

tion. However, a tradeoff exists in the relaxation methods since they can only be

applied to a specific class of circuits. Furthermore, there is the additional requirement

that a grounded capacitor be present at each node in the circuit to guarantee conver

gence. While these factors limit the scope of the application of relaxation methods, the

programs which use relaxation have proven to be extremely useful for simulation of

many industrial MOS and Bipolar integrated circuits. In the remainder of this chapter,

the relaxation methods are described and their mathematical properties are presented.

2.2.1. Linear Relaxation

Two common linear iterative methods are the Gauss-Jacobi (GJ) and Gauss-Seidel

(OS) methods. The methods differ only in the information they use when solving a

particular equation as shown in the two algorithms given below. The superscript k is

the iteration count, and € is some small error tolerance.

Algorithm 2.1 (Gauss-Jacobi Method to solve Ax = b)
*-0;

guess somex ° ;
repeat {

k+-k+l ;

forall (i € { 1. • •• n })

, =
-1

a.. y =1 j =/ +1

}until(Ixf-x?-1]^ e,i=l,-ji):

Algorithm 2.2 (Gauss-Seidel Method to solveAx = b)
*«-0:

guess some x ° ;
repeat {

k*-k+l :

foreach (i € { l....n })

xt-Zl
i-1 /»

y=l y=i+l

16

}until(Ijc/ —jCi* -11 ^ €,i=l.--.n):

Notice that in the GJ method each xf is computed using the iteration values

Xj{k~l), j = \. •• ji . which are the values from the previous iteration. In the GS

method, the latest iteration values are used as soon as they become available. The

forall construct in Algorithm 2.1 suggests that all n variables can be computed in

parallel during each iteration. The foreach construct in Algorithm 2.2 requires that the

variables be processed in a particular sequence.

Linear relaxation schemes are usually described using a splitting notation that

separates A into two components:

A =B -C (2.15)

where B is a nonsingular matrix such that linear systems of the form Bx = d are

"easy" to solve. Various relaxation schemes can be constructed by setting B and C in

the iterative equation:

17

xk+1=-B-lCxk +C~lb

In particular, if A is decomposed into its diagonal, strictly- lower-triangular and

strictly-upper-triangular parts. D. L and U. respectively such that A - L + D + U.

then the GS method is obtained by setting

B = U +D) C =-U (2.16)

and the GJ method is obtained using

B =D C =-(L+60. (2.17)

Since relaxation methods are iterative, the question naturally arises as to whether

or not these methods converge to the correct solution and. if so. under what conditions?

The requirements for convergence are stated in the following standard theorem [Var6l]:

Theorem 2.1; Suppose b € IR" and A = B —C € IR"v" is nonsingular. If B is non-

singular and the spectral radius of B~lC. given by p(B~lC). satisfies the condition

p(B~lC)<\, then the iterates x{k) defined by Bx{i+1) = Cx{k:) + b converge

x' = A~lb for any starting vectorx (0\ •

to

In other words, the magnitude of the largest eigenvalue of the iteration matrix B~lC

must be strictly less than 1 to guarantee convergence of a linear relaxation method. A

condition which guarantees that p(/3-1C) < 1 is if A is strictly diagonally dominant.

A matrix has this property if the diagonal term in each row t is greater than the sum of

the off-diagonal terms in the same row. i.e..

£ \ai} I < \au I forl^t ^n
y=l

and the "more dominant" the diagonal, the more rapid will be the convergence.

A number of techniques are available to improve the convergence speed of linear

relaxation methods. For example, in the GS method, the order in which the equations

are solved usually has a strong affect on the number of iterations required to converge.

18

Consider the case when matrix A is lower triangular. If processed in the sequence.

x\x2.' ' ' •*« • lhen one relaxation iteration is sufficient to obtain the correct solution.

However, if processed in the reverse order, then n iterations are required to obtain the

solution. Therefore, equation ordering is usually performed on the variables whenever

GS is used. Techniques for equation ordering are described in the chapters to follow.

Another technique to improve convergence, also used in conjunction with the

Gauss-Seidel method, is the method of Successive Overrelaxation (SOR). In this

approach, the Gauss-Seidel method is used initially to generate an intermediate value.

xt . using the equation

where B and C are defined by Eqn. (2.16). The actual value of x,u +1) is obtained by

taking a weighted combination of the previous iteration and the intermediate value

which depends on a relaxation parameter. <a.

x/(*+1> = (l-a>)x1a> + a>^U+1)
The SOR method can also be defined in terms of the splitting notation with

B = a>~l(D +u)L). and C = <o~l[(l— a>)D —tdJ]. While the proper choice of (a can

greatly reduce the number of iterations, an optimal value of o> can only be computed a

priori for a limited number of cases. In general, it may be necessary to perform a some

what complicated eigenvalue analysis to determine the best value of co. In practice,

adaptive algorithms are used to select an appropriate value for a> during the solution

process.

Linear relaxation methods can be used in conjunction with the solution of non

linear equations to solve the linear systems generated by Newton's method. For exam

ple, the Newton-SOR method is a combination of the Newton-Raphson method and the

SOR method. In this composite algorithm, the Newton iteration can be considered as the

19

"outer loop" and the SOR iteration as the "inner loop". While it is possible to carry the

inner loop to convergence, there no requirement to do so. as long as the outer loop is

iterated to convergence. In general, an m-step Newton-SOR method can be defined

where m is the number of iterations used in the inner loop. For the case m =1. a one-

step Newton-SOR method is obtained. The Newton-SOR method is only one example of

the possible combinations of nonlinear iterative methods and linear iterative methods.

For example, Newton's method may be replaced by the secant method and the SOR

iteration may be replaced by one of the standard Gauss-Seidel or Gauss-Jacobi methods.

2.2.2. Nonlinear Relaxation

The basic idea of relaxation can also be extended to solve systems of nonlinear

equations of the form Fix) = 0. where F:IR" -•IR" . with components / lt / 2 /»

and f i :JR" —JR. That is. rather than solving the system using direct matrix techniques,

the nonlinear equations can be solved in a decoupled fashion. Two such algorithms are

given below. The index k is the iteration count, while €j and €2 are error tolerances.

Algorithm 2.3 (Nonlinear Gauss-Jacobi Method to solve Fix) = 0)
fc-0;

guess some x ° ;
repeat {

k*- k+\ ;

forall ii 6 { 1. • • .n })

solve fi(x\-1 . • • • . xfa1 . xf. xfc1. • • • .;c;;-l)=0forx/ ;

}until (Ixf -x,*-l\ < €! . I/, (**•'•)!< e2 .;=!.• • • ji)\

20

Algorithm 2.4 (Nonlinear SOR Method to solveFix) = 0)
*<-0;

guess some x ° :
repeat {

k+-k+l :

foreach (i € { 1. • • • si })
solve /;(xj . • • •. */_!. x*. x/+"i1. ' *' •xi ~*) = 0 for x* :

x/«- (1— o>)xi*+a>(xj) ;

}until (Ixf - x?:~ l I < €i . I / i ix':J) I < €2. i =1. • • • n):
•

where x* •' = ix\ . • • , x/_j. x^, x/+"J *. • • •. x,f""x).

These algorithms are referred to as nonlinear relaxation methods. The steps are

very similar to linear relaxation as given in Algorithms (2.16) and (2.17) except that, in

this case, each equation in the inner loop is nonlinear. To solve each one-dimensional

nonlinear problem, //(x) = 0. an iterative technique such as the Newton method or

secant method must be used since, in general, a closed-form solution cannot be obtained.

Combining the SOR method with the Newton method results in the SOR-Newton algo

rithm. The general case is the m -step SOR-Newton method, where m is the number of

Newton iterations taken in the inner loop. The question again arises as to the number

of inner loop iterations to use.

It can be shown that the rate of convergence of the one-step SOR-Newton method

is the same as the one-step Newton-SOR method [OrRh70]. The m -step SOR-Newton

method also has the same rate as the one-step method implying that it is not

worthwhile to take more than one Newton step since the convergence rate is not

affected. However, the convergence rate of the m -step Newton-SOR method is m times

the rate of convergence of the one-step method. Therefore, based on the rates of con

vergence, one might be inclined to choose the m -step Newton-SOR to solve a system of

nonlinear equations. There is however a hidden cost if the partial derivatives are

expensive to calculate. Each step of SOR-Newton requires the evaluation of each /,

21

Sf •
and n partial derivatives. ——'—. whereas the m-step Newton-SOR method requires the

QXj

evaluation of / and all partial derivatives. Based on both operation counts and the

rates of convergence given above, the one-step SOR-Newton method appears to be the

most efficient and for this reason it is used in Iterated Timing Analysis (ITA) [Sal83].

Note that this implies one iteration in the inner loop. The outer loop is iterated until

convergence is obtained. SOR-Newton also offers one additional advantage over

Newton-SOR in that waveform latency can be exploited easily and this feature is

described in more detail in the chapters to follow.

In a general-purpose implementation of these methods, the iterative process must

be terminated when the solution is close enough to x*. Often, this condition is checked

using the test Ix/ +l— x/ I ^ €j. However, this check of convergence is not sufficient in

the nonlinear case. A second test is necessary to ensure that each function. /,. is close

enough to zero and this is specified using the lest I// ixk +1-') I ^ €2 for all i.

The algorithms presented above are meaningful only if the nonlinear equations,

which are solved at each step in the inner loop, have unique solutions in some specific

domain under consideration. Recall that for linear relaxation, the condition that ati ;*0,

for all i =1. • • • ,n ensures that a solution exists, assuming that the diagonal dominance

property holds. A similar condition is required in the nonlinear case. To illustrate this

point, let the Jacobian be decomposed into its diagonal, strictly lower-triangular and

strictly upper-triangular parts as follows:

F'ix) = Dix)+Lix)+Uix)

The iterations in the nonlinear scheme are well-defined if F is continuously

differentiable in an open neighborhood S of the point x* , for which Fix')=0. and

D ix) is nonsingular. The requirements for convergence are also analogous to the

linear case. By splitting the Jacobian matrix using the previous notation

22

F'(x) = 5(x)-C(x).

the local convergence of the nonlinear relaxation methods described in Algorithms (2.5)

and (2.6) can be stated as follows [OrRh70]:

Theorem 2.2; Given F :IR" -»IR" . assume that F is continuously differentiate in an

open neighborhood 5 of x" and x* satisfies F(x")=0. If Bix) is nonsingular and

piBix*)_1C(xA))<1. then there exists an open ball S* C S such that the nonlinear

relaxation methods given in Algorithms (2.5) and (2.6) converge to x* for any initial

guess x ° € S'. •

Recall that under the conditions stated in Theorem 2.1. linear relaxation methods

converge for any initial guess. However, for the nonlinear case the convergence result is

local since the initial guess must be close enough to the final solution to guarantee con

vergence. The proof of this theorem may be found in the reference [OrRh70].

2.23. Waveform Relaxation

The relaxation schemes presented above can be also extended to functions spaces to

solve systems of differential equations. This class of algorithms is called Waveform

Relaxation (WR) [Lel8l]. The relaxation variables in WR are elments of function

spaces, i.e.. they are waveforms in the closed interval [0.7]. whereas for linear and non

linear relaxation the variables are simply vectors in Euclidean n -space. To illustrate

the WR algorithm, consider the circuit simulation problem in the form specified in Eqn.

(2.9). The WR algorithm forsolving this system of equations isas follows:

Algorithm 2.5 (WR Gauss-Seidel Algorithm for solving Eqn. (2.9))

*-0:

guess waveform x°it) :t € [0.7*] such that x°(0) = x0 :
repeat {

k<-k+l :

foreach (t € { 1.../1){
solve

Z Cu ix\ , • •• jcfjcfc1 .-•' jc* ~lM)xj+
y=l

£ CJV (xi . •••.x/ .xfo1. •••-*«* ~l* >*j ~l+
y=/+l

/,•(*{.•• -jctjcfc1.' -**-lM) =0

for (x,*U) : f € [0,r]). with the initial condition x/(0) = xiQ

}
}until (maxK , <„ max, € [()T]IxfU) —*/ Kt) I^ €)

23

Algorithm 2.5 converts the problem of solving a coupled system of n first-order

ODE's to the problem of solving n separate differential equations, each containing a sin

gle variable. The outer loop in the algorithm is the Gauss-Seidel iteration which

requires that the latest values of the relaxation variables be used to solve each equation

in the inner loop. The inner loop equations are single differential equations each of

which is solved using some numerical integration method. The convergence of the

Waveform Relaxation method is guaranteed under conditions which are similar to the

linear and nonlinear cases, as stated in the following theorem [Whi85c]:

Theorem 2.3; If Cixit),uit)) € 1R"V" of Eqn. (2.9) is strictly diagonally dominant

uniformly over all x it) € IR" and u it) € IR' arid Lipschitz continuous with respect to

x it) for all u it). then the sequence of waveforms \xk }generated by the Gauss-Seidel

or Gauss-Jacobi WR algorithm will converge uniformly to the solution of Eqn. (2.9) in

any bounded interval [0.7*], for any initial guess x°(r). •

24

While this theorem guarantees convergence of the WR algorithm, it does not imply

anything about the speed of convergence. Although the method usually converges in a

few iterations, it has been observed that in test cases with tight feedback loops, the

number of iterations required to converge is proportional to the simulation interval

[Whi83]. To improve convergence, the simulation interval [0J] is usually divided into

smaller intervals. [0.7*!]. \TxTji \Tn-X.Tn\, called windows. Initially, the WR

algorithm is applied only in the first window, [0,7* J. until the waveforms converge.

Then a second window. [7*i.7*2], is selected and WR is applied within this interval until

the waveforms converge. This continues until the entire simulation interval is covered.

Note that the WR method converges more rapidly as the window size is made smaller.

One advantage of WR is that the time-steps for each of the variables can be chosen

independent of one another but this advantage is compromised if the windows are too

small. Therefore, the window size is an important factor which determines the perfor

mance of programs which use the WR method.

2.2.4. Partitioning for Relaxation Methods

Relaxation methods are most effective when applied to a system of equations

which are "loosely-coupled", that is, where the variables do not depend too strongly on

one another. For this type of system, relaxation methods usually converge quite

rapidly. The speed of convergence in the linear case is controlled by the spectral radius

of the iteration matrix given by piB~lC) (using the notation of Theorem 2.1) and this

is usually close to zero for loosely-coupled systems. However, for an arbitrary prob

lem, there is no guarantee that the spectral radius will be small. In fact, in "tightly-

coupled" systems, the spectral radius may be very close to 1 which implies slow conver

gence. This degrades the performance of the relaxation-based methods compared to the

direct methods.

25

The precise meaning of loosely-coupled and tightly-coupled can be described using

a simple 2x2 matrix problem:

an al2

a2\ a22

xi

*2
=

b2

Assume that the equations have been ordered such that x t is solved before x 2. Then.

a 21 can be considered as a feed-forward term and ai2 can be considered as a feedback

term. The spectral radius of the iteration matrix for the GS method (see Eqn. 2.1) is

given by:

p(S-C)= lli^l!
|alla22 |

and to guarantee convergence, this value must be strictly less than 1. If both al2 and

a 21 are non-zero, the variables x { and x2 are considered to be coupled. If both a 12 and

a 21 are large, relative to a n and a22. then x xand x2 are called tightly-coupled variables.

If both a12 and a2\ are small, then x i and x2 are called loosely-coupled variables. Note

that if either a2\ or ai2 is zero, then equation ordering has a significant impact on the

number of iterations. In fact, if a21=0. then x2 should be solved before xx so that the

solution can be obtained in one iteration. A similar argument applies if a2l is very

small compared to a l2. Therefore, the main objective in reordering is to make the A

matrix as lower triangular as possible.

When solving large systems, the definitions given above can be used to partition

the system into groups of tightly-coupled variables. Rather than using relaxation

methods to solve the tightly-coupled variables within each "block", it is better to solve

them using direct methods. The relaxation method can be applied between the blocks,

which are loosely-coupled relative to the variables within a block. This gives rise to

block relaxation methods [Var6l], which can be viewed as a combination of the direct

methods and relaxation methods. As an example, consider the 3x3 matrix problem:

an al2 0

0 a 22 a 23

0 a32 a 33

Xj &!
x2 = b2
*3 |&3

26

If x2 and x3 are tightly-coupled, then many relaxation iterations may be required to

solve this problem. However, by grouping x2 and x3 into the same block and reorder

ing the variables for the Gauss-Seidel method, the following equation is obtained:

a22 a23 0

a 32 a 33 0

a o 0 a12 li

.

*2 b2
*3 = *3
*1 *1

If x2 and x3 are solved using direct methods, then this problem can be solved using a

single relaxation iteration. This example shows that proper ordering and partitioning

are extremely important in the relaxation-based methods. The main problem, of course,

is to find a suitable partitioning of the variables. A number of schemes to perform this

function are described in the chapters to follow. In addition, the tradeoff between the

number of partitions (and hence the available parallelism) and the number of iterations

required for convergence in the nonlinear relaxation process is considered in Chapter 7.

CHAPTER 3

EFFICIENT TIME-STEP CONTROL
FOR CIRCUIT SIMULATION

27

3.1. INTRODUCTION

Time-step control is an important theme throughout this dissertation. In this

chapter, the constraints imposed by the numerical techniques on the step sizes used in

the integration process are described. Based on these constraints, an efficient time-step

control scheme is presented. A way to further improve the efficiency by using different

step sizes to solve different components in the system is also presented. Upper bounds

on the speed improvement that can be obtained by solving the equations in this manner

are given along with an indication of what factors control the ability to achieve the

specified bounds if relaxation methods are used solve the circuit equations.

The circuit simulation problem, in its most general form, involves the solution a

system of nonlinear algebraic-differential equations. To simplify the description to fol

low, the circuit equations are assumed to be a system of differential equations in normal

form:

Zit) = fixit).uit)). x(0) = X. t <z[O.T] (3.1)

where u is the set of primary inputs, x is a vector of unknown circuit variables and /

is some nonlinear function. The vector of values specified as X are the initial condi

tions, and the simulation interval is [0.7*].

As described earlier, the standard approach to solving Eqn. (3.1) is to use a

numerical integration method. The goal is to generate the solution as efficiently as pos

sible while providing the desired level of accuracy. At first glance, one may attempt to

make the integration process efficient by minimizing the total number of time points

used. That is. at any stage during the simulation, take the largest step possible that

28

provides the required accuracy. This strategy is effective for linear problems, assuming

that the numerical integration method has guaranteed stability properties. However,

for nonlinear problems, it may be more efficient to take smaller steps so that the itera

tive method used to solve the nonlinear algebraic equations converges in fewer itera

tions. Using small time-steps also improves the accuracy of the solution.

A similar situation exists if relaxation is used in the solution process. That is. the

iterative process converges more rapidly and the solution is more accurate if smaller

steps are used. Therefore, minimizing the total number of iterations used would seem

to be a better way to reduce the amount of computation. The cost of each iteration is

proportional to the number of model evaluations1 performed. Therefore, the number of

model evaluations used in the solution process is a good measure of the amount of com

putation used, assuming that the linear equation solution time is small. Based on this

argument, a major objective for the efficient solution of the differential equations in

Eqn. (3.1) should be to minimize the total number of model evaluations.

A number of researchers have attempted to reduce the computation time for

model evaluation by using lookup tables for active devices [Cha75. New79, Shi82.

Bur83. Gyu86]. In this approach, a number of tables of device characteristics are gen

erated prior to the analysis, and simple table look-up operations are performed during

the analysis in place of the expensive analytic evaluations. Points which are not avail

able in the tables are interpolated using polynomial interpolation or splines. One draw

back of this approach is that there may be a substantial memory requirement for these

tables, depending on the level of accuracy desired, but it is usually justified by the

improvement in computation speed. Current research in this area involves reducing the

memory requirements without sacrificing either the computational advantage or the

1 A model evaluation usually refers to the calculation of the currents and conductances for a MOS or bi
polar transistor, or some equivalent amount of computation.

29

accuracy of the device models. Further details on this topic may be found in the refer

ences listed above.

In this chapter, the factors involved in selecting appropriate time-steps to reduce

the number of model evaluations are examined. In Section 3.2. the constraints imposed

on the step size by the numerical techniques are presented. The issues associated with

the implementation of an efficient time-step control scheme are described in Section 3.3.

In Section 3.4. waveform latency and multirate behavior are defined and simple experi

ments are given to compute upper bounds on the speed improvement that can be

obtained if these two properties are exploited. In Section 3.5. the efficiency of the

relaxation-based techniques in exploiting latency and multirate behavior is examined,

and the computational effort needed to produce a solution is estimated.

3.2. CONSTRAINTS ON STEP SIZE

3.2.1. Numerical Integration Method

The general form of a kth -order linear multistep integration method [ShGo75,

Gea7l] is given by:

x„ +i = La; xn - ,• + £ K_i_tbj x„ _, (3.2)
/=0 j=- 1

where x„ is the computed solution at time tn , and h„ is the time-step at time t„ . The

2/>+3 coefficients, a, and b,. are chosen such that Eqn. (3.2) will give the exact solution

if the true solution is a polynomial in t of degree less than or equal to k [ChLi75].

There are two broad classes of integration methods: explicit and implicit methods2

[ChLi75]. Explicit methods use only the solutions at previous time points to generate

the solution at the next time point, and are characterized by 6_j=0. A number of

2 Recently, a number of combined integration-relaxation methods used in Timing Simulation [Cha75]
have been classified as semi-implicit integration methods [New79, DeMSO, NeSa83, Whi85c],

30

explicit integration methods can be derived directly from a Taylor series expansion of

x it) at the point t„ :

x» +1 =xn +h„ x„ +-£-x„ +•• • (3.3)
For example, the Forward-Euler (FE) method is obtained by taking the first two terms

of Eqn. (3.3):

xn +1= *« + K X„ (3.4)

This difference equation can be formulated in terms of Eqn! (3.3) by setting p =0. a0=l.

6o=l and all other coefficients to zero. Eqn. (3.4) implies that each equation can be

updated independently, and in parallel, at each time point. For differential equations in

the normal form, the solution at each time point can be obtained in one step and does

not involve a matrix solution, and therefore the explicit methods are extremely efficient.

Unfortunately, these methods are not as useful as implicit methods for circuit simula

tion. Implicit methods are characterized by 6_ j^O in Eqn. (3.2). The Backward-Euler

(BE) implicit integration method can be derived using a Taylor expansion of x it) about

the point tn :

x„ +i = xn + K x„ + -^——^-+ ••• (3.5)
2 dt3

Using Eqn. (3.5) to replace x„ in Eqn. (3.3). and ignoring the higher-order terms, the BE

scheme is obtained:

x„+i =x„ +h„xu +1 (3.6)

In this case. /?=0. a0—1. 6- i= l with all other coefficients equal to zero. For nonlinear

problems, this implicit equation is usually solved using an iterative method, often

requiring a matrix solution. Therefore, the implicit methods are computationally more

expensive than explicit methods. The Forward-Euler and Backward-Euler methods are

representative of their respective class of integration algorithms and will be used to

illustrate a number of other properties below.

31

a. Accuracy Constraint

Integration methods provide a numerical approximation to the true solution since,

in general, the exact solution of Eqn. (3.1) cannot be obtained. The error in the numeri

cal solution is due to a combination of the machine error and the truncation error. The

machine error is usually in the form of a round-off error, since finite precision arith

metic is used, and it depends on the floating-point arithmetic unit of the computer being

used. The truncation error results from the fact that the Taylor series is truncated

after a number of terms and this error depends on the specific integration method. The

local truncation error (LTE) for general multistep methods is defined as:

LTEn +i = x it,, +l) - x„ +l (3.7)

where x itn+1) is the exact solution to Eqn. (3.1) at t„ +1. and x„ +1 is the computed solu

tion obtained from Eqn. (3.2). In this definition, it is assumed that x(r„)=x„ and

therefore it only provides information about the error which occurs over a single time-

step, hence its name "local" truncation error. The LTE for the Forward-Euler method

can be derived using Eqn. (3.4):

LTE,, +1 = x it,,+1)- x„ - h„ x it,,) (3.8)

Using a Taylor expansion for the first term about t„ . the LTE is given by the first

remainder term of the resulting expression:

LTEll+l =̂ -xi£) t„^t„+l (3.9)
If EA is some user allowable error tolerance for the problem, the accuracy constraint is:

!^-xiO^EA t„^t„+l (3.10)
This presents a bound on the step size which is given by:

/i„<V2£,/x(|) (3.11)
If this constraint is not satisfied, the solution must be rejected and a new solution com

puted with a smaller step size. Since the exact value of £ is not known, the LTE is

32

usually estimated using techniques to be described in a section to follow.

The Backward-Euler method has a LTE given by:

LTE,, +i = x it,, +1)— x„ —hn x it„ +1) (3.12)

By expanding x it„) in a Taylor series about t„ +1 and applying the results to Eqn.

(3.12). the LTE is obtained by retaining the first remainder term:

LTE„ +1 =- *jL*(f) t. <{<«. +1 (3.13)
Note that the error made in one step is Oih2) in both the FE and BE methods, hence the

accuracy bound on the step size is similar in both cases. However, the behavior of the

global error, due to the accumulation of the local errors, may be quite different for the

two methods and this difference strongly recommends the use of one method over the

other. This characteristic is associated with the stability of the integration method.

b. Stability Constraint

The general stability characteristics of numerical integration methods applied to

nonlinear differential equations are difficult to obtain. Usually the results are inferred

from the analysis of a simple linear test problem [Gea7l]:

xit) = -kxit) . x(0)=x0 (3.14)

for which the solution is known to be

xit) = x()e~Kr (3.15)

and. in general. \ is complex. This linear problem is useful because it is easy to analyze

and provides information about the local behavior of nonlinear problems (i.e.. when the

step size is small). The problem is usually analyzed with Re (X)>0 so that the solution

to Eqn. (3.14) is stable. To further simplify the analysis, a fixed time-step is assumed.

For example, if the FE method is used to solve Eqn. (3.14). the following difference

equation is obtained:

33

xn +1 ~ xn "" MX,, —X„ — <T X„

where o" = \h. Therefore.

x„ +1 = (1- <r)x„ = (1- o-)" +1x0

The region of Absolute Stability is defined as the set of all complex values of o* such

that x„ +1 remains bounded as n -»oo. For FE. it consists of all cr such that

ll-o-Kl (3.16)

which produces the following constraint for real values of X:

0 < cr < 2.

Therefore the time-step must lie in the range:

O^/i^l. (3.17)
A

If step sizes outside this range are used, the computed solution will become unstable

even though the true solution is stable. For BE. the difference equation is:

xn +1 = xn ~~ °~ xn +1

Hence:

1
xn +1 —

(l+cr)''+1

which results in the following requirement for stability:

1 ^1 (3.18)
ll+cr

Considering only real values of X. the method produces a stable solution for all h ^0.

Ideally, an integration method should produce a stable solution if the true solution is

stable for any step size and this is the case for the BE method but not for FE. This pro

perty highly recommends the use of the BE method over the FE method since the step

size can be selected based on accuracy considerations alone. For the general case when X

is complex, the region of Absolute stability for the BE integration method includes the

entire right-half 0"-plane. An integration method with this property is said to be A-

stable [Dah63].

34

The Forward-Euler and Backward-Euler methods are examples of first-order

integration methods. Higher-order methods with smaller local truncation errors can be

constructed by taking more terms in the Taylor expansions of Eqns. (3.4) and (3.6).

Integration methods with small LTE's are preferred as they allow larger time-steps to

be used. For example, the trapezoidal method is a second-order integration method

given by:

x„ +1 =xn +-^-(*« +1 +xn) (3'19)
and is quite popular as it is the most accurate A-stable method [Dah63]. The LTE for

the trapezoidal method can be shown to be [ChLi75]:

LTEn+l =- ^^-iO t„ ^tn+l (3.20)
12 dt3

Since the error is Oih3). it is often the case that a much larger step size can be used,

compared to the BE method, for a given value of EA .

c. Stiff-Stability Constraint

Another consideration in the choice of integration methods is the issue of stiffness.

A stiff problem is one that exhibits time-scale variations of several orders of magnitude

in the solution. A simple example of stiffness is the case of a fast initial "transient" in

the solution, which dies quickly, followed by a slower "steady-state" solution. To han

dle this type of behavior, it is natural to use small time-steps in the transient portion to

accurately follow the solution and then to increase the step size for the remainder of

the solution. However, this strategy may lead to instability of the integration method,

especially for explicit integration methods. For example, if the test problem in Eqn.

(3.14) is solved using FE in the interval [0-.106t], where t =1/X, and X € IR. the time-

step constraint given in Eqn. (3.17) would be imposed in the entire interval even though

the solution decays to zero in approximately 5r. If the step size is increased beyond this

35

stability bound, the solution will become unstable. On the other hand, if the size is

kept within the constraint imposed by stability, the number of time points would be

very large.

There are other situations which feature this kind of time-scale variation. A stiff

problem is generated if the interval of time over which the system is integrated is large

compared to the smallest time constant in the circuit, or if the circuit time constants

themselves are widely separated. In addition, if the rise or fall time of an input

waveform is widely separated from the circuit time constants, the problem also con

sidered to be stiff.

Integration methods which are appropriate for solving stiff problems should have

regions of Absolute Stability which cover most of the right-half complex o*-plane so

that the time-step can be selected based on the accuracy considerations alone. Explicit

methods are not well-suited to stiff problems since their regions of Absolute Stability

are usually very small. The A-stable integration methods are well-suited to stiff prob

lems, but other implicit methods (for example, see [ChLi75]) may be prone to instabil

ity when solving stiff problems. Gear proposed a family of integration methods called

stiffly-stable methods [Gea7l] which have the form:

1 *
xl,+i=-r—'L0iixH+l-i (3.21)

nu i =0

The values for a, are chosen such that a k th-order method is exact if the true solution

is a k th-order polynomial. The methods of order k=l and k=2 are both A-stable algo

rithms. The methods of order k=3 up to k=6 are not A-stable. but they do have stabil

ity regions which are quite suitable for the integration of stiff problems [Gea7l]. These

methods are also referred to as Backward-Differentiation Formulas (BDF) [Bra72]. A

variable-order method, also proposed by Gear [Gea7l], uses the integration order which

allows the largest step size at each time point. This technique was implemented in the

36

SPICE2 program [Nag75] and it was found that, even though the order could varied

from k=l up to k=6. a second-order method was used most often in the computation.

The reason for this was attributed to the nature of the nonlinearities in the circuit

simulation problem (described in the next section) and nature of the solution

waveforms. Therefore, most circuit simulators use a low-order implicit integration

method with guaranteed stability properties so that the step sizes can be selected based

on accuracy considerations alone.

3.2.2. Solution of Nonlinear Equations

When solving linear dynamic circuits the accuracy and stability requirements of

the numerical integration method are the only constraints on the step size used. Furth

ermore, linear problems can be solved in one "iteration" (i.e.. one matrix solution) at

each time point. Therefore, the amount of computation is directly proportional to the

number of time points used. This is not true for nonlinear dynamic circuits, assuming

that an implicit integration method is used. In fact, the cost of computing a solution at

each time point is a function of the number of iterations used to solve the nonlinear

algebraic problem. Consider the differential equation

xit) = fixit)) (3.22)

where / (x) is some nonlinear function. If the BE method is used to solve Eqn. (3.22).

the following equation is obtained:

x„ +i = x„ + hf ix„ +1) = G (x„ +1) (3.23)

This nonlinear algebraic equation can be solved using a variety of techniques including

fixed-point iteration and Newton's method. The approach usually taken in circuit

simulators is to use Newton's method or one of its variants. Rewriting Eqn. (3.23) as

^(*/,+i) = *„+i-*„ ~hf ix,l+1) = 0 (3.24)

the Newton method to solve this equation is given by the expression [OrRh70]:

37

xn +1 —xn +1 ~~ F(x„ +1)/F'ix„ +l) (3.25)

where & is the Newton iteration counter. In circuit terms, the Newton method replaces

each nonlinear device in the circuit by a linearized model based on operating point

information. This process converts the nonlinear circuit into a linear equivalent net

work. The linearized network is solved using standard linear circuit analysis tech

niques [ChLi75]. The Newton method involves repeating the above steps until conver

gence is obtained.

To guarantee convergence of the Newton method, the function Fix) and F'ix)

must be continuous in an open neighborhood about x*. F'ix*)»*0, and the initial guess.

x°. must be close enough to final solution. The Newton method is preferred over the

simpler fixed-point method for several reasons. The main reason is that the fixed-point

algorithm is not well-suited to stiff problems. It also imposes a bound on the time-step

to guarantee convergence. Another reason is due to the quadratic convergence property

of the Newton method. That is. if. in addition to the above conditions. F"(x*) exists,

then for some k>K the difference between successive iterations and the true solution

satisfies the relation [OrRh70]:

lx*+1-x' Kc lxx-x* I2 .

In practice, this quadratic convergence behavior occurs close to the final solution.

Hence, it is important to provide an initial guess which is close to the final solution. In

general, it is difficult to provide a reasonable starting guess for the Newton method.

However, for the transient analysis problem it is possible to generate a good initial

guess, especially if a capacitor exists between each node and the ground node3. For

example, the solution at the previous time point is a good starting guess for the Newton

method at t„ +1. A better approach is to use an explicit integration method [Bra72]:

3 A capacitor to ground at each node implies some smoothness in the solution since it prevents instan
taneous changes in the voltage at the node. Therefore, as h ~*0, x„ +i~*x„ .

38

A = Zy«^+i-i (3.26)
1=1

where the y-, values are obtained by requiring that the predictor. x„°+i. be correct if the

solution is a k th-order polynomial. Usually a k th-order predictor is used with a k th-

order integration method.

The time-step also has some influence on the convergence speed of the Newton

method. An intuitive reason for this can be given in circuit terms: the Newton method

converts a nonlinear circuit into an associated linear circuit, as mentioned previously.

As the step size is made smaller, the values of linearized circuit elements begin to

approach their values at the previous time point. Therefore, the circuit will behave

almost linearly in this interval and convergence can be obtained in very few iterations,

possibly even a single iteration. On the other hand, if the step size is too large, a good

starting guess may be difficult to generate, and this may lead to either slow convergence

or nonconvergence. If nonconvergence should occur, the time-step must be rejected and

a smaller step used in its place. Hence, in some cases, it may actually be more efficient

to use two small steps rather than one large step.

3.3. TIME-STEP CONTROL BvEPLEMENTATION ISSUES

The simplest time-step selection scheme is to use the same time-step throughout

the interval of interest, [0.7*]. That is. use a fixed time-step. Unfortunately, there are a

number of constraints on the step size which may require that h be extremely small,

resulting in a large number of time points. These constraints arise from the accuracy,

stability and stiff-stability properties of a numerical integration method. For a fixed-

step approach, the step size would have be chosen such that it satisfies these constraints

under worst-case conditions. A better approach is to vary the step size during the

simulation in accordance with the variation in the constraints. For a given problem, the

allowable step sizes depend primarily on the properties of the specific integration

39

method being used. In this section, the main considerations in the implementation of an

efficient time-step control for circuit simulation are described. It includes a discussion

of LTE time-step control, iteration count time-step control and the effect of input

sources on time step selection.

3.3.1. LTE Time-Step Control

In LTE time-step control, the user provides two accuracy control parameters. €a

and €,.. which are the absolute and relative errors permissible in each integration step.

They are combined to form a user error tolerance:

EuserLTE = €<i + €/ XmaX IX„ +1 JC„ I

The general form of the local truncation error for most multistep integration methods

of order k is given by [Gea71.ChLi75]:

LTE„+l=Ckh'"x«+iKO t„^t„+l • (3.27)

where Ck is a constant which depends on the coefficients of Eqn. (3.2) and the order of

the method. Since the value of xu +,)(£) is not known, in general, it must be estimated

in some way using the numerical solutions. Typically a divided-difference approxima

tion is used. The first divided-difference is defined as:

DDlit„+l)=X"+l'X"
h

and the k +lst divided-difference is defined as:

™ (, .DDkit„+x)-DDkit„)
Wk +1^11 +1> — J-ZTi

Then the estimate for the derivative term in Eqn. (3.27) is (see [Nag75] for derivation):

x«+lK£)^ik+\)\BDk+1it,l+ll

The LTE estimate is then:

Ek =Ckhk+lDDk+1it„+l)

40

For the BDF integration methods [Bra72]. the LTE can be estimated in a more con

venient way. The estimate is calculated using difference between the computed solution

xw+1 and the predicted value xp(.ta+l). For a k th-order BDF method, the following

expression is used:

and

Ek =

The expression for xr(ta+l) is given in Eqn. (3.26). The computed solution xH+1 is

accepted if

\Ek\<EUserLTE (3.28)

One way of implementing this check is to take the ratio of the allowable LTE and the

actual LTE:

(*«+!"-* (*n+l))

r =
IElIsi-rLTE ' ' Q Killtwable * (£) '

\Ek I IC,/z,f+1x(£)l

Noting that both errors are Oihk+1), it follows that:

u +i

rLTE

r =
''allowable

h ()"•allowable = / \v"/^m'

The comparison test given in Eqn. (3.28) becomes:

rir£>1.0

to accept the computed solution. The advantage of this ratio is that it can also be used

to select the step size for the next integration step. Therefore, the next recommended

step size is given by:

K+\ = rLTEh„ (3.29)

In practice. Eqn. (3.29) may occasionally recommend rather abrupt changes in the

step size. A number of experiments have shown that rapid changes in step size may

41

introduce stability problems [Bra72]. Intuitively, the step sizes should follow the

smoothness of the solution. To ensure that the changes in the step size are indeed gra

dual, it is convenient to set upper and lower bounds on the changes in step size. In fact,

three regions can be defined as follows:

e if rLTE < *-0. reduce the step size by MAX(st . rLTE)
• if \.0^rLTE <ot, maintain the same step size
• if rLTE ^0i' increase the step size MIN(s„ .)3 rLTE)

The time-step may be reduced by at most by the factor j, and increased by at most by

the factor s,t. The a factor permits the same step size to be used a number of times.

Typically. a=1.2. ^=0.25 and s„=2.0. Note that a multiplying factor |3 has also been

introduced as part of the growth factor. The j3 factor is a way of making the time-step

selection somewhat conservative. Since the LTE can only be estimated, it may occasion

ally be optimistic [YanSO]. If so. the time-step would be rejected and a smaller step

used unnecessarily. The j3 factor reduces the likelihood of this happening and a typical

value is 0.9.

3.3.2. Iteration Count Time-Step Control

As mentioned before, the use of large steps is not necessarily the most efficient

approach for nonlinear circuits, especially if relaxation is used. In fact, if time-step is

too large, the iterative method may not converge, which would force the time-step to be

rejected, resulting in wasted effort. This suggests that the time-step control should also

be controlled by the nonlinearity of the problem.

A number of programs use a time-step control based on nonlinearity considera

tions alone (e.g.. SPICE2. ADVICE. MOTIS3) called iteration count time-step control.

This strategy minimizes the total number of Newton iterations used during the simula

tion. The step sizes are selected as follows. If the number of iterations is larger than

N/iig/i • the step size is reduced by some factor. If the number of iterations is less than

42

A//o„.. the step size is increased by some factor. Otherwise, the step size remains the

same. The idea is to use approximately the same number of iterations at each time

point.

While this strategy is certainly effective at reducing the overall computation time,

it is prone to accuracy problems [Nag75]. For example, for linear circuits the step size

would always be increased since the solution is always obtained in one "iteration" at

each time point. For weakly nonlinear circuits, the same sort of effect would be

observed. Therefore, this approach, when used by itself, is not recommended since it

does not control the numerical integration errors directly. However, the iteration count

time-step control can be used in conjunction with the LTE-based time-step control. In

this case, if too many iterations were required to converge, a somewhat smaller step size

could be used in the next integration step. If too few iterations are used a slightly

larger step size can be used. The method could be implemented by making the growth

factor dependent on the number of iterations used to compute the solution. Of course,

if convergence is not obtained in a specified number of iterations, the time-step should

be rejected and a smaller step used in its place.

3.4. LATENCY AND MULTIRATE BEHAVIOR

Most circuit simulators employing direct methods use a single common time-step

for the whole system and hence compute the solution of every variable at every time

point. The time-step at each point is based on the fastest changing variable in the sys

tem, i.e. the n +lst time point is given by:

fn +1 = *« "*" hn

where h„ is the integration step size determined by

h„ = min(/i ljx .h2j, • ' ' ' J*n j,)

43

and h, „ is the recommended step size for with the i th variable at t„ . As a result,

many variables are solved using time-steps which are much smaller than necessary to

compute their solution accurately. For example, the computed points of a waveform

from a large digital circuit, simulated using direct methods, are shown in Fig. 3.1(a).

Note that there are many more points than necessary to represent the waveform accu

rately, especially in the regions when the waveform is not changing at all. The extra

points are due to some other variable changing rapidly in the same region of time. The

same waveform is shown Fig. 3.1(b) with only the minimum number of points neces

sary to represent it accurately.

Since the objective in circuit simulation is to provide an accurate solution while

minimizing the number of expensive model evaluations, one way to achieve this goal is

to reduce the number of time points computed for each waveform. A number of circuit

simulators have attempted to improve the efficiency in this manner by exploiting a pro

perty of waveforms called latency [Nag75. New78. Rab79. Yan80. Sak8l]. While the

general concept of latency includes any situation where the value of a variable at a par

ticular time point can be computed accurately using some explicit formula, it usually

refers to the situation where a variable is not changing in time and its solution can be

obtained from the explicit equation:

„+i=„ (3.30)

That is. the value x„+1 is not computed using a numerical integration formula but

instead is simply updated using the value at the previous time point. For example, the

waveform shown in Fig. 3.2(a) has three latent periods, and ideally the value of x does

not need to be computed in any of these regions.

In the SPICE program [Nag75], latency exploitation is performed using a bypass

scheme. In this technique, each device is checked to see if any of its associated currents

44

n
i Ifaiii I n

(«)

U L

y *>#"" *^

(b)

A_ k,—_^ K

Figure 3.1: Effectof solution by direct methods

45

and node voltages have changed significantly since the last iteration. If not, the same

device conductances and current are also used in the next iteration. However, the

checking operation is somewhat expensive, especially if the circuit is large and most of

the devices are latent. In general, latency exploitation involves the use of a model

describing the behavior of a particular variable as a function of time over a given inter

val. The simple model described in Eqn. (3.30) can be considered as a "zeroth-order"

latency model. Higher-order latency models can be constructed if the solution is

known to have a specific form (i.e.. polynomial, exponential) or if the solution for the

variable can be obtained in closed form. For example, a first-order latency model given

by:

can be used in the case of an ideal current source, with current /. charging a linear

capacitor. C. Usually a latency model can only be used over a portion of the simula

tion interval. Therefore, the validity of the model must be monitored and its use must

be discontinued when the model is thought to be invalid. The latency model used in

this context has also been called a dormant model [Sak8l].

In practice, only the zeroth-order form of latency can be exploited easily since the

higher-order forms are difficult to construct for general nonlinear circuits. To exploit

this simple form of latency, some mechanism is necessary to detect that the signal value

is not changing appreciably4. The waveform is considered to be latent at that point, and

its associated variable is updated using Eqn. (3.30) at subsequent time points. A second

mechanism is used to determine when the latency model is invalid, and from that point

onward the variable is computed in the usual way. Hence, the waveform is only com

puted at time points when the signal is changing. Event-driven, selective-trace can be

4 A number of schemes to detect zeroth-order latency are described in Chapter 4.

46

used to exploit latency, as described in the next chapter, without incurring the overhead

of the bypass scheme.

It is only useful to exploit this simple form of latency when some variables in the

circuit are changing while other variables are stationary, since direct methods can ade

quately handle the case when all variables are active or latent. In fact, the "useful"

form of zeroth-order latency can be viewed as a subset of a more general property of

waveforms called multirate behavior which is illustrated in Fig. 3.2(b). Multirate

behavior refers to signals changing at different rates, relative to one another, over a

given interval of time. MOS circuits inherently exhibit this kind of behavior because of

different transistor sizes and different capacitance values at each node. Exploiting this

general property can reduce significantly the number of time points computed for each

waveform since large steps can be used for variables changing very slowly while

smaller steps can be used for rapidly changing variables.

The basic strategy to speed up circuit simulators suggested above is to take advan

tage of the relative inactivity of large circuits by reducing the number of time points

computed. However, the actual speed improvement obtained by solving the equations

in this manner depends on the two main factors:

1) the "amount" of latency and multirate behavior exhibited
by the circuit during the simulation, and

2) the efficiency of techniques used to exploit the two properties.

The first point refers to the maximum speed improvement that can be obtained if the

two waveform properties are exploited fully, and this factor depends on the circuit size

and the activity in the circuit generated by the external inputs. The second factor

depends on the actual number of points computed and the work required to compute

each point. In the remainder of this section, simple experiments are given to compute

the speed improvement that can be obtained by exploiting latency and multirate

47

V /N

\,
> time

<<»

> time

(b)
> time

Figure 3.2: Waveform Latency and Multirate Behavior

48

behavior under ideal conditions. The efficiency issue is addressed in the Section 3.5.

One assumption used in the following is that work required to generate a solution at

each time point is constant and independent of the method used to produce the solution.

That is. the number of model evaluations per node per time point is assumed to be fixed.

The validity of this assumption will be checked in Section 3.5 since it is related to the

efficiency issue.

3.4.L Maximum Speed-up if Latency is Exploited

Assume that a circuit is simulated using direct methods and that an accurate solu

tion is computed at TLTE time points. Note that this is the number of points at which

the LTE criterion was satisfied. In reality, a few solutions may have been rejected due

to both LTE rejections and iteration count rejections. The total number of computed

time points. TD . is given by:

Td = TLTE + ThTErej + TNre]
where TLrEreJ is the number rejected due to LTE rejections and TNrcj is the number

rejected due to iteration count rejections. Furthermore, since a conservative time-step

control is used in practice, the actual step sizes used are smaller than the step sizes

allowed by the LTE. That is. TLTE^TLTE, where T'LTE is defined as the number of

points that would be used if the maximum step size allowed by the LTE criteria is used,

without any conservatism.

If there are N nodes in the circuit then, assuming that the CPU-time is propor

tional to the number of points computed, the amount of work required to simulate the

circuit using direct methods is

WD=N XTD.

Now the question is: by how much can the speed be improved if waveform latency is

exploited, assuming ideal conditions? Two conditions would make the situation ideal.

49

First, if a node-by-node decomposition of the circuit is used, it would allow each equa

tion to be solved independently so that latency can be exploited for each waveform.

Second, if the latency condition is identified without error, as soon as it occurs in the

waveform, the fewest number of points would be computed.

In order to compute an upper bound on the speed improvement, the waveforms

from a simulator using direct methods are necessary. These waveforms can be obtained

by performing a simulation using direct methods and saving the output waveforms for

all nodes. An operation can be performed on each waveform to determine how many

points would be computed if latency could be exploited fully. A simple post-processor

is given in Algorithm 3.1 to perform this operation on each waveform.

Algorithm 3.1 (Zeroth-Order Latency Evaluator)
/* y(t) is the given input waveform */
/* x(t) is the output waveform */

k*-0:n*-0;

*(*o)«-y(*„):
while itk ^ Txlop) {

k<-k+l :

while (Ix itk)- y it,,) I < threshold)
n«- n+1 :

x U,)«- y it,,) :
}
output x it);

In words, each computed point in the waveform y it) is categorized as being an active

point or a latent point using some threshold of significant change between time points.

Only the active points are moved from waveform y it) to waveform x it) and provided

as output by the post-processor. For the purposes of this post-processor, the use of an

absolute threshold to detect latency is permissible, as long as it is chosen properly, since

the only objective is to remove unnecessary points from each waveform. However, the

proper detection of latency during a simulation is an important issue which is described

in detail in Chapter 4.

50

If TLi is the number of latent time points removed from waveform i. the avail

able speed improvement if latency is exploited is given by

Sl ^ (3 31)L(TD-TLi) WJ1'
/=1

This value can be considered as an upper bound on the speed improvement since node-

by-node decomposition is used and the latency detection is assumed to be ideal.

3.4.2. Maximum Speed-up if Multirate Behavior is Exploited

The next step is to compute an upper bound on the speed improvement if mul

tirate behavior is exploited. In this case, the idea is to determine the minimum number

of points required to represent each waveform in the circuit accurately, i.e., given the

waveform in Fig. 3.1(a). produce the equivalent waveform in Fig. 3.1(b). A node-by-

node decomposition is also assumed here. As before, the waveform of Fig. 3.1(a) can be

obtained from a simulator using direct methods. The waveform corresponding to Fig.

3.1(b) is generated by the multirate post-processor, as described in the following.

The post-processor selects an integration method and an accuracy criteria. EA . and

replaces the set of points in a given waveform with a new set of points that only

depends on the characteristics of the waveform itself. That is. the only criteria used to

select step sizes is the LTE. As described earlier, different integration methods have

different local truncation errors. Usually higher-order integration methods allow larger

step sizes resulting in fewer computed points. The allowable error also controls the

number of time points used. For example, if EA is very small, the number of points

generated by the post-processor will be very large. Therefore, the order of integration

and the accuracy criteria should be the same ones used in the simulator using direct

methods to get meaningful results from this analysis.

51

Another consideration is that, in practice, the LTE is not the only constraint on the

step size. The iteration count also controls the selection of step sizes. Since the post

processorcomputes T"LTE :, points for waveform i. and it is known that

TlTEJ ^LTE.i + TNrej j •
it follows that the post-processor will produce the minimum number of points possible,

thus providing a more conservative upper bound.

In the algorithm below, the waveform, y it). is the input to the post-processor and

is treated as the correct solution. The post-processor attempts to choose optimal step

sizes which satisfy the LTE constraint. It uses the BDF method [Bra72] to compute the

LTE. That is. if the difference between the predicted value and the computed solution

is within the specified tolerance, the step size is accepted. Otherwise a smaller step is

used and the process is repeated. Since the trapezoidal method is a popular integration

method for circuit simulation due to it accuracy and stability properties, a second-order

integration method is assumed in the evaluator. The sequence of operations in the

post-processor is given more precisely in Algorithm 3.2.

Once this post-processing operation is completed, the number of points. TLTEi used for

each waveform are tabulated and compared it to the number of points generated by the

simulator using direct methods. Then, the upper bound on the speed improvement is

computed as

s - Wd•u fZ (3.32)
;=i

If 5A/ =i, the circuit exhibits no multirate behavior. However, if SM » 1 then the

circuit is said to be "highly multirate".

Algorithm 3.2 (Multirate Evaluator for 2nd-Order Integration Method)
/* y(t) is the given input waveform */
/* x(t) is the output waveform */

*«-0;

h«- 0:
x (*o)*- y it o):
while (tk < Tsfop) {

k*- k+\ :

pick a new step size hk ;
stepAccepted = FALSE ;
repeat {

Get predicted value x pitk)
using 2nd-Order predictor using x itk _j),x itk _2).x itk _3) :

Get computed value y itk)
using 2nd-order interpolation of the waveform y it) at tk ;

E2=[h„ /ih„ +A(,H)](y(Ui)-^(fw+i)) :
EA =€„ +€,. X max Ix pitk),y itk) I :
rLrE=iEA/E2)l/3:

if (rLTE < 1.0) /iA. - /i< /2.0:
else if (1.0^ rLTE < 2.0) stepAccepted = TRUE :
else if irLTE >2.0) hk - hk +h min

}until (stepAccepted):
x(tt)-yUk>:

}
output x it):

52

3.43. Experimental Results

A number of industrial circuits were simulated and processed as described above

and the results are presented in Table 3.1. The SPLICE3 simulator has an implementa

tion of direct methods5 and this mode was used to generate the results. A wide variety

of circuits are represented in this table including an opamp. a control circuit, a few

memory circuits and a digital filter circuit. The last two columns in the table show the

s The SPL1CE3 program is described in Chapter 4 and Chapter 5. The implementation of direct methods
in this program is based on the directmethods used in the RELAX2 program. However, the time-step control is
slightly different in SPLICE3 since it allows latency exploitation.

53

upper bounds on the speed improvements if latency and multirate behavior are

exploited fully using Eqns. (3.31) and (3.32).

As the results indicate, there is a strong incentive to take advantage of the relative

inactivity of large circuits. The potential speed-up factors range from 1.8 for the smal

lest circuit to almost 64 for the largest circuit. Note that the factors may vary some

what depending on the circuit and the length of the simulation interval. In fact, even

for two circuits of roughly the same size (i.e.. CRAMB and SCDAC), the speed-up fac

tors are different. However, the general trend is that the potential speed-up increases as

the circuit size increases. Note also that the bounds given in Table 3.1 are only mean

ingful when the model evaluation time is the dominant factor in the total time, which

is the case for small and medium size circuits. If the linear equation solution time is the

dominant factor for direct methods, then the actual speed improvement could exceed

this upper bound.

Available Available

Circuit Size

(nodes)
Speed-up
(Latency)

Speed-up
(Multirate)

OPAMP 13 1.8 2.3

DECPLA 56 2.2 4.6

CRAMB 149 12.3 27.9

SCDAC 154 4.1 8.5

CKT3 312 6.5 25.9

DIGFI 378 8.2 16.8

EPROM 630 18.4 63.9

Table 3.1 - Upper bounds on speed improvement for some industrial circuits
if latency and multirate behavior are exploited fully.

54

3.5. EFFICIENCY OF RELAXATION METHODS

The results in Table 3.1 indicate that it is worthwhile to explore techniques which

take advantage of the latency and multirate properties of waveforms. To accomplish

this, the equations must solved in a decoupled fashion so that different time-steps may

be used to solve different equations. Clearly the relaxation methods described in

Chapter 2 are well-suited for this purpose. A variety of relaxation algorithms are

described in the chapters to follow and they are shown to be effective in exploiting both

latency and multirate behavior. However, one may wonder if the bounds given in

Table 3.1 are achievable in practice, and what factors control efficiency of the relaxation

methods in this respect.

The overall efficiency of a method is related to the number of points computed per

node and the cost of each computed solution. If these two factors are examined for

relaxation methods, it is apparent that the bounds in Table 3.1 will be difficult to reach.

For example, the factors which increase the number of computed points are as follows:

e the time-step selection is usually conservative in most circuit simulators
to reduce the likelihood of a step rejection and this increases the number
of points computed.

• in the multirate post-processor, the ideal time-steps were chosen based on
a LTE criteria alone. However, the actual step size will be smaller whenever
the iterative process does not converge, thereby increasing the number of
computed points.

• in the latency post-processor, the latency detection scheme was assumed
to be ideal. In reality, the techniques used to detect latency must be very
conservative so that errors are not made. This also increases the number

of points computed.

• the node-by-node decomposition assumed throughout the discussion
allows the maximum amount of latency and multirate behavior to be exploited
but is not appropriate for general circuits. The use of circuit partitioning
increases the total number of points computed, since variables in the same
subcircuit are solved together. However, this usually improves the convergence
speed enough to warrant its use.

Based on the above considerations, it is clear that the number of time points computed

55

in practice will be larger than the number used to compute the bounds.

The second factor is the relative cost of computing a solution at each time point

compared to direct methods. It was assumed earlier that the number of model evalua

tions per node per time point is the same regardless of the method used to compute the

solution. Strictly speaking, this assumption is not even true for direct methods on non

linear problems. The cost depends on the number of Newton iterations at each time

point, which in turn depends on the step size and the nonlinearity of the problem in the

neighborhood of the time point. However, the time-step control algorithm suggested in

Section 3.3 attempts to make the cost approximately equal at all time points by adjust

ing the time-step based on iteration count. For the purposes of this analysis, it is

assumed that the cost of each solution point is constant for direct methods.

In the remainder of this section, the cost of computing a solution point for the

relaxation methods is examined. To simplify the analysis, consider the case where all

methods use the same fixed step size to perform a simulation in the interval [Q.T]. For

direct methods, if there are d devices in the circuit, then the number of model evalua

tions performed at each time point is NRd . where NR is the average number of Newton

iterations. For nonlinear relaxation, each subcircuit is processed once during each relax

ation iteration. If RNL is the average number of nonlinear relaxation iterations at each

RVLd
time point, then the number of model evaluations is given by . where a> 1. Note

r Of

that a accounts for the fact that all entries in the Jacobian matrix will not be computed

in this case for reasons described in Chapter 2. Therefore, the device evaluations will

require less computation and a is used to reflect this fact. For WR. each subcircuit

requires an average of RWR relaxation iterations to converge to the solution. During

each relaxation iteration, an average of ftp Newton iterations are used to solve the non

linear problem at each time point. Therefore, the total number of model evaluations

NR KWR d
per time point is given by

a

56

By comparing the three expressions for the number of model evaluations per time

point, it is evident that the cost can be very high for WR if KWR is large. However, this

higher cost is offset by the fact that fewer time points are computed in WR since it

exploits the multirate property. The cost per solution point for direct methods and

nonlinear relaxation are approximately the same if NR ^ RNR /a. For example, if half

as much computation is performed during the model evaluation phase in nonlinear

relaxation (i.e.. a=2) and 1?kR = 2xA^ , then the cost per time point would be the same

as direct methods. This suggests that if nonlinear relaxation is used to exploit

waveform latency, the speed-up numbers in the latency column of Table 3.1 will only

be modified by the actual number of time points computed compared to the ideal

number, and not by the cost of each solution point. For WR. the multirate speed-up

numbers in the table will be affected by both the number of relaxation iterations and

the actual number of time points compared to the ideal value. TLTE. used in the upper

bound calculations.

57

CHAPTER 4

ITERATED TIMING ANALYSIS

4.1. INTRODUCTION

In this chapter, a number of algorithms for the solution of the circuit simulation

problem based on nonlinear relaxation are described. It is shown that nonlinear relaxa

tion combined with event-driven selective-trace techniques can be used to exploit latency

or circuit inactivity. This approach is referred to as Iterated Timing Analysis or ITA

[Sal83]. A preliminary version of ITA was implemented in the prototype mixed-mode

simulator SPLICE1.7 [Sal84] and an advanced version in SPLICE2 [Kle84]. A new

robust version of ITA has been implemented in the SPLICE3.1 program. The details of

the implementation of ITA in these programs are given in this chapter.

In Section 4.2. nonlinear relaxation is applied to the circuit simulation problem.

Simple timing analysis is described in Section 4.3. Fixed step ITA is introduced in Sec

tion 4.4. and global-variable time-step ITA is described in Section 4.5. A number of

issues concerning latency and event scheduling are presented in Section 4.6. Simulation

results are reported in Section 4.7 and conclusions are given in Section 4.8.

4.2. EQUATION FLOW FOR NONLINEAR RELAXATION

The starting point for the description is the system of nonlinear differential equa

tions describing the circuit behavior using the charge-based formulation:

qivit)) = -fivit)Mit)l v(o)=v. t e[o.r] (4.1)

where q is the charge associated with the capacitors connected to each node. / is the

sum of the currents charging the capacitances at each node, u is set of input voltages

and v is the set of unknown node voltages. Using trapezoidal integration [ChLi75] to

discretize the system in Eqn. (4.1). the following system of nonlinear difference equa-

58

tions is obtained:

<7„+i =<7„ +^-(/„+i +/„) (4.2)
where the subscripts n and n +1 refer to time points tn and tn+1=tn +hn . respectively,

and hn is the integration step size. This equation can be formulated as a nonlinear

problem, as follows:

Fiv)= *iq„ +j_ qj)_ (/n+1 + /„) =0 (4.3)
hn

Instead of solving this system of equations using standard techniques [Nag75], the stra

tegy in this section is to use nonlinear relaxation. That is. use the Newton method to

solve each equation in the system separately and a relaxation method to guarantee that

the solutions are mutually consistent. The expression for the i th equation in Eqn. (4.3)

solved using the Newton method is:

JF.ivk)(v/ +1- v?) = -Ft ivk) (4.4)

where JF (v) is the i th diagonal term of the Jacobian matrix of Fiv) given by:

_ 2»,(v*)_ dfi(v*> (45)
h dv flv

The index k is the iteration counter for the Newton method. Usually a number of

iterations are required to obtain the correct solution. However, in this case, since a con

verged relaxation method is used to guarantee a consistent solution to the system of

equations, the Newton iteration for each equation need not be carried to convergence. In

fact, from an efficiency standpoint, only one iteration should be used to approximate the

solution of each equation before moving to the next equation, as described earlier in

Chapter 2. The resulting one-step Gauss-Seidel-Newton relaxation algorithm is

specified precisely in the following, using the definition:

v* •' = [vi+1 ,v*2+1 . • • • ,v/_V ,v/.v/+1 . • • • ,v*F

where the superscript T denotes the transpose of a vector. This definition is based on

59

the Gauss-Seidel method which uses the k +ls' values of all other components, when

ever possible, in computing the k +1" value of v-t. Here n is the number of equations

in the system.

Algorithm 4.1 : (Gauss-Seidel-Newton Relaxation Method)
repeat {

f oreach (£ € {1. • • • ,/t}) {
solve JFivk •')(v* +1- v/) = - F, (v* •') for vf +1

where F-, (v) is specified in Eqn. (4.3) and
JF (v) is specified in Eqn. (4.5) ;

>
}until (|| v/+1-v/|| <€, .||F,|| <€2.t=l....n)

•

4.3. TIMING ANALYSIS ALGORITHMS

The first published program to use techniques based on nonlinear relaxation for

circuit simulation was the MOTIS program [Cha75]. It used Backward-Euler integra

tion, a Gauss-Jacobi-Newton relaxation algorithm, and node-by-node decomposition

(that is. it solved for one node voltage at a time). In MOTIS. a simple modification was

made to the relaxation scheme based on the conjecture that there exists a small enough

time-step, h min. such that the method obtains the correct solution in exactly one itera

tion. At each time point. fn+1. the program computed new values of all node voltages

using only one iteration of the Gauss-Jacobi-Newton method and accepted the results as

the correct solutions at tn +1. It was believed that iterating the outer relaxation loop to

convergence would be both expensive and unnecessary for most MOS logic circuits.

However, the resulting accuracy of this approach relied heavily on three things:

(1) the user's ability to select an appropriate time-step based
on knowledge of the circuit characteristics

(2) the fact that the global error reduces to zero when a node
voltage reaches the supply voltage or ground

(3) Only a limited number of well-characterized circuit topologies
(CMOS polycells) were used to build a design

60

The initial speed improvements obtained using this approach were extremely encourag

ing, partially due to the simplified numerical techniques and partially due to the use of

table look-up models for the MOS devices. The combined techniques were shown to be

over two orders of magnitude faster than standard techniques when applied to large

digital MOS circuits [Cha75]. Since the method was intended to provide first-order tim

ing information of MOS logic circuits, it was called "Timing Analysis" or "Timing Simu

lation".

Although timing analysis provided an electrical simulation capability with execu

tion speeds comparable to logic simulation, it suffered from a number of problems. For

example, the choice of a proper time-step to guarantee accurate solutions was very

difficult to determine in general. In addition, the method had severe accuracy problems

for circuits containing elementssuch as large floating capacitors1, small floating resistors

and transfer gates. The MOTIS program avoided this problem for floating capacitors by

not allowing them in the circuit description and solved collections of transfer gates

using direct methods.

A number of improvements to the basic technique were suggested to overcome the

inherent accuracy limitations of the method. In particular, the MOTIS-C program

[Fan77] employed trapezoidal integration and one iteration of the Gauss-Seidel-Newton

relaxation algorithm. Since timing analysis algorithms based on the Gauss-Seidel prin

ciple use updated information at tn +1 whenever possible, the accuracy is generally

better than one based on the Gauss-Jacobi method. The simulation time-step was

selected automatically in the program by doing a simple analysis of the time constants

associated with each node and used some fraction of the smallest time constant as the

step size. However. MOTIS-C still suffered from problems similar to MOTIS.

1 A "floating" element is a two-terminal device whose terminals are not connected to either ground or to
a power supply.

61

A modified timing analysis algorithm was implemented in SPLICE1.3 [New78] as

part of a mixed-mode simulation capability. Although Backward-Euler integration was

used in this program, a number of other noteworthy enhancements were made to the

underlying timing analysis algorithm. The first enhancement was based on two obser

vations:

(1) most of the node voltages in a large digital circuit remain stationary
at a given time point (the latency property). Computing the solution
for these nodes is unnecessary.

(2) the order in which the nodes are solved has a strong influence on the
accuracy of the solution for timing analysis algorithms based on the
Gauss-Seidel principle

These observations suggested that a good strategy would be to identify the "active"

nodes at each time point and process these nodes an order based on the direction of sig

nal flow. In SPLICE1.3. a single mechanism was used to perform both tasks: an event-

drive, selective-trace algorithm normally associated with logic simulation [SzTh75].

This mechanism is described in the following paragraphs.

The SPL1CE1 program treats a circuit as a signal-flow graph and constructs a

corresponding directed-graph for the circuit given by. G =G (X M). where X is the set

of vertices and E is the set of directed edges of the graph. Two tables, the fanin and

fanout tables, are constructed at each vertex based on the following definitions:

Definition 4.1: (Fanin and Fanout nodes)

A node xk is called a fanin node of x,. and is specified as xt € Fanin (x,). if xk directly

affects X-,. A node Xj is called a fanout node of x,. and is specified as x} € Fanout (x,).

if Xj is directly affected by x,.

Whenever the value of an input node or any internal node changes, it is possible to

schedule all of its fanouts to be processed. In this way the effect of a change at the

62

input to a circuit may be traced as it propagates to other circuit nodes via the fanout

tables. Since the only nodes that are processed are those which are affected directly by

the change, this technique is selective and hence its name: selective trace. If such a selec

tive trace algorithm is used with the fanout tables, the order in which the nodes are

updated becomes a function of the signals flowing in the network and is therefore a

dynamic ordering.

To make the processing efficient, and for consistency with the logic simulator in

the SPLICE1 program, the total simulation period. Tstop , is divided into uniform steps,

referred to as the Minimum Resolvable Time (mrt). A time queue is constructed and the

time slots in this queue define distinct points in time separated by one mrt. Hence,

events are scheduled at integer multiples of mrt in the queue. The simple event

scheduling algorithm used in SPLICE1 for timing analysis is given below. The routine

NextEventTimeit) examines successive time slots in the time queue starting at time t

and returns the next time point where one or more events have been scheduled. The

external input nodes to a circuit are denoted as ek.

Algorithm 4.2 : (Event Scheduling Algorithm in SPLICE1)

r„ «- 0:
while (t„ ^T„op)[

t„ «- NextEventTime(t„);
foreach (input k at i„) {

if (ek is "active")
forall (Xj € Fanout (ek)) Schedule(Xj. tn);

foreach (event i at tn) {
process node x, by computing x, (tn):
if (x; is "active") {

Schedule(x-t. t„ +/i):
forall (Xj € Fanout {x,)) Schedule(x}. t„):

63

As seen in the above, three separate event scheduling mechanisms exist:

(1) external inputs generate events whenever they make transitions
from one value to another.

(2) internal nodes can schedule themselves to be processed, and
(3) internal nodes can schedule their fanout nodes to be processed.

Note that if x: is not active, then neither x, nor its fanouts are scheduled. However,

since nodes may schedule themselves, the fanouts of x-, may still be active even though

Xj is not. The importance of this fact and other issues associated with electrical event

scheduling will be presented in Section 4.6. Also, the precise meaning of "active" is ela

borated further in Section 4.6.

The use of event-driven, selective-trace techniques greatly improved accuracy of

SPLICE1.3 compared to the MOTIS and MOTIS-C programs. In addition, a further

improvement was realized using a variable time-step control, as follows. Initially,

every node is solved using a common step size given by the mrt. If the change in either

the voltage at a node or the current through any device connected to the node is large,

its solution is recomputed in the mrt interval using smaller steps and a single iteration

at each time point. Each of the smaller steps may be further refined to insure that the

changes in voltage and current are within acceptable limits. Therefore, the local time-

steps for each node are based on limiting change of the node voltage and its associated

currents over each step2. While the run time was noticeably higher, this variable time-

step control was extremely effective in improving the accuracy of the results.

Other enhancements were developed in SPLICE1.3 to handle tightly-coupled cir

cuits. SPLICE1.3 used the Implicit-Implicit-Explicit (HE) method [New80] to handle

floating capacitors and this approach has been shown to be convergent, consistent and

stable [Hua83]. To accommodate large blocks of tightly-coupled circuit elements, the

2 Note that a variable time-step control based on local truncation error is not easy to define here since
the relaxation loop is not carried to convergence. The localerror (i.e., the error over one step) is due to the in
tegration method and due to the fact that the iteration is not carried to convergence.

64

program allowed the user to define "circuit" blocks. These blocks would be solved using

standard direct matrix techniques. However, instead of using a single iteration, the

Newton iteration in the inner loop was carried to convergence since the elements inside

the circuit block were considered to be "highly" nonlinear. However, the outer relaxa

tion iteration was still only performed once.

While the results from programs using timing analysis were within acceptable

accuracy limits for a certain class of problems, a rigorous mathematical analysis indi

cated that these methods have inherent stability and accuracy problems [DeM8l]. This

severely limited the application of the technique. Another problem, cited earlier, was

that timing analysis programs relied on the user's knowledge of the underlying algo

rithms and improper usage could produce the wrong answer. Circuit designers have

been known to lose confidence in a simulator if it occasionally produces the wrong

answer, whatever be the reason. Therefore, this approach has not been widely accepted,

although it is heavily used where the approach has been thoroughly developed, is well-

understood, and is applied to a restricted class of circuit topologies.

4.4. SPLICE1.7 - FIXED TIME-STEP ITA

The reluctance to close the outer relaxation loop in timing analysis was primarily

due to its perceived high cost. However, the event-driven techniques significantly

reduced the cost of timing analysis for large problems since only a small fraction of the

nodes are processed at each time point. A number of other improved timing analysis

algorithms were proposed [Kah75. DeM83] but they used at least two iterations or

required the use of expensive function evaluations, which increased greatly the cost of

the simulation. As described earlier, the variable step approach in SPLICE1.3 improved

the accuracy somewhat at the expense of additional iterations. The additional cost was

thought to be worthwhile due to the improved reliability.

65

The next step, naturally, is to close the relaxation loop and examine the true cost

of iterating to convergence, given that event-driven selective-trace is employed to

improve efficiency. This was done in the SPLICE1.6 program, which later evolved to be

SPLICE1.7. and the technique was named Iterated Timing Analysis or ITA [Sal82]. The

prototype version of ITA used Backward-Euler integration, node-by-node decomposi

tion and a fixed time-step based on the mrt. The fixed time-step algorithm was kept for

consistency with the existing scheduler and logic simulation portions of SPLICEl. The

ITA algorithm in SPLICE1.7 is a simple extensionof Algorithm 4.3 as shown below.

Algorithm 4.3 : (Fixed Time-Step ITA)

r„-0:
while (tn **Tstop) {

tn «- NextEventTime(t„):
foreach (input k at t„) [

if (ek is active)
forall (Vj € Fanout (c,)) Schedule(v} ,tn):

}
repeat {

foreach (event i at t){
solve JF(vk •')(v/ +1- vf) = - F, (vk•'') for v/ +1

where Fj (v) is specified in Eqn. (4.3) and
JF (v) is specified in Eqn. (4.5) ;

}
if (Iv/:+l— v/'.l <€j. IFj I <€2) { /* convergence check */

if (Vj did not converge on last iteration) {
if (v, is active) {

/* this is the selective-trace portion */
Schedule(v,. tn +1):
forall (Vj € Fanout (v,)) Schedule(v} . t„);

\
else {
/* do nothing [this is the latency exploitation) */ }

}
else {
/* do nothing (this breaks feedback loops) */ }

}
else { /* node has not converged */

Schedule(v,. tn);
forall (Vj € Fanout (v;)) Schedule(Vj , tn):

}until (Iv/ +1- vf l<€i. IFj I <e2. i =1 n)

66

The following definition is used above:

v* J = [v\ +1 ,v2+l . ••• .vfJi1 .Vi*.v,*+1 . •• • ,v*F

The algorithm above has two features not present in the SPLICE1.3 algorithm:

e If a node voltage does not converge, the node is rescheduled
at the current time point tn along with its fanout nodes.

e All nodes are processed until their voltages converge. When a
node converges at t„ . it schedules itself at tn +1 and schedules
its fanouts at t„ . if active. However, if it is scheduled again at tn . by
one of its fanin. and converges again, it does not schedule any
additional events. This approach breaks feedback loops, since two
nodes which are fanouts of each other would schedule each
other indefinitely at tn if this approach was not used.

The speed improvement obtained by the SPLICEl.7 program compared to the

SPICE2 program was in the range of 5 to 50 times faster for a number of MOS digital

circuits containing up to 1200 transistors [Sal83]. However, the ITA approach required

approximately twice as much CPU-time to simulate a circuit compared to SPLICE1.3

which used timing simulation [Sal84]. Again, the improvements in reliability and

numerical robustness far outweighed the cost of the increase in run-time.

While the converged relaxation scheme is provably better than the non-iterated

approach, it is not without problems. One problem is the speed of convergence. For

example. SPLICEl.7 was able to simulateaccurately an NMOS operational amplifier but

it required more than two times the CPU-time used by SPICE2 [NeSa83]. The circuit is

a tightly-coupled analog circuit with large forward gain and capacitive feedback [Sen82]

and. in this application, the node-by-node decomposition strategy used in SPLICEl.7 is

inappropriate. For this same reason, convergence is also very slow in the presence of

large floating capacitors and small drain and source resistors, usually found in detailed

MOS transistor models. Another problem is due to nonconvergence. Since a fixed

time-step is used, the program simply stopped when it was unable to converge to a

67

solution within a specified number of relaxation-Newton iterations. Obviously, a vari

able step algorithm would resolve this problem and would also allow the solutions to

be computed accurately based on a local truncation error criterion. These and other

problems were solved in the SPLICE2 and SPLICE3.1 programs. Since the nature of the

improvements in SPLICE2 is associated with multirate integration, its description is

postponed until Chapter 5.

4.5. SPUCE3.1 - GLOBAL-VARIABLE TIME-STEP ITA

A new robust version of ITA has been implemented in the SPLICE3.1 program. It

differs from SPLICE1.7 in two respects:

« it uses partitioning to improve the speed of convergence for tightly-coupled
circuits

o it achieves better accuracy by using a LTE-based time-step control

The SPLICE33 program also provides detailed MOS level 1 and MOS level 3 transistor

models [VlaSl], including a charge-conserving capacitance model [Yan8l].

4-5.1. Circuit Partitioning

The node-based ITA approach used in SPLICE1.7 is not appropriate for circuits

with tight coupling between two or more nodes, since the convergence can be very slow

in this situation. One reason for this problem is thai, in computing the new value for a

particular node, the relaxation process effectively replaces the fanin nodes with ideal

voltage sources of constant value. Therefore, the true Norton equivalent contributions

from the fanin nodes are not used in the computation of a new value for the node.

SPLICE2 used an improved representation of the neighboring nodes based on a current

and conductance model, rather than constant voltage sources, and this approach was

3 This new version of SPLICE is based on the library of subroutines now used in a number of simulators
under development at the University of California at Berkeley, including Harmonica [Kun85], SPICE3
[Qua85l. Splax [Whi85b], RELAX2 [Whi85a].

68

called the coupling method [Kle84]. This fanin node model is only approximate since the

exact Norton equivalent circuit for each node is expensive to calculate for large circuits.

While this approach improved the convergence speed on some examples, the technique

was heuristic in nature and did not solve the general problem of coupling between more

than two nodes in feedback loops.

As was realized in early mixed-level simulators such as SPLICEl. tightly-coupled

subcircuits are better solved using direct methods [New78]. However, it is difficult for

users to identify tightly-coupled blocks manually, especially when the degree of cou

pling is a function of time and hence may change over the simulation interval. A more

effective approach to the coupling problem is to identify strongly-coupled components

in the circuit automatically and to group them together to form subcircuits - a process

referred to as circuit partitioning. Since the variables associated with the subcircuits are

assumed to be tightly-coupled, the subcircuits can each be solved using direct matrix

techniques, and the relaxation method can be applied between subcircuits. This tech

nique has been used in conjunction with the Waveform Relaxation algorithm [Lel82,

Car84. Whi85a, DeMa85. Mar85] with great success. The same approach can be used

with nonlinear relaxation to improve convergence as described in Chapter 2. The static

partitioning approach of the RELAX2 program [Whi85c] has been adopted in the

SPLICE3 program and it is described briefly in the following.

The main goal of partitioning is to speed-up the convergence process of relaxation

methods. Recall from Chapter 2 that the speed of convergence is controlled by the con

traction factor, y^, in the following way:

For a linear problem, this iteration factor can be computed quite easily. For example, if

the linear problem Ax =6 is solved using the Gauss-Seidel algorithm, y^ is equal to the

69

largest eigenvalue of the iteration matrix [{L +D)~XU]. where A =L+D+U. There

fore, a two node linear circuit such as the one in Fig. 4.1. has an iteration factor (for the

conductance portion only) given by:

_ gl2 gl2

(g2+gl2) (gl+gl2)

A similar expression exists for the capacitance portion of the circuit. Note that if the

two nodes are part of a larger circuit, the values of g i and g 2 are the Norton equivalent

conductances seen from each node looking back into the rest of the circuit.

The partitioning algorithm makes use of the iteration factor to decide whether or

not two nodes should be placed in the same subcircuit. If the factor is close to one and

the nodes are solved independently, the convergence would be very slow. Therefore,

the nodes should be placed in the same subcircuit. However, if the factor is close to

zero, they may be placed in different subcircuits without adversely affecting the conver

gence speed. A threshold parameter, a. is used to decide whether or not the nodes

should be solved together or separately.

A number of approximations are made in computing the iteration factors when

partitioning MOS circuits. As MOS circuits are nonlinear, each nonlinear device must

be replaced a linear equivalent device. Since a static partitioning strategy is used,

worst-case conductance and capacitance values are used when replacing each nonlinear

device with a linear one. However, the exact Norton equivalent model seen by each

node cannot be computed efficiently because it involves tracing paths from each node to

all other nodes in the circuit. For efficiency, the depth of the conductance and capaci

tance computing process is truncated whenever a MOS transistor is encountered since

the conductance of a MOS transistor is zero in the worst case. With these heuristics

applied, the following partitioning algorithm is obtained:

12

—W|/

3-

Figure 4.1 : Linear Circuit considered for Partitioning Purposes

Algorithm 4.4 (Conductance Partitioning)
foreach (conductive element in the circuit) {

g 12 «- maximum element conductance over all v ;
Remove the element from the circuit:

Replace the rest of the conductances in the circuit
by their minimum values over all v ;

Compute g j and g 2. the Norton Equivalent
conductances to ground at the two element terminals:

if(
gl2 g 12

Cg2+gl2> (g 1+g 12)
Tie the two terminal nodes together:

> a) {

70

A similar algorithm is used for partitioning based on capacitances. Using this

approach, the run times were reduced significantly compared to the node-based

approach on all examples simulated. However, the partitioning strategy described here

71

has a number of problems. The main problem with this approach is that it may pro

duce unnecessarily large subcircuits since worst-case values are used in the partitioning

process. The advantages of the relaxation method are lost if the subcircuits are too

large. Since static partitioning is used (that is, the subcircuits are defined before the

simulation begins), the latency exploitation is no longer performed at the node level but

rather at the subcircuit level. All nodes in a subcircuit must be latent before the sub-

circuit is declared latent. While this provides a somewhat stronger condition for

latency, it reduces the efficiency of the latency exploitation. Ideally, one would prefer

to use small-signal conductance and capacitance values to perform the initial partition

ing, and then adjust the subcircuits as these values change during the simulation. This

is referred to as dynamic partitioning and has already been successfully applied to the

simulation of Bipolarcircuits using Waveform Relaxation [Mar85].

Another problem with the partitioning approach given in Algorithm 4.4 is that it

is too local a criterion. For example, if two nodes are extremely tightly-coupled, rela

tive to their coupling to neighboring nodes, they will be lumped together in the same

subcircuit but the neighboring nodes may be incorrectly placed in other subcircuits. If

the neighboring nodes are truly coupled to either of the two nodes, the convergence may

still be slow [Whi85c]. One practical problem in partitioning is that it is a time-

consuming task. Care must be taken in the definition of the data structures and parti

tioning algorithms so that the partitioning phase does not dominate the total run time

for large circuits. This isof major concern in dynamic partitioning [Mar86].

Recently, the concept of overlapping partitions has been introduced [Mok85]. In

this approach, each subcircuit is expanded to include its fanout nodes before computing

a solution. Since all the subcircuits perform this operation, the expanded subcircuits

overlap with each other. This technique improves the convergence speed of the relaxa-

72

tion method, resulting in fewer iterations than the standard partitioning strategy. The

main drawback of overlapping scheme is that the amount of work associated with each

subcircuit increases and. although the number of iterations is reduced, the run time may

increase. One could conceive of extending this notion of overlapping partitions to

include as many nodes as required, depending on the coupling in a given situation. That

is. parts of two or more subcircuits could be combined if it is determined that the nodes

in the subcircuits are tightly-coupled over a particular interval of time. This would

allow for an arbitrary amount of overlap between subcircuits during the iterative pro

cess, and may improve the convergence speed beyond the previous scheme in [Mok85].

4.5.2. Global-Variable Time-Step Control

SPLICE3.1 uses a global-variable time-step algorithm in which the components in

the system are integrated using a single common time-step. This integration time-step

is selected based on the fastest changing variable in the system, the same strategy used

in direct methods. However, only the active subcircuits are processed at each time

point, and these subcircuits are identified using the selective-trace algorithm. The main

steps in the global time-step ITA algorithm are given below following a brief descrip

tion of the notation to be used.

Notation for Algorithm 4.5: (see Fig. 4.2)

Assume that a given circuit is partitioned into n subcircuits Si,S2.'' ' +>i • ' ' ' \ • The

i th subcircuit. 5,. has n, internal variables and nc external inputs. The internal vari

ables given by int(S;) = {x l , x2 x„ \ are those variables computed whenever sub-

circuit Si is processed. They are defined in vector form as vi=[xl.x2. ••• ~*„Jr- The

external inputs of a subcircuit are other nodes which affect the internal nodes of the

subcircuit. They are specified as Fanin (5,) = { e x,e2, • • • ,en }. The fanouts of a

73

subcircuit are associated with the internal nodes of the subcircuits. Hence, the set of

subcircuits affected by an internal node. x}, and are specified as Fanout (xj) = {

51.&2' *'*•£*)• The following definition is also used:

V* .' = [V\+l ,V2+l . • • • .V/_V .V;*.V/+1 . •• • ,V*F •

Algorithm 4.5: Global-Variable-Time-Step ITA

PartitionO:

*n *"" *'• ^min*- nwarr •
while (t ^Tslop) {

stepRejection = FALSE:
hncxi *~ ^min* '/i *"" *n "^ "next »nmin "max*
foreach (input i at t„) {

if (ek is active) {
forall (Sj € Fanout (ek)) Schedule(S}, *„):

}
}
repeat{

foreach (event i at *„) {
solve JF(vk >'')(v/ +1- v/) = - F, (v* •') for v/ +1

where F, (v) is specified in Eqn. (4.3) and
JF (v) is specified in Eqn. (4.5)

}
if (||v/+1-v/|| <€lt \\Fj\\ <€2){ /* convergence check*/

if (v; did not converge on last iteration) {
foreach (x, € int (S,)){

if (Xj is active) {
if (CheckAccuracy(X,) = TRUE) {

hj*- pickStep(Xj):hmin*- min(hmm. h,):
schedule(xt. tn +1):
forall (Sj € Fanout (xj)) schedule(Sj . t„):

}
else { /* solution not accurate enough */

ttt <-tn-h mm:h min4" h mJ2: stepRejected = TRUE;

else { /* subcircuit has not converged*/
if (itercnt > maxitercnt) { /* solution not accurate enough */

t„ *- ',, - ^min^min*- hmJ2\ stepRejected = TRUE:
}
else {

Schedule(5/. t„):
foreach (x, € int (S,))\

if (x, is active)
forall (Sj € Fanout (xj)) Schedule(S}. t„);

}until ((||v/+1-v/|| <€lf HFill <€2.i=l n) OR (stepRejection))

74

In the algorithm above, the CheckAccuracyix) routine uses a local truncation error cri

terion to determine if the computed solution for x is accurate and. if so, returns

"TRUE". The PickStep(x) routine uses a LTE estimate to pick the next recommended

step size for x .

The main differences between this algorithm and the one used in SPLICEl.7 are

due to the actions taken when the subcircuit variables converge at a time point and

when they do not converge in a specified number of relaxation-Newton iterations.

When the active subcircuits converge at a time point, tn . the local truncation errors for

their internal variables are estimated [Bra72] and the new global time-step. hnext. is set

to the smallest recommended step in the system. hmia. If the accuracy in the solution

computed at t„ is unacceptable, the solution is rejected and the integration is retried

with the smaller time-step. Similarly, if the iterations do not converge within a

specified number of iterations, the time-step is rejected and a smaller step is used.

4.6. LATENCY AND EVENT SCHEDULING

4.6.1. Latency Detection

The most critical aspect in ITA, in terms of accuracy, is the detection of the

latency condition. For example, if component x is identified as being latent prema

turely, any small errors in its value will be propagated to the other components pro

ducing errors in their solutions. If the component is thought to be latent but. in reality,

it is changing very slowly the results may be completely wrong. So the overriding

External
Ihputs

Figure 4.2 : Notation associated with Subcircuits

75

question is: how can one be sure that a variable has reached a steady-state value? The

simplest approach is to test if the following condition is satisfied:

Latency Condition 1:

I*„+!-*„ I <6.v <4-6)

where x„+l = x (t„ +1). x„ = x U„) and €x is some small number. As illustrated in Fig.

4.3. the component is considered latent if the difference in the computed solution at two

successive time points is less than some pre-specified amount. €v. For a fixed time-step

ITA algorithm [Sal83], this is reasonable check as long as ex is specified properly and

one additional check is done, as described shortly. There are situations where Condition

1 may fail, as shown in Fig. 4.4. where the true solution rises and then falls before

^nt/

I I

W? ~t-r\+i

Figure 4.3 : Simple Latency Detection

>

+fme

76

reaching a steady-state value. If the time points are chosen such that Condition 1 is

satisfied, latency will be detected incorrectly. A more conservative version of Condi

tion 1 requires that the inequality be satisfied for two time points that are not adjacent.

Latency Condition 1.1:

•*„+< -*« ' <6.v . * ^1 (4.7)

While this conservative approach works well in practice, it is still not strong enough to

handle the general case. For example, if a global variable time-step control is used, the

step sizes may be very small due to some fast component resulting in small changes in

x over a large number of time points (if a: is a slower component). In this case, it

would make more sense to use a rate-of-change criterion to detect latency rather than

77

\%n*-*n I *°

Figure 4.4 : Potential Problem in Latency Detection

the absolute change in x . That is, use the check

Latency Condition 2:

Ixn+i "" xn '
<€• (4.8)

As shown in Fig. 4.5. this requires that x =» 0 to satisfy the latency condition. This

method also encounters problems with the example in Fig. 4.4 since x =0 as the signal

switches direction. A more conservative way to do this type of latency check would be

to use the strategy of Condition 1.1 and include a number of points from the past.

Latency Condition 2.1:

78

A

X

•=>-

~tim&

dt

Figure 4.5 : Variable Step Latency Criterion Based on Rate-of-change

If {X"+2-J X"+l-j* < €, . k>\ (4.9)
k j% h„ +l.j

This condition uses an average rate of change based on the previous k solutions to

detect latency and this overcomes the problem given in Fig. 4.4. However another prob

lem arises if the true value of x is some small non-zero value that eventually changes

the value of x significantly at some point in the future. To resolve this problem, a

"wake-up" mechanism should be used with either Condition 1.1 or 2.1 when it is antici

pated that component x has undergone a significant change in value. That is. the actual

rate-of-change of x should be used to predict the wake-up time point, as follows:

Wake-up Condition 1:

79

nnext T "^ .v (4.10)

and ^uoXv-tt/. = *n+i + ^no.vf • This wake-up condition can be used to compute hatx, and

the component should be re-activated and solved at twake_up . This process is illustrated

in Fig. 4.6.

The latency and wake-up conditions specified above work well in practice and

their use can be justified by considering latency exploitation as the use of a zeroth-order

explicit integration method as described in reference [Rab79]. Explicit integration algo

rithms are obtained directly from a Taylor series expansion of the solution at the point

-fc/me

n+/ *Hake-up

Figure 4.6 : Wake-up Mechanism

80

, fln +j u Xn f v
X„ +l=X„ + hn +lX„ + — -T2-+ ' ' ' {4U)

A zeroth-order method uses only the first term and produces the following trivial

integration method for which x(tn+i) is simply updated with the value x(tn) at the

previous time point:

Ln+i = x„ (4.12)

This integration method has a local truncation error (LTE) given by:

LTE=h„+1x(0 tn^^tn+1

An estimate of the LTE can be obtained using a finite difference approximation for x

X„ 4.1 x,.

x»(|) K—
Therefore the LTE estimate is given by:

LTE*=hn+lXn+1 X"
K

A check for latency can now be constructed from this analysis. The integration method

specified in Eqn. (4.12) can be used whenever the following condition is satisfied:

Latency Condition 3:

IXn ^.j-" xn I
K+i r < EltscrLTE (4.13)

where EU!mLTE is the allowable local truncation error specified by the user.

For a fixed time-step algorithm, this latency check is equivalent to Condition 1

since hn = h„ +i for all n. Of course, the value for €v in Condition 1 must be derived

the same way as EuscrUE to be identical to Condition 3. For a variable step algorithm,

one could rewrite Condition 3 as:

' xn +i "~ xn ' EuseriTE

K K +i

By replacing h„ +i with a constant value of step size hmax such that hmax»hn +1. one

81

can provide a somewhat tighter constraint:

•xn+1 "~ xn I EuserLTE
h,ln +1 ft max

c

Then Latency Condition 2 and 3 can be made identical by setting €x = —^ . Note
^max

that Condition 3 is an a posteriori criterion (i.e., it is used after selecting h„ +1) to detect

latency. A similar criterion can be used in an a priori manner to decide when to

activate the component. The idea is to use the LTE requirement to predict the time

point when the zeroth-order integration method is no longer valid by checking when

Latency Condition 3 is violated:

• '*• ♦!-*_! >r .„ (4.14)
K

where hnew = t„akf.„lip —tn+l and twate-„p is the time when the component should be

activated. This wake-up time can be computed as follows:

EuscrLrEnn+l fa i k\
1wake-up ~Cn+lT — \<*.10J

xn +1 xn

and this is identical to Wake-up Condition 1. Therefore, the intuitive arguments which

lead to Latency Conditions 1 and 2, and Wake-up Condition 1 are well-supported by

the above analysis.

4.6.2. Electrical Events and Event Scheduling

The next issue is to define precisely the notion of electrical events for use in con

junction with the scheduling algorithm. The proper definition of this concept is impor

tant from the standpoint of efficiency and accuracy, as will be seen. In logic analysis,

an event occurs when a node makes a transition from one state to another (different)

state. The event causes the fanouts of the node to be scheduled in the time queue. As

long as the node remains in the same state, no additional events are generated. Since

82

logic states are discrete, logic events are easy to identify. In electrical analysis, there is

a continuum of "allowed states" making it more difficult to distinguish a significant

event from an insignificant one. However, the definition of logic events can be extended

in a straight-forward manner to electrical analysis. The resulting definition of an

electrical event is connected with the notion of "active" and "latent" components.

Definition 4.2 : (Electrical Events)

In electrical analysis, a component is "latent" if it satisfies one of the latency conditions

given by Eqns. (4.6-4.9). Otherwise, it is an "active" component making a transition

from one electrical value (or state) to another. Active components generate electrical

events each time they make a transition to a new value. •

The usefulness of this definition is seen in the following. Consider the two-stage

inverter of Fig. 4.7. For this circuit. A € Fanout (I) and B € Fanout (A). As depicted

by the arcs in the corresponding graph, there are four ways to schedule nodes:

(1) node I can schedule node A (fanout scheduling)
(2) node A can schedule node A (self-scheduling)
(3) node A can schedule node B (fanout scheduling)
(4) node B can schedule node B (self-scheduling)

Whether a given node (say. node A) should actually schedule any events depends on its

own state and the state of its fanouts (node B in this case). Since each node can be

either "active" or "latent", a total of four cases exist. These cases are listed in Table 4.1

along with the recommended action to be taken by node A for each case.

As the table indicates, case (2) is the only case where the scheduling mechanism is

conservative. The other cases do not introduce any additional work or create accuracy

problems and therefore are listed as reasonable. However, case (2) can be a source of

either accuracy problems or excessive computation. To see this, consider the circuit in

case status of

node A

status of

nodeB

action by node A comment

(1) active active schedule self at t+h

schedule fanouts at t

reasonable

(2) active latent schedule self at t+h

schedule fanouts at t

conservative

(3) latent active no scheduling req'd reasonable

(4) latent latent no scheduling req'd reasonable

Table 4.1: Four cases in electrical event scheduling

A 8

Figure 4.7 : Scheduling possibilities for a simple example

83

Fig. 4.8. If node A is "active", it will force nodes B. C and D to be processed if the

action recommended in Table 4.1 is taken. In reality, only node B should be processed.

The other two nodes do not change due to the bias conditions, but this is not known a

priori. Therefore, case (2) is considered to be a conservative scheduling strategy. The

84

D^
B

y>
Figure 4.8 : Conservative scheduling case

alternative would be to ask the question: is fanout Xj sensitive to changes in xt? Here.

Xj = A and Fanout (xj) = { B . C . D }. Only an affirmative response to this question

causes a particular Xj to be scheduled by xt. Otherwise x} should not be scheduled.

The conditions associated with case (2) can also be viewed as a wake-up condition

due to inputs. That is. "Does the change at node A wake-up node B?". The previous

wake-up conditions were all handled via the self-scheduling mechanism. In this case,

the question is whether or not a change at xt translates to a change at a fanout Xj such

that Xj violates its latency condition. Since Xj may have a number of fanin nodes

which are active, superposition must be used to determine the combined effect of all

9/ •
active fanin nodes on x}. This involves determining the transconductance, —, and

performing the computation:

85

h * r) f**-£-I.%-*x, (4.16)
^j i=i (y-i

where k is the number of fanin nodes of x} which are active. hn is the current step

size, and C} is the total capacitance at node x}. This computation assumes that all the

additional current, due to changes in the fanin nodes, act to charge the capacitances at

node Xj. This produces a new wake-up condition due to the inputs, as follows:

Wake-upCondition 2:

, i*„+i-*„_i_+Ax>€>
• -new *

K

where hnew =t„eu. —t,atcn,. and t„ew is the current time point. In the worst-case, the com

putation in Eqn. (4.16) can be as expensive as performing an evaluation of x}. but it

certainly is not as accurate. Since there is no way to guarantee that Wake-up Condition

2 is a sufficient check for latency violation, since is only a local criterion, it is better to

perform the evaluation of x} rather than the sensitivity check to guarantee that an

error is not made inadvertently. This results in a stronger condition for latency, which

involves the fanin nodes also being latent.

The ideas presented above are formalized in the following:

(1) A component x, is defined as being latent if

(a) it satisfies the latency conditions specified in Eqns. (4.6-4.9) and

(b) all ek € Fanin (xt) satisfy their latency criteria

(2) A latent component does not generate any events.

(3) If a component is not latent, then it is active and hence will generate events for

itself and for all x} € Fanout (xt) after every transition.

(4) A latent component xt is scheduled for re-evaluation if

(a) the wake-up condition specified in (4.10) is satisfied, or

86

(b) any componentek € Fanin (xj) becomes active

4.6.3. Latency in the Iteration Domain

Another form of latency can be exploited at each time point due to the decoupled

nature of the relaxation process. Since the components in the system are changing at

different rates, it is quite possible that slowly varying components will converge

quickly at each time point since their behavior can be predicted accurately. Once these

components have converged, there is no need to reprocess them at the same time point

unless required to do so by some other component. This form of latency is called itera

tion domain latency and can also be exploited efficiently using the same event-driven

techniques used for time domain latency.

The iteration domain is a discrete space in which a sequence of iteration values of

a component can be represented as a function of the iteration number [Kle84]. This

iteration domain can be viewed in the same way as the time domain. For example, if a

converging sequence of iterations for a component. xf, is plotted against the iteration

number, a waveform is produced as shown in Fig. 4.9. The detection of latency in the

time domain is seen to be analogous to the detection of convergence in the iteration

domain. In fact, since the "step size" is fixed in the iteration domain, the check for con

vergence should be similar to the Latency Condition 1 given earlier. This corresponds

to to checking if the iteration waveform is "flat enough" [Kle84] and is given as:

Convergence Criteria 1:

\xf+l-xf\<6

which is consistent with the usual check for convergence. False convergence occurs

when the condition is satisfied but the necessary accuracy has not been obtained. There

fore, a check similar to Latency Condition 1.1 would be better to avoid this problem

%

[Kle84].

01 Z3*t5678?>

Iteration Number

Figure 4.9 : Iteration domain waveforms

87

Convergence Criteria 1.1:

l.r/+/"-.x/l<6. m>\

To exploit latency in the iteration domain using event-driven techniques, a table

similar to the one for latency in time is necessary. In the iteration domain, if a com

ponent is "iterating" it is equivalent to being "active" in the time domain, and if it has

"converged" in the iteration domain, it is equivalent to the "latent" condition in the time

domain. Note that latency in time implies latency in the iteration domain, but latency

in the iteration domain (i.e.. convergence) does not imply latency in time. In fact, when

a component converges in the iteration domain, a separate test is necessary to determine

if it is active or latent in the time domain. The four cases in the iteration domain are

listed in the table below along with the recommended action for node A. assuming that

node A is in the "converged" state initially and enters the state listed in column 2 after

computing its new value.

case new status

of node A

status of

node B

action by node A comment

(1) iterating iterating schedule self at t

schedule fanouts at t

reasonable

(2) iterating converged schedule self at t

schedule fanouts at t

conservative

(3) converged iterating no scheduling req'd reasonable

(4) converged converged no scheduling req'd reasonable

Table 4.2 s Four cases in iteration domain latency

The table shows that case (2) is again the only conservative scheduling situation. To

understand this case, consider Fig. 4.8 again. Each time node A performs an iteration, it

will schedule nodes B, C and D. However, as before, only node B should be processed as

nodes C and D are latent in time and hence are in the converged state at the time point.

If node A requires many iterations to converge, it will schedule nodes C and D many

times resulting in a lot of unnecessary work. However, there is no need to repeatly

schedule all its fanouts on every iteration, especially since the nodes have a self-

scheduling ability. Therefore, one strategy might be for node A to schedule its fanouts

on every other iteration rather than on every iteration. This could be used for both case

(1) and case (2) since the self-scheduling mechanism would take care of any additional

scheduling of node B.

89

4.7. SIMULATION RESULTS

4.7.1. Speed Improvement Due to Latency Exploitation

Table 4.3 contains simulation results from ITA in SPLICE3.1 for a number of cir

cuits in Table 3.1. Three simulations were performed on each circuit and are listed

with the suffixes".l", ".2" and ".3" respectively. In the first simulation, latency was not

exploited in any form. In the second simulation, only iteration domain latency was

exploited. In the third case, both time domain and iteration domain latency were

exploited. The circuit name and number of nodes are given in the first two column.

The CPU-time, number of Newton iterations and number of time points are provided in

the next three columns. The number of rejections due to nonconvergence and LTE are

listed in the 6th and 7th columns. Note that very few rejections are due to nonconver

gence of the relaxation iterations. In practice, the constraints imposed by the LTE

time-step requirements are usually much stronger than those imposed by the diagonal

dominance requirement. The last column shows the improvement factor in the run

time when iteration domain latency and time point latency are exploited. These results

indicate the importance of exploiting both forms of latency. As one would expect, the

improvement increases as the size of the circuit increases.

4.7.2. Global-Variable Time-Step ITA vs. Direct Methods

In Table 4.4. SPLICE3.1 using global-variable time-step control is compared to

direct methods used in SPLICE3.1 and SPICE2G.6. The results indicate that the speed

up over the SPICE2G.6 program is substantial in all cases. However, the speed-up over

the direct methods available in SPLICE3.1 is not very large compared to the ideal

speed-up computed earlier in Chapter 3. For the OPAMP circuit. SPLICE3.1 is as fast

as direct methods. However, in this case the partitioning algorithm places all nodes into

90

circuit size CPU-time iters timepts numnon numlte speed-up
(sec.) converg reject (time)

decpla.l 56 43.88 12784 141 3 27 1.0

decpla.2 30.56 8621 141 3 27 1.4

decpla.3 26.64 7447 132 4 21 1.9

cramb.l 149 414.33 163392 612 36 123 1.0

cramb.2 194.83 65590 615 37 124 2.1

cramb.3 122.08 37520 611 33 129 3.4

scdac.l 154 289.27 64989 505 15 74 1.0

scdac.2 204.35 41599 505 15 74 1.4

scdac.3 176.37 33566 501 15 74 1.6

ckt3.1 312 931.87 351260 758 62 143 1.0

ckt3.2 425.33 144305 757 58 143 2.2

ckt3.3 304.09 104751 764 58 157 3.0

eprom.l 630 9530.23 1042500 1756 108 353 1.0

eprom.2 4038.46 339431 1760 111 352 2.4

eprom.3 2374.43 155007 1713 111 326 4.0

Table 4.3 : Simulation Results from SPLICE3.1 - Legend for suffix on circuit
names: l=no latency exploitation; 2=only iteration domain latency exploited;
3=time point latency and iteration domain latency; CPU-time is given in sec.
on VAX-8650; iters=number of relaxation-Newton iterations; numnonconverg=no,
of iteration count rejection; numltereject=number of LTE rejections; speed-up
^improvement in speed compared to no exploitation case.

Circuit Size

(nodes)

Ideal

Speed-up
Actual

Speed-up
(SPLICE3.1)

Actual

Speed-up
(SPICE2G.6)

OPAMP 13 1.8 1.0 13.0

uP Control 56 2.2 1.0 9.5

CRAMB 149 12.3 2.6 11.3

SCDAC 154 4.1 1.2 12.4

CKT3 312 6.5 1.5 5.0

DIGFI 378 8.2 2.6 10.7

EPROM 630 18.4 2.7 12.0

Table 4.4: ITA vs. Direct Methods

one subcircuit which forces SPLICE3.1 to use direct methods. Therefore this circuit is a

91

special case where direct methods should be used. For the larger circuits, the perfor

mance of global time-step ITA was better due to the amount of waveform latency but

certainly not as efficient as expected.

There are a number of reasons why the program does not reach the ideal speed

improvements over direct methods. The first reason is that the time-step selection is

conservative. If the step is too large, the relaxation method may not converge or the

LTE criterion may not be satisfied. To reduce the chances of a step rejection, the time-

step used is smaller than the one allowed by the LTE estimation. A second reason for

the inefficiency is that the program is not exploiting latency at the node level but rather

at the subcircuit level. Node-by-node decomposition would allow efficient latency

exploitation but would adversely affect the convergence speed of relaxation method and

therefore cannot be used. A third reason stems from the conservative scheduling stra

tegy due to case (2) in Tables 4.1 and 4.2. This is probably a major reason for the lim

ited speed improvement, but must be used to guarantee that an error is not made in

latency detection. Another important reason for the inefficiency is that coupling

between subcircuits changes during the simulation but the subcircuits do not follow

change since static partitioning is used. This effectively increases the number of relaxa

tion iterations at each time point. As a result, the cost of each solution point may be

much higher than direct methods even though fewer points are computed for each

waveform due to latency exploitation. Therefore, the partitioning algorithm determines

to a large extent the speed-up obtained using nonlinear relaxation.

4.8. CONCLUSIONS

A number of nonlinear relaxation algorithms have been described in this chapter.

It was shown that nonlinear relaxation combined with event-driven selective-trace

techniques can be used to exploit the latency property of large circuits. This technique.

92

called Iterated Timing Analysis (ITA). has been implemented in the SPLICE family of

programs including a new version in SPLICE3.1. An event scheduling algorithm for

electrical analysis was also described in this chapter. It was shown to depend critically

on the proper detection of the latency condition. A number of latency detection criteria

were presented along with wake-up mechanisms to reduce the effect of errors in the

latency detection. Using the ITA approach, large speed improvements were obtained

over the SPICE2G.6 program, specifically, 5 to 15 times faster. However, the improve

ments were not as encouraging when compared to the direct methods used in

SPLICE3.1. The inefficiency was attributed to the conservative scheduling algorithm

and the static partitioning strategy.

The time-step control used in the SPLICE programs described in this chapter can

be viewed as a limited multirate approach since each component may use a time-step

which either common to all active components or a time-step which is independent of

other components but based on a latency criterion. The actual step sizes during the

latent periods are determined by the wake-up conditions. However, when a component

is active, its time-step is determined by the fastest changing variable in the system and

not necessarily by its own rate of change. A true multirate scheme in which different

components are permitted to use different step sizes would improve the efficiency of the

simulation. It would also resolve the problem of latency detection since the com

ponents that are latent would still perform an integration operation but the step size

would be much larger than the other components. A number of such schemes are

presented in the chapters to follow.

93

CHAPTER 5

EVENT-DRIVEN MULTIRATE INTEGRATION ALGORITHMS FOR ITA

5.1. INTRODUCTION

A multirate integration method is one that uses different step sizes to solve

different variables in a system of ordinary differential equations. In the previous

chapters, strong arguments were presented in favor of using integration methods which

exploit the multirate nature of MOS integrated circuits to reduce circuit simulation run

times. Relaxation methods provide an opportunity to use multirate methods since they

decouple the variables in the system. Ideally, one would prefer to solve each com

ponent in the system separately to achieve "full" multirate integration. However, the

non-zero coupling between some components requires the use of partitioning to group

tightly-coupled components together into subsystems. Direct methods are used to solve

each of the subsystems and the relaxation method is applied between subsystems.

While the use of static partitioning limits the efficiency of multirate integration some

what, each subsystem can still use the largest time-step that accurately reflects the

behavior of its associated state variables.

The SPLICEl.7 program (which uses a fixed time-step) and the SPLICE3.1 pro

gram (which uses a global-variable time-step) both use nonlinear relaxation and event-

driven techniques to exploit waveform latency, but do not exploit multirate behavior.

That is, the selective-trace ITA algorithm takes advantage of a system for which most

of the variables remain at an equilibrium state but does not take full advantage of a

system for which the state variables have different rates of motion, but are not at

equilibrium.

94

The WR algorithm intrinsically allows different time-steps to be used for different

subsystems since the system of equations are decoupled at the differential equation

level. However, each iteration in WR involves solving nonlinear differential equations.

These are usually solved using an implicit integration method and. at each time point, a

nonlinear algebraic system is solved using the Newton-Raphson method. Hence, each

waveform relaxation iteration is rather expensive. Two factors, which are not neces

sarily unrelated, affect the number of WR iterations used in a simulation: the

effectiveness of the system partitioning and the window selection strategy [Whi85c].

Convergence may be slow if there is moderate or tight coupling between different sub

systems or if the windows are too large. If a moderately coupled system does not exhi

bit multirate behavior, then the global-variable time-step ITA algorithm will be more

efficient, because in ITA the computational cost of performing an iteration is lower than

in WR. For ITA. only one Newton iteration is performed for each relaxation iteration.

While the ITA method is also prone to excessive iterations if the subsystems are

moderately coupled, there is no additional penalty due to windows since they are not

used.

Two approaches can be pursued to improve the multirate integration efficiency of

relaxation methods. The first is to extend the ITA method to perform multirate

integration while retaining its inherent advantages and the second is to reduce the com

putational cost of each iteration in the WR method. The first approach is explored in

this chapter while the second approach is addressed in the next chapter. In particular, a

new multirate scheme for ITA is described in this chapter with a method for limiting

the effect of a step rejection. A new incremental repartitioning strategy is also proposed

to obtain full multirate integration.

95

The basic concepts of event-driven multirate integration are described in Section

5.2. Previous event-driven schemes are reviewed in Section 5.3. In Section 5.4, the

multirate integration scheme for ITA is described in detail along with the step rejection

technique. In Section 5.5, an incremental partitioning approach is proposed for use with

ITA. Simulation results from SPLICE3.2. which uses the multirate ITA scheme, are

presented in Section 5.6 and compared to standard WR in RELAX2.3. Conclusions are

given in Section 5.7.

5.2. BASIC CONCEPT IN EVENT-DRIVEN MULTIRATE METHODS

In this section, the basic concepts of event-driven or incremental multirate

methods are described. The term event-driven multirate integration is used here in con

trast to the way that Waveform Relaxation achieves multirate integration. In the

event-driven case, an interval of time is specified for the integration process. A number

of time points, or grid points, are defined within this interval. Components in the sys

tem are "scheduled" as events at the grid points, based on their recommended step sizes,

and processed when the simulator reaches the time at which each event is scheduled.

The basic idea in the event-driven approach is to keep the different components at

approximately the same point in time during the integration process. In WR. the

waveforms for the variables in a single subsystem are computed in the entire interval

of interest before considering another subsystem.

This basic difference between the two approaches is illustrated further in Fig. 5.1.

If WR is used to solve the two-stage inverter chain, the solution would be computed in

the order shown in Fig. 5.1(a) whereas the event-driven multirate method would gen

erate the solution in the order given in Fig. 5.1(b). In fact, for this example, the two

approaches can be viewed simply as a reordering of the computation. However, there

are two other key differences between the the event-driven approach and WR which are

©

©

©

@

©

3
u — +

6 7 e

/r '6

(Q) WR

• 1 » b
2/ 23

—•
it 17. y/g

• •

ll /3 /5 /6 ^o

ir 10

(b) Event -driven

/*
-*

if

Figure 5.1 Order of Computation for WR and Event-driven Approaches

96

97

illustrated using Fig. 5.2. In this figure, three variables are being integrated between 10

and 14. The arcs depict the step sizes to be used during the integration process for each

variable. Assume that the variables are related by the following differential equations:

X\ = /]\X\JC2X) Xi{t q)—X iq

x2 = / 2^1'JC2«*3-*) X2(t0)=X20 (5.1)

x3= f 3(x2'X3-t) X3Uo)=x30

Further assume that the events are processed in a time-ordered fashion. That is. all

events at t x are processed first, then all events at t2 are processed, and so on until 14 is

reached.

In computing xx(t x), the question arises as to what value should be used for vari

able x2Ui). This type of question comes up frequently since, in general, different

Figure 5.2 : Recommended Step sizes for a Multirate Integration Method

98

components may be at a different points in time during the integration process due to a

time-domain decoupling of the variables. Since the behavior of x2 in the interval [toJt2]

is not known, a dormant model [Sak8l] must be defined for the variable.

Definition 5.1: A dormant model, given by x-fKt) , t € fr&,g/„ Xend]. is a representation

of the behavior of a component x, in the interval [*&.gm £en<t] which may be used by

other components when computing their solution. A dormant model is termed "exact" if

represents an accurate or closed form solution to the differential equation describing the

component in the specified interval. Otherwise it is termed "approximate".

•

One of the differences between the event-driven approach and WR is the effect of

time-domain decoupling on the accuracy of the solution. In WR. the dormant model for

x 2 is simply its waveform from the previous iteration. Whenever a value at a particu

lar time point is required, it is interpolated from the waveform supplied by this dor

mant model. In the event-driven case, it is not obvious how to construct a reasonable

dormant model for x2. One option is to use extrapolation to predict the value of x2(t j)

based on its values at previous time points. This extrapolated value can be used to com

pute the value of x i(t x). Unfortunately there is no guarantee that x2(t x), obtained in

this manner, is correct since its true solution has not be computed. As a result, an error

is introduced into the value computed for x j(r j), called a time-domain decoupling error.

This decoupling error is propagated to other components that depend on x i and may

eventually affect the accuracy of the overall solution. Therefore, in the event-driven

approach, the nature of this decoupling error must be well understood and error propa

gation of this type must be controlled. In WR, the decoupling error decreases with each

iteration and is reduced to a simple interpolation error when the waveforms converge to

their final solution.

99

A second difference between WR and the event-driven approach is the effect of

step rejections. In WR. a step rejection during the integration process is not a major

concern since it does not affect other components. If a step rejection occurs for a partic

ular variable, the solution is simply retried with a smaller step and the integration pro

cess continues normally to the end of the time interval. The solution waveform is used

as a dormant model for the solution of neighboring components with all rejection infor

mation filtered out. as it is unimportant to other components. In the event-driven case,

a step rejection could have a significant impact on the performance. For example, if x 3

rejects the solution obtained at 14, the component must be re-integrated using smaller

steps over the same interval. However, in generating the solutions for x j(f) and x2(t).

t € [tn44], there was an overriding assumption that the values for x2. provided by its

dormant model, were correct in that interval. When the solution x3U4) is rejected, it

implies that the dormant model was not valid. As a result, there may be large errors in

the solution for x2 and indirectly in the solution for x, through f x. It now becomes

necessary to "roll back" the solutions for x, and x2 and to retry the whole process.

Therefore, the CPU-time used to generate the previous solutions is essentially wasted.

Clearly, an efficient roll-back scheme is very important for event-driven multirate

methods.

If the WR and event-driven multirate methods are used to perform a transient

analysis of the unidirectional circuit in Fig. 5.1, the WR method would be more

efficient. In general, for any unidirectional circuit the WR method would be more

efficient than an event-driven method. This is because WR obtains an accurate solution

for each node using a single waveform iteration whereas the event-driven approach has

the overhead of scheduling events and rolling back the solution for step rejections.

However, the circuit in Fig. 5.1 does not represent a realistic situation, since very few

practical circuits are strictly unidirectional. In the inverter chain, there is usually a

100

nonlinear capacitor connecting nodes A and B and therefore WR would require a

minimum of two iterations to compute the correct solution. As a result of coupling and

feedback in real circuits, the partitioning algorithm and window size selection strategy

become the important factors in determining the overall run time in WR. The event-

driven approach can be viewed as a "windowless" multirate method and could poten

tially outperform WR when the coupling between the relaxation variables is large or

when the windows are not selected optimally for the WR method. This is one reason

why the event-driven approach is worth pursuing. Another reason stems from the fact

that time moves incrementally forward in the event-driven approach and is well-suited

for use in mixed-mode simulation programs (i.e..SPLICE, SAMSON. MOTIS).

53. PREVIOUS WORK IN EVENT-DRIVEN MULTIRATE METHODS

A number of previous event-driven multirate schemes are reviewed in this section.

In particular, the methods proposed by Gear [Gea80], the Splice2 program [Kle84], the

SAMSON program [Sak8l] and the MOTIS3 program [Che84] are examined.

53.1. Gear's Methods

Three approaches proposed by Gear [Gea80, Wel8l] are the "smallest-step-first".

"recursive-divide-by-2" and "largesl-step-first" algorithms. The "smallest-step-first"

algorithm is the standard event-driven approach in which components are scheduled at

the grid point and solved in order of increasing time. For the example given by Eqn.

(5.1) with integration time-steps specified in Fig. 5.2. the order in which each of the

variables are solved is illustrated in Fig. 5.3. The dormant model for each variable is

based on extrapolation. The approach is specified more precisely in the following algo

rithm:

Algorithm 5.1 (Smallest-Step-First Multirate Method)
/* Backward-Euler Integration Assumed */

SSF(){
foreach (i € { 1. • • • ,/t }){

h-t«- PickStepSize(x/ (t 0)):
Schedule^, ht);

I
t — NextEventTime(O);
while (t < Tstop) {

foreach (event j at t) {
solve

xj (t)=xj(t -hj) + hjfj(x?UU§U)....jcjDU).
hj — PickStepSizeU; (t));
Schedule (Xj, t + hj):

t«- NextEventTime(t):

.**(*)):

101

The routine PickStepSizeixit)) checks the accuracy of the solution x(t) using a LTE

x,

/0«>

© i® i©
©

*o t, tx t£ tH

Figure 5.3 : Order of computation in the Smallest-step-first Algorithm

102

estimate and returns the next step size. The Scheduleix,t) routine schedules variable x

at time /. The NextEventTimei) routine identifies and returns the next time point after

time t when one or more events are scheduled. The value xf*(t) is obtained from the

dormant model for xf which is based on extrapolation.

As described previously, the main problem with the approach given in Algorithm

5.1 is due to step rejections. One strategy is to try to avoid step rejections by examining

the reasons why they occur:

Observation 5.1: Step rejections in a given component. x:. are primarily due to

a) changes in the function f j that are not anticipated based on
earlier values of xt

or

b) changes in another variable Xj which couples into xt through f,.

Based on this observation, two techniques are used in [Gea80] to suppress rejections.

The first is to perform a pre-integration of all the variables with their recommended

steps, using extrapolations for other variables whenever necessary, to check if the

recommended steps are reasonable. If the steps are acceptable, the integration proceeds

in the usual manner. If not. the appropriate step sizes are reduced and checked again

before applying Algorithm 5.1. The second modification is to check the effect of cou

pling between two variables, say Xj and x}. on the error in the solution computed for

Xj. The conjecture is that the variable which takes the larger step, x,. may still end up

rejecting its solution if the other variable. x}. varies drastically from its extrapolated

value. After each integration step for Xj, its computed value is checked against the ori

ginal extrapolated value. If the effect of the predictor-corrector difference on Xj is

large, then the step size of xt is reduced. This involves calculating the Jacobian term

103

—— and, in general, involves computing a Jacobian term for each fanout component of
$Xj

x •. The problem with this approach is the amount of additional overhead incurred in

computing these Jacobian terms.

In another approach called "recursive-divide-by-2". all components in the system

are integrated using the largest recommended step size. H. Those components which

fail the accuracy criteria are re-integrated using one-half the previous step. This

approach is applied recursively until the steps are selected without any rejections in any

of the components. The method is specified in the algorithm below and illustrated in

Fig. 5.4.

Algorithm 5.2 (Recursive-Pivide-bv-2 MultirateMethod)
/* Backward-Euler Integration Assumed */

RDB20 {
foreach (i € { 1, • • • ,n \){

hj«- PickStepSizeU; (t „)):
PutltemInList(i. ListA);

}

i«-0:

repeat {
i«- i + 1:

ListB*- NULL;

foreach (i € { 1. •• • .2')) [
foreach (event j in ListA) {

hj - // /V :
solve Xj (t +h)=Xj (t+h) + hj f j(xD U+h)):
if (CheckAccuracyCv; . h) = FALSE)

PutltemInList(j . ListB):

ListA <- ListB:

} until (ListA = NULL)

In this non-recursive version of the algorithm, two lists are maintained. ListA

contains the components being integrated in the current iteration while ListB is

104

® I® 1® ©©©

@©

^C "£/ ^2. "£3 £*

Figure 5.4 : Order of computation in the Recursive-divide-by-2 Algorithm

updated with the components to be integrated in the next iteration. The routine

FutltemlnListii, list) places item i in a list. The CheckAccuracyix,, t) routine uses a

LTE estimate to check the accuracy of the solution for x, at time t.

The main advantage of this approach is that interpolation is used rather than

extrapolation. That is. the dormant model for each component is the waveform from

its previous iteration, as in WR. The problem with the method is that the components

taking the larger steps may be affected by the faster components but this is not taken

into account. However, the time-step control has some nice features and a modified

version of it is used in conjunction with a new waveform-based relaxation method, as

described in Chapter 6.

105

The "largest-step-first" method also has the property that interpolation can be used

by some of the components in the system (but not all components as in "recursive-

divide-by-2"). In this approach, the components with the largest step. H . are integrated

first. If the solutions are rejected, the components are re-integrated using steps of H12

along with any of the other components that use the half step size. This process contin

ues until the variables with the smallest step sizes are solved. Then all components

using the smallest steps are moved one step forward in time and solved again. The next

step of the algorithm is to start with the components taking the next largest steps and

work back to the components with the smallest steps. This process continues until the

time point associated with the largest step H is reached. The order of the computation

is illustrated in Fig. 5.5. This approach can be implemented as a recursive routine as

done in Algorithm 5.3 below.

Algorithm 5.3 (Largest-Step-First Multirate Method)
/* Backward-Euler Integration Assumed */

LSF(){
foreach (i € { 1. • • • n }){

hj«- PickStepSize(;c/ (t „));
ScheduleCx,, hj):

}

RecursiveLSFCO.//):
end:

/* Recursive Largest-Step-First (LSF) routine */
RecursiveLSFO h) {

foreach (event j at t +h) {
solve Xj U+h)=X) U) + hjfj(xD (t +h)):
if (CheckAccuracyU,. t +h) = FALSE) {

hllcu. — h 12 :
Schedule^ . t —h +h„cw):

}
else {

hnew *~ PickStepSize(x; U +h)):
Schedule^ . t +h +h„cu.);

}

}
}
if(h = /imin) return:
else {

RecursiveLSF(t./i /2);
t«- h 12:
RecursiveLSF(t./i 12):
return:

106

This method suffers from problems similar to the recursive-divide-by-2 algorithm

in that the slower components are integrated only once and. in effect, determine the

solutions of the faster components. Note that since the components using the larger

steps are integrated first, the faster components must be extrapolated in some way. A

zeroth-order extrapolation is used to avoid potential stiff-stability problems [Gea80].

OUx

%<

to */ *i *3 £'

Figure 5.5 : Order of computation in the Largest-step-first Algorithm

107

One aspect not shown in Algorithm 5.3 is that the step size for a given component may

be doubled if the LTE is very small. In practice, they are only doubled if the com

ponents are aligned with other components taking the larger step. Both Algorithms 5.2

and 5.3 use binary-weighted step sizes which are extremely useful for a number of rea

sons. This aspect will be described in more detail in a later section.

53.2. Circuit Simulators Using Event-driven Multirate Schemes

a. Time-step Control in SAMSON

The SAMSON program is an event-driven mixed circuit/logic simulation program

for large integrated circuits [Sak8l]. For electrical analysis, it uses a solution technique

based on block LU decomposition techniques to decouple the system of equations, rather

than using the standard approach or relaxation techniques. However this aspect is not

germane to the discussion here. The relevant aspects of SAMSON are the time-step con

trol algorithm, the dormancy model and the step rejection method in the multirate

integration scheme. The integration method is based on the prediction based

differentiation formulas due to Van Bokhoven [Van75] which are essentially a reformu

lation of the Backward-Difference Formulas (BDF) described in [Bra72]. The time-step

control can be classified as a "smallest-step-first" method of Algorithm 5.1. The time-

steps are chosen based on the following standard expression for the a priori LTE esti

mate:

n(A.«,+*i-i) p
EU„ +i+hncyl) = —r E„ +i (5.2)

y 1 «*
,=iCVv/+ft;-i)

k | k
where (Sk = £ -j—. ak = Hfy • ancJ * ls tne order of the integration method used.

Eqn. 5.2 is used to compute the recommended step size hncxl. A step is accepted if the a

108

posteriori LTE estimate. En +1. at time point t„+1 which is given by

- _ Xn +1 xn+1
•fin 4-1 —'n+1

"k +1& +1

satisfies the user specified error tolerance. In the above. xn +1 is the computed solution

at tn +i and xn+1 is a fc +lsf -order polynomial predictor evaluated at f„ +1. The dormant

model in SAMSON is based on extrapolation. The original model1 simply used a k th-

order predictor with a k +lst-order corrector and the a posteriori error estimate as fol

lows:

Step rejections in SAMSON are handled using the same philosophy as in [Gea80] -

that is. to try and avoid them. Two mechanisms are used to accomplish this. The first

is use steps which are smaller than the size recommended by Eqn. 5.2. and this approach

is commonly used in most other simulators. The second is to activate a dormant sub

system whenever one of its inputs deviates significantly from its expected behavior

[Sak84]. However, when rejections do occur. SAMSON repeats the solution of only

those components that reject their solutions. This simple scheme may introduce errors

into other components.

b. Time-Step Control in MOTIS2

The multirate integration method in MOTIS2 [Che83] is based on iteration count

time-step control. Initially, all components used the same time-step. Each component

is solved and a new time-step is determined based on the number of iterations required

to converge. If more than a certain number of iterations are required, the time-step is

reduced by a factor of 2. If less than a certain number of iterations are required, the

time-step is increased by a factor of 2. Some limits are placed on the largest and

xD Un +i+")**** +Ktn +1+h)- ZLEH +1 n^ +*/-!>

1A more general dormant modelhas been proposed recently in [Sak85].

109

smallest allowed time-steps. While this approach is extremely efficient, it makes no

explicit attempt to control the decoupling errors and integration errors.

c. Time-step Control in SPLICE2

The mixed-mode simulation program SPLICE2 [Kle84] also uses ITA to solve the

circuit equations. A number of different time-step control algorithms have been imple

mented in this program including a multirate version of ITA. The details of the mul

tirate approach are described in this section. The most interesting aspects of this

approach are the windowing algorithm and back-up strategy. Before describing these

two mechanisms, the following definition is necessary.

Definition 5.2 (Synchronization Points) : Any time point at which the solutions for two

or more components are calculated is called a local synchronization point. Any point in

time where the solutions to all components are performed is called a global synchroniza

tion point.

•

SPLICE2 uses windows as intervals over which the multirate method is applied.

A window interval is divided into a number of subintervals of equal size and each asso

ciated time point within the window is called a grid point. These grid points are pro

vided to encourage local synchronization since components can only be scheduled at grid

points. Window edges are used as global synchronization points. The window size is

based on three factors: the smallest recommended step of any component. ^rain- tne

largest recommended step of any component. Hmax. and the maximum number of grid

points allowed in a window. MaxGridPoints. Usually Hmax determines the window size

if MaxGridPoints is large. Otherwise H min determines the size. More precisely. H max is

compared to HminxMaxGridPoints and the smaller of the two is used as the window

110

size. Input breakpoints2 also act as global synchronization points and windows may be

adjusted to align with them. The details of the window size selection is given in the

following algorithm. The parameters associated with windows in SPLICE2 are given in

Fig. 5.6(a).

Algorithm 5.4 : Window Size Selection in SPLICE2
/* All variables are global variables */
/* Time refers to the current simulation time */

ComputeWindowSizeO {
WindowSize*- MaxGridPointsX// min;
WindowSize*- min(/f raax.WindowSize):
WindowEndTime*- Time + WindowSize:

WindowEndTime ♦- CheckBreakPoints(7wie .WindowEndTime):
^max4"" WindowEndTime - Time:
-tfmin4- H max/MaxGridPoints:

Once a window size is selected, components are scheduled at the appropriate grid

points and solved using a smallest-step-first algorithm with dormant models based on

extrapolation. When all components reach the end of the window, a global synchroni

zation step is performed. A new window is selected and the simulation continues in

this manner. The important steps in the algorithm are specified below.

Algorithm 5.5 (Multirate ITA in SPLICE2)
/* Backward-Euler Integration Assumed */

Splice2ITA() {
H • *- co*•" nun w»

#max*~ 0'-
foreach (i € { 1. • • • ,n \)\

h, *- PickStepSizeC*/ (t „)):
#min*~ min (hi J* min)•
#max«- max(/i/i/max):

}
Time ♦- NextEventTime(O):
while (Time ^ Tstop) {

ComputeWindowSize():
foreach (i € { 1. • • • ,n }){

hj <— min(^ +/z;. WindowEndTime):
Scheduled, .hj):

2 Breakpoints are transition points, associated with external inputs, from one value to another. They
usually cause the simulator to use smaller time-steps than would otherwise be necessary.

Ill

while (Time ^ WindowEndTime) {
foreach (event j at Time) {

t«- Time:

solve

x.u)=Xj(t -hj) + hjfj(x?UU?U)....*jDU).. •• jc?U)):
if (CheckAccuracyU;. h) = TRUE) {

hj«- PickStepSizeU; U)):
hj *- m\n{t +hj, WindowEndTime):
Schedule (x}. t +hj):

}

else { /* Step Rejection */
hj«- PickStepSizeU; U)):
RejectSolution(xj. hj);

Time *- NextEventTime(Time):

When a step rejection occurs in computing a solution for a component. xt. a new

step size, h„ew . is calculated. The action taken in rejection mode depends on the value

of hnew compared to Hmm (i.e.. the smallest allowed step in the current window). If

hnCKt. is larger than H min, the component and its fanout nodes are backed-up to the point

of the rejection, tt „ . and scheduled at the new time point, t, Jt +hneu.. and the simulator

continues normally. However, if hncw is less than H min some problems arise. A new

grid size, and hence a new window size, is required to accommodate the smaller step.

Since there may still be a number of components scheduled at future time points in the

window, while other components have already computed solutions at earlier times

using the old grid size, a complicated procedure is necessary to make them consistent

with the new window based on hnew. Instead, the SPLICE2 program forces a global

synchronization point, starts a new window and then continues normally. This is illus

trated in Fig. 5.6(b) and described in the algorithm below.

(«)

(b)

Hmax

*, ^

^a'

x ,-i i
i i

Hm'}rr»r»

-*

'*<>

112

rejection

BufflerSfte. - 7

Orderof Infeya+ion -2

Figure 5.6 : (a) Window parameters (b) New Window after Rejection

Algorithm 5.6 (Step Rejection in SPLICE2)
RejectSolutionGc,. h„ew) {

if (hnew ^//minM
BackUpSolutionGc/):
h„e»- *~ ^minx Trunc(/i;/<.h. /H mia):
ScheduleC*; . tijt +hnew):
foreach (Xj € Fanoutsi xt))\

BackUpSolution(*,):
Schedule^ . tj „+hneu.):

}
}
else {

H • «- h•** mm "•new •

ComputeWindow():
ForceGlobalSync():

}

113

The BackUpSolutionix) routine simply discards all computed solutions back to the point

of the rejection. The Trunciy) function returns the closest integer that less than the real

number y.

The multirate scheme in SPLICE2 has a number of limitations. One source of

problems is the windowing mechanism. As indicated in Fig. 5.6(a). "BufferSize" is a

window parameter which is related to "MaxGridPoints" as follows:

MaxGridPoints = BufferSize- (Order of Integration) - 1

If BufferSize is chosen to be a small value, the window size is MaxGridPoints X H min.

Unfortunately, components using steps larger than this window size will be constrained

to take a step equal to the window size, and components using steps slightly smaller

than the window size will be required to take two steps equal to half the window size.

The strategy for choosing BufferSize does not permit efficient exploitation of multirate

behavior. One may considering choosing a larger value for BufferSize in which case the

window size would be equal to i/max. However this leads to a slightly different prob

lem: the faster components are able to compute many more points since the grid spacing

is //max/MaxGridPoints but if a rejection occurs for a slower component, the resulting

114

roll-back could be very costly! This is, in fact, what the results in Table 5.1 indicate.

Statistic BufferSize=25 BufferSize=5

MaxGridPoints 23 3

Run Time 2128sec 1341sec

Order of Integration
No. of Equations Solved

1

270100

1

179415

No. of Accepted solutions
Total no. of iterations

100290

269452

62866

178612

No. of 'useful' iterations 183566 147553

'Useful'/Total iterations 0.68 0.82

No. of Windows Used 284 351

No. of Rejected solutions
No. of Forced Global Sync

414

175

172

172

Table 5.1 Effect of Buffer Size Variation on CRAMB circuit

Although only two BufferSize values are shown, the results are quite representa

tive of the nature of this time-step control. The results indicate that only 68% of the

computed solutions were accepted when BufferSize=25. whereas 82% were accepted

with BufferSize=5. This is due to the impact of the solution roll-back in the two cases.

As a result, the program runs faster with the smaller BufferSize even though it requires

many more windows (351 compared to 284).

The other notable point is that every rejection in the BufferSize=5 case causes glo

bal synchronization. Since the grid spacing is based on H mia the probability is high that

a rejection will result in global synchronization. For the BufferSize=25 case, less than

50% of the rejections forced a global synchronization. However the total number was

still larger than the BufferSize=5 case. Based on these results, and others reported in

[Kle84], it is apparent that a backup strategy requiring global synchronization is not the

right approach.

One obvious way to improve the SPLICE2 approach is to try and avoid global syn

chronization altogether. Global synchronization is useful for one practical reason - to

reduce the memory requirements due to the history which must be maintained in case

115

of roll-back. A global synchronization point provides a point beyond which the pro

gram never needs to roll back. An additional benefit of global synchronization-is that

the solution of all variables are checked against each other for mutual consistency and

accuracy. In a virtual memory environment, the waveform storage overhead is not a

major problem. In a physical-memory environment it may be important as it would

limit the size of problem that could be simulated. However, in SPLICE2. global syn

chronization is used frequently: at window edges, at breakpoints for any input source

and. most importantly, as part of step rejection. This has a significant impact on the

performance. To avoid this, the window size should be based only onHminX BufferSize

and BufferSize should be made as large as possible. If regridding is required, a simple

solution would be to keep the solutions that have been obtained with the current grid

size and re-schedule all pending events on a new grid. If any waveform storage buffers

overflow, a global synchronization point can be defined. Although this operation seems

rather involved, event scheduling overhead represents such a small portion of the run

time compared to function evaluation that it is not a major point of concern.

5.4. A NEW MULTIRATE SCHEME FOR ITA

The multirate integration methods suggested by Gear have oneshortcoming in that

they assume little or no coupling between the fast and slow components. This assump

tion is not entirely valid in the circuit simulation problem. In fact, in Gear's

approaches, there is no attempt to correct errors in the fast components due to errors in

the initial integration of the slow components in Algorithms 5.2 and 5.3. The event-

driven approach of Algorithm 5.1 is ruled out by Gear due to the roll-back problem

encountered. Based on the SPLICE2 results, the concern over the cost of roll-back is

well-founded.

116

The objective here is to overcome the efficiency and accuracy limitations of previ

ous event-driven multirate techniques. A new approach is proposed which retains the

inherent advantages of ITA but uses different step sizes to solve different components.

An appropriate name for it might be "all-steps-together" since the components are

integrated over one step in a cooperative manner, even though each component may be

using different step sizes. The approach uses dormant models based on interpolation,

rather than extrapolation as used in most other event-driven simulators. Each com

ponent is integrated twice over the same step: once as a trial integration and a second

time as a final integration. A trial integration is defined as one which uses a mix of

interpolated and extrapolated values from other components. Trial integrations by the

slower components provide solutions which can be interpolated by the faster com

ponents. A final integration is defined as one which only uses interpolated values from

the other components and is used to re-compute and check the solution once the other

components have "caught up" to the component being integrated. For the fastest com

ponents, only a final integration is performed since all other components can be interpo

lated.

The step rejection control is the other feature which distinguishes this method

from previous attempts. In the previous approaches, there was some resistance to rol

ling back the solutions for step rejections due to its potential cost. However, due to

interactions between the slow and fast components in circuit simulation, the event-

driven approach must include the ability to roll the solutions back to an arbitrary time

point to guarantee a reasonable level of accuracy. In the approach taken here, there is a

deliberate attempt to control errors in this manner without incurring a significant time

penalty.

117

5.4.1. The Basic Technique

Consider the system of nonlinear differential equations specified by Eqn. (5.1).

The recommended step sizes are shown in Fig. 5.2. In the new scheme, the solutions for

each component are approximated using one Newton iteration in the sequence X\. x2 .

x$. even though they are being integrated to different points in time. This constitutes

the first relaxation iteration. In the second relaxation iteration, the process is repeated

in the same sequence and it continues in this manner until all components converge.

Note that during the iterative process component x j uses interpolated values from x 2

and x3 to determine its solution and is therefore a final integration. However, variables

x2 and x3 use a mix of interpolated and extrapolated values and so these are only trial

integrations.

After completing the iterative process, each component selects a new step size and

is scheduled as shown in Fig. 5.7. The next sequence of iterations is defined by the bold

arcs. That is. variable x2 re-integrates its first step, while Xj performs the integration

for its second step. These are. by definition, final integrations for both xt and x2.

Again, only one Newton iteration is performed on each component before moving to the

next component, but the iterative sequence is carried to convergence. Once convergence

is obtained, new step sizes are computed for each component. The simulation continues

in this manner until 14 is reached. Then, all components perform final integrations of

their last step to synchronize their solutions. This algorithm cannot be classified as

largest-step-first or smallest-step-first since the processing order depends on the rank of

each component and the solutions are obtained by iterating across a "ragged" boundary

in time.

The multirate scheme can be implemented by using two time point edges which

define an "integration time slot". If a component takes a step which begins at the first

118

--+--L

Figure 5.7 : Second Sequence of Iterations in Multirate ITA

time point edge, it performs a trial integration. However, if its endpoint is equal to the

second time point it performs a final integration step. This is depicted in Fig. 5.8. Com

ponents x j and x4 perform trial integrations, component x2 performs a final integration

and component .r 3 is not evaluated. The details of the algorithm are given below:

Algorithm 5.7 (Multirate Iterated Timing Analysis)
/* Backward-Euler Integration Assumed */

MultiratelTAO {
timePointl = 0:

timePoint2 = 0:

while (timePoint2 ^ Tslop) {
foreach (i € { l....n }){

hj *- PickStepSizet*, it, of</)):
m' .old '» jtew •

li jtew *~ ti/jid +ni '
)
allConverged - TRUE:

timePointl ♦- timePoint2:

timePoint2 - min
repeat {

foreach (i € { 1..../1 }) {
if C(*/.o/</ = timePointl) or (tijtev = timePoint2)) {

l^i ^n '•"*•"•

119

}

compute

where F, (x,)=*, (r,„<.,,.)- x, (*; o/</)-h, f, {xD{tt„,.„.)):

if (I xt+1- */ I >€, or IF, {xf +1) I >€2)
allConverged = FALSE:

until (allConverged = TRUE)

T\me. Poirrtl Time Pci>i t2

Figure 5.8 : Time Slot defining the active components

120

5.4.2. Refinements to the Basic Technique

If two variables take approximately the same time-step, then one will be forced to

use extrapolation, and the other interpolation, during the relaxation process. This may

be expensive depending on the order of the extrapolation/interpolation method, but

more importantly, it may introduce errors in the computation. One way to reduce this

decoupling error is to encourage more synchronization. This can be accomplished by

using binary weighted step sizes. The idea is to allow two variables, which are taking

approximately the same step, to take exactly the same step so that they may be solved

together. It is not enough to simply use binary-weighted step sizes to insure that these

synchronization points occur. In fact, "leap-frogging" of variables using the same step

size may still occur. To avoid this problem, it is necessary to enforce a rule that time-

steps may not be doubled unless the component is aligned with a grid point which

corresponds to the desired step size [Gea80].

The event scheduling mechanism for the new approach is based on the same princi

ple as used in the SPLICEl.7 and SPL1CE2 programs. However there are one or two

minor differences. If one component schedules its fanouts for processing, the fanouts

merely check to see if any roll-back operation is necessary but are not forced to per

form any unnecessary time-step cutting or re-evaluation. In this multirate scheme, the

latency condition can be viewed as the use of a zeroth-order integration method (see

Chapter 4) to pick step sizes. That is. the components are always scheduled at some

point in the multirate scheme, but if they satisfy the latency condition much larger

steps are permitted.

5.4.3. Selective-Backup Strategy-

Step rejections must be handled properly in the event-driven environment to

avoid unacceptable levels of error in the solutions. Therefore, all solutions between

121

two global synchronization points must be saved since, in principle, rejections can cause

the solutions to be rolled back to the last global synchronization point. The memory

requirements of such an undertaking may be substantial but it is an important require

ment to guarantee accurate solutions. Perhaps more importantly, the rejection and

roll-back procedures must be efficient or they may dominate the run time.

When a step rejection occurs in the SPICE2 program [Nag75], all solutions are

rejected and the entire system is re-evaluated using a smaller step. A similar technique

is used in SPLICE2 [Kle84] if regridding is necessary within a window. This effectively

propagates the rejection to all parts of the circuit and is a rather pessimistic view of the

effect of a rejection. On the other hand. SAMSON re-integrates only those components

which reject their step, but the new solutions are not propagated to the other com

ponents [Sak83]. While this approach is efficient, it is far too optimistic and does not

directly control the error. The technique proposed in this section explicitly controls

errors due to a rejection, but attempts to limit the temporal and spatial domain of these

rejections.

Intuitively, a step rejection at a particular component. x}. in the system should

not necessarily affect every component in the system. Rather, it should only affect a

subset of the components limited to its local spatial domain defined below.

Definition 5.3 (Snatial Domain of a Step Rejection):

The spatial domain. Z)v (xj). of a given component x{ is the set of all components {x} }

which are sensitive to changes in x,. either directly or indirectly through another com

ponent xk € Ds (x,). This domain may vary in size depending on the dynamic coupling

between the components of the system at any given time. •

Ideally, a selective backup strategy should be used such that only the components in the

122

spatial domain. Ds {x-,). are backed-up and re-integrated whenever a rejection occurs at

a particular node. For example, if a rejection occurs at an internal node. Xj. in a long

chain of inverters, the rejection will affect the solution of nodes in the neighborhood of

Xj. This may include, for instance. Xj_2, x\-1» xi+i and xi+2- Onlv these nodes would

be rolled back and re-integrated over the appropriate interval of time.

A conservative backup strategy would require that all components Xj € Ds {x,)

be re-integrated in the rejection interval [tstarf Xend]. A more efficient approach would be

to note the time point. tdiff , in xfit),t € [tstart Xend], obtained in the roll-back step

(hence the superscript R). which deviates far from the initial integration solution.

xfU) (hence the superscript /). which other components used during their integration

process. This reduced interval is defined as the temporal domain of the rejection:

Definition 5.4 : (Temporal Domain of a Step Rejection)

Assume that component x, performs a re-integration of its solution in the interval

l*start tend 1 due to a step rejection. The temporal domain of a rejection.

DT (xj)—[tjjff Xend]. is the associated subinterval for which the new solution affects at

least one neighboring component of xt. •

The components in Ds {x,) are only required to perform a backup operation in the

subinterval [t^jg Xrmi] rather the possibly larger interval [tKlarl Xcnd \. This process is

illustrated in Fig. 5.9. The solution is computed for waveform. x/U). at time points t{),

12. and 14. The solution is computed at all time points for waveform XjR(t). These are

used as sampling points to determine the point of the rejection which should propagate

to other components. Since the new solution is far from the old solution at sampling

point 13. the fanouts of x, are scheduled to reject their solution back to at least that

point in time. This is specified in the algorithm below.

123

*j

* time.

Figure 5.9 : Rejection Control

Algorithm 5.8 (Step Rejection)
/* t, Jt is the nlh time point for xx */
I* l\ .a +i is lne n +1V' time point for Xj */

if(CheckAccuracy(.x/. ht,) = FALSE) { /* step rejection */
if (FINAL_INTEGRATION_STEP) {

/* save old waveform */
Xj1*- WaveSetUpPreviousU;. *, „):
/* generate new waveform using smaller steps */

*;**- WaveReComputeSoln(.r,. t, „ . // „+1):
/* determine the point at which waveforms differ */ diffTime

WaveComparet*/.*,*.*/,,):
ScheduieFanouts(Xj. diffTime):

}
else { /* Initial integation step */

h, *- hj12: /* just cut the time-step */
ScheduleFanouts(.v,. t,Jt):
/* ensure that fanouts are updated */

}

The WaveSetUpPreviousixx) routine saves a copy of the waveform associated with

124

variable x starting at time t. The WaveReComputeSolnix. t x. t2) routine produces a

new solution for x in the interval [t ^X2] using a number of smaller step sizes. The

WaveCompareix lt x2, t) routine compares the waveforms x i and x2 starting at point t

to determine the time point at which the two differ.

The fanout components perform rejections in the same manner. That is. they re

integrate their solution in the rejection interval and determine at which point the previ

ous waveform differs significantly from the new waveform and then schedule com

ponents in their spatial domain to reject their solutions back to that point. This is

specified in more detail in Algorithm 5.9.

Algorithm 5.9 (Solution Roll-Back)

if (*,rvoW7W < timePointl) {
x.o/./«_ WaveSetUpPreviousU;. t, tWhedTime):
/* generate new waveform using smaller steps */

x.»«•"«- WaveReComputeSoln(xl-, tt„ . t,„ +1);
/* determine the point at which waveforms differ */

diffTime «- WaveCompareU^.*/'0'''.*, „);
ScheduleFanouts(x,, diffTime):

}•

At some spatial distance from the original offending component, the previous and new

waveforms of the components being backed-up will not differ, and this implicitly

defines its spatial domain since the temporal domain is reduced to zero.

5.4.4. Summary

The multirate ITA scheme presented above is a "windowless" multirate integration

scheme. The solution is obtained by iterating across a "ragged" boundary in time. Each

step is integrated twice, once for a trial integration to move a component ahead of the

others, and a second time for a final solution when the other components have caught

up. The main advantage of this approach is that is uses interpolation to obtain values

of neighboring components when computing the final solution of a particular

125

component. Previous schemes ignored the effect of a rejection on neighboring nodes, or

propagated the rejection to all components in the system. The approach taken here is to

extend the notion of event-driven, selective-trace so that only those components that

are affected by the rejection are backed-up. Each time a rejection occurs, the offending

component compares its previous waveform in the rejection interval with the new

waveform and schedules all fanout components to be re-integrated in the interval

where a significant difference exists.

The diagrams in Fig. 5.10 show the sequence of integration steps. The dotted lines

indicate the iteration boundary at each phase of the computation. Note that when a

rejection occurs, the roll-back mechanism propagates the error to components affected

by the rejection and not to all components in the system. This selective backup strategy

is key factor in determining the overall efficiency of the integration process.

5.5. INCREMENTAL REPARTITIONING

As mentioned earlier, static partitioning does not allow full multirate integration

of the internal variables of a subcircuit. Dynamic partitioning as implemented in

RealAx [Mar85] has a similar problem over the period of a simulation window. In real

ity, a circuit experiences incremental changes in the coupling as the simulation evolves.

In order to follow the circuit behavior, repartitioning should be performed on an incre

mental basis, whenever the coupling changes in the circuit. The ITA approach allows

this kind of incremental repartitioning to be performed. Of course, it would be far too

expensive to repartition the whole circuit at each time point. Instead, only those subcir

cuits which are good candidates for repartitioning are processed. The candidates for

repartitioning can be determined using heuristics.

In the incremental partitioning technique, two processes may take place. In the

first process, single subcircuits may be repartitioned into smaller subcircuits to increase

126

£cheduUn<

W

tnal solution

rejection

Selective. Back-Up

Figure 5.10 : Solution process in the Multirate ITA Scheme

127

efficiency of the multirate integration scheme. In the second process, two or more sub-

circuits may be merged to form a larger subcircuit to improve the convergence of the

iterative process. These two processes should only occur when certain factors indicate

that it would be worthwhile to perform the associated operations. In theory, the exact

coupling between the nodes in a subcircuit could be computed as a basis for the decision

but this would be very expensive. Therefore, heuristic measures are necessary to deter

mine whether a subcircuit should be partitioned into smaller subcircuits or a pair of

subcircuits should be merged.

One way to decide if a subcircuit should be divided into smaller subcircuits is to

keep a count of the number of active devices which have changed their region of opera

tion such that the coupling between two or more nodes has been modified. If this

number is large, relative to the number of nodes in the subcircuit. the subcircuit should

be repartitioned. Another crude, but useful, measure of coupling between two variables

is the ratio of their recommended step sizes. If the recommended time-steps for the

nodes within a subcircuit vary greatly, it is an indication that the multirate property is

not being exploited efficiently, since the smallest time-step is used to compute the solu

tion for the subcircuit. Therefore, a useful heuristic can be developed by examining

time-steps. If all the time-steps for the nodes in a subcircuit are approximately the

same, the subcircuit is not considered for repartitioning. However, if the time-steps are

quite different, then the partitioning function is activated. The actual repartitioning is

performed using the capacitive and resistive coupling information and not by using the

time-steps. The heuristics given above are intended to provide strong indicators that

repartitioning should be performed. It does not imply that the subcircuit will be

modified. That would depend on the exact values of coupling in the circuit during the

repartitioning phase.

128

The second problem is to decide if two or more subcircuits should be merged.

Good candidates for nnerging can determined by examining certain relationships between

subcircuits. For exaimple. if two neighboring subcircuits use the same step size, then it

is worthwhile to che*k if any of the nodes in the two subcircuits are tightly-coupled.

If two nodes in different subcircuits are tightly-coupled, then a merge operation should

be performed. Another indication that two neighboring subcircuits should be merged is

if both require many relaxation iterations to obtain a solution at a particular time point.

There are three phases in this incremental repartitioning strategy. The first step is

the "filtering" operation to identify the subcircuits that should be merged and the sub-

circuits that need to be repartitioned. This operation would be extremely efficient due

to the simplicity of the heuristics being used. The second phase is to actually perform

the repartitioning operation. In this phase, all subcircuits which pass through the filter

are processed. It is important that this operation be reasonably fast or it may offset the

improvements in convergence and multirate integration efficiency. To assist in reparti

tioning. information about the conductances and capacitances could be stored in the

device data structures during the simulation. These values can be used during the

repartitioning phase rather than having to regenerating them every time. Also, a flag

indicating the region of operation of the transistors could be used to quickly decide

what the node groupings should be. This would be useful for bipolar circuits. Finally,

the notion of hard and soft links should be used. That is. some links between two

nodes should never be broken during the course of the simulation (for example, two

nodes connected by a very small resistor). These are referred to as hard links. The

remaining connections are referred to as soft links. Repartitioning should only be per

formed across soft links to minimize the total time required by the operation. The

third and final phase is to rebuild the data structures and create new matrices to reflect

the new subcircuit definitions. Most of the data structures should be node-oriented

129

wherever possible to minimize the number of changes required when new subcircuits

are defined. Since most of the new partitions are incremental changes to the old parti

tions, certain functions (such as subcircuit merging, etc.) should be made to run as fast

as possible.

One alternative which may reduce the overhead of dynamic partitioning is to keep

the data structures of previous partitions available for re-use at a later time. In this

approach, the original data structure for any subcircuit which is divided into two or

more smaller subcircuits is saved. Later, if the smaller subcircuits are merged together,

the data structure for the original subcircuit is re-used and the data structures for the

smaller subcircuits are saved temporarily. The rationale behind this approach is that

often digital circuits feature a cyclic operating behavior. Clock signals tend to connect

and disconnect two portions of a circuit in a repetitive manner. The above strategy

attempts to exploit this property to reduce the overhead of dynamic partitioning.

A preliminary version of the incremental partitioning algorithm was implemented

in the SPLICE3.1 program [Ma85] and showed a 5-10% improvement in runtime for a

few MOS circuit examples. The program used the iteration count heuristic to perform

merge operation. It is anticipated that larger speed improvements would be obtained

for bipolar circuits.

5.6. SIMULATION RESULTS USING MULTIRATE ITA

The multirate scheme for ITA described in this chapter has been implemented in

the SPLICE3.2 program. The results from simulations performed using the program are

presented in Table 5.1. The first column contains the circuit name. The second column

contains the total number of iterations needed to produce the solution. In the next three

columns, the number of iterations used in the trial, final and rollback phases, respec

tively, are provided. The numbers in the table indicate that approximately 60% of the

130

iterations were used in the initial integrations. 30% in the final integration and 10% in

the rollback procedure. This implies that it is not sufficient to simply perform the trial

integration step, as done in the smallest-step first algorithm. The final integration and

rejection control iterations are necessary to improve accuracy of the solution. The fact

that the selective backup scheme requires only 10%of the time is an indication that it is

working in an efficient manner.

The results shown in Table 5.2 compare the SPLICE3.2 to the RELAX2.3 program,

which uses Waveform Relaxation. Both methods are also compared to the maximum

speed-up that can be obtained by exploiting multirate behavior as determined in

Chapter 3. The SPLICE3.2 program is faster than RELAX2.3 for most of the circuits

provided in table. In these cases. RELAX2.3 was not able to choose the window sizes

properly resulting in an excessive number of iterations. In the case of the CRAMB cir

cuit, the unidirectionality of this circuit allows WR to outperform the multirate ITA

method, as expected. For the EPROM circuit, the RELAX2.3 program was able to

choose proper window sizes for the problem resulting in the performance improvement

over SPLICE3.2.

Circuit Total Trial Final Rollback

Iters Iters Iters Iters

DECPLA 44237 24965 15573 3699

CKT3 518298 316654 145736 55908

SCDAC 616261 367163 193281 55817

CRAMB 242731 142469 73034 27228

EPROM 2749764 1795281 645557 308926

Table 5.1: Simulation results using SPLICE3.2

Circuit Size

(nodes)

Ideal

Speed-up
Actual

Speed-up
(SPLICE3.2)

Actual

Speed-up
RELAX2.3

uP Control 56 4.6 1.1 1.0

CRAMB 149 27.9 4.0 9.5

SCDAC 154 8.5 1.4 0.7

CKT3 312 25.9 2.1 1.0

EPROM 630 63.9 3.1 5.4

131

Table 5.2: Ideal Speed-up compared to Actual Speed-up

If the actual speed-up of SPLICE3.2 and RELAX2.3 are compared to the ideal

values, it is clear that both methods fall far short of the ideal case. The reasons why

the programs do not reach the maximum speed-up values are similar to the ones

presented in Chapter 4. These factors are:

• a conservative time-step control

• static partitioning

• scheduling overhead (SPLICE3.2)

•.window size selection (RELAX3.2)

In short, many more time-points are calculated in practice and each solution point is

more expensive than the direct approach. It should be noted that both programsoutper

form SPICE2 on all examples. In addition, these examples are small enough so that

model evaluation dominates the runtime. For very large circuits, the relaxation-based

programs are expected to be much faster than direct methods since the linear equation

solution time will be the dominant factor in the direct methods.

132

5.7. CONCLUSIONS

In summary, a number of basic differences between the event-driven multirate

methods and Waveform Relaxation were described in this chapter. The main difference

is that the event-driven approach obtains the solution incrementally in time whereas

WR uses a waveform-based approach. Other differences are due to the nature of the

time-domain decoupling error and the impact of step rejections on the two methods.

Previous implementations of event-driven schemes were described along with a number

of circuit simulators that use event-driven methods. Then the new multirate scheme

based on ITA was described. In this new scheme, the solution is obtained by iterating

across a ragged boundary in time. Each step is integrated twice, once for a trial integra

tion to move a component ahead of the others, and a second time for a final solution

when the other components have caught up. The main advantage of this approach is

that is uses interpolation to compute the values of neighboring components when com

puting the solution of a particular component. The rejection control scheme selectively

backs-up only those components affected by a step rejection of a particular component.

This limits the propagation of the rejection in both time and space and improves the

efficiency and accuracy of the event-driven scheme compared to previous methods. The

results presented in this chapter indicate that this approach is more efficient than the

Waveform Relaxation method on a number of examples.

133

CHAPTER 6

A MULTIRATE INTEGRATION METHOD USING WAVEFORM-NEWTON

6.1. INTRODUCTION

The nonlinear relaxation methods described in the previous chapters were used to

solve the circuit equations using single, common time-steps to exploit circuit latency.

These techniques were adapted to exploit the multirate property of circuits by using

different time-steps to solve different components in the system. While the perfor

mance of the event-driven multirate integration approach was much better than the

version which exploited only latency, a somewhat complicated rejection control

mechanism was necessary to damp the effect of step rejections whenever they occurred.

Furthermore, each component used interpolated values from trial solutions of neighbor

ing components when computing its own final solution. Therefore, a time-domain

decoupling error was introduced into the final solutions, the exact nature of which is

not well understood.

In this chapter, the nonlinear relaxation methods are extended to function spaces

to exploit the multirate property of circuits using a new waveform-based relaxation

algorithm. The algorithm uses the Waveform-Newton approach [Kan59] and combines

the advantages of Waveform Relaxation and Iterated Timing Analysis for the solution

of moderately coupled multirate systems. The method has been applied to circuit simu

lation in the work of Van Bokhoven [Bok83] and Palusinski [Gua83]. The main

differences in their approaches and the approach taken here are due to the equation for

mulation, time-step control and other refinements to the basic relaxation algorithm to

obtain large speed improvements over other existing simulators.

134

The motivation for the Waveform-Newton method is given in Section 6.2. The

method is derived and applied to the circuit simulation problem in Section 6.3. Its use

in conjunction with the Waveform Relaxation algorithm is given in Section 6.4 along

with an iterative stepsize refinement strategy which improves the accuracy of the

numerical integration as the relaxation iterations approach convergence. Simulation

results are also presented in Section 6.4 and conclusions are provided in Section 6.5.

6.2. MOTIVATION FOR A NEW APPROACH

Both the ITA and WR algorithms attempt to exploit the loose or unidirectional

coupling of MOS digital circuits, in that the relaxation converges rapidly when applied

to loosely-coupled systems. However, circuits contain elements that introduce tight

coupling between two or more nodes. In order to improve the convergence speed,

relaxation-based simulators perform a partitioning step to group tightly-coupled nodes

together into subcircuits [Whi83]. Direct methods are used to solve each subcircuit and

a relaxation method, whether WR or ITA. is applied at the subcircuit block-level rather

than to individual equations. However, even the remaining coupling between subcir

cuits affects the convergence speed and this coupling may vary with time during the

simulation. Therefore, many relaxation iterations may still be required to achieve con

vergence.

The advantage of the WR algorithm is that it inherently exploits multirate

behavior by solving the differential equations in a decoupled fashion. However, each

iteration is potentially expensive as it involves solving a set of nonlinear differential

equations accurately. For ITA. each iteration is much cheaper, involving only a single

Newton iteration, but the exploitation of multirate behavior is more complicated, as

seen in the previous chapter. What is desired is an approach which combines the advan-

135

tages of these two relaxation methods. One way to accomplish this is to use the single

Newton iteration strategy of the ITA method in the context of the WR method. That is.

rather than solving the iteration equations of WR accurately in the inner loop, use an

approach which approximates the solution in much the same way that a single Newton

iteration approximates the solution for each nonlinear equation in ITA. A direct exten

sion of the Newton method to function spaces would permit this kind of approach, and

this method is referred to here as Waveform-Newton1. The details of the Waveform-

Newton method are described in the following section.

63. WAVEFORM-NEWTON (WN)

63.1. The Space of Continuous Functions

In order to derive the Waveform-Newton method, a brief review of the space of

continuous functions is presented. The main purpose of this section is to show the rela

tionship between Euclidean n -space and function spaces. Recall that Euclidean n-

space. 1R" . consists of all ordered n -tuples given by x=(x 1jc2'x3'~•*»)• where x

defines a distinct point and the components of x are real numbers. Within this n -space,

two operations are possible: vector-vector addition and scalar-vector multiplication.

Euclidean n -space with these two operations defined is called a vector space of dimen

sion n. The length, or norm. of a vector x is a mapping || *|| from IR" to IR1 which

satisfies the following properties [Var62]:

Properties of the Vector Norm:

(O IUII £o
(w) ||jc|| =0 if. and only if. x =0 (6.1)
(Hi) || ax|| =lal |U|| ,a€ IR
(iv) IU+y|| ^||x||+llyll .y € IR"

1 The descriptive term "Waveform-Newton" is used here rather than Newton-Kantorovich to associate
the method with Waveform Relaxation and because of other minor modifications. However, the basic conver-

136

Any vector space which satisfies these properties is called a normed space.

An analogous situation exists in function spaces [Mar74]. For example, consider

the set of functions. V. with elements / :A -*JRm. The operations of addition and mul

tiplication are defined in a similar way to the Euclidean n -space. That is,

(/ i+/ 2X* >=/ i(*)+/ 2(*)• / i./ 2 € V

(X/ JU)=X(/ ,(*)). X € IR

Therefore. V is a vector space con.sistent with the earlier definition. In addition, if Cb is

defined as all functions / € V such that / is bounded and continuous, then Cb is also

a vector space since the sum of two continuous functions is continuous and

<xf (x) € Cb if / (x) € Cb. The measure of the size of / . or the norm of / . is given

by

\\f\\=sup { I / (jc) I \x €A). f €C6

which is known to exist since / is bounded. This norm satisfies properties analogous to

those given in (6.1) with the appropriate modifications to denote functions. As a result,

the space Cb can be viewed in the same way as IR" except that each element in Cb is a

function rather than a point as in IR" . Cb is only one of the many possible spaces of

functions.

The advantage of considering Cb in the same way as IR" is that, in many cases, the

properties, concepts, theorems and proofs for IR" can be carried over to function spaces

in a straight-forward manner. As an example, consider the definition of a Cauchy

sequence in IR" [Mar74]:

Definition 6.1 A sequence xk € IR" is called a Cauchy sequence if. for every €>0. there

is an iV such that I .k^N implies \\xk —x,\\ <€. •

gence proof of this method is due to Kantorovich.

137

Theorem: A sequence xk in IR" converges to a point in IR" if. and only if. it is a Cauchy

sequence. •

The above definition and theorem provide an important test for convergence in IR" since

the Cauchy condition does not involve the limit point explicitly. An equivalent condi

tion exists for function spaces. That is. a sequence of functions. /* . is called a Cauchy

sequence if. for any €>0. there is an N such that k . I ^N implies that || f k—//|| <€.

An important concept in connection with convergence in functions spaces is that of uni

form convergence [Mar74],

Definition 6.2 Let f k :A -*IR'" be a sequence of functions with the property that for

every €>0 there is an N such that k ^N implies Ifk (x)—f (x) I <€ for all x € A .

Under these conditions, it is said that fk converges uniformly to / and this property is

usually written as ft. -*/ (uniformly). •

Another way to state Definition 6.2 is that the maximum absolute difference between

f k and / decreases as k -+oo. This condition is strong enough to guarantee that if a

Cauchy sequence of continuous functions fk converges, the limiting function / will

also be continuous.

This brief introduction to function spaces has been provided as a background for

the derivation of the Waveform-Newton method. In the sections to follow, the Newton

method and the nonlinear relaxation methods are extended from algebraic or Euclidean

spaces to function spaces and are shown to have practical application to the circuit

simulation problem. Theorems stating the conditions for which the methods are

guaranteed to converge uniformly are also presented.

138

63.2. Derivation of the Waveform-Newton Method

Consider the following single nonlinear differential equation:

x(«) = -/(*(£)). x(0)=X. t €[0X] (6.2)

In the standard approach, the equation is solved using a stiffiy-stable implicit integra

tion method. At each time point, a nonlinear algebraic equation is solved using a

damped Newton-Raphson method and, to insure stability, the iteration is carried to con

vergence.

Next, consider solving Eqn. (6.2) by reversing the order of the two numerical

techniques. That is. apply Newton's method to the differential equation before applying

an integration method. Eqn. (6.2) can be formulated as a nonlinear problem by rear

ranging:

F0cU)) = *U)+/(*(O) = 0. (6.3)

The application of Newton's method to this problem produces

FXxHt)) x*+1(f)-x*(t) = -F(x*(t)) (6.4)

This equation should be viewed as a function space extension of the algebraic Newton

method — sometimes referred to as functional linearization. Note that the equation has

the same form as the usual Newton method but each term in the expression is a func

tion of time. i.e. a waveform in the window interval [O.T]. The first term. F'(xk (t)).

can be obtained by extending the definition of a derivative. Recall that a function,

g (x). is considered differentiable. at some x 6 (a ,b), if the limit

g'(*) =^gU+^~g0:) (6.5)

exists. This expression can be rewritten as

limit Ig (x +A)— g (x)— g '(x)AI _ A f .
A-o jxi C6,6;

139

Using these expressions, the definition given below follows naturally [Mar74]:

Definition 6.3:

The mapping F:D C IR" -»IR/M is Frechet-differentiable at x € interior (D) if there

exists a linear operator F '(x):IR" -*IR'" such that

limit ||F(x+A)-F(x)-/"(x)A|| _0 (, -.
II a|| -o [TaTI ° (67)

Using a function space equivalent to Definition 6.3. the term F'ix it)) of Eqn. (6.4) can

be obtained, as derived below. The dependence of the terms on t is dropped for nota-

tional convenience. Using Eqn. (6.3) and expanding F (x +A) as a Taylor series:

Fix +A) =JL{x +l-A+0-A2+ •••)+/ (x)+ M}x }A+ •••
and retaining only the first two terms of the expansion, the following expression is

obtained:

Fix +A)- Fix)^ A+ df}x)A
6x

This expression can be used in Eqn. (6.7). After applying the limiting operation, one

obtains

F'(x)A =A+e/a(x)A (6.8)
OX

Next, combining Eqns. (6.8) and (6.4). and letting A=x*+l-x* , one obtains

(jj* +i_ &)+q/(*')(;c, +i_ xt:)=_ #: _ f ix*)

and. rearranging slightly, the WN algorithm is obtained:

x* +i =_ a/(**>x* +1 + e/u'y _fixt x (6.9)

Note that this is a linear differential equation in x*+1 with time-varying

coefficients. Here, x* as an "input" since it is a known waveform. This time-varying

140

linear problem can besolved by applying an integration method and selecting a number

of discretization time points. Since the problem is linear at each time point, it can be

solved in one step. For example, if the trapezoidal method is used to solve the WN

algorithm in Eqn. (6.9), the following expression is obtained:

[7T+ ^ »*') tx"n~*"+1} ="7T1*"+1"x»3
- /Uf+.)- /W)- (|- ¥£hxi +l-*i) (6.10)

Once the waveform, x*+lU). is computed from Eqn. (6.10). the next iteration is per

formed using (6.9). This iterative process continues until convergence is achieved.

Hence, the Waveform-Newton method converts the problem of solving the nonlinear

differential equation in Eqn. (6.2) to the problem of solving a sequence of time-varying

linear differential equations given by Eqn. (6.9).

It is interesting to compare Eqn. (6.10) to the expression obtained using the stan

dard method to solve Eqn. (6.2) as given below:

t2+a£Wii2KjC(f++/_jCif+i} = (6 n)

Note that an additional term appears on the right-hand-side (RHS) of Eqn. (6.10). To

illustrate the source of this extra term, consider the sequence of waveforms in Fig. 6.1.

In WN, the linearization process at each point is done using the values from the previ

ous iteration. For example, waveform x* is generated by linearizing around the

waveform x*_1. and likewise, the waveform x*+I is generated by linearizing around

the waveform xk.

In computing the value x*+1(£4). the term [—— '-](x*'*Ktz}— x* it -.))
h flx

appears in the RHS vector. This term is a result of the fact that the correct solution has

141

K+t**"(tJ'X«(t£

X

ii/me

Figure 6.1 Waveform-Newton Iterations

not been obtained at the previous time point. 13. In the standard approach given by

Eqn. (6.11). the extra term is not present since the Newton-Raphson iteration is carried

to convergence at time 13 before moving to the next time point. 14.

From the above example, it may seem that using a single Newton-Raphson itera

tion at each time point in Eqn. (6.11) is equivalent to a single iteration of the WN algo

rithm in Eqn. (6.10). However, this is not the case. The first method obtains an

approximate solution to the nonlinear differential equation (using a method which is

similar to timing analysis), while the second approach obtains an accurate solution to a

related time-varying linear problem.

142

6.33. Application to Circuit Simulation

In the previous section, the WN method was introduced using a simple one-

dimensional nonlinear differential equation. In this section, the method is applied to a

system of equations provided by the circuit simulation problem. The same sequence of

steps are performed here as in the one-dimensional case. The starting point of the

derivation is the charge formulation:

?(v(0) = -/(v(0.«(0), v(0)=V, t €[0.7]. (6.12)

where v it) € IR" and u it) is the set of input sources. By rearranging this system of

equations, it can be formulated as a nonlinear problem:

Fivit)) = qivit)) + / ivit).uit)) = 0. (6.13)

To solve this nonlinear problem, the Waveform-Newton method is used:

JFivk it))ivk+lit) -v* (O) = -F(v*(r)) (6.14)

Note that the iteration variables, vk+lit) and vkit). and the right-hand-side term.

—Fivk it)), are all vectors of waveforms. The first term, JFivit)). is analogous to

the Jacobian matrix except that, in this case, it is a matrix-valued function of time.

That is, each element of the matrix is a waveform which spans the period of interest.

[0,T], as illustrated in Fig. 6.2 for a system of two equations and two unknowns. This

term can be obtained by using the Frechet derivative given in Eqn. (6.7). Using Taylor

series expansions for / (v +A) and q (v +A):

Fiv +Av)= & (v+Av)] +/ (v +Av) (6.15a)
6*

dk(v+A)] =±[q(v)+& A+-^*A2 +...] (6.15b)
& dv dv2

Then

/ (v +A) =[/ (v)+4^A +^4-A2 +...] (6.15c)
dv flv2

JF (v(t)J AV(t)

j~\ fir] \f

VIA 'wi/v 1_

Figure 6.2 Waveform-Newton Equations

V

/n

F(v +A) - Fiv)=A[|LA +12-A2 +...]
6V dv2

+[$L& + iiU2 +..J
dv Qv2

and applying the limiting operation specified in Eqn. (6.7)

143

(6.16)

ty Ov Ov
(6.17)

If Eqn. (6.17) is applied to Eqn. (6.14). with A= vk +1 - vk . the following equation is

obtained:

a
6v

e?(v*)
av

+ en?lJLLA=-to±?l±-fivk.u)
av a*

(6.18)

and finally rearranging the expression, the Waveform-Newton algorithm is obtained:

te{vk)A+qivk)
av

144

=-/(v*,K)-e/(v'.")A (6.19)
av

This equation is used to compute vk+lit), which is the set of waveforms at the

k +lst iteration. The new waveforms are applied to (6.19) to compute v* +2(*) and the

iterative process continues in this manner. A natural question to ask is whether or not

the WN method converges to the solution and. if so, under what conditions? The fol

lowing theorem has been proved [Whi85c]:

Theorem 6.1: For any system of the form q(v)=—/ (v ,u) in which -HL is

Lipschitz continuous with respect to v for all u. and / is continuously differentiable.

the sequence generated by the WN algorithm converges uniformly to the correct solu

tion for any initial guess. •

Remark 6.1: The above theorem differs from the algebraic Newton method which

requires that the initial guess to be close enough to the correct solution to guarantee

convergence [OrRh70]. For WN, any initial guess can be used and the method is

guaranteed to converge to the correct solution. Of course, the initial guess waveforms

must satisfy the the initial conditions at time t=0. •

Remark 6.2: WN is similar to the algebraic Newton method in that the rate of conver

gence is quadratic. •

6.3.4. Waveform-Newton Algorithm

The Waveform-Newton algorithm to solve systems of the form of Eqn. (6.12) is

given below.

Algorithm 6.1 (Waveform-Newton Algorithm)

*-0;

convergence = FALSE:
guess waveform v°it) ; t € [0,7] such that v°(0) = v„
repeat {

solve

4-1q (v* it)) + ft(v*(r))(v* +i(r) - v* (*))]-
ar pv
/ (v* u)) +a/(La))(v*+1(<} -v*u)} =°

for(v*+1(r):t €[0.7]).
if (max, € ioj-1 ||v* +lit) - v* (£)|| ^ €) convergence = TRUE:
«-+l:

}until (convergence)

145

In the first step of this algorithm the set of guess waveforms. v"(*). are specified such

that the initial conditions (at t =0) are satisfied. Note that the equations in the inner

loop are the original differential equations linearized by the WN method. These equa

tions are solved by standard integration methods to find the waveform at iteration

k+1. That is. in the k + V iteration, the waveforms, v* +lU), t € [0.7], are generated

by linearizing around the previous waveforms, v* (t). and solving these equations using

a multistep integration method. This process is repeated until convergence is obtained.

Note that relaxation is not used in this WN algorithm. It uses direct matrix techniques

to solve the system at each time point in the window interval [0.7].

While it is possible to use the above WN algorithm to solve the entire system of

differential equations, there are a number of reasons why this is not a recommended

approach. First, it would suffer from the same problem as the direct methods, namely

that it would not be well-suited to the simulation of large problems since the linear

equation solution time would dominate the overall runtime. Second, it would be

difficult to exploit latency and multirate behavior.

146

One may wonder whether the WN method would be more efficient than the stan

dard direct methods. Of course, for linear problems the standard circuit simulation

approach and the WN method are identical. For nonlinear problems, it is useful to

compare the two approaches in terms of the window size used. The "window" size in

the standard approach is equal to the step size while in WN it is usually much larger.

As a result of the smaller window sizes, the standard approach converges much more

rapidly. It would not be appropriate to use WN as a general simulation approach

because the nonlinearity of circuit and the window size would determine its perfor

mance. In fact, in the best case, WN would only equal the performance of the standard

approach, assuming that the step sizes used are the same in both cases.

6.4. WAVEFORM RELAXATION-NEWTON (WRN)

Rather than using WN as a stand-alone simulation technique, it is more effective

to use this algorithm in conjunction with the WR algorithm [Lel81.Bok83.Pal83]. In

presenting the precise algorithm for this Waveform Relaxation-Newton algorithm

(WRN) the following notation will be used.

v* •' it) = iv\it) v/_, it). v/ -i(£) v* ~Kt))r .

Algorithm 6.2 (Gauss-Seidel WRN Algorithm)

k-Q;

convergence = FALSE:
guess waveform v°(z) : / € [0.7] such that v°(0) = v() :
repeat {

foreach (i € { 1....n }) {

solve

A[qi ivk •' it)) + fr(v*,,('»(v* +Kt) - v/(r))]-
0* . Qv

A/ (vk -'it))f;ivk*it)) + a,'\ ivf+Kl)- V?it)) =0
Qv,

for (vkit) : / € [0.7]). with the initial condition v/(0) = vifj ;
}
if (max!«$, ^ „ max, € [o r| II v/(*) —v,k lU)|| ^ €) convergence = TRUE:
«-+! :

147

until (convergence)

The repeat and foreach constructs, taken together, represent the WR loop, which

is the outer loop. Each differential equation is solved in the inner loop. In Algorithm

6.2. the WN method is used to solve each differential equation. Note that this algo

rithm can be viewed as a function space extension of the relaxation-Newton algorithms

used in ITA. Therefore, the same strategy is used in Algorithm 6.2 as in ITA to reduce

the cost of each iteration. That is. instead of using a number of WN iterations in the

inner loop, the solution of each nonlinear differential equation is approximated using

one step of the Waveform-Newton algorithm. This results in a one-step WRN algo

rithm and is analogous to the one-step Gauss-Seidel-Newton method used in ITA.

Remark 6.3: The convergence criterion in Algorithm 6.2 is not sufficient to guarantee an

accurate solutions since it only checks that the waveforms are close enough. The origi

nal KCL condition specified in Eqn. (6.13) must also be satisfied. This KCL condition

can be checked using the strategy described in Chapter 2 for the relaxation-Newton

methods. •

Algorithm 6.2 has been implemented in a new program called SPLAX (derived

from the names SPLICE and RELAX) [Whi85b]. In the sections to follow, the details of

the implementation are described.

6.4.1. An Efficient Time-Step Control for WRN

It is possible to make the WRN algorithm even more efficient using a time-step

control which is well-suited to the nature of the converging waveforms. Since the

waveforms computed initially are far from the correct solution it is not worth spending

much time computing them accurately. One way to reduce the amount of computation

148

on the early iterations is to use large steps initially, and then refine the step sizes as the

iterations progress. Using this approach, most of the work is performed when the

waveforms are close to the correct solution.

The largest possible step that can be taken on the first iteration is one that is equal

to the window size. The window size would have to be much smaller than the one used

in standard WR for this approach to work well2 and. at present, the window size is

some multiple of the user requested plot increment. When a step of this size is taken it

produces the waveform shown in Fig. 6.3(a). On the second iteration, the window

interval is divided in half and two time-steps are taken, as shown in Fig. 6.3(b). On

each successive iteration, additional timepoints are only added if the LTE criterion at a

particular time point is not satisfied. The appropriate interval is then divided in half on

the next iteration. For example, if. on the second iteration, the LTE is too large at time

point T/2 but acceptable at time point T. then only the first subinterval is divided in

half on the third iteration. The size of the second subinterval is not modified. There

fore, three discretization time points are used in the third iteration. This is shown in

Fig. 6.3(c).

Remark 6.4: Note that this approach is similar to Algorithm 5.2 due to Gear [Gea80]

except that all subsystems are solved on every iteration and the subintervals are

divided only if the LTE is not acceptable. •

This time-step control strategy has the advantage that, in general, time-steps will

be placed more efficiently to control truncation error than if the standard predicted

error criteria is used. This is because the time-step selection is based on the more accu-

2 Especially if the devices are highly nonlinear as in the case of the diode in the foTward-bias region of
operation, as described in a later section.

149

0

Figure 6.3 WRN Time-Step Control

150

rate a posteriori error estimates available from the previous iteration. However, there

are situations where too many time points may be placed in a region due to a "wave-

front" moving through the window as the iterations progress. One way to avoid this

problem is to remove time points on subsequent iterations if the LTE is exceptionally

small at a time point. There may be problems of "thrashing", that is. time points which

are added on one iteration are removed on the next iteration and then added again on

the third iteration. To avoid this, it may be necessary to remove time points only if the

waveform is latent and the LTE is small in the interval of interest. This particular

optimization has not been implemented in the current version of SPLAX.

6.4.2. Choice of Integration Method

The trapezoidal method for solving x it)=/ (x it)) is given by

xn +1 =xn + j[/ (*» +l) +/ (*«)1
and is the most accurate A-stable multistep integration method [Dah63]. For this rea

son, it is commonly used in a number of circuit simulators such as SPICE. SPLICE and

RELAX. However, due to the nature of the time-step control described above, the tra

pezoidal method may not be the best choice for WRN. If large steps are used, the tra

pezoidal method may produce solutions which oscillate in time, referred to as "point-

to-point ringing" (see [Nag75]). To understand this, consider solving the test problem:

x it) = - Xx (/) (6.20)

If the trapezoidal integration method is used, the following equation is obtained:

xn +1= xn ~~ -j-i^xn +l+^*/i /

In this case, the equation can be rearranged to give x„ +1 in terms of x„ as follows:

X . « —•

h\

2

*n +1 "

i+4A
2

151

Notice that if 1/iX I ^2. the method produces a solution which oscillates as a function

of time. The solution for the case of Ih XI =3 is given in Fig. 6.4.

Normally this oscillatory behavior is harmless since it can be controlled by using

tight tolerances in the time-step selection scheme, and because the oscillations usually

die quickly. However the time-step strategy for WRN uses large time-steps during the

initial iterations. As a result, the trapezoidal method produces this oscillatory charac

teristic and it requires many extra iterations to remove this anomalous behavior. This

unnecessarily increases the overall run time for the method.

-2

Tfcoe .solution

TRAPEZOIDAL-

i i i i i i

2 3 4

Figure 6.4 Trapezoidal Ringing
•xo = 5.0 l/iXI=3"

152

To avoid this problem, the more stable second-order Gear method [Gea7l] given

by:

x„+i+a1xn +a2x„ _!+a3/ (*»+1) = °

is used in SPLAX. The coefficients. a1(a2. and a3. are functions of the time-steps. For

the variable time-step case:

= ihn^ + hn)2

(ft„-l)2
"2 hn{2hn_x + hn)

__ ih„ _! + /l„)ft;j _!
"3 (2/i„_l+/i„) '

If the test problem of Eqn (6.20) is solved using Gear-2. the results given in Fig.6.5 are

obtained.

Applying the Gear-2 integration method to Eqn. (6.19). the expression used in the

SPLAX program is obtained:

L— ^ —^ J(v/1+1 v„+1) (6.21)

= / (v,f+1) - ±q (v*+1)- ^-q (v,f)- Hq (v*.!)
a3 a3 a3

a3 Qv <*3 flv

One drawback of the Gear-2 method is that it has twice the LTE of the trapezoidal

method and this may result in slightly more time-steps than the trapezoidal method

over a given interval, for the same accuracy. However, the disadvantage of trapezoidal

point-to-point ringing, which is certain to occur due to the nature of the time-step con

trol scheme used in WRN. outweighs its advantage and for this reason the Gear-2

method is preferred.

153

l\
A•i a
:i\\
: *\\
: \ \ \ /Gear
- \ \ \ /

\ * \ /

. ^v V ^~TO/fc $ou>TiOtt

-2

\

\
V

\

'ir T

77tJrpezoiWal

JL-u •fcJ-UM*-i-

Figure 6.5 Gear-2 Integration Method
"x0 = 5.0 l/iXI=3"

I I I I I I I

6.43. Waveform Limiting Techniques

The WRN approach may encounter some problems in handling circuits containing

highly nonlinear elements such as diodes in the forward-bias region of operation. This

problem is illustrated in Fig. 6.6(a) for a simple resistor-diode circuit with a grounded

capacitor. Fig. 6.6(b) shows the waveform iterations obtained using WRN to solve the

circuit. If the initial guess is v it)=0 for all t. the first computed waveform is far from

the correct solution. Due to the exponential nonlinearity of the diode, the waveforms

converge very slowly to the final solution. In fact, over 50 iterations are necessary to

converge in this example.

VDD

3Z
+

J~-
V

(b)
Figure 6.6 Diode Example

154

155

There are a variety of limiting techniques which can be used to improve conver*

gence in this situation. The simplest approach is to use waveform limiting to ensure

that the waveform does not take unrealistic excursions as time increases. For example,

in a circuit simulation application, the maximum change allowed on each waveform

iteration could be set to the value of the power supply. Another possibility is to per

form limiting on the nonlinear elements in the circuit. Since the diodes associated with

the source and drain of MOS transistors usually operate in the reverse bias region, a

simple approximation can be used in the forward bias region to compute its conductance

value. In particular, a line-through-origin model can be used for the diode whenever it

switches into the forward bias region during the iterative process. Of course, only the

Jacobian matrix is updated using this line-through-origin conductance value. The RHS

term is always evaluated using the correct value of the current for the diode in case the

true solution lies in the forward bias region of operation.

Another approach is to use smaller windows to control the waveform excursions.

This would also improve the speed of convergence of the WRN method. However, some

of the advantages of WRN with respect to multirate exploitation would be lost. Proper

limiting would allow larger windows to be used but improvement in run time is likely

to depend on the particular circuit being simulated.

6.4.4. Simulation Results

A preliminary version of WRN has been implemented in SPLAX. It uses the

recursive divide-by-two time-step control. Gear-2 integration method and the

waveform limiting techniques described in the previous sections. In Table 6.1 below,

global-variable time-step ITA. standard WR and WRN are compared using three exam

ple circuits. The first example is a three-stage ring oscillator circuit. A substantial

amount of floating capacitance makes the three inverters moderately coupled, but

156

because the three nodes are oscillating at the same frequency, the circuit does not exhi

bit the multirate property. For this example, the ITA algorithm is more efficient than

WR since iterations are much cheaper in ITA. Furthermore, the ring oscillator

represents the worst-case situation for WR [Lel8l] since there is a feedback path con

necting the output of the last inverter to the input of the first gate. Therefore, the

number of waveform iterations necessary for this example is proportional to the

number of cycles in the output waveform in each window. If the windows are too

large, the waveforms will converge very slowly.

The second example is a critical path from a microprocessor and the third example

is the logic for a successive approximation register. These two circuits are moderately

coupled and exhibit substantial multirate behavior as shown in Chapter 3. As expected,

for these two circuits WR is more efficient than global-variable time-step ITA. Because

WRN exploits multirate behavior, and has a low cost per iteration, the WRN algorithm

is more efficient than either WR or ITA in the cases shown below. However, for uni

directional circuits the WR algorithm would be more efficient and for highly nonlinear

circuits both ITA and WR are expected to perform better than WRN.

Circuit Mosfets Nodes SPLICE3.1 RELAX2.3 WRN

RINGOSC

DECPLA

SCDAC

7

116

344

3

66

151

9.8

194

1025

27

160

1010

7.2

137

618

Table 6.1: SPLICE3.1 vs RELAX2.3 vs WRN

CPU-time in sec. on Vax 11/785 under UNIX

6.5. CONCLUSIONS

The Waveform Relaxation-Newton method is an extremely efficient way to exploit

the multirate property of circuits. The reason for this can be understood by examining

the relationship between the three relaxation methods implemented in the SPLICE3.1.

157

RELAX2.3 and SPLAX programs, respectively. The outer loop for all methods is the

Gauss-Seidel relaxation iteration. The ITA method uses a single Newton iteration to

approximate the solution of each nonlinear equation in the inner loop. Similarly. WRN

uses a single Waveform-Newton iteration to approximate the solution of each

differential equation in the inner loop. For standard WR, an accurate (but potentially

expensive!) method is used to solve each differential equation in the inner loop. How

ever, larger windows may be used in WR and this allows multirate behavior to be

exploited more effectively. The window size for WR as implemented in RELAX2.3 is

some fraction of the total simulation period, i.e.. Tstnp /N. In SPLAX. the window size

is some multiple of the user requested plot increment, i.e.. k*TpUa . and this is usually

smaller than the window size used in WR. The advantage of smaller windows is that

the waveforms converge more rapidly. The global-variable time-step ITA method uses

even smaller window sizes, equal to the global step sizes, but multirate behavior is not

exploited in this case.

To summarize. WRN exploits multirate behavior using the WR approach and each

iteration is relatively inexpensive as in ITA. The windows are "medium" size which

results in faster convergence compared to WR at the expense of some multirate exploi

tation. In addition, the time-step control is such that very little work is done per itera

tion when the waveforms are far from the correct solution, but as the waveforms

approach convergence the computational effort increases proportionately in order to

produce accurate solution. Based on this comparison, it is not surprising that WRN out

performs the other two relaxation methods.

158

CHAPTER?

PARALLEL ASPECTS OF ITERATED TIMING ANALYSIS

AND WAVEFORM-NEWTON

7.1. INTRODUCTION

To this point, the algorithms described in this dissertation have been intended for

computers which use a single central processor. These algorithms are referred to as

sequential algorithms. The speed improvement obtained in the sequential Iterated Tim

ing Analysis (ITA) and Waveform-Newton (WN) algorithms, with respect to the direct

methods, were due primarily to exploitation of the latency and multirate properties of

the circuit under analysis, and improvements in the time-step control. Further speed

improvement can be obtained using parallel processors to exploit the natural decomposi

tion of relaxation algorithms. A number of relaxation-based techniques have already

been implemented on multiprocessors. In particular, the ITA algorithm used in

SPLICE1.7 has been implemented in the MSPLICE program [Deu84,Jac86] on the BBN

Butterfly [Ret79]. The Waveform Relaxation method has been implemented in the PRE-

LAX program [Whi85c] on the Sequent multiprocessor [Seq84] and a nonlinear relaxa

tion scheme has been implemented [Web87] on the highly-concurrent Connection

Machine [Hil8l]. Recently, the CONCISE program [Mat86], which also uses Waveform

Relaxation, has been described for use on the Cosmic Cube [Sei85].

In this chapter, parallel aspects of the ITA and Waveform-Newton methods are

explored further. In Section 7.2. the basic concepts of parallel computation are briefly

described. In Section 7.3. synchronous and asynchronous relaxation methods are

described. In Section 7.4. a number of issues concerning the implementation of ITA on a

multiprocessor are described including a description of MSPLICE and a new program

159

called PSPLICE. In Section 7.5. a number of ways of parallelizing the WRN algorithm

are proposed. To conclude the chapter, a generalized space-time scheduling model is

described in Section 7.6.

7.2. BASIC CONCEPTS OF PARALLEL COMPUTATION

7.2.1. Classification of Computers

Digital computers are usually classified into four groups based on the multiplicity

of instruction and data streams [Fly72]. Theseclassifications are given by the acronyms

SIMD. MIMD. MISD and SISD. Uniprocessors are usually considered to be SISD

(single-instruction, single-data) machines whereas multiprocessors are usually classified

as either MIMD (multiple-instruction, multiple-data) or SIMD (single-instruction.

multiple-data) machines. SIMD machines are characterized by multiple processing

units supervised by the same control unit. All processing units execute the same

instruction but operate on different data from distinct data streams. Of primary

interest here is the MIMD machine which is typically a collection of processors, each

with their own local memory and some method of communicating with one another.

Each processor has distinct instruction and data streams and the machine operates as a

collection of SISD machines. An MIMD machine is considered to be tightly-coupled if

the interaction between processors is relatively high. Otherwise, it is considered to be a

loosely-coupled machine. Some architectures are hybrids which promote the use of

small clusters of tightly-coupled processors with relatively loose coupling between the

clusters [Kuc80].

7.2.2. Communication Between Processors

Communication between processors is an important aspect of a multiprocessor sys

tem. The underlying hardware support for communication may be organized in a

160

number of ways. For example, it may be a shared-bus. a crossbar switch, a multiport

memory, or one of the many multistage interconnection networks (e.g. delta network,

omega network, hypercube). For details on each type of network, see [Ens77]. Typi

cally, communication is performed using either message-passing or shared data.

Message-passing is usually found on relatively loosely-coupled machines whereas the

shared-memory approach is employed on tightly-coupled machines. However, the

user-level view of communication may be quite different from the hardware-level

implementation of communication. For the user, a shared memory model of communi

cation simplifies program development. Therefore, some multiprocessor systems give

the user the illusion of shared-memory even though the underlying implementation

may, in fact, be based on message-passing. Of course, the purpose of the user-level

view is to convey information about the relative cost of message-passing vs. sharing

data. Whether a particular user-level view is appropriate or not depends on how

expensive a remote memory reference is relative to a local memory reference. If the local

memory reference time is very small relative to the remote memory reference time, the

message-passing model for communication is more appropriate. If not. the user-level

shared data model is more appropriate. To illustrate the two communication

approaches further, consider the examples of the BBN Butterfly and the Sequent mul

tiprocessors.

The Sequent is a tightly-coupled multiprocessor which employs a shared-bus and

shared-memory architecture. As shown in Fig. 7.1. the processors, memory and I/O

devices are all connected to a single, common bus. Processors obtain instructions and

data from the large pool of memory using the common bus. Therefore, the bandwidth

of the bus must be high enough to handle simultaneous requests from all processors and

I/O devices. One problem with this type of architecture is that it does not easily

accommodate growth. Adding extra processors to the system will eventually degrade

Processor

568000 BUS

I/O

161

feripherals
HUtTIBUS
E+h*rMt

Figure 7.1 : Architecture of the Sequent Machine

the overall performance. In order to improve the performance, a large cache is provided

on each processor to reduce bus traffic. The cache contains the most recently used

blocks of memory and exploits the locality of reference property of most programs.

Since there is a separate cache for each processor in the system, the problem of main

taining consistency between the various caches and main memory exists. On the

Sequent, a Write-Through with Invalidation scheme [Fie84] is used, as described in the

next section. In view of the memory hierarchy on the Sequent, a local memory refer

ence can be considered as one which is made to the cache whereas a remote memory

reference is one made to main memory. These are only conceptual definitions as there is

little in the way of direct control of the number of each type of reference.

162

The Sequent allows an executing user process, called a parent process, to create

subprocesses. called child processes, which execute on any of the available processors.

Here, it is assumed that there is a one-to-one correspondence between the number of

processes and the number of processors, although this rule is not strictly enforced on

the Sequent1. Therefore, the terms "process" and "processor" are used interchangeably

here. The parent process uses the UNIX fork command to create child processes. Dur

ing the creation procedure, each child process obtains a copy of the parent's entire vir

tual address space, and this is viewed logically as local memory for each process. Each

process also has access to a pool of shared memory. Interprocessor communication on

the Sequent is performed via shared memory. A set of shared variables may be defined

by the parent process for purposes of synchronization and exchange of information.

However, special care must be taken when a number of interacting processes are updat

ing global data, and this aspect is described in a section to follow. For the Sequent, the

communication rate is of the order of the memory bandwidth and all memory refer

ences require roughly the same length of time.

The BBN Butterfly multiprocessor [Ret79] has a distributed memory system. The

architecture of the Butterfly is shown in Fig. 7.2. Each processor has its own local

(physical) memory and the processors are connected using a high-speed Omega network

[Law75]. An example of a 3-stage Omega network is shown in Fig. 7.3. It is configured

as a shuffle-exchange network [Sto7l]. The shuffle operation, at each stage, divides the

available connections in half and rearranges them as if they were shuffled perfectly

(like taking a deck of cards, cutting them in half and shuffling them evenly). The out

put of each shuffle stage feeds a set of exchange boxes. Each exchange box has two

inputs and two outputs and is capable of either passing information straight through or

1The Sequent is a multiuser machine which performs automatic dynamic load balancing and allows the
number of processes to exceed the number of available processors.

163

rtfcmoru

rocessor*

In+erconnect-iorv. Netwoir k (ICN)

Figure 7.2 : Architecture of the BBN Butterfly

exchanging information from a given input to the alternate output. Eight processors,

numbered 0 through 7. can be interconnected using this 3-stage network. The proces

sors would be connected in two places, as indicated in the figure, at both ends of the

network. A given processor communicates with another processor via the shuffle-

exchange network by transmitting the address of the destination along with the data.

At each stage of the network, the message iseither passed directly through the exchange

boxes or switched to the alternate path, depending on the value of the active bit of the

address. Since there are logiV stages in the network, where N is the number of proces

sors in the system, the communication time is proportional to logN .

For the Butterfly, a local memory reference is one that is made in the processor's

own local memory and is relatively fast. A remote memory reference is one that refer-

164

. n

o — —* * ^

1
i->

Z y a

3—\

1 -J <*

5—• 5

>
N-

&
& —

7
7 ^

Figure 7.3 : 3-StageOMEGA network

ences a memory location associated with another processor over the network and is

relatively slow — approximately five times slower than a local memory reference. If

the computation time for a task is short relative to the communication time, special care

must be taken to minimize the number of remote memory references used in a program.

Low-level communication between processors on the Butterfly is done using message-

passing. For example, if processor p, requires data from processor pj . it sends a mes

sage to Pj via the interconnection network. Processor pj then sends the appropriate

information back to pt in a similar manner. The operating system on the Butterfly

allows the user to define the protocol for message-passing by providing a set of com

munication primitives.

165

A shared memory model of communication is also supported on the Butterfly via

the Uniform System [BBN85]. From a programmingstandpoint, there is little difference

between this approach and the approach used on the Sequent. However, the underlying

implementation is quite different. Whenever a shared variable is declared on the

Butterfly, it is defined uniquely in one memory location on one of the processors in the

system. If another processor requires access to this shared variable, it must perform a

remote memory reference to the appropriate processor. Therefore, accessing shared

variables is more expensive than accessing non-shared variables. In some sense, local

memory can be viewed as a cache for non-shared variables whereas the shared variables

are viewed as being in "main memory" and requires a longer access time. The perfor

mance of any system may be degraded if many processors attempt to access a given

shared variable. To reduce problems of contention on the Butterfly, shared data is scat

tered uniformly throughout the machine and redundant paths are provided in the inter

connection network to minimize traffic congestion.

7.23. Mutual Exclusion

The use of shared variables or shared data structures between processors requires

some mechanism to establish mutual exclusion. This ensures that a common resource is

held by only one processor at a time. Mutual exclusion is usually implemented using

an atomic (or indivisible) operation, such as the test-and-set synchronization primitive.

The mutual exclusion policy is enforced by requiring that each process successfully exe

cute the atomic operation before gaining access to a shared variable. A shared variable

is usually updated in a critical section of the program. A critical section is defined as

any segment of a program which may only be executed by one processor at a time. A

process entering such a section, S,, must first lock the section before entering it using the

test-and-set instruction, and then unlock the section upon exiting it as follows:

LOCKilock_yariable)
execute critical section S,;
UNLOCK(Zoc£ variable)

166

The lock_yariable argument is set when the LOCKO routine is executed successfully

and reset when the UNLOCKO routine is executed. Other processes trying to enter the

critical section are placed in a queue and are required to wait until the unlock operation

is performed.

If a critical section is long and many processes attempt to enter the section simul

taneously, the system could be highly underutilized since most of the processors would

be busy accessing and testing the lock variable until the critical section becomes free.

This is referred to as busy-waiting. The time that a processor spends busy-waiting is

essentially wasted and results in a loss of efficiency. Another source of performance

degradation due to locks is the number of memory references generated while repeat

edly accessing the lock variable. If a large number of processors are busy-waiting on

the same lock variable, the communication traffic generated may be enormous. This

would have a major impact on the performance of a shared-bus system such as the

Sequent. To avoid this problem, the Sequent uses a Snooping Cache strategy [Kat85] by

enforcing a Write Through with Invalidation protocol [Fie84]. That is. if a processor

wishes to write to an address in its cache, the data is also written into main memory.

This is the Write Through aspect of the cache consistency scheme. Other caches con

tinuously monitor the addresses of all write operations to main memory. If a particu

lar write address also exists in a given cache, the associated data in that cache is invali

dated. As a result, the bus traffic is a function of the number of write operations to

main memory and not the total number of memory references. Therefore, busy-

waiting does not generate excess bus traffic once the lock variable is in a processor's

167

cache memory.

73. SYNCHRONOUS AND ASYNCHRONOUS RELAXATION

In the implementation of iterative algorithms on multiprocessors, one must con

sider whether to use a synchronous or asynchronous algorithm. If synchronization is

performed after each relaxation iteration, the algorithm is categorized as a synchronous

relaxation method. Here, synchronization implies that the processes must wait until

they all have completed their tasks in the current iteration before proceeding to the next

iteration. In general, if a parallel algorithm consists of a number of "cooperating"

processes and any process waits for another process to finish its task before proceeding

with the next task, the algorithm is referred to as a synchronized algorithm [Kun76].

Synchronization points are normally used to update global information, to exchange

information between processes, and to assign the next set of parallel tasks. The penalty

for synchronization depends on the number of processors in the system [Kun76]. If

many processors are waiting at the end of each iteration for others to finish the

efficiency can be degraded significantly. Hence, the synchronous approach is not well-

suited to parallel computation on large machines due to potential losses in efficiency and

surges in communication traffic when exchanging information.

An alternative to the synchronous approach is to use one of the asynchronous

relaxation schemes. One such scheme, called "chaotic" relaxation, was suggested by Cha-

zan and Miranker [ChMi7l]. In this scheme, the new values of a given component are

computed using whatever values are available for the external variables. That is. the

computation is not required to follow any particular order nor is a given component

required to use a particular set of previous iterates in its evaluation. In fact, the exter

nal values could be recently computed values or values from earlier iterations. The

advantages of this approach are that it removes synchronization from the iterative

168

process and that it distributes the communication load more evenly over time.

A general model for asynchronous computation was introduced to provide a

framework for the description and analysis of asynchronous algorithms [ChMi7l]. The

model given here uses Baudet's notation [Bau78] (which in turn is based on Chazan and

Miranker[ChMi7l]).

Definition 7.1: (Asynchronous Computation Model - ACM)

Given the fixed-point problem x=Fix) where F:JR" -»JRn with components
/,(*). i =1 n and xk € IR" . and a starting vector xl}. an asynchronous iteration is
defined by the update equation:

/,-Ui"*1.-- ' *n~S") i£Jk (7i)
xf1 **/*

xk =

The update equation is subject to the following conditions:
(a) Sj>\
(b) k —s, ->oo as k -*oo
(c) i occurs an infinite number of times in Jk . k =1.2...

This model is simply an update equation for a variable x-t at the k th iteration. As seen

in Eqn (7.1). xt is computed using the function /,-, if it is in the update set. Jk . or sim

ply updated using the value which existed previously, if it is not in the update set. The

update set for the k th iteration is given by Jk and is comprised of the set of com

ponents to be computed at some point in real time Tk during the execution of the paral

lel solution. As will be seen in an example to follow, the iteration index k is derived

from the real time point Tk at which a particular computation is started. These points

in real time should not be confused with simulation time points which would be

specified as tk for time point k . The values used to compute / ; are specified in the

form .x/w~**. The variables. s„,. represent delays in the iteration values of the other

components. The conditions associated with the ACM are intuitively obvious. Condi

tion (a) requires that only values from some previous iteration (i.e.. values computed at

previous points in real time) be used to compute each x-t. Condition (b) requires that

169

old values cannot be used indefinitely and that newly computed values must be used at

some point during the computation. Condition (c) requires that no component be aban

doned forever.

A variety of relaxation schemes, such as Gauss-Jacobi, Gauss-Seidel. and chaotic

relaxation, can be described in the ACM by selecting the appropriate values for Jk and

the sm 's [ChMi71, Bau78]. For example, the Gauss-Jacobi method is obtained by setting

Jk ={1.2.3 n) for £=1.2.... and sm=\ for all m=l n. An example using the

asynchronous computation model is given in Fig. 7.4. There are three variables in the

system, xx. x2 and x3. and three processors P\. /% and P3. Each variable, x,. is

assigned to a particular processor. P,. as shown along the y-axis. The x-axis is the exe

cution time for the problem and each point at which a computation ends corresponds to

an iteration. At time point 0. all three processors begin to compute new values of their

assigned variables using the initial guess x°. At time Tx, J\—\\) and the update equa

tions are given by:

•* 1 ~" / \^x 1 "x 2 'x 3 /

X 2 X 2

Other update sets and update equations are given in the figure. The update equa

tions use the most recently available values of the components, although any choice

which satisfies the conditions of the ACM can be used in the computation.

While the asynchronous approach seems to be an attractive alternative to the syn

chronous approach, it is important to ask whether or not the iterative method is still

guaranteed to converge. Using the problem:

x =Fix) (7.2)

Baudet proved the following theorem [Bau78]:

Pa(X2) +r

-*•

i

K= 0 I 2.

t= 0 "t, "tj. t*
TiVnC

7o = i 1.2.3}

/l = ll) Xl^ftixfjcgjc?). *21=*20. ^31=^3C

72 = l2} x?=x11. x^/^f^0^0). xf=xf

73 = l3} X^X?, X23=X22' X33=/3Ul0^2°^30)

/4 = {l.2} xf^fiixfjcijcS). x24=f2ix}x2ljc$). x34=x33

170

75 = { 1.2.3} xf^fiixfxfjci). x2*=f2ixtx2Ajci). x34 =/ 3(x/ .xj5 -*33)

Figure 7.4 : Example of the Asynchronous Computation Model

171

Theorem 7.1: (Convergence of Asynchronous Iterations)

If F is a contracting operator in a closed region D of IR" and if F iD) CD. then any

asynchronous iteration corresponding to F with an initial guess x° € D which satisfies

the conditions of the ACM converges to the unique fixed point of F in D .

Therefore, the asynchronous approach is a viable alternative to the synchronous

approach.

7 A PARALLEL ITA ALGORITHMS

The sequential version of the ITA algorithm was described in Chapter 4. In this

section, two parallel implementations of this algorithm are described. One straight

forward way to parallelize ITA is to perform the tasks in each iteration in parallel, as

follows:

Algorithm 7.1 : (A Simple Parallel ITA Algorithm)

t„ - 0:

nnexi *~~ n min*
while it **Txrop){

'/i *« "•* '''next •

k*-0;

repeat {
forall (i € 1. • • ,n) { /* perform in parallel */

solve Jr ivk •')(v/ +i- VA) = - F, ivk •') for v/ +1:
}
k- k+V.

}until (||v/+,-v/|| <€1.||Fi|| <€2.i=l..../i)
h„<-xt *~ PickStepO:

where Fjiv) and Jf (v) have been specified previously in Eqns. (4.3) and (4.5). The

use of the forall construct in Algorithm 7.1 implies that all n equations in the system

can be solved in parallel. The basic steps in the algorithm are the same as described in

172

Chapter 4. Initially a time step is selected and the active subcircuits are scheduled at

the first time point. The subcircuits are processed in parallel producing new solutions

for iteration 1. The solutions are exchanged and the next iteration, iteration 2, is car

ried out in the same fashion. This continues until the iterations converge to the solu

tion. Once convergence is obtained at the time point, a new step size is selected and the

same steps are carried out again at the next time point. The details of the time step con

trol and latency exploitation have been omitted in the algorithm to simplify the

description.

There are two forms of synchronization in Algorithm 7.1. One type occurs after

each iteration and the other after obtaining the solution at each time point. Synchroni

zation after each iteration guarantees that the s} *s are bounded by 1 for all j in the

asynchronous model given in.Eqn. (7.1), i.e.. the "chaos" is bounded by one iteration.

However, synchronization should be avoided, if possible, for reasons given earlier.

Therefore, both MSPLICE and PSPLICE use weakly chaotic relaxation, implemented

using event-driven techniques, as described in the sections to follow.

7.4.1. MSPLICE - A Multiprocessor Implementation of SPLICE1.7

MSPLICE [Deu84] is a parallel implementation of the ITA algorithm used in

SPLICE1.7 on the Butterfly multiprocessor. MSPLICE uses data partitioning where each

processor performs identical functions on different parts of the circuit rather than func

tional partitioning where different functions would be assigned to different processors.

A task in MSPLICE is defined as the evaluation of a single variable (in this case, a node

voltage) for a single iteration. Therefore, the granularity of each task is approximately

the same and this is desirable from the standpoint of load balancing. Since there are

usually many more nodes in the circuit than there are processors in the system, more

than one node may be assigned to each processor. A distributed scheduling algorithm is

173

used for task assignment whereby each processor is responsible for scheduling not only

its own tasks but also certain tasks for other processors.

MSPLICE uses a weakly chaotic relaxation scheme to avoid synchronization dur

ing the iterative process. A global convergence counter. GlobalRemainingNets, is used to

coordinate the processors at each time point. This variable is incremented whenever a

node is scheduled for an iteration and decremented when the node is processed. When

GlobalRemainingNets reaches zero, it indicates that all nodes have converged at the

present time point. Therefore, the processors may proceed to the next time point. In

MSPLICE. nodes can be assigned to processors using either static or dynamic allocation

and a number of tradeoffs exist in each approach [Deu85. Jac86]. For example, in a

static allocation scheme, the architecture of the Butterfly suggests that adjacent nodes in

a circuit be assigned to the same processor to keep the number of remote memory refer

ences to a minimum. However, latency exploitation usually reduces the number of

tasks available during the iterative process. Since adjacent nodes in the circuit tend to

be latent at the same time, some processors may run out of tasks while others still have

many tasks to process. This creates an imbalance in the processor loads and suggests

that adjacent circuit nodes should be placed on different processors to reduce the likeli

hood of all the nodes on one processor being latent.

A dynamic assignment strategy is preferable to a static assignment so that load

balancing can be performed more effectively during execution. However, a significant

overhead may exist in moving circuit data from one processor to another, unless a copy

of the entire circuit exists on each processor, which is memory inefficient for large cir

cuits. Another issue in dynamic assignment is that of performing the dynamic load

balancing. In a more recent version of MSPLICE [Jac86a], each processor schedules new

events on the processor with the fewest events in its queue. This involves searching a

174

global data structure to determine the processor that has the shortest task queue. As the

number of processors increases, contention for the global data structure could degrade

the performance of the program. In fact, since N entries in the global data structure

are searched by a possible N processors, the overall contention grows as N2 in this

implementation. However, since a task requires a significant amount of time to per

form, the queue contention does not pose a major problem with up to 100 processors

[Jac86]. In the current implementation, the dynamic scheduling algorithm shows the

best performance [Jac86], although the program allows the user to select the mode of

task assignment for experimentation purposes.

7.4.2. PSPLICE - A Parallel Implementation of SPLICE3.1

In this section, a number of different approaches are described for parallelizing

ITA on a shared-bus. shared-memory architecture where a limited number of processors

are available. The Sequent machine was used as the test-bed multiprocessor. The basic

algorithm used was the global-variable step ITA with partitioning as implemented in

SPLICE3.1. The issues to be examined are: central scheduler vs. central queue, the

granularity of the computation. Gauss-Seidel/Gauss-Jacobi alternatives, and synchroni

zation at iteration and time point boundaries.

a. Tasks and Task Scheduling

In the implementation of a parallel algorithm, it is necessary to first create the

processes which will perform tasks concurrently. On the Sequent, this is implemented

using the UNIX forkO system call. Normally, a corresponding joinO operation would

be used upon completion of the tasks to remove the processes which are no longer use

ful. Another set of forks would then be issued to perform a different set of tasks in

parallel. Unfortunately, a UNIX forkO operation is rather expensive [Seq84] and if this

175

system call is used every time an opportunity for concurrency arises, the overhead

could degrade the performance of the machine. One way to avoid this problem is to

perform the forking operation in one loop in the program (to create a separate process

for each available processor). Then, whenever a set of tasks become available for con

current execution, they are assigned to the existing processes. Each process performs the

assigned task and then simply waits for the next task rather than performing a joinO

operation. A task, in this context, has two components: a function (implemented as a

function pointer in C). and a piece of data to be operated on by the function (imple

mented as simple pointer in C). Using this approach, each processor may perform a

number of different functions during the execution of the program without incurring

the additional penalty of the forking operation.

The actual assignment of tasks to processors is implemented using a scheduling

operation. Two approaches were implemented to perform dynamic task scheduling:

(1) a central scheduler.

and (2) a central queue

The central scheduler approach requires one process to manage the scheduling of tasks

and perform certain bookkeeping functions. It can be implemented using mailboxes,

which are simply message-buffers for interprocess communication:

Algorithm 7.2 : (Central Task Scheduling Approach)
parentO {

set-up p mailboxes:
fork p processes which execute childO routine:
AllDone «- TRUE;

task *- CreateNextTaskO:
repeat {

AllDone «- FALSE:

while (task ^ NULL) {
f oreach (i € 1. •• • .p) {

if (mailboxfi] empty) {
mailbox[i] «- task:
task «- NULL:

break:

task «- CreateNextTaskO:
} until (task = NULL):
AllDone «- TRUE:

}

child(i) { /* each child is assigned a process number i */
repeat {

while (mailbox[i] empty && AllDone = FALSE) {wait here }:
if (AllDone = FALSE) {

task «- mailbox[i];
Execute(task);
clear mailbox[i];

}
} until (AllDone);
exit:

}

176

In this implementation, the parent process is responsible for creating the tasks in some

manner and then assigning them to idle processors which are identified by scanning the

mailboxes. The child processes check their respective mailboxes for a task, and then

execute the task when it arrives. This approach is depicted in Fig. 7.5.

The problem with this approach is that for a small number of processors, the sys

tem may be under-utilized since the parent is dedicated to the management of tasks.

For a large number of processors, the parent may become a bottleneck if it cannot gen

erate and assign tasks fast enough to keep all the processors busy. The advantage of

this approach is that fewer synchronization operations, involving locking and unlocking

operations, are performed.

An alternative to this approach is to use a central queue. In this approach, the

parent process sets up a queue of initial tasks and then executes the same piece of code

as the other processes — effectively becoming a child process itself. The tasks are then

removed one-by-one and executed by different processors. At the same time, new tasks

are added to the queue by the processors upon completion of old tasks. This approach is

PARENT (PI)
PROCESS \J

/1\
MAILBOXES

CHILD
PROCESSES

Figure 7.5 : A Central Scheduler Approach

depicted in Fig. 7.6 and the algorithmic details are given below:

Algorithm 7.3 : (Central Oueue Scheduling Approach)
setupO {

set-up queue Q:
numberOfBusyProcessors ♦- 0:
fork p processes which execute childO routine:
childO;

}

child(i) { /* each child is assigned a number i */
repeat {

lock(Q);
task «- NextTaskFromQO:
increment num berOfBusyProcessors:
unlock(Q):
if (not NULL task) {

Execute(task):
lock(Q):
decrement numberOfBusyProcessors:
AddNewTasksToQO:
unlock(Q):

177

else {
lock(Q):
decrement numberOfBusyProcessors:
unlock(Q):

}
}until (Q empty && numberOfBusyProcessors - 0);
exit:

178

Note that this approach is more uniform in nature than the central scheduler approach

in the sense that the same routine is executed by all processes, rather than the parent-

child routines executed in the previous case. This makes it somewhat easier to write the

program (although neither approach is overly complicated) and promotes uniform

growth if more processors are added to the system. The main advantage of the central

TASK

QUEUE

CHILD
PROCESSES

Figure 7.6 : A Central Queue Approach

179

queue is that all processors are actively involved in the solution to the problem and this

improves the utilization. One drawback is that accessing the queue may become a prob

lem when the number of processors is large, due to the lock/unlock operation. How

ever, if the execution time of a task is much longer than the average waiting time for

the queue, it is not a significant problem.

Both the central queue and central scheduler approaches were implemented in

PSPLICE. It was found that the speed-up on two processors for the central queue

method was close to 2.0 whereas the speed-up for the central scheduler case was close

to 1.0 (since one processor was the parent whose job was to assign tasks while the other

was the child performing the tasks). However, the speed-up was much closer on 8 pro

cessors, differing only by 10-15% in favor of the central queue approach. The central

queue approach has been adopted in PSPLICE.

b. Granularity of the Computation

The granularity of the computation refers to the size of the tasks assigned to each

processor in the parallel portions of a program. It seems natural to define a single

Newton iteration for a subcircuit as the basic task in the parallel version of SPLICE3.1.

However, this introduces a problem for load-balancing since some subcircuits may be

very small, possibly containing a single node, while others may be very large containing

many nodes. A processor which is assigned a small subcircuit would complete the task

very quickly while another processor with a larger subcircuit may take much longer to

complete its task. This nonuniformity of the task sizes may lead to underutilization.

especially at synchronization points.

One way to resolve this problem is to create subcircuits which are roughly the

same size. That is. after the usual partitioning step, a second pass could be performed

to combine subcircuits together so that each group of subcircuits requires approximately

180

the same amount of time to evaluate. A task would then be defined as the evaluation of

a cluster of subcircuits. The basic problem with this approach is that it reduces paral

lelism. In addition, some efficiency in latency exploiution is lost since more variables

are solved together. However, this may be a still reasonable approach if the number of

processors is small.

A better approach is to refine the granularity of the computation by breaking up

the task of solving a subcircuit into a number of subtasks which can also be performed

in parallel. For example, each subcircuit evaluation is composed of three subtasks:

evaluation of the Jacobian and right-hand-side (RHS) vector entries, matrix loading,

and matrix solution. Of these, the evaluation of the Jacobian and RHS vector, called

model evaluation, usually dominates the run time for small subcircuits [New78].

Therefore, a good strategy is to allow both subcircuit evaluation and model evaluation

to be performed in parallel. Of course, subcircuit processing would be reduced to set

ting up the tasks for model evaluation in a separate model queue. Other processes

would remove model evaluation tasks from the model queue and compute and load the

matrix entries. The last processor to complete a model evaluation associated with a par

ticular subcircuit could also perform the matrix solution since it requires a relatively

small amount of time. This approach is used in PSPLICE.

One problem with making each model evaluation a separate subtask is that some

models are as simple as resistors or capacitors, requiring less than 10 floating-point

operations, while others are complicated MOS transistors, requiring hundreds of

floating-point operations. If a task is too small, the overhead of the queueing operation

may be a significant portion of the time required to perform the task. A better

approach is to cluster a number of circuit elements together such that each cluster

requires approximately the same length of time to process, and that the processing time

181

is much greater than the overhead. The overhead due to queueing can be estimated by

examining the associated operations. The queue is locked and unlocked once when the

task is scheduled, and again when the task is removed for processing. Let the time

required to perform these functions be Tlock and Tmtact . respectively, and let TCs be the

time that spent executing a critical section associated with the queue, such as enqueue-

ing or dequeueing a task. If p processors are busy-waiting on the lock variable in the

worst-case, then the execution time for the cluster. Tciust„.. should satisfy the following

condition:

^duster » 2(7,/ocit + Tc$ + Tunlock) p

That is, the processing time should be much greater than the worst-case waiting time.

For the Sequent. Tfftck + Tunlock is roughly 65/jS . If p =8 and Tcs is negligible, then

Tctusnr » 1000/llS . To create the clusters, the unit cost for each type of modelevalua

tion must be known. This is listed in the table below for four different devices:

MODEL TIME

MOS transistor

Diode

Resistor

Capacitor

2000uS

600uS

300uS

150uS

Table 7.1: Execution times for four devices

Using this table, the model evaluation subtasks can be generated so that they require

more than IOOOjliS. Note that if the clusters are too large, some degree of parallelism

may be lost. Therefore, the actual size should be a parameter which can be tuned based

on a few experiments. Currently, the task size is approximately 5000/jS although

slight variations in the size are permitted if necessary.

In the implementation of this approach in PSPLICE. the clusters are defined in a

preprocessing operation. Two prioritized queues are used: one for subcircuit evaluation

182

and one for model evaluation. The model queue is given a higher priority than the sub-

circuit queue because it is preferable to generate new values for a subcircuit rather than

starting the solution of another subcircuit. This increases the likelihood that the next

subcircuit will get new values to compute its solution resulting in faster convergence.

At the beginning of each time point, the model queue is empty and the subcircuit queue

contains a list of tasks to be processed. When a subcircuit task is processed, a

corresponding set of model evaluation tasks are scheduled in the model queue with the

largest tasks first and the smallest tasks last. This gives the larger tasks a slight head

start over the smaller tasks. Other processors obtain tasks from this model queue, since

it has a higher priority than the subcircuit queue, until the queue is empty. The last

processor to finish a model evaluation for a subcircuit performs the matrix solution. If

it is anticipated that the matrix solution time will be large, it can also be decomposed

into a number of smaller tasks and placed in a third queue which is of higher priority

than either the model queue or subcircuit queue. However, this last feature has not

been implemented in PSPLICE as yet.

c. Synchronization at Time Points

In PSPLICE. synchronization at iteration boundaries is avoided by using an event

scheduler to generate tasks dynamically. That is. after processing a subcircuit. its

fanout subcircuits are scheduled at the end of the queue if the subcircuit is "active". If

the subcircuit has not converged, it is placed at the end of the queue. Therefore, each

subcircuit in the queue has at least one input or internal variable which has changed in

value. Processing continues in this manner, without synchronization, until the queue is

empty, which indicates that the solution has been obtained at the current time point.

Synchronization at each time point is difficult to avoid since the next time-step is

not known until all the variables have converged to the solution at the current time

183

point. In fact, neither MSPLICE nor PSPLICE allow the solution to proceed beyond a

particular time point until the iterations have converged. However, the fixed time-step

algorithm used in MSPLICE would allow nodes to go ahead to the next time point, if

processors are available, since the next time-step is known. In the variable time-step

case, the time step is selected by the fastest changing variable and this value is not

known a priori. In principle, any step size which is smaller than the recommended step

size may be used at each time point. This observation leads to a strategy to remove

synchronization at time points in the variable step case. The idea is to use the step size

chosen for the time point tn _ x at the next time point. tn . For example, the time step,

hn_i. selected at t„-i would be used at t„ rather than at tn^x. A recursive relation

defining the set of time points is given by:

tn +1 = tn + nn - 1

By using this approach, the value of t„+1 is known while computing the solution at t„ .

Since t„ +1 is known in advance, any subcircuit that converges at tn would be permitted

to go ahead to the next time point, assuming that idle processors are available. The

approach could be implemented using another set of queues for tasks at time point t„+1.

Whenever the task queues at tn are empty, the idle processors could take items from

the queues at t„ +1 and process them even though the solution at t„ may not be com

pletely finished. Therefore, some subcircuits would be scheduled at t„ while others

would be scheduled at t„ +!. When processing a particular subcircuit at t„ +1. any values

not available at t„ +i would have to be extrapolated. If a subcircuit which has been pro

cessed at tn +1 is subsequently re-scheduled at t„ . the solution for that subcircuit at tn +1

would simply be discarded.

In the implementation of this approach, two types of step rejections may occur:

rejection of h„ _ x and rejection of h„ . The rejection of hn _ i occurs if the iterations do

not converge at t„ or if the solution is not accurate enough at t„ . The solution at both

184

t„ and tn +1 must be abandoned under these conditions and new values of t„ and t„ +1

selected for subsequent processing. The other type of rejection occurs if fc„_i is

accepted but h„ is considered to be too large. In this case, any further processing at t„ +J

would be halted and the new value for hn substituted for the one which was rejected.

d. Gauss-Seidel/Gauss-Jacobi Algorithms

One remaining issue to address is the order in which the subcircuit tasks should be

processed. In a sequential implementation of a relaxation method, the components in

the system are usually processed in a particular order and solved using the most

recently computed values for all external variables, as specified by the Gauss-Seidel

method. On a multiprocessor, the processing order and the external values used during

the computation depend on the particular implementation. For example, if all the tasks

are started simultaneously and the values for the external variables are always

obtained from the previous iteration, the algorithm would be strictly Gauss-Jacobi.

However, if the tasks are initiated whenever a free processor is available, then the

method is chaotic relaxation. Both the Gauss-Jacobi method and chaotic relaxation offer

more parallelism than Gauss-Seidel and result in higher processor utilization. However,

the convergence speed is reduced and this may lead to increased runtimes. A number of

experiments were performed using the PSPLICE program to compare these approaches.

The first step was to try a Gauss-Jacobi-like algorithm by processing as many sub-

circuits in parallel as possible. It will be referred to as the "First-Available-Task"

approach. In this approach, the subcircuits are obtained from the head of the subcircuit

queue and processed immediately using whatever values were available for external

variables. While the method is not pure Gauss-Jacobi (since there may be updated

information available in some cases) the approach is closer to Gauss-Jacobi as more and

more processors are added. In fact, the method is weakly chaotic with the guarantee

185

that at least one input to each subcircuit in the task queue has a recent iteration value.

The results of this implementation are given in Table 7.2 for three different circuits.

The table contains the number of CPU-seconds required to perform each simulation as a

function of the number of processors used. Note that on a single processor, the Gauss-

Seidel algorithm with dynamic ordering is used.

Proc decpla
i56 nodes)

cramb

(149 nodes)
scdac

(154 nodes)

1 594.23 1599.32 4041.7

2 325.66 909.63 2138.76

4 181.16 531.18 1222.16

6 135.87 678.51 972.57

8 126.65 399.41 852.59

Table 7.2 : First-Available-Task Approach

The results indicate that reasonable efficiences can be obtained using this approach.

The speed-up factors on eight processors are between 4-5 which translates to efficiences

of approximately 50-60%. Fig. 7.7 shows the number of processors which are busy

during the execution of the DECPLA circuit. It shows that even for the smallest circuit

there is enough work to keep all the processors (eight in this case) busy. Note that

when the solution at each time point is obtained, the number of busy processors drops

to one momentarily to set up the next time point. This is the synchronization at each

time point referred to in the previous section.

The next step was to try to improve the performance using a Gauss-Seidel algo

rithm. Although the Gauss-Seidel algorithm is sequential in nature, there are a number

of opportunities for parallelism. Consider, for example, the circuit graph shown in Fig.

7.8(a). The nodes in the graph represent subcircuits and the arcs represent connections

3
O
r»
wi

III
u
o

(0

o

o

500 1000 1500

Time (ms)

Figure 7.7 : No. of Busy Processor vs. Time for Gauss-Jacobi Method

186

2000 2500

between the subcircuits. The corresponding task precedence graph is shown in Fig.

7.8(b) for iteration k and iteration k +1. In this case, the directed edges between the

nodes imply a partial ordering or precedence relation between tasks. Therefore. S-, <Sj

requires that 5, be completed before Sj is started. In fact, all predecessors must be

completed before a successor begins execution. Subcircuits without any predecessors are

called initial tasks and they are always computed first. The width of the graph is the

maximum size of any independent subset of tasks and it is this aspect that provides the

parallelism in theGauss-Seidel algorithm. For example, for the graph in Fig. 7.8(b). the

first iteration for SiS2 and $3 can De computed in parallel since they are all initial

tasks. Once these tasks have finished, iteration 1 for S4 and S$ can be computed in

187

(a)

K

Figure 7.8 : Circuit Graph Example

188

parallel. After S4 and S5 complete execution, two sets of tasks can be computed in

parallel: the solutions for Sb. S1 and 58 can be computed for iteration 1 and the solu

tions for Si, S2 and 53 can be computed for iteration 2.

The amount parallelism available using this approach depends on the topology of

the circuit. That is, this approach will work quite well on circuits having rather wide

graphs but will not be as effective on circuits with narrow graphs. Feedback paths in

the circuit also tend to limit the amount of parallelism. In Fig. 7.8(a). if a feedback

path existed between 58 and 53. then S3 would have to wait until both S5 and 58

finished before beginning its next iteration. Another factor which limits the amount of

parallelism is latency exploitation. Some subcircuits may be latent while others may

converge quickly during the iterative process so that further processing is unnecessary.

However, if the circuit is large enough, the Gauss-Seidel method may be still be

efficient. As in the First-Available-Task algorithm, each subcircuit task can also be sub

divided into a number of model evaluation subtasks to generate more parallelism. If

each subcircuit is large, there may be enough work to keep all p processors busy even if

the subcircuits are processed one-at-a-time. Therefore, for a machine with a small

number of processors, it may be possible to maintain the strict Gauss-Seidel ordering

and obtain a speed-up relative to the uniprocessor version.

The implementation of the Gauss-Seidel method on a multiprocessor requires some

complicated checking to determine if a subcircuit task is ready to fire (i.e. ready to be

executed). Specifically, the following check is necessary for subcircuit. 5,. to perform

iteration k +1:

if (((5; active) AND (each fanin is either finished iteration k+1 or latent)
AND (each fanout is either finished iteration k or latent)) (7.3)
OR iiSj active) AND (S, is an initial subcircuit performing iteration 1)))

execute(S;):

189

To simplify this check, the subcircuit queue described for the Gauss-Jacobi algorithm

can be used. This queue contains all subcircuits that have a change in at least one fanin

but the subcircuits may not be ready to fire. Only those subcircuits which satisfy the

precedence relations can be processed. The precedence constraints are enforced by

searching the queue using the somewhat simpler check:

if (((each scheduled fanin has finished iteration k+1)
AND (each scheduled fanout has finished iteration k))
OR (5; is an initial subcircuit performing iteration 1)) (7.4)

execute(5;);

Note that in the Gauss-Jacobi version, each processor simply picks up a task from the

head of the queue. In the Gauss-Seidel case, the queue must be locked and each task

checked to see if it is ready to fire using (7.4) above. This increases the time that the

queue is locked compared to the Gauss-Jacobi case. The length of time that the queue is

held in the locked state depends on the number of tasks in the queue and the likelihood

of finding a executable task. If an executable task cannot be found, even though tasks

are available in the queue, the processor is said to be blocked.

The Gauss-Seidel version was implemented in PSPLICE and the results are

presented in Table 7.3.

Proc decpla
(56 nodes)

cramb

(149 nodes)
scdac

(154 nodes)

1 621.36 1685.1 4125.92

2 358.72 920.82 2477.22

4 264.51 666.04 1691.33

6 246.92 637.82 1551.99

8 261.27 682.01 2093.47

Table 7.3: strict Gauss-Seidel Version

190

The results show improvement in the run time up to six processors. Note that the

uniprocessor runtimes have increased compared to Table 7.2. This is due to the fact

that dynamic ordering is not being used. In this version, the queue is checked and the

static Gauss-Seidel ordering is preserved. This checking process introduces additional

overhead to the uniprocessor version. Note also that with 8 processors the program

actually runs slower due to the blocking problem mentioned earlier and due to the

length of time the queue is locked. Even for the largest circuit, for which blocking

should be small, the contention for the queue degraded the overall performance. Fig.

7.9 shows the number of busy processors as a function of time for the DECPLA circuit.

Comparing it to Fig. 7.7, it is clear that the multiprocessor system is not being fully

utilized when it is executing in Gauss-Seidel mode, as the number of busy processors

rarely reaches eight. The circuit graph for the DECPLA circuit is given in Fig. 7.10.

Note that it is not very wide and there are many feedback paths which limits the degree

of parallelism.

Two alternatives exist to improve the performance: either increase the granularity

of the computation, or reduce the time that processors are blocked. One way to gen

erate more work is to first try to find a task which is ready to fire, and if none is found,

simply take any task from the queue. This task could be from the head of the queue or

any other part of the queue. Results from this simple modification are given in Table

7.4. The run times in this case are comparable to the First-Available-Task version,

although somewhat slower due to the extra time that each processor has the queue

locked. However, the blocking problem has been removed and this accounts for the

improvement in performance relative to Table 7.3.

*
VA
th
III
O
O

S

o

500 1000 1500 2000 2500 3000

Figure 7.9 : No. of Busy Processors vs. Time for the Gauss-Seidel method

191

Figure 7.10 : Graph for DECPLA circuit

Proc decpla cramb scdac

1 596.47 1614.76 4051.49

2 339.4 963.2 2212.49

4 197.52 580.29 1289.49

6 149.29 477.09 1028.24

8 125.83 432.48 910.62

Table 7.4: Gauss-Seidel/Gauss-Jacobi Version

192

A few observations can be made based on the limited set of results given here.

The First-Available-Task version is the easiest to implement and appears to be the most

efficient. The performance of the Gauss-Seidel version depends on the topology of the

circuit and is somewhat more complicated to implement. The problem of blocked

193

processors and the length of time that the queue is locked are limitations of the imple

mentation used here.

7.5. PARALLEL WAVEFORM-NEWTON

The Waveform-Relaxation-Newton (WRN) algorithm was described in Chapter 6

as an extension of ITA to function spaces. It was shown to be faster than both the stan

dard Waveform Relaxation (WR) method and the basic ITA method described in

Chapter 4. The WRN method also has features which can be exploited on a parallel

processor [Whi85b] and this aspect is examined in this section.

The parallel GS/GJ algorithms described for ITA in the previous sections can be

applied to WRN since the considerations for task definition and ordering are similar for

both methods. However, based on the results given in [Whi85c], the GJ algorithm may

not be as effective for WRN as it was for ITA. In fact, it was shown that the parallel

GJ approach was inefficient for thestandard WR algorithm in [Whi85b]. Therefore, it is

more important to preserve the GS ordering for WRN. The two main problems with

preserving the proper ordering in ITA were the time spent in the queue looking for

work and the blocking problem when work could not be found. In WRN. each task is

much larger than in ITA, involving the solution of each subcircuit over a window inter

val. This reduces the effect of the queue being locked for a long time. However, it does

not remove the blocking problem.

In the parallel implementation of the WR algorithm, a technique called time-point

pipelining (TPP) [Whi85a] was used to preserve the GS ordering and reduce the block

ing problem. This approach can be described using the two-stage inverter chain in Fig.

7.11. Assume that x l is assigned to processor 1 and x2 is assigned to processor 2. In the

TPP method, the idea is that processor 2 can start the computation of waveform xk2 it)

before processor 1 finishes the computation of waveform x\it). That is. when

?(*,)

E6&)

„- 4 f - 4h- " <•4 > I
J y

(r
1

<•—1 >•--< r ''

4 >--h >---,
••'•I

». .*>

4 >

4 ..,..,

0 i l 3 4 5 (, 7 6 9 /0 //

Figure 7.11 : Time Point Pipelining Example

194

"^ t/>e

processor 1 computes the first few points of x \ it), processor 2 can begin to compute the

first few points for x2U). In this way. the computation of the two waveforms are

pipelined.

The TPP approach was shown to be more efficient then the parallel Gauss-Seidel

approach for WR [Whi85c] for a number of examples. While the TPP approach could

also be used in WRN. the efficiences may not be as high. This is due to the time step

control used in WRN as described in Chapter 6. Recall that only one time step is used

in the first iteration of WRN. and therefore the notion of time point pipelining is not

meaningful. However, as the iterations approach convergence, presumably a large

number of points would be used. In this situation, the TPP method would be more

effective. One approach to resolve this problem is to use a standard time step control

195

for WRN when running in parallel, but this is not expected to be as efficient since the

extra work in the early iterations may offset the improvement in efficiency.

There is another source of parallelism which may help boost the efficiency in the

early iterations. The step refinement strategy given in Chapter 6 implies that the

number of time points, m . and their locations are known before the beginning the com

putation of the waveform for xt at the k th iteration. Also, the set of waveforms

necessary to compute the k th iteration are also known in advance. Therefore, for a

given window interval, the Jacobian matrices and portions of the RHS vector can be

computed at all time points in parallel. This is due to the fact that the Jacobian entries

at different time points are independent of each other. Since the location of the time

points and the operating point information can be obtained from the waveforms at each

time point, the Jacobian matrices can all be computed in parallel. Furthermore, the LU

decomposition of the Jacobian matrix at different time points can also be done in paral

lel. As before, the Jacobian evaluation can be broken down into model evaluation sub-

tasks which can also be done in parallel. The only remaining tasks are to load the RHS

entries and to perform the forward-elimination and back-substitution (Fe/Bs) opera

tions for each time point. These tasks cannot be done in parallel across time points.

That is. these remaining tasks at a point tn must be completed before the starting the

remaining tasks at tn +1. Therefore, this portion must be done sequentially across the

time points. However, this represents only a small fraction of the total time.

The relationship between the various tasks is illustrated in Fig. 7.12 for the

inverter chain example of Fig. 7.11. Here, each inverter is considered to be a separate

subcircuit. The graph indicates that subcircuit 1 must be started before subcircuit 2.

but that the model evaluations for all three time points in the window can be started

simultaneously. When the model evaluation for 11 finishes, the Fe/Bs operation for t x

196

can be performed. Note that the Fe/Bs task for t2 cannot be started until both the

model evaluation for 12 and the Fe/Bs operation for t j are completed. A similar restric

tion exists for Fe/Bs at 13. If TPP is also used in conjunction with this approach, the

model evaluation for subcircuit 2 at time point t j can be started after Fe/Bs for subcir

cuit 1 at time point t x is completed. Other such dependencies are denoted using directed

arcs. Using this approach, the parallel WRN algorithm is expected to exceed the mul

tiprocessor efficiencies attained by the parallel WR algorithm.

The main drawback of this approach is that it may require a large amount of

memory. Normally, the memory required for one matrix is allocated for each subcir

cuit and this memory is re-used at each time point. However, if the Jacobian matrices

at every time point are evaluated in parallel, a separate matrix will be necessary for

t:ir>ie_

Figure 7.12 : Task Precedence Graph for 2-stage Inverter Chain Example

197

each time point. This would increase significantly the amount of storage used. If a fast

dynamic memory allocation scheme were available, the matrices could be allocated

when necessary rather than keeping a separate copy for each time point and each subcir

cuit. This way. only the matrices for subcircuits being processed would be allocated,

thereby reducing the overall memory requirements.

7.6. GENERALIZED SPACE-TIME SCHEDULING MODEL

The relationship between the various parallel schemes presented in the previous

sections can be described within the framework of a space-time dependency graph, as

depicted in Fig. 7.13. Here, time refers to the simulation interval rather than real or

physical time. For the purposes of illustration, a fixed time-step grid is used. The

"space" axis refers to the position of a node in the circuit, in a conceptual sense. For

example, the Gauss-Seidel ordering scheme is one way to specify the spatial ordering of

the nodes in a circuit. The node ordering for a three-stage inverter chain, with feedback

between adjacent nodes, is shown in the figure. The large dots are time points at which

a solution is required and will be referred to as nodes of the dependency graph (not to

be confused with the circuit nodes). The arcs in the spatial direction imply that the

node at the end of an arc is a fanout of the node at the beginning of the arc. The one

way arcs from one time point to the next are due to causality. The causality argument

states that events in the past directly affect events in the future, but events in the

future have no bearing on events in the past. Therefore, feedback in the time domain is

not permitted. The third axis in the figure is the "iteration" axis. Each space-time plane

is associated with a particular iteration. Arcs are permitted from a node on iteration

plane k to any node on iteration plane j if. and only if. j ^k .

Fig. 7.13 illustrates the decoupled nature of relaxation methods in time and in

space. The basic ITA method can be viewed as a spatial decoupling of the circuit nodes.

198

That is. the circuit nodes are coupled in time but decoupled in space. The WR algorithm

allows decoupling in both time and space, since there is no requirement to solve

different circuit nodes at the same time. Note that decoupling in time does not imply

that the law of causality is violated but simply that different circuit nodes can be

solved at different points in time.

The set of nodes and arcs in Fig. 7.13 should be viewed as a task precedence graph

for the circuit if a strict Gauss-Seidel ordering is followed and the causality law Is

obeyed. This task precedence graph is followed closely in the sequential versions of the

relaxation-based programs. The nodes in this graph can be scheduled using event-

driven techniques, as described earlier. The requirement to begin processing a node is

that all nodes associated with incoming arcs be completed first. When a node has been

i+era"ti&\

u space. v

Figure 7.13 : Time-Space Model of Computation

199

processed, it may schedule any or all of its fanout nodes. In the description to follow,

the nodes in the graph will be referenced using (space, time) coordinates for a given

iteration k as shown in the figure.

In a parallel implementation, the precedence order given in the graph does not

have to be followed strictly and. in fact, some of the algorithms described earlier in this

chapter do not adhere to the partial ordering constraints in order to increase parallelism,

while others do not take full advantage of the opportunities for parallelism. For exam

ple, in the parallel GJ algorithm for ITA, the spatial ordering is violated so that all

three circuit nodes can be solved together. However, the implementation in PSPLICE

does not take advantage of the fact that events can also be scheduled in the temporal

domain. That is, when node ixxX \) is computed, it can schedule both ix2. t x) and ix 1(

12). This approach was described in the section on time point synchronization earlier in

this chapter. The timepoint-pipelining approach is a good example of effective exploita

tion of scheduling in the time domain. In this scheme, when node ixxx \) has computed

the solution for iteration k . it schedules both ix2. t {) and (x}, t2) for iteration k.

When these two tasks are completed, they each schedule fanout tasks in time and in

space. Note that (.r2^2) could also schedule ix Y.t \) for iteration k +1. However, the

current implementation of TPP in PRELAX (Parallel RELAX2.3) does not take advan

tage of this additional opportunity for parallelism [Whi85c]. The chaotic relaxation

scheme can be viewed as a scheme which violates the precedence order in both space and

iteration, but not time.

The question naturally arises as to whether or not the time point ordering can be

violated in any way. The algorithms described for WRN suggests that the nodes ix lji)

for i =1.2.3.4 can all computed parallel, and for a GJ version all 12 time points may be

computed in parallel! This is not strictly true since the actual solution is obtained by

200

obeying the causality law. It is only that most of the computation for each time point

can be performed in parallel. However, in principle, there is no reason why the time

points can not truly be evaluated in parallel. The usefulness of this approach is ques

tionable unless it can be shown that it not "wasted" work. That is. performing an itera

tion at a future point, before a time point in the past has a new solution, must be shown

to be useful. If such an advantage is perceived, then all nodes in a space-time plane can

be computed in parallel.

CHAPTER 8

CONCLUSIONS

201

In this dissertation, a number of new algorithms have been presented to reduce

run times for circuit simulation. These algorithms are based on nonlinear relaxation

techniques which are extensions of the linear Gauss-Seidel and Gauss-Jacobi iterative

methods to nonlinear problems. The new algorithms have been implemented in new

programs and used to simulate a variety of industrial circuits. A parallel implementa

tion of one of the algorithms has also been presented. The main results and directions

for future work are given below.

Initially, two properties of the waveforms of large digital circuits, called latency

and multirate behavior were defined. Analysis techniques were developed to determine

the maximum possible speed improvement that could be obtained by exploiting these

two waveform properties. A number of example circuits were analyzed using these

techniques and it was concluded that large speed improvements could be obtained if

these properties are exploited under ideal conditions. The results indicate that multirate

exploitation offers a potentially larger speed improvement compared to latency exploi

tation. This is because fewer time points are computed in the multirate case. However,

actual speed improvement depends on the number of points computed during the simu

lation and the computational cost of each solution point relative to direct methods. The

factors affecting the efficiency of the relaxation-based methods in exploiting the latency

and multirate properties were also described. It was shown that the relative cost of

each solution point in Waveform Relaxation was higher than the cost for nonlinear

relaxation or direct methods.

202

Two approaches based on Iterated Timing Analysis (ITA) were described, one

which exploits the latency property and another which exploits multirate behavior.

These approaches were implemented in the SPLICE3 program and a set of industrial cir

cuits were simulated using this program. Both approaches obtained speed improve

ments relative to the standard simulation approach (i.e. the SPICE2 program) but did

not reach the ideal speed improvements. The reasons for this were attributed mainly to

an increase in the number of time points used compared to ideal case. This was due to a

conservative latency detection scheme (to avoid errors), the use of a conservative time-

step control (to avoid rejections) and static partitioning (to improve the convergence

speed).

SPL1CE3.1. which exploits latency, was implemented using event-driven,

selective-trace techniques. In this approach, only the active components in the system

are solved at each time point. The active components use a common time-step based on

the fastest changing variable in the system. SPLICE3.2 uses an event-driven multirate

integration scheme. In this approach, the components are permitted to take different

step sizes. Each variable performs two integration operations for each time-step: first, a

trial integration to move ahead of the other components and. later, a final integration

when the other components catch-up to verify the trial solution. If the waveforms

resulting from the trial and final integrations are different, the solution is rejected and a

new solution is computed using smaller steps. The rejection is propagated to neighbor

ing components which, in turn, are selectively backed-up and re-integrated in the inter

vals which are affected by the original rejection. The multirate ITA approach was

shown to be faster than the implementation of Waveform Relaxation in RELAX2.3 on a

number of examples, especially in the cases where proper window selection was difficult

for WR. Future work on this type of algorithm should be to analyze the stability and

convergence properties in order to establish robustness of the method. In addition, a

203

thorough error analysis for the method would be extremely useful.

An algorithm based on extending the nonlinear relaxation methods to function

spaces was also described. This algorithm uses a function space Newton method, called

"Waveform-Newton" (WN), to solve the Waveform Relaxation (WR) iteration equa

tions. The combined approach is called Waveform Relaxation-Newton (WRN) and can

be viewed as a combination of the best features of ITA and WR. The multirate integra

tion is performed using a waveform-based approach and it uses a single WN iteration

for each relaxation iteration. This method has been implemented in the SPLAX pro

gram using a recursive divide-by-2 time-step control. The simulation results obtained

using SPLAX indicate that this method is an effective way to exploit multirate

behavior. However, the success of this approach depends on the window sizes used and

the nonlinearity of the problem within each window interval. Only a preliminary

investigation of this approach has been performed in this dissertation. Future work in

this area should focus on the automatic selection of window sizes and on limiting tech

niques which are best suited to this approach.

Parallel aspects of the ITA and WRN algorithms were also examined in this disser

tation. The ITA algorithm of SPLICE3.1 was implemented in the PSPLICE program and

a number of issues concerning task granularity, scheduling and ordering were

addressed. A novel way to parallelize WRN was described in which most of the com

putation at different time points in the simulation could be performed in parallel. The

parallel algorithms described in this dissertation were presented in the common frame

work of a generalized space-time-iteration data-flow graph for parallel computation.

Much work remains in the area of parallel circuit simulation, especially in extending

the methods to a large number of processors. Parallel versions of the WRN and mul

tirate ITA methods should be implemented and compared to the timepoint-pipelining

204

approach. These methods should also be implemented on other parallel processors to

find the best match between algorithms and architecture.

The development of a high-performance, accurate circuit simulation engine is

currently an active research area. This type of machine will have a significant impact

on the design cycle time and the quality of the designs, since the designer will be able to

explore many more design options and be able to thoroughly test the circuit under a

variety of operating conditions before it is fabricated. I believe that some of the new

algorithms presented here, combined with advanced computer architecture and special-

purpose hardware, will provide the necessary performance required for detailed simula

tion of VLSI circuits.

205

REFERENCES

[Auc85] B.D.Ackland. S.R. Ahuja, T. L. Lindstron. D.J. Romero. "CEMU - A Concurrent

Timing Simulator". Proc. IEEE Int. Conf. on Computer-Aided Design, Santa Clara. CA..

1985.

[Bau78] G. Baudet, "Asynchronous Iterative Methods for Multiprocessors". J. of the

ACM, Vol. 25. No. 2. April 1978. pp. 226-244.

[BBN85] BBN Laboratories. "The Uniform System Approach to Programming the

Butterfly Parallel Processor". Version 1. Oct. 1985.

[Bok75] Van Bokhoven. W.M.G.. "Linear Implicit Differentiation Formulas of Variable

Stepand Order", IEEE Trans. Circ. and Sys., CAS-22(2):109-115. Feb. 1975.

[Bok83] W.M.G. Van Bokhoven. "An Activity Controlled Modified Waveform Relaxa

tion Method" Proc. IEEE Int. Conf. on Circ. and Sys., Newport Beach. CA. May 1983.

[Bra72] R.K. Brayton. F.G. Gustavson. G.D. Hachtel. "A New Efficient Algorithm for

Solving Differential-Algebraic Systems Using Implicit Backward-Differentiation Formu

las". Proc. IEEE, Vol. 60. No. 1. pp. 98-108. Jan. 1972.

[Bry80] R. E. Bryant. "An Algorithm for MOS Logic Simulation". LAMBDA, 4th Quar

ter 1980. pp. 46-53.

[Bur83] J. L. Burns. A. R. Newton. D. O. Pederson. "Active Device Table Lookup Models

for Circuit Simulation". Proc. IEEE Int. Conf. on Circ. and Sys., Newport Beach. CA.

May 1983.

[Car84] C.H. Carlin. A. Vachoux. "On Partitioning for Waveform Relaxation Time-

206

Domain Analysis of VLSI Circuits". Proc. Int. Symp. on Circ. and Sys., Montreal.

Canada. May 1984.

[ChLi75] L. Chua, P. Lin, Computer-Aided Analysis of Electronic Circuits: Algorithms

and Computational Techniques. Prentice-Hall. 1975.

[Cha75] B.R. Chawla. H.K. Gummel. and P. Kozak. "MOTIS - an MOS timing simula

tor." IEEE Trans. Circ. and Sys., Vol. 22. pp. 901-909. 1975.

[ChMi7l] D. Chazan. W. Miranker. "Chaotic Relaxation", in Linear Algebra and Its

Applications, Vol.2, 1969. pp. 199-222.

[Che84] C. F. Chen and P. Subramaniam. "The Second Generation MOTIS Timing

Simulator— An Efficient and Accurate Approach for General MOS Circuits" Proc. 1984

Int. Symp. on Circ. and Sys., Montreal. Canada. May 1984.

[Coh76] E. Cohen, "SPICE Reference Manual", ERL Memo. No. ERL-M592. June 1976.

[Coh8l] E. Cohen," Performance Limits of Integrated Circuit Simulation on a Dedicated

Minicomputer System". ERL Memo. No.UCB/ERL M81/29. 22 May 1981.

[Dah63] G. Dahlquist. "A Special Stability Problem for Linear Multistep Methods", BIT,

3,pp.27-43. 1963.

[DeM80] G. De Micheli. " New Algorithms for the Timing Analysis of MOS Circuits"

Master Report. University of California. Berkeley. 1980.

[DeM8l] G. De Micheli, A. Sangiovanni-Vincentelli. "Numerical Properties of Algo

rithms for the Timing Analysis of MOS VLSI Circuits". University of California, Berke

ley. ERL Memo. UCB/ERL M81/25. May 1981.

207

[DeM83] G. De Micheli. A.R. Newton, A. Sangiovanni-Vincentelli. "Symmetric Displace

ment Algorithms for the Timing Analysis for VLSI MOS Circuits". IEEE Trans, on

Computer-Aided Design, Vol CAD-2. No. 3. pp. 167-180. July 1983.

[DeKu69] CA. Desoer. E.S. Kuh. Basic Circuit Theory, McGraw-Hill. 1969.

[Deu84] J.T. Deutsch, A. R. Newton. "A Multiprocessor Implementation of Accurate

Electrical Circuit Simulation". Proc. I9th Design Automation Conference, Las Vegas.

Nv.. 1984.

[Deu85] J.T. Deutsch. "Algorithms and Architecture for Multiprocessor-Based Circuit

Simulation". Ph.D. dissertation. University of California. Berkeley. ERL Memo. No.

UCB/ERL M85/39. May 1985.

[Dum85] D. Dumlugol. J. Cockx. H. De Man. P. Odent. "Segmented Waveform Relaxa

tion Algorithms for Large Scale Circuit Simulation". Proc. IEEE Int. Symp. on Circ. and

Sys., Kyoto. Japan. June 1985.

[Ens77] P.H. Enslow. "Multiprocessor Organization - A Survey". Computing Surveys,

Vol. 9. Mar. 1977.

[Fan77] S. P. Fan. M. Y. Hsueh. A. R. Newton and D. O. Pederson. "MOTIS-C A new cir

cuit simulator for MOS LSI circuits." Proc. IEEE Int. Symp. on Circ. and Sys., April

1977.

[Fie84] G. Fielland. D. Rogers "32~bit Computer System Shares Load Equally Among

up to 12 Processors". Electronic Design, pp. 153-168.Sept. 1984.

[Fly72] M.J. Flynn. "Some Computer Organization and Their Effectiveness". IEEE Trans,

on Comp., C-21. no. 9. Sept. 1972.

208

[Gau83] M. Guarini and O. A. Palusinski. "Integration of Partitioned Dynamical Sys

tems using Waveform Relaxation and Modified Functional Linearization," 1983 Summer

Computer Simulation Proceedings, Vancouver. Canada. July 1983.

[Gea7l] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equa

tions, Prentice-Hall, Englewood Cliffs. N.J.. 1971.

[Gea80] C. W. Gear. "Automatic Multirate Methods for Ordinary Differential Equation",

Information Processing 80, International Federation of Information Processing, 1980.

[Gyu85]. R.S. Gyurscik. "A MOS Transistor Model-Evaluation Attached Processor For

Circuit Simulation". Proc. IEEE Int. Conf. on Computer-Aided Design, Santa Clara. CA..

Nov. 1985.

[Gyu86] R. Gyurscik. "An Attached Processor for MOS Transistor Model Evaluation",

Ph.D. dissertation. University of California. Berkeley. ERL Memo. UCB/ERL M86/82.

Oct. 1986.

[Hac7l] G.D. Hachtel. R.K. Brayton. F.G. Gustavson, "The Sparse Tableau Approach to

Network Analysis and Design", IEEE Trans, on Circ. Theory, Vol. CT-18. pp. 101-113.

Jan. 1971.

[Hen85] B. Hennion. P. Senn. "ELDO: A New Third Generation Circuit Simulator Using

the One-step Relaxation Method" Proc. IEEE Int. Symp. on Circ. and Sys., Kyoto. Japan.

June 1985.

[Hil80] D. Hill. "Multi Level Simulator for Computer-Aided Design". Ph.D. dissertation.

Dept. of Elec. Eng.. Stanford University. 1980.

[Hil8l] D. Hillis. "The Connection Machine". Ph.D. dissertation. M.I.T.. 1985.

209

[Ho75] C.W. Ho, A.E. Ruehli. P.A. Brennan. "The Modified Nodal Approach to Network

Analysis". IEEE Trans, onCirc. andSys., Vol. CAS-22. pp. 504-509. June 1975.

[Hsi85] H.Y. Hsieh, A.E. Ruehli. P. Ledak. "Progress on Toggle: A Waveform Relaxation

VLSI-MOSFET CAD Program" Proc. IEEE Int. Symp. on Circ. and Sys., Kyoto. Japan.

June 1985.

[Hua83] T. Huang. "Analysis of a Method for the Timing Simulation of Large-Scale

MOS Circuits Containing Floating Capacitors" Master Report. University of California.

Berkeley 1983.

[Jac86] G. K. Jacob. A. R. Newton. D. O. Pederson, "An Empirical Analysis of the Per

formance of a Multiprocessor-Based Circuit Simulator". Proc. IEEE Int. Symp. on Circ.

and Sys., San Jose. CA. 1986.

[Kah75] W.Kahan. "Private notes". 1975.

[Kan59] L. Kantorovich and G. Akilov. "Functional Analysis in Normed Spaces*, 1959.

transl. by D. Brown and A. Robertson. Permagon Press. Oxford. 1964.

[Kat85] R. Katz. S. Eggers. D. Wood. C. L. Perkins. R. Sheldon. "Implementing a Cache

Consistency Protocol" Proc. 12th Annual Int. Symp. on Comp. Arch. Vol. 13. No. 3. Bos

ton. MA. June 1985.

[Kle83] J.E. Kleckner. R.A. Saleh. A.R. Newton. "Electrical Consistency in Schematic

Simulation". Proc. IEEE Int. Conf. on Circ. and Comp.. NY. October 1983.

[Kle84] J. E. Kleckner. "Advanced Mixed-Mode Simulation Techniques". Ph.D. disserta

tion. University of California. Berkeley, May 1984.

210

[Kuc83] D. J. Kuck, D. Lawrie. R. Cytron. A. Sameh and D. Gajski. "The Architecture

and Programming of the CEDAR System". Proc. LASL Workshop on Vector and Parallel

Processing, Los Alamos. NM, 1983.

[Kun76] H.T. Kung. "Synchronized and Asynchronous Parallel Algorithms for Mul

tiprocessors", in Algorithms and Complexity: New Directions and Recent Results.

J.F. Traub. Ed.. Academic Press. New York. 1976.

[Kun85] K.S. Kundert. A. Sangiovanni-Vincentelli. "Nonlinear Circuit Simulation in the

Frequency Domain". Proc. IEEE Int. Conf.on Computer-Aided Design, Santa Clara, CA..

Nov. 1985.

[Kun86] K. S. Kundert. "Sparse Matrix Techniques and their Application to Circuit

Simulation". Circuit Analysis, Simulation and Design. A.E. Ruehli. ed., North-

Holland Pub. Co., 1986.

[Law75] D. H. Lawrie. "Access and Alignment of Data in an Array Processor", IEEE

Trans, on Comp., C-24. no. 12, Dec. 1975.

[Lel8l] E. Lelarasmee. Private Communication. October, 1981

[Lel82] E. Lelarasmee. A. E. Ruehli. A. L. Sangiovanni-Vincentelli. "The Waveform

Relaxation Method for Time-Domain Analysis of LargeScale Integrated Circuits." IEEE

Trans, on CAD of 1C and Sys., Vol. 1. n. 3. pp.131-145. July 1982.

[Nag75] L.W. Nagel. "SPICE2: A Computer Program to Simulate Semiconductor Cir

cuits." Electronics Research Laboratory Rep. No. ERL-M520. University of California.

Berkeley. May 1975.

[New78a] A. R. Newton. D. O. Pederson. "Analysis Time, Accuracy and Memory

211

Tradeoffs in SPICE2", Proc. 12th Asilomar Conf. on Circ, Sys. and Comp., Asilomar CA,

November 1978.

[New78b] A.R. Newton. "The Simulation of Large-Scale Integrated Circuits". Ph.D.

dissertation. University of California, Berkeley. ERL Memo. ERL-M78/52, July 1978.

[New79] A. R. Newton. "The Analysis of Floating Capacitors for Timing Simulation."

Proc. 13th Asilomar Conf. on Circ. Sys. and Comp., Asilomar CA. November 1979.

[New8l] "Timing. Logic and Mixed-Mode Simulation for Large MOS Integrated Cir

cuits", in Computer-Aids for VLSI Circuit. Sijthoff & Noordhoff International Pub

lishers. The Hague, pp. 175-239. 1981.

[NeSa83] A.R. Newton. A. Sangiovanni-Vincentelli. "Relaxation-based Circuit Simula

tion". IEEE Trans, on Elec. Dev., Vol. ED-30. No. 9. pp. 1184-1207. Sept. 1983.

[Ma85] T. Ma. "Partitioning for Relaxation Algorithms". EE219 Project Report. Univer

sity of California, 1985.

[Mars74] J.E. Marsden, Elementary Real Analysis, W.H. Freeman and Company, 1974.

[Mar85] G. Marong and A. Sangiovanni-Vincentelli. "Waveform Relaxation and

Dynamic Partitioning for Transient Simulation of Large Scale Bipolar Circuits" Proc.

IEEE Int. Conf. of Computer-Aided Design, Santa Clara. CA. Nov. 1985.

[Mat85] S. Matisson. "CONCISE, a Concurrent Circuit Simulation Program". Ph.D.

dissertation. California Institute of Technology. 1985.

[McC75] W.J. McCalla. "Computer-Aided Circuit Simulation Techniques", to be pub

lished.

212

[Mei78]. Miellou. J.C.. "Algorithmes de relaxation a retards". Revue d'Automatique,

Informatique et Researche Operationelle 9, R-l, April 1975.

[Mok85] M.E. Mokari-Bolhassan. D. Smart. T.N. Trick. "A New Robust Relaxation

Technique for VLSI Circuit Simulation". Proc. IEEE Int. Conf. on Computer-Aided

Design, Santa Clara. CA., 1985.

[OrRh70] J. M. Ortega and W.C Rheinbolt. Iterative Solution of Nonlinear Equations in

Several Variables, Academic Press. 1970.

[Rao85] V. Rao. "Switch-level Timing Simulation of MOS VLSI Circuits", Ph.D. disser

tation. University of Illinois. UILU-ENG-85-2207. R-1032. Jan. 1985.

[Ret79] R. Rettberg, C. Wyman, "Development of a Voice Funnel System: Design

Report". BBN Report #4098. August 1979.

[Sal82] "Accurate Electrical Simulation in SPLICEl". EE290H Report. University of Cal

ifornia. Berkeley. May 1982.

[Sal83] R. A. Saleh. J. E. Kleckner and A. R. Newton. "Iterated Timing Analysis and

SPLICEl", IEEE Int. Conf. onComputer-Aided Design, Santa Clara. CA.. 1983.

[Sal84] R. Saleh. "Iterated Timing Analysis and SPLICEl". Master Report. University of

California. Berkeley. 1984.

[Sak80] K. Sakallah and S.W. Director. "An activity-directed circuit simulation algo

rithm." Proc. IEEEInt. Conf. on Circ. and Computers, October 1980. pp.1032-1035

[Sak8l] K.A. Sakallah, "Mixed Simulation of Electronic Integrated Circuits", Ph.D.

dissertation. Carnegie-Mellon University. DRC-02-07-81. Nov. 1981.

213

[Sak85] K. Sakallah. "Polynomial Terminal Equivalent Circuits as Dormant Models in

Event Driven Circuit Simulation". Proc IEEE Conf. on Computer-Aided Design, Santa

Clara. CA, 1985.

[San79] A. Sangiovanni-Vincentelli. L.K. Chen and L.O. Chua. "A New Tearing

Approach-Node Tearing Nodal Analysis". Proc. IEEE Int.Symp. on Circ and Sys., 1977.

pp. 143-147

[Seq84] "BALANCE 8000Guide to Parallel Programming". Sequent Computers Systems.

July 1985.

[ShGo75] L.F. Shampine. M.K. Gordon. "Computer Solution of Ordinary Differential

Equations" W.H.Freeman Pub.. 1975.

[Sei85] C. L. Seitz. "The Cosmic Cube", Communication of the ACM, 28:22-33. Jan. 1985.

[Sen82] D. Senderowicz. "An NMOS Integrated Vector-Locked Loop." University of Cal

ifornia. Berkeley. Memo. No. UCB/ERL M82/83.12 Nov. 1982.

[Shi82] T. Shima. T. Sugawara. S. Moriyama. and H. Yamada. "Three-Dimensional Table

Look-Up MOSFET Model for Precise Circuit Simulation". IEEE J. Solid-State Circuits,

vol. SC-17. pp.449-454. June 1982.

[Sto7l] Stone. H.S.. "Parallel Processing with a Perfect Shuffle". IEEE Trans, on Comp.,

volC-20. Feb. 1971.

[SzTh75] S.A.Szygenda and E.W.Thompson. "Digital Logic Simulation in a Time-Based.

Table-Driven Environment. Part 1. Design Verification." IEEE Computer Magazine,

March 1975. pp.24-36.

214

[Rab79] N.B.G. Rabbat. A. Sangiovanni-Vincentelli and H.Y Hsieh. "A Multilevel New

ton Algorithm with Macromodelling and Latency for the Analysis of Large-Scale Non

linear Circuits in the Time Domain". IEEE Trans, on Circ and Sys., Vol. CAS-26,

pp.733-741.Sep. 1979.

[Var62] R. S. Varga. Matrix Iterative Analysis, Prentice-Hall. 1962.

[Vla8l] A. Vladimirescu. "LSI Circuit Simulation on Vector Computers". Ph.D. disserta

tion. ERL Memo No. UCB/ERL M82/75. Oct. 1982.

[War78] D.E. Ward and R.W. Dutton. "A Charge-Oriented Model for MOS Transient

Capacitances". IEEE J. Solid-stateCircuits, vol. SC-13. Oct. 1978.

[Web87j D. Webber. A. Sangiovanni-Vincentelli, "Circuit Simulation on the Connection

Machine". Proc. 22nd Design Automation Conference, Miami. 1987.

[Wee73] W.T. Weeks. A.J. Jimenez. G.W. Mahoney. D. Mehta. H. Qassemzadeh and T.R.

Scott. "Algorithms for ASTAP —A Network Analysis Program", IEEE Trans, on Circ

Theory, Vol. CT-20. pp. 628-234. Nov. 1973.

[Wel82] D.R. Wells. "Multirate Linear Multistep Methods for the Solution of Ordinary

Differential Equations". Ph.D. dissertation. Univ. of Illinois. Rep. No. UIUCDCS-R-82-

1093.

[Whi83] J. White and A. Sangiovanni-Vincentelli. "RELAX2: A New Waveform Relaxa

tion Approach for the Analysis of LSI MOS Circuits". Proc. Int. Symp. on Circ. and Sys.,

Newport Beach. May 1983.

[Whi84a] J. White and A. Sangiovanni-Vincentelli. "RELAX2.1 - A Waveform Relaxa

tion Based Circuit Simulation Program" Proc Int. Custom Integrated Circuits Conference

215

Rochester, New York. June 1984.

[Whi85a] J. White. A.L. Sangiovanni-Vincentelli. "Partitioning Algorithms and Parallel

Implementation of Waveform Relaxation Algorithms for Circuit Simulation". Proc. Int.

Symp. on Circ. and Sys., Kyoto. Japan, June 1985.

[Whi85b] J. White, R. Saleh. A. Sangiovanni-Vincentelli. A. R. Newton "Accelerating

Relaxation Algorithms using Waveform-Newton. Step Refinement and Parallel Tech

niques" Proc. Int. Conf. on Computer-Aided Design, Santa Clara. CA. Nov. 1985.

[Whi85c] J. White. "The Multirate Integration Properties of Waveform Relaxation, with

Application to Circuit Simulation and Parallel Computation", Ph.D. dissertation.

University of California. Berkeley. ERL Memo. No. UCB/ERL 85/90. Nov. 1985.

[Whi86] J. White. N. Weiner. "Parallelizing Circuit Simulation - A Combined Algo

rithmic and Specialized Hardware Approach" Proc IEEE Int. Conf. Comp. and Design,

NY. Oct. 1985.

[Yan80] P. Yang. "An Investigation of Ordering. Tearing and Latency Algorithms for the

Time-Domain Simulation of Large Circuits". Ph.D. dissertation. Report R-891. Univer

sity of Illinois. Urbana. Aug. 1980.

[Yan80] P. Yang. I.N. Hajj and T.N. Trick. "SLATE: A Circuit Simulation Program with

Latency Exploitation and Node Tearing". Proc. IEEE Int. Conf. on Circ. and Comp.,

October 1980.

[Yan83] P. Yang. B.D. Epler. P.K. Chatterjee. "An Investigation of the Charge Conserva

tion Problem for MOSFET Circuit Simulation". IEEE Journal of Solid-State Circuits.

Vol. SC-18. No.l. pp.128-138. Feb. 1983.

	Copyright notice1987
	ERL-87-21 (1 of 3)
	ERL-87-21 (2 of 3)
	ERL-87-21 (3 of 3)

