

Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DESIGN OF AN ON-LINE HANDWRITING

RECOGNITION SYSTEM

by

Po-Yang Lu

Memorandum No. UCB/ERL M87/22

15 April 1987

DESIGN OF AN ON-LINE HANDWRITING

RECOGNITION SYSTEM

by

Po-Yang Lu

Memorandum No. UCB/ERL M87/22

27 April 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

DESIGN OF AN ON-LINE HANDWRITING

RECOGNITION SYSTEM

by

Po-Yang Lu

Memorandum No. UCB/ERL M87/22

27 April 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Design of an On-Line Handwriting Recognition System

PhJD. Po-Yang Lu E.E.C.S.

Abstract

Many computer applications are awkward to use because of keyboard limitations. A

powerful on-line handwriting recognition system can solve many of these problems and thus

significantly improve the user interface of a personal computer.

New algorithms for both discrete symbol recognition and cursive script recognition have

been successfully developed. After given some training samples, the discrete symbol recognition

algorithm can recognize virtually any symbol. The recognition rate can be nearly 100% if addi

tional adaptive training is well done.

Based on the training of 26 letters, the cursive script recognition algorithm can recognize

scripts of virtually any word. Its recognition rate can also be near 100% with appropriate adap

tive training.

These algorithms, together with interfacing utilities, have been implemented on IBM PG for

application exploration. A keyboard/mouse emulator has also been developed to allow auser to

directly write and draw with existing software.

These algorithms have also been implemented on adedicated processor based speech recog

nition system. This implementation not only allows large dictionaries in real time, but also

reduces cost since one piece of hardware can be used for both speech and handwriting recognition.

Committee Chairman

Table of Contents

Acknowledgements iv

CHAPTER 1 INTRODUCTION .'. i
1.1 Motivation 1

1.2 Design Goals 3

1.3 Outline of the Thesis 6

CHAPTER 2 REVIEW 8

2.1 Syntactic Methods „ g

2.2 Mathematical Methods 12
2.3 Comments 17

2.4 Conclusion 20

CHAPTER 3 TEMPLATE MATCHING 22
3.1 Preprocessing 22

3.2 Distance Accumulation 25

3.3 Performance Evaluation 32

3.5 Conclusion 41

CHAPTER 4 DISAMBIGUATION 43

4.1 Clustering and Template Creation 43

4.2 Ambiguity Checking 48

4.3 Disambiguation Techniques 49

4.4 Conclusion 56

CHAPTERS OPTIMIZATION 58

5.1 Real-Time Processing 58

5.2 Pruning 61

5.3 Slope Code 62

5.4 Downsampling 62

5.5 Coordinate Normalization 65

CR<\PTER6 IMPLEMENTATION 69

6.1 Keyboard Emulator 69

6.2 Mouse Emulator 71

6.3 Tablet Layout 72

6.4 Tablet Service Routine 73

6.5 Training Procedure 74

6.6 Performance 77

CHAPTER 7 CURSIVE SCRIPT 79

7.1 Introduction 79

7.2 Review 79

7.3 DTW for Cursive Script 34

u

7.4 Syntax-Directed Template Matching 90

7.5 Improving the Syntax-Directed Algorithm 93
7.6 Revisit Two-Pass DTW Algorithm 99

7.7 Profile Check Mark 100

7.8 Delayed Strokes 102

7.9 Implementation 103

7.10 Adaptive Training 103

7.11 Conclusion 104

CHAPTER 8 INTEGRATION WITH SPEECH RECOGNITION 106

8.1 MARA Speech Recognition System 106

8.2 Using MARA for OHR 109

8.3 Conclusion 113

CHAPTER 9 SUMMARY AND CONCLUSIONS 114

9.1 Algorithm 114

9.2 Implementation 117

9.3 Application 118

APPENDIX PCOHR USER'S GUIDE 119

Ul

Acknowledgements

I would like to express my sincere appreciation to my research adviser Professor Robert

Brodersen for giving me this interesting project and his constant guidance and support. I would

also like to acknowledge the invaluable help from my colleagues, especially Hy Murveit, Meni

Lowy, David Mintz, and Robert Kavaler. Their outstanding achievement in building the speech

recognition system has essential influence to this project. Working in this group has been the

most rewarding experience.

Many thanks should also go to my colleagues in Communication Intelligence Corporation.

I will never forget the time we fought together for the Handwriter.

Peter Ruetz has made numerous corrections and suggestions to the writing of the thesis.

My debt to him is gratefully acknowledged. Finally, this thesis is dedicated to my family, espe

cially to my wife Erh-Ning, for the love, care, and encouragement they have given me.

CHAPTER 1

INTRODUCTION

1. Motivation

Personal computers (PC) are now becoming an indispensable tool for many people in

modern society. Because of their powerful processing and storage capability, the PC can take

care of much tedious work and significantly increase our productivity. With the rapid break

through of hardware and software technology, in the foreseeable future, PC's will be in our brief

cases and help us with more advanced and sophisticated tasks.

In order to make the PC a tool we can use intensively, its user interface must be natural

and easy. Recently, a lot of effort has been put in to make a computer more "friendly". How

ever, its friendliness seemsseverely impaired by the limitations of input devices.

The most serious limitation of current input devices is that the man-computer communica

tion symbols are confined by the keyboard. If a symbol is not on the keyboard, the most popular

input method is to assign a special keystroke string to it. For example, in text formatting

software TROFF, the user has to type "\(*S" for E, "\(*a" for a, "\(mu" for X, "\(*b" for /?,

"\(->" for —+, and "\(if for oo. Because these strings are generally hard to remember, this

method obviously makes the user interface of many applications very awkward. For example, to

obtain

Z(otXp) -* oo,

the user has to type

\rS(\(*a\(mu\(*b)\(->\(if.

This problem has an even more severe impact for people who use ideographical languages. One

good example is Chinese. In Chinese, there are more than 6000 characters used daily. To input

a character into a PC, the user has to decompose it into parts and type the assigned key of each

part. Fig. 1.1 shows a flow chart of a decomposition and entry method. From it, it can be

imagined how much training and practice are needed. Since data entry itself is so troublesome,

(»3cas)

#«=a

£3X25

£3323

£232

E-ffS-S

3LSS - *

1E2ISS

«t

ft—A^flrtfi

J?—%«£—2|Q.

£—AUi;<cfc

85-*£^A

Figure 1.1 A Chinese data entry method

1-A

how can the PC be used for creative tasks ?

Besides the keyboard symbol limitation, the mouse also has some problems. First, the user

has to push, pull, and even lift the mouse to move the curser to a specific point on screen.

Second, the mouse can't be used for freehand drawing.

To overcome these limitations, it seems that the future PC should be designed as shown in

Fig. 1.2. The user can interface with it in a similar way as he is using a notebook. To allow the

user to be able to control the PC through a stylus (pen), three new subsystems are needed. The

first is a display which can be laid flat. Thesecond is a tablet which can sense the stylus move

ment. The third is an on-line handwriting recognition (OHR) system which can translate the

stylus movement to either object selection or data entry.

Figure 1.2 Notebook PC

The notebook PC has several essential advantages over the current PC. The most impor

tant one is, if the OHR is powerful enough, the man-computer communication symbols are no

longer limited by the keyboard. The user should be able to create Fig. 1.3(b) by simply writing

as shown in Fig. 1.3(a). As this illustration shows, the OHR can bring the PC applications to an

era which has never been explored before.

Besides symbol entry, the notebook PC has two other significant features. First, the user

can easily access any point on the screen by "one touch". Second, the stylus is the ultimate dev-

cH
/

3

O 0

H

o< = 0

CH3

,6 H

Ibb
fJUL it PI

Figure 1.3 Symbols input by handwriting

ice for freehand drawing.

From a hardware point of view, with the advent of flat display and tablet technology, the

emerging of such a PC is in fact not far away. However, from a software point of view, there

seems no OHR system which has the desirable versatility needed in the notebook PC. (The OHR

system should at least be able to recognize all the symbols in Fig. 1.3.) As such, the goal of this

project is to study the feasibility of a PC based OHR system which can recognize a wide range of

symbols for a variety of applications.

2. Design goals

2.1. Development system

Unfortunately, because the flat display was not available for this project, the notebook

computer environment could not be established. The development system was set up as shown in

Fig. 1.4. A Seiko tablet, which has 200 points per inch resolution and 100 points per second

sampling rate, is connected to an IBM PC (or compatible) through a serial communication port.

The IBM PC was chosen as the primary platform for two reasons. One, the hardware and

software architecture of IBM PC is relatively simple and open. This makes a low-level system

interface possible. Two, the IBM PC is the most widely used computer. There is abundant

software available for various applications.

Figure 1.4 Development system

2.2. Application interface

From application interface point, of view, the architecture of the OHR system shouid be as

illustrated in Fig. 1.5. The tablet server handles the data acquisition from the tablet. If the

OHR is in keyboard mode, the tablet coordinates are sent to the recognition unit. The recogni

tion unit compares these coordinates with the symbols in the dictionary. The keystrokes of the

recognized symbol are sent to the keyboard emulator. The keyboard emulator then sends the

keystrokes to the application programs as though they were typed in from the keyboard. If the

OHR is in mouse mode, the tablet coordinates are passed to the mouse emulator. The mouse

emulator processes the coordinates and then sends them to application programs as though they

were from the mouse.

Tablet

Mouse

Keyboard

Mouse Emulator

Handwriting

Recognition

^^>:

Dictionary

=a
Keyboard

Emulator

Figure 1.5 The architecture of OHR system

Application

Programs

2.3. Tasks

This project was divided into the following five major tasks.

(1) Develop a recognition algorithm which can accommodate symbols written with different

sizes, different speeds, and reasonable variations.

(2) Develop a training algorithm such that good recognition can be achieved with minimal

training.

(3) Make sure the recognition can be performed in real-time.

(4) Develop a tablet server to provide all tablet related services. Develop a keyboard emulator

and a mouse emulator to allow a user to be able to write and draw to existing application

software.

(5) Develop an algorithm which can recognize cursive scripts with only the training of letters.

2.4. Recognition strategy

The OHR system was intended to accurately recognize any symbol input by any user. The

ideal way to use it is like this: if a user finds that some of his writing are not correctly recog

nized, or he wants to add somesymbols, he can modify the system dictionary by simply giving a

few additional training samples. To achieve this, the system must have a strong learning capa

bility.

One valuable piece of information available to the OHR is the writing sequence of a sym

bol. However, a symbol has always been treated as an "image" instead of a "coordinate

sequence" in the past. People seldom pay attention to what is the right sequence in which to

write a symbol. This creates an enormous number .of sequence variations. It has been found

that there are more than two million ways to write a simple "four stroke" symbol 'E'.1

If the writing sequence is ignored and the written symbol is treated as an "image", the

OHR problem is essentially the same as the freehand optical character recognition (OCR) prob

lem, which is very hard and beyond the scope of the project. Therefore, decision was made that

the recognition would use the sequence information heavily. The user is advised to be cautious

and make his writing sequence consistent.

3. Outline of the thesis

In chapter 2, the pros and cons of major algorithms which have been proposed for OHR are

reviewed. The reason why the template matching approach is chosen is explained.

In chapter 3, the preprocessing, feature extraction, and distance measurement algorithms

are first described. Various template matching algorithms are then experimented with and com

pared. The strength and weakness of the DTW matching algorithm are discussed.

Covered in chapter 4 is how to automatically generate disambiguation rules to differentiate

symbols which are not accurately distinguished by template matching.

Chapter 5 addresses how to optimize the developed algorithm for speed.

In Chapter 6, the implementations of the keyboard emulator, the mouse emulator, and the

tablet server are described. The utility programs and how to use them to achieve a high recogni

tion rate without training overhead are also presented.

In Chapter 7, previous work on the cursive script recognition is first reviewed. Then, how

to extend the discrete symbol recognition algorithms for cursive scripts is explained. The tech

niques of using template extraction, profile check, and syntax check to enhance the recognition

rate are also covered.

Discussed in chapter 8 is how to implement the OHR system on a speech recognition sys

tem which has a dedicated processor for DTW matching.

Chapter 9 summaries the key conclusions of the project.

References

1. T. T. Kuklinski, "Components of Handprint Style Variability," Proc. of 7th International

Conference on Pattern Recognition, pp. 924-926, 1984.

CHAPTER 2

REVIEW

The work of on-line handwriting recognition started twenty years ago when the graphic

tablet was invented. Many algorithms have been proposed since then and most of them claim to

achieve a very high recognition rate. However, because few of them have been seriously tested,

there is no consensus as to which one is the best. In this chapter, several major proposed algo

rithms will be evaluated from a very practical point of view.

As in any pattern recognition problem, there are two major approaches to attack the prob

lem: syntactic and mathematical. In following sections, variations of each approach will be

presented.

1. Syntactic methods

In syntactic methods, the basic philosophy is to extract a class of easily identified primi

tives from a complicated symbol and then parse these primitives through

grammars. Following are three variations of this approach.

Algorithm l:1

In this algorithm, the rectangle which surrounds the symbol is divided into 4X4 regions as

shown in Fig. 2.1. The major primitives that are used include: (l) the number of segments, (2)

the slope sequence, (3) the position of the start point, (4) the position of the end point, (5) the

position of the corners, (6) the height/width ratio.

The definition of a slope code is determined by two consecutive points as illustrated in Fig.

2.1. A corner is defined as a point at which the slope angle changes more than 90°. Using these

definitions, the '8' in Fig. 2.1 is described as

(1) number of segments: 6,

(2) direction sequence: {2,3,0,3,2,1},

(3) start point: region 0,

(4) end point: region 0,

a

a a a
a a

a ^^^^

a a

a

a a
a

a a

a
a

a
a

a a

a
a

a
a

3 2 1 0

7 6 5 4

11 10 9 8

15 14 13 12

j£

Figure 2.1 Character coding in algorithm 1

(5) corners: region 7 and 15,

(6) aspect ratio: 1.36 .

In the training phase, the primitives of all symbols are organized as a decision tree as

shown in Fig. 2.2. In the recognition phase, the primitives of the unknown symbol are sent to

the decision tree to check whether they satisfy the requirements of each symbol. For example,

the '8' in Fig. 2.1 has 6 segments. Its first 4 slope codes are (2,3,0,3). Its 5th and 6th slope codes

are (2,1). Its endpoint is in the upper halfof the rectangle. The decision tree classifies it to be

First 4
slope code

2-3-0-3

3-0-2-3

0-3-2-0

Number of

segments

©

more test
X—

2-x

5th and 6th

slope code

0

2-1

Figure 2.2 Decision tree in algorithm 1

§
upper half

location of

endpoint

lower half

®

10

Algorithm 2:2

In this algorithm, the target symbols are uppercase characters. The constituent strokes of

these symbols are divided into two categories: straight-line (SL) strokes and curvilinear (CL)

strokes. Fig. 2.3 illustrates standard strokesof eachcategory.

h g f

\J
*• e

straight-line curvilinear

Figure 2.3 SL and CL in algorithm 2

The sequence of slope, which is defined by the relative position of two consecutive points as

shown in Fig. 2.3, is the only recognition feature used. From it, an SL is recognized if all slopes

of a stroke are the same. The recognition of an CL stroke is not as straight forward.

For each CL stroke, two grammars are defined in the training phase. They are the

transformational grammar and the pattern grammar. The purpose of the transformational

grammar is to smooth sample points and to reject sequences which can not be further

transformed. The pattern grammar is constructed bottom-up to describe basic variations of that

stroke. Fig. 2.4 lists the two grammars of the stroke 'D'.

In the recognition phase, the slope sequence of an unknown stroke is parsed by the

pattern grammar of each standard stroke to see whether it is that stroke. If not, the

transformation grammar is applied to see whether the input sequence can be transformed. If

it can, the transformed sequence is parsed again. This procedure continues until either the

sequence can not be further transformed or it is verified to be that stroke.

Transformational Grammar

T = terminal symbols

» (a, b, c, d, e, f, g, h)

(1) fd

(2) fc

W
(4) eb

(5) db

(6) da

(7) ca

(8) ch

(9) bh

>fed

> fedc

> edc

> edcb

•> deb-

> deba

> cba

> cbah

> bah

ec —

Pattern Grammar

G = (N,T,P,S)

S = Sentential Symbol

N = non-terminal symbol

= (A,B,C,D,E,S)

(1) S-> AAB*C*D *E

(2) A-> deb

(3) B-> Aa

(4) C->Bh

(5) D -> eA * eB AeC

(6) E->fD •

(Ameans 'or*)

11

Figure 2.4 Transformational grammar and pattern grammar

Fig. 2.5 illustrates an example. The slope sequence of that stroke is fdba. This sequence is

transformed to fedba by transformational grammar rule 1 and then to fedcba by rule 5. The

fedcba is then parsed by the pattern grammar and is recognized as 'D\

S

Figure 2.5 Parsing in algorithm 2

Algorithm 3:3

In this algorithm, the surrounding rectangle of a symbol is divided into 3x3 regions by

four dividing lines as shown in Fig. 2.6. The recognition features extracted from a stroke are its

12

starting position and the number of crossings of each dividing line. These features are encoded

into 4 nibbles. Each nibble (4 bits) represents the relation between the stroke and one dividing

line. In it, the first bit indicates on which side the stroke starts. It is set to 1 if the strokestarts

to the left of(or below) a dividing line. The remaining 3 bits record the number ofcrossings.

For each symbol, a pseudo stroke is constructed by joining the center points of all strokes.

The code of thb pseudo stroke is also recorded. As such, the codes of a three stroke symbol 'F'

in Fig. 2.6 is as illustrated.

/\
start left/right of A number of crossings

B
number of crossings start below/above C

0000-1000-0001-0001 Vertical stroke

1001-1001-0000-1000 Upper horizontal stroke
1001-1001-0000-1000 Lower horizontal stroke

1001-1000-0000-1010 Additional stroke

Figure 2.6 Character coding in algorithm 3

In the training phase, the codes of each training samples are extracted, compared, and

stored in dictionary. In the recognition phase, the same encoding scheme is applied to the unk

nown symbol. It is recognized as the symbol which has exactly the same codes.

2. Mathematical methods

In mathematical methods, instead of parsing features through grammars, a

distance function is applied to measure the similarities between features of the unknown and the

prototype features of each symbol. The unknown is recognized as the one which yields the

minimum distance.

13

2.1. Statistical algorithms

Let U denote the feature vector of the unknown symbol and Tk denote the feature vector

of the kth symbol in dictionary. If the a priori distribution functions P(Tk) and P(U/Tk) are

known, theoretically the optimal distance function is the posteriori probability function

P(T /U). Algorithms based on this principal are called statistical algorithms. Following are

two examples.

Algorithm 4:4

In this algorithm, a stroke is first segmented by its start point, break points and end point.

A break point is defined as a sample point whose slope is either 0 or oo.Then, for each segment,

the maximum discrepancy between sample points and the line segment is compared to a

threshold.If the discrepancy is greater than the threshold, the segment is split into two segments

at the point which renders the maximum discrepancy. This procedure continues until all points

are less than the threshold of its segmented version.

Fig. 2.7 shows the results of segmentation.

After segmentation, the ith segment is represented by vector (<f>it </,). (^ rft) are parame

ters of the line zXcos<f> + yXsin<f> + d» 0 which passes through the segment. The whole sym

bol is therefore described as

For each symbol Th, the priori probability function P(U/Tk) is assumed to be Multivari

ate Gaussian, i.e.

PWTk)~lwhi»'x> ±{U - Mk)<<T\U - M„)

Mft and crk axe the mean vector and covariance matrix of symbol Tk.

In the training phase, Mk and ak are obtained from training samples Ylf • • • YN.

i N

iV J - 1

iv $ -1

14

In the recognition phase, the unknown symbol Uis recognized as the Tk which has the maximum

P{U/Tk).

Figure 2.7 Segmentation in algorithm 4

Algorithm 5:5

In this algorithm, Fourier descriptors are used for recognition. As shown in Fig. 2.8, the

trajectory of a stroke can be treated as a parametric curve U{t), U{t) = x(t) + jy(t), on the

complex plane. The Fourier coefficient an of the trajectory is:

2irJo

Im

U(t) = X(t) + jY(t)

Re

Figure 2.8 Character trajectories on complex plane

Let aji0' denote a Fourier coefficient of a certain stroke. If the stroke, as illustrated in Fig.

2.8, is shifted by a complex vector Z, rotated by an angle <t> , dilated by a factor R, and delayed

15

its start point by r , it has been derived the aa will be

aa « cxp(jnr)xRXezp(jt)XaM (+z if n = 0) .

This property makes the Fourier coefficients not particularly useful as recognition features

because they are not invariant to writing variations.

However, if the Fourier coefficients are transformed to dmn by the formula

(•i+J'to-)"d.
flm+»

it has been proven dmn is invariant to the translation, rotation, dilation, and start point

deviation. Also, the distribution plots of dnid22id2i,dl2,diZldu, and du show that they can be

used to effectively distinguish upper case characters.

As such, assume the probability distribution of the real part and imaginary part of dmu is

two-dimensional Gaussian. In the training phase, the mean value and covariance matrix of dmn

of each symbol are obtained. In the recognition phase, the unknown is recognized as the symbol

whose posteriori probability of dmn is the maximum.

2.2. Template matching algorithms

Instead of recognizing a symbol based on probability model and parameter estimation,

another mathematical approach uses a heuristic function to measure the distance. These algo

rithms are called template matching algorithms. Two examples are presented as follows.

Algorithm 6:6

In this algorithm, each stroke is segmented into 6 equally spaced chords as illustrated in

Fig. 2.9. The sequence of chord slope is registered as the recognition feature. In the training

phase, the sequence ofeach training symbol is stored as a template. In the recognition phase, the

distance between the sequence of the unknown and each template sequence is evaluated by the

formula

f(U,Tk)= bL(Ut,Tf) .
»-i

The L(Uit T*) in the formula is the Lee metric between the ith slope code of the unknown and

16

the ith slope code of template Tk. It is defined as

Figure 2.9 Character coding and Lee Metric L(a,b)

If there is only one template which yields minimum distance, it is picked out as the unk

nown. If there are more than one candidate, some ad hoc disambiguation tests are applied to

make the final decision. These tests basically check the position of the center point of each

stroke. As Fig. 2.10 shows, to distinguish between T and V, it is T' if the center of the first

stroke is in region U and it is '+' if the center of the first stroke is in region C.

\ U /
L C R

/ D \

\ 7

\/ \

2

\

\/ \ t

Figure 2.10 Disambiguation in algorithm 6

NZ7

17

Algorithm 7:7

In this algorithm, a stroke is first segmented. The segmentation is based on the Ramer

algorithm8 which is slightly different from the one used in algorithm 4. Referring to Fig. 2.11,

the segmentation starts from a segment which is created by connecting the start point and end

point of a stroke. If all sample points of the stroke lie within a specified threshold of the seg

ment, segmentation is complete. Otherwise, the segment is split into two segments at the point

which is farthest away from the segment. This procedure continues until all sample points on

the original stroke arewithin a threshold of its segmented version.

In the training phase, the segments of a symbol are stored as its template. In the recogni

tion phase, after segmenting the unknown, all local distances (the distance between the ith seg

ment of the unknown and the jth segment of the template) are first evaluated. The local dis

tance between two segments K and & is defined as:

x K ' X X
£,(.£*__ K)2Z„ x +u{_*x)*x .

X X X ' X

In the formula, C is the vector from the start point ofX to the midpoint of B and U(x) =0 if

x < 0, U(x) » 1 if x > 0.

From all these local distances, the final distance between the unknown and a template is

obtained by a technique called "DTW matching". (The detail of DTW matching will be

described in Chapter 3.) The unknown symbol is recognized as the one which has the minimum

final distance.

3. Comments

In order to choose an algorithm for implementation, it is necessary to examine the follow

ing design goals.

3.1. Trainability

18

Figure 2.11 Segmentation in algorithm 7

As presented in Chapter 1, a primary concern in our OHR is trainability. The user should

be able to train any symbol easily. This concern makes those ad hoc rule based syntactical algo

rithms not attractive. For instances, if a user wants to add a new symbol, how can the decision

tree in algorithm 1 be automatically extended ? How can the transformation grammar and pat

tern grammar in algorithm 2 be automatically generated ?

The trainability concern also eliminates the statistical algorithms. This is because a sta

tistical algorithm requires quite a few training samples to obtain a meaningful estimation of the

statistics. To ask a user for many training samples makes the training procedure very tedious.

3.2. Sensitivity

A robust recognition algorithm should not be sensitive to small variations which are inevit

able in our natural writing. However, the performance of some algorithms discussed above may

drastically degrade with slight changes of the unknown symbol. For example, the two 8's in

Fig. 2.12 can not be recognized by the decision tree in Fig. 2.2 because the 5th direction code of

the Fig. 2.12 (a) '8' is 1 and the end point of the Fig. 2.12 (b) '8* is at the lower half of the sym

bol. The two F's in Fig. 2.13 also do not match with the code of V presented in algorithm 3.

This is because the vertical stroke of the Fig. 2.13 (a) T* starts right of boundary A and the

lower horizontal stroke of the Fig. 2.13 (b) 'F' does not cross boundary B.

In algorithm 6, the slope codes of the two 3's in Fig. 2.14 are

a
o

a

"\
a

a

a

a

*/^V

a U:

a

a

a

a a
a

a

a

i

a

a _l^_

a

a

a
a

a

a

a

a

a

a

a

a

a

i

a

Figure 2.12 Limitations of algorithm 1

/
"^

/
/

B

D

C

19

Figure 2.13 Limitations of algorithm 3

(1,3,5, $, 5, 7) and
(1,5,8,5,6,7).

With the distance function defined there, the distance between the two '3' is 2+2+2+1 = 7. This

distance is unreasonably high. The reason is because the two 3's are not properly aligned.

Figure 2.14 Limitations of algorithm 6

20

3.3. Trackability

Symbols are written by hand, which is one of the most controllable organs in human

body. In order to achieve easy training, high accuracy, and fast response goals, this human fac

tor has to be taken into account and avoid unnecessary overhead in algorithm. The algorithm

must be intuitively simple enough so that a user can determine how to achieve a better recogni

tion rate. In other words, it must be user friendly.

In the presented algorithms, it was found that some recognition features are very hard to

cope with. For instance, it is very difficult for a user to imagine how to produce good (<f>, d) in

algorithm 4 or good Fourier descriptors in algorithm 5 for better recognition. In statistical algo

rithms, if there is a recognition error, the user has no way to determine what went wrong.

3.4. Computability

To make the OHR system a valuable data entry device, the recognition result must be car

ried out in a very short time after the symbol is finished. Although electronics technology has

made microprocessors very fast, it is still impossible to cost effectively compute Fourier descrip

tors or the statistical discriminator (X —Me)Tcr~l(X - Me) in real-time using general purpose

processors. The computation of local distances in algorithm 7 is also very substantial and hard

to implement.

4. Conclusion

From the review and comments, the template matching approach was chosen because both

algorithm 6 and 7 have shown that a symbol can be added to a dictionary without much training

effort. The recognition feature used in algorithm 6 is easy to understand. The DTW used in

algorithm 7 elegantly absorbs many writing variations.

To devise a better algorithm, the weaknesses in these two proposed algorithms have to be

removed. Their merits have to be combined. Besides, to further improve the recognition accu

racy, in addition to the slope sequence, the x sequence and y sequence should also be matched to

check the similarity from other points of view. It is quite possible that these matching results

21

can remedy the inadequacy of each other.

As such, in the following chapters, the matching results of using the x, y, and slope

sequences of a symbol will be first examined. Then, a decision procedure which is based on these

matching results will be proposed.

References

1. G. F. Groner, "Real-time Recognition of HAndprinted Text," Proceedings, FJCC, pp.

591-601, 1966.

2. M. R. Ito and T. L. Chui, "On-line Computer Recognition of Proposed Standard ANSI

Handprinted Characters," Pattern Recognition, vol. 10, pp. 341-349, 1978.

3. W. Newman andR. Sproull, Principals ofInteractive Computer Graphics, 1978.

4. W. W. Loy and I. D. Landau, "An On-line Procedure for Recognition of Handprinted

Alphanumeric Characters," IEEE Trans, on Pattern Analysis and Machine Intelligence,

vol. PAMI-4, pp. 422-427, July 1982.

5. G. H. Granlund, "Fourier Preprocessing for Hand Print Character Recognition," IEEE

Trans. Computer, vol. C-21, pp. 195-201, February 1972.

6. G. Miller, "On-line Recognition of Hand-generated Symbols," AFIP Proc. FJCC, vol. 35,

pp. 399-412, 1969.

7. D. Burr, "ATechnique for Comparing Curves," Proc. IEEE Conference on Pattern Recog

nition andImage Processing, pp. 271-277, 1979.

8. U. Ramer, "An Interactive Procedure for the Polygonal Approximation ofPlane Curves,"

Computer Graphics and Image Processing, vol. 1, pp. 244-256, 1972.

CHAPTER 3

TEMPLATE MATCHING

1. Preprocessing

When a symbol is being written on graphic tablet, the tablet periodically sends out the

coordinates and up/down statusof thestylus. This is the only information available to the OHR

system. Among the sample points, only points at which the stylus is pressed down are used for

recognition. Fig. 3.1(a) shows a plot of these points of a typical writing. From this plot, it can

beseen that some preprocessing must be done to get meaningful features.

Along the main trace of a symbol, there are some fluctuating sample points. These points

occur because of the high resolution (0.005 inch) and sampling rate (95 points/sec) of the tablet.

Any unstable hand movement will create jaggy sample points. Therefore, the first required pro

cessing is to remove these noisy sample points.

Processing is also needed to provide uniform spatial sampling of the points. Since the tem

poral sampling rate of the tablet is fixed, there are more points in the portions in which the user

writes slowly and fewer points in the portions in which the user writes quickly. The uneven spa

tial distributionof sample points may degrade the recognition accuracy.

The x and y coordinates from the. tablet are not suitable for recognition because they are

affected by the absolute position and the sizeof the symbol. They must be normalized.

1.1. Spatial filtering

The fluctuations in data points are removed by spatial filtering. A threshold is set for the

minimum separation between two successive points. As illustrated in Fig. 3.1(b), all sample

points which are inside the window set by the previous selected point are discarded.

At the start and end part of a stroke, more fluctuations are observed. This is because both

the hand and the tablet are not as stable when the stylus is just pressed or lifted.1 The window

size of the first stroke point and the last stroke point is set at twice the regular size.

22

!- W

(c)

'•

•

»• • i i —_.

•

• •

•

a
•

•

23

0>)

(d)

Figure 3.1 Preprocessing

1.2. Resampling

After spatial filtering, all points between the selected points are interpolated. Then, from

the interpolated points, 16 equally spaced points are picked out as representative samples of the

stroke. Fig. 3.1(c) shows the effect.

1.3. Normalization

Let Xmnx, Xmia denote the maximum and minimum x coordinates, Ym„, Ymia denote the

maximum and minimum y coordinates of the symbol, (z,-,y,) denote its ith coordinate, and (^,yj

denote the normalized x,y coordinates. The (s£,s5) is obtained by the following formula:

W*t « (ar,- - Xmla)X

Vi = (y,* - *"min)X-

Y — Y . '
-"•max -^min

H
Y _. V
1 max l mio

In other words, the enclosing rectangle of a symbol is divided into WxH regions as illustrated in

24

Fig. 3.1(d). Thex and y region indices of each point are used as its normalized coordinates.

1.4. Recognition features

The x code sequence, y code sequence, and slope code sequence are the three major features

used for recognition. The x code and y code are simply the normalized x and y coordinates ofa

point. The slope code of a point is determined by the relative position of the point to the previ

ous point as illustrated in Fig. 3.2. It can be derived either from the coordinates before normali

zation or from coordinates after normalization. However, because there are symbols, like 'V

and '/', which, although their aspect ratios are quite different, their normalized coordinates can

be exactly the same. To distinguish them, the slope code has to be extracted from coordinates

before normalization.

A 9 8 7 6

X= (3, 3, 2, 1, 0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 3)

Y = (2, 3, 3, 3, 3, 2, 2, 1, 0, 0, 0, 1, 1, 1, 0, 0)

S « (0, 9, A, D, D, E, F, 1, 2, 3, 5, 6, 6, 1, 1, 2)

Figure 3.2 Recognition features

There are some other symbols, like C and c, whose x,y code sequences and slope code

sequence are expected to be almost the same. The only difference is the symbol size. For these

symbols, it is impossible to differentiate them unless there are lines on the tablet. Since the algo-

25

rithm is intended to allow arbitrary symbol size, these symbols arenot distinguishable.

2. Distance accumulation

With the feature sequences of each symbol, the recognition algorithm is based on the fol

lowing idea.

Let Ut denote the ith feature vector of the unknown, Ty denote the jth feature vector of

the template, and d{j denote the difference between Ut and Tj. The diti can be easily

defined. One definition of dt ,• is:

if ut - u,ti, i^r^f u,ti-TgJ;

if Ut - (U^Utf), dtj^dptj^dx^-rdytj ;

if Ut - Utti, dtj-dstj-MINi U.-Ttti, Q-U.J-T.J .

The Q in dsifJ- is the total slope quantization levels. The dsiti is defined as such because ofthe

cyclic characteristics of the slope code as illustrated in Fig. 3.2.

Suppose there are / sample points of the unknown symbol and / points of the template.

All ditj, l<t</, l<j<J can be tabulated as a local distance matrix as shown in Fig. 3.3. Let

D(T) denote the final distance between U and T. One reasonable way to obtain D(T) is by

accumulating the ditJ- along a path wp in the local distance matrix, i.e.

The physical meaning of wp is that it represents a "warping" of U and T. Fig. 3.4 illus

trates the phenomena. The warping is necessary because the sample points in handwriting are

not always perfectly aligned.

2.1. Warping path

It is obvious that there are enormous number of possible warping paths in the local dis

tance matrix. In order to work out an algorithm which can find a satisfactory path for any sym

bol, the following four intuitive path constraints are imposed to limit the search space.

Template

J

/

/
/

/
/

/
/

/

/

/
/

26

I Unknown

Figure 3.3 Distance accumulation

Figure 3.4 Physical meaning of the warping path

(l) The path should be monotonically increasing. Fig. 3.5 illustrates the reason. A non-

monotonically increasing path implies that the best way to match the U and T is by aligning Ub

to T7 and then U9 to T5. In natural writing, it is seldom found necessary to create this kind of

reverse alignment. With reverse alignment, the distance between the two symbols in Fig. 3.5

will be 0, an undesirable result.

/

A A
/ X /

1 V

J
/

/
/

27

Figure 3.5 The warping path must be monotonically increasing.

(2) The path should be continuous. A path is defined to be continuous if and only if for every

(•",/) on path; one of («-l,/), (t-l,/-l) or (t,/-l) is also on the path. The reason for this res

triction is to force each Ut to be compared with at least one Tj and vice versa. Without this

constraint, as shown in Fig. 3.6, unreasonable distance measures would be obtained because some

of the critical sample pointswould be skipped.

—><!L.
y

^

^
s

f
\

Figure 3.6 The warping path must be continuous.

(S) The path should start around (1,1) and terminate around (I, J). Fig. 3.7 shows a path which

does not start from (1,1) and terminate at (I,J). The accumulated distance is unreasonable

because the matching of sample points at the beginning and end of the symbols are skipped.

(4) The path should be close to the diagonal line. If two symbols are identical, the warping path

should be the diagonal line in the distance matrix. Unless the distortion is quite bad, the

optimal warping path should not deviate much from the diagonal line. If the path is allowed to

be far from the diagonal line, the distance between the two symbols inFig. 3.8 would be 0.

/
/

/ 1 5

Figure 3.7 The endpoints of a warping path must be confined

/

/
/

/
/

/
/

/

10

28

11

Figure 3.8 The warping path should be close to the diagonal line.

2.2. Diagonal warping path

Referring to Fig. 3.9, the most straight forward path which satisfies all of the requirements

is the diagonal line, i.e.

t-i »',x /

This formula gives us a distance by comparing each unknown sample point with its linear

counterpart in the template sequence. The advantage of using this path is that the number of

local distance (<f,-,y) computation and the accumulated distance (A\y) computation is linearly

proportional to the number of sample points. The computational load is much less than that

29

encountered in the algorithms proposed in the next two sections. The disadvantage ofusing this

path is, as illustrated in Fig. 2.14, that the alignment of the symbols is sometimes not linear,

causing an unreasonable distance accumulation along thepath.

Template

J
-

/

/
/

/
/

/
/

/

/
/

/
/

/

I Unknown

Figure 3.9 Diagonal matching path

2.3. Dynamic Time Warping (DTW) path

Define Diti as the accumulated distance at (t,/). Since the warping path is required to be

monotonically increasing and continuous, (t,/) can only be reached from (i-l,/), (t,/-l), or

(•""it/-1)- To m^e Diti the minimum accumulated distance from (1,1) to (•,/), it should be

obtained by

A,/ - du + M/iV(A_1.y,A-i,y-i,A,y-i)
with the initial condition £>0f0 = 0 and DQJ = Difi = oo, l<j<J, l<t<7.

This path, called DTW path, guarantees that D(I,J) is the minimum distance from (1,1) to

(I,J). It has been successfully applied in speech recognition.2 Its advantage is that since the path

isobtained by searching through all IxJ elements in the distance matrix, the local misalignment

is elegantly absorbed. There are also some disadvantages. The first disadvantage is that the

DTW path is the path of the minimum accumulated distance. The use of this minimum

Template

J •

/

/
/

ZI
/

/
/

/

/
U(irl,jj ,

£.

/ ~7
DO-l.j-l' i>/ii-i

/

30

* I Unknown

Figure 3.10 DTW matching path

accumulated distance may obscure the real difference between two symbols. For example, as

illustrated in Fig. 3.8, the accumulated DTW distance of the slope codes of those two symbols is

0. Another disadvantage is having to compute all rf,-y and Z>,-y for the path. The computational

load is proportional to the square of the number of sample points.

The program for matching Uwith template Tk along the DTW path is as follows.

' For »=i to *=/

{ Forj=ltoj=Jk
{

minimum-accumulated = MIN(DJfDj-x,tcmp) ;
Dj-i = temp ;
temp = minimum-accumulated + ditJ- ;

Djk« temp ;
}

Notice that in the program, only an array of size Jk+1 is needed to store all of the intermediate

accumulated distances, DitJ-.

2.4. Slope Constrained DTW (SC-DTW) path

To prevent the warping path from remaining horizontal or vertical too long, the path can

simply be prevented from taking two consecutive vertical or horizontal steps as shown in Fig.

31

3.11. Let fitj denote how the optimal path to (t,/) is reached. The A,y on the SC-DTW path

is obtained by »

A\y ™dU + aceu

W(A,y-i,A-i,y-i,A-i.y) /,-u * —, A.y-i * t

accu = •

M/iV(A.y-i,A-i,y-i)
M/MA-i.y-i,A-i.y)
A-i.y-i

_• if accu »A_i.y

acc« =»A,y-i ;rw-{r if
Template

/«-i.y= ~*» A/-i ** t
/i-i.y ^ ~*i /i.y-i —t'

/•-i,y = -*» Ay-i = t

1 I Unknown

Figure 3.11 Slope constrained DTW

This slope constraint not only prohibits the path from staying horizontally or vertically

too long, but also guarantees that the path not deviate far from the diagonal line. Fig. 3.11

shows if there is no two consecutive horizontal or vertical steps, the path will be confined in a

region which is bounded by four lines with slopes 2 and 1/2. However, the SC-DTW path has

some disadvantages. First, the SC-DTW sometimes forces the matching path to be non-optimal

which results in errors. Second, if the number of sample points of one symbol is more than twice

the number of sample points of the other symbol, the SC-DTW path can not reach {I,J) (see

Fig. 3.12). This limitation makes the path unsuitable for symbols with large size differences.

32

Third, for each element (*,/) in the local distance matrix, extra computations are needed to

determine fiti. Because the fitJ- computation is proportional to the square of number of samples,

it significantly increases the computational load.

Figure 3.12 Limitation of SC-DTW

The implementation program of SC-DTW path is as follows.

For p=l to teaI
{ Fory=ltoj=Jk

{ if(f;*->ANDftmp*V
accu = MIN(Di-l , D}-, dtmp) ;

if(fj = -+ANDftmp9tV
accu = MIN(Dt-X fmml , dtmp) ;

if(fi*-+ANDftmp = \)
accu = MINfDj-i , D;) ;

if(fj = ^ANDftmp~1)
accu = Dj-i;

/y-i = ftmp;
if(accu = Dj) ftmp = -♦ ;
if(accu =s dtmp) ftmp =» f /
if(accu « Dj-i) ftmp » /;

Dj-i « dtmp ;
dtmp = accu + dfj ;

}
Djk = dtmp;

}
Notice that onlyan array of size /*+! is needed to store all intermediate path history /,-ty.

3. Performance evaluation

In order to do a preliminary performance evaluation of various template matching algo

rithms, a small test data base was created. It consisted of 1500 writings from four subjects.

33

Each subject repeated 75 test symbols five times. The test symbols are:

A,B, C,D,E,F, G,H,I,J,K,L,M,N, 0,P, Q,R,S, T,U, V,W,X,Y,Z,

a,b,c,d,e,f,g,h,i,j, k,I, m,n,o,p,q,r,s, t,u,v,w,x,y,z,

0,1,2,3,4,5,6,7,8,9,

+,-,*,A-,>,<,(Mhi,}-

They were chosen to represent symbols and strokes with different level of complexities. All the

subjects were advised to keep the stroke sequence and stroke direction the same each time the

symbol was written.

Since the data base is not very large, the performance comparisons based on it are subject

to large statistical variations. The data base was used to only check whether there are major

flaws in the algorithms.

In the first experiment, the performances of the following distance functions were com

pared.

Dxl: local distance: dxi3- ; path: Diagonal ;

Dyl: local distance: rfy.-y ; path: Diagonal;

Dpi: local distance: dxiti + rfy.-y / path: Diagonal ;

Dsl: local distance: dsfj ; path: Diagonal;

Dx2: local distance: dxiti; path: DTW

Dy2: local distance: dyiti; path: DTW

Dp2: local distance: dxiti + dyiti ; path: DTW

Ds2: local distance: dsi}-; path: DTW

DxS: local distance: dxiti; path: SC-DTW;

DyS: local distance: dyu; path: SC-DTW;

DpS: local distance: dxiti + dyitJ-; path: SC-DTW;

DsS: local distance: dsitJ-; path: SC-DTW;

34

The following parameters wereset the same for all these distance functions:

Number ofsample points (I and J) 16,

Width quantization levels (W): 16,

Height quantization levels (H): 16,

Slope quantization levels (Q): 16.

Two rates were evaluated as performance indications. The first is the recognition rate. If

the distance between the unknown symbol and its template is the smallest, it is counted in the

recognition rate. The second is the screen rate. If the distance between the unknown symbol

and its template is among the smallest three, it is counted in the screen rate.

Table 3.1 Performance of Diagonal warping Dath
Dxl D'r1 Dipi Dsl

Rec Scr Rec Scr Rec Scr Rec Scr

RWB 56.4 80.1 61.4 84.0 74.4 93.3 77.5 91.7

ENC 76.3 93.8 73.4 90.1 86.4 97.6 87.7 97.8

CCH 52.4 78.9 56.3 79.9 73.7 87.7 71.1 88.8

PYL 60.2 85.3 65.6 86.9 78.4 94.1 81.3 92.5

61.3 84.6 64.2 85.2 78.2 93.1 79.4 92.5

Table 3.2 Performance of DTW

Dx2 D^r2 D p2 Ds2

Rec Scr Rec Scr Rec Scr Rec Scr

RWB 46.2 68.7 56.1 80.3 90.9 97.0 89.8 96.8

ENC 61.0 86.1 65.2 84.2 95.4 99.2 96.0 99.4

CCH 43.8 69.4 51.6 77.4 86.9 94.1 87.7 95.2

PYL 45.4 73.0 61.3 86.9 93.0 98.6 93.3 98.4

49.1 74.3 58.6 82.2 91.5 97.2 91.7 97.4

Table 3.3 Performance of SC-DTW

Dx3 T>r3 Dip3 Ds3

Rec Src Rec Src Rec Src Rec Src

RWB 55.1 77.1 65.3 86.9 89.8 97.3 89.8 98.1

ENC 75.2 92.8 73.5 89.6 95.7 99.2 97.0 99.7

CCH 53.5 78.7 61.6 83.7 85.6 94.4 88.0 94.9

PYL 57.9 83.2 70.5 91.7 93.8 98.9 92.8 98.1

60.4 83.0 67.7 88.1 91.2 97.4 91.9 97.7

The experimental results are listed in Table 3.1, 3.2, 3.3. Several conclusions are obtained

from the three tables.

35

(1) The Dp and Ds are much better than Dx and Dy. This isbecause both theDp and Dd are

derived from x and y coordinates. Using both features should be more accurate than using

just one of them.

(2) The performances of Dp and Ds are similar.

(3) The DTW and SC-DTW distance functions are definitely better than diagonal path dis

tance functions. The recognition errors of the diagonal distance functions confirm that

misalignment of sample point really causes most of the errors-However, these errors are

avoided by using the DTW and SC-DTW distance functions.

(4) The SC-DTW distance functions have essentially the same performance as the DTW dis

tance functions.

3.1. Error analysis

From the errors made by Dp2 and Ds2 in last experiment, it was found there are five

major causes. First, as shown in Fig. 3.13, many errors are caused by inconsistent tails or hooks

at the start or end part of a stroke. It can be seen that the tails have serious impact on the nor

malized coordinates and hooks generate slope codes which have no counterpart in the template

symbol.

NJ
^

\

Figure 3.13 Symbols with stretches and hooks

Second, some errors are caused by symbols that are tilted to the left or right as shown

Fig. 3.14. The x,y code and slope code of a tilted symbol are obviously very different from

in

36

normal symbol.

Figure 3.14 Tilted symbols

Third, each feature has its inherent weakness. As shown in Fig. 3.15, the quantized slope

codes can not differentiate 'D' and 'P' well and the normalized x, y coordinates can not distin

guish V and T well.

4 4

2

Figure 3.15 Limitations of recognition features

Fourth, as described in previous sections, the DTW path and SC-DTW path have their

own inherent limitations.

Fifth, the distance accumulated from a critical segment is sometimes outweighed by dis

tance accumulated outside the critical segment. This phenomena can be seen from the plots of

local distances along the optimal warping path.3 Fig. 3.16(a) shows the local distances of match

ing different occurrences of the same symbol. They are randomly around a low level. Fig.

3.16(b) shows the local distances of matching two quite different symbols. They are randomly

around a high level. Fig. 3.16(c) shows the local distances of matching two quite similar

37

symbols. It can be seen most of the distances are around the low level and only a small portion

of them are around the high level. This small portion is in fact the most critical segment to dis

tinguish- these two symbols. Unfortunately, it is not unusual to find that the distance accumu

lated from Fig. 3.16(a) is bigger than the distance accumulated from Fig. 3.16(c).

local
distance

w

matching
path

local
distance

0>)

matching

path

local
distance

(e)

matching

path

Figure 3.16 Local distances along the warping path

In this section, some improvements to the algorithm, which reduce the first two types of

errors, are covered. Improvements which reduce the last three types of error will be discussed in

next chapter.

3.2. Endpoint relaxation

To prevent the tails and hooks from causing errors, the endpoint requirementsof the DTW

path should be relaxed. Instead of forcing it to start from (1,1) and to terminate at (I,J), the

A\o» 0<*<A and A>,y» 0</<4 can be set at 0 and the final accumulated distance can be

selected from A\/> I—A<i<I and A.yi J—A<3<J> As shown in Fig. 3.17, if there is tail or

hook within the A range at the start or end part of a writing, it will be ignored.

Experiments have been done with different relaxations. Table 3.4 lists the results of two of

them,

Dd4: Dd2 with A = 2,

Dp4: Dp2 with A = 2,

Dd5: Dd2 with A = 4 ,

38

**
s ''/iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiimiin
X

• /
s

*

/
/

X

X

*>

** _,zz
/

^
y
y

**

*>

^7 %y /
y
y

s
y

*

*

*

/

S

<>
*

z_ Z

Z
TmiiiiiiiiiiiiinnuiHimmnuiiK

Templat

Unknown

Figure 3.17 Endpoint Relaxation

Table 3.4 Endpoint relaxation

Dd4 Dip4 Dd5 Dip5
Rec Src Rec Src Rec Src Rec Src

RWB 89.0 96.2 90.6 96.8 89.3 95.4 89.6 97.3

ENC 95.4 99.2 94.9 98.6 96.2 99.4 95.2 98.4

CCH 86.6 94.4 86.6 94.6 89.0 94.6 85.6 94.9

PYL 92.5 98.1 92.5 98.4 92.2 97.8 93.3 •98.6

90.8 96.9 91.1 97.1 91.6 96.8 90.9 97.3

Dp5: Dp2 with A = 4 .

Unfortunately, there was no significant improvement. This is because, as illustrated in Fig. 3.18,

there are some symbols whose primary differences are around the endpoints. Skipping these sen

sitive parts makes them even indistinguishable.

Since the tails and hooks could not be improved, users are advised to be careful around

endpoints.

3.3. Curvature code

If a symbol is tilted, the curvature code, which is determined by the change of two consecu-

39

Figure 3.18 Limitations of endpoint relaxation

tive slope codes as shown in Fig. 3.19(a), is not changed. Fig. 3.19(b) illustrates an example.

This fact suggests that maybe both slope code and curvature code should be used together in

template matching to solve the tilt problem. In other words, the local distance diti should be

defined as

dij - W,xdstj + Wexdcu ,

in which the W, and Wc are the weights of slope code and curvature code. The dciti is defined

as

MIN{Uett—Tej, Q-Ueti-Tej) (Q is total quantization levels)

C « (C, C, C, C)

Figure 3.19 Curvature codes and tilted symbols

Experiments have been done with several weights. Table 3.5 lists the results of two of

them,

Dc6: W,= Wc = l,

Dc7: W, = 2, Wc = l.

Unfortunately, the performance is much worse than Dd2.

Table 3.5 Using both slope and curvature codes

Dc6 Dc7

Rec Top Rec Top

RWB 85.3 93.0 88.5 95.2

ENC 90.9 94.4 93.8 97.3

CCH 84.0 91.7 87.2 94.9

PYL 87.4 93.3 90.1 96.0

86.9 93.1 89.9 95.8

40

The reason that the mixed local distance measure does not work well is because the curva

ture code, although it can accommodate large variations in the samesymbol, has very poor capa

bility to distinguish different symbols. As such, it deteriorates the performance of using slope

code alone.

The tilt problem does not appear to be easily solved. The user should be careful not to tilt

the symbols.

The test subjects were asked to avoid the tails, hooks, and tilts when writing. The recogni

tion rate of the new data base improved as shown in Table 3.6.

Table 3.6 Performance without tilts

Dd2 Dio2 Dd3 Dip3
Rec Scr Rec Scr Rec Scr Rec Scr

RWB 91.7 98.1 92.8 98.4 92.0 97.3 91.7 98.4

ENC 96.2 99.4 95.7 99.4 97.0 99.7 95.7 99.2

CCH 90.6 97.6 89.3 95.7 92.5 97.8 89.8 96.5

PYL 93.3 98.4 93.0 98.6 92.8 98.1 93.8 98.9

92.9 98.3 92.7 98.0 93.5 98.2 92.7 98.2

3.4. Square local distances

To emphasize the critical segment of two symbols, the local distances could be squared, i.e.

dxfti + dyfj for Dp2 and dsfj for Dd2, to penalize more heavily sample points which are quite

different. Table 3.7 shows the results of using the squared local distance.

Dd8: Dd2 with local distance: ddfj ;

Dp8: Dp2 with local distance: dxfj + dyfj ;

Dd9: DdS with local distance: ddfj ;

Dp9: DpS with local distance: dxfti + dyfj ;

Table 3.7 Square local distances
DdS Dp8 Dd9 Dp9

Rec Scr Rec Scr Rec Scr Rec Scr

RWB 92.0 98.1 92.8 98.6 92.2 97.0 91.7 98.4

ENC 96.2 99.4 95.7 99.4 97.0 99.4 95.4 99.2

CCH 91.2 97.8 89.8 96.5 92.8 98.1 90.4 97.3

PYL 93.6 98.1 93.3 98.9 93.0 97.8 94.1 98.9

93.2 98.3 92.9 98.4 93.7 98.0 92.9 98.4

41

Unfortunately, using the squared local distances does not significantly change the rates.

The reason is that the DTW, since it is an algorithm to find the minimum accumulated .distance,

is very good at avoiding the big distance elements in the local distance matrix.

4. Conclusion

In this chapter, it was described how to extract recognition features such that they are

insensitive to fluctuations, symbol sizes, and writing speeds. Then, it was demonstrated that

template matching along the DTW path and SC-DTW path provides better performance than

matching along the diagonal path. It was also found that there is essentially no difference

between using the DTW path and the SC-DTW path. The coordinate based distance function

(i.e. Dp2) is as good as the slope based distance function (i.e. Dd2).

The recognition rate of template matching was not as high as desired. An effort was made

to decrease recognition errors due to tails, hooks and tilts. However, it seems these errors could

only be decreased with the user's cooperation. An effort was also made to give more weights to

the critical segments. Unfortunately, the inherent 'go-for-the-minimum' characteristics of the

DTW still makes the results disappointing.

The screen rates from the experiments are all quite high. In next chapter, discussion will

be continued to see how to incorporate the matching results of these distance functions for the

final decision.

42

References

1. E. F. Yhap and E. C. Greanias, "An On-Line Chinese Character Recognition System,"

IBMJ. R&D, pp. 187-195, May 1981.

2. L. Rabiner and S. Levinson, "Isolated and Connected Word Recognition - Theory and

Selected Applications," Trans, on Comm. IEEE, vol. 29, no. 5, pp. 621-659, 1981.

3. L. Rabiner and J. Wilpon, "Isolated Word Recognition Using A Two-Pass Pattern Recog

nition Approach," Proc. IEEE ICASSP, pp. 724-727, 1981.

CHAPTER 4

DISAMBIGUATION

In Chapter 3, it was shown that although DTW template matching has very good screen

ing performance, it does not distinguish ambiguous symbols well. An algorithm which can

choose the correct symbol from the toprunners of the template matchings is needed.

The most effective way to make the right decision is by checking some ad hoc rules. Fig.

4.1 illustrates several examples.1'2 However, since these specialized rules have to be setby human

being, this approach violates the design goal that the user should be able to easily train the sys

tem. It is preferable to have an algorithm which can automatically differentiate ambiguous sym

bols.

m/n > 1 -> b

m/n < 1 -> f

m/n > 1 -> "±"

m/n < 1 -> JL

Figure 4.1 Ad hoc disambiguation rules

m <

r\ •' • p\

1. Clustering and template creation

In the algorithm presented in Chapter 3, a template is created directly from one training

sample. In order to automatically obtain disambiguation rules for ambiguous templates, more

than one training sample are needed for each template. If every training sample is used as a

template, there will be too much redundancy in the templates because they may be very similar

to each other. As such, an algorithm is needed to automatically group training samples into

clusters and then create a template for each cluster.

43

44

Several algorithms have been proposed for this cluster seeking problem. Among them, the

UWA (unsupervised clustering without averaging) algorithm, which is originally proposed for

user-independent speech recognition, is most appealing.3 It has two major advantages. First, it

is a fully automatic procedure, that is, no human judgement is involved in the cluster seeking

iteration. Second, from speech recognition experiments, it has been shown to converge quickly

and work well.

1.1. UWA

Suppose there are n training samples, {tltt2, • • • ,tn), of a symbol. The distances between

them are (2>(*i,*2),Z>(tlf*s). ' *' ,£(*.-i,'«-«)). Let n={tltt2l • • • ,ta}. A clustering algorithm

divides O into M disjoint clusters {wlt • • • ww} such that distances between a cluster center and

all cluster members are less than threshold 6 .

Several definitions have to be made before explaining the UWA algorithm. First, the par-

tial observation set, /?y+1. /?y+1 is the set of the training samples which have not been assigned

to any cluster in w,,w2, ••-,<*>,• during the cluster seeking iteration, i.e.

/2y+1 = /?- Uw,-=/?rw; •
•—i *

Second, the minimax fy of fly. The fy is defined as the training sample in /7y such that the

maximum distance between it and any other training samples is the minimum, i.e.

(^MINIMAXi^n^^ARGMINMAXD^Q .

The procedure of UWA algorithm is as follows.

UWA()
{

While /7y is not empty
{

w? = 0 / /* 0: Empty set */
t) = MINIMAXffij) ;
For every t; in 17j
{ UD(tit())<6)

}

}
}

While wj is not the same as wj"1
{

}

fj+i - MINIMAXfu)-1);
For every t{ in /7y
{ IfD(tt,C))<6)

U€ wJ ;

tfy+1 » fly - Wy /

Fig. 4.2 illustrates how thisalgorithm clusters the 9 training samples into3 clusters.

Figure 4.2 UWA clustering

45

46

1.2. Creating template

There are two ways to create the template of each cluster. First, the minimax ofeach clus

ter can be taken as the template. Second, the cluster members can be averaged to create a syn

thesized template. The first method is very straight forward. The second method, however,

needs special attention during synthesis.

Suppose (tltt2, - - • ,tP) are members in the cluster w, tm is the final minimax ofwand T is

the template going to be created. As seen in Fig. 4.3, the template ofthe cluster is synthesized

as follows.

The procedure starts by obtaining the DTW warping paths between tm and all tp, l<t<P.

To do this, during the matching procedure, all /,ty's, where fiti is the previous neighboring

point on the optimal path to (t,;), are stored in the same manner as in the SC-DTW discussed

in chapter 3. Then, from fiti, the optimal path between tm and each tp can be obtained by

back-tracking from ffj.

With these matching paths, the ith sample point of T is the mean of all sample points

aligned with the ith element of tmt i.e.

T- a 1 r» *# of samples aligned with <m,, {(py): ^,, ^ ^ ^ >>* '

If the x,y codes are used, the average is the arithmetic average of the coordinates. If the

slope code isused, the average isderived through vector addition as illustrated inFig. 4.4.

1.3. Performance Evaluation

To evaluate the performance of the UWA algorithm, it was applied to the test data base.

For each symbol, 4 samples of a symbol were used as training samples and the other one was

used as the unknown. Since clustering provides templates which cover wider variations, the

recognition rates are increased as shown in Table 4.1 and Table 4.2 for 3 different clustering

thresholds {6). The number of templates created under each threshold are also listed in the

table. Comparing these results with those of Chapter 3, it can be seen that the templates

47

TEMPLATE

£.
y

MEMBER n

i

S

MEMBER 2

MEMBER 1
^

MINIMAX

Figure 4.3 Synthesizing template

Figure 4.4 Average slope codes

created from multiple training samples significantly improve the recognition rates. The smaller

the threshold, the more templates are created, and the better the recognition rates are achieved.

Table 4.3 is a tabulation of the recognition rates that were obtained with the synthesized

templates. It can be seen that the recognition rates based on synthesized template are almost the

same as the rates based on the minimax template. Therefore, it is not worthwhile to synthesize

the templates.

Table 4.1 Number of templates and recognition rates for Dd2
$=0.5 5=1.0 5=1.5

templates rate templates rate templates rate

RWB 928 93.3 492 93.0 403 92.2

ENC 990 97.6 426 97.3 381 96.8

CCH 1169 93.3 604 92.5 420 91.7

PYL 988 94.6 434 94.9 389 94.4

1018 94.7 489 94.4 398 93.7

Table 4.2 Number of templates and recognition rates for Dv2
5=2.0 5=2.5 5=3.0

templates rate templates rate templates rate

RWB 874 93.6 455 93.3 387 93.0

ENC 863 97.3 413 97.0 398 96.5

CCH 909 93.0 511 92.2 416 91.7

PYL 871 94.6 426 94.4 409 93.8

879 94.6 451 94.2 402 93.7

Table 4.3 Recognition with synthesized templates
Ddl2f5=1.0) Dpl2(5=2.5)

templates rate templates rate

RWB 492 93.3 455 93.0

ENC 426 97.3 413 97.0

CCH 604 92.2 511 91.7

PYL 434 95.2 426 94.9

489 94.5 451 94.1

48

2. Ambiguity checking

For two clusters ux = { rj, t\, ... , t\x }and w2 = { ff, <|, ... , £ }. Let tx denote the

template created from wb C2 denote the template created from w2, and Ditb denote the matching

distance between training sample a and b. Fig. 4.5 is a plot with Dr t as the horizontal axis and

De t as the vertical axis. If the distance function can differentiate between these two clusters

well, the distribution should look like Fig. 4.5(a). Members of each cluster are far away from the

45' line. However, if the distance function can not separate the two clusters well, the distribu

tion is like Fig. 4.5(b). Somemembers are around the 45° line and some may even cross the line.

If a training sample crosses the 45* line, it means the distance between the training sample with

its own template is even larger than the distance between it and the other template. As such,

the ambiguity of two templates can be decided by counting how many training samples are in the

49

shaded "marginal" area. If the count is over a threshold, the two templates are determined to be

ambiguous.

D*.b Dx.b Dx,b

Figure 4.5 Determine whether two templates are ambiguous

3. Disambiguation techniques

3.1. Two-Pass DTW

As illustrated in Fig. 3.17, the deterministic distance of two ambiguous symbols is always

accumulated from a very short critical segment. More penalty can be put on these segments by

multiplying the local distance by a statistical weight. In speech recognition, it has been proposed

to evaluate the distance by this formula:4

S WtXdtti
/)/ 7»\ _ («*./) on varying path

(i,y) on warping path

For different ambiguous symbol pairs, the critical segments are obviously different. As

such, the weights must be pair-dependent. For symbol Ta and Tb, oneintuitivechoice of W{ for

this pair is

W?'b
d^%df'b-dt'b-ai'a
<r?a+<?!'b+(r?>b+(r!>*

The df* is the average and the af'b is the variance of distances obtained from all the elements of

the Tb training samples which match with the ith element in Ta and all the elements of the Ta

training samples which match with the ith element in Tb. (These elements are in fact the same

50

as the elements used to synthesize the ith element of the template as illustrated in Fig 4.3.)

To use the weighted DTW for disambiguation, in the training phase, the symbols are first

divided into equivalent classes according to the ambiguity. The weights of every symbol pair in

each equivalent class are then determined. In the recognition phase, the unweighted template

matching is performed as before, but the result is only used to decide which class the symbol is

in. Then, all pairwise weighted DTW distance, given by:

E w**ti
D(T* Tb) as («»/) »» varying path
l*> E Wi* '

(i,j) on varying path

are evaluated. Then, the total weighted DTW distance for each symbol, which is defined as:

d{t*)= 272>(ra,r6) ,
b,b¥>a

is calculated. The unknown is recognized as the symbol which has the minimum total

weighted DTW distance.

This technique has worked very well for speech recognition. However, to use it for OHR, it

was found that a substantial number of training samples were required to make a good estima

tion of Wf'b. Since it is desired to use an algorithm which can "learn" a new symbol after a

short training period, this unweighted/weighted two-pass DTW algorithm, although it would be

the best way to fix the inherent DTW weakness, is not suitable.

3.2. Prematching and Postmatching

From the recognition errors of Dp2 and Dd2, it was found that they seldom make the same

mistake. For example, the '/>' and 'P' is often an error of Dd2, but Z>p2 can differentiate them

well. The '1' and '/' is often an error of Dp2, but Dd2 can differentiate them well. This fact

suggests that it may be possible to have the two distance functions correct the errors of the

other.

This idea was implemented by a prematching/postmatching scheme. One distance function

is used for prematching. The top candidates, which are defined as templates whose distances are

within a specified threshold 5 from the minimum, are sent to the other distance function for

51

postmatching. The final decision isdetermined by thepostmatching.

Table 4.5 is a list of the experimental results ofthe scheme under two matching thresholds

(5). In it, "R/W" means "(number of right corrections)/(number of wrong corrections)". "Right

correction" means the top candidate from prematching is wrong but postmatching corrects it.

"Wrong correction" means the top candidate from prematching is correct but the postmatching

reverses it. "Rec" is the final recognition rate.

Table 4.5 Postmatching

Dd2->Dp2 Dp2->Dd2

Scr R/W Rec Scr R/W Rec

RWB 98.4 34/27 95.2 98.4 30/23 94.9

ENC 99.4 16/10 98.9 99.7 11/ 6 98.4

CCH 98.1 57/49 94.4 97.8 46/38 93.8

PYL 99.4 48/43 96.5 99.4 44/39 96.2

98.8 155/129 96.2 98.8 131/106 95.8

Comparing Table 4.5 with Table 4.1 and 4.2, it is apparent that the new scheme results in

a significantly better recognition rate.

3.3. Disambiguation function

3.3.1. What is disambiguation function

Fig. 4.6 illustrates some ambiguous template pairs. By visual observation, one may intui

tively guess that if the slope sequence is used to differentiate (1, /), the accuracy should be better

than using the x or y sequence. If the y sequence of the second stroke is used to differentiate

(£> P), the accuracy should be better than when using slope sequences or x sequences. If the x

sequence of the third stroke is used to differentiate (A, *), the accuracy should be better than

when using any other feature sequence of any stroke.

These intuitive guesses imply one "fact": for two ambiguous symbols, at least one feature

sequence of onestroke, can always differentiate them well. As such, insteadof using Dd2 or Dp2

as general postmatching function, it would be better to choose one of the Dx2, Dy2 or Dd2 as

the postmatching function specific to each ambiguoussymbol pair.

X=(2,2,l,0)

Y = (3,2,l,0)

S = (F, F, F, F)

XI = (0, 0, 0, 0)
Yl = (3, 2,1, 0)
51 = (0, 0, 0, 0)

X2 = (1, 3, 3, 2, 0)
Y2 = (3, 3, 1, 0, 0)
52 = (4, 3, 0, D, C)

XI = (1, 1, 0, 0)
Yl = (3, 2, 1, 0)
51 = (F, F, F, F)
X2 = (2, 2, 3, 3)
Y2 = (3, 2,1, 0)
52 = (1, 1, 1, 1)
X3 = (1, 1, 2, 2)
Y3 = (2, 2, 2, 2)
53 = (4, 4, 4, 4)

52

X = (3,2,l,0)

Y = (3,2,l,0)

S = (E, E, E, E)

XI = (0, 0, 0, 0)
Yl = (3, 2, 1, 0)
51 = (0, 0, 0, 0)

X2 = (1, 3, 3, 2, 0)
Y2 = (3, 3, 2, 2,1)
52 = (4, 3, C, D, C)

XI = (2, 1, 1, 0)
Yl = (3, 2, 1, 0)
51 = (F, F, F, F)
X2 = (1, 2, 2, 3)
Y2 = (3, 2, 1, 0)
52 = (1, 1, 1, 1)
X3 = (0, 1, 2, 3)
Y3 = (2, 2, 2, 2)
53 . (4, 4, 4, 4)

Figure 4.6 Intuitive disambiguation function

With this in mind, in the training phase, an algorithm is needed to decide which stroke is

the critical stroke and which feature is the disambiguation key. In the recognition phase, an

algorithm is needed to use these disambiguation keys for the final decision.

3.3.2. How to use disambiguation functions

Suppose the disambiguation function Fa,b is obtained for template Ta and Tb in the train

ing phase. The final decision in the recognition phase can be made based on the a voting of these

functions. The way it works is as follows. After template matching, suppose both Ta and Tb

are in the top candidates. Let Df,,»(Ta) denote the distance between the unknown and template

Ta when Fa'b is applied. If DF^(Ta) < Z>f4,4(T6), T* gets one vote. This test is performed on

all of the pairs of the top candidates from template matching. The one which gets the most votes

53

is called the final winner.

3.3.3. How to determine disambiguation function

Suppose wf and t»y are two ambiguous clusters. Let D' denote the distance function D

operated on the sth stroke and S denote the number of strokes- of the two symbols. The candi

dates for disambiguation function are Ds2', Dx2', Dy2', 1 <* <S. (The definitions of Ds2,

Dx2, and Dy2 are the same as in Chapter 3.) To select the disambiguation function from

Dd2', Dx2', Dy2$, the cluster members have to be used. Following are two algorithms.

3.3.3.1. By quality factor

For cluster pair to,- and wy and distance function D, Fig. 4.7 shows a plot of the distribu

tion of intra-distance, i.e. Dtf, tewit Dte, tew.-, and inter-distance, i.e. Dte, tewit Dte,

<€t»y. If there are enough members in each cluster, the distribution of intra-distance and inter-

distance should be Gaussian as illustrated. If D can differentiate these two clusters well, the two

distributions will not overlap significantly as shown in Fig. 4.7(a). Otherwise, the two distribu

tions will have excessive overlap as shown in Fig. 4.7(b). From this illustration, an intuitive

quality factor, which represents the differentiating capability of D over w,- and wy, is defined as

HiT)\ Pinter **** Pintra
• w '= ML, +4*J* '

In the definition,

Pintn :=s average intra-distance,

Pinter:= average inter-distance,

aintra :~ variance of intra-distance,

a%ter:ss variance of inter-distance.

The disambiguation function of ut and Wy is determined by comparing the quality factors of

functions Dd2', Dx2$, Dy2'. The one with the best quality factor is chosen as the disambigua

tion function.

However, applying this algorithm to our test data base did not produce good results. The

54

D D

Good differentiability Bad differentiability

Figure 4.7 Inter- and intra-distance distribution

reason is thesame as for the weighted DTW algorithm: it requires quite a lot training samples to

obtain an accurate estimation of fiint„t fiintrat <rittUr and <rintn. In order not to make the training

tedious, this algorithm is not suitable for implementation.

3.3.3.2. By distance distribution

For cluster pair («;,-, w/j, it is not hard to tell whether the distance function D can

differentiate them well by plotting (Dte, Dtr) for all teUiUUj. Fig. 4.8 illustrates the results of

applying Di, D}, D}, D*, D\, D* over two symbols 'D' and T\ It is obvious the D%, i.e. the

distance of the y sequence of the second stroke, separates the two symbols better than all other

functions.

Based on this concept, the disambiguation function can be selected by the following algo

rithm. For each distance function, the number of cluster members which cross the 45" line is

counted and compared. Because crossing over the 45* line indicates that a recognition error

occurs, the function which has the least number is chosen as the disambiguation function. If

more than one distance function have the least number of errors, their inter-distance to intra-

E du. + 27V-
,. . . *€«. «€«,• '
distance ratio, i.e. -j =-rj— are compared. The one which has the largest ratio is

tevt tev} J

chosen as the disambiguation function.

Experimental results showed that the disambiguation functions obtained by this distance

55

Figure 4.8 Determine disambiguation function from distance distribution

distribution algorithm are very close to those intuitive guesses as illustrated in Fig. 4.6. The

recognition rates obtained when using these disambiguation functions are listed in Table 4.6.

Comparing with those in Table 4.5, it can be seen that the ratio of right correction to wrong

correction improved. The recognition rates are also significantly better.

Table 4.6 Performances of disambiguation functions

T.M. Dd2 Dp2

R/W Rec R/W Rec

RWB 16/ 3 96.8 17/ 5 96.2

ENC 7/ 0 99.2 10/ 2 99.2

CCH 19/ 6 95.7 21/ 9 94.9

PYL 16/ 4 98.4 16/ 7 97.3

58/13 97.5 64/23 96.9

3.3.3.3. Using SC-DTW path and diagonal path for disambiguation

In the disambiguation scheme, the candidates passed to postmatching should be very simi

lar to each other. As such, since SC-DTW path and diagonal path are closer to the diagonal line

56

than the DTW path, they may have better discriminating capability. Experiments have been

done to use the SC-DTW distance functions, i.e. DdV, DxZ', DyZ', and the diagonal distance

functions, i.e. DdV, Dx\', Dyl', as disambiguation functions. The results listed in the Table

4.7 show that there is no essential difference between operation with the DTW functions and

SC-DTW functions. Recognition using the diagonal path functions is slightly inferior.

Table 41.7 SC-DTW and Diagonal path for disambiguation
SC-DTW Diagonal

R/W Rec R/W Rec

RWB 17/ 2 97.3 16/ 3 96.8

ENC 7/ 0 99.2 6/ 1 98.6

CCH 20/ 4 96.5 18/ 5 95.7

PYL 16/ 4 98.4 15/ 4 98.1

60/10 97.8 55/13 97.3

4. Conclusion

In this chapter, a clustering algorithm was first developed to automatically group training

samples into clusters and create a template for each cluster. These cluster members are then

used to determine whether two templates are ambiguous.

It has been tried to use weighted DTW to fix the inherent DTWerrors. However, because

this algorithm requires quite a lot training samples to obtain the weights, it is not practical. A

postmatching scheme was then used for disambiguation. Although the recognition rate is

improved, it would be better if the postmatching function can be specific to each ambiguous pair.

To obtain the disambiguation function specific to each ambiguous pair, an algorithm was

developed to compare the differentiating capability of various distance functions. The one with

the best performance is selected. Simulation results showed that these disambiguation functions

are very close to those chosen by intuition. They also result in significantly improved recogni

tion rates.

References

57

1. K. Dceda, "On-Line Recognition of Hand-Written Characters Utilizing Positional and

Stroke Vector Sequences," Pattern Recognition, vol. 13, no. 3, pp. 191-206, 1981.

2. K. Yoshida and H. Sakoe, "On-Line Handwritten Character Recognition for a Personal

Computer System," Trans, on CE. IEEE, vol. 28, no. 3, pp. 202-209, 1982.

3. L. Rabiner and L. Wilpon, "Considerations in Applying Clustering Techniques to Speaker-

Independent Word Recognition," Journal ofAcoustic Society America, vol. 66, no. 3, pp.

663-673, Sept. 1979.

4. L. Rabiner and J. Wilpon, "Isolated Word Recognition Using A Two-Pass Pattern Recog

nition Approach," Proc. IEEE ICASSP, pp. 724-727,1981.

CHAPTER 5

OPTIMIZATION

In preceding two chapters, the performance of the OHR algorithm has been brought to a

level which is good enough for practical use. However, the recognition speed of the simulation

program isvery slow. In this chapter, modifications to the algorithm which improve the recogni

tion speed will be discussed.

1. Real-time processing

Fig. 5.1 shows the execution timing diagram of the algorithm. From it, it can beseen that

the writing time occupies a large portion of the elapse time. However, the recognition program

does nothing but data acquisition during this period.

Writing Time

data acquisition _
spatial filtering
resampling
normalization

feature extraction _
template matching.
disambiguation

Response Time

Figure 5.1 Timing diagram of simulation program

The sampling rate of tablet is approximately 100 points per second. Between two points

there is about 10ms. If the data acquisition were changed from polling to interrupt driven,

plenty of time between two samples would be available.

In an interrupt driven data acquisition scheme, an interrupt service routine is invoked to

store the data sample in a queue. The main recognition procedure continuously checks the queue

for data. When the queue is not empty, the data in it is processed.

Since the queue contains only the coordinates of the current point and previous points, in

the sampling period, it is impossible to perform processing which requires information of future

points. The spatial filtering can be performed since it only needs the current sample point and

58

59

its previous point. However, there is not much computation in spatial filtering. Most of the

sampling period is still wasted.

The operations performed after spatial filtering include: resampling, coordinate normaliza

tion, and feature extraction. Chapter 3 has shown that resampling can not be performed until

the whole stroke is finished. The coordinate normalization also can not be performed without

knowing the maximum and minimum x, y coordinates of the whole symbol. To fully take

advantage of the sampling period, the algorithm mustbe changed.

. In Chapter 3, it was shown that the performances of Dd2 and Dp2 are equally good for

template matching. For Dp2, thenormalized coordinates must be obtained. As such, there isno

way to start the DTWcomputation until the whole symbol is finished. On the other hand, the

slope code used in Dd2 can be determined by comparing the coordinate of the incoming point

with its previous sample point. As seen in Fig. 5.2, after a slope code has been obtained, one

column of the local distance and accumulated distance can be computed. Since these distance

computations are the most time consuming part of the algorithm, the time between data samples

will be fully utilized.

Although the sampling period is fully utilized, there is one problem with this idea. Since

the resampling and normalization of the unknown are not performed, the unknown slope

sequence is now compared with template slope sequence which wasobtained after resampling and

normalization. Fig. 5.3 illustrates the potential problem. It is not certain that this matching

can provide acceptable performance.

Without resampling, there are two major effects. First, the number of sample points in the

unknown symbol is proportional to the symbol size and writing speed. Second, the distribution

of sample points is not even. However, these two effects may not significantly impact the Dd2

performance. As shown in Fig 3.10, the Dd2 does not require the number of sample points of the

unknown to be the same as the number of sample points of the template. It also shows that the

affect of non-even spatial distribution of sample points can be minimized because the optimal

path of Dd2 can stay horizontally or vertically for unlimited length.

60

A A

Template K ?
£.

y

/

Template 2

Template 1

Unknown

Figure 5.2 Real time DTW computation

resampled not resampled

Figure 5.3 Matching an non-resampled symbol with a resampled symbol

This new template matching algorithm was tested on the data base. Table 5.1 illustrates

the comparison between the new Dd2 template matching algorithm and the old one. Notice

that the performance of the new algorithm is only slightly inferior, while drastically shortening

the response time of the recognition program. The new timing diagram of the algorithm is as

shown in Fig. 5.4.

Table 5.1 Resampling and template matchine

without resampling with resampling

Recog Screen Recog Screen

RWB 96.5 98.1 96.8 98.4

ENC 98.6 99.4 98.6 99.4

CCH 95.2 97.6 95.7 98.1

PYL 97.6 98.9 98.1 99.4

96.9 98.5 97.3 98.8

Writing Time Response Time

V//////////////////J///////777n^S^^X^,
data acquisition

spatial filtering

template matching

resampling

normalization

feature extraction

disambiguation

61

Figure 5.4 Timing diagram of real-time template matching

2. Pruning

If a template is very different from the unknown symbol, the distance computation should

stop once it finds that the accumulated distance has grown toobig. The pruning is implemented

by checking the minimum of the whole column accumulated distance of each template. Since the

accumulated distance of any element in future columns is definitely larger than the minimum of

current column, a template is eliminated once the minimum is over a threshold. The program is

as follows.

Uf is obtained and it is not end of stroke
For Jfc=i to k=K

{ IfTk is not eliminated
{ column—minimum = oo ;

Forj'^1 toj=Jk
{ minimum-accumulated = MINfD^D)^, temp) ;

D)-X « temp ;
temp = minimum-accumulated + dsitJ- ;
column-minimum = MIN(column-minimum, temp) ;

Dki = temp;

62

}
}

If column-minimum > threshold, Tk is eliminated;

3. Slope code

In implementation, the slope code is quantized as shown in Fig. 5.5 rather than Fig. 3.2.

The reason for not using Fig. 3.2 quantization is because it is desirable to eliminate the time con-

(y...—y.\
suming division in the slope computation -. r. With Fig. 5.5 quantization, the slope code

(*t+i-*J

of the ith sample point can be determined by comparing Ax = xi+l—xt, Ay = jfc+i—y,-, Ax*2,

and Ay*2, which only uses addition, subtraction, and shifting.

9 8 7 6

a\ y5

B^^ y^ 4

0^
3

D/
/e /' F 0 \

Nv 2
l\

Figure 5.5 New slope code definition

4. Downsampling

Since the DTW is insensitive to the spatial distribution of sample points, it was investi

gated whether sample point with a slope code the same as the previous one could be eliminated.

In other words, as shown in Fig. 5.6, whether the compressed slope code sequence can be used for

recognition. The DTW distance computation is proportional to IxJ. Reducing the number of

sample points should make the template matching proceed much faster.

4.1. Distance normalization

After downsampling, the number of sample points of each template is different. As illus

trated in Fig. 5.6, the '/' has only one sample, the '7' has two, and the 'O' has sixteen.

Different number of sample points makes the matching path length inherently different. This

63

fact suggests that the accumulated distance should be somehow normalized to compensate the

difference.

Figure 5.6 Downsampling

One obvious way to compensate the path length difference is to divide Dk by the length of

warping path as shown in Fig. 5.7. In this case, instead of using the accumulated distance, the

per comparison distance is used for similarity measurement.

However, it was found that this normalization has a severe drawback. As illustrated in Fig.

5.7, because the length of left path is longer than the length of the right path, the left normal

ized distance is lower than the right normalized distance. This is not fair because if the unk

nown symbol matches a template perfectly, the warping path should be the diagonal line. How

ever, since the diagonal line has the shortest length from (1,1) to {I,J), it gets penalized more

heavily than a crooked path.

Em

By path length: Bt,J / 11

By symbol length: Dl,J / 8

64

Du

/
/

/
/

/

By path length:

By symbol length:

Di,j/8

El,j/8

Figure 5.7 Distance normalization

In order to give less penalty to warping paths which are close to the diagonal line, the Dk is

normalized by MAX(I,Jk). The reason can be observed in Fig. 5.7. The length of the diagonal

warping path is always equal to the longer of the unknown length and template length. If the

distance is normalized to this maximum length, a path close to diagonal line gets a smaller

penalty. This is because there are fewer local distance elements on a diagonal path than on a

crooked path.

4.2. Slope sequence smoothing

One interesting phenomena was observed in downsampling. As shown in Fig. 5.8, if the

stroke is written close to the border line of two quantization regions, the number of sample

points can have big variation. A smoothing procedure needs to be performed to reduce these

variations.

The smoothing operation is achieved by dividing each quantization level into two

sublevels. If the sublevel code distance of two consecutive points is less than 2, the second

point will not be used for matching. Fig. 5.8 shows how this procedure removes the fluctuations

of border line strokes.

4.3. Performance

Table 5.2 shows the experimental results of matching the unknown symbol against the

65

Before: S « (D2, El, D2, El)

After smoothing: S = (D)

Before: S = (El, D2, El, D2)

After smoothing: S «(E)

Figure 5.8 Sequence smoothing

downsampled templates. Notice that the distance definitely needs to be

normalized. Normalizing the distance to thesymbol length is much better than normalizing

it to the path length. Although the overall recognition rates are not as good as before, the

recognition speed is about 35% faster. This is because the number of sample points of each tem

plate is reduced by 20%.

Table 5.2 Downsampling of slope code
No is orm. Norm, to the length Norm. to the longer

Recog Screen Recog Screen Recog Screen

RWB 94.2 95.8 93.9 95.5 94.7 96.3

ENC 96.8 97.6 96.3 97.1 96.8 97.6

CCH 92.8 95.2 92.3 94.7 93.1 95.5

PYL 95.0 96.3 94.2 95.5 95.8 97.1

94.7 96.2 94.1 95.7 95.1 96.6

Experiments were also performed in which the downsampling algorithm was applied to the

disambiguation functions Dx2 and Dy2. If the x (or y) coordinate of the current point is the

same as the x (or y) coordinate of the previous point, it is discarded. The downsampling reduces

the number of sample points by approximately 10%. The disambiguation computation time is

therefore reduced by approximately 20%. For these two functions, the recognition accuracy with

downsampling is essentially the same as the accuracy without downsampling.

5. Coordinate normalization

After template matching, the coordinates of the unknown must be normalized before

applying the disambiguation functions. The normalized coordinates are obtained by the formula

W
xi —[xi ~~ XnfajX

Y — Y .

66

Vi « (Vi - YmiB)x^ ^--— .
•* max ~* -^min

In it, Xgux, .Xini,,, Ymax, and Ym\^ are the maximum and minimum tablet x,y coordinates of the

symbol. W is the maximum x coordinate after normalization and H is the maximum y coordi

nate after normalization. If Xm{a « Ymin •» 0, the normalization formula becomes

„ WSi= 3T|X y. ,
•^max

ft = ViX-
Y* max

In linear interpolation, as shown in Fig. 5.9, the y,- corresponding to the ar,- in between (0,0)

andpf,Y)is:

Vi = ^X-^: ,

which is the same as our normalization formula. There is a well known Bresenham algorithm1

which can obtain all the integer interpolation points between (0,0) and (X,Y) incrementally

without any multiplication, division, and floating-point operations. Referring to Fig. 5.9,

assume X > Y > 0, the Bresenham algorithm moves along the longer side and compares e and

«' for each increment. If f > «', it takes point A. Otherwise, point B. The program of this

algorithm is as follows.

X'=X+X, Y'=Y+Y,
6= Y'-X, € '=e-X,

whilefc < X)
{ i-i+i;

«r« > o)
{ vt = y,-i +1;

}
else

{ Vi = Vi;
e = e + T;

}
}

The Bresenham algorithm can be used to create the x mapping table and y mapping table

for coordinate normalization. As the above formula and Fig. 5.10 show, if X is replaced by

Xmax, Y is replaced by W, and x,- is incremented from 0 to XmiX, the y{ obtained from Bresen-

e' e'

A. A. ^^^^^

•

3 3

V ~v

67

Figure 5.9 Bresenham algorithm

ham algorithm are exactly the xf for *,- = 0 to *,- = XmMX. If X is replaced by ymiut, Y is replaced

by if, and x,- is incremented from 0 to Ymax, the yt obtained from Bresenham algorithm are

exactly the same as yf- for y(- » 0 to y,- = YmMX.

Let Afx[x] and My[y\ denote the x mapping table and y mapping table created by Bresen

ham algorithm. The normalized coordinate of (*,-,y,) is simply (A/x[x,],A/y[y,]). The multiplica

tion and division involved in the coordinate normalization are eliminated.

References

1. J. Bresenham, "Algorithm for Computer Control of a Digital Plotter," IBMSystem J., vol.

4, no. 1, pp. 25-30, 1965.

.max

» •

«

•

to

•

t
•

"•
~~^~- ' '' —~—^ _. . ' ——.^•• • iii

X max

4<

H

max

w

"

•

•

H
•

J ;__J

•

+ I L-=—1 1
w-

———• ——•—• 1———• _____

——— —_——- M* ———

I mS\ I _______ _______

x max

Figure 5.10 Using Bresenham algorithm for coordinate normalization

68

68

CHAPTER 6

IMPLEMENTATION

In previous chapters, the algorithms for the OHR system have been covered. In this

chapter, the emphasis is on how to implement the system on an IBM PC. The implementation

should achieve two goals. First, a user should be able to control existing application programs

via handwritten symbols. Second, high recognition accuracy should be achieved without much

training work by the user.

1. Keyboard emulator

To allow the user to be able to control an application program via OHR, the OHR has to

run simultaneously with an application program. The most popular operating system used on

the IBM PC is MS-DOS. Although MS-DOS is not a multi-tasking operating system, it provides

a function to install a program as an extension of system service routine.1 Once a program is

installed as system service routine, it is kept resident in RAM and can be called by any applica

tion program at any time. The same function also allows a user to install his own interrupt ser

vice routine to handle the interrupt from a peripheral. As such, the basic software structureof

the OHR system is as illustrated in Fig. 6.1.

Application

Programs

Tablet

Service

Routine

(TSR) o
Tablet

Interrupt

Routine

(TIR)

Figure 6.1 OHR software structure on IBM PC

69

a Tablet

70

1.1. Tablet Interrupt Routine (TIR)

The tablet is connected to a serial port. Once data is available from tablet, the Tablet

Interrupt Routine (TIR) is invoked. The TIR converts the coordinate from tablet format to

OHR format and then calls Tablet Service Routine (TSR) to put the coordinate into a queue for

later processing.

1.2. Keyboard Service Routine (KSR)

In an IBM PC, the interface between application program and keyboard input is handled

by two BIOS (Basic Input/Output System) routines. One is Keyboard Interrupt Routine (KIR)

and the other is Keyboard Service Routine (KSR). The KIR is invoked once a keystroke is

pressed. It translates the keyboard scan code to ASCII code and then stores the ASCII code in a

buffer. The KSR is called by application software to process the buffered ASCII code. Fig. 6.2

illustrates the scheme.

Application

Programs

a

o

Generic

Keyboard

Service

Routine

Generic

Mouse

Service

Routine

V-V

O

Keyboard

Interrupt

Routine

Mouse

Interrupt

Routine

a

W

Keyboard

Mouse

Figure 6.2 Standard IBM PC keyboard/mouse interface

MS-DOS allows a user to replace the generic KSR by his own KSR. Therefore, as shown in

Fig. 6.3, the OHR puts the generic KSR in a private place and then install its own KSR. The

new KSR calls the Tablet Service Routine (TSR) to do the following:

71

(1) Check whether there isa queued keystroke generated by the recognizer.

(2) If there is nokeystroke from the recognizer, call the generic KSR to check whether there is

queued keystroke from the keyboard.

(3) If there is no keystroke from the keyboard, check whether there are queued coordinates

from TIR.

(4) If there are queued coordinates, recognize the symbol being written. Otherwise, go back to

(i).

With this implementation, the application program can get keystrokes from both the

recognizer and the keyboard, even though it does not know there is an OHR.

Application

Programs

(Keyboard Emulation)

A-3

o

C

Keyboard
Service (KSR) £j
Routine

Generic

Keyboard
Service

Routine

Tablet Service Routines

(TSR)

7~T~

o

__->

Mouse

Service (MSR)
Routine

(Mouse Emulation)

o
Keyboard

Interrupt

Routine

Tablet

Interrupt (TIR)
Routine

Generic

Mouse

Service

Routine

Figure 6.3 RetroBt IBM PC keyboard/mouse

() Keyboard

o Tablet

2. Mouse emulator

Unlike the keyboard, the mouse is not supported at BIOS level.However, the communica

tion protocol provided by Microsoft Mouse Service Routine (MSR) is considered as the mouse

72

interface standard. This protocol defines how an application program talks with the mouse ser

vice routine to get mouse information and to set mouse parameters.

Just as the keyboard service routine, there is another mouse interrupt routine (MIR) work

ing together with MSR. Once the mouse is moved or any button is pressed, the MIR is invoked

to process the event. The appropriate data of the event is then generated and put in a buffer.

The mouse position on screen is also updated. Once the application software needs mouse infor

mation, it calls the MSR to check the mouse event. Fig. 6.2 shows the scheme.

The mouse is evaluated ina way similar to that of thekeyboard. As illustrated inFig. 6.3,

the generic MSR is moved to a private place and replaced by new MSR. If the TSR is in mouse

mode, the coordinates from TIR are first converted to the screen coordinate and then passed to

the generic MSR to change the screen mouse location. If the application program needs the

mouse information, the new MSR returns the information according to the events from stylus.

The Microsoft mouse has two buttons. The OHR stylus has only one internal switch. In

order to emulate two buttons, two function boxes are used as shown in Fig. 6.4. After the user

touches the LEFT/RIGHT function box, the clicking or dragging of the stylus are interpreted as

the clickingor dragging of the mouse left/right button.

3. Tablet layout

Besides translating a writtensymbol to keystrokes or emulating mouse, the tablet can pro

vide many unique user interface features. For example, in addition to the keystrokes of a sym

bol, the application program can also obtain the location and the size of it. Knowing the loca

tion, the application program can acquire the data which is being filled in certain field of a paper

form on the tablet. This makes it unnecessary to complete a paper form first and then type the

data into the computer. Knowing the size, the superscript and subscript of mathematical sym

bols can be easily entered.

Another useful feature is that some tablet area can be used for function boxes. Once a

function box is touched, its preassigned keystrokes (macro) are sent to application programs as

73

though they were typed in from keyboard. It works like the function keys on the keyboard but

has a significant advantage. Since the function boxes can be anywhere on the tablet, appropriate

arrangement of the boxes gives a logical and pictorial illustration of the control structure of an

application program.

Fig. 6.4 shows a simple tablet layout. The strip on the right edge are assigned for eight

function boxes. The MODE is used to set the OHR either in -keyboard" mode or in "mouse"

mode. If it is in the mouse mode, the coordinates from keyboard/mouse area are not processed

bythe recognition procedure. Instead, they are sent toapplication programs as though the stylus

were a mouse. The LEFT and RIGHT functions are used to set which button the stylus is emu

lating. The keystrokes of the five other function boxes are programmable.

Keyboard/Mouse Area

Function

Area _ MODE

LEFT

RIGHT

TM1

TM2

TM3

TM4

TM5

Figure 6.4 The tablet layout

Although this tablet layout is currently hard-coded in OHR, it can can be customized to

any format by the appropriate tools.2

4. Tablet Service Routine (TSR)

The TSR is the "soul" of the system. It handles the service requests from application pro

grams and manages data for the OHR. Fig. 6.5 illustrates this operation. The definitions of the

74

data objects are as follows.

TBLQ: a queue for tablet coordinates.

SYB: a structure which holds the features of the symbol just written.

DIC: an array of structures which holds the features of all templates.

KEYQ: a queue for keystrokes of recognized symbols or touch function.

The services provided by TSR are as follows.

clrTBLQ: Clear TBLQ

putTBLQ: Put a coordinate pair to TBLQ.

getTBLQ: Get a coordinate pair from TBLQ.

clrDIC: Clear DIC.

putDIC: Put a template to DIC.

getDIC: Get a template from DIC.

putMAC: Load definition of macros.

putKEYQ: Put a keystroke string to KEYQ.

peekKEYQ: Get a keystroke from KEYQ.

getKEYQ: Get a keystroke from KEYQ. If none, wait until getting one.

getRAW: Get the coordinates of the next symbol.

getSYB: Get the recognition features of the next symbol.

setDNSPL: Set whether to perform the downsampling.

5. Training procedure

Training of the OHR system is achieved by a set of utility programs:

hinstal, htrain, hclus, hdisam, hload, and hanal . Fig. 6.6 shows the flow chart of how to use

these programs. Hinstal is the program which installs TIR, KSR and TSR. It has to be run

before any other utility program.

5.1. Initial training

For a specific application, the user first decides upon a symbol set which contains symbols

COMMANDS

putMAC

clrTBLQ clrDIC putKEYQ
putTBLQ putDIC peekKEYQ getRAW
getTBLQ getDIC getKEYQ getSYB

o u u u u
TSR

KEYQ DIC SYB

75

setDNSPL

u

TBLQ

DATA

Figure 6.5 Structure of the TSR

he is going to use. For each symbol set, a directory must becreated. In this directory, the name

and the keystrokes of eachsymbol is defined in a file symbol, def.

After specifying the symbols, htrain is used to obtain training samples for each symbol.

Then, hclus is used to group training samples of each symbol into clusters and create templates.

Then, hdisam is used to check the ambiguity between templates andset the disambiguation rules

for ambiguous template pairs.

After hdisam, the initial training is finished. A dictionary for this symbol set is created.

The user can download the dictionary to TSR using hload. The hload also downloads the file

macro.def, which specifies the keystrokesof each touch function box, to TSR.

After the dictionary is downloaded, the user can start his application program and "write"

to it!

5.2. Adaptive training

The the accuracy of the trainable OHR system is primarily hurt by two phenomena. First,

for some symbols, the user writes the training samples very consciously. However, this cons

ciousness causes the training samples to be different from later samples. Second, for ambiguous

symbols, the disambiguation rules are sometimes not accurate because there are not enough

symbol.def ^.

xxx.Sn

xxx.Tn

symbol.els

symbol,dis

(macro.def)

training samples.

define

symbols

htrain

hclus

hdisam

hload

application
program

k>

halias

C

Figure 6.6 Procedures to use the OHR

76

hanal

recognition
error

To fix the second phenomena, the user must provide more training samples during the ini

tial training. However, because of the first phenomena, it seems useless to ask for feao many

training samples during the initial training.

To solve this dilemma, a "train'On-error" approach is used to achieve a high recognition

rate without much training overhead. At the initial training phase, the user only gives minimum

training samples of each symbol based on his feeling of how he is going to write the symbol.

77

Then, during the recognition phase, if an error occurs, he can first use the hanal to see the writ

ing trace of the symbol he just wrote and the suspicious templates. If the error is due to incon

sistent writing, the user can decide to either not make the same "mistake" or to include what was

written as another training sample. If he wants the latter, he can use the "htrain -adapt' to

extract the just written symbol as a new training sample.

As shown in Fig. 6.7, the "hanaF provides the matching details of all distance functions.

Based on this information, the user may find the disambiguation rule is not optimal and can use

the "htrain -inter" to provide more training samples for the ambiguous symbols.

After enough new training samples are collected, "hclus" and "hdisam" are used to update

templates and disambiguation rules.

5.3. Temporary training

It is often useful to allow the user to temporarily add one symbol to represent a string of

keystrokes during an application program. For example, if the text string "UNIVERSITY OF

CALIFORNIA, BERKELEY" happens very often during a user's editing, he would like the OHR

to send out the whole string when he writes 'uc' as shown in Fig. 6.8. This feature was imple

mented in "htrain -alias". (It is named after the alias command in UNIX.) This program asks

for only one training sample of the temporary symbol and then downloads it to TSR as a tem

plate. No clustering and disambiguation are performed. If the user wants to permanently add

the symbol in the symbol set, he has to put it in symbol.de/ file and run htrain.

6. Performance

Experimental results showed this implementation can achieve very high recognition rate

without much training. The recognition rate can be close to 100% if the user does the adaptive

training well. In addition to the accuracy, other performance figures are:

(1) The recognition speed is about 75ms per template stroke without downsampling and 55ms

per template stroke with downsampling.

77-A

6: Slope sequence of stroke 1: Before norm: 7 After norm: 6

C

B

7

6

5

4

0

F

E

010

0

1

01

010

010

01

EFEF0F0F56767ACD

6: Y sequence of stroke 1: Before norm;

9

A

9

8

7
5 01

3 01
1 01

0

1

2

4 01

6 10

9 101

C 01
E 01

F

FEDCBA987643210123456789A9

6: X sequence of stroke 1: Before norm:

9

A

B

D

F

D

A

7

4

2

0

1

2

4

8

A

D

F

12

01

101

101

11

01

01

01

101

012

B987654321012345689ABCDEFEDB987

After norm:

26 After norm: 13

77-B

Slope sequence of stroke 1: Before norm: 6 After norm: 5

C

B

7

6

4

F

0

F

E

010

010

01

010

EFEF0F0F56767ACD

Y sequence of stroke 1: Before norm: 21

E 5
C 2
A 1
7 101
4 01
2 01
0 01

1 0

3 01

5 11
8 101

B 01

D 01

F 01

FEDCBA987643210123456789A9

X sequence of stroke 1: Before norm:

8

A

C

F

D

B

8

5

2

0

1
3

5

6

8

01

11

01

01

101

01

101

01

01

01

01

3101

B987654321012345689ABCDEFEDB987

20

Figure 6.7 Matching details from hanal

After norm: 12

After norm: 10

UNIVERSITY OF CALIFORNIA, BERKELEY

Figure 6.8 On-line trained temporary symbol

(2) The memory needed for a template is about 100 bytes per template stroke.

(3) The resident driver (TIR, KSR, and TSR) takes 85K bytes memory.

References

1. "MS-DOS Technical Reference Manual," MicroSoft.

2. "Handwriter System Manual," Communication Intelligence Corp., 1985.

78

1. Introduction

CHAPTER 7

. CURSIVE SCRIPT

Because word can typically be written in cursive script much faster than when printed, it

would bedesirable to make the OHR system be able to recognize cursive scripts.

A simple way to handle cursive script is to treat the whole scriptas a discrete symbol. In

this case, the discrete symbol recognition algorithm can be applied without any change. How

ever, this approach is applicable only if there are not too many words. Otherwise, the training

becomes impractical.

In order to reduce the training effort, another challenging approach is to recognize scripts

based only on letter templates. In this case, instead of thousands of words, the user need only

train 26 letters.

In this chapter, algorithms and implementations based on the second approach will be

investigated.

2. Review

There have been many algorithms proposed for cursive script recognition. Almost all of

them consist of three steps. First, the cursive script is divided into segments. Then, a recogni

tion algorithm is applied to recognize eachsegment. Finally, the segment recognition results are

put together for the best concatenation.

In this section, four algorithms are reviewed. Again, since none of them has gone through

extensive testing, only the approaches and not the results can be compared.

2.1. Algorithm l:1

As shown in Fig. 7.1, this algorithm decomposes a cursive script into a sequence of

upstrokes and downstrokes at points with x or y coordinates that are either a local maximum or

a local minimum. For each downstroke or upstroke, a set of 12 parameters, which are derived

79

80

from a physical model of handwriting generation, are extracted.2 These 12 parameters can clas

sify a downstroke into one of the 22 predefined categories.

Type 22

Type 21

Type 2

Typel

script

strokes

/ \.
'/> 7 t?,

ii/^>
15

V f <.^eh;f iz
1<c

1>
3

12 16

(a)

0.35 0.71 0.08 0.31

0.66 0.32 0.57 0.62

0.17 0.23
-

0.76 0.13

0.84 0.94 0.35 0.44

15 16

(b)

Word 3

Stroke String Likelihood

4-20-8-16-12-20-5-15-10 0.17

21-18-15-12-9-6-3-12 0.71

1-3-5-7-9-11-13-15-17-19-21 0.23

Word 2

Wordl
(<0

Figure 7.1 Algorithm 1

In the training phase, parameter statistics of each downstroke category are obtained. Con

catenations of the downstrokes of all target words are also stored in dictionary. In the recogni

tion phase, the a posterior probabilities of all downstrokes are evaluated. The cursive script is

then represented as a likelihood matrix as illustrated in Fig. 7.1(b). From the matrix, the likeli

hood value between the unknown script and each dictionary word can be obtained by summing

81

up the likelihood values of the downstrokes of that word. The word with the maximum total

likelihood is recognized as the unknown script. ,

2.2. Algorithm 2:3

In this algorithm, 6 primitives and 16 features are first defined to describe a script. The 6

primitives are (1) R (L): horizontal right (left) extrema, (2) T (B): vertical local maximum

(minimum), (3) C: cusp, (4) I: inflection, (5) X: intersection point, and (6) P (N): positive (nega

tive) curvature. The 16 features are (1) {PBX}, (2) {NTN}, (3) {PTP }, (4) {NB N},

(5) (NCP},(6) {PCP},(7){PXTP},(8){NBXN},(9) {PXP }, (10) {NB TXN

}, (11) {NIPB}, (12) {PINB}, (13) {BNIP}, (14) {BPIN}, (15) enclosure and (16)

pen up/down . Because the primitives are very easy to identify, it is not difficult to convert a

script into a primitive sequence. From the sequence, a feature network can be generated as illus

trated in Fig. 7.2(b).

In the training phase, the feature sequences of all letters are compiled into a dictionary.

Fig. 7.2(c) illustrates some dictionary entries. In the recognition phase, the feature network of

the unknown script is parsed to find all letters and concatenations.

If more than one word can be derived from the feature network, the relative heights of

letters are checked to see whether the profile of the unknown script matches the profile of each

possible word. For example, the hugo in Fig. 7.2(a) can not be recognized as hugb because o is

between two baselines. It can not be recognized as uugo either because the k is over the upper

baseline.

2.3. Algorithm 3:4

In this algorithm, several complicated algorithms arefirst applied to normalize theshape of

a cursive script. The purpose of the normalization is to reduce the irregularities of (l) zone base

lines, (2) global slant, (3) local position variations, and (4) local slant variations. Fig. 7.3 illus

trates the affects of each normalization step. It can be seen that after normalization, the global

slant has been corrected, the local maximum and minimum are brought i«i the baselines, and the

local y extrema used to
determine baselines

upper baseline

lower baseline

82

M

8

B P X T P BPTPBPTPBPTPBPPXTPBPTCNXBN

7 ~~3 3~~ 3~~ 7 B
1 1

IPXTPBPXTPBPT (b)
9

7,1,15,3 / n 7,1,15,7

Figure 7.2 Algorithm 2

descending strokes are vertically aligned.

The y coordinate and slope code of each sample point are extracted as recognition features.

.In the training phase, letter templates are created by manually extracting letters from normal

ized training scripts. A vocabulary file which contains a list of all allowed words is also created.

In the recognition phase, a two-pass DTW algorithm is applied to find the best word in vocabu

lary. The detail of the two-pass DTW algorithm will be discussed later.

2.4. Algorithm 4:5

This algorithm assumes the scripts are written on a 1/4-inch lined paper. The recognition

features extracted from each sample point are the normalized y coordinate and the slope angle.

In the training phase, the initial templates of each letter are created by writing each letter

discretely. Then, these initial templates are used to extract letters from training scripts. The

-~zr 1&&1X ugAfi/ yean/ uzar\y

Jx: -&&<£s %fO.*£j &£U£L> V&unj

b=
/? .* /*

/ lit

V ^ ' /) /» r»
~>~ -&&&> -KJXsJ-Qy <JOtoGs' <,GV<

<*) CO (c) • (d)

Figure 7.3 Preprocessing in algorithm 3

82-A

83

extracted letters, together with initial templates, are all used for recognition.

In the recognition phase, a one-pass DTW algorithm is applied to the unknown script and

all templates. The one-pass DTW algorithm can find the concatenation of templates which

matchesthe unknown cursive scriptbest. The details will be discussed later.

In order to improve the performance of the one-pass DTW algorithm, two restrictions are

applied. The first is to prohibit concatenation at cusps and corners. This restriction is required

because these points seldom should be concatenation points. The second restriction is to use

digram (letter pair) statistics to define the penalty of concatenating two letters. For example,

concatenating V and V should be penalized more than concatenating V and *q\ This is

because V almost never follows *q* in a word.

2.5. Comments

In algorithm 1, there are two weaknesses. First, the recognition features are too com

plicated. Second, training would be very tedious because the number of training samples required

by the statistical classifier is large.

In algorithm 2, there are also two weaknesses. First, the user must train every word to

create its feature sequence in the dictionary. Second, since the algorithm is based on recognition

of primitives, it isverysensitive to local writing variations as discussed in chapter 2.

Algorithm 3 and 4 demonstrate that the DTW algorithm can be applied for cursive script

recognition. Algorithm 4 is especially interesting because it is very similar to the discrete symbol

recognition algorithm. Since very high recognition has been achieved by this algorithm, the

complicated shape normalization procedures in algorithm 3 may not be necessary.

As such, the DTW matching based algorithms which were developed for discrete symbol

recognition in previous chapters were further studied to see how they could be extended for cur

sive script recognition.

84

3. DTW for cursive script

In order to simplify the problem, it is assumed that the user writes the "body" of a script

first and then followed by the second stroke ofthe letters i, j, t, and x. For the script illustrated

in Fig. 7.4, stroke 2, 3, and 4 can be written in any order but must be after stroke 1. In this

section, only recognition of the "body", which isa concatenation of the first stroke ofletters, will

be covered.

Figure 7.4 Delayed strokes

3.1. Two pass DTW algorithm

Fig. 7.5 shows a script and four templates. If slope code is used as the sole recognition

feature, Fig. 7.6 shows the local distance matrices between the script and templates. An algo

rithmis needed to find the constituent letters of thescript from these matrices.

When an unknown discrete symbol was matched with a template, the DTW path had to

start from (1,1) in the local distance matrix. This is because Ux is the start point of the unk

nown symbol and it should match with Tlt the first point of the template T. This requirement

is implemented by initializing the accumulated distance Z)l|0 to be oo for 1 < t < /.

If Difi is initialized to 0 instead ofoo, the path to (t,l) is definitely from (i,0) since there is

no accumulated distance. Therefore (*,1) is a start point ofwarping paths which ignore (Uu ...

Uf^x). This trick has been used for endpoint relaxation as shown in Fig. 3.18. If the endpoint

relaxation is extended and all DiJ0, 1 < t < /, are initialized to be 0, the matching paths can

start from any («",1), 1 <i < /. Define /,- as the start point of the warping path which ends at

85

Figure 7.5 Letter templates and a script

(i,J). The physical meaning of the path from (/,,l) to (i,J) is: if Ut is the end point, the seg

ment (Ujt ... Ui) matches the template best and the distance is Dt j.

This phenomena is just what is needed to identify letters in cursive script. Fig. 7.7 shows

the accumulated distance matrices with all Dit0 being set to 0. Notice in Fig. 7.8 that the paths

corresponding to the "dips" of the top row distances reveal the segments in the script which

match the template when slopes are used.

With all the matching paths and distances from Fig. 7.7, a directed graph can be con

structed. Fig. 7.9 illustrates part of the graph for the example. The branch Bf in the graph

corresponds to the path which ends at t while matching the script with template Tk. Its distance

is Ditj. It can be seen from Fig. 7.9 that the script can be recognized as a concatenation of tem

plates which yields the minimum accumulated distance in the graph.

The problem of finding the optimal concatenation can be again solved by dynamic pro

gramming. Let G{ denote the minimum accumulated distance at U{ and /* denote the start

25*1304163322 2.324183340
7B18S16S12737071S328 1S
03E12E148G54070E16S1S2
76ie51651273707IB22BlS
4725223B414043423S1522
03B12314B05407031ES1S2

2S43041B63222S241.6 3340
SB16314730515231450B13
03S1261480S4070E1SS1S2
B1C.7 405B21S2S1S0541704
BS27S274C334S16272372S
41B3SSSC474B454S52733B
03ei2il4B0S4C70SlS31S2

4 7 2 3 2 2 3 a u 1 4 0 u 3 4 a 3 E 1 c 2 2

6 1 0 7 4 0 c E 2 1 E 2 £ 1 S C e u. 1 7 0 u

1 2 7 0 3 7 2 3 7 S 1 5 1 B 1 / 2 5 S 0 7 3

2 5 4 3 0 4 1 E 6 3 2 2 c 5 2 u 1 8 3 3 u 0

4 7 2 5 2 2 3 B n 1 4 0 u 3 u. p 3 S 1 5 2 2

8 5 2 7 E 2 7 u 6 3 B i± a 1 a 9 7 2 3 7 2 c

4 1 E 3 B 6 5 6 4 9
i_ 8 u c u i 2 7 3 3 i

472S223B414043423S1S22
03B12E14805407061ES1S2
25430416E32225241S3340
4725223B414043423S1522
8527B274C384S1B27237 2 E
41B3BE50474B454ES272SB

hand

85-A

Figure 7.E L_cal ciiscancas Fcr scrip- rsccsrsit-an

85-B

20 22 17 16 12 14 11 IE IE 13 14 12 E 8 5 8 5 13 10 15 14 10
IB 17 13 IS 13 10 11 10 10 12 IS 10 • S 3 10 4

n 11 13 12 7 2 10 5 2 17 13 e 7 3 10 3 3
11 10 S 13 B 4 10 9 S E 13 3 7 3 10 3 3
475E344SBE404342
0331231483040705

10 i c 1 — 10 11
u 1C ll a 1C E

3 7 s 14 u S
u —• 5 3 _• u

1 s S 1 3 2

25 25 14 12 n 11 B 20 10 a S

23 IS 10 10 7 7 11 17 14 7 —j

IB 10 Q u E 12 10 14 i_ ~ 3 B

IS >
3 10 14 "i 14 11 3 _• s 10

12 E 5 1C 10 s 13 e 1 u 12 c

4 1 7 4 7 B E 1 c 12 4 B

0 3 E 1 2 E 1 4 8 5 0 u

6 "_ 11 7 11 12 11 13 B 11
3 12 S 12 S 14 11 7 12 5

L4 E 11 7 12 S 5 12 S 10
.2 5 15 7 12 5 5 11 S 12
4 54SS3 10 47B
c"70El£51S2

25 22 IS 20 14 13 14 52 20 12 14 E 10 13 17 14 IS 51 15 50 10 10
25 20 IS 15 12 11 16* ll IE 11 10 E 12 13 IS 12 IS 15 15 15 S 12
IS 20 IS B 11 15 13 14 17 10 4 B 12 15 12 IE 11 14 14 B 15 10
IB IB 9 B 8 12 11 17 10 4 3 5 7 12 11 12 S 17 e S 11 7
IS 13 5 8 10 10 11 12 4 1 5 5 5 S S 6 9 10 5 10 7 7
12 E 3 10 9 8 12 4 0 3 11 6 12 5 15 E 12 4 5 10 5 11
41E3EES0474B4S4S5273SS

22 25 17 14 11 12 15 20 IS 10 7 3 7 B 12 14 14 17 14 14 11 11
IB 21 IS S 10 14 12 15 IB 9 3 7 5 12 12 IS 11 IS 13 5 14 9
IE 18 S 8 8 12 11 IS 10 4 3 5 7 12 14 13 10 IS 8 S 11 7
IE 13 S 8 10 10 10 12 4 1 3 5 S 12 14 S 10 10 5 10 7 7
12 6 3 10 9 e 12 4 0 3 11 6 12 10 12 7 12 4 5 10 5 11
41S3BE504748454E5272SB

hand

Figure 7.7 The first pass accumulated distances

86

top row distances of h

Figure 7.8 Segments of the top row dips

point of Bf. Gf is obtained by:

G,= MIN(D!+G,k) ,

with G0 —0. After obtaining all Git the script is recognized by backtracking the B* which

renders Gj.

d,10

d,10

ZZZ-

Figure 7.9 Cursive script recognition from directed graph

87

3.2. Single pass DTW algorithm

Fig. 7.10 illustrates another view of the cursive script recognition problem. It shows the

ideal warping paths of matching the script 'hand1 with its letter templates. Let Dkj denote the

accumulated distance at (i,j) in the local distance matrix of U and Tk. If the distance accumu

lation isallowed to go beyond template boundary, i.e. Dktl is determined by

flfc - * +MIN(MW £*,, ,DUi) ,

Dkj would be the optimal accumulated distance at (i,j,k) when comparing (Ux, U2, ..., Uf) with

all possible template concatenations up to Tk.

Fig. 7.11 shows the accumulated distances obtained by this algorithm. The Df6f4 (which

is obtained by comparing (C/Jf • • • ,Ui6) with a concatenation of A, a, and the first 4 elements

of n), is less than the distance of comparing (Ult • • • ,Ul6) with any other possible concatena

tions up to T}.

This algorithm can be thought of as a combination of the two passes of the previous algo

rithm. The script is recognized by backtracking the matching path which renders the minimum

Dj. It is very attractive because it takes only one dynamic programming pass. Since dynamic

programming is very time consuming, this algorithm should be much faster than the two-pass

DTW algorithm.

3.3. Extract templates from scripts

There is always some difference between a discrete letter and a script letter. As illustrated

in Fig. 7.5, the ligatures which link letters into a script are hard to produce when the letters are

written discretely. In both one-pass and two-pass DTW algorithms, the end point of one tem

plate and the start point of the next template are forced to be consecutive. This makes the

recognition vulnerable to the ligatures. To solve the problem, the letter templates should have

natural ligatures. This is achieved by extracting the templates from scripts. The procedure is

as follows:

87-A

22 22 IS 20 14 13 14 22 20 12 14 E 10 13 17 14 IS 21 IS 20 lC^LC
c_ cy 15 IS 12 11 IS 12 IS 11 10
IS 20 IS e 11 IS 13 14 17 10 4
IB 12 S B B 12 11 17
IE 13 3 8 10 10 11 12
12 3 3 10 S 8 12 4

41S3E650

S 12 13 IS 12 IS 15 IS IS «'12
IS 10

Sf» S3 IS 12 14 11 IS

10 4

4 1

0 3

.c -c

3

c

11

8 12 15 12 ie 11

5 7 12 11 12 S

5 5 8

i 12 5 12 £ 12
6 4 5 4 S 5

ii\y.\s e 2 10 =10 7 7

^5 10 5 11
s s

IS 17 12 15 12 10 11 10 10 12 15 10
11 13 12 7 5 10 5 S 17 13 S 7

11 10 S 12 B 4 10 3 2 *8 12 3

8 S 5 6 5 13 10 13 14 10
B 3 10 ""10 7 S 17 10 11
3 1C v3 S 4 10 12 5 10 6
7 3 10 3876 14 45

4i47E~S34
CS1S51E2

2 S o

0 3 S 1 8 5 0

22 25 17 14 11 12 15 20 13 10 7

18 21 15 5 10 14 12 IS 18 3 3'

IS 18 3 e 8 12 11 IB 10 4^,3
IS 13 5 6 10 10 10 12 4 _y»l S
12 S 3 10 S B 12 4^0 3 11
4 1 B 3 E E 5 0^4 7 4

25 23 14 13 7 ll^B 17 20 10
22 IB 10 10 >7—7 11 17 14 7

3 . 12 10 14 .11

5 14 11 3

S 13 S 1

B S 1 5

E 1 4 e

IS 10

IS 7 3

12 6^3
4^1^7
0 3 B

•* S
10 14

10 10

4 7

1 2

7

2
u.

12

3

7

2

8

12
u

0

hand

,3 7 8 12 14 14 17 1
7 S 12 12 IB 11 IS 13

S 7 12 14 13 10 18

5 3 12 14 3

8 12 10 12 7
8 4 5 4 B

14 11 11

5 14 5

11

7

5

6

10 14

8 12

a 4

4 0

10 10 11

B 11 7

13 6

11

12

12

7

7

E

E

e

10 10 5

12 4 5 10

5 2 7 3

8

10

8 IS 14 IB 12

11 12 11 13
8 14 11 7

12 S E

13 5 E

£ 3 10

1 5 5

13

11

4
i

6

12

E

£

7

E

7

7

11

6

8

11

8

10

12

8

2

Figure 7.10 The cpt.mai giccal matching path

87-B

2S 27 22 24 ie 17 IB 25 25 20 22 14 12 22 25 23 24 30 30 24 25 25
2S 20 20 12 IS 15 20 24 22 IS 13 14 20 21 27 21 25 30 5S 31 24 23
IS lo 20 12 li IS 18 20 gi IS 12 IS 14 22 21 2S 25 25 20 24 31 31
IS 21 12 12 12 IS 17 23 IB 12 11 12 IS 20 21 24 22 31 24 24 23 5B
IE 15 S 12 14 15 IS 20 12 S 13 13 17 IS 20 22 25 25 51 25 23 20
12 "i 7 14 £0 15 io 12 e 11 IS 22 22 IS 24 25 25 20 21 55 30 26
4 5 11 14 IS 12 IS 6 12 12 22 22 IS 20 20 25 27 IS 25 25 24 22

20 22 17 IS 15 14 11 17 25 22 22 22 £2 25 12 IS IS 54 £5 55 32 31
IS 17 12 IS 15 10 IS IS 12 21 25 21 27 20 21 IS 51 53 25 22 31 25
11 13 12 ~7 "i 15 14 IS 52 21 IS £2 20 21 14 20 20 25 25 20 25 31
11 10 S 13 li 13 IS IS IE IS 54 50 22 14 21 12 24 24 25 21 25 24
4 7 5 10 12 14 15 20 15 17 21 IS 15 14 IE IS 21 2" 22 25 25 30
6 3 i 10 li 12 12 IE 20 £5 IE 12 11 IS IS 55 22 22 27 2~ 22 25

gs 35 gi iq 15 is is 25 25 IE 15 11 15 IS 20 22 25 20 20 30 57 23
IS il 12 13 14 15 17 21 25 17 11 IS 12 20 20 £5 £4 £S £S ES 30 30
IE 21 12 12 12 15 17 23 IB 12 11 13 IS £0 21 24 £2 21 24 24 2S 2S
IS 17 S 12 14 IS 16 £0 1£ S 12 12 17 IS 20 22 25 55 21 £5 £3 20
12 10 7 14 £0 15 £0 1£ 8 11 IS £3 £2 IS 54 55 22 20 21 25 20 35
4 3 11 14 12 13 IS 8 12 IS £2 23 13 20 20 25 57 13 25 23 34 32

25 53 14 13 7 11 8 17 £3 £1 £0 IS IS £1 £1 ££ IS £7 30 30 31 £7
£3 IS 10 10 7 7 11 IB £0 IS IB 14 IS" IS £5 IS ££ £7 £7 22 27 20
IB 10 3 4 6 12 12 17 ££ IB 12 17 17 24 17 22 23 2S 30 £5 32 33
16 7 "• 10 14 14 IS ££ 14 13 IS £1 £5 17 £2 22 27 25 25 25 31 35
12 E 3 10 IS ie 22 IS 12 15 22 55 IS IS £4 ££ ES 54 £5 22'21 37
4 1 7 10 15 16 IS 12 16 23 22 25 IS IS 20 22 25 22 22 22 33 34
0 3 S 10 12 13 1£ 1£ £0 £5 13 IS 11 IS IS ££ £0 ££ £S 27 22 2S

hand

Figure 7.11 The cne-pass accumulated-d-scances

88

(1) The user creates templates of all letters in the same way as in discrete symbol recognition.

(2) The user provides several training scripts.

(3) For each training script, the DTW is applied to match the script with templates of its

letters. For example, atraining script hand is matched with templates of h, a, n, d.

(4) If the matching result is correct, the matching path is backtracked toobtain the concatena

tion points between letters. These concatenation points decompose the training script into

letter segments. These segments are stored as new training samples oftheir letters.

(5) After obtaining several letter training samples from training scripts, the clustering pro

gram hclus is used to obtain new letter templates.

Fig. 7.12 illustrates the four letter segments extracted by matching the word 'hand* with

templates 'h', 'a', V, and 'd'. It can be seen the ligatures are extracted out with letters. Since

these ligatures are extracted by the same procedure which will be used for recognition, recogni

tion based on them should be better than the recognition based on discretely created templates.

3.4. Performance evaluation

From the experience in discrete symbol recognition, the template matching has to be pipe

lined with data acquisition for faster response. Therefore, only the slope code can be used as the

recognition feature for template matching. The program for script template matching is in fact

almost the same as the one for discrete symbol recognition, except that the Dk0 has to be set

differently.

In the first experiment, the performances of both two-pass and one-pass DTW algorithms

were tested over 130 scripts. These scripts were carefully written with lines on tablet. However,

the recognition rates of both algorithmswere very poor, about 50%.

In the second experiment, the normalized y coordinate was used as an additional recogni

tion feature and the local distance was changed to

*./ = ^.r-r,ti + L(V9jr-T.ti) .

The y coordinate normalization is defined as illustrated in Fig. 7.13. 16 levels are used to make

89

Figure 7.12 Extract templates from script

the y coordinate have the same weight in the local distance as the slope code. However, the

experimental results showed that the recognition rates of both DTW algorithms could be

improved to only 60%.

Figure 7.13 Y coordinate quantization

upper

baseline

lower
baseline

90

It was found that the short templates, i.e. templates like V and V which have few sample

points, always caused recognition errors. This fact suggests that the accumulated distance

should be normalized.

The way the cursive script accumulated distance is normalized is shown in Fig. 7.14. In

the two-pass DTW algorithm, the top row distance is normalized to the maximum of the tem

plate length and the segment length. In the one-pass DTW algorithm, when MIN D* tt is COm-

pared with A-1,1 *° determine whether to allow concatenation, the D*jt is normalized to

MAX((E «'p)i«-l) and the Z>£_M is normalized to
{pi T*it *n Dk l path)

MAX((E /p)+l,t—1). The reason for these normalizations is the same as
{p:T>i$*»Dkk path)

those discussed in chapter 5.

However, with all the normalization effort, the recognition rates were still far from satisfac

tory. They were about 68%.

Although the results of these experiments were very disappointing, it was found that the

behaviors and performances of the one-pass DTW matching and the two-pass DTW matching

were very similar. This implies that the one-pass DTW algorithm can replace the two-pass

DTW algorithm.

4. Syntax-directed template matching

The unsatisfactory recognition results were caused by two problems. First, from experi

ments conducted in chapter 3, DTW template matching alone could achieve only 92% recogni

tion rate for cursive lower case letters. If a script contains four letters, the possibility it would

be recognized is (0.92)4 = 72%. Second, the boundaries between letters in a script are not expli

cit. The script 'hand1 can be easily recognized as 'hewd' as shown in Fig. 7.15.

Because of these two problems, the unknown script is usually recognized as a word which

does not make any sense. For example, 'back' is recognized as 'fach' and 'gun' is recognized as

'grur'.

D3/MAX(J3,L3)
D2/MAX(J2,L2)
Dl/MAX(Jl,Ll)

(a) two-pass DTW

1B» J3

L4

/ /*~lS

Ji -p*

Ll

D4/MAX(J2+1,L4)
D2/MAX(J1+J2,LH-L2)

(b) one-pass DTW

91

Figure 7.14 Distance normalization in script recognition

An effort was made to solve these problems by requiring that the output of the recognizer

mustbe syntactically correct. Let STRktJ- denote the template concatenation up to (i,j,k) in the

local distance matrix. (In Fig. 7.11, the STRt^ is "An".) To force the recognition result to be

an allowed word, the syntax check could be performed at the final stage:

U= ARGMIN Dkjk .
{fr.STRk kit in dictionary) '

However, this method has one serious problem. It is too late to find the word is wrong. For

example, suppose the unknown is 'hand' and somehow the best concatenation ended at 'd' is

'hewd'. Although 'hewd' is determined to be incorrect, there is no way to recover the correct

92

Figure 7.15 Misrecognition due to no explicit endpoints

answer. It would be better if the 'hew' can be prevented at the concatenation stage.

A better algorithm is as follows. In the one-pass DTW algorithm, the concatenation hap

pens at (i,l,k) only when

AtM > MIN Dkt .

Once this is true, the Tk is concatenated with STR?n, 7 = ARGMINDk tk. Therefore, the syn-

tax check can be performed by checking whether Tk is allowed to be concatenated with STR7-.

In other words, the concatenation can happen only when

->*_ltl > MIN Dk'jk. .
{*': T* «-» concatenate withSTR* l A '

1,/*

Under the syntax check, the concatenation at (8,1,4) in Fig. 7.11, although the concatena

tion provides less distance, can not happen because n never occurs after A in all vocabulary

words.

To facilitate the implementation, in the training phase, the syntax of all allowed words are

constructed as a tree. Fig. 7.16 illustrates the tree for a vocabulary { ol, andy, anny, bo, bob,

dave, dean, emma, emmy }. It can be seen that each node in the syntax tree is a permissive

prefix. In the recognition phase, the syntax check algorithm forces each STRkj at a node.

Experimental results showed that the syntax check works extremely well. It boosts the

recognition rate to 98%. Since the recognition rate is so high, the slope sequence alone was

A

L N

/\
D N

/ \
Y Y

B D

0 E A

1 / \
B A V

/ \
N E

E

I
M

M

/\
A Y

93

Figure 7.16 Syntax tree

tried on somesloppyscripts of various sizes. The recognition accuracy is always above 90%.

5. Improving the syntax-directed algorithm

Although the syntax directed single-pass DTW algorithm works very well for "regular"

vocabularies, it has four limitations.

(1) For each template, this algorithm only gives similarity between the unknown script and

the best matching of words which end with its letter. This algorithm does not provide the

similarities between the unknown script and other words. For example, if both 'fell' and

'bell' are in vocabulary and the DTW computes that 'bell' is the best word ended at '/',

there is no way to tell what is the distance between the script and 'fell'.

(2) If the prefix of a word is eliminated, the word has no chance to be recovered. This

phenomena can be illustrated in Fig. 7.17. Suppose the 'b' and '/' m Fig. 7.17 are two

other templates along with the templates in Fig. 7.5. Suppose there are only two words

{bad, fan} in the vocabulary. Although the distance between the script 'bad' in Fig. 7.17

and the concatenation of 'b', 'a', 'a" is less than the concatenation of '/', 'a', V, it will be

recognized as 'fan' by the syntax-directed algorithm. This is because the distance between

the 'b' in 'bad' and the '6' template is worse than the distance between it and the '/' tem

plate. This forces the 'a' to concatenate with the '/' and the word 'bad' has no chance of

being evaluated again.

94

Figure 7.17 Error due to bad start of a script

(3) The syntax check only guarantees the final concatenation is a permissive prefix instead ofa

complete word. For example, if both 'home' and 'hem' are in vocabulary, the algorithm

may come up with that the best concatenation ended by 'm' is 'horn' instead of 'hem'.

Even though 'horn' is not a word in vocabulary.

(4) If normalized y coordinate are used with slope code for matching, unless the user carefully

controls the sizes of the letters, the recognition rate does not differ much from using slope

code alone. However, the computational load is much higher and real-time matching can

not be performed. Therefore only the slope can be used for template matching. But, the

slope sequence can not differentiate some letters, like (a, d), (b, f), and (e, /), well.

In order to explore solutions of these limitations, a "tough" vocabulary was created which

contains {feel, fell, bell, flea, fled, bled). The syntax directed one-pass DTW algorithm has

demonstrated poor performance when recognizing these words.

5.1. Playback

To overcome the first and second limitation, it has been tried to match the unknown script

with each template backwards. As illustrated in Fig. 7.18, the playback matching starts from Uj

and ends at Ux. The distance accumulation computation with Tk starts from T** and ends at

Tx. The concatenation of the playback matching is directed by another syntax tree which is

formed by words in vocabulary but reversely spelled.

K

Tl

95

A A A A

K

Tj

1

Ti

1

Tj

Ui Ui-i
(a)

B

D N M

N N M B

E

(b)

]
U2 Ul

N E

B M

E M

Figure 7.18 Playback matching of script

From playback matching, three new clues can be obtained.

(l) For words ending with the same letter but starting with different letters, the playback

matching can reveal the distances of both. For example, the distance between the unk

nown script and the word 'fell' can come out at / and the distance between the unknown

96

script and word 'bell' can come out at bin playback matching.

(2) Words which are eliminated due to a "bad" prefix can be recovered. This is because the

structure of the syntax tree for playback matching is completely different from forward

matching.

(3) DTW is not a reciprocal procedure. The result of playback gives a distance from another
point of view.

Experimental result showed that for the "tough" vocabulary, the playback matching sub

stantially improves the first three limitations of forward matching and the recognition rate is

increased to 75%. However, the inadequacy of slope sequence still degrades the recognition rate.

One drawback of the playback matching is that it can not start until the whole script is
finished, and hence doubles the recognition time.

5.2. Profile check

It was found that the heights of letters which can not be distinguished well by the slope

sequence are quite different. Therefore, the weakness of slope sequence may be corrected by

checking the profile of a script. Two algorithms have been tried for this purpose.

As shown in Fig. 7.19, the profile of a script letter was divided into four types: a-type, 6-

type, /-type, and y-type. With the types of all letters, a profile string is assigned to each word.

For example, the profile string for bled is(bbab) and the profile string for fled isffba b).

Z±

Figure 7.19 Profile types

To check the profile, the baselines of the unknown script must be first determined. Then

the baselines are used to determine the profile type of each letter. If the profile string of a word

97

is not the same as the profile string of the unknown, that word is eliminated. For example, the

script bled can notbe recognized as fled if its profile string is detected as (b ba b).

To determine the baselines, Berthod proposed in algorithm 2 to use local Y-maximum and

Y-minimum. Assume there are N local Y-maximum in a script,-the upper baseline is at the _Y
2

Y-maximum. The lower baseline is obtained by the same procedure but applied to the local Y-

minimum. Burr proposed in algorithm 3 to use the Y-histogram. The upper and lower base

lines are at the first two points in the histogram whose values are 75% of the histogram max

imum. Both algorithms have been tried out and, unfortunately, the experimental results showed

that no fixed threshold (like AT

2
or 75%) could work well over a widerange of scripts.

Since the baselines can not be obtained reliably, another possibility is to use a profile tran

sition type instead of profile type to characterize the profile. As shown in Fig. 7.20, 9 profile

transition types were defined: d (pull up), q(pull down), p (push up), b(push down), / (shift up),

\ (shift down), < (expand), > (shrink), and - (no change). These transition types are determined

by comparing the Y-maximum and Y-minimum of a letter with the TU (top upper), TL (top

lower), BU (bottom upper), and BL (bottom lower) thresholds of the preceding letter as illus

trated in Fig. 7.20. These thresholds are set at 1/4 of its height above or below its Y-maximum

or Y-minimum.

With these profile transition types, a new profile string can be assigned to each word in

vocabulary. For example, the string for bled is (- b d) and the string for fled is (p b d). The new

profile string is used in the same way as before. It eliminates words whose profile string is not

the same as the unknown script. For example, suppose 'fled' is chosen as the word which, from

all words ended by d, matches the unknown script best. If it is found that the profile string of

the concatenation for 'fled' is (• b d), then 'fled' would not be considered since its profile string

should be (- b d).

This algorithm works better than the baseline algorithm because it uses the heights of

adjacent letters rather than the whole script. It is easier for a user to do "local" height control

rather than "global" control.

TU.

TL-

BU.

BL.
VvV\ -^K ^

same pull up exp

TU

TU,
push down same

BL.
shrink

push up shift up pull up

Figure 7.20 Profile transitions

98

push down

same

Experimental result showed that the effects of this algorithm are mixed. On one hand, if

the user can control the script profile well, this algorithm effectively compensates the weakness of

slope sequence. The recognition rate for the "tough" vocabulary is enhanced to 90%. On the

other hand, if the user does not control the script profile well, the profile check results in recogni

tion error because the profile strings do not match.

99

If there are no printed lines on the tablet, it is not easy to control the profile. However, if

there are printed lines on the tablet, it is not hard to control the profile after a short practice.

The rule of thumb is to stretch the Y-maximum and Y-minimum of each letter to the lines as

shown in Fig. 7.21.

Figure 7.21 Avoid profile errors

Since the profile check needs the maximum and minimum y coordinate of each letter seg

ment in a script, the template matching program was changed and the maximum and minimum

y coordinate associated with each matching path are obtained in a similar way as the /,ty in

SC-DTW (chapter 3). This modification achieves a faster response by doing as much computa

tion as possible in the sampling period.

6. Revisit two-pass DTW algorithm

Although the playback matching and the profile check significantly increase the recognition

rate of ambiguous scripts, they also increase the execution time of the algorithm. In addition,

the matching distance of each word is needed in order to determine the error source and design a

disambiguation scheme.

To obtain the matching distance of each word, those local distance matrices which are

obtained from the first pass of the two-pass DTW algorithm, i.e. the matrices in Fig. 7.7, were

reviewed again.

The local distance matrices are computed in parallel with data acquisition. They are avail

able right after the script is finished. Instead of using the the second pass of the two-pass DTW

algorithm presented before, the following algorithm was used to obtain the distance of each

100

word.

Let T(l) denote all templates for the Ith letter. For word W^(LXL2 •••Lw) (Lu is a

letter), a depth first distance concatenation is performed starting from T(LW) to T(LX). During

concatenation, a "grace period" is allowed between letters in order to solve the ligature

problem. The profile transition is also checked. Once a violation is found, that concatena

tion is eliminated. Ifall concatenations end up too far from Ult or get to Ux before evaluating

the first letter (T(LX)), this word is alsoeliminated.

For example, suppose the vocabulary is {an, and, hanh, hand }, and five templates, two a

and one d, A, and n, are available. Suppose the concatenation graphs for these words are as

illustrated in Fig. 7.22. The graph ofthe word 'an' isnot acceptable because the transition from

V to 'a' is (b) but it should be (-). The word 'and' is eliminated because it ends too far from

the script start point. The word 'hand' is chosen as the winner because it has the minimum con

catenation distance.

Experimental results showed that the accuracy of the new syntax directed concatenation

algorithm is as good as the syntax directed matching algorithm with playback matching and

profile check. However, because there is no playback matching, the response time is improved

significantly.

After the profile check, there are not many words left. For each word, not too many

branches are expected unless the user has many templates for a letter. The required computa

tion time is not excessive.

7. Profile check mark

With the profile check, the user has to be careful about the relative heights of letters in a

script. Sometimes this extra attention is annoying because most words in a regular vocabulary

can be recognized without profile check. In the algorithm presented in the last section, since the

distance evaluation and profile check are performed on a word-by-word basis, the profile check

need not be performed over all vocabulary words.

101

n,10

an i i i i i i i i i i *i i i t—r-

^ 7
a,14 _, d

a,3 d,10

and i i i i i i j i i i i "n i i r I

^ - n,5 d

a,3 h,8

»/ \ j \
hanh i i i i i i i i i i i r I i i i r i i i i r

h,8 ^ b - n,8 . d
< < <—

a,3 d,10

HAND li ' ' I I ill ' I ilj ' ' '.'' ' 1—T1-

h,8 b . - n,5 ^ d

Figure 7.22 Modified two-pass DTW algorithm

As such, it is up to the user to decide which words need the profile check. For those ambi

guous words, the user just puts a profile check mark after the words in the vocabulary file. In

the recognition phase, the profile check is only performed for words with the check mark.

8. Delayed strokes

The delayed strokes are classified into three categories: ., —, and / as illustrated in Fig

7.23. With this definition, a stroke string can be assigned to each word in the vocabulary. For

example, the string of the word 'quit' is (. —) and the string of the word 'exit' is (/ . —).

During recognition, the "body", i.e. first stroke, of the unknown script is first matched with

the first stroke of each template using the single-pass DTW algorithm discussed above. Then,

102

the type of each delayed stroke is determined by a simple criterion as illustrated in Fig.

7.23. These types are then rearranged as a stroke string in ascending order of the x coordi

nate of the middle point of each delayed stroke. This stroke string is used to eliminate candi

dates which do not have the same stroke string. After the elimination, the one with the

minimum template matching distance isselected as the word of thescript.

DOT n. TH

W

BAR

A H < 0.3' AND
-*,„^" W < 0.3'

H/W < 1/2

SLASH / H h/w >1/2

Figure 7.23 Recognition of delayed strokes

For example, suppose the vocabulary is { erect, excel }. A user's script erect can not be

recognized as excel if the second stroke is correctly recognized. This is because the stroke string

of erect is (—) and the stroke string of excel is (/).

Notice that this algorithm allows the user to write the delayed strokes in arbitrary order,

as long as he finishes the script body first.

9. Implementation

Because of the limitation of the size of a RAM resident program, the cursive script recogni

tion program is not included in the TSR as in the discrete symbol recognition case. Instead, a

dedicated program cscript is provided for algorithm experiment. In cscript, four commands are

103

provided: vocab, train, recog, and analy. Vocab is used to list all words in vocabulary. The

usage of the other-three commands are explained in next section.

10. Adaptive training

Based on the "train-on-error" approach, the system can achieve a high recognition rate if

the user performs training when recognition errors occur. The adaptive training procedure is

similar to the discrete symbol recognition case as shown in Fig. 6.6. Following is a brief

description.

(1) Create templates of all letters using htrain and hclus as discussed in last chapter. (The

hdisam is not needed because the disambiguation rules are not used in cursive script recog

nition.)

(2) For each vocabulary, create a file which contains all the words.

(3) If the user wants to obtain letter templates which are extracted from words in the vocabu

lary, he can use the train command in cscript. After new letter training samples are

extracted from training scripts, use hclus to create templates.

(4) After the initial training, load the templates and vocabulary. Then, use the recog com

mand to start testing.

(5) If a recognition error occurs, the user can first examine whether the error is due to the

insufficiency of the slope sequence, e.g. fell is recognized as bell or feel. If this is the case,

the user should put a profile check mark after those ambiguous words in the vocabulary

file. Then, be careful about the profile when writing those words. If the cause of the error

is not obvious, the user can use the analy command to compare the just written script with

suspicious words. The analy can show the breakdown of the script and the matching dis

tance of each segmented letter. If a letter in this script is quite different from its templates,

the user should use the 'train -adapt' command to extract these letter? out and store them

as new letter training samples.

104

(6) After obtaining several new letter training samples, use Ac/ti« to consolidate these training

samples and create new templates.

11. Conclusion

In this chapter, an algorithm was successfully developed which can recognize cursive scripts

based on templates of letters. The algorithm is an extension of the DTW matching algorithm

used for discrete symbol recognition. Because of the wide variations of scripts, syntax informa

tion is used to achieve a high recognition rate. The experimental results showed that with syn

tax check, the high recognition accuracy can be achieved without too much training.

Although the simple syntax-directed one-pass DTW matching algorithm works well for

regular words, it does notwork well for ambiguous words. Playback matching and profile check

ing were tried to remedy the problem. However, these two remedies can not satisfactorily

solve the problem.

It is finally realized that the best way to recognize a script is to obtain and compare the

matching distance between an unknown script and each vocabulary word. This is done by

replacing the dynamic programming concatenation algorithm in the second stage of the original

two-pass DTW algorithm by a simple heuristic concatenation algorithm. By allowing grace

period in concatenation and only performing profile check on specified words, not only better

recognition rate is achieved, but also fewer restrictions are put on the user.

This algorithm provides almost 100% recognition rate if the user performs the adaptive

training properly. It was implemented in a package that a user can easily do the adaptive train

ing. In term of recognition speed, the response time of our IBM PC implementation is about 0.3

seconds per vocabulary word.

References

1. P. Mermelstein and M. Eden, "Experiments on Computer Recognition of Connected

Handwritten Words," Information and Control, pp. 255-270, 1964.

105

2. M. Eden, "Handwriting and Pattern Recognition," IRE Trans. Information Theory, vol.

IT-8, pp. 160-166,1962.

3. M. Berthod and S. Ahyan, "On-Line Cursive Script Recognition : A Structured Approach

With Learning," Proc. International Conference on Pattern Recognition, 1980.

4. B. Burr, "A Normalizing Transformation For Cursive Script Recognition," Proc. IEEE

Conference on Image Processing and Pattern Recognition, 1982.

5. C. C. Tappert, "Cursive Script Recognition by Elastic Matching," IBM J. R &D, pp. 765-

771, Noverber, 1982.

CHAPTER 8

INTEGRATION WITH SPEECH RECOGNITION

Because of the ability to tolerate variations between two sequential patterns, the DTW

matching algorithm has played a major role in the success ofboth the discrete symbol recogni

tion and the cursive script recognition. However, the large number of computations required by

the DTW severely limit the number of templates which can be matched within a reasonable

response time. In this chapter, a DTW processor, which isoriginally designed for speech recogni

tion, will be used to solve this problem. Since the handwriting recognition algorithm is so simi

lar to the speech recognition algorithm, the implementation of the OHR on a speech recognition

system will be discussed.

1. MARA speech recognition system

MARA is a speech recognition system built at UCB which uses a specially designed

integrated circuit for DTW.1 Fig. 8.1 shows its architecture. It is a single board system which is

plugged in SUN workstation. To use it, the user must first specify a vocabulary and give train

ing utterances of each word in vocabulary. These training utterances are used to create tem

plates. During recognition, all trained templates are first downloaded to the template RAM in

MARA. Then, the system monitors whether an utterance is spoken. Once an utterance is

detected, its feature sequence is sent to the DTW processor for distance computation until the

end point is detected.

The DTW matching for speech works as follows. The recognition feature used in MARA is

frame sequence. A frame consists of digitized short time spectrum of 16 bands. Let Uf denote the

ith frame of the unknown utterance and T}- as the jth frame of a template,

Ti = (^/,o> Tj,i> —^V.is)-

The local distance between fy and T3- is defined as:

ki =kl!(Vitk-Tjtkf .
The accumulated distance is computed in the same way as in OHR, i.e.

106

1
Filter Bank

1
Multibus

Interface

Template

Memory

address

Scratch-Pad

Memory

107

1
Searial Ports

DTW

processor

TopRo^ir

Distance i

Figure 8.1 MARA architecture

Diti« ditrrMIN(Di^i,Di^ii.l,DitHl).

Once a frame of the unknown utterance is sent to it, the whole column of accumulated distances

is updated as depicted in Fig. 5.2. This computation is carried column by column until the end

point of the utterance is detected. Then, the template with the minimum accumulated distance

is recognized as the unknown. The appropriate keystrokes are then sent to the application pro

gram.

In the DTW matching, although there are tremendous number of computations, it is found

that the computations are very repetitive. For this type of computation, an ASIC (application-

specific integrated circuit) often obtains several orders of magnitude better performance over a

general purpose microprocessor.

The DTW processor is designed to take advantage of the parallelism and regularity in both

the local distance and the accumulated distance computation. Its architecture is as illustrated in

Fig. 8.2. There are 4 adders to handle the local distance computation, 3 comparators to handle

the accumulated distance selection, another adder to handle distance accumulation, a subsystem

to keep track of the effective path length for distance normalization, and a subsystem to handle

108

the addresses for data I/O. For each data fetch, a template frame together with its accumulated

distance and effective path length are all brought in for parallel processing. Because of this

architecture, a new accumulated distance and its effective path length can be updated in 0.8ps

when operating with 5 MHz clock.

Template frame

I
Subtarctor

3=

Subtarctor

—i
Adder

Adder

Adder

ay

i>>i-lj-l TO

Comparator Comparator

MUX

MUX

3E
t'i-l,j-l li-lj

J Unknown frame

Subtarctor Subtarctor

I
Adder

ID

Adder

~~~T~
Dy-i

Comparator

i iJ-l
—35—

Incremented
3K

A.

J

bottom rqw
preset

Figure 8.2 DTW processor architecture

It has been demonstrated that MARA can handle a 1000 word vocabulary in real-time.

Implementation of the same algorithm on a VAX750 can only handle 20 words in real-time.



109

In each column computation, the bottom row distance (Do) of each template is set by the

microprocessor. This feature makes the DTW processor be able to handle both the single-pass

and two-pass DTW algorithms for connected speech recognition.

2. Using MARA for OHR

2.1. Discrete symbols

After seeing the similarity between the speech recognition algorithm and handwriting

recognition algorithm, it is apparent that they can share some hardware, especially the DTW

processor. To use the DTW processor for handwriting recognition, the first problem encountered

is how to use it to compute the local distances.

If the recognition feature is normalized x or y coordinate, the x or y coordinate can be

treated as data of the first band. By setting the data of other bands to 0, the local distance

obtained from the DTW processor:

is just the local distance needed.

If the recognition feature is slope code, the implementation is not so straight forward. This

is because the distance of two slope codes is measured by Lee Metric which is not the same as the

Euclidean distance computed by the processor.

However, the Lee Metric can be made compatible with the Euclidean distance by convert

ing the slope code into a spectral format. Fig. 8.3 shows the conversion table. Sending the spec

tral format of two slope codes to the DTW processor, the local distance obtained from it is

exactly the Lee Metric. For example, the spectral format of slope code 2 is

(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) ,

and the spectral format of the slope code 14 is

( 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ) .

The local distance computed from DTW processor is



*-16

*-0
4 ,

which is exactly theLee Metric distance between slope code 2 and 14.

SPECTRUM

0123456789ABCDEF

S

L

O

P

E

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0000000000000000

1 000000000000000

1 100000000000000

1 1 10000000000000

1111 000000000000

1111 100000000000

11111 10000000000

111111 1000000000

111 1 1 1 1100000000

0111111 100000000

0011111 100000000

0001 111 100000000

00001 1 1 100000000

000001 1 100000000

0000001 100000000

0000000100000000

110

Figure 8.3 Convert slope code to spectral format

This code conversion makes the DTW processor available for OHR without any circuitry

change. The sampling period of the tablet is 10ms. The DTW processor computes one accumu

lated distance in 0.8/is. Therefore, 12500 sample points can be handled within sampling period.

A typical template has around 15 sample points. As such, 800 templates can be handled in real

time by one DTW processor. This numbershould be adequate for many applications.

After solving the local distance computation problem, the OHR was implemented on

MARA is as follows. The tablet is connected to a serial port of MARA. An interrupt service



Ill

routme is installed to handle the data acquisition. The microprocessor extracts the recognition

features and converts them to the right format.

If a multi-stroke symbol is treated as a single stroke symbol as shown in Fig. 8.4, if the

disambiguation algorithm need not be performed, MARA can be used for OHR without any

change. In this case, a spectral code of a slope is treated as a frame. A symbol is treated as an

utterance. The symbol templates can be stored and matched in the exactly same way as the

utterance templates in speech recognition.

* 1 il nl nl nl nl nl nl nl ot nl nl nl nl ni nl a

Template K

nl nl nl ol il il il il nl nl nl nl nl nl nl n

Jl nl nl nl nl nl nl il il nl nl nl nl nl nl nl n

Template 1

il il il nl nl nl nl nl nl nl nl nl nl nl nl n

Figure 8.4 Use MARA for OHR with no disambiguation

However, if the disambiguation must be performed, the MARA has to be slightly modified

to use the DTW processor for disambiguation. The template memory should be divided into

several blocks as shown in Fig. 8.5. For different distance functions, the microprocessor tells the

DTW processor where to get the template data. For example, at the template matching stage,

the microprocessor tells the DTW processor to get templates from the 1st stroke block of slope

feature. When the second stroke is detected started, the microprocessor tells the DTW processor

to take templates from the 2nd stroke block of slope feature. At the disambiguation stage,

according to the disambiguation rules, the microprocessor sends the DTW processor the proper



112

feature sequence of the unknown symbol and also tells it which block in the template memory

should be matched with.

Stroke 3 Template 2

Stroke 2
Template 2

Template 1

.

Y

Stroke 1

Template 3

Template 2

Template 1

Stroke 3 Template 2
•

Stroke 2
Template 2

Template 1X

Stroke 1

Template 3

Template 2

Template 1

Stroke 3 Template 2

s

Stroke 2
Template 2

Template 1
L

0

P

E

Stroke 1

Template 3

Template 2

Template 1

Figure 8.5 Organization of template memory

2.2. Cursive script

For cursive script recognition, because there is no disambiguation, the templates are

arranged as in Fig. 8.4. Under this arrangement, the template matching stage is essentially

identical to that in the connected speech recognition part of MARA.

After template matching, the microprocessor computes the final distance of each word in

vocabulary and does the profile check. For the profile check, the y extrema of each path are

required. To facilitate this computation, circuitry can be added to the DTW processor such that



113

the y extrema of each path are obtained in a similar way as the effective path length. With this

implementation, the y extrema are available to the microprocessor right after template match

ing. This saves the microprocessor a substantial amount of time.

3. Conclusion

Although the OHR has not been put on the latest version of MARA, the same integration

idea has been tried out on MARILYN, which is the preceding version of MARA with similar

architecture.2 It works very well and impressively fast. It is very exciting to see both speech and

handwriting can be handled by one hardware accelerator. This implies that the future PC can

have two new user interfacedimensions by addingone recognition system.

References

1. R. Kavaler, "The Design and Evaluation of a Speech Recognition System for Engineering

Workstations," Ph.D Thesis, University of California, Berkeley, 1986.

2. D. Mintz, An Implementation ofA Speech Recognition System, University of California,

Berkeley, 1983.



CHAPTER 9

SUMMARY AND CONCLUSIONS

1. Algorithm

In this project, two new algorithms have been successfully-developed for a trainable on-line

handwriting recognition system. The first one is for discrete symbols. The second one is for

sive scripts.

cur-

1.1. Discrete Symbol Recognition

Fig. 9.1 shows the block diagram of the algorithm for discrete symbol recognition. The

recognition is performed by matching the x, y, and slope sequences of an unknown symbol

against trained symbol templates. There are always inevitable variations in our writings. This

problem was solved by using the dynamic time warping (DTW) technique. Experimental result

showed that this technique can absorb variations very well.

training
samples

unknown

symbol

extraction

prematching

templates

prematching

more

training

clustering disambiguation

rules

disambiguation

improve

writing

recognized

Figure 9.1 Discrete Symbol Recognition

Without good templates, it is impossible to achieve high recognition rate. The only way to

obtain good templates is to ask the user for adequate training samples. In order not to make the

114



115

training tedious, the training samples are collected in two phases. During the initial training

phase, the user can provide a few training samples which he feels cover all his writing

variations. During .the recognition phase, if a recognition error happens, the user can extract

the misrecognized writing out and use it as a training sample ofits symbol. The training sam

ples are consolidated by a clustering algorithm to create templates.

Although the DTW algorithm is very good at absorbing writing variations, it has severe

limitations in differentiating ambiguous symbols. To solve the problem, the recognition is

divided into two stages. In the prematching stage, the slope matching is performed. If the

prematching can not determine a definite winner, the disambiguation is performed on all of the

top candidates.

The disambiguation algorithm is based on the assumption that any two ambiguous tem

plates can be effectively differentiated by matching either x or y or slope sequence of one of the

strokes. To determine the disambiguation rule, i.e. which distance function can differentiate

best, the cluster members of both templates are used to test the performances of all distance

functions. The one with the best performance is selected. In the recognition phase, the disambi

guation functions of all the prematching top candidates are asked to cast their votes. The tem

plate which gets the most votes is the final winner.

With appropriate adaptive training, this algorithm can virtually recognize any discrete

symbol with near 100% accuracy.

1.2. Cursive Script Recognition

Fig. 9.2 shows the block diagram of the cursive script recognition algorithm. The recogni

tion is accomplished through three stages. The first stage is matching. By slightly modifying

the DTWalgorithm for discrete symbols, all possible letter segments in the unknown script and

their distances can be found.

In the second stage letters are connected. For each word in the specified vocabulary, its

likelihood is determined by a heuristic search and concatenation algorithm. It has been shown



letter
training
samples

unknown
script

letter

extraction

prematching clustering

1

templates vocabulary

_____ > < r

prematching —* concatenation

more

training
«— error analysis

improve

writing

116

Figure 9.2 Cursive Script Recognition

that with appropriate concatenation relaxation, this algorithm works as well as the time-

consuming dynamic programming concatenation.

The third stage is disambiguation. Two features are used for this purpose. One is the

delayed strokes, i.e. the dot in i,j, the bar in t, and the slash in *.. The other is the relative

letter profile. If a word does not have the same delayed strokes and profile as those of the unk

nown script, it will be rejected. The relative letter profile is used because there are some letters

which can not be accurately differentiated by the slope matching. Since the profile check requires

the user to control the relative letter height, it is only performed on words specified by the user.

To ensure the best templates can be adaptively obtained, the letter training samples are

also collected in two phases. First, the user writes each letter discretely and creates templates in

the same way as in discrete symbol recognition. Then, if a script is not correctly recognized dur

ing recognition, the letter extraction algorithm can decompose the just written script and use the

extracted segments as new training samples of their letters. With these new training samples,

the clustering algorithm can generate letter templates which are more suitable for cursive script

recognition.

If the adaptive training is correctly performed and the profile checks are appropriately set,

experimental results have shown that this algorithm can recognize scripts of a specified



117

vocabulary with almost 100% accuracy.

2. Implementation

Both the discrete symbol recognition algorithm and the cursive script recognition algo

rithm have been implemented on an IBM PC for further application exploration. Fig. 9.3 shows

the structure of the implementation. There are three levels in the system. The first level is a

tablet server. It resides in memory to provide tablet related services to application programs.

The application programs can get its services through standard PC system call. The second level

is a keyboard emulator and a mouse emulator. These emulators pass the recognized symbol

keystrokes and stylus coordinates to application programs as if these data were from the key

board and mouse. These emulators are needed because the existing software can only take input

from keyboard and mouse. The third level is utility programs. These programs are used to

facilitate the adaptive training.

application

programs

keyboard emulator

' k

mouse emulator

k

, i

pcohr

utilities

tablet service routines tablet< V

Figure 9.3 PCOHR Structure

Most of the system software is written in C with a small portion in ASSEMBLY. It runs

under MS-DOS. With a 4.77MHz 8088, the recognition speed for discrete symbol is about

100ms per template. The recognition speed for cursive script recognition is about 300ms per

template. The space needed for each template is about 200 bytes.

The DTW template matching, which used extensively in the system, is computationally

intensive. Part of the OHR system has been implemented on a dedicated DTW processor based

speech recognition system. It turns out the dedicated processor significantly improves the



118

execution of the DTW template matching and 800 templates can be handled in real time. It has

been demonstrated that the algorithms for speech recognition and handwriting recognition are so

similar that the future PC can in fact use one processor for both types ofrecognition.

3. Application

The developed system has been used for some simple application experiments. From the

limited experience, it was found that the OHR system has two essential impacts. One, it

significantly improves the entry ofsymbols which are now entered by typing astring of hard-to-

remember keystrokes. This improvement is extremely important for computerizing languages

for which keyboard is not an acceptable data entry device. Two, it significantly improves the

entry of freehand drawing. This enhancement has the potential to bring computer from text

oriented to graphics oriented, which is more natural to human being.

However, since the user can not look at the screen while he is writing, the current PC setup

can not make much use of the OHR system. The full strength of the OHR can only be revealed

when it is integrated with a notebook PC as shown in chapter 1. Hopefully the dream PC will

be available soon and all the PC users can write and sketch to their computers.

References



*** "APPENDIX: PCOHR User's Guide ***

(1) Introduction:

PCOHR is an on-line handwriting recognition system for
IBM PC. It enables a user to interface with IBM PC software
by writing and drawing on a tablet.

(2) Equipments:

. IBM PC with serial port CQM1.

. Seiko digitizing tablet.

. IBM PC Color Graphics Adapter.

. PCOHR.

(3) Set up:

. Connect Seiko tablet to C0M1.
Make sure only the 4,7,8 switches on the tablet are ON.

. Make sure all PCOHR commands are in your command path.

. Use "hinstal" to install the tablet server. Without the
server, programs can not talk with the tablet.

119



120

(4) Discrete Symbol Recognition (DSR):

. Suppose we want to train a symbol set "DEMO" which contains
D, P, 0, 6, \(*a, \(*g, NAND, NOR, and three Chinese
characters "from", "field", "good". A directory has to be
created for this symbol set. In this directory, create a
"symbol.def" file as illustrated in Fig. 1. In Fig. 1,
the first column specifies the root file name of each
symbol. The second column specifies the keystrokes of
each symbol.

D D

P P

0 0

6 6

ALPHA \(*a
GAMMA \<*g
NAND NAND

NOR NOR
FROM from
FIELD field
GOOD good

Fig. 1 Symbol.def

After "symbol.def" is specified, use "htrain" to give
training samples of the symbols. For each symbol, the
program first asks for how many training samples you are
going to give. Then, it prompts you to write each of them.
At this moment, try to decide how many writing variations
you have for this symbol and how many training samples you
would like to give for each variation. We know this is
difficult because writing a symbol is almost an unconscious
behavior. But don't worry. The PCOHR has very good
adaptive training capability. All we need now is just
some training to get the system started.

The "htrain" displays the writing trace of each training
sample. Make sure it looks OK before saving it.

Fig. 2 shows the traces of some training samples.



121

P^ess RETURN to continue

•A'
N*'; .,

Fig. 2 Writing traces of symbols



122

After giving all the training samples, use "hclus" to
group training samples into templates. If the -plot option
is specified, i.e. "hclus -plot", "hclus" displays the
templates and their cluster members. Fig. 3 shows an
example.

The clustering results are saved in the file "symbol.els" as
illustrated in Fig. 4.

After templates are created, use "hdisam" to find out the
disambiguation rules for ambiguous templates. If the -print
option is specified, i.e. "hdisam -print", "hdisam" prints
out the intermediate results.

The disambiguation results are saved in the file
"symbol.dis". Fig. 5 illustrates the file for our symbols.



Press RETURN to continue

r"^

../•••

'* ^

s •• • * • '• •••J •, ..• ... .• •..
"... .

Fig. 3 Clustering

123



SYMBOL: 0

TEMPLATE: 0.T1

MEMBER: 0.S1 0.S2 0.S3

SYMBOL: 6

TEMPLATE: 6.T1

MEMBER: 6.SI 6.S2 6.S3

SYMBOL: ALPHA

TEMPLATE: ALPHA.Tl

MEMBER: ALPHA.SI ALPHA.S2 ALPHA.S3

SYMBOL: D

TEMPLATE: D.T1

MEMBER: D.S1 D.S2 D.S3

SYMBOL: FIELD

TEMPLATE: FIELD.Tl

MEMBER: FIELD.SI FIELD.S2 FIELD.S3

SYMBOL: FROM

TEMPLATE: FROM.T1

MEMBER: FROM.SI FROM.S2 FROM.S3

SYMBOL: GAMMA

TEMPLATE: GAMMA.Tl

MEMBER: GAMMA.SI GAMMA.S2 GAMMA.S3

SYMBOL: GOOD

TEMPLATE: GOOD.T1

MEMBER: GOOD.SI GOOD.S2 GOOD.S3

SYMBOL: NAND

TEMPLATE: NAND.T1

MEMBER: NAND.SI NAND.S2 NAND.S3

SYMBOL: NOR

TEMPLATE: NOR.T1

MEMBER: NOR.SI NOR.S2 NOR.S3

SYMBOL: P

TEMPLATE: P.T1

MEMBER: P.SI P.S2 P.S3

TEMPLATE: P.T2

MEMBER: P.S7 P.S8 P.S9
TEMPLATE: P.T3

MEMBER: P.S4 P.S5 P.S6

Fig. 4 symbol.els

124



TEMPLATE: 0.T1

TEMPLATE:

0.T1 ly
6.T1

TEMPLATE: ALPHA.Tl

TEMPLATE: D.T1

TEMPLATE: FIELD.Tl

TEMPLATE:

FIELD.Tl

FROM.Tl

3y

TEMPLATE: GAMMA.Tl

TEMPLATE:

FIELD.Tl

GOOD.T1

3y FROM.Tl 3y

TEMPLATE: NAND.T1

TEMPLATE: NOR.T1

NAND.T1 lx

TEMPLATE:

D.T1 2y
P.T1

TEMPLATE: P.T2

TEMPLATE: P.T3

Fig. 5 symbol.dis

125



126

After the templates are disambiguated, they are ready for
recognition. Use "hload -dir DEMO" to download all the
templates in directory DEMO.

After the templates are downloaded, you can start your
application program and write to it !

If the system makes the same recognition error very often,
it is time to give the system more training. To do adaptive
training, you first type command "hanal -plot" to see the
traces of the just written symbol and suspicious templates.

For example, the first '6' in Fig. 6 is misrecognized as »0'.
By typing "hanal 0 6 -plot", you can see the misrecognized
•6' and the templates of '0' and '6'.

If "hanal" shows your writing is quite different from its
template and you think this writing is very common to you,
type command "htrain -adapt". "Htrain" will ask what symbol
the writing is, then extracts it out as a new training sample
of that symbol.

If your writing looks should be recognized, you can type
command "hanal 0 6 -print" to see the matching details.
Fig. 7 shows the analysis of the Fig. 6 recognition error.

The matching details usually give a very good revelation
of what is the best disambiguation rule. In Fig. 7, we can
see the slope distance function fails to make the right
recognition but the y distance function can distinguish
•0' and '6' very well.

If the disambiguation rule of the two symbols is not the
same as what you think it should be, use command
"htrain -adapt" to extract the writing out as a new
training sample of its symbol.

After obtained several new training samples, type command
"hclus" and "hdisam" to update the templates and
disambiguation rules.

If the training procedure is well performed, PCOHR can
achieve near 100% recognition rate without too much tedious
training overhead.



127

Press RETURN to continue

p

Fig. 6 A misrecognition



128

6: Slope sequence of stroke 1: Before norm: 7 After norm: 6

010

c

B

7

6

5 0
4 1
0 01
F 010
E 010

01

EFEF0F0F56767ACD

6: Y sequence of stroke 1: Before norm: 9 After norm: 5

9

A

9

8

7

5 01
3 01
1 01
0

1

2

4 01
6 10
9 101
C 01

E 01

F

FEDCBA987643210123456789A9

6: X sequence of stroke 1: Before norm;

9

A

B

D

F

D

A

7

4

2

0

1

2

4

8

A

D

F

12

01

101

101

11

01

01

01

101

012

B987654321012345689ABCDEFEDB987

26 After norm: 13



129

Slope sequence of stroke 1: Before norm: 6 After norm:

E

C

A

7

4

2

0

1

3

5

8

B

D

F

01

010

010

010

EFEF0F0F56767ACD

Y sequence of stroke 1:

01

01

01

01

01

01

101

11

01

Before norm:

5

2

1

101

FEDCBA987643210123456789A9

X sequence of stroke 1: Before norm:

8

A

C

F

D

B

8

5

2

0

1

3

5

6

8

01

01

01

101

01

101

01

01

11

01

01

3101

B987654321012345689ABCDEFEDB987

Fig. 7 Matching details from hanal

21 After norm: 12

20 After norm: 10



130

(5) DSR Limitations:

. This system is very vulnerable to slope inconsistencies.
Unconscious "hooks" at the start and end of a stroke and
"circles" in the middle of a stroke, no matter how small
they are, hurt the recognition accuracy very much. The
user should be careful not to create these small "hooks"
and "circles".

. The system is not sensitive to symbol size. A user can
write a symbol in any size. This feature, however, makes
the system not be able to distinguish symbols whose only
difference is size, e.g. 'C and 'c*.

. For symbol recognition, it takes approximately 0.1 second
per template. For "hdisam", it takes 0.6*(n+m) second to
process two clusters with n and m members.

. The symbol can not have more than 15 strokes.

. In this release, only printable keystrokes can be assigned
to a symbol.



131

(6) DSR Commands:

. htrain [syb] [-adapt]
[ks -alias]

no option: If there are symbols which do not have any
training sample, htrain will ask for it.

syb: Htrain will ask for more training samples for the
symbol "syb".

-adapt: Htrain will extract the just written symbol out
and store it as a new training sample of the symbol
"syb".

ks -alias: Htrain will ask for only one training sample of
a temporary symbol and use "ks" as its
keystrokes. This training sample is then
downloaded to the server as a new template.

( The training samples are saved as files with file name
"xxx.Sn". "xxx" is the root file name specified in
"symbol.def". "n" is a number automatically assigned. )

. hclus [-print] [-plot]

Hclus performs clustering on training samples of each symbol
in "symbol.def". The results are stored in "symbol.els".
The templates are saved as files with file name "xxx.Tn".
"xxx" is the root file name specified in "symbol.def".
"n" is a number automatically assigned.

-print: The intermediate clustering results are printed
out.

-plot: The template and members of each cluster are
plotted out.

. hdisam [tpll tpl2] [-print]

no option: Hdisam performs disambiguation for all
templates in "symbol.els". The results are
saved in "symbol.dis".

tpll tpl2: Hdisam performs disambiguation only for tpll
and tpl2. The disambiguation result is printed
out but not saved in "symbol.dis" .

-print: The intermediate disambiguation results are
printed out.

. hload -dir F00

The templates in "FOO\symbol.dis" are downloaded to the
tablet server. If "symbol.dis" does not exist, templates
in "symbol.els" are downloaded. In this case, no
disambiguation will be performed during recognition.
The "FOO\macro.def" is also downloaded for touch functions.



132

hanal [sybl] [syb2] ... [-plot] [-print]

-print: Hanal prints the detail matching paths and distances
between the just written symbol and the specified
symbol templates. The output can be redirected to
a file for reviewing.

-plot: Hanal plots the traces of the just written symbol and
the specified symbol templates.

hdsp [fl] [f2] ... [-plot] [-print]

The fl, f2 ... are file names of either training samples or
templates.

-plot: Hdsp plots the traces of the specified files,
-print: Hdsp prints the recognition features of the

specified files.



133

(7) Cursive Script Recognition (CSR):

. Because of the IBM PC system limitation, the cursive script
recognition routine is not included in the tablet server as
the discrete symbol recognition routine. Instead, it is
packed together with the training and analysis routines in
the program "cscript". To use "cscript", the first step is
to create a directory which contains templates of discrete
letters. You can create these templates by using "htrain"
and "hclus" as described in DSR.

. After these templates are created, you have to specify the
words you are going to use in a vocabulary file. Fig. 8
illustrates an example. The "*" after some words is profile
check mark which will be explained later.

Fig. 8 Vocabulary file

Suppose the letter templates are in a directory LTR and the
vocabulary file is TEST. Type command
"cscript -dir LTR -voc TEST" to get into the cursive script
recognition program.

There are four commands in cscript: vocab, recog, analy,
and train. Vocab simply prints out what words are in the
vocabulary and their stroke string and profile string.
Stroke string contains the types of delayed strokes in the
descending order of the x coordinate of the middle point.
For example, the stroke string of "exit" is (/.-), meaning
Slash, Dot, Bar. The profile string of "exit" is ( d),
meaning the profile transition from e to x is '- •, x to i
is '-' and i to t is 'd'. Fig. 9 lists the definition of
the type letters.



ymax2
TU1

ymaxl
TL1

BUI ymin2
yminl

BL1

(ymaxl-yminl)/4

134

• TY && BY

d: TX && BY

<: TX && BZ

q* TY && BZ

b:

V
>:

P:
/:

TZ

TZ

TZ

TY

TX

&& BY

&& BZ

&& BX

&& BX

&& BX

TT1

BT1

TX

TY

TZ

ymaxl + D /
yminl + D /
ymax2 > TT1
TBI < ymaxl
ymax2 < TBI

TBI - ymaxl
BB1 - yminl

; BX
< TT1 / BY
; BZ

D /
D /
ymin2 > BT1 /
BB1 < ymin2 <
• ymin2 < BB1

BT1

Fig. 9 Letter profile transition

To test the recognition, type command "recog". This
command prompts you to write the test script. When you
start writing, the proceeding dots on screen indicate
recognition is in progress. After you finish writing., the
recognized word will be printed out after a while.



135

If the script is misrecognized, you can type the command
"analy wrd" to see the intermediate results obtained from
comparing the script with the word "wrd". After
"analy wrd", the command "analy -break" plots how the script
is broken down when compared with "wrd". The command
"analy -toprow ltr" shows the matching details between the
script and templates of the letter "ltr".

Fig. 10 shows the "body" of the script "peter", its letters
extracted by the recognition routine, and the letter
templates. We can see letters extracted from a script
are quite different from the templates which were created
discretely. Fig. 11 shows the top row records of 'e'.
There are two dips at (47) and (88). The dip at (47) is
from 31 with distance 16. The dip at (88) is from 69 with
distance 17. They correspond to the two 'e' in "peter".

The recognition error is always due to two causes.
One, the matching can not distinguish some letters well.
Two, the letter in script is very different from the
templates. If "analy" shows the error is
due to the first cause, you should add the profile check
marks after the ambiguous words, e.g. "feel", "fell", and
"bell" in the TEST vocabulary. If "analy" shows the error
is due to the second cause, you can use the command
"train wrd" to break the misrecognized script down to letter
segments. "Train wrd" will store these segments as the new
training samples of their letters.

Since it is hard to create the script ligatures when the
letter is written discretely, it is recommended to extract
the letter training samples from scripts.

After obtaining several extracted training samples, use
"hclus" to create new templates. The "hdisam" is not
needed since the disambiguation rules are not used for
script recognition.

If the adaptive training is well done, the recognition rate
can be close to 100%.



Fx*ess RETURN to continue

.-?•

• • •< 9 •

• . • . «•

• . * "• m

." .

• m - a
'• -• . . ••'

. ....

*

Fig. 10 Template matching of a script "body"

136



V
£

>
V

O
C

O
O

3
0

0
*

v
l<

v
J
O

>
a

tO
>

tU
lU

l4
-»

(-
i^

C
O

U
)t

O
tO

(O
I-

lH
^
to

v
o

u
iH

^
to

v
o

<
ja

i-
-
^
to

v
o

u
ih

-
«

>
J
U

)
v
o

tn
i-

-
«

»
J
to

v
o

c
n

o

o
o

o
D

O
>

o
\
o

\
o

\
L

n
c
n

o
i
u

i
t
n

t
o

w
t
o

u
)
N

)
t
o

t
o

o
o

o
o

o
o

o
U

1
U

lV
O

V
O

U
>

V
O

(O
tO

(O
tO

(O
H

h
-J

|-
'h

-U
>

U
)a

>

*1
W

*
H

H
K

)
W

H
H

K
)
W

^
H

H
H

W
U

»
W

i|
k
H

H
H

(
O

W
U

lH
H

-
tJ

0
%

\_
D

V
O

O
0

0
0

0
a

»
U

l0
3

U
l<

IU
l'

J
4

-0
^
0

0
C

0
V

0
C

D
U

1
t-

,r
f-

0
^
U

)
^

to

l-
«

0
.

H
-

(D fl
-

r
r

(D N 0
)

»-
»• p) CO o ft

v
o

v
o

v
o

o
3

c
o

^
^
^
o

^
o

^
c
n

tn
tn

r
f-

i*
!
fc

u
>

o
ju

)
to

to
i-

-
,f

-
jh

-
0

3
4

-0
0

>
(0

0
0

»
f-

0
0

^
(O

C
O

^
-0

0
>

)t
O

C
0

4
-0

0
\t

O
a

>
4

-0
0

\h
-'

C
O

O
O

O
>

O
A

O
^
O

^
U

lW
U

lO
lt

n
U

>
U

)C
O

U
)C

O
K

)t
O

fc
O

O
O

O
O

O
O

C
n

U
1

V
O

V
O

\O
U

>
tO

(O
tO

tO
tO

K
-H

J
l-

'H
H

L
O

U
>

L
O

o
o

M
-
v
o

\
o

u
)
(
0

(
n

o
j
u

>
o

o
o

o
i
n

i
^
t
i
k
v
o

o
o

t
o

u
>

<
n

o
>

^
v
i
(
n

v
o

<
x
>

o
o

o
o

^
J
-v

J
^
J
o

^
a

\U
lU

lO
lr

f-
^
^
-O

J
U

)U
)^

J
to

l-
,l

-,
l-

•
U

lH
^
0

J
V

O
(J

1
H

^
C

U
V

O
U

1
H

^
C

O
\O

<
J
r
ll

--
J
->

v
J
C

O
V

O
U

1
h

-'
>

J
U

)

C
a

C
0

0
\
W

«
0

\
U

l
U

i
W

U
i
U

)
W

W
W

W
W

M
M

O
O

O
O

O
O

U
lU

lV
O

V
O

V
O

V
O

tO
tO

tO
tO

H
M

H
H

H
C

U
C

O
C

O

•f
-0

>
k
O

O
V

O
V

O
O

O
O

>
(J

lU
)0

0
0

0
0

^
4

--
«

J
H

O
O

>
J
4

^
0

^
J
V

O
U

1
0

>
»

a
»

u
>

u
>

a
>

c
o

a
>

-v
]
^
]
o

>
to

<
to

^
u

iu
i»

(.
»

^
»

t-
c
o

a
>

to
(o

to
i-

jh
J

o
\
w

o
o

^
o

o
\
w

c
o

*
»

o
<

f
t
w

a
)
^
o

o
\
w

o
o

t
t
i
»

o
w

r
o

a
)
^

o
o

o
o

w
o

\
w

(
n

u
i
u

i
u

i
u

i
w

w
u

>
w

w
w

w
t
o

o
o

o
o

o
o

U
lU

lV
O

V
O

V
O

V
O

tO
tO

tO
tO

H
H

H
I-

'l
-'

tJ
O

J
C

O

U
)
t
M

-
H

W
t
M

-
H

W
W

(
O

H
H

(
O

t
M

*
)
U

)
^
H

H
H

W
N

)
U

l
^
W

N
j
^
o

o
v
j
L

n
o

c
o

o
w

^
u

n
-
W

v
j
m

v
D

o
o

o
w

o
o

o
i

u
>

-
J



138

(8) CSR Limitations:

. For script recognition, it takes approximately 0.3 sec per
vocabulary word. Please be patient to the recognition
response.

. For a script, the user has to complete the "body" of a
script first and then the extra strokes, i.e. the dot
of 'i', 'j', the bar of 't! and the slash of 'x».

. The recognition algorithm has difficulty to distinguish
letters with similar slope sequences, e.g. 'a' and 'd',
*b' and *_?', '1' and 'e'. These errors can only be
effectively fixed by profile check. However, the profile
check requires the user to have careful control over the
relative letter height in a script.



139

(9) CSR Commands:

. vocab: It prints out all the words in current vocabulary,
together with their stroke strings and profile
strings.

. recog: It asks for a script and prints out the
recognition result.

. analy wd
[-break]
[-toprow ltr]:

wd: It compares the just written script with the word
"wd". The intermediate recognition results are
printed out.

-break: It plots the decomposition results of the last
"analy wd".

-toprow ltr: It prints the top row matching results of the
letter "ltr" of the last "analy wd".

. train wd [-adapt]

wd: It asks for a script of wd and extracts letter
segments from it. The extracted segments are stored
as new letter training samples.

-adapt: It extracts letter training samples from the just
written script.



140

(10) Miscellaneous features:

. Fig. 12 shows a simple tablet layout for PCOHR. The tablet
is divided into two areas: keyboard/mouse area and function
area. In the function area, three boxes are reserved for
keyboard/mouse switching, left button setting, and right
button setting. The rest boxes are used for "macros".

. If the stylus is in keyboard mode, the coordinates from
tablet are processed by the recognition routine in the
server. The keystrokes of the recognized symbol are sent
to the client program as if they were typed in from keyboard

. If the stylus is in mouse mode, the coordinates from tablet
are sent to the client program in a format as the signals
from mouse. When the stylus is moved/clicked/dragged, the
client will get signals as if the mouse were
moved/clicked/dragged.

There is only one switch in the stylus. To use it as a
two-button PC mouse, you have to set the stylus
to be the left button or the right button by touching the
corresponding function box.

Function Area

KBD/MSE

LEFT

RIGHT

Keyboard/Mouse Area
Ml

M2

M3

M4

M5

Fig. 12 Tablet layout



141

The user can specify the keystrokes of each function box in
the file "macro.def" and download them to the tablet server
by "hload". Once a function box is touched, the
corresponding keystrokes are sent to the client program.

Fig. 13 shows an example of "macro.def". When Ml is
touched, the client program will get "Hello, World !"
from tablet server as if they were typed in from keyboard.

Hello, World !
htrain
hclus
hdisam
hanal

Fig. 13 Macro.def



142

(11) Tablet Server:

. Fig. 14 illustrates the structure of the PCOHR system.

Tablet <—> Tablet Server Client Programs

Fig. 14 PCOHR structure

The tablet server is a memory resident program. On one
hand, it handles the tablet interrupt. On the other hand,
it provides all tablet related services to the client
programs.

Four major data are managed by the server. They are:

(1) TBLQ, which holds the data from tablet,
(2) SYB, which holds the recognition features of the

unknown symbol,
(3) DIC, which holds the recognition features of templates,
(4) KEYQ, which holds the keystrokes ready to send.

The client program gets services from tablet server by
calling INT 60 and specifying parameters as follows.

AH - 01

AH - 02

AH - 03

AH - 04

AH » 05

AH - 06

AH - 07

AH - 08

AH = 09

AH - 10

AH - 11

AH = 13

Clear TBLQ.
Put a coordinate pair to TBLQ.
Input: CX - x, DX - y, AL - stylus status.
(Stylus status: 1 -> up, 2 -> down, 4 -> away.)
Get a coordinate pair from TBLQ.
Output: CX - x, DX - y,

AL » stylus status.
( 0 means no pair available. )

Clear DIC.

Load DIC.
Input: ES:SI
Get DIC.

Output: ES:SI
Load macros.

Input: ES:SI
Get a keystroke from KEYQ.
Output: AL = keystroke.
( 0 means no keystroke available.
Peek a keystroke from KEYQ.
Output: AL « keystroke.
( 0 means no keystroke available.
Get the coordinates of the next symbol
Output: ES:SI = starting address, CX - length.
Get the features of the next symbol.
Output: ES:SI = starting address, CX = length.
AL = 1, turn on downsampling,
AL = 0, turn off downsampling.

starting address,

starting address,

starting address,

CX

CX

CX

)

)

length,

length,

length.



143

. After the server is installed, the keyboard and mouse
emulators are also installed. Any IBM PC software which
uses standard keyboard/mouse. I/O routines (i.e. INT 16 and
INT 33) automatically becomes a client of the server.
The keystrokes of a recognized symbol and the events of the
stylus are sent to the client as if they were data from
keyboard and mouse.

(12) The C compiler used for PCOHR is Computer Innovation
C86 V2.30. The assembler is Microsoft Macro Assembler.


	Copyright notice1987
	ERL-87-22 (1 of 2)
	ERL-87-22 (2 of 2)

