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ABSTRACT

Adaptive identifiers are designed withtheassumption that the order of the plant is
known.In thispaper we analyze thebehavior of a standard identifier whenthe plant con
tains additional dynamics, called unmodelled dynamics, which invalidate the known
order assumption. The first result of ouranalysis is an input richness condition which
does not depend on the order of the unmodelled dynamics to guarantee persistency of
excitation of theregressor. Then we showthat theFE condition leads to a BIBO stability
property for theidentifier. We usethemethod of averaging to formally define the notion
of tuned parameters astheequilibrium of theidentifier averaged system. It is shown that
the tuned parameters always existand that theactual parameters converge to someneigh
borhood of the tuned parameters. From the definition of the tuned parameters, we derive
anexplicit expression to calculate them and interpret them asthe fixed parameter values
which minimize the mean squared output error.
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1. Introduction

An adaptive identifier is a deterministic method of identifying recursively the parameters of an

unknown system. An earlier analysis of this problem was performed by lion 1967and later extensively

studied by Luders & Narendra 1973, 1974a, 1974b, Narendra & Valavani 1976, Kreissehneier 1977,

Goodwin & Sin 1984 and Anderson et al 1986. In this paper we will be concerned exclusively with the

adaptive system structure presented and developed by Kreisselmeier 1977 and Narendra and Valavani

1979. In particular, we will be interested in analyzing and interpreting the behavior of such systems

when the real plant contains some amount of unmodelled dynamics.

The existence of unmodelled dynamics is inevitable in any real system. Such perturbations exist

for a variety of reasons. For example, it may be that there is incomplete physical knowledge about the

system, or, some effects may be small and deliberatly neglected by the designer. For some systems, it

is by choice that "unmodelled dynamics" are created. For example, to simplify a later design process, it

is sometimes beneficial to have a tower order yet representative model of the system. For what ever

reason, unmodelled dynamicswill have to be dealt with in any identification/modelling process.

Under the MfflW»?rt assumption of no unmodelled dynamics in the unknown plant, the persistency

of excitation of the regressor is an important property which ensures identitfier stability and proper

parameterconvergence. In the presence of unmodelled dynamics, we will show that a persistentlyexcit

ing (PE) regressor is equally important Therefore, in this paper we determine necessary and sufficient

conditions on the richness of the input in terms of the order of the identifier (not the unknownplant) to

ensure that the regressor is almost always FE. Then we show how persistency of excitation ensures the

boundedness of all identifier signals.

Since exact model matching between the identifier and the higher order plant can never occur, we

utilize the notion of "tunedparameters" to analyze the behavior of the identifier parameters. The idea of

tuned parameters is used extensively in Kosut & Friedlander 1985, Riedle & Kokotovic 1986 and

Retouch supported by NASA under grant # NAG2-243 and the Anny Research Office under grant * DAAG29-85-
KQ072.



Anderson et al 1986 to analyze the behavior of adaptive systems. In our analysis, since understanding

and interpreting the behavior of an established identifier structure is the chief goal, wechose to utilize a

specific definition of the tuned parameters suggested by the above mentioned papers. The definition we

use is arrived at through the use of averaging and basically says that the tuned parameters are the

equilibrium point of the averaged identifier equation. With this definition we

(1) explicitly specify how to calculate the tunedparameters,

(2) determine in what sense the identifier parameters converge to the tuned parameters,

(3) interpret the meaning of the tuned parameters as the parameter values which minimize the mean

squared output errorand

(4) show that the least squares algorithm asymptotic parameter value is equal to the tuned parameter

value resulting from the gradient algorithm.

The format of this paper is as follows. The first section reviews the adaptive identifier. Then, we

present some well known facts concerning identifier stability and parameter convergence when there are

no unmodelled dynamics present The update laws considered are the gradient and the least squares

update. The next sections present an analysis of the same identifier when there exists unmodelled
dynamics. Within that context the first subsection will be concerned with the input richness condition to
ensure regressor persistency of excitation mentioned above. Then, we relate the PE condition to

identifier stability. Following that is a section introducing the main concepts of averaging and its appli

cation to the identifier for defining the tuned parameters. In the remaining sections we present the

results which relate the identifier parametersto the tuned parameters.
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2. The Adaptive Identifier Under Ideal Conditions

2.1. The Adaptive Identifier Structure

To orient the reader and establish notation we present a briefoverview of the adaptive identifier of

Kreissehneier 1977 and Narendra & Valavani 1976.

The adaptive identifier is a deterministic method for recursive identification of a rational function

representation of a finite-dimensional, linear, time-invariant (FDLTO plant Its block structure is given in

fig. 1 below.

<tfi)

-

"~U

VxXJy
^c+

F«
_l! r *

Y+
^

/ K^O_ (eg
m

(0

Figure 1: Block Structure of the Adaptive Identifier

To invoke this identification scheme we require4 basic assumptions.

Identifier Assumptions

(II) Theunknown plant isaFinite Dimensional Linear Time Invariant (FDLTI) system of known order n

np(s)
witha proper transfer function g p(s) =

*,(s)

(21) The unknown plant is stable.

(31) jf,(5)and£p(5)arecoprime.

(41) The input, r, and its derivative,r, arebounded.
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In fig. 1 the identifier parameters are CoCOeR.CCO e IR" and DM(f) e R". The filter F(s) is a

controllable canonical realization of a monic, n* order, hurwitz polynomial, £($), chosen by the

designer. Thus, if AJb is in controllable canonical form and det(s/-A)~l = t(s) then

(tf-A)-1^ — =:*(*) and W(s) = Fisfts) and P® =A(j)5Uj)

We define in mixed notation the time varying polynomials C pm(s) and D pm(s) as:

C/>.(*) :=(£(*) = ^(O+^O**• • •♦^(fy1

and

Dpm(s)*=Dl(?) = dl(t}HUt)s+...+dli(t)s*'1

It is convenient to define the following quantitiesand important to note the resultingrelationships.

The Parameters = 6(0 :=

then

Also,

CJit)

1PJ®

»2ftfleIR2**"1 and The Regressor = W(t) :=

e = yi-yP=*Tw-yp

The Regressor Transfer Function =Q(s) :=

1

thus,

tf(*)= fltffo)

V«Xt)
Lv^wJ

2*4-1gIR



FactZl.l:

There exist unique values cJeR, C* e R"and Dl e R* such that;

np(s) c*0Z{s) +Cmpm(s)
—£ s •

A,(s) t(s)-Dmpm(s)
2.12

The above feet says that the unknown plant can be uniquely parameterized in terms of Wso that

there exists aparallel structure between the unknown plant and the identifier. This parallel structure isillus

trated by figure 2.

Figure 2: Block Structure of theAdaptive Identifier With Reparameterized Plant

The error equation can then be written as e =(Q(t)-Q*)TW(t) =$TW(t) where ^R2"*1 is implicitly

defined as the parameter error.

22. Update Laws

The two update laws we willbe concerned with are the gradient algorithmand the least squares

algorithm.

The gradientalgorithmis given as

6=-ee«/ 22.1

while the least squares algorithm is given as

6=-ePWe P=-ePWWTP F(0)=/ 222

Inboth cases the parameter e isa strictly positive real number known as theadaptation gain and the

initial condition for 6 is arbitrary butcanbe chosen to take into account anypriorknowledge of theplant
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parameters.

23, Identifier Stability and Parameter Convergence

The following fact is well known.

Fact 23.1:

For either the gradient or the least squares algorithms, the output errore € L2c\ L_, e ->0 as t

and 6,6 eL...

Though the above says that e-»0, this does not necessarily mean that 6 -»6*. To guarantee that it

does^a condition on theregressor is required. The following definition is essential to thepresentation of that

condition.

Definition 232: Persistency of Excitation

A vector «/:R+-^R2*+1 is referred to as Persistently Exciting (PE) if and onlyif there exist con

stantsalt ct2,8 >0 such that

Oj/ £ J W(x)WT(x) dx Zatf for all t0*0

The differential equations governing thebehavior of thepreviously defined parameter errors are

<j>=-eWWT$ (using the gradient algorithm) 2.33

and

$=-ePWWT$ (using the least squares update) 2.3.4

Ineither case we simply have a linear, timevarying system for which there exist specific conditions onW

to determine when such systems are stable.

Fact 23.5:

Eqn.23.3 is globally exponentially stable if andonly ifW is PE.

Fact 23.6:

Eqn. 23.4 is stable, lim<XO =0, if and only if W is PE. Furthermore, for t large enough 4> isof the

order of —.
t



-7

2.4. Generalized Harmonic Analysis

It is useful torelate input richness to thepersistency ofexcitation of theregressor. Todothisweutil

ize the technique of Generalized Harmonic Analysis as given in Boyd & Sastry 1984. The following

definitions and facts are fundamental to this subject

Definition 2.4.1: Autocovariance (Stationarity)

A function u:R+->R" issaidto have autocovariance Ru(f)€R**" if

lim^ j u(x)uT(t+z)dx=Ru(t)

with limituniform in s. Furthermore, a timesignal which possesses an autocovariance is referred to

as stationary.

Definition 2A2\ Cross-Correlation

The two functions u:R+->R" and y:Rf->Rm are said tohave cross-correlation R^t )eR"001 if

M+T

Um^jytouTit+tidx^R^t)

with limit uniform in s.

Fact and Definition 2.43: Spectral Measure

Rm is theFourier transform ofa positive semi-definite matrix, 5M(<z*a)), ofbounded measures, thatis;

*«(')=:£]V«S^«)
2n_i

and

<oojSH(dv»

The corresponding inverse transform is;

5„(</a>)= \e'JmRH(x)dx

Su(d<£>) is referred to as the Spectral Measure of u.
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Given the above definitions and facts, we present the following main fact which establishes neces

saryandsufficientconditions on the inputto guarantee thatW is PE.

Fact 2.4.4:

If r hasan autocovariance, thenW isPEif andonly if the support of the spectral measure of r con

tains at least 2n+l points.

Noting that a bounded input and stable plant produce the upper bound of the PE condition and com

bining facts 23.5 and 2.4.4 (gradient algorithm) or23.6 and 2.4.4 (least squares algorithm) results in the

desired relationship between inputspectral content(richness) and proper parameter convergence.

2.5. Interpretation of the Update Laws

In this sectionwe give useful interpretations of the update laws.

The gradient algorithm causes 4> to move along the gradient ofe2as shown bythe following.

Hence, when WisPE, $isdriven tozero along the "direction ofsteepest descent" ofe2.

On the other hand, the least squares algorithm yields a parameter value which asymptotically

approaches the solution to aleast squares optimization problem. Tosee this note the following definition.

Definition 2.5.1:

Assuming that the input r, is stationary and Wis PE, we define 8^(1 ):Rt-*R2"+1 for t 2 8as

. 16W(0 := Arg mjn-J- f(*/r(T)6 - yp(x)f dx

From ourabovedefinition of6^ we caneasilycalculate that

-i r

6^(0 = \W{x)WT{x)dx jW(x)yp(x)dx t25 2.5.2

where theaboveinverse existsbecause W wasassumed tobePEoverintervals of size5. Now denote

i-i

/wo- z\W{x)W{xfdx

so that for f ^8
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/£(0=^(6) +efW(x)WT(x)

Then eqn. 2.52 can be expressed as

8^(0 =^(0 ijW(x)yp(x)dx

Hence, 9^ andP^ satisfythe differential equations

dx

f*8

6^(0=-Pu(tW(tWTWu<f) *lW(x)yp(x)dx +Jfc<o[elK<0*<o]

=-cP^(r)"/(rXWr(08w(0 -yp(t))

Pis(t)=-cP^(OW(OWr(r)PLs(r)

Note that 8^ and Pu satisfy thesame differential equations that 6 and P satisfy intheleast squares algo

rithm. The onlydifference is their respective values at t - 8.Thus, the following fact easily follows.

Fact 2^3:

Thereexistsa positiveconstant m suchthat fort £8

m//8(/)-6^(0//^y 2.5.4

In the above sense the 8 described by the least squares update "essentially follows" 6^(0 - the

parameter value which, if fixed from 0 to t, would minimize themean squared output error up to time t.

Furthermore, the following fact is also true.

Fact 2S.5:

If r is stationary and W isPEthen limd^O = lim6(0=Rw(0)"V(0).

Remark:

Note that the above facts and interpretation of the least squares update only depend on the persis-

tancy of excitation of W, notonitsstructure. Thus, the same conclusions hold true when there exist

unmodelled dynamics as long as W is PE.
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3. Analysis of the Adaptive Identifier in the Presence of Unmodelled Dynamics

3.1. Introduction

In this section of thepaper we analyze the behavior of the previously introduced identifier when the

unknown plant contains unmodelled dynamics. To specifically define what we mean by unmodelled

dynamics subsection 32 lists thenew assumptions which wewill use inthe rest our analysis.

Inour analysis of the unperturbed identifier, wesaw that persistency of excitation was acrucial pro

perty which guaranteed identifier stability and proper parameter convergence. Roughly speaking, when
there exists unmodelled dynamics in the unknown plant the PE condition will play an equivalent role.

Hence, it is important that we establish conditions which determine when the regressor is PE. Like the

unperturbed case our analysis will result inarichness condition on the input Unlike the unperturbed case,

however, such a condition willnotalways yield a PE regressor butinstead will almost always yield a PE

regressor. After determining what generates aPE regressor, we establish another result which isthe rela

tionship between persistency of excitation and identifier stability. Then, since there do not exist parameter

values, which result in exact model matching, asdefined by fact 2.1.1, we use the method of averaging to

define aset of tuned parameters. The definition we use says that the tuned parameters are the equilibrium

point of the averaged identifier dynamic equation. This definition is found in Kosut &Friedlander 1985,
Riedle & Kokotovic 1986 and Anderson et al 1986. In our analysis we apply this tuned parameter

definition tothe case when the gradient update isused and show that the tuned parameters always exist and

can be explicitly calculated. Furthermore, we show that the tuned parameters are the parameter values
whichminimizethe meansquared outputerror and we show that the actual parameters converge to some

neighborhood of the tuned parameters.

32, New Identifier Assumptions

In order to perform our analysis itisnecessary tomake the following new assumptions which replace

assumptions(11X41).

(1U) The unknown plant isaFDLTI system ofunknown order N(which could be very large) with transfer

function

8 (s}=g p(s) = = — 3-*-1
*u(*) *p(fi) dm{s) <f(5)

n (s)(2U) The nominal part, g p(s)-—-—, is an unknown proper transfer function ofknown order n £N.
*P(s)

(3U) £ (s) is stable.
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(4U) n (j)and£(5)arecoprime.

(5U) The input r, and its derivative,r, arebounded.

Remarks:

(1) The unmodelled part may represent high frequency dynamics, almost pole-zero cancellations or any

other affect not taken into accountby the nominalplant

(2) LetAg 1(5)=-^^i -land Ag £s) =£p(s)&£l(s\ then the plant£(s) may be writtenas

£{s) =gp(s){l+*gi(s))

or

£{s) =£p(s) +&£2(s)

which give the standard representations of multiplicative and additive unmodelled dynamics of

Doyle & Stein 1981.

n u(s)
(3) Notice that no assumption has been made about the properness of the unmodelled part ,

iu(s)

hence, it is possible that

\A£ i(J<o)\ -»» as \(d\-><*>

33, Persistency of Excitation in the Prescence of Unmodelled Dynamics

Under the assumptions of nounmodeled dynamics and theinput r(t) being stationary, fact 2.4.4 says

that thecondition for the regressor, F/(0, tobe PE is equivalent to saying that the support of thespectral

measure of the inputr,contain at least 2n+l frequencies. In the proof of this fact Boyd &Sastry use the

coprimeness ofn p(s) and &p(s) and the fact that they know the exact order ofthe unknown plant to basi-

cally show that (? (s) - the transfer function between r and?/ -has a structure such that anysetof 2n+l

frequencies, &x (O^+i, give 2n+l linearly independent vectors ff O'ffliX—tC? O^^+i)- Therefore

Rw(0) is positivedefinite andhenceW is PE.

When there existunmodelled dynamics however, the situation is more complicated. Thereason for

n (s)
this is that Q (s) depends onthe unmodelled part —. Hence, it isnotnecessarily true that the same

input conditions always yield a regressor which isPE. On the other hand, it is easy to see that a necessary

condition for W(t) to be PE, no matter what is that the spectral content of the input be supported by at
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least 2n+l points since W(t), and thusQ (j), are themselves 2n+l dimensional However, it is not obvi

ous what the sufficiency condition is. One mightguessthata sufficient condition is that the spectralcontent

of the input be supported byat least 2N+1 (where N is the order of the plant £ (s)) points. Theproblem,

however, is that either N is very large or unknown. Therefore, in order to establish a useable condition

which relates inputspectral content to regressor persistency of excitation, we will give up the conclusion

that 'such a condition always yieldsa PE regressor' and replaceit with 'such a condition almost always

yields a PEregressor'. Todo this wemust look at the structure of <£ (s) to show that almost every setof

2n+l frequencies create thenecessary linearly independent vectors. To this end,wepresent thefollowing

lemmas and theorems whichdetermine necessary andsufficient conditions on r in terms of n —theorderof

the identifier - to ensure that W is almost always PE.

The firststep to establishing the desired input richness condition is to show that there exists at least

one setof2n+l frequencies which make the2n+l vectors (? (/e>i).~»(? O'^+i) linearly independent The

following lemma does that

Lemma 33.1

for each / e2Z, 1 £ / <*t, thereexists a set of 2/+1 frequencies, 0'©i,.-J ©«„J. suchthatthe regres

sortransfer function (? (s) generates 2/+1 linearly independent vectors (? (/©•,)»♦••.<? CM,*)-

Proof:

Clearly, when N=n there areno unmodelled dynamics andproof of this lemma reduces to theorigi

nal case covered by fact 2.4.4. Thus, in this proof we assumed > n.

Chose any 2N+1 frequencies, (j®i-»J®2N+i)' (N is the order of the plant £ (s)).Then, using argu

ments similar to those used in the "Main Theorem" of Boyd & Sastry 1984 the following matrix,

M2nO°g>i»»*J ®2Ar+i) ^ full row rank.

M2tf0"0>i,...jCD2//+l) =

*(/©l)

»(/«h)

U^f~ln (/®i)

£ 0<flw+i)

O'tOw+i '̂̂ O'ow+i)
n (/o>w+i)

O'ttw+i)*"1* 0>w+i)

33.2
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Through repositioning and elimination of some rows of the previous matrix, we construct the following

matrix which also has full row rank.

Afa*i(fi>i ©2N<-l) =

£(/©l)(/fi>l)" £0'©2Jm)0'©2N<fl)"

£(/©l) • ' £(/©2Am)

Oa>irtf(/a>i) i (/©^O^O'©^)

n(/a>i) «(/©2N4-l)

OcoO^nOctti) (/Wawr'nO'Waw)

Thus, if £(*)= Xo+Xij+...+Xwr* then all of the following matracies are full row rank.

Af2i*i(©i. • • • »©2/m) =

<T(/a>i)£0'©i)

£(/a>i)

0a>ir^0a>i)
ntfah)

Otoi^nO'Oi)

0 1

0 0
0 0

0 0

Vi 0 .
0 . .

1 0
0 1

0 0

0

. 1

£0'©2Am)£(/©2Nw)

£(/©2Wfl)

0*©2Aw),,"1^(/®2ftw)

n(/®2Aw)

(/©2JVw) *0*©»w)

(taytfGni)

£(/a>i)

n(/a>i)

0©2Nw)"^(/©2nw)

<tQ'(Q2N+l)

(/©INm)""^©^!)

n(/©2Wfi)

^©^^(/©Wrt)

333

3.3.4

By picking off the appropriate rows of A/^i and eliminating the columns which are linearly dependent,

one can construct a 2/+1 dimensional submatrix

M21+1K fiW =

ntf©^)

Om^nOcOi,)

(/©i^y-1^©^)

(/©iu,l)W»(/©i2ltl)

33.5
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which isnonsingular and (/aV-J©*,^)e 0©i.~J©2w+i)- Using this fact and noting the following

relationship gives the desired result

[& O©i,).~..0 0*©.-^)] =

*(/©„)*(/©«,)

o^^-^o©.,)

0©i,)M»0©i,)

<?(/©.„*)*(/©.»„)

0©,«JM*(/©.v,)

rfjgg

* OX) * 0©.,) * (/©..J * 0«O _
3.3.6

Given the above lemma, we present the following theorem.

Theorem 33.7: Persistency of Excitation ofW(t) in the Presence of Unmodelled Dynamics

If r is stationary there exists anowhere dense measure zero subset V in R2*+1 such that W isPE if
and only if the spectral measure of r is supported by atleast 2n+l points which form a 2n+l tuple

not contained in V.

Proof:
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Define amap/ :R2"*1 -> C {or R2)by

/(©i ©*+,):= det

<f (/a>i# (/©1)

*0'©i)

o^r^a©!)

n (/a>i)

OoO-^O©!)

= detMai+1(©1,...,(Dai+i)

<?(/©2«+l)*0'©2.+l)

^0*©2«+l)

O'WZn+l)""1^ (/©2«+l)

» (/©2»+l)

O'Wto+l)""1^^©^*!)

3.3.8

/ is not identically zeroby lemma33.1 andit is analytic. Define the setV by

V ^f-\0)

From lemma 1.8 p.288 of Hirsch & Smale 1979, V is measure zero.

Now let Co* (5^+! be the 2n+l points in the support of the spectral measure of r such that

(old, - - - >©2»+i) ^ V- It follows from eqn. 33.6 and the definition of V that the set of vectors

& (/©i)*«»*0 0'©2«+i) *relinearly independent Now assume thatW is not FE. Then theorem 32 of

Boyd &Sastry 1984 says there exists aCeR2"41 such that C * 0and

CTRw(Q)C = 0

Hence,

j CT0 (j<*)Sr(d(o)Q 0'co)C=0

Since r is a scalar,we get that

J l(? (/CD)CI25,(rf<D)«0

5,(4Co) is nonnegative so the above says that

(f 0"co)C =0 foralla) in the support of the spectral measure of r
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This is a contradiction to the linear independence of 20'tfi),...,20'©2i»ti)* The proof that V is a

nowhere dense subset is trivial, so it is omitted here.

omitted

Remarks:

(1) Main theorem 33.7 is very useful and important It says that almost every input whose spectral

measure is supported by at least 2n+l points generates a PE regressor.

(2) The input spectral content condition of theorem 3.3.7 depends only on the size of the identifier so

that the unmodelled dynamics can be any finite order for the result to hold.

(3) When the identifier is made strictly proper (c0= 0), from the proof of lemma 33.1, it can be seen

that every input whose spectral measure is supported by at least 2N+1 points generates a PE

regressor.

0.1. Generic Stability of the Identifier

When we attempt to identify an unknown plantwhoseorder may be larger than assumed, the first

thing we want to be sure of is that the identifier remains stable - all identifier signals remain bounded.

Since the plant is assumed to be stable, it poses no problem. As for the identifier itself, all of its

dynamics can be summed up in one equation which we refer to as the identifier dynamic equation and

which is as follows.

6 =-zWWTQ +zWyp (gradient algorithm)

9 =-ePWWT9 + tPWyp (least squares update)

Thus, regardless of the unmodelled dynamics present in the plant both equations are linear time varying

systems whose input output stability properties are determined by the absolute integrability of the pro

duct of their state transition matricies and the forcing terms. Hence, the combination of theorem 3.3.7

and facts 23.5 and 23.6 give what we refer to as the identifier generic stability property.

Theorem 3.4.1: Identifier Generic Stability Property

Almost every r (in the sense of theorem 33.7) whose spectral measure is supported by at least

2n+l points yields ypt yit 6,4>, W and e which are bounded.
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Proof:

FbUows from theorem 3.3.7, facts 2.3.5 and23.6 andtheorem 8.8ofCT. Chen 1984.

Remark:

Though the above theorem does notsay how large orsmall the bounds on the given signals are, it

does draw a distinction betweensituations whenthere exist signals which wander off to » andwhen

there exist signalswhich simply become very large.
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3.5. Introduction to Averaging Analysis

The method of averaging willplay a key role inboth our analysis of theidentifier in thepresence of
i

unmodelled dynamics and in establishing a definition for the Tuned Parameters". Therefore, in thissec

tion we present the pertinent ideasofaveraging usedin ouranalysis.

The method of averaging is an approximation technique used to analyze the behavior of a nonauto-

nomous system of differential equations and is extensively studied on a generic level in Hale 1980 and

Sanders.& Verhulst 1985. In suchan analysis a time independent averaged systemis defined andusedto

approximate the original time varying system. The validity of this technique depends onthe proper choice

of an adjustable parameter used to stow down the rate atwhich thestate evolves. This parameter mustbe

chosen small enough so that theaveraged system can capture thebasic behavior of theoriginal system.

3.6. Definition of the Averaged System

In general, the systems one can analyze with the method of averaging are those which can be

represented by a differential equation of the form;

x=e/(/,x.e) x(0)=xo 3.6.1

where xe R", f £ 0, 0 <e£ e* f ispiecewise continuous int and / (f,0,0)=0.The method of averaging as

applied to such systems has been extensively studied by Hale 1980, Sanders &Verhulst 1985, Fu, Bodson

&Sastry 1985, Riedle & Kokotovic 1985, Bodson et al 1986 and Bodson 1986. For our purposes wewill

beinterested ingeneralizing the results of Fu, Bodson &Sastry 1985, Bodson etal 1986 and Bodson 1986

sothat equation 3.6.1 includes aseparate forcing term. The system form weare interested inis:

x=e/«,r,e) +eg(D x(0)=x0 3.6.2

where again xeR*,r £0,0<e££o»/ andg are piecewise continuous int and/(/,0,0)=0. In the above

system, e plays the role of the adjustable parameter and is used to slow down the dynamics of the original

system.

We now definewhatis meantby theaverage valueofa function

Definition 3.63: The Average Valueof a Function andtheConvergence Function

The function /(/,x,0) is said to have average value f„(x) if there exists a continuous function

7(r):R+->R+ which is stricdy decreasing and such that T<r)-»0 as r-x» with

//l J/CV.0)dx-fm{x)limT) 3.6.4

for all f0*0, TZ0and xeBk(jc) := /xeR* I Ix-xl £h}. The function t(T) isreferred to as the
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convergence function.

Note that if one defines a new function, d (*,x), as

<*(/,*) :=/(f,x,0)-/„(x) 3.63

then/(f ,x,0)has mean value f„(x) if and only tfd(tjc) has zero mean value.

With theabovedefinition, andassuming f„ andg„ exist we define theaverage systemas

i«=e/«0O +e*« *«(0)=x0 3.6.6

where

«*r t+r

/w(x)=lim^ lf(x*,Q)dx and gav= hm- Jg{x)dx 3.6.7

with the limits uniform in f0andx.

The following definition willbe useful and is taken from Halm 1967.

Definition 3.6.8: Class K Function

A function, afc):lR+->R+t belongs to class K (flte)eK) if it is continuous, stricUy increasing and

a(0>=0.

3.7. Averaging Theorems

Before stating our main averaging theorem, we first make some assumptions about the nature of/,

f„tg and&y. Let£A(x)betheclosed ball of radius h centered atx and leteo>0.

(Al) x is an equilibriumpoint of3.6.6, i.e.

0=e/w(x) + eg„

and/av(x) is Lipschitz in x, i.e. there existsan1^20 such that

///«C*i)-/«(*2)// *'«I/* i-*t/I

for all xhx^eBh0c). j

(A2) / (fa tE) is Lipschitz in x, i^. there existsan/t20 such that

//f{t1xlfiyf{t*2fi)//zii//xl-x7/i

for all / ^ 0 and xlf X2€BA(x) and 0 ^ e ^ Co.

(A3) f(t,xjE) is Lipschitz in e linearly inx, i.e. for some /^0;

f/fifjcfed-fitjcfid/IZhtfxl/ le,-^!
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for all r ^ 0, xeSA(x) and 0 ^ elt C2 ^ 8o.

(A4) The function d(t,x) :=/(*,x,0) -/»(x) is piecewise continuous in t hasa bounded andcontinuous

first partial derivative with respect to x andd(t ,0)=0. Moreover, d(t ,x) has zero meanvaluewith

convergence function Yi(f )//x// and —jpu. has zero mean value with convergence function fi(t).

(AS) g(f) possesses the average valueg^, is piecewise continuous in t andis a uniformly bounded func

tion of t, Le. for some gb>Q

llg(t)H<>gb forotf/^0

Remarks:

(1) In assumption (A4) and (A5) we assume that/ and g possess average values fm and gm respec

tively. Not every function possesses an average value. However, Hale 1980 proves thatall periodic

oralmost periodic functions do. We donotrestrict ourselves to thoses cases butsimply consider the

existence of an average value as a condition for the following theorem.

(2) If / is linear in x and e, i.e. /(f ,x,e)=cA(r)x, then (A4) simply assumes thatA(t) possesses an

average value.

We nowpresent ourmain averaging theorem which willbeuseful inouranalysis of theidentifier.

Theorem 3.7.1: Averaged System Approximation Theorem

If: the original and averaged systems:

x=e/(f,x,£) +eg(f) x(0) =x0 3.7.2

i«=e/«(x^)+eg« *«(0)=x0 3.7.3

satisfy assumptions (A1>(A5), x is an exponentially stable equilibrium point of eqn.3.73 and the

initial condition xqe£*(x) is sufficiendycloseto theequilibrium pointx

Then: there exists an et>0 and a class K function itfe)€ K such that for all e<£i, //x(r)// is a bounded

function of t for all/ ^Oand;

lim//x(0-x//<;Ti(e)

Proof: See appendix A.
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In words, the above theorem says that as t-*» and for e small enough, the solution to theoriginal

system converges toaball of radius t\(e)eK centered atthe equilibrium point of the averaged system and

as e-»0 the radius of this ball goes to 0.

3.8. Use of Averaging to Define the Tuned System

As mentioned previously, wewill use the method of averaging todefine the tuned parameters of an

adaptive identifier when the gradient algorithm is used. Recall that in section 3.4 the important dynamics

of the identifier were captured ina single equation referred toasthe identifier dynamic equation which we

restate here.

e=-eW(t)W(t)TQ(t) +zW(t)yp(t) 3.8.1

Itis this equation weapply averaging totoobtain the following tuned parameter definition.

Definition 3.8.2: Tuned Parameters and the Identifier Averaged Equation

If the inputr, has aan autocovariance then the tuned parameters, which wedenote by 67, are the

equilibrium points of the following averaged equation which werefer to as the identifier averaged

system.

e„=-eRwm„ +eff,,„(0) 3.8.3

where;

Rw(0) := lim ± f W(x)W{xf dx and R.„(0) := lim ± J yp(x)W(x) dx 3.8.4
T-4-T /# r-*-i l#

Note that the abovedefinitions areexpressed in terms of the autocovariance of the regressor vector

and thecross-correlation between theregressor vector and theoutput of theplant Also,since theregressor

vector is generated by the input and a designer chosen filter, F, the autocovariance and cross-correlation

terms mentioned above are dependent onthat choice of input and filter. Hence, the above defined quanti

ties are both input and filter choice dependent (Ofcourse weonly consider real valued inputs sothat Rw

and R^w are themselves real valued.)

From the givendefinitions we obtain the following lemma.

Lemma 3.8.5: Tuned Parameter Formula, Existence and Uniqueness

The tuned parameters

1) always exist

2) satisfy the following equation
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Rw(0)%=Ry,w(0) 3.8.6

3) areuniqueif andonly if W is PE.

Rom the above definition and lemma several interesting things result

(1) The tuned parameters can be easily calculated using eqn. 3.8.6 which, of course, depends on the

plant input and filter,F.

(2) When W is notPEthe tuned parameters constitute anentire subspace.

(3) From fact 2.5.5, when the input isre, the asymptotic parameter values from the least squares update

equal the tuned parameters from the gradient update. Hence, the gradient update tuned parameters

also minimize themean squared output error - aresult similar to that obtained by Riedle & Kokoto-

vic 1986.

3.9. Relationship between the Identifier Parameters and The Tuned Parameters

To obtain a relationship between the identifier parameters and thejustdefined tuned parameters, we

use the results of theaveraging section. Since eqn. 3.8.1 isalinear equation, wemake use of itslinearity to

relax therequirement on the initial conditions andobtain the following theorem.

Theorem 3.9.1: Tuned Parameter Approximation Theorem

If the input isstationary and™/ isPE then there exists an ex £0and aclass K function i\(t) e Ksuch

that for all e^C}

iim//ea)-e;//^Ti(E)

Proof: See appendix B.

Remarks:

(1) Like theorem 3.7.1 the above theorem says that the identifier parameters converge to aball ofradius
i)(e) € K centered at the tuned parameters. Hence, as e goes to zero and t goes to infinity, the

identified parameter valuesconverge to the tuned parameters.

(2) Unlike theorem 3.7.1, the above theorem isaglobal result in the sense that it isvalid for any initial

condition for 0. Such an improvement was achievable because of the linearity ofeqn. 3.8.1.
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4. Example Section

4.1. Introduction and Definition of Example System

In this section we present a simpleexamplewhich illustrates the conclusions x>f the previous section.

Specifically, we take a nominal system, —- with unmodelled dynamics, —— and perform a first order

identification on theresulting system.In ouridentification procedure we assumed thatthe unknown plantis

stricdy proper so that there are only two unknowns in our first order identification. A schematic of the

resulting identifier structure is shown below.

Figure 3:Block Structure of Identifier Example

The identification is performed using the least squares update and thegradient update. Furthermore,

the gradient update averaged system was calculated and its response is also included. Simulation results

are given using two different adaptation gains. The first has e=0.1 with those results given in figure 4

while the second has 6=1.0 with those results given in figure 5. In both cases the input is

2+2sin(t)+2sin(5t).
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To calculate the gradient update averaged system one must calculate /?w(0) and /?,pw(0). In the

case of inputs with discrete spectra, calculation ofthose quantities reduces to asummation as follows

and

where 5X©) is the spectral magnitude ofr (a scalar) at frequency (o and superscript * denotes complex
conjugate transpose. For this.example, with the given input Rw@) and Ry?w(0) turn out to be

*w(0) =
6.923 4.811

4.811 4.983
*,pw(0) =

5.189

4.983

The results on the following page illustrate how the identifier parameters "converge" to the tuned

parameters. Furthermore, though the parameters from the least squares update haven't converged to the
tuned parameters from the gradient update, they eventually will.



error: e (gradient)

1.5

-1.5

par: c

100.

1.5

-1.5

0.8

error: e (least squares)

par: d
Avenged Sy*. (Qnd.)

Figure 4: Stricdy proper first order identification with input 2+2sin(tH2sin(5t) and
update gain - e = 0.1.

error: e (gradient) error: e (least squares)

1.5 1.5

0,-Vi/|Lw\f^^ 0.

-1.5

0. 30.

-1.5

0. 30.

par: c par: d
Availed Sys. (Qnd.)

0.8

0.4

Figure 5: Stricdy proper first order identification with input 2+2sin(t)+2sin(5t) and
update gain - e = 1.0.
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Conclusions

In this paper we reviewed the adaptive identifier of Kreissehneier 1977 and Narendra &Valavani

1976 under the assumption of no unmodelled dynamics. Then, assuming the existence of FDLTI unmo

delled dynamics, we further analyzed the behavior of the identifier. Results from that analysis include a

necessary and sufficient input richness condition to ensure that the regressor isalmost always PE. This
condition basically says that almost any input whose spectral measure is supported by at least 2n+l

points will produce a PE regressor regardless of the order of the unmodelled dynamics. Then, we used
the method of averaging to define the tuned parameters of the identifier as the equilibrium point of the

averaged identifier dynamic equation. We presented further results which show that the tuned parame

ters are-unique when the regressor is PE and that the identifier parameters converge toaball centered at

the tuned parameters and whose radius is a stricdy decreasing function of the adaptation gain. The

interpretation of the defined tuned parameters is that they are the fixed values of the identifier parame

ters which minimize the mean squared output error between the identifier and the unknown plant Furth

ermore, it was pointed out that the tuned parameters from the gradient update are equal to the asymp

totic parameter values from the least squares update. We concluded this paper with an example

designed to illustrate the above described results.
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Appendix A

Proof of Theorem 3.7.1 (Nonlinear averaging result)

In this proof we follow the technique of Fu & Sastry 1987.

Using assumptions (A1)-(A4) it is shown that there exists a coordinate transformation of the form;

jc =z+ewc(f,z) (a.l)

where we(/,z):IR+xIR,l-»IR" is defined as;

t

and satisfies;

I|ewc(^)l|^i(e)ll2|l (a.2)

for all zeBk, 0 < e £ e'i for some e'i > 0 and some class K function d(e).

Under such a transformation, the system described by eqn. 4.3.2 becomes;

i = #«v(z) + epj^e) + e(/ + P2(t,zje.))g(t) (a.3)

where pi(/^,e):RfxR',x]R+-*lRrt, ^f,z,£):IR+xR,,xIR+-••»lR*<,, satisfy;

llp,(W)H * $&m (a.4)

and

||p2(W)|| < &£) (a.5)

for all zeBh, 0 < e £ e'i and for some class K functions &(£) and £3(e).

Define zv=z-x. From the assumptions, (a.3) can then be rewritten as;

* = e^z + xHU*)) + epfat) + *P2(M)g(t) + e(g(0-*„)

3/«»(z)=e dz ^z +zpx(tj +x,e) +zp£tj +*,£)$(/) +zigiO-ga,) +e A.o./.(f) (a.6)

Now define A := —^—I - which is a Hurwitz matrix since x is an exponentially stable equilibrium
oz

point of the averaged system - eqn. 4.3.3.

Next we claim that there exists a class K function tjz) such that

i

l!efe*<~>(g(T) _ gm) A|| £ UO <a.7)

and its proof is shown below.
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Define

t

«e(0 := je^MigixhgaJdx (a.8)
o

thus

f

«o(0=f(g(x)-gav)* (a.9)

By definition of gm there exists a function fs(t) which goes to 0 as t goes to » and

II«o(WoH^o)il*Y,(')' (a-10)

for all f, f0 ^ 0. Integrating (a.8) by parts yields

«e(0 =mo(0 +zA ttF**uMdt (a.l 1)

Using the fact that

t

zAJe^MuoitW =-%(/) +e*Vr) (a.12)

(a.11) can be rewritten as

t

«e(/) =e^'u^t) +zAje^^Mxy-UoO^ax (a.13)

Now, using (a.10) one gets

i

0*0)11 <; me-vy^t +ew||A||f«-<ofr^yt(^c) (/-x)rft (a.14)

where

Ue^H £ me"*0" (a.15)

Consequently,

HEtteWII *5g> 7,(7) mTV* +mmh^ytre-^aY (a.16)

Since g(r) is bounded, there exists a P>0 such that yc(r) £ (3 for all f £ 0. Note that for all r* £ 0,

re"*" £ -2- and rV"' £ t. Thus,
a

||E«e(/)|| <: Sup (y,(4) m/'e"^) +Sw> C&ejf m/V*"') (a.17)

f—) te^tf+m|HilK(-|-) tV**'* +rnPHjyt(^) x'
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This in turn implies that

lleueCOU £ m **+*£>T + m|W| *f+*ix>4v^

=: We) (a.18)

Which proves the claim.

Suppose for some / £ 0, ||f|| <h'<h, then we could bound the higher order terms by some class

K function i.e. \\h.o.t.(z)\\ <, 51(/t0llz|l- In that case the bound on \\z\\ can be expressed as;

||2-(0II *1^2(0)11 +IliE^^W+Xfi) +P2(X/+X,£)g(x) +h.0.t.(z)]dl\\
f

+||fe**<">(*(x>-gJ<rr||

<S me-^lliXO)!!+E|me^^>[c2(E)ai2lMWIHC3(e)g^i(^ll2l]^+We) (a.19)
Now let v(f) be defined as;

Then, using (a.19) we have;

v(t) £ mv(0) +

miv(/) := ||z-(0lk

+ + We)
a a

Applying the generalized Bellman-Gronwell Lemma to eqn.(a.20) we get;

e™ +ef m(We) +5,(/0)v(x) dx (a.20)

v(fl*
_ mtrfdm mtq(z)gb

mv(0) + + + We)
e<2<o + »(*'»«

a k ,^ . ™ftWe) . mWe)llxII
We) + —-— +

ot-m(We)+6i(/iO) L a
(e^-e

e«(C2(0 +8,(Kr»i
*> (a^D
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Hence, by definition of v(0 and assuming that e'i and K are small enough such that

w(We'i)+Si(Ji')) < ol (a.21) can be converted to;

Il2(0!l * m||2(0)|| + We) + +
s[a-«<C2(e>**1<A'))]'

a

a-m(We)+61(A'))

=:L«(0 + TT(e)

a a

wgfrWe) wWe)llx||
We) + —-— +

a

(a.22)

for all r'e [Oj] where La(0 £ LM for all r* £ 0 and La(O->0 as f*->oo.

Consequendy, if ||f(0)|| is sufficiently small and there exists an £t > 0 with Z\ £ e'i and such that

£«(0)+ 1T(e) * h' (a.23)

for all £ £,£i, then the bound on 112(011 in (a.22) is actually valid for all t £ 0. To see this, consider a

proof by contradiction. Assume that z jumps out of the K ball at time t Thus, ||z|| 2: K at time t How

ever, eqn.(a.22) says that ||f(0!l £ La(f) + T\(z) for all t'e [Oj] and, because La(0 is nonzero and stricUy

decreasing, LJf) + Tf(£) < LJQ) + Tf(e) £ A'. Hence, we have a contradiction so that if £ stays in the h'

ball for any length of time, it always stays in the K ball. Therefore, eqn.(a.22) is valid for all t £ 0 and

limlliXOlUTCe) (a.24)

Combining this result with the fact that \W) - x|| ^ \\z(t)\\ + ||x(0 - r(OII and \\x(t) - 2(011 £ Ci(e)IKOII

yields our final result

lim|lx(0-3cfl£Tl(e)
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Proof of Theorem 3.9.1 (Linear averaging result)

The proof of this theorem is almost identical to the one for the nonlinear case.Therefore, it is not

fully written out here. Instead, we point out the differences between the two and explain the resulting

consequences.

For the sake of generality we assume our equation to be of the form;

i(0 = -efl(0x(0 + eg(0 0>.25)

where B(0:1R+-»1R'K", jc(0:1R*-»1R" and g(0:R+->lR". The resulting averaged equation is;

iBV(0 = -eflavx8V(0 + egav (b.26)

-Bm is assumed to have all of its eigenvalues in the open left half of the complex plane and x is

assumed to be an exponentially stable equilibrium point of (b.26). With these equations the same

transformation is used to define the variable 2 except that the resulting differential equation defining the

evolution of 2 is given as;

i(0 =-efl^O + eWtEMO +e(/ + e/>2(/,£))g(0 (b.27)

and

lle/>i(f.e)|| <; We) and Hep2(/,e)|| <; We)

Now, defining 2 as in the nonlinear caseresults in the following differential equation for 2;

f(0 =-eBovf + E2pi(',£) (2 +x) + z2p2(tjz)g(t) + z(g(t) - gm) (b.28)

Notice that in this equation there are no higher order terms to deal with. Therefore, we don't have to

worry about bounding them inside some Bh ball. Hence, the bound on 2 given for the nonlinear case is

valid for the linear case except that S^V) term is zero and the result is global in 2. Thus, for the linear

case the bound on 2 is;

IftOBS
n-/AM, r f ^^ w&k(e) ^ mWe)l|xll

w||2(0)[| + We) + 1— +
a a

a r, x mgfrWe) mCq(z)m\
We) + —-— + z

a-mWe) L a

:=£a(0 + n(e) 0>^9)

The restriction that £ be small enough such that mWe) < a is still in force. However, there is no res

triction on the sizeof ll£(0)|| or a further restriction on e like the one of eqn.(a.23) since there is no H

to worry about The rest of the proof follows that given in the nonlinear case.

-e(a-m;2(c))f
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