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ABSTRACT

We consider the implementation of reduced order identifiers to incorporate prior informa

tion for DARMA and ARX systems. A bound is given on the ratio between the reduced order

parameter error and the full order error. This guarantees that the reduced order algorithm con

verges at least as fast as the full order algorithm. The algorithm is shown to be robust to

improper parameterization (incorrectpriorknowlede) with practical errorbounds. Wc extend this

result to obtain a new error bound for robustness to unmodelled dynamics for both full order and

reduced order algorithms.
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1. INTRODUCTION

We consider the finite dimensional SISO discrete time difference equation of Eq. 2.1. The

standard (ARX or DARMA) identification problem requires estimating the coefficients of this

equation based on a sample of inputs and outputs. We will be concerned with the implementation

of a priori constraints on these parameters. In particular, we want to implement a set of affine

constraints while taking advantage of the reduction of the dimension of the allowable parameter

space. Typically, this situation occurs in systems comprised of known subsystems with unknown

interconnection gains and in systems with a few unmodelled (or incompletely modelled) com

ponents.

The contributions of this paper are all with respect to least squares identification algorithms.

However, the reduced order methodology is fairly independent of the particular algorithm being

used, since it simply involves a rcparameterization of the original difference equation parameters

and the application of the (arbitrary) identification algorithm to the new (and smaller) set of

parameters. The notable exceptions to this are fast gain and lattice algorithms, which utilize "all"

of the original difference equation structure (see Sec. 2.8). The general reduced parameter struc

ture was first consider by Dasgupta, Anderson and Kaye [8], and more thoroughly by Dasgupta

[7]. Further investigations into the general algorithm have been made by Bai and Sastry [2] and

Mason and Sastry [13]. All of these authors considered both continuous time and discrete time

systems with a variety of identification algorithms. Independent work by Clary [6] concentrated

on the least squaresalgorithm for discrete time systems (as do we) while restricting attention pri

marily to the Filtered Least Squares algorithm for the special case of a priori known poles and

zeros (see Sec 2.6). (None-the-less, when discussing the interpretation of the Filtered Least

Squares algorithm, as in Sec 2.7 of this paper, Gary develops the more general structure ascon

sidered here andin [2], [7], [8] and [13].) Dasgupta, Anderson and Kaye [8] also consider exten

sions to bilinear parameterdependence.

Although these papers are fairly recent, the underlying concepts of parameter space reduc

tion via filtering seems to be present throughout the adaptive identification andcontrol literature.

For example, in his survey on adaptive control [1], Astrom discusses an example which requires
the identification of polynomials in the following equation:

AmA0ssB"[Ru +Sy]

The polynomials i4m(z~!) and A^z"1) are assumed to be known (in fact, they are user selected in
this adaptive control design). B~(z~l) contains the non-minimum phase zeros of the plant, and
R(z"!) and S(z~l) arc controller parameters that need tobeestimated. When B" isnotcharacter
ized a priori, we are left with a bilinear identification problem. However, when B~ is assumed

known, the problem reduces to a linear identification in terms of the *filtered* signals B'u and



B ~y. In either case, we also use the filtered output AmAoy. This separation of the B ~ dynamics

from R and S and the use of filtered inputs and outputs essentially incorporates all of the features

of the more general parameter reduction procedure.

As the title suggests, we shall establish some results on the convergence and robustness pro

perties of the reduced order algorithms. As the reduced order least squares identification algo

rithm really does solve a least squares problem, just as the full order algorithm docs, all the con

vergence and robustness properties present for the full order algorithms correspond to analogous

properties for the reduced order algorithms. However, these properties will have conditions

which, though analogous to the full order conditions, are not necessarily equivalent For exam

ple, under suitable conditions, the full order parameterestimates will converge to the true param

eter if the regression vectors are persistently exciting. Under analogous conditions, the reduced

order parameter estimates will converge to the true parameterif the filtered regression vectors (or

pseudo-regression vectors) are persistently exciting. Thus it seems possible to have general situa

tions under which the full order algorithm converges while the corresponding reduced order algo

rithm docs not, unless we can show that persistent excitation of the full order regression vector

implies persistentexcitation of the filtered regression vector (this is established in Prop. 3.3).

The first objective of this paper is to establish comparative convergence results for the

reduced order estimation to complement the analogous convergence results. That is, we would

like to say that the reduced order algorithm converges "faster than" the full order algorithm. In

fact, our main result on parameter errors states that the ratio between the reduced orderparameter

error and the full order error can be bounded above for all time by a persistent excitation ratio

(Eq. 3.26). It cannot be bounded below.

The second objective is to establishrobustness of the algorithm to both unmodelled dynam

ics and improper(incorrect) parameterization (or constraint). In fact, the robustness of the algo

rithm was exhibited by Clary [6]. We derive a new robustness result which is more direct and

produces practical error bounds.

In section4.2, we show thatunmodelleddynamics is a specialcaseof improperparameteri

zation. This leads to a new robustness result for full order identifiers and a new bound on the

error of the so-called "tuned value."



2. PRELIMINARY RESULTS AND NOTATION

2.1 System Description

We begin with a finite dimensional SISO discrete-time input/output description

y*= -a iv*-i anyk-n+ b !«*.! + • • •+ bnuk^ (2.1)

The approximate equality implies the possible presence of modelling errors, system disturbances,

measurement noise, etc. This will be made more precise in later sections. We can write the right

side ofEq. 2.1 in vector form by defining

Q:={ar"anbr-bnfeJR2n

4>*:= (-y*-i y*-* k*-i •••uk^fe IR2"

Then Eq. 1 becomes

y*=*Je (2.2)

23. Least Squares Identification

The fixed orderidentification problem is to determine anestimate for6 in Eq. 2.2, 6*. based

on the data available at time k, namely {y,, u,, s £ k}. Here we have restricted our attention to

strictly proper systems so that uk should not affect ourestimate of yk. For purposes of adaptive

control, this allows uk to be determined by the controller ctfter the estimate 0* is formed. The

data (y„ u,_lt s £ k) is equivalent to thedata {y,, $„*£*}. Wc define

n.-(y*y*-r--yi)T€iR*

Then Eq. 2.2,applied to all thedata available attime k, yields1

IVs*# (2.3)

The leastsquares estimate for6 at time k based on Eq. 2.3 minimizes

M> iln-^lll'ICy,-^)2 (2.4)

and is given by

%tH*k*Irl*kYkHJ:Mjr\j:bys) (2.5)

1 Here weassume implicitly thatys=u,_j=0 for s £0.



We make Eq. 2.5 recursive by defining

Then Eq. 2.5 becomes

M^M^ + Ml (2.6)

§*=§*-i + 0*y* (2-7)

%rM£% (2.8)

In the exact least squares algorithm we start with Afo=0 and^=0. Wc cannot determine an

estimate 0* until Mk becomes nonsingular. In particular, we need k > 2n.

In the least squares with initial estimate algorithm, we assume an a priori estimate % and

choose a (small) positive definite matrix Mq. Setting §q=Mofy, the algorithm (2.6)-(2.8) is

defined for all k and minimizes

/(6*):=(8*-ea)TA/o(6*-?b)+£(y,H>J§*)2 (2.9)
*-i

For both algorithms we should determine %k through Gaussian elimination rather than
inverting Mk. The algorithm (2.6M2.8) has o(n3) computation requirements.

We can reduce the computational requirements to o(/t2) by noticing that Mk is updated in

Eq. 2.6 by adding a dyad to A/*_i. This allows Pk:=Mkl to be updated directly without any

matrix inversions. Eqs. 2.6-2.8 become

3*=5*-» +T"%rLrte-*&-«i (2'10)
Pk-i$k$kPk-i

^=^4-1 I (2.11)

P0= Mol (2.12)

Many sources are available for a more detailed derivation of the least squares algorithm, along

with a more complete discussion of the many implementation issues and the selection of MQ.

Ljung and Sodcrstrdm [12] is suggested. See also Section 2.8 for furtherdiscussion.

-4-



2.3 Reduced Order Identification

We now turn our attention toward incorporating a priori knowledge of the system into the

identification algorithm. To some extent, we were able to do this by choosing 8b. We saw that

M0 could reflect our confidence in §b. So if M0 is 'very large* in some direction (equivalcmly, if

Po is very small), the orthogonal projection of 6* onto thatdirection will remain essentially fixed

fora 'long time' at its initial value. We wishto address this problem more formally.

Suppose that 9 is not completely undetermined, but instead is known up to a set of m unk

nown parameters vlt... ,vm. Further suppose 9 depends linearly on the parameters. In other

words, suppose 9 is restricted to an m-dimensional affine sub-space 0 c 1R2".

9=9o + 9iV!+ ••• +9mvOT=90 + Dv (2.13)

where velR"1 is the (unknown) parameter vector and DelR?nxm is full column rank (injective).
(If D is not full column rank, the vectors 9i,... ,9m are not linearly independent, and some of

the parameters vy- are redundant andcanbe eliminated to obtain a smaller parameterization.) We

assume, of course, that 60and D areknown a priori.

We re-write Eq. 22

y*~fc7e =<j)jT90 +<|>jDv (2.14)

We define anew 'pseudo-output' and 'pseudo-regression' vectorby

za^va-^JQosIR

ykz=DT$ke]Rr

Then Eq. 2.14 becomes

z*=V*v (2.15)

Comparing Eq. 2.15 with Eq. 2.2, we derive the least squares estimate of v based on Eq. 2.15
immediately.

Zk:=(zk- -s^elR*

i«i

k

C*:=xr*kZ* = 2>^eIRm
j-i

Wa^-i +WjT (2.16)

C* =C*-i+V*z* (2.17)

-5-



%=Nk~lZ>k (2.18)

where the least squares estimate % minimizes the cost

J(yk) =Ife- Vfrk III =£(*,- v/v*)2 (2.19)

Note that

Zt-^rv = r4-<Dj9 (2.20)

so that the minimization in Eq. 2.19 is the same as the minimization in Eq. 2.4 with 9* restricted

to 90+ Im(D). As before, Eq. 2.16-2.18 can be modified to eliminate the matrix inversion.

°* =0*-» +, QkT*k fe"WVil (2.2D
&-i¥t¥*&-i

fio=^oI (2.23)

If a desirable MQ and90e 9 have already beendetermined, we chooseN0 and% so that

Nq=DtMqD (223a)

eb= 90+ Dv0 (223b)

2.4 Error Model

We makethe approximate equality in Eqs. 2.1,22 and 2.15 precise by defining the 'error*

Eq. 2.2 and Eq. 2.15 become

y*=4>*re +e* (2.24)

z* = VAV + e* (2.25)

We consider two types ofmodels in this paper

(1) DARMA (Deterministic Auto-Rcgrcssive, Moving Average exogenous input): ek3 0.

(2) ARX ((stochastic) Auto-Regressive with exogenous Input): ek is a 'white noise* process
(this will be made precise in latersections).

Qk =&-i - . " jL (2.22)



2.5 Transfer Function Formulation of Reduced Order Identification

The transfer function description of the nth order ARX model is

y(z>= 37ri7£/(z>+ TTIk£(z> (2-26)d(z l) d(z l)

where n() and d{-) are polynomials of degree n and the constant terms arc zero and one, respec

tively.2 Interms of the coefficients defined inEq. 2.1, wehave

n(z"l)= biz'l+ ••• +bnz-« (2.27)

d(z"l) = \+alz"l+ ••• +aflz^ (2.28)

Now suppose that n (•) and d() are parameterized by vi,..., vm as follows:

no(z"1)+Zvy'ly(z"1)n(z~l) _ y-i

diz'l) d0(z-l}*ZVjdj(z-1)

where djtrtj are known polynomials inz"1:

rf0(z"1)=l+ai02"1+ •• +a«°z"*

^(x-1)-^*-1 + ••• +4*- ;=1 m

nj{z'x) s *V' + ••• +^'z- ;=0,... ,m

Now we form the vectors:

*i*M[a{~-albi~-btF*ri* ;=0 m

and we get

9 = 90+vl9i+«- +vm9m (2.30)

as in Eq. 2.13.

Conclusion. We sec that the affine polynomial parameterization of the transfer function in

Eq. 229 corresponds precisely (i.e. with identical parameters) to the affine parameterization of

the ARX coefficients in Eq. 2.30.

(2.29)

2.Alternately, we could consider n(z)=Zn n(z"*) and d(z)=Z*d(z",). Then n(•) is ofdegree n-1
and d(') is moruc of degree n.



2.6 Example: Known Poles and Zeroes

We consider an ARX modelwith some known dynamics characterized by r poles [pj }/=i

and s zeroes {?y}/-i. We define the 'known' polynomials:

dk(z~l) :=(l-piz-l)(l-p2z-1) •••(l-prz-1)= 1+a\z-x + -- •+arV'

nk(z'x) := (Kiz^Xl-^z-1) •••(1-Cz-1) =1+b\z'x + ••• +bkz's

Next, we define 'unknown' polynomials which contain the remaining dynamics.

du(z-l):=l+a$z-l+ ••• +anu_rz-n4r

/iu(z-1):=6fz-l+ ••• +b?-sz-n+s

Our unknown parameter vector consists of the 2n-r-s coefficients of du() and «"(•), and the

combined dynamics arc given by Eqs. 2.31 and 2.32.

d(z"x) =du(z'x)dk(z"x) =dk(z'x) +"£a/(z-^*(z-1)) (2.31)
yol

«(z"1) =nu(z-x)nk{z'x) =Zbf{z->n k(z~x)) (2.32)

Conclusion. A collection of known poles and known zeroes of a transfer function does

indeed induce an affine parameterization of the transfer function polynomials. This parameteriza

tion is in terms of the coefficients of the unknown polynomials.

We now show that the implementation of the identification algorithm for the parameteriza

tion shown above can be reduced to a the particularly simple and attractive structure shown in

Hg. 1. Using previous notation, we would implement the identification algorithms for

a*,... ,a%-rtb\t... ,bjts by forming m =2/i-r-j linear filters to generate yk.

{-z-Uk{z-x)Y{z) y=l n-r
^•<z>" \zJ-*«tnk{z-x)U(z) 7=n-s+l m (2*33)

We need one additional filter to generate zk:

Z{z) = dk{z-x)Y{z) (2.34)

The exampleofknown polesandzeroes hasa special property thatthe filters havemany common

elements. Y(z) is always filtered by dk(z"x) and U(z) is always filtered by nk(z~x). To reduce

computation, we can filter these signals first, then apply the simpledelay operators thatconstitute

the remaining filter dynamics. In fact, when we do this, we sec that the remaining filtering and

identification is just the usual (full order) identification algorithm for 2n-r-s parameters. Com

biningthe filtering and the usual least-squares is called the filtered leastsquares algorithm (intro

duced by Clary in [6]) and is illustrated in Fig. 1. Notice that the noise input ek is transformed



properly to the filtered identification.

Plant

ek

Uk k .,
n(z!) n(zl) -^ 1

-*•
1

y".
dV1) d(z!)

—» n(zl)
uk w Least Squats Identification of ,,/k

d°(zl) Y(z) = nV!) U(z) + E(z)
k .,

d(z') <—

Figure 1.

Schematic Diagram of the Filtered Least Squares Algorithm

2.7 Interpretation of Reduced Order Identification

We intend to show that the reduced order identification yields precisely the same estimate

as the full order identification algorithm without matrix inverse (Eqs. 2.10-2.12) if P0 and %
satisfy:

lm(Po)(zJm(D) (2.37)

Sbe 0 (2.38)

Intuitively, making Po singular in certain directions is like letting Mq become unbounded in cer

tain directions. Thus 'infinite' weight isplaced on certain linear combinations of9*-?b inthe cost
function ofEq. 2.9, resulting in an estimate which satisfies

V$>€ Im(D) (2.39)

The feasibility of the argument lies in twofacts which follow by inspection of Eqs. 2.10 and2.11.

(1) Eq. 2.11 implies 1m(Pk.{) c Im(Dy=>lm(Pk) c Im(D).

(2) Eq. 2.10 implies §*-§*-i e Im^.!).

So we see that Eqs. 2.37 and 2.38 do guarantee that 9* remains in 0 for all k. The proposition

below shows that the processes themselves are identical In the sequel, we use 9* to denote the

parameter estimate thatresults from the reduced orderestimate v* :3

3 We shall never use the dot notation for time derivatives in this paper, so 9* should not create any confu
sion.



9^90 + Dv*

Proposition: Consider the algorithm (2.21)-(2.22), with 9* ^o +Dv*. Let Pq= DQqDt,

Qq = 90 +Dv0, and consider thealgorithm (2.10)-(2.11).4 Then 9* = 9* for all k.

Proof: First, we show by induction that Pk=DQkD r for all ik £0:

Pk-iMfrk-i
Pk-\=DQk-\Dl => Pk=Pk-i-

i+<t>jfo-i<i>*

DQk.i(DT^kMlD)Qk.xDT

l+^lD)Qk^(DW)

Qk-iVkVkQk-i

l+V*G*-iWk

=DQkDT

Another inductive argument establishes the result:

%-i=9o+D%-i^=fy-\+Pk$k\yk-*ftk-i\

=%+Dvk.l+DQk(DT$k)\yk-$kTQQ-tfD%-l]

=9(rfD tv^+e^^zjk-VifVi)]

=Q0+Dvk D

The equivalence between reduced order identification and the 'singular' full order

identification (with P(fDQqDt) is presented for conceptual purposes only. The singular
identification should not be implemented, as:

(1) it does not retain the benefitof reduced computation; and

(2) it is numerically ill-conditioned, and as soon as the eigenvalues of Pk wander away from

zero, the constraint\e9 may be violated.

4 Here 'algorithm* refers only to the equations 2.10 and 2.11 applied 'blindly.' The algorithm doesn't real
ty aPPly* sinceP q isnot positive definite.
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2.8 Fast Gain Algorithms and Lattice Filters

We have emphasized that the reduced order algorithm solves a least squares problem analo

gous (in fact, equivalent) to the full order algorithm, and so inherits all of the analogous proper

ties. However, the full order algorithm has more structure than is required to apply a least

squares criterion, and more structure than we used in Section 2.2. This additional structure is not

inherited by the reduced order algorithms, and the structure allows the full order algorithm

(2.10)-(2.12) to be reduced to an o(/i) process (linear computational growth). We conclude that

for large systems with only a few constraints (i.e. when the reduced order system is still large), it

may cost less to implement the full order algorithm.

To demonstrate the additional structure we consider the simplified auto-regressive case (no

exogenous input). Then

9^=(al-an)r

♦*:=(-yjk-i yk-n)T

Mk := £♦,♦/
*-i

%k - z<y,
J-l

andMk and $* have the following "shift" structure:

Mkm

k

2>,-iy,-i
k k

2>*-iy*-2 • Zy*-iy*-

k

Zy*-2y*-i

Jk

Zy*-y*-i
j-t

Ly*-ty*-i •
*-i

*-l

*-i

£y*-«y*-i •
j-i

^ys-n.ys'-n

$* =

=A/4_,

y*-i_

y*-2

yk-n

yk-n-i

=<t>jfe—i

For the full ARX or DARMA cases Mk and $* will have a "block shift" structure. In either case,

such systems can be recursively solved with linear computational growth in n using methods

related to the solutions of Tocplitz systems. It is easily seen mat upon rcparamctcrization, the

reduced order identifier may lose this valuable property. Wc note that the Filtered Least Squares

example ofSection 2.6 does inherit the shift stmcture.

We will not discuss the fast gain and lattice algorithms any further. The derivations are

quite involved. An adequate discussion of these algorithms is given by Ljung and Sodcrstrom

[12], with additional references given there.
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3. PARAMETER ERROR AND CONVERGENCE

In this section, we will review a few properties of idcntifiability and parameter convergence

for least squares algorithms. We will then compare convergence for reduced order identification

against convergence of full order schemes. In Section 4 we will give a robustness result for the

case when the a priori information is inaccurate.

As an illustration of the type of result we'll be studying, we first consider the case of the

exact least squares algorithm (Eqs. 2.6-2.8) applied to a deterministic system. This rather simple

analysis also illustrates the intuition behind the claim that reduced order identifiers might in gen

eral have faster convergence. Suppose that {<t>i,..., (J>2«} are linearly independent vectors. Then

the exact least squaresestimate 0* is defined and is exacdy equal to 9 for all k £ 2n; that is, the

algorithm converges exacdy in 2/i steps. With the reduced order identification under analogous

conditions, 9A converges exacdy to 9 in m steps (wherem < n). The resulting improvement and

the underlying mechanism arevery clear in this case.

In more general situations, it will be difficult to guarantee improvement in performance, but

at the very least we would like to show that no performance is lost by implementing a reduced

order algorithm.

3.1 Identifiability

Consider the deterministic, zero-initial-state system with input/output maps:

A(e):{a*}r-oH>{y*}r«o (3.1)

We think of h as a map from the parameter 9 to the space of input/output maps. Then we say
that9eR2" is identifiable if forall 9/e 1R2"

A(9)=A(90 => 9=9' (3.2)

Likewise, wemayconsider theinput/output maps as a function of thereduced parameter

8(v): [uk }£<> h» [yk }£*, (3.3)

with, of course,

g(y) = h(Q0+Dv). (3.4)

Thcnve Rm is identi fiable if for all v* e Rm

*(v)=*s(v')=>v =v' (3.5)

First we notethat 9 is identifiable if and onlyif the corresponding /i/A order transfer function has

no pole-zero cancellations. The following result was first shown by Bai and Sastry [2],

12-



Theorem 3.1 Suppose 9=90+£> v, and 9 is identifiable. Then v is identifiable if and only if D

is injective.

Proof: =>: Suppose D is not injective. Let ve Ker(D). Then v+v corresponds to the same

parameter vector 9 as v (i.e. 9o+0v = 90+D(v+v) = 9), and thus the same

input/output map.

<=: Suppose D is injective, and v^v7 have the same input/output map. Then

9o+Dv*90+Dv' while 9=90+Dv and %+Dv* have the same input/output map.

This contradicts the identifiability of 9. IS

We conclude that identifiability cannot be hindered by using a priori information in the manner

proposed.

Remark. We have shown that v is identifiable whenever 9 is (since D was required to be

injective). However, v may be identifiable even when 9 is not, as in Example 3.2. The

identifiability situation is thus improved by incorporating prior information using the reduced

order algorithm.

Example 32 Consider the transfer function

h(z-x)= 1+'52"1
(l+Jz^Xl+vz-1)

Then v is always identifiable, but 9 is identifiable if and only if v* .5.

Remark. Identifiability simply insures that there is a unique parameter to which, under

'some ideal conditions,' (usually persistent excitation) we might expect 9* to converge. In the

absence of identifiability, we may still be able to obtain convergence to a submanifold of parame

ter values with identical input/output properties. We may speculate that when input/output pro

perties are the primary object of interest (as is the case with many controllerdesigns, for exam

ple) that this may suffice, depending on 'how' 0* converges to the submanifold. Mason has stu

died this type of 'convergence' in [13].

Remark. For the ARX case we have two input/output maps to consider u-*y and e-»y.

The ARX stmcmre requires the noise/output map to be all-pass (no zeros). The denominator of

the noise/output transfer function is equalto the denominator of the input/output transfer function

(seeEq.2^6). The denominator is always identifiable from the e -*y map. Knowingthe denom

inator, the numerator is always identifiable from the u->y map (i.e. pole/zero cancellations can

be accurately detected). We conclude that full order ARX systems are always identifiable;

reduced ordersystems areidentifiable if andonly ifD is injective.

13-



3.2 Convergence of Least Squares Algorithms

We now return to the full order least squares identification problem, with notation as

defined in Section 2.2. A standard result of least squares identification gives sufficient conditions

for parameterconvergence (see, for example, Kumar andVaraiya [11], p. 203).

Theorem 32 Suppose [ek]ksii is a sequenceofuncorrclated zero-mean random variables with
aj.

bounded second mean. Then Qk -» 9 on the set of co for which:

(a) <W/*->+oo

_. .. GmtaMk
(b) lunsup — < °°

Convergence becomes uniform in time if we strengthen conditions (a) and (b) to a persistent exci

tation condition:

Definition: The deterministic sequence {$*}£<) is persistently exciting (p.e.) if there arc positive

real constants at, 02 and a positive integer / such that for any ke IN

k+t

ai/<£<M>/<a2/ (3.6)
/«*

Clearly a persistently exciting signal satisfiesconditions (a) and (b) in Theorem 3.1, since

ZM7 = A4w-Afc (3.7)

The set of (D for which $*((&) ispersistendy exciting isdenoted &$,.

We now determine the parameter error byanalyzing %k using the fact that yk =<t>*9 +ek.

8*=A^rl(Co+i<|),y,)
*-i

=A4fl(Co+ E<M>/e + J>,e,) (3.8)
J-l *=l

=Mk\Mo%Q +{Mk -MdB+M^Xhe,)
*«1

^+Mk'xMQ(%'Q) +Mkx^ses

We define the parametererrors:

& .•= %t -9=9^+9*

§?:=MkxM0&Q-Q)
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with Vjfe, y£\ y£, 9jfe, 9^ and 9* defined analogously.

The persistent excitation condition immediately tells us that Qj? decreases dcterministically

as \ln. To analyze 9£ we use stochastic convergence theory.

Firstwe make some assumptions about the errorsequence [ek}£o. Let Fk be the a-algebra

generated by the past [ysyus,esis<k) and assume

(A1)E{**|FA_,}=0,*=0.1,...

(A2)E{eJk2|FJk.I}^l,ik=0,l,...

In our case, Fk-x is also the a-algcbra generated by {$,,*££}. Note that (Al) and (A2) will be

satisfied if:

(Bl) E{ek\ej)=Q V/<*

(B2) E{ek2\ej)£l Vy<*

(B3) uk is a deterministic function of past inputs and outputs.

Now we note that (for a given, fixed sample path) if {<t>*}£4 is persistently exciting with

bounds ax and Ofe, then ||<t>* ||2 £ o^ for all k. Thus wehave.

119* I<; \\Mkx || || £ijej || £—ji-jr- || itjej || (3.9)

and assumptions (Al) and (A2) guarantee that [^kek)k„i is a sequence ofuncorrclated zero-mean

random variables with variance bounded by 04. We conclude that:

0) $*-*0 (Strong Law ofLarge Numbers)
qjit.

(2) EfJgflPlS *fk
af(k-l)2

Having established the convergence results for full orderestimation, analogous results fol

low immediately for the reduced ordersystems. Forexample, assuming appropriate noise statis

tics,

v4 -> v on n£ (3.10)

We wantto establish morethan this. Indeed, we intend to show thatconvergence properties

cannot be destroyed by a reduced parameterization. So in relation to Eq. 3.10, since we know

that the full order estimate converges on Q£, wc want to show that Q£ z> Q$t. In fact, we
would really like to show that if the full order algorithm converges at a certain rate, then the
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reduced order estimates must converge at the same rate or faster. In the next 2 subsections, wc

shall establish the following results:

(1) {<t>*}£o P-e. => iVk}k*o P-e.; in fact, the persistent excitation requirement is genencally

weaker for reduced order identification.

(2) 9* is a projection of Qk onto Im(D) (see Eq. 3.24).

(3) {$*}£oP.e. implies

U £^^*+'+<WW -» JE (3.11)
«H " ai ^ k-l a-*- * ai

lie

if 9££ 0 and 9* = 0 if 9* = 0. Of course, this implies that the asymptotic rate of conver

gence of 9* isatleast as fast as that of8*.

33 Persistent Excitation Comparisons

The main result is quite straight-forward. Recall that in our framework, D is defined to be

injective.

Proposition33 If {$*}*Lo is persistently excitingthen {\|f*}*Lo is persistently exciting.

Proof:

Zw/ = Z,DTW?D = DT S^/ (3.12)

So <WZVyV/)*<*«CD)<W2>i*/i and
k+l k+l

<WZW7>*^minC^^minCS^^y)- If iMZo is persistcndy exciting with /, a!

and Cfc as defined in Eq. 3.6, we have

<Xi<%n(0) * 2>yv7* <*&L(P) D

The converse is certainly not true. Even if {MkaQ is not persistcndy exciting, {\|/*}£o

may be. The persistent excitation condition requirement is weakerforthe reduced order parame

terization than for full order systems. To makethis more precise, wc define the persistent excita

tionnullityto be the setofdirections in which {$* }£o is noi persistcndy exciting:

N* := jceR2*: (Vfr,^) (V7 eN) (3* eIN) k£\+Jx |2* [fc.iy i (3.13)
It follows from thedefinition that {<t>*}*lo is persistcndy exciting if and only if N& = {0}.
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Proposition 3.4 {yk} k„Q is persistcndy exciting if and only if N£PiIm(D) = {0}.

Proof: =>: Suppose Q*x e N£ Pi Im(D). Choose y e Rm with x=Dy. Then §fx =y/y
k+t

and (Vplfp2>0) (V/eN) (3*eIN) £ |\|f/V |2£ [pi,P2]- So {y*}£o is not persistently
y«*

exciting.

<=: Suppose {y*}j£o is not persistcndy exciting. Then (Vplfp2>0) (V/eN) (3y*0)

(3*6*4) 2 |«j>7Dy I2 =J \y}y |2 e [ftftl- So 0*DyeN*nim(D). El

iV^J iscertainly closed under scalar multiplication. However, N*e need not be alinear subspace
ofR2".

Example 3.5 foeIR2, *i=lgj. e2=liJ» (<!>*}={* b*2»*2»*i»*i.*i.*2»e2.*2.« 2.* i»---)- Here
a.\e !+a2fi2€ tyj «*> oti=0 or a2=0. So Nfi is just the coordinate axes of IR2. IS

n£ becomes alinear space if we restrict our attention to stationary sequences.

Definition: A sequence of vectors {vk)k^ is stationary if the following limit exists uniformly in

k:

/?v(m) := lim i +£~ vyv/L (3.14)
p-*-P Jmk

(i.e. (VmelN)(Ve>0)(3p <,€**)(Vp>/><>)(V*€N) ||/?v(m)--*£vyv7+m ||<e.)
*+p T

Lemma3.6 {v4}£ostationary =>3p,ct2 such that V* OnuxCZ^v^0^-
jmk

1 *+pProof: Choose any e>0. Then 3p such that V* ||/?„(0) rZvyvyll<e- So
P+* jmk

«2=(p+1) UAv(0) ||+e will do thejob. H

We conclude that when discussing persistent excitation of stationary signals, we only need

to be concernedwith the lower bound in Eq. 3.6 (the upperbound is satisfied automatically).

Proposition 3.7 {fy}£o stationary => N£=Kct(R ^(0)).

Proof: JYj*cKer(/?»(0)): Fix jcsJVjJ and let y=ipjp Clearly yetyj. Choose e>0. Then

3p<oo such that V* flK*«))-- £ ♦>071<T- Sincc •> B=« 1. V*

|yTrt$(0)y J) l<t>7v P^T- Choosing/=p and oti=^- in the definition ofA/^.
P jmk ^ z

I *«f?-i e
. 3*0 such that— £ l^v l2<^-So
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1 *o+p-l i ka¥p-\ P p
yrtf<(0)y=(yrK«(0)y-| £ |<|>7y|2) +7 I \*fy |2< f +f-e (3.15)

^ y=*o ** y=*o ^ "

Since e was arbitrary, y7fl^(Oyy =0 =*• ye Ker(K «>(0)) => x=||* ||y e Kcrtf? 0(0)).

NfioKaQlffl): Stationarity => (Ve>0) (VxeIR2") (3p0) (V/7>/?0) (V*)

Ur(/?6(0)-— X <M>7)*|<e|M|2. Fix xeKen^O)). Then for k=Q we have

(Ve>0) (3po) (Vp>p0) £ l<t>7* \2<P*tx II2-
Jkcr+/-1

cJaimi(Vcc>0)(V/elN)(3A:o) £ |4>/*r |2<oc Ofcourse, this implies that xeflf£.
j°k<t

prjQoi of claim: Fix coO, /eN and let e= „ „,. Then (3/7o) (ty>Po)
' I* II

Pyfr r>_ PCL _, . P0
y-o

2 \$Jx |2< -^r-. Choose ne IN, n>— and fix p=nl. Sop>p0, and

ZI*/*I2=I
y«0 *«=0 ^ j**ki

JU+/-I

Z l«7*l2 <na (3.16)

JU+/-1

So for some ke {0 n-1}, 2 !♦/* I2< <*• T*1011 *Q-# satisfies the claim. S
>•*

Conclusion. In comparing persistency of excitation* for the two identification schemes, we

conclude:

a) If {$*}~=q is persistcndy exciting then so is {y* }?=& and

b) if {<i>*}£o is stationary and persistently exciting of order m (i.e. rank(/?^(0)) ^ m), then

{y*}*Lo is persistcndy exciting unless a (measure zero) subspace intersection condition is

met

Remark. The stationarity property plays an important role in the analysis of asymptotic pro

perties of identifiers. The matrix function Rv(m) defined in Eq. 3.14 is called the autocovariance

of {vjk }&o- Similarly, given two staionary vector sequences {vk}£a and [uk )k>a0t wc define their

cross-correlation

1 *«*-1 T
Rm(m):= lim — £ UjVJ+m

p-~P y»*

This stationarity concept is completely deterministic. For stochastic systems, the results given

hold for any stationary sample paths.

There is an analogous property of (stochastic) stationarity in the theory of stochastic sys

tems, which is related to the sample path property (3.14). Indeed, for a wide sense stationary

sequence of random vectors {v^co)}^ we define the stochastic autocovariance
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/?f*V):=E[v*vJ*„]

which is independent of &. For a wide sense stationary ergodic process the sample path autoco

variance Rr(m,<a) asdefined in Eq. 3.14 exists and is equal to R^oeh{m) foralmost all 0). Unfor

tunately, we cannot guarantee that the limit in Eq. 3.14 will be uniform (in k) for almost all co.

The concept of (deterministic) stationarity was one of the tools developed by Wiener in

[14]. A very brief survey of some of the results with respect to their application for adaptive sys

tems is included in Boyd and Sastry [5].

3.4 Parameter Error Comparisons

We now derive a direct relation between 9* and 9£, the reduced- and full-order parameter

errors due to "noise." (Recall that 9|-»0 as lW/T, while J^-frO as Vn. So 9* is the asymptoti
cally dominant term.) We have

9£=Mk-lW,es (3.17)

tf=tfjfli>,*, (3.18)

Q£=Dvi (3.19)

Since y, =DT$s and N0 = DTM0D we have Nk =DTMk D and

8f =D(D TMkD )'lDT2>,e, (3.20)

But, from Eq. 25,

So

Z$ses=MkQi (3.21)
i-i

rk=D{DTMkDTxDTMkVk (3.22)

and the connection between the two parameter errors is established. To make more sense of Eq.

3.22, we let Mk have a singular value decomposition

Mk = UWT (3.23)

and define

L z=tAVTD

T :=tf2r**
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Then Eq. 3.22 can be written

QJ = {U7rl/e)L{LTLTxLT(Z!AlUT)Qkt (3.24)

= TPrT-xQZ

where Pr is the orthogonal projection onto Im(L). So the map 9£t->9£ is a similarity transfor

mation of an orthogonal projection. The result is a projection onto IrmT) = Im(D) as expected.

Of course, similarity transformations do not preserve orthogonality, so we may not conclude that

II9*NII§/ II ingeneral. None-the-less, ||9/||/||9£|| can be bounded above.

IfifI * wm^r-1)!!^!! (3.25)

= OaJlMkr^<hm^k)H9tl

Finally, applying the persistent excitation condition (Eq. 3.6) yields

lie,!£!!,J^JH^E" _ J5 (3.26)

where Ob» o^Mq).
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4. ROBUSTNESS OF REDUCED ORDER IDENTIFICATION

4.1 Robustness to Improper Parameterization

In the reduced order identification scheme, we restrict the set of allowable parameters to

0 = 9o+ Im(D). We now ask what to expect if this re-parameterization is not proper, i.e. if the

true parameter 9 is not in 0.

First we consider the deterministic exact least squares algorithm. Assume that 9*0 and

define

d:=min{ ||9-90-Dv|| } (4.1)
veR"

the distance from 9 to 0. Let v* be the minimizing argument of Eq. 1, andlet 9' = 90 +Dv'. So

d = ||9- 9' ||, and9' is the nearest elementof 0 to 9.

Theorem 4.1Suppose {$*}&o is persistendy exciting, with /, cti, and 0:2 defined as in Eq. 3.6.

Then

Proof: Bk minimizes ||Yk - OJ9* || over0. Since 9'e0, wehave

lYk-*fikl*lYt-*M (4.3)

Since Yk = <I>79 and ||9-9'|| =d.

ie-ej*S=£*rf (4.4)
<W<J>*)

Applying the persistent excitation bounds on QkQk =^fyfij from Eq. 3.6 gives the
y-i

result 13

Note that when £<|>;<|>7 k "perfectiy conditioned" (i.e. 0^ =0^, Theorem 4.1 implies that
y-t

9* a 9*. In any case, Theorem 4.1 and Pythagoras' Theorem tell us that 9* will converge to the
set

|e€0:||9-9'||^-\/-^.-l d\
In order to guarantee that Qk actually converges we assume that [$k )ksQ is stationary as well as
persistcndy exciting and denote the limit 9*. (Proof ofconvergence: {<!>*}£0 stat. and p.e. =s>

(V*}£o stat. and p.e. and {z*}£o stat. => %converges to ym=R^OTxR^(0) => Qk converges
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to 9* =9o+ Dv*.) Of course, we have:

|e*-e|s-\/|prf (4.5)
||9*-91<a/-^--1 d (4.6)

y <*1

i,(0) V a,

wherev* is specified by 9/ = 9o+ Dv*. In fact since {<J>* }£<> is stationary, we can obtain tighter

bounds in Eq. 4.5-4.7 by replacing Vo^/ai with the condition number of R$(0).

42 Robustness to Unmodelled Dynamics

We demonstrate robustness to higher order dynamics as a special case of improper parame

terization. We assume our system is actually nth order but we identify it as an nlh order system
with n < n. 0 is the 2a dimensional linear subspace of SI2" given by

«n+i = *'' =*« =*«+t = *** =*« =0 <4-8>

The reduced parameter space IR2* can therefore be identified dirccdy with 0, and D is just the

inclusion map (90 =0). Having made the identification, we say v* =9*, ^—9', and v* =9*.

(Since 0,^(0)= 1, Eqs. 4.6 and 4.7 arc still consistent) Theorem 4.1 can now be applied

directly to give the desired robustness result:

* k-l N oti

dZ=«Kx +"' +«n2 +bi+l + ••• +*»2 (4-10)

It is clear that this concept can be extended to combined robustness to unmodelled dynam

ics and improper parameterization. Instead of identifying 0 dirccdy with IR2*, we identify 0

with an affine subspace of 1R2*.

Finally, we remark that v* has been called the 'tuned value' for themodelled system in the

presence of unmodelled dynamics for the case 0 =R2". The tuned value depends not only on

the system and modelling assumptions, but on the actual signals (i.e. on the choice of input) as

well. This dependence is demonstrated explicitly in the equation

v*=* yflr^^O) (4.11)
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