Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



REDUCED ORDER IDENTIFICATION:
PARAMETER ERROR, CONVERGENCE
AND ROBUSTNESS FOR LEAST
SQUARES ALGORITHMS

by

Robert J. Minnichelli

Memorandum No. UCB/ERL M87/31

20 May 1987



REDUCED ORDER IDENTIFICATION: PARAMETER
ERROR, CONVERGENCE AND ROBUSTNESS FOR
LEAST SQUARES ALGORITHMS

by

Robert J. Minnichelli

Memorandum No. UCB/ERL M87/31

20 May 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



REDUCED ORDER IDENTIFICATION: PARAMETER
ERROR, CONVERGENCE AND ROBUSTNESS FOR
LEAST SQUARES ALGORITHMS

by
Robert J. Minnichelli

Memorandum No. UCB/ERL M87/31

20 May 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



REDUCED ORDER IDENTIFICATION:
PARAMETER ERROR, CONVERGENCE AND ROBUSTNESS
FOR LEAST SQUARES ALGORITHMS .

by
Robert J. Minnichelli

Department of Electrical Engineering
and Computer Science
University of Califomia, Berkeley

ABSTRACT

We consider the implementation of reduced order identifiers to incorporate prior informa-
tion for DARMA and ARX systems. A bound is given on the ratio between the reduced order
parameter error and the full order error. This guarantees that the reduced order algorithm con-
verges at least as fast as the full order algorithm. The algorithm is shown to be robust to
improper parameterization (incorrect prior knowlede) with practical error bounds. We extend this
result to obtain a new error bound for robustness to unmodelled dynamics for both full order and
reduced order algorithms.
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1. INTRODUCTION

We consider the finite dimensional SISO discrete time difference equation of Eq. 2.1. The
standard (ARX or DARMA) identification problem requires estimating the cocfficients of this
equation based on a sample of inputs and outputs. We will be concerned with the implementation
of a priori constraints on these parameters. In particular, we want to implement a set of affine
constraints while taking advantage of the reduction of the dimension of the allowable parameter
space. Typically, this situation occurs in systems comprised of known subsystems with unknown
interconnection gains and in systems with a few unmodelled (or incompletely modelled) com-
ponents.

The contributions of this paper are all with respect to least squares identification algorithms.
However, the reduced order methodology is fairly independent of the particular algorithm being
used, since it simply involves a reparameterization of the original difference equation parameters
and the application of the (arbitrary) identification algorithm to the new (and smaller) set of
parameters. The notable exceptions to this are fast gain and lattice algorithms, which utilize "all”
of the original difference equation structure (see Sec. 2.8). The general reduced parameter struc-
ture was first consider by Dasgupta, Anderson and Kaye (8], and more thoroughly by Dasgupta
[7). Further investigations into the general algorithm have been made by Bai and Sastry [2] and
Mason and Sastry [13]. All of these authors considered both continuous time and discrete time
systems with a variety of identification algorithms. Independent work by Clary [6] concenirated
on the least squares algorithm for discrete time systems (as do we) while restricting attention pri-
marily to the Filtered Least Squares algorithm for the special case of a priori known poles and
zeros (see Sec. 2.6). (None-the-less, when discussing the interpretation of the Filtered Least
Squares algorithm, as in Sec. 2.7 of this paper, Clary develops the more gencral structure as con-
sidered here and in [2], [7], (8] and [13].) Dasgupta, Andcrson and Kaye [8] also consider exten-
sions to bilinear parameter dependence.

Although these papers are fairly recent, the underlying concepts of parameter space reduc-
tion via filtering seems to be present throughout the adaptive identification and control literature.
For example, in his survey on adaptive control 1], Astrom discusses an example which requires
the identification of polynomials in the following equation:

AnAo=B"[Ru +Sy]
The polynomials A,,(z ") and A o(z™") are assumed to be known (in fact, they are uscr selected in
this adaptive control design). B~(z"") contains the non-minimum phase zcros of the plant, and
R(z™") and S (z~!) arc controller parameters that need to be estimated. When B ~ is not character-

ized a priori, we are left with a bilincar identification problem. However, when B~ is assumed
known, the problem reduces to a lincar identification in terms of the 'filtercd’ signals B~u and
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B~y. In cither case, we also use the filtered output A, A qy. This scparation of the B~ dynamics
from R and S and the use of filtered inputs and outputs essentially incorporates all of the [caturcs
of the more general parameter reduction procedure.

As the title suggests, we shall establish some results on the convergence and robustness pro-
perties of the reduced order algorithms. As the reduced order least squares identification algo-
rithm really does solve a least squares problem, just as the full order algorithm docs, all the con-
vergence and robustness properties present for the full order algorithms corrcspond to analogous
properties for the reduced order algorithms. However, these propertics will have conditions
which, though analogous to the full order conditions, are not necessarily equivalent. For exam-
ple, under suitable conditions, the full order parameter estimates will converge to the true param-
eter if the regression vectors are persistently exciting. Under analogous conditions, the reduced
order parameter estimates will converge to the true parameter if the filtered regression vectors (or
pseudo-regression vectors) are persistently exciting. Thus it scems possible to have general situa-
tions under which the full order algorithm converges while the corresponding reduced order algo-
rithm does not, unless we can show that persistent excitation of the full order regression vector
implies persistent excitation of the filtercd regression vector (this is established in Prop. 3.3).

The first objective of this paper is to establish comparative convergence results for the
reduced order estimation to complcment the analogous convergence results. That is, we would
like to say that the reduced order algorithm converges "faster than” the full order algorithm. In
fact, our main result on parameter errors states that the ratio between the reduced order parameter
error and the full order error can be bounded above for all time by a persistent excitation ratio
(Eq. 3.26). It cannot be bounded below.

The second objective is to establish robustness of the algorithm to both unmodelled dynam-
ics and improper (incorrect) parameterization (or constraint). In fact, the robustness of the algo-
rithm was exhibited by Clary [6]. We derive a new robustness result which is more dircct and
produces practical error bounds.

In section 4.2, we show that unmodelled dynamics is a special case of improper paramecteri-
zation. This leads to a new robustness result for full order identifiers and a new bound on the
error of the so-called "tuned value.”



2. PRELIMINARY RESULTS AND NOTATION

2.1 System Description

We begin with a finite dimensional SISO discrete-time input/output description
V= =@ k1 = = aYint D iltgy + -+ Dyl 2.1

The approximate equality implies the possible presence of modeciling errors, system disturbances,
measurement noise, etc. This will be made more precise in later sections. We can write the right
side of Eq. 2.1 in vector form by defining

0:=(ay - ay by by e R®
Oki= (Yhm1 * * " ~Yhkon Uimt " " Upn) €R?
Then Eq. 1 becomes
= 00 2.2)

2.2 Least Squares Identification

The fixed order identification problem is to determine an cstimate for 0 in Eq. 2.2, B, based
on the data available at time k, namely (y,, 4,, s Sk}.  Here we have restricted our attention to
strictly proper systems so that u, should not affect our estimate of y,. For purposcs of adaptive

control, this allows u, to be dctermined by the controller after the estimate ﬁk is formed. The
data (y,, 4,1, s Sk} is equivalent to the data (y,, ¢,,s Sk}. We define

Ye= Ok Va1 -y 1) eRE
Dp:= (Or Qo - - - P)eR2 x4
Then Eq. 2.2, applied to all the data available at time &, yiclds!

Y=o (2.3)
The least squares estimate for 6 at time k& based on Eq. 2.3 minimizcs
J @)= Y- 07813 =§l()'c‘ 07, 2.4)
and is given by
&=(¢g<bl)"¢kY,=<‘>§¢,¢Ir‘(§¢,y,) @.5)

! Here we assume implicitly that y,=u, ;=0 for 5 <0.



We make Eq. 2.5 recursive by defining

k
My:=3 0s0]c R X

s=1

k
Epi= Z dsys € R>

s=l

Then Eq. 2.5 becomes

Mi=Mpy + 0u0f (2.6)
&= Gkt + i)k Q.7
B=MIE, (2.8)

In the exact least squares algorithm we start with M =0 and £;=0. We cannot dcterminc an
estimate ?)g until M, becomes nonsingular. In particular, we necd £ 2 2n.

In the lcast squares with initial estimate algorithm, we assume an a priori estimate 'éo and
choose a (small) positive definite matrix Mo. Sctting Eg=M o 6, the algorithm (2.6)-(2.8) is
defined for all £ and minimizes

J @)= Bc—80™™ oB—Bo) + T 0, —078:)? 2.9

=]

For both algorithms we should determine 3, through Gaussian elimination rather than
inverting M. The algorithm (2.6)-(2.8) has o(»3) computation requircments.
We can reduce the computational requirements to o(s2) by noticing that M, is updated in
Eq. 2.6 by adding a dyad to M,_;. This allows P,:=M;! to be updated dircctly without any
matrix inversions. Egs. 2.6-2.8 become
Pr1x
1+ 0fPrtr
Pii@a00Pi
1+ 0fPs1n
Po=Mg! (2.12)

B=8y + = 078e1] (2.10)

Pk=Pk_|— (2.11)

Many sources are available for a more detailed derivation of the lcast squarcs algorithm, along
with a more complete discussion of the many implementation issucs and the selection of M.
Ljung and Soderstrom ([12] is suggested. Sce also Scction 2.8 for further discussion.



2.3 Reduced Order Identification

We now turn our attention toward incorporating a priori knowledge of the system into the
identification algorithm. To some extent, we were able to do this by choosing 8. We saw that
M ¢ could reflect our confidence in @@ So if M is ’very large’ in some dircction (cquivalently, if

P is very small), the orthogonal projection of 'ék onto that direction will rcmain cssentially fixed
for a ’long time’ at its initial value. We wish to address this problem morc formally.

Suppose that 6 is not completely undetecrmined, but instcad is known up to a set of m unk-
nown parameters vy, ...,V,,. Further suppdse 0 depends linearly on the parameters. In other
words, suppose 0 is restricted to an m-dimensional affine sub-space © ¢ R,

0=0p+0vi+ - +8,v,=0p+DV (2.13)

‘ where ve IR™ is the (unknown) parameter vector and D e IR?**” is full column rank (injective).
(If D is not full column rank, the vectors 6y, . ..,0,, are not lincarly independent, and some of
the parameters v; are redundant and can be eliminated to obtain a smaller parametcrization.) We
assume, of course, that 6y and D are known a priori.

We re-write Eq. 2.2
7= 0f0=9[00+¢]Dv _ (2.14)
We define a new ’pseudo-output’ and "pseudo-regression’ vector by
2=y 0f8e R
Yi=DTYeR™
Then Eq. 2.14 becomes
7= WiV 2.15)

Comparing Eq. 2.15 with Eq. 2.2, we derive the least squarcs cstimate of v bascd on Eq. 2.15
immediately.

W= (e - e R™X*

Zy=(z - 2)TeR¥

k
Ne=¥ ¥ = Ty, yle Rmxm

s=l

x
Ce=¥iZ, = T Yy 2,€ R™

=]
Ny =Np + eyl (2.16)
Ce =Camt + Y ze . Q.17
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Ve =N (2.18)

where the lcast squarcs estimate ¥, minimizes the cost

’ k
J V) = 1Ze= ¥I% 12 = 32— wiT0e)? (2.19)

s=l
Note that
Z-¥YIiv=v,-0f0 (2.20)
so that the minimization in Eq. 2.19 is the same as the minimization in Eq. 2.4 with 8, restricted
to 69+ Im(D). As before, Eq. 2.16-2.18 can be modified to eliminate the matrix inversion.

Ok-1¥x
1+ Y7 Qe 1y

Qe VWi Qe

V=% + (Ze= WiV (2.21)

0 =0y - 1+ VIOtV (2.22)
Qo=Ng! (2.23)
If a desirable M g and 6y € © have already been determined, we choose N  and ¥y so that
| No=DTM,D : (2.23a)
& =0p+D % (223b)

2.4 Error Model
We make the approximate equality in Eqgs. 2.1, 2.2 and 2.15 precise by defining the *crror’
ex:=yi=f0 =z~ ylv

Eq. 2.2 and Eq. 2.15 become
Y =000 +e; (2.24)
n=ylv+e 2.25)

We consider two types of models in this paper:

(1) DARMA (Detcrministic Auto-Regressive, Moving Average exogenous input): e;= 0.

(2) ARX ((stochastic) Auto-Regressive with ¢Xogenous Input): e, is a *white noise’ process
(this will be made precise in later sections).



2.5 Transfer Function Formulation of Reduced Order Identification
The transfer function description of the n** order ARX model is

n(z™h)
diz™h

where n(-) and d () are polynomials of degree n and the constant terms are zero and one, respec-
tively.2 In terms of the coefficients defined in Eq. 2.1, we have

Y(z)= U@)+ E(z) (2.26)

d@z™h

nEzYH=bizl+ - +bz™" .27
d@zVH=1+a;z7t+ - +a,z7" (2.28)

Now suppose that n(-) and d (") are parameterized by vy, . . ., V,, as follows:

noz Y+ T vin; 7Y

n@™h _ jui 2.29)
-] m -
4C™) 4N Svdi Y
jol

where dj, n; are known polynomials in z~':
dzH=14+az1+--- +a%™
dizY=alz7'+ --- +aiz™ j=1,....m

b.'. ce,m

niz Y =b{z'+ - +biz™
Now we form the vectors:
0j=[af - -aib{ - -biffeR® j=0,...,m
0:=(a, - -a,b;- "b,]Teth
and we get
0=09+Vv10;+ ‘- +v,6, (2.30)
asin Eq. 2.13.

Conclusion, We sce that the affine polynomial paramcterization of the transfer function in
Eq. 2.29 cormesponds preciscly (i.e. with identical parameters) to the affinc paramecterization of
the ARX cocfficicnts in Eq. 2.30.

2 Alternately, we could consider 1(2) = 2" (z™") snd d(z) = z*d (z™1). Then (") is of degree n-1
and d () is monic of degree n.



2.6 Example: Known Poles and Zeroes

We consider an ARX model with some known dynamics characterized by 7 poles {p;} /-
and s zeroes ({;};.;. We define the "known’ polynomials:

d @™ =(-p 1z Y(1pz™) - - (-pzH=1+alz +- - +afz™

nk@z™h ==Lz NGz - -z D =1+b% 7V + - +b5
Next, we define 'unknown’ polynomials which contain the remaining dynamics.

d“zY=1+alz7 + .- +a%, 27"

n G N=bz "+ - bRz

Our unknown parameter vector consists of the 2n—r—s cocfficicnts of d“(-) and n“(-), and the
combined dynamics are given by Egs. 2.31 and 2.32.

dzH=d*@NHd ) =d )+ "fa;‘(z‘id*(z-l)) (2.31)
j=l
nG Y =n*HntE = Tb Kz ink@z™) (2.32)
j=l

Conclusion, A collection of known poles and known zerocs of a transfer function does
indeed induce an affine parameterization of the transfer function polynomials. This parameteriza-
tion is in terms of the coefficients of the unknown polynomials.

We now show that the implementation of the identification algorithm for the parameteriza-
tion shown above can be reduced to a the particularly simple and attractive structure shown in
Fig. 1. Using previous notation, we would implement the identification algorithms for
af,...,as,,b%,..., by, by forming m =2n—r—s lincar filters to generate .

. -zl dkez Yy () j=I,...,n-r ”
/@)= 2/ kYU (2) j=n—s+l,...,m (233)
We need one additional filter to gencrate z,:
Z(z)=d*z"WY (2) (2.34)

The example of known poles and zeroes has a special property that the filters have many common
elements. Y(z) is always filtered by d*(z~") and U (z) is always filtcred by n*(z™Y). To reduce
computation, we can filter these signals first, then apply the simple dclay opcrators that constitute
the remaining filter dynamics. In fact, when we do this, we sce that the remaining filtering and
identification is just the usual (full order) identification algorithm for 2n—r—s paramecters. Com-
bining the filtcring and the usual least-squares is called the filtered least squares algorithm (intro-
duccd by Clary in (6]) and is illustrated in Fig. 1. Notice that the noise input ¢; is transformed



properly to the filtered identification.

Plamg
€y

Uy kK U, v 4 1 Yi ! Y
n(z") n(z’) ) d@h

Las Squuws  Ildomificetion o 42‘2.
d'@Y Y@) = n'@Y) U@ + E@)

v

I

'Y dzh [—

Figure 1.
Schematic Diagram of the Filtered Least Squares Algorithm

2.7 Interpretation of Reduced Order Identification

We intend to show that the reduced order identification yields precisely the same estimate
as the full order identification algorithm without matrix inverse (Eqs. 2.10-2.12) if Pg and 'éo

satisfy:
Im(P o cIm(D) (2.37)
e O _ (2.38)
Intuitively, making P g singular in certain directions is like lctting M o become unboundcd in cer-
tain directions. Thus ‘infinite’ weight is placed on certain lincar combinations of 8,—8 in the cost
function of Eq. 2.9, resulting in an estimate which satisfics
8-y Im(D) (2.39)
The feasibility of the argument lies in two facts which follow by inspection of Egs. 2.10 and 2.11.
(1) Eq.2.11 implies Im(P,.;) cIm(D }=>Im(P,) cIm(D).
() Eg.2.10implics 8,-8,; € Im(P,_,).

So we see that Egs. 2.37 and 2.38 do guarantce that §, remains in © for all k. The proposition
below shows that the processes themselves are identical. In the sequel, we use 5,: to dcnote the

paramcter estimate that results from the reduced order estimate ¥,:3

3 We shall never use the dot notation for time derivatives in this paper, so 6g should not create any confu-
sion.



ék = 90+D0k

Proposition: Consider the algorithm (2.21)-(2.22), with ék =09+D%,. Let Po=DQoD7,
& =0y + D ¥, and consider the algorithm (2.10)-(2.11).# Then 6, = 8, for all &.
Proof:  First, we show by induction that P,=DQ,DT for all £>0:
Py 100 Py
1+0iPio1be
DQ; (D T01)4{D)Qe1DT

Py y=DQ; DT = P,=P,_,

=DQ, DT~
Qr-1 1+@ID)Qx1(D o
Qe 1¥eWiQe1 | 1
=D |0y~ D
[ T 1+ylgew

=DQ,DT

Another inductive argument establishes the result:
81 =00+ D V=8, =8, + POy~ 0701}
=080+ D V-1 +DQx(D T4u) i = 780~ 07 D V1]
=0g+D [Vt + Qe Wi (2 = Wi V1))
=0p+DV; a

The equivalence between reduced order identification and the ’singular’ full order
identification (with Pg=DQoDT) is presented for conceptual purposes only. The singular
identification should not be implemented, as:

(1) it does not retain the benefit of reduced computation; and
(2) it is numerically ill-conditioned, and as soon as the cigenvalues of P, wander away from

zero, the constraint 8, © may be violated.

4 Here *algorithm’ refers only to the equations 2.10 and 2.11 applied "blindly.’ The algorithm doesn't real-
ly apply, since P g is not positive definite.
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2.8 Fast Gain Algorithms and Lattice Filters

We have emphasized that the reduced order algorithm solves a lcast squares problem analo-
gous (in fact, equivalent) to the full order algorithm, and so inherits all of the analogous proper-
ties. However, the full order algorithm has more structure than is required to apply a least
squares criterion, and more structure than we used in Section 2.2. This additional structure is not
inherited by the reduced order algorithms, and the structure allows the full order algorithm
' (2.10)-(2.12) to be reduced to an o(n ) process (linear computational growth). We conclude that
for large systems with only a few constraints (i.e. when the reduced order system is still large), it
may cost less to implement the full order algorithm.

To demonstrate the additional structure we consider the simplified auto-regressive case (no
exogenous input). Then

eg(al...a“)r

Ok = (et " Vin )

k
M, = T 0,07

s=]

k
gk = z¢:ys

=]

and M; and ¢, have the following "shift” structure:

k k k
D Ys-tVs-t 2Ys=s=2 ° XYVs=lVs-n
=] =] s=] ——
k -1 %1 Vet
Z)':-ﬁ:-l Zy:-l)':-l : : Y Ve-Vsn -
sm=] s=l 3=l Yi=2
M= ) . . . : Q=1
x k =M Yeon = k-1
zy:-ny:-l : * zy:-ays-n‘ : —
P s=l . Yken-1
k-1 k-t -
z)’.v-ny:-l * : Zy:-n}':-n
sm] s=1

For the full ARX or DARMA cascs M, and ¢, will have a "block shift" structure. In either case,
such systems can be rccursively solved with linear computational growth in n using mcthods
related to the solutions of Tocpliz systems. It is easily scen that upon reparameterization, the
reduced order identificr may lose this valuable property. We note that the Filtered Least Squares
example of Section 2.6 does inhcrit the shift structure.

We will not discuss the fast gain and lattice algorithms any further. The derivations are
quite involved. An adequate discussion of these algorithms is given by Ljung and Soderstrom
[12], with additional references given there.
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3. PARAMETER ERROR AND CONVERGENCE

In this section, we will review a few properties of identifiability and parameter convergence
for least squares algorithms. We will then compare convergence for reduced order identification
against convergence of full order schemes. In Section 4 we will give a robustness result for the
case when the a priori information is inaccurate.

As an illustration of the type of result we’ll be studying, we first consider the case of the
exact least squares algorithm (Eqs. 2.6-2.8) applied to a deterministic system. This rather simple
analysis also illustrates the intuition behind the claim that reduced order identifiers might in gen-
eral have faster convergence. Suppose that {¢y, . ..,¢,,} are linearly independent vectors. Then

the exact least squarcs estimate 8, is defined and is exactly equal to © for all k 22n; that is, the
algorithm converges exactly in 2n steps. With the reduced order identification under analogous
conditions, ég converges exactly to © in m steps (where m < n). The resulting improvement and
the underlying mechanism are very clear in this case.

In more general situations, it will be difficult to guarantee improvement in performance, but
at the very least we would like to show that no performance is lost by implementing a reduced
order algorithm.

3.1 Identifiability .
Consider the deterministic, zero-initial-state systém with input/output maps:
h(®©): {ux}emor> {yr) im0 (3.1)

We think of 2 as a map from the parametcr 6 to the space of input/output maps. Then we say
that 6e R?" is identifiable if for all &’ ¢ R?*

h@©)=h(©) = 0=0’ 3.2)
Likewise, we may consider the input/output maps as a function of the reduced parameter:
8(V): {up}ino P (e }ivo (33)
with, of course,
g(V)=h(Bp+DV). 34
Thenve R™ is identifiable if for all v e R™
gW)=g(V)=>v=Vv (3.5)

First we note that 0 is identifiable if and only if the corresponding n** order transfer function has
no pole-zero cancellations. The following result was first shown by Bai and Sastry [2].

-12-



Theorem 3.1 Suppose 6=69+D v, and 0 is identifiable. Then v is identifiable if and only if D

is injective.

Proof: =>: Suppose D is not injective. Let Ve Ker(D). Then v+V corresponds to the same
parameter vector 8 as v (i.e. Og+DVv = 6p+D(v+V) = 0), and thus thc same
input/output map.
<=: Suppose D is injective, and v#V’ have the same input/output map. Then
6o+ D v+ 09+DV while 0=09+Dv and'eo-i-Dv' have the samc input/output map.
This contradicts the identifiability of 6. &

We conclude that identifiability cannot be hindcred by using a priori information in the manner

proposed.

Remark, We have shown that v is identifiable whenever 0 is (since D was requircd to be
injective). However, v may be identifiable cven when 0 is not, as in Example 3.2. The
identifiability situation is thus improved by incorporating prior information using the rcduced
order algorithm.

Example 3.2 Consider the transfer function

14521
(14+3z"1)(1+vz D)

Then v is always identifiable, but 8 is identifiable if and only if v+.5.

hz ™M=

Remark. Identifiability simply insurcs that there is a unique paratﬁctcr to which, under
*some ideal conditions,’ (usually persistent excitation) we might expect 8 to converge. In the
absence of identifiability, we may still be able to obtain convergence to a submanifold of parame-
ter values with identical input/output properties. We may speculate that when input/output pro-
perties are the primary objcct of interest (as is the case with many controller designs, for exam-
ple) that this may suffice, depending on *how’ 6, converges to the submanifold. Mason has stu-
died this type of "convergence’ in [13].

Remark, For the ARX case we have two input/output maps to consider: u—y and e—y.
The ARX structure requircs the noisc/output map to be all-pass (no zeros). The denominator of
the noise/output transfer function is equal to the denominator of the input/output transfer function
(sce Eq. 2.26). The denominator is always identifiable from the e —y map. Knowing the denom-
inator, the numerator is always identifiable from the =y map (i.e. pole/zcro canccllations can
be accurately detected). We conclude that full order ARX systcms are always identifiable;
reduced order systems are identifiable if and only if D is injective.

-13-



3.2 Convergence of Least Squares Algorithms

We now return to the full order least squares identification problem, with notation as
defined in Section 2.2. A standard result of least squares identification gives sufficicnt conditions
for parameter convergence (see, for example, Kumar and Varaiya [11], p. 203).

Theorem 3.2 Suppose {e; )iz is a sequence of uncorrelated zcro-mean random variables with
~ as.
bounded second mean. Then 6, — 0 on the sct of @ for which:
(@) OpminMi —> +oo

M,
ltm su Tonar
®) Up ——— ,k

Convergence becomes uniform in time if we strengthen conditions (a) and (b) to a persistent exci-
tation condition: )

Definition: The deterministic sequence {¢y ) x=o is m_ms_tg_m_lx exciting (p.c.) if there are positive
real constants o, &, and a positive integer { such that for any ke N

k+
ol < To;0] <ol (3.6)
Jmk

Clearly a persistently exciting signal satisfies conditions (a) and (b) in Thcorem 3.1, since
Z‘P;Q; Mpuy-My ' 3.7

The set of @ for which $,(w) is persistently exciting is denoted Q°

We now determine the parameter error by analyzing 5,‘ using the fact that y, = ¢J0 +¢,.

G =M+ z¢,y,)

s=]

=M (Go+ z¢,¢ To+ }:¢,e,> (3.8)

s=] s=l

=M M oy + (M, M )0+ M} i%e:)

s=]

n k
=0 +M[1M0(Q)- 0) "‘Mk-‘ 24),8,

sal

We define the parameter errors:
9 =8 - 0=9F+9¢
0 = MM (B - 0)
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k
88 =M1 0,6,

sal
with Yy, V£, V£, 0¢, 0/ and £ defined analogously.
The persistent excitation condition immediately tells us that Q,i‘ deccreases deterministically

as 1/n. To analyze 8¢ we use stochastic convergence theory.

First we make some assumptions about the error scquence (e} c=o. Let F be the o-algebra
generated by the past (y;,u,.¢;,5<k} and assume

(A1) E{eg |Fi-1} =0, k=0,1,...

(A2) E(e2|Fi—1} £ 1,k=0,1,..

In our case, F,_; is also the c-algcbra generated by {¢,,5<k}. Note that (A1) and (A2) will be
satisfied if:

(B1) E{eclej} =0 Vj<k

(B2) E{eflej}s1 Vj<k

(B3) u, is a deterministic function of past inputs and outputs.

Now we note that (for a given, fixed sample path) if {¢;}feo is persistently exciting with
bounds o and o, then [|¢; |2 < o, for all k. Thus we have

H ) A ll}:4>,e,l|s a(k o | z¢,e, I (39)

and assumptions (A1) and (A2) guarantee that ($, e, } s=; is a sequence of uncorrelated zero-mean
random variables with variance bounded by a;. We conclude that:

as.
(1) 8¢ — 0 (Strong Law of Large Numbers)
qm.
0@1 k
ofk-17
Having established the convergence results for full order estimation, analogous results fol-

low immediately for the reduced order systems. For example, assuming appropriate noise statis-
tics,

@ E[[8¢fIP)1S——

~ as.
Vi > v oon QF (3.10)

We want to establish more than this. Indced, we intend to show that convergence propertics
cannot be destroyed by a reduced parameterization. So in relation to Eq. 3.10, since we know
that the full order cstimate converges on QF, we want to show that Q¥ 5 Q2. In fact, we
would really like to show that if the full order algorithm converges at a certain rate, then the
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rcduced order estimates must converge at the same rate or faster. In the next 2 subscctions, we
shall cstablish the following results:

(1) {6x}imo Pe. = (Wi )imo P-e.: in fact, the persistent excitation requirement is generically
weaker for reduced order identification.

(2) 64 is a projection of 9 onto Im(D) (see Eq. 3.24).
(3)  (dx)r=o p.e. implies

[EH < ,\/2 k +1+Cmin(M o)/ o A ,_02. 3.1
“ekc" (o 7] k-1 k300 oy )

if 98+0 and £ =0 if £ =0. Of course, this implies that the asymptotic rate of conver-

gence of 5,‘ is at least as fast as that of 'ék.

3.3 Persistent Excitation Comparisons
The main result is quite straight-forward. Recall that in our framework, D is defined to be
injective.
Proposition 3.3 If ($, }ixo is persistently exciting then ()} ing is persistently exciting.
Proof:

P k4 Test
Tvivf = ¥DT¢;6]D = DT [z¢,-¢,-’]D (3.12)
Jj=k Juk Tmk
ko ko
So Crax( TV W) S 020x(D )0max( T 00 and
J=k jok

k+ k+
Omin{ S Wi ¥]) 2 02ia(D YOmin( T0;0]). I (0} 520 is persistently exciting with I, o
=k j=k

and o, as defined in Eq. 3.6, we have

) o .
®0min(D) < Z‘VJVJ S 020mux(D) a
Jj=k

The converse is certainly not true. Even if {¢;}i~p is not persistently exciting, {\;tkj =0
may be. The persistent excitation condition requircment is weaker for the reduced order parame-
terization than for full order systems. To make this more precise, we definc the persistent excita-
tion nullity to be the sct of dircctions in which {d } 52 is not persistently exciting:

k+
NS = {xemz" : (VLB>0) (VL e N) Bk e N) 3 [0 x 2 [Bn.Bz]} (3.13)
Jjmk

It follows from the definition that {¢; } = is persistently exciting if and only if N,;‘, = {0}.
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Proposition 3.4 {y; )= is persistently exciting if and only if N,g MIm(D) = (0}.
Proof:  =>: Suppose O#x € N2 M Im(D). Choose y € R™ with x =Dy. Then ¢/x =yy

k+l

and (YB1,,>0) (vl eN) (3keN) T |w/y |2¢ [B1.B2). So {wi}io is not persistently
jmk

exciting.

<=: Suppose (W, }i=o is not persistently exciting. Then (¥B,,,>0) (Ve N) (3y+0)

k+ k+
(3keN) X [6/Dy P=3 lyfy € [B1B2]. So0#DyeN2NIm(D). ®
=k =k

Npt is certainly closed under scalar multiplication. However, Npﬁ nced not be a linear subspace
of R%.
Example 3.5 ¢,eR? e;= [(l)]. ex= [(1’], {de}={er.e2,e2.1.1.1,62.62.€2.€2,€1,...}. Here
e +ogeze N <> ay=00r 0,=0. So N3 is just the coordinate axes of R%. X
N,,‘Z becomes a linear space if we restrict our attention to stationary scquences.

Dcfinition: A sequence of vectors {v,} o is stationary if the following limit exists uniformly in
k:

Rym) = lim L & vyl (.14)
m) = lim-— v;v .
o) = lim 2 v

. k .
e (me ) (Veo0) (3po ) (p>p) (ke D) [R,(m)—— g’: Vi im <€)
J

k+p
Lemma 3.6 (v;}iwo stationary => 3p 0 such that Yk Gpex( T v;jv))<ats.
ok

Proof: Choose any &0. Then 3p such that Vk [R,(0)-

1 ki T
v:v;|l<e. So
p-l-ljé ivi

o=(p +1)||R, (0) [|+€ will do the job. &
We conclude that when discussing persistent excitation of stationary signals, we only nced
to be concemed with the lower bound in Eq. 3.6 (the upper bound is satisficd automatically).
Proposition 3.7 {9} stationary => N,2=K'er(k o).

Proof:  NicKer(Ry(0)) : Fix xeN2 and let y=—>—. Clcarly yeN$. Choosc £>0. Then

el
1 k+p-l Tn.£ .
3p<ee  such that Vk []R¢(0)—'; § $;i0; l|<—2- Since |[yll=1, V&
J

k+p~1
YR )y -% 3. 16fy [Pl<%. Choosing =p and o=E in the definition of N2,
Jmk
otp=1

k
Bkosuchthat% 3

16fy <. So
Jjuke 2
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1 kotp-1 1 katp-1 e
YRy =G ROy -— T o[y +— % lofyP< 5+
p J=ke p Jj=ka

=€ (3.15)

to|m

Since € was arbitrary, y TR 4(0)y=0 = y € Ker(R o(0)) => x=|Ix ||y € Ker(R +(0)).

N2oKer(Ry(0)): Statiomarity => (ve>0) (¥xeR%¥) (3po) (¥p>po) (V)

k+p-1
IxT@R 4,(0)--5- 5 0;0Dx | <ellx 2. Fix xeKer(Ry(0)). Then for k=0 we have
J

Pl 2 2
(ve>0) (3p o) (vp>po) §0I¢jxl <pelx ||
J

kotl-1
claim: (Vo>0) (Ve N) (3ke) Y [6/x [*<c. Of course, this implies that xe Nje.
Jj=ke
proof of claim: Fix o0, [eN and let e:l lla"z. Then (3po) (Vp>po)
X
p-1
Y lo7x [>< %a. Choose ne NN, n>? and fix p=nl. So p>p ¢, and
Jj=0
p=1 n=1 |KH-1
TlofxP=3% [ > lofx Iz] <na (3.16)
j=0 k=0 | j=id
K+ -1
So forsome ke {0, ...,n-1}, ¥ |0]x|><a. Then kg=k! satisfies the claim. ®
Jj=ki

Conclusion, In comparing persistency of excitatior’ for the two identification schemes, we
conclude:

a) If (¢« }s=o is persistently exciting then so is (W }c=o; and

b) if {¢x)io is stationary and persistently exciting of order m (i.c. rank(R 4(0)) 2 m), then
{ W ) k=0 is persistently exciting unless a (measure zero) subspace interscction condition is
met.

Remark, The stationarity property plays an important role in the analysis of asymptotic pro-
perties of identifiers. The matrix function R, (m) defined in Eq. 3.14 is called the autocovariance
of {vi}rao Similarly, given two staionary vector scquences { vy } sz and () fog, we define their
cross-correlation

R T L T
wlm) = lim > JZ.'." UjV o
This stationarity concept is completely deterministic. For stochastic systems, the results given
hold for any stationary sample paths.

There is an analogous property of (stochastic) stationarity in the theory of stochastic sys-
tems, which is rclated to the sample path property (3.14). Indced, for a wide sense stationary
sequence of random vectors {v,(®) }s=o we define the stochastic autocovariance
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R§"A(m) :=E [viviim]

which is independent of k. For a wide sense stationary ergodic process the sample path autoco-
variance R,(m,®) as defined in Eq. 3.14 exists and is equal to R$**(m) for almost all ®. Unfor-
tunately, we cannot guarantee that the limit in Eq. 3.14 will be uniform (in k) for almost all ®.

The concept of (deterministic) stationarity was one of the tools developed by Wiener in
[14]. A very brief survey of some of the results with respect to their application for adaptive sys-
tems is included in Boyd and Sastry [5].

3.4 Parameter Error Comparisons

We now derive a direct relation between ¢ and ¢, the reduced- and full-order parameter

errors due to "noise.” (Recall that §£—0 as 1~Nn , while 9,;'°->o as 1/n. So §f is the asymptoti-
cally dominant term.) We have

k
8i=M:13 e, (G.17)
3=l
. k
VE=Ng T v,e (3.18)
sal
0f=Dvf (3.19)

Since ¥, =DT¢, and Ng=DTM oD wehave N, =DTM, D and

9k=D<DTMkD)-‘DT§l¢,e, (3.20)
-
But, from Eq. 2.5,
é@,e, =M,9¢ (3.21)
So
0f=D(D"MDY'DTM,9¢ (3.22)

and the connection between the two parameter errors is establishcd. To make more scnse of Eq.
3.22, we let M, have a singular value decomposition

M, =UZUT (3.23)
and define
L =3%y™D
T:=Uz™
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Then Eq. 3.22 can be written
8¢ = WZHLATLYILTE*UT)e¢ (3.24)
=TPrT-9¢

where Pr is the orthogonal projection onto Im(L). So the map 9§~ is a similarity transfor-
mation of an orthogonal projection. The result is a projection onto Im(7T") = Im(D ) as expected.
Of course, similarity transformations do not preserve orthogonality, so we may not conclude that

l0£]<l|8[l in general. None-the-less, |6 £[|/(|8£ || can be bounded above.
1921 S Crmax(T) Cax(T~H 11851 (3.25)
= CuinlMe) ™ #0muaM1)* 192
Finally, applying the persistent excitation condition (Eq. 3.6) yiclds

le£l S\]& ktlvodoy 1/22. (3.26)
¢ o - k=0 a
log] ! k-l ! |

where Gy = O (M o).
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4. ROBUSTNESS OF REDUCED ORDER IDENTIFICATION

4.1 Robustness to Improper Parameterization

In the reduced order identification scheme, we restrict the set of allowable paramcters to
=09+ Im(D). We now ask what to expect if this re-parameterization is not proper; i.c. if the
true parameter 0 is not in ©.

First we consider the deterministic exact least squarcs algorithm. Assume that 8¢ © and
define

d =min{ [6-6y-Dv]| } @4.1)
veR"

the distance from 0 to ©. Let V' be the minimizing argument of Eq. 1, and let 6 =8, +DV’. So
d = ||l0—0’||, and @’ is the nearest element of © to 6.

Theorem 4.1Suppose (¢ )= is persistently exciting, with I, o;, and o, defined as in Eq. 3.6.

Then
N k+l . | ®2 o
0- \/ —\/— ‘\/ = :
llo-6 < = N a d fdl a d 4.2)
Proof: ) minimizes [|¥; — ®J6, || over ©. Since 8¢ ©, we have

1Y, - ®F6, || < [|Y, - ©F6’]] T @43)

Since Y, = ®0and |6 -6’ =4,

max(DF,
Smx(@r) 4.4)

(CELAES T
Applying the persistent excitation bounds on ®J®, = f_‘,«p o] from Eq. 3.6 gives the
result. 3 a

Note that when f_‘i¢j¢ ] is "perfectly conditioned” (i.e. Gpyip = Gpnay), Theorem 4.1 implics that

6; =0 In an); c,ase. Theorem 4.1 and Pythagoras’ Theorem tell us that 6; will converge to the

set
{Gee: ||e-e'nsx/3l-1 a}
oy

In order to guarantee that 5, actually converges we assume that (¢, } 52, is stationary as well as
persistently exciting and denote the limit 6°. (Proof of convergence: {0x) =0 stat. and p.e. =

{We)iwo stat. and p.e. and {z,}52g stat. => 9, converges to v°=R w0 R (z (0) = 0, converges
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0 8° =09+ DV".) Of course, we have:

. *5]

e -e(|sx/?l d 4.5)
N Y

6* -o| < ” 1d 4.6)

v =v[ < I(D)\/ﬁ-l d @.7)

where Vv’ is specified by 8’ =0y + DV’. In fact, since {; }<xo is stationary, we can obtain tighter
bounds in Eq. 4.5-4.7 by replacing Voy/ay with the condition number of R +(0).

4.2 Robustness to Unmodelled Dynamics

We demonstrate robustness to higher order dynamics as a special case of improper parame-
terization. We assume our system is actually n‘* order but we identify it as an 7" k order system
with 7 < n. © is the 277 dimensional linear subspace of R?* given by

Az 1= ' =a, =b§+l= cve=ph, =0 4.8)

The reduced parameter space IR?* can thercfore be identified dircctly with ©, and D is just the
inclusion map (8p=0). Having made the idcntification, we say ¥ =0y, V=0, and v° =6".
(Since Gp;n(D)=1, Egs. 4.6 and 4.7 are still consistent.) Theorem 4.1 can now be applied
directly to give the desired robustness result:

% -v s \]1--— d “9)

d*=al, + - +al+bd, + - +b} (4.10)

It is clear that this concept can be extcnded to combined robustness to unmodclled dynam-
ics and improper parameterization. Instcad of identifying © dircctly with R%, we identify ©
with an affine subspace of R%*,

Finally, we remark that v has been called the *tuncd value’ for the modelled system in the
presence of unmodelled dynamics for the casc © = R?. The tuned value depends not only on
the system and modelling assumptions, but on the actual signals (i.e. on the choice of input) as
well. This dependence is demonstrated cxplicitly in the equation

=R (0)"'R (0 @.11)
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