

Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TEST GENERATION FOR

SEQUENTIAL FINITE

STATE MACHINES

by

Hi-Keung Tony Ma, Srinivas Devadas,
A. Richard Newton, and
Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M87/36

29 May 1987

TEST GENERATION FOR SEQUENTIAL

FINITE STATE MACHINES

by

Hi-Keung Tony Ma, Srinivas Devadas, A. Richard Newton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M87/36

29 May 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

TEST GENERATION FOR SEQUENTIAL

FINITE STATE MACHINES

by

Hi-Keung Tony Ma, Srinivas Devadas, A. Richard Newton,
and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M87/36

29 May 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Test Generation for Sequential Finite State Machines

Hi-Keung Tony Ma, Srinivas Devadas
A. Richard Newton and Alberto Sangiovanni-Vincentelli

Department of Electrical Engineering andComputer Sciences
Cory Hall

University of California, Berkeley, CA. 94720

Abstract

We present a novel approach to test pattern generation for synchronous sequential finite state machines.
Our approach involves first extracting part of the State Transition Graph (STG) of the finite state
machine, a Moore or a Mealy machine, using purely structural information, Le. the gate-level descrip
tion of the sequential circuit The construction of the partial STG is based on an efficient state-
enumeration algorithm that aims at finding paths from the reset state to different valid states (states
reachable from the reset state) in the STG. For circuits with relatively few states, a partial STG includ
ing all the valid states is built For circuits with a large number of states, only a subset of states is
included in the partial STG. We show how test sequences for line stuck-at faults can be efficiently gen
erated using the partial STG in conjunction with fault excitation-and-propagation and statejustification
algorithms based on the concept of state enumeration.We have successfully generated tests for finite
state machines with a large number of states using reasonable amounts of CPU time and obtained close
to maximum possible fault coverages.

Acknowledgements
This work is supported in part by the Semiconductor Research Corporation under grant 442427-52055,
the Defense Advanced Research Projects Agency under contract N00039-86-R-0365 and by a grant

from AT&T Bell Laboratories. Their support is gratefully acknowledged.

1. INTRODUCTION

Test generation for sequential circuits has long been recognized as a difficult task[Hen64,

Bou71, Bre76, Mic83]. Unstructured random sequential designs are very difficult to test One

common approach to improve the testability of a sequential circuit is to add test points to the circu

itry so that tests can be applied more readily and fault effects can be observed better. But this

method is not systematic and relies on designer ingenuity. Asynchronous sequential designs con

taining races that may operate improperly due to hazards further complicate the test generation pro

cess. The identification of all feedback lines to construct a model (iterative array) for test genera

tion for asynchronous designs is not a simple task. Tests generated using the model may be

incorrect and require validation through simulations.

A popular approach to solving the problem of test generation for sequential circuits is to

make all the memory elements controllable and observable, i.e. complete scan design[Eic77,

Agr84]. scan design approaches have been successfully used to reduce the complexity of the prob

lem of test generation for sequential circuits by transforming it into a combinational one which is

considerably less difficult The design rules of Scan designs also constrain thesequential circuits to

synchronous ones so that the normal operation of the sequential circuit is free of races and hazards.

However, there are situations where the cost in terms of area and performance of complete scan

design is unaffordable. In addition, even though the general sequential testing problem is very

difficult there may be cases where test generation can be effective. Simply making all the memory

elements scannable in a sequential circuit without even first investigating how difficult is the prob

lem of generating tests for it could unduly incur unnecessary area cost

The difficulty in generating a test usually lies with: 1) setting the states of the memory ele

ments into a certain combination so that the fault under test is excited; 2) propagating the fault

effect to the primary outputs. An input sequence is usually required in both cases (if such a

sequence exists). In general, the longer the length of the shortest input sequence needed to perform

steps 1) and 2), the more difficult it is to find an input sequence to test the circuit Both

approaches mentioned above attempt to shorten the length .of the input sequence. In the scan

design approach, the length of the input sequence is reduced to one when all memory elements are

made scannable.

Several approaches[Bre71, Sch75, Mar78, Mal85, Nit85, Sht85] have been taken in the past

to solve the problem of test generation for sequential circuits. They are either extensions to the

classical D-Algorithm or basedon random techniques[Sch75, Nit85]. When the number of states of

the circuit is large and the tests demand long input sequences, they can be quite ineffective for test

generation. This is because no a priori knowledge of the length of the test sequence is available.

In the extended D-Algorithm methods, a large amount of effort may be wasted in trying to find

short sequence tests for faults that require long ones. Random testing techniques are based on con

tinuous simulations and grading of test vectors according to simulation results. They can be very

time consuming for difficult faults that have only a few long test sequences. Our approach to test

pattern generation for sequential finite state machines represents a significant departure from these

methods and is largely based on the concept of state enumeration. The problem of generating tests

for faults that require a lengthy input sequence is handled efficiently by the intelligent use of infor

mation contained in a partial State Transition Graph (STG) and the integration of a few new algo

rithms based on the concept of state enumeration.

We assume the sequential circuit under test is synchronous and free of races and hazards

under simple design rules. We also assume there is a reset state for the synchronous sequential

machine and memory elements such as D flip-flops are identified and represented as logical primi

tives to facilitate loop cutting in transforming the synchronous sequential circuit into an iterative

array. We first extract a partof the State Transition Graph (STG) of the finite state machine using

purely structural information, i.e. the gate-level description of a sequential circuit The construc

tion of the partial STG is based on an efficient state-enumeration algorithm that finds paths from

the reset state to different valid states (states reachable from the reset state) in the STG. For cir

cuits with relatively few states, a partial STG including all valid states is built For circuits with a

large number of states, only a subset of valid states is included in the partial STG. The partial

STG is then used in conjunction with efficient enumeration-based fault excitation-and-propagation

and state justification algorithms for generating tests for line stuck-at faults. We have successfully

generated tests for finite state machines with a large number of states using reasonable amounts of

CPU time and obtained close to maximum possible fault coverages.

The following section outlines the test generation process. Extraction of the fully orpartially

connected state transition graph from the logic level finite state machine is described in Section 3.

The enumeration-based fault excitation-and-propagation and state justification algorithms are

described in Section 4 and 5 respectively. Section 6 describes the detection of a special class of

redundant faults. Results for a number of finite state machines are presented in Section 7.

2. THE TEST GENERATION PROCESS

Assuming the complete State Transition Graph (STG) of a sequential circuit is available, test

generation for a fault under test can be done by first finding an input sequence 71 and an initial

state 50 that excite and propagate the effect of the fault to the primary outputs within (4"-2") time

frames, where n is the number of latches in the sequential circuit (see Theorem 1). We assume a

reset state for the machine from which all test sequences begin. Then every path from the reset

state to any state 51 that covers 50, a potential setup sequence, in the complete STG is fault simu

lated. If a path TO (setup sequence) to a state 51 that covers 50 can be found under fault condi

tions, a test sequence 72 is generated by concatenating the path 70 with 71. Even though a setup

sequence TO may not be found, the fault may still be detected by one of the potential setup

sequences through fault simulation. If this is the case, that particular potential setup sequence itself

can serve as a test sequence 72. If no test sequence can be found, a new input sequence 71 and a

new initial state 50 which is disjoint from all previously generated ones is searched and the pro

cedure is repeated.

The algorithm is complete, i.e. if a fault is testable, a test will be found given sufficient time.

The main drawbacks of this method are: (1) the memory storage for the complete STG may be

unreasonably large and the generation of the complete STG may demand astronomical CPU time;

(2) fault simulation of all potential setup sequences is extremely time consuming. A remedy to (1)

is to generate the potential setup sequences on-the-fly using a backward justification algorithm that

searches for paths from the reset state to the 50's under fault-free conditions. No information of

the STG is required/used.

A test generation algorithm following the ideas presented above is as follows.

Algorithm Structure 1

(1) Find an (new) input sequence 71 and an (new) initial state 50 that will excite and propagate

the effect of the fault under test to the primary outputs within (4"-2") time frames using the

state-enumeration-based test generation algorithm (described in Section 4). If no solution

exists, exit without a test

(2) Find a (new) path TO (potential setup sequence) from the reset state to the initial state 50

using a backward justification algorithm. If no solution exists, go to (1).

(3) Fault simulate the potential setup sequence TO. If it detects the fault generate the test

sequence 72 from TO and go to (5). Else if it is a valid setup sequence, go to (4). Else if TO

neither detects the fault nor is a setup sequence go to (2).

(4) Concatenate the input sequence 70 that represents the path from the reset state to the initial

state 50 with 71 to form 72 which is the test sequence for the fault under test

(5) Exit with a test sequence.

Even though this algorithm is potentially effective, backward justification in general is

difficult when the setup sequence is long. In addition, some states may need to be justified more

than once. Therefore, an important enhancement is to generate a partial STG containing as many

valid states (and paths from the reset states to them) as possible provided that the partial STG

extraction process (through forward enumeration as described in Section 3) is carried out

efficiently. Note that the partial STG may contain all the valid states in the complete STG but con-

tains much fewer edges. States and edges may be added to the partial STG via backward

justification during test generation.

The second drawback mentioned above, Le. that fault simulation of all potential setup

sequences is very time consuming, does not actually pose a problem. From the observations in our

experiments, if 70 is an invalid setup sequence, it is very likely to be a test sequence. Therefore,

there is rarely the need for fault simulation of more than one potential setup sequence for a fault

Finally, an efficient test generation algorithm combining the advantages of forward enumeration and

backward justification by using the partial STG is as follows.

Algorithm Structure 2

(1) Find an (new) input sequence 71 and an (new) initial state 50 that will excite and propagate

the effect of the fault under test to the primary outputs within a prescribed number of time

frames using the state-enumeration-based test generation algorithm (described in Section 4).

If no solution exists, exit without a test

(2) Search for a path (potential setup sequence) 70 from the reset state to 50 in the partial STG.

If it is found, go to (5).

(3) If the partial STG includes all valid states, go to (1).

(4) Find a path 70 from the reset state to the initial state 50 using the state justification algorithm

(described in Section 5). If no solution exists, go to (1).

(5) Fault simulate the potential setup sequence 70. If it detects the fault generate the test

sequence 72 from 70 and go to (7). Else if it is avalid setup sequence, continue. Else go to

(1).

(6) Concatenate the input sequence 70 that represents the path from the reset state to the initial

state 50 with 71 to form 72 which is the test sequence for the fault under test

(7) Exit with a test sequence.

The initial state 50 can be a cube containing don't care bits or a min-term with every state

bit specified. In the case of a cube, a path from the reset state to a minterm covered by 50 can

serve the purpose of a setup sequence.

3. STATE TRANSITION GRAPH EXTRACTION

The inputs to the logic level extraction program is the combinational logic block CLB of the

finite state machine and information about latch inputs andoutputs, i.e. present andnext state lines.

The output is a partial State Transition Graph (STG) of the finite state machine. A node in the

STG represents a distinct state and an edge between two nodes represents an input combination

(cube) that drives the finite state machine from one specific state to another.

The STG extraction first sequentially cube-enumerates all fanout edges from the given reset

state. Whenever a new edge is found, it is added to the current STG if the next state it fans into

does not exist in the STG. Each next state is then picked as a new starting state. The procedure is

repeated until no more distinct valid state can be found. All the edges in the complete STG will be

implicitly, but exhaustively enumerated. The partial STG constructed is a tree, i.e. there is only a

single path from the reset state to any other state. This is to restrict the storage space for the par

tial STG so that synchronous sequential machines with very large number of states can be handled.

The algorithm used to enumerate the fanout edges from a state is an extension to the implicit

enumeration algorithm of PODEM[Goe81]. Initially, values of all primary inputs and next states of

the logic level finite state machine are set to unknown. The logic level circuit is simulated with the

present state lines fixed at their specified values. An unknown next state line is then picked and a

path is backtraced from it to an unknown primary input with the objective to set the value of the

chosen next state line to a known one. A 1 or 0 is assigned to that primary input The circuit is

then simulated again. The setting of primary inputs and simulation of the circuit is continued until

all next state lines are set to known values - a fanout edge is enumerated. Whenever an edge is

found, we backtrack to where a primary input is first set to a known value and assigned it an oppo

site value. We then repeat the simulation and primary input setting. When no more backtracking

8

can be done, all the edges from a state are implicitly, but exhaustively enumerated.

The extraction process can proceed in either a depth-first or a breadth-first fashion. In the

breadth-first fashion, the path from the reset state to any state in the partial STG is the shortest one.

The test sequences generated are shorter but the total number of test sequences is greater than using

a depth-first algorithm. There are hard limits, LI and 12, for the total number of states to be

included in the final STG and the number of states at each level from the given initial state. LI is

used to restrict the memory usage and L2 restricts the maximum length of the test sequence. The

pseudo-code below illustrates the partial STG extraction process in a depth-fust fashion. ExtractO

is initially called with thereset state of the sequential circuit and the level equal to 0.

Extract(State, level)

{
PresentState - State;
Primarylnput - unknown;
simulate the circuit;

while (not all edges have been enumerated) {

if ((TotalNumStates £ LI) ||
(NumStatesDevel] £ L2)) break;

if (not all NextState lines are set) {
find_newjpi_assignment();
simulate with current set of pi assignments;

}
else {

if (NextState is not in the partial STG) {
add NextState to partial STG;
TotalNumStates - TotalNumStates + 1;
NumStatesDevel] - NumStates + 1;

Extract(NextState, level + 1);

}
else {

backtrack to the last set primary input
and assign an alternative value to it;

simulate with current set of pi assignments;

}
}

}
}

An alternative to the backtracing/backtracking approach to STG enumeration described above

is forward simulation on the input space given a starting present state. The forward simulation pro

cess begins with all the input lines set to unknown values. Inputs are set randomly to 0 or 1 in a

pre-specified order till all the next state lines are all set to known values. Backtracking on primary

input values is done after setting all next state lines. However, this approach is less efficient than

the approach described earlier because a primary input value may be unnecessarily set in order to

set the next state lines. This can lead to a great amount of redundant simulations. On the contrary,

in the backtracing/bracktraclring approach, the backtracing process makes sure that the next primary

input to be set and the simulation following the value-setting always contribute to the setting of the

next state lines.

4. THE FAULT EXCITATION-AND-PROPAGATION ALGORITHM

The Fault Excitation-and-Propagation algorithm (FEP) is based on the decision tree concept

of the test pattern generation algorithm PODEM. FEP uses the conventional iterative array model

for generating an input sequence 71 and an initial state 50 to excite and propagate the effect of the

fault under test to the primary outputs within a prescribed number of time frames. The iterative

array is considered wholly as a combinational circuit with primary inputs of different time frames

time-indexed and the present state lines of the first time frame treated as pseudo inputs. The initial

state 50 is specified by the pseudo inputs values. FEP first tries to propagate the fault effect to the

primary outputs of the first time frame. If it fails, it will use the primary outputs of the second

time frame for fault propagation and so on until the prescribed number of time frames is reached.

The number of time frames required by FEP to ensure a complete test generation algorithm

can be proved to be a maximum of (4"-2") where n is the number of latches in the sequential cir

cuit Forward search techniques based on the D-Algorithm starting from the reset state require 4"

10

time frames to ensure completeness [Bre76]. In ourcomplete algorithm, FEP requires (4*-2?) time

frames and fault-free backward justification requires 2" time frames.

Theorem 1: If 71 exists for any 50, its length is bounded by (4"-2") in a n-lateh sequential circuit

Proof: Each state vector y(i) in 71 will have one of five values, namely (0,1, x, D, D). The values

D and D correspond to composite values for faulty and fault-free circuits - if a value of a line is 0

(1) in a fault-free circuit and 1 (0) in the faulty circuit the line is deemed to have a value, D (D).

If a test exists, the x's can be replaced by 0's and l's and hence only four values need to be con

sidered. Thus, 4" unique states exist 50 can be any of 2"possible values since FEP begins from a

fault-free state. It is clear that in testing a circuit it is never necessary to enter the same state

twice - all the y(i) can be restricted to be unique. If 71, starting from a particular fault-free state,

51, enters another fault-free state, 52, we have a shorter test sequence starting from 52. So the

upper bound on the length of 71, if it exists, occurs when 71 enters all possible faulty states start

ing from a fault-free state andthis bound is (4"-2").

FEP uses two decision trees, one for the primary inputs of different time frames and the other

for the initial state 50, as opposed to only one in PODEM. The two decision trees are built in a

similar way through the backtracing and backtracking processes as used in PODEM. The present

state lines of the first time frame are treated similarly as the primary inputs during the fault

excitation-and-propagation process. Values of the present state lines and primary inputs of different

time frames are continuously set one at a time through the backtracing process and the iterative

array is simulated whenever a primary input or a pseudo iput is set to a known value. The value-

setting-and-simulation process continues until the effect of the fault under test is excited and pro

pagated to the primary outputs of at least one of the time frames or when the backtracking limit is

reached. Backtracking takes place whenever it has established that under the current set of primary

input and pseudo input assignments, the effect of the fault under test cannot be excited and/or

observed at the primary outputs of the specified time frame with further input assignments. Back

tracking during the search for 71 and 50 is done on both decision trees.

11

FEP employs the concept of disjoint state enumeration to make sure that all the tests it gen

erates for a specific fault will have disjoint initial states 50's; this is necessary because of the loop

in the test generation process described in Section 2. Whenever the search for a new test is begun,

the primary input decision tree (Dl) for the previous test is scratched completely but the present

state decision tree (D2) of the initial state 50 is retained. Immediately backtracking is done on Dl.

Then the value-setting-and-simulation process is carried out as described above. The reason that

tests generated for a specific fault by FEP should all have disjoint 50's is related to how FEP is

used in the test generation process as described in Section 2. For a specific fault a new test is

requested only if we cannot find the path from the reset state to the 50 in the previous test neither

in the extracted STG nor through the state justification algorithm described in Section 5. There

fore, all tests generated for a specific fault should have disjoint 50's.

A single decision tree could have been used instead of two separated ones as described

above. And instead of completely resetting all primary input values to unknown, i.e. scratching the

entire primary input decision tree, when a new search is started, one can simply backtrack on the

single decision tree to where a pseudo input is first set to a known value and assigned it an oppo

site value. But due to the inherent characteristics of the enumeration approach of PODEM, it is

more efficient to begin a search with as small a number of preset inputs as possible. Therefore the

double decision tree method is used.

5. THE STATE JUSTIFICATION ALGORITHM

Given a goal state 50, the state justification algorithm (SJ) attempts to find a path (setup

sequence) from the reset state to it 50 can be a cube containing don't care state bits or a minterm

with every state bit specified. In the case of a cube, SJ needs only to find a path to any minterm

state that is covered by 50.

First SJ sequentially enumerates all the fanin edges to 50. It then checks whether any state

the edges fanout from covers the reset state. If such a state exists, a path is found. Otherwise, SJ

picks each fanin state as a new goal state and carries out fanin edge enumeration again. The

12

procedure is repeated until a path is found or no path can be found SJ actually proceeds in a

depth-first fashion and there is a limit on the maximumlength of the justification sequence.

The edge enumeration algorithm is an extension to the enumeration algorithm PLOVER in

[Ma87]. The difference is that here we have multiple line (the next state lines) values to be

justified simultaneously rather than a single output line as in PLOVER. The concept of state

enumeration is also employed in SJ. There are two decision trees to be maintained as in Section 4,

Le. one (Dl) for the primary inputs and the other (D2) for the present state lines. All the present

state lines and primary inputs are set to unknown values initially. Through backtracing and back

tracking processes, the primary inputs and present state lines are continuously set to some known

values, 1 or 0, until all the next state lines are found to be set to their specified values through

simulation. Whenever the search for a new fanin edgeis begun, Dl is completely scratched but D2

is retained Immediately backtracking is done on Dl. Then the enumeration procedure is repeated

again. All edges (with disjoint fanin states) fanning out of a state are enumerated when no more

backtracking is possible. The pseudo code below illustrates the state justification algorithm

proceeding in depth-first fashion. Breadth-fint search is an alternative.

Justify State(State)
{

PresentState (ps) - unknown;
Primarylnput (pi) - unknown;
while (not all fanin states to State are enumerated) {

while (not all the NextState lines arejustified) {

find_newj>i/ps_assignment();
simulate circuit"with current setof pi/ps assignments;

if (there are conflicts on NextState line values) {

backtrack to the last set pi in Dl or ps in D2
and assign an alternative value to it;

simulate with current set of pi and ps assignments;
}

}
if (a fanin state is found) {

if (fanin state covers reset state) {
a path is found;
return;

}
}
else Justify_State(fanin state);

if (a path is not found) {

/* scratch Dl V

scratch all pi assignments;

backtrack to the last set ps in D2 and
assign an alternative value to it;
simulate with current set of ps assignments;

}
}

}

13

14

6. DETECTION OF REDUNDANT FAULTS

The difficulty in test generation for sequential circuits does not just lie with finding tests for

the difficult testable faults. The determination of redundant faults is equally formidable if not more

difficult Obtaining a low fault coverage does not necessary mean the test generator is inadequate

if we can show that the fault coverage is close to the maximum achievable value. However, to

determine whether faults, that no test has been generated for, areredundant or testable may demand

astronomical CPU times. For the purpose of judging how close the fault coverage obtained by our

test generator is to the maximum possible value, we find all the redundant faults basedon Theorem

2 given below and treat other undetected faults as possibly testable faults. This gives a pessimistic

estimate of the number of redundant faults in a given circuit

Definition 1: An edge in the State Transition Graph is said to be corrupted by a stuck-at fault if

the effect of the fault can be excited and propagated to the primary outputs and/or next state lines

by the input vector corresponding to the edge with the present state lines values set to the fanin

state of the edge.

Theorem 2: In order for a stuck-at fault to be detected, the fault should at least corrupt one fanout

edge from a valid state that is reachable from the reset state in the state transition graph.

Proof: In order to detect a fault we need a test sequence starting from the reset state and ending

with a corrupted edge in the STG. If a fault does notcorrupt any fanout edge from a valid state in

the STG, no test sequence can detect the fault since no corrupted edge can be reached from the

reset state.

Determining this special class of redundant faults requires the extraction of a partial STG

containing all valid states reachable from the reset states. The procedure to find these redundant

faults is based on the FEP algorithm described in Section 4. A single time frame is used and all

next state lines are treated as primary outputs. We generate all tests, for a potential redundant

fault with disjoint initial states. If none of the initial states exists in the partial STG, the fault

15

under test is redundant

7. RESULTS

Results and time profiles for six finite state machines are given in Table 1 and 2 respectively.

In the tables m and s stand for minutes and seconds respectively. For each example, the number of

inputs (#inp), number of outputs (#out), number of gates (#gate), number of latches (#lat), number

of equivalent faults (#eqv. faults), number of test sequences (#test seq.), total number of test vectors

(#vect), maximum test sequence length (max. seq. len.), fault coverage, percentage of provably

redundant faults (using Theorem 2), total fault coverage including detected and provably redundant

faults (tfc), and CPU time on a VAX 11/8800 are indicated in Table 1. CPU times for extracting

the partial state transition graph, test sequence generation, fault simulation, miscellaneous setup and

for the entire test generation process are indicated in Table 2.

CKT #inp #out #gate #lat

#eqv.
faults

#test

seq. #vec

max.

seq.

len.

fault

cov.

(%)

red*

fault

(%)

tfc§

(%)

CPUt
time

cse 7 7 192 4 680 96 472 8 99.71 029 100.0 532s

sse 7 7 130 6 486 46 284 10 84.57 15.23 99.8 69.9s

planet 7 19 606 6 2028 80 1191 26 97.39 2^6 99.95 12.6m

sand 9 6 555 6 1932 165 1077 24 94.36 5.18 99M 22.4m

scf 27 54 959 8 3338 136 2238 |21 94.37 3.86 9823 83.0m

sbc 40 56 1011 28 3008 168 1063 24 95.68 2.66 98.34 62.1m

* percentage of provably redundant faults
§ total fault coverage including detected and provably redundant faults
t All times are obtained on a VAX 11/8800

Table 1: Results for 6 example circuits

CKT

STG
Extraction

Test

Generation

Fault

Simulation Miscell. Total

cse 0.9s 8.3s 43.8s 02s 532s

sse 0.4s 512s 17.1s 0.2s 69.9s

planet 3.2s 1.2m 11.4m 0.7s 12.6m

sand 4.6s 10.7m 11.6m 0.6s 22.4m

scf 13.9s 11.5m 712m 1.2s 83.0m

sbc 12.4m 28.3m 21.4m 1.3s 62.1m

Table 2: Time profiles for example circuits

16

As can be seen our test generation technique obtains close to the maximum possible fault

coverage in all the examples. The extraction of the STG consumes a relatively small amount of

CPU time with respect to the total TPG time in all cases. Fault simulation constitutes a large per

centage of total TPG time in most cases except in Example 2, as can be seen in Table 2. Our fault

simulator uses the parallel-fault event-driven technique and a more sophisticated one using con

current techniques will significantiy speed up the test generation process. The reason that test gen

eration time is the dominant constituent in the total CPU time in Example 2 is because a great

amount of time is consumed in trying to find tests for the large number of reduntant faults.

The first five examples are finite state machines obtained from various industrial sources.

The largest example SBC is the snooping bus controller[Hil86] in the SPUR chip set It was syn-

17

thesized using the multiple level logic optimization systemMIS[Bra86].

8. CONCLUSION

A novel approach to test generation for synchronous sequential finite state machine has been

presented in this paper. The efficacy of our method stems from the integration of several new

algorithms that are based on the concept of state enumeration. Our approach involves extracting a

partial state transition graph and using it in conjunction with fault excitation-and-propagation and

state justification algorithms in generating tests. The problem of generating tests for faults that

require a lengthy input sequence is shown to be handled efficiently by our method through the

intelligent use of the path information contained in the STG and the coordinated interaction of the

various algorithms. We have successfully generated tests for finite state machines with a large

number of states using reasonable amounts of CPU time and obtained close to maximum possible

fault coverages. A new method of detecting a special class of redundant faults in determining how

close the fault coverage obtained to the maximum possible value is also described

9. REFERENCES

[Agr84] V. D. Agrawal, S. K. Jain and D. M. Singer, "Automation in Design For Testability",
Proc. of Custom Integrated Circuits Conference, Rochester, NY, May 21-23, 1984.

[Bou71] W. G. Bouricius, E. P. Hsieh, G. R. Putzolu, J. P. Roth, P. R. Schneider and C. J. Tan,
"Algorithms for Detection of Faults in Logic Circuits", IEEE Transcation on Computers,
Vol. C-20, No. 11, Nov. 1971, pp. 1258-1264.

[Bra86] R. K. Brayton, E. Detjens, S. Krishna, T. Ma, P. McGeer, L. Pei, N. Phillips, R. Rudell,
R. Segal, A. Wang, R. Yung and A. Sangiovanni-Vincentelli, "Multiple-Level Logic
Optimizatin System", Proc. of IEEE Int Conf. on CAD (ICCAD), Santa Clara, CA, Nov.
1986, pp. 356-359.

[Bre71] M. A. Breuer, "A Random and an Algorithmic Technique for Fault Detection Test Gen
eration for Sequential Circuits", IEEE Transcation on Computers, Vol. C-20, No. 11, Nov.
1971, pp. 1366-1370.

[Bre76] M. A. Breuer and A. D. Friedman, "Diagnosis & Reliable Design Of Digital Systems",
Computer Science Press, 1976.

[Eic77] E. B. Eichelberger and T. W. Williams, "A Logic Design Structure for LSI Testability",
Proc. of 14th Design Automation Conference, June 1977, pp. 462-468.

[Goe81] P. Goel, "An Implicit Enumeration Algorithm To Generate Tests for Combinational Logic
Circuits", IEEE Transactions on Computers, Vol. C-30, Mar. 1981.

[Hen64] F. C. Hennie, "Fault detecting experiments for sequential circuits", Proc. of 5th Annual
Symp. on Switching Circuit Theory and Logical Design, Princeton, New Jersey, Nov.
1964, pp. 95-110.

18

[HU86] M. Hill et al„ "Design Decisions in SPUR", IEEE COMPUTER, Vol. 19, No. 11, Nov.
1986, pp. 8-22.

[Ma87] H. K. T. Ma, R. S. Wei, S. Devadas and A. Sangiovanni-Vincentelli, "Logic Verification
Algorithms and their Parallel Implementation", Proc. of 24th Design Automation Confer
ence, Miami Beach, FLA, June 1987.

[Mal85] S. Mallela and S. Wu, "A Sequential Circuit Test Generation System", Proc. of 1985
International Test Conference, Philadelphia, PA, Oct 1983, pp. 57-61.

[Mar78] R. A. Marlett, "EBT: A Comprehensive Test Generation Technique For Highly Sequential
Circuits", Proc. of 15th Design Automation Conference, Las Vegas, NV, June 1978, pp.
332-339.

[Mic83] A. Miczo, "The Sequential ATPG: A Theoretical Limit", Proc. of 1983 International Test
Conference, Philadelphia, PA, Oct 1983, pp. 143-147.

[Nit85] S. Nitta, M. Kawamura and K. Hirabayashi, "Test Generation by Activation and Defect-
drive (TEGAD)", INTEGRATION, the VLSI journal 3 (1985) 3-12.

[Sch75] H. D. Schnurmann, E. Iindbloom and R. G. Carpenter, "The Weighted Random Test-
Pattern Generator", IEEE Transcation on Computers, Vol. C-24, No. 7, July 1975, pp.
695-700.

[Sht85] S. Shteingart A. W. Nagle and J. Grason, "RTG: Automatic Register Level Test Genera
tor", Proc. of 22th Design Automation Conference, Las Vegas, NV, June 1985, pp. 803-
807.

	Copyright notice1987
	ERL-87-36

