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Abstract

This thesis addresses frequency domain techniques and the use of prior information in the

analysis of adaptive identification and control schemes.

The contribution to frequency domain analysis is twofold: First, we establish a persistency
of excitation condition on the regressor vector for a reduced order identifier, i.e. it is assumed that
the order of the plant is not available and only the order of the nominal model is known. The
theorem states, roughly speaking, that the persistency of excitation of the regressor vector
depends on the order of the nominal model, i.e. the order of the identifier and is almost indepen-
dent of the existence of unmodeled dynamics. It provides a foundation for the further analysis of
a reduced order identifier using averaging techniques. Then we show, under some technical con-
ditions, that the parameter estimate will converge either to a unique tuned model or to a neigh-
bourhood of the tuned parameter. Second, we apply frequency domain analysis techniques to the
global stability proof for an indirect adaptive scheme. We present a very general indirect adaptive
control scheme along with its convergence proof. We show that if the exogenous input is rich
enough, then the identifier and the controller converge to their "true" values. In the thesis, only
two applications have been discussed. However the scheme presented is applicable to several
kinds of controller design methodologies i.e. offers a great deal of flexibility in controller design

and allows for a very general richness condition on the exogenous input.
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We show how prior information may be used in the analysis and application of adaptive
systems by constructing a model for a wide class of partially known systems and by presentfng
algorithms for the adaptive identification and control of such systems. If the system is completely
unknown, the methods are identical to the standard ones in the literature. However, use of the par-
ticular prior information embedded in the model results in the identification and control of a

fewer number of unknown parameters and consequently better performance.
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Chapter 1 Introduction

This thesis focuses on the two subfields, frequency domain analysis and use of prior infor-
mation in adaptive systems. The philosophy of the presentation is that we only present our own
research in these two fields. In order to make it accessible to a wider audience, references are

given for all existing results and also a simple proof, if necessary.

Adaptive systems have been extensively studied for over a decade and numerous successful
algorithms and their applications have been reported. The development of the theory has led to a
much better understanding of various adaptive identification and control schemes, however, the
field still lacks analytical methods -particularly in the two subfields: frequency domain analysis

and use of prior information.

Frequency domain analysis is a classical method for linear time invariant systems. In this
thesis, our interest is to use this machinery to analyze adaptive systems. We successfully apply
this method to the study of a reduced order identifier and the global stability proof of an indirect

adaptive control scheme.

On the other hand, although the importance of the use of prior information in adaptive sys-
tems has long been recognized, formal and detail study in this area is very new. Our contribution
in this area is that we propose a model for a wide class of ‘partially known’ systems and present

adaptive identification and control algorithms, including a complete convergence analysis.

We begin with a brief review of the literature.
1-1 Review of Previous Work

Frequency domain analysis techniques in parameter identification may be traced back to the
work of Rabkin et al [46] (1955), Levy [37] (1959) and Kardashov [31] (1958). They used experi-
mental frequency data to determine the coefficients of a transfer function. The work was further
developed by Sanathanan et al [47] (1963), Payne [44] (1970) and Stahl [50] (1984). The idea

was that the coefficients of a transfer function were obtained as a result of minimizing some given
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cost function. At the same time, an on-line adaptive identifier was derived and developed by
Lion [38] (1967), Luder et al [39] (1973) and Kreisselmeier [34] (1977). They devised an adap-
tive scheme to estimate the coefficients of a transfer function. Their work, together with that of
Sondhi et al [49] (1976), Anderson [1] (1977) and Morgan et al [42] (1977) showed that the
schemes proposed are globally asymptotically stable and furthermore convergence rate is

exponential, provided the regressor vector is persistently exciting.

Boyd and Sastry [12] (1984) went further. They used frequency analysis techniques to dis-
cuss adaptive control and then results extend easily to the case of identifier. They changed the
condition of persistency of excitation on the Tegressor vector to a condition on the frequency con-
tent of the input, i.e. if input contains as many spectral lines as there are unknown coefficients,
then the regressor vector is persistently exciting and consequently the parameter error converges
to zero exponentially. Their work led to further research in this direction by Fu et al [21] (1987),
Bai et al [10](1987) and Mason et al [41] (1987), in which averaging methods were applied to the

analysis of identifiers.

The use of prior information in adaptive systems was suggested by Dasgupta [14] (1984)
and Clary [13] (1984). They noticed that in much of édaﬁtive literature, the standard approach
was to pre-suppose a complete lack of knowledge about the unknown systems and to ignore all
additional information available to the modeller. The algorithms thus estimate all the coefficients
of a transfer function. However, a great deal of partial knowledge is often available. It seems
intuitively plausible that the identification and control algorithms could have faster convergence
rate and be more robust, if this prior information could be incorporated into the adaptive systems.
It is of course clear that one could neglect the prior information embodied in the system and still
be able to identify and/or control the system. However, use of the particular prior information
results in the identification of fewer number of unknown parameters and consequently faster con-

vergence rate and better transient performance.

-



. 1-2 Contribution of The Thesis

The major results of this thesis are as follows:

(1) In chapter 2-2, we establish the persistency of excitation condition on the regressor vector

@

for a reduced order identifier. It is well known that an adaptive identifier allows asymptotic
estimation of the constant parameters of a linear time invariant system, provided that the
order of the system is known and the regressor vector is persistently exciting. However,
when a priori knowledge about the order of the system is not available and this occurs most
often in practice, how does such an identifier behave? In this thesis, we prove that the per-
sistency of excitation condition on the regressor vector depends on the order of the nominal

model and is almost independent of the existence of unmodeled part. We then show that,

m
under some technical conditions, if input is of the form u(¢) = Y, &; sinw;t, the identified

i=]
model will either converge globally and exponentially to an unique tuned model when
m =n (the order of nominal model) or will converge to a neighbourhood of an unique

tuned parameter whenm > n. -~

In chapter 2-3, we present a general stability proof for continuous time adaptive control
schemes, with very general assumptions on the identifier and controller. We show that if the
exogenous input signal is rich enough, then both the identifier and the controller converge
to their ‘true’ values. To our knowledge, this is the first proof of the persistency of excita-
tion of the regressor vector signal in the closed loop without the use of an artificial random
sampling signal for continuous time case. We show persistency of excitation without preas-
suming the boundness of the signal. Boundness of all signals and the convergence of the
compensator in turn follow from the convergence of the identifier and this is a direct conse-
quence of persistency of excitation of the signal in the identification loop. In this thesis,
only two applicatic;ns of the scheme have been discussed, but the scheme presented offers a

great deal of flexibility in controller design and allows for very general richness conditions



on the reference input.

(3) In chapter 3-1, we present a model for a wide class of partially known systems, then in
chapters 3-3 to 3-5 we give identification and control algorithms for such systems utilizing
available prior information. If the system is completely unknown, these algorithms are
identical to the standard approach in the literature. However, the schemes given will prove
to be particularly important when we devise algorithms for the adaptive identification and
control of these ‘partially known’ systems, since these algorithms have better transient per-
formance, faster convergence rate and are consequently more robust, when the system is

partially known.
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Chapter 2. Frequency Domain Analysis
2-1 Notation and Preliminary

This section introduces some basic definitions and results used throughout this thesis. The
notation is standard, e.g. W (¢) denotes a function of time, W(s) is its Laplace transform. Transfer
functions (matrices) of linear time-invariant systems will be denoted by upper case letters, e.g.
G (s) and G " (s) is the complex conjugate of the transpose of G (s ).

Definition 2-1.1 (Persistency of Excitation (PE))

A signal W(t): R, — R" is said to be persistently exciting if and only if there exist some

o, 3> 0 such that

to+d
| waewT@)de 2l forall 1920
to

Roughly speaking, the intuition of the PE condition is that W (¢) spans the whole space R "
uniformly over time interval 8. There is an interesting frequency domain interpretation for PE

condition. First, let us recall the definition of a spectral line.
Definition 2-1.2 (Spectral Line)

A signal W(t):R,.—> R" is said to have a spectral line at frequency w of amplitude
W(w) e C* if and only if
to+T

= [ waye ar
T }

converges to W(w) as T — oo uniformly in ¢o. When W(w) #0, we say W (¢) has a spectral line

atw.
Then it follows,

Lemma 2-1.3 (PE and Spectral Lines)
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Let W(t)e R” have spectral lines at frequencies w,...,w,. Further assume that {

W (W )),...W (w,) } are linearly independent in C". Then W (¢) is PE.
Proof: See [11].
Lemma 2-1.4 (Filter Lemma of Spectral Lines)

Letu(t):R.—R,y(t): R, — R" be the input and output, respectively, of a stable linear
time-invariant system with transfer function (matrix) G (). If u has a spectral line at frequency

w, then so does y with amplitude
Jw)=G(jw) a(w)
Proof: See [11].

Definition 2-1.5 (Sufficient Richness (SR))

A scalar signal r(t): R, — R is said to be sufficiently rich (of order n) if and only if it has
at least » spectral lines.

It is shown [12], in a stochastic context that the PE condition is directly related to the posi-

tivity of the covariance of the signal. For the deterministic case, they are also very closely related.
Definition 2-1.6 (Autocovariance)

Asignal W(t): R, — R" is said to have an autocovariance Ry(t) € R™*® if and only if

to+T

= [ WEWT ) de =Ry (@)
to

lim —
rlﬂo T
with the limit uniformly in .

The concept is reminiscent of the theory of wide sense stationary stochastic processes. But

we emphasize that an autocovariance is a completely deterministic notation. Its relation to the PE

is simple.
Lemma 2-1.7 (PE Lemma)

Suppose W (¢) has an autocovariance Ry (t). Then W (¢) is PE if and only if Ry (0) > 0.



Proof: See [12].
We will present a few more definitions and lemmas which will be used in the main body of

the thesis. The proofs can be found in [12].
Definition 2-1.8 (Stationary)

A signal W(2): R, — R" is said to be stationary if and only if it has an autocovariance
Ry (7).
Lemma 2-1.9 (Bochner Representation)

Suppose Ry /(1) is a positive semidefinite function. Then Ry (1) has a Bochner representa-
tion

Rw(?) = [ e Sy (aw)

where Sy is a positive semidefinite matrix of bounded measure, called the spectral measure of
w().
Lemma 2-1.10 (Filter Lemma of Spectral Measure)

Suppose u(¢): R, —R" has an autocovariance R,(t) with its spectral measure S,, and
G (s) is a stable transfer matrix. Then y'(s) =G (s) #(s) has an autocovariance R, (7). Its spectral

measure is given by
Sy(dw)=G (jw)S,(dw) G (w)
The following lemma is concerned with the measure of a proper set, which is a very useful
concept in section 2.2.
Lemma 2-1.11

Let f:R" > R* be real analytic and not identically zero. Then the set V =f -1(0) has

measure zeroin R ™.

Proof: See [27].



2-2 Convergence Analysis of a Reduced Order Identifier

2-2-1 Problem Statement

An adaptive identifier (e.g Kreisselmeier [34] and Lunders & Narendra [39]) allows asymp-
totic estimation of the constant parameters of a linear time invariant plant, provided that the order
of the plant is known and the regressor satisfies some persistency of excitation conditions. How-
ever, for the case where a priori knowledge about the order of the plant is not avaiable, which
occurs for most practical situations, how do such identifiers behave? We will study the problem
in this section, i.e. we consider the problem of identifying a reduced order single-input single-

output transfer function. The transfer function to be identified is of the form

G(s)=Gs) ::z;
with G o(s) nominal model which is to be identified and Z:g; unmodeled part. System
identifications with no unmodeled dynamics, i.e. Z“g)) =1, have been investigated by many
L ($) -
authors (see e.g. Kreisselmeier {34] and Luders & Narendra [39]). We consider the case where
Z:z; #1. The main technique we used here is the frequency domain analysis, which we think is

intitively insightful and technically rigorous. First we prove that the persistently exciting cbndi-
tion of the regressor vector depends on the order of the nominal part G o(s) (i.e. the order of
identifier) and is almost regardless of the existence of unmodeled part. This result is very useful
from the engineering point of view, since the plant to be identified is always lower order model

and usually only little knowledge is available about the unmodeled dynamics. We then show that,

m
under some technical conditions, if input is of the form u(¢) = Y &;sinw;¢, the identified model
i=l

will either converge globally and exponentially to an unique tuned model dr(s ), ( which depends
on the choice of the inpin frequencies w;), when m=n (where n is the order of identifier), such

that -
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G(w)=Gr(w) i =1,..n

or converge to a neibourhood of an unique tuned parameter when m >n.
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2-2-2 The Identifier Structure and The PE Condition on The Regressor

The plant under consideration is of the form

ny(s) _ nols) m(s)  n(s)

G(s)=Gofs) d,(s)  dols) du(s)  d(s)

(2-2-2.1)

with the following assumptions:

(A1) G(s) is a unknown strictly proper, stable, finite order and coprime transfer function. The

order N is unknown and could be very large.

no(s)

(A2) The nominal part éo(s)z )

is a unknown nth order, strictly proper transfer function.

The identification problem is to identify nominal part Gofs) (i.e. the coefficients of the
numerator and denominator of G o(s) , or Certainty Equivalence) from the input-output measure-

ments of the plant.
Remarks:

(1) The unmodeled part may represent some high frequency dynamics, nearly pole-zero cancel-

lations, and other kinds of unmodeled dynamics. -~ ~

n,(s)

d,(s)

(2) LetAG(s)= —1and AG 1(s )= G o(s) AG (s), then the plant G (s ) may be written as

G (5)=Gofs)1+AG 1(s))
or

G (5) =G os H#AG o(s)

which are standard representations of unmodeled dynamics (multiplicative and additive).

n,(s)
d,(s)

Notice that no assumption has been made about the propemess of unmodeled part , hence
it is possible that

IAG W)l =  as lwl = oo
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The identifier considered here is an adaptive observer/identifier [34,39] as in figure 2-2-2.1.

-1
u @(s):@o.fﬂ= bys” +-1+brL gu Y ,

U sh+a,s’ +lap

‘ sn-l 1 Sn--1 -

~xolk xoik ®~

1 1 +

y W ~
' w(t) y

Identifier /

Fig. 2-2-2.1

Define

a-l

OT
Wiis)= (M )y(s). "N )y(s).x( )u(s). 3 )u(s))

where A(s }=5"+A;5 *~I4+A,5 2. 4A,, IS an arbitrary nth order stable monic polynomial and let

67(0)=@T()BTU) = (@ 10Dy (¢)5 1(E)renns (£))

denote the parameter estimate of the nominal model G o(s) and W (¢) denote the regressor vector

(Laplace inverse of W (s) ), we see that the output of the identifier can be written as

Yt =wT(e)6¢)
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The parameter update law is defined by
6(t) =W ()i () 1)
=W (@)WT(2)8C)+W (2)y (¢) (2-2-2.2)

It is well known (see e.g. Boyd & Sastry [11]) that in the case of no unmodeled dynamics,

n,(s)
d,(s)

true value exponentially is the persistently exciting condition on the regressor W (z), i.e.

ie. =1, the necessary and sufficient condition for parameter estimate to converge to the

1043
[ wwldt 2ot
to

for some o, >0 and all ¢o> 0 (see definition 2-1.1) or input u(¢) is sufficiently rich (of order
2n), if u (¢) is stationary (see section 2-1)

In the presence of unmodeled part, the situation is more complicated since W (¢) involves

n,(s)
d,(s)’

ing is that input u(t) is sufficiently rich (of order 2n) since W (¢) is 2n dimensional. However, it

unmodeled part It is easy to see that necessary condition for W (¢) to be persistently excit-

is not clear for the sufficient condition. To this end, we have the following lemma and theorem.
Lemma 2-2-2.1

Consider the plant G (s) in (2-2-2.1) and the identifier (2-2-2.2). Then foreach /, 1< n,
there is a nowhere dense, measure zero subset V in R % such that if the input u(t) has 2/ spec-
tral lines at w;, i=1,..2/ and (w,...wy) €R u. V 41, the resultant regressor W (¢) has 2!/ linearly
independent spectral lines at w;, i=1,...,21.

Proof: We prove this lemma in 2 steps. First we show that there exists some point

(W 1,...Ww) € R¥ such that if the input has 2! spectral lines at these frequencies, then so does

W(t) and { W(w),...W (wy;)} are linearly independent.

Proceed by similar arguments as in Boyd & Sastry [11], we have that if the input u(t) has
2N (N is the order of plint G (s)) spectral lines at (w 1,...,w 25), then the matrix defined by
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(i nGw) | Gwan) T nGwan) ]

M )= n(jw1) . 7w an)
W, .. WN)= GwVldGwy) - - Gwan)VldGwan)

dgwy 0 dGwaw)
is nonsingular. This implies that there is a nonsingular submatrix

" q
Gwi)nGwi)  Gwi) TInGwiy)

. | omewy D mGww
m(w;,....,w;,,)— Uwi,)l—ld(iwh) .. (['W;u)l‘ld(jwi”)

dGwi) 0 d(wiy)

where (W;,,... ., W;,) € Wy, ..., way). Using this fact and lemma 2-1.4, it follows that if input
u(t) has 2! spectral lines at (w;,,....w;,), then W(¢) has 2/ linearly independent spectral lines at

these frequencies, i.e.
[ . -1 . e ]
Gwi)nGwi) W) T 'rGwi)

n (i;"i‘) n (i‘.Vi,,)

(W Wi )W W) ) = Gw; " ldGw) - - Gwi) Tl Gwy,)
d(ws) C d(wy)
- diag () ™

AGwi) dGw;) " AGwi,) d(Gwiy) )

This completes the first step. Now define amap f 5 : R? = C (or R?) by
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(Gw'laGw)  Gwa)nGwa)]

_ nGw1) nGwa)
T ®ne W =0 Gy ¥l L L Gwa)ld(Gwa)
dwy - - dGwa)
=detMywy,...,wy) (2-2-2.3)

S 2 is analytic and not identically zero by the first step of proof. This implies that the set

Vu=fu™(0)
is measure zero from lemma 2-1.11 and then the conclusion follows.
Theorem 2-2-2.2 (Persistency of Excitation of W(t))

Consider the plant G(s) in (2-2-2.1) and the identifier (2-2-2.2). Then for almost any 2n
spectral lines which input u(t) has, the resultant regressor W (¢) is persistently exciting. More pre-
cisely, there exist a nowhere dense, measure zero subset V in R ?*, such that if input u(t) has 2
spectral lines at w;, i=1,....2n and (w,, ..., wq,)eR?* =V, the resultant regressor W (z) is per-

sistently exciting.
Proof: Follows from lemmas 2-1.3 and 2-2-2.1.
Remarks:

(1) The theorem 2-2-2.2 is very useful since the persistency of excitation condition of W (z) is
almost satisfied if input u(t) has 2n spectral lines which does not depend on the order and

the "bigness" of the unmodeled part.
(2) We conjecture that the set V is a union of finite points and finite smooth manifolds
{Wh,...,w2,)eR? | wi=w; for some i#f)

We now in a position to analyze the convergence of the parameter estimate. Three cases
will be discussed seperately where the input has exactly 2n, less than 2n and more than 2n spec-

tral lines.
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2-2-3 Tuned Model (Input u(t) Has Exactly 2n Spectral Lines)

In this section, we discuss the case where input has exactly 2n spectral lines. First we give

the following lemma.
Lemma 2-2-3.1
Suppose input u(t) has 2a spectral lines at (W 1,...w2,)€R 27 _ V (this is almost true since V

is measure zero). Then there exist two unique polynomials

Ys)=ns" 4+,

and

B(s) =s"+Bys" 1 4.+ B,
such that

n(iw;) BGwi) =d(Gw;) Ywi)  i=1.....2n

If

BGw;) =0, fori =1...:,2n (2-2-3.1)
then

G (jw;)=Gr(w;) i=1,...2n

where

ws) _ s A,
Bs)  s4+Pys 4B,

Gr(s)=

n
Moreover if input is of the form u (£ )= &;sinw;, all coefficients ¥; and B; are real.

i=l
Proof: The hypothesis implies that the matrix M 5, defined in equation (2-2-2.3) is nonsingular at
W1, ..., Wa,). Consequently, there is a unique solution (By, ... ,Bs. =Y, ...,=Ya) for the fol-

lowing equation -

Broee o oBar =Yoo s =Y) M2aW 1, ..., W2) = (W )" B (W ), ~(W2,)" 8 (W 24) )
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ie.
n(s)Bls)=d(s)As) , s=jwy,....JW2
where
) =15"" +t ¥

B(s)=s"+ By +.+ B,

n
Ifu(t)= Y &:sinw;t,i.e. u(t)has spectral lines at iw; (i=1....,n), then

i=1

(Bl' L] 'Bn’-Yl» LR t-Yn)= (Bl: LR Bm—Yl» L -—'Yn)
Here -- denotes the complex conjugate. This completes the proof.
Remarks:

(1) Nothing has been said about the stability of Gr(s). In fact, G}(s) could be unstable,

depending on the frequencies w; chosen.

a n
(2) If we assume the stability of Gr(s), then it is clear under the input u(¢)=Y &;sinw;¢ the

i=l

output y7(z) of G}(s) equals to the plant output y(z) up to an exponentially decaying term

due to initial conditions. The following lemma tells ;s that under some technical conditions

this fact is also true even though Gr(s) is unstable.
Lemma 2-2-3.2

Consider a strictly proper, nth order transfer function Gr(s). Suppose Gr(s) has no pole
on the jw axis. Then for input of the form u(¢)=sinwt, there exists some initial condition /7(0)
for Gr(s), such that the output yr(t) of Gr(s)is pure sinusoid with the same frequency w as the

input. More precisely,
yr(t) =Im(Gr(jw) e™) forall ¢ (2-2-3.2)
where Im denotes the imaginary part of a complex number.

Before giving the proof, we need the following fact
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Fact 2-2-3.3
If a matrix A has no eigenvalues on the jw axis, then (A 2+w?)™! exists. Moreover

w
s%w?

w
s2w?

(I-Ay! =(sI-AY T ww+AY 1 =AW +AY)] - WU +AY)" 2“’_3

s24w?

Proof: See [55].

Proof of lemma 2-2-3.2: Let (A, b, c) be a minimal realization of Gr(s), the Laplace transform

of output yr(¢) under input u (¢ )=sinwt is

w
s 24w

Yr(s)=c(sI-AY Ir(Q) +c(sT-A)1 b >

where I7(0) is the initial condition. From the fact 2-2-3.3, it follows that
Vr)=c(sI=AYUp )+ c(sI-A)Y T wwH +AYH b

w
s24w?

wS§

—cAwH+AYH b 3
S +w

—cwd+AYp

Choose IT7(0) =-w (w2 +A %) b, we obtain
yr(t) =—cA WA )b sinwt —c(wH+A2"b cosws
Thus the output is pure sinusoid, the equation (2-2-3.2) can be found in Desoer and Kuh
[16,pg280].
Definition: 2-2-3.4
(Gr(s)Jr(0)) is called a tuned model of G (s) at frequencies (zw,, . . . ,1w,), if under the

n A
input u (¢)=Y &;sinw;, the output yr(¢) of Gr(s) with initial condition /7(0) equals to the output

i=l

y(t) of G (s) up to an exponentially decaying term.

Similar to the definition of the regressor W (s) for the identifier in Fig. 2-2-1.1, we define
W ] s* 1 ., 5™ 1 T
T(S) = ( A.(S) yT(S)o"-v MS))’T(S ): )\-(S) u (S )’"-v X(S')-u (S ))
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. .
It is easy to verify that under input u (£)=Y&;sinw;¢, the output of the tuned model may be writ-

i=l

ten as
yr(e)=BrT Wr(t H+Ayr(2)
for O7=(A—B1, . . ., Ax=BrsT1s - - - »¥a)T €R?* and some exponentially decaying term Ayr(t)

due to the initial condition of the filter -5\-(!5 Thus we can relate W () to Wr(¢) by

W()X=Wr(t)+AW(2)

where AW () goes to zero exponentially because of y (¢ )=yr(¢) up to an exponentially decaying

term.

Now under the assumption of existence of a tuned model, let us reconsider the parameter

update law (2-2-2.2)
6=—W i)
==-WQi-yr+yr-y)
=-WWT6-Wr6r)-W (yr-y)
=~WWT(6-87)-W (Or" AW +yr—y)
=-WWT(6-87)+ Ae
where Ae indicates an exponentially decaying term. By defining
¢r=6-0r1 (2-2-3.3)
We have
or=-WWTor+ Ae (2-2-34)

This procedure can be seen clearly as in figure 2-2-3.1.
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Identifier

s Tuned model
G,(s)

Fig.2-2-3.1

Noticed that in the Fig.2-2-3.1, the tuned model is pure fictitious. Consequently, no robust-
ness and sensitivity problems exist even though the tuned model is unstable. But by doing so, we
relate the parameter estimate to the tuned model. From equation (2-2-3.4), we see that the
identified model (parameter estimate) converges globally and exponentially to the tuned model.

In summary, we have
Theorem 2-2-3.5 (Convergence of The Identifier)
Consider the plant G(s) in (2-2-2.1) and the identifier (2-2-2.2) with input

n
u(t)= Y &;sinw;z. Suppose W(t) is persistently exciting and the tuned model exists. Then the

i=l :

identified nominal model (estimation of the nominal model G(s)) converges globally and
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exponentially to an unique tuned model Gr(s) , which depends on the input frequencies, such

that
G(s)=Gr(s)  s=%jwy,....Ljw,

Proof: Follows from the equation (2-2-3.4).

Remark:

n
The theorem 2-2-3.5 guarantees that if input is of the form u(t)y=Y&;sinw;¢ satisfying

i=1

some technical conditions, the identified nominal model will converge to the tuned model.
However nothing has been said about how close between the nominal model G o(s) which is
to be identified and the tuned model Gr(s) which we actually get. In fact, they may be quite

different. This can be seen from the following example.

The plant we consider is a first order model with high frequency unmodeled part as follows

sovo kO sy P
Ges)= s+p s+0p =Gols) s+0P 3.p >0

where 8 represents the ratio of modeled pole and unmodeled pole. When input u (¢ =Esinwz, for

any stable filter —_ -1—, the regressor W (¢) is always persistently exciting for all w# 0.

Ms) ~ s+a
(Note that the theorem 2-2-2.2 only guarantees that for almost any frequency w, The regressor

W () is PE. However, in this example, any frequency w # 0 will produce a persistently exciting

regressor W (¢)). Since the matrix
[ kdp, kdp ]
(jw+p Yjw+dp), (—jw+p)(=jw+3p)

is nonsingular for all w# 0 and this implies W (¢) always has two linearly independent spectral

lines for all w= 0. From the theorem 2-2-3.5, the identified nominal model will converge to the

tuned model such that

S+pr
' k o __ kr
Jwip jw+dp  jwpr
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( By solving this equation, we have |
d
krW)=k-—— 1
82 —w?

We see that if the input frequency w > §Y%p, the tuned model is unstable (even G (s) is
stable). In fact, identified pole pr could be any number in the interval (—, pg%) depending on

the input frequency w chosen. Fig. 2-2-3.2 and Fig. 2-2-3.3 show the simulation results where
k=p=1, =10 with input u(¢) = 10sint and u(t)= 10sin 5t mspecﬁvely. In order to get a good
estimation of G (s ), the input frequency w must be in the low frequency range which will be dis-

cussed i in later sections.
15.. Ko

(10,10)
1 0 . o

7

(~10~10)
P

-15. ' -7.5 ' 0. Fig. 2232 1.5 ' 15.
u(e) = 10sint, (k(t), p (1)) = (kr (1), pr(1)) = (%‘ll. -197)

-1- ((0), #(0)) = (10, 10), -2- (£(0), £ (0)) = (~10, ~10)
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15.. Ko
10. | (10,10)
5.]
10 15
(l_l'o T)
0 2 % 1
=5.]
-10.
(-10,~10)
-15 i Po
-15. -7.5 ' 0. ' 7.5 ' 15.
Fig.2-2-3.3
. a 10 "‘15
u(t)=10sin5t, €(), P (1) = (r(S), priS) = (71 120

-1- (£ (0), £ (0)) = (10, 10), -2- (£(0), £ (0)) = (10, -10)
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2-2-4 Lack of Persistency of Excitation (Input u(t) Has Less Than 2n Spectral Lines)

In this case, the regressor W (¢) is not persistently exciting. However, from lemma 2-2-2.1,

we see that if input u(t) has 2/ spectral lines at
Wy ...,.wy)eR¥ -Vy (2-24.1)

then W (¢) has 2/ linearly independent spectral lines at these frequencies. By similar arguments

as in lemma 2-2-3.1, there exist two polynomials (not unique)

W) =ys* 1+ .+,

B(s)=s"+Pis* 1 +.+ B,

such that
n(jw;) BUwi) =dGwi) Ygw:)  i=1,...21
If
BUw) #0  i=l,...2] (2-24.2)
then X
YUw;i)

GUw;)=m=GTUw;) i=1,..2] .

further if wo_;=-wy, i=l,..,/, then all v;,B;’s are real numbers i.e. if input

1
u(t)= Y E; sinw;t (I <n) satisfying (2-2-4.1) and (2-2-4.2), there is a tuned model (not unique)

i=l
(Gr(s), Ir(0)) of G (s), such that the output y(t) of Gy(s) with initial condition /1-(0) equals to
the output y(¢) of plant G (s), up to an exponentially decaying term. Based on the above discus-

sion, we have
Theorem 2-2-4.1

Consider the plant (2-2-2.1) and the identifier (2-2-2.2)

-

6=—WWTH+Wy =—W(y;~y)

1
with input of the form u(¢) = Y &;sinw;t, (I <n). Suppose the conditions (2-2-4.1) and (2-24.2)

i=l
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are satisfied, then
(1) 118¢)1IsM  forall t and some M < oo
@ 6¢)—>0, ast—e

Proof: By using same notations as in the previous section, for some tuned model (Gr(s), Ir(0)),

we may rewrite the parameter update law as

6 =-W iyt +yr-y)
=-WWT6-wrTor) - WGor—y)

Since yr — y exponentially, it follows that

6=-WWT(6-07)+W (07 AW +yr-y)
=WWT(6-07) +Ae

where Ae and AW =W (¢)-Wr(¢) are exponentially decaying terms. As is standard in the litera-
ture, we will drop such terms in our analysis, since the presence of these terms does not change

any of the conclusions that follow. Let ¢ = 6- Or, we have

6 =-WW Tq’ (2-24.3)
Define a Lyapunov function
T
y=20
2
the derivative of v along the solution of equation (2-2-4.3) becomes
v =—WToy
This implies that 11¢(¢)I1 is positive, nonincreasing function, so that
6@ =1 1¢(¢)+0r 11 <M for some 0 <M <. Also note that WT¢)e L, and d/dt wTe)

is bounded, hence WT¢ — 0 as ¢ — . Then it follows that

6(t) = 0() =—W(EOWT()p(t) >0, ast oo

-
i

Remarks:
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(1) The above theorem guarantees that if sinusoid input satisfies the technical conditions (2-2-
4.1) and (2-2-4.2), the parameter estimate is bounded and asymptotically slows down,
though the homogeneous part of parameter update equation (2-2-2.2) is not exponentially

stable. Results are similar to that of no unmodeled dynamics case.

(2) It has been shown in the theorem that 6 is bounded and 8 — 0 as ¢ — =, but 6 may not con-
verge at all. This fact has been proven even in the case of no unmodeled dynamics [11,27].

The exception is DC input.
Proposition 2-2-4.2

Consider the plant G (s) in (2-2-2.1) and the identifier (2-2-2.2). Suppose the input u (¢)=c

for some constant c. Then parameter estimate 6(t) = g as ¢ — o for some 6pe R 2.

Proof: The hypothesis implies that
W) —> Wyo (a constant vector) exponentially
y({)—>yo (a constant) exponentially
Consequently, the update law (2-2-2.2) becomes asymptotically
G=—WWT6+Wgo

from linear algebra, there is an orthonormal matrix J, such that

llﬂ
0
JlWy=
0

where A 2 0 is the maximum eigenvalue of WoWor. Define

0¢c)=J x(t)
we have
0 0 1
00 . 0
= x@®)==1.. .|x@)+|. |AVy,
00 O 0
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From this equation, we may conclude that 6=J x converges to some point. This completes the

proof.

In general, input u(t) having less than 2n spectral lines is not recommend for the
identification problem, since the homogeneous part of the parameter update law is not exponen-
tially stable. Hence parameter estimate might go to unbounded for even small enough distur-

bance.
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2-2-5 Tuned Parameter (Input u(t) Has More Than 2n Spectral Lines)

In this case, if W (t) is persistently exciting ( this is almost true by the theorem 2-2-2.2), the
homogeneous part of parameter update law is exponentially stable. We can conclude that the

parameter estimate é(t) is bounded. Further more, we have
Proposition 2-2-5.1

Consider the parameter update law (2-2-2.2)

8 )=—W ()W T ()6 }+W (t)y (¢)

Suppose input u(¢) is periodic and the regressor W(t) is persistently exciting. Then 6(z) is

asymptotically periodic with same period as input u (¢).
Proof: See appendix 2-2-7.

Though the above discussion guarantees that the parameter estimate is bounded and is
periodic if input u () is periodic, it is not much useful and does not provided much insight. We
will use concept of tuned parameter to facilitate our analysis. First we consider an easy case

where input is sinusoid and periodic, i.e. we assume that

m
(A3) Input u(t) = 3 &;sinw;t, m > n and is periodic with period T.

i=1
(Ad) There exists some wj,j=l,...n such that (w;,=w;,...w;—w;.)€ R¥* -V, where
(W;,, Wiy s Wi —W,'.) € (W] W1 eees Wiy —Wm)-

Consider a nth order strictly proper transfer function

XS ns* 4+,
Crle)= Bls) 5™ +Bys™t + 4B,

If we are only interested in the steady-state, the output yr(¢) of Gr(s) and the output y (¢) of

N m
plant G (s) , under input u (¢) = ¥, &;sinw;z, become

i=1

7 . Z YGwi) it
yr@t)= Ex Im BGw) Eie
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and

nGwi) g, e

0= Ein g

Note that even though Gr(s) is unstable, the expression for yr(¢) is still true provided that it has

no poles on the jw axis (see lemma 2-2-3.2). Define an output error term by

e@@)=yr(t)-y(@)

By the nature of the gradient type parameter update law (2-2-2.2), we see that the aim of the

parameter update is to minimize e2(t),i.e. to minimize

m ’O.“i) R de‘ - n(‘.“'l') . ,‘w'.‘ 2
(%‘I(Im_-—ﬁ:. 3 E e Im———d:. ") £ e™)
m o yw)  a(wy) oy 2
= Im - . g Wit
(El ( BUw) d(w i))g‘ ™)
Obviously, when
ﬁw, ‘_)) = ';U, ‘; i=1,...im (2-2:5.1)

the minimum is achieved. In the case where input u (¢) hias no more than 2n spectral lines, i.e.
m < n, from the results of last two sections , solutions of equation (2-2-5.1) always exist and are
what we call tuned models. However if m > n, solution of (2-2-5.1) generally does not exist since
a nth order transfer function may not match 2m > 2n points in the complex plane. This implies
that in the case m > n, the tuned model defined in section 2-2-3 generally does not exist. In the
following, we define a tuned parameter instead, to facilitate our analysis.

Consider the identifier in Fig. 2-2-2.1. Suppose 6(¢)T = (4 ()T, 5(:)7) s fixed, say 6(t) =8,
then

yi(8,t)=WT()0

Define output error e (8,t) by

-
1l

e(©,t)=y;(0,t)~y()
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As discussed above, there may not exist such a 0 in the case of m >n that
e%®,t)=0 forall¢ (2-2-5.2)

However, if there were a 67 such that equation (2-2-5.2) would be true, then it is obvious that

(=+1)T
6 = argmin - ,!r e20,t)dt  forany n (2-2-5.3)

Notice that since we are only interested in the tail properties, i.e. we neglect all exponentially
decaying terms. Consequently W (¢) and y(¢) are periodic with pericd T and so does e2(6, 1).

This implies that the equation (2-2-5.3) is equivalent to

e, t) dr (2-2-5.4)

Ot%— =

Or =ar minl
T=argmin T

Such 07 is called a tuned parameter. The formal definition, which valids for general cases, is as

follows:
Definition 2-2-5.2

Consider the plant G (s) (2-2-2.1) and the identifier in Fig.2-2-2.1. Then a constant vector

Or € R? is called a tuned parameter of G (s) (with input u(t)) if and only if Oy satisfies
l s
87 = argmin lim — [e%(0,1) dt (2-2-5.5)
:] g0 § 0

Theorem 2-2-5.3

Consider the plant G (s) and the identifier in Fig.2-2-2.1. Suppose input u(t) satisfies the

conditions (A3) and (A4). Then there is an unique tuned parameter 67 for the plant G (s), and
8r=R71, R,, (2-2-5.6)

where

s
R, =lim ~ [WWT () de (2-2-5.72)
$—po § 0

]
Ry, = lim -;— fweweyde (2-2-5.7b)
3 =0 0
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Note these limits exist since u (¢) is periodic.
Proof: Since input is sinusoid and periodic, 67 is the tuned parameter if and only if it satisfies
equation (2-2-5.4). Notice that

-1
T
Wi@s)= ( "o )y(S). NG )y(s). G )u(s). "3 )u(s))

n-1 -1

(i s” .
=G e ’M)G() 7»() x() #(s)

=h(s)d(s)
This implies that
e%(0, 1) =18, t) —y (t))?
=ml eTh','-' ,Jw"
(.-)::i m (87 h (jw;) d(Jw, )F, )
Let
67 ()~ =50, ) =pC0,wi) %)
where o=
p®, w;) = 1z(8, jw;)!
and

oBw;)=ang z(0, jw;)

By the orthogonality of sinusoid functions, we have

J e%(®, 1) dt = J(z 0, wi) & sintwit + 040, wi) di

i=l

T

=[ 3 008, i) & sin (it +(®, wi)))? de
0i=1

qu

f; 030, wi) &
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Similarly

2 0 | |Gz (8,jwy)
=T (@O Dz @) | © o D
0 &2 | |27, jwm)
2
From the definition of z (8, jw;), it follows that
. . —raT . . _ n (lw 1) n (me)
(28, W Dreeriz (B, jWr) ) = (0" (R (W et (W) = ( aGwy’ T d me)) )

Denote the above equation, for simplicity, as
Z=0TH-Y

. gl?, §m2 .
and let Q =diag (T, ... ,—2—-). we obtain

e2®,t)dt=202"

Oty =3

1
T
=@TH-Y)Q (6T H -Y)"

The tuned parameter 07 is defined to be a value such that the above equation achieves minimum.

This is a typical least-square problem, it has an unique solution
r=Re HQH'Y'ReHQY")

Where Re denotes the rcal parts. Note that the assupmtion (A4) and the theorem 2-2-2.2 guaran-
tee that Re (H Q H '))"l exist. This completes the existence and uniqueness. Now by calcula-

tion, we have

&2

ReHQH =Y h(w) b” (wi) -

i=l
On the other hand, recall the definition of autocovariance R,, (2-2-5.6), we have

ReH Q H® =R,

ReH Q Y*=R,,
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ie.
6r=(Re HQ H'Y'Re HQ Y")=R,'R,,

This completes the proof.

The theorem above holds for the sinusoid inputs only. However it is not difficult to show

that the conclusion holds for general cases as stated in the following theorem.
Theorem 2-2-5.4

Consider the plant G (s) and the identifier in Fig.2-2-2.1. Suppose input u(t) is stationary
and has more than 2n spectral lines such that W(t) is persistently exciting. Then there is an unique

tuned parameter 67 and
6r =Ry™! Ryy

with Ry and Ry, defined in (2-2-5.7).

Remarks:

(1) The tuned parameter is the value which minimize the mean squared power of the output

€ITOr.

(2) The tuned parameter may also be interpreted as follows: Consider the parameter update law
(2-2-2.2) with input u (¢) satisfying assumption (A4)
§=-WwT 6+ Wy
=-WWT (6-06r)+(WWT or + Wy) (2-2-5.8)
Defining ¢ = 6 — Oy, it follows
o=-WWT ¢ +(wWT 07 + Wy) (2-2-5.9)

Suppose 67 be the tuned parameter, then from the definition (2-2-5.2) of 07,

lim — [(WWT 87 +Wy) dt =0 (2-2-5.10)
Toeo T

Oty N
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We now see that the tuned parameter is a value such that if we consider the error equation
(2-2-5.9), the time average of the driving term is zero. In this sense, we may say that error §(z) is
around the origin or that the parameter estimate 6(z) is in the neighborhood of the tuned parame-

ter O7. This fact may be seen clearer when the averaging technique is applied.
Theorem 2-2-5.5

Consider the plant G (s) (2-2-2.1) and the identifier with small gain €> 0

6(e)=—e WE)WT()8() -y ()

Suppose input u(¢) is stationary and has m 22n spectral lines so that W(¢) is PE. Then the

parameter estimate é(t) satisfies

}im 116¢)-0r |1 SN

for some class K function 1n(€) (see [52]).

Proof: See [41].

Remark:

The theorem guarantees that if the update gain is small then the parameter estimate con-

verges to a ball centered at the tuned parameter 8 with radius 1n(g).



2-2-6 Concluding Remarks

We have investigate the convergence of a reduced order identifier. The results are very gen-
eral since there is almost no assumptions on the unmodeled part. If the unmodeled dynamics is

small enough in the sense

IG(jw)-G(w)l <8 forany w € (o, )
Then from the results of chapter 34, we will see that the parameter estimate converges to a ball
centered at true value (not tuned value, true value means true coefficients of the nominal model
G o(s) , or Certainty Equivalence) with radius n(5) which is linearly in 3.
So far, we only analyze the projection type update law, but the techniques could be easily
extend to the Least-squares type update law.

One related issue to identification is that what is the purpose for identifying the nominal
model éo(s ). From the results which we have presented, it can be seen that the estimated model
might not be close to the nominal model G o(s) even input contains resonable low frequency con-
tents and the regressor is persistently exciting. However the estimated model could be a better

approximation of the plant G (s) at these frequencies than the nominal model G (s) does. Let us

see the following example:
: $(s)m —— . St11
Plant: GE)=7 T o
; . $ (6)= —
Nominal model : Gols)= e,

1.087

Estimated model (input frequency w=2): 0557



-35-

0.125, 1M
0.]
-0.125
~0.25]
-0.375
-0 . 5. 1\—/ 1 2
2 __— "3
' — Re
-0.625
0. ' 0.4 ' 0.8 ' 1.2
Fig. 2-2-6.1

-1-, nominal model
-2-, estimated model

-3-, plant

Fig.2-2-6.1 shows the Nyquist plots of these three transfer functions. We see that estimated
model is closer to the plant than the nominal model does. Thus if the control is concerned,
the estimated model could be a better model than the nominal model G ((s) does for this

purpose. We leave it as a further research problem.



-36-

2-2-7 Appendix to Chapter 2.2

Proof of The Proposition 2-2-5.1

We prove the general case. Consider a linear periodic system
xX=AQ@)x +f(t)

where x € R*, A(¢+T)=A(t), f t+T)=f (t). Suppose A (t) is asymptotically stable, then x(¢)
is asymptotically periodic with period T for any bounded initial conditions.
Proof: By 2 steps.

Step 1. If the initial condition of above equation is
T
x@=-oT 0! [eTDf@ade
0

Then x(¢) is periodic with period T. Where ®(¢, 7) is the state thansition matrix of A (¢). Note
that A (¢) is asymptotically stable, so that (I — &(T,0) )~! exists. Now it suffices to show that
x(@t+T)=x(t) forall:

We first show that x(T') = x(0), this is because CoT

T
x(T)=®(T 0)x(0) + [ OT 1) f (1) dt
0

T
=(@®T 0 (I-OT.0)) + ) [&T 1) f (¥)dt
0

T
=(I-®T.0))! [OT 1) f @) dT
0

=x(0)
It follows that

t+T
x(@+T)=O@+T.T)x(T)+ | O(+T,1) f (D) d7
T

Lets =t-T, we have



)
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4

x(@+T)=d(t,0) x(0) + I Ot +T s+T) f (s+T) ds
0

t
=®(t,0) x(0) + [ ®(¢.5) £ (s) ds
0

=x(t)

Step 2. For any bounded initial condition x (0), we have

T
x(8)=0¢.0) x(O) - (I-OT,0))" [T 1) f(¥) dt)
0

T t
+@(t,0) (I-OT.0)" [OT 1) f(®dt+ [0 f @) dr
0 0

Note that the first term on the right hand side goes to zero asymptotically and the rest terms on

the right hand side give a periodic solution. This completes the proof.

bl }
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2-3 Global Stability Proofs for Indirect Adaptive Control Schemes
2-3-1 Problem Statement

A popular technique of adaptive control is the so-called indirect technique: a non-adaptive
controller is designed parametrically i.e. the controller parameters are written as a function of
plant parameters. This scheme is made adaptive by replacing the plant parameters in the design
calculation by their estimates at time t, obtained from an on-line identifier. Reasons for the popu-
larity of indirect adaptive controllers stem from the considerable flexibility in choice of both the
controller and identifier. Global stability of indirect schemes have been shown in the discrete time
case (Goodwin&Sin [25] , Anderson&Johnstone [3] Polak,Salcudean&Mayne [45]) but less so in
the continuous time context. A recent paper of Elliot et al [19] uses random sampling to establish
convergence results in the continuous time case. Other papers have assumed that the plant param-
eters lie in a convex set in which no unstable pole-zero cancellations occur ( Kreisselmeier

[35,36]).

In this section, we discuss a general, indirect adaptive control scheme for SISO continuous
time systems using frequency analysis techniques. We sho~w that when the reference input to the
closed loop system is sufficiently rich, then the regressor vector of the identifier is persistently
exciting so as to cause parameter convergence. In tumn the controller is updated only when ade-
quate information has been obtained for a ‘ meaningful’ update. Thus, roughly speaking, the
adaptive system consists of a fast parameter identification loop and a slow controller update loop.
A sufficient richness condition on the exogenous reference input is used to give an insightful glo-
bal stability proof with no restrictions on the parameter estimate lying in a convex set or lack of

unstable pole-zero cancellations in the identifier.
In section 2-3-4, we show the specialization of our general scheme to a pole placement type
adaptive controller.

The second contribution of this section is the application of our techniques to the adaptive

stabilization of a SISO system using the factorization approach (factorization over the ring of
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stable, proper rational functions) that has proven to be a useful and elegant tool (see [17], [20])
for the study of robust multivariable design. Since it is known [51] that when the stable coprime
factorization approach is used, a plant with unstable unmodeled dynamics is really no different
from a plant with stable unmodeled dynamics as far as the effect of the unmodeled dynamics on
the robustness of the system is concerned. We feel that our techniques lay the groundwork for
obtaining an adaptive version of H* optimal controller design by the factorization approach. In
this context our work has contact with a recent paper of Ma & Vidyasagar [40]. In this section,
we only discuss the SISO continuous time case, the extension to the discrete time case is trivial.
We feel that our results could be extended to MIMO cases as well, if a gopod MIMO identifier

structure is obtained.

Our major concern in this section is the proof of stability of the scheme with no assump-
tions of unmodelled dynamics, output disturbances in the plant. However, we note that the kind
of stability we prove is exponential with its attendant margins of tolerance to both unmodelled
dynamics and output disturbances as has been well documented in the literatures. Other tech-
niques such as the use of a deadzone in the adaptation law may also be used as has been sug-

gested in the context of discrete time adaptive control {26].
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2-3-2 General Structure of The Indirect Adaptive Controller

The basic structure of the adaptive controller is as shown in Fig.2-3-2.1

Controller

Parameter H( |

Calculations -
Identifier

L

r + = u B 14
c Po

Fig. 2-3-2.1

The unknown plant is assumed to be of the form

a5 Pl o,
™ 4Bis 4B,

P o(s)=n, (s)/d,p (s = (2-3-2.1)

where Pyis a strictly proper transfer function with n,(s) and d,(s) coprime. We will assume that
the order n of ihe plant is known and that the o; and B; are unknown. Note that some of the o;’s
may be zero so that (2-3-2.1) can denote a plant of relative degree not necessarily 1. The proper

mth order compensator is defined by

My .+
C (s )=n, (5 Vd, (5 Yoo A 2-3-22)
bos™+... 40y

The adaptive scheme proceeds as follows: the identifier gets an estimate of the plant param-
eters. The compensator design (pole placement, model reference,...) is performed assuming that

the plant parameter estimate corresponds to the true parameter value (Certainty Equivalence). We
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will assume that there exists a unique choi-ce of compensator ¢ (s) of the form (2-3-2.2) for the
plant estimate P . The hope is that as t—>e the identifier identifies the plant correctly and that
the compensator converges asymptotically to the desired one. In this section, we discuss indirect
adaptive control abstractly without restricting attention to any specific control scheme--pole
placement, model reference, etc. In later sections, we specialize to a pole-placement type con-

troller and a controller derived using the factorization approach.

Basically the most important element of the adaptive loop is the convergence of the
identifier. We design an identifier which uses the input and output of the not necessarily stable
plant as follows: the equation (2-3-2.1) relating the transform of the input and output of the plant

can be written (with initial condition terms unspecified) as
s*y(0)=0"Tv(r) (2-3-2.3)
where s denotes the differentiator and
0" T=(~Byonc=Brt, - . ., O0,)

Iy )y @) ()it (2))

Since the signal v(¢) involves differentiation of the input and output of the plant, we filter

both side of (2-3-2.3) by the transfer function 1/(s+c)" , o> 0, to get

Sﬂ

T 2-3-2.4
Gy OO (2-3-2.4)
where
n-1 n-1
WT g gecey l [} g peeey l
(t)=((s+a),,y(t) (sm),,y(t) ey u(t) Gray u(t))

Note that the regressor W (¢) may be obtained by proper, stable filtering of the input and output of
the plant. The equation error for identification of 8° is developed as follows: let 6(z) be the esti-
mate of the parameter 6" at time t. Then, define the equation error to be

. eM=OTW(O——y (1) (2-32.5)
(s+o)"
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If ¢(t) denotes the parameter error (6()-8"), then it follows that, up to exponentially

decaying terms, we have
e (t)=9T ()W () (2-3-2.6)

As is standard in the literature, we will in future drop the exponentially decaying terms. The
interested reader may wish to confirm that the presence of such terms does not change any of the

proofs (or conclusions) that follow.

The identification technique used is of the least squares type with resetting, given by

8(e y=h(t )=—P ()W (1)e (1) (2-3-2.72)
P@y=—POWEOWT()P(E) P()=pl >0 (2-3-2.7b)

where {t;}= (0,¢,,¢5 - - - } will be specified shortly. It is easy to verify (using the Lyapunov func-
tion ¢7 P19 ) that the parameter error ¢ is bounded even though y(t) may not be and further
¢(¢)—0 asymptotically, if W(t) is persistently exciting, i.e. there exist 8 > 0 such that

145
JwawTaydt2zod forall ¢
4

It has been shown in [43] that W is persistently exciting if u is rich enough i.e. u has no less
than 2n spectral lines (assuming that u(t) is stationary).

The design of the compensator is based on the plant parameter estimate namely 6(). It
would appear to be intuitive that if as t—eo, 6(¢)—08" that the time varying compensator will
converge to the true compensator and that the closed loop system will be asymptotically stable. In
this section, we do not deal with a specific compensator design; however the system of Fig.2-3-
2-1 can be understood to be a time varying linear system which is asymptotically time invariant
and stable. Such systems are themselves stable; more precisely, using standard Lyapunov func-

tion arguments, we have
Lemma 2-3-2.1
Consider a time varying system

X=HA+AA (t))x (2-3-2.8)
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where A is a constant matrix and AA (¢) is time varying. Assume that | 1AA (*)| | » is bounded and
converges to zero as ¢t —ee. Suppose that all eigenvalues of A lie in the open left half plane, then
(2-3-2.8) is asymptotically stable. Furthermore , there exist T ,M ,A >0 such that the state transi-

tion matrix ®(z,7) of the equation (2-3-2.8) satisfies

@@t ISMexp(-A(t—t)) forall t>T>T

Proof: See appendix 2-3-7.



2-3-3 Update Law and The Stability Proof

Though the update law (2-3-2.7a) and (2-3-2.7b) for the identifier is easily shown to be
asymptotically convergent when W is persistently exciting, it is of practical importance to limit
the update of the controller to instants when sufficiently new information has been obtained. The
amount of information is measured through the ‘information matrix’

145
[wEwT(tds
]

Thus given y¥> 0, we choose a sequence of update times (¢;}, by 7¢=0 and 1; 41=t;+0;, where §;
satisfies

ti+A

8i:=argmin [ WWTdt 2yl (2-3-3.1)
&

The compensator C is held constant between ¢; and ¢;,;. Further, we assume that the compensa-

tor parameters are continuous functions of 6°.
Remark:
(1) The idea of updating the controller only when new ‘data becomes available was first pro-

posed by [45] for the discrete time case. A similar idea was proposed by Elliot, et al [19],

but they use a sequence of independent random variables to generate the update sequence.

(2) The update times are based on a monitoring of the excitation contained in the regressor W.

We may state the following lemma relating the richness of the reference signal r(t) in the

scheme of Fig.2-3-2-1 to the convergence of the identifier.
Lemma 2-3-3.1 (Convergence of The Identifier)

Consider the system of Fig. 2-3-2.1 with identifier described in equation (2-3-2.7) and reset-
ting times {¢;} given by (2-3-3.1). Further assume that there is a unique choice of controller for
edch estimate of the plant and that the controller is updated only at {#; }. If the input r(t) is sta-

tionary and has no less than 3n+m spectral lines, then the identifier parameter error converges to
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zero exponentially as ¢ —e, More precisely, there exists 0 < p <1 such that

1161 1<pf 1 1601 ! (2-3-3.2)
and {d;=t;.1—t;} is a bounded sequence.
Proof: By lemma A3 (in the Appendix 2-3-7), it is enough to show that {9;) is a bounded

sequence. Suppose, for the sake of contradiction that (5;} is an unbounded sequence, then one of

the two following scenarios occurs;
@) Thereexist i < oo such that §;==e, or
(i) {3;} —oo as i—roo.

Consider the scenario (i) first. If (i) happens, then the system becomes time invariant after
time #;, since the controller is not updated. Consequently one obtains the transfer function (not
necessarily stable) from r to u to be

a 3 t" d
= "“( Mo nid (2-3-3.3)
”pnc(ti)'*'dpdc(zi)

where ci, (t;) and #.(z;) are the denominator and numerator of controller at time ; respectively.
Using (2-3-3.3), we may write the transfer function from r to W to be

Py n - -
HM(SW(S” lnp. R A N ldp, ... ,dP)T
P

Since the degree of n is (n+m), no more than (n+m) of the spectral lines of the input can
correspond to zeros of the numerator polynomial. Even assuming that (n+m) of the spectral lines
do, in fact, coincide with the zeros of n, we can see that under the assumption of n, , d, being
coprime, W is persistently exciting. The proof of this for the stable case was given by Boyd and
Sastry [11,12). For the unstable case, the idea is as follows; we have a minimal state space reali-

zation of H,,,.(s) as

-
é

where AeR¥* (k<3n+m). Then, the persistency of excitation of x(t) follows from the
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hypothesis on the input r(t) and the fact that (A,b) is controllable (see, Nordstrom and Sastry

[43]). Further, notice that, from the coprimeness of d, and n,, the rows of H,,(s) are linearly

independent. Now, since
Hyp (s)=c(sI-A)"b
we see that ¢ has full row rank i.e.
ccT2ad  for some o >0
Thus,
fwwTar = cfaxTcTdt 2ceT 2 yod
where

jxxrdt 2yl
This implies that W () is persistently exciting. This fact however contradicts the assumption that
§;=s0.

Now consider scenario (ii). First notice that when the plant parameters are knbwn. then the
closed loop system is time invariant and stable, so that we may write the following equation relat-
ing input r(t) to signal W () (W o(¢) means W (t) in the case when §(z)=0).

z=Az gt+br
W0=CZ 0
where A is a constant stable matrix. For the adaptive control situation, the plant parameters are
unknown, i.e. parameter error ¢(¢)#0. However, we may write the following equation relating
r(t) to W(t)
Z(t)=(A+AA (t))z (1 Y Hb+AL (t))r (t)
W =(c+Ac (t))z(t)
where AA (¢),Ac(¢) and Ab(t) are continuous functions of ¢(¢) and AA(t), Ab(¢) and Ac(¢)— 0

as ¢(¢)—0. Now if scenéu'io (ii) happens, we still have that ¢(¢)—0 as i =<0 from lemma A3 (in

the Appendix 2-3-7). It follows from lemma A1 (in the Appendix 2-3-7) that W (¢) and W () are
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arbitrarily close when t is large enough. Then the persistency of excitation of W (t) follows as a
consequence of the result of lemma A2 (in the Appendix 2-3-7) and the fact that W(¢) is per-
sistently exciting. This, however, contradicts the assumption that §;—ee as i —ee. This completes

the proof.

We are now in a position to prove the main theorem in this section.
Theorem 2-3-3.2 (Stability of The Closed Loop System)

Consider the system of Fig.2-3-2.1. Assume that the plant and compensator are described as
in lemma 2-3-3.1. Suppose that input r(t) is stationary and has no less than 3n+m spectral lines,

then the overall system is asymptotically time invariant and stable.

Proof: Follows from lemma 2-3-2.1 and lemma 2-3-3.1.

~e
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2-3-4 Application to Pole Placement Type Adaptive Control

In this section, we consider an indirect, adaptive pole placement scheme. Pole placement is
easily described in the context of the Fig.2-3-2.1. Given a plant P  of the form n,/d, asin (2-3-
2.1), find a (n-1)th order compensator C so that the closed loop poles lie at the zeros of a given
characteristic polynomial d° (s) of order (2n-1), i.e. find ., d, to satisfy

nen,+d.d,=d" (2-3-4.1)

When the plant P o is unknown, the ‘adaptive’ pole placement scheme is mechanised by
using the estimates 7, (;) and d;,(t;) of the numerator and denominator polynomials respectively.
It is easy to verify (see lemma A4, in the Appendix 2-3-7) that if 7, (¢;) and d;, (t;) are coprime

then there exist 7. (¢;) and d.(r;) of the order n-1 such that
1 (408 (6 7+ d (), (1= (2-34.2)

The estimates for 7, (¢;) and J,(t,-) follow from the plant parameter estimates é(t) of section 2-3-
2 (the estimates of the coefficients of the denominator followed by those of the numerator). In

analogy to the plant parameter vector 8°, we have the parameter vector of the compensator

-~

0.=(b os...sbn-1.30, - - . , Gp-1) (2-34.3)
Recall from equation (2-3-2.2), with m=n-1, that the compensator is given by

aos™ 4. 4a,_
bos™ M. 4b,_y

¢ =

Further, to guarantee that 7,(s;) and d;(t,') are coprime at f;, we need to modify the
definition of the update times as follows:
tip1=ti+0; (2-34.4)
where §; is the smallest real number satisfying
ek

. (@) [wewT@ydezyl (2-34.5)

]
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and
(i) A, (+5;) and d,(1+5;) are coprime. (2-3-4.6)

More precisely (2-3-4.6) is verified by guaranteeing that the smallest singular value of the Sylves-
ter matrix (A.11) (see appendix 2-3-7) measuring the extent of coprimeness exceeds a number

o> 0.
Then, we have
Theorem 2-3-4.1 (Convergence of The Pole Placement Scheme)

Consider the adaptive pole placement law (2-3-4.2) applied to the system of (2-3-2.1), along
with the least squares identifier of (2-3-2.7) and the update sequence ¢; defined by (2-3-4.4 & 2-
3-4.6). Now, if the input r(t) is stationary and has no less than 4n-1 spectral lines. Then all sig-
nals in the loop are bounded and the characteristic polynomial of the closed loop system tends to

d" (s). Moreover

116,(1;-8. 11— 0 exponentially

Proof: The first half of the theorem is a direct consequence of lemmas 2-3-2.1 and 2-3-3.2. For
the second half, note from (A.11) (in the Appendix 2-3-7) that

A6(1,))8. (t;)=d- (2-3-4.7)
with d. the vector of coefficients of d°.

It is easy to see from (A.11) (in the Appendix 2-3-7) that there is an M ;>0 such that
LLABE)-A@©® ) 1 SM116()-8" 11 (2-3-4.8)
Now,
A(")0,=ds (2-3-4.9)
Subtracting (2-3-4.9) from (2-3-4.7) we get
~A (6(5:))-A (8"))8, (1;)=A (8 (6, (4:-8,)
Using the estimate d

11605011 s 11A7@")I1 1 LA@@E))»~A® )1 1181
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Noting that 6,(¢;) is bounded (see equation (2-3-4.6) and the remark following it), we get
116,(5)-8,11 M1 16(5)-0"11 for some M5 >0 (2-3-4.10)

Since 6(z;) converges to 6" exponentially, it follows that 6.(t;) — 0, exponentially.
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2-3-5 Adaptive Stabilization Using The Factorization Approach to Controller Design

First we briefly review the (non-adaptive version of) factorization approach to controller

design. Consider the linear time-invariant system shown in Fig. 2-3-5.1

u,

<

C(s)

Fig. 2-3-5.1

The plant P o(s) is defined as in equation (2-3-2.1) and the compensator C (s) as in (2-3-

2.2). The equations relating e ,et0 4| ,u, are

er|__ 1 |1 -Pol |n .

The system (2-3-5.1) is BIBO stable if and only if each of the four elements in (2-3-5.1) is

stable, i.e. belongs to R the ring of proper, stable rational functions. The ring R is a more con-
venient ring than the ring of polynomials for the study of robust control systems, since a plant
with unstable unmodeled dynamics is really no different from a plant with stable unmodeled

dynamics., Thus, we assume that P g and C are factored coprimely in R (not uniquely!) as

Po(s)y=d, (s )ny(s)
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€ ofs)y=d. (s (s) (2-3-52)

From (2-3-5.1) it follows that (for details see [S1] ) the system of Figure 2-3-5.1 is BIBO
stable if and only if (n,n.+d,d.)e R, or equivalently n,n.+d,d, is a unimodular element of
the ring R. Without loss of generality, then, we can state that a compensator stabilizes the system
of Figure 2-3-5.1 if and only if

nync+d,d.=1 (2-3-5.3)

Let (A, b, c) be a controllable canonical realization of P ¢ i.e

Po(s)y=c(sI-A)'b (2-3-5.4)
with
0 1 0 0
0 0 ) )
A= . . .| b=]. (2-3-5.5)
.. 1 0
—Bl -ﬂZ -Bn 1

c=(0y,...,0,)

If fTeR" and IeR" are chosen so that Ar=A-bf and A-lc=A, are stable( such a choice
is possible by the minimality of the realization of (2-3-5.4) and (2-3-5.5) ), then it is shown [,
pg.83] that all the solutions of (2-3-5.3) can be written in the form

np=c (s/-A;)"'b (2-3-5.6)

dy=1—c (sI =A™l (2-3-5.7)

de=1+c (sI-AgYy g (s)e (s1-Ar )b (2-3-5.8)
ne=f (sI-Ag)"1+q (s)(1=f (s1-Ar) ') (2-3-5.9)

with ¢(s) an arbitrary element of R which is chosen to meet other performance criteria (for
instance, minimization of the disturbance to output map , obtaining the desired closed loop

transfer function, optimal desensitization to unmodeled dynamics, etc...).
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The optimal choice of g (s) depends on the plant parameters. However, such a choice of
q(s) may not be unique or depend continuously on plant parameters. This may give rise to
difficulties in applying the method discussed in section 2-3-2, since the design of the compensator
may not be unique as required by the assumptions of the scheme. We defer this to further investi-
gation. However, if our only concem is the problem of adaptive stabilization of the unknown
plant, then any fixed g (s)e R will do. For simplicity, we fix g (s)=0 in what follows. Note this
implies that the compensator ¢ (s) is of order n (see equations (2-3-5.8) & (2-3-5.9)).

We now discuss the adaptive version of factorization approach to controller design. The
objective is to design a compensator C adaptively, i.e. based on the estimate § of plant parame-
ters, using the factorization approach, so that the closed loop system is asymptotically time
invariant and stable. In what follows, we assume that u ,(¢)=0.

The identifier and compensator update times {¢;} are defined as in (2-3-3.7) and (2-34.4 t0
2-3-4.6) respectively. The first difficulty in choosing the compensator is the choice of /(¢;) and
f ;) at time ¢; ( see equations (2-3-5.8) and (2-3-5.9) ). From linear system theory, we know that

a controllable canonical realization of plant P o(s).
x=Ax+bu
y=cx
can be transformed through a linear change of coordinatea x=Mx to get the observable canonical
form of P o(s).

F=MAM X +Mbu=Ax+bu

y=eMx=CX (2-3-5.10)
with
0 o0-h o
I
) =[. . . |b=
0
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c=(0....,0,1)
Then for (any) given Hurwitz polynomial
Ps)=s"+p 15"+ - 4p, (2-3-5.11)
there exists a vector

TT=(-11. ---.Z:)=(P1~~-Pu)—(ﬁx~~~'Ba)

such that the matrix

b 1 -i’u
is stable and has a characteristic polynomial p(s). Define
I=M-
With this definition, it is easy to see that (A-Ic) is stable and has characteristic polynomial
p(s).
Now the controller design procedure can be stated as follow:

(Step1)
At time ¢;, the parameter estimate 6(z;) generated by identifier is used to obtain the esti-

mates A (t;), b(¢;), and ¢ (z;).
(Step2)
By calculation, we obtain M~!(¢;) as described in (2-3-5.10). Define

FERT@=P 1 P BiE)Ba (1)) (2-3-5.12)
with (py, . . ., p,) as defined in (2-3-5.11) and
1e)=M () (s) (2-3-5.13)
We now see that thé matrices

A=A ()1 (e (1)
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and
Ar(t;=A ()b (S (1)
are stable with characteristic polynomial p(s). Furthermore, f (¢;) and I(t;) converge to some
constant vectors as i —oe,
(Step3)
Choose a compensator C (¢;)=n.(¢;)d.~\(t;) as follows
ne )= ()I=Ap @) () (2-3-5.14)
d, (6)=1+¢ (t:)(sT=Ap (0)) 71 (1) (2-3-5.15)
This compensator can be easily implemented. Then, as expected, we have
Theorem 2-3-5.1 (Convergence of The Overall System)

Assume that the identifier and controller update described above are applied to the plant
P o(s) (2-3-2.1). Suppose that the input r(t) is stationary and has no less than 4n spectral lines.
Then, the closed loop system is asymptotically stable and all signals are bounded.
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2-3-6 Concluding remarks

This section has presented a proof of global stability for indirect adaptive control. In the
section, only two applications (pole placement and factorization approach ) have been discussed,
however the results are applicable to several kinds of controller design methodologies. The key
assumption is a richness condition on the reference input. To our knowledge, this is the first
verification of the persistency of excitation of the regressor signal in the closed loop (which is
time varying) without the use of an artificial random sampling signal (see [19]) for the continuous
time case. We show persistency of excitation without preassuming the boundedness of the sig-
nals. Boundedness of all signals and the convergence of the compensator in turn follow from the
convergence of the identifier, which is a direct consequence of the persistency of excitation of the

signal in the identification loop.

The scheme presented here offers a great deal of flexibility in the controller design and
allows for very general richness conditions on the reference input. The results of this section are

easily extendable to the discrete time case.
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2-3-7 Appendix to Chapter 2.3
In this appendix, we prove some lemmas of use in the main body of the section.

Lemma Al
Consider the following linear systems
Zg=Azot+br _ (A1)
z=(A+AA (t)z-Hb+Ab (t))r (A2)

with A stable and AA , Ab both bounded and converging to zero as ¢ —>o. Assume that the input
r(t) is bounded. Then given € > 0, there exists k > 0 (k is independent of the choice €) and a T'(¢)

such that

[ 1z(t)-zo(t)! I<ek forall t2T (A3)
Proof: From lemma 2.1, it follows that (A2) is asymptotically stable and that there exists T’ such
that the state transition matrix of (A2) satisfies

H1®(t,T) | | <M exp-A(t—1)
for some M ,A > 0 and for all £>t>T;. Using this estimate it is easy to show that z(t) is bounded.
Defining the error e (¢ ):=z (¢ )~z o(t) we see that
é=Ae+AAz+Abr

Using the facts that AA , Ab—0 as ¢t —eo; that z,r are bounded and A is stable, it is easy to estab-
lish (A3).

Lemma A2

Suppose that Wo(t)e R " is persistently exciting, i.e there exist 8,c > O such that

40
[ wow Tde2ad forall s
L 4
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Then any signal WeR" satisfying
W)W o)1 1<a/(5)12
is also persistently exciting.

Proof: Can be found in [8].

Lemma A3

Consider the least squares identification algorithm described by (2-3-2.7) with resetting

sequence {0, ,,25,...}, that is

o=—PWW T

Pl=WWT 201,25

P-l(t;+)=0] t=0,,25,...

If W is persistently exciting, that is

tin

[wwTdeyl forally
1
Then, there exists 1>p >0 such that
1) 1<p*1160)1 |
Proof: Note that for ¢ # (0,¢,...},
d o1
o P~ ¢=0

Thus

PYe)0()=P = (6 )0(ti-1)

so that

¢t )=0P (8;7)(ti-)

(A4)

(AS)

(A6)

(A7)

(A8)
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and we get
LG ls<39‘;y->l 19Cti_p)] | (A9)

In the last step we use equation (A7). Recursion on (A9) yields the conclusion (A8).

Lemma A4

Consider two coprime polynomials d, monic of order n and n, of order n-1. Then given an
arbitrary polynomial d* of order 2n-1, there exist unique polynomials n, and d. of order n-1 so
that

neny+d.dy=d" (A10)
Proof: Is a standard result from algebra (see [25] ). It is useful for the proof of theorem 2-3-4.1 to
note that if
dy=s"+B1s" 4B,
ny=oys "+, 40t
ne=ais" +.+a, -

d.=b 5" \+..4b,

Then, the linear equation relating the coefficients of n, , d. to those of d” is

-1 0 0 N 0 0 0 0'! bl 'dl"
PBv 1 o0 @m0 | [b2 dy
l32 ﬁl 1 0 Oy . .
D by :
C o : = All
%Bﬁ—l . ~~Blanan—l oy a, . ( )
n o~ . 0 o, . as
0 P 0 o . i
. 0-
.6 0 0--B. 0 ¢ an a, _d2a°_

ie.
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A©°)8, =da

Proof of the Lemma 2-3-2.1

Since A is stable, there is a positive definite matrix P such that
ATP +PA =-]
and by the hypothesis A A (¢) = 0 as ¢ — oo, 50 that there is a T > 0 such that
I-AAT()P -P AA(:)Z-%-I forall ¢t 2T
Now define a Lyapunov function by
vix)=xTPx
then the derivative of v (x) along the solution of equation (2-3-2.8) becomes
v=—xT (1-AATP -PAAT )x

S—Tlex forall t 2T

The conclusion follows easily from the Lyapunov theorem {52].
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Chapter 3 Use of Prior Information
3-1 Introduction

A great deal of effort has been devoted to establishing conditions for robust stability of
adaptive control algorithms. There are two sets of approaches to this issue: In the first approach,
an internal signal in the adaptive loop is made persistently exciting to guarantee exponential sta-
bility of the scheme. Robustness of the scheme follows as a consequence of the robustness of
exponential stability. In the second approach, the adaptive algorithm is modified, using for
instance, a deadzone, forgetting factor or ¢ and e modification in the adaptation law to prevent
the algorithm from responding to spurious signals such as those arising from noise and unmo-
deled dynamics. Both approaches model the plant to be controlled as being completely unknown.
In this section, we discuss the identification and control of systems which are partially known (in
a sense that is made explicit shortly). It seems intuitively plusible that the identification and con-
trol algorithms could be robust if this prior information could be incorporated into the adaptive
controller. It is of course clear that one could neglect the prior information embodied in the sys-
tem and still be able to identify and/or control the system. }{owever. usage of the particular prior
information results in the identification of a fewer number of unknown parameters and conse-
quently faster convergence rate and better transient performance as we will see in this section.
With this as motivation, we discuss the problem of adaptive identification and control of ‘par-
tially known * systems. Our work presented here was especially motivated by the recent Ph.D

thesis of Dasgupta [14].
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3-2 Model for a Class of Systems with Prior Information

The system to be identified and/or controlled is a single input-single output linear time-

invariant system of the form

!
notY,oun;
i=l
% = re—— (3-2.1)
do-XB,d;
j=1
where o; , B;’s are unknown constants, n; , d; ’s are known polynomials in z~1 (discrete time) or
s (continuous time). The model (3-2.1) is general enough for several kinds of ‘partially known’

systems. We give the following examples:

(1) Network functions of RLC circuits with some elements unknown. Consider the circuit of

Fig.3-2.1 with the resistor R unknown (drawn as a two port to exhibit the unknown resistance).
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1(s) I.(s)

R % v,(s)

<
D
——

Fig. 3-2.1

If the short circuit admittance matrix of the two port in Fig.3-2.1 is
I_u)yn@)| |v
[11]_ [)‘21(8))’22(3) Vi (3-22)
that a simple calculation yields the admittance function to be

I(s) YR 1wyaryiya)
V(s) 1+Ry

which is of the form (3-2.1). Circuits with more than one unknown element can be drawn as mul-
tiports to show that the admittance function is of the form (3-2.1)
(2) Interconnection of several systems with unknown interconnection gains. Consider the simple

discrete time configuration of Fig.3-2.2 with the polynomials n(z) and d (z) known.



+ n(z" Y
- (2%

R 2

Fig. 3-2.2

The closed loop transfer function is of the form (3-2.1) F’;jﬁ—(z—) .

(3) Systems with some known poles and zeros. Consider the system of Fig.3-2.3, with unknown

plant but known actuator and sensor dynamics
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na(z') > ai(zh) ns(2") —_
A_" 4 } .. £
d. (2" 1+ S bi(2") ds(2")
Actuator Plant Sensor
Fig. 3-2.3

The overall transfer function may be written as

Sa;n,nz™
d,d;+Yb;d,dz™

which is of the form (3-2.1) since n,n,z2~, d,d,z™/ known.
(4) Classical transfer function model, i.e. a plant of the form

oS ™4 4,

G(s
( )=s"+[31s""l+...+B,,

with m<n and o; , B; unknown, can be stated in terms of the set up of (3-2.1) by choosing
no(s)=0,do(s )=s"
ni(s)=s™" i=l..m

di(sy=—s"7 j=l..n
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In this section we will discuss both continuous and discrete time systems of the form of (3-
2.1). Our methods are extensions of those proposed by Goodwin et al in [24], Narendra et al in
[39] and Sastry in [48]. The methods of proof are identical. The novelty of our paper is the set up
in which the methods are applied.

~»
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3-3 Discrete Time System Identification
3-3-1 Identifiability Condition

In this section ,we will discuss the identifiability condition for some discrete time ‘partially

known’ systems.

First consider a system described by

" no(z"ﬁ-_ék.-ns(z“) y
2 it BED) (3-3-1.1)

“ED ety Shaah €

i=1

where k,-'s are unknown parameters, d;(z ~1y and #;(z -1y are known polynomials in the unit delay

operator z~1,

do(z " V=1+d gz . 4dgaz ™
d;z N=djz Az =l (3-3-12)
iz D=z Az 0,100 (3-3-1.3)
Assume n(z~) and d (z™!) are coprime. Notice that it is a special case of the form (3-2.1).

Definition 3-3-1.1

A system with some unknown parameters is said to be identifiable if and only if there exist
some inputs u(t) such that the unknown parameters can be uniquely determined based on input-
output measurements.
Theorem 3-3-1.2

The system (3-3-1.1) is identifiable if and only if the following matrix is full column rank.
dyy dy dpy |
din do dyg

b= nyp nay nyy (3-3-14)

.’l Im N2m Rim
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Proof: Rewrite (3-3-1.1) in the form

1
[doz ™y @ -no G N=T kld: ™y G-niHu ™)

i=1
Define
2oz =doz Yy " )-noz Hu ™) (3-3-1.5)
and the regressor vector y(¢) and parameter vector 8 by
Y ()= @¢=1),..y ¢=n)u (t=1),...u(t—=m)) (3-3-1.6)
87 =(k 1.k 2...k;) (3-3-1.7)
Then the system can be written as

2o(t)=y7(t)D O (3-3-1.8)

The necessity may be readily seen, since if D is not full column rank, then any
0< 0 +Null D will give same transfer function. This situation corresponds intuitively to the case,
in which there exists a 6=(k ,...k;)” such that

1 i
Tkin(z =3 kidi(z7)=0
i=l i=l
Now, we give the proof of sufficiency. By assumption, the sufficient richness of the input u(t)
implies the persistency of excitation of y(¢) (see Bai and Sastry [9]) i.e. there exists a>0 and
p€Z,, such that

totp-1
T wew @)zl forall 1 (3-3-1.9)

I=to
then following inequality is obtained,
T T T
W (to) Wy (to)
. . totp~1
( : D) . D=DT ¥ w)W' (D >0
i=to

Y (totp-1) ¥ (tgtp-1)

By the linear algebra, we know that the equation (3-3-1.8) has an unique solution for 6. This
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completes the proof.

For the general case of the systems described by equation (3-2.1)

1
N+ Fopmz™)
i@ gi _n( )
d@z™)

ye™ _
-1 k
BET) g3 Bd; Y

j=1

(3-3-1.10)

The corollary 3-3-1.3 follows.
Corollary 3-3-1.3

The system (3-3-1.10) is identifiable if and only if the following matrix is full column rank.

dy da g o

D= dyn din 0 0
=10 0 nyy Ny

0 onlm Nim

Let us now digress a little bit and consider the another type of ‘partially known’ system of

the form

Ry n
y @ W=k 5+ t—=u 7Y (3-3-1.11)
dy dy

where n;(z™1) and d;(z ") are nonzero known coprime polynomials in the unit delay operatofz"‘,
n;(z " V=npz A,z ™
diz N=14d; 2z 7+ Hdp 2™
and the k;’s are unknown parameters.

Define
n;
. h,-(z‘l)Tu(z -y =121 (3-3-1.12)
i

Then it follows that



-70-

hi(ty=—d; 1 h; (¢ =1)=...~dip B; (¢ =n )i \u =1+ 40 u (t-m) i=l..1
so that

k1

Y@=yt | [ =T ()DO (3-3-1.13)
k

with
W (8)=(h 1 (t=1)...h {(t=n)... -y (¢ =1)...y (t =1 )1 (¢ =1)... (£ =1 ))

[—d 0 0

D= ‘? ? "_1“ (3-3-1.14)

0 0 -dy
Ry Ry my

| B 1im Mom n;,,.
Theorem 3-3-1.4

The necessary condition for system (3-3-1.11) to be identifiable is that the matrix D defined

in (3-3-1.14) be of full column rank. The sufficient condition for the system (3-3-1.11) to be

identifiable is that
d 9 O'il
0dy 042
rank{ . . .. |=l forall z (3-3-1.15)
00 dr
where
di=z"+d; ;2" \+.. +d,, (3-3-1.16)

Hi=ng gz ™ e g, (3-3-1.17)
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Proof: The proof of the necessary condition is clear. Let us prove the sufficiency. A direct conse-
quence of condition (3-3-1.15) is that sufficient richness of input u(t) implies the persistency of

excitation of the regressor vector y(¢). Since

Y(t) =Ay(e-1+bu(t) (3-3-1.18)

where A and b are similar to those in [9], and the condition (3-3-1.15) guarantees the reachability
of the system (3-3-1.18). Then persistency of excitation of y(¢) follows (see Bai and Sastry [9]).

The rest of the proof is similar to the proof of theorem (3-3-1.2).

We now discuss multivariable extensions. Let us restrict ourself to the system described by

;
LI
y1E™h Wan "Way | {ee™
S ol : (3-3-1.19)
-1 -1
Yp(z™) M1 - B | jy(z7)
k’"dpl o dpt
where n;;(z ") and dj;(z ™) are known nonzero polynomials
n;i(z 'l)?nej(l)z L tm(m)z ™ (3-3-1.20)
dij(z D=1+ (D2 M tdj(n)z ™ (3-3-121)
k;j's are unknown parameters. Define
e
i@ 7)= d..ui(z ) (3-3-1.22)

ij
v T(O=(hi (e =1). iy (e —n). hy (2=1)...hy (¢ =n),
u(e=1)..uy(t=m)..uy(¢=1)....;(t —m)) (3-3-1.23)

and



-72-
[—d; (1) 0

~dny(r) O

6~
D= n,-?(l) 'd":)(") (3-3-1.24)

nném) 0

0 na(1)
I 0 na(m) ]
The system (3-3-1.19) can be written as
yie)=y;T()D;8' i=1.p (3-3-1.25)
with
O =(k; 1 kig.... k)T

-

Note that (3-3-1.25) is of the form of (3-3-1.13), so that we have the following theorem
resembling that of (3-3-1.4).

Theorem 3-3-1.5

The sufficient condition for the system (3-3-1.19) to be identifiable is that

>

a0 04n 0 o
0d2 00 M2 0
rank| . . . . . . |=l forallzandall i (3-3-1.26)

00 4,00 4
where

‘fij=z"+dij(l)2 "=ly.4d;i(n) (3-3-1.27)

~

Aij=ni;(1)z ™ M. +n;i(m) - (3-3-128)
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Remarks; Ifcf,«_,- and rij; are coprime for all ij , then the condition (3-3-1.26) is satisfied.
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3-3-2 Algorithms and The Rate of Convergence

In this section we will present identification algorithms with their convergence analysis for
identifying partially known discrte time systems of the form (3-2.1) that is
!
no T oimz™) .
y@ _ i=l _n(z7)
u(t) k T d(z!
© -y 1€

j=1

(3-3-2.1)

where o, B;’s are unknown parameters, dj, n; are known nth and mth order polynomials in the

unit delay operator z-3,

dozV=1+dyz +.+dg,z™" (3-3-2.2)
diz™=djz M tdpyz ™ j=10k (3-3-2.3)
ni(z N=nz M An,z ™ i=0,1,..0 (3-3-2.4)

The identification problem is to identify B j» 0; from input-output measurements of the sys-

tem. Rearranging equation (3-3-2.1), we get
o)y (t)-n oz Mu ()
k . 1
=Y B;d;iz )y ¢ T oz u () (3-3-2.5)
1 1
Define the following signal vectors

zo(t)=d oz Ny (t)-nolz Mu () (3-3-2.6)

WT(t=1)=(d 1z "Dy @)s.sde Dy () 1 DU (0 )oenerty 2D (2)) (3-3-2.7)

0y T=(~d o= gurlto1, - - - » Rom) (3-3-2.8)
0=y, ....BeCr ..., 04) (3-3-2.9)
Y (=)= =1,y (¢—1)u (¢ =1),....u (¢ —-m)) (3-3-2.10)

-
.

Then it follows that
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2o(6)=0TW (1-1)=07 DTy(r) (3-3-2.11)

Let 6(¢) denote the parameter estimate at time t. Then since z(t) and W (¢~1) are obtain-

able from the input and output , we may construct the equation error
e (=00 -1)W (t-1)-z4() (3-3-2.12)
with ¢z ¥=6(¢ -6 denoting the parameter error, we see that

e (t)=0T (t-1)W (¢=1) (3-3-2.13)

Equation (3-3-2.13) is linear in the parameter error, so that any one of a number of standard
techniques for parameter update (see [25]) may be used. We only discuss two of them, which

will be used in the next section.
A. The Projection Type Algorithm

The update law

Iy we-) W (e A
0(r)=6(r-1)+ T G-DW D) (2ot )-6(-1)W (¢-1)) (3-3-2.14)

is referred to as projection type law. It is well known [25] that this algorithm has following pro-

perties.
116(2)-0o! 151 16(e=1)-8,1 1<116(0)69! | forany £ 21 (3-3-2.15)

2
lim @7 (¢=DW (t-1)) =0
t=o 1+W T (=)W (1)

(3-3-2.16)

As mentioned in [25] that nothing has been said about é(t) necessarily converging to 0. In
fact, 6(¢) may not converge at all. However the properties have been derived under very week
assumption and in many cases this is not a significant limitation and the performance of the algo-
rithm, in a particular application, can be inferred from theses properties. Further it is well known
[ ] that the projection type algorithm (3-3-2.14) has exponential convergence when W (z) is per-

sistently exciting.

B. The Least Squares ’I‘ype Algorithm
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The least squares type algorithm is given by

e P@2We-D T 1vAer— A
0()=H(e-1)+ TP G- g e TG DOe-1)  (3-3-2.17a)
P-2W ¢-1)WT@-1)P (:-2)

P = P e TP a2W -1

P(-D=0d >0 (3-3-2.17b)

The least square algorithm generally has very fast initial convergence rate which is much
faster than the projection type algorithm. But the rate reduces dramatically after a few iteration.
One variant of this algorithm is that covariance P (¢) is reset at various times. This is called the

least squares type algorithm with covariance resetting.
C. The Least Square Type Algorithm with Covariance Resetting

The least squares type algorithm with covariance resetting is given by

p—LfOe2We-D) T(e=1)6(c— -3-
0 )=H(e 1)+ TGP G-OW G-D ot WT-16¢-1)  (3-3-2.182)

P(t-2DW (e=DWT(e-=1)P (t-2)
1H4WT(e-1)P-2)W(-1)  ife20z1.12,..
Pe-D=q if 1=0, 1t 0.n

P(t-2)-
(3-3-2.18b)

in (3-3-2.18b) covariance resetting occurs at { 0,2 ,2,....}.

It is pointed out in [30], by a scalar example, that the convergence rate of the least squares
type algorithm (without covariance resetting) is 1/t, if W(t) is persistently exciting. We will

show, in the following theorem, that this is true for general cases.
Theorem 3-3-2.1

For the algorithm (3-3-2.17) subject to the condition of persistency of excitation, i.e.

, =T R
a7 Y W(EWT(i)<op?  forall 1€Z, (3-3-2.19)

i=t+l
for some T e Z,, and some o, 03 > 0. Then it follows that

Bi _11o¢+D112_B2
27 LIgO)112 ~ ¢2

(3-3-2.20)
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for some B, B, > 0, and for all £>T. Where ¢(¢ )=6(z )-8 denotes the parameter error.

Proof: For any ¢ 2T, there exists a ke Z . such that kT <t <(k+1)T and by assumption (3-3-2.19), it

follows that
= T >.._. k_ % .!.
ZW(;)W ()2 ka,12k+l - T25 el
1 W(z)WT(t)<—(k+l) ISﬂgiIsZaQI
%7]
with
0.1=(11'/T, (12=(!2'/T
This implies

t
%altl SSWEWw T(i)< 200t forall t 2T
1

From equation (3-3-2.17b), we have
]
Ple)y=P N =1 W@EWT()
i=0

and consequently

%:agsr‘(: YEP Y (=1)4+20011
Since P7l(-1) = — I Then, it follows immediately
LiarsP\)s(L 2090 t2T
2 ol
If we define

S(t)=—1—P“(t )

(3-3-2.21)

(3-3-2.22)

(3-3-2.23)

(3-3-2.24)

(3-3-2.25)

(3-3-2.26)

(3-3-2.27)

It is obvious that S(t) is uniformly (+2T) bounded both below and above by

a4=ia1, a3=(-£?+2az)'respectively. On the other hand, the paraméter error may be written as

2
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() = P ¢ =1)P (e -2)¢(t~1)

by successively substituting, we have

8+ D=5 OP - 10O=—-5 1))

(3-3-2.28)

where P"(—1)=—;-1 is the initial value of P~!. Since S~!(¢) is bounded above and below, this

implies that the error ¢(¢)—0 at the rate of 1/¢. More precisely, let M(t) be an orthonormal matrix

such that

MT(@)S ()M (¢)=A()

where A(t) is a diagonal matrix. Then it follows from (3-3-2.28) that

116C+1)1 12=—=0(0) M (A2MT (£ )6(0)

o2
Note that

1

and M(t) is orthonormal, the conclusion follows

~

B tieeeniiz B
127 110112 "¢
with

1 1
ﬁl= 2 2’BZ=

oo ooy

2

This completes the proof.

asomi,.m-‘(z»som(A-‘(:»s-;.‘;

(3-3-2.29)

(3-3-2.30)

(3-3-2.31)

(3-3-2.32)

The theorem above shows that the convergence rate of the least square algorithm is 1/t after

a few iterations (T iterations), since the matrix P gets smaller and smaller. However, for the

algorithm with covariance matrix resetting (3-3-2.18), the rate of convergence is exponential as

stated in the following theorem.

Theorem 3-3-2.2



-79 -

Consider the least squares type algorithm with covariance resetting (3-3-2.18). Suppose that

W (t) is persistently exciting as in (3-3-2.19) and the resetting time is defined by ¢;=t;_,+kT -1 for

some fixed k. Then it follows that

1 )" @)1 12 < 1 )
(Q+kao)? ™ 11§O1127 (Q+kaoy )

(

(3-3-2.33)

Proof: Let P!(¢;~1) and P~!(z;*~1) denote the covariance matrix right before and after reset-

ting. Then similar to the proof of theorem 3-3-2.1, we have

-1
P =1)=P (i -1+ “Z W3GWT(G)

Jotia

-1
=-:TI+ T WGOWT()

J=tia
This implies that
1 ’ 1y 1 ’
(71-+k o M<P~ (™1 )S(E-i-k o))
and notice that
0t =P (=P " (1=2)9(6=1)=P (& =DP (11 *-1)0(ti-1)
1 -
=P D)
Then, the parameter error is given by
(=P (=D P (¢7-10(0)
L 8 T A eneee o 1

Combing equations (3-3-2.35) and (3-3-2.37), the conclusion follows

1 "ll¢(t.-)llz,( L
(+kaon)?’ ~ 1160) 1127 (1+k oy )?

(

This completes the proof.

-
4

(3-3-2.34)

(3-3-2.35)

(3-3-2.36)

(3-3-2.37)

(3-3-2.38)
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3-4 Continuous Time System Identification

In this section, we will deal with continuous time ‘partially known’ systems. Unlike the
discrete time case, we will use rational functions instead of polynominals for our analysis. The
framework of rerpresenting transfer functions as the ratio of proper, stable rational functions, pro-
posed for example by Desoer et al [17] and Francis & Vidyasagar [20] has proven useful in H®
approach to linear control systems design and it has payoff in our context as well in studying the

effect of unmodeled dynamics on the identification scheme.

We consider the problem of identifying a class of ‘partially known’ systems described by

equation (3-2.1) i.e.

8ols Hfﬁ.-g.-(s)
i=]
fo(S)—iajfj(S)

Jj=l

G(s) (34.1)

where the g;’s and f ;’s are known, proper, stable rational functions in s and the B; , ;’s are unk-

nown, real parameters.

The identification problem is to identify §; , ot; from input-output measurements of the sys-

tem.
Remark:

All the models described in section 3-2 can be parametrized in the form of (3-4.1) e.g Clas-

sical transfer function identification, i.e. identification of a stable plant of the form

Bis™ 4. 4B,

5P 40ys . 0,

G (s)=n(s)d(s)= (3-4.2)

with m<n and o; and ; unknown, can be stated in terms of the set up of (3-4.1) by choosing
5"
8o(s)>=0, fols W
m—i

(5 )—— =1,
g.(s)—(sw),, i=l,.m
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and

sn

fi(s) "

Jj=l..n

with o0 a positive, real number. Also if m is not known, we may set it equal to n.

let y(s),u(s) denote the input and output to the plant of equation (34.1). (The initial condi-
tions of the plant represent exponentially decaying terms which do not change any of the follow-
ing discussions, as is well understood in the literature.) Then, after some rearrangements, we get

Fay—gou =f‘,a,- fiy+ 1 Bi giu (3-4.3)
Jj=i i=
Defining
zo(s)=f o(s)y (s )-g ol(sdu(s) (3-4.42)
hi(s)=f;(s)G(s)  j=l..n (3-4.4b)
Rasi(s)=g:(s) i=1,.m (3-4.4c)

and the unknown parameter vector 6 by

97=(a1,...,0£,.ﬁ|. N Bm)

we get

hy(s)
2os)=0T| . |u(s) (3-4.5)
B sm(S)

The vector of signal (& 1(5)s....tp4m (s ) is denoted z(s) and its Laplace inverse z(¢) so that in

time domain (3-4.5) reads ( again modulo decaying initial condition terms.)
zo(e =07 (z (¢)*u (1)) (34.6)
(* stands for convolution.) By way of notation, we refer to z(t)*u(t) as W(t).

From the form of equation (34.6), it is easy to see how an estimator and equation can be

derived. Let 6(¢) denotes the parameter estimate at time t. Then since W(t) is a vector of signals
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obtainable from the input and output by proper stable filtering, as seen from (3-4.4), we can con-
struct the error

e(@)=0()TW (t)—zo(t) (34.7)
Using (3-4.7) and with ¢(:)=é(:)-e denoting the parameter error, we see that

e@)=T W (t) (34.8)

Similar to discrete time case, we have
A. The least Squares Type Algorithm

The parameter update law is of the form (with P (¢)e R *+m)x(a+m))
6(t)=-P X)W (t)e (1) (34.9)

P)=weWe) PO=od>0 (3-4.10)

It is well known (see Goodwin) that if W is persistently exciting i.e. there exists o, §>0
such that

$49
[ wwT drzayl  forany s R, (34.11)
s

—

then ¢—0 as £ —re0. Of course, since W(t) is bounded we in fact have

s+d
oof 2 [ WWT dt 20yl forany seR, (34.12)
E

The result of Chapter 2 may be used to give frequency domain condition on u(t) to guaran-

tee (3-4.12). First, we need the following assumption on the identifiability condition.
Assumption on the Identifiability Condition (AIC)

Consider the system (3-4.1), assume that for every choice of distinct (n+m) frequencies
V1 - -« 1 Vasm the vectors W (jv;)e C **™(i=1,...,n+m) are linearly independent
Remarks:
(1) From (34.5), it foliows that if an input having (n+m) spectral lines were applied to the sys-

tem, we would get
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(20U Do 0(Vatm)]
=007 (2 GV 1)sererZ (Vnim)1dia8 U GV Drevesld (Vi 4m) (3-4.13)
In turn, AIC implies that (3-4.13) has a unique solution for 6.

| (2) Itis difficult to give a more concrete characterization of identifiability since the component
of W(s) are proper, stable rational functions of different orders. An exception is the case of
classical identification discussed in remark 2 (equation 3-4.2) in which case it has been
shown in Boyd [12] that the identifiability condition holds if n(s) and d(s) are coprime
polynominals. However, by similar arguments as in chapter 2, we may conclude that AIC

holds for almost any choice of (¥ 1,...,Vp4m).

Using the assumption on the identifiability condition , we state the following fact easily
derived from { J;
Under the identifiability assumption AIC, W is persistently exciting, i.e. it satisfies (3-4.12)

if the spectral measure of u is not concentrated on less than n+m points.

Thus, if there are at least as many frequencies in the ﬁlput as there are unknown parameters,
the parameter errors converge to zero. Of course, the least squares type algorithm (3-4.9), (3-4.10)
shows rapid initial convergence with asymptotically slow adaptation (as P(t) gets large). Some

form of resetting of P(t) or forgetting is introduced (as in Goodwin and Sin pg.62), for example
P@)=-APUHWEWE)  PO)=c>0 (34.14)

It is then easy to show that the convergence of the parameter error is exponential. It is important
to note that forgetting is not used when W is not persistently exciting to keep P from going singu-

lar.
B. Projection Type Algorithm
The update laws

80 )=—W (t)e (¢) (34.15)



-84-

or

W(t)e(t)
14+W ()W)

6 )= (34.16)

are referred to as projection type algorithms. They also yields exponential convergence when the

inﬁut is sufficiently rich in the sense discussed above and the assumption AIC holds.

To illustrate the methods of this section, consider the following example in Fig. 3-4.1

Y%_ F(s)

Fig. 34.1
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2s+2
3s+5

The form of the closed loop transfer function is

In Fig. 34.1, £(s) is known (assumed to be

for the simulations of Figures 3-4.2 and 34.3 ).

f(s) _ as+b
144 (s) ~ s+c

With the parameter k to be estimated, Figure 3-4.2 shows the parameter error for the algo-
rithm with the projection type update law (the true value of k=1 ) and input u(t)=5 (only one
spectral line is needed for identification).

12.0
10.0
8.0

6.0

- 1 J
0.0 0.04 0.08 0.12 0.'e
15.0-

12.0-

9.0

6.0

3.0

0.0
" ] . !

. 1 : J
0.0 0.03 0.06 0.09 0.12

Fig. 34.2
Estimation errors of parameters a and b (top) and

¢ (bottom) using prior information.
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00 — e 30— 450
Eig. 343
Estimation errors of parameters a (top), b (middle)

and ¢ (bottom) without using prior information.
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Identification of the closed loop plant without utilizing the structure of the system requires
the estimation of three parameters a,b and c. Figure 3-4.3 shows the parameter errors for a, b and
c using the input u(t)=3+4sin(4t). Note that the two inputs for figures 3-4.2 and 3-4.3 have the
same energy. The input for Figure 3-4.3 is richer than that for Figure 3-4.2. However, the rate of
convergence is much slower (by a factor of approximately 500) in Figure 3-4.3. In the following,

we will see that the scheme using prior information also has a larger robustness margin.

Though the assumption AIC guarantees that the parameter errors converge to zero if and
only if the support of the spectrum of input u has at least n+m points, it does not provide much
insight into the connection between the spectral content of the input and the convergence rate.
We will use averaging techniques to facilitate this analysis.

First consider the projection type algorithm (3-4.15) with slow update law (modeled by

adaptation gain &, a small positive number).
¢=—scWWTo (3-4.17)

Defining the averaged value of WW7 to be Ry (0) (see [22]) given by

s+T

Rw©x=lm = | WwTd:  forany seR, (3-4.18)
Tl A

(provided it exists- this in turn is guaranteed by assuming W to be stationary, see chapter 2 for
details.) We see that for € small enough the dynamics of (3-4.17) (including rate of convergence

up to the high order of € ) are approximated by
Fav=6Rw()ay (3-4.19)

Noting that Rw(0) is the integral of the spectral measure of W, we may rewrite an expression for

Rw(0) in terms of the input spectrum and the function z(s) as
Ry (Q)=[z(jv)S,(dv)z" (jv) (3-4.20)

where S,(dv) stands for the spectral measure of u. Thus, the convergence rate of (3-4.19) is

obtained to lie in an interval [g(RW(O)).E(RW(O))]. where 9_(3) denotes minimum (maximum)
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eigenvalue. For optimum convergence, the spectrum of the input needs to be in the dominant
part of z(jv )z " (jv ). Of course, the expression (3-4.20) involves parameters of the unknown plant

so that it is not easily approximated.
For the analysis of the slowed-down least squares algorithm, consider with W assumed to
be persistently exciting
¢=—ePtWWTo (3-4.21)
P=¢(WWT-AP) (3-4.22)
As before, we may approximate (3-4.21), (3-4.22) by the averaged system
Oa=—EP L1y Ry (0o (3-4.23)
P, =¢(Rw(0)-\P,,) (3-4.24)

Equation (3-4.24) may be explicitly integrated to give

Py (t)=(Pgy (0)-%Rw(0))e'w+%1?w(0) (3-4.25)

In turn, using this in (3-4.23) and noting that P,,(¢) converges exponentially to %RW(O), we see

that the tail behavior of (3-4.23) is

Oay=—EADsy (3-4.26)

so that the tail convergence rate is a function of the forgetting factor A alone in the ‘covariance’

equation (3-4.22) and not the input spectrum!

We now consider the effect of unmodeled dynamics on parameter identification. The set up
of the above discussion used transfer functions of the form (34.1) with the f; and g;’s known
exactly. In practice, the f; and g;’s will not be known exactly, but only approximately. In fact,
the transfer functions used to approximate the f; and g; will generally be low order proper, stable
rational functions( neglegting high frequency dynamics, and replacing near pole-zero cancella-

tions by exact pole-zero cancellations). Thus, the identifier’s model of the plant is of the form
got 2B &

G (s)=—— (3-4.27)
s o-z,laj fj
j=
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where G is a proper,stable transfer function and
1(g;—g:)(w)l<e forall w i=0,.m (3-4.28a)
I(fj=f)Gw)l<e forall w j=0,..n (3-4.28b)

We refer to g;~g; as Ag; in the sequel, similarly for Af ;. For example, g; may be of the form

1 4q6)
: 3-4.29
g v(s) p(s) ( )
where %s) represents stable high frequency dynamics and -g% represents near (stable) pole-
zero cancellations.

The identifier uses the form (3-4.27) to derive the identifier for the true plant G (s) which is

accurately described by (3-4.1). Consequently the transfer functions of (3-4.4) are replaced by

Zo(s )=f oGu—g ou (3-4.30a)
Ri(s)y=f;G  j=li.n (3-4.30b)
Bosi(s)=g; i=l,..m (34.30¢)

It is important to note that 3 does not satisfy an equation of the form (3-4.5) i.e. it is not true that
hy(s)
fos)=0T | . |u(s)
P am(5)
Equation (34.5) is ,of course, still valid. The update law (least squares type) is now of the
form (with W; (¢ )=h;(z)*u(t).i=1,..n+m)

6=—P W (1) (1 )W (£ -2 o(2)) (34.31)
P=WWT-\P P(0)=ai>0 (34.32)
We need an expression for 7 in order to study this algorithm. For this purpose we note that
£0(8 =2 o5 I o8 )=F o8 )G ()14 (5 )~(& o5 -2 o(s it (5) (34.33)

=z o(s J+AS oG (5 )u (s )-Ag o (5)
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Also, we have

Ah,y
WE)=Wi)-| . |u@s) (3-4.34)
Atyim
Using (3-4.33) and (3-4.34) we see that equation (3-4.31) may be rewritten as

6=—P - 1WW T (6(t)-0)-P W (£)5(¢) (3-4.35)
where 8(¢) is the Laplace inverse of

Ak y(s)

87 [ . |u(s)-Af ols)G (s)u(s HAgols u(s)
Ay o (5)

With (e )—0=4(t), the parameter error, the error dynamics are given by
¢=—P - TWW T o—P-1W 5(t) (3-4.36)

P=WWTP PO=o>0 (3-4.37)

The last term in equation (3-4.36) may be considered;s a ( state-dependent) driving term. If
the undriven system is exponentially stable, then using the results of [53], the driven system is
stable as well. In tum, the undriven system is exponentially stable if and only if W is persistently
exciting i.e. (3-4.12) holds for W. We will give conditions, using the following two lemmas, on

the persistent excitation of W in the case when ¢ is small enough.
Lemma 3-4.1

Suppose that We R"*™ is persistently exciting i.e.

s+
02 [ WWT dr 20
g

for some a,05,0 >0 and for all s>0. Then, W+AW is also persistently exciting provided that

]

AW ()1 1 <(ay/8)12 (3-4.38)
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Proof: W+AW is persistently exciting if for any xe R”**™ of unit norm
4+ .
g2 [ 1xTW+AW) 12 de20y’ (3-4.39)
s

The upper bound on the integral in (3-4.39) is automatic for some o” simply because AW is
bounded. For the lower bound, we use the Minkowski inequality to get

43 12 548 12 545 12
([1xTw+aw)12de) 2( [ 1xTWi2dr) ([ 1xTaw1? dr)
s ) s

] 12
20412 [ 1AW 12 dt)
3
204 12-5"25up L AW ()1 (3-4.40)
The conclusion follows from (3-4.38).

To establish the norm bounded on error, we need the following lemma due to Doyle-

Gohberg [18].
Lemma 3-4.2

IfG(s)isa proper, n-th order stable rational function'with Laplace inverse g(t), then

glg(t)ldt <2 n suplG (jw)! (34.41)

Remark:
Lemmas 3-4.1 and 3-4.2 are to be interpreted as follows:

(1) Let W(t) and AW (¢) be the Laplace inverse of (f {G,...,f2G .81, .-..8m) u(s) and
(Af G, ..., Af,G Ag1, ..., Agx) u(s) respectively. From (3-4.33) it follows that

W=W +AW (34.42)

If we assume that the true system in (3-4.1) satisfics the assumption AIC, then sufficient
richness of the input u (in the sense of before ) guarantees that W is persistently exciting,

provided that € in equation (3-4.28) is small enough.
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(2) Inpractice, f; and g; are unknown. We may assume that the nominal plant G satisfies the
identifiability condition. In such a case, equation (3-4.42) still holds with W (¢) and AW (r)
given by Laplace inverse of (FiG.....f2G.81n-...8.) u(s) and
(f (G =G ). fn(G=G).0.,....0)Tu(s) respectively. Then, we get same result as in remark
(1) above.

(3) The classical identification can be thought of the special case of that in remark (2) as fol-

lows
. Bis"MtBn 1 g(s)
G(s)» sn'HI]Sn-”'-"mﬂ‘ v(s) P(S)
<y L 6)
66 L 2) (3-4.43)

As in (3-4.29), 1/v(s) represents stable high frequency dynamics and ¢ (s )/p (s) represents

near stable pole-zero cancellations. Then

s™ 1 q(@s)

8i(s)= G0y 76) PG =1,...m
st sh
fo-(sm)n ’ f}(s )=-——(s+a)" j—l.....n

For the identifier, both v(s) and ¢ (s)/p (s ) are neglected and we have

Sm—i

=1,.m

ﬁ@#cﬂw

fils)=fjs) j=0l..n

1Ag; | <& provided that cancellations are almost perfect and unmodeled dynamics occur at high

enough frequencies.

From the form of &(¢) in (3-4.35) and lemma 3-4.1, it follows that there exists a K (m,G)

depending only on sup |G (jw)| and m:=maximum order of Af;, Ag j such that
. sup | 8( - )1<eK (m,G)sup lu (- )| (34.44)

Under the condition that W is persistently exciting, it follows that the parameter errors in (3-4.36)
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converge to a ball with radius of order g( see [53]).

To end this section, let us consider the same example discussed before with

fGs F% % and f (s)= ?:;2 . The true closed loop transfer function is
G(s)= s+5  0.667s+0.667

T s45.1 s+1.73

With the parameter k to be estimated, Figure 3-4.4 shows the parameter errors (for the projection
type algorithm and input u(t)=5 same as in the no unmodeled dynamics case). It takes about 1

second to converge and the resulting closed loop transfer function is

2 0.6055+0.605
P@)= s+1.605

200}
160}
120

80
40

0.0

1
o 1.25 25 3.75 5.0

9.0 -

7.5

1
(o] 0.03 0.06 0.09 042

Fig. 344
Estimation errors of parameters a and b (top) and ¢ (bottom)

using prior information in the presence of unmodeled dynamics.
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For the identification of the closed loop transfer function without utilizing the structure of

the system, we have used input u(t)=3+4sin(4t). After 5000 seconds of simulation, the system

does not converge. Figure 3-4.5 shows the estimation error of the parameter c.

The Bode plots of G (s) and P (s) are compared in Fig.3-4.6

30.0
20.0
10.0
0.0
-10.0
-20.0
I ] i 1 1 | | J
o 1.25€3 2.5€3 3.7563 SE3
Fig. 34.5
Estimation error of parameter ¢ without using prior
information in the presence of unmodeled dynamics.
10° -
2
H
g -
P
10°! 1L {11ttt NIRRT
10‘1 100 101 102
Frequency (rad/sec)
Fig. 34.6

The Bode plots of G(s) (- - - + ) and A(s) ( ).
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3-5 Adaptive Control of Discrete Time ‘Partially Known’ Systems

Consider the system of the form (3-3-2.1). An adaptive control law is to be designed to sta-
bilize this system and to cause the output y(t) to track a given reference sequence y () i.e. we

require y(t) and u(t) to be bounded and

lim ¢y )y " (t)=0

The following assumptions will be made about the system (3-3-2.1)

(1) no+oyn+...4+0y 1020 This implies that the pure delay in the transfer function (3-3-2.1) is
known and equal to 1. This is for simplicity alone in our analysis, the extension to the case

where pure delay is greater than 1 (but known) follows readily.
(2) n(z"hhas all zeros strictly inside the closed unit disk i.e. the system is inverse stable.

(3) y*(t)is known a priori and bounded.

Control Algorithm Using Projection Type Identification Law
From equation (3-3-2.5),(3-3-2.8) and (3-3-2.11), we have
Y (e+1)=0,Ty(e)+6T W (¢)
=0,"y(:+8" DT y(1) (3-5.1)
We choose the projection type estimation law (3-4.14) and a control law specified implicitly by
y" @+1)=0,Ty(e}+6() DTy(r) (3-5.2)

(A minor modification is necessary to ensure that the coefficient of u(t) in (3-5.2) is nonzero. This

can be achieved in the same way as in [ ] and does not affect the current analysis.) Then, we have
Theorem 3-5.1 (Convergence Theorem)

Subject to assumptions 1), 2) and 3), consider the control law (3-5.2), together with the pro-
jection type estimation Iaw (3-3-2.14), applied to the system (3-3-2.1). Then, y(t) and u(t) are
bounded and
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lim(y @¢)>y"@)=0 (3-5.3)

Proof: Define the output error by
ey (t)=y (t)-y" (1) (3-5.4)
It follows from (3-5.1) and (3-5.2) that
| ey (¢ =07 (t=1)W (£-1) (3-5.5)

Now using equation (3-3-2.16), we have

. e ()
7 (3-5.6)
t=oo 14+W° (-DW(-1)
Note that
2@ e (¢
s LN 5 (3-5.7)
1+W@-1DW(t=1) 146,,(DD ")y’ ¢-Dy(t-1)
By assumptions 2) and 3), we have as in [ ] that
- < -
Hy(@-1)l 1< lﬂzﬂg ley(@I (3-5.8)

for some 0<c ;<eo, 0<c <o, The conclusion now follows fl-'om equation (3-5.7) and (3-5.8) using
the key technical lemma in [24] and by noting that boundedness of | |'y(-)! | ensures bounded-
ness of y(t) and u(t).

Control Algorithm Using Least Squares Type Identification Law (with Covariance Reset-
ting)
If the least squares type estimation law (3-3-2.18) is used , then we get the same result.

Theorem 3-5.2

Subject to assumptions 1), 2) and 3), consider the control law (3-5.2), together with the least
squares type estimation law (3-3-2.18), applied to the system (3-3-2.1). Then y(t) and u(t) are
bounded and i

lim @)y )=0
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Proof: The proof proceeds by an argument similar to that in [ ]. Define

ey ()= (1)~ " ()

Then from [ ], we have

. e, ()
1= 14+aW T (¢ -1D)W (£-1)

(3-5.10)

The remainder of the proof is same as that of theorem 3-5.1.

We have shown the global stability of two adaptive control algorithms. Note that nothing
has been said about the convergence rate of the output and the parameter convergence. However,
if n(z™!) and d(z~!) in (3-3-2.1) are coprime and the D matrix in (3-3-2.4) has full column rank,
then the persistency of excitation of W(t) follows from the sufficient richness of input u(t) (i.e.
u(t) has sufficient spectral content, see [9]). This implies that the control algorithm, with either
projection type or least squares type with covariance resetting parameter update, has exponential

convergence rate both for the output error and parameter error.

To illustrate the methods of last section, consider the }ollowing example in Fig 3-5.1

~
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u o 05 2* y
1+05 2 -2"2

0

Fig. 3-5.1

where k is unknown. The closed loop transfer function is

0.5z}
(140.5z 7 -z 2)+£ 0.5z}

Fig.3-5.2 shows the plant output under the adaptive control algorithm of (3-5.2) with projection
type update law and the plant output under the adaptive control algorithm without using prior
information respectively. (for the simulation, k=1, and y * (r)=1). The algorithm using prior infor-

mation has faster convergence rate and better transient performance.

“»
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without using
prior information

using prior |
se. information
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—
'50 o
'100 o
-150. |
-] " 0. 1 1.5 2.
Fig. 3-52

-
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3-6 Concluding Remarks

In this chapter, we have presented algorithms, which utilize prior information about the
plant, for adaptive control and identification of linear time invariant systems. If the plant is com-
pletely unknown, the algorithms are identical to the standard ones in the literature. However, the
algorithms presented here have faster convergence rate and better transient performance when the
system is partially known.

In the section 34, we have applied the technique of using rational function instead of
polynominal to parameter estimation of continuous time systems. We feel that the framework is
particularly amenable to the study of sensitivity of the schemes to the presence of unmodeled
dynamics. This will prove to be partically impotant when we devise robust adaptive control

schemes.

-
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