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Abstract

This thesis addresses frequency domain techniques and the use of prior information in the

analysis of adaptive identification and control schemes.

The contribution to frequency domain analysis is twofold: First, we establish a persistency

of excitation condition on the regressor vector for a reduced order identifier, i.e. it is assumed that

the order of the plant is not available and only the order of the nominal model is known. The

theorem states, roughly speaking, that the persistency of excitation of the regressor vector

depends on the order of the nominal model, i.e. the order of the identifier and is almost indepen

dent of the existence of unmodeled dynamics. It provides a foundation for the further analysis of

a reduced order identifier using averaging techniques. Then we show, under some technical con

ditions, that the parameter estimate will converge either to a unique tuned model or to a neigh

bourhood of the tuned parameter. Second, we apply frequency domain analysis techniques to the

global stability proof for an indirect adaptive scheme. We present a very general indirect adaptive

control scheme along with its convergence proof. We show that if the exogenous input is rich

enough, then the identifier and the controller converge to their "true" values. In the thesis, only

two applications have been discussed. However the scheme presented is applicable to several

kinds of controller design methodologies i.e. offers a great deal of flexibility in controller design

and allows for a very general richness condition on the exogenous input
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We show how prior information may be used in the analysis and application of adaptive

systems by constructing a model for a wide class of partially known systems and by presenting

algorithms for the adaptive identification andcontrol of such systems. If the system is completely

unknown, the methods are identical to the standard ones in the literature. However, use of the par

ticular prior information embedded in the model results in the identification and control of a

fewer number ofunknown parametersand consequently better performance.
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Chapter 1 Introduction

This thesis focuses on the two subfields, frequency domain analysis and use of prior infor

mation in adaptive systems. The philosophy of the presentation is that we only present our own

research in these two fields. In order to make it accessible to a wider audience, references are

given for all existing results and also a simple proof, if necessary.

Adaptive systems have been extensively studied for over a decade and numerous successful

algorithms and their applications have been reported. The development of the theory has led to a

much better understanding of various adaptive identification and control schemes, however, the

field still lacks analytical methods -particularly in the two subfields: frequency domain analysis

and use of prior information.

Frequency domain analysis is a classical method for linear time invariant systems. In this

thesis, our interest is to use this machinery to analyze adaptive systems. We successfully apply

this method to the study of a reduced orderidentifierand the global stability proof of an indirect

( adaptive control scheme.

On the other hand, although the importance of the use of prior information in adaptive sys

tems haslong been recognized, formal and detail studyin this area is very new. Ourcontribution

in this area is that we propose a model for a wide class of 'partially known' systems and present

adaptive identification and control algorithms, including acomplete convergence analysis.

We begin with a brief review of the literature.

1-1 Review of Previous Work

Frequency domain analysis techniques in parameter identification may be traced backto the

work ofRabkin et al [46] (1955),Levy [37] (1959) and Kardashov [31] (1958). They used experi

mental frequency data to determine the coefficients of a transfer functioa The work was further

developed by Sanathanan et al [47] (1963), Payne [44] (1970) and Stahl [50] (1984). The idea

: was that the coefficients of a transfer function were obtained as a result of minimizing some given
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cost function. At the same time, an on-line adaptive identifier was derived and developed by

Lion [38] (1967), Luder et al [39] (1973) and Kreisselmeier [34] (1977). They devised an adap

tive scheme to estimate the coefficients of a transfer function. Their work, together with that of

Sondhi et al [49] (1976), Anderson [1] (1977) and Morgan et al [42] (1977) showed that the

schemes proposed are globally asymptotically stable and furthermore convergence rate is

exponential, provided the regressorvector is persistently exciting.

Boyd and Sastry [12] (1984) went further. They used frequency analysis techniques to dis

cuss adaptive control and then results extend easily to the case of identifier. They changed the

condition of persistency of excitation on the regressorvector to a condition on the frequency con

tent of the input, i.e. if input contains as many spectral lines as there are unknown coefficients,

then the regressor vector is persistently exciting and consequently the parameter error converges

to zero exponentially. Their work led to further research in this direction by Fu et al [21] (1987),

Bai et al {10](1987) and Mason et al [41] (1987), in which averaging methods were applied to the

analysis of identifiers.

The use of prior information in adaptive systems was suggested by Dasgupta [14] (1984)

and Clary [13] (1984). They noticed that in much of adaptive literature, the standard approach

was to pre-suppose a complete lack of knowledge about the unknown systems and to ignore all

additional information available to the modeller. The algorithms thus estimate all the coefficients

of a transfer function. However, a great deal of partial knowledge is often available. It seems

intuitively plausible that the identification and control algorithms could have faster convergence

rate and be more robust, if this prior information could be incorporated into the adaptive systems.

It is of course clear that one could neglect the priorinformation embodied in the system and still

be able to identify and/or control the system. However, use of the particular prior information

results in the identification of fewer number of unknown parameters and consequently faster con

vergence rate and better transient performance.
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The major resultsofthis thesis are as follows:

(1) In chapter 2-2, we establish the persistency of excitation condition on the regressor vector

for a reduced order identifier. It is well known that an adaptive identifier allows asymptotic

estimation of the constant parameters of a linear time invariant system, provided that the

order of the system is known and the regressor vector is persistently exciting. However,

when a priori knowledge about the order of the system is notavailable and this occurs most

often in practice, how does such an identifier behave? In this thesis, we prove that the per

sistency of excitation condition on the regressor vector depends on the order of the nominal

model and is almost independent of the existence of unmodeled part. We then show that,
m

under some technical conditions, if input is of the form «(f)=J5» sinwit, the identified
i=i

model will either converge globally and exponentially to an unique tuned model when

m = n (the order of nominal model) or will converge to a neighbourhood of an unique

tuned parameter when m > n.

(2) In chapter 2-3, we present a general stability proof for continuous time adaptive control

schemes, withvery general assumptions onthe identifier and controller. We show that if the

exogenous input signal is rich enough, then both the identifier and the controller converge

to their 'true' values. To our knowledge, this is the first proof of the persistency of excita

tion of the regressor vector signal in the closed loop without the use of anartificial random

sampling signal for continuous time case. We show persistency of excitation without preas-

suming the boundness of the signal. Boundness of all signals and the convergence of the

compensator in turn follow from the convergence of the identifier and this is adirect conse

quence of persistency of excitation of the signal in the identification loop. In this thesis,

onlytwo applications of the scheme have been discussed, butthe scheme presented offers a

great deal of flexibility in controller design and allows for very general richness conditions
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on the reference input

(3) In chapter 3-1, we present a model for a wide class of partially known systems, then in

chapters 3-3 to 3-5 we give identification and control algorithms for such systems utilizing

available prior information. If the system is completely unknown, these algorithms are

identical to the standard approach in the literature. However, the schemes given will prove

to be particularly important when we devise algorithms for the adaptive identification and

control of these 'partially known* systems, since these algorithms have better transient per

formance, faster convergence rate and are consequently more robust, when the system is

partially known.
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f Chapter 2. Frequency Domain Analysis

2-1 Notation and Preliminary

This section introduces some basic definitions and results used throughout this thesis. The

notation is standard, e.g.W(r) denotes a function of time, W(s) is its Laplace transform. Transfer

functions (matrices) of linear time-invariant systems will be denoted by upper case letters, e.g.

G(s) and G*(s) is the complex conjugate ofthe transpose ofC(s).

Definition 2-1.1 (Persistency of Excitation (PE))

A signal W(t): R+->Rn is said to be persistently exciting if and only if there exist some

a, 5 > 0 such that

J W(t)WT(t)dt>aI forallto^O
to

(^ Roughly speaking, the intuition of the PE condition is that W(t) spans the whole space Rn
uniformly over time interval 5. There is an interesting frequency domain interpretation for PE

condition. First, let us recall the definition of a spectral line.

Definition 2-1.2 (Spectral Line)

A signal W(t):R+->Rn is said to have a spectral line at frequency w of amplitude

W(w)e Cn if and only if

to+T

± J W(t)e-**dt

converges to W(w) asT -»«»uniformly in fo- When W(w) *0, we say W(t) has a spectral line

atw.

Then it follows.

Lemma 2-13 (PE and Spectral Lines)



-6-

Let W(t)e Rn have spectral lines at frequencies wh...twn. Further assume that {

W(w i)t...tW(wn) } are linearly independent in C\ Then W(t) is PE.

Proof: See [11].

Lemma 2-1.4 (Filter Lemma of Spectral Lines)

Let u(t):/?+-»/?, y (r): R+-* Kn be the input and output, respectively, of a stable linear

time-invariant system with transfer function (matrix) G{s). If u has a spectral line at frequency

w, then so does y with amplitude

y(yv) = G(jw)u(w)

Proof: See [11].

Definition 2-1.5 (Sufficient Richness (SR))

A scalar signal r(r): R+ -* R is said to be sufficiently rich (ofordern) if andonly if it has

at least n spectral lines.

It is shown [12], in a stochastic context that the PE condition is directly related to the posi-

tivityof the covariance of the signal. For the deterministic case, theyare alsovery closely related.

Definition 2-1.6 (Autocovariance)

A signal W(t): R+-» Rn is said to have anautocovariance Rw(t) eRnxnifmd only if

lim -= f W(t)WT(t+*)dt=Rw(<i)

with the limit uniformly in t0.

The concept is reminiscent of the theory of wide sense stationary stochastic processes. But

we emphasize that an autocovariance is a completely deterministic notation. Its relation to the PE

is simple.

Lemma 2-1.7 (PE Lemma)

Suppose W(t) has an autocovariance Rw(*)- Then W(t) is PE if andonly if Rw(0) > 0.
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Proof: See [12].

We will present a few more definitions and lemmas which will be used in themain body of

the thesis. The proofs can be found in [12].

Definition 2-1.8 (Stationary)

A signal W(t):R +-*Rn is said to be stationary if and only if it has an autocovariance

Rw(z).

Lemma 2-1.9 (Bochner Representation)

Suppose Rw($) is a positive semidefinite function. Then Rw(i) has a Bochner representa

tion

Rw(x) =je*xSw(dw)

where Sw is a positive semidefinite matrix of bounded measure, called the spectral measure of

W(t).

Lemma 2-1.10 (Filter Lemma of Spectral Measure)

Suppose u(t): R+-+Rn has an autocovariance Ru(z) with its spectral measure Su, and

G(j) is a stable transfer matrix. Theny (s) =G(s) u(s) hasanautocovariance Ry(t). Its spectral

measure is given by

Sy(aw) =G(jw)Su(dw)(5*(jw)

The following lemma is concerned with the measure of a proper set, which is a very useful

concept in section 2.2.

Lemma 2-1.11

Let f:Rn->Rk be real analytic and not identically zero. Then the set V=/_1(0) has

measure zero inRn.

Proof: See [27].
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2-2 Convergence Analysis of a Reduced Order Identifier

2-2-1 Problem Statement

An adaptive identifier (e.g Kreisselmeier [34] and Lunders & Narendra [39]) allows asymp

totic estimation of the constant parameters of a linear time invariant plant, provided that the order

of the plant is known and the regressor satisfies some persistency of excitation conditions. How

ever, for the case where a priori knowledge about the order of the plant is not avaiable, which

occurs for most practical situations, how do such identifiers behave? We will study the problem

in this section, i.e. we consider the problem of identifying a reduced order single-input single-

output transfer function. The transfer function to be identified is of the form

nu(s)
G(s) = GQ(.s)

du(s)

nu(s)
with Go(s) nominal model which is to be identified and unmodeled part. System

du(s)

nu(s)
identifications with no unmodeled dynamics, i.e. si, have been investigated by many

du(s)~

authors (see e.g. Kreisselmeier [34] and Luders & Narendra [39]). We consider the case where

nu(s)
, *1. The main technique we used here is the frequency domain analysis, which we think is

intuitively insightful and technically rigorous. First we prove that the persistentlyexciting condi

tion of the regressor vector depends on the order of the nominal part Go(s) (i.e. the order of

identifier) and is almost regardless of the existence of unmodeled pan. This result is very useful

from the engineering point of view, since the plant to be identified is always lower order model

and usually only little knowledge is available about the unmodeled dynamics. We then show that,

m

undersome technical conditions, if input is of the form u{t) = J^j/mv.-r, the identified model
i=l

will either converge globally and exponentially to an unique tuned model Gj(s)t (which depends

on the choice of the input frequencies wt), when m=n (where n is the order of identifier), such

that
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(^ <j(Jwi) =GT(JWi) i=l,...,n
or converge to a neibourhood of an unique tuned parameter when m >n,

C

e
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2-2-2 The Identifier Structure and The PE Condition on The Regressor

The plant under consideration is of the form

dw.^,i*l. !g£l.i« ifel (2-2-2.1)
du(s) d<£s) du(s) d(s)

with the following assumptions:

(Al) G(s) is a unknown strictly proper, stable, finite order and coprime transfer function. The

order N is unknown and could be very large.

(A2) The nominal part G 0(s)= . , . is aunknown nth order, strictly proper transfer function.
<W)

The identification problem is to identify nominal part Gofa) (i.e. the coefficients of the

numerator and denominator of Gofa), or Certainty Equivalence) from the input-output measure

ments of the plant.

Remarks:

(1) The unmodeled part may represent somehigh frequency dynamics, nearly pole-zero cancel

lations, and other kinds of unmodeled dynamics.

(2) LetAG i(j)=T7r -1 and AG2(s)= G0C?) AG x{s), then the plant G{s) may bewritten as
du(s)

G(s) = G0(s)(l+*Gi(s))

or

G(s) = GQ(s)+AC}2(s)

which are standard representations of unmodeled dynamics (multiplicative and additive).

nu(s)
Notice that no assumption has been made about the propemess of unmodeled part ., hence

au\s)

it is possible that

\AG\(Jw)\ —• <*» as \w\ —»«>
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The identifier consideredhere is an adaptiveobserver/identifier [34,39] as in figure 2-2-2.1.

U

Define

plant
\

bisn"V.+bn new-e.-^ - m u

Ms)

3

Iden

,«-i

rw n-1 dusn+ai5 +...an

Ms)

W(t)

tifier '

Fig. 2-2-2.1

where Msy=sn+Xistt~l+7^sn~2+...+Xn is an arbitrary nr/i order stable monic polynomial and let

67,(r) =(ir(r),tfT(r))=(rf1(/),...^fl(r),zri(r),...AI(r))

denote the parameter estimate of the nominal modelG0(s) and W(t) denote the regressor vector

(Laplace inverseofW(s) ), we see thatthe outputof the identifiercanbe writtenas

yi(t)=WT(t)6(t)

.«-!

sn-'

&*
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The parameter update law is defined by

5(0 =-W(r)(y1(0-y(0)

=-W(t)WT(t)6(t)+W(t)y (t) (2-2-2.2)

It is well known (see e.g. Boyd & Sastry [11]) that in the case of no unmodeled dynamics,
_ ^_\

i.e. " si, the necessary and sufficient condition for parameter estimate to converge to the
du(s)

true value exponentially is the persistently exciting condition on the regressorW(t), i.e.

fo+S

J WWTdt>aJ
to

for some ot,5>0andallr0>0 (see definition 2-1.1) or input u (r) is sufficiently rich (of order

2/i), if u (r) is stationary (see section 2-1)

In the presence of unmodeled part, the situation is more complicated since W(t) involves

unmodeled part " .. It is easy tosee that necessary condition for W(t) to bepersistently excit-
du(s)

ing is that input u(t) is sufficiently rich (of orderIn) since W(t) is 2n dimensional. However, it

is not clear for the sufficient condition. To this end, we have the following lemma and theorem.

Lemma 2-2-2.1

Consider the plant G(s) in (2-2-2.1) and the identifier (2-2-2.2). Then for each /, 1£ l< n,

there is a nowhere dense, measure zero subset V^i in R21 such that if the input u(t) has 2/ spec

tral lines at w£, i'=l,...2/ and (w ^...w^) e/?2* - Vy, the resultant regressor W(t) has 2/ linearly

independent spectral lines at w,-, /=1,...,2/.

Proof: We prove this lemma in 2 steps. First we show that there exists some point

(wi,...,W2/) e R21 such that if the input has 2/ spectral lines at these frequencies, then so does

W(t) and { W(w i),...tW(yv2i)} are linearly independent.

Proceed by similar arguments as in Boyd & Sastry [11], we have that if the input u(t) has

2N (N is the order of plant G (s)) spectral lines at (w i w^v), then the matrixdefined by
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M2AKWi,...,W2tf) =

M2i(yvil,^.tWiit) =

-13

(jwif^nijwi) (Jw2NYI'ln(Jw2N)

n(jwi)
(jwif-ld(jwx)

n(JW2N)
(jwwf~ld(jw2N)

d(jw{) ' ' dijww)

isnonsingular. This implies that there is anonsingular submatrix

(M,)'"1* CM.) (jwij~l* (Ma)

n(jwit)

d(Jwix)

n(Jwi31)

(JWiJ'ld(JWi9)

d(Jwiit)

where (w,-,..... ,wiv) e (wx w^v). Using this fact and lemma 2-1.4, it follows that if input

u(t) has 2/ spectral lines at (w,-,,...,^), then W(t) has 2/ linearly independent spectral lines at

these frequencies, i.e.

'"CM,)""1" (M,) (Jwiv)n'ln (Jwiv)

(W(Wll),...,W(w/ai)) =
*(M,)

d(jwix)

"(w,,)

n (/w,a)
(Jwi3t)n'ld(Jwiit)

d(Jwi3l)

"(wla)
diag (

X(Mt) d(jwix)'"" X(Jwiv) d(Jwiv) )

This completes the first step. Nowdefine amap f2t'>R-*C(orR ) by
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\/-iOi) n(jw{)

n(jwi)

Oiy-^oo

d(Jw{)

= detM2/(wlf...,W2/) (2-2-2.3)

fy is analytic and not identicallyzero by the first step of proof. This implies that the set

V2i=f2i-l(fl)

is measure zero from lemma 2-1.11 and then the conclusion follows.

Theorem 2-2-2.2 (Persistency of Excitation of W(t))

Consider the plant G(s) in (2-2-2.1) and the identifier (2-2-2.2). Then for almost any 2/i

spectral lines whichinput u(t) has, the resultant regressor W{t) is persistently exciting. Morepre

cisely, there exist a nowhere dense, measure zero subset V in R2", such that if input u(t) has In

spectral lines at wit /=l,...,2/i and (wlf... ,w2n)^R2H - V, the resultant regressor W(t) is per

sistently exciting.

Proof: Follows from lemmas 2-1.3 and 2-2-2.1.

Remarks:

(1) The theorem 2-2-2.2 is very useful since the persistency of excitation condition of Wit) is

almost satisfied if input u(t) has 2n spectral lines which does not depend on the order and

the "bigness" of the unmodeled part.

(2) We conjecture that the set V is a union of finite points and finite smooth manifolds

{(w1#... ,w2rt)e/?2" I w,=wy foTsome i*j]

We now in a position to analyze the convergence of the parameter estimate. Three cases

will be discussed seperately where the input has exactly 2n, less than 2n and more than 2n spec

tral lines.

<Jw7i)l~xn(jw2i)

nijwy)
{jwy^dQwy)

d(JW2l)
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f 2-2-3 Tuned Model (Input u(t) Has Exactly 2n Spectral Lines)

In this section, we discuss the casewhere inputhas exactly 2n spectral lines. First we give

the following lemma.

Lemma 2-2-3.1

Suppose input u(t) has 2n spectral lines at (w i,...W2«)ert *" - V(this is almost true since V

is measure zero). Then there exist two unique polynomials

yis)=yisH'l+...+yn

C

L

and

p(s)=5B+p1sn-I+...+ P,l

such that

n(J\Vi) P(jWi) = d(jWi)y(jwi) /=l,...,2/i

If

P(M)*0, forz=l 2n (2-2-3.1)

then

G(M) = (ST(jWi) i=l 2n

where

n

Moreover if input isofthe form u(f)=X5iSinw,r, all coefficients Y; and p; are real.
i=i

Proof: Thehypothesis implies that the matrix Af^ defined in equation (2-2-2.3) is nonsingular at

(w lf... ,W2n). Consequently, there is a unique solution (Pi,...,p„, -Yi,... ,-yn) for the fol

lowing equation

(Pi Pn,-Yi,....-yJM2n(wi,...,w2„) = (-^w1)B«0'vvi),...,H>2«)n'»(M2»))
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i.e.

n(s)$(s) = d(s)T(s) , S=jWlt...,jW2n

where

^) =YiJn"1+...+Y«

p(5) =5B+pl^-1+...+ pB

If u{t) = Y&iSinwit, i.e. «(r) hasspectral lines at±w,- (z=l,...,/i), then
i=l

(Pi, • • • .P«.-Yi> • •• .-Y«)= (Pi» • • • »P«-Yi» • • • .-T»)

Here - denotes the complex conjugate.This completesthe proof.

Remarks:

(1) Nothing has been said about the stability of GT(s). In fact, GT(s) could be unstable,

depending on the frequencies wt chosen.

n

(2) If we assume the stability of GT{s\ then it is clear under the input K(f)=£5,sinw,f the
i=i

outputyT(t) of Gt(s) equals to the plant outputy(t) up to an exponentially decaying term

due to initial conditions. The following lemma tells us thatundersometechnical conditions

this fact is also true even though Gj(s) is unstable.

Lemma 2-2-3.2

A A

Consider a strictly proper, nth order transfer function Gt(s). Suppose Gt(s) has no pole

on the Jw axis. Then for input of the form u(t)=sinwtt there exists some initial condition /T(0)

for Gt(s), such that the outputyT(t) of Gt(s) is puresinusoid with the same frequency w as the

input. More precisely,

yT(t) = Jm(GT(Jw)eJwt) fora// t (2-2-3.2)

where Im denotes the imaginary part of a complex number.

Before giving the proof, we need the following fact
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Fact 2-2-33

2^,2r\-lIf a matrix A has no eigenvalues on the jw axis, then (Az+wZI) l exists. Moreover

(sI-AT1 ^-T =(5/-Ar1W(W2/+A2r1-A(W2/+A2)-1 ^r-r-{w2I+A2Tx ^-r

Proof: See [55].

Proof of lemma 2-2-3.2: Let (A, b, c) be a minimal realization of Gj(s), the Laplace transform

of output yT(t) under input u (t)=sinwt is

jMM=c (si-a r1 /T(Q)+c &/-a r1 ^-r1!

where 7j(0) is the initial condition. From the fact 2-2-3.3, it follows that

yT(s) = c(sI-A TlIT(Q) + c(sI-AT1 w(w2I+A 2)'lb

-cA(w2I+A2Tx b-JZ-r-c{w2I+A2Tlb -^
s*+w* s*+w*

Choose 7T(0) = -w (w 2I+A 2)~lb, we obtain

yr(0 = -cA(w2+A2)~lb sinwt -c(yv2I+A2)~lb coswt

Thus the output is pure sinusoid, the equation (2-2-3.2) can be found in Desoer and Kuh

[16,pg280].

Definition: 2-2-3.4

(Gt(s)Jt(O)) is called a tuned model of G(s) at frequencies (±w lt... ,±wn), if under the

n

input w(r)=25/sinw<r, theoutputyT(t) of Gj(s) with initial condition IT(0) equals to theoutput
1=1

y (t) of G (j ) up to an exponentially decaying term.

Similar to the definition of the regressor W(s) for the identifier in Fig. 2-2-1.1, we define
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It is easy to verify that underinput u(r)=2)£,*simv;r, the output of the tuned model may be writ-
i=i

ten as

yT(t)=QTTWT(.t)+AyT(t)

for 6r=(^i-Pi. •••A«-p«, Yi» •••.Y«)r efl2* and some exponentially decaying term AyT(t)

due to the initial condition of the filter tt-t- Thus we can relate W(t) to WT(t) by
X(s)

W(t)=WT(t)+AW(t)

where AW(t) goes to zero exponentially because of y (ty^yrO) up to an exponentially decaying

term.

Now under the assumption of existence of a tuned model, let us reconsider the parameter

update law (2-2-2.2)

&=-W(yf-y)

= -W(yi-yT+yT-y)

=-W(WT§-WTTQT)-W (y-r-y)

=-WWT&-QT)-W(QTTAW+yT-y)

= -WWT($-QT)+Ae

where Ae indicates an exponentially decaying term. By defining

$r=4-4T (2-2-3.3)

We have

(j)T= -WWT$T+ Ae (2-2-3.4)

This procedure can be seen clearly as in figure 2-2-3.1.
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Plant

dentifier

Tuned model

GT(s)

Fig.2-2-3.1

+ yi"y

Noticed that in the Fig.2-2-3.1, the tuned model is pure fictitious. Consequently, no robust

ness and sensitivity problems exist even though the tuned model is unstable. But by doing so, we

relate the parameter estimate to the tuned model From equation (2-2-3.4), we see that the

identified model (parameter estimate) converges globally and exponentially to the tuned model.

In summary, we have

Theorem 2-2-3JJ(Convergence of The Identifier)

Consider the plant G(s) in (2-2-2.1) and the identifier (2-2-2.2) with input

u(t)= 2§ismwi*» Suppose W(t) is persistently exciting and the tuned model exists. Then the
i=i :

identified nominal model (esdmation of the nominal model GdLs)) converges globally and
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exponentially to an unique tuned model GT(s), which depends on the input frequencies, such

that

6(s) = GT(s) s =±jwx ±jwn

Proof: Follows from the equation (2-2-3.4).

Remark:

The theorem 2-2-3.5 guarantees that if input is of the form u(t)=^iSmwit satisfying
i=i

some technical conditions, the identified nominal model will converge to the tuned model.

However nothing has been said about how close between the nominal model Go(s) which is

tobe identified and thetuned model GT(s) which we actually get In fact, theymaybequite

different. This can be seen from the following example.

The plant we consider isa first order model with high frequency unmodeled part as follows

s+p S+op s+br

where 8represents the ratio ofmodeled pole and unmodeled pole. When input u(ty=^sinwt, for

any stable filter t-^t =—^—. the regressor W(t) is always persistently exciting for all w* 0.
J X(s) s+a

(Note that the theorem 2-2-2.2 only guarantees that for almost any frequency w, The regressor

W(t) is PE. However, in this example, any frequency w * 0 will produce apersistently exciting

regressor W(t)). Since the matrix

T *&>, khp 1
l<jw+p)(jw+$p), Hw+p)Hw+o»J

is nonsingular for all w^O and this implies W(t) always has two linearly independent spectral

lines for aUw^O. From the theorem 2-2-3.5, the identified nominal model will converge to the

tuned model such that
s+pT

k dp _ kT
jw+p yw+op jw+pr
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By solving this equation, we have

kT(w)=k
6>1

/?r(w) =
6>z-i2_w2

P(5+1)

We see that if the input frequency w > 81/2p, the tuned model is unstable (even G(s) is

stable). In fact, identified pole pj could be any number in the interval (-»,p-«—r) depending on
o+l

the input frequency w chosen. Fig. 2-2-3.2 and Fig. 2-2-3.3 show the simulation results where

Jfc=p=l, 8=10 with input u(t) = 10sint and u(r)= I0sin5t respectively. In order to get a good

estimation of G 0(5), the input frequency w must be in the low frequency range which will be dis

cussed in later sections.

15-i Kit)

(10.10)

10.

5.

0.

-5.

-10.

(-10.-10)

-15.
Pit)

-15. -7.5 °* Fig. 2-2-3.2 7'5 15

u(t)=lOsint, (k(t\p(t)) -» (ir(l),MD) =(^-, -^-)
.l-(*(0),/f(0)) = (10,10), -2-(*(0),/?(0)) = (-10,-10)
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-10.

-15.

-15.

(-10.-10)
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(jo _£)
mi* lr

(10.10)

Pit)

7.5 15

Fig.2-2-3.3

u(t)=lOsinSt, tf(r ),/f(0) -> (*r(5).Pr(5)) =<-jp^)
-1- (* (0), 0(0)) = (10,10), -2- (* (0), /f (0)) = (-10, -10)
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r 2-2-4Lack of Persistencyof Excitation (Input u(t) Has Less Than 2n Spectral Lines)

In this case, the regressor W(t) is not persistently exciting. However, from lemma 2-2-2.1,

we see that if input u(t) has 2/ spectrallines at

(wi W21) eRX-Vu (2-2-4.1)

then W(t) has 2/ linearly independent spectral lines at these frequencies. By similar arguments

as in lemma 2-2-3.1, there exist two polynomials (not unique)

y(s)=ylsn-l + ...+ yH

p(^)=5"+p1^-1+...+ pfl

(

e

such that

*O,-)PO,0 = d(M)7(M) '=1 2/

If

p(/M,.)*0 i=l,...,2/ (2-2^.2)

then

TfCM)G(M0=̂ ^=Gr(M) i=l,...,2/ ,

further if w>2£_i=-w2*» i=l,...,/, then all Y/.p/'s are real numbers i.e. if input

/

«(0- YXi sinwtt (l<n) satisfying (2-2-4.1) and (2-2-4.2), there is a tuned model (not unique)
i=i

((jt(s), /j(0)) of G(s), such that the output yT(t) of GT(s) with initial condition /r(0) equals to

the output y(t) of plant G (s), up to an exponentially decaying term. Based on the above discus

sion, we have

Theorem 2-2-4.1

Consider the plant (2-2-2.1) and the identifier (2-2-2.2)

§=-WWT§ + Wy =-W(yi-y)

i

with input of the form u(t)= ^iSinwit, (l<n). Suppose the conditions (2-2-4.1) and (2-2-4.2)
i=i
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are satisfied, then

(1) 11 6(f) 11 <M for all t and some M < ~

(2) 6(t) ->0, ay t -» oo
A

Proof: By using same notations as in the previous section, for some tuned model (Gt(s), h(0)\

we may rewrite the parameter update law as

6=-W(y;-yr+yr-y)

=-W(WT§-WTTQT) - W(yT-y)

Since yr —>y exponentially, it follows that

6=-WWT(§-QT)+W(QTT AW +yT-y)

=-WWT(8-Sr)+Ae

where Ae and AW = W(t)-WT(t) are exponentially decaying terms. As is standard in the litera

ture, we will drop such terms in our analysis, since the presence of these terms does not change

any of the conclusions that follow. Let <J) = 8 - Oj, we have

<j)=-WWr(J) (2-2-4.3)

Define a Lyapunov function

the derivative of v along the solution of equation (2-2-4.3) becomes

v=-(WT$)2

This implies that I I$(011 is positive, nonincreasing function, so that

I\§(t)\ I= Il<j)(0+6Tl ! <M for some 0<M <~.Also note that (W T<J>) e L2 and dldt (WT$)

is bounded, hence WT§ —> 0 as t —»«>. Then it follows that

kt) =W)=-W(t)WT(t)$(t)^0, as t ->oo

Remarks:
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(1) The above theorem guarantees that if sinusoid input satisfies the technical conditions (2-2-

4.1) and (2-2-4.2), the parameter estimate is bounded and asymptotically slows down,

though the homogeneous part of parameter update equation (2-2-2.2) is not exponentially

stable. Results are similar to that of no unmodeled dynamics case.

(2) Ithas been shown inthe theorem that (§ isbounded and 6 -> 0 as t -> «>, but (§ may not con

verge at all. This fact has been proven even in the case of no unmodeled dynamics [11,27].

The exception is DC input

Proposition 2-2-4.2

Consider the plant G(s) in (2-2-2.1) and the identifier (2-2-2.2). Suppose the input u(t)^c

for some constant c. Then parameter estimate Q(t) -> Go as t -» «> for some 0oe R*".

Proof: The hypothesis implies that

W(t) -» W0 (a constant vector) exponentially

y(t)-*yo fa constant) exponentially

Consequently, the update law (2-2-2.2) becomes asymptotically

g=-WoW0re +Woy0

from linear algebra, there is an orthonormal matrix /, such that

r-lJ~lW0 =
0

0

where X£ 0 is the maximum eigenvalue ofWqWq . Define

0<rW*(O

we have

i(0 = -

xo
00

0"

*(0 +

i"
0

66 6. p.

X^yo
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From this equation, wemay conclude that §=J x converges to some point. This completes the

proof.

In general, input u(t) having less than 2n spectral lines is not recommend for the

identification problem, since the homogeneous part of the parameter update law is not exponen

tially stable. Hence parameter estimate might go to unbounded for even small enough distur

bance.
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c
2-2-5 Tuned Parameter (Input u(t) Has More Than 2n Spectral Lines)

In this case, if W(t) is persistently exciting (this is almost true by the theorem 2-2-2.2), the

homogeneous part of parameter update law is exponentially stable. We can conclude that the

parameter estimate 6(r) is bounded. Furthermore, we have

Proposition 2-2-5.1

Consider the parameter update law (2-2-2.2)

6(ty=-W(t)WT(t)6(t)+W(t)y(t)

Suppose input u(t) is periodic and the regressor W(t) is persistently exciting. Then 6(0 is

asymptotically periodic with same period as input u(t).

Proof: See appendix 2-2-7.

Though the above discussion guarantees that the parameter estimate is bounded and is

periodic if input u (t) is periodic, it is not much useful and does not provided much insight. We

f will use concept of tuned parameter to facilitate our analysis. First we consider an easy case

where input is sinusoid and periodic, i.e. we assume that

m ~

(A3) Input u(t) = ^^iSinwit, m > n and is periodic with period T.
;=i

(A4) There exists some WiJtj=l,...tn such that (w^.-Wj^.^w^.-w^e R2" - V, where

(w,-|f-w,v •.., w,„, -mO e (w! ,-w j, ..., wm, -wm).

Consider a nth order strictly proper transfer function

TKJ P(*) j«+p15'i-i +...+p„

If we are only interested in the steady-state, the output yr(0 of GT(5) and the output y(t) of

mplantG (s), under input u(t) = 2 ^sinw,-tt, become
i=i

yr(')=£lm^^ be*'
it! PO.)

L
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and

Note that even though Gj(s) is unstable, the expression for yj(t) is still true provided that it has

no poles onthe jw axis (see lemma 2-2-3.2). Define an output error term by

e(t)=yT(0-y(t)

By the nature of the gradient type parameter update law (2-2-2.2), we see that the aim of the

parameter update isto minimize e2 (f), i.e. to minimize

(,?i KM)5, lmd(jwt)^e )}

=(£Im( - )§,-g^ )
it} PCM) <*(M)

Obviously, when

•KM) «(M) . . 0? cn
I=!,...,#! (2-2-5.1)

P(M) d(M)

the minimum is achieved. In the case where input u(t) lias no more than 2n spectral lines, i.e.

m £ n, from the results of last two sections , solutions of equation (2-2-5.1) always exist and are

what we call timed models. Howeverif m > n, solution of (2-2-5.1) generally does not exist since

a nth order transfer function may notmatch 2m > 2n points in the complex plane. This implies

that in the case m > n, the tuned model defined in section 2-2-3 generally does not exist. In the

following, we define a tuned parameter instead, to facilitate ouranalysis.

Consider the identifier in Fig. 2-2-2.1. Suppose Q(t)T =(d(tf, b(t)T) is fixed, say 9(0 s 8,

then

yi(0,t) = WT(t)Q

Define output error e (9,f) by

e(e,o=y,(e,r)-y(0
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As discussed above, there may not exist such a 6 in the case of m >n that

e2(9,f) =0 for all t (2-2-5.2)

However, if there were a 9j such that equation (2-2-5.2) would be true, then it is obvious that

("+1)7*

J
nT

QT =argmin — J e2(Btt)dt for any n (2-2-5.3)

Notice that since we are only interested in the tail properties, i.e. we neglect all exponentially

decaying terms. Consequently W(t) and y(t) are periodic with period T and so does e2(Q, t).

This implies that the equation (2-2-5.3) is equivalent to

! t
9r =argmin ± Je2(9, t)dt (2-2-5.4)

e i o

Such 9r is called a tuned parameter. The formal definition, which valids for general cases, is as

follows:

Definition 2-2-5.2

Consider the plant G(s) (2-2-2.1) and the identifier in Fig.2-2-2.1. Then a constant vector

9j e R2" is called a tuned parameter ofG(s) (with input u(t)) if and only if Qj satisfies

9r=argmin lim — \e2(9,r) dt (2-2-5.5)

Theorem 2-2-5J

Consider the plant G(s) and the identifier in Fig.2-2-2.1. Suppose input u(t) satisfies the

conditions (A3) and (A4). Then there is an unique tuned parameter Qt for the plant G(^), and

9r=/r1H,rtHy (2-2-5.6)

where

Rw = lim —\W(t)WT(t) dt (2-2-5.7a)
S-*oo S Q

R„y =lim —JW(r)y (r) dt (2-2-5.7b)
*-x» J
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Note these limits exist since u(t) is periodic.

Proof: Since input is sinusoid and periodic, 9? is the tuned parameter if and only if it satisfies

equation (2-2-5.4). Notice that

This implies that

Let

where

and

=/»(*)*(*)

2«2(e,r)=Cy1(9,r)-y(r)>

=(£ Im^/iCM)--^^)^ *yw")
i=:l «(M)

erAo^)-4^=z^M)=P^w'>eya(e,H'0a(M)

p(9,w,)=lz(9,M)

<x(9fwl-) = fl«g z(9,M)

By the orthogonality of sinusoid functions, we have

rrl

J«2(9, t) dt =J(J P(9, w,-) £• sui(w,-r +o(9, w,))) dr
o o /=i

J
0i=l

=jZ (P(9, w£) 5,- Jw (Wit +a(9, w, )))2 dr

z i»i
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= r((z(9,/w1),...,z(9,/wm))

lil
2 0 \*\B.jwd
0 w ^ .

. 0 #

0 £ 2 **(0..AO
~2~

From the definition of z (9, yw,), it follows that

- n (jw i) n (jwm)
(z(Q,jw 0 .r(9, >„)) =(9r(A (jw 0.....A(AO) - (-^T -^TrT) )

Denote the above equation, for simplicity, as

Z=QTH-Y

t 2

and let 2 = diag (-T-, •). we obtain

1 r±je2(Q,t)dt=ZQZ*

^(Ml) ^Orn)

=(9rH-Y)Q (QTH-Y)"

The tuned parameter97 is defined to be a value such that the above equation achieves minimum.

This is a typical least-square problem, it has an unique solution

QT = (Re H Q Hmyl (Re H Q Y*)

Where Re denotes the real parts. Note that the assupmtion (A4) and the theorem 2-2-2.2 guaran

tee that (Re (H Q H*))~l exist. This completes the existence and uniqueness. Now by calcula

tion, we have

e 2

Re//Gff* =£A(M)A'(M)4r
1=1 z

On the other hand, recall the definition of autocovariance Rw (2-2-5.6), we have

ReH QH*=RW

Similarly

Re// Q K*=/?Hor
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i.e.

QT =(Re HQH*Tl(Re HQ Ym) =Rw-lR„y

This completes the proof.

The theorem above holds for the sinusoid inputs only. However it is not difficult to show

that the conclusion holds for general cases as stated in the following theorem.

Theorem 2-2-5.4

Consider the plant (j(s) and the identifier in Fig.2-2-2.1. Suppose input u(t) is stationary

and has more than 2n spectral lines such that W(t) is persistently exciting. Then there is an unique

tuned parameter QT and

9r=#w~ &Wy

with Rw and RWy defined in (2-2-5.7).

Remarks:

(1) The tuned parameter is the value which minimize the mean squared power of the output

error.

(2) The tuned parametermay also be interpreted as follows: Consider the parameterupdate law

(2-2-2.2) with input u(t) satisfying assumption (A4)

6=-.WWT6 + Wy

=-WWT (6 - 9T) +(~WWT BT +Wy) (2-2-5.8)

Defining $ = 9 - 97, it follows

<j> =-WWT <t> +(-WWT QT + Wy ) (2-2-5.9)

Suppose 97 be the tuned parameter, then from the definition (2-2-5.2) of 97,

" 1 Tlim ± f (~WWT 9T +Wy) dt =0 (2-2-5.10)
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We now see that the tuned parameter is a value such that if we consider the error equation

(2-2-5.9), the time average of the driving term is zero. In this sense, we may say that error$(t) is

around the origin or that the parameterestimate 9(0 is in the neighborhood of the tuned parame

ter 97. This fact may be seen clearer when the averaging technique is applied.

Theorem 2-2-55

Consider the plant d(s) (2-2-2.1) and the identifier with small gain e>0

6(t)=-e W(t)(WT(t)kO - y (0)

Suppose input u(t) is stationary and has m >2n spectral lines so that W(t) is PE. Then the

parameter estimate 6(t) satisfies

lim II 0(0-9r II £rt(e)
t-*>»

for some class K function r\(e) (see [52]).

Proof: See [41].

Remark:

The theorem guarantees that if the update gain is small then the parameter estimate con

verges to a ball centered at the tuned parameter QT with radius ri(e).
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2-2-6 Concluding Remarks

We have investigate the convergence of a reduced order identifier. The results are very gen

eral since there is almost no assumptions on the unmodeled part If the unmodeled dynamics is

small enough in the sense

\G(£jw)-G(jw)\ £8 forany w e (-<»,<»)

Then from the results of chapter 3-4, we will see that the parameter estimate converges to a ball

centered at true value (not tuned value, true value means true coefficients of the nominal model

Gq(s) , or CertaintyEquivalence) with radiusr\(b) which is linearly in 8.

So far, we only analyze the projection type update law, but the techniques could be easily

extend to the Least-squares type update law.

One related issue to identification is that what is the purpose for identifying the nominal

model Gq(s). From the results which we have presented, it can be seen that the estimated model

might not be close to the nominal model GoCO even input contains resonable low frequency con

tents and the regressor is persistently exciting. However the estimated model could be a better

approximation of the plant d(s) at these frequencies than the nominal model Gq(s) does. Let us

see the following example:

Plant: G(s) = —; —-
s+l s+10

1
Nominal model: Gq(s) = —r

s+l

1 087
Estimated model (input frequency w=2): '

S"T\)»sJ I
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0.125, Im

o.
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-0.25
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-0.5
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-0.625

0. 0.4 0.8 1.2

Fig. 2-2-6.1

-1-, nominal model

-2-, estimated model

-3-, plant

Fig.2-2-6.1 shows the Nyquist plots of these three transfer functions. We see that estimated

model is closer to the plant than the nominal model does. Thus if the control is concerned,

the estimated model could be a better model than the nominal model GqC?) does for this

purpose. We leave it as a further research problem.
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2-2-7 Appendix to Chapter 2.2

Proof ofThe Proposition 2-2-5.1

We prove the general case.Consider alinearperiodic system

x=A(t)x+f(t)

where x e R n, A (t+T) =A (0./ (t+T) =f(t). Suppose A (0 is asymptotically stable, then x(t)

is asymptotically periodicwith periodT for any bounded initial conditions.

Proof: By 2 steps.

Step 1. If the initial condition of above equation is

T

jc(0) =(/-O(r,0)r1JO(r,t)/(T)rfx
o

Then x(t) is periodic with period T. Where 0(f, x) is the state tiiansition matrix of A (t). Note

that A(t) is asymptotically stable, sothat (/ - 0(7/,0) )_1 exists. Now it suffices to show that

x(t+T)=x(t) for all t

We first show that x (T)=x (0), this is because

T

x(T) =Q(TfO)x(0) +JQ(T,z)f(T;)dx
o

T

=(O(7\0)(7-0(7,0)r1 +/ )JO(7\x)/(x)dz
0

T

=(/-o(r,o)r1Jo(r,x)/(x)rfx
0

= *(0)

It follows that

t+T

i
T

x(t+T) =<t>(t+T,T)x(T)+ ) 0(r+7,x)/(x)rfx

Lets =x-7\wehave
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( jc(r+r)=o(r,0)x(0)+Jo(f+r^+r)/(j+7)^

/

=O(r,0)x(0) +JO(f,5)/(s)<&
0

=*(0

Step 2. For any bounded initial condition x (0), we have

r

T

^(r) =O(r,0)(^(0)-(/-O(7,0))-,JO(7,x)/(x)dx)
o

T t

+O(r,0) (7-0(7,0) rlJO(7,x)/(x)dx +JO(f,x)/(x)rfx
0 0

Note that the first term on the right hand side goes to zero asymptotically and the rest terms on

the right hand side give a periodic solution. This completes the proof.
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2-3 Global Stability Proofs for Indirect Adaptive Control Schemes

2-3-1 Problem Statement

A popular technique of adaptive control is the so-called indirect technique: a non-adaptive

controller is designed parametrically i.e. the controller parameters are written as a function of

plant parameters. This scheme is made adaptive by replacing the plant parameters in the design

calculation by their estimates at time t, obtained from an on-line identifier.Reasons for the popu

larity of indirect adaptive controllers stem from the considerable flexibility in choice of both the

controller and identifier. Global stability of indirect schemes have been shown in the discrete time

case (Goodwin&Sin [25], Anderson&Johnstone [3] Polak,Salcudean&Mayne [45]) but less so in

the continuous time context A recent paper ofElliot et al [19] uses random sampling to establish

convergence results in the continuous time case. Other papers have assumed that the plant param

eters lie in a convex set in which no unstable pole-zero cancellations occur ( Kreisselmeier

[35,36]).

In this section, we discuss a general, indirect adaptive control scheme for SISO continuous

time systems using frequency analysis techniques. We show that when the reference input to the

closed loop system is sufficiently rich, then the regressor vector of the identifier is persistently

exciting so as to cause parameter convergence. In turn the controller is updated only when ade

quate information has been obtained for a 4 meaningful* update. Thus, roughly speaking, the

adaptivesystem consists of a fast parameteridentification loop and a slow controllerupdate loop.

A sufficient richness condition on the exogenous reference input is used to give an insightful glo

bal stability proof with no restrictions on the parameter estimate lying in a convex set or lack of

unstable pole-zero cancellations in the identifier.

In section 2-3-4, we show the specialization of our general scheme to a pole placement type

adaptive controller.

The second contribution of this section is the application of our techniques to the adaptive

stabilization of a SISO system using the factorization approach (factorization over the ring of
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stable, proper rational functions) that has proven to be a useful and elegant tool (see [17], [20])

for the study of robust multivariable design. Since it is known [51] that when the stable coprime

factorization approach is used, a plant with unstable unmodeled dynamics is really no different

from a plant with stable unmodeled dynamics as far as the effect of the unmodeled dynamics on

the robustness of the system is concemed. We feel that our techniques lay the groundwork for

obtaining an adaptive version of 77^ optimal controller design by the factorization approach. In

this context our work has contact with a recent paperof Ma & Vidyasagar [40]. In this section,

we only discuss the SISO continuous time case, the extension to the discrete time case is trivial.

We feel that our results could be extended to MIMO cases as well, if a good MIMO identifier

structure is obtained.

Our major concern in this section is the proof of stability of the scheme with no assump

tions of unmodelled dynamics, output disturbances in the plant However, we note that the kind

of stability we prove is exponential with its attendant margins of tolerance to both unmodelled

dynamics and output disturbances as has been well documented in the literatures. Other tech

niques such as the use of a deadzone in the adaptation law may also be used as has been sug

gested in the context of discrete time adaptive control [26].
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2-3-2 General Structure ofThe Indirect Adaptive Controller

The basic structure of the adaptive controller is as shown in Fig.2-3-2.1

r +

Controller

Parameter

Calculations

O—> c

1
Identifier

U

Fig. 2-3-2.1

The unknown plant is assumed to be of the form

Po(s)=np(s)/dp(s)=-
a1 '̂l""1+...+an

(2-3-2.1)

where P qis a strictly proper transfer function with np(s) and dp(s) coprime. Wewillassume that

theorder n of theplant is known and that the a, and P; areunknown. Note thatsome of thea,- 's

may be zero so that (2-3-2.1) can denote a plant of relative degree not necessarily 1. The proper

mth order compensator is defined by

d(s)=ne(s)/de(s>*
a0sm+...+am

bosm+...+bm
(2-3-2.2)

The adaptive scheme proceeds as follows: the identifier gets an estimate of the plant param

eters. The compensator design (pole placement, model reference,...) is performed assuming that

the plant parameter estimate corresponds to the true parameter value (Certainty Equivalence). We
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f will assume that there exists a unique choice of compensator C(s) of the form (2-3-2.2) for the

plant estimate P0 . The hope is that as f-x» the identifier identifies the plant correctly and that

the compensator converges asymptotically to the desired one. In this section, we discuss indirect

adaptive control abstractly without restricting attention to any specific control scheme-pole

placement, model reference, etc. In later sections, we specialize to a pole-placement type con

troller and a controller derived using the factorization approach.

Basically the most important element of the adaptive loop is the convergence of the

identifier. We design an identifier which uses the input and output of the not necessarily stable

plant as follows: the equation (2-3-2.1) relating the transform of the input and output of the plant

can be written (with initial condition terms unspecified) as

sny(ty=Q*Tv(t) (2-3-2.3)

where s denotes the differentiator and

9*T=(-p1,...-pn,a1 art)

f vT(tMsn-ly(t)....,y(t)jn-lu(t) u(t))

Since the signal v(t) involves differentiation of the input and output of the plant, we filter

both side of (2-3-2.3) by the transfer function V(s+a.)n , co 0, to get

-y(t)=Q*TW(t) (2-3-2.4)

L

(s+a)'

where

Note that the regressor W(t) may be obtained by proper, stable filtering of the input and outputof

the plant. The equation error for identification of 0* is developed as follows: let (5(0 be the esti

mate of the parameter 8* attimet. Then, define theequation error to be

e(t)=Q(t)TW(ty/ S\ny(t) (2-3-2.5)
(s+a)n
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If 4>(r) denotes the parameter error ((§(r)-0*), then it follows that, up to exponentially

decaying terms, we have

e(t)=f(tW(t) (2-3-2.6)

As is standard in the literature, we will in future drop the exponentially decaying terms. The

interested readermay wishto confirm that the presence of suchterms doesnot change anyof the

proofs (or conclusions) that follow.

The identification technique usedis of theleast squares type with resetting, givenby

kt)4(ty=-P (t)W(t)e (t) (2-3-2.7a)

P(t)=-P(t)W(t)WT(t)P(t) 7>(rl>p7>0 (2-3-2.7D)

where {*,- }= (0,fltt2 •••} will be specified shordy. It is easyto verify (using the Lyapunov func

tion <|>r7>~1<|> ) that the parameter error <J> is bounded even though y(t) may not be and further

<K* )-»0 asymptotically, if W(t) is persistently exciting, i.e. there exist a,5 > 0 such that

r+8

jW(x)WT(x)dT*aI for all t
t

It has been shownin [43] that W is persistently excitingif u is rich enoughi.e. u has no less

than 2n spectrallines (assuming that u(t) is stationary).

The design of the compensator is based on the plant parameter estimate namely 6(t). It

would appear to be intuitive that if as f-*», 8(r)-»0* that the time varying compensator will

converge to the truecompensator and thattheclosed loopsystem willbe asymptotically stable. In

this section, we do not deal with a specific compensator design; however the system of Fig.2-3-

2-1 can be understood to be a time varying linear system which is asymptotically time invariant

and stable. Such systems are themselves stable; more precisely, using standard Lyapunov func

tion arguments, we have

Lemma 2-3-2.1

Consider a time varying system

x=(A+AA(t))x (2-3-2.8)
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where A is a constantmatrix andAA (t) is time varying. Assume that 11 AA (•) 11 „ is bounded and

converges to zero as *-*». Suppose that all eigenvalues of A lie in the open left half plane, then

(2-3-2.8) is asymptotically stable. Furthermore , there exist TMX>0 such that the state transi

tion matrix <D(r ,x) of the equation (2-3-2.8) satisfies

I l<E>(r,x)l l:£A/exp(-X(f-^)) for all t>x>T

Proof: See appendix 2-3-7.
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2-3-3Update Law and The Stability Proof

Though the update law (2-3-2.7a) and (2-3-2.7b) for the identifier is easily shown to be

asymptotically convergent when W is persistently exciting, it is of practical importance to limit

theupdate of the controller to instants when sufficiently new information has been obtained. The

amount of information is measured through the information matrix'

J W(x)WT(x)dx
t

Thus given y> 0 , we choose a sequence ofupdate times {*,}, by tff=0 and rl+1=rx+6,-, where 5;

satisfies

/<+A

tin8,:= argmin j WWTdx>yI (2-3-3.1)

The compensator C is held constant between r,- and ti+l. Further, we assume that the compensa

torparameters are continuous functions of0*.

Remark:

(1) The idea of updating the controller only when new data becomes available was first pro

posed by [45] for the discrete time case. A similar idea was proposed by Elliot, et al [19],

butthey usea sequence of independent random variables to generate the update sequence.

(2) The update times are based ona monitoring ofthe excitation contained inthe regressor W.

We may state the following lemma relating the richness of the reference signal r(t) in the

schemeof Fig.2-3-2-1 to the convergence of the identifier.

Lemma 2-3-3.1 (Convergence ofThe Identifier)

Consider the system ofFig. 2-3-2.1 with identifier described inequation (2-3-2.7) and reset

ting times {r,} given by (2-3-3.1). Further assume that there is a unique choice ofcontroller for

each estimate of the plant and that the controller is updated only at {r; }. If the input r(t) is sta

tionary and has no less than 3n+m spectral lines, then the identifier parameter errorconverges to
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zero exponentially as r-*». More precisely, there exists 0 <p <1 such that

ll<Kfl)M£pl'M<KO)M (2-3-3.2)

and {5,=fl+i-r,} is a bounded sequence.

Proof: By lemma A3 (in the Appendix 2-3-7), it is enough to show that {5;} is a bounded

sequence. Suppose, for the sake of contradiction that [8t-} isan unbounded sequence, then one of

the two following scenarios occurs;

(i) Thereexist i < *> suchthat8,=«», or

(ii) {8/} -»«> as i -*».

Consider the scenario (i) first If (i) happens, then the system becomes time invariant after

time f,-, since the controller is notupdated. Consequently one obtains the transfer function (not

necessarily stable) from r to u to be

- ne(ti)dR «,,«
77,0-= ^ =n/d (2-3-3.3)

npnc(U>+dpdc(ti)

v where dc(ti) and ne(u) are the denominator and numerator of controller at time f; respectively.

Using (2-3-3.3), we may write thetransfer function from r to W to be

""(I)=^F^"~,',' rt'^' +f
Since the degree of n is (n+m), no more than (n+m) of the spectral lines of the input can

correspond to zeros of the numerator polynomial. Even assuming that (n+m) of the spectral lines

do, in fact, coincide with the zeros of n, we can see that under the assumption of np , dp being

coprime, W is persistently exciting. The proof of this for the stable case was given by Boyd and

Sastry [11,12]. For the unstable case, the idea is as follows; we have aminimal state space reali

zation of H„r(s) as

x=Ax+br

W=cx

where AeRkxk (k<3n+m). Then, the persistency of excitation of x(t) follows from the
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hypothesis on the input r(t) and the fact that (A,b) is controllable (see, Nordstrom and Sastry

[43]). Further, notice that, from the coprimeness of dp and np, the rows of H^s) are linearly

independent. Now, since

^(s^cW-A^b

we see that c has full row rank i.e.

cc TZaI for some a >0

Thus,

jWWTdt=cjxxTcTdt ZyccT >yoJ

where

jxxTdt>Yl

This implies that W(t) is persistently exciting. This fact however contradicts the assumption that

Now consider scenario (ii). First notice that when the plant parameters are known, then the

closed loop system is time invariantand stable, so that we may write the following equation relat

ing input r(t) to signalW0(t) (W0(t) means W(t) in the case when 0(r)=O).

i(pAzo+6r

W(f=czQ

where A is a constant stable matrix. For the adaptive control situation, the plant parameters are

unknown, i.e. parameter error §(t)*0. However, we may write the following equation relating

r(t)toW(t)

z(t)=(A+AA(t))z(t)+(b+Ab(t))r(t)

W=(c+Ac(t))z(t)

where AA (t),Ac (t) and Ab (t) are continuous functions of <j>(*) and AA(t) , Ab(t) and Ac (f )-* 0

as §(t)—>0. Now if scenario (ii) happens, we still have that (J)(r)-*0 as i-»«» from lemma A3 (in

the Appendix 2-3-7). It follows from lemma A1 (in the Appendix 2-3-7) that W&) andW(t) are
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arbitrarily close when t is large enough. Then the persistency of excitation of W(t) follows as a

consequence of the result of lemma A2 (in the Appendix 2-3-7) and the fact that W0(t) is per

sistently exciting. This, however, contradicts the assumption that 8,—*» as i-*o». This completes

the proof.

We are now in a position to prove the main theorem in this section.

Theorem 2-3-3.2 (Stability of The Closed Loop System)

Consider the system of Fig.2-3-2.1. Assume that the plant and compensator are described as

in lemma 2-3-3.1. Suppose that input r(t) is stationary and has no less than 3n+m spectral lines,

then the overall system is asymptotically time invariant and stable.

Proof: Follows from lemma 2-3-2.1 and lemma 2-3-3.1.
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2-3-4 Application to Pole Placement Type Adaptive Control

In this section, we consider an indirect, adaptive pole placement scheme. Pole placement is

easily described in thecontext of theFig.2-3-2.1. Given a plant P0 of the form np/dp as in (2-3-

2.1), find a (n-l)th order compensator C so that the closed loop poles lie at the zeros of a given

characteristic polynomial d*(s) of order (2n-l), i.e. find nc,dc\o satisfy

nenp+dedp=dm (2-3-4.1)

When the plant Pq is unknown, the 'adaptive* pole placement scheme is mechanised by

using the estimates np(t{) and dp(ti) of thenumerator and denominator polynomials respectively.

It is easy to verify (see lemma A4, in the Appendix 2-3-7) that if np(ti) and dp(ti) are coprime

then there exist nc(U) and de(ti) of the order n-1 such that

^Oi)isp(fiy¥de(tiyJp(fiy^dm (2-3-4.2)

The estimates for np(ti) and dp(ti) follow from the plant parameter estimates 0(f) of section 2-3-

2 (the estimates of the coefficients of the denominator followed by those of the numerator). In

analogy to the plant parameter vector 0*, we have the parameter vector of the compensator

0c=(&o...A-i^o fln-i) (2-3-4.3)

Recall from equation (2-3-2.2), with m=n-l, that the compensator is given by

. __ aosn"l+...+an^
bosn"l+...+bn^

Further, to guarantee that rip(ti) and dp(ti) are coprime at ti% we need to modify the

definition of the update times as follows:

r,+i=fl+8|. (2-3-4.4)

where 8,- is the smallestreal numbersatisfying

ti+St

t (0 \w(t)w7(t)dt*(I (2-3-4.5)
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and

(ii) tipfc+b'i) and dp(ti+Si) are coprime. (2-3-4.6)

More precisely (2-3-4.6) is verified by guaranteeingthat the smallest singular value of the Sylves

ter matrix (A. 11) (see appendix 2-3-7) measuring the extent of coprimeness exceeds a number

o>0.

Then, we have

Theorem 2-3-4.1 (Convergence of The Pole Placement Scheme)

Consider the adaptive pole placement law (2-3-4.2) applied to the system of (2-3-2.1), along

with the least squares identifier of (2-3-2.7) and the update sequence f,- defined by (2-3-4.4 & 2-

3-4.6). Now, if the input r(t) is stationary and has no less than 4n-l spectral lines. Then all sig

nals in the loop are bounded and the characteristic polynomial of the closed loop system tends to

d*(s). Moreover

11 ($c(f,)-0c 11 —> 0 exponentially

\^ Proof: The first halfof the theorem is a direct consequence of lemmas 2-3-2.1 and 2-3-3.2. For

the second half, note from (A.11) (in the Appendix 2-3-7) that

A(§(ti))6c(ti)=d. (2-3-4.7)

with d* the vector of coefficients of d*.

It is easy to see from (A.l 1) (in the Appendix 2-3-7) that there is an M !>0 such that

I IA (Q(ti)}-A (0*) I I £ M11 10(/t)-0* I I (2-3-4.8)

Now,

A(0*)0c=d. (2-3-4.9)

Subtracting (2-3-4.9) from (2-3-4.7) we get

-{A($fc)M (0*))<Sc(r,)=A (0*)(0>,-)-8c)

Using the estimate *

( II0C(O-0CI I£ I\A~l(Q')\ I IIA(0(r,))-A(e*)l I Il$cfc)l I
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Noting that 6c(ti) is bounded (see equation (2-3-4.6) and the remark following it),we get

I I0c('»)-8C 11 <>M2\ l6(f;)-0* 11 fox some M2>0 (2-3-4.10)

Since fife) converges to 0* exponentially, it follows that ficfe) -»0C exponentially.
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2-3-5 Adaptive Stabilization Using The Factorization Approach to Controller Design

First we briefly review the (non-adaptive version of) factorization approach to controller

design. Consider the linear time-invariant system shown in Fig. 2-3-5.1

Fig. 2-3-5.1

The plant T'oCs) is defined as in equation (2-3-2.1) and the compensator C(s) as in (2-3-

2.2). The equations relating e \ ,e2 to u {,u 2 are

«i

*2

1

1+PoC

1 -Po
C 1

"l
u2

(2-3-5.1)

The system (2-3-5.1) is BIBO stable if and only if each of the four elements in (2-3-5.1) is

stable, i.e. belongs to R the ring of proper, stable rational functions. The ring R is a more con

venient ring than the ring of polynomials for the study of robust control systems, since a plant

with unstable unmodeled dynamics is really no different from a plant with stable unmodeled

dynamics.. Thus, weassume that P0and 6 are factored coprimely inR (not uniquely!) as

Po(s)=dp-\s)np(s)
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-1/
CofeX-'dXfr) (2-3-5.2)

From (2-3-5.1) it follows that (for details see [51]) the system of Figure 2-3-5.1 is BIBO

stable if and only if (npnc+dpdcYle R, or equivalently npne+dpde is aunimodular element of

the ring R. Without loss of generality, then, we can state that a compensator stabilizes the system

ofFigure 2-3-5.1 if and only if

npnc+dpdc=l

Let (A, b, c) be a controllable canonical realization of P q i.e

Po(s>=c(sI-A)-lb

with

A=

0 1
0 0

b=
. . 1 0

-Pi-fc -ft. J |l.

c=(ai,...,a„)

lffTeRn and leRn are chosen so that A/=A-bf and A-lc=A[ are stable( such achoice

is possible by the minimality of the realization of (2-3-5.4) and (2-3-5.5)), then it is shown [,

pg.83] that all the solutions of (2-3-5.3) can be written in the form

np=c(sI-AiTlb (2-3-5.6)

dp=l-c(sI'AlTll (2-3-5.7)

dc=l+c (sl-AfTxl-q (s )c (sl-AfTxb (2-3-5.8)

nc=f (sI-AfTll+q (s )(1-/(sI-AfT}b) (2-3-5.9)

with q(s) an arbitrary element of R which is chosen to meet other performance criteria (for

instance, minimization of the disturbance to output map , obtaining the desired closed loop

transfer function, optimal desensitization to unmodeled dynamics, etc.).

(2-3-5.3)

(2-3-5.4)

(2-3-5.5)
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The optimal choice of q(s) depends on the plant parameters. However, such a choice of

q(s) may not be unique or depend continuously on plant parameters. This may give rise to

difficulties in applying the method discussed in section 2-3-2, since the design of the compensator

may not be unique as required by the assumptions of the scheme. We defer this to further investi

gation. However, if our only concern is the problem of adaptive stabilization of the unknown

plant, then any fixed q(s)e R will do. For simplicity, we fix q(s)=0 in what follows. Note this

implies that the compensator C(s) is of order n (see equations (2-3-5.8) & (2-3-5.9)).

We now discuss the adaptive version of factorization approach to controller design. The

objective is to design a compensator C adaptively, i.e. based on the estimate 0 of plant parame

ters, using the factorization approach, so that the closed loop system is asymptotically time

invariant and stable. In what follows, we assume that u2(t)^0.

The identifier and compensator update times fe} are defined as in (2-3-3.7) and (2-3-4.4 to

2-3-4.6) respectively. The first difficulty in choosing the compensator is the choice of /fe) and

/fe) at time tt (see equations (2-3-5.8) and (2-3-5.9)). From linear system theory, we know that

a controllable canonical realization of plant Pq(s ).

x=Ax+bu

y=cx

can be transformed through a linear change of coordinatea x=Mx to get the observable canonical

form of PQ(s).

x=MAM ~lx+Mbu -Ax+bu

with

A =

y=cM lx=cx

0 o-Pi" ai

1

6 !
b=

•

6 i-fc «„

(2-3-5.10)
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c=(0 0,1)

Then for (any) given Hurwitz polynomial

p(sy=sn+pisn~l+- ••+/>„

there exists a vector

such that the matrix

^i Wi P«HPi...

A-/c=

0 0-Pi
1 . .

0 1-Pn

is stable and has a characteristic polynomial p(s). Define

l=M~xT

(2-3-5.11)

..PJ

With this definition, it is easy to see that (A-lc) is stable and has characteristic polynomial

P(s).

Now the controller design procedure can be stated as follow:

(Stepl)

At time ti, the parameter estimate fife) generated by identifier is used to obtain the esti

mates A fe), b (ti), and c fe).

(Step2)

By calculation, we obtain Af-1fe) as described in (2-3-5.10). Define

/fe^feO^P i P„KPife) Mi)) (2-3-5.12)

with (p i,... ,pn) as defined in (2-3-5.11) and

KfW^tiJfOi) (2-3-5.13)

We now see that the matrices

A/fe)=*4feWfe)cfe)
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and

A/fe)=Afe^fe)/fe)

arc stable with characteristic polynomial p(s). Furthermore, /fe) and /fe) converge to some

constant vectors as i -*».

(Step3)

Choose acompensator C(tiy=nc(ti)de~l(ti) as follows

Wcfe^/feX^-A/feOr^fe) (2-3-5.14)

4fe)=l+c (tiXsI-AfMTHOi) (2-3-5.15)

This compensator can be easily implemented. Then, as expected, we have

Theorem 2-3-5.1 (Convergence of The Overall System)

Assume that the identifier and controller update described above are applied to the plant

Po(s) (2-3-2.1). Suppose that the input r(t) is stationary and has no less than 4n spectral lines.

Then, the closed loop system is asymptotically stable and all signals are bounded.
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2-3-6 Concluding remarks

This section has presented a proof of global stability for indirect adaptive control. In the

section, only two applications (pole placement and factorization approach) have been discussed,

however the results are applicable to several kinds of controller design methodologies. The key

assumption is a richness condition on the reference input. To our knowledge, this is the first

verification of the persistency of excitation of the regressor signal in the closed loop (which is

time varying) without the use of an artificial random samplingsignal (see [19]) for the continuous

time case. We show persistency of excitation without preassuming the boundedness of the sig

nals. Boundedness of all signals and the convergence of the compensator in turn follow from the

convergence of the identifier, which is a direct consequence of the persistencyof excitation of the

signal in the identification loop.

The scheme presented here offers a great deal of flexibility in the controller design and

allows for very general richness conditions on the reference input The results of this section are

easily extendable to the discrete time case.
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2-3-7 Appendix to Chapter 2.3

In this appendix, we prove some lemmas of use in the main body of the section.

Lemma Al

Consider the following linear systems

i(f=Azo+br (Al)

z=(A+AA (t))z+(b+Ab(t))r (A2)

with A stable and AA , Ab both bounded and converging to zero as r-*». Assume that the input

r(t) is bounded. Then given e > 0, there exists k > 0 (k is independent of the choice e) and a T(e)

such that

Wz(t)-zd(t)\\<Ek fovallt>T (A3)

Proof: From lemma 2.1, it follows that (A2) is asymptotically stable and that there exists T\ such

that the state transition matrix of (A2) satisfies

IIO(r,x)ll<A/exp-X(r"-x)

for some MX > 0 and for all t>x>Tx. Using this estimate it is easy to show that z(t) is bounded.

Defining the error e (t):=z (t)-z0(t) we see that

e=Ae+AAz+Abr

Using the facts that AA , Ab->0 as r-*»; that z,r are bounded and A is stable, it is easy to estab

lish (A3).

Lemma A2

Suppose that WQ(t)eRn is persistently exciting, i.e there exist S.cc > 0 such that

j+5

T jWQW0Tdt>ctJ for alls
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Then any signal WeR n satisfying

MW(t)-W0(t)\\<a/($)l/2

is also persistentlyexciting.

Proof: Can be found in [8].

Lemma A3

Consider the least squares identification algorithm described by (2-3-2.7) with resetting

sequence {0,r i,f 2..«}» that is

ty=-PWWT$ (A4)

and

P~l=WWT t*0jut2,... (A5)

P~l(ti+)=al r=0,r1,r2,... (A6)

If W is persistently exciting, that is

jWWTdt>yI foiall'ti (Al)
n

Then, there exists l>p >0 such that

ll<|>fe)ll<p'll<KO)U (A8)

Proof: Note that for t* {0,rlt...},

Thus

7>"1fe-)<|)fe)=7>-1fe_1+)(|)fe_1)

so that

<j>fe)=a7>(rr)4>fe-i)
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and we get

Octy
(A9)

In the last step we use equation (A7). Recursion on (A9) yields the conclusion (A8).

Lemma A4

Consider two coprime polynomials dp monicof order n and np oforder n-1.Then given an

arbitrary polynomial d* of order 2n-l, there exist unique polynomials nc and dc of order n-1 so

that

ncnp+dcdd=d (A10)

Proof: Is a standard result from algebra (see [25]). It is useful for the proof of theorem 2-3-4.1 to

note that if

dp=sn+^sn-l+...+pn

np=alstt-l+...+o^

nc=a \sn~l+...+an -

i.e.

dc=bxsn-x+...+bt

Then, thelinear equation relating the coefficients of nc, dc to those of d* is

a ° 0
Pi 1 0
P2 Pi 1

P« Pn-1
o P„ ft
0 o P

0 ° 0
«l 0

. oc2 ax

1 . .

Pi Ct„ O^.! tti
. 0 a„
• Oo -

o 6 o •• p„ o 6 On

°\ \*n
bi d>

m

I

bn
=

a2

an d2
m

(All)
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r A(0*)0c=A

Proof of the Lemma 2-3-2.1

Since A is stable, there is a positive definitematrix P such that

ATP +PA =-7

and by the hypothesis A A (t) -» 0 as t ->«», so that there is a T > 0 such that

7-AA7,(r)7>-7>AA(f)>j7 forall tZT

Now define a Lyapunov function by

v(x)=xT P x

then the derivativeof v(x) along the solutionof equation (2-3-2.8) becomes

v =-xT (I-AATP -PAAT)x

^:yxTx for all t>T

The conclusion follows easily from the Lyapunov theorem {52].
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Chapter 3 Use of Prior Information

3-1 Introduction

A great deal of effort has been devoted to establishing conditions for robust stability of

adaptive control algorithms. There are two sets of approaches to this issue: In the first approach,

an internal signal in the adaptive loop is made persistently exciting to guarantee exponential sta

bility of the scheme. Robusmess of the scheme follows as a consequence of the robusmess of

exponential stability. In the second approach, the adaptive algorithm is modified, using for

instance, a deadzone, forgetting factor or a and e modification in the adaptation law to prevent

the algorithm from responding to spurious signals such as those arising from noise and unmo

deled dynamics. Both approaches model the plant to be controlled as being completely unknown.

In this section, we discuss the identification and control of systems which are partially known (in

a sense that is made explicit shortly). It seems intuitively plusible that the identification and con

trol algorithms could be robust if this prior information could be incorporated into the adaptive

controller. It is of course clear that one could neglect the prior information embodied in the sys

tem and still be able to identify and/or control the system. However, usage of the particular prior

information results in the identification of a fewer number of unknown parameters and conse

quently faster convergence rate and better transient performance as we will see in this section.

With this as motivation, we discuss the problem of adaptive identification and control of 'par

tially known ' systems. Our work presented here was especially motivated by the recent Ph.D

thesis of Dasgupta [14].



-62-

3-2 Model for a Class of Systems with Prior Information

The system to be identified and/or controlled is a single input-single output linear time-

invariant system of the form

/

-*• = — (3-2.1)
do-ZVjdj

;=1

U *

where a,*, p/s are unknown constants, n,-, dj *s are known polynomials in z"x (discrete time) or

s (continuous time). The model (3-2.1) is general enough for several kinds of 'partially known*

systems. We give the following examples:

(1) Network functions of RLC circuits with some elements unknown. Consider the circuit of

Fig.3-2.1 with the resistor R unknown (drawn as a two port to exhibit the unknown resistance).
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Fig. 3-2.1

If the short circuit admittance matrix of the two port in Fig.3-2.1 is

7

7i
yu(s)y\2(s)
y2i(s)yi2(s)

v

Vi
(3-2.2)

that a simple calculation yields the admittance function to be

i(s) _ yn+/?(yiLy22-vi2y2i)
V(s) l+Ry22

which is of the form (3-2.1). Circuits with more than one unknown element can be drawn as mul-

tiports to show that the admittance function is of the form (3-2.1)

(2) Interconnection of several systems with unknown interconnection gains. Consider the simple

discrete time configuration of Fig.3-2.2 with the polynomials n(z) and d(z) known.
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"\._,. .
n(z-*) y

f
d(z")

K

Fig. 3-2.2

The closed loop transfer function is ofthe form (3-2.1) ^^ .
d(z}¥kn(z)

(3) Systems with some known poles and zeros. Consider the system of Fig.3-2.3, with unknown

plant but known actuatorand sensor dynamics
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Actuator Plant

Fig. 3-2.3

The overall transfer function may be written as

£tf,na/i,z"

Sensor

dads+Zbjdadsz'J

which is of the form (3-2.1) since na nsz~*, dadsz~* known.

(4) Qassical transfer function model, i.e. a plant of the form

a1^m~1+...+am

sH+fasn-x+...+pn

with m<n and a,-, p;- unknown, can bestated interms of the setup of (3-2.1) by choosing

nQ(s)=Otd^s)=sH

' ni(s)=sm~i i=l...m

dj(s)^sH-j ;=!...«
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In this section we will discuss both continuous and discrete time systems of the form of (3-

2.1). Our methods are extensions of those proposed by Goodwin et al in [24], Narendra et al in

[39] and Sastry in [48]. The methods of proof are identical. The novelty of our paperis the set up

in which the methods are applied.
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3-3 Discrete Time System Identification

3-3-1 Identifiability Condition

In this section ,we will discuss the identifiability condition for some discrete time 'partially

known' systems.

First consider a system described by

-h
no(z"1)+S^"«(z"1)

i=l
-1>n(z~l)y(z'l)__

M(z_1) d0(z-xyikidi(z-x) d^
i=i

(3-3-1.1)

where k{s are unknown parameters, dt(z~x) and ni(z"x) are known polynomials in the unit delay

operator z"1.

d(£z-x)nl+dolz-x+...+donz-n

di(z~x)=diXz-x+...+dinz-n /=1,.../ (3-3-1.2)

ni(z-xy=nilz-x+...+nimz-m 7=0,1.../ (3-3-1.3)

Assume n(z"1) and d(z~x) arecoprime. Notice that it is a special case of the form (3-2.1).

Definition 3-3-1.1

A system with some unknown parameters is said to be identifiable if and only if there exist

some inputs u(t) such that the unknown parameters can be uniquely determined based on input-

output measurements.

Theorem 3-3-1.2

The system (3-3-1.1) is identifiable if and only if the following matrix is full column rank.

^n d2\ dn

D=
din dzn d\n
nu n2\ nu

nlm n%m nim

(3-3-1.4)
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Proof: Rewrite (3-3-1.1) in the form

Define

'-lvu /%-h_». -f* -hi, /v-Iyu,'
/

[d0(z-*)y (z'lynQ(z -l)u(z-^ZWKOy (z"*)-«,•(O" (z'x)]
1=1

zoCz"1) =d^z'x)y(z-x)-n0(z-x)u (z'x)

and the regressor vector \j/(r) and parametervector 8 by

Vr(rXy (t-l\...y (t-n ),u (f-l),...a (t-m))

PHkiM-kt)

Then the system can be written as

zd(t)=y/(t)DQ

(3-3-1.5)

(3-3-1.6)

(3-3-1.7)

(3-3-1.8)

The necessity may be readily seen, since if D is not full column rank, then any

6e 8 +Null D will give sametransfer function. This situation corresponds intuitively to the case,

in which there exists a Q=(k i,...*/)r such that

Xkintz-^Xkidtz-1)^
;=i «=i

Now, we give the proof of sufficiency. By assumption, the sufficient richness of the input u(t)

implies the persistency of excitation of y(t) (see Bai and Sastry [9]) i.e. there exists cc>0 and

/?eZ+, such that

to+p-l

Z Y(OV (0*0/ forall t0
t=to

then following inequality is obtained,

VCo)

(

V(to+P-V

t r

Y(*d

D)

Yr('o+/>-l)

/ff+p-i

d=dt j y(t)yT(t)D >o
/=fc

(3-3-1.9)

By the linear algebra, we know that the equation (3-3-1.8) has an unique solution for 8. This
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completes the proof.

For thegeneral caseof thesystems described by equation (3-2.1)

/

«o(z"1) +Sa."«(z )
-i\ £ n(z'x)

-h

y(Q _
u(z'1) " rfo(2-i)-£M,(2-i) ^>

7=1

i-1
(3-3-1.10)

The corollary 3-3-1.3 follows.

Corollary 3-3-1-3

The system (3-3-1.10) is identifiable if and only if the following matrix is full column rank.

£>=

d\\ dk\ Q Q

du din 6 6
0 0 nu nn

0 0n \m nlm

Let us now digress a little bit and consider the another type of 'partially known* system of

the form

Then it follows that

y(z-1H*i4L+»-VrMz~1)di 'dt

where nt(z~x) and dt(z~x) are nonzero known coprime polynomials inthe unit delay operator z~l,

ni(z~x)=niiz-x+...+nimz-<

dt (z-x)=\+di xz -x+...+din z

and the k/s are unknown parameters.

Define

n-thi(z-x)=^-u(z'x) i=l,2.../
di

(3-3-1.11)

-l

(3-3-1.12)



so that

with

-70

hi(t)=-diihi(t'-iy...'-dinhi(t-n)+niiu(t-iyi:..+nimu(t-m) /=!.../

*i

ki

y(tMhi(t)t...Mt)) -nil*= \|/'(O08

VT(t)=(hi(t-l)...h x(t-n )...Jn(t-V..Mt-n),u(t-l)...u(t-m))

Z>=

11 0 0

-**!„ 6 0

6 6-4

0 0 -d

nn *2i n

*lm «2m nim

Theorem 3-3-1.4

(3-3-1.13)

(3-3-1.14)

The necessary condition for system (3-3-1.11) to be identifiable is that the matrix D defined

in (3-3-1.14) be of full column rank. The sufficient condition for the system (3-3-1.11) to be

identifiable is that

where

rank

d\0 o*1
Qd2 0*2

o o £%

=/ for all z

di=zn+diizn~x+...+dil

ni=niizm-x+...+nim

(3-3-1.15)

(3-3-1.16)

(3-3-1.17)
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Proof: The proof ofthe necessary condition is clear. Let us prove the sufficiency. A direct conse

quence of condition (3-3-1.15) is that sufficient richness of input u(t) implies the persistency of

excitation of the regressor vector y(r). Since

Y(f) = A y(t-l)+bu (t) (3-3-1.18)

where A andb are similarto those in [9], and the condition(3-3-1.15) guarantees the reachability

of the system (3-3-1.18). Then persistency of excitation of \y(r) follows (see Bai and Sastry [9]).

The rest of the proof is similar to the proof of theorem (3-3-1.2).

We now discuss multivariable extensions.Let us restrictourself to the system described by

-hyi(z-') Ml"3 kU~T~
"11 . du -hui(z~l)

-hyP(z'1) np\

HP1 a . V
V

-b"/(O

*i

where ny(z~x) and dy(z~x) are known nonzero polynomials

nij(z-x)=nij(l)z-x+...+nij(m)z-i

dij(z -x)=l+dij(l)z-x+...+dij(n )z

ki/s are unknown parameters. Define

and

hij(z'x)=^-Uj(z-x)

W(tMhn(t^)-hii(t-n)...hu(t^l)...hu(t-n)t

u i(r-l)..ji i(t-m)..Mt(t-l)...ut(t-m))

(3-3-1.19)

(3-3-1.20)

(3-3-1.21)

(3-3-1.22)

(3-3-1.23)
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-dnd) 0

-dn(n) 0

6 -*<D

6 -4/(*)

n,i(m) 0

6 ««b)

0 na(m)

The system (3-3-1.19) can be written as

yt(!>*ViT(!)Di# i=l.../>

with

v<kiijci2....kdy

(3-3-1.24)

(3-3-1.25)

Note that (3-3-1.25) is of the form of (3-3-1.13), so that we have the following theorem

resembling that of (3-3-1.4).

Theorem 3-3-13

The sufficient condition for the system (3-3-1.19) to be identifiable is that

rank

where

dn 9 o«ii° 0
0 di2 o 0 *i2 0

0 0 4,0 0 nu

=1 for all z and all i

dij=zn+dij(\)zn-x+...+dij(n)

/fiy=n//(l)zm-1+...+/i/y(m)

(3-3-1.26)

(3-3-1.27)

(3-3-1.28)
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£ Remarks; If dtj and jfy are coprime for all ij, then the condition (3-3-1.26) is satisfied.

(
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3-3-2 Algorithms and The Rate of Convergence

In this section we will present identification algorithms with their convergence analysis for

identifying partially known discrte time systemsof the form (3-2.1) that is

4t T ^^T (3-3-2.1)
u{t) dQ(z'xyhJdj(z'x) ^l>

Jml

where a,-, p/s are unknown parameters, d-r nt are known nth and mth order polynomials in the

unitdelay operator z"1,

d<£z'1) = 1+ doxz-^+donZ-" (3-3-2.2)

dj(z'x)=djlz-x+...+djnz-n ;=1,...^ (3-3-2.3)

ni(z~x)=niiz-x+...+nimz~m i=0,l,...,/ (3-3-2.4)

The identification problem is to identify py, a,- from input-output measurements of the sys

tem. Rearranging equation (3-3-2.1), we get

(do(z'l))y(thn0(z-x)u(t)

=hjdj(z~l)y (tytjfrnitx-^u (t) (3-3-2.5)
l l

Define the following signal vectors

zdLt^ddtz-^ybhnfc^Mt) (3-3-2.6)

wT(r-iH^i(z-1)y(O....A(z"1)y(0,n1(z-1)«(O...Mn/(z-1)W(r)) (3-3-2.7)

9iT<-doi,.:,-don>noi nj (3-3-2.8)

er=(Pi P*,ax a,) (3-3-2.9)

Vr(r-l)=0'(r-l),..,y(r-n),«(r-l) u(t-m)) (3-3-2.10)

Then it follows that
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C z&)=QTW(t-l)=QT DTy(t) (3-3-2.11)

Let 8(r) denote the parameter estimate at time t Then since ztft) and W(t-\) are obtain

able from the inputandoutput, we may construct the equation error

e(t)=6(t-l)W(t-iyzQ(t) (3-3-2.12)

with <j>(r>=9(r)—6o denoting the parametererror,we see that

e(tH>r(r-l)W(f-l) (3-3-2.13)

Equation (3-3-2.13) is linear in the parameter error, so that any one of a number of standard

techniques for parameter update (see [25]) may be used. We only discuss two of them, which

will be used in the next section.

A. The Projection Type Algorithm

The update law

r 6(t)=4(t-l)+ JK'-1) (z 0(, )_6(r_i)W(f-l)) (3-3-2.14)
f l+WT(t-l)W(t-l)

is referred to as projection type law. It is well known [25] that this algorithm has following pro

perties.

I I0(O-8OI l£l l$(r-l)-80l l£l l6(0)-8ol I forany t > 1 (3-3-2.15)

lim (»r('-^('-l»2 =0 (3-3-2.16)
/-*» l+WT(t-l)W(t-l)

As mentioned in [25] that nothing has been said about 8(f) necessarily converging to 8. In

fact, 6(t) may not converge at all. However the properties have been derived under very week

assumption and in many cases this is not a significant limitation and the performance of the algo

rithm, in a particular application, canbe inferred from theses properties. Further it is well known

[ ] that the projection type algorithm (3-3-2.14) has exponential convergence when W(t) is per

sistently exciting.

i

B. The Least Squares Type Algorithm

L



-76-

The least squares type algorithm is given by

6(t>6(t-l)+ P(t-*W(t-l) (z<ft)-WT(t-l)6(!-l)) (3-3-2.17a)
l+WT(t-l)P(t-2)W(t-l) J

P^l^PO^^^'1^7^1^^ J>(-1X*>0 (3-3-2.17b)
\+WT(t-\)P(t-2)W(t-\)

The least square algorithm generally has very fast initial convergence rate which is much

faster than the projection type algorithm. But the rate reduces dramatically after a few iteration.

One variant of this algorithm is that covariance P(t) is reset at various times. This is called the

least squares type algorithm with covariance resetting.

C. The Least Square Type Algorithm with Covariance Resetting

The least squares type algorithm with covariance resetting is given by

6(r)=$(r-l)+ P(!-2W«-l) (z<#)-WT(f-l)$(f-l)) (3-3-2.18a)
l+WT(r-l)P(r-2)W(r-l)

fp ( 2) P(t-2)W(t-\)WT(t-l)P (t-2)
~ \+WT(t-\)P(t-2)W(t-\) if f*0,f i,**-

*<'-»» |of ifr^.r^,... (3-3-2-18b>
in (3-3-2.18b) covariance resetting occurs at { 0,r i,r2,....}.

It is pointed out in [30], by a scalar example, that the convergence rate of the least squares

type algorithm (without covariance resetting) is 1/t, if W(t) is persistently exciting. We will

show, in the following theorem, that this is true for general cases.

Theorem 3-3-2.1

Forthe algorithm (3-3-2.17) subject to the conditionof persistencyof excitation, i.e.

axI< 2 W(i)WT(i)<a2I for all xeZ+ (3-3-2.19)
i=t+l

for some 7*eZ+ and some a{t a2 > 0.Then it follows that

j. 11+0+1)11' ^ 3
t2 llit>(0)ll2 tz
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for some Pi, fo > 0, and for all feT. Where <j>(f )=8(f)-8 denotes the parameter error.

Proof: For any tZTf there exists a keZ+ such that kT£t£(k+l)T and by assumption (3-3-2.19), it

follows that

with

This implies

T£w(/)Wr(/)^ai/^T7r^-/^a1/ (3-3-2.21)
t ~ N ' N ' t • l k+\ T 2

\^W(i)WT(i)<hk+\)c^I^^^I<2o^l (3-3-222)
f~ v' x' rv ' * A: T

a^/T, a2=a2/^ (3-3-2.23)

^•ai// ^W(/)Wr(/)^ 20^1 for all t£T (3-3-2.24)
2 l

From equation (3-3-2.17b), we have

and consequently

,-i/ - 1

t

»-l/,\_D-li

i=0

1 ..„_,„_,,y ra^</> -l(f )&"l(-l)+2a2tl (3-3-2.25)

Since P\-l) = — /. Then, it follows immediately

If we define

l....^.„._ 1^rai/^-Xr)^ +2ci2)f/ t <> T (3-3-2.26)
2 cci

Sa^-P-1^) (3-3-2.27)

It is obvious that S(t) is uniformly (tZT) bounded both below and above by

ct4=—cci, ot3=(——+2a2) respectively. On the other hand, the parameter error may be written as
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^(t)=P(t-i)p-l(t-2Mt-l)

by successively substituting, we have

^+l)^5-k^"k-l)«Q>^5-1(f>KQ) (3-3-2.28)

where P~x(-1)=—/ is the initial value of P~l. Since S~x(t) is bounded above and below, this
a

implies that the error <{>(* )-»0 at the rateof 1/t. More precisely, let M(t) be an orthonormal matrix

such that

MT(t)S(t)M(ty=A(t) (3-3-2.29)

where A(t) is a diagonal matrix. Then it follows from (3-3-2.28) that

11 <K'+D 112=-~7<K0)TM(r)A-2(fWT(t MO) (3-3-2.30)

Note that

^omin(A-kO)^WA-kO)^
CC3 04

and M(t) is orthonormal, the conclusion follows

4.ni 12 ...
•Z^-T (3-3-2.31)

t2~ ll<|)(0)ll2 t2

with

Pi=-rr • P2=~rT 0-3-2.32)
aza3z ctcilS

This completes the proof.

The theorem above shows that the convergence rate of the least square algorithm is 1/t after

a few iterations (T iterations), since the matrix P gets smaller and smaller. However, for the

algorithm with covariance matrix resetting (3-3-2.18), the rate of convergence is exponential as

stated in the following theorem.

Theorem 3-3-2.2
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f Consider theleast squares type algorithm with covariance resetting (3-3-2.18). Suppose that
«

W(t) is persistently exciting as in (3-3-2.19) and the resetting time is defined by ti=t^x+kT-l for

some fixed k. Then it follows that

C

1 ' I l<t>(rf)l I2 iJ ) <—llll <( i
(1+koa2')2 11(J)(0)112 (1+kaa,V(-.. m> *tiLm,.ig~-- "> (3-3-2.33)

Proof: Let P~x(ti~-1) and P"x(ti+-1) denote the covariance matrix right before and after reset

ting. Then similar to the proof of theorem 3-3-2.1, we have

P-liti--l>*-ltti-l+-l)* £ W(j)WT(j)

This implies that

and notice that

j=ti-i

/«-i

•/+
a

i /«-i

=-/+ £ W(j)WT(j) (3-3-2.34)
j*=ti-i

(—+kal')I<p-x(tr-l)<(—+ka2)I (3-3-2.35)
a a

^^ar-i^'k^^-i^Cfr-W'k^M*-!^.-!)

=-i-/>(rr-D<Da-i) (3-3-2.36)
a

Then, the parameter error is given by

Wti^P (rr-U -j-P (t C-1M0) (3-3-2.37)
a a

Combing equations (3-3-2.35) and (3-3-2.37), the conclusion follows

1 ' M<K'«)M2 li \ ^—llll <( i.
(1+* oa2')2 11«Q) 112 (1+k (mxy(.- • sa)^ltL,i^^L^> (3-3"2-38)

This completes the proof.
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3-4 Continuous Time System Identification

In this section, we will deal with continuous time 'partially known* systems. Unlike the

discrete time case, we will use rational functions instead of polynominals for our analysis. The

framework of rerpresenting transfer functions as the ratio of proper, stable rational functions, pro

posed for example by Desoer et al [17] and Francis & Vidyasagar [20] has proven useful in H°°

approach to linear control systems design and it has payoff in our context as well in studying the

effect ofunmodeled dynamics on the identification scheme.

We consider the problem of identifying a class of 'partially known* systems described by

equation (3-2.1) i.e.

G(s> -~ (3-4.1)

fo(syitajfj(s)

where theg/'s and/y*s areknown, proper, stable rational functions ins and the P,-, ay's are unk

nown, real parameters.

The identification problem is to identify pj, ay from input-output measurements of the sys

tem.

Remark:

All the models described in section 3-2 can be parametrized in the form of (3-4.1) e.g Qas

sical transfer function identification, i.e. identification of a stable plant of the form

p15m_1+...+pmG(s)=n(s)/d(s)=-P n. (3-4.2)
s n+axsn"'+...+an

withm<n and a,- and py unknown, canbe stated in terms of the set upof (3-4.1) by choosing

* s m~l
gi(s)=~ — i=l,..m

(s+a)n
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and

sn-j
fi(s)= /=l,...n
J (s+ay

with coO a positive, realnumber. Also ifm is not known, we may set it equal to n.

let y(s),u(s) denote the input and output to the plant of equation (3-4.1). (The initial condi

tions of the plant represent exponentially decaying terms which do not change any of the follow

ing discussions, as is well understood in the literature.) Then, after some rearrangements, we get

foy-gou =£ay fj y+X ft gi u
y=i i»i

Defining

z<£s)=fo(s)y(s)-go(s)u(s)

hj(s)=fj(s)G(s) ;=l,...n

nn+i(s)=gi(s) /=l,...m

and the unknown parameter vector 6 by

e7^! an,p1,..,,pm)

we get

hx(s)

zdisy*1 u(s)

*«4ffl (s)

(3-4.3)

(3-4.4a)

(3-4.4b)

(3-4.4c)

(3-4.5)

The vector of signal (h x(s)t...Jin+m(s))T is denoted z(s) and its Laplace inverse z(t) so that in

time domain (3-4.5) reads (again modulo decaying initial condition terms.)

z0(t>QT(z(t)*u(t)) (3-4.6)

(* stands for convolution.) By way of notation, we refer to z(t)*u(t) as W(t).

From the form of.equation (3-4.6), it is easy to see how an estimator and equation can be

derived. Let 8(f) denotes the parameter estimate at time t Then since W(t) is a vector of signals
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obtainable from the input and output by properstable filtering, as seen from (3-4.4), we can con

struct the error

e(t)=6(t)TW(tyzd(t) (3-4.7)

Using (3-4.7) and with $(t)=4(t)-Q denoting the parameter error, wesee that

e(t>$T(t)W(t) (3-4.8)

Similar to discrete time case, we have

A. The least Squares Type Algorithm

The parameter update lawis of the form (with P(t)eR (""^M"*"))

kt)=-P-\t)W(t)e(t) (3-4.9)

P(t)=W(t)W(t)T P(0)=oJ>0 (3-4.10)

It is well known (see Goodwin) that if W is persistently exciting i.e. there exists cti,5>0

such that

J WWTdt>axI foranyseR+ (3-4.11)

then <$>-»0 as /-*». Of course, since W(t) is bounded we in fact have

a2I >J WWT dt ZaxI for any seR+ (3-4.12)
s

The resultof Chapter 2 may be used to give frequency domain condition on u(t) to guaran

tee (3-4.12). First, we need the following assumption on the identifiability conditioa

Assumption on the Identifiability Condition (AIC)

Consider the system (3-4.1), assume that for every choice of distinct (n+m) frequencies

v i» • • •»v«+m the vectorsW(jvi)eCn+m(i=l,...tn+m) are linearly independent

Remarks:

(1) From (3-4.5), it follows that if an input having (n+m) spectral lines were applied to the sys

tem, we would get
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f [zo(jvi),...,z0(jvn+m)]

=e07[^OV i),...^ (jvn+m)]diag (u (jvO,...,*(jvn+m)) (3-4.13)

In turn, AIC implies that (3-4.13) has a unique solution for 8.

(2) It is difficult to give a more concrete characterization of identifiability since the component

ofW(s) are proper, stable rational functions of different orders. An exception is the case of

classical identification discussed in remark 2 (equation 3-4.2) in which case it has been

shown in Boyd [12] that the identifiability condition holds if n(s) and d(s) are coprime

polynomials. However, by similar arguments as in chapter 2, we may conclude that AIC

holds for almostany choiceof (v i,...,vn+m).

Using the assumption on the identifiability condition , we state the following fact easily

derived from [ ];

Under the identifiability assumption AIC, W is persistently exciting, i.e. it satisfies (3-4.12)

( if the spectral measure ofu isnotconcentrated onless than n+m points.

Thus, if there are at least as many frequencies in the input as there are unknown parameters,

the parameter errors converge to zero. Of course, the leastsquares type algorithm (3-4.9), (3-4.10)

shows rapid initial convergence with asymptotically slow adaptation (as P(t) gets large). Some

form of resetting ofP(t) or forgetting is introduced (as in Goodwin and Sin pg.62), for example

P(t)=>-XP(t)+W(t)W(t)T P(0)=aJ>0 (3-4.14)

It is then easy to show that the convergence of the parameter erroris exponential. It is important

to note that forgetting is not used when W is not persistently exciting to keep P from goingsingu

lar.

B. Projection Type Algorithm

The update laws

6(t)=-W(t)e(t) (3-4.15)

C
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W(t)e(t)

l+W(t)TW(t)

are referred to as projection type algorithms. They also yields exponential convergence when the

input is sufficiently rich in the sense discussed above andthe assumption AIC holds.

To illustrate the methods of this section, consider the following example in Fig. 3-4.1

Fig. 3-4.1

(3-4.16)
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In Fig. 3-4.1, f(s) is known (assumed to be
2a+2

3^+5

The form of the closed loop transfer function is

for the simulations ofFigures 3-4.2 and 3-4.3).

f(s) as+b

l+l<f(s) ~ s+c

With the parameter k to be estimated, Figure 3-4.2 showsthe parameter error for the algo

rithm with the projection type update law (the true value of k=l ) and input u(t)=5 (only one

spectralline is needed for identification).

0.0 0.03 0.06 0.09

Fig. 3-42

Estimation errors of parameters a and b (top) and

c (bottom) using prior information.

0.16

0.12
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20.0 30.0

25.0 37.5

3ao 45.0

Fig. 3-4.3

Estimation errors of parameters a (top), b (middle)

and c (bottom) without using prior information.

40.0

50.0

60.0
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Identification of the closed loop plant without utilizing the structure of the system requires

the estimation of three parameters a,b and c. Figure 3-4.3 shows the parameter errors for a, b and

c using the input u(t)=3+4sin(4t). Note that the two inputs for figures 3-4.2 and 3-4.3 have the

same energy. The input for Figure 3-4.3 is richer than that for Figure 3-4.2. However, the rate of

convergence is much slower (by a factor of approximately 500) in Figure 3-4.3. In the following,

we will see that the scheme using prior information also has a larger robusmess margin.

Though the assumption AIC guarantees that the parameter errors converge to zero if and

only if the support of the spectrum of input u has at least n+m points, it does not provide much

insight into the connection between the spectral content of the input and the convergence rate.

We will use averaging techniques to facilitate this analysis.

First consider the projection type algorithm (3-4.15) with slow update law (modeled by

adaptation gain e, a small positive number).

i=-eHWr<|> (3-4.17)

Defining the averaged value of WWT to beRw(0) (see [22]) given by

Rw(0)=]im± f WWTdt for any seR+ (3-4.18)
T-*~T J

(provided it exists- this in turn is guaranteed by assuming W to be stationary, see chapter 2 for

details.) We see that for e small enough the dynamics of (3-4.17) (including rate of convergence

up to the high order of e) are approximated by

<j>av=-e/M0)<i>av (3-4.19)

Noting that Rw(0) is the integral of the spectral measure of W, we may rewrite an expression for

Rw(0) in terms of the input spectrum and the function z(s) as

Rw(0>\z (jv )Su(dv )z ' 0'v) (3-4.20)

where Su(dv) stands for the spectral measure of u. Thus, the convergence rate of (3-4.19) is

obtained to lie in an interval [a(Rw(0)),c(Rw(0))]t where a (a) denotes minimum (maximum)
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eigenvalue. For optimum convergence, the spectrum of the input needs to be in the dominant

part of z (jv )z*(jv ). Ofcourse, theexpression (3-4.20) involves parameters of the unknown plant

so that it is not easily approximated.

For the analysis of the slowed-down least squares algorithm, consider with W assumed to

be persistently exciting

$=-eP-xWWT$ (3-4.21)

P=e(Wr-XP) (3-4.22)

As before, we may approximate (3-4.21), (3-4.22) by the averagedsystem

*„*>*P'l„Rwm« (3-4.23)

Pav^OiwQy-XPn) (3-4.24)

Equation (3-4.24) may be explicitly integratedto give

PavOMPaAOy—Rwme-^+^RwQ) (3-425)

In turn, using this in (3-4.23) and noting that Pav(t) convergesexponentially to —Rw(0), we see

that the tail behavior of (3-4.23) is

<j>av=-eHiv (3-4.26)

so that the tail convergence rate is a function of the forgetting factor X alone in the 'covariance'

equation (3-4.22) and not the input spectrum!

We now consider the effect of unmodeled dynamics on parameteridentification. The set up

of the above discussion used transfer functions of the form (3-4.1) with the/,- and g/s known

exactly. In practice, the /,- and g/s will not be known exactly, but only approximately. In fact,

thetransfer functions used to approximate the /,- and gj will generally below order proper, stable

rational functions( neglecting high frequency dynamics, and replacing near pole-zero cancella-

tions by exact pole-zero cancellations).Thus, the identifier's model of the plant is of the form

G(s)= ^ (3-4.27)

7=1
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where G is a proper,stable transfer function and

\(gi-gi)(jw)\<z for all w i=Ot..jn (3-4.28a)

I(frfj)(jw) I<e for all w j=0,...n (3-4.28b)

We refer to &-& asA& in thesequel, similariy for Afj. For example, & may be of the form

J- ^ (3-4.29)ii v(s) p(s)

where —— represents stable high frequency dynamics and °, { represents near (stable) pole-
v(s) v ° p(s)

zero cancellations.

The identifier uses the form (3-4.27) to derive the identifier for the true plant G(s) which is

accurately described by (3-4.1). Consequentiy the transfer functions of (3-4.4) are replaced by

zo(sWqGu -gou (3-4.30a)

hj(s)=fjG ;=l,...^i (3-4.30b)

h'n+i(s)=ii i=l,..m (3-4.30C)

It is importantto note that z"0 does not satisfy anequation of the form (3-4.5) i.e. it is not true that

h~x(s)

z'dts)^ u(s)

gn+m (S)

Equation (3-4.5) is ,of course, still valid. The update law (least squares type) is now of the

form (with Wt(t)=hi(t)*u(t)j=h...n+m)

'^P-xW(t)(¥(t)W(t)-z0(t))

P=WWT-XP P(0)=al>0

(3-4.31)

(3^.32)

We need an expression for z oin orderto study this algorithm. For this purpose we note that

z^>zd(s)+(fo(syf^s))G(s)u(sy(£d(sygo(s))u(s) (3^.33)

=z 0(s )+Af od(s)u (syAg qu (s)
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Also, we have

Ah

W(s) = W(s)- u(s)

M n4m

Using (3-4.33) and (3-4.34) we see that equation(3-4.31)may be rewrittenas

6=-p-lwwT(§(tyQyp-xw(t)d(t)

where 8(f) is the Laplace inverse of

AAifr)

8r

Mn^s)

With &(t)-Q=$(t)t the parameter error, the error dynamics are given by

$=>-P-1WWTfy-P-xWb'(t)

P=WWT-XP P(Q)=aI>0

u(syAf0(s)G(s)u(syAg0(s)u(s)

(3-4.34)

(3-4.35)

(3-4.36)

(3-4.37)

The last term in equation (3-4.36) may be considered as a (state-dependent) driving term. If

the undriven system is exponentially stable, then using the results of [53], the driven system is

stableas well. In turn, the undrivensystem is exponentially stable if andonly ifW is persistently

exciting i.e. (3-4.12) holds for W. We will give conditions, using the following two lemmas, on

the persistent excitation ofW in the casewhen e is small enough.

Lemma 3-4.1

Suppose thatWe/?"4*" is persistentiy exciting i.e.

a2^|wrdf>ai
s

for some a^a^S >0and for all s>0. Then, W+AW is also persistently exciting provided that

IAW()ll<(a1/8)1/2 (3-4.38)
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^ Proof: W+AW is persistently exciting if foranyxe Rn"h" ofunit norm

*+$

o^ J IxT(W+AW) 12 dt>ax' (3-4.39)

The upper bound on the integral in (3-4.39) is automatic for some a/ simply because AW is

bounded. For the lower bound, we use the Minkowski inequality to get

*+6 1/2 j+5 1/2 ,+S 1/2

( J \xT(W+AW)\2dt) Z( J lxTWI2dO -( J l*TAWI2dr)

s+$ 1/2

>a!1/2-( J IAWI2dr)

kaxl/2-^xnsup IAW( •) I (3-4.40)

The conclusion follows from (3-4.38).

To establish the norm bounded on error, we need the following lemma due to Doyle-

Gohberg [18].

Lemma 3-4.2

If G(s) is a proper, n-th orderstable rational functionwith Laplace inverse g(t), then

oo

\\g(t)\dt<,2n sup\G(jw)\ (3-4.41)
o

Remark:

Lemmas 3-4.1 and 3-4.2 are to be interpreted as follows:

(1) Let W(t) and AW(t) be the Laplace inverse of (fxG,... JnGtgx gmfu(s) and

(A/ XG,..., AfHGAgi...., Agm)Tu (s) respectively. From (3-4.33) it follows that

W=W+AW (3^.42)

If we assume that the true system in (3-4.1) satisfies the assumption AIC, then sufficient

richness of the input u (in the sense of before) guarantees that W is persistentiy exciting,

provided that e in equation (3-4.28) is small enough.

V

C
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(2) In practice, /; and gj are unknown. We mayassume that the nominal plant G satisfies the

identifiability condition. In such a case, equation (3-4.42) still holds with W(t) and AW(t)

given by Laplace inverse of (fxG fnG*ih •••>in)Tu(s) and

(f\(G-G ),.../„(G-G),0,...,0)7k(s) respectively. Then, we get same result as in remark

(1) above.

(3) The classical identification can be thought of the special case of that in remark (2) as fol

lows

sn+aisH'x+...+an' v(s) p(s)

^CO-fr-^ (3-4-43)v(s) p(s)

As in (3-4.29), l/v(,y) represents stable high frequency dynamics and q(s)/p(s) represents

near stable pole-zero cancellations. Then

gi(s>=-f—^T~TT"^T '=l.-^«(s+a)n v(s) p(s)

sn sn~~J
/(P , /i(y)=— " ;=1 n

(s+a)n J (s+a)n

For the identifier, both v (s) and q (s )lp (s) areneglected and we have

«m-i

ii(s>, t .„ /=1,.JH
(5+a)"

fj(s>fj(s) y=ai....*

iAgt-1 <e provided that cancellations are almost perfect and unmodeled dynamics occur at high

enough frequencies.

From the form of 8(f) in (3-4.35) and lemma 3-4.1, it follows that there exists 2LK(m,G)

depending onlyonsup IG (jw) I and m:=maximum order of A/,-, Agj such that

sup\b'(')\<£K(m,G)sup\u(')\ (3-4.44)

Under the condition that W is persistently exciting, it follows that the parametererrorsin (3-4.36)
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converge to a ball with radius oforder e( see [53]).

To end this section, let us consider the same example discussed before with

2s+2 s+5 - 2s+2
f (s )= _ .^ _ tg g and/ (s )= . The true closed loop transfer function is

s+3 5+5.5 s+3

s+5 0.667*40.667
G(s) =

s+5.1 s+1.73

With the parameter k to be estimated, Figure 3-4.4 shows the parameter errors (for the projection

type algorithm and input u(t)=5 same as in the no unmodeled dynamics case). It takes about 1

second to converge and the resulting closed loop transfer function is

0.605^+0.605

20.0
' a,b

P(s) = -
5+1.605

16.0

12.0

6.0

4.0

0.0 L
• -

f 1 1 I 1 t 1 1

1.25

0.03

2.5

0.06

Fig. 3-4.4

Estimation errors of parameters a and b (top) and c (bottom)

using prior information in the presence of unmodeled dynamics.

3.75 5.0

0.09 0.12
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For the identification of the closed loop transfer function without utilizing the structure of

the system, we have used input u(t)=3+4sin(4t). After 5000 seconds of simulation, the system

does not converge.Figure 3-4.5 shows the estimation error of the parameter c.

The Bode plots ofG(s) and P(s) are compared in Fig.3-4.6

—

30.0

20.0

10.0

0.0

-10.0 yr

-20.0

<L L 1 x
1.25E3 2.5E3

Fig. 3-4.5
3.75E3 5.E3

Estimation error of parameter c without using prior

information in the presence of unmodeled dynamics.

10°

c

O

2

10-1 1 I 1 1 1 1II 1 1 1 1 t t II 1 .1.1111

10" 10° 101

Frequency (rod/sec)

Fig. 3-4.6

102

The Bode plots of 6(s) ( ) and P(s)( ).
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JT 3-5 Adaptive Control of Discrete Time 'Partially Known' Systems

c

Consider the system of the form (3-3-2.1). An adaptive control law is to be designed to sta

bilize this system and to cause the output y(t) to track a given reference sequence y*(t) i.e. we

require y(t) and u(t) to be bounded and

\im(y(tyym(t))=0
t-

The following assumptions will be made about the system (3-3-2.1)

(1) noi+ot^ ii+...+oc/ xni x*0This implies that the pure delay in the transfer function (3-3-2.1) is

known and equal to 1. This is for simplicity alone in our analysis, the extension to the case

where pure delay is greater than 1 (but known) follows readily.

(2) n(z_1)has all zeros strictly inside the closed unit disk i.e. thesystem is inverse stable.

(3) y*(t) is known apriori and bounded.

Control Algorithm Using Projection Type Identification Law

From equation (3-3-2.5),(3-3-2.8) and (3-3-2.11), we have

y(t+iy=GxTy(t)+QTW(t)

=exT^(t)+QTDT^(t) (3-5.1)

We choose the projection type estimation law (3-4.14) and a control law specified implicitly by

y*(t+l)=QxT^(t)+6(t)TDV) 0-5.2)

(A minor modification is necessary to ensure that the coefficient of u(t) in (3-5.2) is nonzero. This

can be achieved in the same way as in [ ] and does not affect the current analysis.) Then, we have

Theorem 3-5.1 (Convergence Theorem)

Subject to assumptions 1), 2) and 3), consider the control law (3-5.2), together with the pro

jection type estimation law (3-3-2.14), applied to the system (3-3-2.1). Then, y(t) and u(t) are

bounded and
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hm(y(tyy\t)y=4 (3-5.3)

Proof: Define the output errorby

ey(t)=y(tyy\t) (3-5.4)

It follows from (3-5.1) and (3-5.2) that

ey(t)^T(t-l)W(t-l) (3-5.5)

Now using equation (3-3-2.16), we have

e2(t)
lira T y =0 (3-5.6)
/->- l+WT(t-l)W(t-l)

Note that

e\(t) . e2(t)
l+WT(t-l)W(t-l) >l+Gmax(DDV(M)\KM) (3"5'7)

By assumptions 2) and 3), we have as in [ ] that

11 \|/(r-l) 11 <c x+c2 max Iey(x)I (3-5.8)

for some 0<c x<°°, 0<c2<°°. The conclusionnow follows from equation (3-5.7) and (3-5.8) using

the key technical lemma in [24] and by noting that boundedness of 11 \{/Q11 ensures bounded

ness of y(t) and u(t).

Control Algorithm Using Least Squares Type Identification Law (with Covariance Reset

ting)

If the leastsquares type estimation law (3-3-2.18) is used, then we get the same result.

Theorem 3-5.2

Subject to assumptions 1),2) and 3), consider the control law (3-5.2), together with the least

squares type estimation law (3-3-2.18), applied to the system (3-3-2.1). Then y(t) and u(t) are

bounded and

km(y(tyy*(t))=0



97-

f Proof: The proof proceeds by an argument similar to that in [ ]. Define

ey(t)=y(tyy\t)

Then from [ ], we have

e\(t)
lim< =r-^ =0 (3-5.10)
/-»- l+aWT(t-l)W(t-l)

•*

The remainder of the proof is same as that of theorem 3-5.1.

We have shown the global stability of two adaptive control algorithms. Note that nothing

has been said about the convergence rate of the output and the parameter convergence. However,

if n(z"x) and d(z~x) in (3-3-2.1) are coprime and the Dmatrix in (3-3-2.4) has full column rank,

then the persistency of excitation of W(t) follows from the sufficient richness of input u(t) (i.e.

u(t) has sufficient spectral content, see [9]). This implies that the control algorithm, with either

projection type or least squares type with covariance resetting parameterupdate, has exponential

f convergence rate both for the output error and parameter error.

To illustrate the methods of last section, consider the following example in Fig 3-5.1

e
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"N
0.5 2A y

>
1+0.5 2H-Z"2

K

Fig. 3-5.1

where k is unknown. The closed loop transfer function is

0.5Z-1

(l+0.5z"l-z"2yk0.5z-x

Fig.3-5.2 shows the plant output under the adaptive control algorithm of (3-5.2) with projection

type update law and the plant output under the adaptive control algorithm without using prior

information respectively, (forthe simulation, £=1, and y*(t)=l). The algorithm using prior infor

mation has faster convergence rate and better transient performance.
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Fig. 3-52
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3-6 Concluding Remarks

In this chapter, we have presented algorithms, which utilize prior information about the

plant, for adaptive control and identification of linear time invariant systems. If the plant is com

pletely unknown, the algorithms are identical to the standard ones in the literature. However, the

algorithms presented here have faster convergence rate and better transient performance when the

system is partially known.

In the section 3-4, we have applied the technique of using rational function instead of

polynominal to parameter estimation of continuous time systems. We feel that the framework is

particularly amenable to the study of sensitivity of the schemes to the presence of unmodeled

dynamics. This will prove to be partically impotant when we devise robust adaptive control

schemes.
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