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Abstract

In this thesis we use a mathematical technique, referred to as the method of averaging, to
thoroughly analyze both adaptive identification and adaptive control schemes. In principle the
results hold when the rate of parameter update in the adaptive loop is slow compared with the
dynamics of the other state variables, but in practice they work for normal rates of parameter
adaptation. Our analysis is not confined to the ideal case which consists of knowing the order
of the unknown plant exactly and assuming there exist no extemal disturbances, but it also
allows for unmodelled dynamics and additive output disturbances. We also make use of the
method of averaging to solve the optimal input problem, i.e. the problem of choosing the input

which produces the fastest rate of parameter convergence.

The results of this thesis are many. The first is a set of stability theorems which deter-
mine when a dynamical system possesses exponential stability, partial exponential stability or
ultimate boundedness. Instability theorems for one- and two-time-scale systems are also given.
Under the assumptions of a stationary reference input and slow adaptation these results are
applied to adaptive systems. The next result is a calculable estimate of the rate of parameter
convergence when various adaptation algorithms are used. When the plant contains unmo-

delled dynamics, we use the method of averaging to formally define the notion of a set of



"tuned parameters”. Under the assumptions of slow adaptation and persistency of excitation,
we show that for the adaptive identifier, the actual identifier parameters converge to a ball
which is centered at the tuned parameters and whose radius goes to zero as the adaptation gain
goes to zero. Similar results, though slightly more complicated, are also obtained for the adap-
tive control case. To illustrate the importance of the choice of input signals, the phenomenon of
slow-drift instability is analyzed. Finally a frequency domain technique, for the synthesis of
reference inputs which solve the optimal input problem, is given. An expression for what we
call the average information matrix is derived and its properties are studied. The objective of
the input synthesis technique is to specify the frequency content of a power constrained input
signal, which maximizes the smallest eigenvalue of the average information matrix, and hence
maximize the parameter convergence rate. A convergent numerical algorithm is given which
obtains globally optimal solutions to the above problem. When the plant contains unmodelled
dynamics, practical considerations of the range of support of the frequency content of the refer-

ence input is given.
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Chapter 1 Introduction

ivati
Frequency domain techniques constitute a powerful methed for the analysis and design of
linear systems. The analysis and design of linear systems is particularly easy since there is a
simple relationship between their input-output behavior and their internal dynamics. Further it
is easy to characterize the input-output behavior in the frequency domain as the Fourier
transform of the impulse response. For linear time-varying or general nonlinear systems, "fre-
quency response” is not a well defined notion. One, instead, analyzes the time domain trajec-

tories in the state space.

However, if there is a certain separation between the time rate of change of state vari-
ables, a powerful technique, namely averaging, can be used to approximate the time-varying
dynamics by time-invariant dynamics. Consequently, averaging serves as a useful method by
which one can replace a complicated nonautonomous system by a simpler autonomous (aver-
aged) system. Further since the dynamics of adaptive identification and control systems (for
linear models) are "asymptotically linear”, the averaged version of their asymptotic dynamics is

linear time-invariant, for example, of the form:
x=R0O)x (1.1)

where R (0) is an autocovariance matrix (defined in Chapter 3) which has a frequency domain
'interpretation. This fact enables averaging to become a technique that bridges state space and
frequency domain techniques.

Motivated by this, we present a complete set of averaging results which are sufficient for
the analysis of general adaptive systems. Using these averaging results, a detailed analysis of
adaptive systems with various update algorithms is presented, and a synthesis of the exogenous

input signals subject to a certain optimality criterion (defined in Chapter 5) for the system is



also provided.

Revi f Previ Wor

Adaptive identification is a technique for the estimation of the parameters of an unknown
system from input-output data. The algorithms are usually designed on the assumption that the
system is fixed, but in practice they work even when the parameters of the system are slowly
varying.. An adaptive identification scheme was first devised at least as early as 1967 by Lion,
and was extended later by Anderson (1974), Luders and Narendra (1973), and Kreissel}neier
(1977). Their original objective was an adaptive observer, i.e. one which provides estimates of
state variables of an unknown time-invariant linear system as well as an estimate of the system
parameters from measurements of its input and output. Their work, together with that of Son-
dhi and Mitra (1976), Anderson (1977), Morgan and Narendra (1977a), provides proofs of glo-
bal exponential convergence of the system parameters and state variables whenever the system

has a sufficiently rich input.

Model reference adaptive control schemes were implicitly suggested in the work of
Astrom and Wittenmark (1973) and were formalized by Monopoli (1974). Model reference
schemes were further extended by Narendra and Valavani (1978) and Landau (1979), and
rigorous proofs of stability of these schemes in the general case appeared in Narendra, Lin and
Valavani (1980), Morse (1980), and in Goodwin, Ramadge and Caines (1980) for the discrete-
time case. While the adaptation algorithms of the schemes mentioned earlier were based on the
sensitivity of the output error to the adjustable parameters, Bodson and Sastry (1987)
developed a scheme which used the input error for the sensitivity vector. Boyd and Sastry
(1986) extended these results further to the case of adaptive control (not just identification )
using generalized harmonic analysis. They translated the persistency of excitation condition on

the regressor vector to a condition on the spectral content of the reference input.



A great deal of interest in questions of robustness arose from the paper of Rohrs et al
(1981)(1985) indicating the extreme senéitivity of the model reference schemes to unmodelled
dynamics and output disturbances. Further investigations followed by Astrom (1983)(1984),
Krause et al (1983), Chen and Cook (194), Kosut and Johnson (1984), Riedle et al (1984),
Riedle and Kokotovic (1985a,b), and Fu and Sastry (1987). Lately, several attempts have been
made to make model reference schemes robust by modifying the adaptation law, such as, in
Peterson and Narendra (1982), Kreisselmeier and Narendra (1982), Sastry (1984), where a
dead zone (fixed size) is used. In Kreisselmeier (1986), Kreisselmeier and Anderson (1986)
robustness is achieved using a relative dead zone and a bmjection in the adaptation law, and in
JToannou and Kokotovic (1984),. Ioannou and Tsakalis (1986), and Narendra and Annaswamy
(1986), the robustness is established by means of an additional, linear feedback term in the
adaptation law.

Astrom introduced averaging as a technique for the study of instability mechanisms in
adaptive systems (1983)(1984). This tool was more fully exploited by Riedle and Kokotovic
(1985a)(1986), Kokotovic et al (1986), Kosut et al (1986), Anderson et al (1986), to obtain
sharp conditions on the boundary between stabilify and instability; and by Fu et al (1985),
Bodson et al (1986), and Kosut (1986) to obtain estimates on the rate of parameter conver-
gence. In Mason et al (1987) we applied the averaging method to study the robustness of the

adaptive identifier to unmodelled dynamics.

The problem of input design for estimating parameters in a linear stochastic dynamical
system has been extensively studied for over two decades. The first systematic attempt to
obtain an "optimal” input for identifiers seems to have been that of Levin (1960) who showed
that the optimal energy or amplitude constrained input that minimizes the trace or the deter-
minant of the eror covariance matrix is a white noise sequence. This work was further
developed, for example, in Levadi (1966), Aoki and Staley (1970), Arimoto and Kimura
(1971), Goodwin et al (1973), Lopez-Toledo (1974), and Mehra (1974). In the statistical litera-
ture, the same problem has also been addressed impliciy in Elfving (1952), Kiefer and



Wolfowitz (1959), and Fedorov (1972), and more rigorously in Box and Jenkins (1970), Min-
nich (1972), énd Viort (1972). An excellent survey was given by Mehra (1974), and at that
time an important conclusion reached was that input design problem could be reduced to a
finite dimensional optimization problem. These results were extended in recent work that
appeared in Goodwin and Payne (1977), Zarrop (1979), Mehra (1981), Goodwin (1982), Ljung
and Soderstrom (1983), and Yuan and Ljung (1985). In the deterministic literature, Mareels et
al (1986) studied the problem of "optimal” input design for identification through a heuristic
discussion and simulations. This further led to the work of Fu and Sastry (1987).

ibuti f th
In this dissertation, we develop frequency domain techniques to analyze:
(1) parameter convergence rates in an adaptive system,
(2) robustness of adaptation in the presence of unmodelled dynamics or measurement noise,
(3) synthesis of optimal inputs for adaptive systems.
The outline of the thesis is as follows:

In Chapter 2, we present a complete package of the averaging results that have been
developed for adaptive systems (see also Fu et al (1986) and Bodson et al (1986)). These are
used to obtain estimates of the rate of parameter convergence. In addition, we develop new
results on partial exponential stability and bounded stability which allow for the bounded input
bounded state (BIBS) stability analysis of general adaptive systems.

In Chapter 3, the results of Chapter 2 are applied to analyze the performance of the adap-
tive identificr of Kreisselmeier (1977) in the presence of unmodelled dynamics. Results
obtained with coworkers and published in Mason et al (1987) are also reviewed.



Another significant contribution is an averaging based analysis of direct model reference
direct adaptive control schemes, including both input and output error schemes with various
parameter update algorithms. In Chapter 4, the notion of a tuned model, in the presence of
unmodelled dynamics and bounded output disturbances, is established and serves as a basis for
developing the reduced order controller. The importance of the spectral content of the reference
input to the robustness of the controller is emphasized. The insufficiency of the conventional
persistency of excitation (PE) condition is pointed out and is remedied by the so called positive
deﬁx;ite PE condition. One type of instability observed due to the non-satisfaction of this condi-
tion is discussed in detail. From this discussion, a distinction is drawn between frequency

ranges that improve and those that impair the robustness of these schemes.

In Chapter 5, we propose a frequency domain technique of synthesizing reference inputs

for adaptive systems. The optimum choice of inputs to maximize the smallest eigenvalue of an '

average information matrix is formulated and characterized in the frequency domain. A numeri-
cal algorithm is provided to obtain the globally optimal inputs. In the presence of unmodelled
dynamics, input design guidelines are then presented to assure robustness in addition to the ori-

ginal objective.



Chapter 2 Frequency Domain Approach ---- Averaging

2,1 Introduction
The method of averaging typically deals with a system with different time scales, such as
the so called one-time-scale systems
i=efty) . @1

In (2.1.1) above, a small € > 0 models the fact that x varies slowly in comparison with f(t.x).
This method, for sufficiently small £>0, relates the properties of solutions of the above sys-

tems with solutions of the autonomous "averaged system”

Xay = Efa(Xav) (2.12)
where
fal®) = Jim + Tﬂt.x)dt 2.13)
To= T 9

( the limit is assumed to exist uniformly in s and x ). This method was proposed originally by
Bogoliuboff and Mitropolskii (1961), developed subsequently by Volosov (1962), Sethna
(1973), Balachandra and Sethna (1975), Hale (1980), and stated in a geometrical form in
Arnold (1982), and Guckenheimer and Holmes (1983).

Averaging methods were first introduced to the study of adaptive systems at first heuristi-
cally in the work of Krause et al (1983), and increasingly rigorously in the work of Astrom
(1983), (1984), Riedle and Kokotovic (1985), (1986), Fu et al (1985), Bodson et al (1986),
Mareels et al (1986), and Anderson et al (1986). Early informal use of averaging was also
made in Astrom and Wittenmark (1977), and Ljung and Soderstrom (1983).

In general, an adaptive system is a nonlinear, nonautonomous system. Under the assump-

tion that the parameter is slow, the dynamics fall into the class of systems (2.1.1) or (2.1.2)-



(2.1.3). As we shall see, averaging techniques combined with generalized harmonic analysis
tumn out to be an extremely useful tool for analyzing the stability/instability properties of this
class of systems in the frequency domain.

In this chapter, we review some averaging results from Fu et al (1985) and Bodson et al
(1986). Moreover, we develop theorems for stability including bounded stability ( cf. Yosh-
izawa (1975), definition 12.1, p. 126 ) and partial exponential stability, as well as instability of
systems (2.1.1) and the so called two-time-scale systems. These results will then be applied to

analyze adaptive systems.

veraging T ili i m
In this section, we present averaging results concerning exponential stability, and bounded

stability of one- and two-time-scale systems respectively.

Ti 1 m

We consider differential equations of the form:
x = gfitx.€) x(0) = xg (22.1.1)

where x,xpe R, 120, 0<e<¢, and f is piecewise continuous with respect to time s We will
concentrate our attention on the behavior of the solutions in a closed ball, B,, of radius r, cen-

tered at the origin.

For small ¢, the variation of x with time is slow compared to the rate of time variation of
f. To apply the method of averaging to the system (2.2.1.1), the mean value of f£.x,0), f5,(x),
defined by the limit

=T
— tim L
fol®) = lim !ﬂt,x.O)dt (22.12)

must exist uniformly in ¢ and x. This is formulated more precisely in the following definition.



Definition 2.2.1.1 ( Mean Value of a Function, Convergence Function )

The function z,x,0) is said to have mean value f,,(x) if there exists a continuous function ¥
R,9R,, strictly decreasing, such that (7)—0 as T->e0, and

=T

I+ [Aex0dr—futl S (D @2.1.3)
[

for all £,720, xe B,. The function vy will be called the convergence function. O

Note that the function f¢,x,0) has a mean value f,,(x) if and only if the function

d@tx) = ftx,0) - f5,(0) 22.14)

has a zero mean value. The following definition ( Hahn (1967), p. 7 ) will also be useful.

Definition 2.2.1.2 ( Class K Function )

A function a: R, — R, belongs to class K ( ae K), if it is continuous, strictly increasing, and
a0)=0. O

In the literature on averaging, it is common to assume that the function f{t,x,€) is periodic
in ¢, or almost periodic in ¢. Then, the existence of the mean value is guaranteed, without
further assumption ( Hale (1980), theorem 6, p. 344 ). We do not make the assumption of
(almost) periodicity, but consider instead the assumption of the existence of the mean value as

the starting point of our analysis.

Remark; Note that if the function d(¢,x) is periodic in ¢ and is bounded, then the integral of
the function d(¢,%) is also a bounded function of time. This is equivalent to saying that there
exists a convergence function YT)=a/T (i.e. of the order of 1/T) such that (2.2.1.3) is satisfied.
On the other hand, if the function d(z.x) is bounded, but is only required to be almost periodic,
then the integral of the function d(z,x) need not be a bounded function of time, even if its mean
value is zero ([3], p 346). The function WT) is bounded (by the same bound as d(z.x)), and



converges 10 zero as T—><o, but the convergence function need not be bounded by a/T as T—eo
(it may be of order INT for example). In general, a zero mean function need not have a
bounded integral, although the converse is true. In this paper, we do not make the distinction
between the periodic, and the almost periodic case, but we do distinguish the bounded integral
case from the general case, and indicate the importance of the function (T) in the subsequent
development.

Assuming the existence of the mean value for the original system (2.2.1.1), the averaged

system is defined to be:

Xay = €f5y(%ay) x,(0) = xo (22.1.5)

Note that the averaged system is autonomous and, for T fixed and & varying, the solutions over
intervals [0,T7€] are identical, modulo a simple time scaling by & We address the following
two questions:

(i) the closeness of the response of the original and averaged systems,

(ii) the relationships between the stability properties of the two systems.

To compare the solutions of the original and of the averaged system, it is convenient to
transform the original system in such a way that it becomes a perturbed version of the aver-
aged system. An important lemma that leads to this result is attributed to Bogoliuboff and
Mitropolskii ( (1961), p 450, and Hale (1980), lemma 4, p 346). We state a generalized ver-

sion of this lemma.

Lemma 2.2.1.1: ( Approximate Integral of a Zero Mean Function )

If d:R,xB,—>R"is a bounded function, d(-,x) is piecewise continuous, and d has a zero
mean value with convergence function ¥,

then there exists &; e X, and a function wg:R,XB,— R" such that: we(0,x)=0 for all xeB,

and
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| ewe(e) || S&1(8) (2.2.1.6)
ow
I -—# -d(tx) || <&,(e) (22.1.7)

for all £20, xeB,.

Moreover, if 7(7)=a17” for some a20, be (0,1], then &,(e) can be chosen to be 2aeb. O
Proof: See Appendix A.

Remarks:

(1) The construction of the function w(t,x) is identical to that in Bogoliuboff and Mitropol-
skii (1961), but the proof of (2.2.1.6), (2.2.1.7) is different, and leads to the relationship
between the convergence function «(7) and the function &,(g).

(2) The main point of Lemma 2.2.1 is that, although the exact integral of d(z,x) may be an
unbounded function of time, there exists a bounded function w(z.x), who;e first partial deriva-
tive with respect to ¢ is arbitrarily close to d(z,x). Although the bound on w(z,x) may increase

as -0, it increases slower than 1/g, as indicated by (2.2.1.6).

It is necessary to obtain a function wg(t,x), as in Lemma 2.2.1, that has some additional
smoothness properties. A useful lemma is given by Hale ( (1980) Lemma 5, p. 349). For the
price of additional assumptions on the function d(t,x), the following lemma leads to stronger

conclusions that are useful in the sequel.

Lemma 2.2.1.2: (Smooth Approximate Integral of a Zero Mean Lipschitz Function)
If d:R.,xB,—R" satisfies the following assumptions:

(@) d(-,x) is piecewise continuous, d(¢,-) has bounded and continuous first derivatives,

and d(t,0)=0 for all ¢20,
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(i) d(zx) has a zero mean value, with convergence function ¥ || x|| , and alg:ﬁ has a
zero mean value, with convergence function ¥,

then there exist &, e K and a function w,: R, X B, = R" such that we(0,x)=0, and

| ewe(e) | <&yl x|l (22.1.8)

1242 _seanst,o N (219
aw,

e ;(:'x) | <& 2.2.1.10)

for all £20, and for all xeB,.

Moreover, if Y7)=a/T® for some a0, be(0,1], then &(€) can be chosen to be 2ae”. O

Proof: See Appendix A.

Remarks:

(1) The difference from Lemma 2.2.1.1 is in the condition on the partial derivative of wg(t.x)

with respect to x in (2.2.1.10), and the dependence on || x| in (2.2.1.8), (2.2.1.9).
(2) Note that if the original system is linear, i.e.
x=A@0)x x(0) = xp (2.2.1.11)

for some A:R,—R™", then the main assumption of Lemma 2.2.1.2 is that there exists A,y

such that A(f)—-A,, has a zero mean value.

Given some &, r>0, the following assumptions will hereafter be in effect.
Assumptions:
(A1) x=0 is an equilibrium point of system (2.2.1.1), and f{t,x.) is Lipschiz in x, ie.

R2.0,)=0, and for some ;20

| ftxy.8) = fex28) | <4y Il 2= |l (22.1.12)
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for all £20, x;,x; € B, £<&.
(A2) fitx.e) is Lipschitz in g, linearly in x, i.e. for some ,20
| ez - Rexep | < b 21l ler—eo] @2.1.13)
for all 20, x€ B,, &;,8,S¢&.
(A3) f£,(0)=0, and f,,(x) has continuous and bounded first partial derivative with respect to
x, for all xe B,, so that for some /,,20 .
| £ = S || S oy | 21— | (22.1.14)
for all x;, x;€ B,.

(A4) The function d(t,x)=£(t.x,0)—f,,(x) satisfies the conditions of Lemma 2.2.1.2.

Remark: Note particularly that the equilibrium points of the original and the averaged sys-

tems are coincident at x=0.

Lemma 2.2.1.3: (Perturbation Formulation of Averaging with Coincident Equilibrium
Point)

If the systgms (2.2.1.1) and (2.2.1.5) satisfy assumptions (A1)-(A4),
then there exist functions w, and &;, as in Lemma 2.2.1.2, and a transformation of the form,
x=2z+ ewgt,2) (2.2.1.15)
under which system (2.2.1.1) becomes
i=gef,(2) + ep(t,z,€) z2(0)=xo (2.2.1.16)
where p(1,2,¢) satisfies
Ipzo |l s vl @2.1.17)

for some y; € K, €,>0, and for all e<g,. Further, y,(€) is of the order of £+&,(g). O
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Proof: See Appendix A.

Remarks:

(1) A similar lemma can be found in Hale (1980) ( Lemma 3.2, p 192 ). Inequality
(2.2.1.17) is a Lipschitz type of condition on p(t,z.€), which is not found in Hale (1980), and

results from the stronger conclusions of Lemma 2.2.1.2.

(2) Lemma 2.2.1.3 is fundamental to the theory of averaging presented in the following. It
separates the error in the approximation of the original system by the averaged system (x—x,)
into two components: (x—z) and (z—x,,). The first component results from a pointwise (in
time) transformation of variable and is guaranteed to be small by iﬁequali’ty (2.2.1.8). For €
sufficiently small ( €é<g, ), the transformation z—x is invertible, and as -0, it tends to the
identity transformation. The second component is due to the perturbation term p(t.z,€). Inequal-

ity (2.2.1.17) guarantees that this perturbation is small as e—0.

(3) At this point, we can relate the convergence of the function Y(7) to the order of the two
components of the error (x—x,,) in the approximation of the original system by the averaged
system. The relationship between the functions Y(T) and &,(¢) was indicated in Lemma 22.1.1.
Lemma 2.2.1.3 relates the function &,(e) to the error due to the averaging. If d(z.x) has a
bounded integral ( i.e. WT)~1/T ), then both (x—z) and p(t,z,€) are of the order of & with
respect to the main term f;,(z). In general, these terms go to zero as €->0, but possibly more
slowly than linearly ( as Ve for example ). The proof of Lemma 2.2.1.1 provides a direct rela-
tionship between the order of the convergence to the mean value, and the order of the error

terms.

We now focus attention on the approximation of the original system by the averaged sys-

tem. We will need the following assumption:
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Assumption:
(AS) |l x| is small enough that, for fixed T and some 7 <r, x, ()€ B, for all t € [0,T/¢] (
this is possible, from (A3) ).

Theorem 2.2.1.4: ( Basic Averaging Theorem )
If  the original system (2.2.1.1) and the averaged system (2.2.1.5) satisfy assumptions (Al)-
(AS),
then there exists y; as in Lemma 2.2.1.3 such that, given T20,
| =% | Swi(e)br (22.1.18)

for some by, &r>0, and for all te[0,T/€], eSer. O

Proof: From Lemma 2.2.1.2 and Lemma 2.2.1.3, we have that

lx-zll s&@ 1 zll swi@ll z || (22.1.19)

for e<g;. On the other hand, we have that
% (z=x,,) = (f,(2) = f1,(x5))) + €p(t,2,€) 2(0)-x,,(0)=0 (2.2.1.20)

for all te [0,TVe], x,,€ By, ¥<r. We will now show that, on this time interval, and for as long
as x,ze B,, the errors (z-x,,) and (x—x,) can be made arbitrarily small by reducing €.
Integrating (2.2.1.20),

4 !

| 200-x40 || S ez,,l | 2(®)=x4(%) || dT+ey () { | 20 || & . (22.1.21)

Using the generalized Bellman-Gronwall Lemma,
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, t T _
| 2 =x0® | S ewy(®) ‘[ I 2z l| 2=Vt < weyr [ e~ -1 ]

lav
= yy(e)ar. 22.1.22)

Combining mése results,
| x)=xa(® | < | 0=20 | + [| 2)=22®) |l
< y(® [l 2 I| + A+ @) | 200—x 0
< yi(©) (r+ (1 +y(e) ay)
= ¥ (©br . (22.1.23)

By assumption, || x,,(5) || S”<r. Let ey ( with O<erse, ) be such that viEepbr<r-r. It
follows, from a simple contradiction argument, that the estimate in (2.2.1.23) is valid for all

te [0,T/e), whenever esér.

Remarks:

(1) Theorem 2.2.1.4 establishes that the trajectories of the original and the averaged system
are arbitrarily close on intervals [0,77€], as € is reduced. The error is of the order of y,(g), and
the order is related to the order of convergence of ¥(7). If d(¢.x) has a bounded integral ( i.e.
Y(T)~1/T ), then the error is of the order of &.

(2) It is important to remember that, although the intervals [0,T/€] are unbounded, Theorem
2.2.1.4 does not state that
| x())=x(0) | < ¥1(€) b (22.124)

for all £20, and some finite ..>0. Consequently, Theorem 2.2.1.4 does not allow us to relate
the stability of the original and of the averaged system. This relationship is investigated in
Theorem 2.2.1.5, after a preliminary definition.
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Definition 2.2.1.3: ( Exponential Stability, Rate of Convergence )
The equilibrium point x=0 of a differential equation is said to be exponentially stable, with
rate of convergence a.(a>0), if

Ix@ |l Smll x|} ¢ (22.1.25)

for all £2£20, x(%) € B, for some ry>0, and some m21. O

In the following, we assume that ro<r/m, so that all trajectories are guaranteed to remain

in B,

Theorem 2.2.1.5: ( Exponential Stability Theorem )

If the original and averaged systems satisfy assumptions (A1)-(AS), and x,,=0 is an
exponentially stable equilibrium point of the averaged system,

then there exists €, >0 such that the equilibrium point x=0 of the original system is exponen-
tially stable for all e<g,. O

Proof: The proof relies on a converse theorem of Lyapunov for exponentially stable syétems
(see, for example, Hahn (1967) p. 273). Under the hypotheses, there exists a function

v:R"-R,, and non-zero positive constants o, 0t, 043, 4, such that, for all x,, e B,,

oy fl 12 S vix) S o || %, 1|12 (2.2.1.26)
V() S —€03 || x5 112 (22.1.27)
|| v || s ol x 2.2.1.28)

ax,,

The derivative in (2.2.1.27) is to be taken along the trajectories of the averaged system
(2.2.1.5), i.e., by the chain rule,

dv(xav) x-
dx,

‘.’(xnv) =



17

where %,, is given in (2.2.1.5). The function v is now used to study the stability of the per-
turbed system (2.2.1.16). Considering v(z), inequalities (2.2.1.26) and (2.2.1.28) are still
verified, with z replacing x,,. The derivative of v(z) along the trajectories of (2.2.1.16) is given
by

W(2) = V(xp) |rpm + )(ep(t,z.e)) (2.2.1.29)

and, using previous inequalities ( including those from Lemma 2.2.1.3 ),
W2 S —eogl z || + e i@l 2 ||

03—V (€) 0y ]
o

S -€ v(2) (2.2.1.30)
for all e<e,. Let €, be such that a; -V (€'p) 04>0, and define g;=min(¢;,€’;). Denote
ofg) = ————. (22.1.31)

Consequently, (2.2.1.30) implies that

Wz € W) e 22O 2.2.1.32)
and
I 260 | S Voa7og || 2t || €% (22.1.33)

Since a(e)>0 for all e<s,, system (2.2.1.16) is exponentially stable. Using (2.2.1.8) and
(2.2.1.15), it follows that

1+ - -
Il s 22 2:2 ; N55Ta; | xep || €250 22.1.34)

for all 21,20, £<¢,, and x(fo) sufficiently small that all signals remain in B,. In conclusion,

the original system is exponentially stable, with rate of convergence (at least) £(e).
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Remarks:

(1) Theorem 2.2.1.5 is a local exponential stability result. The original system will be glo-
bally exponentially stable, if the averaged system is globally exponentially stable, and provided
that all assumptions are valid globally.

(2) The proof of Theorem 2.2.1.5 gives a useful bound on the rate of convergence of the ori-

ginalsystem.Asetendstozem,ea(e)tendsto%%,whichistheboundontherateofcon—

vergence of the averaged system that one would obtain using (2.2.1.26)-(2.2.1.27). In otﬁer
words, the proof provides a bound on the rate of convergence, and this bound gets arbitrarily
close to the corresponding bound for the averaged system, provided that € is sufficiently small.
This is a useful conclusion because it is in general very difficult to obtain a guaranteed rate of
convergence for the original, nonautonomous system. The proof assumes the existence of a
Lyapunov function satisfying (2.2.1.26)-(2.2.1.28), but does not depend on the specific function
chosen. Since the averaged system is autonomous, such a function is usually easier to find than
for the original system, and any such function will provide a bound on the rate of convergence
of the original system for ¢ sufficiently small.

(3) The conclusion of Theorem 2.2.1.5 is quite different from the conclusion of Theorem
2.2.14. Since both x and x,, g0 to zero exponentially with ¢, the error x—x,, also goes to zero
exponentially with ¢. Yet, Theorem 2.2.1.5 does not relate the bound on the error to €. It is
possible, however, to combine Theorem 2.2.14 and Theorem 2.2.1.5 to obtain a uniform
approximation result, with an estimate similar to (2.2.1.24).

Now we consider the same system (2.2.1.1), but x=0 may not be an equilibrium point of
that system. Conceivably, only boundedness of x(f) instead of its exponential stability should
be expected. This will be established in Theorem 2.2.1.9 after some preliminary lemmas, of
which the first two lemmas are variations of Lemma 2.2.1.2-2.2.1.3. To start with, we modify

some of the assumptions on f to indicate the change of system property as just mentioned.
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Modified Assumptions:

(MA1) fitx.e) satisfies (A1) except that x=0 is no longer an equilibrium point of the system
(22.1.1).

(MA2) fltx.e) is Lipschitz in &, i.e. for some 5,20,
| Kexer) - fexe) || Sk le -2 (2.2.1.35)

for all ¢20, xe B,, and &,, €, <&,

(MA4) The function d(t,x)=R1,x,0)—f(x) satisfies conditions of the following Lemma 2.2.1.6.

Lemma 2.2.1.6: (Smooth Approximate Integral of a Zero Mean Non-Lipschitz Function)
If d:R,xB,— R" satisfies the following assumptions:
@) d(-,x) is piecewise continuous, and has a zero mean value, with convergence func-

tion v.

i) -aja(—:-x-)- has a zero mean value, with convergence function ¥,

then there exist &; € X, >0, and a function wg: R, X B,— R" such that wg(0x)=0, and

| ewe(t.x) || ShrEy(©) (2.2.1.36)

I awg:,x) —de NS hE () (2.2.137)
ow

lle sg'x) | SEie) (2.2.1.38)

for all 20, and for all xeB,.

Moreover, if 'y(T)=a/I° for some a20, be (0,1], then &;(¢) can be chosen to be 2ae’. O

Proof: See Appendix A.
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Remark: The difference from Lemma 2.2.1.3 is mainly in the condition that (2.2.1.35),
(2.2.1.36) are no longer Lipschitz in x. In other words, the transformation (2.2.1.15) given in
Lemma 2.2.1.3 may not be invariant at the origin.

Lemma 22.1.7: (Perturbation Formulation of Averaging with Non-Coincident Equili-

brium Point)
If  the systems (2.2.1.1) and (2.2.1.5) satisfy assumptions (MA1)-(MA2), (A3), and (MA4),

then there exist functions w, and E,, as in Lemma 2.2.1.6, and a transformation of the form,
x=2z+ewyt2) (2.2.1.39)
under which system (2.2.1.1) becomes
z = ef,(2) + ep(t,2,€) 2(0)=x, (2.2.1.40)
where p(1,2,e) satisfies
| p(tze) | < rys(e) (22.1.41)

for some y, € X, €,>0, and for all e<g,. Further, y,(€) is of the order of e+&;(e). O

Proof: See Appendix A.

Definition 2.2.1.3: ( Uniformly Ultimately Bounded (UUB) for a Bound § )

The solutions of system (2.2.1.1) are uniformly ultimately bounded for a bound B if for any x,
there exists 0 <T <o such that

lxll <B t24+T (2.2.1.42)
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Lemma 2.2.1.8: ( UUB lemma )

Consider a set of differential equations:

x=¢eflx) x(t9=x9€ R" (2.2.1.43)

2=¢efif) +eg(th) t)=x (2.2.1.44)
satisfying
@ x=0 is an exponentially stable equilibrium point of (2.2.1.43),
Gi) g% s I for some [;>0, for all t20 and £e R".
. Then the solution £(z) of (2.2.1.44) is UUB for a bound k,; ’a for some k;>0. Moreover, there
exists a k;>0 such that for all xoe R" and for all £21

20 | Smax(kily,kllxofl ). (2.2.1.45)

a
Proof: cf Bodson and Sastry (1985).

Remarks:

(1) In the lemma, &, and k; can be quantified if one uses a converse theorem of Lyapunov for
the exponentially stable system, ie. there exists a function v:R"*—R, which saﬁsﬁes
(2.2.1.26), (2.2.1.28) and

V@S- x]|2. (2.2.1.46)

Then &; and &, can be chosen as

= A ’.—2 ._.I + = A\ ’—2 . .4‘7)
k1 . X and k@ ) (2.2 1

where x can be any non-zero positive number.

(2) Although this lemma is stated in a global form, its local version also exists. The

differences are: conditions (i)-(ii) are satisfied locally in, for example, B, so that for some
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o<ro<r, x(t), £(¢) e B, for all t22, whenever xy€ B,, which is possible because of (2.2.1.45)
and if kylg<r.

Theorem 2.2.1.9: ( Bounded Stability Theorem )

If the original system (2.2.1.1) and the averaged system (2.2.1.5) satisfies assumptions
(MA1)-(MA2), (A3), (MA4), and x,,=0 is an exponentially stable equilibrium point of
the averaged system,

then there exists By € K, T>0, and &,>0 such that the solution x(¢) of the original system is
UUB for all e<sg,, and

| x®) | <Byi(e) t21+T (2.2.1.48)

for sufficiently small x(%). O

Proof: Since, by hypothesis, x,,=0 is an exponentiaily stable equilibrium point, Lemmas
2.2.1.7-2.2.1.8 directly imply that z(¢) of the perturbed system (2.2.1.40) is UUB for a bound
' kry,(e) for some k>0. It then follows from (2.2.1.36), (2.2.1.39), and (2.2.1.45) that

hx@) [l < |l 2@ 1] +hr&ie)
< kry,(€) + hrEy(e)
=: By(e) t2t+T (2.2.1.49)

for some T'>0, sufficiently small x(fg), and for all e<¢,, for some €;>0.

Remark: If system (2.2.1.1) is of the form,
x=cAWx+eg(®) x(tp)=xo (2.2.1.50)
for some A:R, = R™ and g:R,— R", with its averaged system (2.2.1.5) of the form,

X = €Ay, X,y + €84y (2.2.1.51)
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then main assumptions in the theorem require (i) A(z) and g(#) be bounded time functions, (ii)
24,=0, and (iii) A;, be Hurwitz.

After discussions on system (2.2.1.1) with different properties in Theorem 2.2.1.5 and
22.1.9, we now focus our attention on the same system but with its property being a mixture

of both. Consider systems of the form,
x = efj(tx.).€) x(0)=xp€ R* (2.2.1.52)
¥ = eR(ty:E) y(0)=yoe R™ | (2.2.1.53)
with the corresponding averaged systems,
Xav = EfioZav+Yav) x0)=x, (2.2.1.54)
Yav = Efoas0Vav) ¥(0)=yo (2.2.1.55)

The following are assumptions about f; and f,,. i = 1,2, for some given £>0, r>0, and
y’e R™

Assumptions:
(A6)  fi(tx.y.e) is Lipschitz in y, linearly in x, i.e. for some 320
I fiexy® = fitxyz | S &l xll 11 y1 =31 (22.1.56)
for all £20, xe B,, ¥, y2€ B,(¥°), and < ¢,
(A7) [Ify is treated as a time function y(?), then f;(t.x,y(¢) .€) satisfies (A1)-(A2).
(A8) f; satisfies (MA1)-(MA2).
(A9) (0,y° is an equilibrium point of the averaged system, i.e. f15,(0,y*)=0 and f5,,(¥))=0,
Jrav satisfies (A3), and for some Z,,ZO
Il fiwvr ) = fin@ D | Sl I 11 =22 | (22.1.57)

for all x;, x, € B,, and ye B,(¥°).



24

(A10) The function dy(tx)=fi(t.x,y,0)=f1,(xy) satisfies conditions of Lemma 2.2.1.2 for any
ye€ B,(¥°), and d(t.y)=£5(t.y.0) - fo0,(¥) satisfies conditions of Lemma 2.2.1.6.

Theorem 2.2.1.10: ( Partial Exponential Stability Theorem )

If the original system (2.2.1.52)-(2.2.1.53) and its averaged system (2.2.1.54)-(2.2.1.55)
satisfy assumptions (A6)-(A10), y,,=y° is an exponentially stable equilibrium point of
(2.2.1.55), and there exists a function v:R"XR™—R,, and non-zero positive constants

0y, Oy, O3, Oy4, O, such that, for all x,, € B,, y,, € B,(°),

& | %5 12 S vy ¥ad S 0 [l 3, 1| (22.1.58)
v |
| 2| seslizl 22159
|| v || TATAL (2.2.1.60)
Yav
V(¥gysYaw) S —€0s || X5 112 (2.2.1.61)

where the derivative is taken along the trajectories (2.2.1.54)-(2.2.1.55),

then there exists €;>0 such that x(¢) of the original system converges to zero exponentially

whenever esg;. O

Proof: First of all, by a Lyapunov theorem on exponential stability, the above assumptions
readily imply the exponential stability of the averaged system (2.2.1.54)-(2.2.1.55). Moreover,
by a proof similar to that of Lemmas 2.2.1.2-2.2.1.3, and Lemmas 2.2.1.6-2.2.1.7, using in par-

ticular (A10), it follows that there exists a transformation of the form,
x=2z) + & wye(t21,2) (2.2.1.62)
y =2y + € woe(t,20) (2.2.1.63)

under which system (2.2.1.52)-(2.2.1.53) becomes
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21 = €f1av (21,20 + £P11(821,22:€) 2;(0)=xg (2.2.1.64)
25 = €f34y(20) + EP12(1:22,€) 25(0)=yo (2.2.1.65)
where ewy,, éwzt, and py;. Py satisfy
l ewietziz) | <&@ [l |l and [ ewse(t.2) || ShrE(e) (22.1.66)
| Puteziz28) | s ll 1l and || pra(6228) | Srya(e)  (22.1.67)

for all z)€ B,, z;€ B/(y,), €S€,. We now take an approach similar to that in the proof of
Theorem 2.2.1.5. The function v is used to study the stability of the perturbed system
(2.2.1.64)-(2.2.1.65). Considering w(z),2;), we have inequalities (2.2.1.58)-(2.2.1.60) still in
effect, with 2z, and 2, replacing x,, and y,, respectively. The derivative of v along trajectories
of (2.2.1.64)-(2.2.1.65) is given by

W(z1,20) = WXY) |tz 20 + (gz—‘:) £p11(t,21,22,€)

+ (%-) ep12(4:21,22,8) (2.2.1.68)
22

where v(x,y) is taken along the trajectories (2.2.1.52)-(2.2.1.53), and can be simplified by
(2.2.1.61), (2.2.1.66)-(2.2.1.67) as

W2 S —eosl 7y [12 +eaayi@ | 21 1% + ecuwae) [ 21 I

=-€ [as - oy (e) - mw:(e))] Iz 0. (2.2.1.69)
Denote
ae) = [as — % %;8;2- arYa(E) ] . (2.2.1.70)

then a(e)q-% as €—0. Let & be such that a(e;)>0, and z; (and hence y) remains in

B,(y°) for sufficiently small (y(tp)—y°) whenever £<¢€;, as has been guaranteed by Theorem
2.2.1.9. Thus it follows that
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V(21,29 S — 2 0e) W(z1,20) 21 (2.2.1.71)

which, by a proof similar to that of Theorem 2.2.1.5, implies that x(rf) converges to zero
exponentially for all e<e; and for sufficiently small x(f), with rate of convergence (at least)

eafe).

2.2,2 Two-Time Scale Systems

Systems of the form (2.2.1.5) studied in section 2.2.1 are to be thought of as one time
scale systems in that the entire state variable x is varying slowly in comparison with the rate of
time variation of the right hand side of the differential equation. In this section, we will study

. averaging for the case when only some of the state variables are slowly varying.

2 1 Decoupl ime-Scal

We consider a class of systems of the differential equation
x=efitXy.€) x0)=xo (222.1)
y =A@y +eg(tx.y.e) ¥O0)=yo (2222)

where xe R" is called the slow state, ye R™ is called the fast state, and f, g are piecewise con-
tinuous functions of time. It can be seen that the system (2.2.2.1)-(2.2.2.2) are decoupled when
e=0.

As previously, we define the limit

+T

1
fal®) = lim — ! ftx,0,0)dt (222.3)

and assume that the limit exists uniformly in ¢ and x. Then the averaged system of the system
(2.2.2.1) and (2.2.2.2) is given by

Xay = Efgy(Xaw) %, (0)=xXg . (222.4)
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Additionally, for some >0, €5>0 we make the following assumptions:

Assumptions

(B1)

(B2)

- (BY)

®B4)
®5)

(x))=(0,0) is an equilibrium point of the system (2.2.2.1) and 2222), ie.
£1,0,0,6)=0 and g(¢,0,0,6)=0 for all #20, and both f and g are Lipschitz in x and y, i.e.
I fexiy1® = ferzy® | S bl ;=2 ll + Bl =y |l (22.2.5)
| 2ex191.8) — 8¢ ny2® | Sl =% |l + Ll y1=y2 (22.2.6)
for all £20, x,, x,€ B,, ¥, y2€ B,, and £<¢&,.
£:(0)=0, and f,, has continuous and bounded first partial derivatives with respect to x
for all xe B,, so that for some [,,20
| Fxr) = S < Ly || 2y =5 ] 229

for all x;, x; € B,.
fit.x,y,€) and g(t.x,y,€) are Lipschitz in &, linearly in x and y, i.e.
| Rexye)) = fexye) | s sl =l +ly 1) |e-g| (222.8)
Il gexye) - ety | SlsCllxl + 1y l) le1-€2 | (222.9)
for all £20, xe B,, ye B,, and g, £;5§&,.
The function d(t.x) =f(t.x,0,0)—f,,(x) satisfies conditions of Lemma 2.2.1.2,

A(x) € R™™ is uniformly stable ( Hurwitz ) for all xe B, i.e. there exist A;, ;<0 such
that

A; S ReA(AW) S Ay (2.2.2.10)

for all xe B,, where ReA(A(x)) is the real part of an eigenvalue of the matrix A(x).

Moreover, for some k,>0,

| a—g’iﬂ‘“ sk,  i=1,2,.n 222.11)
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for all xe B,.

(B6) For some 0<r;<r, x,(De B, on the time intervals considered, and for some r,>0,

Yo€ B,, ( where r, and r, are some constants to be specified later ).

Remark: The assumption (BS) implies that there exists Q,P(x)e R™™ such that, for some

non-zero positive constants py, py, ¢y, and ¢,
Pl S P(x) Sppl (2.2.2.12)
-l £ -0 =AXTPX) + P)AR) S —q, ] (22.2.13)

for all xe B,.

As in the One-Time-Scale case, we will first give the following preliminary lemma analo-
gous to Lemma 2.2.1.3. This lemma allows one to perform a similar transformation so that the
original system (2.2.2.1) is reformulated as a perturbed version of the averaged system
(2.2.24).

Lemma 2.2.2.1 (Perturbation Formulation of Averaging with Coincident Equilibrium

Point)

If the original system (2.2.2.1) and (2.2.2.2), and the averaged system (2.2.2.4) satisfy
assumptions (B1)-(B4),

then therg exist functions w, and &, as in Lemma 2.2.1.2, and a transformation of the form,
x=2z+eEw(t2) 2.2.2.14)
under which system (2.2.2.1) becomes
z = €f,(2) + epy(t,2.€) + €px(6,2..€) 2(0) = x (2.2.2.15)

where
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Il 1tz | <&@k llzll  and I p2ezye) | sk llyll  222.16)

for some &y, £>0. O
Proof: See Appendix A.

We are now ready to state the averaging theorems conceming system (2.2.2.1)-(2.2.2.2).
The first Theorem 2.2.2.2 is an approximation theorem similar to Theorem 2.2.1.4. It guaran-
tees that the trajectories of the slow variable x of the original system and those of the averaged
system are arbitrarily close on compact intervals when € tends to zero. We prove the following
theorems for the case where A(x)=A is constant ( see assumption (BS) ). The proof in the gen-
eral case can be found in Bodson et al (1986).

Theorem 2.2.2.2: ( Basic Averaging Theorem )

If the original system (2.2.2.1) and (2.2.2.2), and the averaged system (2.2.2.3) satisfy
assumptions (B1)-(B6), |

then there exists y; € X such that, given T20,
| 2()) =25, I| < wa(e) br (22.2.17)

for some by, €r>0, and for all te [0,7/e), e<er. Further, yi(e) is of the order of
e+E,(¢) (as defined in Lemma 2.2.1.2). O

Proof: We estimate the error (x~x,,), following a proof similar to the that of Theorem
2.2.1.4. First, we have that

| x~zll <&@l 2]l - (22.2.18)

Then, the error z—x,, can be estimated using from (2.2.2.15):

'g't'(z—xav)=8(f;y(2) —faZa)) +ED\(12.8) +EpA(ti2y8)  2(0)x,(0)=0  (2.2.2.19)
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for all te[0,T/€), x,(H)eB,, F<r. As in the proof of Theorem 2.2.1.4, we will show that, on
this interval, and for as long as x, ze B,, the errors z—-x,,, and x-x,, can ‘be made arbitrarily

small by reducing &.

Using Lemma 2.2.2.1, we integrate (2.2.2.19):

: t

2% 01l < el,v‘[ll 2(1) =X || dt + e&;(e)klt[ | z2¢t) || e

1
+ F—"z! ly®lide. (2.2.2.20)

Further, y(f) can be calculated from (2.2.2.2):

4

y() = My + & 1[ AVt xy)dt . (22.2.21)

Since A is Hurwitz, we have that
et sme™ (222.22)

for some m, A>0, and

Iy®l smllyoll e + eml[e"“""( Ll x|l +4]l yoide (22.2.23)

or

[ 4 t
Xyl < mlyoll + emlsl[e“ | x) || dt + emi, 1[ ley@ller. (22224

Applying the generalized Bellman-Gronwall Lemma,

!

I &y <m [ yoll €™+ { emly || x| ™ eie . (2.2.2.25)

Define A(€)=A-&ml,, and €', (O<e’; <€) so that A(€)>0 for e<e’y. It follows that

ly®ll < mre™® + embyrin(e) . (2.2.2.26)
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Using this estimate in (2.2.2.20), and using the generalized Bellman-Gronwall Lemma again

y embeyl '
20—l < | [éz(e>k1h+mkzre"‘“"+—u§;’i] e’

T
< (e+82(0) [kyr+ migrley mkzl""r] [e ]

Mertel,, Mo

Lav
T =ys(e)ar. (2.2.2.27)

As in Theorem 2.2.1.4, it follows that, for some by

| x(e)=x,, O | Swa(©) b . (2.2.2.28)

By assumption, [|x, (0] S7/<r. Let er (0<er<¢’)) such that ys(epbr< r—7. Further, let yo,
and &y sufficiently small that, by (2.2.2.26), y(t) € B, for all te [0,77¢). It follows, from a sim-
ple contradiction argument, that the estimate in (2.2.2.28) is valid for all z<[0,T/€], whenever

eser.

Theorem 2.2.23: ( Exponential Stability Theorem )

If the original system (2.2.2.1) and (2.2.2.2), and the averaged system (2.2.2.4) satisfy
assumptions (B1)-(B6), and x,,=0 is an exponentially stable equilibrium point of the
averaged system,

then there exists €,>0 such that the equilibrium point (x,y)=(0,0) of the original system is
exponentially stable for all e<e,. O

Proof: Since x,,=0 is an exponentially stable equilibrium point of the averaged system, there
exists a function w(x,,) satisfying (2.2.1.26)-(2.2.1.28). We now study the stability of the sys-
tem (2.2.2.15), (2.2.2.2), and consider the following Lyapunov function,

Wz.y) = Wz2) + %—yTPy (2.2.2.29)
2
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oy ()| 2+ [y | < 9zy) < o (lz]| 2+ |y ]| (22.2.30)

with o;=min (a,.%pl). The derivative of ¥ along the trajectories of (2.2.2.15), (2.2.2.2) can
2
be estimated, using the previous results,

Vi(zy) S—-e0y || ]| 2+ ek Ex(e)oy | 2] 2

% 2
+ekyoyl 2]l iyl s 0! Iyll

+aehop|l z[l [|yll +2eh05 1y ]2 (2.2.2.31)

for e<e, (so that, in particular, || x|] 2|l z||). Note that since ab<(a®+E?)/2 for all a,beR, we
have

ellzl Iyl 3 (e 120+e20117) 0223

so that

vi(zy)S—¢ [%—&;(e)km-e"’k"% -28"313%] I z||2

k
- [—i“iq‘-w&-e’”—’ﬂ-ze”’wa] Iyll?
D2 2
=-2ea, ae) [ 2} 2-qe) | y[I % . (2.2.2.33)

Note that, with this definition, a(e)—)-%--z- as €0. Let g,(0<g4<g;) be sufficiently smail
that a(e) >0, g(€)>0, and 2ea, a(e) < q(€) whenever e<g4. Consequently,

#(z,y) S -2e0(E)W(z,y) (2.2.2.34)
and.

Wzy) S W2(te) ,y(tg) ) € 2HEX) (2.2.2.35)
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As in Theorem 2.2.1.5, this implies the exponential convergence of the original system, with
rate of convergence eo(e). Also, for x(tp) and y(fo) sufficiently small, all signals are guaranteed

to remain in B,, so-that all assumptions are applicable as € goes to zero.
]
Remark: The proof of Theorem 2.2.2.3, as of Theorem 2.2.1.5, gives a useful bound on the

rate of convergence of the original system, and this bound again tends to the bound on the rate

of convergence of the averaged system.

Now we change our focus of attention to a two-time-scale system which does not have
(xy)=(0,0) as an equilibrium point, similar to the case of one-timer-scale systems under
assumption (MA1). However, here we will consider a more general case where x,,=0 also

may not be an equilibrium point of the averaged system. These are indicated in the following

modified assumptions:

Modified Assumptions:

(MB1)f and g satisfy assumption (B1) except that (x,y)=(0,0) is not an equilibrium point of
the system (2.2.2.1)-(2.2.2.2), and for all xe B,, y€ B,, £€S¢g there exist [, [;20 such
that

| Aexye) | < and | sexy O Il <45 . (2.2.2.36)

(MB2) f,, satisfies (B2) except that f,,(0)#0.
(MB3) f and g are Lipschitz in &, but not linearly in x and y, i.e.
| fexye)-fexye) | <islei—g | (22.2.37)
| gCtxye)-gtxyeD) | <lley—e; | . (2.2.2.38)

(MB4) The function d(z,x) satisfies conditions of Lemma 2.2.1.6.
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Lemma 22.2.4: (Perturbation Formulation of Averaging with Non-Coincident Equili-
brium Point)

If  the original system (2.2.2.1)-(2.2.2.2), and the averaged system (2.2.2.4) satisfy assump-
tions (MB1)-(MB4),

then there exist functions w, and &,, as in Lemma 2.2.1.6, and a transformation of the form,
x=2z+ ewy2) (2.2.2.39)
under which system (2.2.2.1) becomes
z = ef,(2) + epy(1.2.€) +.ep2(t,z.y.e) 2(0) = xp (2.2.2.40)
where for some k3, k4>0

N p1tz®) | SksrEa(e)  and | p2Gtzy®) I Skallyll - (22241)

a
Proof: See Appendix A.

Theorem 2.2.2.5: ( Bounded Stability Theorem )

It the original system (2.2.2.1) and (2.2.2.2), and the averaged system (2.2.2.4) satisfy
assumptions (MB1)-(MB4), (B5)-(B6), and there exist a function v:R"— R,, and non-

zero positive constants @, 0tp, 03, &4y, and & such that for all x,,€ B,

oy [ xall 2 S V() < 0 [l lI (22.2.42)

2 “ 22.2.43

| 2| etz 22243

V(xa) S —€ || Xl (g | %5 [l =3) | (2.2.2.44)

2 L, 2 (5<r (2.2.2.45)
| 2q

where the derivative in (2.2.2.44) is taken along the trajectories (2.2.2.4),
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then there exist es>0, p>0, and B, € K such that the solutions of the original system are

UUB whenever eSé&s, and
Ix()]l <Be)+pd 2t+T (2.2.2.46)

for some T>0, and for sufficiently small x(%) and y(t)). O

Proof: The proof of Lemma 2.2.1.8 and the current hypothesis imply that x,,(¢) of the aver-
aged system (2.2.2.4) is UUB for a bound p’ 3 for some p’>0. For sufficiently small x(ty), eq.
(2.2.2.45) directly implies that x,,(f) € B, for all ¢>#. Now an approach similar to that used in
the proof of Theorem 2.2.2.3 is taken here. Consider the following constructed Lyapunov func-
tion (i.e. P(x) replaces P in (2.2.2.29)),

Hzy) = (@) + % Y PGy (2.2.2.47)
so that by (2.2.2.12) and (2.2.2.42)
oy (2l 2+ 1yl1%) < 9ey) < e (lzll 2+ 1y 112) (22.2.48)

where o;=min ( a‘.i;:- p1)- The derivative of ¢ along the trajectories of (2.2.2.40), (2.2.2.2)

can be estimated, using Lemma 2.2.2.4 and (2.2.2.43)-(2.2.2.44),

H(z,y) = ¥(xz)

P (%) [epx(t.z,e)ﬂpz(t,z,y,e)]

o 20, 2 rlw 9PR) -
-— 4 e v P o — 2
pzy’Qy y P(x)g y [5 ax 5|7
< —ellzfl (aq [l zl] =8) + er€x(e)ks0n || [l + ekl 2]l [l ¥l

l
~20 242t | B | g2 2eant Iyl @2249
P2 py I dx

Since P(x) satisfies the linear Lyapunov equation (2.2.2.13), Cramer’s rule and assumption
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(BS) implies the continuous differentiability of P(x) for all xe B,. Hence, there exists some
k>0 such that

" M‘;‘L‘l " <k, xeB, (2.2.2.50)

Using this result, and (2.2.2.32), we can reduce (2.2.2.49) to give

<—e || (m-e"’%k-‘-) lzll -8- askaréz(e)]

0441 k 2l OakaDs
- 1- -2E0!
fixll 7 —(1-¢ . S, ——=)[Iyll az]
=—e|lz]| (oe) || z|| 8- zkarEa(e))- Il ¥ll (qCe) I ¥ll —2e02f, ) . (2.2.2.51)

Note that a(e) =, and g(€) = 0z qy/p, as e—0, and then let €5>0 be such that a(e’s)>0
and q(¢’s)>0. Moreover, since (& + b3) 2 (aya + by by)2 /(a3 + b3) for all ay, by, ay, by€ R,

we have

(eat®) llz[12+q(® Iyl1*) 2 (a(—s)+ )t ez ||zl + NIyl P

= Ba(e) (e ]| z[| + |y l] )? (22.2.52)

for all e<¢€’s so that (2.2.2.51) can further be simplified by

§<-(e [zl + Iyl [Bs(e)(e'”. Izl + 11yl )-el’z(w4(s)+8)] (222.53)
where y,(€) defined by
V() = oy ks rEx(e) +2€ % o (2.2.2.54)

and is a class K function of &. Again, by a proof similar to that of Lemma 2.2.1.8, it follows
that z(#) and y(s) are UUB, and for some T>0 and x>0,

5 + Y4(E)

2 2
zl12+ Iyl 5(“‘5""‘) B,(e) Bi(e)

)2 t26+T. (22.2.55)
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This implies that
lz]l and {lyl} S‘Jl+e+x‘\/ :? (st)+ ;’3‘8) t2t0+T . (222.56)
1

Using (2.2.2.45), it then follows that there exists €”5<¢&’s such that, for sufficiently small x(¢g)
and y(to), z(t)e B, and y(t)e B, for all t 2¢,. Finally, following the proof of Lemma 2.2.2.4,

we have
fx@)ll < Nz +hrExe) . - (22257
Denote
'\/ 2 JLYEYR \ (€) + hrEye) (2.22.58)
oy  Bs®
and
\/ Jiretx (2.2.2.59)
oy By®)

Then there exists £5<€”s such that
By(es) +pe,d< 7 (2.2.2.60)

so that x(¢) remains in B, for all ¢ 2¢, whenever £<es. In conclusion, x(¢) is UUB for a

bound B,(€)+p 5, where p :=pg,, whenever e<é&s.
]

Remark: Note that, when §=0, x(¢) is UUB for a bound B, e K. This result will then be

similar to that of Theorem 2.2.1.9.

As before, we consider a system of the following form:
x=ef1(tx.Ly.€) x(tg)=xoc R™ (2.2.2.61)

E=ef20tx.y.0 Lto)=toe R™ (2.2.2.62)
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y =A@y + eg(tx.by.€) Y(to)=yo€ R™ (2.2.2.63)

of which the averaged system exists as follows:

Zav = €f1ay(Xays Ear) X () =Xo (2.2.2.64)

Cav = €20y (ays L) Canltd=Co (2.2.2.65)

For some given {°e R™, the following are assumptions about f; , fiy , i = 1,2, and g.

Assumptions:
(B7) Treat { as a time function {(¢), then fi(t.x, {(0) y.€) and g(z.x,L(f).y.€) satisfies (B1),
(B3), whenever {() € B().

(B8) f; is Lipschitz in {, linearly in x and y, i.e. for some ;20
| AiexG1ye) = fiex Loy | < Gl +1x1) 18-C (2.2.2.66)
for all £20, and for all xe B,, ye B,, {;,{;€ B(L?).
B9) (xLy)=(0,0°0) is not an equilibrium point of f;, and for some /20
l2extye) | <1, (22.2.67)

for all £20, and for all xe B,, { € B({°), ye B,, and €<¢€,.

(B10) (0,£% is an equilibrium point of the averaged system (2.2.2.64)-(2.2.2.65), and for some
by hay20

| fiav 1D = fra 1D || S by | 11 = 22 ] (22.2.68)
| foay x81) = Frme 8D || S o | &1 = G2 I (22.2.69)
for all ¢20, and for all x;,x€ B,, ;,{;¢€ B(L9.
(B11) f; is Lipschitz in &, i.e. for some /320
I £exLye) -Hextyed | Slgle el (22.2.70)

for all £20, and for all xe B,, { e B(£°), ye B, €;,6;5¢€.
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(B12) The function dg (%) =f; (¢:.x,,0,0)—fia (x.0) satisfies conditions of Lemma 2.2.1.2 for
all {e B, (%, and the function d (t.5)=f (tx.£,0.0)—f25,(x,}) satisfies conditions of
Lemma 2.2.1.6.

Theorem 2.2.2.6: ( Partial Exponential Stability Theorem )

If the original system (2.2.2.1)-(2.2.2.2), and the averaged system (2.2.2.4) satisfy assump-
tions (BS)-(B12), (0,{°) is an exponentially stable equilibrium point of the averaged sys-
tem (2.2.2.64)-(2.2.2.65), and there exists a function v:R"* xR — R,, and non-zero posi-
tive constants ¢, Otp, O3, Gy, O such that for all x,,€ B,, L, € BAL"),

0y || %y 12 S VZays G S 02 | 200 12 (22.2.71)
ov
[| — | < sl =l . @22m
av 2
|| i | AN 2.2.2.73)
‘.'(xav'cav) s "8‘15 " Xav “ 2 (2-2-2-74)

where the derivative in (2.2.2.74) is taken along the trajectories (2.2.1.64)~(2.2.1.65),

then there exists €>0 such that x(r) of the original system (2.2.2.61) converges to zero
exponentially for all esgs. O

Proof: The proof relies on both a theorem and a converse theorem of Lyapunov for
exponentially stable systems. Under the above assumptions, in particular (B12), Lemmas
22.12,2.22.1, 2.2.1.6, and 2.2.2.4 imply that there exists a transformation of the form

X =2z) + ewge(t21.20) (22.2.75)
§ =z; + Ewge (8,21,220) (2.2.2.76)

under which the system (2.2.2.61)-(2.2.2.62) becomes



21 =€ f1av (2122 + € P11 (8.21,22,8) + € P 12(£:21,22.) 1E) z)(tg=x0 (222.77)
Z3 =€ faay (21,22) + € P21 (1.21,22,€) + € P2 (£.21,22.) £) z(t9=Co (22.2.78)
where

lpull <&@k izl and lpill Sk llyll (22.2.79)
lp21ll < r&axe)ks and lp22ll Skslly _ll . (2.2.2.80)
Since (0,£°) is an exponentially stable equilibrium point of the averaged system, by a converse

Lyapunov theorem, there exists a function v;:R"'XR"-—>R, that satisfies (2.2.2.42),
(2.2.2.43), and

¥ 1oy oLav) S = €04 ([l xa 124+ 1800 1) (222.81)

where the derivative is taken along the trajectories (2.2.2.64)-(2.2.2.65) (i.e. 6=0). Hence, by
the remark after Theorem 2.2.2.5, there exists €>0 such that, for sufficiently small x, &5, and
yo the solutions of the original system (2.2.2.61)-(2.2.2.63) are UUB for a bound which is a
class K function of €, and all signals remain‘in B, or B,({°) respectively for all ¢ 2¢,.

We now study the variable x(¢) of the system (2.2.2.61) by considering the following
function ¥, similar to that in the proof of Theorem 2.2.2.5, defined by

$(z2120y) = V(2D + % yTP(x)y (2.2.2.82)
which then satisfies
o (N zy | 2+ y |D$9ELz2p) S (Hz | 2y 1D (2.2.2.83)

where o, :=min(a,.;2p 1). The derivative of ¥ taken along the trajectories of the perturbed
2

system (2.2.2.77)-(2.2.2.78), (2.2.2.66) becomes

=V Xayobav) (x,,.g,,,)n(z,,z,)"'e( )(P11+Plz)+€(—)(le +p22)

_&y Qy +2—-yTP(x)g + [z_aﬂ‘l. ] (2.2.2.84)
P2 P2 Pz

1 9x;
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where W(x,,,0s,) is taken along the trajectories (2.2.2.64)-(2.2.2.65). By carrying through the
estimation of the R.H.S. of above equation, similar to that used in the proof of Theorem
2.2.2.5, we have

v<-2eqa®) | 2112 - q@) lIyll2 (22.2.85)

where a(e)e%% and q(e)—»%q, as €—0. Let ggS¢€’g be such that a(e)>0, g(€)>0, and

2e0,0e)<q(e) for all e<egq, then the rest of the proof will just follow that of Theorem
22.23.

The following, which is a corollary to Theorem 2.2.2.5 and 2.2.2.6, deals with a case,
similar to that in Theorem 2.2.2.6, where only the bounded stability instead of the exponential
stability can be expected.

Corollary 2.2.2.7:

It the original system and the averaged system satisfy the conditions in Theorem 2.2.2.6

except that
V(Xays L) S €05 | Xl C(ll 20l =8) (2.2.2.86)
where
Ll . P2 (5., 22.2.87)
o |0 g

then there exists €>0, p>0, and B4 € K such that the solutions of the original system are
UUB whenever e<¢’q, and

x| < Pate) +pd t2to+T (22.2.88)

for some T>0, and for sufficiently small x(to), y(%), and (t)—-C°. O
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Proof: Using the proof of Theorem 2.2.2.6, the derivative of the constructed Lyapunov func-
tion ¥ in (2.2.2.82) along the trajectories (2.2.2.77)-(2.2.2.78), (2.2.2.66) satisfies a condition
similar to that in (2.2.2.53). Hence, the conclusion readily follows from the proof of Theorem
222.5. "

i me-Scal

We now discuss a more general class of two-time-scale systems, arising in adaptive con-

trol:
2 =ef(txy'£) (2.2.2.89)
Y = A®Y + h(tx)+eg’(tx.y,€) . (2.2.2.90)

We will show that system (2.2.2.89), (2.2.2.90) can be transformed into the system (2.2.2.1),
(2.2.2.2). In this case, x is a slow variable, but y’ has both a fast, and a slow component.

The averaged system corresponding to (2.2.2.89), (2.2.2.90) is obtained as follows.
Define the function

w(t.x) = { ANV x) de (2.2.2.91)

and assume that the following limit exists uniformly in ¢ and x.

+T

fo=lmL [ razmen0) . 2.22.92)
T-=T 4
Intuitively, w(t,x) represents the steady-state value of the variable y with x frozen and =0 in
(2.2.2.90). Consider the transformation,
y=y —witx). (2.2.2.93)

From (2.2.2.91), w(tx) satisfies
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-33-1: w(tx) = A(x)w(tx) + h(tx) w(1,0)=0 (22.2.94)

Differentiating (2.2.2.93), we have that

>"=A(x)y+e[— 3—'%?! (txy+w(tx),e)+g (¢t xy +W(r,x).0)] (2.2.2.95)

so that system (2.2.2.89), (2.2.2.90), is of the form (22.2.1), (2.2.2.2), with

fitxy€) = f(txy+w(tx).e) (2.2.2.96)
gtx,y.€) = -Maf-‘l Ftxy+w(tx),€)+ g’ (tx.y+w(tx).€) (2.2.2.97)

The averaged system is obtained by averaging the R.H.S. of (2.2.2.96) with y=0, so that the
definitions (2.2.2.3), and (2.2.2.92) agree.

To apply Theorem 2.2.2.2-2.2.2.3, we require that assumptions (B1)-(B6) be satisfied. In
particular, we assume similar Lipschitz conditions on f. &, and the following assumption on
h(ex):

Assumption:

(B13) For all £20 and xe B,, (¢,0)=0 and

I ﬁ%’lu <k i=1,,n. (222.99)

This new assumption implies that w(z,0)=0, and

I i”gglll <K i=1,--,n (2.2.2.99)

for all 20, xe B, since

ax,- i ax;

!
ow(tx) _ g [ ACXE=1) ahat:x + [_3_ e«x)(l-t)] h(t ,z)] dat (2.2.2.100)

and entries of &A®* and ai AP are of the form o(x) ' eP®*, where a(x), B(x) are continuous

X



functions of x, Ye Z,, and P(x)SA,<0 by assumption (BS). This condition is sufﬁcignt to
guarantee Lipschitz conditions for the system (2.2.2.1), (2.2.2.2), given Lipschitz conditions for
the system (2.2.2.89), (2.2.2.90). ’

However, if Theorem 2.2.2.5 is to be applied here, the following modified assumption is

imposed instead:

Modified Assumption:

(MB13) For all 20 and xe B, h(t.x) is a bounded function, and

I ﬁ'gij"—)ll <k i=1,--,n (22.2.101)

This assumption implies, in general, w(¢,0)+0, which then leads to the condition (MB1), i.e.
10,0,e)#0 and £(£,0,0,e) 0.

Consequently, the theory developed earlier can be directly applied to systems of the form
(2.2.2.89), (2.2.2.90). The key to the preceding transformation is the fact that the new state

variable y is truly a fast variable, so that the two time scales have been decoupled.

veraging Theory for Instability of namical t

In this section, we will develop averaging theory for instability of one-time and two-
time-scale dynamical systems respectively. To start with, we give the following preliminary
definitions.

Definition 2.3.1.1: ( Instability of a Dynamical System )
The equilibrium point x=0 of a differential equation is said to be unstable if there is some ball
B, of radius 7 such that for every 8>0, no matter how small, there is a non-zero initial state

x(0)=xg € Bj such that the trajectory starting from x, eventually leaves B,. O
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Definition 2.3.1.2: ( Decrescent Function )

A continuous function v:R,XR"*— R is said to be decrescent if there exists a élass K function
B such that, for all 20 and x€ B,,

vtx) S B(llxlD) . 2.3.1.1)

ne-Ti 1
Again, we consider system (22.1.1) and its averaged system (2.2.1.5) with the same
setup as given in subsection 2.2.1, where the stability and boundedness properties of both sys-
tems are closedly related. In this subsection, such a relation will be shown to hold for the ins-
tability property as well. The following theorem provides sufficient conditions under which the
instability property of the averaged system will imply that of the original system.

Theorem 2.3.1.1: ( Instability Theorem )

If  the original system (2.2.1.1) and the averaged system (2.2.1.5) satisfy assumptions (Al)-
(AS), and there exists a decrescent function v:R®*—= R and non-zero positive constants

a,;, & such that for some x,, arbitrarily close to the origin ¥(x,,) 20, and

av(xav) .
|| — || <o Il 23.12)
W(x,) 2 ey x5 [12 (2.3.1.3)

where the derivative in (2.3.1.3) is taken along the trajectories (2.2.1.5),

then there exists & >0 such that the equilibrium point x=0 of the original system is unstable
for all ese,;. O

Proof: ‘The proof is based on a theorem of Lyapunov for unstable systems ( see, for exam-

ple, Hale (1980), p. 314 ). Under the hypotheses, the equilibrium point x,,=0 of the averaged
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system (2.2.1.5) is unstable. From Lemmas 2.2.1.2 and 2.2.1.3, the original system can be
transformed into the perturbed system (2.2.1.16). Now, we will study the instability property of
that system, using the same function v. Cpnsider v(z) where inequalities in the hypothesis are
still valid, with z replacing x. The derivative of v(z) taken along the trajectories of (2.2.1.16) is
given by ' '

2) = k) s + (2 XEP(H2)) 23.14)

and, using previous inequalities ( including those from Lemma 2.2.1.3 )
(2) 2 ey || 2l 2~y oy || 21
=e(a-yi© o) [|z]| =ea@ || 2||? (2.3.1.5)

for all e<g,. Let e7<¢; be such that a(e)>0 for all e<e,, then again by use of a Lyapunov
instability theorem z=0 is an unstable equilibrium point. Since Lemma 2.2.1.2 implies

lzll s T-l!igllléi . (2.3.1.6)

the instability of the equilibrium point x=0 of the original system is obvious.

Remark: Note that if the original system is linear as in (2.2.1.11), and its averaged system
exists and has the form

Sigy = EAgyXay + (23.1.7)

then conditions in the theorem can easily be verified if, for example, one of the eigenvalues of
A,y has positive real part and none of the rest of the eigenvalues have zero real parts. Thus, the

function v(x,,) can be chosen as

v(x,,) = X3, P x,, (2.3.1.8)

where P satisfies the Lyapunov equation
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Q=ALP+PA,, (23.1.9)

for some positive definite matrix Q ( see Ostrowski and Schneider (1962) ).

Sometimes, a function v may not be found to satisfy (2.3.1.3). However, by imposing
more conservative conditions, we can obtain stronger results which will be useful in the sequel.
This is stated in the following as a corollary.

Corollary 2.3.1.2: ( Regional Instability )

If the original system (2.2.1.1) and the averaged system (2.2.1.5) satisfy assumptions (A1)-

(AS), and there exists a decrescent function v:R"— R and non-zero positive constants

0y, 0, 03, 9, such that <« and
oy 2112 S v(xay) < 0 120 ]I (2.3.1.10)
av
“ 3n. “ <o i xall (2.3.1.11)
Wxg) 2 €04 [| %0 ll (lxall -8) (23.1.12)

then there exists €5>0 and r;,<r such that, for any xp€ B,|B, , x(t) will eventually leaves B,

whenever esgg O.
Proof: Again by a theorem of Lyapunov for unstable system, (2.3.1.10)-(2.3.1.12) imply

Ixll A ,% 5:=r 2.3.1.13)

where 7 <r (by assumption <), then x,(#) will always stay outside the ball B; and eventu-

that, if x, satisfies

ally leaves B,. To study the original system for the same property, we consider the function
W(z) as in the proof of Theorem 2.3.1.1 and take its derivative along the trajectories of the per-
turbed system (2.2.1.16):
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wW2) = ‘;(xav)

e+ (SE) (ep002))
o
2eayz]] [(1-;51(8)) lzll —8]

= eay || zl| ((®) [Iz]] -8). (23.1.14)

Note that with this definition, a(e)— 1 as e—0. Let gg<S¢€; be such that a(eg)>0 and

<r (2.3.1.15)

Tig =

a(eg)

so that z(¢) will stay outside a ball B 5 for all t21, whenever || x|l 2r;, and e<eg, and 2()
o)

will eventually leaves B,. The conclusion follows from (2.3.1.6).

wo-Ti 1 m

In this subsection, we will only be concemed with case of decoupled time-scales. Obvi-
ously, as has been discussed in subsection 2.2.2, such results can be easily extended to the case

of mixed time-scales.

Here, we consider the system (2.2.2.1)-(2.2.2.2) and its averaged system (2.2.2.4). The
following theorem will pmVide conditions under which the instability property of the equili-
brium point x,,=0 of the autonomous averaged system will indicate the same property of the

equilibrium point (x,y)=(0,0) of the original nonautonomous system.

Theorem 2.3.2.1: ( Instability Theorem )

If  the original system (2.2.2.1), (2.2.2.2) and the averaged system (2.2.2.4) satisfy assump-
tions (B1)-(B6), and there exists a decrescent function v:R" — R that satisfies conditions

given in Theorem 2.3.1.1,
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then there exists €9>0 such that the equilibrium point (x,y)=(0,0) of the original system is
unstable for all e<g&. O

Proof: The proof will be similar to that of Theorem 2.2.2.3. By hypothesis, the equilibrium
point x,, =0 of the averaged system is unstable. Now, we construct another decrescent function

¥, using the given v:
= 9 T
ﬁ(z,y)-v(z)--q—y P(x)y ;>0 2.3.2.1)
1

where P(x) and g, are defined in (2.2.2.13). It is clear that ¥ is a decrescent function,
¥(z.y)>0 for some (z,y) arbitrarily close to the origin in R™ XR™, and it satisfies (2.3.1.2), x
being replaced by (z,y). This new function ¥ is then used to study the instability of the equili-
brium point at origin of the original system (2.2.2.1)+(2.2.2.2) through the perturbed system
(2.2.2.15) and (2.2.2.2). The derivative of ¥(z,y) along the trajectories (2.2.2.15), (2.2.2.2) can
be shown to be bounded below. Using the previous inequalities:

$z.y) 29 () |5 ms + 03 1y llz-Zs%:-pz Iyl s llzll +a iy )
~ea | £ |yt 117 322

for e<e,, where v(x,,) is taken along the trajectories (2.2.2.4). Then, using the proof of

Theorem 2.2.2.3, we can express the bound more concisely as:

ok 3o
1 2+ 3 3P2) "2“2
2 q

Tizy) 2¢ [02—5..2(8)011"1-3"3(

ok
+ [ag-e '22-82

lsoapa _ 2rk,
US| US|

l
(U, +E() kg +h3) - e”’—’—‘;"l—"—z ] Mk

=ea@llzI2+q@ Iy l? (2.32.3)
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Note that, with this definition, a(€)=> &, and g (€) >3 as €—0. Let g5<¢g, be such that
o(e), q(€)>0 for all e<ey. Then, using a Lyapunov instability theorem as before, we can
readily conclude that the equilibrium point (z.y)=(0,0) of the perturbed system (2.2.2.15),
(2.2.2.2) is unstable for all e<e;. Consequently, from Lemma 2.2.1.2 and 2.2.2.1, the same
conclusion will hold for the original system (2.2.2.1)-(2.2.2.2).

As in the case of one-time-scale, we also consider a two-time-scale system which fails to
have a function v satisfying (2.3.1.3). A useful result for this type of system is given in the
following corollary.

Corollary 2.3.2.2: ( Regional Instability )

If the original system (2.2.2.1)-(2.2.2.2) and the averaged system (2.2.2.4) satisfy assump-
tions (MB1)-(MB2), (B3)-(B6), and there exists a decrescent function v :R" =R and

non-zero positive constants ¢, 0, &3, d, such that 6 «<r and

oy 1% Il S v(xa) S 0 llxg 112 (2.32.4)
Jdv

| = | s ezl 2.32.5)

¥ (o) 2 €05 [ %0 [| (125 1| =8) 2.32.6)

where the derivative in (2.3.2.6) is taken along the trajectories (2.2.2.4),
then there exists £,0>0 and r;,,<r such that, for any xq€ B, 1B, , x(¢) will eventually leaves

B, whenever esgyg. O

The proof is similar to that of Corollary 2.3.1.2 and Theorem 2.3.2.1, and therefore is omitted.

The following is an analog of Corollary 2.3.2.2 and also a corollary of Theorem 2.3.2.1.
It deals with a system for which assumptions (B5)-(B12) hold.
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Corollary 2.32.3:
If  the original system (2.2.2.1)-(2.2.2.2), and the averaged system (2.2.2.4) satisfy assump-
tions (BS)-(B12), and there exists a function v :R"'xR"*—R,, and non-zero positive

constants o, 0, i3, 04, 05, and S« such that

oy | % 12 S v (xay » Cav) S 02 | 20 112 (2.32.7)
v )
| 2| s etz @329
v 2
E - | <l 2:32.9)
‘.'(xav ’Cav) 2 —E05 “xav " ( “xav " -8) (23-2-10)

where the derivative in (2.3.2.10) is taken along the trajectories (2.2.2.64)-(2.2.2.65),
then there exists €;,>0 and 7, <r such that, for any xoe B, 1B, , x(¢) will eventually leave

B, whenever e<g;;. O

Proof: The proof is similar to that of Theorem 2.2.2.6. A Lyapunov function ¢, similar to
that in (2.2.2.82), is constructed. The derivative of 7 along the trajectories of (2.2.2.77)-
(2.2.2.78), (2.2.2.66) satisfies a condition similar to that in (2.3.2.10). The conclusion then fol-
lows from the proof of Corollary 2.3.2.2.

2.4 Concilunding Remarks

In this chapter, averaging theory both for stability and instability of one-time and two-

time-scale systems has been presented. The elegance of this theory lies in that a complicated

analysis of a nonlinear nonautonomous dynamical system can be replaced by a simpler analysis »
of its approximate automonous averaged system. Theorems developed under this theory pro-

vide sufficient conditions which allow one to extract properties, such as exponential stability,
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bounded stability, and instability, of the original system from its averaged system. Averaging
also serves as a good approximation method that provides useful information such as the rate

of convergence of an exponentially stable system.

The novelty of the averaging theory presented here includes a relaxation of the traditional
almost periodic condition and a more concise proof of the construction of the coordinate
transformation as a fundamental tool. Though more conditions are required, stronger results
have been obtained. These conclusions will be especially useful in 1a£er analysis of adaptive

systems.
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Chapter 3 Frequency Domain Analysis of Adaptive Identifiers

3.1 Introduction

The problem of parameter identification ( or estimation ) is to identify the parameters of
a given model of a plant using input-output data. Algorithms for identifying transfer functions
can generally be distinguished into two classes: off-line and on-line. In the off-line case, it is
presumed that all the data are available prior to the analysis. C.K. Sanathanan and J. Koemer
(1963), P.A. Payne (1970), and H. Stall (1984) use frequency response data to estimate the
parameters and, in turn, to synthesize the transfer function off line. In contrast to the off-line
approach, the on-line approach requires that the parameter estimate be updated in real time.
On-line parameter identification is referred to as adaptive identification. Parameter convergence
proofs for adaptive identifier were given by Sondhi and Mitra (1976), Anderson (1977),
Kreisselmeier (1977), Morgan and Narendra (1977a & b), and Goodwin and Sin (1984).

In this chapter, we use averaging to simplify the dynamics of adaptive identifiers. In
order to bring the tools of Chapter 2 to bear on this topic, we choose a slow rate of parameter
adjustment. An additional pay-off of this assumption is a frequency domain interpretation of

the convergence analysis.

3.2 General Identifier Structure

In this section, we consider the identification of a transfer function

)=k %% (3.2.1)
P

describing a single-input single-output (SISO) LTI plant, satisfying the following assumptions:
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(A1) p(s) is a proper, exponentially stable transfer function.

(A2) 4,(s) and Jp(s) are coprime monic polynomials, and dp (s) is of known degree n.

The adaptive identifier considered here has a structure similar to that of Kreisselmeier
(1977) and is shown in the Figure 3.2.1. The filter blocks F, and F, generate signals v,(¢) and
vo(t), which are smoothed derivatives of the input u(¢) and of the output y,(¢) of the plant

respectively. These blocks have identical transfer functions:

1
Ny
Bi(s)= =1 |° R* 22
1(s) .192(3) o 3 € R™(s) (3.2.2)
st

where A(s) is, by choice, an ath order Hurwitz polynomial. The output of the identifier y, (¢)
is obtained through the adaptive gains C(¢), D(t)e R", and c,,1(t)e R:

Yo (@) = CT(EO)v()) + DT(O)v2(t) + cara()u(2) . (323)

From Lemma B1 ( in Appendix B ), there exists a unique choice of adaptive gains, denoted
C*, D*, and c,,;, such that the transfer function from the input u(¢) to the output y,(¢) is
identical to the plant transfer function j(s). Before we start the analysis of the identifier, we

make an assumption on the input u(¢):

Assumption:
(A3) The input u(r) satisfies

u,u €l,. 324

We define the parameter vector 0:R, —>R***1;

01) =[CT(¢),DT(t), cpu(®) 1T (3.2.5)



55

and the signal vector w :R,—R***!:
w®) =[vOT@), v®T @), u@) 17 (3.2.6)
so that (3.2.3) implies
Yo8) = 08() w(e) . GB.2.7)

Again by Lemma B1, the output of the plant y,(¢) is then given by an equation similar to that

of the identifier, i.e.

¥, (8) =0T w(e) + n(@r) (3.2.8)
where 6° € R#**! and

0* =[CT,.DT,con IT (3.2.9)

is the vector of "true” parameters corresponding to § (s), and n(¢) is an exponentially decaying
function that accounts for effects due to the initial conditions of the stable plant and filters.

Define the parameter error ¢(¢) as

o(t) =6(t) - 6" (3210
and relate the output error ¢, =y, —Y, (o the parameter error ¢ by

&=0Tw-m. (3.2.11)

The objective then is to design a parameter update law, using the information of the output
error ¢,, such that the parameter vector 6(¢) will asymptotically converge to the true parameter
0° regardless of any initial error. For our interest here, we will only consider two types of
update laws, namely, (i) the Gradient Algorithm, and (ii) the Least-Squares with Forgetting

Factor Algorithm, which are respectively defined as follows:

(@ Gradient Algorithm:

@=-Te,w  6(0)=6 (3.2.12)
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where T'e R@+1>@+1) js 3 positive definite (>0) matrix, usually called the adaptation gain

matrix.

(ii) Least-Squares with Forgetti;xg Factor Algorithm:
0=-gPe,w (32.13)
for some g >0, where P is called covariance matrix and is updated by the so called covariance
propagation equation:
P=AP@t)-gPwwlP  PO=I (3.2.14)

for some A>0.

Remark: Whenever the covariance matrix P is invertible, it follows that P~ = —P~1p P~

so that the covariance propagation equation (3.2.14) can also be expressed as

7

Pl=-aPl+gwwl. (3.2.15)

The following theorem guarantees the stability of the identifier and the convergence of

the output error ¢, .

Theorem 3.2.1: ( Stability and Output Convergence )

Consider the identification of an LTI plant described by a transfer function j(s) using the
identifier described above. Let assumptions (A1)-(A3) be satisfied, and the parameter vector
0(t) be updated by either (3.2.12) or (3.2.13).

Then the identifier remains stable, i.e. 6(t)e L2**!, and

lim e,(t)=0. (3.2.16)
{ =>oe
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Proof: See Kreiselmeier (1977).

a ter Convergen nalysi

Theorem 3.2.1 assures the stability of the identifier and the convergence of output error
¢, , but not the convergence of parameter errors ¢. In this section, we will first focus our atten-
tion on conditions under which 8(¢) will converge to the "true” parameter vector 8°. Subse-
quently, we analyze the parameter convergence through the use of averaging theory. To start
with, we give a definition which will be frequently used in the sequel.

Definition 3.3.1: ( Persistently Exciting (PE) )

A vector signal w :R,—R™ is said to be persistently exciting if there exist &, 0y, >0, such
that

245
wl s [ wOw (@)d <ol (33.1)

uniformly in s 20. O

Remark: If w is replaced by a scalar signal 4, the PE condition suggests that the average
power of u over a time window with length Such a signal will usually have a frequency

representation.

Theorem 3.3.1: ( Parameter Convergence )

Consider the same identification problem as given in section 3.2. Let assumptions (A1)-(A3) be
satisfied, and the parameters 6(t) be updated by either (3.2.12) or (3.2.13).
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If the signal vector w defined in (3.2.6) is PE,

then the parameter errors $=0-0" satisfies

‘lim o@)=0 (3.3.2)

exponentially. O

Proof: See Kreisselmeier (1977).

Definition 3.3.2: ( Stationarity, Autocovariance )
A signal vector w :R,—»R™ is said to be stationary if the following limit exists uniformly in
s20:

R,(T) = Tli_r:l-

|

s+T
j’ w+Dw’ (¢)de (3.33)

In'this case, the limit R, (t)e R™™ is called the autocovariance matrix of w. O

Lemma 3.3.2: ( PE Condition on Stationary Signals )

Consider a stationary signal vector w with autocovariance matrix R,, (t). w is PE if and only if
R,(0)>0. O

Proof: See Boyd and Sastry (1986).

Lemma 3.3.3: ( Positive Semidefinite Function )
Consider the autocovariance matrix R, (t)e R™™ of a stationary signal vector w. R, (1) is a

positive semidefinite function, i.e. for some 1;,-,*,',t: € R, and Cy,-,*,",C, € C™,

¥ C/R,(t;-1,)C; 20. (3.34)
iij
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Proof: See Boyd and Sastry (1986).

Remark: By a matrix version of Bochner’s Theorem ( See Wiener (1930) ), Lemma 3.3.3
implies that the autocovariance R,, (%) can be represented as the inverse Fourier transform of a

positive semidefinite, bounded power spectral measure S, (d ®), i.e.

R == [ s o). (3:3.5)

We now consider the same identification problem as given in section 3.2, assuming that
the input 4 (¢) of the plant is stationary. Denote by 0 (s) the transfer function from the input
10 the output w, as defined in (3.2.6). Then {(s) has the form

X Fys)
O(s) = |Fys)p(s) | € R¥#H(s) (3.3.6)
1

From Lemma B2, S,,(d ®) can be computed in terms of S,(dw) as
S, dw)=0(jo) S,[do) 8" (o) (3.3.7)

so that, by Lemma 3.3.2, w is PE if and only if

R,,(O):?‘n- [ 0G0 (@5, dw)>0. (3.3.8)

This will then allow us to relate the persistency of excitation of w to the frequency content of

the input 4. The result will be stated in Theorem 3.3.4 after a preliminary definition.
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Definition 3.3.3: ( Spectral Support )

The spectral support of a scalar stationary signal u(¢) with power spectral measure S, (dw) is
defined as

"o+

Supp) ={ o | @e R , andforal >0, | S,dw)>0 . (3.39)
o-3
Remark: Define F, (®) by:
]
F@= [ S.(do). | (33.10)

Then F, () is a spectral distribution function which is monotonically increasing and continu-
ous from the right. If F,(dw) is absolutely continuous, then the spectral support Supp(x)
defines a continuous spectrum, which denotes the smallest closed set outside which the power
spectral measure S, (d ®) vanishes. On the other hand, if F,(d ) is a stair-case function with n

jumps, then Supp(z), which has exactly n points in the frequency support, defines the discrete
spectrum.

Theorem 3.3.4: ( PE Condition on Supp(u) )

Consider the signal vector w defined in (3.2.6). w is PE if and only if the spectral support of
the input u, Supp(s ), contains at least 2n+1 points. O

Proof: See Boyd and Sastry (1986).

Remark: The input u that results in a PE w will be called sufficiently rich (SR). From the

theorem, 4 is SR if and only if Supp(u) contains at least 2n+1 points.
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Using all these definitions and results, we are now ready to analyze the identification sys-
tem with a parameter update law of either (i) Gradient Algorithm or (ii) Least-Squares with
Forgetting Factor Algorithm. However, throughout the sequel, we will drop the term 1 (the
effects of initial conditions) from the output error ¢, in (3.2.11) by assuming that the dynamics
of the plant and filters are much faster than that of the parameter 0 in the context of our later
analysis using averaging.

3.3.1_Gradient Algorithm
Application of averaging to the dynamics of €(¢) in (3.2.12) is focused on the case where

I'= ¢l and € is a non-zero small positive number, i.e.

d=—ge,w . (33.1.1)
Substituting (3.2.11) for ¢, in (3.3.1.1) (with n being neglected), we have

d=—ewwl ¢ (33.1.2)

Assuming that u and w are stationary, the averaged system of (3.3.1.2), using definition
(2.1.5), is well defined and is given by

6“ == eRw (O) ¢¢v (3.3. 1.3)

where R, (0) is the autocovariance of w. This system is particularly easy to study since it is
linear. Now if the input u is SR, then, by Theorem 3.3.4 and Lemma 3.3.2, R,,(0) is positive
definite. This further implies the exponential stability of the averaged system (3.3.1.3). A

natural Lyapunov function for this system is

V@) = 5 08 b0y = 210 112 (33.1.4)

so that

V() S = EAmin (R, () | €4y 12 (3.3.1.5)
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where A stahds for the minimum eigenvalue. The rate of exponential convergence of the
averaged system is therefore at least €Ami (R, (0)). By the remark after Theorem 2.2.1.5, we
can readily conclude that the bound on the rate of convergence of the original system (3.3.1.2)
for € sufficiently small is €Ay, (R, (0)) + o(®).

Remarks:

(1) In fact, the rate of convergence of the averaged system is at most €Amax (R, (0)) so that,
for € small, the rate of convergence of (3.3.1.2) will actually be close to the interval:

[ €Anin (R (0)) , EApax (R, (0)) ] . (3.3.1.6)

(2) Eq. (3.3.8) gives an interpretation of R,,(0) in the frequency domain and a means of com-
puting an estimate of the rate of convergehce of the adaptive algorithm, given the spectral con-
tent of the reference input «. If the input u has only point spectrum, the integral in (3.3.8) may
be replaced by a summation. Since the transfer function 0 (s) depends on the unknown plant
to be identified, the use of the averaged system to determine the rate of convergence is limited.
If, however, prior estimates of the plant, similar to those used in a Bayesian context in stochas-
tic parameter estimation, are available, then some bounds on R, (0) and on the rates of conver-
gence can be deduced. These in turn can be used to determine the spectral content of the refer-
ence input u that will optimize the rate of convergence of the identifier, given physical con-
straints on #. Such a procedure is very reminiscent of that indicated in Goodwin and Payne
(1977) (Chapter 6) for the deSign of the reference input. The autocovariance matrix defined
here can be characterized as an average information matrix (that will be defined in Chapter 5),
for example, in Goodwin and Payne (1977). Our interpretation, however, is in terms of rates of

parameter convergence of the averaged system rather than in terms of parameter error covari-

ance.
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To illustrate the result obtained through this analysis, we present the following example.

Example 3.3.1:

Consider the adaptive identification of a first order plant:

s+1
S 2e—— 3.1,
b (s) 28 T3 (33.1.7
The filter of the compensator block is chosen to be ;-3-3 Denote the parameter error vector

¢=0-0", where 8" =[c} ,d} ,c3]7 is computed to be [~1.6,0.4,2.0)". Since the number of
unknown parameters is 3, parameter convergence will occur when Supp(z) contains at least 3
points. For the simulations, we considered an input of the form agt+a;sin(w¢). By virtue of

(3.3.8), (3.3.1.3) now becomes

r 3
2, 25«122 2,2, 2s<3;+«>2)a%2 a2 25«1%2
6”1 2(25+0°) 3 (9+0*)(25+m°) 2(25+®°)
. 2 ,. 25G+0da}l 4 , SO0(1+0Dai 3 ,. 5(15+70%a?
barz | =28 | 3 G @r0) 970 rnaste) 30 GroEsa)
bav3 .. 25af 2, S(s+ToPa} 2.8t
| “Teseh 30T erePesad R
¢avl
w2 (33.1.8)
‘l’avS

With ag=2, a,=2 and ®=4, the three positive eigenvalues of R, (0) are computed to be
0.28¢, 0.64¢ and 15.39¢. Figures 3.3.1 and 3.3.2 show the plots of parameter errors ¢, and ¢,
for both the original and averaged systems with two different adaptation gains €=0.1 , 1. Figure
3.3.3 is a plot of the Lyapunov function of (3.3.1.4) for both systems using a log scale. Note

the closeness in the rate of convergence of the two systems.



- i r lgorith
In order to study parameter update law (3.2.13) and the covariance propagation equation
(3.2.14) using averaging, we set g = &>0 and A is replaced by €A, i.e.
b=—ePe,w $(0)=0¢ (3.3.2.1)
P=¢AP —ePww'P PO=I . (33.2.2)
Again, substitution of (3.2.11) for e, (z) in (3.3.2.1) leads to the following form:
¢=—ePwwlo. (3.3.2.3)

Note that, for small &,  and P now characterize the slow variables of the identification sys-
tem, in contrast with the previous case where ¢ is the only slow variable. Consequently, when
averaging is applied to this system, both differential equations (3.3.2.2) and (3.3.2.3) should be
averaged. As indicated previously, if u# is stationary, the averaged equations of (3.3.2.2)-
(3.3.2.3) are well defined:

Oay == EPy R, (0) by Oay (0) =00 (3.3.2.4)
P,, =€eAP,, —€P,R,(0)P,, P, O)=I . (3.3.2.5)

Again by Theorem 3.3.4 and Lemma 3.3.2, the reference input 4 being SR implies R, (0)>0
so that, by referring to (3.2.15), we have

1

TR O (1 - e~ (3.3.2.6)

P,(t)!'=Ie"®* 4
so that
min (1,2 huia(Re©@)) 1 S Pa(®)™ S max (1o Anu(Ra@)) ] B:327)

for all ¢20. Thus it can be easily seen that (¢, ,Pay)=(0,R,, (0)™") is an unique equilibrium
point of (3.3.2.4)-(3.3.2.5); in particular, P,, =R, (0)"! is an exponentially stable equilibrium
point of (3.3.2.5). Consider the following Lyapunov function:

TOMVSES 119 -1 (33.2.8)



Denote
oy = 2 min (1.%1,,,“&,(0)))
and
@ :=-21-max (1.%&,..,(&.(0)» :
Then, from (3.3.2.6), v satisfies

o " Pav "2 SV sPav) S (Xz“ Oav "2

o B ETA TS
00 |
F) e \ Py
and, usin =- P P,
8 Pty " Pai
| 2= | <422l on 17 = cull o 112
av

The derivative of v taken along the trajectories of (3.3.2.4)-(3.3.2.5) is such that

V +EAY =— -§-¢Z., R, (0)d,,

s-%x,.ﬁ.,(xw(o» M 6o 12 ==€0s || 00 II2

S-e&v .
a2
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(3.3.2.9)

(3.3.2.10)

(3.3.2.11)

(3.3.2.12)

(3.3.2.13)

(3.3.2.14)

This and inequality (3.3.2.11) readily imply the exponential stability of the averaged system

with the rate of convergence at least %(7&% ). It can be easily checked that this setup

satisfies the assumptions in Theorem 2.2.1.10. Consequently, it follows that, for sufficiently

small €, the bound on the rate of convergence of ¢(¢) of the original system (3.3.2.3) is

€ Qs
2 (M-E)-«-o(e).
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Remarks:

(1) Defining
= % Apax (R () (33.2.15)
it can be seen that the rate of convergence of the averaged system is at most -g- (M—%ﬁ-).
1
Hence for small enough € the rate of convergence of ¢(z) is actually close to the interval:
€ s, ¢ O ;
=(A+—),=(A+— 3.2.16
[ R+, SO+ (3.3.2.16)

It is interesting to note that, if Ay, (R, (0))2A and Ay, (R, (0))<A, then the above interval
can be replaced by

1)

[

2

—Ll __| £
[x+ p—TT)) ] > [7\.+cond(R,.,(0))]] (3:3.2.17)

where cond(R,, (0)) is the condition number of R, (0), in contrast with the interval given in

(3.3.1.6) in the previous case.

(2) Note that

v+ el == =00 Po R (P RO P P b
S = 2 haia (P R O PA) || P52 0 I
== eApin (PIPR, (0)PM2) v . (3.3.2.18)

When ¢, is small, P,, (¢)! (by (3.3.2.6)) is close to -;TR., (0) so that (3.3.2.18) becomes

vV+eEAY < —€eAv. (3.3.2.19)

This implies that the bound on the rate of convergence ¢,, is close to €A. By an argument as

before, it can be checked that, in fact
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vV +eAv =—€AV (3.3.2.20)

which then implies that rate of parameter convergence is close to eA+o0(e) when ¢ is small.
This leads to the conclusion that the rate of "tail" parameter convergence will not be affected

much by different choii:es of reference inputs.

1l n

In previous sections, we.discussed the identiﬁcétion of an ideal plant. However, unmo-
delled dynamics will inevitably exist in practice becauses less significant dynamics are often
too hard to model or purposely neglected to permit reasonable computation. The operation of
an adaptive identifier must be reexamined to assure stability and performance in the presence

of unmodelled dynamics.
In this section, we will consider finite dimension (FD) and linear time-invariant (LT-I)

unmodelled dynamics so that the overall plant can be represented by

Ay(s) A,(s)

_— 34.1
dy(s) du(s) G4D

Pu(s) =p)+Ap(G) =k,

where p(s) is the nominal plant transfer function with order n as described in section 3.2. To
study the robustness of the identification scheme, we make two assumptions additional to
(A1)-(A3):

Assumptions:
(A4) Ap(s) is a stable, proper transfer function and j,(s) is of the order N where N >n.

(AS) Input u(t) is stationary.
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4 ing Criteri
Refer to the definition of J(s) in (3.2.6). In the case of no unmodelled dynamics,

Lemma B1 guarantees that there exist unique "true” parameters 8° € R2**! such that

ps)=0TQa() forall s e C (34.1.1)
Denote
r < r 1 3
'y S
Ces)=cT| - and D@)=DT| - |. (34.1.2)
hsn-l ‘_S”-l )

Then eq. (3.4.1.1) implies

¢') , B )

f\(s) A(S) p(s)"'cn-o—l

()=

_ G As) +C765)
A(s)-D"(s)

(34.1.3)

where A(s) is defined in section 3.2. Thus, when the parameter convergence takes place under

PE condition, the plant transfer function is identified through the relationship (3.4.1.3).

In case the plant has unmodelled dynamics, the order of the identifier is less than that of
the true plant by assumption. Then there may not exist a 0 € R2**! such that

Bu(s) =07 0,(s) forall s € C (34.1.4)
where 0, (s) is defined by
Fy(s)
0,6)= |Fys)p. () |- (34.1.5)
1

This, in tum, implies the lack of a 8 R¥**! to satisfy

(@) =0l0,(w) forall ®e R . (3.4.1.6)



69

However, under the assumption (AS5), there may exist a 6ge R***}, corresponding to a specific

reference input u, such that
p.0)=0670,(w) forall ® e Supp(u) . (34.1.7)

In other words, due to unmodelled dynamics, perfect matching of parameters for all stationary
inputs will no longer be possible; only conditional matching should be expected instead. Now
consider a matching and define a pseudo signal e. by

e =00w-y,. (34.18)
It follows that
lim e.(t) =0 (34.1.9)
t=>om

with exponential convergence ( Callier and Desoer (1982) p. 127 ). The convergence of this
pseudo signal becomes extremely important in establishing a result similar to Theorem 3.2.1.
This will be shown in Theorem 3.4.1.3. First, however, we will present some results which
provide conditions for a possible matching (3.4.1.7).

Lemma 3.4.1.1:

Consider the transfer function O,(s) given in (3.4.1.5). For any ke Z,, k<n there exists a
set of 2k+1 frequencies, (®y,..., WMy, ), Such that

(600, v Bt )

forms a linearly independent set of vectors. O

Proof: See Mason et al (1987).
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Theorem 3.4.1.2: ( Almost Always Matching Condition )

Consider the above identification problem. Let assumptions (A1)-(AS) be satisfied. For any
ke Z,, kSn, there exists a subset U, cR**! which is nowhere dense and measure zero such
that the matching (3.4.1.7) is possible if Supp(u) contains 2k+1 points which form a (2k+1)
tuple not contained in U,. O

Proof: cf. Mason et al (1987).

Remark: Theorem 3.4.1.2 does not guarantee that any stationary input 4 whose Supp(u)
contains at most 2n+1 points will result in a matching. However, the result indicates that
almost every input u that satisfies this condition will yield a matching.

Theorem 3.4.1.3: ( Stability and Output Convergence under Matching )

Consider the identification problem given above. Let assumptions (A1)-(AS) be satisfied with
the parameter vector 8(¢) updated either by (3.2.12) or by (3.2.13).

If the input 4 satisfies conditions of Theorem 3.4.1.2,

then the identifier will remain stable, i.e. 6(t)e L2**!, and

lim ¢,(¢)=0. (34.1.10)
1o

Proof: Replace the output error ¢, by
o = (3 — 0w 8 —y,)=(8-0)Tw +e.
=¢oTw +e (34.1.11)

Then the conclusion follows from (3.4.1.9), Theorem 3.4.1.2, Bodson (1986) p. 30, and
Kreiselmeier (1977).
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Remark: The theorem implies that, for almost every input # such that Supp(x) contains at
most 2n+1 points, the true plant behaves like an nth order (nominal order) plant so that the
properties obtained in Theorem 3.2.1 also hold here. However, one should note that, due to
lack of perfect matching (3.4.1.6), output convefgence to zero may fail to hold when Supp(s)
contains more than 2n+1 points. Despite this, in the following subsections, we will show that
the stability of the system will be preserved.

342 Tuned Model

As indicated in the previous remark, the true plant behaves differently from an nth order
plant when Supp(s) contains more points than necessary, namely, 2n+1. As a result, the
parameter vector €(t) may fail to converge o a fixed value in the parameter space but rather
wander around in that space. Yet, this failure of convergence does not suggest the disadvantage
of an input ¥ whose Supp(x) contains too many points. On the contrary, in the case where
output disturbances, such as measurement noise, deteriorate the plant output, or where rates of

parameter convergence are to be optimized, the aforementioned input may be useful.

In this subsection, we aim at seeking a good model of the plant when Supp(x) contains
more than 2a+1 points. Such a model will be arrived at through the use of a frequency-domain
interpretation. Conceivably, this model will play a major role in identifying "a" transfer func-
tion, and, at the same time, will be quite input dependent. So the choice of reference input will
become relatively important considering the future control task of this plant. These points will
be made clear in a later subsection, where we relate the so obtained model with signals in time
domain by use of averaging, and in Chapter 5. The following theorem, complementary to

Theorem 3.4.1.2, will be a useful tool in later analysis.
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Theorem 3.4.2.1: ( Almost Always PE Condition )

Consider the same identification problem as given before. Let assumptions (Al)-(AS) be
satisfied. There exists a nowhere dense, measure zero subset U, in R%**! such that the signal
vector w is PE if and only if Supp(s) contains at least 2n+1 points which form a (2z+1) tuple

not contained in U,. O
Proof: See Mason et al (1987).

Remark: This theorem, unlike Theorem 3.3.4, provides only almost always PE condition due
to unmodelled dynamics. As we know, persistency of excitation of w will make the homogene-
ous part of the identification system exponentially stable. The essence of this theorem lies in
the fact that, though the order (here n) of identifier may be much smaller than that of the true
plant, the number of frequencies needed to excite the system persistently could "almost always”
still be 2n+1. This allows one to have confidence in the identification schemes even in the face
of unmodelled dynamics.

The following is a preliminary definition, similar to Definition 3.3.2, that will be fre-
quently used in the sequel.

Definition 3.4.2.1: ( Crosscovariance, Cross-Power Spectral Measure )

The crosscovariance of two stationary signals w:R,—R™ and wy:R,—R"* is defined by

s+T

R,,,2(1)=Tui% [ mie+owlmds (3.4.2.1)

s
or

24T

= lim - T
Rupu(® = lim 2 [ wit +ow@dr. (3422)
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The Fourier transform of the crosscovariance R, () ( Ry, w (7)) gives the cross-power spec-

tral measure S,,, w,(d0) ( Sw,w,(d®)). O

2¥)
Remark: As indicated by the definition, the crosscovariance matrix R, ., (0) can be

represented by

k4
Ry (0) = -2‘;_1“ Swyw (d®) . (34.2.3)

If A,,, and H,,, are transfer functions from 4 to w) and wy respectively, then by a proof

similar to Lemma B2 we have

Ry (0) = -2‘;‘- [ A i) A, (i 0)S,(d0) . (34.2.4)

As has been pointed out in the beginning of this section, when Supp(s) contains more
than 2n+1 points, there may not exist fixed parameters 8 such that the matching (34.1.7) will
occur. In the off-line identification scheme, a least-mean-squares method is used to solve for
the plant parameters. Here, a similar approach will be used. Define a cost function J(6) by

T
J () = rﬁf'.';" I e2()dt (3.4.2.5)

where e. is defined in (3.4.1.8). By definition 3.3.2, J(6) is the autocovariance of e. and can

be written as

J@=2 [ |07 b - Ao

25, (dw) (3.4.2.6)

as a result of (3.3.8). Clearly, J(0) is a quadratic function of ® which has a global minimum

but the minimizer may not be unique. Let the optimum 8r be defined as

O := argmin {J(e) | 6 € R } (34.2.7)
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A necessary condition for optimality is

9_239_). ome, =0 (34.2.8)

which leads to

17 .. 1 5 L
35 ) QUOGI S0 |8 = o= [ LG S.@a) | 3:429)

or, by (3.3.8) and (3.4.2.4),
R,(0)0r = R,,,p(O) . : (34.2.10)

Consequently, by Theorem 3.4.2.1 and Lemma 3.3.2, for almost every input 4 whose Supp(x)
contains at least 2n+1 points, R,, (0)>0 so that 67 is uniquely defined by

6r =R, (0" R,, (0) . (34.2.11)
Denote
or=1CF.Df ey I . (34.2.12)

Now we define the tuned model of the true plant, depending on the specific input 4, to be the
nth order transfer function pr(s) which is obtained by setting 6(z) to 8. From (3.4.1.2) and
(3.4.1.3) we get '

_ S A@s) + Cr(s)

Pr(s) AGs) - Dr(s)

(3.4.2.13)

Or is defined to be the tuned parameter. Since the tuned model (or tuned parameter) depends
on the unknown plant, the above transfer function seems to be more conceptual than practical
at this point. However, in subsection 3.4.3, we will apply averaging to show that, when the
input u is SR, the parameters 6(¢) will stay within a ball centered at 6, with a radius y(€) of

class K for € small enough.
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The tuned model, however, may not be stable even when the real plant is in fact stable.
This is possible if the input # has spectral energy concentrated in high frequency spectrum
where the unmodelled dynamics become too significant to be neglected. Hence, if unmodelled
dynamics are present, the choice of input frequencies may become important when the
identified transfer function is to be used for control purposes. More discussions on this aspect
will be given later in Chapter 5.

3.4.3 Stability Analysis

The fact that pr could be unstable, however, does not imply the instability of the overall
identification system. After all, the tuned model is simply a fictitious plant. In this subsection,
we will first formally analyze the stability of the identification system in the presence of unmo-
delled dynamics, and then study its behavior using averaging. Though the case with bounded
output disturbance is not discussed here, it can be easily seen that the following results can be
applied there equally well.

In subsection 3.4.1, Theorem 3.4.1.3 has guaranteed stability for almost every input u
whose Supp(s) contains at most 2a+1 points. There, the existence of a matching (3.4.1.7) (so
that e. converges to zero exponentially) is the key to the proof. However, such a matching
may be lost when Supp(x) contains more than 2n+1 points. Theorem 3.4.2.1 becomes essential
to the proof of stability of the overall system when such is the case. The following theorem
will present a result similar to Theorem 3.3.1.

Theorem 3.4.3.1: ( BIBO Stability Theorem )

Consider the identification probiem given above. Let assumptions (A1)-(AS) be satisfied and

the parameter vector 6(¢) be updated either by (3.2.12) or by (3.2.13).

If the input u satisfies conditions of Theorem 3.4.2.1,



76

then the identifier will remain stable, i.e. e LZ**!.
Moreover, if, additionally, Supp(u) contains exactly 2z +1 points and 67 is the tuned parameter

corresponding to the particular u, then

lim 6(t) =67 | (34.3.1)
§ =poe

with exponential convergence. O

Proof: Substitute 67 w - ¥p for e, in (3.2.12) and (3.2.13) respectively, and we have

0=-Twwl 0+Ty,w (34.3.2)

0=—gPwwlO+gPy,w (34.3.3)

By hypothesis, Theorem 3.4.2.1 implies the persistency of excitation of w so that, from
Theorem 3.3.1, the homogeneous systems of (3.4.3.2) and (3.4.3.3) are exponentially stable.
We then conclude the result by using Lemma 2.2.1.8. Furthermore, by Theo}em 3.4.1.3, it then
follows that 6(¢) converges to 6y exponentially.

Remark: The importance of this theorem and Theorem 3.2.1.3 lies in the fact that, when per-
forming an identification task, we are assured of stability by choosing almost any stationary
input u. Furthermore, the convergence of the parameter vector 6(¢) can almost always be
achieved when Supp(u) contains exactly 2n+1 points, where n could be much smaller than N.

We now study the relationship between the parameter vector 6(z), obtained in the time
domain, and the tuned parameter vector 87, derived in the frequency domain, through averag-

ing. The following theorem will summarize the result.
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Theorem 3.4.3.2: ( Tuned Parameter Approximation Theorem )
Consider the identification problem given above. Let assumptions (A1)-(AS) be satisfied.
If  the signal vector w is PE,

then there exists a class K function y(g), €;>0, and 0ST <eo such that, for all £<g,,

le@) -6 | <y t2t9+T . 3434

Proof: We proceed in two parts (a) and (b).
(@) Gradient Algorithm:
The averaged differential equation of (3.4.3.2) with I' = &/ can be easily found to be

Oy (8) == €R, (0) 8 () + ER,, (0) - (34.3.5)

By hypothesis and Lemma 3.3.2, R,,(0)>0, and, using the definition (3.4.2.11), it follows that
Oy is the unique, exponentially stable equilibrium point of (3.4.3.5). The conclusion then fol-

lows from Theorem 2.2.1.9 and its remark.
(b) Least-Squares with Forgetting Factor Algorithm:
The averaged differential equations of (5.4.3.3) with g =€ and (3.3.2.2) can be found to be

By () = = EPyy Ry (0)04, (t) + EPgy R,y (0) (3.4.3.6)

P,, =€AP,, —€P, R, (0)P,, . (34.3.7)

By the analysis in subsection 3.3.2, it follows that (8, ,P,,)=(0r R, (O is the unique,
exponentially stable equilibrium point of (3.4.3.6)-(3.4.3.7). From (a), the same conclusion then

follows.
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Remark: The conclusions of Theorems 3.4.3.1 and 3.4.3.2 together form similar results as in
Theorem 3.3.1. Theorem 3.4.3.1 per se only provides a stability proof for the parameters 6()
when Supp(u) contains more than 2n+1 points, while Theorem 3.4.3.2 provides a good
approximation of the steady state of 6(¢) when ¢ is small. In other words, under the PE condi-
tion, the point-convergence of the parameter vector 6(t) in the ideal case has to be replaced by
a set-convergence in the case of unmodelled dynamics. However, performance of the identifier
can be enhanced by making € small so that the tuned model transfer function can be actually
identified.

3.5 _Concluding Remarks

In this chapter, we first reviewed the adaptive identifier of Kreisselmeier (1977) under the
assumption of no unmodelled dynamics. Both gradient and least-squares algorithms have been
considered. When the reference input signals are stationary and the rate of adaptation is slow,
the govemning differential equations are similar to those of the one-time-scale systems discussed
in Chapter 2. We applied the averaging results developed in Chapter 2 as an approximation
method to obtain the estimates of rates of parameter convergence. An example using the gra-
dient algorithm was given to illustrate the performance of these estimates. Study of these esti-
mates suggests a means of optimizing parameter convergence rates, namely, maximizing either
the smallest eigenvalue or the condition number of the autocovariance matrix of w, R, (0),
under some physical constraints on «. These become basic topics of Chapter 5 and will be

explored there in great detail.

Later, assuming the existence of FDLT-1 unmodelled dynamics, we re-examined the same
adaptive identifier for two fundamentally important objects: stability and performance. A
sufficient condition for almost always matching, and a sufficient and necessary condition for

almost always persistently exciting were derived. These are fundamental to establishing the
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stability of the identification schemes. A physical interpretation of the notion of tuned parame-
ters was obtained: they are the values of identifier parameters which minimize the mean
squared power in the output error between the identifier and the unknown plant. An interesting
result shows that ﬁlese tuned parameters tumn out to be equilibrium points of the averaged
dynamical equations governing the identifier parameters. Under PE and slow adaptation
assumptions, it was shown the identifier parameters converge to a ball centered at the tuned

parameters with a radius which is a class K function of the adaptation gain.

While the tuned model can be identified when the adaptation gain is small, clearly it
depends on the choice of input. The validity of this model in the ultimate control task is
unclear and thus requires further study. A treatment on this issue will be given as an input
design guideline in Chapter S.
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Chapter 4 Frequency Domain Analysis of Adaptive Controllers

41 X ion

Adaptive control needs to be used when plant parameters are either unknown or are vary-
ing sufficiently rapidly with time so that conventional robust control schemes do not provide
satisfactory performance. Two adaptive control schemes have attracted a lot of attentions: (i)
Indirect Adaptive Control (Self-Tuning Regulator (STR)), and (ii) Model Reference Adaptive
Control (MRAC). In the indirect adaptive control, the identification of the unknown plant
through recursive parameter estimation and the design of the controller are separated. In the
model reference adaptive control scheme, the system is driven to behave like a reference

model.

In this chapter, only the MRAC schemes will be considered. The MRAC schemes of
Narendra and Valavani (1978), Narendra, Lin, and Valavani (1980), Bodson and Sastry (1987)
will be analyzed by the use of averaging, introduced in Chapter 2. Such an analysis will allow
us to relate the frequency content of the signals, including inputs and noise, to the parameter
convergence rates for the nominal system, as well as to the stability and instability of the adap-
tive system with unmodelled dynamics.

neral re of a Model Referen jv roll

In this section, we consider the model reference adaptive control of an SISO LT-I plant

described by a transfer function:

A (s)
5(s) = k. —Pr 4.2.1
)=k, 2,0 @.2.1)
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where 7, (s) and ﬁp (s) are coprime monic polynomials of degrees m and n respectively, and

k, is a scalar. The following assumptions will be made about the plant transfer function.

Assumptions:

(A1) The degrees of the polynomials 4,(s) and Jp(s) are known and assumed to be m and n
respectively.

(A2) The sign of k, is assumed known, and we assume it positive without loss of generality.

(A3) The plant transfer function j (s) is minimum phase, i.e. A, (s) is a Hurwitz polynomial.

The reference model is described by a transfer function:

i (s)

A (s)

m(s) = ky “4.2.2)

where fi,,(s) and d,,(s) are monic but not necessarily coprime polynomials of degree m and n

respectively. The model transfer function satisfies the following.

Assumptions:
(A4) The model transfer function 2 (s) is stable and minimum phase.

(AS) The sign of k,, is the same as that of &y, i.e. k, > 0.

The controller structure of the direct model reference adaptive control scheme is shown in
Figure 4.2.1. The dynamical compensator blocks F and F, (reminiscent of those in the adap-

tive identifiers) are identical single input, n-1 output systems described by transfer functions:

1

1 Ry
Fis)=Fys)==—— | R 423
1(8) = Fa(s) A0 : € ) 4.2.3)

sn-Z
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where A(s) is a multiple of A, (s), i.e.
A(s) = An(5)- Agls) 4.2.4)

and Agy(s) is a (n=m—1)th order Hurwitz polynomial. There are a total of 2n parameters to be
tuned for the controller. The parameter C € R™! in the precompensator block serves to locate
the closed loop plant zeros, while D e R™! and dg e R assign the closed loop plant poles.

The parameter co € R then adjusts the overall gain of the closed loop plant.
Now define the parameter vector & € R by
8=[co.CT.do, DT I . 4.2.5)
It is shown in Lemma C1 (see Appendix C) that there exists a unique 8" e R? such that
when 0 = 0° the transfer function of the plant plus the controller equals that of the model,
Mm(s). The problem left to be addressed here is how one should adjust the parameters 0 so

that the plant output y,(¢) converges to the model output y, (¢) and the srability, i.e. all vari-
ables remain bounded, of the overall system is maintained for arbitrary inputs satisfying:

Assumption:
(A6) u:R,—Randuce L.

We shall consider two of several schemes which solve problem: the first is the output
error direct adaptive control scheme given by Narendra and Valavani (1978), Narendra, Lin
and Valavani (1980), Sastry (1984); the second is the input error direct adaptive control
scheme by Bodson-and Sastry (1987). These two schemes are briefly reviewed below.

4.2 t Error Direct Adaptiv

This scheme is based on the output error,

e (t) =y, (t) = Y (0) . 4.2.1.1)
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Referring to the controller structure in Figure 4.2.1, we define the signal vectorw : R, = R*

by
w(e) = [u(®), v 7)., v 2T 4.2.12)
so that the input to the plant, u,, can be implemented as
1, (¢) = 8() w(e) . (4.2.1.3)

Moreover, for simplicity we realize the compensator blocks F and F, by a controllable canon-
ical pair (A,b) where A € RO-X4-1, p & R 5o that F(s)=F(s)=(sI -A)1b. Thus

the state space representation of the plant loop is given by

% A 00]||* b,
yWi=10o Ao||yW|+]|b [6Tw 42.1.4)
52 beg 0 A |y® 0
Xp
¥p =[c7,0,0] |vV (42.1.5)
v®

where (4, ,b, .c}‘ ) is a minimal realization of the plant and x, is the plant state corresponding
to this realization.
By the assertion in Lemma C1, we can represent the model ( in non-minimal form ) as .

the plant loop with 0 set equal to 0". Thus the resulting state space representation of the model

loop is given by
X',,. Ap +bp dt‘) C;' bp C‘T bp D.T Xm bp
v = bdoc] A+bCT b DT | [v |+ | b |cou (@d2.16)
v @ b C; 0 A v® 0
xﬂl
Ym =[c],0,0] |viV |, 42.1.7)
@
m

In (42.1.6) and (4.2.1.7), the (3n-2)x(3n-2) matrix is hereafter referred to as A,,, the
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(3n-2)x1 vector is as b,, and the 1x(3n-2) vector as c}:. Then subtracting (4.2.1.6) from

(4.2.1.4) with
e” =[x v,y O] - [x% 0Ty, Q)T 4.2.1.8)
we have that
é=A € +bn¢TW (4.2.1.9)
and
€ =Yp = Ym =Cme€ 4.2.1.10)

where ¢ := 00" is the parameter error. Note from (4.2.1.6) that

m(s)=cg cI(sl =Apn) by @42.1.11)
and hence
1 T
& =—5 ME)d w). 4.2.1.12)
Co

Comparing (4.2.1.12) with (3.2.11) (neglecting the term 1) in section 3.2, we see that the out-
put error ¢, is no longer the correlated signal o7 w but rather is a filtered version of it. In the
case where the relative degree of the plant is one, if the model transfer function /2 (s) is chosen
to be strictly positively real (SPR), then, roughly speaking, (4.2.1.12) and (3.2.11) will be
"equivalent” as far as the sign of 6T w is concened. As for the case with higher relative
degree, a stable filter I (s) is sought to m_ake m(s)I(s) SPR and a similar treatment is carried
out. Thus, intuitively, the results obtained for the adaptive identifiers should also work for
adaptive controllers, possibly with some modifications. We start with a definition of strictly

positive real.

Definition 4.2.1.1 ( Strictly Positive Real )

A transfer function A (s) is said to be strictly positive real (SPR) if, rii(s) is real for real 5, all
the poles of 7 (s) lie in é_ and Re(jw)>0 forall real . 0O
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Case I: Relative Degreen-m=1

Two types of parameter update laws which are particularly suitable for averaging

analysis are considered here:
(@) Gradient Algorithm:
b =-T eyw $(0) = ¢ @42.1.13)

where T' € R%2" is a positive definite adaptation gain matrix.

(ii) Least-Squares with Forgetting Factor Algorithm:

To apply this algorithm, we would require the model transfer function -l:rﬁ(s) -12 to0
o

be SPR in addition to aésumption (A4). This is, however, not possible since ri(s) needs to be
proper but not strictly proper to satisfy this condition. Hence we consider the modified scheme
shown in the Figure 4.2.2 with i(s) = (s+3) and >0. Instead of the original signal vector w,
its filtered version ,

¢ = PO = 116w Foofn. ooy Feoofhl @211

is used in the parameter update law,
¢=-gPel 9(0) = &o (42.1.15)

for some g>0, where ¢, now reads

€ = —= () GTO (4.2.1.16)
o

and the covariance matrix P is updated by the covariance propagation equation,
P=AP-gPLLTP PO) =1 @2.1.17)

for some A > 0.
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We will briefly review some results conceming stability of the closed loop system and
convergence of the output error e, using these parameter update laws. These are summarized in

the following theorems.

Theorem 4.2.1.1: (Stability and Output Convergence Using Gradient Algorithm )

Consider the above adaptive control problem with plant relative degree one. Let assumptions

(A1)-(A6) be satisfied.

If the parameter O is updated as in (4.2.1.13), and the model transfer function /M(s) is
chosen to be SPR,

then the closed loop system remains stable, i.e.
el xeLl VW) vPelLl!, (4.2.1.18)
ee L3™2, and the plant output y, converges o the model output y,,, i.e.

lim ¢,()=0. (4.2.1.19)
{~das

Proof: See Narendra and Valavani (1978).
To apply the least-squares algorithm, we need the following assumption.

Assumption:

(A7) The lower bound on k, is known, i.e. kPkai,, for some kpin>0.
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Theorem 4.2.1.2: (Stability and Output Convergence Using Least-Squares with Forget-
ting Factor Algorithm )

Consider the given adaptive control problem satisfying the same conditions as before and

assumption (A7).

If the parameter 6 is updated by (4.2.1.15) and —l,-rfz(s) Is) - 12 is SPR,
Co

then the closed loop system remains stable as before, e L3*2, and

lim e,()=0. (4.2.1.20)

{=po0

Proof: cf. Narendra and Valavani (1978).

Remarks:

]

. k o
(1) From (A7) and the fact co=k,,/kp, K(s) can always be chosen such that Z” (m(s)l(s))-%

is SPR.

(2) Note that, in the modified scheme shown in Figure 4.2.2, the parameter vector 0 is
replaced by {(s)© i(s)! which in tum is given by

ks)0ls)™ =0 + 0 (s) (42.1.21)
As a result of (4.2.1.20),
050 as t—ooe 4.2.1.22)

which implies that the plant loop converges asymptotically to the one shown in Figure 42.1.
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Case II: Relative Degree n — m 2 2

Since the model transfer function ri(s) fails to be SPR, and replacing 6 by {s)8 i)™,
where is) is a second order polynomial, involves 8, the approach proposed above is not appli-
cable. The scheme can however be modified as in Narendra, Lin and Valavani (1980). For sim-
plicity, we will only consider their scheme for the case when the high frequency gain k, is
known, that is, cg = ky,/ k, is known. However, the analysis for the case where k, is unknown
is more involved.

One should, however, note that the modified scheme shown in Figure 4.2.2 can actually
work for gradient algorithm in this particular case. Yet, we will take only a general modified
approach so that no further distinction between two algorithms need to be made except that i
is always sought such that m(s)i(s) is SPR using gradient algorithm, whereas

(-1; 1i(s) is) - —;-) is SPR using the least-squares algorithm.
Co

Consider the modified scheme shown in Figure 4.2.3. Since ¢g = co by assumption, we
can define the shortened parameter and signal vectors as follows:
8=1CT,dy,D" VT (4.2.1.23)
so that $=0-0 , and
' (0T

w= [Ty, v@&TIT. 4.2.1.24)

Then (4.2.1.12) can be represented using this notation as

ey = — AT . (4.2.125)
o

Let Ks) be a Hurwitz polynomial of degree n—m—1 (resp. n—m) such that m(s)is) (resp.
m(s)(s)— 172) is SPR, and rewrite (4.2.1.25) as

e,=-c‘7mf<i"@%-$’f‘<wa)+;‘.-mi($’t"‘(w>)
0 0

=Ll + % al (@) (42.1.26)
Co Co
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where T = [1 (), and
E=M @ w)-0'C (42.1.27)
Difficulties arise when the output error ¢, is used for the parameter update because of the extra

term —l:rhf@) in (4.2.1.26) in contrast with (4.2.1.12), A remedy for this is to construct another
Co

error signal e,
e = clo Al (FT-14T7T) (4.2.1.28)
which for some y>0 is actually implemented by aﬁgmenting the output error ¢, by Y,
Ya= -cl; mI(E+1eTT) (4.2.1.29)

so that
€1 =€ =Yg - (4.2.1.30)

This signal will usually be referred to as the augmented error. Using such an error signal, the

parameter update laws discussed in the previous case are modified as follows:
$=-T¢T 30)=, 42.131)
for gradient algorithm, where T € R@=1@»1) and
9=-gFel 3O =% (42.132)
P=AF-gPLUP POy =1 42.1.33)
for the least-squares with forgetting factor algorithm.

The following theorem summarizes the conditions which guarantee stability of the sys-

tem, and the convergence of the output error ¢, and the augmented error e).
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Theorem 4.2.1.3: (Stability and Error Convergence)

Consider the above adaptive control problem with the modified scheme of Figure 4.2.3. Let
assumptions (A1)-(A6) be satisfied, the high frequency gain k, be known, and the parameter 8
be updated by either (4.2.1.31) or (4.2.1.32).

It the filter £s)™! is chosen such that R(s)I(s) or —1,- m(s)f(s)--zl- is SPR for the correspond-
o

ing algorithm,

then the closed loop system remains stable, i.e.

fel¥ |, xelf , W, WPe LT, (4.2.1.34)
ee L3*2, and
lim e, () =0 lim. e;(8) =0 . (4.2.1.35)
[ e L t=pas

Proof: See Sastry (1984).

ft In LT i aptiv ntrol
The input error of an adaptive system is defined as:
&= (Y= ym) =" (e,) @2.2.1)
The input error scheme by definition is based on this input error ¢; or an approximation of it.
By rewriting (4.2.2.1) as:
e=m"p(u)-u 4222)
it may seem that e; is well defined since /3 and j have the same relative degrees. However, if

the model transfer function has relative degree at least one, its inverse is not proper. Due to

measurement noise in the plant output, we will not implement the input error ¢; defined in
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4.22.1)

but rather we will construct an approximation of e; as follows.

Since rA(s) is minimum phase with relative degree n—m, for any stable, minimum phase
transfer function £"(s) of relative degree n—m, the transfer function /[ has a proper and stable
inverse. A simple example is to let [ be a Hurwitz polynomial of degree n—m. Recall that

€0 =L 1 (6Tw)
Co

=L Al(H @w)-0TF W)
Co

= cl Al (P ) -078) (422.3)
0

where { = [ (w) and u, = 6Tw. By the choice of /, /[ is invertible so that
F (up) = co (BRI (e) + 07T
=co (D! G +87C
=0Ty (4.2.2.9)
where
=(@h o PPN, P o, P ePDH T, (42.2.5)
Now since £ (4,) and the signal vector v are all available, we can define an error signal e; by
e =0Ty =1 (u)=9"v (4.2.2.6)

which is a measurable quantity linearly dependent upon the parameter ¢. Such an error signal

tumns out to be an approximation of the input error ¢; in the sense that, when 6(¢) is fixed at 6,



er=co (A ) +8C—co I ) -8'T
= co (BRI (3, = ¥m) |
=co I (e) ' 4227

Note that the expression (4.2.2.6) is the same as (3.2.11) in the adaptive identification case.
Their difference however exists in the fact that the signal vector v defined in (4.2.2.5) is not
automatically bounded whereas the signal vector w deﬁnéd in (3.2.6) is. Hence the parameter
update laws discussed in the adaptive identification case can not directly be applied in this
instance. Instead, their normalized versions are considered here, which require the following

additional assumption:

Assumption:

(DA7)The upper bound on k, is known, i.e. k, S kpy for some knax > 0.

(i) Normalized Gradient Algorithm Plus Projection

4’»=-—rl—:2—";-,— ifco=coy and éo<O,thenlet éo=0  (422.8)
Yvvy

(i) Normalized Least-Squares with Forgetting Factor Algorithm Plus Projection

eV

b o2
¢ 8 1+yvTv

if cg=Cpyy and Co<O,thenlet Go=0  (4.22.9)

where

v

P=AP-gpP—re
8 l+vav

P. (4.2.2.10)
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A result conceming stability of the closed loop system and output error convergence is

reviewed here in the following theorem.

Theorem 4.2.2.1: (Stability aixd Output Error Convergence)

Consider the above adaptive control problem, using the same setup as given. above. Let
assumptions (A1)«(A7) be satisfied, and the parameter © be updated by either 4.2.2.8) or
4.2.2.9).

Then the closed loop system remains stable, i.e.
6el? , xell , W PelD, 42.2.11)
ee 13*2, and

lim e,()=0. 4.2.2.12)
t—roe

a

Proof: See Bodson and Sastry (1987).

4.3 Parameter Convergence Analysis

In this section, we will examine conditions under which the parameter vector 6(f) con-
verges to the true parameter value 0° in both the output and input error schemes. Later, we
analyze parameter convergence by using averaging to obtain an estimate of the rate of parame-

ter convergence.
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4 u rror Di iv nt

In subsection 4.2.1, Theorems 4.2.1.1 - 4.2,1.3 guarantee the stability of all signals inside
the closed loop systems, and hence the boundedness of the signal vectors w or { = ).
Intuitively, if w or T is PE, exponential parameter convergence can be achieved. But the PE
conditions on w or T are not practical since these signals are not exogenously specified. This

can be seen as follows:
w=w, + Qe . .(4.3.1.1j
and \
T=(w,+0e)=T,+ 31" (e) (43.1.2)

where Q and Q are constant matrices defined by

000
0170 000
0= G 00 = Q. 4.3.1.3)
o 017
and w,, w,, are exogenous signals defined by
W=, VT 3y VT T =, 7 IT. 43.1.4)

It is not surprising that such a PE condition on w or § can be translated to the same condition

on the signal vector w,, or w,, due to the fact that
w-wy,=Qeel}y o w-w,=0ee ! (4.3.1.5)

and the following result.

Lemma 4.3.1.1: (Filtered PE Lemma)
Let w:R, — R¥L,

It wisPE, wand we L%, and H(s) is a stable minimum phase rational transfer function,
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then H(s)(W) is PE. O
Proof: See Bodson (1987) (Ph.D Dissertation, p. 46)

Using the above results, the following theorem provides conditions under which the
exponential stability of the system can be guaranteed. Note that this, in particular, implies the

exponential convergence of the parameter errors ¢.

Theorem 4.3.1.2: (Exponential Stability Under PE Condition)

Consider the output error direct adaptive control scheme in subsection 4.2.1. Let assumptions
(A1)-(A7) be satisfied.

It the signal vector w, (or: W,,) is PE,

then the adaptive system with relative degree one (or: greater than one) is exponentially
stable.

In particular,

lim ¢()=0  (or: lim §)=0) (4.3.1.6)

=

with exponential convergence. O
Proof: See Narendra and Valavani (1978), and Narendra, Lin and Valavani (1980).

Remark: Notice that (A7) is needed only for the least-squares algorithm, but not for gradient
algorithm.

Now if we are only concemed with stationary input signals, it is possible to relate the PE

condition on w,, ( or W,, ) with the spectral condition on the input 4. Denote by O(s) the
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transfer function from the input « to w,, so that

. 9

1
Amp?!
Op= A (43.1.7)

A

. 4 =

and the autocovariance matrix R,, (0) can be represented as

R @ = 5= [ On(io) Grja) S.(de) . 4318)

From Lemma 3.3.1, w,, is PE if and only if R, (0) > 0, thereby leading to the following
theorem,
Theorem 4.3.13: ( PE Condition on Supp(u) )

Consider the signal vector w,, defined in (4.3.1.4).

Then w,, (resp. W,,) is PE if and only if the spectral support of input u, Supp(u), contains at
least 2n (resp. 2a-1) points. O

Proof: See Boyd and Sastry (1986).

Remarks:

(1) The theorem presents a result similar to that of Theorem 3.3.4. Here, u is called SR when
Supp(u) contains at least 2z (or: 2n~1) points. This theorem and Theorem 4.3.1.2 allow one to
achieve exponential stability of the adaptive system by providing sufficiently many points in
the spectral support of the reference input.

(2) Since w-w, € l%" from (4.3.1.5), the theorem also implies that w is PE if and only if u
is SR. Similarly, the same conclusion will hold for w.
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With these results, we are now ready to analyze the adaptive system using averaging. The
objective here is to obtain estimates of the rates of parameter convergence under the PE

assumption.

Case I: Relative Degreen-m =1
Recall from (4.2.1.9) and (4.3.1.1) that the dynamics of the state error ¢ are given by

é=(A,+b,07Q0) e+ b,0Tw,

=A9) e+ b0 W, 4.3.1.9)
and
e, = cle=— M) ($TW) . 4.3.1.10)
o

Let the parameter 6(¢) be frozen at @, then it should be clear that by symmetry e, can also be
represented as

1 T
= — , : 43.1.11
€0= 2 Hyu(0.9)(¢T W) @3.1.11)
where ﬁ, 4 (0,s) denotes the closed loop plant transfer function from the input u to the output
¥p with 6(z) fixed at 6. Denote

D,(s) = det (sI - An) 4.3.1.12)

then from (4.2.1.11) it follows that there exists a Hurwitz monic polynomial L(s) of order
2n-2, whose roots correspond to all the unobservable modes of the model loop shown in Fig-
ure 4.2.1, such that

m(s) = ky &%_s)? . 4.3.1.13)

Now denote

D(s) := det (s — A(9)) (4.3.1.14)
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then, by C.T. Chen ( (1984) p. 339 ), the expression of 1?, ’,,(0,.9) can be obtained as follows,

Aim() L(5)
A, ,(0,s) = ky ——m— . 43.1.15
yp(9:5) By ( )
To apply averaging, we consider
d=—eT() e,w $0) = o 4.3.1.16)

for €>0 small, where (i) I'(¢) = I when gradient algorithm is used and (ii) I'(¢) = P(z) satisfying
P=geAP-ePwwP PO) =1 4.3.1.17)

when the least-squares with forgetting factor algorithm is used. Let @ denote a compact subset
in R?*, containing the origin, where, for all $ € ®, there exist Ay, A; < 0 such that

A, SReA(AW®)) S A, ' (4.3.1.18)

where A(A($)) stands for an eigenvalue of A(¢). This set then induces a compact subset
©:=0"+® (a vector addition) in the parameter space such that all the poles of H,,(6.5)
(equivalently the eigenvalues of A(9)) satisfy (4.3.1.18) for all 6 ©. Consequently, when ¢ is
small, the adaptive system (4.3.1.9), (4.3.1.16) can be classified as a mixed-time scale system,
as defined in subsection 2.2.2.2, where ¢ characterizes slow variables, and e contains both fast
and slow components. Hence, with the assumption that input signals are stationary, the averag-
ing results developed in subsection 2.2.2 can be readily applied here.

Recall that, in the context of averaging, e is expressed in terms of ¢ through (4.3.1.9),
assuming ¢ is a constant, and then the dynamics of ¢ is averaged. However, when ¢ is a con-
stant (the same as: © is a constant), w is related to u through a transfer function A,.(0,5),

depending on 0. Such a notion will be fundamental to the following analysis using averaging.
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(i) Gradient Algorithm:

Following the above argument, the averaged differential equation of the slow variables ¢
in (4.3.1.16) can be found, using (4.3.1.10), as

Oav == E R 0a)0a  9a(0) =0 (4.3.1.19)

where Rw,((b) is defined by

T
= lim L[-L T
Rumf®) = lim - | & MORD ) d

= 21‘. [ B..0,j0) W) H,(0j0) S,(do) (4.3.1.20)

ﬂco -a0

which is at least positive semi-definite (but not necessarily symmetric). Now when the input 4
is SR, it follows from Theorem 4.3.1.3, Lemma 3.3.2, and the fact that i(s) is SPR that the
matrix Rw,(¢) is positive definite for all ¢ € ®. To study the stability of the nonlinear aver-

aged differential equation (4.3.1.19), we consider the Lyapunov function v :R”» >R,
Y0q) = % Il ¢ar 12 4.3.1.21)
Taking derivative of v along trajectories of (4.3.1.19), we have
V®a) = = € 2y Ry (0s) bar
= — & Qy SM(Ropy(0a)) ay 4.3.1.22)

where SM(R,,(9)) denotes the symmetric part of R, (%), i.c.

SM(R,p (®)) = 1 [ Bu®.jo) Rer(jeo) Hon(® jo) S,(dw) . (43.123)
ZTCCO —ce

Since ® is a compact set, there exists ¢ >0 such that:

Amin ( SM(Ru (9)) ) 2 0y (4.3.1.24)

so that:
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Vo) S—€0y || 0 lI2 (4.3.1.25)

which implies the exponential stability of ¢,, with the rate of convergence at least e ;. By the
remark after Theorem 2.2.2.3, we can readily conclude that the bound on the rate of conver-
gence of the original differential equation (4.3.1.16) for € small enough is €a; + o(€).

Remarks:
(1) In fact, there exists a,>0 such that
Anax ( SM(R () ) S 0
for all $ e @ so that the rate of convergence of the averaged differential equation (4.3.1.19) is

at most €. Consequently, for & sufficiently small, we shall say that the rate of convergence
of (4.3.1.16) is "close" to the interval:

[eey.20p]. (4.3.1.26)

This fact is similar to that in the remark of subsection 3.3.1.
(2) The symmetric matrix SM(RW,(cb)) can also be expressed in terms of §,, instead of
A,.(0,5), using the following fact deduced from (4.3.1.10)-(4.3.1.11) and (4.3.1.15),

7B, 0.5) = -j—:- (A1 8,09 7000

D,(s)

= To 4.3.1.2
By ¢ Om(s) (4.3.1.27)
so that
- ﬁ .
SM(R, (0))= 2;5 -j“ | D:g::; 26, (jo) Rem(jo) OL(j0) S, (dw) .  (4.3.1.28)

As an illustration of the preceding results, we present an example in which a linearized

adaptive system is considered.
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Example 4.3.1:

Consider the model reference adaptive control of a first order plant with an unknown pole and

an unknown gain,

P = o . (4.3.1.29)

S+dp

The adaptive process is to adjust the feedforward gain co and the feedback gain dy SO as to

make the closed loop transfer function match the model transfer function

m(s) = i . (4.3.1.30)
S+ay

To guarantee persistency of excitation, we use a sinusoidal input signal of the form,
u(?) = asin(®¢) (4.3.1.31)

Thus, equations (4.3.1.9) and (4.3.1.16) become

é=—gpe+ k(¢ u+dsym) (4.3.1.32)
1 =—eer (4.3.1.33)
42 =-€eym 43134
where
h=co—co » $2=do—dp (4.3.1.35)

With a,=3, k=3, a1, k=2 , a=3, the true parameter value 0°=([cy.dp)T is computed as
[1.5,-1]. Let @=2. By (4.3.1.20) with H,.(0,5) being replaced by é,,,(s). the linearized ver-

sion of (4.3.1.19) now becomes

: 18 18(0-0?)

bot | o2 | Ora) 40 | [

bwz |~ 6 | 18 162 N (4.3.1.36)
©+0?  G+o?)?

- The two eigenvalues of the averaged system are computed to be —3.10e and -0.43¢, both real
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negative. Figures 4.3.1 and 4.3.2 show the plots of the parameter errors ¢; and ¢, for the origi-
nal and averaged system, with two different adaptation gains. Figure 4.3.3 illustrates the case
of a higher frequency input signal @=4. Here the eigenvalues of the matrix R, ., ”(0) are com-

plex (-0.49+0.30i)¢, and hence the oscillatory behavior of the original and averaged systems.

(ii) Least-Squares with Forgetting Fact(;r Algorithm:
Now ¢ and P are slow variables govemned by the following dynamics,
¢=-ePe,l - ¢ (0)=dg (4.3.1.37)
P=eAP-ePLLTP PO)=1 (4.3.1.38)
which can be averaged, using the same technique as above, to yield
dav = =€Pay Rt (0) Oun a0) = o (4.3.1.39)
Pay=€\P,, — €PyyRe(0ay) Pay P 0) =1 (4.3.1.40)

where R;;,(cp) and Re(¢) are defined respectively by

Ry (9) = ?z:To _j. A (0, j0) M (jo) I'(jo) Az, ,j0) S(do) (4.3.1.41)
and
Ry(®) = ﬁ [ A8, jo) AL® . jo) S.(dw) . (4.3.1.42)

Let SM(R;;,@))) denote the symmetric part of R;;,(cp). As indicated before, if the input « is SR,
then both matrices SM( R;;,(q))) and Ry(¢) are symmetric positive definite for all ¢ € ®. It can

then be easily checked that (¢,,.P,,)=(0,Rg(0)") is an equilibrium point of (4.3.1.39)-
(4.3.1.40).

Note that, in this modified scheme, — ml‘--;- is SPR. Further since @ is compact, it fol-
o

lows that there exist non-zero positive constants B, ,8,, ;3,84 such that for all ¢ @
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Bl S Ry(9) < B/ (4.3.1.43)

Bal S SM(Rgg 8) = 7 Re@)) S Bal (#3.0.44)

Rewrite (4.3.1.40), using the fact P! =P PP},
P7l = —eA P! + eR(0a) Py =1 (4.3.1.45)
which together with (4.3.1.43) implies that whenever € ©

min(l.%!-)lSP,,(t)"Smax(l.%)1. (4.3.1.46)

Now we study the stability of the averaged differential equations (4.3.1.39)-(4.3.1.40) using the

Lyapunov function v:R*xR%%* R,

LOMSEE T8 L @3.147)
Denote
a‘z-%min(l.-(;—‘) and a2:=-§-max(l,%) (4.3.1.48)
Then v satisfies
0y [l Oy 12 S Y0ayr Pa) S @2 1| 0 I (4.3.1.49)
| 2| 520 0mli? = a0 l? (43.150)
and using (3.3.2.13),
| 2= | s4modiionl® = aulleal? @3.15D)

whenever ¢,, € ®. The derivative of v along the trajectories of (4.3.1.39)-(4.3.1.40) can be
estimated, using (4.3.1.44) and (4.3.1.49), by
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v+eAv=- 84’1; R{;,(¢¢v)) - %Rg@’av)] Oav

.

= - 8¢‘1,., SM(Rg;,(Qm)) - %R((‘pav)] dav

S-eBsll O llzs-e-&v 4.3.1.52)
27]
whenever ¢ € ®. It then follows from (4.3.1.49) and (4.3.1.52) that, (0 ,R;(O)"l) is an exponen-

tially stable equilibrium point of the averaged differential equations (4.3.1.39)-(4.3.1.40) with
Bs

the rate of convergence at least %0\.-&- E). In conclusion, using Theorem 2.2.2.6, the bound

on the rate of convergence of ¢(r) of the original differential equation (4.3.1.37), for

Bs

sufficiently small &, is < (A +—).
ciently sm e,lsz(l 0.2)

Remarks:

(1) Note that the above result is similar to that in subsection 3.3.2. Consequently, by a
remark following that subsection, the rate of convergence of ¢(z) for sufficiently small & will
actually be close to the interval:

[ %(M%) . -%(M-g—:) ] (4.3.1.53)

(2) From (4.3.1.52),

P+edv—el PLRPLY | SM(Rg (4n) - 3 Re(ba) | PP 00

r 3

S - 2€hp [P},’E SM(Rez (9a)) = -%-R;(%,) PR|v. (4.3.1.54)

When ¢,, is sufficiently small, R¢(¢) and R;;,(d)) are close to R (0) and R;.c_'(O) respectively,

1

and, hence from (4.3.1.45), P;1(?) is close to N

Re_(0) so that (4.3.1.54) becomes
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i +26hy < ~2ehhy (RO SM(Re L (R O72]v.  @43.159)
Suppose that the Supp(u) is only a point spectrum, then it is shown in Lemma C2 that
(4.3.1.55) can be approximated by

s+2eAv < ZEX  min  Re(AGO)o)) - (4.3.1.56)
Cop ©€ Supp(v)

By a similar argument, it can be shown that

. 2eA o\ '
V+2eAV - _;:6_ menggp( " Re (A(jo)i(j®)) . 4.3.1.57)

Consequently, we can conclude that the rate of tail parameter convergence is close to the inter-

val,
[ eA [1+mxg;£p( ) Re(rh(ia))f(io)))] ,EA [1+“n§uap1:( , Re(AGoja) )] ]

when ¢ is sufficiently small. Since, by choice, —= Re(@)jw)—1/2>0 for all ®e R, the
Co )

input u will not have a great effect on the bound on the rate of tail parameter convergence.

This result is similar to that in the remark of subsection 3.3.2.

Case II: Relative Degreen-m22

Here we again assume that the high frequency gain k, and, hence co» are known. The

error signal used for the parameter update under the averaging analysis is of the form:

e = -c‘— A)is) BT - T Ter) (4.3.1.58)
0

for some €>0. The implementation of this scheme involves more dynamics than before. In the
following, we will reconstruct all the dynamics involved in this scheme to facilitate our later

analysis.
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Let is) be a Hurwitz polynomial of order ¥ where k=n-m—1 or k=n-m for the relevant
algorithm, described in subsection 42.1. Let (A;,b;,c) be a minimal realization of the transfer

function 1(s), i.e.
Fis)y=cf (si-A)"h

where A;e R** is a Hurwitz matrix. If we define

o

A; = diag A,,~--.A,] e RGrDo@n-1)k

-

,

B, = diag b,---.b,] e ReDbo2n-)

-

r

C, = diag L::T.'--,cf] e RO X2k

then the state space realization of T={s)"'(w) is
X=Ax +Bw x;€ ROk

T=Cix.

(4.3.1.59)

(4.3.1.60)

(4.3.1.61)

(4.3.1.62)

(4.3.1.63)

(4.3.1.64)

Similarly, m(;)lis), which appears in (4.3.1.58), also has a minimal realization (A, b,y ,Cm) SO

that

()s) = co (Sl = Apt) by

(4.3.1.65)

and a state ze R" associated with it. Finally, a state space realization of (4.3.1.58), using

(4.3.1.1) and (4.3.1.9), can be expressed as:

e A ©0 0 ||e
=82 A 0 |[x
z 0 bu¢™C; Am | |2

-0 bm¢r
- 0 +\| B |w,
bpux] C} Cixiclyz 0
e

e=[0,0,cl,1!x
4

(4.3.1.66)

(4.3.1.67)
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which is a nonlinear system with the form (2.2.2.90). Note that there are totally (2n—1)(2+k)
states here, in contrast with 3n—2 states in the relative degree one case. Now if we define A(¢)
as the (2n—1)(2+k) X (2n—-1)(2+k) matrix given in (4.3.1.66), then clearly for all ¢ @ all the
eigenvalues of A(¢) should satisfy a condition similar to (4.3.1.18). Hence the dynamics that
govem the states of the adaptive system in the modified scheme are actually no different from
© (4.3.1.9)-(4.3.1.10) in the original scheme except for the extra term involving € on the R-H.S.
of (4.3.1.66). |

On the other hand, the dynamics of the parameter error ¢ under averaging takes the form,
$=-eT0O el O =% (4.3.1.68)
where (i) T(?) = I for gradient algorithm, and
Gi) T'(9) = P(s) satisfying
P=eP-ePTUP  FO)=I (4.3.1.69)
for the least-squares with forgetting factor algorithm.

The system (4.3.1.66)-(4.3.1.67) again forms a mixed-time-scale system.

In applying averaging to this case, while we proceed with the same technique as given in
the previous case, we set €=0 in (4.3.1.66). This leads to the following expressions of ¢; and 14

in tems of ¢ (as if ¢ were constant):

e = ;1- h(s) () @TD 4.3.1.70)
0
T= A, (0,51 43.1.71)

where 8=¢+6". By the similarity between (4.3.1.10) and (4.3.1.70), it can be easily seen that
.now the transfer function Ml and T play the roles of /4 and w in the relative degree one case.
Using these as basic observations, the averaging analysis of the same parameter update algo-

rithms discussed in the previous case will be simple.
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(i) Gradient Algorithm:

The averaged dynamic equation for the slow variable ¢ can be found to be:
o == EREy @) v %@ = @3.1.72)

where

s+T

= .1 1 i
Rg,® = Jim 7 [ —T0 AT (N ae

=——2’:C. j’ Ar,@.jo) ")l (o) A7,©.j0) S,(dw) (43.1.73)
Q —e

which is similar to that in (4.3.1.20).

(ii) Least-Squares with Forgetting Factor Algorithm
In this case, the slow variables are & and P. The averaged differential equations of these

‘variables are of the form,
ay == €Pay Ry Bu)® 0av(0) = G . (43.1.74)
P,, =€\P,, & P, Ry®a)Pa P, =1 (43.1.75)

where Rgz (9) is similar to (4.3.1.69) but with (= A/ --;-) being SPR, and
Co

Rz($)=2—l1t [ Ag,0.j®)A7,0,j0) S,[dw) (4.3.1.76)

which is again similar to that in (4.3.1.42).

Since the averaged systems obtained in (4.3.1.72) and (4.3.1.74)-(4.3.1.75) are similar to
those in (4.3.1.19) and (4.3.1.39)-(4.3.1.40), the conclusions obtained in the relative degree one
can be directly applied here.
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Remark: In the case where &, is unknown, an augmented parameter 0,,, Will have to be
introduced so that the overall exponential stability will not be possible. However, if the
analysis is only focused on the first 2» parameters 6, then the results will be exactly the same

as those in the current case.

n i A iy ntr
In this subsection, we will first review some results on parameter convergence of the
scheme discussed in subsection 4.2.2, and then analyze the adaptive system using averaging.

The objective of this analysis is also to estimate the rate of parameter convergence.

Theorem 4.2.2.1 guarantees stability and error convergence of the adaptive system using
either a normalized gradient algorithm plus projection as in (4.2.2.8) or a normalized least-
squares with forgetting factor algorithm plus projection as in (4.2.2.9)-(4.2.2.10). These
parameter update laws are the same as those for the adaptive identifier discussed in subsection

3.3.1-3.3.2 if one identifies the signal vector

\4

1+ i

with the signal vector w associated with the identifier. Therefore, if the signal vector 4.3.2.1)

4.3.2.1)

can be guaranteed to be PE, then exponential stability will be achieved. However, v is not exo-
genously specified in order to make such condition practical. The following theorem will pro-

vide conditions under which the system can be guaranteed to be exponentially stable.

Theorem 4.3.2.1: (Exponential Stability Under PE Condition)

Consider the input error direct adaptive control scheme in subsection 4.2.2. Let assumptions
(A1)-(A6) and (DA7) be satisfied.

If  the signal vector w,, is PE,
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then the adaptive system is exponentially stable. In particular, this implies
lim ¢() =0 “4.3.2.2)
t1=poe

with exponential convergence. O
Proof: See Bodson and Sastry (1987).

As for the output error scheme, we will henceforth be only concemned with stationary sig-
nals to facilitate the averaging analysis. Note that the stable filter {(s)™! is chosen such that
(s) [(s) has a stable inverse. While applying averaging, an approach similar to that used for
the same analysis in the output error scheme is taken, that is to freeze the parameters 6 and to
relate all signals inside the closed loop plant to input u via transfer functions which depend on
0.

Define A,,(0,s) as the transfer function from input u to the signal vector v defined in
4.2.2.5), i.e.

(i) iis) )™

ltsy™ By() )™
R,0,5) = sy H, (8.5 (4.32.3)

[(s)™ Fy(s)

L

then, using (4.3.1.13)-(4.3.1.15), H,,0,5) can be related to the transfer function 0,.(s) as fol-

lows:

D,(s) 4
4324
B On(s) ( )

1,0, = i)

so that, for all ¢ € P, the persistency of excitation of w,, will directly imply that of v. This fact

is important to the following analysis.
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(i) Normalized Gradient Algorithm Plus Projection

The study of averaging analysis will focus on the case where I'=¢l, y=¢ for some small
>0, and for sufficiently small || ¢o || so that the projection mechanism can be neglected.

Hence, using the fact that e2=¢rv. the parameter update law becomes

¢ $©0)=do - 4.3.2.5)

In other words, in this analysis, only local properties will be of interest (so that co(t) > Cin for
all £>0 ). When ¢ is small, the parameter ¢ characterizes the slow variables while variable e
contains slow and fast components. As before, the averaged system of the slow variables ¢ can
be found as

oy = = EROam) Oarv $02s(0) =00 (4.3.2.6)
where R () is defined by
RO =5 [ Buk®.j0) HL(0.0) 5.do)
=3 } Ko™ 2| LA |2 Ontic» Gt Sutew) @32.7)
21: R ﬁQ(iO)) m m W

which is a positive ( at least ) semi-definite symmetric matrix. If the input u is SR, then, from
previous arguments, v is PE and R,($)>0 for all $ e ®. Thus, using the similarity between
4.3.2.6) and (4.3.1.19), (3.3.1.3) the rate of parameter convergence of ¢(¢) can be estimated

using the same method there.

(ii) Least-Squares with Forgetting Factor Algorithm Plus Projection
Performing an averaging analysis, with g=y=¢, A replaced by e, and ¢, assumed small
enough so that cg(f)> Cmin for all £>0, on the following system:

€V

= = gP ——nr
¢ 1+evv

$(0)=do (4.3.2.8)
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. T
P=gP-gP—2—P PO)=I (4.3.2.9)
1+eviy

where ¢ and P constitute the slow variables when & is small. The averaged version of their

dynamics can be found to be
Qav = = EP 3y R ($ay) Oy 0av(0) = 4o (4.3.2.10)
P,y =€Pgs— PR (0a) Pay PO)=I . @4.3.2.11)

When the input u is SR, as indicated before, R(¢) is positive definite for all ¢ . Again,
from the similarity between (4.3.2.10)-(4.3.2.11) and (4.3.1.39)-(4.3.1.40), (3.3.2.4)-(3.3.2.5),

the same conclusions on the rate of parameter convergence of ¢(z) can also be drawn.

In this section, we will analyze the robustness properties of the model reference adaptive
controller in the presence of unmodelled dynamics and bounded output disturbances. Both sta-
bility and output error convergence are re-examined, and conditions are provided to ensure

these properties, so that the reduced order adaptive controller can be made practical.

Unlike adaptive identifiers, model reference adaptive controllers can cause several types
of instabilities in the presence of unmodelled dynamics and output disturbances. In our later
analysis using averaging, the study of such instability properties will oﬁly focus on slow drift
instability, which is us;xany difficult to detect during operation.

As in the case of adaptive identification, the unmodelled dynamics are considered FDLT-I
so that the overall plant can be représemed by:

fi(s) Afs) _ k Ap(s)
&) 4o 7 duls)

Bus) = p(s)(1 + 8p(s)) = k, @4.1)

where f(s) is the nominal plant transfer function of order # as described in section 4.2. The
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bounded output disturbance d(¢) is usually modeled in the system as a measurement noise, i.e.:

Ypd(®) = yp(8) + d(® 4.42)

as shown in the Figure 4.4.1. In order to facilitate our analysis, we made the following
assumptions additional to (A1)-(A7) and (DA7).

Assumptions:

(A8)  p.(s) is a strictly proper transfer function of order N where N>n.

(A9) A, (s) is a Hurwitz polynomial.

(A10) Input u and bounded disturbance d am stationary signals with compact spectral sup-
port.

(A11) Supp(u) N Supp(d) = D

Remarks:

(1) Assumption (A9), which requires that the plant is minimum phase, is in general not
always satisfied. However, it only serves to simplify the analysis and can be relaxed by assum-
ing, instead, that Supp(x) does not contain the zero-frequency of .(s) (if any exists).

(2) In practice, the spectrum of the output disturbance is usually located in a frequency range
which is either much higher or much lower than that in which the spectrum of the control

command lies. This makes (A11) a reasonable assumption.

44 hin iterion
Let the parameter vector 6(s) be frozen at 6, then the adaptive system behaves like an
LTI system so that y,4 and w can be related to the input # and disturbance d through linear

transfer functions which depend on 6, i.e.:

Yoa = Hy u(8,5) W) + H,_£0,5) (@) 44.1.1)
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w=H,00,5) ) + H,40,5) (D (4.4.1.2)

where transient responses due to initial conditions are omitted. These omissions, however, can
be justified if the transfer functions are stable and there are no unstable hidden modes inside

the closed loop plant. Denote

Fi) 52
49 = 1 (4.4.1.3)
Fy(s)

then H,,,(8,5) and H,.(0,s) can be related to H, _(0,s) and H, 8 ,s) through the following:

H,.0,5) = 1 44.14
e PYOL AR @419
and
0
Pgn 0 i ION y
wi®.9)= 5 08, 0.9 + 0 : (4.4.1.5)
0

Recall that u,=6"w, and 0=[c,,8"]". Since

Yd=Yp+d=pL)W,) +d (4.4.1.6)
and
A,=8, ad A,u=H4-1 (4.4.1.7)

by substituting (4.4.1.2) and (4.4.1.4)-(4.4.1.5) into (4.4.1.6) and comparing it with (4.4.1.1)

and (4.4.1.7), we can solve H, (0 ,s) and H, (8,s) explicitly in terms of 8 as follows:

Coﬁ u(s )
1=874,(5) Puls)

H,,0,5) = (4.4.1.8)
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(do + DT F3(5)) ()
1 -8 4505

R, 0.5 = (44.1.9)

Note that, in the absence of unmodelled dynamics and output disturbances, Lemma C1 guaran-

tees perfect matching, i.e. there exists a unique 6" R** such that:

R, (6" ,5) = (s) forall se C (4.4.1.10)
However, in general, this will not be possible from (4.4.1.8) nor will the following be possible:
H, (0, jo) = o) forall e R 4.4.1.11)

for any 6. R?". On the other hand, under the assumption (A10)-(A11), non-zero output distur-
bance d will always result in mismatch between output of the LT-I plant with fixed 8 and that
of the model no matter what the input 4 is. Here, we will pursue results similar to those for the
adaptive identifiers of subsection 3.4.1, assuming d=0. In other words, in the following

analysis, we will seek conditions to establish conditional matching, i.e. for some 6pe R™:
A, 4(80.J©) = M(jo) for all ® e Supp() 44.1.12)

The following lemma, like Lemma 3.4.1.1, will be fundamental to that condition.

Lemma 4.4.1.1:

Consider a transfer function §,,,(s)e C?* defined by

1o} = ! 4.4.1.13
i) = a4 |- (44.1.13)

Then for any ke Z,, 1Sk<n, there exists a set of 2k frequencies, (@1, . ., @2, such that

[Q,,,..(icon)----.ém(inm)] (4.4.1.14)

form a linearly independent vector set. O
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Proof: cf. Mason et al (1987).

Remark: Without unmodelled dynamics, §,,,(s) is the same as O,(s) defined in (4.3.1.7).

Theorem 4.4.1.2: ( Almost Always Matching Condition )

Consider the above adaptive control problem. Let assumptions (A1)-(A6) and (A8)-(A10) be
satisfied.
Then for any ke Z,, k<n, there exists a subset V,cR* which is nowhere dense and measure

zero such that the matching (4.4.1.12) is possible provided Supp(s) contains 2k points
which form a 2% tuple not contained in V., O

Proof: Using (4.4.1.8), in the matching condition (4.4.1.12), we have

. eOlpu(im)
(o) =
T Fagwrsi
= 07 5.0 1
= 0PI o) g
= 00 5,(0) O pu(j®) forall ® e Supp(x) (4.4.1.15)

where 8y=[6q; ,04 ]". By the assumption (A9), (4.4.1.15) further leads to
R(j0) p(0) " = 0] 0 m(i®) for all @ e Supp(u) . (4.4.1.16)

Using Lemma 4.4.1.1. and a proof similar to that in Theorem 3.4.1.2, the conclusion will
readily follow.
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Remarks:
(1) The remark of Theorem 3.4.1.2 will also apply here.
(2) Note that the transfer function H, ,(8y,s) may not be stable. In general, when the spec-

trum of the control input u lies in a lower frequency range, it is more likely that there exists.a
8 that satisfies (4.4.1.12) and H, (8, 5) is stable.

(3) Due to the difference between proofs of stability for identifiers and for controllers, a pos-
sible matching here will not imply stability of the adaptive system, like the statement of
Theorem 3.4.1.3. In fact, when Supp(x) contains less than 2n points, some instabilities may

arise (see subsection 4.4.4).

44.2 Tuned Mode]

In practice, matching between the output of the plant and that of the model will be hard
to achieve especially when output disturbances exist. Besides, as indicated in the previous
remark, consideration of the instability caused by a lack of richness of the input & will make
such a match undesirable, except when this matching occurs only at a unique 6. In fact, a

sufficiently rich control input will enhance the controller robustness.

In this subsection, similar to subsection 3.4.2, we will derive a model of the closed loop
plant when matching is not possible. Two basic properties will be required of this model: sta-

bility as well as a good approximation of the reference model.

Consider a normalized cost function J,(0) defined by

A, 8, jo) - o) [

n®=5- | | S.(dw)

| 8,400

(44.2.1)

An interpretation of J,(8) can be extracted as follows. Define a pseudo error signal e.(0,¢) by
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€8, = H, (0,5)) + Hy {d) = Ym - (4422)

From (A9) and (4.4.1.8), ﬁ, ’,,(O.S) is also minimum phase. Thus, if ﬁ, ’u(e.s) is stable (so is
A, &9 .5) ), then, from Lemma B2 and (A11), J,(6) can be expressed as

T

W 1T 2
Ju©) = lim — _L [ﬁ;:.(e,s) (e.(e,:))] dr . (4.4.2.3)

In words, J,(8) superficially represents the mean square power of the filtered signal
H, (8,5)7(e«(8,1)). One, however, should note that the interpretation (4.4.2.3) would be
more for analysis and less for practical purposes because H, P,,(O,s)"‘ M(s) is in general not

proper.

Important Remark:
Nommally, in the presence of unmodelled dynamics, l?, ’,(O.s) is of order much higher
than that of (s), and the frequency gain of H, ,u(0,jo) decreases faster than of /A(j&) as @

increases. Thus,
A, (0 ,J0) — M(jo) = — M(jo) 4424

when 0 is not properly chosen causing I?, P,,(e ,J®) to start rolling off while @ lies in a mid-
band region of /#(jw). Consequently, if the cost function is defined such that there is no nor-
malization or the normalization is against R(jw), it will not substantiate the good choice of 8 in

a situation just mentioned as much as otherwise. In optimization terms, we simply put a

penalty on the higher frequency range.

Let ©,, similar to © defined in section 4.3, be a compact subset in the parameter space
such that A, ,(8,s) is a stable transfer function for all 8 ©,. A choice of the subset will cer-
tainly require some prior information about the plant, and in general this set will contain 6",
the true parameter corresponding to the nominal plant. Now based on the cost function J,(8),
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we define tuned parameters, 91, by

67 = argmin J,(9) (4.42.5)

where int©, denotes the interior of ©,. This definition implies that 6y also has to be one of
the local minimizers of J,(0). Of course, 67 may not exist if, for example, the spectral power
of the input u and output disturbance d are concentrated in the high frequency spectrum, then

local minimizers of J,(6) over R¥* may not lie in the set ©,.

Assumption:

(A12) Input u and output disturbance d of the adaptive system considered above are such that
the tuned parameter @ defined in (4.4.2.5) exists.

Remarks:

(1) The assumption (A12), in fact, reflects the appropriateness of the order of the nominal
plant. If the dominant poles of the nominal plant lie in the frequency spectrum‘of the control
input and the output disturbance is small relative to the control input, then the tuned parameters
07 should be close to 0* to make (A12) reasonable. Oxi the other hand, if the above is not the
case, then the adaptive scheme starts with a bad model of the plant and a ntoisy environment,

and, hence, a degraded performance of the control task should be expected.

(2) The closed loop plant with the fixed tuned parameters 07 gives a pseudo plant called the

tuned plant, and the pseudo error e«(07, £) will be called tuned error.

Under the assumption (A12), we can now obtain an expression of Or, similar to that in

(3.4.2.9). Define

B(s) = Pu(s) 07 0 pu(s) — (s) (4.4.2.6)

so that, by (4.4.1.4) and (4.4.1.3), we have
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By 8 ,5)=1G5) = BS) OF [A®,9)= 0l | + B
= 55) [£,0.,.9-1(5) | 57,6 + (9

6(s)
= . 4.4.2.7
1 =507 4,05)

Using expressions of H, ’,,(9 ,s) and H, ,(6 ,S) in (4.4.1.8)-(4.4.1.9), and (4.4.2.7), J,(0) defined
in (4.4.2.1) can be more compactly written as

7(6) = == } —ple)

25,(d
2w L 2piga | 544

L1 L ascTE gl
+ 5o .J; = |d0+C onm)l S (dw) (4423)

J(6) will be a quadratic function of parameter 6 without the term co. Therefore, we consider

the following parameter transformation:
OCu=1/cc¢ ad ©=08/c (4.42.9)

using the fact that the optimal ¢, should not be zero. Now choose ©, such that, for all 6€ ©,,
co>0 (from (A2) ), there exists a compact subset &, induced by the transformation. Moreover,
this transformation is clearly a homeomorphism between ©, and ©’,. It then follows from
(A12) and Rudin ( (1976) p. 86 ) that 6'r¢ int&,, where 6’7 is the image of 8, under this
transformation. Consequently, 6’7 satisfies

2

% J.(8(8) le'-e', =0 (4.4.2.10)

and the tuned parameters, 8=6(6'7), may be obtained. Denote

‘ T
Ok = (BT = P54 @421

and

OLs) = [0 ,0,1 ,ﬁzcs)]r. 44.2.12)
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Then, using (4.4.2.6) and (4.4.2.8), we have

J.(6(8)) = 'il' |1 07 o) [* 5.

_2!_ Ie'TQd(,m) |2 S £dw) 4.4.2.13)

which is a quadratic function of 6’ so that, from (4.4.2.10), 0’7 satisfies

j O i) ' om>s,<dm)+— ] O £jo) G(je) SLdw) |6'r

= _l. J‘ &' (jo) S,(d) (4.4.2.14)

The following theorem will provide conditions under which &'z (and hence 67) so obtained is
uniquely defined.

Theorem 4.4.2.1: ( Unique Tuned Parameters )

Consider the same adaptive control problem as given in subsection 4.4.1. Let assumptions
(A1)-(A6) and (A8)-(A12) be satisfied.

Then there exists a subset V,cR?* which is nowhere dense and of measure zero such that the
tuned parameter vector Oy is uniquely defined if Supp(u) contains at least 2a points which form

a 2 tuple not contained in V,. O

Proof: Using a proof similar to that of Lemma 4.4.1.1 and results of Theorem 4.4.1.2, it fol-

lows that, for any input u that satisfies conditions above, the matrix:

1T Ao A
= _L O'(jo) ¢ (jw) S(dw) (4.4.2.15)

is positive definite. Furthermore,
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2—; _j; 04w O(w) SLdw) (4.4.2.16)

is positive semi-definite and, hence, the conclusion readily follows.

Remarks:.

(1) The theorem is similar to Theorem 3.4.2.1. It states that, for almost every properly chosen

SR input u, the tuned parameters and, hence, the tuned model are uniquely determined.

(2) By assumption, the tuned model is stable. Since the model has a compatible structure
with the closed loop plant, it will play a role similar to the reference model loop shown in Fig-
ure 4.1.1. A major function of the tuned model is to separate the plant and the reference
model for the analysis. The theme will be that: if the closed loop plaﬁt converges to a neigh-
borhood of the tuned model, and tuned model is close enough to the reference model, then the
overall adaptive system is stable, and the output of the plant will be close to that of the refer-

ence model.

4.4.3 Redu rder Controll

Due to the inevitable existence of unmodelled dynamics, the order of the adaptive con-
troller will always be lower than that of the real plant. Yet the model reference adaptive
scheme is designed based upon knowledge of the exact order and relative degree of the plant,
and stability proofs heavily rely on these assumptions. Limitations of this scheme were first
exposed after Rohrs et al (1982)(1985) showed several instances of instability due to the failure
to satisfy that assumption as well as the assumption of no disturbances. A number of
approaches have been proposed in the literature to robustify the scheme, such as, by Ioannou
and Kokotovic (1984), Kreiselmeier and Anderson (1986), Narendra and Annaswamy (1986),
Toannou and Tsakalis (1986). While this is the case, one should expect the robustness of this



123

adaptive algorithm due to persistency of excitation of the controlled system and consequently a

proper choice of exogenous reference inputs to the system.

In this subsection, we use averaging as an approach to show robustness following from
the positive definite PE condition (which will be clear in the sequel) on the reference input sig-
nals. The way we proceed is to use the notion of the tuned model defined in the previous sub-

section.
Consider the same adaptive control problem as described above but with the overall adap-
tive system redrawn in Figure 4.4.2. Denote by m(s) the tuned model transfer function, i.e.

M(s) = 1?, ’“(er,S) . (44.3.1)
Let yr be the output of the tuned model and e. be the tuned error so that
G = e.(e-,-. )= Yr=m- (4.4.3.2)

The state space realization of the closed loop plant, similar to that given in subsection 4.2.1,

can be written as

% A, 00||%]| |%] - [0
vWi=10 AO0||v|+[b]|6"w+ |0]d (443.3)
i@ bch 0 A JEL b
*p
¥p=105,0,01 [ v (44.3.4)
v

where (A,,b,, c,’,') is a minimal realization of the plant with dimension N (>n) and
w=[u, Ty v@OTIT (44.3.5)
Define
Or=[cor.Cr.dor. DF IT (4.4.3.6)

then the state space realization of the tuned model loop can be written as: (by letting =07 and
d=0)
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i) [ar+bduc 5CF 50F) (2] [b,
W =| bdygcd = A+bCF BDT | [P+ | 6| coru 4.43.7)
WP bel 0 A 0
x1-'
yr=[c,0,01 |+{]. (4.4.3.8)
P

In (4.4.3.7), let Ay be the (N+2n-2)x(N+2n~-2) matrix, and by the (N+2n—2)x1 matrix; and in
(4.4.3.8), cr be the 1x(N+2n-2) matrix. Then the tuned model transfer function, riz(s), can be

expressed in terms of (A, by, ch,
My(s) = cor ¢F(sI — Ap)~ by (4.4.3.9)

It can be deduced from (A9) and the definition of tuned parameters that the tuned model is
actually exponentially stable (there are no unstable unobservable modes).

Remark: If (A9) were to be relaxed, then the subset ©, would need the additional property
that no unstable pole-zero cancellations occur in the closed loop transfer function for all 8 ©,

in order to assure the exponential stability of the tuned model.

Define the state error ¢ and the parameter ¢ as before, i.e.

e = (g VT V@7 = [ T T (4.4.3.10)

$=0-6r 4.4.3.11)

thea we have the dynamics of the state error e expressed by
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é=Are+br¢Tw+bd (4.4.3.12)
er =Yp =1 (44.3.13)

where
| b= dgbl, dgb” , b7 IT. (4.4.3.14)

In the following, we will apply averaging to analyze reduced order controllers using the output

error and input error direct adaptive control schemes respectively.

4 E h

Here, for the sake of illustration, we will only consider the case where the relative degree
of the nominal plant is one. The case for higher relative degrees can be similarly dealt with.

Using (4.4.3.2) and (4.4.3.13), the output eITor &,=Ypy—Ym Which is used for the parame-

ter update, can be expressed as
€, = €,r+d + es1 . (4.4.3.15)

In order to 'apply averaging here, we require that e, and w be expressed in terms of the input u
and disturbance d, assuming that the controller parameters © are constant. As indicated in the
remark after Theorem 4.4.2.1, an analogy can be drawn between the tuned model and the refer-
ence model in the nominal case so that, from (4.3.1.10) and (4.4.3.13), we have

1
e = p My(s)O7 H,,,(0,5)w) + H, £0,5)(d) (4.4.3.16)
which together with (4.4.3.15) and (4.4.1.7) yields
e, = # r(5) 67 Honf®,5)) + H,_49,5)(d) + eur (4.4.3.17)

Comparing (4.3.1.10) with (4.4.3.17), the exponential stability of the adaptive system will no

longer be preserved due to the two extra terms on the R.H.S. of (4.4.3.17). However, if those
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two terms are sufficiently small relative to the first term, then BIBO stability can be expected.
Before we examine different parameter update algorithms, we provide a theorem similar to

Theorems 3.4.2.1 and 4.4.2.1 as a fundamental tool.

Theorem 4.4.3.1: ( Almost Always PE Condition on w )

Consider the same adaptive control problem as given above. Let assumptions (A1)-(A6) and
(A8)-(A12) be satisfied. ‘

Then there exists a subset V,cR? which is nowhere dense and measure zero such that the
signal vector w is PE if Supp(u) contains at least 2a points which form a 2n tuple not con-
tainedin V,. O

The proof is similar to that of Theorem 4.4.2.1 and, ﬁence, will be omitted here.

Remark: The above theorem only provides sufficient conditions, in contrast to the necessary
and sufficient condition given in Theorem 3.4.2.1, owing to possible richness from the distur-

bance d.

(i) Gradient Algorithm:

Consider the dynamics of parameter errors:
q.) =—ge,w $(0)=¢o (4.4.3.18)

which with (4.4.3.12) form a mixed time scale system as before. so that the averaged system

in the slow variable ¢ can be readily found as
Pay = = ERyf02)) by — £8(0) a0 =0o (4.4.3.19)

where
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Ry () = ;wl—; _L H,,(0,j©) Rjo) Hy(8,jo) S(do) (4.4.3.20)

s =2 [ (#icior—1Go)) B, S.d0)

+ 2—‘1‘ -j; A WCN H,40,j0) SAdw) . 4.4.321)

The following theorem will provide conditions under which the adaptive system using the gra-
dient algorithm will remain BIBO stable. For our convenience, we will use @, =—0r+9, (a

vector addition), which is a compact subset in R?",

Theorem 4.4.32: (BIBO Stability Theorem Using the Gradient Algorithm)

Consider the output error direct adaptive control problem described above. Let assumptions
(A1)-(A6) and (A8)-(A12) be satisfied, 67 be the tuned parameter defined by (4.4.2.5), and
R, ($) and g(9) be defined in (4.4.3.20) and (4.4.3.21) respectively.

If the input 4 satisfies conditions of Theorem 4.4.3.1 and for sufficiently small 5>0

max | 8) | S min A [SMCRf))] 3 #4322)

e ®,

then there exist v;,€,>0, 0ST <es, and y,(€) € K such that
ol <) +1,8 t219+T (4.4.3.23)

for all e<g,;, and for sufficiently small
condition ¢g. O

Proof: Consider the following Lyapunov function for the averaged differential equation
(4.4.3.19):
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OSES S PM L3 (44.324)
By Theorem 4.4.3.1 and Lemma 3.3.2, SM(RW,@)) is positive definite for all ¢ € @,. Denote
@ = min A [SM(RW,@))] : (4.4.3.25)

The derivative of v along the trajectories of (4.4.3.19) can be estimated using (4.4.3.25) and the
condition in (4.4.3.22):

b = — €07, SM(Rypf0ar)) bay — €078
S-tga " Pav " ( “ dav " -39) (4.4.3.26)

whenever ¢,, € @,. The conclusion then follows from Theorem 2.2.2.5.

Remarks:

(1) The condition (4.4.3.22) is crucial in determining the BIBO stability of the adaptive sys-
tem when the parameter adaptation is slow. In the absence of unmodelled dynamics and output
disturbances, g(¢)=0 so that § can also be chosen the unmodelled
dynamics and the bounded output disturbances are mild, a reasonably small & can also be
found so that the stability of the system and, from (4.4.3.16), the closeness between the real
plant and the tuned model are also guaranteed. ‘

(2) In the absence of output disturbances, if u satisfies conditions in the theorem and, addi-
tionally, Supp(u) contains exactly 2» points, then it can be deduced from Theorem 4.4.2.1 that
e« converges to zero exponentially (Callier and Desoer (1982) p. 127) and 8=0 so that, from

Theorem 2.2.2.3, the parameter errors ¢ converge to zero exponentially.



(ii) Least-Squares with Forgetting Factor Algorithm

Recall that the dynamics of the parameter errors are given by:

d=—-ePe,l $(0)=bo

P=¢eAP-eP{LTP P©O)=1

so that the averaged system can be found to be

where

dav = =€ Py Reg(00) o= EPay 8 $a(0) =00

Py = €APay—€P s Re(0) Py Po(0)=1

Rz (@) = 2%60 _j; A . jo) mgja) I (o) Hg,(0,jo) S,(dw)

R®) = 5= [ Ae(0.ja) A0, o) S.dw)

+ o | Hod®jo0 H9,0) S de)
8@ = 2L [ (Are)-1Go) ) PG A0.jo) 5,00

+ z_lu _j_ A} _£8,jo) Ay 8.jo) S{d) .
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(4.4.3.27)

(4.4.3.28)

(4.4.3.29)

(4.4.3.30)

(4.4.3.31)

(4.4.3.32)

(4.4.3.33)

The following theorem, similar to Theorem 4.4.3.2, provides conditions for BIBO stability.
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Theorem 4.4.3.3: (BIBO Stability Using Least-Squares with Forgetting Factor Algorithm)

Consider the same adaptive control problem but use the modified scheme shown in Figure
42.2. Let assumptions (Al)-(A12) be satisfied, and R;;,(¢),R;(¢).g(¢) be defined as in

(4.4.3.31)-(4.4.3.33).

If the input u satisfies the conditions of Theorem 4.4.3.1, and for sufficiently small §>0
. 1
. - 4.3.34
max el < min A | SM(Reg @) = R;(d»] L) (4.4.3.34)

then there exist ¥;,6,>0, 0ST<oo, and y,(€) € K such that
@ < wyafe) + 7,0 t25+T (4.4.3.35)

for all e<e,, and for sufficiently small ¢o. O

Proof: The proof of this theorem is similar to that of Theorem 4.4.3.2. Construct a
Lyapunov function for the averaged differential equations (4.4.3.29)-(4.4.3.30),

V(Qays Pay) = -%- oL, Pl o, . (4.4.3.36)

Again from Theorem 4.4.3.1 and Lemma 3.3.2, SM(R;;,@)) and Re(¢) are positive definite.
Using a result established in subsection 4.3.1. CASE I (i.e. P;,‘, is bounded above and below

whenever ¢,,€ @), it follows that there exist non-zero positive constants o, 0, 03, ¢4 such

that

o [l 0y 12 S V@ Pav) S 02 || 000 12 (4.4.3.37)
“ aa@: “ LA™ E (4.4.3.38)
" ai:, || LA (4.4.3.39)

whenever ¢,, € ©,. Denote
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1
= mi ; - =R . 4.4.3.40
05 i= Ml A [sm R =3 ;(¢)] ( )
The derivative of v along the trajectories of (4.4.3.29)-(4.4.3.30) can be estimated as follows:

i+ Zhy =ed], [SM( Regf0a) -3 Rg@av)] O — 00 80av)

S—-€0y " ¢av “ ( “ ¢av “ - 8) . (4-43-41)

Thus, using Corollary 2.2.2.7, we may readily conclude the result.

44 n ror Schem

Recall from subsection 4.2.2 that the error signal used for the parameter update is ey
defined in (4.2.2.6). If the parameters 6(z) are fixed at 0, then, using (4.2.2.7), we have

€3 = o (A() £))™ (Ypa = Ym)

= co(A() Ks)) (en) (4.4.3.42)
and
v={) w) + [ (AN (e ,0,0,0] (4.4.3.43)
so that
&= -g% 0Ty = F1@Tw)) (4.4.3.48)

where §o=Co—Cor» and Oy is the tuned parameters defined as before. Thus, using (4.4.3.17), we

can solve e; explicitly in terms of u, d, and esr:

20 () () (9T Hou(8.5))
Cor

€= 3 (@)
1+ — ()™ ig(s)
Cor




1

+ (o) k)™ 0.9 @) + | —— (&) -
1+— w(s)~L iy (s)
oT
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(4.4.3.45)

The following corollary provides conditions, similar to that in Theorem 4.4.3.1, under which

the PE condition on the signal vector v can be assured.

Corollary 4.43.4: ( Almost Always PE Condition on v )

\

Consider the same adaptive control problem as given in Theorem 4.4.3.1. Let assumptions

(A1)-(A6) and (A8)-(A12) be satisfied.

Then the signal vector v in (4.4.3.43) is PE if the input u satisfies conditions of Theorem

4431. 0

The proof is similar to that of Theorem 4.4.3.1 and, hence, is omitted here.

With these results, we now analyze the reduced order adaptive controller using both

parameter update algorithms given in subsection 4.2.2.

(i) Normalized Gradient Algorithm:

For the case of averaging, consider the parameter update law of the form,

p=— e @ =0
b 1+eviy (0) =0
Its averaged system is
v = — EROr) by — £8(0s) 0a(0) = o

where

- =2 A ) hy(j)
Rof@ = [ Al jo) [—= B0 .j0) S, (dw)
2r —co ¢0 a=lg. .
14— i i) )
oT

(4.4.3.46)

(4.4.3.47)

(4.4.3.48)
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m(jo) —-m(jw) §.(dw)

)

Cor

17 .
g® =5z | Au®.jo)

14— A~ (joo) M)

1 ¢ a "
* o _J; CoHul® . j0) Hy A8 5) S4dw) (4.4.3.49)

Note that the matrix Rw,(cb) defined in (4.4.3.48) is no longer symmetric like the one defined in

(4.3.2.9) nor is it necessarily a positive definite matrix under the normal PE condition.

Since the system (4.4.3.47) is similar to that in (4.4.3.19), we will give a corollary to
Theorem 4.4.3.2 to provide conditions for BIBO stability of the adaptive system.

Corollary 4.4.3.5:

Consider the same adaptive control problem as the one in Theorem 4.4.3.1 but using the input
error scheme. Let assumptions (A1)-(A6), (DA7), and (A8)-(A12) be satisfied, Rw,(q)) and g(¢)
be defined in (4.4.3.48), (4.4.3.49).

If the input u satisfies the conditions of Corollary 4.4.3.4 and there exists sufficiently. small
8>0 such that

max || 5@ | < min A (SMCR()) 8 (44350

then there exist ¥3,83>0, 0ST <0, and y;(g) € X such that

@1 < wae) + 730 t219+T (4.4.3.51)

for all e<e, and for sufficiently small ¢o. O

The proof is identical to that of Theorem 4.4.3.2 and, hence, is omitted.
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Remarks:
(1) In the absence of unmodelled dynamics and output disturbances, =7y (i.e. 67=0") and,
hence,
R, (®) = R($)

is a symmetric positive semi-definite matrix, which becomes positive definite if 4 is SR. In the
non-ideal case, if the input u satisfies conditions of Corollary 4.4.3.4, ¢g/ cor< 1, and:

7 (jo) mro) = 1 for all @ e Supp() 4.4.3.52)
then Rw,(¢) will remain positive definite.
(2) Comparison between (4.4.3.20) and (4.4.3.48) suggests the following similarity: Rw,((b) is
the crosscovariance of w and sig(s)(w), whereas Rw,(d)) is the crosscovariance of v and m,(s)(v)

where

22 sy gs)
Cor
i do

. COT

My(s) = (4.4.3.53)

1 (5) R(s)

Since the positive definiteness of these matrices is crucial to the stability of the adaptive sys-
tém. the spectrum of the control input # should not be too high so that /i(jo) and 7. (jo)

remain positive for all ® e Supp(u).

(ii) Normalized Least-Squares with Forgetting Factor Algorithm
The parameter update law in this case has the following form:

(524

p=-eP—2— " $(0)=d (4.4.3.54)
l1+evy
P=gP-¢ pi_ P PO)=I. (4.4.3.55)

1+evly
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The averaged system of the slow variables ¢ and P is
Gay == €Pay Ry, (900 0y = EPay 8 Oav) $av (0) = 90 (4.4.3.56)
Py =€Psy — €Pay Ry9ay) Pay P, =1 (4.4.357)

where Rw,(¢) and g(9) are defined in (4.4.3.48) and (4.4.3.49) respectively, and R,(¢) is
defined by

R =5 | Au®.j0) Hu®.j0) Sudw)

""21_:: | Au@i) Hu®.io)SiGo) . (4.4.3.58)

Due to the similarity to the averaged differential equations (4.4.3.29)-(4.4.3.30), we will state a
corollary to Theorem 4.4.3.3 to provide conditions for BIBS stability.

"Corollary 4.4.3.6:

Consider the same adaptive control problem as that considered in Corollary 4.4.3.5. Let
Ry, (6), g(¢) be defined in (4.4.3.48), (4.4.3.49), and R, (9) be defined in (4.4.3.58).

If the input u satisfies conditions of Corollary 4.4.3.4 and there exists sufficiently small
6>0 such that

. 1
iy el s ory Amin [SM Ry, @) = 5 R,(®) ] 5 (44.3.59)

then there exist ¥4,€4>0, 0ST <, and y4(€) e K such that
o) | S wale) + 748  e209+T (4.4.3.60)

for all e<gg, and for sufficiently small ¢ O
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The proof is identical to that of Theorem 4.4.3.3 and, hence, is omitted here.

Remark: Note that the condition in (4.4.3.59) is not an SPR condition, in contrast with con-
dition (4.4.3.34). Under the assumption of no unmodelled dynamics and output disturbances we
have, as indicated in the remark after Corollary 4.4.3.5,

Rw,(¢)-%Ry(¢) = -;-R.,(¢). ' (4.4.3.61)

This, however, will not be the case in the non-ideal case. Yet, if the conditions in the remark
after Corollary 4.4.3.5 are satisfied, then the L.H.S. in (4.4.3.61) will remain positive definite.

4.4.4 Slow-Drift Instability

To substantiate the importance of a proper choice of input signals as indicated in last sub-
section, we present slow-drift instability, one type of instability which appears in the adaptive
system with unmodelled dynamics and bounded output disturbances when the adaptation is
slowed down and the reference input u is not properly chosen. This type of an instability pro-
perty will usually be detected only after a long period of operation time has elapsed. Roughly
speaking, the parameter vector 6(¢) fails to converge to a neighborhood of the fixed parameters,
for example, tuned parameters, but rather drift in the parameter space until it finally reaches a

region in which the closed loop system is unstable.

Definition 4.4.4.1: (Positive Definite PE Through a Stable Filter)
Consider a stable filter described by a transfer function fs), and a signal vector w:R, —R” w
is said to be positive definite PE through fs) if there exist ¢, ;>0 such that

o+T

o % cov(w flsYw) = lim -;- [ woRHWO)dr < o 4.44.1)
- i
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Remarks:

(1) The notation cov (w,As)(w)) is, in fact, the crosscovariance of w and fs)(w), which has
been defined in Definition 3.4.2.1.

(2) If the signal vector w can be described as
w= ﬁ!,(s)(u) 444.2)

where the scalar signal u is stationary and has a power spectral measure S, (dw), then (4.4.4.1)

can be expressed in its spectral form,

cov W) = = [ Apli)f () Hou() Suldw) 4.44.3)

It is clear that w is always positive definite PE if A(s) is SPR and w is PE.

Essentially, the positive definite PE condition is a key condition for the adaptive control
algorithm. For example, in the ideal nominal case where the relative degree of plant is one, the
error signal e, is expressed by -

€0 = = A(ESOTW) . (4.4.4.49)
Co

When the gradient algorithm is used and the adaptation is slow, the parameter update law is
"approximated” by its averaged system,

Oay = — ECOV(W, R(SHW)) Oy - (4.44.5)

Since by choice M(s) is SPR, cov(w,A(s)(w)) is positive definite whenever w is PE, which, in
turn, implies the exponential stability of the adaptive system. On the other hand, in the pres-
ence of unmodelled dynamics, the error signal e, may be expressed by

e, = ——y(s) 6T w) (4.4.4.6)
cor

(R1(s) is the tuned model transfer function as defined in previous subsections) when the tuned
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model is close to the reference model. Hence the parameter update law can be "approximated”
by

gy = = ECOVIW, R(SIW)) Ogy - (4.4.4.7)

Since the relative degree of mMi(s) is the same as that of f (s), which is, in this particular
instance, usually greater than one, for sufficiently high frequencies ®, it is possible that

Rem{jo) <0 . (4.4.4.8)

This implies, from Definition 4.4.4.1, that w fails to be positive definite PE through ;(s).
Consequently, the stability of both system (4.4.4.7) and, hence, the adaptive system are likely
to be at stake. In the following, we will formalize the above arguments by using averaging to
“analyze the instability of the adaptive system with either of the two algorithms discussed
above.

(i) Output Error Scheme:

Again, for illustration, we will only consider the case where the relative degree of the
nominal plant is one. It will be easy to extend the these results to the cases with higher relative
degrees.

Initially, we will proceed with some observations with the output disturbance d=0. Note
that y,,=p‘,,(erw). When the parameter 6(t) varies sufficiently slowly and 8(r)e ©, at some
time ¢, as suggested from (4.4.4.7), the gradient type parameter adaptation law is approxi-
mately:

§=-= I_ o) [e’ﬁ,..(e .jm)-mom)p:‘(ico)] A8 .jo) 5,(dw)

2 S (dw)

1 51w |67 Auni® )~ G0 £l G

= 7,0 (4.44.9)



139

9

where we neglect the terms 9739- H,.(0,jo) by assuming that: (i) 6(z) stays close to a set (or
possibly a point) defined by
O = {0,, | 0,,=a£%xgin Jog () } (4.4.4.10)

and (ii) o’a—ae H,.(0,jo) is much smaller relative to 4,,(0,j®) (elementwise) when the fre-

quency @ is high.

Remark: In words, assumption (i) says: when 6(?) is close to O, i.e. the output of the
closed loop plant tries to match that of the reference model for all frequencies in Supp(u).
Since a better match can normally be achieved at low frequencies so that the effect of neglect
could be diminished at low frequencies rather at high frequencies; assumption (ii) says: the rate
of change of H,,(0,s) with respect to 0 is relatively much smaller than A,,(8,s) itself at high
frequencies.

When these assumptions hold, then the parameter update law optimizes the cost function
Jog(0), so that the steady state of 6(¢) should be expected to be close t0 Oy, possibly until
0(p) starts to drift out of ©,.

Now consider a sufficiently low frequency w;. By Theorem 4.4.1.2 and the fact that the

unmodelled dynamics become insignificant in the low frequency region, there almost always

exists a 6,e ©, such that:
A, (O j) = M) . 4.4.4.11)
But for a sufficiently high frequency @, it may happen that
ReR, u(0.jop) < 0 fbr all e 6, 4.4.4.12)

which implies that
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A, (8J00) ¥ rA(jo) for all 8e O, . 4.4.4.13)

Consider the following definition.

Definition 4.4.4.2: (Positive Real Frequency Set, Negative Real Frequency Set )

Consider a compact subset ©,. in the parameter space such that 6° e 6,,c©, and 8, O,
(0° is the true parameter corresponding to the nominal plant). Q, and Q, are ‘called positive
real frequency set and negative ;eal frequency set respectively if:

Q, -_-{ ® | ReA, ,u(0,j@) >0 , forall © e e,c} (4.4.4.14)
Q= { ® | ReH, ,(6,j0) <0 , forall 0 e,c} (4.4.4.15)

Remark: Clearly, the union of Q, and Q, does not cover the whole set of reals, R. However,

in the context of study on instability, these two sets are our domain of interests.

Assumption:

(A13) Supp(u) N Q, contains 2n, points, where ny21, and Supp(u) N Q, contains less than
2n points. The spectral magnitudes of frequency elements in Supp(x) N Q, are rela-
tively smaller than of those in Supp(x) N Q. ’

Under this assumption, Theorem 4.4.1.2 and the remark following (4.4.4.9), (4.4.4.10)
imply that there almost always exists a 8ge 6, close t0 O, such that:

A, (8. j0) = h(je) forall ® e Supp() N Q, (4.4.4.16)

On the other hand, from Definition 4.4.4.1, the signal vector w fails to satisfy the positive



141

definite PE condition through I?, F,‘(eo.s). Under these conditions, we now study the behavior
of the adaptive system through its averaged version, (compare with (4.4.3.19))
ay = = ECOV (W, g(S)W) ) Oy + € 80 ) 4.4.4.17)

where My(s) =H, ’,(eo,s). and $=0-0, Using the fact in (4.4.4.16), cov (w,mMy(s)(w)) and
2(¢) can be approximated by

n

cov(w,My(s)(W)) = '51?16; z

(A0 03 Ptj2d A0 0
+ B® ~j0) Plj) Honk® 00| &

= Mg(Dgy + Dsg )M} (4.4.4.18)

where

My= [ﬁ,,,,(e JOD) s (8, =), -+ A, (0, jco,,l),ﬁ,,,,(e.-jco,,l)] 4.4.4.19)

q Re g(jo,)
I 0
Dgyy = diag 0 2 e
R .
2 1{001 emo(](')l)
L - -
[ 6,2 1
T ReRaUen) o
’ 0 2 (4.4.4.20)
M ey
21003 "
i Im Rtg(jod,)
. 0 23901 !
DSK = dlag t% 0 ytct
Im AuCi
k 2700, mo(jay)
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r tn 2 49
, o 4.4.421)
L2“°°' 1 AlfO) J.
and
1 & (s »
60 = o 2 (A0, (o) - D)
+ 0,00 (=) — =jo0)) | 2
=My g, (4.4.4.22)
where
[ h
iR (Mg(jo)) —-m(jwy))
2 € 1 1
&= e ™ (4.4.4.23)
t"lz . .
L-z';t' Im ('ﬁo(l")u‘)- m(lmnl) )‘

and Oy, is the first element of 6, ©;€ Q,, i=1,---,m,, # is the spectral magnitude of the ith
frequency element ;. Obviously, the matrix Dy, is 2 negative definite matrix by the definition
of Q, and Dgx is a skew symmetric matrix. Such an approximation simply implies that the low
frequency elements do. not contribute as large a driving force to the parameter 8(f) as the high
frequency elements do. This is reasonable since in general there is a subspace of R** such that
for each © belonging to that subspace rfig(jw) stays close to M(jw) for @ e Supp(x) N, (due to
lack of richness in Supp(#)NQ,). Such a property however does not hold for
o e Supp(u) N Q,. Hence these elements present more significant time varying factors so that

the overall cost function J,(6) can be minimized.
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By Corollary 4.4.3.4, we make the following assumption for the analysis.

Assumption:
(A14) For all $e @, :==—06p+6,, M, is of full column rank if ny<n, and MIM, is non-

singular if n;>n.

Now we define ¢, == Mg ¢. The averaged dynamics of ¢, can be approximated using
(4.4.1.17) and the remark after (4.4.1.10) (i.e. %ﬁm(e ,j®) is neglected for me Q, ) so that
Oty =—€Mo_TMo_(Dsyy+Dsx) Ouan—Mg TMo_3, - (4.4.4.24)

Now we are ready to state a theorem that provides conditions under which the adaptive system
will be unstable.

Theorem 4.4.4.1: (Instability Theorem Using Gradient Algorithm)
Consider the foregoing adaptive scheme and let 8 be given as before.

If there exists a sufficiently small 3>0 such that

| gvll <3 (4.4.4.25)

then there exist €5>0, small 7;,>0, such that B, < @, and ¢(s) will eventually leaves P,

whenever e<es, and ¢(1) € O, | B, for some 1) 24. O

Proof: Consider a Lyapunov function v(¢,,) for the averaged differential equation
4.4.4.24):

v(¢Mav) = % ¢L¢v (M G“TMB“)-l¢M¢y . (4.4.4.26)

Since @, is a compact set, by assumption, there exist &, , ;>0 such that
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&y || Ogav |2 S v(Oaan) S 02 1] Opgan |2 (4.4.4.27)

Moreover, Dgsy, is negative definite so that we define

@3 = Apin (— Dspy) (4.4.4.28)

Differentiating v along the trajectories of (4.4.4.24), using (4.4.4.28) and the hypothesis, we

have
) = — €3gry D + o],
V = = €0ay Dsyr Ortay + EDrtav 8y

€| dutav | (03l Sarav il = 8) . (4.4.4.29)

Using Corollary 2.3.2.2, and the fact that

I dne Il 2 Ve (M5Mg) || 912 % lol (4.4.4.30)

the conclusion then follows.

Remarks:

(1) In words, the theorem says that, under the above assumptions, especially (A13)-(A14), the
adaptive system will undergo a slow-drift instability if there exists #;2f, such that
¢(z,)=e(£,)-eo is large enough. Note that g,, involves the pseudo error e«(8y,#), which is
defined in (4.4.4.23). Naturally, if this error signal is small so that g,, is small, then the insta-
bility is more likely to occur. This will be possible if the spectral magnitudes of frequency ele-
ments in Supp() N Q,, 2, i=1,...n,, are relatively small. Violation of this condition, how-
ever, does not imply that instability is unlikely to occur. On the contrary, if &, 1<i<n,, are
sufficiently large, though the above approximation will not hold true, cov(w,mg(s)(w)) still
fail to be positive definite (in fact, it will be negative indefinite) so that, by a linearization
argument, the system remains unstable (cf. Fu and Sastry (1987)).

(2) One should note that 6, in this theorem does not have to be a point on the trajectory of

6(s). This however does not imply that there always there exists #; 24 such that the condition
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in the theorem can be satisfied. Yet, what makes that condition more tractable is the following.

B, (0.5) = hofs) = '0:;—1 A5 OT Fi(8.5)) (4.4.431)

Since, for all ®e Supp(W)NQ,, H,,(6(),jo) = A(jw). Note A,

,«(8(f9) ,jo) is just a value

when ¢=1,, which by no means indicates a function of time ¢, and during the process of optimi-
zation, H, 8() ,jw) has to assume different values for each ¢ (i.e. to use the time varying

effect). Consequently, it may be expected that there exists # 2% such that
OTA,,(B(t).jo) % 0 . @ e Supp(y) N Q, (4.4.4.32)
which, in tumn, implies a possibility that
|l sl 27 >0. (4.44.33)

(3) In the proof, if the term:
¢L.,,<7‘j; (Mo_™Mo_))Obtay

can not be neglected, then the trajectories of 6(¢) may undergo only a local instability but glo-
bal boundedness.

(4) The compact subset ©,, may not be too small in the parameter space. Moreover, this set
can be very close to the unstable manifold of 6(¢) so that, whenever 6(z) leaves O, it is likely
to be attracted into the unstable manifold and the adaptive system suddenly turns into a drasti-

cally unstable stage.

(5) It can be seen that the instability can occur even when the spectral magnitudes of the ele-
ment in Supp(x) N Q, are very small due to the fact that the # appears in both Dg and g,. In
other words, if the system fails to satisfy the positive definite PE condition, then the system is

extremely sensitive to the frequency elements in ,.

(6) ‘This result can clearly be extended to the case when Supp(u) N £, contains more than 2n

points and/or the output disturbances exist, so long the system fails to satisfy positive definite
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PE condition.

As for the least-squares with forgetting factor algorithm, we make similar observations, as
before, in the following.

Assume that (5,0)'(y,) exists (i.e. u is sufficiently smooth), and then define the cost
function J,(8, 1) by

J.(0,0) = Jo’ e er =) [eT (@) - G.H oW ]2 &t A>0 4.4.4.34)

which is a function of time ¢ Note that, since y,=(F.0(870) in the modified scheme, J,(8 1)
is, in fact, an exponentially discounted cost function. Let the set ©,. be given as before and

define the minimizer of J,(0,¢) at time ¢ by

6o() = argmin{.l,,l(e.t) |ee 9,} (4.4.4.35)
Now we neglect the fact that { depends on 0 just as in the previous case and solve the follow-
ing optimality equation,
a—ae Jo(0,0) |o=e°(:) =0 (4.4.4.36)
to get

-1
' t

8= e l[ M-y mTar| |e ! M- I @ {(T) dt

t

= P@) ‘[ e =G Iy (Tt de (4.4.4.37)

By differentiating (4.4.4.37), we have
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4

8g() = P 1[ -5 [y, LD de

+eP@, ) Y ym - €A (4.4.4.38)

P=elP-ePLLTP (4.4.4.39)
so that the dynamics of 6(s) is given by
8 =—ePLL 0+ eP B OWE
=~ eP @00 - ym)C
=-eP@.H et . (4.4.4.40)

It can be seen that (4.4.4.39)-(4.4.4.40) is very similar to our regular least-squares with forget-
ting factor algorithm:

0=-¢Pe,l 8(0)=6q (4.4.4.41)
P=¢eAP-ePLLTP PO)=1 (4.4.4.42)

except that P is a steady state of P, and the error signal used in (4.4.4.40) is .(ﬁ,,f )"(e,) rather
than e, used in (4.4.4.41).

Heuristically speaking, despite the above differences, for sufficiently small g, the parame-
ter update law given in (4.4.4.41)-(4.4.4.42) tends to optimize a cost function of the output
error e,. As such, it allows us to analyze the system using the same setup as before but with

the following averaged version:
Pav = = EPgy 0V ({0 L(D) Qay = EP oy (D) (4.4.4.43)
P, = €AP,, — EPoRe(9ay) Pay (4.4.4.44)

The difference, however, lies in the positive definite PE condition. To suit the analysis in this
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case, we modify Definition 4.4.4.2 as follows.

Definition 4.4.4.3: (Positive Real Frequency Set, Negative Real Frequency Set )

Q, and Q, are called positive real frequency set and negative real frequency set respectively if:

= 1 1 -
Q,= {(o | Kkeﬁ’f‘(e'jm)_i >0,0¢ 9,, cm.-gréaoi co} (4.4.4.45)

Q, ={m | %Reﬁ, A6, jm)-—;- <0,8 € ©,, Coio=min co}. (4.4.4.46)
min ¢

Here, in addition to (A13)-(A14), we will make an additional assumption to guarantee the
invertibility of R¢(4).

Assumption:

(A15) Supp(x) contains at least 2n points so that H,,(0,5)(w) is PE for all 6 € 8.

Using (4.4.4.17)-(4.4.4.18) and (4.4.4.22) we can approximate (4.4.4.43) by
Oay = = EPay Mo_(Dsyy+ Dsg) Mo, 0ay—€PayMs, 2, (4.4.4.47)

where M, is as defined in (4.4.4.19); Dy, Dsy, and g, are as defined in (4.4.4.20)-(4.4.4.21)
and (4.4.4.23) but with i, replaced by rip £ Re(9) is as defined in (4.4.3.32). Again, we define
dp =My ¢ and use the approximation as before (neglect the rate of change of My with respect

to time #) so that the averaged dynamics of ¢y, is given approximately by
Ouav = — €Mo_T Py My_(Dsy+ Dsx )Mo, Oan
—-eMy TP,Mg g, . (4.4.4.48)

Furthermore, (4.4.4.44) can also be changed into the following form, using the same approxi-

mation,
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-% (Mo TPoMg,) = €My T Po,Mg, — eMg T PayRe(@a) PvMo,, (4.4.4.49)

The following theorem, similar to Theorem 4.4.4.1, will summarize the condition for instabil-
ity.

Theorem 4.4.4.2: (Instability Theorem Using Least-Squares with Forgetting Factor Algo-
rithm) '
Consider the above setup of the adaptive control problem and let 6 be given as before.

If there exists a sufficiently small >0 such that

| govll <3 (4.4.4.50)

then there exist €,29>0 and small r;,>0 such that B, < @, and ¢(9) will eventually leaves

®,. whenever e<¢&g, ASA, and §(t;) € O, | B, for some £ 20. O

Proof: The proof will be similar to that of Theorem 4.4.4.1. Consider a Lyapunov function
V(Parqy) for the averaged differential equation (4.4.4.47):

VOar+ P = 5 OFtar (Mo, PorMo_ ) Ot (44.451)

As in the proof of Theorem 4.4.3.3, due to (A15), P! is bounded above and below so that,
again from (A14) and the compactness of @,,, there exist o, 0, >0 such that

& [l Oatan 112 S Vstays Pa) < 02 [l Spgay 12 (4.4.4.52)

whenever ¢,, € D,.. As in (4.4.4.28), we define

2 2
a3 = lmin = DSM"‘ %diag('z_:; "’...t%) (4.4.4.53)

which, by (4.4.4.45), is a positive number. Differentiating v along the trajectories of (4.4.4.48)
and (4.4.4.49), we have
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. . _ EA -
V== —2"' -e¢&1{-¢vDSM¢M¢v +e¢l{avgv +-;-¢51;¢V(M9“TP¢VMO“) !

-(Mo,T Py Ry@a)Pay Mo,) (Mo, T Poy Mo, )" Ostar 4.4.4.54)

Note that

Dsy = (Mg, T PayMg, ) M 6. Pav [Mo,, Dsy Mo, T ]
‘Poy M 0 (M O,T Py M 9, )-l (4.4.4.55)
and
2 L 2
Ro(0) = MT diag (o -+, =) My + R¢(®) (4.4.4.56)
£ ® 2z’ ‘2 8T8 o

where R, ¢(¢) is a positive semi-definite matrix. Using these and (4.4.4.53), we then can esti-

mate v in (4.4.4.54) to get
. :
v 2 el bun | (@552l e 11 = 8) (@445

Thus, the conclusion follows from the proof of Theorem 444.1, Corollary 2.3.2.3.

(ii) Input Error Scheme
Again we assume d =0, i.e. disturbance-free case. As before, the results derived under
such a condition can be clearly extended to the case where d #0. From (4.4.3.43)-(4.4.3.44),

for fixed ©, we can solve e, in terms of v and y,, as

-1
ey= coi™ P, Ty - @ “1)—1 Om)) (4.4.4.58)

1 +Coﬂ?-‘ﬁ“

where we assume that y,, (or: u) is sufficiently smooth such that the term (¢ ,,?)"(y,,,) exists.

Define a cost function J;; by
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L) -1 *
Jg(0) = —21- | O B |oTh, 05 - g A Sde) (44459

T " 1+ Com-lﬁ,‘

Similarly, we neglect the dependence of v on 6, and assume that 0 is already close to where
6Tv—(p!)\(y,) is small so that, for sufficiently small €, the normalized gradient algorithm,

under this scheme, approximately follows:

1 Co'ﬁ ﬁu d T -

=—g— 2 6TH(0.5) - B0 25 (do

an _'[. 1+ corii!p, 90 499 = Gl) (@)

=27

=—e—Jy®). (4.4.4.60)

This suggests that, if the trajectories 6(¢) is already close to the minizers of J;(6), then it will
continue following the path of optimizing the cost function J,(6). It then follows from
(4.4.3.42) that 6(¢) also follows the path of optimizing the output error ¢, This conclusion is
the same as that for the gradient algorithm using output error scheme. Obviously, it is not hard
to extend such observations to the normalized least-squares with forgetting factor algorithm,
following the same arguments as before. Consequently, similar results for both algorithms
should be expected..

Since the input error scheme does not require the SPR condition, The instability arise
under a condition slightly different from that using output error scheme. Let 8y and the subset
0,., D, be given as before, Recall from (4.4.3.47) that the averaged dynamics of the parame-
ter ¢, replacing 67 by 8y, is the following:

Oav =~ ECOV(Y , RS) (V) Oy + €8(Oar) (4.4.4.61)

where we repeat f(s) here:

=2 ) hgls)
A5 =—= 5 (4.4.4.62)
1 + == A7 g(s)
601
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(note that $o=co—0p;). Motivated by this, we modify Definition 4.4.4.2 to suit our later
analysis.

Definition 4.4.4.4: ( Positive Real Frequency Set, Negative Real Frequency Set )

Q, and Q, are called positive real frequency set and negative real frequency set respectively if:

r -

- o) S0 =
Q, =4 e)ll!e(l.?”“(a ))>1 — Oe O, , Coin= exmgco» (4.4.4.63)

! . 4

r b

Q,={o lRe(—m)—-) <1-—2 ,0e®, ,co,=maxcyb (44.4.64)
y,u(e!’m) Crin 0e 8,

Remarks:

(1) Rewrite (4.4.4.62) as
8 -1
fio) = [1 + —cﬂ(m(im)m;‘(im) - 1)] . (4.4.4.65)
0

Then it follows that, for all @€ Q,, Ref(jw)>0, whereas, for all @ e Q,, Refjw)<0.

(2) In the absence of unmodelled dynamics, 8,=6" so that

Re (D) ) 5 forall ®eR . (4.4.4.66)
)

Hence all frequencies @ will be classified as members of Q,. However, under the assumption
of unmodelled dynamics, /My(s) has an order higher than that of mM(s), which implies that
Mmg(jw) will not be in phase with rﬁ(j(:)) when ® is too high. This implies that @ may no longer
lie in the set Q, but more likely in the set Q, Consequently, under the assumptions (A13),

the signal vector v will then fail to satisfy the positive definite PE condition.
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Now we start with the averaged version of gradient algorithm in (4.4.3.61), which, using
(4.4.3.49)-(4.4.3.50) and (4.4.4.18)-(4.4.4.23), can be approximated by '

6“ = - eMO‘,T(DSM+sz)M9¢¢¢V - eMe‘.gv (4.4.4.67)

where M, is as defined in (4.4.4.19) but with A,,(8,5) being replaced by A,,0,s), and Dgy and
Dgg are as defined in (4.4.4.20)-(4.4.4.21) but with Ry being replaced by As) defined in
4.44.62). Due o ité extreme similarity with that in (4.4.4.17), we will only state the results
as a corollary to Theorem 444.1.

Corollary 4.4.4.3: ( Instability Using Normalized Gradient Algorithm )
Consider the setup of adaptive control problem as given in Theorem 4.4.4.1.

If  there exists sufficiendy smail §>0 such that

l gl <8 " (4.4.4.68)

then there exist &;>0 and small 7;,>0, such that B, C ®d,., and ¢(z) will eventually leaves

®,. whenever e<g;, and ¢(y) € D | B, for some f24. O

The proof is identical to that in Theorem 4.4.4.1 and, hence, is omitted here.

For normalized least-squares with forgetting factor algorithm shown in (4.4.3.54)-
(4.4.3.55), the instability can also be studied through it averaged system given in (4.4.3.56)-
(4.4.3.57) as above. However, the remark after Corollary 4.4.3.6, we see that the Definition
4.4.4.3 will not be adequate here. Hence we again modify definitions of sets Q, and Q, to suit

this case.
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Definition 4.4.4.5: ( Positive Real Frequency Set, Negative Real Frequency Set )

Q, and Q, are defined by

]

Q={0| Re(—ﬂgl—) <1+ i', 0e O, , Cmin= min ¢y (4.4.4.69)
p »

i

R, (0 ,J0) Cmax 8e ©,

-

.

o |Re(=UD )51+ gel,,con=maxcyp (44.4.70)
Hy,p( J(o) Cmin 8€ O,

Remark: The definition implies that, for all ®e Q,, Refjw)-1/2>0 and, for all we Q,,

Refjw)-1/2<0.

Corollary 4.4.4.4: ( Instability Using Normalized Least-Squares with Forgetting Factor

Algorithm )

Consider the setup of the adaptive control problem as given in Theorem 4.4.4.2.

If  there exists a sufficiently small §>0 such that

| gawll <3 (4.4.4.71)

then there exist €g,A9>0 and small 7;,>0, such that B, c®,., and ¢(#) will eventually leaves

®,. whenever <gg, A<Ag, and §(1)) € D, | B,, for some t; 24 O

The proof is identical to that of Theorem 4.4.4.2 and, hence, is omitted here.
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45 Concluding Remarks

In this chapter, we reviewed the output error model reference direct adaptive scheme
introduced by Narendra and Valavani (1978) and Narendra, Lin, and Valavani (1980), and the
input error scheme introduced by Bodson and Sastry (1987). The two schemes examined here
basically use the same structure for the controller but a different one for the parameter update
laws. Identical properties shared by both schemes are summarized here: (i) the closed loop sys-
tem remains stable and the output of the plant converges to that of the reference model (ii) if
the signal vector w is PE, then the controller parameters converge to the true parameters
exponentially. At this point, the input error scheme benefits owing to the relaxation of SPR
condition, which is required in the output error scheme. A price, however, is paid in that the

upper bound of the high frequency gain has to be known (assume k,>0).

Under the assumption that the control inputs are stationary signals, the adaptive system is
categorized as a mixed-time scale system which is suitable for averaging analysis. By applying
averaging results developed in Chapter 2, we obtain estimates of rates of parameter conver-
gence. Results, here, are similar to those for the adaptive identifiers, and an example, using
gradient algorithm, is given to illustrate the closeness of these approximations. Two by-
products follow from this analysis: (i) the notion of optimizing rates of parameter convergence
by choosing SR control input u, subject to some constrain, such that the smallest eigenvalue of

.SM(RWI(O)) (tail convergence) is maximized, (ii) the notion of relaxation of SPR condition for

establishing the stability proof. The former, later, evolves into a basic principle for synthesizing
an optimal input u in Chapter 5, whereas the latter allows one to cope with the non-ideal case

where unmodelled dynamics and output disturbances are brought in.

Due to the inevitable existence of unmodelled dynamics and/or bounded output distur-
bance associated with the plant, properties of model reference adaptive control schemes gen-
erally will no longer hold and the stability of the system is likely be at stake. Assuming
FDLT-I unmodelled dynamics, results from Mason et al (1987) were extended to this control

case so that the PE condition of w can still be related to the sufficient richness of the input « in
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an "almost always" fashion. These results then allow us to define tuned parameters and a tuned
model through a frequency-domain interpretation, i.e. tuned parameters, 67, are the fixed values
of the controller parameters © that minimize the normalized mean squared power of tuned
error, the output error between reference model and closed loop plant. Stability analysis will
then be focused on the trajectories of controller parameters around tuned parameters. Under the
assumptions that: (i) reference model is close enough to the tuned model, (i) SM(Ryn, (@),
where ¢=0-0 belongs to a compact set, is sufficiently positive definite, and (iii) the parame-
ter adaptation is slow enough, the controller parameters will converge to a ball centered at the
tuned parameters with a radius which is a sum of a class K function of the adaptation gain and
a linear function of the mean squared power of tuned error. The conclusion on stability of the

adaptive system and performance of the controller can readily be drawn.

While the reduced order controller works in the face of unmodelled dynamics and output
disturbances under some benign assumptions, the crucial dependence on the positive definite
PE condition should be emphasized. To substantiate the importance of this condition, a type of
instability---slow-drift instability-—resulting from the vi;)lation of that condition was under stu-
died rigorously. Results there show that controller parameters will slowly drift, in the parame-
ter space, out of a compact subset in which the tuned error is small, when the adaptation is
slow enough and the spectral energy of the control input is not dominantly SR in the "low"
frequency spectrum. In practice, when the adaptive system undergoes a slow-drift instability,
the controller parameters, after they leave the compact subset, are very likely to be attracted

into the unstable manifold so that the system will be driven into instability.
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Chapter 5 Frequency-Domain Synthesis of Optimal Inputs
for Adaptive Systems

lem men

In this section, we formulate the input design problem of choosing proper inputs for use
in SISO adaptive identification and model reference adaptive control schemes in the absence of
unmodelled dynamics. Characterization of the optimal inputs is given in the frequency domain
and is arrived at through the use of averaging theory. It has been shown in section 3.3 and 4.3
that exponential parameter convergence can be obtained in both adaptive identifiers and model
reference adaptive controllers provided that the signal vector w defined in equations (3.2.6) and
(4.2.1.2) is persistently exciting (PE). From the averaging analysis in section 3.3 and 4.3, we
see that, when the adaptation gain is small enough, the dynamics of parameter evolution can be
approximated by their averaged version, whose rates of convergence are especially easy to
study. As has been pointed out in the conclusions of Chapter 3 and 4, these estimates suggest a

means of optimizing the rates of parameter convergence.

We will primarily be interested in the "tail” rate of convergence and focus attention on

the normalized gradient algorithm.

$.1.1_Adaptive Identifier
We consider an unknown plant, described by an SISO proper, stable transfer function,

A (5)
dy(s)

)=k, (5.1.1.1)

where £i(s), zfp(s) are coprime monic polynomials, and Jp(s) is of a known degree n. The adap-

tive identifier of this plant has the same structure as the one discussed in section 3.2. The
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gradient algorithm, using averaging, is given by
d=—¢e,w (5.1.1.2)
for some small €>0 where $=0-8"° is the parameter error, and e,=y, — Yp is the output error.

The input design problem for an adaptive identifier is that of selecting an input x from an
allowable class of signals (to be specified by the designer) in order that the rate of convergence
of the parameter error ¢ may be optimized. There are various possible solutions to this prob-
lem. The solution pursued here is a frequency domain approach obtained by applying averaging
theory to the parameter update law (5.1.1.2). It is shown in subsection 3.3.1 that bounds on the
rate of parameter convergence can be assessed by studying the matrix R,(0) defined by

T

- lim L T
RO = lim !w(:)w(:) dt

S W AP
=5 .j. d(jo) 0" (jw) S, (dw) (5.1.1.3)

when w is PE, where {(s) is the transfer function given in (3.3.6). The bound on the rate of

parameter convergence is simply € A;, (R,(0))+o(e) when € is small enough.

The input design problem can therefore be put in the form of an optimization problem in
which an input u is to be chosen from a class of signals to maximize the smallest eigenvalue
of the average information matrix R,(0). Such a procedure is very reminiscent of the procedure
indicated in Fedorov (1972), Goodwin and Payne (1977), and Mehra (1976) in the stochastic
context for the design of input signals in parameter estimation. There, however, the objective is
to achieve a greater accuracy of parameter estimates rather than a higher rate of parameter con-

vergence.

Remark: Although averaging requires the adaptation gain € be small enough so that the
approximation will be close, in its application to adaptive identification, € does not have to be

too small. In fact, the estimates are reasonably close even for values of € close to one. This
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fact can be seen from the simulation example given in subsection 3.3.1. Consequently, the
optimal inputs obtained based on this criterion provide a reasonably fast parameter convergence

rate.

ference Adaptive Controll

In this subsection, we examine the optimal input design problem for both the input and
output error direct model reference adaptive control schemes discussed in Chapter 4. As
pointed out at the beginning of this section, the rate of parameter convergence of the linearized

version of the adaptive system is the main focus here.

We consider an SISO plant with transfer function,

A(s)
5(s) = k, =2 1.2.1
20)) kp ap(s) (5.1.2.1)

where 7,(s) and Jp(s) are monic coprime polynomials of degree m and n respectively and k; is
the high frequency gain, satisfying assumptions (A1)-(A3) in section 4.2. The reference model
is described by

Ain(S)

m®=%a®

(5.12.2)

where 7,(s) and d,(s) are monic but not necessarily coprime polynomials of degree m and n
respectively (the same degrees as the corresponding plant polynomials), satisfying assumptions
(A4)-(A5) in section 4.2. The controller structure for model reference direct adaptive control
schemes is the same as the one discussed in section 4.2 as well. As has been shown in section
4.3, exponential parameter convergence can be achieved when the system is PE. Therefore the
input design problem for a model reference adaptive controller, similar to that of an adaptive
identifier, is to select an input u from a class of signals so as to optimize the rate of parameter
convergence. As before, a frequency-domain approach through the application of averaging is

the method adopted to solve the problem. In the following, we will have separate discussions
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on output and input error schemes.

$.1.2.1 Output Error Scheme
Using (4.2.1.9)-(4.2.1.10) and (4.3.1.1), as indicated above, the dynamics of state errors e
of the adaptive system are linearized around (e,$)=(0,0) to obtain
é=Ane+ bt wy, (5.12.3)
e,=che. C(5.124)

Here, for illixstration, we will only consider the case where the relative degree of the plant is
one. As pointed out in the remark before subsection 4.3.2, the case where the relative degree of
the plant is greater than one can be dealt with similarly if one is only interested in the first 2n
parameters of 0.

The parameter update law using gradient algorithm, under averaging, can also be linear-
ized around (e,$)=(0,0) to yield

O=—-ceW,. (5.12.5)

It follows from the analysis in subsection 4.3.1 that estimates of the rate of parameter conver-

gence of the above linearized system can be obtained by studying the matrix SM(R,, ,, ”(0))
which, from (4.3.1.28), is given by

SM(Ry 0, f0) = = [ 0,(j0) Reri(j) 0r(jo) 5,(de) (5.126)
21‘00 —ce

when w,, is PE, where J,, is defined in (4.3.1.7). The bound on the rate of parameter conver-

gence is simply & [l,,,;nSM( R ”(0))] +0(e) for sufficiently small .

The estimate of the bound is extremely similar to that of adaptive identifiers. This, again,
allows us to formulate the input design problem here as an optimization problem in which an
input u is chosen (subject to some constraints) so as to maximize the smallest eigenvalue of an

symmetric positive definite matrix, just as the case of adaptive identifiers.
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Remark: The comments on the smallness of € stated in the remark in subsection 5.1.1 also

apply here.

5.1.2.2 Input Error Scheme
The linearized version of the dynamics of state error e is the same as that given in
(5.12.3)-(5.12.4). Since we are only concemed with the behavior of the system for small

(e.9), the projection mechanism used in the parameter update will not be necessary.

The parameter update law using normalized gradient algorithm, under averaging, takes the

following form:

: m‘&
¢=- aﬁr ¢ (5.1.2.7)

where v,,,:=f' 1(s)(w,,.). It is shown in subsection 4.3.2 that the bound on the rate of parameter

convergence, similar to that of adaptive identifiers, is eAmh(R,_(O))-l-o(e) where

R, O = o [ 170 *Opja) 0o Sfder) (5.12.8)

when w,, is PE and ¢ is small enough.

In the same way, we can put the input design problem in the form of an optimization
problem where the objective is to maximize the smallest eigenvalue of a symmetric positive

definite matrix among a class of input signals.

$.2 Input Design Bases
In section 5.1, we see that the input design problem of an adaptive system can be formu-
lated in terms of the optimization of the smallest eigenvalue of a positive definite symmetric

matrix over a class of input signals. In this section, we make the problem more tractable by
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choosing the class of input signals to be power-constrained, by which we roughly mean that
the average power of a signal i(f)e R, defined as

T

1 ¢
lim — ! 2)dt 5.2.1)

with limit existing uniformly in $20, can be no greater than a fixed amount. In the following,

more detailed definitions, based on Definition 3.3.2 and 3.3.3, are introduced to facilitate later
development of the input design algorithm.

Definition 5.2.1: (Normalized Input Design (NID) over a Compact Support)

A nommalized input design (NID) is defined on the spectral distribution function F (®) which

satisfies
L F ()= } S, (dw) = 1 (5.22)
2t ¢ 2t . ’

Let Q be a compact subset in the frequency spectrum, symmetric about zero frequency, and
@g=argmax { ® |we Q }. Then F, is said to be a NID over Q if

F(- @;)=0 F(o,)=1. (5.2.3)

Remarks:

(1) Note that the spectral function F(m) can be identified with a positive measure, i.e.

1[ S(dw) = z[ dF() (5.24)

In the sequel, we will frequently use N(QQ) to denote the set of all NID’s over 2, which can be

expressed concisely as

NQ) = {F | F : positive measure , 2—‘3 ldF(m) =1 } : (5.2.5)
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In particular, Np(Q), denoting a subset of N(Q), contains all NID’s with only discrete spectrum
in Q.

(2) In practice, stationary signals encountered in adaptive systems are usually bandlimited. In
other words, it will suffice to choose Q as the set [~ 0y, ®o] Where @g>0.

(3) N(Q) is a convex set due to the fact that
(1 -)F, + oF, € N(Q) (5.2.6)

for all Fy, F; € N(Q), and & € [0,1].

Definition 5.2.2: ( Normalized Average Information Matrix (NAIM) )

A matrix G is said to be a normalized average information matrix if there exists a proper stable
column transfer function H : C — C™, a scalar strictly positive even function g: R — R, and
Fe N(Q2) such that

= 2_; ‘[g(o)) A(jo) A" (o) dF(e) (527

Then, given H and g, such a matrix G will be denoted as G(F) for the emphasis of its depen-
dence on .the specific NID F. O

Remarks:

(1) As indicated above, NAIM is always symmetric and at least positive semi-definite. The
invertibility of such matrices relies on two factors: the structure of H(s) and the frequency sup-
port of F. Here, to suit our purposes, we will assume that the transfer function H is always
such that, for some Fe N(Q), the corresponding NAIM is invertible and, hence, positive

definite. Also notice that such a condition is always satisfied in the nominal adaptive system.

(2) Again, in the sequel, we will use My 3)(9) to denote the set of all NAIM's resulting from

the column transfer function H(s), the scalar function g(@), and all possible F’s in N(€2). It can

be concisely expressed as
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My Q) = {G I G= 2—‘7: ! g(@) AGo) A'(jo) dF(0) , Fe N(Q) } (5.2.8)

(3) In the special case where F(w) results from a single frequency sinusoidal input with fre-
quency @, the corresponding NAIM will be called the point-input information matrix (PTIM)
and denoted as G(@").

For convenience, we will introduce the following notation.

Notation:

A function Ag : N(Q) = R, stands for the smallest eigenvalue of G, a NAIM, resulting from
some F e N(Q).

In the stochastic context, there are several parallels of these definitions. In fact, in the sto-
chastic literature, the average information matrix that we used here is often referred to as the
Fisher information matrix and is related to the error covariance matrix. To date, there are
several existing results regarding the Fisher information matrix. Due to similarities between
these matrices, in the following, we will only state some lemmas with proofs omitted (cf.

Goodwin and Payne (1977), chapter 6, and Mehra (1976)).

Lemma 5.2.1: (Closed Convex Hull)

The set My (§Y) is the closed convex hull of all PIIM’s corresponding to the same H and g,

ie.

Mg Q) = Co { G() I weQ } (5.2.9)



165

Lemma 5.2.2: (Matching Lemma)
For any F;e N(Q) with cormresponding G(Fy) € M(H 8)(9.). there always exists a F, € Np(Q)
containing no more than -"-'L—zm"'—ll+1 distinct frequency elements (m(m+1)+2 spectral lines)

such that

G(F) = GF (5:2.10)

a

Lemma 5.2.3: (Optimizing Lemma) |
The optimal normalized input design F' = argmax { Ag(F) | Fe N(Q) } exists, and contains
no more than ﬂngﬂl distinct frequency elements (i.e. one less than that predicted by Lemma

522). O

Important Remark:

One can infer from Lemma 5.2.3 that, while designing optimal inputs for maximizing the
smallest eigenvalue of the average information matrix, one can confine the search to sinusoidal

inputs with only a finite number of frequencies.

1 Design Al
In this section, we first derive some basic results on Ag(F) (the smallest eigenvalue of
G(F)) using perturbation theory. Based on these results, a numerical algorithm for input design
will be constructed later. The sequence { Ac(F) } generated by the algorithm is then proved to

converge to its global maximum.
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Theorem 5.3.1: (Equivalence Theorem)

Consider some F" e N(Q). Let Ag(F") be the smallest eigenvalue of GF") and v;, i=1,---,y

be the orthonormal eigenvectors associated with it.

Then the following three statements are equivalent.

(@) F* = argmax { Ac(P | Fe NQ) } (5.3.1)
(b) Forall F° € N(Q) , with F*:=(1-o)F + aF°, ae [0,1] (5.3.2)
3 .
226 [4e0 50 (5.33)
(©) A6(F") 2 Opax (5.34)
where
Oz = max{ MP'GF)P) | Fe N(Q) } (5.3.5)

and P := [vl,---,v.,]. a

Proof: The way we proceed in the proof is to show (a) (b) are equivalent and then (b) (¢)

are equivalent.

(i)  First of all, note that from (5.3.2)

GF* = (1-0)GF") + aGEF°) (5.3.6)

and that, by perturbation theory, the smallest eigenvalue satisfies

Ac(F") = (1-)A6(F") + ag + o(0) (5.3.7)

when a is small, where g is defined by

g =MPTGFYP) (5.3.8)

and P is the same as given above. It then follows that (a) implies (b) trivially. To show that (b)
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implies (a), we use a contradiction.

Suppose (b) is true but that there exists a F # F" such that

A(F) > AG(F) . (5.3.9)
Define F* as
F*=(1-o)F +af ae[01]. (5.3.10)
i .
GF® = (1-a)G(F") + aG(F) (5.3.11)
and its smallest eigenvalue satisfies
AG(FY) = (1-0) AG(F") + og + o(a) (5.3.12)

when « is small, where g is defined by
a=MPTGEF)P). (5.3.13)
Since, by definition, v;, i = 1, -+ -,y are orthonormal vectors, one can easily show that

azis®. (5.3.14)

Further, with eq. (5.3.12) one can establish the following:

2266 a0 =2 - 2 (5.3.15)

which along with (5.3.9) and (5.3.14) gives a contradiction. Hence, the implication is valid.
@ @@=
By hypothesis and definition of Gy, We have
AcFD) 2 o(F) forall F’ e N(Q) (5.3.16)
where
oF% = MPTGF)P) . | (5.3.17)

With definition of F* in (5.3.2), (5.3.16) then implies that
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2166 |ano =g - 1) <0 (53.18)

®) = ()
This is more obvious to see since if Gua>Ac(F), then there exists Fe M(Q) and F*
defined by

F*=(1-a)F +aF o e [0,1] (5.3.19)

such that
'5% AT |geo = 9 = AED > 0. (5.320)

Consequently, (b) and (c) are equivalent.

Remark: In the theorem, finding On,, is generally less complex than finding Apex = {
AG(F) | Fe N(Q) } due to the smaller dimension of PTG(F)P (y<y rather than the original
mxm where ySm). In fact, the most common and simplest case is where P consists of single
vector, whence PTG(F) P becomes purely a scalar. Thus, by Lemma 5.3.3, it is sufficient to

' compute G, by just using a one-line search optimization routine, i.e.

Omax = Max PTG(@) P . (5.321)
we Q

In general, the computation of optimal input designs, except in very simple cases, has to
be done numerically. The following numerical algorithm will provide a tool by which such
optimal input designs can be sought. The next theorem will show that this numerical algorithm
will generate a convergent sequence { Amin (F) } whose limit point is the global optimum. By
Lemma 5.3.2 and 5.3.3, this also shows that the sequence { F' } will converge to one of the
global optima. Before we proceed, we start with some more notation for simplification in the

sequel.



169

Notation:

@) NK(Q), denoting a subset of Np(Q), contains NID’s F, whose frequency support consists

of no more than 2k points in Q (or u consists of no more than & sinusoidal components).
G) P;= [v,-., R '."f-Ts] consists of orthonormal eigenvectors of G(F") associated with the

smallest eigenvalue Ag(F).

(i) G = max { APTGE)P) | F e NQ) } where k; = %;(7i+1)/2.

Sequential Design Algorithm:

Data: F°e NJ(Q) is a feasible initial design.
Step 1: Seti=0.
Step 2: Compute A;(F) and find g'r,,,.
Step 3: If Gy S AG(F), then stop; else go to Step 4.
Step 4: Update the input design F' by:
F*'=(1-0)F + o;F a; e [0,1] (5.3.22)
where F e Nf;'(n) is such that
Gz = b (PTGE)P) . (5.3.23)

Step 5: i=i+ 1 and go to Step 2.

Remark: In Step 2, the procedure of finding O'max iS €xactly the same as that of finding

AG(F"), i.e. to go through Step 2 to Step 5 with some feasible initial design Fle NE(Q).
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Theorem 5.3.2: (Convergence Theorem)
Consider the sequential design algorithm.

If the sequence { ¢;} is chosen such that

@ lim =0 Y o= a; e (0,1) (5.3.24)
= i=1
or
()  o;=argmax { Ag((1-)F + aF) | a e [0,1] } (5.3.25)

then either the numerical algorithm terminates in some number of finite steps, say, k¥~ and
A F) = b6 F) (5.326)
or
AGF) - AEF) asi-oe (5.327)

where F° is an optimal input design as defined in (5.3.1). O

Proof: If the algorithm terminates in step & < e, then by Equivalence Theorem and the
algorithm itself, we can readily conclude that (5.3.26) is true. On the other hand, if the algo-
rithm does not stop in finite steps, then the following proof will show that (5.3.27) is the case.

(a) Instead of showing that (5.3.27) is true, equivalently, we show that

%&(Fz)i 2=0S0 as i— e (5.3.28)
where
F}=(1-0)F + af (5.3.29)

as a result of Equivalence Theorem. Assume the contrary, i.e.

3—‘1 A FY |aa0=A>0 forall i20. (5.3.30)



171

This implies

Iim [ 46 (F) - A () ] =( 3, ;) 88 (5.331)

i=1

where 8(A)>0, which contradicts that { A (F) } is a bounded sequence.

(b) By the Equivalence theorem, if F is not the optimal input design for all ie Z,, then
33; D) |amo>0 (5.3.32)

which then implies that ( AG(F‘) } is a monotonically increasing sequence which is bounded
above. Hence, the sequence converges to a limit, say, A;(F). We now show that
Ag(® = A(F"), where F’ is assumed to be an optimal input design.

Assume a contradiction, i.e. Ag(F) # Ag(F’). Again, by Equivalence Theorem, the gra-
dient

2 0E lama=4>0 | (5.3.33)
where F® is defined as
F*=(1-0)F+ aF (5.3.39)

for some F € N(Q). This, in tumn, implies
lim [Ag(F) - A (F™) 1=84)> 0 (5.3.35)
which contradicts the fact that the sequence converges. As a consequence,
Iim A6 (F) = A (F) . (5.3.36)
|

Remark: In fact, the numerical computation will usually stop in a finite number of iterations
after a specified stopping criterion is satisfied. Thus, instead of constructing an optimal input
design F', we normally obtain a suboptimal design F** which can be made arbitrarily close to
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F' by having a different stopping criterion. Since the design F** may have an undesirably large
point spectrum, its approximation is usually considered. It is shown in Fedorov (1972) that,

after an approximation, an acceptable rounded-off design, denoted F™4, can be obtained.

5.4 Application to Adaptive Systems

In this section, we will use the tools developed in section 5.3 to solve the input design
problem formulated in section 5.2 for a general nominal adaptive system. Due to the fact that
the solution will depend on the unknown plant, we will assume a prior estimate of the plant,
similar to the Bayesian approach used in stochastic parameter estimation. To demonstrate
these results, examples for both adaptive identifiers and model reference adaptive controllers
are presented. However, for practical reasons, the final input design will only be a semi-
optimal design F™ as mentioned in the preceding remark. In the following, separate treatments
of the input design problem for an adaptive identifier and a model reference adaptive controller

are given.

4.1 A ive Identifier

It is shown in subsection 5.1.1 that the bound on the rate of convergence of the parameter

error vector ¢ is

€Amin (RW(0)) + 0(8)
when ¢ is small enough. Since the first term will dominate the second one for small g, we will
focus only on the first term within the context of our optimization problem. Now by choice of
an input design over N(Q), where Q is preassigned to be in a frequency band [—wy, o) such
that the bound is maximized, this problem falls into the same setup as given in section 5.3. By
referring to (5.1.1.3) and Definition 5.2.2, we see that g=1 and A=0. As has been proven in
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the Convergence Theorem, the numerical algorithm will then provide an optimal input design

F,, or, instead, a semi-optimal input design F7 in practice.

Example §.4.1:
Consider the adaptive identification of a plant,

s+1

i(s) = 2 —. 4.1.1
j16) 13 (54.1.1)
Choose the filter of the compensator block to be s—is-, and denote the parameter error vector

0=0-0"=[d;,9,.9517, where 6°=[c},d},c3]T is found to be [-1.6,0.4,2.0]. As indicated

above, we choose a prior guess of the plant as

K] s+2
=3 — 4.1.
pGs)=3 Py (54.1.2)

Moreover, since the plant is of first order, an initial input design:

1

=1 1 1
> F= 28(_(:))+ 48((0--2)-!- 48(m+2) (54.1.3)

is considered. Also, by the locations of the pole and zero of the plant, a reasonable frequency
search range Q=[-10,10] is preassigned. Thus after applying sequential design algorithm, we
obtain F shown below:

_21; F™ = 0.4455(w) +0.192{8(0~2) + 8(w+2)} +0.0203 { 5(00—3.52) + 8(w+3.52) }
+ 0.00702 (8(>—3.80) + &(w+3.80) ) +0.00442 { §(@—4.29) + (@+4.29)}

+ 0.0539((w—4.43)+ &(w+4.43)} + 0.10{dw~10)+3(w+10)} . (54.14)

Figure 5.4.1 shows the spectral distribution of F*, and Figures 5.4.2 and 5.4.3 illustrate the
difference in the convergence rates of parameter errors ¢, ¢, and the output error e=y,=y,

for the input designs FO and F{™ respectively.
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S5.4.2 Model Reference Adaptive Controller
In this subsection, we will consider only the output error scheme since the input error
scheme can be treated exactly the same way as the identifier. As was shown in subsection

5.1.2, the bound on the rate of parameter convergence is given by
€hmin (SM(R,,_(0))) + o(€)

when ¢ is small. We will also optimize the first dominating term and neglect the second term
in the context of the input design problem. Again, this problem fits into the setup given in sec-
tion 5.3, and, by referring to (5.1.2.6) and Definition 5.2.2, we see that g=Rem/cy, H=0,.
Consequently, application Aof the sequential design algorithm will readil-y provide an optimal

input design F,, or a semi-optimal input design F7 in practice.

Example 5.4.2:

Consider the output error direct model reference adaptive control of a first order plant,

o2
b)) = ey (542.1)
and a reference model,
() = —— . (542.2)
s+3

Denote the parameter error vector $=0-0"=[¢;,¢,)7 where the true value 8°=[k,k 1 is
[1.5,-1]7. Unlike the case of identification, a prior estimate of the plant is not necessary. Since

the plant is of first order, we consider the following initial input design:

1l po_1 1
e = > S(@-1.5) + > d@+1.5) (5.4.2.3)

Also, the frequency search range Q will be chosen to be the same as the one in the previous
example. Then application of numerical algorithm provides the semi-optimal input design F7¢

as follows:

2—‘1: = % &w-2.46) + % &(0+2.46) (5.4.2.4)
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Figures 5.4.4 and 5.4.5 illustrate the difference of convergence rates of the parameter errors ¢y,

&,, and the output error e,=y,~Y for the corresponding input designs, FO and F™,

ideline for tiv with 11 i

In section 5.4, we applied sequential design algorithm to both adaptive identifiers and
model reference adaptive controllers with nominal plants; in which case the frequency search
range Q may be made as large as possible. However, adaptive identification and model refer-
ence adaptive control is usually performed in cases where the plants are contaminated by high
frequency unmodelled dynamics. As a consequence, the choice of the frequency search range
Q becomes a relatively important factor for consideration in the context of input design.

In this section, we will first study some practical aspects in adaptive identification and
model reference adaptive control, and then use these as a general guideline for choosing the
frequency search range Q. As would be expected, some prior information about plants and/or

reference models is required, and will be discussed later in each subsection.

5.5.1 Adaptive Identification

Here, we consider the same setup for adaptive identification given in section 3.4, with the

following additional assumptions.

Assumptions:
(A6) |p(j®) | < L; for some known L;>0, for all @€ R.
(A7) |Ap(®) | S 5(w) for some known function 5{w) (usually small for small .

(A8) || 0° || < A; for some known k;>0.
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Remark: Assumption (A7) is very common in nonadaptive control for designing controllers,
for example, 'S(P,C) control loop for pole placement shown in Figure 5.5.1. By the Nyquist
criterion, if the nominal loop is stable and

s &(j®) 1.1
|Ap(io) | T+ 700 &) <1 for all ®e R (5.5.1.1)

then the overall loop will remain stable.

From subsection 3.4.3, when the parameter adaptation is slow, for almost every input u

with Supp(x) containing at least 2n+1 points, the parameter vector 6(z) satisfies
16 -0zl <y t21+T (5.5.1.2)

for some T>0, where 07 is the tuned parameter given by (3.4.2.11) and y(¢) is a class K func-
tion. In'particular, if Supp(u) contains exactly 2n+1 points, 8(7) converges to 0y exponentially
so that a unique transfer function pr defined by (3.4.2.13) (tuned model transfer function) is
obtained. Now if the controller shown in Figure 5.5.1 is to be designed based-on the tuned
model and the information (A7), the resulting loop may not be stable. Hence some confidence
on the closeness between the tuned model, described by p7, and the true plant, described by j,,
should be established before control is implemented. Following this, the loop that we are going
to study instead is shown in Figure 5.5.2 where the bound on the perturbation part
| A (i) - (o) | is left to be determined.

Remark: Note that the input u does not have to be such that Supp(u) contains exactly 2a+1
points in order to get the tuned model transfer function py(s). By (5.5.1.2), if € is small, 6(2)
will stay within a neighborhood of 6 so that, by some approximation, 6r and, hence, pr can
be read off from the identifier.
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Using Theorem 3.4.2.1 and 3.4.3.1, we consider an input ¥ whose Supp(x) contains
exactly 2n+1 points such that the tuned parameter 67 is well defined. It then follows that €(¢)

converges to 6 exponentially and thus
pLjo) = pr(jo) for all me Supp(w) . (5.5.1.3)

Let 6" be the true parameter for the nominal plant as given in (3.2.9), and {(s) be the transfer
function given by (3.3.6) so that, from (32.7), we have p(s)=0'TQ(s). Using this and
(3.4.2.13), the difference between j, and fr can be evaluated as follows:

Cr+ corrA .
Pr—po= ——0 _ (870 +Ap)
A-Dr
== A 0r-0"Y 0-4Ap (5.5.1.4)
A-Dy

Assuming, without loss of generality, p1(s) is stable, we have

LN f\(l(ﬂ) A, _a* s
| pr(j@)=p. | < AG0) Do) | Gl | 0r—0" |l + |ApGw)|. (55.1.5)

All the bounds, except | 6,0 ||, on the RH.S. of (55.1.5) can be computed using

knowledge of 8y, (5.5.1.3), and assumption (A7). The difference between 67 and 8" can, how-
ever, be estimated through (3.4.2.11) as follows.

Let 0, be the transfer function defined in (3.4.1.5) and denote

w=06)w  and  y,=p)@) . (5.5.1.6)
It then follows that
0" =R 0" R,-{0) (55.1.7)
where
RO =2 3 (QUa 0G0 + Ojod O'cjod) & G5.19)
Ry @ = % P [Qﬁwi)ﬁ'(iwi) + Q(—jw.-)p"(-jm;)] ? (5.5.1.9)
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and 1’,2 is the spectral magnitude of the ith frequency element, in contrast with

8r = R\(0)™ R, (0) (5.5.1.10)
where
R0 = § (00m0imy + Ociorgicim) G
R @ = 5 3. (Quiodslio) + Oucjorpic-iw)) . G5112)
Since
| 0
Gu(s) = 0(s) + | Fo(s) AB(s) (55.1.13)
0

R, (0) and R,,,’(O) are simply the ones perturbed from R _«(0) and Rw-y;(O) and can be
represented as follows:
R, (0) =R «0) + AR,(0) (5.5.1.14)

R, 0) = Rw-y;(O) +A4R,, ). (5.5.1.15)

Note that || AR I, | AR, (0) | can all be estimated from assumptions (A6)-(A7). It then

follows that the difference between 67 and 6" can now be estimated by
lor-6° I S Il R | [ AR @ I+ 1 ARMO | €°1]  (55.116)

which is, in fact, computable since R,(0) can be computed using (5.5.1.3). This together with
(5.5.1.5) leads to a bound on | gr{(jw)—p(jo) |.

There are two by-products of (5.5.1.5). The first is a measure of robustness as indicated
in the first remark of this section; the second is a measure of performance, i.e. the closeness
between transfer functions of the tuned model and of the true plant. If neither of these two

should satisfy some least requirements, then another reference input u, satisfying the condition
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the same as the previous one (Supp(u) contains exactly 2a+1 points), may have to be chosen

again for the same identification task until the bound in (5.5.1.5) meets the requirements.

Remarks:

(1) A similar comment to that given in the remark after Figure 5.5.2 also applies here. )

In some cases, there might be some output disturbance d, for example, the measurement noise,
that contaminates the output of the plant. If Supp(u) N\Supp(d)=D, which is similar to the
assumption (A{l) in Chapter 4, then it can be checked that Theorem 3.4.2.1 will still be true.
It then can be deduced from the proof of Theorem 3.4.3.1 that 0 LZ*!. The difference, how-
ever, is in that 6(/) may no longer converge to 6y defined in (5.5.1.10). Yet, if the magnitude
of disturbance d is small relative to that of the reference input u, then, when € is small,
(5.5.1.2) will imply that 8(s) may still be very close to Or so that a transfer function can be
read off from the identifier. This will then allow us to treat this transfer function as if it were

Pr and to evaluate (5.5.1.5) the same way as described above.

The above discussion is from the viewpoint of analysis. For design purposes, we would
prefer to select proper inputs to achieve the same objectives as described above even before the
identification is performed. However, the price one has to pay is that more conservative results
are to be expected. Specifically, a prior guess of the tuned model has to be used for computing
R0 in (5.5.1.16). In the following, general input design guidelines for choosing proper

inputs for adaptive identifiers is given based on these results.

General Input Design Guideline:

Data: Let 8‘>ma§ 3{®) be the performance index, i.e. for any identified transfer function
we
Prs):

|6, - brl. = max | pj) - prjw) | < &° (5.5.1.17)



Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

180

Qp=[-ay, W], for some wy>0, is the initial choice of the frequency search range,
and ﬁ?- be the prior guess of the tuned model transfer function.

Seti=0.

Choose Q; = [-a;,®;], and the input & such that:

Supp(u) ={-m,- - (";1) @00, -5";——-1%,- . co,-}. (5.5.1.18)

Compute the bound on the R.H.S. of (5.5.1.5), using the prior guess of the tuned
model ﬁ‘}, and denote it o;. If 5; < &, then stop and go to Step 5; else goto Step 4.

Chose ®;,; < ®; and goto Step 1.

Use Q; as the frequency search range and carry out the sequential design algorithm

for finding semi-optimal inputé. Here, the prior guess of the plant will be replaced by

Pt

Remarks:

(1) The prior guess of the tuned model, p“}, can be updated while the identification process is

running. This provides a more precise design procedure.

(2) Nommally, the semi-optimal input design P{,"" generated by the numerical design algorithm

contains more than 2n+1 frequency elements; in which case the parameter 6(f) will not con-

verge to the 67 determined by F[™, but will oscillate around it. Therefore, the preferable input

design should be a two-phase design. The phase I design is simply the semi-optimal input

design F7 so that 6(¢) converges to a neighborhood of 6 quickly and stays within it. The

phase II design is to include only 2n+1 frequency elements through a input reduction process

so that 6(r) converges to a new tuned parameter 6’7 which is close to the 07. However, the

input reduction process requires some experience on the part of the designer.
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Example 5.5.1:
Consider Example 5.4.1 but with the plant being changed into
2¢s+1) 30

= 5.5.1.18
Pl =253 G+30) ¢ )
where the additive unmodelled dynamics appears to be
Ap(s) = 26X1) _=s (5.5.1.19)

(s+3) (s+30)

Recall that the true parameter for the nominal plant is 0'=[-1.6,04,20 ]T. If we now use
F which was obtained in Example 5.4.1 as the phase I design, the tuned parameter Or is
computed by (5.5.1.10) to be [-1.531,0.819,1.650 }7, which gives fy(s) as

(1.650s+0.593)
(s+0905)

b1(s) = (5.5.1.20)

When ¢=20 (sec), the phase II design is started using the initial design F° which is used in
Example 5.4.1, where the tuned parameter 6’7 can be read off from the identifier as:
[-1.443,0.516,1.767 )7 so that p’r(s) can, again, be computed as:

o (L76Ts+1.613)
P == 2422

(5.5.1.21)

Figures 5.5.3 and 5.5.4 illustrate the difference of convergence rates of parameters ¢;, d;, and
the output ermor ¢,=y,—Y, resulting from the two-phase désign and only a single design F
respectively. When the two-phase design is used, at roughly t=40 (sec), 6(¢) appears to be very
close to the tuned parameter value 6y, whereas 6(s) is still converging to the same tuned
parameters after t=160 (sec) when only a single design F is used. Figure 5.5.5 shows the
Nyquist plots of the true plant, the nominal plant, and the tuned model. An interesting observa-
tion will be that, when the input contains frequency elements as low as dc and 2 rad/sec, the

tuned model still approximates the true plant better than the nominal plant does.
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2 1 Referen daptiv

In this subsection, we consider the same setup for model reference adaptive control as

described in section 4.4, with the following additional assumptions.

Assumptions:
(A16) |Ap(jw)| < §(w) for some assumed known function bound §.(®), which is an
increasing function of ® and is very small for small .

(A17) || 6" || < A, for some known h.>0.

It is shown in subsection 4.4.4 that if the adaptive system fails to satisfy the positive
definite PE condition, then the system is likely to undergo a slow drift of the controller param-
eters. Thus the objective for choosing proper frequency search range Q here will be different
from that in the case of adaptive identification. For the output error scheme, given the tuned

parameters 07, Q is to be chosen such that

Remr(jw) > 0 forall e Q. (8521

Let 07 be given in (4.4.3.6) and denote
Cris) =CIF()A(s) and  Dys) = (DFP(s)+dor)As) . (5.52.2)

Referring to the controller structure shown in Figure 4.2.1, we define an ath order pseudo plant
transfer function pr:

fir(s) A(s) - Crs)
= kp=—m— = =
PO =l o = O e Bro) + o)

(5.5.2.3)

which clearly is the identified plant transfer function if 6(¢) should converge to 6. Define

r <

1

Fympt
Or=| , (5.52.4)

Fom
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it then follows that

6F Or(s) = m(s) pris)™ (5.5.2.5)
in contrast with the ideal nominal case |

‘e‘T Op(s)=M(s )‘ﬁ"(s) (5.5.2.6)
where 0., (s) is defined in (4.3.1.7). Hence we have

67 Or(s)
1-C6°(s)/A(s)

__ $10a0)
1-Cr(s)As)

m(s)prs)? - ms)p(s)? =

5.5.2.7)

where ¢p =67 -0", and €* =C"T F, A, similar to that in (5.5.2.2).

On the other hand, the tuned model transfer function, sir(s) , using (4.4.1.8) and
(4.4.2.7), satisfies

thr(s) = m(s) = ;:7 iz (08 O (5) = R ()P, (5)) (5.5.2.8)

where J,,, is given in (4.4.1.13). Since

T
O =0 + [° LR RpIIAp L0, o] (5.5.2.9)
so that
T —-aTA CT A= a &
8F O =070, - —mpi AP (5.5.2.10)

which together with (5.5.2.8) leads to an expression of iy as follows:

. s 4 .. € -
Ap =M + ==y ((91"9 Y O+ (P =pT Y- ——mpI AP
cor L A

. c )
=+ ——m; [610,, + (1 ==Ly prAp
cor L A
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1. [a=érdy r . 1 Ap ]
= l—-—
i [(1 E*IR) o 0r +( AP ap

1| =Crid) _ofor ér .4 A ”n
=7 1-=Dyapt 22 || . 55211
[ ¢ [(l-é.h&) (1+Aﬁ)+( A) Pr 1+4p ¢ )

Using the expression of pr in (5.5.2.3), the second term of the denominator in (5.5.2.11) can
be further simplified as

-~ N ~ T ~
o= [ (BL_y, Mrfr _OCr | (55.2.12)
d, 1+Ap  knh, (1+AP)

Now restating criterion (5.5.2.1), our choice of frequency search range Q should be such that
max |Yjo) | <tan(E -max |LRG®)]) (5.5.2.13)
oe 2 wef

to make sure that Resip(jw)>0 for all ®e Q. This may not be possible even for sufficiendy
low frequencies due to the fact that the second term in (5.5.2.12) does not appear to be a func-
tion of the unmodelled dynamics (and, hence, can be made arbitrarily small for very low fre-
quencies). However, if one is allowed to choose an input 4 that generates tuned parameters 67
for the above analysis, then there always exists an Q such that Supp (1) < Q, and (5.5.2.13) is

satisfied.

Consider an input 4 whose Supp(u) contains exactly 2z points, then by Theorem 4.4.1.2
and 4.4.2.1, for almost every such input u, there exist unique tuned parameters Oy that satisfy

(4.4.1.12) which is repeated here
hr(j@) = M (jo)
= P () 6F Oy () forall ® € Supp(u). (5.5.2.14)

Assume that it is the case, then it follows from the remark after Theorem 4.4.3.2 that 6(¢) con-
verges 10 O exponentially and, hence, the transfer function pr defined in (5.5.2.3) can be

computed. Denote

Wo = O (5)1) ° and Wi 2= O ()(1) (5.5.2.15)
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W, =AW  and Uy =R (5.5.2.16)

It then follows from (5.5.2.6) and (5.5.2.14) that 07 and 8" can be expressed in a form similar
to that in (5.5.1.7) and (5.5.1.10) respectively

6r=R, (0 R, . (0) (5.5.2.17)
where
Ry, (O = -211; ."l [Q“.....(ima G0 + Gl —j)) Q,‘....(—jmi)] 2 (5.5.2.18)

Ry @ = = 3. [ Quutiod A G i)™

iml

+ Ol jod A 0D Pj0d | (5.52.19)
and
0 =R, (0" R, 0) (5.5.2.20)
where
Ry = = 3 (0ntiod Gatiod + Ouiciiod Ortjond | (5522

i=1

=L 518 oy’ Gay s Gy
Ruzg® =5 % [Onodr"Godp"Goy

+ O jod i’ cjay™ | #. (55222

As before, the matrix R,,_(O) and the vector R,, _,,P(O) are the ones perturbed from Rw:.(O) and

Rw;“;(O) respectively and can be represented as follows:

R, (0)=R,-(0) + AR, (0) (5.5.2.23)
Ry (0 = Rz, 0) + AR, (0) (5.5.2.24)

Again, if the norms || AR, (0)|| and || AR, _,(0) || can be estimated, then, following from



186

(5.5.1.16), the difference between O and 6" can be estimated likewise as
Horl < I R @7 I (I AR, @ I+ 1 AR, O NO°N]. (55225

However, from (5.5.2.9) and the fact Mg~ =mp;! +mp,' Ap, the estimates of || AR, (0) || and
I AR, (0 | require knowledge of rA(jw)p,(j)™" for all @e Supp(u) in addition to assump-
tions (A16). By referring to Figure 4.2.2, if 6(7) is fixed at 0y, then it follows that

U, = e py (u) (5.5.2.26)
_ cor : Iﬂrﬁr/ A
= [1-07//1]‘“’*[1-07/5]‘“)'

Therefore, using (5.5.2.14), we have

cor+m(jo) Di(jo)/ A(j)
1 - Cr(ja)/ A(jo)

m(jo) p (o) = (5.5.2.27)

for all @e Supp(u) so that all the estimates of the norms on the R.H.S. of (5.5.2.25) and,

hence, an estimate of || ¢ || can be obtained.

Now using the bound on ¢y, the frequency search range Q=[-®g,®g] is sought such
that (5.5.2.13) is satisfied and Supp (#) c Q. Difficulties may, however, arise from the unk-
nown #,. As before, this can be replaced by a prior guess of the numerator of p, similar to ‘that
in the case of adaptive identification. Again, as mentioned before, such an Q may not exist for
one choice of input u that satisfies the above requirements. But by such iterative procedure, we

can eventually find an Q and an input u that achieve the goal.

Remark: In general, the nominal control command signal usually consists of low frequency
signals so that the unmodelled dynamics of the plant may not be excited significantly, and,
hence, the tuned parameters 67 should be close to the true parameters 0" for the nominal plant.
As such, the above analysis will provide a frequency band, which is generally much higher

than that of the nominal control command signal. Any other signals whose frequency spectrum
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lies outside that band should be avoided as they may contaminate the nominal input, for exam-

ple, by filtering.

For design rather than analysis, we prefer to select proper frequency search range to

achieve the same objectives as given above even before the control task is performed. If this is

the case, the prior guess of the tuned parameter 87 (or py) as well as that of 7, additional to

assumptions (A16), is needed for computing all the bounds on the norms required in (5.5.2.13).

In the following, a general input design guideline of choosing proper inputs for model refer-

ence adaptive controllers is given baséd on these results.

General Input Design Guideline:

Data:

Step 1:

Step 2:

Step 3:

Step 4:

Step S:

Let Qy=[-0yg,w], for some @y>0, be the initial choice of the frequency search
range, and 6%, ﬁg be the prior guesses of tuned parameters and the numerator of the
nominal plant respectively.

Seti=0.

Choose Q; = [-®;, ®;], and the input «' such that

N BN (.53 ) IS SR, SPAIN (L ) R
SI.IPP(“') {‘0)“ n () 7T (’l-l) w;, n-1) w; n 0)‘,(0,}.

Compute the bound on the L.H.S. of (5.5.2.13), using the prior guesses pf and A,
and denote it ©;. If o; satisfies (5.5.2.13), then stop and go to Step 5; else go to Step
4.

Chose ®;,; < ®; and goto Step 1.

Use Q; as the frequency search range and carry out the sequential design algorithm

for finding semi-optimal inputs. There, the prior guess of the plant will be replaced

by ﬁ-
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Remarks:

(1) As before, the prior guess > can be updated while the control process is running so that
the design procedure becomes more precise.

(2) In practice, the suboptimal inputs generated from the above procedure generally will not
be directly applicable to the adaptive system simply because the control task and, hence, the
control command signals should be pre-specified. However, the suboptimal inputs serve to be
good references for planning the control task so that both fast convergence and robustness can
still be taken into account.

Example 5.5.2:

Consider Example 5.4.2 with the plant contaminated by a high frequency unmodelled pole

s==20, i.e.
2 20
= 2.28
Pis) G+1) (s+20) (53.228)
where the multiplicative unmodelled dynamics is seen to be
Ap(s) = —3 (5.5.2.29)

(s+20)

Recall that the true parameters for the nominal plant is 0'=( 1.5.—1]7, and the semi-optimal
input design F7™ obtained in that example contains only single frequency so that the two-phase
design is not necessary. Suppose that we now use F7 to be the input design, then, from simu-
lation, 8(7) converges to the tuned parameters 0r=[1.575,~1.226 1T, which leads to the follow-

ing ned model transfer function,

63
- (5.5.2.30)
Pe (P +215+69.05)

Figures 5.5.6 and 5.5.7 illustrate the difference of convergence rates of &, and k, using F™ and

FO respectively. Note that, since the frequency elements in both designs are low, the
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unmodelled dynamics are attenuated and convergence rates observed in this example are not
much different from those in Example 5.4.1. In Figure. 5.5.7, Nyquist plots of the reference
model and of the tuned model are shown to indicate the closeness between two transfer func-

tions.

5.6 Concluding Remarks

In this chapter, we have formulated the input design problem for adaptive systems, both
identification systems and model reference adaptive control systems, in terms of a problem of
optimization of the convergence rate of parameter €frors. From Chapters 3 and 4, the analysis
of parameter convergence clearly suggested an approach to this problem using averaging
theory. The problem was thus recast in a form of maximization of the smallest eigenvalue of
an average information matrix over a class of input signals. The problem formulation is very
similar to that used in the stochastic literature (see, for example, Fedorov (1972) and Mehra
(1974)) for parameter estimation in linear dynamical systems. However, their objective was to

achieve a more accurate parameter estimate.

Under this formulation, the optimal inputs were characterized in the frequency domain
and a sequential design algorithm was provided to attain these optima iteratively. These optimal
inputs are found to be global maximizers of the smallest eigenvalue owing to a convexity pro-
perty of the problem. However, the algorithm is more of an analysis tool than a design tool
owing to the fact that the solution inevitably depends oh the knowledge of the unknown plant.
Yet, the design function can be achieved by replacing the unknown plant with an initial guess.
Such a method is very common in the stochastic context and is referred to as a Bayesian
approach, since it assumes a prior distribution of the parameters to be estimated. Examples of
applications of this design algorithm to adaptive identifiers and controllers have been given to

illustrate the results.
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As indicated in Chapter 3 and 4, unmodelled dynamics exist in practice, and performance
and/or stabili_ty of identifiers and controllers is crucially related to the tuned model. In subsec-
tions 3.4 and 4.4, the major dependence of these tuned models on the reference inputs was
emphasized and a qualitative discussion was given. Here, under the same assumption of sta-
tionary inputs, a more quantitative study of the relationship between the frequency content of
the reference input and the performance and/or stability of adaptive systems was performed. In
the case of adaptive identification, the objective is to make the identiﬁe:d transfer function meet
the requirements for the ultimate control task, whereas, in the control case, the objective is to
make the system satisfy the positive definite PE condition. A product of this study is the deter-
mination of the frequency range that the spectral support of the reference input should lie in.
This is then used as a frequency search range in the input design algorithm. Finally, based on
these results, general input design guidelines were proposed for adaptive identifiers and con-

trollers.
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Chapter 6 Conclusion

In this thesis, we have presented averaging as a techrﬁque for the analysis ahd synthesis
of both adaptive identification and control systems. A thorough analysis of adaptive systems
using this technique was performed gnder ideal conditions as well as non-ideal conditions,
where unmodelled dynamics and/or output disturbances were present. Also ‘a synthesis pro-
cedure for generating reference inputs that maximize the rate of cbnvexgence of the adjustable

parameters was proposed.

First, a full set of averaging results for adaptive systems was provided. Theorems were
developed for exponential, partial exponential, and bounded stability, and also for instability of
one- and two-time-scale dynamical systems. These results enabled us to relate several proper-
ties of nonautonomous systems to those of autonomous systems and hence simplify the
analysis of the system. Adaptive systems, under the assumptions of stationary reference inputs

and slow adaptation, satisfy the assumptions needed for these results.

Assuming ideal conditions, existing results have shown the stability and output conver-
gence of the adaptive identification scheme and model reference direct adaptive control input
and output error schemes. In particular, the adjustable parameters converge exponentially
whenever the reference input is sufficiently rich. In this, averaging can be applied as an
approximation method to obtain estimates of the convergence rates for different algorithms.

Examples were given to illustrate the accuracy of these estimates.

The robustness of these schemes to unmodelled dynamics and/or output disturbances were
examined. The PE condition of Boyd and Sastry (1984) was replaced by an almost always PE
condition, and tuned models for adaptive identifiers and model reference adaptive controllers
were precisely established for the anal);sis. Under the assumption of slow adaptation and per-
sistency of excitation, the identificr parameters converge to a ball centered at the tuned parame-

ters with a radius that is a class K function of the adaptation gains. Similarly, the controller
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parameters converge to a ball centered at the tuned parameters with a radius that is a sum of a
class K function of the adaptation gain and a linear function of the mean squared power of the
tuned error provided that: (i) the adaptation is slow, (i) the tuned model is close enough to the

reference model, and (iii) a sufficiently positive definite PE condition is satisfied.
Payoffs from this robustness analysis include:

(i) a better understanding of the behavior of the parameters under slow adaptation was

obtained,

(ii) the importance of the spectral content of the reference input to the performance and/or
stability was greatly emphasized,
(iii) relaxation of the SPR condition for the output error scheme of a model reference direct

adaptive controller was suggested, and

(iv) a substantiation of the positive definite PE condition for both input and output error

schemes of a model reference direct adaptive controller was given.

Finally, a frequency domain technique for the synthesis of reference inputs for adaptive
systems was proposed. The idea is to select inputs subject to power constraints so as to max-
imize the rate of exponential convergence of the adjustable parameters under PE assumption. In
the presence of unmodelled dynamics, a practical consideration of the range of input frequency

content (spectral support) was provided supporting the qualitative conclusion (ii) given earlier.



APPENDIX A

Proof of Lemma 2.2.1.1:

Define:

[}
Wt X)= ‘[d (tx)e¢"dt

:

woltx)= gd(t,x)d‘c

From the assumptions:

lw o(t +20.X =W o(f 0X nsye ).t

for all £,2620, xB,. Integrating (A2.2.1.1) by parts:

!
wt(t,t):wo(t,x)—ege"“"‘)wo(‘t,x)dt

Using the fact that:

[
el[e“‘(‘"‘)wo(t,x)dt=wo(t,x)-wo(t,x)e"‘

(A2.2.1.4) can be rewritten as:

s
we(t.x)=wolt x)e™ +sl[e"“"‘) (Wt X )>-wo(t.x))dT

and, using (A2.2.1.3):
[

lwg(e xSV 2™ + el[ e~ (1) W —1)d*

Consequently,
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(A22.1.1)

(A2.2.1.2)

(A2.2.1.3)

(A2.2.14)

(A2.2.1.5)

(A2.2.1.6)

(A2.2.1.7)
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||swe(z.x)ns§ggy(‘?): e +£1(?)c'ef"dt'
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(A2.2.1.8)

Since, for some B, lld(¢ x)!IsB, we also have that ¥2)<P. Note that, for all £°20, t'e e,

and ¢’e~’st’, so that:

Y , t ,
llew (¢t XS su =)’e™ |+su —)t’e™?
lf %) re[o?«a [K e) ] :‘z% [K e) ]

£ T ey
- <
+‘['y(—e )Te d't'+£}(-e YTe*dv
This, in tumn, implies that

uew,(:,::)us[3\134-7(-‘}—E ye+BS ”('JI'E y(1+VE) e~

=E(®)

Clearly &,(e)eX. From (A2.2.1.1), it follows that:

ow (t x)

Y -d(tx)==ew(t.x)

so that both (2.2.1.6) and (2.2.1.7) are satisfied.
If YT )=a /T’ , then the right-hand side of (A2.2.1.8) can be computed explicitly:

sggae’(t')"’e“'=ae'(l-r)"'e"‘Sae’
[ 4

and, with T denoting the standard gamma function:

!ae’(‘:’)"’e“'dt'=ae’l‘(2-r)$ae’

Defining &,(€)=2a¢’, the second part of the lemma is verified.

(A2;2.1.9)

(A2.2.1.10)

(A22.1.11)

(A22.1.12)

(A2.2.1.13)

Q.E.D.
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Proof of Lemma 2.2.1.2:

Define w(t,x) as in Lemma 2.2.1.'1. Consequently,

] t

dwetx) 3 <t ge |=f 19 —e(t=) A22.1,14
== l[d(t.:c)e dt l dGx) |e dt (A22.1,14)

ax

Since ﬁ%ﬂ is zero mean, and is bounded, Lemma 2.2.1.1 can be applied to aLchl, and

inequality (2.2.1.6) of Lemma 2.2.1.1 becomes inequality (2.2.1.10) of Lemma 2.2.1.2. Note
that since i’%"l is bounded, and d(t,0)=0 for-all +20, d(z,x) is Lipschitz. Since d(tx) is

zero mean, with convergence function Y(T) lixll, the proof of Lemma 2.2.1.1 can be extended,
with an additional factor llxil. This leads directly to (2.2.1.8) and (2.2.1.9) (although the func-

tion &;(¢) may be different from that obtained with ﬁg-"ﬁl these functions can be replaced
by a single &,(€)).

QE.D.

Proof of Lemma 2.2.1.3:
The proof proceeds in two steps.
Step 1: For ¢ sufficiently small, and for ¢ fixed, the transformation (2.2.1.15) is a homeomor-
phism.
Apply Lemma 2.2.1.2, and let g; such that §,(¢;)<1. Given zeB,, the corresponding x such
that:

x=z-ewy(t,2) ' (A2.2.1.15)

may not belong to B,. Similarly, given x&B,, the solution z of (A2.2.1.15) may not exist"in

B,. However, for any x,z satisfying (A2.2.1.15), inequality (2.2.1.8) implies that:

(1-E,(e) Uz S xS (14, (€)) Uiz (A2.2.1.16)
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Define:

r'(e) = r(1-%5(e) (A22.1.17)
and note that r’(€)=r as €=0.
We now show that:
@) forall zeB,-, there exists a unique xe B, such that (A2.2.1.15) is satisfied,
(i) for all xeB,., there exists a uniqﬁe ze B, such that (A2.2.1.15) is satisfied.
In both cases, llx—zII<E,(e)r.

Tl}f. first part follows directly from (A2.2.1.16), (A2.2.1.17). The fact that llx—zII<§,(e)r
also follows from (A2.2.1.16), and implies that, if a solution z exists to (A2.2.1.15), it must lie
in the closed ball U of radius E;(e)r around x. It can be checked, using (2.2.1.10), that the
mapping F,(z)=x—ew(t,z) is a contraction mapping .in U, provided that §;(e)<1. Conse-
quently, F has a unique fixed point z in U. This solution is also a solution of (A2.2.1.15),
and since it is unique in U, it is also unique in B, (and actually in R"). For xeB,, but out-
side B,-, there is no guarantee that a solution z exists in B,, but if it exists, it is again unique
in B,. Consequently, the map defined by (A2.2.1.15) is well-defined. From the smoothness of
we(t,2) with respect to z, it follows that the map is a homeomorphism.

Step 2: the transformation of variable leads to the differential equation (2.2.1.16)

Applying (A2.2.1.15) to the system (2.2.1.1):

u +e-a-;;5)z' ?Efav(z)‘l-E(f(t.z.O)—fa(Z)-%)
+e(f (1,2+ewo,€)~f (£.2,€))
+e(f (t.z2.£)-f(1,2,0))

=€f o (2)+€p (. x 2 £) (A2.2.1.18)
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where, using the assumptions, and the results of Lemma 2.2.1.2:

lp (¢ 2 ) SEy(E)lz 1+ & (e}, Iz 1+ edliz (A22.1.19)

ow
For €<g,, (2.2.1.10) implies that (/ +t-:—a-;"-) has a bounded inverse for all 120, zeB,. Conse-

quently, z satisfies the differential equation:

-1
z= [l+¢-:ii ] (ef o (2)+ED'(t,2,6))

0z
=gf,,(z)+Ep(t,2,8) z2(0)=x¢ (A2.2.1.20)
where:
-1
= e | [ e '
p(t.z.8)= [HGT] [P (t.z.£)-€ 3 f“(z)] (A2.2.1.21)
and:
Ip (.2 2N~ —&i(e.) (EA(EHE (O] el #Ey Oy, )zl
=y(e)lizll (A2.2.1.22)

for all £20, €<¢,, z€B,.

Q.E.D.

Proof of Lemma 2.2.1.6:

Applying Lemma 2.2.1.2, we see that there exists a class K function &;(€) such that (2.2.1.38)
is satisfied. Then by Lemma 2.2.1.1, it follows that

Hewe(t.x)ll S E;(e)lx Il + & (e) (A22.1.23)

for some §,(¢) € K. Denote:
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A=1+ E‘(r (A2.2.1.24)
It is clear that (2.2.1.36) and (2.2.1.37) will thus be satisfied.
QED.

Proof of Lemma 2.2.1.7:
This proof is similar to that of Lemma 2.2.1.3.

Step 1: Consider the transformation (2.2.1.39). Inequalities (2.2.1.36) implies that:
Nzll=hEer SUxNSUz U+ hE(E) (A22.1.25)
Define: |
r'e) =r(1-hr&) (A2.2.1.26)

and let €, be such that 4 §,(e,) <1 (this also implies &;(€;) < 1). To show that claims (i) and (ii)
in the proof of Lemma 2.2.1.3 will also hold here, it suffices to show that the mapping:

Fy(z)=x —ewt,z) (A2.2.1.27)

is still a contraction mapping in B, for all x € B,.. However, this fact directly follows from

(2.2.1.38). Therefore, the transformation (2.2.1.39) is well defined.

Step 2: Applying Lemma 2.2.1.6, the conclusion (2.2.1.41) simply follows from (A2.2.1.18)
and (A2.2.1.21).

Q.E.D.

Proof of Lemma 2.2.2.1;

We apply Lemma 2.2.1.2, and obtain a result similar to Lemma 2.2.1.3. Consider the transfor-

mation of variable:

x=z+Ew(t.2) (A2.2.2.1)
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with e<g;. This transformation leads to:

ow
z=( +8 )-15 {f.v(z)+(f(t.z.0 0) fav(z)-—a;i)
+(f (¢ 248w ,00) - (2.2.0,0))

+(f (246w 0.6)—f (t.2+Ew¢,0,0))

+(f (¢.z+ew,y £)=f (8,24EwW,0) ) } (A222.2)
or.
2 =€f,, (2)+€p,(t,2,£)+Epa(t.2.y .£) z2(0)=x, (A2.2.2.3)
where:
p,(t.2 NS ——r - _§ = (E2(e) L,y +E2(EHENEN ; H1+E5(E)) Hliz I
=Ex(e) ky lizIl (A2.224)
and:
i .
Y EMS ———— [, llyll =k, lyll A2.22.5
Ipa(e.z.y £S5 - lallyll =k, lly ( )
Q.ED.
Proof of Lemma 2.2.2.4:

The proof is similar to that of Lemma 2.2.2.1. The result directly follows from Lemma 22.1.6
and (A2.2.2.2) in Lemma 2.2.2.1.

QE.D.
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APPENDIX B

Lemma B1l: (Unique Parameters for Adaptive Identifiers)

Consider an SISO plant described by (3.2.1) and an adaptive identifier with its structure shown
in Fig. 3.2.1. Let assumptions (A1)-(A2) be satisfied.

Then there exists unique parameters 8° € R%**! such that, if the identifier parameters 6(z) is
fixed at 8°, the transfer function from the input « to the output of the identifier y, is identical

to that of the plant.

Proof: Denote 6=[CT ,DT ,c,,;17, and define:
C(s) =CT A (s)A(s)
S S (B3.2.1)
and:
D(s) =DT Fy(s)AGs)
=dys" 1 +-.-+d, (B3.2.2)

Let ﬁ,’,(e.s) be the transfer function from the input u to the output of the identifier y, when

identifier parameters 6(¢) are fixed at 0. It then follows that:

a,.,0,5=£68  56), - 323
you(©:5) AG) + A(s)p(-v)ﬂ 1 (B3.2.3)

Let 0" =[C'T ,DT, cs,, IT be such that:
C°(s) + ca1 = ky iy () (B3.2.4)

D’ (s)=A(s) - d,(s) (B3.2.5)
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where ¢° (s) and D" (s) are defined similarly as in (B3.2.1) and (B3.2.2). Then we have:

H, .0 ,5)=p(s) (B3.2.6)
Now let any 6 be such that:
B,.0.8)=p() ®3.2.7)

and then, from (B3.2.3), 0 must satisfy:

C(s) + C AGs) i, (s)
2 =p(s)= 3.2.8
A(s) - D(s) POI=k dy (s) ®328

Since D (s) and € (s) are of the order at most n=1, and A(s) is of the order n, it then follows
from (B3.2.8) that the solution of the above equation must be unique. Consequently, from
(B3.2.6), we can readily conclude that 0° is the unique choice of parameters such that (B3.2.7)
is satisfied.

QE.D.

Lemma B2: (Linear Filter Lemnma)

Suppose that y =H (s)(u), where H(s):C = C™ is a stable transfer function. Then y is sta-
tionary if u is stationary, and the power spectral measure S, (d®) is related to S, (dw) by the

following:

S,[dw)=A(jw) S,(de) A" (jo) (B3.2.9)

Proof: See Boyd and Sastry (1987).



202

APPENDIX C

Lemma C1: (Unique Parameters for Model Reference Adaptive Controllers)

Consider an SISO plant and a reference model described respectively by (4.2.1) and (4.2.2),
and a model reference adaptive controller with its structure shown in Fig. 4.2.1. Let assump-
tions (A1)-(AS) be satisfied. '

Then there exist unique parameters 0" € R?* such that, if the controller parameters 6(¢) are
fixed at ©°, then the transfer function from the input # to the output of the plant is identical to

that of the reference model.

Proof: See Bodson (1987) (Ph.D. Dissertation, p. 52)

Lemma C2:
Let Supp(u) contains 2m points, where m 2n. °

Then

i [Re @72 SM(Re.,© | R @) (C43.1.1)
>L  min )Ren‘:(j(o)f(io))

Co @€ Supp(u

where L, ={(s)"'(Wn).

Proof: By hypothesis and Theorem 4.3.1.3, C,, is PE so that R (0) and R;_;“,(O) are posi-

tive definite. Now from (4.3.1.42), we have:

Re@=> 3 [ﬁ;,..(iwi)ﬁ;,..mn.-)+1?;_.,<-jm.-)ﬁ;.<—fmz> )

i=]
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=M T wim (C4.3.12)

where ¢? is the spectral magnitude of the frequency element ©;, and:

Mg = [I-?g_,(im,).---.l-?g_“(-jm,,,) ] (C4.3.1.3)
2 2 2,2
2 diag |diag (<L , 21y, ..., diag (= , =

W* = diag [dnag(mt e ), -, diag( " 2n )] (C4.3.14)

Similarly, from (4.3.1.41), we express SM (R;_;_.I(O)) as follows:

MRy, ) ==L T Re(AGaIG@)) [AeuGo)BL.Go)

[ ]
2ncg i=1

+ B ujo) B jon) ] 12

=M TWDW M (C4.3.1.5)

where

= :l;diag [diag [Rem(iml)f(jm,) . Rem(jo)l)i(jo),)] R
0

- - -, diag [Rerﬁ(im,,,)f(jco,,.) . Rerﬁ(jo),,,)l'(jm,,,)] ] (C4.3.1.6)

Thus the matrix R¢_(0)""2SM (R¢_¢(0))R¢_(0)"'? in terms of W, D, and M¢,_ as follows:
R (O 2SM(Ry ¢ (0)R 012
-122 -
= M Twine, [ (mTwowm ] (MW, ™
=M T D M (C43.1.7)

where

- -172
Mo, =W My, (M T WM, ] | (C43.1.8)
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Now let x be any unit vector in R?*, i.e. llx l=1, and then, from (C4.3.1.7), we have:
Renin (DINH ¢ % 1P S A (RO 2SM (R (0)) R (0" 1?)
Shnx D) IM_x 12 (C4.3.1.9)
which can further be simplified as:
Rnin (D) S A (RO Y2 SM (R ¢ (0)) R (0) %) SApys (D) (C4.3.1.10)

From the definition of D in (C4.3.1.5), we have:

Amin(@)= == min Rem()iGe;) (C4.3.1.11)
Co i € Supp(u)

thereby concluding the result.

Q.E.D.
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