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Abstract

In this thesis we use a mathematical technique, referred to as the method of averaging, to

thoroughly analyze both adaptive identification and adaptive control schemes. In principle the

results hold when the rate of parameter update in the adaptive loop is slow compared with the

dynamics of the other state variables, but in practice they work for normal rates of parameter

adaptation. Our analysis is not confined to the ideal case which consists of knowing the order

of the unknown plant exactly and assuming there exist no external disturbances, but it also

allows for unmodelled dynamics and additive output disturbances. We also make use of the

method of averaging to solve the optimal input problem, i.e. the problem of choosing the input

which produces the fastest rate of parameterconvergence.

The results of this thesis are many. The first is a set of stability theorems which deter

mine when a dynamical system possesses exponential stability, partial exponential stability or

ultimate boundedness. Instability theorems for one- and two-time-scale systems are also given.

Under the assumptions of a stationary reference input and slow adaptation these results are

applied to adaptive systems. The next result is a calculable estimate of the rate of parameter

convergence when various adaptation algorithms are used. When the plant contains unmo

delled dynamics, we use the method of averaging to formally define the notion of a set of
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"tuned parameters". Under the assumptions of slow adaptation and persistency of excitation,

we show that for the adaptive identifier, the actual identifier parameters converge to a ball

which is centered at the tuned parameters and whose radius goes to zero as the adaptation gain

goes to zero. Similar results, though slightly more complicated, are also obtained for the adap

tive control case. To illustrate the importance of the choice of input signals, the phenomenon of

slow-drift instability is analyzed. Finally a frequency domain technique, for the synthesis of

reference inputs which solve the optimal input problem, is given. An expression for what we

call the average information matrix is derived and its properties are studied. The objective of

the input synthesis technique is to specify the frequency content of a power constrained input

signal, which maximizes the smallest eigenvalue of the average information matrix, and hence

maximize the parameter convergence rate. A convergent numerical algorithm is given which

obtains globally optimal solutions to the above problem. When the plant contains unmodelled

dynamics, practical considerations of the range of support of the frequency content of the refer

ence input is given.
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Chapter 1 Introduction

flf1 Motivation

Frequency domain techniques constitute apowerful method for the analysis and design of
linear systems. The analysis and design of Unear systems is particularly easy since there is a
simple relationship between their input-output behavior and their internal dynamics. Further it
is easy to characterize the input-output behavior in the frequency domain as the Fourier
transform of the impulse response. For linear time-varying or general nonlinear systems, "fre

quency response" is not awell defined notion. One, instead, analyzes the time domain trajec

tories in the state space.

However, if there is a certain separation between the time rate of change of state vari

ables, a powerful technique, namely averaging, can be used to approximate the time-varying
dynamics by time-invariant dynamics. Consequently, averaging serves as auseful method by
which one can replace acomplicated nonautonomous system by a simpler autonomous (aver

aged) system. Further since the dynamics of adaptive identification and control systems (for
linear models) are "asymptotically linear", the averaged version of their asymptotic dynamics is

linear time-invariant, for example, of the form:

x=R(0)x 0-1)

where rt(0) is an autocovariance matrix (defined in Chapter 3) which has a frequency domain

interpretation. This fact enables averaging to become atechnique that bridges state space and

frequency domain techniques.

Motivated by this, we present acomplete set ofaveraging results which are sufficient for

the analysis of general adaptive systems. Using these averaging results, adetailed analysis of
adaptive systems with various update algorithms is presented, and asynthesis of the exogenous

input signals subject to acertain optimality criterion (defined in Chapter 5) for the system is



also provided.

\2 Review of Previous Work

Adaptive identification is atechnique for the estimation ofthe parameters of an unknown

system from input-output data. The algorithms are usually designed on the assumption that the
system is fixed, but in practice they work even when the parameters ofthe system are slowly
varying.. An adaptive identification scheme was first devised at least as early as 1967 by Lion,
and was extended later by Anderson (1974), Luders and Narendra (1973), and Kreisselmeier

(1977). Their original objective was an adaptive observer, i.e. one which provides estimates of

state variables of an unknown time-invariant linear system as well as an estimate of the system

parameters from measurements of its input and output Their work, together with that of Son-

dhi and Mitra (1976), Anderson (1977), Morgan and Narendra (1977a), provides proofs of glo

bal exponential convergence of the system parameters and state variables whenever the system

has a sufficiently rich input.

Model reference adaptive control schemes were implicitly suggested in the work of

Astrom and Wittenmark (1973) and were formalized by Monopoli (1974). Model reference

schemes were further extended by Narendra and Valavani (1978) and Landau (1979), and

rigorous proofs of stability of these schemes in the general case appeared in Narendra, Lin and

Valavani (1980), Morse (1980), and in Goodwin, Ramadge and Caines (1980) for the discrete-

time case. While the adaptation algorithms of the schemes mentioned earlier were based on the

sensitivity of the output error to the adjustable parameters, Bodson and Sastry (1987)

developed a scheme which used the input error for the sensitivity vector. Boyd and Sastry

(1986) extended these results further to the case of adaptive control (not just identification )

using generalized harmonic analysis. They translated the persistency of excitation condition on

the regressor vector to acondition on the spectral content of the reference input



A great deal of interest in questions of robustness arose from the paper of Rohrs et al
(1981)(1985) indicating the extreme sensitivity of the model reference schemes to unmodelled
dynamics and output disturbances. Further investigations followed by Astrom (1983)(1984),
Krause et al (1983), Chen and Cook (194), Kosut and Johnson (1984), Riedle et al (1984),

Riedle and Kokotovic (1985a.b), and Fu and Sastry (1987). Lately, several attempts have been

made to make model reference schemes robust by modifying the adaptation law, such as, in

Peterson and Narendra (1982), Kreisselmeier and Narendra (1982), Sastry (1984), where a

dead zone (fixed size) is used. In Kreisselmeier (1986), Kreisselmeier and Anderson (1986)

robustness is achieved using arelative dead zone and a projection in the adaptation law, and in

Ioannou and Kokotovic (1984). Ioannou and Tsakalis (1986). and Narendra and Annaswamy

(1986), the robustness is established by means of an additional, linear feedback term in the

adaptation law.

Astrom introduced averaging as a technique for the study of instability mechanisms in

adaptive systems (1983)(1984). This tool was more fully exploited by Riedle and Kokotovic

(1985a)(1986), Kokotovic et al (1986), Kosut et al (1986), Anderson et al (1986), to obtain

sharp conditions on the boundary between stability and instability; and by Fu et al (1985),

Bodson et al (1986), and Kosut (1986) to obtain estimates on the rate of parameter conver

gence. In Mason et al (1987) we applied the averaging method to study the robustness of the

adaptive identifier to unmodelled dynamics.

The problem of input design for estimating parameters in a linear stochastic dynamical

system has been extensively studied for over two decades. The first systematic attempt to

obtain an "optimal" input for identifiers seems to have been that of Levin (1960) who showed

that the optimal energy or amplitude constrained input that minimizes the trace or the deter

minant of the error covariance matrix is a white noise sequence. This work was further

developed, for example, in Levadi (1966), Aoki and Staley (1970), Arimoto and Kimura

(1971), Goodwin et al (1973), Lopez-Toledo (1974), and Mehra (1974). In the statistical litera

ture, the same problem has also been addressed implicitly in Bfving (1952), Kiefer and



Wolfowitz (1959), and Fedorov (1972), and more rigorously in Box and Jenkins (1970), Min-

nich (1972), and Viort (1972). An excellent survey was given by Mehra (1974), and at that

time an important conclusion reached was that input design problem could be reduced to a

finite dimensional optimization problem. These results were extended in recent work that

appeared in Goodwin and Payne (1977), Zarrop (1979), Mehra (1981), Goodwin (1982), Ljung

and Soderstrom (1983). and Yuan and Ljung (1985). In the deterministic literature, Marcels et

al (1986) studied the problem of "optimal" input design for identification through a heuristic

discussion and simulations. This further led to the work of Fu and Sastry (1987).

13 Contributions of the Thesis

In this dissertation, we develop frequency domain techniques to analyze:

(1) parameter convergence rates in an adaptive system,

(2) robustness of adaptation in the presence of unmodelled dynamics ormeasurement noise,

(3) synthesis of optimal inputs for adaptive systems.

The outline of the thesis is as follows:

In Chapter 2, we present a complete package of the averaging results that have been

developed for adaptive systems (see also Fu et al (1986) and Bodson et al (1986)). These are

used to obtain estimates of the rate of parameter convergence. In addition, we develop new

results on partial exponential stability and bounded stability which allow for the bounded input

bounded state (BIBS) stability analysis of general adaptive systems.

In Chapter 3, the results of Chapter 2 are applied to analyze the performance of the adap

tive identifier of Kreisselmeier (1977) in the presence of unmodelled dynamics. Results

obtained with coworkers and published in Mason et al (1987) are also reviewed.



Another significant contribution is an averaging based analysis of direct model reference
direct adaptive control schemes, including both input and output error schemes with various
parameter update algorithms. In Chapter 4, the notion of atuned model, in the presence of
unmodelled dynamics and bounded output disturbances, is established and serves as abasis for
developing the reduced order controller. The importance of the spectral content of the reference
input to the robustness of the controller is emphasized. The insufficiency of the conventional
persistency ofexcitation (PE) condition is pointed out and is remedied by the so called positive
definite PE condition. One type of instability observed due to the non-satisfaction of this condi

tion is discussed in detail From this discussion, a distinction is drawn between frequency

ranges that improve and those that impair the robustness of these schemes.

In Chapter 5, we propose a frequency domain technique of synthesizing reference inputs

for adaptive systems. The optimum choice of inputs to maximize the smallest eigenvalue of an

average information matrix is formulated and characterized in the frequency domain. A numeri

cal algorithm is provided to obtain the globally optimal inputs. In the presence of unmodelled

dynamics, input design guidelines are then presented to assure robustness in addition to the ori

ginal objective.



Chapter 2 Frequency Domain Approach —- Averaging

2.1 Introduction

The method of averaging typically deals with a system with different time scales, such as

the so called one-time-scale systems

i = e7fcc). (2-u>

In (2.1.1) above, a small e >0 models the fact that x varies slowly in comparison with/fox).

This method, for sufficiently small e>0, relates the properties of solutions of the above sys

tems with solutions of the autonomous naveragedsystem"

where

/„(*):= lim i jfitx)dt (2.1.3)

( the limit is assumed to exist uniformly in s and x ). This method was proposed originally by

Bogoliuboff and Mitropolskii (1961), developed subsequently by Volosov (1962), Sethna

(1973). Balachandra and Sethna (1975), Hale (1980), and stated in a geometrical form in

Arnold (1982), and Guckenheimer and Holmes (1983).

Averaging methods were first introduced to the study of adaptive systems at first heuristi-

cally in the work of Krause et al (1983), and increasingly rigorously in the work of Astrom

(1983), (1984). Riedle and Kokotovic (1985), (1986), Fu et al (1985), Bodson et al (1986),

Mareels et al (1986), and Anderson et al (1986). Early informal use of averaging was also

made in Astrom and Wittenmark (1977), and Ljung and Soderstrom (1983).

In general, an adaptive system is a nonlinear, nonautonomous system. Under the assump

tion that the parameter is slow, the dynamics fall into the class of systems (2.1.1) or (2.1.2)-



(2.1.3). As we shall see, averaging techniques combined with generalized harmonic analysis

turn out to be an extremely useful tool for analyzing the stability/instability properties of this

class of systems in the frequency domain.

In this chapter, we review some averaging results from Fu et al (1985) and Bodson et al

(1986). Moreover, we develop theorems for stability including bounded stability ( cf. Yosh-

izawa (1975), definition 12.1, p. 126 ) and partial exponential stability, as well as instability of

systems (2.1.1) and the so called two-time-scale systems. These results win then be applied to

analyze adaptive systems.

22 Averaging Theory for Stability of a Dynamical System

In this section, we present averaging results concerning exponential stability, and bounded

stability of one- and two-time-scale systems respectively.

22.1 One-Time Scale Systems

We consider differential equations of the form:

i = e#,r,e) x(0) = Xq (2.2.1.1)

where x,Xoe rt", r£0, 0<e£eo, and/is piecewise continuous with respect to time t. We will

concentrate our attention on the behavior of the solutions in a closed ball, Bn of radius r, cen

tered at the origin.

For small e, the variationof x with time is slow compared to the rate of time variationof

/. To apply the method of averaging to the system (£.2.1.1), the mean value of/(f,x,0), /av(x),

defined by the limit

faJLx)=\\m±; \A%.xA)dx (2.2.1.2)

must exist uniformly in t and x. This is formulated more precisely in the following definition.



Definition 2.2.1.1 ( Mean Value of a Function, Convergence Function )

The function /tocO) is said to have mean value fm(x) if there exists a continuous function 7:

/?+->£+, strictly decreasing, such that 7(7>->0 as r-*», and

ht

II ^ \Kxxmdt-Ux) || <I y(T) (22.13)

for all r,7£0, xeBr The function y will be called the convergencefunction. •

Note that the function./toc,0) has a mean value/^OO if and only if the function

d(tx) =/tafl) -/«v(*) (2.2.1.4)

has a zero mean value. The following definition (Hahn (1967), p. 7) will also be useful.

Definition 2.2.1.2 ( Class K Function )

A function a:/?+-»/?+ belongs to class K (aeK)f if it is continuous, strictly increasing, and

ct(0)=0. D

In the literature on averaging, it is common to assume that the functionfttx,e) is periodic

in r, or almost periodic in t. Then, the existence of the mean value is guaranteed, without

further assumption ( Hale (1980), theorem 6, p. 344 ). We do not make the assumption of

(almost) periodicity, but consider instead the assumption of the existence of the mean value as

the starting point of our analysis.

Remark: Note that if the function d(tx) is periodic in t and is bounded, then the integral of

the function d(tx) is also a bounded function of time. This is equivalent to saying that there

exists a convergence function y(D=a/T (i.e. of the order of 1/7) such that (2.2.1.3) is satisfied.

On the other hand, if the function d(tx) is bounded, but is only required to be almost periodic

then the integral of the function d(tx) need not be a bounded function of time, even if its mean

value is zero (13], p 346). The function y(T) is bounded (by the same bound as d(tx))t and



converges to zero as 7*-*», but the convergence function need not be bounded by alT as 7*-*»

(it may be of order 1/Vf for example). In general, a zero mean function need not have a

bounded integral, although the converse is true. In this paper, we do not make the distinction

between the periodic, and the almost periodic case, but we do distinguish the bounded integral

case from the general case, and indicate the importance of the function y(T) in the subsequent

development

Assuming the existence of the mean value for the original system (2.2.1.1), the averaged

system is defined to be:

iov = e/av(*av) *«v(0) =*b (2.2.1.5)

Note that the averaged system is autonomous and, for T fixed and e varying, the solutions over

intervals [0,77e] arc identical, modulo a simple time scaling by e. We address the following

two questions:

(i) the closeness of the response of the original and averaged systems,

(ii) the relationships between the stability properties of the two systems.

To compare the solutions of the original and of the averaged system, it is convenient to

transform the original system in such a way that it becomes a perturbed version of the aver

aged system. An important lemma that leads to this result is attributed to Bogoliuboff and

Mitropolskii ( (1961), p 450, and Hale (1980), lemma 4, p 346). We state a generalized ver

sion of this lemma.

Lemma 2.2.1.1: ( Approximate Integral of a Zero Mean Function )

If diR+xBr-tR* is a bounded function, d(tx) is piecewise continuous, and d has a zero

mean value with convergence function yt

then there exists Z,\eK, and a function we:rt+xSr->fl" such that: we(0,x)=0 for all xeBr

and
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|| wE(tx) || £$,(e) (2.2.1.6)

-d(tx)\\ ^(e) (22.1.7)
dw&x)

" 3f

for all teO, xeBr

Moreover, if 7(7)=a/7* for some aZQ, be (0,1], then 5i(e) can be chosen to be 2azb. D

Proof: See Appendix A.

Remarks:

(1) The construction of the function wz(tx) is identical to that in Bogoliuboff and Mitropol

skii (1961), but the proof of (22.1.6), (22.1.7) is different, and leads to the relationship

between the convergence function y(T) and the function ^(e).

(2) The main point of Lemma 2.2.1 is that, although the exact integral of d(tx) may be an

unbounded function of time, there exists a bounded function wt(tx), whose first partial deriva

tive with respea to t is arbitrarily close to d(tx). Although the bound on wz(tx) may increase

as e-»0, it increases slower than 1/e, as indicated by (2.2.1.6).

It is necessary to obtain a function we(f,x), as in Lemma 2.2.1, that has some additional

smoothness properties. A useful lemma is given by Hale ( (1980) Lemma 5, p. 349). For the

price of additional assumptions on the function d(tx), the following lemma leads to stronger

conclusions that are useful in the sequel.

Lemma 22.12: (Smooth Approximate Integral of a Zero Mean Lipschitz Function)

If d:R+xBr-*R* satisfies the following assumptions:

(i) d(-,x) is piecewise continuous, </(?,») has bounded and continuous first derivatives,

and d(r,0)=0 for all f£0,
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(ii) a\tx) has azero mean value, with convergence function y||x|| , and ^ has a

zero mean value, with convergence function yt

then there exist £,<=K and a function we:/?+xflr-»#» such that w£(0,z)=0, and

|eN^)|^|ffi)Ix| (2.2.1.8)

|| *!££. -*v»*\M 1*1 <2-2-L9>

for all feO, and for all xeflr

Moreover, if-y(7)=a/7* for some a£0, to=(0.1], then ^(e) can be chosen to be 2ae*. •

Proof: See Appendix A.

Remarks:

(1) The difference firom Lemma 2.2.1.1 is in the condition on the partial derivative ofwz(tx)

with respect to x in (2.2.1.10), and the dependence on ||x|| in (2.2.1.8), (2.2.1.9).

(2) Note that if the original system is linear, i.e.

x = A(t)x *0)=Xo (22.1.11)

for some A:R+->R"**f then the main assumption of Lemma 2.2.1.2 is that there exists Aav

such that A(t)-Aav has a zero mean value.

Given some Eq, r>0, the following assumptions will hereafter be in effect

Assumptions:

(Al) x=0 is an equilibrium point of system (2.2.1.1), and AW) is Lipschitz in x, i.e.

/(f,0,e)=0, and for some l\ZQ

II fit**) -fitx2,e) || <;/! || xx-xz || (22.1.12)
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for all r£0, x\ ,x2e Bn e£eo.

(A2) fitj:,€) is Lipschitz in e, linearly in x, i.e. for some /2£0

II fitted -fitxled || £ l2 \\x\\ |ei-e2| (2.2.1.13)

for all r£0, xe Bn et ,E2^eo-

(A3) £v(0)=0, and fm(x) has continuous and bounded first partial derivative with respect to

x, for all xe Bn so that for some /av£0

ll/av(*l) -/av(*2) II * '«v II *1~*2 II (2.2.1.14)

for all Xi, x^e B^

(A4) The function d(tx)=fitjcJO)-faJ(x) satisfies the conditions of Lemma 2.2.1.2.

Remark: Note particularly that the equilibrium points of the original and the averaged sys

tems are coincident at x=0.

Lemma 2.2.1.3: (Perturbation Formulation of Averaging with Coincident Equilibrium

Point)

If the systems (2.2.1.1) and (2.2.1.5) satisfy assumptions (A1)-(A4),

then there exist functions we and £it as in Lemma 2.2.1.2, and a transformation of the form,

x = z + ewe(f,z) (2.2.1.15)

under which system (2.2.1.1) becomes

i = e/av(z) + ep(r,z,e) z(0)=xq (2.2.1.16)

where p(tyZ£) satisfies

\\p(tj*)\\ ^ ViCe) || z I| (2.2.1.17)

for some ^ e K, e^O, and for all e£ei. Further, ^(e) is of the order of e+5i(e). •
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Proof: See Appendix A.

Remarks:

(1) A similar lemma can be found in Hale (1980) ( Lemma 3.2, p 192 ). Inequality

(2.2.1.17) is aLipschitz type of condition on p(tjje)% which is not found in Hale (1980), and

results from the stronger conclusions of Lemma2.2.1.2.

(2) Lemma 2.2.1.3 is fundamental to the theory of averaging presented in the following. It

separates the error in the approximation of the original system by the averaged system (x-x^)

into two components: (x-z) and (z-xay). The first component results from a pointwise (in

time) transformation of variable and is guaranteed to be small by inequality (2.2.1.8). For e

sufficiently small ( e£ej ), the transformation z->x is invertible, and as e->0, it tends to the

identity transformation. The second component is due to the perturbation term p(t,z£). Inequal

ity (22.1.11) guarantees that this perturbation is small as e->0.

(3) At this point, we can relate the convergence of the function y(T) to the order of the two

components of the error (x-x^) in the approximation of the original system by the averaged

system. The relationship between the functions 7(7) and ^i(e) was indicated in Lemma 2.2.1.1.

Lemma 2.2.1.3 relates the function ^(e) to the error due to the averaging. If d(tx) has a

bounded integral ( i.e. 7(7>-l/r ). then both (x-z) and p(tj£) are of the order of e with

respect to the main term fav(z). In general, these terms go to zero as e-»0, but possibly more

slowly than linearly ( as Ve for example ). The proof of Lemma 2.2.1.1 provides a direct rela

tionship between the order of the convergence to the mean value, and the order of the error

terms.

We now focus attention on the approximation of the original system by the averaged sys

tem. We will need the following assumption:
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Assumption:

(AS) || Xq II is small enough that, for fixed 7 and some /<r, xav(t)e B/ for all r e [0,7/e] (

this is possible, from (A3) ).

Theorem 2.2.1.4: ( Basic Averaging Theorem)

If the original system (2.2.1.1) and the averaged system (2.2.1.5) satisfy assumptions (Al)-

(AS),

then there exists yi as in Lemma 2.2.1.3 such that, given 7>0,

II *t)-x„(t) || Syrfe)^ (2.2.1.18)

for some bj% e7>0, and for all te [0,7/e], e£e?. a

Proof: From Lemma 2.2.1.2 and Lemma 2.2.1.3, we have that

|| x-z || £ «e) \\z || £ Vl(e) || z || (2.2.1.19)

for e£ei. On the other hand, we have that

-j (*-*<J =c(/ovW -/avfev)) +eptoe) z(0)-xav(0)=0 (22.1.20)

for all te [0,7/e], xave B/, /<r. We will now show that, on this time interval, and for as long

as x,zeBn the errors (z-xav) and (x-x^) can be made arbitrarily small by reducing e.

Integrating (22.1.20),

t t

II *(0-*«v(0 II * elj || z(x)-xav(x) || rfr+ey,(e) f ||z(x)|| rft . (2.2.1.21)

Using the generalized Bellman-Gronwall Lemma,
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«Uhi)II 2(0-*«v(0 II £ eVi(e) fII z(x) II ea~™dx £ViO^ «v-l

=:Vi(e)«r- (22.1.22)

Combining these results,

II *(')-*„(') II * II 40-zC) II + II *')-*av(0 II

* Vi(e) II ^v(0 II +(1+Vi(e)) || z(t)-xjf) ||

^Vi(e)(r+(1+Vi(ei))flr)

=:Vl(e)&r. (22.1.23)

By assumption, || xjf) || £/<r. Let er ( with 0<er^e1 ) be such that yyx(zT)br<r-/. It

follows, from a simple contradiction argument, that the estimate in (22.1.23) is valid for all

re [0,7/e], whenever e£ey.

Remarks:

(1) Theorem 2.2.1.4 establishes that the trajectories of the original and the averaged system

are arbitrarily close on intervals [0,7/e], as e is reduced. The error is of the order ofVi(e), and

the order is related to the order of convergence of 7(7). If d(tx) has a bounded integral ( i.e.

7C0-1/7), then the error is of the order of e.

(2) It is important to remember that, although the intervals [0,7/e] are unbounded, Theorem

22.1.4 does not state that

lUO-x^r) || 2SVl(e)fc. (2.2.124)

for all f£0, and some finite b^O. Consequently, Theorem 22.1.4 does not allow us to relate

the stability of the original and of the averaged system. This relationship is investigated in

Theorem 22.1.5, after a preliminary definition.
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Definition 22.1-3: ( Exponential Stability, Rate of Convergence)

The equilibrium point x=0 of a differential equation is said to be exponentially stable, with

rate of convergence a(a>0), if

|| x(t) || £ m|| x(to) || I""*"* (22.1.25)

for all f£f0£0, x(to)e BrQ for some r0>0, and some m£ 1. •

In the following, we assume that rQ£r/m, so that all trajectories are guaranteed to remain

inBr

Theorem 22.1.5: ( Exponential Stability Theorem )

If the original and averaged systems satisfy assumptions (A1)-(A5), and xav=0 is an

exponentially stable equilibrium point of the averaged system,

then there exists 62>0 such that the equilibrium point x=0 of the original system is exponen

tially stable for all e<e2. •

Proof: The proof relies on a converse theorem of Lyapunov for exponentially stable systems

(see, for example, Hahn (1967) p. 273). Under the hypotheses, there exists a function

v:/?"->/?+, and non-zero positive constants a{, 0^, 03, oc4, such that, for all xave Br,

«i II **v II2 * v(xav) <S ct2 || xflV ||2 (22.1.26)

v(x<w)^-ea3||xav||2 (22.127)

Jv
dxav

SaJx^H (22.1.28)

The derivative in (2.2.127) is to be taken along the trajectories of the averaged system

(2.2.1.5), i.e., by the chain rule,

. x _ dv(xav) .
dxav
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where xav is given in (2.2.1.5). The function v is now used to study the stability of the per

turbed system (22.1.16). Considering v(z), inequalities (2.2.126) and (22.1.28) are still

verified, with z replacing xav. The derivative of v(z) along the trajectories of (22.1.16) is given

by

v(z) =vCCov) |x^+(Jj)(ep(r,z,e)) (22.1.29)

and, using previous inequalities (including those from Lemma 22.1.3 ),

V(Z) £ -e(X3|| Z||2 +604^(6)11 Z||2

<X3-Vi(e)a4
£-e

for all eSep Let €2 be such that c^-v^e^a^O, and define e2=min(e1,e/2). Denote

«3-y,(e)«4 X)
2ot2

Consequently, (22.1.30) implies that

v(z) <S n««)«"2M,WCr"^ 02.1.32)

and

II 2(0 || SVo^T II z(/b) II «-"»*-* . (22.1.33)

Since a(e)>0 for all e£e2, system (22.1.16) is exponentially stable. Using (2.2.1.8) and

(22.1.15), it follows that

II x(t) || £-J4t7>^^ II <W II «—»*-* (22.1.34)
l-si(e)

for all feto^O, e^C2, and x(fo) sufficientiy small that all signals remain in Bn In conclusion,

the original system is exponentially stable, with rate of convergence (at least) ecc(e).

v(z) (22.1.30)
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Remarks:

(1) Theorem 22.1.5 is a local exponential stability result The original system will be glo

bally exponentially stable, if the averaged system is globally exponentially stable, and provided

that all assumptions are valid globally.

(2) The proof of Theorem 22.1.5 gives a useful bound on the rate of convergence of the ori-

e oj»
ginal system. As e tends to zero, eot(e) tends to — —» which is the bound on the rate of con-

2 o>2

vergence of the averaged system that one would obtain using (22.126)-(22.127). In other

words, the proof provides a bound on the rate of convergence, and this bound gets arbitrarily

close to the corresponding bound for the averaged system, provided that e is sufficiently smalL

This is a useful conclusion because it is in general very difficult to obtain a guaranteed rate of

convergence for the original, nonautonomous system. The proof assumes the existence of a

Lyapunov function satisfying (2.2.126X2.2.1.28), but does not depend on the specific function

chosen. Since the averaged system is autonomous, such a function is usually easier to find than

for the original system, and any such function will provide a bound on the rate of convergence

of the original system for e sufficiently small.

(3) The conclusion of Theorem 2.2.1.5 is quite different from the conclusion of Theorem

22.1.4. Since both x and xav go to zero exponentially with t, the error x-xm also goes to zero

exponentially with t. Yet, Theorem 22.1.5 does not relate the bound on the error to e. It is

possible, however, to combine Theorem 22.1.4 and Theorem 2.2.1.5 to obtain a uniform

approximation result, with an estimate similar to (2.2.124).

Now we consider the same system (22.1.1), but x=0 may not be an equilibrium point of

that system. Conceivably, only boundedness of x(t) instead of its exponential stability should

be expected. This will be established in Theorem 2.2.1.9 after some preliminary lemmas, of

which the first two lemmas are variations of Lemma 22.12-22.1.3. To start with, we modify

some of the assumptions on/to indicate the change of system property as just mentioned.
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Modified Assumptions:

(MAI) fitjc£) satisfies (Al) except that x=0 is no longer an equilibrium point of the system

(22.1.1).

(MA2) fitjcz) is Lipschitz in e, i.e. for some fe£0,

II fitxtj -fitxtz) || <; h Iei " £21 (22.1.35)

for all ttQ, xe Bn and et, e2^£o.

(MA4) The function d(tx)=fitx,0)-fM(x) satisfies conditions of the following Lemma 2.2.1.6.

Lemma 22.1.6: (Smooth Approximate Integral of a Zero Mean Non-Lipschitz Function)

If d:R+xBr-*R* satisfies the following assumptions:

(i) d(,x) is piecewise continuous, and has a zero mean value, with convergence func

tion y.

n\\ ddfos) nas a^jq mean vaiue> Wim convergence function y,
dx

then there exist c^ e £, A>0, and a function wt:R+xBr-^Rn such that we(0,x)=0, and

llew^llS/irc^e) (22.1.36)

3w£(r^)
dt

Thu (t ir\
<^(e) (22.1.38)

-<&x)U£Ar£i(e) (22.1.37)

awz(tx)

" 3x

for all f£0, and for all xeBn

Moreover, ify(T)=an* for some d20, be(0,l], then c^(e) can be chosen to be 2ae*. D

Proof: See Appendix A.
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Remark: The difference from Lemma 2.2.1.3 is mainly in the condition that (22.1.35),

(22.1.36) are no longer Lipschitz in x. In other words, the transformation (22.1.15) given in

Lemma 2.2.1.3 may not be invariantat the origin.

Lemma 22.1.7: (Perturbation Formulation of Averaging with Non-Coincident Equili

brium Point)

If the systems (2.2.1.1) and (2.2.1.5) satisfy assumptions (MA1)-(MA2), (A3), and (MA4),

then there exist functions we and 5i» as in Lemma 2.2.1.6, and a transformation of the form,

x = z + E\vg(t,z) (22.1.39)

under which system (22.1.1) becomes

i = zfaJ® + ep(r,z,e) z(0)=Xo (22.1.40)

where p(trZ£) satisfies

|| p(/,z,e) || Zry2(e) (22.1.41)

for some \|f2e K, t\>0, and for all e^ej. Further, \jr2(e) is of the order of e+£i(e). •

Proof: See Appendix A.

Definition 22.13: ( Uniformly Ultimately Bounded (UUB) for a Bound p )

The solutions of system (2.2.1.1) are uniformly ultimately bounded for a bound (3 if for any xq

there exists 0<7<<» such that

||x(f)||£p tZto+T (22.1.42)
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Lemma 22.1.8: ( UUB lemma)

Consider a set of differential equations:

x = tfix) x(fo)=xoe fl" (22.1.43)

* = efi*) + eg(tj?) xt/a)=xb (22.1.44)

satisfying

(i) x=0 is anexponentially stable equilibrium point of (22.1.43),

Qi) g(t,S) £ l8 for some /,>0, for all teO and is IF.

Then the solution x\t) of (2.2.1.44) is UUB for a bound kxlg for some *!>0. Moreover, there

exists a k2>0 such that for allx^e R* and for all feto

|| xXt) || £ max( *, lg , k21| xo || ). (22.1.45)

a

Proof: cf. Bodson and Sastry (1985).

Remarks:

(1) In the lemma, kx and k2 can bequantified if one uses aconverse theorem of Lyapunov for

the exponentially stable system, i.e. there exists a function v:R*->R+ which satisfies

(2.2.126), (22.1.28) and

v(x)^-03||x||2. (22.1.46)

Then kx and k2 can be chosen as

^:=a/^^. +k and *2:=a/^ (22.1.47)
1 V a! 0t3 ^ \ tt!

where k can be any non-zero positive number.

(2) Although this lemma is stated in a global form, its local version also exists. The

differences are: conditions (i)-(ii) are satisfied locally in, for example, Br so that for some
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o<r0<r, x(t), x\t)e Br for all t>t0 whenever x$e BrQ, which is possible because of (22.1.45)

and if kxlg<r.

Theorem 22.1.9: ( Bounded Stability Theorem )

If the original system (2.2.1.1) and the averaged system (2.2.1.5) satisfies assumptions

(MA1)-(MA2), (A3), (MA4), and xav=0 is an exponentially stable equilibrium point of

the averaged system,

then there exists Pj€ K, 7>0, and z2>0 such that the solution x(t) of the original system is

UUB for all e£z^, and

|| x(t) || £ pt(e) feto+T (22.1.48)

for sufficiently small x(/q). a

Proof: Since, by hypothesis, xav=0 is an exponentially stable equilibrium point, Lemmas

22.1.7-22.1.8 directly imply that z(t) of the perturbed system (22.1.40) is UUB for a bound

kry2(€) for some k>0. It then follows from (22.1.36), (22.1.39), and (22.1.45) that

||x(r)|| <S||z(0||+ArSi(e)

=: P^e) r£f0+7 (22.1.49)

for some 7>0, sufficiently small x(fo), and for all e£e2, for some e2>0.

•

Remark: If system (22.1.1) is of the form,

x = zA(t)x + eg(t) x(r0)=x0 (22.1.50)

for some A:R+->il*01 and g:R+->RH, with its averaged system (2.2.1.5) of the form,

xav = ei4avxav + egav (22.1.51)
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then main assumptions in the theorem require (i) A(t) and g(i) be bounded time functions, (ii)

g^aO, and (iii) Ambe Hurwitz.

After discussions on system (2.2.1.1) with different properties in Theorem 22.1.5 and

22.1.9, we now focus our attention on the same system but with its property being a mixture

of both. Consider systems of the form,

x = e/i(r,x,y,e) x(0)=xq€ R* (22.1.52)

y = e/2(wO y(0)=y0eff" (22.1.53)

with the corresponding averaged systems,

Xa* = tfxJxM,ym) x(0)=Xo (22.1.54)

ya» = e/2-v(yav) 3<0)=yo (22.1.55)

The following are assumptions about/- and f^ i = 12. for some given eo>0, r>0, and

Assumptions:

(A6) fx(tx,y,z) is Lipschitz in y, linearly in x, i.e. for some /3 £0

IIAtom*)-fx(wi*)II *hl*II IIy\-yiil (22.1.56)

for all r£0, xe Bn yx, y2e Br(y°), and e^Zq.

(AT) If y is treated as a time function y(r), then/i(r,x,y(f),e) satisfies (A1MA2).

(A8) h satisfies (MA1)-(MA2).

(A9) (0,y°) is an equilibrium point of the averaged system, i.e./iav(0.y°)=0 and/a^y^O,

y^v satisfies (A3), and for some 4»£0

||/lav(Xl 0» ~/l«ftl00 || £ L II *1 - X2 || (22.1.57)

for all xlt x2e Br, and ye Br(y°).
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(A10) The function dy(tx)=fx(t*,y,Q)-fXav(xy) satisfies conditions of Lemma 2.2.1.2 for any

ye B&/*), and ^f,y)=/2(f,y,0)-j2av(y) satisfies conditions of Lemma 2.2.1.6.

Theorem 22.1.10: ( Partial Exponential Stability Theorem)

If the original system (22.1.52M22.1.53) and its averaged system (22.1.54)-(2.2.1.55)

satisfy assumptions (A6>(A10), y^y* is an exponentially stable equilibrium point of

(22.155), and there exists a function v^x/F"-*/^, and non-zero positive constants

ait «> 03, a4, 05, such that, for all xave B„ yme Bfy°),

*x II x„ II2 £ v(Xav,y^ £ 021| x„ ||2 (22.1.58)

Jv
9x,•av

9v

^a3 Hx^ll (22.1.59)

^a4||xtfv||2 (22.1.60)

vOw«> ^ -eas II x^ ||2 (22.1.61)

where the derivative is taken along the trajectories (2.2.1.54)-(2.2.1.55),

then there exists e3>0 such that x(t) of the original system converges to zero exponentially

whenever e£e3. Q

Proof: First of all, by a Lyapunov theorem on exponential stability, the above assumptions

readily imply the exponential stability of the averaged system (2.2.1.54)-(22.1.55). Moreover,

by a proof similar to that of Lemmas 22.12-22.1.3, and Lemmas 22.1.6-22.1.7, using in par

ticular (A10), it follows that there exists a transformation of the form,

x = zx + z wu(r,zlfZ2) (2.2.1.62)

y = z2 + z vt^foz^ (22.1.63)

under which system (2.2.1.52)-(22.1.53) becomes
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i\ = e/iav(zi ,Z2) +epuCczi^e) zi(0)=xo (22.1.64)

k =6/2^(22) +epufe*fce) Z2(0)=y0 (22.1.65)

where ewle, ew^, and/>n» Pvi satisfy

II ewle(r,z^2) II * §i(e) II *i II ^d || ew^i) || <; hr%x(z) (22.1.66)

|| puCi^i^e) || *Vi(e) || z, I| and || pntefee) || Sn^e) (2.2.1.67)

for all zi€ Br z2e BJyJ, z£zx. We now take an approach similar to that in the proof of

Theorem 22.1.5. The function v is used to study the stability of the perturbed system

(22.1.64)-(22.1.65). Considering vfo^, we have inequalities (22.1.58H22.1.60) still in

effect, with zx and z2 replacing xav and ym respectively. The derivative of v along trajectories

of (22.1.64H22.1.65) is given by

I dvv(*i,Z2) =v(x,y) l^xz,^)+(3J-) &Piifai*i£)

+(j±) zpX2(t^xa2JZ) (22.1.68)

where v(x,y) is taken along the trajectories (22.1.52)-(22.1.53), and can be simplified by

(22.1.61). (22.1.66)-(22.1.67) as

v(zi^2) ^ - ect51| z! ||2 +ea3\jf!(e) || zx ||2 +ea^e) II *i II2

=-e[05 - 03Vl(e) - 04^2(6))] || zx ||2 . (22.1.69)

Denote

' ct5 - 09\|fi(e) - *Ary2(z)
a(e).-=

2ct2
(22.1.70)

then ate)-*—2- as e-*0. Let £3 be such that 0(63)>0, and z2 (and hence y) remains in
2c<2

BJy°) for sufficiently small (y0b)-y°) whenever e<e3, as has been guaranteed by Theorem

2.2.1.9. Thus it follows that
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v(zlfZ2)£-2a(e) v(zxjz) t>tQ (22.1.71)

which, by a proof similar to that of Theorem 22.1.5, implies that x(t) converges to zero

exponentially for all z£z$ and for sufficiently small x(/o), with rate of convergence (at least)

ea(e).

222 Two-Tlme Scale Systems

Systems of the form (2.2.1.5) studied in section 2.2.1 are to be thought of as one time

scale systems in that the entire state variable x is varying slowly in comparison with the rate of

time variation of the right hand side of the differential equation. In this section, we will study

averaging for the case when only some of the state variables are slowly varying.

222.1 Decoupled Time-Scales

We consider a class of systems of the differential equation

x = zfitxyjz) x(0)=Xo (222.1)

y = A(x)y + zg(txy#) y(0)=y0 (222.2)

where xe R* is called the slow state, ye R™ is called thefast state, and/, g are piecewise con

tinuous functions of time. It can be seen that the system (2.2.2. l)-(2.2.2.2) are decoupled when

e=0.

As previously, we define the limit

t+T

fjx) =Km ± f fixjc,0,0)dz (222.3)

and assume that the limit exists uniformly in t and x. Then the averaged system of the system

(2.22.1) and (2.22.2) is given by

Xav = e/av(*av) *av(0)=Xb . (2.2.2.4)
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Additionally, for some r>0, eo>0 wemake the following assumptions:

Assumptions

(Bl) (x,y)=(0,0) is an equilibrium point of the system (222.1) and (2.22.2), i.e.

Af.0,0,e)=0 and g(r,0,0,e)=0 for all r£0, and both/and g are Lipschitz in x and y, i.e.

II AWlE) -XW*e) II * h II *i-*2 II +h II yx-iyi II C2-2-2-5)

II s(Wi.e) - gffWhA || £ h II *i-*2 II +UII yi-y2 II C2-2-2^)

for all r£0, xx, x^e Bnyx, y2e Bn and z^Zq.

(B2) /av(0)=0, and £v has continuous and bounded first partial derivatives with respect to x

for all xe Bn so that for some lm^0

II /«v(*i) - Uxz)U * l„ II *i"X21| (2.22.7)

for aU xlt x2e Bn

(B3) fitjcyz) and g(f,x,y,e) are Lipschitz in e, linearly in x and y, i.e.

\\fitx,y,zx) -fitxytj) || <! /5( || x || +1| y ||) Iei-e* | (22.2.8)

II *(W.£i) - g(W,Zt) || £ /s( II x || +1| y ||) |zx-e21 (222.9)

for all f£0, xg Bn ye Br, and e!, 62^60.

(B4) The function d(tx)=fitx,0,0)-/^(x) satisfies conditions of Lemma 2.2.1.2.

(B5) A(x)e /T*" is uniformly stable ( Hurwitz ) for all xe Bn i.e. there exist Xlf X2<0 such

that

A,! £ ReX(A(x)) £ X2 (2.22.10)

for all xe Bn where ReX(i4(x)) is the real part of an eigenvalue of the matrix A(x).

Moreover, for some ka>0,

' "" ' ' <>ka /=1,2, •,n (222.11)dA(x),
•a
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for all xe Bn

(Bd) For some 0<rx<r, xav(f)€flri on the time intervals considered, and for some r2>0,

yQe B,2 ( where rx and r2 are some constants to be specified later).

Remark: The assumption (B5) implies that there exists Q,P(x)e R"00" such that, for some

non-zero positive constants px, p2, qx, and q2,

pxIZP(x)£p2I (2.22.12)

-?2/ * -G =A(x)TP(x) +P(x)A(x) £ -qxI (2.22.13)

for all xe Bn

As in the One-Time-Scale case, we will first give the following preliminary lemma analo

gous to Lemma 2.2.1.3. This lemma allows one to perform a similar transformation so that the

original system (22.2.1) is reformulated as a perturbed version of the averaged system

(2.2.2.4).

Lemma 2.22.1 (Perturbation Formulation of Averaging with Coincident Equilibrium

Point)

If the original system (2.2.2.1) and (2.2.2.2), and the averaged system (222.4) satisfy

assumptions (B1)-(B4),

then there exist functions we and %2 as in Lemma 2.2.12, and a transformation of the form,

x = z + zwz(t,z) (2.2.2.14)

under which system (22.2.1) becomes

z = zfm(z) + ep!(f,z,e) + zp2(t,z,y,z) z(0) = xq (22.2.15)

where
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||Pl(r,z,e) || £&£)*! || z|| and ||p2(tj,y& \\ Zk2\\y || (222.16)

for some &!, Jfc2>0- Q

Proof: See Appendix A.

We are now ready to state the averaging theorems concerning system (2.2.2.l)-(2222).

The first Theorem 22.2.2 is an approximation theorem similar to Theorem 2.2.1.4. It guaran

tees that the trajectories of the slow variable x of the original system and those of the averaged

system are arbitrarily close on compact intervals when e tends to zero. We prove the following

theorems for the case where A(x)aA is constant( see assumption (B5) ). The proof in the gen

eral case can be found in Bodson et al (1986).

Theorem 2222: ( Basic Averaging Theorem)

If the original system (2.2.2.1) and (2.22.2), and the averaged system (2.22.3) satisfy

assumptions (B1)-(B6),

then there exists y3e K such that, given 7*20,

II x(t)-xav(t) || <; y3(e)6r (22.2.17)

for some bj, er>0, and for all re [0,77e], e£er. Further, y3(e) is of the order of

e+^2(£) (as defined in Lemma 22.1.2). •

Proof: We estimate the error (x-x^), following a proof similar to the that of Theorem

22.1.4. First, we have that

||x-z||<;c;2(e)||z|| . (22.2.18)

Then, the error z-xm can be estimated using from (22.2.15):

4(z-^av)=e(fav(z)-/av(^av))+̂ ia^)+̂ 2(^y^) z(0)-Xav(0)=0 (2.22.19)
at
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for all re[0,77e], xMeB/, /<r. As in the proof of Theorem 2.2.1.4, we will show that, on

this interval, and for as long as x, ze Bn the errors m^ and x-x„v can be made arbitrarily

small by reducing e.

Using Lemma 2.22.1, we integrate (22.2.19):

i t

II z(t)-xav(t)|| <I zlj|| z(x)-xflV(T)|| dz +z%2(z)kxf || z(x)\\ dx

t

+ &i\\\y(i)\\<it. (22.2.20)

Further, y(t) can be calculated from (2.2.2.2):

t

(22.2.21)y(t) =<^o+ep(^(txy)rfc.

Since A is Hurwitz, we have that

I «*!*-'*me (222.22)

for some m, \>0, and

i

\\y(t)\\ Zm||y0|| e^ + em {e^^\l3\\x(x)\\ +l4\\y(x)\\)dz (2.2.223)

or

lle^XOll £m||yoll +6^3^ ||x(x)||rfc+em/4f |UXty(t) || rfr . (22.224)
Applying the generalized Bellman-Gronwall Lemma,

||e*y(t)\\ Zm \\yQ\\ e^+jem/3 |̂|x(T)|| J"*** (2.2.225)

Define X(e)=X-em/4, and €x (0<e'1^e1) so that X(e)>0 for z£z'x. It follows that

|| y(t) || £ mre"*** +em/3r/X(e) . (22.2.26)
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Using this estimate in (22.2.20), and using the generalized Bellman-Gronwall Lemma again

£ (e+?2(e))

=:V3(e)"r-

mhjrln mk2l3r
kxr+-r-r-. r—+

Uz)+zl„ W>

UT

(22.227)

As in Theorem 2.2.1.4, it follows that, for some br

ll*0-*av(')ll *V3(e)J?r • (2.2.228)

By assumption, Ux^flll £/<r. Let eT (0<eT^e/1) such that \fi(zT)bT<r-r'. Further, let y*

and zT sufficientiy smaU that, by (22.2.26), y(t)e Bn for all te[0,77e]. It follows, from asim

ple contradiction argument, that the estimate in (22.2.28) is valid for all te [0,27e], whenever

e£eT.

•

Theorem 222J: ( Exponential Stability Theorem )

If the original system (2.2.2.1) and (2.2.2.2), and the averaged system (222.4) satisfy

assumptions (B1)-(B6), and xav=0 is an exponentially stable equilibrium point of the

averaged system,

then there exists 64>0 such that the equilibrium point (x,y)=(0,0) of the original system is

exponentially stable for all e£e4. a

Proof: Since x<„fO is an exponentially stable equilibrium point of the averaged system, there

exists a function v(xav) satisfying (22.126)-(22.128). We now study the stability of the sys

tem (2.22.15), (2.2.2.2), and consider the following Lyapunov function,

v\z,y) = v(z) + — yTPy
Pi

(2.2229)
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cfi(H2||2+ ||y||2) * Kz,y) <; 02(llz||2+ ||y||2) (22.2.30)

Cto
with a'1=min(a1,—pXy The derivative of tf along the trajectories of (22.2.15), (2.2.22) can

Pi

be estimated, using the previous results,

vl(z.y)^-ea3||z||2+^2(e)a4l|z||2

+«***•!i! IIvII -%illyII2
Pi

+4e/30t2||z||||y||+2e/4<X2||y|r (2.22.31)

for e£et (so that, in particular, ||x|| £2|| z||). Note that since ab^(a2+b2)f2 for all a,beR, we

have

so that

elUllllylU^e^llzlP+e^Hyll2]

vx(z,y)£-z os-^e^i^-e173^! -2e,/3/3a2

^^-2e/4a2-e^-^i-2e^/3a2
Pi 2

^r-^o^otCe)!! z!| 2-^(e)||y||

llvll

(2.2.132)

(22.2.33)

1 a3
Note that, with this definition, a(e)->—•— as e-»0. Let 64(0 <£4^61) be sufficiently small

2 c«2

that a(e)>0, q(z)>0, and 2za2a(z)£q(z) whenever e£e4. Consequently,

v\z,y) £ -2ect(e)tf(z,y) (22.2.34)

and

-IzsxHtYs-td
v\zj)<>v(z(td,y(td)e (2.22.35)
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As in Theorem 22.1.5, this implies the exponential convergence of the original system, with

rate of convergence ect(e). Also, for xOb) and yfa) sufficiently small, all signals are guaranteed

to remain in Bn so that all assumptions are applicable as e goes to zero.

•

Remark: The proof of Theorem 2.22.3, as ofTheorem 22.1.5, gives auseful bound on the

rate of convergence of the original system, and this bound again tends to the bound on the rate

of convergence of the averaged system.

Now we change our focus of attention to a two-time-scale system which does not have

(xoO=(0,0) as an equilibrium point, similar to the case of one-timer-scale systems under

assumption (MAI). However, here we will consider a more general case where xav=0 also

may not be an equilibrium point of the averaged system. These are indicated in the following

modified assumptions:

Modified Assumptions:

(MBl)/and g satisfy assumption (Bl) except that (x,y)=(0,0) is not an equilibrium point of

the system (2.22.1M2222), and for all xe Bn ye Bn z£Zq there exist If, lgZQ such

that

|| fitx,y*) \\Zlf and || g(t^yjz) \\£lg. (2.22.36)

(MB2)/av satisfies (B2) except that/^O^O.

(MB3)/and g are Lipschitz in e, but not linearly in x and y, i.e.

|| fitx,y*x)-fitx,y*i) || £ ls | zx-Z2 | (22.2.37)

II S(W*i)-S(W£2) II * k Iei-e21 • (22.2.38)

(MB4)The function d(tx) satisfies conditions of Lemma 2.2.1.6.
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Lemma 222.4: (Perturbation Formulation of Averaging with Non-Coincident Equili

brium Point)

If the original system (222.1M2222), and the averaged system (22.2.4) satisfy assump

tions (MB1)-(MB4),

then there exist functions wt and %2, as inLemma 2.2.1.6, and a transformation of the form,

x = z + ewc(r,z) (2.22.39)

under which system (22.2.1) becomes

i = e/^z) + zpx(t*£) + zp2(tey,z) z(0) = Xo (22.2.40)

where for some Jfc3, *4>0

||px(t*,z) || <S k^i%2(z) and ||p2(W.e) \\ Zk4 \\y\\ . (22.2.41)

a

Proof: See Appendix A.

Theorem 222.5: ( Bounded Stability Theorem)

If the original system (2.22.1) and (2.2.2.2), and the averaged system (22.2.4) satisfy

assumptions (MB1MMB4), (B5)-(B6), and there exist a function v:#•->/?+, and non

zero positive constants alt o^, a3, 0C4, and 8 such that for allxme Br

a^xJI^v^J^llxJI2 (22.2.42)

£UUa3||xJ| (22.2.43)
3xav

v(0 * -e lk.ll («4ll*JI -8) (2-2.2.44)

V OLX
1 j Pi

«4 <*2<7l
5 < r (22.2.45)

where the derivative in (2.22.44) is taken along the trajectories (22.2.4),
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then there exist 65>0, p>0, and fce K such that the solutions of the original system are

UUB whenever e£es, and

\\x(t)\\ <> p2(e) +p8 tZto+T (22.2.46)

for some T>0, and for sufficiently small x(*b) and yfto). D

Proof: The proof of Lemma 2.2.1.8 and the current hypothesis imply that xm(t) of the aver

aged system (2.22.4) is UUB for a bound p'5 for some p'>0. For sufficiently small xOb), eq.

(2.22.45) directly implies that xav0)e Br for all tefo. Now an approach similar to that used in

the proof of Theorem 2.2.2.3 is taken here. Consider the following constructed Lyapunov func

tion (i.e. P(x) replaces P in (2.2.229)),

v\z,y) := v(z) + — fP(x)y (22.2.47)
Pi

so that by (22.2.12) and (2.22.42)

*! ( N|2+ llyll2) * Kz,y) <> 02 (||z||2+ ||y||2) (2.22.48)

0C9
where ot'1=min(al,—~px). The derivative of V along the trajectories of (2.22.40), (2.222)

Pi

can be estimated, using Lemma 2.2.2.4 and (222.43)-(222.44),

i(z,y) =v(xM) |x-y=I +(|j) [zpx(t,z£)+zp2(tj,y£)j

-—/Qy + —fP(x)g +— yT
Pi Pi Pi

r

v dP(x) f
m 3* '

S-e||z||(041|z|| -8) + 6/^2(6)4303 ||21| +eaj*4||z|| ||y||

--S2L l|y||2 +eM| i|& I||y|r+26a2/J|y|| . (2.2.2.49)
P2 P2 » <** I

Since P(x) satisfies the linear Lyapunov equation (2.22.13), Cramer's rule and assumption
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(B5) implies the continuous differentiability of P(x) for all xe Br Hence, there exists some

kp>0 such that

?<;-e z

-||y|

dx I ^

Using this result, and (2.22.32), we can reduce (2.22.49) to give

.1/3 <*3k4(a4-e"J-yi) ||z|| - S- a^r&e)

Pi q\ 2o2^i

(222.50)

.•= -e ||z|| «x(e) ||z|| -5-03*3^2(3)- llyll (q(z) ||y|| -2ea2/.) . (22.2.51)

Note that ct(e)-»a4 and q(e)^>a<2qi/p2 as e-»0, and then let e/5>0 be such that a(e/5)>0

and q(z'5)>0. Moreover, since (a\ + bx)^(axa2 + b^)2/^ +b\) for all ax, bx, a2, b2e R,

we have

(zoiz) \\z\\2+q(z) ||y||2) * (-JL+JLy4 (eV2 ||z|| +||y|| )2
a(e) $(e)

.•=p3(e)(e^ || z[| + ||y||)3 (22.2.52)

for all e£e?5 so that (2.22.51) can further be simplified by

v-<; -(e1/2 ||z|| +||y||) [p3(e)(e,/2.||z|| +||y|| )-e1/2(v4(e)+5)] (2.22.53)
where \|r4(e) defined by

y4(e) := a3k3rB)2(z)+2zl,2a2lg (222.54)

and is a class K function of e. Again, by a proof similar to that of Lemma 22.1.8, it follows

that z(t) and y(t) are UUB, and for some 7*>0 and k>0,

<*2 , 5 . Vife) n2
^lr+llylr^(i+e+K)-r(

a', p3(e) p3(e) Y tZto+T. (22.2.55)
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This implies that

||,|| and ||,|l *<^V?( idr-pl^ '^•*"•**
Using (2.22.45), it then follows that tiiere exists e"5£e'5 such that, for sufficiently small x(t$
and y(ro), z(t)e Br and y(t)e Br for all t Zt0. Finally, following the proof ofLemma 2.2.2.4,

we have

|*<Ol*ll«COll+*'««>• (222.51)

Denote

fc(e) »-y/lpgpV4(e) +*rfc» (2.2.2.58)
and

pe := -v/i iEEE . (2.22.59)
Pe' \a', p3(e)

Then there exists es£e"5 such that

P2O*) +Pe55 <r (2.22.60)

so that x(r) remains in Br for all tZtQ whenever e^e* In conclusion, x(r) is UUB for a

bound p2(e)+p 5, where p:= p^, whenever e£ €5.

•

Remark: Note that, when 82O, x(r) is UUB for a bound p2e K. This result will then be

similar to that of Theorem 2.2.1.9.

As before, we consider a system of the following form:

x =zfx(tx&y ,e) x(t0)=x0e R*1 (2.22.61)

C=e/2(r^,C.y .e) «'o)=C<>e Rn* (22.2.62)
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y a A(x)y + zg(tx,^z) y(to)=yQe Rf" (22.2.63)

of which the averaged system exists as follows:

*av • E/Uivfev.Cav) *avOb)=*0 (22.2.64)

tav =e/2flV(xav. O kvGbHSo (2.22.65)

For some given C?e fl"2, the following are assumptions about ft ,/uv, i = 1,2, and g.

Assumptions:

(B7) Treat 5 as a time function £(f), then fx(tjc, t>(t)y£) and g(f,x,£(f),y,e) satisfies (Bl),

(B3), whenever £(f)e B&0).

(B8) /} is Lipschitz in £, linearly in x and y, i.e. for some ^£0

11/itoCi.y.e) -iiOw&M) II * hi \\x\\+ ||y||) || C1-C2I Q22.66)

for all tZQ, and for allxe Br, ye Bn ^ ,£2€ Bfa0).

(B9) (x,£,y)=(0,f\0) is not an equilibrium point of/2, and for some //2^0

\\fi(t*X>,y*)\\*lh (2.22.67)

for all r£0, and for all xe Bn ?e 5XC°). ye £„ and eSeo.

(BIO) (0,£°) is an equilibrium point of the averaged system (2.22.64H222.65), and for some

II/nv(*i,0 -/i«v(*i.O II * ha, II xx - x21| (22.2.68)

II /2«(*4) -&W2) II £ 4. II b - C2II (2.22.69)

for all f£0, and for all xx ,x2e Bn Ci.?2€ ^rtt0)-

(Bll) ^ is Lipschitz in e, i.e. for some /8£0

II fi(t*&y*x) -f2(t*£,y,zj) || <> k Iei - 621 (22.2.70)

for all r£0, and for all xe Br, ?e Br(£°), ye Bn zx,Z2^Zq.
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(B12) The function di(fc)**fifycJlflJD)-fu,(*JQ satisfies conditions of Lemma 2.2.1.2 for

all CeBr(C°), and the function dJtJQ*&(t*JLflM-An<*JZ) satisfies conditions of

Lemma 22.1.6.

Theorem 222.6: (Partial Exponential Stability Theorem)

If the original system (2.2.2. l)-(2222), and the averaged system (22.2.4) satisfy assump

tions (B5)-(B12), (0,5°) is an exponentially stable equilibrium point of the averaged sys

tem (222.64M2.22.65), and there exists a function v:RnxxR"*->R+, and non-zero posi

tive constants alf o^, 03, 04, 05 such that for all xme Br, t^e B^tf),

a, || x„ ||2 <; v(Xav,U <: 021| *«v II2 (2-22.71)

dv

dXn

dv

aCav

^03 Hx^II (22.2.72)

^(X4l|xflV||2 (2.22.73)

v(*«v.W£ -easily ||2 (22.2.74)

where the derivative in (2.22.74) is taken along the trajectories (2.2.1.64)-(22.1.65),

then there exists e^O such that x(t) of the original system (22.2.61) converges to zero

exponentially for all e£e$. D

Proof: The proof relies on both a theorem and a converse theorem of Lyapunov for

exponentially stable systems. Under the above assumptions, in particular (B12), Lemmas

22.12, 2.22.1, 2.2.1.6, and 22.2.4 imply that there exists a transformation of the form

x = zx + ewle(f,zlfZ2) (22.2.75)

£ =s z2 + eW2£(^^2) (2.22.76)

under which the system (222.61)-(2.22.62) becomes
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i\ =e/lav (z^2) +epu^i^ +zpx2(t,zx,z2,y,z) zi(*o)=*o (2.22.77)

*i=e/2iiv (zi^2) +e/?2i(^i»z2.e) +e/722(^*zi»Z2.y^) Z2(^o)=Co (2.22.78)

IIPiill * fa(4*i Iiil and ||pl2|| * *2 h II (2-2.2.79)

IIP21II * ^200*3 and H/722II * *4 1? II . (2.22.80)

Since (0,1?) is an exponentially stable equilibrium point of the averaged system, by a converse

Lyapunov theorem, there exists a function vx:RHlxRnz^R^. that satisfies (2.22.42),

(2.22.43). and

ViCc^Cav) * - «M Ikv II2+II Cav II2) (2.22.81)

where the derivative is taken along the trajectories (222.64)-(222.65) (i.e. 8s0). Hence, by

the remark after Theorem 22.2.5, there exists e'6>0 such that, for sufficiently small x0,Go, and

yo, the solutions of the original system (222.61)-(222.63) are UUB for a bound which is a

class K function of e, and all signals remain in Br or £,(£*) respectively for all t Zt0.

We now study the variable x(t) of the system (22.2.61) by considering the following

function v\ similarto that in the proof ofTheorem 2.225, defined by

v-(zi,Z2.y) .•= v(zltZ2) +—yTP(x)y (2.22.82)
Pi

which then satisfies

a'1(llzl||2+||y||2)^^(z,.Z2^)^«2(llzl||2+||y||2) (2.22.83)

where cc'l:=min(ai,—pj). The derivative of v taken along the trajectories of the perturbed
Pi

system (222.77M222.78), (22.2.66) becomes

^=v(xav.Cflv)|(x_^w.^+e(^)</?n+/7i2) +e(^)(P2i+P22)

Pi Pi Pi
(2.22.84)
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where v(xav,Ca») is taken along the trajectories (222.64)-(222.65). By carrying through the

estimation of the R.H.S. of above equation, similar to that used in the proof of Theorem

2.2.2.5, we have

v£-2za2a(z)\\zx\\2-q(z)\\y\\2 (22.2.85)

where a(e)-» —— and <?(e)-> — qx as e-»0. Let e^e^ be such that ct(e)>0, <?(e)>0, and
2 eta Pi

2za2atz)£q(z) for all e£66, then the rest of the proof will just follow that of Theorem

22.2.3.

The following, which is a corollary to Theorem 2.22.5 and 2.2.2.6, deals with a case,

similar to that in Theorem 22.2.6, where only the bounded stability instead of the exponential

stability can be expected.

Corollary 222.7:

If the original system and the averaged system satisfy the conditions in Theorem 2.2.2.6

except that

vCCav.Cav) £ -eoj llxJI (||xav|| -5) (2.22.86)

where

<*2

<*i

1 ( Pi
<*4 °2tfi

5 < r, (22.2.87)

then there exists e/6>0, p>0, and p4 e K such that the solutions of the original system are

UUB wheneverz£z*6, and

|| x(t) || <S p4(e) + p5 teto+T (22.2.88)

for some T>Q, and for sufficiently small x(/b), yOb). and C('o)-C°. •
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Proof: Using the proof of Theorem 222.6, the derivative of the constructed Lyapunov func

tion v in (222.82) along the trajectories (222.77)-(222.78), (2.22.66) satisfies a condition

similar to that in (22.2.53). Hence, the conclusion readily follows from the proof of Theorem

222.5.

2222 Mixed Time-Scales

We now discuss a more general class of two-time-scale systems, arising in adaptive con

trol:

x = zf(tx,y'jz) (2.22.89)

/ mA(x)/ + h(tx)+zg'(tj,/,z) . (2.22.90)

We will show that system (22.2.89), (2.22.90) can be transformed into the system (22.2.1),

(2222). In this case, x is a slow variable, but/ has both a fast, and a slow component.

The averaged system corresponding to (2.22.89), (22.2.90) is obtained as follows.

Define the function

w(',x) := fe^X'-^/tCrgc) dx (22.2.91)

and assume that the following limit exists uniformly in t and x.

/+r

faJix)^ lim -i ff(x*,w(xx),Q) dx . (22.2.92)

Intuitively, w(tx) represents the steady-state value of the variable y with x frozen and e=0 in

(222.90). Consider the transformation,

y = /-w(f,x). (2.22.93)

From (22.2.91), w(tx) satisfies



-f Mfx) =A(x)w(tx) +h(tx)
at

Differentiating (2.22.93), we have that

y=A(x)y+e

w(r,0)=0

dx

so that system (2.22.89), (22.2.90), is of the form (22.2.1), (222.2). with

f(tx,y,z) =/(f,x,y+w(f,x),e)

g(tx,y,z) =--^j^ f(tx,y+v*tx),z)+gXtx,y+w(tx)£)
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(22.2.94)

(22.2.95)

(2.22.96)

(22.2.97)

The averaged system is obtained by averaging the R.H.S. of (2.22.96) with y=0, so that the

definitions (22.2.3), and (22.2.92) agree.

To apply Theorem 2222-22.2.3. we require that assumptions (B1)-(B6) be satisfied. In

particular, we assume similar Lipschitz conditions on /, g', and the following assumption on

h(tx):

Assumption:

(B13) For all f£0 and xe Bn h(t,Q)=Q and

„ dh(tx)
dxt

Zk

This new assumption implies thatw(r,0)=0, and

||ij^x).|| <^
ox,-

for all r^O, xe Br since

dw(tx)
dx

^ _| f 4favi^ dh(xjc) ]
4[ dxi

*=1, ♦, n (22.2.98)

i=l,",n (22.2.99)

h(xx) dx (222.100)

and entries of /*& and 4-^ are of the form o(x) r*^', where a(x), p(x) are continuous
3x,



44

functions of x, yeZ+, and P(x)^A-2<0 by assumption (B5). This condition is sufficient to

guarantee Lipschitz conditions for the system (2.2.2.1), (2.222), given Lipschitz conditions for

the system (2.22.89), (2.22.90).

However, if Theorem 222.5 is to be applied here, the following modified assumption is

imposed instead:

Modified Assumption:

(MB13) For all f£0 and xe Brh(tj) is a bounded function, and

||i^£||<;* /=i,-",n (222.101)
dXj

This assumption implies, in general, w(r,0)*0, which then leads to the condition (MB1), i.e.

fit,0,0£)*0 and g(f,0,0,e)*0.

Consequently, the theory developed earlier can be directly applied to systems of the form

(2.22.89), (2.22.90). The key to the preceding transformation is the fact that the new state

variable y is truly a/art variable, so that the two time scales have been decoupled.

23 Averaging Theory for Instability of a Dynamical System

In this section, we will develop averaging theory for instability of one-time and two-

time-scale dynamical systems respectively. To start with, we give the following preliminary

definitions.

Definition 2.3.1.1: (Instability of a Dynamical System )

The equilibrium pointx=0 of a differential equation is said to be unstable if there is some ball

Br of radius r such that for every 8>0, no matter how small, there is a non-zero initial state

x(0)=xb€ B6 such that the trajectory starting from xqeventually leaves Bn •
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Definition 23.12: ( Decrescent Function )

A continuous function v:R+xR*->R is said to be decrescent if there exists a class K function

p such that, for all f£0 and xe Bn

v(f,x)£p(||x||). (2.3.1.1)

2.3.1 One-Time Scale Systems

Again, we consider system (22.1.1) and its averaged system (22.1.5) with the same

setup as given in subsection 2.2.1, where the stability and boundedness properties of both sys

tems are closedly related. In this subsection, such a relation will be shown to hold for the ins

tability property as well. The following theorem provides sufficient conditions under which the

instability property of the averaged system will imply that of theoriginal system.

Theorem 23.1.1: (Instability Theorem )

If tiie original system (2.2.1.1) and the averaged system (22.1.5) satisfy assumptions (Al)-

(A5), and there exists a decrescent function v:/^-»/2 and non-zero positive constants

<Xi, 02such that for some xflv arbitrarily close to the origin v(xflw)>0, and

MXav) !sMxIl (2.3.12)
dxat

v^aeMxJI2 (2.3.1.3)

where the derivative in (2.3.1.3) is taken along the trajectories (2.2.1.5),

then there exists C7>0 such that the equilibrium point x=0 of the original system is unstable

for all £^87. D

Proof: The proof is based on a theorem of Lyapunov for unstable systems ( see, for exam

ple, Hale (1980), p. 314 ). Under the hypotheses, the equiUbrium point xav=0 of the averaged
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system (22.1.5) is unstable. From Lemmas 2.2.12 and 22.1.3, the original system can be

transformed into the perturbed system (22.1.16). Now, we will study the instability property of

that system, using the same function v. Consider v(z) where inequalities in the hypothesis are

still valid, with z replacing x. The derivative of v(z) taken along the trajectories of (22.1.16) is

given by

v(z) =Kx„) \x„* +(jgXzp(t^)) (2.3.1.4)

and, using previous inequalities (including those from Lemma 2.2.1.3 )

v^eoillzlp-ev^ajzll2

= e«x2-Vl(e)al) ||z||2 :=ea(e) || z||2 (2.3.1.5)

for all z£zx. Let Zj£zx be such that oc(e)>0 for all z£zj, then again by use of a Lyapunov

instability theorem z=0 is an unstable equilibrium point Since Lemma 22.1.2 implies

the instability of the equilibrium point x=0 of the original system is obvious.

Remark: Note that if the original system is linear as in (22.1.11), and its averaged system

exists and has the form

Xm-zA^Xay, (2.3.1.7)

then conditions in the theorem can easily be verified if, for example, one of the eigenvalues of

Aav has positive real part and none of the rest of the eigenvalues have zero real parts. Thus, the

function v(xav) can be chosen as

v(xav) = xjv/>xav (2.3.1.8)

where P satisfies the Lyapunov equation
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Q^aWp + PAv (2.3.1.9)

for some positive definite matrix Q ( see Ostrowski and Schneider(1962) ).

Sometimes, a function v may not be found to satisfy (2.3.1.3). However, by imposing

more conservative conditions, we can obtain stronger results which will be useful in the sequeL

This is stated in the following as a corollary.

Corollary 2.3.12: (Regional Instability)

If the original system (2.2.1.1) and the averaged system (22.1.5) satisfy assumptions (Al)-

(A5), and there exists a decrescent function v :/?*-»/? and non-zero positive constants

<*i» c<2, a3» 8» such that5<r and

a, ||xj|2 <S v(xav) <; 02 ||xav||2 (2.3.1.10)

dv-> .^OslUavll (2.3.1.1D
9xav II

iKx^ec^xJU \\x„\\ -5) (2.3.1.12)

then there exists e8>0 and r^r such that, for any x^e Br\Bru, x(t) will eventually leaves Br

whenever e£e8 D.

Proof: Again by a theorem of Lyapunov for unstable system, (2.3.1.10)-(2.3.1.12) imply

that, if Xq satisfies

l|;<oll*-^8:=/ C23.U3)
where r*<r (by assumption 5<r), then xav(f) will always stay outside the ball #5 and eventu

ally leaves Br To study the original system for the same property, we consider the function

v(z) as in the proof of Theorem 2.3.1.1 and take its derivative along the trajectories of the per

turbed system (22.1.16):



v(z) = v(xm)

^eo^Uz

x^-,+(-|j)(ep(w9)

(l-^5i(e))IUII-8
04
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=: e<X41| 21| (a(e) || z|| -8). (2.3.1.14)

Note that with this definition, ct(e)-» 1 as e->0. Let eg£ei be such that a(£g)>0 and

*»755<' (2-3X15)

so that z(t) will stay outside a ball 5 5 for all r£*b whenever ||x<)|| ^r^ and £<e8, and z(t)

will eventually leaves Bn The conclusion follows from (2.3.1.6).

2.3.2 Two-Time Scale Systems

In this subsection, we will only be concerned with case of decoupled time-scales. Obvi

ously, as has been discussed in subsection 2.2.2, such results can be easily extended to the case

of mixed time-scales.

Here, we consider the system (2.2.2. l)-(2222) and its averaged system (222.4). The

following theorem will provide conditions under which the instability property of the equili

brium point Xa»=0 of the autonomous averaged system will indicate the same property of the

equilibrium point (x,y)=(0,0) of the original nonautonomous system.

Theorem 232.1: (Instability Theorem)

If the original system (2.2.2.1), (2.2.2.2) and the averaged system (2.2.2.4) satisfy assump

tions (B1)-(B6), and there exists a decrescent function v:R"->R that satisfies conditions

given in Theorem 2.3.1.1,
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then there exists €9>0 such that the equilibrium point (x,y)=(0,0) of the original system is

unstable for all £< £9. •

Proof: The proof will be similar to that of Theorem 2.22.3. By hypothesis, the equilibrium

point Xav =0 of the averaged system is unstable. Now, we construct another decrescent function

v\ using the given v:

i?(z,y) =v(z)--2lyTP(x)y
<?i

Ct3>0 (2.3.2.1)

where P(x) and qx are defined in (2.22.13). It is clear that tf is a decrescent function,

tf(z,y)>0 for some (zy) arbitrarily close to the origin in Rn xRm, and it satisfies (2.3.12), x

being replaced by (z,y). This new function tf is then used to study the instability of the equili

brium point at origin of the original system (222.1H2.222) through the perturbed system

(2.22.15) and (22.2.2). The derivative of $(z,y) along the trajectories (2.22.15), (2.2.22) can

be shown to be bounded below. Using the previous inequalities:

v(z,y)^v(xav)L ax+a3l|y||2-2e^p2lly||(/3l|z||+/4lly||)
IM qx

-ec«9
dP(x)

dx
(h+li)r \\y (2.3.2.2)

for e£elf where v(xm) is taken along the trajectories (2.2.2.4). Then, using the proof of

Theorem 2.2.2.3, we can express the bound more concisely as:

Hz,y) >z
t/N u -1/3, ai*2 . h<*3Pio^-%2(z)axkx-ziri(—T-+—-—

2 qx

<Xl*2 „U<**Pl _2rkP
cti-e— e2 e £-

2 qx q\

•«w+$2(e)*i+*2)-eM
<7i

llvll

=:ea(e)||z||2 + ^(e)||y (2.3.2.3)
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Note that, with this definition, cc(e)-»a2 and <?(e)->a3 as e-»0. Let Zg^zx be such that

a(e), q(z)>0 for all e^eg. Then, using a Lyapunov instability theorem as before, we can

readily conclude that the equilibrium point (z,y)=(0,0) of the perturbed system (2.22.15),

(2.2.22) is unstable for all e^e* Consequentiy, from Lemma 2.2.1.2 and 2.2.2.1, the same

conclusion will hold for the original system (22.2.1)-(2222).

•

As in the case of one-time-scale, we also consider a two-time-scale system which fails to

have a function v satisfying (2.3.1.3). A useful result for this type of system is given in the

following corollary.

Corollary 2322: ( Regional Instability )

If the original system (2.2.2. l)-(2222) and the averaged system (2.2.2,4) satisfy assump

tions (MB1)-(MB2), (B3)-(B6), and there exists a decrescent function v :R*-*R and

non-zero positive constants ax, o^, 0(3, 5, such that 5<r and

a, || xav || <; v(xav) <; 02IIxav II2 (2.32.4)

3v

dx„
£o,||%J (2-3-2.5)

V(Xav) J> eCtg HXav II ( ||xav || ~5) (2.3.2.6)

where the derivative in (2.3.2.6) is taken along the trajectories (2.2.2.4),

then there exists el0>0 and rM<r such that, for any x0e Br \BFim, x(t) will eventually leaves

Br whenever e£e10. D

The proofis similar to that of Corollary 2.3.1.2 and Theorem 2.32.1, and therefore is omitted.

The following is an analog of Corollary 2.3.2.2 and also a corollary of Theorem 2.32.1.

It deals with a system for which assumptions (B5)-(B12) hold.
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Corollary 2.32.3:

If the original system (2.2.2. l)-(2222), and the averaged system (2.22.4) satisfy assump

tions (B5)-(B12), and tiiere exists a function v :RnixRn2-*R+, and non-zero positive

constants alf c^, a3, 04, 0(5, and 5<cr such that

«1 lUav II2 * v(Xav ,Cav) <I Ctj Hx^ || 2 (2.3.2.7)

dv

dxm

dv

^a3||xav|| (2.32.8)

£<X4l|xav||2 (2.3.2.9)

v(xav ,Cov) * -co* Hxav || (||xav || -5) (2.32.10)

where the derivative in (2.32.10) is taken along the trajectories (222.64)-(222.65),

then there exists en>0 and rm<r such that, for any x0e Br \Br^ x(t) will eventually leave

Br whenever z£zxx. D

Proof: The proof is similar to that of Theorem 2.22.6. A Lyapunov function v\ similar to

that in (2.22.82), is constructed. The derivative of v" along the trajectories of (2.22.77)-

(2.22.78), (2.22.66) satisfies a condition similar to that in (2.32.10). The conclusion then fol

lows from the proof of Corollary 2.3.22.

2.4 Concluding Remarks

In this chapter, averaging theory both for stability and instability of one-time and two-

time-scale systems has been presented. The elegance of this theory lies in that a complicated

analysis of a nonlinear nonautonomous dynamical system can be replaced by a simpler analysis

of its approximate automonous averaged system. Theorems developed under this theory pro

vide sufficient conditions which allow one to extract properties, such as exponential stability,
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bounded stability, and instability, of the original system from its averaged system. Averaging

also serves as a good approximation method that provides useful information such as the rate

of convergence of an exponentially stable system.

The novelty of the averaging theory presented here includes a relaxation of the traditional

almost periodic condition and a more concise proof of the construction of the coordinate

transformation as a fundamental tool. Though more conditions are required, stronger results

have been obtained. These conclusions will be especially useful in later analysis of adaptive

systems.
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Chapter 3 Frequency Domain Analysis of Adaptive Identifiers

3.1 Introduction

The problem of parameter identification ( or estimation ) is to identify the parameters of

agiven model of a plant using input-output data. Algorithms for identifying transfer functions

can generally be distinguished into two classes: off-line and on-line. In the off-line case, it is

presumed that all the data are available prior to the analysis. C.K. Sanatiianan and J. Koemer

(1963), P.A. Payne (1970), and H. Stall (1984) use frequency response data to estimate the

parameters and, in turn, to synthesize the transfer function off line. In contrast to the off-hne

approach, the on-line approach requires that the parameter estimate be updated in real time.

On-line parameter identification is referred to as adaptive identification. Parameter convergence

proofs for adaptive identifier were given by Sondhi and Mitra (1976), Anderson (1977),

Kreisselmeier (1977), Morgan and Narendra (1977a &b), and Goodwin and Sin (1984).

In this chapter, we use averaging to simplify the dynamics of adaptive identifiers. In

order to bring the tools of Chapter 2 to bear on this topic, we choose a slow rate of parameter

adjustment. An additional pay-off of this assumption is a frequency domain interpretation of

the convergence analysis.

32 General Identifier Structure

In this section, we consider the identification of a transfer function

dp(s)

describing asingle-input single-output (SISO) LTI plant, satisfying the following assumptions:
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(Al) p(s) is a proper, exponentially stable transfer function.

(A2) Ap(s) and &p(s) are coprime monic polynomials, and ip(s) is ofknown degree n.

The adaptive identifier considered here has a structure similar to that of Kreisselmeier

(1977) and is shown in the Figure 3.2.1. The filter blocks Fx andF2 generate signals vx(t) and

v2(0» which are smoothed derivatives of the input u(t) and of the output yp(t) of the plant

respectively. These blocks have identical transfer functions:

fii(s) =P2(s) =-±-
Ms)

1
s

.ii-i

e Rn(s) (3.22)

where K(s) is, by choice, an nth order Hurwitz polynomial. The output of the identifier y0(t)

is obtained through the adaptive gains C(t), D(t)eRH,and cH+x(t)e R:

yo(0 - CT(t)vx(t) +DT(t)v2(t) + cn+x(t)u(t) . (3.2.3)

From Lemma Bl ( in Appendix B ), there exists a unique choice of adaptive gains, denoted

C*, D*, and c*+1, such that the transfer function from the input u(t) to the output y0(t) is

identical to the plant transfer function p(s). Before we start the analysis of the identifier, we

make an assumption on the input u(t):

Assumption:

(A3) The input u(t) satisfies

u ,u e Lo..

We define the parameter vector 9 :/?+->/?2*+I:

6(0 := [CT(t), DT(t), cH+x(t) f

(32.4)

(3.2.5)
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and the signal vector w :/?+->fl2*"*"1:

w(t) := [ v(l)T (t), vC)T (t), u(r) f (3.2.6)

so that (3.2.3) implies

y<,(0 =e(Orw(0. (3-2.7)

Again by Lemma Bl, the output of the plant yp(t) is then given by an equation similar to that

of tiie identifier, i.e.

ypO^e^wO +TKf) (3.2.8)

where 9* e K2rt+l and

9*=[C*T,D"T,c;+lJT (32.9)

is the vector of "true" parameters corresponding to p(s), and r\(t) is an exponentially decaying

function that accounts for effects due to the initial conditions of the stable plant and filters.

Define the parameter error<KO as

<KO 3= 6(0 " 6* (3.2-10)

and relate the output error eQ :=y„ -yp to the parameter error <J> by

e0=$Tw-r\. (3.2.11)

The objective then is to design a parameter update law, using the information of the output

error e0, such that the parameter vector 9(f) will asymptotically converge to the true parameter

9* regardless of any initial error. For our interest here, we will only consider two types of

update laws, namely, (i) the Gradient Algorithm, and (ii) the Least-Squares with Forgetting

Factor Algorithm, which are respectively defined as follows:

(i) Gradient Algorithm:

9 =-re,w 9(0)=90 (32.12)
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where Te /j<2«+1)xC2«+l) is a positive definite (>0) matrix, usually called the adaptation gain

matrix.

Cii) Least-Squares with Forgetting Factor Algorithm:

Q= -gPe0w (32.13)

for some g >0, where P is called covariance matrix and is updated by the so called covariance

propagation equation:

P = XP(t) -gPwwTP />(0)=/ (3.2.14)

for some \>Q.

Remark: Whenever the covariance matrix P is invertible, it follows that P~ = -P~ P P~

so that the covariance propagation equation (3.2.14) can also be expressed as

p-l=-\p-l+gwwT . (3.2.15)

The following theorem guarantees the stability of the identifier and the convergence of

the output error ea.

Theorem 3.2.1: ( Stability and Output Convergence )

Consider the identification of an LTI plant described by a transfer function p(s) using the

identifier described above. Let assumptions (A1)-(A3) be satisfied, and the parameter vector

9(f) be updated by either (3.2.12) or (3.2.13).

Then the identifier remains stable, i.e. 9(f)e L2?*1, and

lim eo(f) = 0. (3.2.16)
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Proof: See Kreiselmeier (1977).

3.3 Parameter Convergence Analysis

Theorem 3.2.1 assures the stability of the identifier and the convergence of output error

e0, but not the convergence of parameter errors <|>. In this section, we will first focus our atten

tion on conditions under which 9(f) will converge to the "true" parameter vector 9*. Subse

quently, we analyze the parameter convergence tiirough the use of averaging theory. To start

with, we give adefinition which will be frequently used in the sequel.

Definition 33.1: ( Persistently Exciting (PE))

A vector signal w:/?+-*Km is said to be persistently exciting if there exist alf ct2, 5>0, such

that

axI £ J w(f)wT(f)df £ ota/ (3.3.1)

uniformly in s £0. D

Remark: If w is replaced by a scalar signal a, the PE condition suggests that the average

power of u over a time window with length Such a signal will usually have a frequency

representation.

Theorem 3.3.1: ( Parameter Convergence )

Consider the same identification problem as given insection 3.2. Let assumptions (A1)-(A3) be

satisfied, and the parameters 9(f) beupdated by either (3.2.12) or (32.13).
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If the signal vector w defined in (3.2.6) is PE,

then the parameter errors 4>=9- 9* satisfies

lim <Kf) = 0 (3.32)
*-♦«•

exponentially. •

Proof: See Kreisselmeier (1977).

Definition 332: ( Stationarity, Autocovariance )

A signal vector w :R+-*Rm is said to be stationary if the following limit exists uniformly in

sZO:

s+T

Rw(x):= lim-i f w(t+x)wT(t)dt (3.3.3)
T—-T J

In this case, the limit Rw(x)e Rmxm \s called the autocovariance matrix of w. D

Lemma 332: ( PE Condition on Stationary Signals )

Consider a stationary signal vector w with autocovariance matrix Rw(x). w is PE if and only if

Rw(0)>0. U

Proof: See Boyd and Sastry (1986).

Lemma 333: ( Positive Semidefinite Function )

Consider the autocovariance matrix Rw(x)eRmxm of a stationary signal vector w. Rw(x) is a

positive semidefinite function, i.e. for some xx,,,,xkeR, and Cx,,,,CkeCm,

JCX(TrT,)C^O. (3.3.4)
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Proof: See Boyd and Sastry (1986).

Remark: By a matrix version of Bochner's Theorem ( See Wiener (1930) ), Lemma 3.3.3

implies that the autocovariance Rw(x) can be represented as the inverse Fourier transform ofa

positive semidefinite, bounded power spectral measure Sw(d<ti), i.e.

9m

2iti.
(3.3.5)

We now consider the same identification problem as given in section 32, assuming that

the input u(t) of the plant is stationary. Denote by Q(s) the transfer function from the input u

to the output w, as defined in (32.6). Then (2(s) has the form

Q(s) =

?i(s)
Us)P(s)

1

In+he RM+l(s)

From Lemma B2, Sw(d<o) can becomputed in terms ofSu(d(ti) as

Sw(dri) = &(j<a) Su(d(0) (TO*©)

so that, by Lemma 3.3.2, w is PE if and only if

OS

Rw(0) =-L J Q(j<o)Qm(j<a)Stt(d<i>)>0.

(3.3.6)

(3.3.7)

(3.3.8)

This will then allow us to relate the persistency of excitation of w to the frequency content of

the input u. The result will be stated in Theorem 3.3.4 after apreliminary definition.
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Definition 333: ( Spectral Support)

The spectral support of a scalar stationary signal u(t) with power spectral measure Su(d(ti) is

defined as

a>+8

SuppOO := ' a I <o e R , and for all 8>0 , J Su(dd}) >0 (3.3.9)

Remark: Define FM(a>) by:

09

FM((D) = j Su(d<tf) . (3.3.10)

Then Fic(q>) is a spectral distribution function which is monotonically increasing and continu

ous from the right If Fu(d<&) is absolutely continuous, then the spectral support Supp(w)

defines a continuous spectrum, which denotes the smallest closed set outside which the power

spectral measure Su(d<Q) vanishes. On the other hand, if Fu(d<o) is a stair-case function with n

jumps, then Supp(u), which has exactly n points in the frequency support, defines the discrete

spectrum.

Theorem 33.4: ( PE Condition on Supp(u))

Consider the signal vector w defined in (32.6). w is PE if and only if the spectral support of

the input u, Supp(w), contains at least 2/i-hl points. •

Proof: See Boyd and Sastry (1986).

Remark: The input u that results in a PE w will be called sufficiently rich (SR). From the

theorem, u is SR if and only if SuppOO contains at least2/t+l points.
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Using all these definitions and results, we are now ready to analyze the identification sys

tem with a parameter update law of either (i) Gradient Algorithm or (ii) Least-Squares with

Forgetting Factor Algorithm. However, throughout the sequel, we will drop the term r\ (the

effects of initial conditions) from the output error e0 in (32.11) by assuming that the dynamics

of the plant and filters are much faster than that of the parameter 9 in the context of our later

analysis using averaging.

33.1 Gradient Algorithm

Application of averaging to the dynamics of 9(f) in (3.2.12) is focused on the case where

r = e/ and e is a non-zero small positive number, i.e.

§ = -ee0w . (3.3.1.1)

Substituting (3.2.11) for e0 in (3.3.1.1) (with r\ being neglected), we have

<fr =-ewwr<|> (3.3.1.2)

Assuming that u and w are stationary, the averaged system of (3.3.12), using definition

(2.1.5), is well defined and is given by

<L=-e**(0)<fc,v (3.3.1.3)

where Rw(0) is the autocovariance of w. This system is particularly easy to study since it is

linear. Now if the input u is SR, then, by Theorem 3.3.4 and Lemma 3.3.2, Rw(0) is positive

definite. This further implies the exponential stability of the averaged system (3.3.1.3). A

naturalLyapunov function for this system is

»<fc.>-j*lfc.-jl*»la (3-3.1.4)

so that

v(*av) £ - eW*»(0)) II <kv II2 (3-3.1.5)
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where X^ stands for the minimum eigenvalue. The rate of exponential convergence of the

averaged system is therefore at least z\toin(Rw(Q)). By the remark after Theorem 2.2.1.5, we

can readily conclude that the bound on the rate of convergence of the original system (3.3.1.2)

for e sufficiently small is zXain(Rw(0)) + o(z).

Remarks:

(1) In fact, the rate of convergence of the averaged system is at most zXmMX(Rw(0)) so that,

for e small, the rate of convergence of (3.3.1.2) will actually be close to the interval:

[zXain(Rw(0)),zXtoax(Rw(0))] (3.3.1.6)

(2) Eq. (3.3.8) gives an interpretation of RW(Q) in the frequency domain and a means of com

puting an estimate of the rate of convergence of the adaptive algorithm, given the spectral con

tent of the reference input u. If the input u has only point spectrum, the integral in (3.3.8) may

be replaced by a summation. Since the transfer function Q(s) depends on the unknown plant

to be identified, the use of the averaged system to determine the rate of convergence is limited.

If, however, prior estimates of the plant, similar to those used in a Bayesian context in stochas

tic parameter estimation, are available, then some bounds on Rw(0) and on the rates of conver

gence can be deduced. These in turn can be used to determine the spectral content of the refer

ence input u that will optimize the rate of convergence of the identifier, given physical con

straints on u. Such a procedure is very reminiscent of that indicated in Goodwin and Payne

(1977) (Chapter 6) for the design of the reference input The autocovariance matrix defined

here can be characterized as an average information matrix (that will be defined in Chapter 5),

for example, in Goodwin and Payne (1977). Our interpretation, however, is in terms of rates of

parameter convergence of the averaged system rather than in terms of parameter error covari

ance.
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To illustrate the result obtained through this analysis, we present the following example.

Example 33.1:

Consider the adaptive identification of a first orderplant:

s + l
P(s)=2

5+3
(3.3.1.7)

The filter of the compensator block is chosen to be
5+5

Denote the parameter error vector

$=9-9*, where 9* =[cj ,d\ ,c\f is computed to be [-1.6,0.4,2.0]r. Since the number of

unknown parameters is 3, parameter convergence will occur when SuppOO contains at least 3

points. For the simulations, we considered an input of the form a0+a xsui(<M). Bv virtue of

(3.3.8), (3.3.1.3) now becomes

4>avl

$a*l

$ov3

=-e

a$+
25<x2

2(25+a>2)
2\~12 2 25(3+fl>*)af

3a° (9+a>2)(25+G>2)

flo+"
25a,2

2(25+a>2)

2 2| 25(3+0>2)a2
3ao,(9+©2)(25+co2)
£ , 50(l+fi)2)a2
9*° (9+©2)(25+(D2)
2 2 5(15+7©^i
3 u (9+©2)(25+(«>2)

$avl

$avl

<t>av3

flo +
25a,2

2(25+a>2)

2 2 5(15+7(D2)a?
3*° ' (9+©2)(25+G>2)

2t <*?

(3.3.1.8)

With a0=2» ai=2 and co=4, the three positive eigenvalues of Rw(0) are computed to be

028e, 0.64e and 15.39e. Figures 3.3.1 and 3.3.2 show the plots of parameter errors $x and <J>2

for both the original and averaged systems with two different adaptation gains ©=0.1 , 1. Figure

3.3.3 is a plot of the Lyapunov function of (3.3.1.4) for both systems using a log scale. Note

the closeness in the rate of convergence of the two systems.
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33.2 Least-Squares with Forgetting Factor Algorithm

In order to study parameter update law (3.2.13) and the covariance propagation equation

(3.2.14) using averaging, we set g = e>0 and X is replaced by zX, i.e.

<$> = - zP e0w <KO)=<|>o (3.3.2.1)

P = zXP -zPwwTP P(0)=I . (3.3.2.2)

Again, substitution of (3.2.11) for e0(t) in (3.3.2.1) leads to the following form:

$ = -zPwwT$. (3.3.2.3)

Note that, for small e, $ and P now characterize the slow variables of the identification sys

tem, in contrast with the previous case where $ is the only slow variable. Consequentiy, when

averaging is applied to this system, both differential equations (3.3.22) and (3.32.3) should be

averaged. As indicated previously, if u is stationary, the averaged equations of (3.3.2.2)-

(3.32.3) are well defined:

<L » - £/*« *w(0) ♦« 0«(0)=<|>o (3.3.2.4)

Pa* = e*^ - e^ Rw(0)P„ Pa*(0)=I • (3.3.2.5)

Again by Theorem 3.3.4 and Lemma 3.3.2, the reference input u being SR implies Rw(0)>0

so that, by referring to (3.2.15), we have

P„(tTl =/ e'tU +±RW(0)( 1- e'*u ) (3.3.2.6)

so that

mm(l,^Xain(Rw(0)))I ZP^t)'1 Zmax(1,-iW*w(0)))/ (3.3.2.7)

for all f £0. Thus it can be easily seen that (<t>av ,/>av)=(0,/?>%,(0)"1) is an unique equilibrium

point of (3.32.4M3.32.5); in particular, Pav^RwW1 is an exponentially stable equilibrium

point of (3.3.2.5). Consider the following Lyapunov function:

vOfcn, *Pm) =T +«^-'v1 *«v • (3.32.8)
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Denote

ai ^=|min(1,1x^(^(0))) (3.3.2.9)

and

eta := -imax (1 ,-iW*»<0>» • (3.3.2.10)

Then, from (3.3.2.6), v satisfies

a, II <D„ II2 * v»„ ,/>„) * ct21| «>„, ||2 (3.3.2.11)

| -^7 I^2a* II *» II ~«3 II ♦« II • (3«3-2-12)

and, usmg — =-F«t: ^av.

-£r- J*4n2ot221| 0flV ||2 .•= (X41| $av ||2 . (3.3.2.13)

The derivative of v taken along the trajectories of (3.3.2.4)-(3.3.2.5) is such that

v+eXv=-|-(|>aTv/?w(0)<|>av

*- f WKw(0))) lUov II2 := - eoj lUov II2

S-e-^v. (3.3.2.14)
Ct2

This and inequality (3.3.2.11) readily imply the exponential stability of the averaged system

with the rate of convergence at least 4(^+—)• ll can ** easily cnecked mat ^s xtuP
2 QC2

satisfies the assumptions in Theorem 2.2.1.10. Consequently, it follows that, for sufficiently

small e, the bound on the rate of convergence of $(0 of the original system (3.3.2.3) is

4a+-£ )+*(e).
2 CC2
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(1) Defining

66

Cte^-jWJUQ)) (3.3.2.15)

it can be seen that the rate of convergence of the averaged system is at most —• (X+—).
2 CI}

Hence for smallenoughe the rate of convergence of <J>(f) is actually close to the interval:

[4(*+—). T(^+—> 1 (3.3.2.16)
2 Oi 2 CL\

It is interesting to note that, if Xnujl(/?w(0))^X and Amin(/?Mf(0))^X, then the above interval

can be replaced by

t

1

1 2
X+

cond(tfw(0))
.-| fx+cond(^(0))l ] (3.3.2.17)

where cond(/?w(0)) is the condition number of RW(Q), in contrast with the interval given in

(3.3.1.6) in the previous case.

(2) Note that

v+eXv =-r^^IvP^l,1(Pji1Rw(0)P^)P^V2^v

*- f KvniPjf^MP™) || J»-w*

= - *Ki*(PJrRw(P)P™)v • (3.3.2.18)

When $m is small, P„(tTl (by (3.3.2.6)) is close to y /?w(0) so that (3.3.2.18) becomes

v +eXv < -eXv . (3.3.2.19)

This implies that the bound on the rate of convergence $„ ls cl°se to eX. By an argument as

before, it can be checked that, in fact
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v + eXv « - eXv (3.3.2.20)

which then implies that rate of parameter convergence is close to eX+o(e) when <t> is small.

This leads to the conclusion that the rate of "tail" parameter convergence will not be affected

much by different choices of reference inputs.

3.4 Robustness to Unmodelled Dynamics

In previous sections, we.discussed the identification of an ideal plant However, unmo-

delled dynamics will inevitably exist in practice bccauses less significant dynamics are often

too hard to model or purposely neglected to permit reasonable computation. The operation of

an adaptive identifier must be reexamined to assure stability and performance in the presence

of unmodelled dynamics.

In this section, we will consider finite dimension (FD) and linear time-invariant (LT-I)

unmodelled dynamics so that the overall plant canbe represented by

ftD(s) Rub) ,~ a «xPuis) :=P(s) +Ap(s) =kp-f^-f— (3.4.1)
dpis) duis)

where p(s) is the nominal plant transfer function with order n as described in section 3.2. To

study the robustness of the identification scheme, we make two assumptions additional to

(A1)-(A3):

Assumptions:

(A4) Ap(s) is a stable, proper transfer function and pu(s) is of the order N where N>n.

(AS) Input u(t) is stationary.
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3.4.1 Matching Criterion

Refer to the definition of &(s) in (3.2.6). hi the case of no unmodelled dynamics,

Lemma Bl guarantees that there exist unique "true" parameters 0* e R2**1 such that

P(s) = e*7 &{s) for all s e C (3.4.1.1)

Denote

1

-rT<?(y) = C and D(s) = DT

.A-l

Then eq. (3.4.1.1) implies

Pis)zs^l+^MP(s) +c:+l
A(5) A(s)

c*+lA(s) + C\s)

1

.«-i

A(s)-D~(*)

where A(s) is defined in section 3.2. Thus, when the parameter convergence takes place under

PE condition, the plant transfer function is identified through the relationship (3.4.1.3).

In case the plant has unmodelled dynamics, the order of the identifier is less than that of

the true plant by assumption. Then there may not exist a 9e A2"*1 such that

pu(s) = 9r Cuis) for all s e C (3.4.1.4)

where Quis) is defined by

&is) =

Fiis)

f2is)Puis)
1

This, in turn, implies the lack of a 6c fl2l,+1 to satisfy

Puij®) = Qj&C/ffl) for ^ ®€ R

(3.4.1.2)

(3.4.1.3)

(3.4.1.5)

(3.4.1.6)
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However, under the assumption (AS), there may exist a 80€ fl2*"*"1, corresponding to a specific

reference input u, such that

Pu(j&)« e^«0*o) for all CD e Supp(tf). (3.4.1.7)

In other words, due to unmodelled dynamics, perfea matching of parameters for all stationary

inputs will no longer be possible; only conditional matching should be expected instead. Now

consider a matching and define a pseudo signal e* by

e. raOj'w-y, . (3.4.1.8)

It follows that

lime, (0 = 0 (3.4.1.9)

with exponential convergence ( Callier and Desoer (1982) p. 127 ). The convergence of this

pseudo signal becomes extremely important in establishing a result similar to Theorem 3.2.1.

This will be shown in Theorem 3.4.1.3. First, however, we will present some results which

provide conditions for a possible matching (3.4.1.7).

Lemma 3.4.1.1:

Consider the transfer function Qa(s) given in (3.4.1.5). For any k e Z+, k £n there exists a

set of 2&+1 frequencies, (©i,..., co^+i)» such that

[(2M0'0)i)..-.-.e«0'0)2*+i)J
forms a linearly independent set of vectors. •

Proof: See Mason et al (1987).
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Theorem 3.4.1.2: ( Almost Always Matching Condition )

Consider the above identification problem. Let assumptions (Al)-(AS) be satisfied. For any

ke Z+t k£av there exists a subset Uk c/?2**1 which is nowhere dense and measure zero such

that the matching (3.4.1.7) is possible if SuppO*) contains 2&+1 points which form a (2&+1)

tuple not contained inUk. •

Proof: cf. Mason et al (1987).

Remark: Theorem 3.4.1.2 does not guarantee that any stationary input u whose Supp(u)

contains at most 2/t+l points will result in a matching. However, the result indicates that

almost every input u that satisfies this condition will yield a matching.

Theorem 3.4.1.3: ( Stability and Output Convergence under Matching )

Consider the identification problem given above. Let assumptions (A1)-(A5) be satisfied with

the parameter vector 8(f) updated either by (3.2.12) or by (3.2.13).

If the input u satisfies conditions of Theorem 3.4.1.2,

then the identifier will remain stable, i.e. 6(f)e L2!,+l, and

lim «,(f) = 0. (3.4.1.10)

Proof: Replace the output error e0 by

e<> = iy<> - 9o*)H%-yp) = (e - e0)Tw +*.

=:<|>rw+e« (3.4.1.11)

Then the conclusion follows from (3.4.1.9), Theorem 3.4.1.2, Bodson (1986) p. 30, and

Kreiselmeier (1977).
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Remark: The theorem implies that, for almost every input u such that SuppOO contains at

most 2/1+1 points, the true plant behaves like an nth order (nominal order) plant so that the

properties obtained in Theorem 3.2.1 also hold here. However, one should note that, due to
lack of perfect matching (3.4.1.6), output convergence to zero may fail to hold when SuppOO

contains more than 2*+l points. Despite this, in the following subsections, we will show that

the stability of the system will be preserved.

3.4.2 Tuned Model

As indicated in the previous remark, the true plant behaves differently from an nth order

plant when SuppOO contains more points than necessary, namely, 2*+l. As a result, the

parameter vector 9(f) may fail to converge to a fixed value in the parameter space but rather

wander around in that space. Yet, this failure of convergence does not suggest the disadvantage

of an input u whose Supp(M) contains too many points. On the contrary, in the case where

output disturbances, such as measurement noise, deteriorate the plant output, or where rates of

parameter convergence are to be optimized, the aforementioned input may be useful.

In this subsection, we aim at seeking a good model of the plant when SuppOO contains

more than 2/1+1 points. Such amodel will be arrived at through the use ofa frequency-domain

interpretation. Conceivably, this model will play amajor role in identifying "a" transfer func

tion, and, at the same time, will be quite input dependent So the choice of reference input will

become relatively important considering the future control task of this plant These points will

be made clear in a later subsection, where we relate the so obtained model with signals in time

domain by use of averaging, and in Chapter 5. The following theorem, complementary to

Theorem 3.4.1.2, will be a useful tool in later analysis.
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Theorem 3.4.2.1: ( Almost Always PE Condition )

Consider the same identification problem as given before. Let assumptions (Al)-(AS) be

satisfied. There exists anowhere dense, measure zero subset UH in /?2n+1 such that the signal
vector w is PE if and only if SuppOO contains at least 2n+l points which form a(2/1+1) tuple

not contained in UH. Q

Proof: See Mason et al (1987).

Remark: This theorem, unlike Theorem 3.3.4. provides only almost always PE condition due

to unmodelled dynamics. As we know, persistency ofexcitation ofw will make the homogene

ous part of the identification system exponentially stable. The essence of this theorem lies in
the fact that, though the order (here n) of identifier may be much smaller than that of the true

plant, the number of frequencies needed to excite the system persistently could "almost always"
still be 2n+l. This allows one to have confidence in the identification schemes even in the face

of unmodelled dynamics.

The following is a preliminary definition, similar to Definition 3.32, that will be fre

quently used in the sequel.

Definition 3.4.2.1: ( Crosscovariance, Cross-Power Spectral Measure )

The crosscovariance of two stationary signals wx :/*+->R1*1 and w2:K+-»K 2is defined by

s+T

R»lWM = lim T J "iC +t)w5(t)dt (3A2.1)

or

K*W*)= lim T 1 ***+*>**<$**- (3.4.2.2)
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The Fourier transform of the crosscovariance RWlWp) i Rw^fi)) gives the cross-power spec

tral measure SWlWJid<Q) ( SWlWl(d(a) ). D

Remark: As indicated by the definition, the crosscovariance matrix RWl„2iQ) can be

represented by

*^(0)=i J*wrftt) • (3A2-3)

If ft^, and HUWl are transfer functions from « to wj and w2 respectively, then by a proof

similar to Lemma B2 we have

As has been pointed out in the beginning of this section, when SuppOO contains more

than 2/1+1 points, there may not exist fixed parameters 90 such that the matching (3.4.1.7) will

occur. In the off-line identification scheme, a least-mean-squares method is used to solve for

the plant parameters. Here, a similar approach will be used. Define a cost function /(9) by

T

/(9) := lim ± fe.2(t)dt (3.4.2.5)

where e* is defined in (3.4.1.8). By definition 3.3.2, /(9) is the autocovariance of e* and can

be written as

y(8) aJ- f 19T &(/») -A(/«) f 5«(rfo) (3A2.6)
2ic _*— I i

as a result of (3.3.8). Clearly, 7(9) is a quadratic function of 9 which has a global minimum

but the minimizer may not be unique. Let the optimum 9T be defined as

9T := argmin j/(9) |9gR**1 J. (3.4.2.7)



A necessary condition for optimality is

which leads to

2« JL

or, by (3.3.8) and (3.4.2.4),

dJ (9)
d9

e=er

9t —

= 0

J-j &u(j<o)PuV(i>)suid<i»
2* Jm

/^(0)9T=/U(0).
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(3.4.2.8)

(3.4.2.9)

(3.4.2.10)

Consequently, by Theorem 3A2.1 and Lemma 3.3.2, for almost every input u whose SuppOO

contains at least 2/t+l points, Rw(Q)>0 so that 9T is uniquely defined by

9T=/?w(orl/?Hyp(0)- (3.4.2.11)

Denote

9j = [ Ct t DT , C(B+i)r ] . (3.4.2.12)

Now we define the tuned model of the true plant, depending on the specific input u, to be the

nth order transfer function Pris) which is obtained by setting 9(f) to 9r. From (3.4.1.2) and

(3.4.1.3) we get

. , x cin+l)TA(s) +dT(s)
Pris>= F7^—TT^ *A(s)-DT(s)

(3.4.2.13)

9j is defined to be the tuned parameter. Since the tuned model (or tuned parameter) depends

on the unknown plant, the above transfer function seems to be more conceptual than practical

at this point However, in subsection 3.4.3, we will apply averaging to show that, when the

input u is SR, the parameters 9(f) will stay within a ball centered at 9r with a radius \|/(e) of

class K for e small enough.
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The tuned model, however, may not be stable even when the real plant is in fact stable.

This is possible if the input u has spectral energy concentrated in high frequency spectrum

where the unmodelled dynamics become too significant to be neglected. Hence, if unmodelled

dynamics are present, the choice of input frequencies may become important when the

identified transfer function is to be used for control purposes. More discussions on this aspea

will be given later in Chapter 5.

3.4.3 Stability Analysis

The fact thatpT could be unstable, however, does not imply the instability of the overall

identification system. After all, the tuned model is simply a fictitious plant. In this subsection,

we will first formally analyze the stability of the identification system in the presence of unmo

delled dynamics, and then study its behavior using averaging. Though the case with bounded

output disturbance is not discussed here, it can be easily seen that the following results can be

applied there equally well.

In subsection 3.4.1, Theorem 3.4.1.3 has guaranteed stability for almost every input u

whose SuppOO contains at most 2/t+l points. There, the existence of a matching (3.4.1.7) (so

that e. converges to zero exponentially) is the key to the proof. However, such a matching

may be lost when SuppOO contains more than 2/i+l points. Theorem 3.4.2.1 becomes essential

to the proof of stability of the overall system when such is the case. The following theorem

will present a result similar to Theorem 3.3.1.

Theorem 3.4.3.1: ( BIBO Stability Theorem)

Consider the identification problem given above. Let assumptions (A1)-(A5) be satisfied and

the parameter vector 9(f) be updated eitherby (3.2.12) or by (3.2.13).

If the input u satisfies conditions of Theorem 3.4.2.1,
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then the identifier will remain stable, i.e. 9e L]?+l.

Moreover, if, additionally, SuppOO contains exacdy 2/t+l points and 9r is the tuned parameter

corresponding to the particular u, then

lim9(f) = 9T (3.4.3.1)

with exponential convergence. D

Proof: Substitute 9rw-yp for e0 in (3.2.12) and (3.2.13) respectively, and we have

9• - Tw wT 9+ Typ w (3.4.3.2)

and

9=-gPwwTQ +gPypw (3.4.3.3)

By hypothesis, Theorem 3.4.2.1 implies the persistency of excitation of w so that, from

Theorem 3.3.1, the homogeneous systems of (3.4.3.2) and (3.4.3.3) are exponentially stable.

We then conclude the result by using Lemma2.2.1.8. Furthermore, by Theorem 3.4.1.3, it then

follows that 9(f) converges to 9r exponentially.

Remark: The importance of this theorem and Theorem 32.1.3 lies in the fact that, when per

forming an identification task, we are assured of stability by choosing almost any stationary

input (i. Furthermore, the convergence of the parameter vector 9(f) can almost always be

achieved when SuppOO contains exactly 2n+l points, where n could be much smaller than N.

We now study the relationship between the parameter vector 9(f), obtained in the time

domain, and the tuned parameter vector 67, derived in the frequency domain, through averag

ing. The following theorem will summarize the result



77

Theorem 3.4.3.2: ( Tuned Parameter Approximation Theorem )

Consider the identification problem given above. Let assumptions (Al)-(AS) be satisfied.

If the signal vector w is PE,

then there exists a class K function \|/(e), et>0, and 0£7 <°o such that, for all e££i,

II 9(f) - 9T || £ \|<e) f £ fo+7 • (3.4.3.4)

Proof: We proceed in two parts (a) and (b).

(a) Gradient Algorithm:

The averaged differential equation of (3.4.3.2) with r = e/ can be easily found to be

6ov(f) =- tRwi0)0miO +eKny/O). (3.4.3.5)

By hypothesis and Lemma 3.32, rtw(0)>0, and, using the definition (3.4.111), it follows that

9? is the unique, exponentially stable equilibrium point of (3.4.3.5). The conclusion then fol

lows from Theorem 2.2.1.9 and its remark.

(b) Least-Squares with ForgettingFactor Algorithm:

The averaged differential equations of (3.4.3.3) with g =e and (3.3.2.2) canbe found to be

9ov(f) =- ePav RwiO)Qa*i') +^a, *»y„(0) (3.4.3.6)

and

P*> = &Pa* - e^ov^(0)^ • C-4-3-7)

By the analysis in subsection 3.3.2, it follows that (9av,/,av)=(9r,/?w(0r1) is the unique,

exponentially stable equilibrium point of (3.4.3.6M3.4.3.7). From (a), the same conclusion then

follows.
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Remark: The conclusions of Theorems 3.4.3.1 and 3.4.3.2 together form similar results as in

Theorem 3.3.1. Theorem 3.4.3.1 per se only provides a stability proof for the parameters 9(f)

when SuppOO contains more than 2/1+1 points, while Theorem 3.4.3.2 provides a good

approximation of the steady state of 9(f) when e is small. In other words, under the PE condi

tion, the point-convergence of the parameter vector 9(f) in the ideal case has to be replaced by

aset-convergence in the case of unmodelled dynamics. However, performance of the identifier

can be enhanced by making e small so that the tuned model transfer function can be actually

identified.

3.5 Concluding Remarks

In this chapter, we first reviewed the adaptive identifier of Kreisselmeier (1977) under the

assumption of no unmodelled dynamics. Both gradient and least-squares algorithms have been

considered. When the reference input signals are stationary and the rate of adaptation is slow,

the governing differential equations are similar to those of the one-time-scale systems discussed

in Chapter 2. We applied the averaging results developed in Chapter 2 as an approximation

method to obtain the estimates of rates of parameter convergence. An example using the gra

dient algorithm was given to illustrate the performance of these estimates. Study of these esti

mates suggests a means of optimizing parameter convergence rates, namely, maximizing either

the smallest eigenvalue or the condition number of the autocovariance matrix of w, Rw(0),

under some physical constraints on u. These become basic topics of Chapter 5 and will be

explored there in great detail.

Later, assuming the existence of FDLT-I unmodelled dynamics, we re-examined the same

adaptive identifier for two fundamentally important objects: stability and performance. A

sufficient condition for almost always matching, and a sufficient and necessary condition for

almost always persistentiy exciting were derived. These are fundamental to establishing the
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stability of the identification schemes. A physical interpretation of the notion of tuned parame

ters was obtained: they are the values of identifier parameters which minimize the mean

squared power in the output error between the identifier and the unknown plant An interesting

result shows that these tuned parameters tum out to be equilibrium points of the averaged

dynamical equations governing the identifier parameters. Under PE and slow adaptation

assumptions, it was shown the identifier parameters converge to a ball centered at the tuned

parameters witha radius which is a class K function of the adaptation gain.

While the tuned model can be identified when the adaptation gain is small, clearly it

depends on the choice of input The validity of this model in the ultimate control task is

unclear and thus requires further study. A treatment on this issue will be given as an input

design guideline in Chapter 5.
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Chapter 4 Frequency Domain Analysis of Adaptive Controllers

4.1 Introduction

Adaptive control needs to be used when plant parameters are either unknown or are vary

ing sufficientiy rapidly with time so that conventional robust control schemes do not provide

satisfactory performance. Two adaptive control schemes have attracted a lot of attentions: (i)

Indirea Adaptive Control (Self-Tuning Regulator (STR)), and (ii) Model Reference Adaptive

Control (MRAQ. In the indirea adaptive control, the identification of the unknown plant

through recursive parameter estimation and the design of the controller are separated. In the

model reference adaptive control scheme, the system is driven to behave like a reference

model.

In this chapter, only the MRAC schemes will be considered. The MRAC schemes of

Narendra and Valavani (1978), Narendra, Lin, and Valavani (1980), Bodson and Sastry (1987)

will be analyzed by the use of averaging, introduced in Chapter 2. Such an analysis will allow

us to relate the frequency content of the signals, including inputs and noise, to the parameter

convergence rates for the nominal system, as well as to the stability and instability of the adap

tive system with unmodelled dynamics.

A2 General Structure of a Model Reference Adaptive Controller

In this section, we consider the model reference adaptive control of an SISO LT-I plant

described by a transfer function:

,is)
Pis)^^-^ (4.2.1)
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where Apis) and dpis) are coprime monic polynomials of degrees m and n respectively, and

kp is ascalar. The following assumptions will be made about the plant transfer function.

Assumptions:

(Al) The degrees of the polynomials fipis) and ipis) are known and assumed to be m and n

respectively.

(A2) The sign of kp is assumed known, and we assume it positive without loss of generality.

(A3) The plant transfer function/?(*) is minimum phase, i.e. rtpis) is a Hurwitz polynomial.

The reference model is described by a transfer function:

mis)^^
4(*)

(4.22)

where Hmis) and 2mis) are monic butnotnecessarily coprime polynomials of degree m and n

respectively. The model transfer function satisfies the following.

Assumptions:

(A4) The model transfer function mis) is stable and minimum phase.

(A5) The sign of K, is the same as that of kp, i.e. km > 0.

The controller structure of the direct model reference adaptive control scheme is shown in

Figure 4.2.1. The dynamical compensator blocks Fx and F2 (reminiscent of those in the adap

tive identifiers) are identical single input, n-1 output systems described by transfer functions:

F1is) = F2is) =
Ais)

ji-1je Rn~lis) (4.2.3)

.n-2
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where Ais) is a multiple of fimis)t i.e.

Ais) = fLis)Us) (4-2.4)

and Ao($) is a(n-ro-l)th order Hurwitz polynomial. There are atotal of2n parameters to be

tuned for the controller. The parameter C e Rn~l in the precompensator block serves to locate

the closed loop plant zeros, while D e Rn~l and d0 e R assign the closed loop plant poles.

The parameter c0 e R then adjusts the overall gain of the closed loop plant

Now define the parameter vector 6 e R2" by

e =[co.CT,</o.0Tf • (4.2.5)

It is shown in Lemma CI (see Appendix Q that there exists a unique 6* e R2* such that

when 8 = 8* the transfer function of the plant plus the controller equals that of the model,

mis). The problem left to be addressed here is how one should adjust the parameters 8 so

that the plant output ypit) converges to the model output ymit) and the stability, i.e. all vari

ables remain bounded, of the overall system is maintained for arbitrary inputs satisfying:

Assumption:

(A6) u :R+-> R and u e LM.

We shall consider two of several schemes which solve problem: the first is the output

error direct adaptive control scheme given by Narendra and Valavani (1978), Narendra, Lin

and Valavani (1980), Sastry (1984); the second is the input error direct adaptive control

scheme by Bodsonand Sastry (1987). These two schemes are briefly reviewed below.

4.2.1 Output Error Direct Adaptive Control

This scheme is based on the output error,

e0it):=ypit)-ymit). (4.2.1.1)
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Referring to the controller structure in Figure 4.2.1, we define the signal vector w :R+-*R

by

wW =[«(f))v/,)r(0,y,(0,vp(2)r]r (4.2.U)

so that the input to the plant, up, can beimplemented as

Upit) =Qit)Twit). (4.2.1.3)

Moreover, for simplicity we realize the compensator blocks Fx and F2 by acontrollable canon

ical pair (A.fc) where Ae *0»-i>*-i>f 0 e *»-i so that PxW>~P&)=W-Kfxb. Thus
the state space representation of the plant loop is given by

Xp ^,0 0 *P

yp = 0 A 0 v0)
yp + fc

V<2> bcj 0 A V,® 0

_r.T?„=[<:/.0,0]
*P
vO)
VP
„<2)

er W (42.1.4)

(42.1.5)

where (Ap ,bp ,cj) is aminimal realization ofthe plant and xp is the plant state corresponding

to this realization.

By the assertion in Lemma CI, we can represent the model ( in non-minimal form ) as

the plant loop with 8 set equal to 8*. Thus the resulting state space representation of the model

loop is given by

» CD
m

.(2)

Ap+bpdlc} bpC^ bpD
bdocj A+bC*T bD^

bci 0

-r^ym = [c;,0,0] (i)
m

(2)

+ b

v(2) 0
b *

c'o u (4.2.1.6)

(4.2.1.7)

In (4.2.1.6) and (42.1.7), the (3/x-2)x(3/i-2) matrix is hereafter referred to as Amt the



84

(3/i-2)xl vector is as bM, and the lx(3«-2) vector as c*. Then subtracting (4.2.1.6) from

(4.2.1.4) with

eT := [*;,v^v «rj - [aJ ,vW,F «rj (4.2.1.8)

we have that

e=Ame+bm$Tw (4.2.1.9)

and

e.=yp-ym=c^ (42.1.10)

where <(> :== 6—8* is the parameter error. Note from (4.2.1.6) that

mis) = c*0 clisl -AmTxbm (42.1.11)

and hence

e0 =-r ^(J)(4>r w) . (42.1.12)
Co

Comparing (4.2.1.12) with (32.11) (neglecting the term T|) in section 3.2, we see that the out

put error e0 is no longer the correlated signal <|>T w but rather is a filtered version of it. In the

case where the relative degree of the plant is one, if the model transfer function mis) is chosen

to be stricdy positively real (SPR), then, roughly speaking, (42.1.12) and (32.11) will be

"equivalent" as far as the sign of tyT w is concerned. As for the case with higher relative

degree, a stable filter tis) is sought to make rhis)tis) SPR and a similar treatment is carried

out Thus, intuitively, the results obtained for the adaptive identifiers should also work for

adaptive controllers, possibly with some modifications. We start with a definition of stricdy

positive real.

Definition 4.2.1.1 ( Strictly Positive Real)

A transfer function mis) is said to be strictly positive real (SPR) if, this) is real for real s, all

the poles of mis) lie in C and Re/ft(/©)>0 for all real co. •
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Case I: Relative Degree n - m = 1

Two types of parameter update laws which are particularly suitable for averaging

analysis are considered here:

(i) Gradient Algorithm:

<j> =-r*0w <K0) = <|>o (42.1.13)

where T e R2**2* is a positive definite adaptation gain matrix.

(ii) Least-Squares with Forgetting Factor Algorithm:

To apply this algorithm, we would require the model transfer function —?mis) - 1/2 to
co

be SPR in addition to assumption (A4). This is, however, not possible since mis) needs to be

proper but notstricdy proper to satisfy this conditioa Hence we consider the modified scheme

shown in the Figure 4.2.2 with lis) = (5+5) and 5>0. Instead of the original signal vector w,

its filtered version £,

ST= ^CtXwf - [rICfXM).^X^,r).^fr)W.^X^r)] (42.1.14)

is used in the parameter update law,

♦ «-*P«0C <K0) = 4><> (42.1.15)

for some g>0, where e0 now reads

ea =-V/ft(5)f(5)(<DrQ (42.1.16)

and the covariance matrix P is updated by the covariance propagation equation,

P^XP-gPtfP F(0) = / (42.1.17)

for some X > 0.
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We will briefly review some results concerning stability of the closed loop system and

convergence of the output errore0 using these parameter update laws. These are summarized in

the following theorems.

Theorem 42.1.1: (Stability and Output Convergence Using Gradient Algorithm)

Consider the above adaptive control problem with plant relative degree one. Let assumptions

(A1)-(A6) be satisfied.

If the parameter 8 is updated as in (42.1.13), and the model transfer function rhis) is

chosen to be SPR,

then the closed loop system remains stable, i.e.

8 e Li xpeLl v<?>, vf e LTl , (42.1.18)

ee Ll*"2, and the plant output yp converges to the model output ym, i.e.

lim e0it) = 0 . (42.1.19)

Proof: See Narendra and Valavani (1978).

To apply the least-squares algorithm, we need the following assumption.

Assumption:

(A7) The lower bound on kp is known, i.e. kp^k^ for some *nun>0.
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Theorem 42.12: (Stability and Output Convergence Using Least-Squares with Forget

ting Factor Algorithm)

Consider the given adaptive control problem satisfying the same conditions as before and

assumption (A7).

If the parameter 8is updated by (42.1.15) and -V mis) tis) - 1/2 is SPR,
c0

then the closed loop system remains stable as before, ee l%*~2, and

lim eait) a 0 . (4.2.120)

Proof: cf. Narendra and Valavani (1978).

Remarks:

k l(1) From (A7) and the fact cl=kmlkp% tis) can always be chosen such that -£- iihis)Ks))-—

is SPR.

(2) Note that, in the modified scheme shown in Figure 42.2, the parameter vector 8 is

replaced by tis) 8lis)'1 which in tum is given by

toefor^e +e&r1 (4.2.121)

As a result of (42.120),

8-»0 as r->« (42.1.22)

which implies that the plant loop converges asymptotically to the one shown inFigure 42.1.
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Case II: Relative Degree n - m £ 2

Since the model transfer function this) fails to be SPR, and replacing 8 by tis) 8tis)"1,

where tis) is a second order polynomial, involves 8, the approach proposed above is not appli

cable. The scheme can however be modified as in Narendra, Lin and Valavani (1980). For sim

plicity, we will only consider their scheme for the case when the high frequency gain kp is

known, that is, cj=*m/*p is known. However, the analysis for the case where kp is unknown

is more involved.

One should, however, note that the modified scheme shown in Figure 4.2.2 can actually

work for gradient algorithm in this particular case. Yet, we will take only a general modified

approach so that no further distinction between two algorithms need to be made except that tis)
is always sought such that this) tis) is SPR using gradient algorithm, whereas

(-v/fl(s)f(5) - -i) is SPR using the least-squares algorithm.
c0 2

Consider the modified scheme shown in Figure 42.3. Since c0 =cj by assumption, we

can define the shortened parameter and signalvectors as follows:

5=[Cr,4>.jDT]T (42.1.23)

so that <f=8-8*, and

^=[v^T,yp,v^T]7,. (4.2.124)

Then (42.1.12) can be represented using this notation as

*o - -T mis)(fw). (42.1.25)
Co

Let tis) be a Hurwitz polynomial of degree n-m-1 (resp. n-m) such that mis)tis) (resp.

this)tis)-l/2) is SPR, and rewrite (42.1.25) as

e0 =±mtitliVwl-Vf\V) +±mtiVtliw))
c0 c0

=-V mt&) +-V mtiV"S) (42.126)
Co Cq
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where ^=r!(w). and

4= f1(8Tvtr)-eT^ (4.2.127)

Difficulties arise when the output error e0 is used for the parameter update because of the extra

term •\tht(Q in (4.2.126) in contrast with (42.1.12), Aremedy for this is to constma another
Co

error signal ex,

ex =-V *htt-yetfl) (42.128)
c0

which for some Y>0 is actually implemented by augmenting the output error e0 by ya,

co

so that

ex = e0-ya. (4.2.1.30)

This signal will usually be referred to as the augmented error. Using such an error signal, the

parameter update laws discussed in the previous case are modified as follows:

%=- T exT> ?(0)=«0 (42.1.31)

for gradient algorithm, where T e /?<2«-i>xC2»-i># g^

t =~gPexX W) =?o (42.1.32)

F=\P-gPlXrP P(0) =/ (42.1.33)

for the least-squares with forgetting factor algorithm.

The following theorem summarizes the conditions which guarantee stability of the sys

tem, and the convergence of the outputerror e0 and the augmented error ex.
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Theorem 42.13: (Stability and Error Convergence)

Consider the above adaptive control problem with the modified scheme of Figure 4.2.3. Let

assumptions (A1)-(A6) be satisfied, the high frequency gain kp be known, and the parameter 8

be updated by either (42.1.31) or (42.1.32).

If the filter tis)"1 is chosen such that mis)tis) or -V this)tis)~ is SPR for the correspond-
Cq 2

ing algorithm,

then the closed loop system remains stable, i.e.

8e tfr1 , xp€Li , yp * vp *= *^oo t

ee LJT2, and

lim e0it) = 0 lim exit) = 0 .

Proof: See Sastry (1984).

(42.1.34)

(42.1.35)

422 Input Error Direct Adaptive Control

The input error of an adaptive system is defined as:

ei:= m"1 iyp-ym) =m"x ie0) (4.22.1)

The input error scheme by definition is based on this input error et or an approximation of it.

By rewriting (4.2.2.1) as:

ei =th"lpiUp)-u (422.2)

it may seem that et is well defined since th and p have the same relative degrees. However, if

the model transfer function has relative degree at least one, its inverse is not proper. Due to

measurement noise in the plant output, we will not implement the input error e-v defined in
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(422.1)

but rather we will construct an approximation of ex as follows.

Since this) is r""""»im phase with relative degree n-m, for any stable, minimum phase

transfer function t\s) of relative degree n-m, the transfer function ththas a proper and stable

inverse. A simple example is to let f be aHurwitz polynomial of degree n-m. Recall that

Co --L
•

CO

thitfw)

—* *

co

tht it1 (8Tw) -tfTtliw))

Co
mtitxiup)- 8-rC) (422.3)

where £=tl (w) and up =8Tw. By the choice ofI tht is invertible so that

=c0'i'ht)-l<yp) +'G$TZ

=: 8*Tv (42.2.4)

where

v=[Oftfr-1 (yp . t* (v™7), r1 (y,). f' (v«r) f . (4.2.2.5)

Now since T1 iup) and the signal vector v are all available, we can define an error signal e2 by

e2 := 8Tv - tl iup) =$rv (42.2.6)

which is a measurable quantity linearly dependent upon the parameter $. Such an error signal

turns out to be an approximation of the input error eL in the sense that, when 6(f) is fixed at 8,
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e2 =c0imt)"1 iyp) +Qrl-c0tl (a)-^

= coitht)"liyp-ym)

= Cotl{e& (4^.2.7)

Note that the expression (4.2.2.6) is the same as (3.2.11) in the adaptive identification case.

Their difference however exists in the faa that the signal vector v defined in (42.2.5) is not

automatically bounded whereas the signal vector w defined in (3.2.6) is. Hence the parameter

update laws discussed in the adaptive identification case can not directly be applied in this

instance. Instead, their normalized versions are considered here, which require the following

additional assumption:

Assumption:

(DA7)The upper bound on kp is known, i.e. kp £ k^ for some k^ >0.

(i) Normalized Gradient Algorithm Plus Projection

<j> =-r—^=- ifc0=cmia and c0<0, then let c0 =0 (42.2.8)
1 +yviv

(ii) Normalized Least-Squares with Forgetting Factor Algorithm Plus Projection
«

$=-gP—*2V ifc0 =cmin and c0<0,thenlet c0 =0 (4.2.2.9)
1+y/v

where

P=\P-gP vyrr P. (42.2.10)
1+yv'v
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A result concerning stability of the closed loop system and output error convergence is

reviewed here in the following theorem.

Theorem 422.1: (Stability and Output Error Convergence)

Consider the above adaptive control problem, using the same setup as given above. Let

assumptions (A1MA7) be satisfied, and the parameter 8 be updated by either (4.2.2.8) or

(4.22.9).

Then the closed loop system remains stable, i.e.

8e i£ , xpeLl . vW^eLr1, (42.2.11)

<?e l?"2, and

lim e0it) = 0 . (4.22.12)

D

Proof: See Bodson and Sastry (1987).

43 Parameter Convergence Analysis

In this section, we will examine conditions under which the parameter vector 8(f) con

verges to the true parameter value 8* in both the output and input error schemes. Later, we

analyze parameter convergence by using averaging to obtain an estimate of the rate of parame

ter convergence.
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4.3.1 Output Error Direct Adaptive Control

In subsection 42.1, Theorems 4.2.1.1 - 4.2.1.3 guarantee the stability of all signals inside

the closed loop systems, and hence the boundedness of the signal vectors w or £= f"l(w).

Intuitively, if w or £ is PE, exponential parameter convergence can be achieved. But the PE

conditions on w or ^ are not practical since these signals are not exogenously specified. This

can be seen as follows:

w = wm + fie

and

^tliwm + Qe)^lH+Qtlie)

where Q and <2 are constant matrices defined by

0 0 0
f ^

0/0 000
fi = cp 0 0

o o /
. 2 .

(4.3.1.1)

(4.3.1.2)

(4.3.1.3)

and wm* wm are exogenous signals defined by

"« =[" . vJ!)T.ym, vg>rf= [u , h£ f. (4.3.1.4)

It is not surprising that such a PE condition on w or£ can be translated to the same condition

on the signal vector wm or wm due to the fact that

w - wm = Qe € tip or w - wm = Qe e L*TX (4.3.1.5)

and the following result

Lemma 43A.1: (Filtered PE Lemma)

Letw:R+->R2*~l.

If wis PE, w~ and w e 1%TX, and //(s) is a stable minimum phase rational transfer function,



95

then //(j)(w)isPE. D

Proof: See Bodson (1987) (Ph.D Dissertation, p. 46)

Using the above results, the following theorem provides conditions under which the

exponential stability of the system can be guaranteed. Note that this, in particular, implies the

exponential convergence of the parameter errors $.

Theorem 4.3.12: (Exponential Stability Under PE Condition)

Consider the output error direct adaptive control scheme in subsection 42.1. Let assumptions

(A1)-(A7) be satisfied.

If the signal vector wm (on w^ is PE,

then the adaptive system with relative degree one (on greater than one) is exponentially

stable.

In particular,

lim <t>(r) = 0 ( or: lim $(r) = 0 ) (4.3.1.6)

with exponential convergence, a

Proof: See Narendra and Valavani (1978), and Narendra, Lin and Valavani (1980).

Remark: Notice that (A7) is needed only for the least-squares algorithm, but not for gradient

algorithm.

Now if we are only concerned with stationary input signals, it is possible to relate the PE

condition on wm ( or wm ) with the spectral condition on the input u. Denote by &mis) the



transfer function from the input u to wm so that

&,=

1

Pxmprl

th

P2m

and the autocovariance matrix Rw (0) can be represented as

/^(o)=-±- J <Lm&msjLdti).
2k Jm
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(4.3.1.7)

(4.3.1.8)

From Lemma 3.3.1, wm is PE if and only if RWJP) > 0, thereby leading to the following

theorem.

Theorem 4.3.1.3: ( PE Condition on Supp(u) )

Consider the signal vector wm defined in (4.3.1.4).

Then wm (resp. w„) is PE if and only if the spectral support of input u, Supp(u), contains at

least 2/t (resp. 2/*-l) points. D

Proof: See Boyd and Sastry (1986).

Remarks:

(1) The theorem presents a result similar to that of Theorem 3.3.4. Here, u is called SR when

SuppOO contains at least In (on 2/t-l) points. This theorem and Theorem 4.3.12 allow one to

achieve exponential stability of the adaptive system by providing sufficiendy many points in

the spectral support of the reference input

(2) Since w-wme ll? from (4.3.1.5), the theorem also implies that w is PE if and only if u

is SR. Similarly, the same conclusion will hold for w.
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With these results, we are now ready to analyze the adaptive system using averaging. The

objective here is to obtain estimates of the rates of parameter convergence under the PE

assumption.

Case I: Relative Degree n - m = 1

Recall from (42.1.9) and (4.3.1.1) thatthe dynamics of the state error e are given by

e= iAm +bm$TQ) e+bm$Twm

^AiWe + bm$Twm (4.3.1.9)

and

Co» cle =-V this)i$Tw) . (4.3.1.10)
Co

Let the parameter 8(f) be frozen at 6, then it should be clear that by symmetry e0 can also be

represented as

e0= -i- Hy»iQ.s)i$Twm) (4.3.1.11)
Co r

where HyuiQ.s) denotes the closed loop plant transfer function from the input u to the output

yp with 6(f) fixed at 9. Denote

DmCs):=det(5/-Am) (4.3.1.12)

then from (42.1.11) it follows that there exists a Hurwitz monic polynomial £(s) of order

2n-2t whose roots correspond to all the unobservable modes of the model loop shown in Fig

ure 42.1, such that

m^lf^. (4.3.1.13)
Omis)

Now denote

D^is) := det isl - A®)) (4.3.1.14)
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then, by C.T. Chen ((1984) p. 339), the expression of J?ypB(0, j) can be obtained as follows,

A /n \ u Ami*)%?) Ml1m«yu(0,s) =km . (4.3.1.15)
^ D+is)

To apply averaging, we consider

<t> o - e Tit) e0w $(0)«4>0 (4.3.1.16)

for e>0 small, where CO Tit) = / when gradient algorithm is used and (ii) Tit) = P(r) satisfying

? = eX?-e?wwr? i>(0) = / (4.3.1.17)

when the least-squares with forgetting factor algorithm is used. Let <D denote a compact subset

in A2", containing the origin, where, for all $ e $, there exist Xi, %i < 0 such that

X|£ReX(A(+))£Jt* (4.3.1.18)

where X(A($)) stands for an eigenvalue of A($). This set then induces a compaa subset

0r=8*+<I> (a vector addition) in the parameter space such that all the poles of //^u(0^)

(equivalendy the eigenvalues of A($)) satisfy (4.3.1.18) for all 6 e 6. Consequently, when e is

small, the adaptive system (4.3.1.9), (4.3.1.16) can be classified as a mixed-time scale system,

as defined in subsection 22.22, where $ characterizes slow variables, and e contains both fast

and slow components. Hence, with the assumption that input signals are stationary, the averag

ing results developed in subsection 2.22 can be readily applied here.

Recall that, in the context of averaging, e is expressed in terms of § through (4.3.1.9),

assuming $ is a constant, and then the dynamics of $ is averaged. However, when $ is a con

stant (the same as: 0 is a constant), w is related to u through a transfer function /^(O,.?),

depending on 6. Such a notion will be fundamental to the following analysis using averaging.



99

(i) Gradient Algorithm:

Following the above argument, the averaged differential equation of the slow variables $

in (4.3.1.16) can be found, using (4.3.1.10), as

<L =-e*™/<U<fcn, <UO) =<l>o (4.3.1.19)

where Rnvjft) k defined by

T

1 f 1R^fb) := lim ^ f-T wit)this)iwit)T) dt
r r-»« rj co

»—5-r J rfwu(ejo>) /a*(/<o) #1»(W Suida>) (4.3.120)
2icco -»

which is at least positive semi-definite (but not necessarily symmetric). Now when the input u

is SR, it follows from Theorem 4.3.1.3, Lemma 3.3.2, and the faa that this) is SPR that the

matrix Ry^ib) is positive definite for all $ e <D. To study the stability of the nonlinear aver

aged differential equation (4.3.1.19), we consider the Lyapunov function v:/?2* ->/?+:

v(0 =yll«UI2. (4.3.1-21)

Taking derivative of v along trajectories of (4.3.1.19), we have

7*

V($av) =~ £ $av Rwwj&av) $ov

=- 6<& SMiR^fbay)) 4>av (4.3.122)

where SMiR^Ob)) denotes the symmetric part of Z?^/^). i-e-

SMiR^fo)) =—i-7 f #^(6 Jo) Ke/ft(/o>) #^0 Jw) 5U(J(D) . (4.3.123)
r 2nc0 Jm

Since 4> is a compact set, there exists 04>0 such that:

Xmin( SM^/*)) ) 2> ai (4.3.124)

so that:
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v»„)£-ea,||fcja (4.3.1.25)

which implies the exponential stability of <t>av with the rate of convergence at least ec^. By the

remark after Theorem 2.22.3, we can readily conclude that the bound on the rate of conver

gence of the original differential equation (4.3.1.16) for e small enough is ea} + #(£).

Remarks:

(1) In fact, there exists ct2>0 such that

for all <t>e <D so that the rate of convergence of the averaged differential equation (4.3.1.19) is

at most eo2. Consequendy, for e sufficiendy small, we shall say that the rate of convergence

of (4.3.1.16) is "close" to the interval:

[ ect,, eota ]. (4.3.1.26)

This fact is similar to that in the remark of subsection 3.3.1.

(2) The symmetric matrix SMiR^M)) can also be expressed in terms of £m instead of

fiwu(Q,s), using the following fact deduced from (4.3.1.10)-(4.3.1.11) and (4.3.1.15),

*

♦T(LCf) (4.3.127)*M *1\

so that

5A/(/?Mwr<D))=-iT J14^ \26mmRemm&ti(»)Suid(0). (4.3.128)

As an illustration of the preceding results, we present an example in which a linearized

adaptive system is considered.
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Example 4.3.1:

Consider the model reference adaptive control of a first order plant with an unknown pole and

an unknown gain,

Pis)
s+a«

(4.3.129)

The adaptive process is to adjust the feedforward gain c0 and the feedback gain do so as to

make the closed loop transfer function match the model transfer function

mis) =
s+aK

(4.3.1.30)

To guarantee persistency of excitation, we use a sinusoidal input signal of the form,

uit)o asiniw) (4.3.1.31)

Thus, equations (4.3.1.9) and (4.3.1.16) become

e = -ame + kpi^xu+^2ym)

fc«-eeyfl

where

<h = c0 - cj , <J>2 = do - do

With am=3, ^3, a^pl, A^=2 , a=3, the true parameter value e*=[cj,4f « computed as
[1.5,-1]. Let o=2. By (4.3.120) with Hyjfi.s) being replaced by &,(•*). the linearized ver

sion of (4.3.1.19) now becomes

18 18(9-co2)
$avl

$ov2

(9+o>2) (9+cdx)
18 162

2x2

(9+a>2) (9+co2)2

The two eigenvalues of the averaged system are computed to be -3.10e and -0.43e, both real

$avl

(4.3.1.32)

(4.3.1.33)

(4.3.1.34)

(4.3.1.35)

(4.3.1.36)
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negative. Figures 4.3.1 and 4.3.2 show the plots of the parameter errors <$>i and <t>2 for the origi

nal and averaged system, with two different adaptation gains. Figure 4.3.3 illustrates the case

of a higher frequency input signal co=4. Here the eigenvalues of the matrix RWmwJP) are com

plex (-0.49tO.30Qe, and hence the oscillatorybehavior of the original and averaged systems.

(ii) Least-Squares with Forgetting Factor Algorithm:

Now <J> and P are slow variables governed by the following dynamics,

$ = -e/>«„£ $(0)=<Do (4.3.1.37)

P = eXP - e/>£?P PiO) =/ (4.3.1.38)

which can be averaged, using the same technique as above, to yield

4>« =-£PavR&$ay)*ay 4>*v(0) = 4>0 (4.3.1.39)

Pa9 = e*.Pay-ePayR&av)Pa* ^ov(0) = / (4.3.1.40)

where RqjiQ) and Rtffy) are defined respectively by

*«tf♦> =T^ J %(Q .;©) ^*0'o>) f0») #?„(e J©) suida>) (4.3.1.41)
£JZCq —am

and

am

R&) =̂ J^u(e.;fi))^(e,ya)) Su(<to) . (4.3.1.42)

Let SMiRqjft)) denote the symmetric part ofR^l). As indicated before, if the input u is SR,

then both matrices SM(R^(<b)) and Rfo) are symmetric positive definite for all <J> e <X>. It can

then be easily checked that (<|)a»,i,a»)=(0,/?5(0r1) is an equilibrium point of (4.3.1.39)-

(4.3.1.40).

Note that, in this modified scheme, -^tht-~- is SPR. Further since Ois compact, it fol-
c0 2

lows that there exist non-zero positive constants Pi. p2» P3 »fr» such that for all <$><= O



Pi/S/^OIOSM

and

Pa/ £SMiR^Q) - ^R^)) *P4/

Rewrite (4.3.1.40), using the fact P"x =-Jr"1PPrl,

/£ . -eX/^J +eK;(<U J^(0) =/

which together with (4.3.1.43) implies that whenever $e <D

P P2min (1, y )/£PJff* ^max (1 ,y )7 •
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(4.3.1.43)

(4.3.1.44)

(4.3.1.45)

(4.3.1.46)

Now we study the stability of the averaged differential equations (4.3.1.39)-(4.3.1.40) using the

Lyapunov function v:/22*x/22BX2,,->fl+:

Denote

Then v satisfies

*♦„./>«)--j*"^*"

P21 Pi 1 P2^ :=-£min( \ t ii ) and 02:=-rmax( 1 , — )

M ♦« H2 **♦«./*«) *«2 || ♦•J2

^2ce2|Utfv||2:=a3||(!)avll2dv

9$av

and using (3.32.13),

dv

dPav

* 4n2o2i|Uav ||2 :=aJKUl

(4.3.1.47)

(4.3.1.48)

(4.3.1.49)

(4.3.1.50)

(4.3.1.51)

whenever ^e <&. The derivative of v along the trajeaories of (4.3.1.39)-(4.3.1.40) can be

estimated, using (4.3.1.44) and (4.3.1.49), by



v +eXv =- e$Jv R&*ay))~jR&ay) 4>ov

=-e<& »<Jty«)--j*tf*«)

P3S-epalKUI^-ef-v
Ct2
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fc

(4.3.1.52)

whenever <|)€ <D. It then follows from (4.3.1.49) and (4.3.1.52) that, (O./^O)'1) is an exponen

tially stable equilibrium point of the averaged differential equations (4.3.1.39)-(4.3.1.40) with

e P3the rate of convergence at least •£• (X+-l_). in conclusion, using Theorem 2.2.2.6, the bound
2 0t2

on the rate of convergence of $(') of the original differential equation (4.3.1.37), for

£ P3
sufficiendy small e, is — (X+—).

2 0&2

Remarks:

(1) Note that the above result is similar to that in subsection 3.3.2. Consequendy, by a

remark following that subsection, the rate of convergence of $(') for sufficiendy small e will

actually be close to the interval:

[f(xA.f(X+|t)]
2 OC2 2

(2) From (4.3.1.52),

v+e\v=-e$ZvP2xf2Pxa/2

£-2e*min
»l/2

<*1

SMiR^av))-±RWav)

SMiR^aJ)-±R^av)

(4.3.1.53)

*av r av Tav

A/2
V . (4.3.1.54)

When $„ is sufficiendy small, /^(<j>) and Rqjft) arc close to R(JQ) ^ R^jJO) respectively,

and, hence from (4.3.1.45), P^lit) is close to -r-RtJ® s° that (4-3.1.54) becomes
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v+2eXv <-26XJU [R^iO)'xnSMiR^O))R^iO)"l/2] v. (4.3.1.55)
Suppose that the SuppOO is only a point spectrum, then it is shown in Lemma C2 that
(4.3.1.55) canbe approximated by

v+2eXv£-^r a™ Rc(iH(/to>Hjto)). (4.3.1.56)
CQ 086 Supp(u)

By a similar argument, it can be shown tiiat

v+2eXv>--^r- max IteWKA»)<W) • (4.3.1.57)
- Co Q6 Supp(u)

Consequendy, we can conclude that the rate of tail parameter convergence is close to the inter

val,

[eXfl+ min Reithij(o)t(j(Q))} .eXfl+ max Re(/^0W0©))1 ]1 I coeSupp<«) J L ocSuprfu) J

when e is sufficiendy small. Since, by choice, ±RethQo>)t(j<i>)-m>Q for all ©€*, the
co

input u will not have a great effect on the bound on the rate of tail parameter convergence.

This result is similar to that in the remark of subsection 3.3.2.

Case II: Relative Degree n - m £ 2

Here we again assume that the high frequency gain kp and, hence cj, are known. The
error signal used for the parameter update under the averaging analysis is of the form:

ex =\ thisHis) (fI - e?^) (4.3.1.58)
Co

for some e>0. The implementation ofthis scheme involves more dynamics than before. In the

following, we will reconstruct all the dynamics involved in this scheme to facilitate our later

analysis.
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Let tis) be a Hurwitz polynomial of order k where k=n-m-\ or k=n-m for the relevant

algorithm, described in subsection 42.1. Let (Ahbhci) be a minimal realization of the transfer

function t\s), i.e.

r^cJV-A,)-1*,

where A/e A*** is a Hurwitz matrix. If we define

At := diag [4,• ••.A/] €*<>-U**^*

B, := diag [ft,- ••.ft,] e/^J**2-1)

C,:=diag (cr.-'-.cr] e*<>-i»<*-U*
then the state space realization ofX=tis)~xiw) is

i, =J,x, +J,w jce/?*2"-1* (4.3.1.63)

£=$*,. (4.3.1.64)

Similarly, rh(s)i(s\ which appears in (4.3.1.58), also has a minimal realization (A^.ft^.c^ so

that

this)tis) = CoclaisI - A„i)"x b„a

(4.3.1.59)

(4.3.1.60)

(4.3.1.61)

(4.3.1.62)

(4.3.1.65)

and a state ze #* associated with it Finally, a state space realization of (4.3.1.58), using

(4.3.1.1) and (4.3.1.9), can{« expressed as:

e

f

A(<|)) 0 0

» *

i* = 2F,J2 A, 0 */

z 0 ft^C, A- z

0 ^«T
-e 0 Hh Bt

brtJcfCtXtcZtZ 0

» *

e

e, = [0 . 0 , cla 1
z

w„ (4.3.1.66)

(4.3.1.67)
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which is a nonlinear system with the form (22.2.90). Note that there are totally (2/M)(2+A:)

states here, in contrast with 3n-2 states in the relative degree one case. Now if we define A($)

as the (2/t-l)(2+*)x(2/t-l)(2+A) matrix given in (4.3.1.66), then clearly for all <j> e * all the

eigenvalues of A($) should satisfy a condition similar to (4.3.1.18). Hence the dynamics that

govern the states of the adaptive system in the modified scheme are actually no different from

(4.3.1.9X4.3.1.10) in the original scheme except for the extra term involving e on the R.H.S.

of (4.3.1.66).

On the otherhand, the dynamics of the parameter error $ under averaging takes the form,

f = - e Tit) ex^ $(0)=?0 (4.3.1.68)

where CO Tit) = / for gradient algorithm, and

Gi) Tit) = Pit) satisfying

F= zP - e FffF PiO)=I (4.3.1.69)

for the least-squares with forgetting factor algorithm.

The system (4.3.1.66H4.3.1.67) again forms a mixed-time-scale system.

In applying averaging to this case, while we proceed with the same technique as given in

the previous case, we set e=0 in (4.3.1.66). This leads to the following expressions of ex and X

in terms of $ (as if $ were constant):

ex =-r this) tis) iW (4.3.1.70)
Co

£=/^B(e,*)(tt) (4.3.1.71)

where 8=$+6*. By the similarity between (4.3.1.10) and (4.3.1.70), it can be easily seen that

now the transfer function thtand £ play the roles of th and w in the relative degree one case.

Using these as basic observations, the averaging analysis of the same parameter update algo

rithms discussed in the previous case will be simple.
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(i) Gradient Algorithm:

The averaged dynamic equation for the slow variable $ canbe found to be:

?« =- e/^fov)^ ?ov(0) =fo> (4.3.1.72)

where

s+T

1 f 1%,($) = lim ^ f -hZit)^is)lis)iVit))dt

=-^-7 f HZuiQJ(Q)m*ij(o)r(J^)Hltid,j(ei)SuidoS) (4.3.1.73)
2*c0 —

which is similar to that in (4.3.120).

(ii) Least-Squares with Forgetting Factor Algorithm

In this case, the slow variables are $ and P. The averaged differential equations of these

variables are of the form,

?av =- ePav Rjzfia*)* ««v(0) =?o (4.3.1.74)

K =eX^,v - ePav Rflav)?*, Pavi0) =I (4.3.1.75)

where R-g ($) is similar to (4.3.1.69) but with (-r/nf—) being SPR, and
Co

,Tv 1**®° 2* J ^(8 '̂(D>^(8 '̂(D)5«(J(D) (4.3.1.76)

which is again similar to that in (4.3.1.42).

Since the averaged systems obtained in (4.3.1.72) and (4.3.1.74)-(4.3.1.75) are similar to

those in (4.3.1.19) and (4.3.1.39)-(4.3.1.40), the conclusions obtained in the relative degree one

can be direcdy applied here.
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Remark: In the case where kp is unknown, an augmented parameter 92ft+i will have to be

introduced so that the overall exponential stability will not be possible. However, if the

analysis is only focused on the first 2n parameters 9, then the results will be exacdy the same

as those in the current case.

43.2 Input Error Direct Adaptive Control

In this subsection, we will first review some results on parameter convergence of the

scheme discussed in subsection 42.2, and then analyze the adaptive system using averaging.

The objective of this analysis is also to estimate the rate of parameter convergence.

Theorem 422.1 guarantees stability and error convergence of the adaptive system using

either a normalized gradient algorithm plus projection as in (4.2.2.8) or a normalized least-

squares with forgetting factor algorithm plus projection as in (422.9M422.10). These

parameter update laws are the same as those for the adaptive identifier discussed in subsection

3.3.1-3.3.2 if one identifies the signal vector

Vl+yvTv

with the signal veaor w associated with the identifier. Therefore, if the signal vector (4.32.1)

can beguaranteed to bePE, then exponential stability will be achieved. However, v is not exo

genously specified in order to make such condition practical. The following theorem will pro

vide conditions underwhich the system can be guaranteed to be exponentially stable.

Theorem 4.32.1: (Exponential Stability Under PE Condition)

Consider the input error direa adaptive control scheme in subsection 4.22. Let assumptions

(A1)-(A6) and (DA7) be satisfied.

If the signal vector wm is PE,

(4.32.1)
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then the adaptive system is exponentially stable. In particular, this implies

lim 0(0 = 0 (4.3.2.2)

with exponential convergence. Q

Proof: See Bodson and Sastry (1987).

As for the output error scheme, we will henceforth be onlyconcerned with stationary sig

nals to facilitate the averaging analysis. Note that the stable filter tis)"1 is chosen such that

this) tis) has a stable inverse. While applying averaging, an approach similar to that used for

the same analysis in the output error scheme is taken, that is to freeze the parameters 6 and to

relate all signals inside the closed loop plant to input u via transfer functions which depend on

e.

Define fivu(Q,s) as the transfer function from input a to the signal vector v defined in

(4.22.5). i.e.

^0,5) =

ithis)tis))"x
tis)"xPxis)pis)"x

tis)"x
tis)"xP2is)

Ay^iQtS) (4.3.2.3)

then, using (4.3.1.13X4.3.1.15), Hvui0.s) can be related to the transfer function Qmis) as fol

lows:

#J!*.s) =tisTx^C}mis) (4.3.2.4)

so that, for all $ € <D, the persistency of excitation of wm will direcdy imply that of v. This fact

is important to the following analysis.
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(i) Normalized Gradient Algorithm Plus Projection

The study ofaveraging analysis will focus on the case where r=e/, Y=£ for some small

e>0, and for sufficiendy small lUoll so that the projection mechanism can be neglected.

Hence, using the faa that e2=$Tvt the parameter update law becomes

1 + ev' v

In other words, in this analysis, only local properties will be of interest (so that Co(r)>cmill for

all r>0 ): When e is small, the parameter <J> characterizes the slow variables while variable e

contains slow and fast components. As before, the averaged system of the slow variables $ can

be found as

4>«v =- e*v(<U 4>«v <t>«v(0)=4>o i432.6)

where flv(4>) is defined by

rm =4- I ^v«(Q J©) #«(& .;©) $«(<*©)
215 J^

=-L J|f(/a>rl I21 4t^t I2 Aj»»> £#») 5»(dG)) (43*2'7)

which is a positive ( at least ) semi-definite symmetric matrix. If the input u is SR, then, from

previous arguments, v is PE and RM>0 for all $e O. Thus, using the similarity between

(4.32.6) and (4.3.1.19), (3.3.1.3) the rate of parameter convergence of <K0 can be estimated

using the same method there.

(ii) Least-Squares with Forgetting Factor Algorithm Plus Projection

Performing an averaging analysis, with g=Y=e, Xreplaced by eX, and <J>0 assumed small

enough so that c0(r)>cmin for all r>0, on the following system:

»=-£/> 6l\ W)=<Do (4-3-28>
1 +eviv
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>=e /> - eP vv T P PiO)=I (4.3.2.9)
l + erv

where 4> and F constitute the slow variables when e is small. The averaged version of their

dynamics can be found to be

*» —e/>„*,»„)t„ <UO) = <l>o (4.32.10)

Pay = ePay-ZPayRy®oy)Pay ^(0)=/. (4.32.11)

When the input u is SR, as indicated before, RM is positive definite for all $e <D. Again,

from the similarity between (4.3.2.10H4.32.11) and (4.3.1.39M4.3.1.40), (3.32.4)-(3.32.5),

the same conclusions on the rate of parameter convergence of $(r) can also be drawn.

4.4 Robustness to Unmodelled Dynamics and Bounded Output Disturbances

In this section, we will analyze the robustness properties of the model reference adaptive

controller in the presence of unmodelled dynamics and bounded output disturbances. Both sta

bility and output error convergence are re-examined, and conditions are provided to ensure

these properties, so that the reduced order adaptive controller can be made practical.

Unlike adaptive identifiers, model reference adaptive controllers can cause several types

of instabilities in the presence of unmodelled dynamics and output disturbances. In our later

analysis using averaging, the study of such instability properties will only focus on slow drift

instability, which is usually difficult to detect during operation.

As in the case of adaptive identification, the unmodelled dynamics are considered FDLT-I

so that the overall plant can be represented by:

Puis) =pis)i\ +Apis)) =kp^—-r— =kp-f— (4.4.1)
dpis) duis) dpUis)

where pis) is the nominal plant transfer function of order n as described in section 4.2. The
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bounded output disturbance a\t) is usually modeled in the system as a measurement noise, i.e.:

ypa<t) =ypit) +dit) (4.42)

as shown in the Figure 4.4.1. In order to facilitate our analysis, we made the following

assumptions additional to (A1)-(A7) and (DA7).

Assumptions:

(A8) Puis) is a strictly proper transfer function oforder N where N>n.

(A9) fijs) is a Hurwitz polynomial

(A10) Input u and bounded disturbance d are stationary signals with compaa spectral sup

port

(All) Supp(«) n Suppid) = 0

Remarks:

(1) Assumption (A9), which requires that the plant is minimum phase, is in general not

always satisfied. However, it only serves to simplify the analysis and can be relaxed by assum

ing, instead, that Supp(w) does not contain the zero-frequency ofpjs) (ifany exists).

(2) In practice, the spectrum of the output disturbance is usually located in a frequency range

which is either much higher or much lower than that in which the spectrum of the control

command lies. This makes (All) a reasonable assumption.

4.4.1 Matching Criterion

Let the parameter vector 6(f) be frozen at 8, then the adaptive system behaves like an

LTI system so that y^ and wcan be related to the input u and disturbance d through linear

transfer functions which depend on 6, i.e.:

y?d =&yJ$,s)iu) +HypJfi,s)id) (4.4.1.1)
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and

w = Hyjfi^iu) + HyJ!d,s)id) (4.4.12)

where transient responses due to initial conditions are omitted. These omissions, however, can

be justified if the transfer functions are stable and there are no unstable hidden modes inside

the closed loop plant Denote

Us) =

f\is)p;lis)
1

F2is)

(4.4.1.3)

then Hyjfi,s) and AyJ9,s) can be related to Ay/JiQ,s) and AypJ& ,s) through the following:

and

AyJiO,s) = Us)AyJiB,s)yp*»

*a*tS)=[us)Aytjo,s)\ +
0

-fiiis)PuisTl
0

0

Recall that jip=8tw, and 8=[c0,tr]7. Since

ypd = yP + d = puis)iup) + d

and

and #^ =#^-1

(4.4.1.4)

(4.4.1.5)

(4.4.1.6)

(4.4.1.7)

by substituting (4.4.1.2) and (4.4.1.4)-(4.4.1.5) into (4.4.1.6) and comparing it with (4.4.1.1)

and (4.4.1.7), we can solve Ay^iQ,s) and AyJ$,s) explicidy in terms of8 as follows:

and

- CoPJis)

V l'&WPuis)
(4.4.1.8)
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AM=^+*US))PM (4A1.9)
v* \^Us)Puis)

Note that, in the absence of unmodelled dynamics and output disturbances, Lemma CI guaran

tees perfect matching, i.e. there exists aunique 8* € fl2" such that

Aytfj$* ,s)»this) for all s e C (4.4.1.10)

However, in general, this will not be possible from (4.4.1.8) nor will the following be possible:

Hy^iQj®) =rhijoi) for all ©e R (4.4.1.11)

for any 8e rt2*. On the other hand, under the assumption (AlO)-(All), non-zero output distur

bance d will always result in mismatch between output of the LT-I plant with fixed 8 and that

of the model no matter what the input u is. Here, we will pursue results similar to those for the

adaptive identifiers of subsection 3.4.1, assuming rfaO. In other words, in the following

analysis, wewill seek conditions to establish conditional matching, i.e. for some 80€ R :

AypfliBoM =fh(j(o) for all caeSupp(u) (4.4.1.12)

The following lemma, like Lemma 3.4.1.1, will be fundamental to that condition.

Lemma 4.4.1.1:

Consider a transfer function QmJfie C2* defined by

$muis) =
1

rhis)4uis)
(4.4.1.13)

Then for any ke Z+, l£k£n, there exists a set of 2k frequencies, (a>i,-...,©2*). such that

(&«0»i). -''.(Lttoii) (4.4.1.14)
form a linearly independent vector set D
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Proof: cf. Mason et al (1987).

Remark: Without unmodelled dynamics, QmJs) is the same as &m(s) defined in (4.3.1.7).

Theorem 4.4.12: ( Almost Always Matching Condition )

Consider the above adaptive control problem. Let assumptions (A1)-(A6) and (A8)-(A10) be

satisfied.

Then for any ke Z+t k£n, there exists a subset Vk<zF^ which is nowhere dense and measure

zero such that the matching (4.4.1.12) is possible provided SuppOO contains 2k points

which form a 2k tuple not contained in Vt O

Proof: Using (4.4.1.8), in the matching condition (4.4.1.12), we have

%\Pu(J®)
thij(0) =

= 0o>«0'a)
1

/&(/©) <?u(/©)

= 8j^u0'ffl)^mtt0'ffl) fc>r afl ©e SuppOO (4.4.1.15)

where 80=[80i,8o]r. By the assumption (A9), (4.4.1.15) further leads to

th(j&)puij(o)-x =ef^O'a) for all © € SuppOO. (4.4.1.16)

Using Lemma 4.4.1.1. and a proof similar to that in Theorem 3.4.12, the conclusion will

readily follow.
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Remarks:

(1) The remark of Theorem 3.4.1.2 will also apply here.

(2) Note that the transfer function /^(Sq.j) may not be stable. In general, when the spec

trum of the control input u lies in a lower frequency range, it is more likely that there exists a

80 that satisfies (4.4.1.12) and fiypU(%*s) is stable.

(3) Due to the difference between proofs of stability for identifiers and for controllers, a pos

sible matching here will not imply stability of the adaptive system, like the statement of

Theorem 3.4.1.3. In fact when SuppOO contains less than 2/t points, some instabilities may

arise (see subsection 4.4.4).

4.42 Tuned Model

In practice, matching between the output of the plant and that of the model will be hard

to achieve especially when output disturbances exist Besides, as indicated in the previous

remark, consideration of the instability caused by a lack of richness of the input u will make

such a match undesirable, except when this matching occurs only at a unique 80. In fact, a

sufficiendy rich control input will enhance the controller robustness.

In this subsection, similar to subsection 3.4.2, we will derive a model of the closed loop

plant when matching is not possible. Two basic properties will be required of this model: sta

bility as well as a good approximation of the reference model.

Consider a normalized cost function /„(0) defined by

* 7 \AyJQ,j(£>)-mm\2

*±i
Ay/fijQ)
Ay^iQjto)

An interpretation of 7A(8) can be extracted as follows. Define a pseudo error signal e*(8,r) by

SJ.dG>) . (4.4.2.1)
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*(8,0 := ^(8,s)iu) +Ay^d) - ym . (4.4.2.2)

From (A9) and (4.4.1.8), AyJBtS) is also minimum phase. Thus, if AyJiB,s) is stable (so is

Ay^ffi ,s) ), then, from Lemma B2 and (All), /A(6) can be expressed as

/«(6) =rlim 1 J [A;l^iQ,s)ie.iQ,t))Jdt. (4.4.2.3)

In words, /A(8) superficially represents the mean square power of the filtered signal

AypJp,s)~\e*iQ,t)). One, however, should note that the interpretation (4.42.3) would be

more for analysis and less for practical purposes because HyJQ,sTlrh(s) is in general not

proper.

Important Remark:

Normally, in the presence of unmodelled dynamics, AyJB,s) is of order much higher

than that of this), and the frequency gain of AyJP Jco) decreases faster than of th(j(o) as co

increases. Thus,

Aj/P.» ~'Wtt) =- ih(j<a) (4.4.2.4)

when 8 is not properly chosen causing AyJB Jco) to start rolling off while co lies in a mid-

band region of thijoi). Consequendy, if the cost function is defined such that there is no nor

malization or the normalization is against rft(j(o), it will not substantiate the good choice of 8 in

a situation just mentioned as much as otherwise. In optimization terms, we simply put a

penalty on the higher frequency range.

Let 6J( similar to 6 defined in section 4.3, be a compact subset in the parameter space

such that Ay^iQ ,s) is astable transfer function for all 9e 6^ A choice ofthe subset will cer

tainly require some prior information about the plant and in general this set will contain 8*.

the true parameter corresponding to the nominal plant Now based on the cost function /„(9),



we define tuned parameters, 87, by
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87=argmin/„(8) (4.42.5)
Qeinte,

where int9, denotes the interior of 0r This definition implies that 87 also has to be one of

the local minimizers of 7n(8). Of course, 87 may not exist if, for example, the spectral power

of the input u and output disturbance d are concentrated in the high frequency spectrum, then

local minimizers of y„(8) over F?* may not lie in the set Br

Assumption:

(A12) Input u and outputdisturbance d of the adaptive system considered above are such that

the tuned parameter 87 defined in (4.4.2.5) exists.

Remarks:

(1) The assumption (A12), in fact reflects the appropriateness of the order of the nominal

plant If the dominant poles of the nominal plant lie in the frequency spectrum of the control

input and the output disturbance is small relative to the control input then the tuned parameters

87 should be close to 8* to make (A12) reasonable. On the other hand, if the above is not the

case, then the adaptive scheme starts with a bad model of the plant and a noisy environment

and, hence, a degraded performance of the control task should be expected.

(2) The closed loop plant with the fixed tuned parameters 87 gives a pseudo plant called the

tuned plant, and the pseudo error e*(8r,0 will be called tuned error.

Under the assumption (A12), we can now obtain an expression of 87, similar to that in

(3.42.9). Define

0is) := Puis) QTdmuis) - this) (4.42.6)

so that, by (4.4.1.4) and (4.4.1.3), we have



Aypfn9,s)-this) =puis) erfrf^e,*)-&»(*)] +pis)

=P*is) [AypHie.s)-this)]VUs) +flis)
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= OttL . (4.42.7)
1-PM&US)

Using expressions ofAypfliQ,s) and Ay/tf,s) in (4.4.1.8M4.4.1.9), and (4.42.7), /„(8) defined

in (4.4.2.1) can be more compactly written as

2k _£. I copuQ<a) I

«•

+J- f JU do+CTfi2ijo» I2 «<fo>) (4.42.8)

/„(6) will be a quadratic function of parameter 8 without the term c0. Therefore, we consider

the following parametertransformation:

8*01 = 1/c0 and 8' = 8/c0 (4.42.9)

using the faa that the optimal c0 should notbe zero. Now choose 8, such that for all Ge ©„

c0>Q (from (A2)), there exists a compaa subset 8', induced by the transformation. Moreover,

this transformation is clearly a homeomorphism between 0, and &r It then follows from

(A12) and Rudin ((1976) p. 86 ) that 8'T€ int8'„ where 8'r is the image of 8T under this

transformation. Consequendy, 8'r satisfies

-^rJniW))\v-vT=0 (4.42.10)

and the tuned parameters, 9r=6(9V). may be obtained. Denote

Q'^uis) =[mis)puis)"x ,- this)fuis)J (4.42.11)
and

Qais) =(o ,0,1,F2is)J . (4.42.12)



Then, using (4.4.2.6) and (4.42.8), we have

i

/«(8(80) =-J- J ll-O^tfC/to) \2Suid(0)
2% Jm

+4- J kT&</«» r5^^V1T • I I2% J

which is a quadratic function of 8' so that from (4.4.2.10), 8*r satisfies

-1- J&nJJ®)&LmSuid(»)+^- J^0»^ffl)5^CD)
2jcjL

=̂ - J #0*a»Su0fo»
2* jL
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(4.42.13)

8',

(4.42.14)

The following theorem will provide conditions under which &T (and hence 87) so obtained is

uniquely defined.

Theorem 4.42.1: ( Unique Tuned Parameters)

Consider the same adaptive control problem as given in subsection 4.4.1. Let assumptions

(A1)-(A6) and (A8)-(A12) be satisfied.

Then there exists a subset V^c/*2" which is nowhere dense and of measure zero such that the

tuned parameter vector 87is uniquely defined if SuppOO contains at least In points which form

a In tuple not contained in Vn. D

Proof: Using a proof similar to that of Lemma 4.4.1.1 and results of Theorem 4.4.12, it fol

lows that for any input u that satisfies conditions above, the matrix:

^- J 6'0'©) (TO©) SHide»
2n J

(4.42.15)

is positive definite. Furthermore,
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^- j &0©) (SO*©) Sa<dQi) (4.42.16)
2% Jm

is positive semi-definite and, hence, the conclusion readily follows.

Remarks:

(1) The theorem is similar to Theorem 3.42.1. It states that for almost every properly chosen

SR input u, the tuned parameters and, hence, the tuned model are uniquely determined.

(2) By assumption, the tuned model is stable. Since the model has a compatible structure

with the closed loop plant it will play a role similar to the reference model loop shown in Fig

ure 4.1.1. A major function of the tuned model is to separate the plant and the reference

model for the analysis. The theme will be that: if the closed loop plant converges to a neigh

borhood of the tuned model, and tuned model is close enough to the reference model, then the

overall adaptive system is stable, and the output of the plant will be close to that of the refer

ence model

4.4.3 Reduced Order Controller

Due to the inevitable existence of unmodelled dynamics, the order of the adaptive con

troller will always be lower than that of the real plant Yet the model reference adaptive

scheme is designed based upon knowledge of the exact order and relative degree of the plant,

and stability proofs heavily rely on these assumptions. Limitations of this scheme were first

exposed afterRohrs et al (1982)(1985) showed several instances of instability due to the failure

to satisfy that assumption as well as the assumption of no disturbances. A number of

approaches have been proposed in the literature to robustify the scheme, such as, by Ioannou

and Kokotovic (1984), Kreiselmeier and Anderson (1986), Narendra and Annaswamy (1986),

Ioannou and Tsakalis (1986). While this is the case, one should expect the robustness of this
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adaptive algorithm due to persistency of excitation of the controlled system and consequendy a

proper choice of exogenous reference inputs to the system.

In this subsection, we use averaging as an approach to show robustness following from

the positive definite PE condition (which will be clear in the sequel) on the reference input sig

nals. The way we proceed is to use the notion of the tuned model defined in the previous sub

section.

Consider the same adaptive control problem as described above but with the overall adap

tive system redrawn in Figure 4.42. Denote by thjis) the tuned model transfer function, i.e.

/&r(5):= 7^(87.*). (4.4.3.1)

Let V7be the output of the tuned model and e. be the tuned error so that

e^=e.iQT,t) = yT-ym. (4.4.32)

The state space realization of the closed loop plant, similar to that given in subsection 4.2.1,

can be written as

x,

vp

^, 0 0
0 A 0

be* 0 A
l/p J I

e >

*P
uO)
p

v<2)
VP J ^ J

yB = [cJ.0,0]

*>P
b

0

Xp
V(D
yp

r J

QTw+
V

0

where iAp,bp,Cp) is a minimal realization of the plant with dimension M(>n) and

w=[u,Vp^T,ypd,Vp2>T]T

Define

87 = [ Cot »Pr, dor *&t 1

(4.4.3.3)

(4.4.3.4)

(4.4.3.5)

(4.4.3.6)

then the state space realization of the tuned model loop can be written as: (by letting 8=67 and

d&Q)



f • ^

XT

vTl)

AT+bpdorcl bpC\ bpT7
bdojcl A+bC% bD\

0 Abe*

f ^ * *

*>p
v?> + b

V J

0

XT

yr=[*J.O,0] #>

J*,
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cot* (4.4.3.7)

(4.4.3.8)

In (4.4.3.7), let AT be the iN+2n-2)xiN+2n-2) matrix, and £7 the 0V+2n-2)xl matrix; and in

(4.4.3.8), cT be the lx(iV*+2/i-2) matrix. Then the tuned model transfer function, th-pis), can be

expressed in terms of (ATtbT,CjX

m-ris) =cot <£(•*' - ^t)"1 *r (4.4.3.9)

It can be deduced from (A9) and the definition of tuned parameters that the tuned model is

actually exponentially stable (there are no unstable unobservable modes).

Remark: If (A9) were to be relaxed, then the subset 0, would need the additional property

that no unstable pole-zero cancellations occur in the closed loop transfer function for all 8 s Qs

in order to assure the exponential stability of the tuned model.

Define the state error e and the parameter $ as before, i.e.

and

<(> = 8 —87

then we have the dynamics of the state error e expressed by

(4.4.3.10)

(4.4.3.11)
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e= ATe + bT$Tw + Bd (4.4.3.12)

CoT^yp-yr (4.4.3.13)

where

6=[doTbT,dOTbT,bT}T. (4.4.3.14)

In the following, we will apply averaging to analyze reduced order controllers using theoutput

error and input error direa adaptive control schemes respectively.

4.4.3.1 Output Error Scheme

Here, for the sake of illustration, we will only consider the case where the relative degree

of the nominal plant is one.The case for higher relative degrees canbe similarly dealt with.

Using (4.4.32) and (4.4.3.13), the output error e^y^-v,*, which is used for the parame

ter update, can be expressed as

c0= e0T+d+ e*T. (4.4.3.15)

In order to apply averaging here, we require that e0 and w be expressed in terras of the inputu

and disturbance d, assuming that the controller parameters 8 are constant As indicated in the

remark afterTheorem 4.4.2.1, an analogy can be drawn between the tuned model and the refer

ence model in the nominal case so that from (4.3.1.10) and (4.4.3.13), we have

c0T =— *niis)<i>Tfi>J$ S)iu) +Ayi/9,s)id) (4.4.3.16)
Cot

which together with (4.4.3.15) and (4.4.1.7) yields

e0 =— thTisWAwt®,s)iu) +AyJ$ ,s)id) +e*r (4.4.3.17)
cot

Comparing (4.3.1.10) with (4.4.3.17), the exponential stability of the adaptive system will no

longer be preserved due to the two extra terms on the R.H.S. of (4.4.3.17). However, if those
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two terms are sufficiendy small relative to the first term, then BIBO stability can be expected.

Before we examine different parameter update algorithms, we provide a theorem similar to

Theorems 3.4.2.1 and 4.42.1 as a fundamental tool

Theorem 4.4.3.1: ( Almost Always PE Condition on w)

Consider the same adaptive control problem as given above. Let assumptions (A1)-(A6) and

(A8MA12) be satisfied.

Then there exists a subset V^c/?2" which is nowhere dense and measure zero such that the

signal vector w is PE if SuppOO contains at least 2/i points which form a 2n tuple not con

tained in Vn. Q

The proof is similar to that of Theorem 4.42.1 and, hence, will be omitted here.

Remark: The above theorem only provides sufficient conditions, in contrast to the necessary

and sufficient condition given in Theorem 3.42.1, owing to possible richness from the distur

bance d.

(i) Gradient Algorithm:

Consider the dynamics of parameter errors:

<j> = - ze0w <K0)=<j>0 (4.4.3.18)

which with (4.4.3.12) form a mixed time scale system as before, so that the averaged system

in the slow variable 4> can be readily found as

<L =- efl^O^" e*0U <UO)=<l>o (4.4.3.19)

where
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R^) =T1- I ^(e ,y(0) ^'^ rf""(e J(0) SmWC0) (4.4.320)2JCCq7 J

and

M) =J- J [/ftT0*©)-/a*(/©)] ^wu(9 Jto) £„(<*©)
a*

+T" J "v*9^ ^8•**> Wd(0) * (4.4.321)

The following theorem will provide conditions under which the adaptive system using the gra

dient algorithm will remain BIBO stable. For our convenience, we will use <&,:=-87+0, (a

vector addition), which is a compact subset in R2".

Theorem 4.4.32: (BIBO Stability Theorem Using the Gradient Algorithm)

Consider the output error direct adaptive control problem described above. Let assumptions

(A1)-(A6) and (A8)-(A12) be satisfied, 87 be the tuned parameter defined by (4.4.2.5), and

R^jft) and gi$) be defined in (4.4.320) and (4.4.321) respectively.

If the input u satisfies conditions ofTheorem 4.4.3.1 and for sufficiendy small 5>0

max || gfr) || <; min ^ {sMiR^to))} 8 (4.4.322)

then there exist Yi .e^O, 0£r<~, and \|fi(e)e K such that

|| <K0 || * ^(e) + yx5 fet0+T (4.4.323)

for all e££lf and for sufficiendy small

condition <t>o. D

Proof: Consider the following Lyapunov function for the averaged differential equation

(4.4.3.19):
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v(<U =j lUavll2. (4.4.3.24)

By Theorem 4.4.3.1 and Lemma 3.3.2, SMiR^O^)) is positive definite for all $e Os. Denote

a:= min X^ (sM(/U/«>))] . (4.4.3.25)

The derivative of v along the trajectories of (4.4.3.19) can be estimated using (4.4.3.25) and the

condition in (4.4.322):

V=- e^ SMiR^flay)) Qay " e&giQav)

£-ect||<UI (OfcJ-*) (4.4.3.26)

whenever §av<= <&r The conclusion then follows from Theorem 22.2.5.

Remarks:

(1) The condition (4.4.322) is crucial in determining the BIBO stability of the adaptive sys

tem when the parameter adaptation is slow. In the absence of unmodelled dynamics and output

disturbances, #(<$>)=0 so that 5 can also be chosen the unmodelled

dynamics and the bounded output disturbances are mild, a reasonably small 5 can also be

found so that the stability of the system and, from (4.4.3.16), the closeness between the real

plant and the tuned model are also guaranteed.

(2) In the absence of output disturbances, if u satisfies conditions in the theorem and, addi

tionally, Supp(u) contains exacdy 2n points, then it can be deduced from Theorem 4.4.2.1 that

e«T converges to zero exponentially (Callier and Desoer (1982) p. 127) and 8a0 so that from

Theorem 22.2.3, the parameter errors $ converge to zero exponentially.
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(ii) Least-Squares with Forgetting Factor Algorithm

Recall thatthe dynamics of the parameter errors are givenby:

<j> =-e/>e0C 4>(0)=<|>o (4.4.327)

P=zXP - zPC?P PiO)=I (4.4.328)

so that the averaged system can be found to be

4>av =-e/,av^<l>av)<l>av-e/,a»^av) 4>«v(0)=<|>0 (4.4.329)

Pay = ^Pay"^PayR(^aV)Pay PaM=' (4.4.3.30)

where

*aJ») =-*T J^M8 *M **iOto) f(/©) rf^(8 ,;a>) SB(da>) (4.4.3.31)

and

*tf«=-r- J^(0 .;<*>) ^(0 .;<*» $,(<*©)

+7- J A^QJ(0)A^QM Said®) (4.4.3.32)

+T" J^9«^> ^9 «**» ^^ • (4.4.3.33)

The following theorem, similarto Theorem 4.4.3.2, provides conditions for BIBO stability.
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Theorem 4.433: (BIBO Stability Using Least-Squares with Forgetting Factor Algorithm)

Consider the same adaptive control problem but use the modified scheme shown in Hgure

42.2. Let assumptions (A1)-(A12) be satisfied, and R$d&)*Rtfto)'8i$) be defined as in

(4.4.3.31M4.4.3.33).

If the input u satisfies the conditions of Theorem 4.4.3.1, and for sufficiendy small 5>0

max || fft) || £ min X^ 1SMiRyfl))-^R&)

then there exist y2,e2>0, 0£7*<<», and \|f2(e)e K such that

|| 0(0 || <J\|f2(e) + Y2S feto+T

for all e^62, and for sufficiendy small (fo. D

(4.4.3.34)

(4.4.3.35)

Proof: The proof of this theorem is similar to that of Theorem 4.4.3.2. Constma a

Lyapunov function for the averaged differential equations (4.4.329M4.4.3.30),

v(<JwO =̂<£v/,;J<fc (4.4.3.36)

Again from Theorem 4.4.3.1 and Lemma 3.3.2, SMiR^jft)) and Rfo) are positive definite.

Using a result established in subsection 4.3.1. CASE I (i.e. p£ is bounded above and below

whenever $ave O,), it follows that there exist non-zero positive constants o\x, 02, a3, 04 such

that

<*i

whenever 0ave O,. Denote

^avIl^v^.O^aall^H2

llifclH''*"''2
dv

3/>
* «4 II fc

(4.4.3.37)

(4.4.3.38)

(4.4.3.39)
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SM(Jfy»))--j*tf« (4.4.3.40)

The derivative ofvalong the trajectories of(4.4.329M4.4.3.30) can be estimated as follows:

v+^v=-e<£av 5Af(/?^ov))-7^«v) Qay-tfyiWav)

^-eotslU.vlKIUovll-S). (4.4.3.41)

Thus, using Corollary 22.2.7, we may readily conclude the result

4.4.32 Input Error Scheme

Recall from subsection 42.2 that the error signal used for the parameter update is e2

defined in(42.2.6). If the parameters 8(f) are fixed at 8, then, using (422.7), we have

e2 =coithis)tis)rxiypa—ym)

= c0ithis)tis)Txieo) (4.4.3.42)

and

v= tis)"xiw) + [OftCfto"1 W .0,0,0] (4.4.3.43)

so that

^.AfVv-fVw)) (4.4.3.44)

where <to=Co-Cor. and 87 is the tuned parameters defined as before. Thus, using (4.4.3.17), we

can solve e2 explicitly in terms of u, d, and e*f.

e2 =

-^2- <0<fl-i thjis)) i$TAvuiQ ,s))
cot

l^—this^thjis)
Cqt

iu)
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[coithis)tis))"xAyiJfi,s)} id) 1 (**7). (4.4.3.45)

1+ — this^thjis)
cot

The following corollary provides conditions, similar to that in Theorem 4.4.3.1, under which

the PE condition on the signal vector v can be assured.

Corollary 4.4.3.4: ( Almost Always PE Condition on v)

Consider the same adaptive control problem as given in Theorem 4.4.3.1. Let assumptions

(A1)-(A6) and (A8)-(A12) be satisfied.

Then the signal vector v in (4.4.3.43) is PE if the input u satisfies conditions of Theorem

4.4.3.1. •

The proof is similar to that of Theorem 4.4.3.1 and, hence, is omitted here.

With these results, we now analyze the reduced order adaptive controller using both

parameter update algorithms given in subsection 4.22.

(i) Normalized Gradient Algorithm:

For the case of averaging, consider the parameter update law of the form,

e2v
= -e

1 + evrv
4>(0) = 4>o

Its averaged system is

(4.4.3.46)

4>«v =- eflw/^♦« " e*»«> ^(0) =*° (4.4.3.47)

where

go

*vv/4>)=-^ JtfvuO.yco)
——fh^iJQlbthTiJQ]))
CQT

l+—th"x(j(i))thT(j<o)
cot

'Sm

#v«(8 Joi)Suid(0) (4.4.3.48)



and

g*

2% j

ihrVaft-W®)

1+— th^ijODfhTiJQ))
cot
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Suido»

+7- J <*#*# Jo)^8.5) «<fo» (4.4.3.49)
2ic J

Note that the matrix /?w/<t>) defined in (4.4.3.48) is no longer symmetric like the one defined in

(4.3.2.9) nor is it necessarily a positive definite matrix under the normal PE condition.

Since the system (4.4.3.47) is similar to that in (4.4.3.19), we will give a corollary to

Theorem 4.4.32 to provide conditions for BIBO stability of the adaptive system.

Corollary 4.4.3.5:

Consider the same adaptive control problem as the one in Theorem 4.4.3.1 but using the input

error scheme. Let assumptions (A1)-(A6), (DA7), and (A8)-(A12) be satisfied, R^fl) and gi$)

be defined in (4.4.3.48), (4.4.3.49).

If the input u satisfies the conditions of Corollary 4.4.3.4 and there exists sufficiendy small

5>0 such that

max || gft) || <; min X^ fsM(/?w/4>))] 5 (4.4.3.50)

then there exist y3,£3>0, 0^r<°o, and ¥3(6) € Ksuch that

II <K0 II * V3(e) + Y3 8 feto+T (4.4.3.51)

for all e^£3 and for sufficiendy small <$>o O

The proof is identical to that of Theorem 4.4.3.2 and, hence, is omitted.
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Remarks:

(1) In the absence of unmodelled dynamics and output disturbances, m=rhT (i.e. 8r=8*) and,

hence,

RWJ$) = RM

is a symmetric positive semi-definite matrix, which becomes positive definite if u is SR. In the

non-ideal case, if the input u satisfies conditions of Corollary4.4.3.4, ^o/cqt^ 1. and:

th~l(j(a)thT(j(0) =1 for all o € SuppOO (4.4.3.52)

then Ayv/40 wiU remain positive definite.

(2) Comparison between (4.4.320) and (4.4.3.48) suggests the following similarity: R^ft) is

the crosscovariance of w and thjisXw), whereas Ryjft) is the crosscovariance of v and thyis)iv)

where

— this)'xthjis)
thjis) » —^L. . (4.4.3.53)

1+—th"xis)thTis)
cot

Since the positive definiteness of these matrices is crucial to the stability of the adaptive sys

tem, the spectrum of the control input u should not be too high so that m^O'co) and thv(ja>)

remain positive for all ©e SuppOi).

(ii) Normalized Least-Squares with Forgetting Factor Algorithm

The parameter update law in this case has the following form:

<M-e/»—^V" <KO)=4>o (4.4.3.54)
1 +ev'v

P = zP- eP—^r- P PiO)=I. (4.4.3.55)
1 +ev'v
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The averaged system of the slow variables $ and P is

«>av =" ePw RWf®ay)*ay ' &?<* *(<l>«v) 4>*v(0) =4>0 (4.4.3.56)

Pay = ePov - e^ /^v^ov)^ ^«v(0) - / (4.4.3.57)

where RWfi$) and $($) are defined in (4.4.3.48) and (4.4.3.49) respectively, and Kv(<|>) is

defined by

mm

*v(4» =7- J AwiQ,j(a)A^J^)Suidoi)
2n Jm

mm

-=-r J JL<W«)iK*<fc/«i>)$i(/<D)
2* jL

(4.4.3.58)

Due to the similarity to the averaged differential equations (4.4.329)-(4.4.3.30), we will state a

corollary to Theorem 4.4.3.3 to provide conditions for BIBS stability.

Corollary 4.43.6:

Consider the same adaptive control problem as that considered in Corollary 4.4.33. Let

Rw,i$)* 8i$) be defined in (4.4.3.48), (4.4.3.49), and Rvi$) bedefined in (4.4.3.58).

If the input u satisfies conditions of Corollary 4.4.3.4 and there exists sufficiendy small

5>0 such that

max \\gi$)\\ Z min X^ SMiR^®)) --itfv«|»

then there exist y4,e4>0, 0£7*<oo, and y4(e)e K such that

IU(r)|| ^V4(e) + Y45 t7>to+T

for all e^Eo, and for sufficiendy small <$>o- D

(4.4.339)

(4.4.3.60)
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The proof is identical to that of Theorem 4.4.3.3 and, hence, is omitted here.

Remark: Note that the condition in (4.4.3.59) is not an SPR condition, in contrast with con

dition (4.4.3.34). Under the assumption of no unmodelled dynamics and output disturbances we

have, as indicated in the remark after Corollary 4.4.3.5,

^)--j*v(4>) =-J*v«i» • (4.4.3.61)

This, however, will not be the case in the non-ideal case. Yet, if the conditions in the remark

after Corollary 4.4.3.5 are satisfied, then the L.H.S. in (4.4.3.61) will remain positive definite.

4.4.4 Slow-Drift Instability

To substantiate the importance of a proper choice of input signals as indicated in last sub

section, we present slaw-drift instability, one type of instability which appears in the adaptive

system with unmodelled dynamics and bounded output disturbances when the adaptation is

slowed down and the reference input u is not properly chosen. This type of an instability pro

perty will usually be detected only after a long period of operation time has elapsed. Roughly

speaking, the parameter vector 8(0 fails to converge to a neighborhood of the fixed parameters,

for example, tuned parameters, but rather drift in the parameter space until it finally reaches a

region in which the closed loop system is unstable.

Definition 4.4.4.1: (Positive Definite PE Through a Stable Filter)

Consider a stable filter described by atransfer function .fa), and a signal vector wiR+.-tR2*. w

is said to bepositive definite PE through ./fa) if there exist at, ot2>0 such that

k+T

ax £ cov(w ,&)(*)) := lim -i f wit)j(s)iwit))dt £ o* (4.4.4.1)
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Remarks:

(1) The notation cov(W,.&)(&>)) is, in fact, the crosscovariance of w and fy)(w), which has

been defined in Definition 3.4.2.1.

(2) If the signal vector w can be described as

Uf =^(j)(w) (4.4.4.2)

where the scalar signal u is stationary and has a power spectral measure SJidoi), then (4.4.4.1)

can be expressed in its spectral form,

covteJtodfc)) =̂ J4-0©)/(/©)^0©) SJicto) . (4.4.4.3)

It is clear that yv is always positive definite PE if fc) is SPR and yv is PE.

Essentially, the positive definite PE condition is a key condition for the adaptive control

algorithm. For example, in the ideal nominal case where the relative degree of plant is one, the

error signal eQ is expressed by

e0 =\mis)i$w). (4.4.4.4)
co

When the gradient algorithm is used and the adaptation is slow, the parameter update law is

"approximated" by its averaged system,

ta, = - ecov(w,/a(.*)(w))<l>av . (4.4.4.5)

Since by choice this) is SPR, co\iw,this)iw)) is positive definite whenever w is PE, which, in

turn, implies the exponential stability of the adaptive system. On the other hand, in the pres

ence of unmodelled dynamics, the error signal e0 may be expressed by

e0 =— m-ris) ®Tw) (4.4.4.6)
cot

ithjis) is the tuned model transfer function as defined in previous subsections) when the tuned
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model is close to the reference model Hence the parameter update law can be "approximated"

by

+«, • - zcoviw,thTis)iw)) $„ . (4.4.4.7)

Since the relative degree of th-jis) is the same as that of pu(s), which is, in this particular

instance, usually greater than one, for sufficiendy high frequencies co, it is possible that

Re^TO'co) < 0 . (4.4.4.8)

This implies, from Definition 4.4.4.1, that w fails to be positive definite PE through thjis).

Consequendy, the stability of both system (4.4.4.7) and, hence, the adaptive system are likely

to be at stake. In the following, we will formalize the above arguments by using averaging to

analyze the instability of the adaptive system with either of the two algorithms discussed

above.

(i) Output Error Scheme:

Again, for illustration, we will only consider the case where the relative degree of the

nominal plant is one. It will be easy to extend the these results to the cases with higher relative

degrees.

Initially, we will proceed with some observations with the output disturbance d=0. Note

that yp=puiQTw). When the parameter 8(f) varies sufficiendy slowly and 8(f) e 0, at some

time t, as suggested from (4.4.4.7), the gradient type parameter adaptation law is approxi

mately:

8=-| J^O^fe^w-O.yci))-^©)^©)] AniQJoDSvid®)
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where we neglect the terms 8T-^Hmt(8,y(a) by assuming that: (i) 6(f) stays close to aset (or
08

possibly a point) defined by

^min := Uop I8v=argmin/^(8) I (4.4.4.10)
I 86 ©, I

and (ii) 87-^-#WM(8,./a>) is much smaller relative to A^iQJoi) (elementwise) when the rre-
08

quency co is high.

Remark: In words, assumption (i) says: when 8(f) is close to 0min. i-e- die output of the

closed loop plant tries to match that of the reference model for all frequencies in Supp(w).

Since a better match can normally be achieved at low frequencies so that the effea of neglect

could be diminished at low frequencies rather at high frequencies; assumption (ii) says: the rate

of change of /^(S, j) with respect to 8 is relatively much smaller than #,^(8, j) itselfathigh

frequencies.

When these assumptions hold, then the parameter update law optimizes the cost function

Jtfg(8), so that the steady state of 8(f) should be expected to be close to 0^, possibly until

6(f) starts to drift out of Qr

Now consider a sufficiendy low frequency ©/. By Theorem 4.4.1.2 and the fact that the

unmodelled dynamics become insignificant in the low frequency region, there almost always

exists a 8/e @1 such that:

AypliiQhj(oi) =rh(j(o). (4.4.4.11)

But for a sufficiendy high frequency ©A, it may happen that

ReAyfJuiQj<od<0 for all 8e 9, (4.4.4.12)

which implies that
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Ay^iQJa) * thij'Q) for all 8e 0, . (4.4.4.13)

Consider the following definition.

Definition 4.4.4.2: (Positive Real Frequency Set, Negative Real Frequency Set )

Consider a compact subset Qsc in the parameter space such that 8*e 8«c0, and 0minC0,e

(0* is the true parameter corresponding to the nominal plant). Clp and QH are called positive

real frequency set and negative real frequency set respectively if:

dp =Ja> |Re/?v(8,;a>) >0 , for all 8e 0JC L (4.4.4.14)

Cln =Ico |Re#^(8,;©) <0 , for all 8e 0« I (4.4.4.15)

Remark: Qeariy, the union of Clp and Q„ does not cover the whole setof reals, R. However,

in the context of study on instability, these two sets are our domain of interests.

Assumption:

(A13) SuppOO n CXx contains 2nx points, where nxZ 1, and Supp(«) n Qp contains less than

2/i points. The spectral magnitudes of frequency elements in Supp(u) n Cln are rela

tively smaller than of those in Supp(u) n dp.

Under this assumption, Theorem 4.4.1.2 and the remark following (4.4.4.9), (4.4.4.10)

imply that there almost always exists a 90e &se close to 0^ such that:

Ay^iQoJoi) =th(j<a) for all co € Suppiu)nQp (4.4.4.16)

On the other hand, from Definition 4.4.4.1, the signal vector w fails to satisfy the positive
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definite PE condition through AytMiQ0,s). Under these conditions, we now study the behavior

of the adaptive system through its averaged version, (compare with (4.4.3.19))

♦«,» - ecoviw,thois)iw))^av +e sOfcJ (4.4.4.17)

where thois)^AypfliQo*s), and $=8-80. Using the fact in (4.4.4.16), coviw,thois)iw)) and

gfo) canbe approximated by

where

cov

+̂ (8,-;ffl£)/^W<o^^(8,-;(Di)J r?

= We(^SM +^)we

m9= [^(ejcoo.^e ,-;©!), •••.HWtt(8,;a)lll),HWB(e.-y(DBl)J

Dsm = diag

Djk = diag

p.
-i-Re/floO'cOi)
JEOm2jc8qi

l» V

0 f?
----Re^oO'ffli)
ZlWoi

^^

- —~-lmtho(jGix)
0 ZlWoi

f? 0
—-Im^oO'©i)
ICDnt2ic6qi

» W

(4.4.4.18)

(4.4.4.19)

(4.4.4.20)



and

where

*»i

2lttjQX

2n8
•1mtho(j<ani)

01

8®) =-~ E K«0 jCQdiWad - rfK/<»i))*

+#w«(e ,-«(/«-y©i) - ^(-y^)*Jr?

= Afe&

Sv =

p.
-i- Re(^00©i)-'w0,©i))
27C

•^- im^O'©^)-^^))

6/22"1
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(4.4.4.21)

(4.4.4.22)

(4.4.4.23)

and 80i is the first element of 80. ©j€ Q,, i=\,~,nx, f? is the spectral magnitude of the ith

frequency element ©;. Obviously, the matrix D^ is a negative definite matrix by the definition

of fl„ and Dsk is a skew symmetric matrix. Such an approximation simply implies that the low

frequency elements do not contribute as large a driving force to the parameter 8(f) as the high

frequency elements do. This is reasonable since in general there is asubspace of R2* such that

for each 8 belonging to that subspace /ft0(/o>) stays close to th(ja>) for e>€ SuppOO nQp (due to

lack of richness in SuppOO nty,). Such a property however does not hold for

(0€ SuppOO nty,. Hence these elements present more significant time varying factors so that

the overall cost function Jg(0) can be minimized.
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By Corollary 4.4.3.4, we make the following assumption for the analysis.

Assumption:

(A14) For all $e OfC^=-8o+0«. Afe is of full column rank if nx£n, and M\Mo is non-

singular if nx>n.

Now we define $M := Me $. The averaged dynamics of $M can be approximated using

(4.4.1.17) and the remark after (4.4.1.10) (Le. •—&„& J<o) is neglected for ©e Qn ) so that

*>May ^-eMojMoJDsM+DsxWMn-eMojM^gv. (4.4.4.24)

Now we are ready to state a theorem that provides conditions under which the adaptive system

will be unstable.

Theorem 4.4.4.1: (Instability Theorem Using Gradient Algorithm)

Consider the foregoing adaptive scheme and let 80 be given as before.

If there exists a sufficiently small 8>0 such that

II fov II £ 5 (4.4.4.25)

then there exist £5>0, small r6l>0, such that Brfm c *„, and <|>(0 will eventually leaves <bsc

whenever e£e5, and §(t\) e <&«. IBrM for some txZto. •

Proof: Consider a Lyapunov fimction v(<J>Wav) for the averaged differential equation

(4.4.4.24):

vOIWav) =\ OLv iMojMtJ-x*>Mm . (4.4.4.26)

Since 4>M is a compaa set, by assumption, there exist ax ,O2>0 such that
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<*1 II fa, II2 * V(^av) £ 02 || $Mav || 2 (4.4.4.27)

Moreover, DSM is negative definite so that we define

Ch^X^i-Dw) (4.4.4.28)

Differentiating v along the trajectories of (4.4.4.24), using (4.4.4.28) and the hypothesis, we

have

> e IIfavII (cts II fav II - 5). (4.4.4.29)

Using Corollary 2.3.2.2, and the fact that

II *M II *VWA/jMe) II 4> I* -J- II ♦ II (4A4.30)

the conclusion then follows.

Remarks:

(1) In words, the theorem says that, under the above assumptions, especially (A13)-(A14), the

adaptive system will undergo a slow-drift instability if there exists fi^f0 such that

4>Oi)=801)~90 is large enough. Note that gav involves the pseudo error e*(80,f), which is

defined in (4.4.4.23). Naturally, if this error signal is small so that gm is small, then the insta

bility is more likely to occur. This will be possible if the spectral magnitudes of frequency ele

ments in SuppOO n n„, fj, i=l,.../ilf are relatively small Violation of this condition, how

ever, does not imply that instability is unlikely to occur. On the contrary, if i}, l<i£nx, are

sufficiendy large, though the above approximation will not hold true, cov(w,/fto(?)(w)) still

fail to be positive definite (in fact, it will be negative indefinite) so that, by a linearization

argument, the system remains unstable (cf. Fu and Sastry (1987)).

(2) One should note that 80 in this theorem does not have to be a point on the trajectory of

6(f). This however does not imply that there always there exists tx > t0 such that the condition
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in the theorem can be satisfied. Yet, what makes that condition more tractable is the following.

AypfliBj) - thois) =-^- mois)i*TAwui*,s)) (4.4.4.31)

Since, for all ©e SuppOOnfl,. Ay^it),joi) =th(j<o). Note rf^(8(fo) .;©) is just avalue

when f=*b» wbicn °y no means indicates a function oftime f, and during the process ofoptimi

zation, AyJfiO)9ja>) has to assume different values for each f (i.e. to use the time varying

effect). Consequently, it may be expected that there exists f^fo such that

tfAy^mi) ,;©) k0 ©€ SuppOO n Gn (4.4.4.32)

which, in turn, implies a possibility that

II toft) II >^ >0 . (4A4.33)

(3) hi the proof, if the term:

♦Lt^^O)**

can notbe neglected, then the trajectories of 8(f) may undergo only a local instability but glo

bal boundedness.

(4) The compact subset 0,c may not be too small in the parameter space. Moreover, this set

can be very close to the unstable manifold of 8(f) so that, whenever 8(f) leaves Qsc, it is likely

to be attracted into the unstable manifold and the adaptive system suddenly turns into a drasti

cally unstable stage.

(5) It can be seen that the instability can occur even when the spectral magnitudes of the ele

ment in SuppOO n Q„ are very small due to the fact that the f? appears in both DSm and g^ In

other words, if the system fails to satisfy the positive definite PE condition, then the system is

extremely sensitive to the frequency elements in Qn.

(6) This result can clearly be extended to the case when SuppOO n Clp contains more than 2n

points and/or the output disturbances exist, so long the system fails to satisfy positive definite
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PE condition.

As for the least-squares with forgetting factor algorithm, we make similar observations, as

before, in the following.

Assume that (pjrx(y„i) exists (i.e. u is sufficiendy smooth), and then define the cost

function 7^8,0 by

Jo& .0 := fe"tMt"x) (8r«x) - ipub'x(yJi^J dx X>0 (4.4.4.34)

which is a function of time f. Note that, since yp=*ipJ)iQTQ in the modified scheme, J0$,t)

is, in fact, an exponentially discounted cost function. Let the set 0*. be given as before and

define the minimizer of /^8, r) at time t by

•}80(f) := argmirJ 7^8,0 | 8 e 0 (4.4.4.35)

Now we neglect the fact that £ depends on 8 just as in the previous case and solve the follow

ing optimality equation,

•r-7^8,0 9=80(1) = 0 (4.4.4.36)

to get

1-1 r

8o(0= ef^«<'-*>ttt)ttT)r<ft wrwww*
;fg-eX(/-t)(

*/*0) fr*«^(pJrl(yJMWdt (4.4.4.37)

By differentiating (4.4.4.37), we have



800) = /* fr^'-'Wrkwfti)*

+ ePipul)"1(yJr>-eXOoit)

and

P = eXP-ePt>l?P

so that the dynamics of 60(0 is given by

8o =-ePCCTe0 +c^^Jrl(yJC

=-eP(put)"xiyp-ymK

=- ePipub^ieJC . (4.4.4.40)

It can be seen that (4.4.4.39)-(4.4.4.40) is very similar to our regular least-squares with forget

ting factor algorithm:

8 = -e/>e„C 8(0)=80 (4.4.4.41)

P = zXP - tP Ct?P F(0)=/ (4.4.4.42)

except that P is a steady state of P, and the error signal used in (4.4.4.40) is (puf)~xie0) rather

than e0 used in (4.4.4.41).

Heuristically speaking, despite the above differences, for sufficiendy small e, the parame

ter update law given in (4.4.4.41)-(4.4.4.42) tends to optimize a cost function of the output

error e^ As such, it allows us to analyze the system using the same setup as before but with

the following averaged version:

L =- ePav covi^thotiO) 4>av - e/^ gi^) (4.4.4.43)

Pay = **>Pay " e^^av^av (4.4.4.44)

The difference, however, lies in the positive definite PE conditioa To suit the analysis in this
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(4.4.4.38)

(4.4.4.39)
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case, we modify Definition 4.4.4.2 as follows.

Definition 4.4.4.3: (Positive Real Frequency Set, Negative Real Frequency Set)

Clp and Q* are called positive real frequency set and negative real frequency set respectively if:

Sip =Jco |—— RerfypB(8,./(0)--i>0 ,8e0*., c^^mw cQ I (4.4.4.45)

&n =]©I— Rei^(8,y(D)—i <0 ,8e0*. ,c^:= min cQ L. (4.4.4.46)

Here, in addition to (A13)-(A14), we will make an additional assumption to guarantee the

invertibility of Reft).

Assumption:

(A15) SuppOO contains at least 2n points so that #^(8 , j)(k) is PE for all 8e 0JC.

Using (4.4.4.17)-(4.4.4.18) and (4.4.4.22) we can approximate (4.4.4.43) by

<L * - ePov Afe„(0SM+AarWeJ>«-«J^e.*. (4.4.4.47)

where Af9 is as defined in (4.4.4.19); DSM, DSK, and gv are as defined in (4.4.4.20)-(4.4.4.21)

and (4.4.4.23) but with tho replaced by thot; Rtf$) is as defined in (4.4.3.32). Again, we define

$M:=A/9<|> and use the approximation as before (neglect the rate of change of A/e with respect

to time f) so that the averaged dynamics of $M is given approximately by

-lMoJP„M^gv. (4A4.48)

Furthermore, (4.4.4.44) can also be changed into the following form, using the same approxi

mation.
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•J WoJPayMO =tXM^JPmM^ - eMoJPovR^av)PayMoa (4.4.4.49)

The following theorem, similar to Theorem 4.4.4.1, will summarize the condition for instabil

ity.

Theorem 4.4.4.2: (Instability Theorem Using Least-Squares with Forgetting Factor Algo

rithm)

Consider the above setup of the adaptive control problem and let 80 be given as before.

If there exists a sufficiently small 5>0 such that

lUavlISS (4A4.50)

then there exist Eg.X^O and small r^O such that BTim c <>„, and <K0 will eventually leaves

Om whenever eSe* XzXq, and $0i)e <&& |Br{m for some tx£0. D

Proof: The proof will be similar to thatof Theorem 4.4.4.1. Consider a Lyapunov function

v(4>Mav) for the averaged differential equation (4.4.4.47):

vOfrwov.-Pav) ="J $Lv W*JP^M^T*** (4.4.4.51)

As in the proof of Theorem 4.4.3.3, due to (A15), P^ is bounded above and below so that,

again from (A14) and the compactness of <D,C, there exist ax ,ot2>0 such that

«1 || 4>Afav II2 * V®Moy>Fav) * <*2 II <t>A/,at
(4.4.4.52)

whenever $flye ®se. As in (4.4.4.28), we define

°4 := ^rain
r? •*i-D5M +Idiag(—..,.., —) (4.4.4.53)

which, by (4.4.4.45), is a positive number. Differentiating v along the trajectories of (4.4.4.48)

and (4.4.4.49), we have
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•(M*T P„ R&„)Pa, M»„ )(M„J P„ Af9„ r* to. (4.4.4.54)

Dsu =(M9/ **«. We„ )"' A/9„T />„ f/0„ Dsu M»j)
Pa. Me. (M9/Pm UK r« (4-4.4.55)

/?;(«0=A*Jdiag(^." ,^-)A/e+̂W (4-44^)
where Jfy*) is apositive semi-definite matrix. Using these and (4.4.4.53), we then can esti
mate v in (4.4.4.54) to get

v>e|| W || («X3-^)II ta, II - 5) • (4A4.57)
Thus, the conclusion follows from the proof ofTheorem 4.4.4.1, CoroUary 2.3.2.3.

(ii) Input Error Scheme

Again we assume d*0, i.e. disturbance-free case. As before, the results derived under
such acondition can be clearly extended to the case where d*0. From (4.4.3.43)-(4.4.3.44),

for fixed 8, we cansolve e2 in terms of v and ym as

e2= Co,frXp* itfv-iPutr'iyn.)) (4-44.58)
1+c0m"xpu

where we assume that ym (on u) is sufficiendy smooth such that the term (p u1)" (ym) exists.

Define a cost function Jig by
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j. (8) ^ J- J ****** 10TAvuiQj) - iPutfx th |2SB(<fo» (4.4.4.59)
* 2% Jm 1+c0rh"xpu I •

Similarly, we neglect the dependence of v on 8, and assume that 8 is already close to where

8Tv-(pf^(yj is small so that, for sufficiendy small e, the normalized gradient algorithm,

under this scheme, approximately follows:

8«_e-L 7_£2£1Al_ JL IMjm _yjy** \*sjidm)
4w _J„ 1+c0/ft"V« M ' '

=-e-^(9). (4.4.4.60)

This suggests that, if the trajectories 8(f) is already close to the minizers of JigiQ), then it will

continue following the path of optimizing the cost function //s(8). It then follows from

(4.4.3.42) that 8(f) also follows the path of optimizing the output error e^ This conclusion is

the same as that for the gradient algorithm using output error scheme. Obviously, it is nothard

to extend such observations to the normalized least-squares with forgetting factor algorithm,

following the same arguments as before. Consequendy, similar results for both algorithms

should be expected.

Since the input error scheme does not require the SPR condition. The instability arise

under a condition slighdy different from thatusing output error scheme. Let 80 and the subset

0^, ®x be given as before. Recall from (4.4.3.47) that the averaged dynamics of the parame

ter $, replacing 8T by 60, is the following:

it, =- ecov(v ,As)iv))^av +e«(4>ov) (4.4.4.61)

where we repeat^) here:

-%-this)"xthois)
^) =-^2LT (4.4.4.62)

l+^nTxthois)
woi
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(note that <t>o=c0-6oi)- Motivated by this, we modify Definition 4.4.4.2 to suit our later

analysis.

Definition 4.4.4.4: ( Positive Real Frequency Set, Negative Real Frequency Set)

Clp and C1H are called positive real frequency setand negative real frequency set respectively if:

Clp^

«« -S

" IRe(/*y x>>1"TL •0€ e« •cmi«= min c0AypUiQj<Q) C^ 06 eK

co I Re( thjioi) co

Hy^iQJoi)
f—)<1 ,BGSse,cmax=m2^co

'torn
96 e.

Remarks:

(1) Rewrite (4.4.4.62) as

A/©) = 1+ —(mO'coWO©)-!)
Co

-l

Then it follows that, for all co<= Qp, Reft/co)>0, whereas, for all coe ftn, Reftj&)<0.

(2) In the absence of unmodelled dynamics, 80=8* so that

Re(_22G<DL)3l
thoijQ)

Hence all frequencies co will be classified as members of Qr However, under the assumption

of unmodelled dynamics, thois) has an order higher than that of this), which implies that

/fto(/co) will not be in phase with th(j(&) when co is too high. This implies that co may no longer

lie in the set Clp but more likely in the set QA. Consequendy, under the assumptions (A13),

the signal vector v will then fail to satisfy the positive definite PE condition.

for all coe 7?

(4.4.4.63)

(4.4.4.64)

(4.4.4.65)

(4.4.4.66)
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Now we start with the averaged version of gradient algorithm in (4A3.61). which, using

C4.4.3.49M4A3.50) and (4.4.4.18)-(4.4.4.23), can be approximated by

where Afe is as denned in (4.4.4.19) but with 4*0,5) being replaced by ^(0^). and DSM and
DSK are as defined in (4.4.4.20M4.4.4.21) but with ih^ being replaced by jfci) defined in
(4.4.4.62). Due to its extreme simUarity with that in (4.4.4.17). we will only state the results

as a corollary to Theorem 4.4.4.1.

Corollary 4.4.4.3: (Instability Using Normalized Gradient Algorithm )

Consider the setup ofadaptive control problem as given in Theorem 4.4.4.1.

If there exists sufficiently small 8>0 such that

Ifc.1** (4.4A68)

then there exist e7>0 and small ril>0. such that Br& c O^ and «t) will eventually leaves

fl^ whenever e£&j, and <K'i)e O* l*rfa for s01116 ri^fo- °

The proof is identical to that in Theorem 4.4.4.1 and. hence, is omitted here.

For normalized least-squares with forgetting factor algorithm shown in (4.4.3.54)-

(4.4.3.55), the instability can also be studied through it averaged system given in (4.4.3.56)-
(4.4.3.57) as above. However, the remark after Corollary 4.4.3.6, we see that the Definition
4.4.4.3 will not be adequate here. Hence we again modify definitions of sets Qp and QB to suit

this case.



Definition 4.4.4.5: ( Positive Real Frequency Set, Negative Real Frequency Set)

Clp and £t„ are defined by

Qp:=« (DlRe^y, )£l +-^-.8€8^.cmin=minco
•V*

aH^i » IRe<^^? J ^ 1+-^2- .8g e,c. <:„„= maxc0
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(4.4.4.69)

(4.4.4.70)

Remark: The definition implies that, for all cog Qp. Reft/co)-l/2>0 and, for all cog Qat

Re^/oa)-l/2<0.

Corollary 4.4.4.4: ( Instability Using Normalized Least-Squares with Forgetting Factor

Algorithm)

Consider the setup of the adaptive control problem as given in Theorem 4.4.4.2.

If there exists a sufficiently small 5>0 such that

II *av II * 5 (4.4.4.71)

then there exist eg,Ao>0 and small ril>0, such that fl^cO^, and $0) will eventually leaves

<3>sc whenever e£e8, \£\q, and <K'i)e <&sc \Br. for some t\ >*b- D

The proof is identical to that of Theorem 4.4.4.2 and, hence, is omitted here.
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4.5 Concluding Remarks

In this chapter, we reviewed the output error model reference direct adaptive scheme

introduced by Narendra and Valavani (1978) and Narendra, Lin, and Valavani (1980), and the

input error scheme introduced by Bodson and Sastry (1987). The two schemes examined here

basically use the same structure for the controller but a different one for the parameter update

laws. Identical properties shared by both schemes are summarized here: 0) the closed loop sys

tem remains stable and the output of the plant converges to that of the reference model (ii) if

the signal vector w is PE, then the controller parameters converge to the true parameters

exponentially. At this point, the input error scheme benefits owing to the relaxation of SPR

condition, which is required in the output error scheme. A price, however, is paid in that the

upper bound of the high frequency gain has to be known (assume A^>0).

Under the assumption that the control inputs are stationary signals, the adaptive system is

categorized as a mixed-time scale system which is suitable for averaging analysis. By applying

averaging results developed in Chapter 2, we obtain estimates of rates of parameter conver

gence. Results, here, are similar to those for the adaptive identifiers, and an example, using

gradient algorithm, is given to illustrate the closeness of these approximations. Two by

products follow from this analysis: (i) the notion of optimizing rates of parameter convergence

by choosing SR control input u, subject to some constrain, such that the smallest eigenvalue of

SMiR^lO)) (tail convergence) is maximized, (ii) the notion of relaxation of SPR condition for

establishing the stability proof. The former, later, evolves into a basic principle for synthesizing

an optimal input u in Chapter 5, whereas the latter allows one to cope with the non-ideal case

where unmodelled dynamics and output disturbances are brought in.

Due to the inevitable existence of unmodelled dynamics and/or bounded output distur

bance associated with the plant, properties of model reference adaptive control schemes gen

erally will no longer hold and the stability of the system is likely be at stake. Assuming

FDLT-I unmodelled dynamics, results from Mason et al (1987) were extended to this control

case so that the PE condition of w can still be related to the sufficient richness of the input u in
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an "almost always" fashion. These results then allow us to define tuned parameters and a tuned

model through a frequency-domain interpretation, i.e. tuned parameters, 0r, are the fixed values

of the controller parameters 6 that minimize the normalized mean squared power of tuned

error, the output error between reference model and closed loop plant Stability analysis will

then be focused on the trajectories of controller parameters around tuned parameters. Under the

assumptions that: (i) reference model is close enough to the tuned model, (ii) SMiR^/ft))*

where $=0-07 belongs to a compact set, is sufficiently positive definite, and (iii) the parame

ter adaptation is slow enough, the controller parameters will converge to a ball centered at the

tuned parameters with a radius which is a sum of a class K function of the adaptation gain and

a linear function of the mean squared power of tuned error. The conclusion on stability of the

adaptive system and performance of the controller can readily be drawn.

While the reduced order controller works in the face of unmodelled dynamics and output

disturbances under some benign assumptions, the crucial dependence on the positive definite

PE condition should be emphasized. To substantiate the importance of this condition, a type of

instability—slow-drift instability—resulting from the violation of that condition was under stu

died rigorously. Results there show that controller parameters will slowly drift, in the parame

ter space, out of a compact subset in which the tuned error is small, when the adaptation is

slow enough and the spectral energy of the control input is not dominantly SR in the "low"

frequency spectrum. In practice, when the adaptive system undergoes a slow-drift instability,

the controller parameters, after they leave the compact subset, are very likely to be attracted

into the unstable manifold so that the system will be driven into instability.
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5.1 Problem Statement

In this section, we formulate the input design problem of choosing proper inputs for use

in SISO adaptive identification and model reference adaptive control schemes in the absence of

unmodelled dynamics. Characterization of the optimal inputs is given in the frequency domain

and is arrived at through the use of averaging theory. It has been shown in section 3.3 and 4.3

that exponential parameter convergence can be obtained in both adaptive identifiers and model

reference adaptive controllers provided that the signal vector w defined in equations (3.2.6) and

(4.2.1.2) is persistently exciting (PE). From the averaging analysis in section 3.3 and 4.3, we

see that, when the adaptation gain is small enough, the dynamics of parameter evolution can be

approximated by their averaged version, whose rates of convergence are especially easy to

study. As has been pointed out in the conclusions of Chapter 3 and 4, these estimates suggest a

means of optimizing the rates of parameter convergence.

We will primarily be interested in the "tail" rate of convergence and focus attention on

the normalized gradient algorithm.

5.1.1 Adaptive Identifier

We consider an unknown plant, described by an SISO proper, stable transfer function,

dp(s)

where fip(s\ dp(s) are coprime monic polynomials, and dp(s) is of a known degree n. The adap

tive identifier of this plant has the same structure as the one discussed in section 3.2. The



158

gradient algorithm, using averaging, is given by

<fr = -e*„w (5.1.1.2)

for some small e>0 where <J>=0-0* is the parameter error, and e0=y0 - yp is the output error.

The input design problem for an adaptive identifier is that of selecting an input u from an

allowable class of signals (to be specified by the designer) in order that the rate of convergence

of the parameter error § may be optimized. There are various possible solutions to this prob

lem. The solution pursued here is a frequency domain approach obtained by applying averaging

theory to the parameter update law (5.1.1.2). It is shown in subsection3.3.1 that bounds on the

rate of parameter convergencecan be assessed by studying the matrix Rw(0) defined by

Kw(0)=limi f w(tMtfdt

=-r-1 AMffmsjim (5.1.1.3)
ZJC Jm

when w is PE, where Q(s) is the transfer function given in (3.3.6). The bound on the rate of

parameterconvergence is simply eXmin(Rw(0))+o(e) when £ is small enough.

The input design problem can therefore be put in the form of an optimization problem in

which an input u is to be chosen from a class of signals to maximize the smallest eigenvalue

of the average information matrix RW(Q). Such a procedure is very reminiscent of the procedure

indicated in Fedorov (1972), Goodwin and Payne (1977), and Mehra (1976) in the stochastic

context for the design of input signals in parameter estimation. There, however, the objective is

to achieve a greater accuracy of parameter estimates rather than a higher rate of parameter con

vergence.

Remark: Although averaging requires the adaptation gain e be small enough so that the

approximation will be close, in its application to adaptive identification, e does not have to be

too small. In fact, the estimates are reasonably close even for values of e close to one. This
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fact can be seen from the simulation example given in subsection 3.3.1. Consequently, the

optimal inputs obtained based on this criterion provide a reasonably fast parameter convergence

rate.

5.1.2 Model Reference Adaptive Controller

In this subsection, we examine the optimal input design problem for both the input and

output error direct model reference adaptive control schemes discussed in Chapter 4. As

pointed out at the beginning of this section, the rate of parameter convergence of the linearized

version of the adaptive system is the main focus here.

We consider an SISO plant with transfer function,

dp(s)

where fys) and &p(s) are monic coprime polynomials ofdegree mand n respectively and kp is

the high frequency gain, satisfying assumptions (A1)-(A3) in section 4.2. The reference model

is described by

dm(s)

where Am(s) and a*m(s) are monic but not necessarily coprime polynomials of degree m and n

respectively (the same degrees as the corresponding plant polynomials), satisfying assumptions

(A4HA5) in section 42. The controller structure for model reference direct adaptive control

schemes is the same as the one discussed in section 4.2 as well. As has been shown in section

4.3, exponential parameter convergence can be achieved when the system is PE. Therefore the

input design problem for a model reference adaptive controller, similar to that of an adaptive

identifier, is to select an input u from a class of signals so as to optimize the rate of parameter

convergence. As before, a frequency-domain approach through the application of averaging is

the method adopted to solve the problem. In the following, we will have separate discussions
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on output and input error schemes.

5.1.2.1 Output Error Scheme

Using (42.1.9H4.2.1.10) and (4.3.1.1), as indicated above, the dynamics of state errors e

of the adaptive system are linearized around (e,4>)=(0,0) to obtain

e = Ame + bm^Twm (5.1.2.3)

e0 = <£e. (5.1.2.4)

Here, for illustration, we will only consider the case where the relative degree of the plant is

one. As pointed out in the remark before subsection4.3.2, the case where the relative degree of

the plant is greater than one can be dealt with similarly if one is only interested in the first 2/t

parameters of 0.

The parameter update law using gradient algorithm, under averaging, can also be linear

ized around (e,<|>)=(0,0) to yield

* = -*e0wm. (5.1.2.5)

It follows from the analysis in subsection 4.3.1 that estimates of the rate of parameter conver

gence of the above linearized system can be obtained by studying the matrix SM(RWmWJiO))

which, from (4.3.1.28), is given by

SM(RWmW(0)) := -It J Qmm Re/a(/©) &0to) Su(da» (5.1.2.6)
* 2KCq Jm

when wm is PE, where (Jm is defined in (4.3.1.7). The bound on the rate of parameter conver

gence is simply e|\amSM(RWmWL0))\+o(€) for sufficiently small e.

The estimate of the bound is extremely similar to that of adaptive identifiers. This, again,

allows us to formulate the input design problem here as an optimization problem in which an

input u is chosen (subject to some constraints) so as to maximize the smallest eigenvalue of an

symmetric positive definite matrix, just as the case of adaptive identifiers.
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Remark: The comments on the smallness of e stated in the remark in subsection 5.1.1 also

apply here.

5.1.2.2 Input Error Scheme

The linearized version of the dynamics of state error e is the same as that given in

(5.1.2.3M5.1.2.4). Since we are only concerned with the behavior of the system for small

(i,$), the projection mechanism used in the parameter update will not be necessary.

The parameter update law using normalized gradient algorithm, under averaging, takes the

following form:

<fr =-e Vmi: 4> (5.12.1)
1 + evj,vm

where vm^t\s)(wj. It is shown in subsection 4.3.2 that the bound on the rate of parameter

convergence, similar to that of adaptive identifiers, is eXa^(RvJiO))+o(fi) where

«,.(0) := t- J It*m P<3m0<*» &(/<*» SJldm) (5.1.2.8)

when wm is PE and e is small enough.

In the same way, we can put the input design problem in the form of an optimization

problem where the objective is to maximize the smallest eigenvalue of a symmetric positive

definite matrix among a class of input signals.

5.2 Input Design Bases

In section 5.1, we see that the input design problem of an adaptive system can be formu

lated in terms of the optimization of the smallest eigenvalue of a positive definite symmetric

matrix over a class of input signals. In this section, we make the problem more tractable by
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choosing the class of input signals to be power-constrained, by which we roughly mean that

the average power of a signal i(t)e R, defined as

lim4: f Pfflt (5.2.1)
T-*»T J

with limit existing uniformly in £^0, can be no greater than a fixed amount In the following,

more detailed definitions, based on Definition 3.32 and 3.3.3, are introduced to facilitate later

development of the input design algorithm.

Definition 5.2.1: (Normalized Input Design (NID) over a Compact Support)

A normalized input design (NID) is defined on the spectral distribution function Fu(co) which

satisfies

«•

-^ FM(oo) =-L J Su(da» =1. (522)

Let CI be a compact subset in the frequency spectrum, symmetric about zero frequency, and

oio^=argmax { 0) | coe CI }. Then Fu is said to be a NID over CI if

F(-©;) = 0 F((D0)=1. (5.2.3)

Remarks:

(1) Note that the spectral function F(co) can be identified with a positive measure, i.e.

f S(d(£>) = f dF((0) (5.2.4)

In the sequel, we will frequently use N(Cl) to denote the set of all NID's over CI, which can be

expressed concisely as

N(Cl) = F : positive measure , -r— JdF((o) = 1 y. (5.2.5)•ij*w-1}-
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In particular, ND(Cl), denoting asubset ofN(Cl)f contains all NID's with only discrete spectrum

inCl

(2) In practice, stationary signals encountered in adaptive systems are usually bandlimited. In

other words, it will suffice to choose CI as the set [-u>o.©o] wherc ©o>0.

(3) N(C1) is a convex set due to the fact that

(1 - a)F! + aF2 e N(C1) (5.2.6)

for all Flt F2 e N(C1), and a e [0.1J.

Definition 5^2: ( Normalized Average Infonnation Matrix (NAIM) )

A matrix G is said to be a normalized average information matrix if there exists a proper stable

column transfer function H: C -» C", a scalar strictly positive even function g: R -> /?+, and

Fe N(Cl) such that

G=y" fg(G>) H(j(0) #*(/©) dF(®) (5.2.7)

Then, given H and g, such a matrix G will be denoted as G(F) for the emphasis of its depen

dence on the specific NID F. •

Remarks:

(1) As indicated above, NAIM is always symmetric and at least positive semi-definite. The

invertibility of such matrices relies on two factors: the structure of H(s) and the frequency sup

port of F. Here, to suit our purposes, we will assume that the transfer function H is always

such that, for some FeN(Cl), the corresponding NAIM is invertible and, hence, positive

definite. Also notice that such a condition is always satisfied in the nominal adaptive system.

(2) Again, in the sequel, we will use M^fiCl) to denote the set ofall NAIM's resulting from

the column transfer function H(s), the scalar function s(oo), and all possible F's in N(C1). It can

be concisely expressed as
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Mg»j)<Q> "JG|G=̂ J*<*> *C/to) tf*(/a>) <*F(e>) .Fe tf(G) [• (5.2.8)

(3) In the special case where F(co) results from a single frequency sinusoidal input with fre

quency G>*, the corresponding NAIM will be called the point-input information matrix (PIIM)

anddenoted as G(co*).

For convenience, we will introduce the following notation.

Notation:

A function ^ : N(Cl) -» R+ stands for the smallest eigenvalue of G, a NAIM, resulting from

someFeN(Q).

In the stochastic context, there are several parallels of these definitions. In fact, in the sto

chastic literature, the average information matrix that we used here is often referred to as the

Fisher information matrix and is related to the error covariance matrix. To date, there are

several existing results regarding the Fisher information matrix. Due to similarities between

these matrices, in the following, we will only state some lemmas with proofs omitted (cf.

Goodwin and Payne (1977), chapter 6, and Mehra (1976)).

Lemma 5.2.1: (Closed Convex Hull)

The set M^^CX) is the closed convex hull of all PIIM's corresponding to the same H and g,

i.e.

Mtf^Cl) =Co \ G(o) Icoe CI > (5.2.9)
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Lemma 5.2.2: (Matching Lemma)

For any F^ N(Cl) with corresponding GCF^ € Af^Q), there always exists a F2 e ND(C1)

containing ho more than m(m+1) +l distinct frequency elements (m(m+l)+2 spectral lines)

such that

G(Fi) = GCFj) (5.2.10)

Lemma 523: (Optimizing Lemma)

The optimal normalized input design F* = argmax { &g(F) | Fe N(C1) } exists, and contains

no more than m^m+l) distinct frequency elements (i.e. one less than that predicted by Lemma

5.2.2). •

Important Remark:

One can infer from Lemma 5.2.3 that, while designing optimal inputs for maximizing the

smallest eigenvalue of the average information matrix, one can confine the search to sinusoidal

inputs with only a finite number of frequencies.

5.3 Sequential Design Algorithm

In this section, we first derive some basic results on 2*KP) (*© smallest eigenvalue of

G(F)) using perturbation theory. Based on these results, a numerical algorithm for input design

will be constructed later. The sequence {^(P) } generated by the algorithm is then proved to

converge to its global maximum.
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Theorem 5.3.1: (Equivalence Theorem)

Consider some F*e N(C1). Let 2^(F*) be the smallest eigenvalue ofG(F*) and v,-, / = 1, ••,y
be the orthonormal eigenvectors associated with it

Then the following three statements are equivalent

(a) F* a argmax I2*^ | Fe N(Cl) L (5.3.1)

(b) Forall F* e N(C1) .with F*:= (l-a)F* + aF\ a g [0,1] (5.3.2)

•^^G(Fa)|a„o^O (5.3.3)

(c) &c(F*) ^ 2,^ (5.3.4)

where

T/ }flW = max <

andP:= U, -.vJ. •

UPrG(JF)P) | Fe N(C1) > (5.3.5)

Proof: The way we proceed in the proof is to show (a) (b) are equivalent and then (b) (c)

are equivalent

(i) First of all, note that from (5.3.2)

GQF*) = (l-ct)G(F*) + <xG(F°) (5.3.6)

and that, by perturbation theory, the smallest eigenvalue satisfies

kjff1*) = (1 -a)lc(Fm) + as + o(a) (5.3.7)

when a is small, where 2 is defined by

Q= UPTG(^)P) (5.3.8)

and P is the same as given above. It then follows that (a) implies (b) trivially. To show that (b)
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implies (a), we use a contradiction.

Suppose (b) is true but that there exists a£ * F* such that

2*(F)>k(Fy (5-3.9)

Define F* as

F« = (1-cOF* + o# a e [0,1]. (5.3.10)

Then

G(JF*) = (1 -a)G(F*) + aG(F) (5.3.11)

and its smallest eigenvalue satisfies

^,(1*) =(1 -a) £g(F*) +as +<*a) (5.3.12)

when a is small, where s is defined by

Q= UPTG(p)P) . (5.3.13)

Since, by definition, vt-, i = 1, •,y are orthonormal vectors, one can easily show that

fliikKF). (5.3.14)

Further, with eq. (5.3.12) one can establish the following:

4- ^OF") L-o =2- *c(F*) (5.3.15)
da I

which along with (5.3.9) and (5.3.14) gives a contradiction. Hence, the implication is valid.

(ii) (c)=o(b)

By hypothesis and definition of £,„„, we have

&g(F*) £ 2(F°) for all F° e N(C1) (5.3.16)

where

2(F°) =UPTG(?y)P) . (5.3.17)

With definition of F* in (5.3.2), (5.3.16) then implies that
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4~k^ la-o =2- k?(F*) *0 (5.3.18)
da t

(b) => (c)

This is more obvious to see since if 2nua>2k?(F*)» toen there exists PeN(Cl) and F°

defined by

F*=: (l-a)F* + aF a e [0,1] (5.3.19)

such that

4-^0*) Lo- fl(ft - k(F*) >0. (5.3.20)
da I

Consequently, (b) and (c) are equivalent

Remark: In the theorem, finding <2m« is generally less complex than finding fcwx ?= {

£c(F) | F€ JV(Q) } due to the smaller dimension of PTG(F)P (yxy rather than the original

mxm where y£m). In fact the most common and simplest case is where P consists of single

vector, whence PTG(JF)P becomes purely a scalar. Thus, by Lemma 5.3.3, it is sufficient to

compute Qjmx DV just usin8 a one-linesearch optimization routine, i.e.

cw = max PTG(co)P . (5.3.21)
caeQ.

In general, the computation of optimal input designs, except in very simple cases, has to

be done numerically. The following numerical algorithm will provide a tool by which such

optimal input designs can be sought The next theorem will show that this numerical algorithm

will generate a convergent sequence { inin(F) } whose limit point is the global optimum. By

Lemma 5.3.2 and 5.3.3, this also shows that the sequence { F1 } will converge to one of the

global optima. Before we proceed, we start with some more notation for simplification in the

sequel.
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Notation:

0) Nb(Cl), denoting a subset of ND(Cl), contains NID's Fu whose frequency support consists

of no more than 2k points in CI (or u consists of no more than k sinusoidal components).

(ii) pt= fvy.'-'.v^l consists of oflhonormal eigenvectors of G(F) associated with the

smallest eigenvalue2k?(F')-

(Hi) 2\„« = max {2, (PfG(F)/\) IF€ N%(Cl) )where *,- =y;(Y.+ D'2.

Sequential Design Algorithm:

Data: F° e Np(Cl) is a feasible initial design.

Step 1: Set i = 0.

Step 2: Compute ^(F*) and find £*„„.

Step 3: If &max £ &g(F*), ^n stop; else go to Step 4.

Step 4: Update the input design F' by:

F*1 o (1 -a^F1' +afF1' a,- e [0,1] (5.3.22)

where P e No(Cl) is such that

tfm«» 2*(PjG(ftPi) . (5.3.23)

Step 5: i = i + 1 and go to Step 2.

Remark: In Step 2, the procedure of finding c/max is exactly the same as that of finding

2^c(F*), i.e. to go through Step 2 to Step 5 with some feasible initial design F*e Np(Cl).
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Theorem 5.3.2: (Convergence Theorem)

Consider the sequential design algorithm.

If the sequence {a,} is chosen such that

(a) lim a, = 0 Z «i = °° «»€ <M) (5.324)
'-»- i-i

or

(b) a,-» argmax { 2o((l-€0F' +aF) | a e [0,1] } (5.325)

then either the numerical algorithm terminates in some number of finite steps, say, k* and

2g(F*') =^(F') (5.3.26)

or

&g(F)-»&g(F*) asi-**> (5.327)

where F* is an optimal input design as defined in (5.3.1). D

Proof: If the algorithm terminates in step k* < «, then by Equivalence Theorem and the

algorithm itself, we can readily conclude that (5.3.26) is true. On the other hand, if the algo

rithm does not stop in finite steps, then the following proof will show that (5.3.27) is the case.

(a) Instead of showing that (5.3.27) is true, equivalently, we show that

•^k(F&)|a«o£0 as i->~ (5.3.28)

where

Fft := (1 -a)F +aP (5.329)

as a result of Equivalence Theorem. Assume the contrary, i.e.

y-^;(F«)|a-o=A>0 for all iZO. (5.3.30)
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lim [^(F)-2(c(F0)] =(2:aI)6(A) (5.3.31)
•-*- i-i

where 5(A)>0, which contradicts that { &a(F) } is a bounded sequence.

(b) By the Equivalence theorem, if F' is not the optimal input design for all ie Z+, then

-^^(Fg))|«-o>0 (5.3.32)

which then implies that { 2c (F*) } is a monotonically increasing sequence which is bounded

above. Hence, the sequence converges to a limit say, 2g(F)- We now show that

&g(F) = lc(F\ where F* is assumed to be an optimal input design.

Assume a contradiction, i.e. ^(F) ^^(F*). Again, by Equivalence Theorem, the gra

dient

•^2cG(Fa)|a„0 =A>0 (5.3.33)

where F* is defined as

F°:=(l-a)F + aF (5.3.34)

for some F € N(Cl). This, in turn, implies

lim [ Ig(F) - laQT1) }= 8(A) >0 (5.3.35)

which contradicts the fact that the sequence converges. As a consequence,

.lim la <rt =hi<f) • (5.3.36)

Remark: In fact the numerical computation will usually stop in a finite number of iterations

after a specified stopping criterion is satisfied. Thus, instead of constructing an optimal input

design F*, we normally obtain a suboptimal design F*5* which can be made arbitrarily close to



172

F* by having a different stopping criterioa Since the design F**' may have an undesirably large

point spectrum, its approximation is usually considered. It is shown in Fedorov (1972) that

after an approximation, an acceptable rounded-off design, denoted Frndf can be obtained.

5.4 Application to Adaptive Systems

In this section, we will use the tools developed in section 5.3 to solve the input design

problem formulated in section 5.2 for a general nominal adaptive system. Due to the fact that

the solution will depend on the unknown plant we will assume a prior estimate of the plant,

similar to the Bayesian approach used in stochastic parameter estimation. To demonstrate

these results, examples for both adaptive identifiers and model reference adaptive controllers

are presented. However, for practical reasons, the final input design will only be a semi-

optimal design F""* as mentioned in the preceding remark, hi the following, separate treatments

of the input design problem for an adaptive identifier and a model reference adaptive controller

are given.

5.4.1 Adaptive Identifier

It is shown in subsection 5.1.1 that the bound on the rate of convergence of the parameter

error vector § is

eW**(0)) + o(8)

when e is small enough. Since the first term will dominate the second one for small e, we will

focus only on the first term within the context of our optimization problem. Now by choice of

an input design over N(Cl), where CI is preassigned to be in a frequency band [-coo,co0] such

that the bound is maximized, this problem falls into the same setup as given in section 5.3. By

referring to (5.1.1.3) and Definition 5.2.2, we see that gal and //=& As has been proven in
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the Convergence Theorem, the numerical algorithm will then provide an optimal input design

F^, or, instead, a semi-optimal input design F^ in practice.

Example 5.4.1:

Consider the adaptive identification of a plant

Choose the filter of the compensator block to be —^—, and denote the parameter error vector
s+5

$se-6*=[$|,fe,fa]r, where e*=[cl,^l,c5lr is found to be [-1.6,0.4,2.0]r. As indicated

above, we choose a prior guess of the plant as

^)»3-^|. (5.4.1.2)
s+5

Moreover, since the plant is of first order, an initial input design:

•r- F2 =-rS(tt)+T0X©-2)+4-8(a>f2) (5.4.1.3)
2ft 2 4 4

is considered. Also, by the locations of the pole and zero of the plant a reasonable frequency

search range Q= [-10,10] is preassigned. Thus after applying sequential design algorithm, we

obtain FJ^ shown below:

-L F^ =0.4458(©)+0.192{5(co-2)+5(a>f2)}+0.0203{5(co-3.52)+5(aM-3^2) }
2ft

+ 0.00702{cX<o-3.80)+8(G>f3.80)} +0.00442 (5((i>-4.29)+5(a>f4.29)}

+ 0.0539{5(Q>-4.43)+5(aM4.43)} + 0.10{8(ci>-10)+5(»fl0)} . (5.4.1.4)

Figure 5.4.1 shows the spectral distribution of F^, and Figures 5.4.2 and 5.4.3 illustrate the

difference in the convergence rates of parameter errors fa, fa, and the output error e=y0-yp

for the input designs Fj and F%* respectively.
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5.4.2 Model Reference Adaptive Controller

In this subsection, we will consider only the output error scheme since the input error

scheme can be treated exactly the same way as the identifier. As was shown in subsection

5.1.2, the bound on the rate of parameter convergence is given by

*Km(SM(RwmwJO))) + o(e)

when e is small. We will also optimize the first dominating term and neglect the second term

in the context of the input design problem. Again, this problem fits into the setup given in sec

tion 5.3, and, by referring to (5.1.2.6) and Definition 52.2, we see that g=Rem/cJ, H=Qm.

Consequently, application of the sequential design algorithm will readily provide an optimal

input design F^, ora semi-optimal input design FJ"1 in practice.

Example SA2:

Consider the output error directmodel reference adaptive control of a first order plant

/W =-I7 (5.4.2.1)
5+1

and a reference model,

m(s) =-£- . (5.4.2.2)

Denote the parameter error vector $=Q-Q*=[fa,faf where the true value 8*=[j£,Aj]T is

[1.5 ,-l]r. Unlike the case of identification, aprior estimate of the plant is not necessary. Since

the plantis of first order, we consider the following initial input design:

^ F2 =J5(gM.5) +±8((D+1.5) (5.4.2.3)

Also, the frequency search range CI will be chosen to be the same as the one in the previous

example. Then application of numerical algorithm provides the semi-optimal input design FJ**

as follows:

T" FE- s T 5(Ct>-2.46) +4 5(0M-2.46) (5.4.2.4)
2ft 2 2
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Figures 5.4.4 and 5.4.5 illustrate the difference of convergence rates of the parameter errors <l>i,

<fe, and the output error e0=yp-ym for the corresponding input designs, F° and Fru .

5.5 Design Guideline for Adaptive System with Unmodelled Dynamics

In section 5.4, we applied sequential design algorithm to both adaptive identifiers and

model reference adaptive controllers with nominal plants; in which case the frequency search

range CI may be made as large as possible. However, adaptive identification and model refer

ence adaptive control is usually performed in cases where the plants are contaminated by high

frequency unmodelled dynamics. As a consequence, the choice of the frequency search range

CI becomes a relatively important factor for consideration in the context of input design.

In this section, we will first study some practical aspects in adaptive identification and

model reference adaptive control, and then use these as a general guideline for choosing the

frequency search range CL As would be expected, some prior information about plants and/or

reference models is required, and will be discussed later in each subsection.

5.5.1 Adaptive Identification

Here, we consider the same setup for adaptive identification given in section 3.4, with the

following additional assumptions.

Assumptions:

(A6) \p(j&) I ^ U for some known L,>0, for all coe R.

(A7) |ApO'ffl) U ^ 5,<co) for some known function 8t<©) (usually small for small co.

(A8) || 8* || £ hi for some known A,->0.
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Remark: Assumption (A7) is very common in nonadaptive control for designing controllers,

for example, XS(P,Q control loop for pole placement shown in Figure 5.5.1. By the Nyquist

criterion, if the nominal loop is stable and

IAp(/G>) I I ^ I<1 for all C0€ R (55.1.1)

then the overall loop will remain stable.

From subsection 3.4.3, when the parameter adaptation is slow, for almost every input u

with Supp(u) containing at least 2/t+l points, the parameter vector 0(0 satisfies

II 6(r) - 9T || £ W) feto+T (5.5.1.2)

for some 7>0, where 67 is the tuned parameter given by (3.4.2.11) and y(e) is a class K func

tion. In particular, if Supp(u) contains exactly 2n+l points, 6(r) converges to 9r exponentially

so that a unique transfer function pT defined by (3.4.2.13) (tuned model transfer function) is

obtained. Now if the controller shown in Figure 5.5.1 is to be designed based on the tuned

model and the information (AT), the resulting loop may not be stable. Hence some confidence

on the closeness between the tuned model, described by pT, and the true plant described by pu,

should be established before control is implemented. Following this, the loop that we are going

to study instead is shown in Figure 5.5.2 where the bound on the perturbation part

\pu(jto)-PT<j<x)) I is left to be determined.

Remark: Note that the input u does not have to be such that Supp(u) contains exactly 2n+l

points in order to get the tuned model transfer function pj(s). By (5.5.1.2), if e is small, 8(f)

will stay within a neighborhood of 0T so that by some approximation, 67 and, hence, pj can

be read off from the identifier.
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Using Theorem 3.4.2.1 and 3.4.3.1, we consider an input u whose Supp(u) contains

exactly 2/H-l points such that the tuned parameter 87 is well defined. It then follows that 6(r)

converges to 87 exponentially and thus

PJjti) =PiQco) forall ©eSupp(tt). (5.5.1.3)

Let 8* be the true parameter for the nominal plant as given in (3.2.9), and Q(s) be the transfer

function given by (3.3.6) so that from (3.2.7), we have p(s)=GTr&(s). Using this and

(3.42.13), the difference between pu and pT can be evaluated as follows:

tT-p.-e'*e(Tk -iw+mA —Dj

o-A—Or-eVd-A^ (5.5.1.4)
A-D7

Assuming, without loss of generality, pj(s) is stable, we have

law-a 1* I. *w— 111 am ll ll er - e* 11 +1 Ltm I• (5.5.1.5)
I A(/a>)-/>i</a>) '

AU the bounds, except || 8T-8* ||, on the R.H.S. of (5.5.1.5) can be computed using

knowledge of 87, (5.5.1.3), and assumption (A7). The difference between 87 and 8* can, how

ever, be estimated through (3.42.11) as follows.

Let & be the transfer function defined in (3.4.1.5) and denote

w :=Q(s)(u) and yp := p(s)(u). (5.5.1.6)

It then follows that

8* =RwtOrl Rw-y<0) (5-5.1.7)

where

Rw<0) =± £ fj3(W> ffW +(JC-M) #(rjai>) <? (5^.1.8)

Rwy(0) =± £ (<2(M>AW> +<2(-M)/*-M)] * (5-5.1.9)
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and if is the spectral magnitude of the fth frequency element incontrast with

(5.5.1.10)

where

Since

*-W>= TT £ \6JW)&W> +6uH®d&H<»d) if (53.1.11)21Z ltt0 I. J

R»yp(0) =-^ £ [AflWStod +QJrMfiL-M) t • (53.1.12)

Qu(s) m Q(s) +

0

fi2(s)Ap(s)
0

(53.1.13)

RJQ) and R^JP) are simply the ones perturbed from Rw»(0) and Rwy(0) and can be

represented as follows:

RJP) = RA0) + ARJL0) (5.5.1.14)

Rwyp(0) =Rw-y<0) +Atf^/O) . (5.5.1.15)

Note that || ARJQ) ||, || AR^(0) || can all be estimated from assumptions (A6)-(A7). It then

follows that the difference between 87and 6* can now be estimated by

|| 87-8* || <; || Rw(0)-1 || [|| A/?^(0) || +|| ARw(0) || || 8' || ] (53.1.16)

which is, in fact computable since Rw(0) can be computed using (5.5.1.3). This together with

(5.5.1.5) leads to a bound on \pj<j<i>)-pu(jQ>) |.

There are two by-products of (53.1.5). The first is a measure of robustness as indicated

in the first remark of this section; the second is a measure of performance, i.e. the closeness

between transfer functions of the tuned model and of the true plant If neither of these two

should satisfy some least requirements, then another reference input u, satisfying the condition
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the same as the previous one (Supp(n) contains exactiy 2/t+l points), may have to be chosen

again for the same identification task until the bound in(5.5.13) meets the requirements.

Remarks:

(1) A similar comment to that given in the remark after Figure 53.2 also applies here. (2)

In some cases, there might be some output disturbance d, for example, the measurement noise,

that contaminates the output of the plant If Supp(n)nSupp(d)=0» which is similar to the

assumption (All) in Chapter 4, then it can be checked that Theorem 3.4.2.1 will still be true.

It then can be deduced from the proof ofTheorem 3.4.3.1 that 8e L^1. The difference, how

ever, is in that 8(f) may no longer converge to 8T defined in (53.1.10). Yet if the magnitude

of disturbance d is small relative to that of the reference input u, then, when e is small,

(5.5.1.2) will imply that 8(0 may still be very close to 87 so that a transfer function can be

read off from the identifier. This will then allow us to treat this transfer function as if it were

pT and to evaluate (53.1.5) the same way as described above.

The above discussion is from the viewpoint of analysis. For design purposes, we would

prefer to select proper inputs to achieve the same objectives as described above even before the

identification is performed. However, the price one has to pay is thatmoreconservative results

are to be expected. Specifically, a prior guess of the tuned model has to be used for computing

RJPT1 in (53.1.16). In the following, general input design guidelines for choosing proper

inputs for adaptive identifiers is given based on these results.

General Input Design Guideline:

Data: Let SSmaxSK©) be the performance index, i.e. for any identified transfer function
toeR

Piis):

\Pu-fr I- := max \pu(j<a) -Aflto) I* 8* (53.1.17)
C0€ A
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fto=[-coo,CDo], for some (Oo>0, is the initial choice of the frequency search range,

and p?bethe prior guess of the tuned model transfer function.

Step 1: Set i = 0.

Step 2: Choose Q, = [-co,-,©,], and the input ul such that:

SuprXo1') =j-co,-, -^p-<*i. •'.0,••-^^©i. ©, [• (53.1.18)

Step 3: Compute the bound on the R.H.S. of (53.13), using the prior guess of the tuned

model pjf and denote it O;. If o(- £ 8*, then stop and go to Step 5; else goto Step 4.

Step 4: Chose (&M < co,, and goto Step 1.

Step 5: Use Clt as the frequency search range and carry out the sequential design algorithm

for finding semi-optimal inputs. Here, the prior guess of the plant will be replaced by

pT.

Remarks:

(1) The prior guess of the tuned model, pj, can be updated while the identification process is

running. This provides a more precise design procedure.

(2) Normally, the semi-optimal input design FJU' generated by the numerical design algorithm

contains more than 2/H-l frequency elements; in which case the parameter 8(f) will not con

verge to the 87 determined by F^, but will oscillate around it Therefore, the preferable input

design should be a two-phase design. The phase I design is simply the semi-optimal input

design F^* so that 8(f) converges to a neighborhood of 87 quickly and stays within it The

phase n design is to include only 2/H-l frequency elements through a input reduction process

so that 8(f) converges to a new tuned parameter 8'T which is close to the 87. However, the

input reduction process requires some experience on the part of the designer.



Example 53.1:

Consider Example 5.4.1 but with the plant being changed into
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a(S) =li£±li 30 (53.1.18)
PuK) (s+3) (s+30)

where the additive unmodelled dynamics appears to be

Am =2£±I> —Z£— . (53.1.19)
PK) (s+3) (s+30)

Recall that the true parameter for the nominal plant is 8*=[-1.6 , 0.4 , 2.0]T. If we now use

Fj** which was obtained in Example 5.4.1 as the phase I design, the tuned parameter 87 is

computed by (53.1.10) to be [-1331,0.819,1.650]T, which gives pj(s) as

= (1.650^0393) (5 5A 2Q)
pn' (s+0.905)

When f=20 (sec), the phase II design is started using the initial design F° which is used in

Example 5.4.1, where the tuned parameter 8'r can be read off from the identifier as:

[-1.443,0.516,1.7671T so that p'-^s) can, again, be computed as:

p^s) =IL267£±JL613i (55121)
F1KJ (s+2.422)

Hgures 5.5.3 and 53.4 illustrate the difference of convergence rates of parameters cx, d{, and

the output error e0=y0-yp resulting from the two-phase design and only a single design f£
respectively. When the two-phase design is used, at roughly f=40 (sec), 8(f) appears to be very

close to the tuned parameter value 8'r, whereas 8(f) is still converging to the same tuned

parameters after f=160 (sec) when only a single design F2 is used. Figure 5.5.5 shows the

Nyquist plots of the true plant the nominal plant, and the tuned model. An interesting observa

tion will be that when the input contains frequency elements as low as dc and 2rod/sec, the

tuned model still approximates the true plant betterthan the nominal plantdoes.
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53.2 Model Reference Adaptive Control

In this subsection, we consider the same setup for model reference adaptive control as

described in section 4.4, with the following additional assumptions.

Assumptions:

(A16) | ApQ'to) | £ Se(a>) for some assumed known function bound 8c(co), which is an

increasing function of co and is very small for small co.

(A17) || 8* || £ hc for some known he>0.

It is shown in subsection 4.4.4 that if the adaptive system fails to satisfy the positive

definite PE condition, then the system is likely to undergo a slow drift of the controller param

eters. Thus the objective for choosing proper frequency search range CI here will be different

from that in the case of adaptive identification. For the output error scheme, given the tuned

parameters 87, CI is to be chosen such that

Re/ftrO'co) > 0 for all co e Q. (53.2.1)

Let 87 be given in (4.4.3.6) and denote

<?tCs) := C$Fi(s)A(s) and Dj(s) := (D$F2(s)+d<yr)A(s). (53.2.2)

Referring to the controller structure shown in Hgure 4.2.1, we define an nth order pseudo plant

transfer function pT:

HA =tM := (Vcor) *f~y> (5*2.3)
Ms) (Knl car) Djis) + djs)

which clearly is the identified plant transfer function if 8(f) should converge to 67. Define

&•:=

1

F\thpT

m

fi2m

(53.2.4)



it then follows that

ef&T(s) =m(s)PT(srl

in contrast with the ideal nominal case

^iim(s) = m(s)p-l(s)

where Qm(s) is defined in (4.3.1.7). Hence we have

\-i ,-l =m(s)pT(sr-m(s)p(sr =
<>f<3r(-s)

1-(?*(J)/A(5)

4>f&»(*)
\-CT(s)/A(s)

where <|»r :=8T -8*, and C* ^C*7 J*i A, similar to that in (5.5.2.2).

On the other hand, the tuned model transfer function, mT(s) , using (4.4.1.8) and

(4.4.2.7), satisfies

mT(s) - m(s) a — % ( OfgmCr) - m(s)pu(sT1)
car

where (2m« is g*ven m (4.4.1.13). Since

&,=&«+ [o.^j/npV^p.O.o]
so that

A

which togetherwith (5.5.2.8) leads to an expression of mT as follows:

ihj —th + —^— fhj
cor

= th + —^— ift-p
car

(eT-e* fQm+m or1 -p;l)--j-mp;lAp
A

4>f&.+<l--r>'»Ar,A;J
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(53.23)

(53.2.6)

(53.2.7)

(53.2.8)

(53.2.9)

(53.2.10)



(l-<? /A) A l+Ap ,car

.* L.I- [0-C7/A) tffr fr -,^1
L C07 l(l-e /A) (1+iV) A l+Ap Jj
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-1

. (53.2.11)

Using the expression of pT in (53.2.3), the second term of the denominator in (53.2.11) can

be further simplified as

y**
fdT Ap . { *T *T $QT

dm l+Ap Knfip (l+Ap) t
(53.2.12)

Now restating criterion (53.2.1), our choice of frequency search range CI should be such that

max ItO'co) | <tan(-£-max \Uh(jai) |) (53.2.13)
oeQ 2 o>€ Q,

to make sure that RemT(j<o)>0 for all C0€ CI This may not be possible even for sufficiendy

low frequencies due to the fact that the second term in (5.5.2.12) does not appear to be a func

tion of the unmodelled dynamics (and, hence, can be made arbitrarily small for very low fre

quencies). However, if one is allowed to choose an input u that generates tuned parameters 87

for the above analysis, then there always exists an CI such that Supp (u) c CI, and (53.2.13) is

satisfied.

Consider an input u whose Supp(«) contains exacdy In points, then by Theorem 4.4.1.2

and 4.4.2.1, for almost every such input u, there exist unique tuned parameters 87 that satisfy

(4.4.1.12) which is repeated here

^7(/©) = /ft0'ffl)

=pttO'©)0fdmnO'a) for all co e Supp(u) . (53.2.14)

Assume that it is the case, then it follows from the remark after Theorem 4.4.3.2 that 8(f) con

verges to 87 exponentially and, hence, the transfer function pT defined in (53.2.3) can be

computed. Denote

wm:=Qmu(s)(u) ' and w*m .•= Qm(s)(u) (53.2.15)
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Up := mi(s)P:l(s)(u) and up := m(s)pTl(s)(u) (53.2.16)

It then follows from (53.2.6) and (53.2.14) that 87and 8* can be expressed in a form similar

to that in (53.1.7) and (53.1.10) respectively

87 =KwJOr1 Rw^(0) (53.2.17)

where

R„ (0) := ^ i fQ^O^QlO^+Gm«W©i)^(-yo>i)] <? (53.2.18)

RWJl?(0) := -^Z((LXAttD^Oto^to©)"1

+(LX-^^(-JtodA-iB«-1] r? (53.2.19)

and

8* =/2w:(0)-1 tf^0) (53.2.20)

where

Rwl(0) := •— £ (&XW<£(W+^ * (53.2.21)

"«> 2rc iatl C

+(^(-/^^(-JtoWVM)-1] f? . (53.2.22)
As before, the matrix RWJ® and the vector Rw^p) are the ones perturbed from RW'JP) and

R • .(0) respectively and can be represented as follows:

RWm(0) =Rwl(0) +ARWm(0) (53.2.23)

*h^(0) =Rw^(0) +ARw^(0) (53.2.24)

Again, if the norms || ARWJP) \\ and || ARWtJtp(0) || can be estimated, then, following from
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(53.1.16), the difference between 87 and 8* can be estimated likewise as

|| fa || <; || RWm(OTl || (|| A/^(0) || +1| ARWm(0) \\ || 8* || ]. (53.2.25)
However, from (53.2.9) and the fact mprx=mp?+mp?Ap, the estimates of || ARWm(0) || and

|| ARwA0) || require knowledge of rft(j<o)PJj<o)~l for all coe Supp(u) in addition to assump

tions (A16). By referring to Figure 4.2.2, if 6(f) is fixed at 87, then it follows that

Up =mTp;l(u) (53.2.26)

car

l-<?r/A

Therefore, using (53.2.14), we have

(u)+
ihjDj I A

1-^t/A
(U).

WPW* - C°r+T^)/AW (53.2.27)
l - Ct(/co)/A(/<u)

for all coe Supp(u) so that all the estimates of the norms on the R.H.S. of (53.2.25) and,

hence, an estimate of || fa || can be obtained.

Now using the bound on fa, the frequency search range £2=[-co0,co0] is sought such

that (53.2.13) is satisfied and Supp (u) c CI. Difficulties may, however, arise from the unk

nown rip. As before, this can be replaced by a prior guess of the numerator of p, similar to that

in the case of adaptive identification. Again, as mentioned before, such an CI may not exist for

one choice of input u that satisfies the above requirements. But by such iterative procedure, we

can eventually find an CI and an input u that achieve the goal

Remark: In general, the nominal control command signal usually consists of low frequency

signals so that the unmodelled dynamics of the plant may not be excited significantly, and,

hence, the tuned parameters 87 should be close to the true parameters 8* for the nominal plant.

As such, the above analysis will provide a frequency band, which is generally much higher

than that of the nominal control command signal. Any other signals whose frequency spectrum
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lies outside thatband should be avoided as they may contaminate the nominal input, for exam

ple, by filtering.

For design rather than analysis, we prefer to select proper frequency search range to

achieve the same objectives as given above even before the control task is performed. If this is

the case, the prior guess of the tuned parameter 87 (or £7) as well as that of ftp, additional to

assumptions (A16), is needed for computing all the bounds on the norms required in (53.2.13).

In the following, a general input design guideline of choosing proper inputs for model refer

ence adaptive controllers is givenbased on these results.

General Input Design Guideline:

Data: Let Qo=[-a>o.ci>o]. for some <o0>0, be the initial choice of the frequency search

range, and 87, fPp be the prior guesses of tuned parameters and the numerator of the

nominal plant respectively.

Step 1: Set i = 0.

Step 2: Choose Q; = [-co,-.©,], and the input ul such that

Step 3: Compute the bound on the L.H.S. of (53.2.13), using the prior guesses /# and fifp\
and denote it o> If ct satisfies (53.2.13), then stop and go to Step 5; else go to Step

4.

Step 4: Chose coi+1 < co{, and goto Step 1.

Step 5: Use Qt- as the frequency search range and carry out the sequential design algorithm

for finding semi-optimal inputs. There, the prior guess of the plant will be replaced

byp?.



188

Remarks:

(1) As before, the prior guess p? can be updated while the control process is running so that

the design procedure becomes more precise.

(2) In practice, the suboptimal inputs generated from the above procedure generally will not

be directly applicable to the adaptive system simply because the control task and, hence, the

control command signals should be pre-specified. However, the suboptimal inputs serve to be

good references for planning the control task so that both fast convergence and robustness can

still be taken into account

Example 53.2:

Consider Example 5.4.2 with the plant contaminated by a high frequency unmodelled pole

j=-20, i.e.

where the multiplicative unmodelled dynamics is seen to be

^-•srfe- (5-52-29)
Recall that the true parameters for the nominal plant is 8*=[ 1.5,-1 ]T, and the semi-optimal

input design F^ obtained in that example contains only single frequency so that the two-phase

design is notnecessary. Suppose that we now use F^ to be the input design, then, from simu

lation, 8(f) converges to the tuned parameters 87=[ 1.575 ,-1.226]r, which leads to the follow

ing tuned model transfer function,

Pto = -1 - (53.2.30)
m (s2+2ls+69.05)

Figures 5.5.6 and 53.7 illustrate the difference of convergence rates of kr and ky using FJ*' and

F^ respectively. Note that, since the frequency elements in both designs are low, the
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unmodelled dynamics are attenuated and convergence rates observed in this example are not

much different from those in Example 5.4.1. In Figure. 53.7, Nyquist plots of the reference

model and of the tuned model are shown to indicate the closeness between two transfer func

tions.

5.6 Concluding Remarks

In this chapter, we have formulated the input design problem for adaptive systems, both

identification systems and model reference adaptive control systems, in terms ofa problem of

optimization of the convergence rate of parameter errors. From Chapters 3 and 4, the analysis
of parameter convergence clearly suggested an approach to this problem using averaging
theory. The problem was thus recast .in a form ofmaximization of the smallest eigenvalue of
an average information matrix over aclass of input signals. The problem formulation is very

similar to that used in the stochastic literature (see, for example, Fedorov (1972) and Mehra

(1974)) for parameter estimation in linear dynamical systems. However, their objective was to

achieve a more accurate parameter estimate.

Under this formulation, the optimal inputs were characterized in the frequency domain

and asequential design algorithm was provided to attain these optima iteratively. These optimal

inputs are found to be global maximizes ofthe smallest eigenvalue owing to aconvexity pro

perty of the problem. However, the algorithm is more of an analysis tool than a design tool
owing to the fact that the solution inevitably depends on the knowledge of the unknown plant

Yet, the design function can be achieved by replacing the unknown plant with an initial guess.

Such a method is very common in the stochastic context and is referred to as a Bayesian

approach, since it assumes aprior distribution of the parameters to be estimated. Examples of
applications of this design algorithm to adaptive identifiers and controllers have been given to

illustrate the results.
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As indicated in Chapter 3 and 4, unmodelled dynamics exist in practice, and performance

and/or stability of identifiers and controllers is crucially related to the tuned model. In subsec

tions 3.4 and 4.4, the major dependence of these tuned models on the reference inputs was

emphasized and a qualitative discussion was given. Here, under the same assumption of sta

tionary inputs, a more quantitative study of the relationship between the frequency content of

the reference input and the performance and/or stability of adaptive systems was performed. In

the case of adaptive identification, the objective is to make the identified transfer function meet

the requirements for the ultimate control task, whereas, in the control case, the objective is to

make the system satisfy the positive definite PE condition. A product of this study is the deter

mination of the frequency range that the spectral support of the reference input should lie ia

This is then used as a frequency search range in the input design algorithm. Finally, based on

these results, general input design guidelines were proposed for adaptive identifiers and con

trollers.
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Chapter 6 Conclusion

In this thesis, we have presented averaging as a technique for the analysis and synthesis

of both adaptive identification and control systems. A thorough analysis of adaptive systems

using this technique was performed under ideal conditions as well as non-ideal conditions,

where unmodelled dynamics and/or output disturbances were present. Also a synthesis pro

cedure for generating reference inputs that maximize the rate of convergence of the adjustable

parameters was proposed.

First, a full set of averaging results for adaptive systems was provided. Theorems were

developed for exponential, partial exponential, and bounded stability, and also for instability of

one- and two-time-scale dynamical systems. These results enabled us to relate several proper

ties of nonautonomous systems to those of autonomous systems and hence simplify the

analysis of the system. Adaptive systems, under the assumptions of stationary reference inputs

and slow adaptation, satisfy the assumptions needed for these results.

Assuming ideal conditions, existing results have shown the stability and output conver

gence of the adaptive identification scheme and model reference direct adaptive control input

and output error schemes. In particular, the adjustable parameters converge exponentially

whenever the reference input is sufficiently rich. In this, averaging can be applied as an

approximation method to obtain estimates of the convergence rates for different algorithms.

Examples were given to illustrate the accuracy of these estimates.

The robustness of these schemes to unmodelled dynamics and/or output disturbances were

examined. The PE condition of Boyd and Sastry (1984) was replaced by an almost always PE

condition, and tuned models for adaptive identifiers and model reference adaptive controllers

were precisely established for the analysis. Under the assumption of slow adaptation and per

sistency of excitation, the identifier parameters converge to a ball centered at the tuned parame

ters with a radius that is a class K function of the adaptation gains. Similarly, the controller
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parameters converge to a ball centered at the tuned parameters with a radius that is a sum of a

class K function of the adaptation gain and a linear function of the mean squared power of the

tuned error provided that: (i) the adaptation is slow, (ii) the tuned model is close enough to the

reference model, and (iii) a sufficiendy positive definite PE condition is satisfied.

Payoffs from this robustness analysis include:

0) a better understanding of the behavior of the parameters under slow adaptation was

obtained,

(ii) the importance of the spectral content of the reference input to the performance and/or

stability was greatly emphasized,

(iii) relaxation of the SPR condition for the output error scheme of a model reference direct

adaptive controller was suggested, and

(iv) a substantiation of the positive definite PE condition for both input and output error

schemes of a model reference direct adaptive controller was given.

Finally, a frequency domain technique for the synthesis of reference inputs for adaptive

systems was proposed. The idea is to select inputs subject to power constraints so as to max

imize the rate of exponential convergence of the adjustable parameters under PE assumption. In

the presence of unmodelled dynamics, a practical consideration of the range of input frequency

content (spectral support) was provided supporting the qualitative conclusion (ii) given earlier.



Proof of Lemma 2J.1.1:

Define:
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wfi*)mtdt%xy*'*'*d% (A2.2.1.1)

and:

i

wa(tx)=fd(xx)d% (A2.2.1.2)

From the assumptions:

\tWff(t+tox)-wo(t0x)\\£y(t).t (A2.2.1.3)

for all f ,f<£0, xeBh. Integrating (A2.2.1.1) by parts:

t

we(f^)=w0(f^)-ep-€(l^)w0(x^)rfT (A2.2.1.4)

Using the fact that:

efe-£(|-t)Wo(f^)rfx=wo(f^)->vo(f^)e-er (A2.2.13)

(A2.2.1.4) can be rewritten as:

t

w£(f^c)=w0(f x)e-" +zfe^^(w<ttxyw<&x))dx (A2.2.1.6)

and, using (A2.2.1.3):

t

\\wt(t ,x)H£-y(f )f e-°+e\e-*-<)(t^z)'i(t^i)dx (A2.2.1.7)

Consequently,
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\\ewt(tx)\\£s^j)t'e*'+^y(j)x'e'*dx'
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(A2.2.1.8)

>/w'^-iSince, for some p. \\d(t x)\\<$, we also have that tff)*p. Note that, for all f^0, f <? <*',

and t V £f', so that

llewe(f,x)ll£ sup,,
retool

*£*'€-*' + SUD

+[*£)x'e^dx'+H^)*e'*dx'

This, in turn, implies that

\\ew^tx)\\^^+^^)e'l+P^+y(^)(l+^)e^
<i

-5i(e)

Clearly %x(z)eK. From (A2.2.1.1), it follows that:

-d(tx)=-zwz(tx)
dwe(f.*)

df

so that both (2.2.1.6) and (2.2.1.7) are satisfied.

Ify(T)=arrr, then the right-hand side of(A2.2.1.8) can be computed explicidy:

sg>aer(t')l-re't'=aer(l-r)1-rer-*Zaer

and, with r denoting the standard gamma function:

[a€(i!Ji-re'*dx'=aeT(2-r)<>a€

Defining %x(z)=2a€, the second part of the lemma isverified.

(A2.2.1.9)

(A2.2.1.10)

(A2.2.1.11)

(A2.2.1.12)

(A2.2.1.13)

Q.E.D.



Proof of Lemma 2.2.1.2:

Define wt(tx) as in Lemma 2.2.1.1. Consequently,

dwz(tJt) _ B
dx dx

[d{%t)e-«^d% •|-rfCwc)
dx
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e-**>d% (A22.L14)

Since d<*ft»*) is zero mean, and is bounded. Lemma 2.2.1.1 can be applied to —k~* &&
dx dx

inequaUty (2.2.1.6) of Lemma 2.2.1.1 becomes inequality (2.2.1.10) of Lemma 12.1.2. Note

that since dd(fx) -s founded, ^ d(t,0)=Q for all f£0, d(tx) is Lipschitz. Since d(tx) is
dx

zero mean, with convergence function 7(7)11x11, the proofof Lemma 2.2.1.1 can be extended,

with an additional factor Ibcll. This leads directly to (2.2.1.8) and (2.2.1.9) (although the func

tion §!(e) may be different from that obtained with ? »tose functions can be replaced

by a single §i(e)).

Q.E.D.

Proof of Lemma 2.2.13:

The proof proceeds in two steps.

Step 1: For e sufficiently small, and for t fixed, the transformation (2.2.1.15) is a homeomor-

phism.

Apply Lemma 2.2.1.2, and let tx such that gi(£i)<l. Given zeBr, the corresponding x such

that:

x=z-ew£(f,z) (A2.2.1.15)

may not belong to Br. Similarly, given xeBr, the solution z of (A2.2.1.15) may not existin

Br. However, for anyxj. satisfying (A2.2.1.15), inequality (2.2.1.8) implies that:

(Mi(e)) Hz II ^ llxll ^ (\+%\(z)) "zH (A2.2.1.16)
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Define:

r'(e) = r(l-$j(e)) (A2.2.1.17)

and note that r'(z)->r as e-»0.

We now show that:

CO for all zeBr>, there exists a unique xeBr such that (A2.2.1.15) is satisfied,

(ii) for all xeBr>, there exists a unique zeBr such that (A2.2.1.15) is satisfied.

In both cases, llx-zll£l;1(e)r.

The first part follows directly from (A2.2.1.16), (A2.2.1.17). The fact that lbc-zl!<Sj(e)r

also follows from (A2.2.1.16), and implies that, if a solution z exists to (A22.1.15), it must lie

in the closed ball U of radius £i(e)r around x. It can be checked, using (2.2.1.10), that the

mapping Fx(z)=x-ewE(f,z) is a contraction mapping in U, provided that £i(e)<l. Conse

quently, F has a unique fixed point z in U. This solution is also a solution of (A2.2.1.15),

and since it is unique in U, it is also unique in Br (and actually in Rn). For xeBr, but out

side Br>, there is no guarantee that a solution z exists in Br, but if it exists, it is again unique

in Br. Consequendy, the map defined by (A2.2.1.15) is well-defined. From the smoothness of

we(f ,z) with respect to z, it follows that the map is a homeomorphism.

Step 2: the transformation of variable leads to the differential equation (2.2.1.16)

Applying (A2.2.1.15) to the system (2.2.1.1):

ow ow(/+e-^)i=e/av(2)+e(/(M.0)-/av(z)—^)

+e(/(f,z+ewe,e)-/(f,z,e))

+e(/(f,z,e)-/(f,z,0))

:^tfav(z)+ep,(tx^,e) (A2.2.1.18)
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where, using the assumptions, and the results of Lemma 2.2.1.2:

llp^f^^ll^^^llzll+^^/illzll+e/^ll (A2.2.1.19)

ow

For e^ei, (2.2.1.10) implies that (I+e-r^) has abounded inverse for all f£0, zeBr. Conse-
oz

quently, z satisfies the differential equation:

vi

where:

and:

z = 7+e-
dwt

dz
(e/av(z)+ep/(f^.e))

=e/av(z)+ep(f,z,e) z(0)=x0

p(tj£)=

r *\

dw£
-l f

p'(t*£)-z-r£fw(z)

lip (f^ ^)ll ^—tVt (5i(e)^i(e)/i"*^2^i(c)/flv) "z II
*-Sl(Cl)

^V^llzll

for all f£0, e<£i, ze£r.

(A2.2.1.20)

(A2.2.1.21)

(A2.2.1.22)

Q.E.D.

Proof of Lemma 2.2.1.6:

Applying Lemma 2.2.1.2, we see that there exists a class K function c^(e) such that (2.2.1.38)

is satisfied. Then by Lemma 2.2.1.1, it follows that

!lew£(f,x)ll £ 5,(6)11* II +?,(e) (A2.2.1.23)

for some ?j(e) e K. Denote:
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h jo 1+2&2L (A2.2.1.24)
r

It is clear that (2.2.1.36) and (2.2.1.37) will thus be satisfied.

Q.E.D.

Proof of Lemma 22.1.7:

This proof is similar to that of Lemma 2.2.1.3.

Step 1: Consider the transformation (2.2.1.39). Inequalities (2.2.1.36) implies that:

II z II - h £i(£)r £ IIx II £ II z II + h $i(e)r (A22.1.2S)

Define:

r'(e) := r (1 - h ^(e)) (A2.2.1.26)

and let et be such that h %\(t\)<\ (this also implies §i(e1)<l). To show that claims(i) and (ii)

in the proof of Lemma 2.2.1.3 will also hold here, it suffices to show that the mapping:

Fx(z) = x - ew£(f ,z) (A2.2.1.27)

is still a contraction mapping in Br for all * e Br>. However, this fact direcdy follows from

(2.2.1.38). Therefore, the transformation (2.2.1.39) is well defined.

Step 2: Applying Lemma 2.2.1.6, the conclusion (2.2.1.41) simply follows from (A2.2.1.18)

and (A2.2.1.21).

Q.E.D.

Proof of Lemma 2.2.2.1:

We apply Lemma 22.1.2, and obtain a result similar to Lemma 22.1.3. Consider the transfor

mation of variable:

x=z+ew£(f,z) (A2.2.2.1)
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with e££i. This transformation leads to:

#)u> I OWz=(/+e^r1e j/av(z)+(/(f^,0,0)-/dv(z)—^)

+(/(f,z+ewe,0,0)-/(f,z.O,0))

+(/ (f ,z+en>e.0,e)-/ (f ,z+ewe,0,0))

+(/(f^+ewe,y^)-/(f^+ewe,0^)) \ (A222.2)

or

i =e/flv(z)+ep1(f jj£)+ep2(tj,y£) z(0y=xQ (A2.2.2.3)

where:

llprff.z ,£)!!<;—rVr^2(e)(iv+52(e>^2(e)/i+(K2(e))/5)IIz»
1-S2(ei)

s»?a(e)*ill*ll (A2.2.2.4)

and:

iiP2(^»y.£)''̂ , A x/2»y»-^"yii (A2.2.2.5)

Q.E.D.

Proof of Lemma 222.4:

The proof is similar to that of Lemma 2.2.2.1. The result direcdy follows from Lemma 2.2.1.6

and (A2.2.2.2) in Lemma 2.2.2.1.

Q.E.D.
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APPENDIX B

Lemma Bl: (Unique Parameters for Adaptive Identifiers)

Consider an SISO plant described by (32.1) and an adaptive identifier with its structure shown

in Fig. 3.2.1. Let assumptions (A1)-(A2) be satisfied.

Then there exists unique parameters 0* e A2"*1 such that, if the identifier parameters 8(f) is

fixed at 8*, the transfer function from the input u to the output of the identifier ya is identical

to that of the plant

Proof: Denote 8=[ CT ,DT , c„+1 lr, and define:

C(s):=CTfil(s)A(s)

= cisn~l + - - +cn (B3.2.1)

and:

6(s):=DTfi2(s)A(s)

= dxs*-x+-+dR (B3.2.2)

LetHy0U(B,s) be the transfer function from the input u to the output of the identifier y0 when

identifier parameters 6(f) are fixed at 8. It then follows that:

**.».*> -#f +4£r^>+ c*« (B3-23)A(s) A(s)

Let 8* =[C*T , D*7 , c„*+1 ]r besuch that:

<?*(*)+ Ci=*pV*> (B3-24>

and:

D*(s) = A(s)-dp(s) (B3.2.5)
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where C*(s) and D*(s) are defined similarly as in (B3.2.1) and (B3.2.2). Then we have:

Hy0U(O' ,s) =p(s) (B3.2.6)

Now let any 6 be such that:

fi>9U(Q,s)=p(s) (B3.2.7)

and then, from (B3.2.3), 8 must satisfy:

*?> +*«**) mpW =*, A« (B3.2.8)
A(s)-6(s) ^ ip(s)

Since Dfr) and C(y) are of the order at most n-1, and A(y) is of the order n, it then follows

from (B3.2.8) that the solution of the above equation must be unique. Consequendy, from

(B3.2.6), we can readily conclude that 8* is the unique choice of parameters such that (B3.2.7)

is satisfied.

Q.E.D.

Lemma B2: (Linear Filter Lemma)

Suppose that y =H(s)(u), where fi(s):C -»Cm is a stable transfer function. Then y is sta

tionary if u is stationary, and the power spectral measure Sy(d(o) is related to Su(d(o) by the

following:

Sy(da>) =tf(/a>) Su(d<a) /T(/fi>) (B3.2.9)

Proof: See Boyd and Sastry (1987).
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APPENDIX C

Lemma CI: (Unique Parameters for Model Reference Adaptive Controllers)

Consider an SISO plant and a reference model described respectively by (4.2.1) and (4.2.2),

and a model reference adaptive controUer with its structure shown in Fig. 4.2.1. Ut assump

tions (A1)-(A5) be satisfied.

Then there exist unique parameters 8* € R2" such that, if the controller parameters 8(f) are

fixed at8*, then the transfer function from the input u to the output of the plant is identical to

that of the reference model.

Proof: See Bodson (1987) (Ph.D. Dissertation, p. 52)

Lemma C2:

Let SuppOO contains 2m points, wherem2n.

Then

Km [R^O)-™ SM(R^(0) ]R^O)-1*) (C4.3.1.1)

£ -V min Rem(/©)/0' ©)
C0 cue Supp<iO

where ?m=^rl(wm).

Proof: By hypothesis and Theorem 4.3.1.3, Cm is PE so that R^(0) and R^W) are posi

tive definite. Now from (4.3.1.42), we have:



r u/2mM^ W'M^

where f,-2 is the spectral magnitude of the frequency element <*>,•, and:

W2= diag

Similariy, from (4.3.1.41), we express SM(Rrm^m/(0)) as follows:

SM(Rrvm(Lf(0)) =̂ -T £ Re(m(M-)fafi>i)) [tf^u(M)#L«0'<o,>

+rft,«(-y^)*L«W®f) ]'i2

^M^J WD WM^

where

••44)---*b(*-5>
f2 f2•m »m
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(C4.3.1.2)

(C4.3.1.3)

(C4.3.1.4)

(C4.3.1.5)

D=-rdiag [diag [Rejft(/<x>i)?(/a>i), Rtm(j(Oi)t(j®i) J, ••

• •, diag [Re/ft0©m)/0w«). Re/ft0'<O'0'©*)) ] (C4.3.1.6)

Thus the matrix R^m(0TiaSM(R^m^(0))R^m(0)"V2 in terms of W, D, and A/^ as follows:

/?ti(0r,y25M(/?tiW(0))/?JLi((0r1/2

=[Murw2A/u]~1/2 [a/J^divm^J Ud</W2Mt j"

(C4.3.1.7)

1-1/2

=*JD*t

where

M^ := "/ A/^ [m;/ W2^ 1"1/2 (C4.3.1.8)
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Now letx be any unit vector in fl2*, i.e. Ilx 11=1, and then, from (C4.3.1.7), we have:

X^(D)IIM^xll2^A^(^^(0rw5Af(/?^w(0))/??iii(0r1/2)

^Kmx(P)\\M^x II2 (C4.3.1.9)

which can further be simplified as:

^(D)^^^^)-1^^^^^))/?^)"172)^^^) (C4.3.1.10)

From the definition of D in (C4.3.1.5), we have:

Kiin(P) =^ min Rem(j(Hi)i(J^i) (C4.3.1.11)
C0«(6Supp(u)

thereby concluding the result.

Q.E.D.
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Figure 3.2.1 Adaptive Identifier
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Figure 4.2.1 Model Reference Adaptive Controller
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Figure 4.2.2 Modified Model Reference Adaptive Controller
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