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Abstract

A second order digital phase locked loop may exhibit unusual behavior for some parameters due to

a fractal boundary between the basin of attraction of the locked fixed point and the attracting basins of

coexisting periodic orbits. The usual optimization criterion of the loop parameters using linearized analysis

is insufficient, due to coexisting periodic orbits. We present a new optimization procedure based upon

numerical bifurcation studies. We obtain numerical estimates of average lock time which can be approximated

analytically using the rate of contraction of the phase space in a neighborhood of the fixed point, together

with the size of the phase space that is regular for the underlying Hamiltonian approximation.

f^ * Research sponsored by National Science Foundation Grant ECS-8517364 and by Office of

Naval Research Contract N00014-84-K-0367.
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1. Introduction

The nonuniformly sampling digital phase locked loop (DPLL) has been frequently studied over the years [1,

2, 3]. In a previous paper [3] the nonlinear equations describing the DPLL were linearized about the locked

state and the loop parameters were optimized for the fastest linear convergence to that state. Using these

parameters, not all of the initial conditions in the phase space wereseen to converge; that is, infinite cycle

slipping was observed. Moreover, the boundary between those initial conditions that converged and those

that did not converge was not well defined; that is, the system seemed very sensitive to initial conditions.

In this paper we will show that this phenomena is due to a period-4 orbit that coexists with the locked

fixed point, and that the observed sensitivity to initial conditions is due to the fractal structure of the

boundary between the basins of attraction for the period-4 orbit and the fixed point. In addition, we show

using numerically computed bifurcation diagrams that one can choose parameters such that almost all initial

conditions will converge to the locked fixed point. Using bifurcation theory along with numerical simulations

we can choose parameter values that give the maximum lock range. We examine the convergence statistics

for the DPLL using a theory developed to determine the convergence rate for weakly dissipative mappings

[11]. We estimate the convergencerates of the DPLL and compare with the numerical results.

The block diagram of the DPLL is shown in Fig. 1. The period of the digitally controlled oscillator

(DCO), Tk =tk —tfc-i, is controlled by the output, y*, of the digital filter as follows:

X* = r-yfc-i with T=—, (1)

where (Jo is the nominal operating frequency of the DPLL and m is a positive integer. The input signal is

s(t) = Asin(uit + 00). The z-transform of the of the output of the digital filter is:

Y(z) =(g, +j-^-) S(z),

where S(z) is the z-transform of s(t). We define the phase error, 0*, as follows:

fe-i

<f>k = uitk + do -wq^>2y». (3)
t=0

(2)

The scalar second order equation describing the system can be written:

0n+i - 20n + 0n-i =-wiA(Gi+G2)sin0„+a/iGiAsin<£„_i. (4)
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Defining

fn = fa-fa-li (5)

k'^UidA, (6a)

and

•(■♦&)• (»)

where we assume A > 0, G\ > 0 and (?2 > 0, then equation (4) can be written:

In+i = In - r*' sin fa + &' sin(fa - J„), (7a)

fa+1 = fa + -Tn+1, (76)

and substituting for 7n+i we have

fa+l = fa + Jn - rfc' sinfa + *' sin(fa - J„). (7c)

The above equations exhibit a circular symmetry in fa and In} that is, if we change fa and/or In by

a multiple of 2a- then In+i and fa+i will stay the same modulo-2^. We can therefore restrict fa and In to

^ [0, 2tt], where we identify 0and 2t, i.e., (/„, <j>n) €T2, the torus.

2. Basins of Attraction

In reference [3] the stabilityof the fixed point, J = 0, <f> = 0, ofequation (7) was studied using linearization.

Denoting the mapping in equation (7) as (7n+1, fa+l) = /(/„, fa) the jacobian of the mapping is:

Df(T <h\- (l~k'cos^ " Z) ~rk> cos ^+ k' cos(^ ~ J) ^ f*\JK1,w~ Vl-^cos^-/) l-rfc'cos^ + Jb'cos^-/); * W

At (/, 0) = (0,0), we obtain

0/«m>)=(}:*: r.^Vt')- w
Osborne chose the parameters k' = 1 and r = 2, since for these parameters three elements of the

9

jacobian are zero and the spectral radius, the maximum of the magnitude of all the eigenvalues, is zero.

These parameters give optimally fast convergence near the fixed point (0,0).

Although reference [3] pointedout the existence of a number of period-2 orbits, none of which are stable

(^ for the above k' and r, a stable period-4 orbit exists, with fa = 2.9556, fa = 5.4536, fa = 3.3265 and
fa = 0.8296, which gives rise to the infinite cycle slipping observed. To understand the observed sensitivity
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to small changes in initial conditions, that is, two initial conditions close to each other may lead to different

asymptotic behavior, wecalculate the basins of attraction of the fixed pointat (0,0) and the period-4 orbit.

The basin of attraction of a fixed point or periodic orbit is just the set of all initial conditions that eventually

converge to the fixed point or periodic orbit. We can easily calculate approximate basins of attraction by

iterating a grid of initial conditions in the I-<p phase space with the mapping /(I, <f>) and classifying them

according to whether they converge to the fixed point or the period-4 orbit.

In Fig. 2a we show in black the initial conditions that convergeto the period-4orbit within 200 iterations.

Except for small neighborhoods surounding the points of the unstable period-2 orbit, (ii,fa) = (*, it),

(I2, fa) = (ir,0), all other grid points convergeto the fixed point (J, <j>) = (0,0) modulo-2ir, which corresponds

to the four corners of Fig. 2a. To see if the boundary between the two basins of attraction is fractal we

enlarge the boxed section of Fig. 2a., which we show in Fig. 2b., and in turn enlarge the boxed section of

Fig. 2b which we show in Fig. 2c.

The continuous interleaving of the basins on different length scales suggests the fractal nature of the

boundary. Fractal basin boundaries have been observed in a number of nonlinear systems including contin

uous time systems [4, 5], notably in the differential equations describing the forced damped pendulum.

3. Operating Parameters

Our main tool for evaluating parameter values for the DPLL is from numerically calculated bifurcation

diagrams, (see Fig. 3). Bifurcation diagrams were first used to study the changes in the structure of fixed

points and periodic orbits of one-dimensional maps with respect to changes in a parameter [6]. They are also

useful in higher dimensions if care is taken in their interpretation. Along the horizontal axis of the bifurcation

diagram a parameter of the system is varied, k' in Fig. 3, while vertically we plot successive iterates of a

state variable for the system; In in Fig. 3a, fa in Fig. 3b. For each value of the system parameter we first

select a set of initial conditions; in Fig. 3 we use a line of 20 points between (0,0) and (2jt, 2tt) for every

value of A'. Next we iterate that set of initial conditions for nout preliminary iterations to eliminate most of

the transient behavior. Finally, we plot n,-t, succeeding iterations of the state variable of interest.

When interpreting the bifurcation diagrams for the DPLL the following observations are useful. (1) The

equations were defined on a torus, hence 0 and 2x are the same point, for both 7" and <f>. For example, in

Fig. 3a and 3b at k' = 1.2 we see /„ and fa taking on the value 0 and In which are the same on the torus,

and hence the locked state. (2) A set of initial conditions is used; hence we may see more than one periodic
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orbit or fixed point at a system parameter value. This is evident for example in Fig. 3a when k' = 0.76.

From the iterates in the phase space, (I, <p), we find two distinct period-3 orbits, a period-2 orbit and a fixed

point, all coexisting for thesame parameter value. (3) Since we observe only one state variable ofthesystem

at a time, one state variable may be changing while another is constant. For example, the period-2 point

(ir,0), (fr.ir) could be misinterpreted as a fixed point from Fig. 3a, alone.

" The bifurcation diagrams of Fig. 3 indicate that, for the linear optimal parameters k' = 1.0, r = 2.0,

we have both a period-4 orbit and the fixed point of the locked state (0,0). This is clearly undesirable if we

want our loop to lock under most initial conditions. However, for k' = 1.2 we see only the (0,0) fixed point.

Following a 100 x 100 grid of initial points for this k', all grid points converged within 100 iterations to the

fixed point (0,0).

When selecting operating parameters r and &', no other stable fixed points or periodic orbits besides the

locked (0,0) fixed point should exist; or if they do exist their basins of attraction should be small enough to

be insignificant for practical purposes. Furthermore, we maximize the lock range in k', that is, we maximize

the percentage by which we can change k' (proportional to the driving frequency) and still have the loop

lock for all initial conditions. The important issue of average time to lock is addressed in the next section.

We reduce the number of r and k' values to be considered by determining the stability regions of the

fixed point at (0,0) and the period-2 orbit at (A, fa) = (t,0), (/2,fa) = (*, *")• Linearizing the mapping

f{I,<f>) about the locked fixed point at (0,0) the eigenvalues of (9), indicate that it becomes unstable, via a

period doubling bifurcation, for

*>rh- (10)
This is seen in Fig. 3, where k' = 4/3. Linearizing the mapping /(/(/, <f>)) about (t, 0) using the chain rule

and equation (8), wefind that the period-2 orbit, which is stable for small k\ becomes unstable, via a period

doubling bifurcation, for

*,>7T7?- (11)
We can see that the period-2 orbit bifurcates to a period-4 orbit in the bifurcation diagram of Fig. 3 at

k' = 2/VE. From the above we restrict k' to the range:

2 <*' <t4t- (12)VTT72 1+r

To further restrict the possible r and k' values we resort to numerical methods. In Figs. 4(a)-(c) we

show bifurcation diagrams for r = 2,4,6 respectively, with k' running through the range specified by the
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inequalities (12). For low k' values, i.e., towards the left side of the diagrams, we see the presence of a

period-4 orbit. This period-4 orbit becomes unstable for larger k' values via a Hopf bifurcation [7, 8],

i.e., if we linearize about the period-4 orbit the eigenvalues are complex when they cross the unit circle.

In Fig. 4(a) we also have a period-12 orbit appearing; however further studies have shown that this orbit

becomes unstable via a Hopf bifurcation before the period-4 orbit goes unstable. The equations giving this

period-4 orbit can be reduced to:

2fa + ife'sin fa —k'rsin fa = 4ir (13a)

2fa - k'rsin fa - k'sin fa = 2ir (136)

fa + fa = 2?r (13c)

fa + fa = 2?r (13a*)

Since, the eigenvalues are complexwhen they go unstable their magnitudesquared is givenby the determinant

of the jacobian of the system linearized about the period-4 orbit:

det(D/p<,riod-4) = (1 - fc'cosfa)2(l - fc'cosfa)2 (14)

To find where in k' this period-4 orbit becomes unstable for a given r we set equation (14) equal to one

and usingequations (13a) and (13b) wesolvefor fa, fa and k'. Weshow this k' value versus r as the lowest

curve in Fig. 5, and denote this orbit as the period-4A orbit.

For larger r values, as shown on the right hand side of Fig. 4(c), we see the birth of another period-

4 orbit which we denote by period-4B. The period-4B orbit is born via a saddle-node bifurcation; i.e., the

eigenvalues of the linearized system are real and one of them equals +1 when the orbit is born. Since the

eigenvalueequation is far more complicated than the determinant equation (14), we used a simple boundary

search technique to find k' as a function of r where the period-4B orbit is born. The upper solid line in

Fig. 5 shows the dependence of k' on r for the birth of this orbit.

The dashed line in Fig. 5 shows where the locked fixed point goes unstable. The shaded area in Fig. 5

indicates the desired region of loop operation. Using the results shown in Fig. 5 we can pick k* and r to

maximize the lock range, LR = Ak'/k, where Ak' is the maximum change in k' that can occur and still

allow convergence to the locked state. Our calculations show that this occurs for r = 4.25 and k* = 0.64

with a lock range of approximately 19%. The data of Fig. 5 must be used with some caution. First, the

period-4A orbit goes unstable via a Hopf bifurcation [7, 8], which means that for k' values close to the lower

6



solid line in Fig. 5, almost-periodic solutions usually exist. For example, from the numerical calculations

at r = 2.0, the period-4A orbit goes unstable at k' = 1.0830. The Hopf bifurcation theorem predicts the

existence of an almost-periodic orbit near the unstable period-4A orbit. This almost-periodic orbit is seen

inFig. 6, where r = 2.0 and kf = 1.0850. Hence the lower bound onk' in Fig. 5 is not an exact bound. The

same can be said for the upper bound in Fig. 5, since operating too close to it can have deleterious effects

on the rate of convergence.

4. Rates of Convergence

In this section weshow that the average convergence rate is slower than the convergence rate predicted by

linearizing the system near the locked state. To do this we calculate the convergence statistics for a grid

of initial conditions as a function of the number of iterations of the system. We compare our results with

the linear theory and give a method of estimating the convergence rate outside the region of validity of the

linear theory.

To compute the convergence statistics for the DPLL on the torus we need a computationally convenient

metric. We choose the following metric for the circle [0,2?r], where 0 and 2;r are identified:

dc(x,y) = mm(\x-y\,2ir-\x-y\), x,2/€[0,2t] (15)

and then extended it to the torus in the standard way:

Wli,fa),(htfa)) = dc(IitI2) + dc{fa,fa) (16)

With this metric we computed the RMS statistics as follows:

RMS(n) =
n9f

-i-£ cf((/n,t-, fa,,),(0,0))2 (17)

where npU is the number of points in the grid of initial conditions, and n is the iteration count. Since (17)

tends to be exponential with n, it is more informative to plot the logarithm of (17), rather than (17) itself.

In Figs. 7(a)-(d) we show plots of \nRMS(n), where r = 4.0, for k' running from the lower to upper

bounds as set by Fig. 5. The In RMS{n) curves ofFigs. 7(a) and (d) indicate markedly inferior convergence

characteristics. For Fig; 7(a) with a k' near the lower bound shown in Fig. 5, this is due to the presence of

almost periodic orbits. For Fig. 7(d) with k' near the upper bound shown in Fig. 5, Fig. 7(d), this is due to

the locked fixed point beingon the verge of instability. Figs. 7(b)-(c) show InRMS(n) curves that exhibit a
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distinctive piecewise linear character, first the curves appear approximately linear with a given slope, then

a breakpoint is reached and the curve onceagain appears linear with a steeper slope. Weexpect, once most

of the points get fairly close to the locked state at (0,0), that the convergence will be as predicted by the

linear theory; i.e., the slope a of the InRMS(n) curve for large n, will be related to the eigenvalues, Ax and

A2 of the linearized system as follows:

a = m(max(|At|,|A2|)) (18)

In the Table I we have used ari a2 and <*£, to denote the slopes of the In RMS(n) curves obtained from the

approximate slope of the first line segment of the computed InRMS(n) plots, the approximate slope of the

second line segment in the computed InRMS(n) plots, and from the linear theory, respectively. From Table

I we see that the slope a2 of the second line segment is in very good agreement with the convergence rate o^

predicted by the linear theory. In addition we notice that the slope ori of the first line segment, is almost an

order of magnitude smaller than that of ct2 « <*£. The same behavior is observed for other r values; hence

for most initial conditions the linear theory is inadequate in predicting the overall rates of convergence to

the locked state of the DPLL.

The observed ln(RMS(n)) plots indicate transiently chaoticbehavior. Transient chaos often appears in

nonlinear dissipative dynamical systems as an initial behavior of the motion before the system finally settles

into a periodic or almost-periodic steady state. Since this is not a precise definition, usually some criteria

such as the presence of Smale Horseshoes or a saddle point having a transverse intersection of its stable and

unstable manifolds is used. See reference [8] for more information, and for an example of the dynamics of a

bouncing ball, using a map similar to the map for the DPLL. In reference [9], Zoltowski establishes rigorously

the existence of transient chaos in the DPLL, however no estimate of the rate of convergence is made.

To obtain estimates of the rate of convergence to the locked state of the DPLL outside the region of

validity of the linear theory we will use some ideas developed in the theory of nonlinear mappings. The main

idea we use from lossless (Hamiltonian) dynamics is the existence of boundaries in state space between the

areas where chaotic and regular motion appear. See Lichtenberg and Lieberman [10] for more details. Our

approach is similar to that used in reference [11], where the Fermi map was studied as a lossless system,

which exhibits chaotic and regular motion, perturbed by a dissipative term.

The determinant of the jacobian of the map describing the DPLL, equation (8), gives a local rate of

expansion or contraction of an area. The determinant is:

det(D/) = 1 - ife'cos(0 - /). (19)
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Depending on k', <j> and I we may see local expansion, contraction or preservation of areas. In a lossless

(Hamiltonian) system, areas (measures) are preserved; hence, the determinant ofthe jacobian is one over

the entire state space. Expanding the term k' sin(fa-1„) from equations (7a) and (7b) in I, then the lowest

order part, independent of 7, may be combined with the remaining mapping to give an area preserving

(Hamiltonian) mapping

7n+1 =In~{r- 1)*'sinfa (20a)

fa+i = fa + In- (r - 1)*'sinfa (206)

The above mapping has been extensivelystudied [10] and is knownas the standard map. The standard map

is usually written in the form:

In+i =In-K sin fa (21a)

fa+l=fa + J„+l (216)

where K = k'(r —1) is known as the stochasticity parameter. In Figs. 8(a)-(d) we show successive plots of

the trajectories of the standard map for values of the stochasticity parameter K running from 1.60 to 2.40,

whichspans the good values of k' at r = 4. To obtain these pictures we started with a 25 x 25 grid of initial

conditions and plotted 100 successive iterations of this initial grid. One can clearly see distinct regions of

regular and stochastic motion. By stochastic motion we mean that trajectories of this deterministic system

undergo motion that appears random. In the terminology of [10] we call the regions of predominantly

regular motion regular islands and consider them as surrounded by a stochastic sea in which the motion is

predominantly chaotic.

To obtain an estimate of the decay rate of the transient chaos, we make a probabalistic model of

the system dynamics. We assume that when the dissipation term is restored to the system the island

centers become attracting fixed points and the regions of stochastic motion become regions of transient

chaos. Furthermore, the regular islands become attracting regions where convergence to fixed points is at

approximately the linearly predicted rate. This has been confirmed by calculating the RMS statistics for this

region alone. We assume that the distribution of trajectory points in the transient chaos region is uniform.

This has been verified on the average by calculating the cumulative averaged distribution functions for I

and <f>. Forour estimate we assume that with each iteration the attracting region will "capture" a number of

initial conditions from the transient chaos region proportional to its net contraction. Let A, A and c denote

the area of the regular island, the areaof the entire phase space and the fractional contraction per iteration
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of the attracting region, respectively. If A contracts by an amount c then we assume that the attracting

region captures 1 - (1 - c)A/(A —A) of the initial conditions from the transient chaos region. If we ignore

the phase space of the attracting region A we get the following RMS statistics based on this model:

The local rate of contraction is givenby equation (19). The lowest order estimate of the contraction rate c of

the entire regular area surrounding the fixed point (0,0) is the contraction rate at the origin c = |1—k'\: From

[11] the area A of the regular regions as a function of the stochasticity parameter K can be approximated

by A = 2n2K~1'3, where the total area A of the state space is 47T2. Combining these, we obtain

«' =|ln (l -(1 -H- fc'Dj^^a) (23)

as our estimate of the convergence rate. In Table II we compare the measured convergence rate ot\ and

the estimated convergence rate a' for various k' and r values. From Table II we see reasonable agreement

between a' and ct\.

6. Conclusion

In this paper we have shown that linear analysis of the DPLL is inadequate for optimizing operating pa

rameters. We found, that the occasional lack of locking which depended sensitively on initial conditions,

previously reported for the DPLL, was due to the existence of a fractal boundary between the basins of at

traction of the locked fixed point and a period-4 orbit that existed simultaneously with the fixed point. The

bifurcation diagrams indicated parameter regions for which the period-4 orbit did not exist, and for which

all tested initial conditions converged to the period-1 fixed point (locked state). It was shown numerically

that for a broad set of initial conditions, the convergence to the fixed point proceeded in two steps. In the

initial time period, governed by transient chaos, the convergence is slow. This was followed by a rapid rate

governed essentially by the eigenvalues of the DPLL linearized about the fixed point. The initial slower con

vergence was estimated, analytically, using a method developed previously for weakly dissipative mappings.
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£' ari Ct2 oil

0.6143 -0.063 -0.50 -0.48

0.6514 -0.071 -0.56 -0.53

0.6883 . -0.074 -0.60 -0.58

0.7257 -0.089 -0.68 -0.65

0.7629 -0.091 -0.32 -0.32

Table I

Slopes of the \n(RMS(n)). an and a2 are the slopes taken from the plots assuming a piecewise linear

characteristic, ai is the slope as predicted by the linear theory, r = 4.0.
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r

3.5

3.5

3.5

3.5

4.0

4.0

4.0

4.0

4.0

4,5

4.5

4.5

4.5

k' K <*i a'

0.730 1.83 • -0.071 -0.122

0.769 1.92 -0.074 -0.117

0.809 2.02 -0.095 -0.113

0.849 2.12 -0.100 -0.109

0.614 1.84 -0.063 -0.099

0.651 1.95 -0.071 -0.095

0.688 2.06 -0.074 -0.091

0.726 2.18 -0.089 -0.088

0.763 2.29 -0.091 -0.085

0.577 2.02 -0.065 -0.078

0.613 2.15 -0.069 -0.075

0.649 2.27 -0.074 -0.073

0.664 2.32

Table U

-0.087 -0.072

Transient chaos decay rates for various r and k' values, ct\ is the measured rate from the \n(RMS)

plots, a' is the estimated decay rate.
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Fig. 3(b). Bifurcation diagrams versus k' for r = 2.0. Plotting vertically the <j>„ state variable.
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Fig. 4(a). Bifurcation diagrams / versus k' restricted by inequality (12). r = 2.
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Fig. 4(b). Bifurcation diagrams / versus k' restricted by inequality (12). r = 4.
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Fig. 4(c). Bifurcation diagrams / versus k' restricted by inequality (12). r = 6.
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Fig. 5. Boundaries of existence of selected periodic orbits.
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Fig. 6. Almost periodic orbit occurring when r = 2.0 and k' - 1.085.
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Fig. 7(a). Convergence statistics In RMS versus n; r = 4 for all plots, k' = 0.5400.
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Fig. 7(b). Convergence statistics In RMS versus n; r = 4 for all plots, &' = 0.6143.
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Fig. 7(c). Convergence statistics In RMS versus n; r = 4 for all plots, k' = 0.6886.
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