

Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DATA MANAGEMENT OF MUSICAL INFORMATION

by

W. B. Rubenstein

Memorandum No. UCB/ERL M87/69

8 June 1987

DATA MANAGEMENT OF MUSICAL INFORMATION

by

William Bradley Rubenstein

Copyright © 1987

Memorandum No. UCB/ERL M87/69

8 June 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Data Management of Musical Information

William Bradley Rubenstein

Extended Abstract

This dissertation explores variousissues related to the application of computer datamanagement

techniques to musical information. The contributionof this work is twofold:

• It extends an existing data model (the entity-relationship model) to support a database schema

for musical information

• It develops particulardata management access methods to effectively manipulate information in

the musical database.

Because the music domain has not previously been considered as an application area for data

base management systems, this thesis begins with a discussion of existing research regarding data

management in a variety of "unusual" data domains. Also, the current role of computer technology in

music applications is briefly surveyed. These discussions provide the context for the presentations

which follow. Signal processing applications used for music synthesis are not included in this

research, as they have been considered extensively elsewhere.

A close look at existing computer systems that manipulate musical information allows us to

determine the types of musical information that should be supported by a music database. For the pur

poses of this research, musical informationincludes sound, graphical representations (such as musical

scores), bibliographicinformation, and conceptualrepresentations of music (such as structuraldescrip

tions of musical compositions). These various types of musical information are analyzed, focusing

particularly on the conceptual representations necessary to formally encode musical scores expressed

in Common Musical Notation (CMN). The entity-relationship model is taken as a staiting point for a

CMN database schema.

2

A new feature is added to the entity-relationshipmodel to represent the notion of ordered sets of

entities. Typically, an "ordering" occurs when one entity consists ofan ordered set of other entities.

This property is called hierarchical ordering. Such a relationship occurs, for example, when an

ordered set of notes constitutes a chord, or an ordered set of measures forms a movement of a compo

sition.

An inherited attribute is an attribute of an entity whose value is a function of attribute values in

other related entities. A method is proposed for representing attribute inheritance among entities, and

various approaches to the problem of managing this inheritance among entities within the music data

base are considered. Several examples demonstrate that inheritance under hierarchical ordering is

more complex than that supported by standard generalization hierarchies. It is demonstrated how a

relational view mechanism may be used to implement this attribute inheritance.

Using these two data modeling tools, hierarchical ordering and attribute inheritance, a schema is

developed for CMN. Entities from the CMN schema are divided into groups according to various

aspects of the information: temporal, timbral, and graphical. The schema is built up from the interrela

tionships among entities within each group.

To implement hierarchical ordering using existing relational database technology, extensions to

relational access methods are developed. Entity ordering is supported by the introduction of ordered

relations.

One form of attribute inheritance found in our application involves an attribute whose value

depends on an "aggregate function" computed over its related entities. Aggregate functions common

in database systems include count, sum, average, minimum, and maximum. A data access method is

presented which supports this special case much more efficiently than the relational view mechanism.

The data structure underlying this method, known as the A-tree, provides a general solution for the

support of:

• user-defined aggregate functions, and

• user-defined orderings, including hierarchicalorderings.

The performance behavior for A-trees is shown to be similar to that of the well-known B-tree

structure on which it is based.

3

As an example of the use of ordered relations and A-trees, the manipulation of time and events

in the musical database is explored in detail. A model of temporal information is presented based on

time lines and hierarchically ordered event sets.

The dissertation closes with a summary of questions left open by the present research, particu

larly those remaining issues that need be addressed in order to develop a functional database system

appropriate to the management of musical information.

Acknowledgements

A number ofpeople deserve my thanks for their help in the preparation of this dissertation.

Foremost, I would like to thank Professor Michael Stonebraker, my research advisor. He has

been a constant source of good advice and encouragement To my knowledge, there has not previ

ously been an inter-disciplinary thesis between music and computer science in our department, and the

lack of precedent made this thesis somewhat more of a risk for him to sponsor. What we have learned

in the mean time has I hope made the risk worthwhile. In any case, I owe Professor Stonebraker my

deepest gratitude for his support, both material, intellectual and, for lack of a better word, spiritual.

His enthusiasm has been unflagging.

The process of generating a dissertationwhich covers such widely divergent fields requirespati

ence and forbearance on the part of its readers. I have been especially fortunate to have Professors

Richard Karp, in the computer science department, and Richard Felciano, in the music department, in

this regard.

I would like to thank the members of the INGRES group with whom many fruitful conversations

were held over both the form and the content of this thesis, especially Eric Hanson, onto whose desk

my papers continually overflowed. Also Margaret Butler, Yannis Ioannidis, and Timos Sellis, into

whose office / occasionally overflowed. These people supplied both technical competence and moral

support during this research.

Willis Johnson and Amy Jo Bilson helped edit the final versions of the dissertation. I would,like

to thank them also.

This researchwas supportedby the National Science Foundation, grant#DMC-8504633, the Air

Force Office ofScientific Research, grant #83-0254, anda fellowship from the Shell Oil Foundation.

Finally, I wish to thank the folks at the Coffee Connection for the 239 cups of hot chocolate

required for the completion of this thesis.

Table of Contents

Chapter 1. Introduction l

1.1. Introduction 1

1.1.1. Organization of the Dissertation 1

1.2. The Music Data Manager (MDM) 2

1.3. Research Context 5

Chapter 2. Musical Information 7

2.1. Sound Representations 7

2.2. BibliographicalInformation 9

2.3. Meta-musical Information 11

2.4. Common Musical Notation 12

2.5. Other GraphicalNotations 15

2.6. Encodings for Representations 18

2.6.1. ConceptualRepresentations of Sound 21

2.6.2. Conceptual Representations of Graphical Scores 24

2.6.3. OtherScore Representations 26

2.7. Summary 26

Chapter 3. Hierarchical Ordering and Inherited Attributes 28

3.1. Adding Hierarchical Ordering to the Entity-Relationship Model 29

3.1.1. The Entity-Relationship Model 29

3.1.1.1. Entities 29

3.1.1.2. Relationships 30

3.1.2. Ordering 31

3.13. Generalization and Aggregation 32

11

3.1.4. Instance Graphs 33

3.1.5. Defining Hierarchical Ordering in a Schema 34

3.1.6. Types of Hierarchical Ordering 35

3.1.7. Recursive Ordering 41

3.1.8. Manipulation of Ordered Entities 41

32. Inherited Attributes 44

3.2.1. Inheritance in Database Research 46

3.2.2. Representing Inherited Attributes 49

3.3. Implementing Inheritance using Query Modification 51

3.4. An Example ofComplex Inheritance 53

3.4.1. Entities for Representing Dynamic Markings 55

3.4.2. Database Procedures for Determining Note Volume 57

3.5. Summary 60

Chapter 4. A Database Schema for Common Musical Notation 61

4.1. CMN Entities 61

4.1.1. Aspects of CMN 63

4.1.2. Hierarchical Ordering Graphs for CMN Aspects 65

4.2. The Temporal Aspect 65

4.3. OtherAspects 68

4.3.1. TheTimbral Aspect 68

43.2. The Pitch Aspect 70

4.33. The Articulation Aspect 71

43.4. The Dynamics Aspect 73

4.3.5. The GraphicalAspect 73

4.3.6. The Textual Aspect 77

4.4. An Example from Music 79

Ul

4.5. Projectingthe Size of Music Databases 86

4.5.1. Counting the Entities of a CMN Score 86

4.5.2. Predicting Database Size 88

4.6. Summary 90

Chapter 5. An Access Method for Ordered Aggregation 91

5.1. Previous Proposals for RepresentingOrder 92

5.1.1. Sorted Relations 92

5.1.2. Ordered Relations 93

5.1.3. Ordered B-Trees 94

5.1.4. Other Proposals for Ordered Relations 95

5.2. User-Defined Aggregates 96

53. Ordered Aggregate Functions 99

5.3.1. Examples of OrderedAggregate Functions 99

5.3.2. Components of an Ordered Aggregate Function 101

5.4. Implementation ofOrderedRelations 102

5.4.1. Ordered Heaps 102

5.4.2. The A-tree Data Structure 103

5.5. User-coded Routines 105

5.6. Defining Ordered Aggregates and A-trees .,. 106

5.6.1. Registering Ordered Aggregates with the DataManager 106

5.6.2. Associating Ordered Aggregates with an Ordered Relation 107

5.63. Creating an A-tree Index 108

5.6.4. Defining Order Using Sort Keys 109

5.7. Retrieval from Ordered Relations 109

5.7.1. Implementing the Before andAfter Operators 109

5.7.2. Implementing Retrieval of Ordered Aggregate Attributes Ill

IV

5.73. Sequential Scan Ill

5.7.4. Top-DownTraversal 112

5.7.5. Bottom-UpTraversal 113

5.7.6. Updating Ordered Relations 113

5.7.7. Splitting Pages 116

5.7.8. Merging Pages '. 117

5.7.9. Operatorsover Ordered Entities: first and last 118

5.8. A-tree Performance 119

5.9. Multiple Orderings 121

5.9.1. Multiple Orderings in Sorted Relations 121

5.9.2. Multiple Orderings in Ordered Relations 122

5.10. Hierarchical Ordering 125

5.10.1. Extending Ordered Relations to Support Hierarchical Ordering 126

5.10.2. Insertion andUpdate of Hierarchically OrderedRelations 127

5.103. Extending A-trees for Hierarchically Ordered Relations 129

5.11. Storing Orderings as Linked Lists 132

5.11.1. The Linked Heap Structure 133

5.11.2. Comparingthe Two Approaches 135

5.113. Clustering 136

5.11.4. ClusteringExperiments 138

5.12. Additional Issues 141

5.12.1. User Access to Tuning Parameters 141

5.12.2. More Efficient Tree Traversal 142

5.123. Parent Pointers 143

5.13. Summary 145

Chapter 6. Temporal Data Management 146

V

6.1. Time in Database Research 147

6.1.1. Historical Databases 147

6.1.2. Modeling Temporal Information 149

6.1.3. Modeling Musical Events 150

6.2. Events as Ordinate Data 151

6.2.1. The Splice-in Operation 152

6.2.2. The Overlay Operation 153

6.2.3. The Splice-out Operation 153

6.2.4. The Remove Operation 154

6.2.5. The Interval-retrieve Operation 156

6.3. Using A-trees to Index Time lines 156

6.4. Implementing Time Line Operations 158

6.4.1. Inserting Events 158

6.4.2. Implementing the Overlay Operation 160

6.43. Implementing the Splice Operation 162

6.5. Using Inheritance to Define Time Maps 162

6.6. Summary 165

Chapter 7. Conclusion 166

7.1. Summary ofResearch 166

7.1.1. Data Modeling 166

7.1.2. Implementation Strategies ; 166

7.2. Further Research 167

Appendix A. A Music Font 169

Appendix B. An Example of Update to Inherited Attributes 176

Appendix C. Musical Database Schema 178

VI

CI. Data Types 178

C.2. Relations and Attributes 179

Appendix D. Sample Rule Sets for Musical Virtual Attributes 187

Appendix E. The Ordered Aggregate for Exponential Average 189

E.l. TheAveraging Function 189

E.2. Declaring the Aggregate Function 189

E.3. UserRoutines forExponential Average 190

E.3.1. InitializeScan 190

E.3.2. NextLeaf : 191

E.3.3. Nextlnner 191

E.3.4. Result 192

E.3.5. Compare 192

Appendix F. Summary of Proposed Query Language Extensions 193

F.1. Data DefinitionLanguage Extensions 193

F.l.l. The define entity Statement 193

F.1.2. The define ordering Statement 194

F.1.3. The define aggregate Statement 195

F.1.4. The define inheritance Statement 196

F.2. Data Manipulation LanguageExtensions 196

F.2.1. The modify Statement 197

F.2.2. The reorder Statement 197

F.2.3. User-Defined Aggregate Expressions 197

F.2.4. Expressions of Type "Entity" 198

F.2.5. Comparison of Entities 198

F.2.6. The append Statement 199

vu

F.2.7. The replace Statement 200

VU1

List of Figures

Chapter 1. Introduction l

Figure 1.1. The MusicData Manager andIts Clients 3

Chapter 2. Musical Information 7

Figure 2.1. Musical Information as Digitized Sound 8

Figure2.2. A Thematic Index Entry [Sch50] 10

Figure 2.3. Iconic Graphical Object 13

Figure2.4. Linear Graphical Objects: Horizontal,Vertical and Rotating 14

Figure 2.5. A Non-linear Slur 14

Figure 2.6. PossibleTransformations for Graphical Objects 15

Figure 2.7. Non-standard Musical Notation [Kar72] 16

Figure 2.8. A Piano Roll 17

Figure 2.9. Instrument Specific Notation: Lute Tablature 19

Figure 2.10. Equitone Notation [Kar72, p. 86] 20

Figure2.11. Layers of Conceptual Abstraction 21

Figure 2.12. A Fragment ofCMusic [Moo85] 22

Figure 2.13. Sample MIDI Stream 23

Figure 2.14. DARMS Encoding (from [Eri77]) 25

Chapter 3. Hierarchical Ordering and Inherited Attributes 28

Figure 3.1. An Entity-Relationship Graph 31

Figure 3.2. A Simple Instance Graph 34

Figure 3.3. An HO graph for a Single Ordering 36

Figure 3.4. A Hierarchy ofOrderings 37

Figure 3.5. Two Orderings Under One Parent 38

IX

Figure3.6. An Ordering with Inhomogeneous Children 39

Figure 3.7. An Entity Ordered Under Two Parents 40

Figure3.8. An Example of Recursive Hierarchical Ordering 42

Figure 3.9. CMN Dynamic Markings 55

Figure 3.10. The DYNAMIC Entity 55

Figure3.11. Example of Dynamic Markings 56

Figure 3.12. Dynamic Interpretation Values 57

Chapter 4. A Database Schema for Common Musical Notation 61

Figure 4.1. The Entities of a CMN Schema 62

Figure 4.2. Aspects of Musical Entities 63

Figure4.3. Temporal Relationships in the CMN Schema 66

Figure 4.4. Dividing a Score into Syncs 67

Figure4.5. Examples ofChord Groups 68

Figure4.6. Tumoral Relationships in the CMN Schema 69

Figure 4.7. Pitch Relationships in the CMN Schema 71

Figure 4.8. Pitch Entities: Enharmonic Pitches 72

Figure4.9. Articulation Relationships in the CMN Schema 72

Figure 4.10. Dynamics Relationships in the CMN Schema 74

Figure4.11. GraphicalRelationships in the CMN Schema 75

Figure 4.12. A Musical System 76

Figure 4.13. Graphical Entities 77

Figure 4.14. Textual Relationships in the CMN Schema 78

Figure 4.15. A Measure of Music (chords are indicated by boxes) 80

Figure4.16. Entities of the Instance Graph 80

Figure 4.17. HO Graph for a Subset of Musical Entities 81

Figure 4.18. Orderings under the "Part" Entity 82

X

Figure 4.19. Orderings under theMeasure and ItsSyncs 83

Figure 4.20. Ordering of Chords and TheirGraphical Components 84

Hgure 4.21. Ordering of Notes (by Chord) withTheir Graphical Components 85

Figure 4.22. Ordering of Notes by Staff 86

Figure 4.23. Number of Entitiesin MusicalObjects 87

Figure 4.24. Projected Database Size 89

Chapter 5. An Access Method for Ordered Aggregation 91

Figure 5.1. An OB-tree (from [StR80,p. 15]) 94

Figure 5.2. A Start Time Index for Events (from [Rub85, p. 15]) 96

Figure 5.3. Exponential Average of Queue Lengths 100

Hgure 5.4. An Ordered Relation as a Linked List ofDisk Pages 102

Hgure 5.5. The A-tree Data Structure 103

Hgure 5.6. A-tree Performance (5000 insertions followed by 5000 deletions) 119

Hgure 5.7. Multiple Sort Orderings 122

Hgure 5.8. Hierarchically Ordered Relations 126

Hgure 5.9. A Hierarchically Ordered Base Relation 129

Hgure 5.10. An A-tree for Hierarchical Ordering 130

Hgure 5.11. RepresentingOrderby Placement 132

Hgure 5.12. RepresentingOrderby Pointers 133

Hgure 5.13. Building A-trees Over Linked Heaps 134

Hgure 5.14. Graph Representation of a Linked Heap 137

Hgure 5.15. Comparison of Min-Cut Clusteringwith Primary Ordering 140

Chapter 6. Temporal Data Management 146

Hgure 6.1. The SPUCE-IN Operation 152

Hgure 6.2. The OVERLAY Operation 154

XI

Hgure6.3. The SPLICE-OUT Operation 155

Hgure 6.4. The REMOVE Operation 155

Hgure 6.5. Naive Insertion of an Event 156

Hgure 6.6. Ordered Structure for Time Line 158

Figure 6.7. An A-tree and The Events Which It Indexes 159

Hgure 6.8. Inserting an Event 159

Hgure 6.9. Tempo andTime Maps 163

Hgure 6.10. Inheriting Performance Time 164

Chapter 7. Conclusion 166

Appendix A. A Music Font 169

Hgure A.1. Accents 169

Hgure A.2. Annotations 170

Hgure A3. Chord and Note Parts 171

Figure A.4. Rests 172

Figure A.5. Clefs 173

Hgure A.6. Horizontal Linears 174

Hgure A.7. Vertical Linears 175

Appendix B. An Example of Update to Inherited Attributes 176

Appendix C. Musical Database Schema 178

Figure CI. Summary of DataTypes 179

Appendix D. Sample Rule Sets for Musical Virtual Attributes 187

Appendix E. The Ordered Aggregate for Exponential Average 189

Appendix F. Summary of Proposed Query Language Extensions 193

CHAPTER 1

Introduction

1.1. Introduction

Several research projects have recently focused on extending the applicability and usefulness of

information management techniques and database systems to a variety of application areas. In the

technical field, these include design data such as is generated by VLSI (Very Large Scale Integration)

chip development and other CAD (Computer-Aided Design) processes [SRG83]. In the field of

artificial intelligence, databases are being applied to the management of "knowledge bases" to sup

portdeduction andinference [DeF84]. In each of these cases,the datamodel, which serves as the pri

mary tool for describing the representation of the data, has undergone successive extension and

refinement The entity-relationship model [Che76] servesas the starting point for our representation of

musical information. This dissertation is concerned with those extensions and refinements necessary

to supportapplications that managethis information.

Our formal definition of "musical information" begins in the next chapter. For the moment, it

is worthwhile to note certain features of music that motivate our research into musical information as

an interesting data management domain.

• Musical representations, such as music notation,have complex, rich semantics.

In particular, they must convey more information than simple lists, tables, and spatial representations,

that are the mainstay of "traditional" database applications.

• The complexity of musical information is easily bounded, and therefore amenable to data

management

For example, cases of ambiguity which abound in natural' language are more rare (though not unk

nown) in music. Additionally, die syntax and semantics of representations such as common musical

notation are already reasonably well defined.

1

• The uses ofmusical information are, in a sense, limited and well understood.

Forour purposes, typical examples of operationson musical data are production (e.g. composition and

synthesis), editing, performance, and analysis. Intentionality and planning, which complicate artificial

intelligence problems, areconsidered to be outside the domain of this research.

1.1.1. Organization of the Dissertation

The remainder of this dissertation is organized as follows. The next section, Section 1.2, intro

duces the Music Data Manager, its purpose as a system, and its potential clients. This sets the context

for subsequent discussion regarding the operation of such a data manager. Section 1.3 concludes this

chapterwith an overview of research in related areas. The previous work that supports this thesis falls

under severaldisparate research domains. Ratherthan presenting them all in detail here, discussion of

research in each particular topic areawill be pursued within the chapterdevoted to that topic.

Chapter 2 discusses the various properties of musical information, and how they may be

represented. It presentsa wide variety of types of music information, including sound, graphical data,

and bibliographicinformation, as well as conceptualrepresentations of music.

Chapter 3 then discusses a semantic feature which pervades conceptual representations of music,

hierarchical ordering. This construct has not been supported by existing data models. The chapter

goes on to discuss the representation of inheritance in the music database. A class of inheritance

induced by hierarchical ordering, designated complex attribute inheritance, is explored. It is shown

that the relationshipspresented by the hierarchical orderingschema induce atypical inheritanceseman

tics, similar to certain types of inheritance explored in the artificial intelligence domain, but quite dif

ferent from that seen in database research.

Using the tools for representing hierarchical ordering developed in the previous chapter, chapter

4 explores the development of a database schema for common musical notation (CMN). The large

number of entities are considered from the point of view of their temporal, timbral, and graphical

aspects. For each such perspective, the hierarchical ordering relationships among the entities of CMN

are discussed in detail.

2

Chapter 5 considers those issues related to the implementation of ordering and inheritance

within a relational database system. The notion of ordered relations is introduced as a means of imple

menting hierarchical ordering. The remainder of chapter 5 is concerned with inheritance involving

aggregate functions over ordered relations. By extending previous research regarding user-defined

aggregate functions and ordered relations, an efficient access method is developed that supports an

important class of inheritance functions in a general way. This access method is based on the A-tree

data structure.

As an example of a hierarchical ordering application, chapter 6 addresses a very important

aspect of die music information manager, that of time and events. A survey is presented of recent

research that has considered the incorporation of time and temporal information into databases.

Notions of time lines and event sets are defined, as well as the operations that are be performed upon

them. Then, the necessary A-tree structures forefficiently performing these operations aredescribed.

Finally, chapter 7 summarizes the findings of this thesis, and discusses the issues raised by this

work which may become the object of future research.

1.2. The Music Data Manager (MDM)

A music data manager (MDM) provides a service to other programs, known as clients. The

MDM delivers musical information, the client program uses it Forexample, a music typesetting pro

gram would be a client, as would a musical score editor, a compositional tool, or a program which per

forms musicological analyses of compositions (figure 1.1). In current applications, these programs

each are required to perform their own data management. They each have incompatible internal

representations for the informationthey manipulate. Hiving a single MDM managethe musical infor

mation used by each of these clients provides certainbenefits:

• The considerable burden, in terms of program complexity, of managing the data is no longer

duplicated within every client

• Any improvements or optimizations in the quality of data management provided by the MDM

accrue to all its clients. Thus, optimizing one system causes improved performance in many

systems.

/
\

|Client /
Editor /

!Client ! /
Harmonizer \/

*

*
r

A

1

i

User ;

i

User ;
i

Typesetter Composer

v

User

Musicologist

Figure 1.1. The Music Data Manager and Its Clients

• Because all clients maintain their information in the same way, via the MDM, they can more

easily communicate with each other. For example, a music analysis program can easily process

the output of a composition program,ifboth have been designed to use die same MDM.

• A good data model within the MDM should allow the development of clients that are faster to

implement and easier to maintain, because the client need only manipulate a high-level musical

information abstraction.

The MDM must handle standard database operations, such as concurrency control and recovery,

as well as those particular to the musical domain. The primary extensions to traditionaldatabase sys

tems considered by our research pertain to the modeling of music semantics, and the implementation

of structures to support the physical realization of that model. This requires that some decisions be

made a priori as to what type of clients will be served by the MDM. The following candidates are

considered:

4

Editors and typesetters: These systems, such as SCORE [Smi72], MOCKINGBIRD [Ma083],

andSMUT [Byr84], usually manipulate some form of musical score. They are highly interactive, and

they retrieve, modify, and generate musical information. Clients of this type are typically concerned

with a single musical work at a time.

Compositional Tools: Like editors, these systems are generative: they produce music (often in

both sound and graphic representations). A number of computer languages and paradigms for music

composition have been developed (see [LoA85] for a survey). A compositional tool might retrieve

compositionswritten in these languages from the MDM, play them, modify them, and update the data

base.

Score Libraries: Large collections of musical scores, often containing the complete works of a

given composeror era, serve as the starting point formost musicological research. Like most informa

tion retrieval systems, they must provide rapiddata retrieval, but modificationof the data is relatively

rare. In practice, these computerized libraries are often highly selective. For example, they may con

tain only bibliographic information (as do most text based systems), or only incipits (opening melo

dies) rather than complete scores (as in an incipits database of Renaissance polyphony [Lin77]). A

current index of computer assisted researchin musicology [HeS86] lists twenty-five projects related to

thematicindices, andeleven projects involved in collecting fullmusicalscores. Eachof these projects

uses software specifically designed for its own application.

MusicAnalysisSystems: Music analysisinvolves applyingparticular operations to musical data.

Systems that perform various sorts of harmonic analysis, or those that determine melodic structure are

examples. Hewlett [HeS86] lists sixty ongoingresearch projects in music analysis. Formusicologists,

there are a variety of computer applications in this domain [Alp80,Gro84]. However, most of these

research projects use custom designed programs. The musical information used as input to these

analysis programs is typically not taken from a score library such as those described in the previous

paragraph. Rather, the score data to be analyzed must be hand coded into an appropriate format for

each analysis application.

1.3. Research Context

Because of die interdisciplinary nature of this dissertation, it draws ideas from several distinct

bodies of research in both music and computer science. Rather than discussing all of mem in detail

here,each chapter will containits own presentation of relevant research. However, in orderto put this

dissertation in perspective,a brief outlineis presented of the related fields on which this work is based.

From computer science, relevant research has been conducted in the areas of database data

modeling. Our starting point for a data model for music is the entity-relationship model [Che76],

which in turn is an extension of the relational model [Cod70]. We have made use of other extensions

to the relational model which are summarized in the RM/T proposal [Cod79]. These extensions have

been considered for several application domains, such as statistical databases [Sho82], scientific data

bases [SOW84], pictorial databases [R0L8S], and computer-assisted design (CAD) databases

[SRG83].

Our proposals for managing attribute inheritance have benefited from research in the area of

knowledge representation. Most knowledge representation languages, such as KRL [BoW77] and

SRL [FWA84] address this issue. With respectto complex attribute inheritance, research in "idiosyn

cratic inheritance" [Fox79] has provenparticularly applicable. Issues of inheritance, related to infer

ence and deduction, have also been addressed in the database domain [ISW84, IoW85].

Many of the proposals in this paper stem from research on integrating abstract data types into

the INGRES relational database system [Fog82,Ong82], particularly a data type representation for

time [Ove82]. A proposal for incorporating user-defined aggregate functions over abstract data types

has also.provendirectly applicableto our music representation problem [Han84].

In the music domain, this research is supported by previous work in the areaof music represen

tation. These include practical presentations of music notation [Don63, Rea69], as well as more

theoretical analysis of rotational systems [Wol77]. Score representations have been explored in the

DARMS system [McL86a, McL86b], and in the composition/editing domain under the SSSP project

[BRB78-BPR81]. Additionally, the field has seen research in artificial intelligence approaches to

music representation [Roa79], andin expert systems [Ash83,Ash85]. Another recently proposedscore

representation [Dan86] incorporates versions and multiple views into its structure, relating to database

6

research in version control, as in [KaL82].

In both the database and music domains, the issue of managing temporal information has

received considerable attention(see [BAD82] for a survey). This dissertation makes particular use of

research in temporal modeling [And81,ShK86]. Time has also been considered specifically in music

systems [DeK85,MaM70, Pru84b]. These systems are all concerned with the representation of tem

poral data, such as events and processes that transpire over time, multiple independent time lines, and

virtual time.

CHAPTER 2

Musical Information

The information within the music manager incorporates several different facets of music, which

we divide roughly into five categories,

sound information,

bibliographic information,

"meta-musical" information.

graphical information, and

conceptual representations,

Each of these types of informationwill be discussed in this chapter, demonstrating the wide variety of

types of information which must be integrated into the musical datamanager.

2.1. Sound Representations

Obviously, one fundamental type of object which a music information manager needs to

represent is the sound of the music itself. The simplest representation of sound in a digital computer is

merely an array of numbers, the result of digitizing the sound. Figure 2.1 shows an example of a sim

ple method of digitization. On the left is a waveform represented by a curved line. Its amplitude is

sampled at regularintervals, as indicated on the time axis. These samples form an approximation to

the originalwaveform. This approximationis shown as the shaded region in the figure. The amplitude

of the waveform at each sample point may be stored in a table, as shown at right

The error associated with this digitized representation corresponds roughly to the difference

between the line and the shaded region in figure 2.1. This error may be decreased by:

(1) increasingthe rate at which samples aretaken (the samplefrequency), or

(2) increasing the precision of the sample values (for example, using 16 bit integers rather than 8 bit

integers).

amplitude
Sound Waveform Digitized Waveform

time amp.

0 0

1 2

2 3

3 3

4 2

5 0

6 -2

7 -3

Figure 2.1. Musical Information as Digitized Sound

Both of these measures increase the amount of data to be stored for a given piece of sound.

Detailed analysis of this representation and its limitations may be found in signal processing texts,

such as [OpS75].

Digital audio devices of professional quality typically use 16-bit integers for each sample, and

record 48,000 samples per second of sound. This implies that ten minutes of musical sound can be

recorded with acceptable accuracy by storing 57.6 megabytes ofdata.

Much research in audio signal processing analyzes methods for reducing this massive storage

requirementwhile still preservingthe aurally perceptible properties ofthe sound. Froman information

theoretic point of view, the digitized sound stream can be compacted in two ways: by eliminating

redundant information from the sound stream, and by eliminating aurally imperceptible information

from the sound stream.

Wilson [Wil85] surveys a number of these data reduction techniques of the first type, and Kras-

ner [Kra79] discusses various encodings which arebased on sound perception.

In contrast to random sound, or speech, music has a much greater burden of structure over and

above that detected by these signal processing methods. This structure is what differentiates music

from sound. For instance, rhythmic structure (e.g. a "beat") and timbral structure (e.g. that some

sounds are generated by one instrument and some by another) may exist in musical sound. Such

abstractions remain hidden at this level of representation.

9

The extraction of such structure, given only a sound representation, has proven to be quite

difficult Research by Chafe, et al. [CMR82], has found that a great deal of world knowledge (beyond

that providedby the music athand)is necessary to "understand" the structure of even the most simple

musical pieces. Such knowledgemight include anunderstanding of how the sound was produced (e.g.

thatindividual notes are produced by particular instruments thatconstitute an orchestra), knowledgeof

the musical style or historical context of a piece (e.g. baroque or jazz), or knowledge of the perfor

mance practice of a piece (e.g. operas are performed with singers on the stage and an orchestra in the

pit). Their research studies automated transcription, the generation of writtenmusical scores, which

exhibit much of the high level structure of a piece, from audiosignals. Such work uses signalprocess

ing techniques to detect pitches andtemporal distribution, followed by knowledge-based heuristic pro

gramming to detect musical structures, such as rhythmic constructs.

2.2. Bibliographical Information

An important use of musicdatabases is as a reference formusicological research. Such a refer

ence may provide several types of information. One common reference tool is the thematic index.

Such an index is an organization of the works of a particular composer or period, including for each

work sufficient musical (ie. thematic)material to identify the composition. This is often a fragment of

the melody or the key voices from the first several measures of the composition. Figure 2.2 shows a

typical entry in a thematic index.

In addition to die thematic material that identifies the composition, several other pieces of infor

mation are provided in a highly compressed format These arethe orchestration or setting of the com

position(Besetzung), when andwhere it was composed,how many measures(Takte) it contains, where

copies (Abschriften) of the manuscript are located, editions(Ausgaben) in which it is printed, and arti

cles written about it (Literatur). In the language of data management, these are each bibliographic

attributes of the composition.

Once a bibliographic collection becomes established as definitive for a particular composer or

body of music, the identifier created by the bibliographer may be widely understood to refer to a par

ticular piece. Thus, the accepted name for the fugue in this example is as "BWV 578." "BWV"

identifies the index (Bach Werhe Verzeichnis), and "578" identifies the composition. In this particular

57S Fuge g-moll
Hcsctzunir. Orgel.

BGA XXXVIII, 116.— K'A Weimar um 1709 (odcr sclion in Arnstadt?).

• <->

10

Abschrlflrn. 2 Scitcn im Andreas Buch-Buch (S. C3V—G7'-). B Lpz. III. S. 4.—In KoetoIuI oucr 8° ..nus
Krebs* XachlaB", BB in .Mun. ms. Bach V803 (S. 203-211).-Weitcrhin in zahlreichen Eiazclhandschriftcn
n. Smlbdn. ron rfcr 2.Halftc iles IS. bis zur l.Hfilftc des IS. J lis.

Awgnbcn. In C. F. Beckers ..Caerilia", Bd. II, S. 91. Vcrtffcntl. nach e. Hs. rom Jahrc 1754.— Tcters Orgel-
werke Bd. IV, S. 4C— Ercitkopf &. Hartel ZB 3174, S.72.— Kofmcister (Joh. Schreyer).

. Litcroiur. Suitta I 309f.- Spitta VA 110.— Schweitzer 248.- Frotacher II S77f.— Neumann 51.- Keller
73f.-B.T 1912: 131; 1930:4. 44, 12G; 1937: G2.

Figure 2.2. A Thematic Index Entry [Sch50]

index, compositions are ordered chronologically.

Bibliographic information may be found in attributes at all levels of musical structure. At the

highest level, compositions are placed in time (e.g. they have a"composition date" as an attribute),

and are attributed to acomposer. Individual sections ofacomposition may be borrowed rxorn other

composition, and thus they themselves may have adifferent composition date and composer. At the

lowest level, the time at which individual notes are placed in acomposition, and who placed them,

constitute a form ofbibliographic information. One might thus speak ofa"micro-bibliography" as

the internal history ofacomposition.

11

2.3. Meta-musical Information

Many of die "meanings" of musical information can be described either declaratively or pro

cedurally. For example, consider the treble clef symbol. The meaning of this graphical iconmightbe

described thus:

All subsequent noteson the same staffasthe treble clef haveamapping from staff degree to scale pitch
which is "Every Goodftoy Does Fine" (to use a favorite grade-school mnemonic).

This meaning can be interpreted declaratively, whereby all subsequent notes have the "treble clef

pitch interpretation, or procedurally, whereby the treble clef means that subsequent note heads are to

be performed (or "mapped to pitches") in a particular way. In the first case, anicondetermines a pro

pertyof a passage. In the secondcase, the icontellshow to interpret the subsequent notes.

A more vivid example is provided by a musical accidental such as the sharp sign (#). A group

of sharps placed at the beginning of a section of music composed in a particular style constitute a key

signature. A key signature consisting of three sharps carries a declarative meaning, stating a fact

about the tonality of the musical passage:

The piece is in the key of A major(or f# minor).

It also carries the procedural meaning:

Perform all notes notated as F, C, or G one semitone higher than written.

Much of the information contained in the music database may be derived procedurally from

otherdeclarative data in the database. Suppose thatthe database contains, as part of a score representa

tion, a note object. An attribute of this note wouldbe the staff on which the note lies. Anotherattri

bute would be the performance pitch of the note. However, the performance pitch of a note depends

procedurally (asin the above two examples) on otherelements on the samestaff line, suchasclefs and

key signatures. In faa, there are other pieces of information, such as stylistic information about a

composition, which govern the interpretation of performance pitch from graphical criteria. These rules

constitute "meta-musical" information, and are part of the musical data to be maintained with the

score.

This issue of maintaining procedural information will be explored in more detail in chapter3, in

the discussion on complex attribute inheritance.

12

2.4. Common Musical Notation

In the case that the "listener" of a piece of music is a person (as opposed to a recording device),

raw audio information is in generalnot sufficient for the recipient to fully understand the performance.

For example, the following operations, related to the transcription of sounds into scores, are difficult

for human experts toexecute.1 Given an audio representation (e.g. arecording) of apiece of music:

• Determine the rhythmic structureof a composition that contains multiple independent voices.

• Determine what pitches are being played, in the face of complex harmonic structures.

• Determine what instruments (even assuming they are familiar to the listener) are performing

which musical events.

A useful written notation for music conveys the above information clearly from composer to

performer, alongwith additional informationwhich is similarlyobscured in the audiorepresentation.

Music, like natural language, has many written forms which developed slowly over time along

different paths within different cultures. Although there is no universal written musical form, there is

a reasonably well defined language of music notation which has been codified for Western tonal music

used from about the 17th century to the present We will refer to this as common musical notation

(CMN).

As a "language" of musical notation, CMN has its grammatical rules. These may be found in

standard textbooks [Don63,Rea69]. More exacting notators, such as engravers who print music,

require more detailedgraphical informationsuch as is presentedin [Ros70].

Consider the score page as a purely graphical construct, that is, as uninterpreted black shapes

(graphical objects) on a white page. We can collect the graphical objects in a CMN score into a

"font," analogous to a font of alphabetic characters. Representations for such fonts are included in

specifications such as PostScript [Ado85] and Metafont [Knu86]. Attempts have been made to create

music fonts in this same manner, as in the Symphony1™ font [Hug86]. In the course of our work, we

have developed our own music font, which is outlined in appendix A.

1The difficulty of these operations is oneof accurately interpreting perceptual data. The problems associated with this
interpretation arecommon knowledge among those who have experience in music transcription. For this reason, we may
speak of music transcribers as "experts."

13

Most graphical objects in the musical score fall into two categories, iconic and linear. Icons are

graphical objects which have a particular shape, and which can logically be scaled to a larger or

smaller size. Icons also have a fixed orientation. Figure 2.3 demonstrates these transformations. The

characters in "alphabetic" fonts, in contrast, are not typically linear. They are only iconic in nature

(i.e. alphabetic characters in a particular font are not usually subjected to stretchingor rotation).

Linear objects (or linears, for short) have, in addition to their particular shape, an axis along

which they are aligned. In general, given two points in the plane, a linear object can be stretched

between them. Examples of linears arebar lines (whose axes arevertical) and staves (whose axes are

horizontal). Certain linears may be rotated arbitrarily. Rotating linears include certain slurs and

beams. These examples are depicted in figure 2.4.

With very few exceptions, all CMN elements canbe represented with eithericons - definedby

shape, size, andposition; or linears - defined by shape, size andthe positions of the two endpoints. An

example of anexceptionwould be the less commoncomplex slur,which can follow a somewhat arbi

trary path (see figure 2.S).

Valid transformations of the bass clef icon:

9
Magnification Reduction

Invalid iconic transformations:

?
Vertical Horizontal Rotation
scaling scaling

Figure 2J. Iconic Graphical Object

beam (rotating)

bar line (vertical)

\

\

J
stafflines (horizontal)

slur (rotating)

Figure 2.4. Linear Graphical Objects: Horizontal, Vertical and Rotating

't

Figure 2.5. A Non-linear Slur

14

15

Figure 2.6 summarizes the graphical transformations that may be applied to each of the different

types of graphical objects. Organizing the graphical objects of a CMN score in this way greatly

simplifies the process of representing such a score. Rather than specifying each graphical object com

pletely, we need only refer to its type by name, and supply its relevant parameters (e.g. location and

scale).

2.5. Other Graphical Notations

The various symbols of CMN have developed slowly over time into a reasonably stable set.

However, musicians, as artists, occasionally develop their own notational extensions to CMN to better

express their musical intentions, as in the two score excerpts in figure 2.7. While these examples, with

their unusual staff structure and odd grouping constructs, lie clearly outside the realm of CMN, the

boundary between experimental music notation and CMN is not always so clear cut. Over time, new

notations become common practice and enter the realm of CMN. Many of these marginal notational

practices are covered in [Rea69].

Other types of musical notation have been used for representing music. One which has received

prominent attentionin computer applications is the piano roll notation, so named because it looks simi

lar to the rolls of punched paper used in player pianos. Tins notation only contains information about

when notes start and when they end. The piano roll is essentially a map of the state of a musical key

boardagainsttime. Unlike actual player pianorolls, we typically see time progressingto the left along

Transform
Icon

(e.g. clef

Linear

Horizontal

staff
Vertical

bar

Rotating
slur)

Translation • • • •

Magnification • • • •

Reduction • • • •

Horizontal

scaling
• •

Vertical

scaling
• •

Rotation •

Figure 2.6. Possible Transformations for Graphical Objects

EL

i"—"

b:
@ •f/yt

•P<-li!

«

if

r i -ii^i

S<==5fff
' ' 1i* ' • 1 wj» f

®

r>-e— . .1.—;*• 1 I . | i TO

1 ".S^^T-I--
_J f^-T •t*« iSr—

. -~>*-£l. ^T\
j " S^

Page 16A of Transtcion by Kagel
'iniKar"2. p. 1051)

Page 24 of Circ/es by Beno
'in iKar72. p. o9|l

Figure 2.7. Non-standard Musical Notation [Kar72]

16

17

the x-axis, and pitch (usually quantized bysemitones) increasing upward along the y-axis. Figure 2.8

shows an example. At the topof the figure is apiano roll representation of the first sixmeasures of a

Bach fugue [Bac47]. The CMN score for those measures is shown at the bottom of the figure. Each

Pitch

UC

M

Manual.

Entrance of
Fugue Subject

ill i

xvm.

FUGE.
G-uioll.

Figure 2.8. A Piano Roll

Time

18

note is represented by a black rectangle. The entrances of the fugue, which are normally hidden in a

piano roll notation, have been shaded in grey. They are clearly distinguished in the CMN score below

by a change in note stem direction.

Some existing systems have been developed to edit and display piano rolls, such as SCORED

[BSR79] and INTERSCORE [Pru84a]. The popularity of piano roll notationis explained by the ease

of translation between note event streams(as generated by a variety of electronicmusic keyboard pro

ducts) and piano rolls.

Other graphical notations have been developed. These are typically oriented towards specific

instruments, as in the case of tablature notation for fretted instruments such as the lute, shown in figure

2.9. In this notation, each of the six staff lines represents one string on the lute. Another example is

Equitone notation, developed more recently as a replacement for CMN (unsuccessfully, at present).

Hgure 2.10 shows an example of this type of notation.

2.6. Encodings for Representations

Before discussing how these various representations are to be encoded for the data manager, let

us consider the various levels at which such an encoding may be done.

A number of layers of semantic abstraction can be formed for musical information. At the

lowest level are uninterpreted bit streams, both digitized sound or raster graphics. Figure 2.11 sum

marizes one possibility for the various layers which can be built on top of these. At each layer, an

example of an existing representation language for that layer is given. These and similar representa

tions will be discussed in the remainder of this section.

In the sound domain, music may be organized into event streams, as with industry standard

MIDI (Musical Information Data Interchange) event lists [Jun83]. More abstractly, it may be

represented by various programming language specifications, as in the CMusic system [Moo85]. In

the graphical domain, the lowest level of encoding is simply digitized (raster) graphics. This can be

abstracted into its constituent graphical shapes, icons and linears, and described using a graphical

definition languagesuch as PostScript [Ado85]. Finally,a CMN score constitutes an abstract represen

tation of the graphical aspect of a piece of music.

Suite in sol minore
BWV995

PHBLUDB U VcnioM (Lipsia)

•)J 1* J- >«MJ>> J J >

j I *•*** J Jyjjij^j® 0> Ji J> >J> >

Page 1 of Suite in sol minore (BWV 995) by Bach;
Lute Tablature with modern transcription by PaoloCherici.

(in [BacSO, p. 12])

Figure 2.9. Instrument Specific Notation: LuteTablature

19

>• - _ »v.. •irg* -p;.ax i ijji^^Ji ixj' 'jmjp

»M.» Wrft £=3

* s T • • ^'laiiwetifldta1 v1 .41 ^

-••Hj^Mjf:;^ jf [f?7 sjfii.ftfrpslrfa
£U, 1

J£».

3F F^rtrt
Nouud ia Equitoec

Page El of Enjambements by Cerha
Figure 2.10. Equitone Notation [Kar72, p. 86]

20

Sound

Procedural Representation

(CMusic)

Event Stream

(MIDI)

Digitized Sound

Abstract

Concrete

Graphic

CMN Score

(DARMS)

Iconic Representation

(PostScript)

Digitized Graphics

Figure 2.11. Layers ofConceptual Abstraction

21

2.6.1. Conceptual Representations of Sound

"Conceptual representations" are those representations of musical information which highlight

the structure, or deep semantic content,of a musical composition. These tend to take the form of pro

cedural languages for composition (similar to programminglanguages). Examples would be composi

tion languages such as Music V [Mat69], CMusic [Moo85], or Flavors Band [Fry84]. Such languages

allow the user to define voices, and the structure of the event streams in which these voices participate.

For example, in CMusic, we can define voices to have (roughly) a particularharmonic contour, and a

particulararticulation(i.e. envelope). We then can define various sets of "notes" using control struc

tures to indicate repeated sections, and so on. The resulting representation of a piece of music looks

somewhat like a computer program,in that it has declarations, definitions, control structures, and state

ments. In this domain, the effect of executing a statementis (typically) to cause voices to sound.

Figure 2.12 shows a small sample of CMusic. Figure 2.12(a) shows a fragment of CMusic to

define an instrument (Le. sound generator), shown schematically in figure 2.12(b). This instrument is

given a name in line 1, "flute". One oscillator (oscl described in line 2) generates anenvelope for the

tone. The other oscillator (osc2 described in line 3) generates the waveform of the tone. Line 6

defines the waveform to be a sine wave, andline7 establishes a typicalenvelope shape for oscl.

1. tn*Oflut»;

z o«c b2ptfpSf2<l:

3. o*c blb2p7nd;

4. ot* bl;

5. cad;

& SINE(n);

7. ENV(fZ):

(•)

Pe«kAmplitude*? Po 1/DuncJco

Amplintdt EmtlopiG^ntrtMor

b2 9 Frequency

bl

©
(b)

9. oooOSut*

9. 3 (p*ctaatiao|

m p4icc |p5 1/Junrfoa)

ii. -1MB |p6aopiiajds|

IX 220Hs; |p7 frequency)

(«>

Figure 2.12. A Fragment ofCMusic [Moo85]

22

After defining the waveform, a single note is played (figure2.12(c)). The note statement in lines

8 to 12defines the duration, amplitude and frequency ofthe note played on the "flute" instrument

A MIDI (Musical Information Data Interchange) stream is an industry standardrepresentation of

music at the note or event level [Jun83]. The following description is slightly simplified. MIDI is

based on a keyboard model, where each key is assigned a particular pitch, and keys can either be

activated(down) or deactivated (up). The actual effect ofkeys going up anddown is left to the device

receivingthe MIDI stream. A sample MIDI stream (for an "A major" scale) is described by figure

2.13. This particular example uses a protocol which puts time delays between events in the byte

stream [Rol85]. The columns of the table are:

Delay MIDI command Time Command

(hex.) (hex.) (sees.) description

59 92 39 2E 3.625 A3 key on (channel 2)
54 3B IF 4.325 B3 key on
08 39 00 4.392 A3 key off
3F 3D 2A 4.917 C#4 key on
OC 3B 00 5.017 B3 key off
3B 3E 22 5.508 D4 key on
05 3D 00 5.550 C#4keyoff
50 40 10 6.217 E4 key on
OC 3E 00 6.317 D4 key off
3A 42 11 6.800 F#4 key on
OA 40 00 6.883 E4 key off
3C 44 27 7.383 G#4 key on
09 42 00 7.458 F#4keyoff
48 45 2C 8.058 A4 key on
08 44 00 8.125 G#4keyoff
48 45 00 8.725 A4 key off

Figure 2.13. Sample MIDI Stream

23

(1) The delayin time units(typically 1/120 second) from the previous event to thisevent These are

given in hexadecimal notation.

(2) A two or three byte MIDI command, typically representing channel, key, and volume. These

are given in hexadecimal notation. A channel corresponds roughly to an instrument or voice.

The key number is derived from a mapping of the piano keyboard onto consecutive integers.

The volume integer ranges from one for most soft to 127 (hexadecimal "7F") for most loud,

with zero reserved to indicate the termination of a note event Only this column and the previ

ous one areactually partof a MIDI byte stream, the othercolumns areexplanatory.

(3) The time at which this event occurs, relative to the beginning of the event stream. This is there

fore a cumulative event delay. It is given, in this table, in seconds.

(4) A description of the effect of the MIDI command.

This representation of musical events is not particularly general. Forexample, it has no way to

represent events which are modified over their duration (such would be the case for a note which

slowly grows louder over its duration). In fact MIDI does not have the ability to represent non-point

events at all. Notes must remain fixed over their duration; for example, once a note is turned on, its

24

volume ortimbre cannot be changed under MIDI control, it can onlybe turned off.2

2.6.2. Conceptual Representations of Graphical Scores

Now we turn our consideration to representations of graphical scores. Several methods have

been developed to represent graphical scores in a form amenable to information storage and retrieval.

Such systems includeDARMS (Digital Alternate Representation of Musical Scores) [Eri77, ErW83], a

general purpose encoding language whose goal is to objectively represent any score material notated

usingCMN. MUSTRAN [Wen77] is similar to DARMS, although its focus is on ethnomusicological

material. Smith's system, SCORE [Smi72,Smi73] (now known as MS), is oriented toward producing

very high quality graphical output. This system has interactive score editing tools that give the user

very fine control over the music typesetting process.

As an example of these graphical languages, figure 2.14 shows a small piece of music, along

with its DARMS encoding. This system was intended to encodemusical scores onto punchcards (the

projectwas started by Stefan Bauer-Mengelberg in the 1960's). It generally utilizes one letter codes

foreachattribute of anobject found on the score. Numbers are usedtypically to indicate vertical posi

tion: 21 (or 1 for short) is the bottom line, 22 is the bottom space, and so forth. The other abbrevia

tions are summarized in figure 2.14(c).

DARMS has a very flexible input protocol, allowinginformationto be entered from the page in

a variety of orders (a measure at a time, whole lines at a time, etc.). Also, redundant information can

often be suppressed, so that repeated note durations or pitches can be rapidlyentered. Programs have

been written to convert this "user DARMS" into "canonical DARMS" (the programs have been

whimsically named "canonizers"). A canonical DARMS encoding presents the score information in

a consistent order, and explicitly includes all repeated information [ErW83, McL86a]. Systems to gen

erate a graphical CMN score from a DARMS encoding have also been designed [Gom77].

2In practice, this is notquitetrue. The tunbral aspects of notes on a particular channel maybe modified overtimeby
MIDI commands that affect, for example pitch bend. However, these cannot be applied on a note by note basis. All
notes active on a given channel areaffected simultaneously.

Tenor

n a in ex - eel

m
$=F= m

sis De—o

(a) A Fragment of Music

14 !G !K2# 00@^TENOR$ R2W/
(7,@*GLO-$ 4 7) / (8 (9 8 7 8)) /

9E 9,@RI-$ 8,@A$ / (7,@IN_$ 6) 7,@EX-$ /
(4D,@CEL-$(87 8 6))/

(4D 31) 4,@SIS$ / 8Q,@*DE-$ E,@0$ //

(b) Its DARMS Encoding

Abbreviation Meanine

14 Instrument (or voice) definition #4
!G G (treble) clef
!K Key signature (!K2#: two sharps)
00 Annotation above the staff

R Rest (two whole rests)
@text$ Literal string

0 Capitalize next letter
(notes) Beam grouping

W Whole duration

Q Quarter duration
E Eighth duration
D Stems down

/ Bar line

(c) Abbreviation Key for the DARMS Encoding

Figure 2.14. DARMS Encoding (from [Eri77])

25

26

2.6.3. Other Score Representations

Representations for music have been developed which are embedded into programming

languages. An example of this is the LISP-based Flavors Band system developed by Fry [Fry84].

Flavors Band is intended for the procedural representation ofjazz and popularmusical styles. The sys

tem is primarily concerned with the pitch-time structure of a composition. In this respect it is similar

to the MIDI specification [Jun83] in that it does not easily represent timbralor dynamic modifications

to a single pitch over time.

PLA [Scb.83] and Formes [RoC84] take an object-oriented approach toward representing the

structural specification of musical scores. PLA is based on the text-based music representation,

SCORE [Smi72]. Formes is written in LISP. Both provide a notion of messages, part of the object-

oriented programming paradigm. A particular message is interpreted independently by each object

type. Individual instruments of a composition may then respond to musical directives in their own

way. For example, if a sound-generating instrument is sent the message dolce (sweetly), it might

appropriately respond by decreasing its volume, lessening its vibrato, changing its timbral structure,

and so on. A different instrument might interpretthe dolce directive in an entirely different fashion.

PLA produces Music V note lists as output Like Formes, PLA does not operate in real time.

An entire specification is converted into digitized sound via several processes. This digitized sound

cannot be played until all the processinghas been completed.

A different approach is taken by the FORMULA system, built onto the FORTH programming

language [AnK86a, AnK86b]. This real-timesystem supports algorithmiccomposition by allowing the

user to manipulate multiple processes which independently schedule events (or attributes of existing

events) over time. Events may actually producesounds as they arescheduled interactively by the user.

2.7. Summary

In this chapter,musical informationhas been shown to consist ofdifferent types of data, includ

ing sound, graphics, text and conceptual abstractions. Each of these data types has its own peculiari

ties of representation and manipulation.

27

Musical applications such as tools for score editing, composition, or analysis require the ability

to manage these different types of informatioa A data manager also requires, in addition to informa

tion describing a particularpiece of music, rules (what we have termed "meta-musical information")

describinghow the piece should be transformed, for instance, from its graphical form into sound.

Focusing specifically on CMN, we have seen how the graphical entities that constitute CMN

scores may be divided into two graphical categories, iconic objects and linear objects. These together

constitute the "font" with which CMN scores are notated.

Several encodings for both musical sounds and music notation have been developed. We have

categorized these by their level of abstraction, with uninterpretedgraphicsdata and digitized sound at

the lowest level, andmusic descriptions such as CMN andprogramming languages at the highest level

In the next chapter, we consider structural characteristics of the more abstractrepresentations, particu

larly ofCMN.

28

CHAPTER 3

Hierarchical Ordering and Inherited Attributes

Because the music domain consists of well understood structural components (for example,

CMN scores consist of staves, measures, notes, rests, etc.), the entity-relationship data model [Che76]

providesus with a natural basis fordescribing musicalinformation. This chapterbeginswith a review

of the important features of the entity-relationship model Essentially, each structure is represented in

the database by an entity. In order to represent the relationships among these structures, we introduce

the concept of hierarchical ordering as a tool for data modeling. We use three complementary

representations fordescribing hierarchical ordering:

• Instance graphs as a pictorialrepresentation ofhierarchically ordereddata,

• A data definition language (DDL) for hierarchical ordering,

• Hierarchical ordering graphs (HO graphs) to represent hierarchical ordering at the database

schema level.

Section 3.1 begins with some background related to the use of ordering and hierarchy in data

base design. After introducingour representation of the entity-relationship datamodel, we presentour

extensions for hierarchical ordering.

In section 3.2, we consider an approach to representing inheritance in the musicdatabase. After

a discussion of related proposals in other domains, we consider attribute inheritance in the music

domain, and how it relates to these previous proposals.

A method has been developed to implement inherited attributes using a variant of the "query

modification" technique used for maintaining views in a relational system. This will be presented in

section 3.3.

There remains a type of inheritance that requires the full power of procedural specification to

determine the values of inherited attributes. An extended example of this complex attribute inheri

tance is given in section3.4. In this example, we present the inheritance procedures to determine the

29

"note volume" attribute for notes in a music database.

3.1. Adding Hierarchical Ordering to the Entity-Relationship Model

3.1.1. The Entity-Relationship Model

As a basis for the discussion which follows, we briefly review the entity-relationship model

[Che76]. The domain to be modeled is represented by a variety of entity types. In the musical score

domain, examples ofentity types include compositions, measures, chords, notes, staves, and so on.

The actual objects within the domain are represented by entity instances. Each instance is of a

particular type. Thus the composition entitled "The Star Spangled Banner" is an entity instance of

type "composition." Every entity instance of a given type has a set ofattributes associated with it. In

the above example, "title" is seen to be one attributeof the "composition" entity type.

Within every entity instance of a particular type, each attribute is assigned a distinct value.

Every entity instance of a given type has the same set of attributes,though the value of each attribute

varies from instance to instance. For example, every composition is defined to have a title, and the

value of that title is typically different foreach composition.

A database schema, from our perspective, is the set ofdefinitions necessary to describe the entity

types in a database, their associated attributes, and the types of their interrelationships. Throughout

this chapter, wedevelop adata definition language (DDL) toexpress them.1

3.1.1.1. Entities

An entity is defined by the define entity statement, whose syntax is:

define_entity_statement:
define entity entity_name

[(attribute_spec {, attribute.spec })]

attribute_spec:
attributejname = attribute_type

The allowable "attribute.types" are determined by the implementation of this model, which will be

1DDL statements will bepresented using BNF syntax descriptions [Bac59]. Keywords will begiven inbold face type,
clauses surrounded by square brackets, (], are optional, andclauses surrounded by curlybrackets, { },may be included
zeroor more times. Upperand lowercase fetters arealways distinctin key words(e.g. name. Name, andNAME areall
different words).

30

covered in chapter 5. Generic types such as integer and string will be used in this chapter. Thus, we

might define an entity type, *'DATE,"

define entity DATE (day = integer, month = integer, year = integer)

A date entity has three integer attributes: its day, month, and year. Given this definition, we may mani

pulate a date as an atomic object or we may refer to the individualattribute values within a particular

date.

3.1.1.2. Relationships

A general description of relationships among entities is found in [Che76]. For the purposes of

our discussion, we are interestedin modeling two particular types of relationships, "m to n" relation

ships and "1 to n" relationships.

To express "m to n" relationships, we use the define relationship statement. Its syntax is

similar to that of the define entity statement Two (or more) entities are related by using their entity

names as the types of the attributes of the relationship. For example, suppose that we wish to model

compositionsthat are composed by many people(not common, to be sure). This represents an "m to

n" relationship between people and compositions, because oneperson may be the composer of many

compositions, and one composition may be writtenby many composers. This would be expressed as

follows:

define entity PERSON (name = string,...)
define entity COMPOSITION (title = string,...)

define relationship COMPOSER (composer = PERSON, composition =COMPOSITION)

Fora given instance of a COMPOSER relationship, the "composer" attribute references an instance

of a person,and the "composition" attribute references an instance of a composition.

A "1 to n" relationship may be specified implicitly in the definition of anentity. Consider the

relationship between compositions and their dates of composition. This is a "1 to n" relationship

because an single date is associated with each composition, andan arbitrary numberof compositions

areassociated with a single date. This relationship is expressedby the statement:

define entity COMPOSITION (title = string, composition.date = DATE)

31

A composition, as defined in this example, has two attributes. The first is a title, of type character

string, and the second is the date on which the compositionwas composed. For a given entity instance

of type COMPOSITION, the value of this latter attribute is a reference to some entity instanceof type

DATE.

Chen introduces a pictorial notation for representing entities and relationships, an example of

which is shown in figure 3.1. This graph shows the definitions of PERSON, COMPOSITION, and

DATE, and the relationshipsCOMPOSERand COMPOSITION-DATE mentionedpreviously. In this

type of representation, entity types are shown in rectangular boxes, and relationships are shown in

diamond-shaped boxes. Lines are drawn from relationships to the entities which they reference. The

type of the relationship (m ton or 1 ton) is indicated on these lines.

3.1.2. Ordering

Neither the relational model, nor the entity-relationshipmodel incorporates any concept of ord

ering among elements stored in the database. Actual relational database systems, on the other hand,

usually implement some form of ordering among data records. This is typically provided by allowing

Figure 3.1. An Entity-Relationship Graph

32

the database designer to designate key attributes for a relation, allowing the system to sort the data

records so that they are ordered by ascending(or descending)key value.

This use of ordering may be seen purelyas a performance optimization in relational databases.

An important relational operation is to select data records that have a particularkey value (or range of

key values). This may be efficiently performed on relations that are sorted, because the desired

records are allstored together, rather than being randomly distributed throughout therelation.2

In contrast to this, we are interested in modeling a domain where an importantattribute of the

data is the participation of entities in various orderings. For example, a musical score consists of an

orderedset of measures of music, and the fact that one measure follows anothermeasure is a concept

which must be modeled by the database definition.

We therefore extend our DDL with a statementto expressorderingsamongentity sets. The syn

tax for the define ordering statement in its simplest form, is:

define_ordering_statement:
define ordering order_name (entity.name)

This represents the simple case where all the instances of an entity type participate in an ordering. For

example, suppose compositions are ordered in the database according to their "importance." This is

modeled by the statement

define ordering IMPORTANCE (COMPOSITION)

Having defined an ordering such as IMPORTANCE, we will see later in this chapter how queries may

be formulated to determine which compositions are more or less important than other compositions,

and how the importance of a composition is fixed (at the time of insertion or modification) with respect

to other compositions.

3.1.3. Generalization and Aggregation

The ability to model hierarchies has also proven important in the musical domain. Smith and

Smith discuss two orthogonal types of hierarchy, generalization and aggregation, that apply to data

modeling [LeG78,Smi72]. Their ideas were later implemented in database systems such as GEM

2Of course, this is only true if the desired selection is compatible with thechoice of sort key. For instance, a relation

33

[TsZ84] and GAMBIT [BDR85].

Generalization hierarchies relate certain types of objects to generic objects. For example, an

entity of type "boy" and one of type "girl" may both be related to the generic object "child". A

child, in turn, is a specialization of the genetic type "person". In the artificial intelligence domain,

generalizationhierarchies are sometimes known as is-a hierarchies [BoW77], A girl is a kind of child,

and a child is a kind of person.

Generalizationhierarchies do not seems to be widely applicable as a tool for modeling musical

information. Forexample, we do not find a musical object x, to be a kind of musical object y, which

in turn is a kind ofmusical object' •

In contrast to generalization hierarchies modeling the "kind of relation, aggregation hierar

chies model the "part of relation. They provide a very powerful and expressive tool for representing

such aspects of musical information as score structure. These hierarchies have many levels. For

example, anote is apart of achord, which inturn is a part of avoice, and soon3. Inimplementations

such as GEM, an aggregation represents a fixed number of objects, each of different type, that com

bine to form a single aggregateobject

3.1.4. Instance Graphs

This notion of aggregation hierarchies must be altered in order to represent the ordered sets that

occur in the music database. Unlike the aggregation hierarchies presentedin [Smi72],

• the number ofentities participatingin an aggregation is not fixed by the schema

• the entities participating in an aggregation form an ordered set. One may therefore speak of

"the n-th entity" in an aggregation.

• All entitieswithin an aggregation are typically(thoughnot necessarily) of the same type.

The term hierarchical ordering will be used for this new form of aggregation. In its most general

form, hierarchical ordering occurswhen a group of database objects (of one or more types) forms an

ordered set associated with a distinct parent object. Forinstance, a particular set of notes aggregate to

sortedon composition title cannotefficiently supportaselectionbasedon composername.

*In this chapter, wewillbedrawing many examples for our data model from themusical domain. Thevarious entities
(e.g. notes,chords,andvoices)will be defined more precisely in the next chapter. Readers already familiar with musk
notationmay rely on their"common sense" understanding of the semanticsof these musicalobjects.

34

form a given chord. An instance graph, such as the one in figure 3.2, shows this relationship pictori-

ally. This graph, in its entirety, could represent for example,a four note chord. It consists of a parent,

y, and an ordered set of children, [u,v,w,x }. The ordering among the children is indicated here by

arrows from one child to the next one in the ordering. Such edges of die graph are called 5-edges, as

they indicate a relationship among siblings. Each child also has a relationship with its parent indi

cated in the example by P -edges. Notice that each child has an ordinal position under its parent For

example, we may speak ofthe node w inthis figure as the third child ofthe parent labeled y.4

Instance graphs represent actual pieces of data in the database, such as particular chords. In

order to model chords in general, (i.e. what a chord is), the hierarchical ordering exhibited in the

instance graphs must be defined in the database schema.

3.1.5. Defining Hierarchical Ordering in a Schema

In an aggregation hierarchy, the numberandtypeof elements in the aggregation are fixed by the

schema. For example, a piano is an aggregation of one keyboard, a fixed numberof strings, a sound

ing mechanism, and a bench. A pianobench in turn is an aggregation of four legs and a cushion. For

entities in the musical score, this characterization is insufficient Specifically:

Parent

Ordered Siblings

key:

-* P-edge:''Parent within a hierarchy"
•* S-edge: *'Next sibling within an ordering' *

Figure 3.2. A Simple Instance Graph

4The pointers in aninstance graph should notbe misinterpreted asanindication of the physical implementation of these
objects within thedata manager. Theymerely serve to indicate graphically theordering and hierarchy among objects.

35

• The number of objects in an aggregation is typically not fixed. For instance, under the aggrega

tion of notes into chords,differentchordstypically have differentnumbersof notes.

• The objects in an aggregation are ordered. For instance, given two measures in a score, one

must be prior to the other.

These characteristics distinguish hierarchical ordering from aggregation hierarchies. The define

ordering statement is extended as follows to model hierarchical ordering:

define_ordering_statement:
define ordering [order_name] (child.entity {, child.entity })

[under parent_entity]

child_entity:
entity.name

parent_entity:
entity.name .

One such statement defines a single instance of hierarchical ordering. "Order_name" is the name of

the ordering. This is followed by one or more child relations whose instances will participate in the

ordering. The under clause specifiesthe relation from which parent entities are taken, determiningthe

type of the entity instance under which each ordering will be grouped. For example, a schema con

taining musical notes ordered within chords would be specified as:

define entity CHORD (chord attributes...)
define entity NOTE (note attributes...)

define ordering note_in_chord (NOTE) under CHORD

In this simple example, the ordering is named "note_in_chord." It consists of a single child type,

NOTE, under the parent type, CHORD. This schema definition would allow reference to, for instance,

"the third note in chord jc."

The semantics of various forms of the define ordering statement as when the order name is

missing, or when there are multiple child types, will be the focus of the next section.

3.1.6. Types of Hierarchical Ordering

It will generally be more convenient to present ordering definitions in pictorial form. We there

fore make use of die hierarchical ordering graph (HO graph), an exampleof which is shownin figure

33. This graph represents a single ordering. In general, each edge in the HO graph corresponds to

36

parent

I order name

child i, child2,

Figure 33. An HO graph for a Single Ordering

one define ordering statement.

We now consider several cases of hierarchical ordering.

Multiple Levels of Hierarchy. An object that is a parent in one ordering may be a child in

another. Thus we may specify orderings in this way:

define ordering e (X) under Y
define ordering f (W) under X

The HO-graph for this example is shown in figure3.4(a). An instance graph is shown in 3.4(b). This

type of ordering is quite common in music. For example, we might interpret this instance graph as

representing notes within chords within a measure. Referring to the figure, the ordering e then

represents the ordering of chords in each measure, and / represents the ordering of notes within

chords.

MultipleOrderings Undera Parent. Hgure 3.S shows a slightly more complex case, where two

different objects share the same parent each under its own ordering. It is specified by two statements:

define ordering e (W) under Y
define ordering f (X) under Y

Figure 3.5(a) shows the HO graph, and figure 3.5(b) shows an example of an instance graph which

would be possible under this schema This type of orderingschema occurs, for example, where both

(a) HO graph:

Y

A

X

w

(b) Instance graph:

key:

y\

wx > w>t "3 - ->. Wa « w5 w6

•> P-edge for ordering e ~ - > P-edge for ordering/
> S-edge for ordering e > S-edge for ordering/

Figure 3.4 AHierarchy of Orderings

37

(a) HO graph:

(b) Instance graph:

w 11L ^12 >Wl3

Y

e /
i

!

i w
• I

i

1
!

X |
i

Xn > Xn \-->X12 ! 13 —>xlA\—*

+ P-edge for ordering e > P-edge for ordering/
> S-edge for ordering e •> S-edge for ordering/

Figure 3.5. Two Orderings Under One Parent

38

X\5

parts and staves are ordered within an instrument (e.g. the portionof a score systemdedicatedto the

violin instrument may containthreeviolinparts,notated on two staves). From this figure, Y represents

the instrument entity type, W would be the stafftype, and X wouldbe the part type. The edges can

then be named: e wouldbe "the orderedset of partsper instrument" and/ wouldbe "the orderedset

ofstaves per instrument''

Inhomogeneous Orderings. The set of siblingsin a particularorderingmay not be of homogene

ous type. Where two (or more) different types participate in a single ordering, we express their rela

tionship by the single define statement:

define ordering e (W.X) under Y

Hgure 3.6 presents an HO graph that demonstrates this situation.

An example of this can be found in the music domain, where a musical voice consists of an

ordered sequence of chords and rests, intermixed (this is a simplified view, for the purpose of this

(a) HO graph:

(b) Instance graph:

y\

Y

"25T

W,X

key:
> P-edge: "w or x under y"

> S-edge: "Next w or x within y"
Child of type w

Child of type x

Figure 3.6. An Ordering with Inhomogeneous Children

39

example). Every rest and chord, by our definition,has some voice as parent. The element at a particu

lar position of the ordering, say, "the second object under voice V," must be either a chord or a rest

Of course, it can't be both, since there is only one "second object." This differs from the previous

case, where a parent Covered two child types under different orderings; then it made sense to speak of

"the second part for the violin instrument" as well as "the second staff for the violin instrument"

Multiple Parents: Another possible configurationis for an entity to have multiple parents. Hg

ure 3.7 shows the HO graph and instance graph for this definition:

define ordering e (X) under Y
define ordering f (X) under Z

The HO graph in figure 3.7(a) shows an entity type X participating in one ordering e under parent Y

and another ordering/ under parent Z. A typical instance under this schema is shown in figure 3.7(b),

while the table in figure 3.7(c) tabulates the ordinate position of each child node (of type X) under

each of its parents (of types Y and Z).

(a) HO graph:

(b) Instance graph:

; x\
*-—.

•• •""""•
•\« .-' -•*r ;

2 <.. *3 jr-
! X* ;

* • -* ""* ""*
^ ."»-».- .-• -•'

•«•—* " - --""""*'

_ -
J» Z.

- „
•«.

r
•" ** •* «s

"Y^
V

r
i

V

*1 r2 !

.. *5

key:
•* P-edge: *'x under y"
> S-edge:' 'Next x within y'

- - * P-edge: "x under z"
> S-edge: "Next x within z"

Ordinate Position ofx,

Order

name
e f

Parent y\ v2 t\ z2
Child:

X\

Xl

x*

XA

X5

i

2

3

1

2

2

1

3

2

1

(c)
Figure 3.7. An Entity OrderedUnder Two Parents

40

41

In the musical domain, this multi-ordering structure is quite common. For example, a note has a

chord as parent under the orderingnamed "ordered set of notes per chord." A note also has a staff as

parent under the ordering "next note per staff". A chord may lie on multiple staves, so two notes that

are members of the same "per chord" orderingare not necessarily members of the same "per staff"

ordering.

3.1.7. Recursive Ordering

Suppose that the parent in an ordering is of the same type as one of the children. In that case,

the ordering is recursive. An example from music would be found in the grouping of chords under

beams. A beam groups consists of an ordered set of smaller beam groups intermixed with chords.

This would be defined as follows:

define ordering (BEAMJ3ROUP, CHORD) under BEAM.GROUP

The HO graph for this ordering is shown in figure3.8(a). Hgure 3.8(b) contains a fragment of musical

notation with several layers of beam groups. The six chords in this fragment are labeled c i to c6. The

instance graph for the chords and beam groups is shown in figure 3.8(c). Every object in this instance

graphis either a group (labeled gt) or a chord(labeled c,).

Certain restrictions on recursive ordering are necessary, to prevent the occurrence of instance

graphs that are malformed. One difficulty arises if the P-edges for a given ordering form a cycle.

Because this would mean that an instance is "part of itself, such cycles in the instance graph are

disallowed. Similarly, cycles among the S-edges of a given ordering are not permitted, because they

result in the situation where an object is "before itself* in the ordering.

In the above discussion, several types of hierarchical ordering have been explored. We now

consider the ways in which queries may be constructedthat make use of the information provided by

these orderings.

3.1.8. Manipulation of Ordered Entities

We use QUEL [Rel84] as a basis for our datamanipulation language. Three new operators are

addedto QUEL to supporthierarchical ordering: before, after, and under. Unlike other QUEL opera

tors, the ordering functions operate on entities (represented by range variables in QUEL), rather than

(a) HO Graph:

Group
a

Group, Chord

(b) Group/Chord Notation:

JEM 5EM

Cx c2 c3 c4 c5 c6

(c) Instance graph:

key:
• P-edge:''Group orchord under group''
> S-edge:' 'Next groupor chordwithinparent group"

Figure 3.8. An Example of Recursive Hierarchical Ordering

42

on attribute values. In thisway they aresimilar to theentity equivalence operator, is, introduced in the

GEM extensions to QUEL [Zan83]. Asanexample oftheis operator, recall theschema forcomposers

and compositions:

define entity PERSON (name = string,...)
define entity COMPOSITION (title = string,...)

define relationshipCOMPOSER (composer = PERSON, composition = COMPOSITION)

Aquery to find all the composers of' 'The Star Spangled Banner" would be5:

retrieve (PERSON.name)
where COMPOSnTON.title= "The Star SpangledBanner'*
and COMPOSERxompositionis COMPOSITION
and COMPOSER.composer is PERSON

43

Unlike other operators, theis operator takes entities (i.e. range variables) rather thanattribute values as

operands.

The ordering operators each take two range variables and an optional ordering name as

operands. The syntax for a qualification using the "before" operatoris representative:

before_clause:
range_variable before range.variable [in order_name]

The after and under operators have similarsyntax. For the before and after operators, the types of

both range variables are taken from the child types of the ordering indicated by "order.name." For

the under clause, the type of the first range variable is taken from the children of the ordering, and the

type of the second is the parent type in the ordering. The clause,

a before b in order_name

evaluates to "true" if a and b both have the same parent with respect to the hierarchical ordering

indicated by order_name, and a is before b in that ordering. If a and b have different parents, then

they are not comparable, and the before clause evaluates to "false."

Given these definitions ofNOTE and CHORD,

define entity CHORD (name = integer, otherchordattributes...)
define entity NOTE (name = integer, othernoteattributes...)

define ordering note_in_chord (NOTE) under CHORD

range ofnl, n2 is NOTE
range ofcl is CHORD

here are examples of the use of the ordering operators:

Given a note n, retrieve the notes prior to n in its chord:

retrieve (nl.name)
where nl before n2 in note_in_chord
and n2.name = n

Retrieve the notes that follow note n:

5AsinGEM and later versions of INGRES, arange variable with the same name as itsentity type is implicitly declared
foreach entity type.

retrieve (nl.name)
where nl after n2 in note_in_chord
and n2.name = n

Retrieve the notes under chord c:

retrieve (nl.name)
where nl under cl in note_in_chord
and cl.name = c

Retrieve the parent chord of note n:

retrieve (cl.name)
where nl under cl in note_in_chord
and nl.name = n

44

3.2. Inherited Attributes

One of the principal motivations for organizing entities into a hierarchy is to allow attribute

values associated with one entity to depend on those associated with another entity. For example, one

attribute of a sync is its temporal location (i.e. the time at which the sync begins). All of the chords

which belong to a single sync inherit this temporal location. We can thus refer to the temporal loca

tion of a particularchord, whileguaranteeing that a set of chordsdefined to be simultaneous are indeed

so (by virtue of their inclusion under the same sync). In this example, the temporal location of a

chord is dependent on the temporal location of its parent sync.

An application such as a musictypesetting program presents a morecomplex example. Suppose

the application wants to query the music database:

• Givena note,n, what are the graphical coordinates (x, y) at whichto drawit?

In a database that storedNOTE entities withposition attributes x andy, this might be translated into

the QUEL command:

retrieve (NOTEjc, NOTE.y)
where NOTE.name = n

Storinggraphical coordinates in the NOTE relation in thiswaysufferstwoserious drawbacks.

The first drawback is that important integrity constraints on positional information are missing

fromsuch a schema. Here are twoexamples of integrity constraints on the positionof a note:

45

• Notes in the same chord must have the same x position.

That is tosay that notes in the same chord must bealigned vertically.6

• The distance between the y position of a note and the y position of the staff on which the note

lies (i.e. the y position of the bottom line of thatstaff) must be exactlya multipleofhalf the dis

tance between staff lines.

In other words, a note head must sit on a staff line or a space, but nowhere else.

The second drawback is that storing the positional informationof a note with the note itself is

not robust in the presence of updates. For example, suppose thatwe inserta measure of music into a

score. This must cause die position of all subsequent notes to change. Or suppose we perform the

musically innocuous operation ofmoving astaff line slightly. Perhaps, forvisualaesthetic reasons, we

displace a staff line up or down on the page. The (x,y) position of every note on the staff must

change because of thatoperation. There is no mechanism, within the database definition, to indicate

that an update to staff position must cause an update to the position ofseveral notes.

The rootof the problem is that, although position is an attribute of a note, insofar as it is mean

ingful to ask "What is the position of note n?", the value of the position attribute is actuallydepen

dent on many other attribute values. For example, note position depends on note pitch, the vertical

position of the staff on which the note lies, the horizontal position of the sync in which the note is a

member (indirectly,via some chord), and the positionsof other notes in the same chord (since the note

may swing to one side or the other of the chordstem depending on the placement of other notes on the

same chord stem).

When the value of an attributeis functionally dependent on the values of attributes in other enti

ties, we say that this attribute value is inherited. The above example demonstrates complex attribute

inheritance. The inheritance is considered complex because the attribute value is not simply the value

of a similar attribute in some "parent" object in the database, but is ratheran arbitrary function of a

number ofrelevant attributes distributed among several database objects.

4Suchanintegrity constraint, as stated, is incomplete, of course. For example, it doesnot allow for diecase where two
notes in a chord differ by a single staff degree. In thatcase, the notes areon opposite sides of die stem, ratherthan verti
cally aligned.

46

Given the above description of inherited attributes, the following sections relate this form of

inheritance to othertypes of inheritance thathavebeenexplored in previous research, andthenpresent

a proposal for incorporating inherited attributes into the music data manager.

3.2.1. Inheritance in Database Research

Existing research concerned with attribute inheritance, as it relates to the music database, falls

into three domains:

• Artificialintelligenceresearch focusing on knowledge representation,

• Database research involved in datamodeling anddatadefinition languagedesign, and

• Music research focusing on the modeling of musical information.

Much early debate in artificialintelligence research focused on whether knowledge should have

a procedural or a declarative representation, that is, whetherknowledge shouldbe represented by algo

rithms or by facts. The arguments for both sides of this issue are discussed by Winograd [Win75],

who proposesa frame representation to capture the connections between variousconcepts. He focuses

on inheritanceof attributesin a generalization hierarchy.

The inheritance of attributes along a generalization hierarchyis very simple. If an object x is a

specialization of anotherobject y, then all the attributes of y are inherited directly to x. Forexample,

if an attribute of the "person" concept is that a person is alive, then an inherited attribute of the

"child" concept is that a child is alive (because a childis a person).

Later knowledge representations, such as KRL [BoW77], extend the semantics of frames to

include distinctions between classes of objects (such as "person"), and instances of objects (such as

"the person named Jane Smith"). They also permit a much more general specificationof inheritance,

allowing essentially general types of links between concepts. Still, in this system, inheritance is an

implicit consequence of these links.

Fox [Fox79] proposed that inheritanceshould be separated functionally from the structureof the

knowledge representation. In this proposal, inheritance itself is a concept to be modeled. Inheritance

concepts take different forms, each with its own attributes (which determined the specific type of

inheritance). The inheritance displayed by generalization hierarchies (is-a inheritance) is one exam-

47

pie of such an inheritance concept He uses the term idiosyncratic inheritance to describe the arbitrary

forms of inheritance that do not fit into predefined inheritance classes.

His language for determining the nature of such an inheritance specifically includes constructs

for deterrnining what attributesare to be passed to the inheriting concept, and what attributes are to be

added, excluded, contradicted, restricted, refined or generalized.

This approach has the power of specifying arbitrary types of inheritance, while still maintaining

the succinctness of established inheritance classes, such as that of generalization hierarchies. This

form of inheritance specificationwas incorporated into the SRL system [FWA84]. However, this sys

tem still does not address the problemof complex inheritance, forinstance, it does not provide a means

to inherit, say, the largest value from a set of related objects.

A number of systems and languages have recently made use of the object-oriented paradigm

(see [StB86] for a survey and introduction). In these systems, such as SMALLTALK [GoR83] and

LOOPS [B0S8I], entities known as objects containboth procedural and state information. The objects

aremanipulatedby sendingmessages to them. Objectsaretypically divided into classes andinstances.

Forexample, "person" is a class, and "Jane Smith" is an instanceofthat class.

Every instanceinherits the properties of the classof which it is a member. All the properties of

persons in general are properties of "Jane Smith". In addition, classes are organized into a generali

zation hierarchy, and so instances further inherit the properties of all classes that are superordinate to

the class of persons (i.e. the class ofmammals, and the class of animals).

Fromour perspective, there are two advantages to the object-oriented paradigm. First, the func

tional separation between classes and instances accurately models the music database distinction

between entity types and entity instances. Secondly; the notion of procedural attachment, that is, asso

ciatingprocedural information with any class object in the generalization hierarchy, provides the abil

ity to handle arbitrarily complex computations to determine the value of an attribute (at the time an

instance of the class receives a message to produce that value).

The disadvantageof this approach is that by restrictinginheritanceto the paths of the generaliza

tion hierarchy, it is insufficiently powerful to model those cases where classes are organized as aggre

gation hierarchies, as in hierarchically ordered data.

48

When an instance receives a message, it checks to see if the class of that instance knows how to

respond to the message. If not, it passes the message on to its parent in the generalization hierarchy.

In a sense, this "passing on" is the operative part of this inheritance. A limitation of objectoriented

systems is the restriction they place on whichclasses provide the information to respond to messages.

Recent researchin database management has looked into issues related to knowledge representa

tion andinheritance. A numberof proposals, for example [DeF84], have endeavored to make use of

the data management servicesof the database in order to efficientlyhandle a large body of staticworld

knowledge. Others have taken the object-oriented approach and considered the problem of data

management of objects, forexample GEMSTONE system builtonto SMALLTALK [CoM84] andthe

EXODUS system [CDR86].

A knowledge base typically contains a very large number of rules andprocedures. For a given

task, only a small number of those rules may apply. One of the primary problems faced by

knowledge-based systems is the problem of efficiently determining which rules arerelevantto aquery.

Much of the impetus forusingdatabase systems to store procedural information is the attractive possi

bility of using sophisticated data management techniques to perform efficient selection of rules

[SSH86].

The role of artificial intelligence in music has been surveyed by Roads in [Roa85] which con

tains a large bibliography of relevant literature. Four specific application areas are noted in this sur

vey: composition, performance, musictheory, and digital sound processing.

The use of production (i.e. rule-based) systems is particularly interesting to us insofar as their

process of inference closely models the complex attribute, inheritance we wish to capture. Ioannidis

has suggested extensions to QUEL to support production systems [ISW84]. Such systems have been

used for both composition, and musical analysis in the music domain. The general application of

automatic composition systems is surveyed by Hiller [Hil70]. Actual systems include a production

system employing Schenkerian synthesis to generate four-part chorales by Ebcioglu [Ebc84] and a

similar system using more general synthesis rules designed by Thomas [Tho85]. Rule sets for per

forming phrase structure analysis are given in the context of a general production system in

[Ash83,Ash85].

49

3.2.2. Representing Inherited Attributes

The set of attributes associated with an entity may be divided into two types: Those whose

values are native to the entity instance, and those whose values are inheritedfrom some other entity.

If it makes semantic sense to update the attribute for a given instance,while leaving the instance graph

unchanged, then the attribute is native. Thus an attribute such as "stem direction" is native to a chord.

All the connections to and from the chord may remain unaltered in the instance graph if the stem direc

tion changes from "up" to "down." Temporal location is not a native attribute of a chord, since

changing the temporal location of a chord necessitates movingit from one sync to another.

Native attributes are associated with entities at the time they are defined with the define entity

statement. For example, the native attribute for stem direction is incorporated into the definitionof the

CHORD entity as follows:

define entity CHORD (... stem.direction = string...)

We extend the syntax of our DDL as follows to provide a definition for inherited attributes:

define.inheritance.statement:
define inheritance entity (targetjist)

where qualification

entity:
range_variable

targetjist:
attribute.name = expression (, attribute_name= expression }

The define inheritance command adds additional attributes to an existing entity. The value of an

inherited attribute is the value of the expression associated with the attribute by this definition,

evaluated at the time the value is accessed. The syntax of this statement is similar to that of the

replace command in QUEL, but rather than replacing an attribute value, the define inheritance state

ment adds new attribute values to the entity associated with the given range variable.

In the presence of hierarchical ordering, we can divide inheritance functions into three broad

categories: downward inheritance in the hierarchy, inheritance from ordered aggregation, and upward

inheritancein the hierarchy. We will now considerexamples of inheritance taken from each category.

50

Downward Inheritance in the Hierarchy: Attribute values maypropagate downthe hierarchy. A

child thus inherits attributes ofitsparents (and recursively, ofitsancestors). Inthis way anote inherits

temporal location (ie. the startjime attribute) from a chord. This would bedefined asfollows:

define entity CHORD (start_time = i4, other native chord attributes...)
define entity NOTE (nativenoteattributes...)

define ordering note_in_chord (NOTE)under CHORD

define inheritance NOTE (start.time = CHORD.start_time)
where NOTE tinder CHORD in note_in_chord

Inheritance from Ordered Aggregation: A child under a given parent may inherit attribute

values that depend functionally on thesetof siblings ofwhich die child is a member, and on the posi

tion of the child withinthat ordered set A measure, for example, has the attribute measure number,

which is a count of thenumber of measures preceding it in itsordering under a given movement This

could be specified by:

define entity MOVEMENT (nativemovement attributes...)
define entity MEASURE (nativemeasure attributes...)

define ordering measure_in_movement (MEASURE) under MOVEMENT

range of ml, m2 is MEASURE
define inheritance ml

(measure_number = 1 + count(m2 by ml
where m2 before ml in measure_in_movement))

In thisexample, ml refers to a given measure, and m2 is used to count the set of measures previous to

ml. The first measure in a movement will have measure number 1, the second will have 2, and so on.

This syntax is obviously rathercumbersome. In fact, thisexample represents a special type of aggre

gate function (related to the "count" function in thisexample) thatwillbe discussed in chapter 5. In

the course of that discussion a more natural syntax will be discussed.

Upward Inheritance in theHierarchy: In tins case, a parent attribute depends on an aggregate

function of the attributes of its children. For example, a beam group consists of an ordered set of

chords. Every group has the attribute start time that depends on the start times of its constituent

chords: the beam group starts when its first chord starts. Start time is thus inherited upward, from

chords to groups. This inheritance is defined as follows:

define entity GROUP (beamgroupattributes...)
define entity CHORD (chord attributes...)

define ordering chord_in_group (CHORD) under GROUP

define inheritance GROUP

(starLtime = rnin(CHORD.start_time by GROUP
where CHORD under GROUP in chord_jn_group))

51

3.3. Implementing Inheritance using Query Modification

When the user presents a query that requires access to the value of an inherited attribute, the sys

tem must determine the value of the inheritance expression for that attribute at that point in time. In

this section, an implementation of inherited attributes based on query modification is developed.

Query modification has been used as a means of supporting both integrity constraints and relational

views [Sto75], each of which displays similarities to inherited attributes.

When the system encounters a define inheritance statement, it catalogues the association

between the (new) inherited attribute names and the entity type of the range variable specified by the

statement. The system also catalogues the expression that is associated with the attribute name.

Every time a query references an attribute, the system catalog (the ATTRIBUTE relation) indi

cates whether the attribute is inherited or not. If it is inherited, the expression is substituted into the

query for the attribute value, and the resulting query is then processed.

Here is the algorithm to be performed for every inherited attribute referenced within a query.

Given:

a term of the form m.n within a query Q, where m is a range variable over relation X, and

an inheritance definition of the form:

range ofp isX
define inheritance p (y = e*) where q

where e is an expression (possibly involvingp), and q is a qualification.

(1) Rename every range variable in e and q other than/? so that they don't conflict with range vari

ables used in Q.

52

(2) Replaceevery occurrenceofp in e by m.

(3) Substitute e for m.n in the query Q.

(4) Replace every occurrence ofp inqbym.

(5) Add q to the qualifications of the query Q.

In the following paragraphs, examples are presented foreachof the inheritance examples of the

previous section.

Find thepitchandstarttime ofevery note priorto thenote whose starttime is less than 100. For this

example, assume "pitch" is a native attributeof NOTE The query is:

range ofn is NOTE
retrieve (n.pitch,n.start.time) where n.start_time < 100

The inheritance statement (from the previous section) is:

define inheritance NOTE (start.time = CHORD.start_time)
where NOTE under CHORD in note_in_chord

The result of applying our query modificationalgorithm to the query is:

range ofc' is CHORD
range ofn is NOTE
retrieve (n.name, c'.start_time)

where c '.start_time < 100
and n under c' in note_in_chord

The query modification algorithmintroduces a uniquerange variable c' to replace CHORD,as a result

of step (1) of the algorithm.

Retrieve thestarttime ofmeasure number 20. Assumethat start time is a native attribute of a measure.

The query is:

range ofm is MEASURE
retrieve (m.start_time) where m.measure_number = 20

The inheritance statement (from the previous section) is:

range of ml, m2 is MEASURE
define inheritance ml

(measure_number = 1 + count(m2 by ml
where m2 before ml in measure_in_movement))

The result of query modification is:

53

range ofm is MEASURE
range of m' is MEASURE
retrieve (m.start_time)

where 1 + count(m' by m
where m ' before m in measure_in_movement) = 20

In this example,m' is introducedin step (1) as the unique value for range variable m2.

Find all pairs of groups that begin at the same time. Assume that the "name" attribute is native to

groups. The query is:

range ofgl, g2 is GROUP
retrieve (gl.name, g2.name) where gl.start_time = g2.start_.time

The inheritance statement (from the previous section) is:

define inheritance GROUP

(start_time = min(CHORD.start_time by GROUP
where CHORD under GROUP in chord_in_group))

The result of query modification is:

range of gl, g2 is GROUP
range ofc', c" is CHORD
retrieve (gl.name, g2.name)

where min(c '.start_time by gl
where c ' under gl in chord_in_group)=

min(c".start_time by g2
where c " under g2 in chord_in_group)

In thisexample, thequery modification process introduces two unique range variables, c' andc", for

the two references to the inherited attribute, "start.time."

The above examples demonstrate cases where fairly simple queries are modified into compara

tively complicated queries involving multiple aggregate functions and so forth. Inherited attributes

that involve aggregate calculationsare quite commonin the musicaldomain, and techniquesto optim

ize their performance will be explored in chapter 5.

3.4. An Example of Complex Inheritance

Under certain circumstances, the query language itself is insufficient to support an inheritance

function. Complete procedural specifications are then required to determine the manner in which an

inheritedattributeis to be calculated. The procedures to be used in determining an attributevalue may

be specified in the form of rules, as is done in languages such as PROLOG[STZ84]. One attribute

54

that requires this type of rule-based inheritance is that of the volume of a note. This section presents

the rules for determining note volume.

Such a rule set would be used, for instance, by a system which readsthe music database for the

purpose of performing a score (either for analytical reasons, proofreading purposes, or foractual per

formance).

We begin by determining how volume (in music, known as dynamics7) is notated in CMN

scores. Dynamic markings in music scores take several forms:

• Global indications of absolute volume at the beginning of a movement

• Dynamic markings associated with voices.

• Dynamic markings associated with chords (or notes).

Another way to look at these dynamic notations is by observing the nature of their effect on

notes. Global markings affect all the notes in a movement, in every part Markings associated with a

voice affect all notes in the voice from the point in the marking until the next marking for that voice.

Markings for a single chord affect only that chord, and no subsequent ones.

The effect of a marking may be absolute, that is, it may indicate a particular volume level

independent of die preceding context, or it may be relative, dependent on preceding context For

example, die indication / (forte, loud) is an absolutedynamic indication: die following notes are to be

played loudly. The indication piu f (piu forte, more loud) is a relative indication that the following

notes should be played at a fixed volume slightly higherthan that of the preceding notes. The indica

tion crescendo (get louder) is a relative indication that the following notes should begin at this point to

increase their volume over time, smoothly to the next dynamic marking, which usually is an absolute

marking.

Some markings, the ''momentary" dynamics, affect only the notes in the chord under the mark

ing. Subsequent notes are not affected. They may be relative to previous context as the sfz (sfor-

zando, suddenly louder) marking, or may be absolute, as isjp (forte-piano, loud then soft). Figure 3.9

7Thereis aconflictbetweenthecomputer andmusicvocabularies in theiruseof theword"dynamic". Incomputer sci
ence usage, a dynamicattribute is an attribute of an entity computed accordingto given rules. A dynamicmarking, on
the other hand, is a score annotation whkh (roughly) directs performance volume, according to musical usage. The
meaning in any particular instance should be clear from context.

55

presents a list of the various dynamic markings.

3.4.1. Entities for Representing Dynamic Markings

Figure 3.10 presents the dynamic entity. Each dynamic marking is stored in this relation, and is

uniquely identified by its uid attribute. The location of the marking is determined by the values of

voicejtarent and syncjparent which locate the marking in the score by voice and by time, respec

tively. The marking is the actual text of the dynamic marking, for example, "#" or "cresc". A given

marking is has one ordinate position under its parent voice, voicejtrdinate, and one under its parent

sync, sync_prdinate.

Type Symbol Name Meaning

Absolute

ff
f
mf
mp

P
PP

fortissimo

forte

mezzo-forte

mezzo-piano
piano
pianissimo

very loud
loud

medium loud

medium soft

soft

very soft

Relative

cresc

dim

crescendo

diminuendo

get louder
get softer

Momentary
sfr
fp

sforzato

forte-piano
loud

loud attack,
then immediately soft

Modifiers

sempre

poco

subito

piu

always
slightly
suddenly
more

sempreff "still very loud"
poc0/"almost loud*'
sub.p "suddenly soft"
pro/"louder"

Figure 3.9; CMN Dynamic Markings

DYNAMIC Native Inherited

uid abs_nearby
voice_parent slope
sync_parent time

voice_ordinate slope_sign
sync_ordinate type
marking volume

Figure 3.10. The DYNAMIC Entity

56

There are also inherited attributes in the "dynamic" relation: absjiearby is a booleanattribute

which is true if there is anabsolute dynamic marking in die same voice in a nearby sync. This is used

to fix the value of relative dynamic markings, and will become clear when the actual rules are dis

cussed. Slope is the rate of change of volume overtime, for notes subsequent to the marking. For a

marking such as crescendo, it is non-zero. The time at which a marking occurs is derived from the

time of its sync. This would be expressed in units such as seconds from the beginning of the move

ment The volume, slope_sign and type are derived from the mark itself, in the context of various

stylistic factors. They indicate the effect of the marking.

Certain dynamic markings whichhavea linear range, require two entries in the table, the ' 'hair

pin" crescendo is an example. In figure 3.11, whichshows changes in dynamic over a single voice,

the volume starts atpianoin sync s lf a hairpin crescendo beginsat s2andends ats 5so thats6 isforte.

Syncs: s 1 S2 $3 $4 ^5 s6

DYNAMICS

uid voice svnc markine voice ordinate

</, Vi *1 P 0

d? Vi S* "start cresc." 1

<*1 Vi s* "end cresc." 2

<*< V1 5* f 3

Figure 3.11. ExampleofDynamic Markings

57

The note entity is just as before, with the addition of inherited attributes for volume, volume

slope, and voice. Syncs and chords enter into the calculation, with the attributes already mentioned.

Finally, there needs to be a mapping from dynamic markings to their meanings. This will in

general be dependent on the style of the music and the whim of the performer, but figure 3.12 gives a

typical example of this DYNAMICJNTERPRETATION relation.

3.4.2. Database Procedures for Determining Note Volume

Now, for each inherited attribute, a procedure will be given to derive the value of the attribute

for a particular entity. For conciseness,the pseudo-codelanguage used for specifying the rules will be

functional, in the manner of DAPLEX [Sbi81]. This allows the use of inherited or inherent attributes

to be syntactically indistinguishable. For example, the uid of a note n, an inherent attribute, will be

DYNAMIC INTERPRETATION

mark volume slope sien type

/ 50 0 ABSOLUTE,
PERSISTENT

mf 40 0 ABSOLUTE,
PERSISTENT

mp 30 0 ABSOLUTE,
PERSISTENT

P 20 0 ABSOLUTE,
PERSISTENT

piuf 10 0 RELATIVE,
PERSISTENT

piup -10 0 RELATIVE,
PERSISTENT

cresc. 0 1 ABSOLUTE,
PERSISTENT,
STARTUNEAR

dim. 0 -1 ABSOLUTE,
PERSISTENT,
STARTUNEAR

end cresc. 10 0 RELATIVE,
PERSISTENT,
ENDLINEAR

sfr 20 -1 RELATIVE,
MOMENTARY

fp 50 -1 ABSOLUTE,
MOMENTARY

Figure 3.12. Dynamic Interpretation Values

58

represented as uid(n),and the volume ofnote n,an inherited attribute, will be volume (n). Jim attri

bute is a uid field, this functional operation can beapplied recursively, implying a relational join. For

example, **slope(prev(d))" refers to the slope ofthe dynamic marking previous to the dynamic mark

ing d. Occasionally, relational constructs will be required; the syntax for these will be taken from

QUEL.

Here are the rules for determining the volume of a note:

/* Find the dynamic which "covers" note n */

range of n is NOTE
range ofd is DYNAMIC
retrieve d.uid

where voice(d) = voice(n)
and time(d) £ time(n) < time(next(d))

dynamic(n) <- d.uid

/* Find the volume of the note n */

volume(n) <- volume(dynamic(n)) +
slope(n)* (time(n)- time(dynamic(n)));

/* Find the slope of this volume for n: */

slope(note) <- slope(dynamic(n));

Notice that the retrieve statement is guaranteed to retum a singledynamic record, because the time

attributes are monotonicaUy increasing. We determine both the volume and the slope of the volume

for a note with these rales.

A note also has volume slope, if the volume is to change over the courseof the note (this is actu

ally a simplification, since it assumes that the change must occur linearly over the course of thenote.

For othertypes of volume change, several notes would have to be tiedto together to form a piecewise

linear approximation of the change in volumeover time).

if slope_sign = 0
then slope(d)«- 0.
done.

ifENDUNEAR e type(d) then
if (abs_nearby(d))

slope(d) <- slope(prev(d))
else

slope(d) *- 0;
done

59

else if (not ENDUNEAR € type(next(d)))

slope(d)«- <volume(pext(d))" volwne(d))
*^ duration(d)

else if (abs_nearby(next(d)))

(volume(next(next(d))) - volume(d))
slope(d) <-

(duration(d) + duration(next(d»)

/* untagged end with no nearby fixed */
else

(slope_sign(d)» DEFAULT.CRESC).
slopew <- duration(d)

A few characteristics of this type of rule set are worth noting:

It is essentially expressible in a relational language suchas QUEL,with the proviso that control

structures (e.g. if-then-else constructs, in this case) mustbe madeavailable.

The prev (forprevious) and next operations are defined on orderings, which must therefore be

supported. The result of these operations is a uid, from which attributes may be projeaed. This

corresponds to a relational join. Other operators, for example, chord(note), when composed in this

way, also imply a relational join. In this example, the join is between the chorduid and

note.chord_parent in the chordandnote relations.

The set of entities on which a given note volume depends is easily determined by running the

rule setto completion, and taking note of every object in the database that is read. Thedatabase sys

tem, by alocking mechanism as developed in[SAH85], may cache the resultant values inthe database,

and only recalculate them when relevant entities are updated. This is known as early evaluation.

Alternatively, the data manager may invoke the database procedure at the time the inherited attribute

value is requested by the client. This is termed lazy evaluation.

In tact, the data manager may materialize inherited attribute values atany time between operand

update and value retrieval. In particular, a database daemon may perform this materialization asyn

chronously to client access. When alarge setof values need tobematerialized, the optimal strategy is

to materialize first those that will be needed soonest by the client. When this information is not

known, heuristics similarto thoseused forexistingbuffer prefetch strategies may be used.

60

3.5. Summary

In this chapter, we have presented the semantics of hierarchical ordering in detail They are

represented schematically by HO graphs at the schema level, and by instance graphs at the entity

instance level. The power of this construct lies initsability to model the"partof relationship, where

an entity consists of an orderedset of other entities.

This construct is found throughout the schema for musical information. The instance graphs for

music are very complex, with a large number of subordinate objects in even conceptually small

amounts of music, such as a single bar.

An advantage of HO graphs lies in their semantic power in organizingattribute inheritance. We

have shown three types of inheritance: upward along the hierarchy, downward along the hierarchy,

and laterally over ordered aggregations. All of these inheritances may be mapped into a query

language such as QUEL, with suitable extensions to the data definition language.

We have demonstrated a form ofquery modification thatcan be used to supportthis inheritance,

by translating references to inherited attributes into expressions containing references to native attri

butes.

' Certain types ofinheritance require a moregeneral specification mechanism, andwe explore one

example of such an inherited attribute in detail. In this example, a general procedural specification is

used to define the relationship between notes and their performance volumes.

Throughout this chapter, we have developed a datadefinition languageto represententities, rela

tionships, and the hierarchical orderings in which they participate within the music database. This

languagemay be used to represent the datamodel itself, in the form of a meta-database.

In the next chapter we provide a complete description of the entities of the musical notation

database, and the hierarchical orderings in which they participate.

61

CHAPTER 4

A Database Schema for Common Musical Notation

In order to allow a user to refer to meaningful units of musical information, it must firstbe deter

mined what those units are. This chapteranalyzes in detail the entities that compose Common Music

Notation (CMN), and their interrelationships.

Section 4.1 begins with an overview of the entities of the CMN schema, and categorizes them

into severaldifferent aspects. An HO graph will be presented foreach aspectof the CMN score.

Section 4.2 focuses on the particular aspect of musical notation that represents temporal infor

mation. This presentation serves as an example of an application of the data modeling techniques

introduced in the previous chapter. Althoughthe representation of temporal attributes will be covered

in detail, the discussion is intended to be accessible to those with little background in musical notation.

Section 43 continues the exercise of the previous section, developing the HO graphs for the

remaining aspects. In focusing on the details of CMN, this section assumes familiarity with musical

notation on the partof the reader.

Section 4.4 takes a very small fragment from a musical score, and,using the HO graphs already

developed, presents the instance graph for this specific musical example.

Finally, in section 4.5, some published scores are analyzed, andthe approximate size of the data

bases we might expect to build from them is determined. A simple predictive model is proposed for

determining the size of adatabase representation based on the information density of the score.

4.1. CMN Entities

In many datamanagement domains, there are only a handful of entities. Forexample, the stan

dard company database contains employees, jobs, departments, parts, suppliers, and orders. Musical

information has, even at first glance, many more entities than this. These entities are summarized in

figure4.1, and will be discussed in the following sections.

Entity type Description

Score The unit of musical composition.
Movement A temporal subsection of the score.
Measure A temporal subsection ofthe movement.

Sync Sets of simultaneous events.

Group A group of contiguous chords andrests in
a voice.

Chord A set of notes in one voice at one sync.
Event An atomic unit of sound; one or more

notes.

Note An atomic unit of music; a pitch in a
chord.

Rest A "chord" containing no notes.
MIDI A MIDI note event.

MIDI control A MIDI controlevent at a point in time.
Orchestra A Set of Instruments performing a Score
Section A family of instruments.
Instrument The unit of timbral definition.

Part Music assignedto an individual performer.
Voice The unit of homophony.
Text In vocal music, a line of text associated

with the notes.

Syllable The piece of text associated with a single
note.

One graphical page ofthe score.Page
System One line of the score on a page.
Staff A division of the system, associated with

an instrument

Degree A division of the staff (line and space).
Graphical Definitions All the graphical icons andlinears.
Instrument Definitions Instrument patches and specifications.
Other graphicalattributes Accents, Accidentals, Annotations, Arpeg-

gii, Barlines, Beams, Clefs, Durationdots.
Fingerings, Flags, Hairpins, Key signa
tures, Meter signatures, Note heads, Rests,
Slurs, Staff lines, Stems, Ties, Letters, etc.

Figure 4.1. The Entities of a CMN Schema

62

63

4.1.1. Aspects of CMN

Each musical entity contains various attributes. For example, attributes of a "note" entity are

its position, shape, size, start time, parent chord, and so on. Musical entities in the CMN score have

several aspects andsubaspects, as shown in figure 4.2. These may be thoughtof as different views on

the musical schema1 Roughly, the temporal aspect pertains to when musical events are performed.

The timbral aspect refers to how they are performed (e.g. by what instrument, at what pitch, how

loudly, etc.). This aspect itself admits a finer characterization, into pitch, articulation, and dynamic

(i.e. volume) subaspects of the data The graphical aspect is concerned with how musical events are

notated graphically. A subaspect within the graphical aspectof the score is concerned with with tex-

Aspects of Musical Entities

Timbral Graphical

Pitch Textual

Articulation

Dynamic

Figure 4.2. Aspects of Musical Entities

1Theterm viewhasaspecific technical meaning indatabases, thus theterm aspect willbepreferred in thisdiscussion.

64

tual material, including avariety of score annotations, as well as the lyrics (or libretti) associated with

melodies.

The utility of this notion of aspect may besuggested by example. A musical note, as it appears

on a score page, possess attributes associated witheach of theseaspects.

The temporal aspect of a musical entity refers tothose attributes and relationships which model

the entity's placement intime. A note has attributes related tothe time at which itis performed inthe

course of a composition.

Because CMN groups musical events by "instrument," one may refer to the timbral aspect of

certain entities. A notehas atimbral aspect that refers (roughly) to the instrument that "performs" it.

A note may have several attributes reflecting its pitch aspect These include such things as its

staff degree, associated accidentals, and relations tokey signatures and clefs. There isalso anotion of

performance pitch (either MIDI keycodes orfrequency information) that is indirectly associated with

notes.

A note inheritsvarious articulative attributes. These reflect roughly how the note is performed.

They include modal attributes such as staccato (shortened orclipped) ormarcato (marked orstressed).

Also, a note may have inherited various performance attributes, such as when a violin note is played

pizzicato (plucked) otarco (bowed).

Another attribute which a notemustinherit is its dynamic value,whichindicates how loudlyit is

to be played. In the graphical score, these are given as annotations such as forte (loud) ot pianissimo

(very soft). Such attributes are nottypically assigned direcdy to a note, but rather are inherited by the

note from the context in which it lies.

Finally, since CMN is a graphical notation, musical entities have a graphical aspect, relating to

their representation on the written page. For a note, this includes its various graphical components,

suchasthe notehead,stem, associated accidentals, flags, dots, accents, andso on. Each of thesehasa

shape orsize and location on the page. These are all graphical attributes. A subclass of graphical

objects onthe score page may beconsidered tobetextual objects. Although individual note entities do

not have a textual aspect, there are a variety of textual annotations associated with pages, systems,

staves, syncs and individual chords.

65

4.1.2. Hierarchical Ordering Graphs for CMN Aspects

Two strategies areused here to organize the representation of musical entities. First, the entities

are arranged into groups by the aspects in which their attributes participate. Not every entity has attri

butes in every aspect(MIDI events, forexample,have no graphical aspect in CMN). Many entities, as

was seen for note entities, will appear in the graphs for several aspects. Foreach aspect, an HO graph

is defined. Towards the top of each graph will be abstract structures that give form to the music. At

the bottom of the graph will be the low level objects that make up the physical attributes of the music.4'

4.2. The Temporal Aspect

Before discussing the entities involved in the temporal aspect of a CMN score, certain uses of

the word "time," as it appears in music, must be defined. Specifically, a distinction must be made

between "performance time" and "score time."

The location in time at which a musical event is actually initiated, and how long it lasts, are

recorded in performance time. The units of performance time are seconds. Score time, on the other

band, is measured in rhythmic units. Musical structures in CMN, such as notes, chords and measures,

may fall into a more or less regular rhythmic structure whose unit is the beat.

The duration of a beat, however, is consistently distorted in performance. This distortion may be

noted in the score, by directives such as accelerando to speed up a passage or ritardando to slow

down. Alternatively, they may be inherent in the style of the music, as in the rubato associated with

certainmusical styles. Thus the mappingbetween the location of events in score time, and their loca

tion in performance time, may be arbitrarily complex. When anorchestra performs,it is the role of the

conductor to establish this relationshipbetween score time and performance time.

The HO graph for temporal attributes may now be considered. The relationships among the

temporal aspects of musical entities are shown in figure 4.3. To review the elements of the graph,

each box contains one or more entity types. The solid arrows refer to hierarchical ordering of child

types under a parent type, while the dotted arrows indicate hierarchical ordering under entities not

shownin this graph (they appear under other aspects). The indirect relationship indicated by the dot

ted lines arises becausethe given HO graph does not include all the entities in the musical schema.

* In this discussion, entity names will appearin italics.

Scot*

66

V \

Re« j MIDI

(ccctxol)

Boiina j

Mctsntg '

Syntax
Aiaioutioai I

Figure 4.3. Temporal Relationships in the CMN Schema

A musical score is the compositional unit of the database. Its temporal attribute is the duration

of the composition. This duration is the sum of the durations of its constituent movements. A move

ment is a somewhatarbitrary (though widely used)unit of performance. These movements are further

subdivided in time, into measures. Measures determine rhythmic divisions of a passage. Where a

musical passage has a rhythmic pulse (Le. a beat), each measure consists of an integral number of

such pulses.

The various musical events within a passage (such as notes) are typically aligned on these

pulses. Each such point of alignment constitutes a sync. This term is taken from the Mockingbird sys

tem [Ma083]. A sync has, as a temporal attribute, the point in score time atwhichit occurs. This can

be specified as a number of beats (units of score time) from the start of the measure in whichthe sync

occurs. Hgure 4.4 showshow a measure is dividedinto syncs. The notes within a sync are grouped

I

Sequence

-> 1

•> 2

-> 3

Beat

1.0

2.0

2.5

Figure 4.4. Dividing a Score into Syncs

Duration

1.0

.3

67

into chords (by voice, as shall be shown in the timbrel definition). The start times of notes and chords

are inherited from their parent syncs.

In additionto the grouping of chordsinto syncs into measures, particular musical voices may be

independently organized into melodic groups. Groups have a variety of semantic functions in music.

«As shown in figure 4.5, these include phrasing (e.g. notes covered by a slur) and timing (e.g. beams

and tuplets). A group has a the temporal attribute, "duration,'* which is a function of the duration of

its constituent chords and rests.

Rests, like chords, have temporal location and duration, although they result in no performance

(MIDI) information.

An event, from the temporal point of view, determines the placement in time of each atomic unit

of sound. It has a unique startand end time, and is performedby a specific voice. An event is thus a

unit of performance. A note, on the other hand, is the notated unit of music. These two are not neces

sarily the same, as, for example, when two notes are tied together. The Tie is a musical construct that

binds multiple note entities under a single event entity.

At the bottom of the graphappears the MIDIentity. This assumes a MIDI model [Jun83], where

individual musical "events** have particular starting and ending times. For scores that use CMusic

68

Figure 4.5. Examples of Chord Groups

style notelists, thesecaneasilybe extrapolated from the MIDI event information. MIDIeventsconsti

tute performance information, and so their temporal parameters are given in performance time (i.e.

seconds). There areMIDI commands to controlnote events, as well as control information such as the

actuation of a control switch other than a keyboardkey (e.g. the sostenuto pedalof a piano).

4.3. Other Aspects

For completeness, the HO-graphs for the remaining aspects of CMN are presented here. The

description of these graphs will be more terse than that of the previous section, and familiarity with

CMN is assumed.

4.3.1. The Timbra! Aspect

We now considerthose entities that have attributes which relate to the type of sound they model,

thatis, theirtimbre. The HO graph for thetimbral aspect of CMN is shownin figure 4.6.

Apart from the description of individual scores, the database contains definitions for each kind of

instrument For the classical composer, an instrument has various attributes such as its family (e.g.

the trombone belongs to the brass family), pitch range, notational transposition, standard clef, and so

on. For the composer of synthesized music, an instrument may be defined by a "patch,** the set of

69

Part

Voice

MIDI

Figure 4.6. Timbral Relationships in the CMN Schema

parameters for a given piece of sound synthesis equipment, or by an algorithmic definition of the

sound, such as a CMusic instrument definition.

The instruments used within a composition refer directly to these definitions, and indirectly (via

graphical constructs to be described momentarily) to the individual score. The score itself is divided

into movements, as already mentioned. In thisschema, movementshave not only a temporal aspect (as

shown in the previous section), but a timbral one as well, in that each timbral voice of the score is

defined (arbitrarily) to be one instance of an instrument over the course of one movement.

A part is a single instance of an instrument. Forexample, in a symphony, there is a single musi

cal instrumentknown as the "violia'* A composition may be scored for several violin parts, typically

named "first violin," "second violin," and so on. When modeling compositions for acoustical

70

instruments, each part represents a single instrument (or set of instruments performing strictly in

unison). For compositions destined for synthesized voices, the partsare typically associatedwith indi

vidual MIDI channels.

Each part consists of one or more voices. Musicologically, a voice is defined to be a homo-

phonic subsetof a part. In otherwords,while a voice may contain multiple simultaneous notes (such

as a chord), it does not contain any polyphonicstructure. Each chord within a single voice must end

(in score time, not necessarily in performance time) before the next chordin that voice may begin. For

instruments such as the violin, when played conventionally, each partconsists of one voice, since the

violin is not played polyphonically. Forharp or piano, which have the ability to produce polyphonic

textures, a part may consist of many voices. Synthesizers are commonly configured both polyphoni

cally and monophonicaUy, dependingon their technical capability andthe will of the composer.

Voices consist of non-overlapping sequences of chords which in turn consist of sets of simul

taneous notes. These entities, groups, chords, notes, as well as events and MIDI information, all

inherit their timbral attributes from the voice entity of which they are a part. For example, the MIDI

channel associated with a particular instance of aMIDI entity is inherited from the part, containing the

voice, containing the event, containing the MIDI command.

4.3.2. The Pitch Aspect

Associated with many (not all) events is a notionof pitch. Some instruments, such as cymbals

and certain drums, haveno pitchassociated with theirevents. Figure 4.7 showsthe ordered aggregate

graph for the pitch aspectof entities in the CMN schema.

Just as the temporal aspect reflects both score time and performance time, the pitch aspect

reflects both notated pitch and performed pitch. When the score is performed, pitch refers roughly to

the fundamental frequency of the performed note. This pitch attribute is associated with the event

entity, and is inherited by MIDI objects.

Notated pitch reflects a semantic pitch concept which is notexactly identical to thisperformance

attribute. These notatedentities, note heads, accidentals, clefs, andkey signatures, are shown in figure

4.8. The staff degree (in the context of a givenclef for that staff) on which a note is placed, and the

accidentals associated with the event group, determine the pitch with respect to the tonality of the

MIDI Noteheads

Instrument
s

Staff

Accidentals Clefs

Figure 4.7. Pitch Relationshipsin the CMN Schema

71

Keysigs

composition, as indicated by a keysig (key signature) entity. Thus there are enharmonic notes: dif

ferent notated pitches (such asb-natural andc-flat) thatrefer to equivalentperformance pitches (figure

4.8).

4.3.3. The Articulation Aspect

Various aspects of performance nuance are grouped underthe category of articulation. The HO

graph forentities that have an articulation aspectis shown in figure 4.9.

The ways in which chords are emphasized or accented, pointed or broadened, fall under this

category. The entities that mark these attributes of a chord are accents or various annotations such as

fermate, or ornaments such as mordents and trills.

72

key signature

accidentals

Figure 4.8. Pitch Entities: Enharmonic Pitches

\

\

Group Sync

T,

/\
/ \
/ \y

i L

' Chord
A

Slurs jAccents System
Annotatioc

MIDI
is (control)

Arpeggii

Figure 4.9. Articulation Relationshipsin the CMN Schema

73

Groups of chords are also subject to articulation. When applied to groups, this is typically

known as phrasing. It is indicated by slurs, as well as staff annotations such as caesurae. Because of

the subtlenature of phrasing, it is often not indicated directly in the score,but impliedby otherproper

ties, such as dynamic contour, pitchcontour, or orchestration. These may be represented by instances

such as MIDI control entities, which often serve an articulative function. Although not reflected

directly in CMN, they are made available in the database to effect various nuances of performance.

4.3.4. The Dynamics Aspect

Attributes associated with the dynamic aspect model the loudness of musical events.2 The enti

ties associated with these attributes are shown in figure 4.10.

A score may contain hairpins (for lack of widely accepted term) that indicate increasing or

decreasing volume in a voice over score time. These are relative dynamic markings. Absolute dynam

ics arealso specifiedby dynamics annotations such as/(forte) for loud and/? (piano) forsoft. There is

a fixed class of approximately twenty such annotations (as discussed in section 3.6). Events have a

performance dynamic attribute which is derived from these notational cues. MIDI entities inherit the

dynamic attribute of their event parent3

4.3.5. The Graphical Aspect

Because CMN is a graphical notationintendedto capture both the temporal and timbral features

of the score, the graphical aspect of the schema is more complex than the previous ones. Figure 4.11

shows the ordered aggregate graph for the graphical aspect of CMN, excluding the textual sub-aspect,

which will be considered separately.

In this schema, the score and movement entities have graphical attributes such as title page infor

mation (e.g. title, composer, date of composition, librettist, etc.). A movement is divided into a

number of pages. A page is divided into one or more systems. A system corresponds to one line of

music. In orchestral scores, there is often one system per page. For single instrument scores, many

2This is slightly different than volume, insofar aschanges inloudness typically involve timbral modifications in addition
to volume change.

1Unfortunately, the MIDI protocol has nomeans to specify continuous change involume within asingle sound event It
may be roughly simulated by concatenating several MIDI sound events within an event entity, each with a stepwise
change in volume.

Instrument

Group

Figure 4.10. Dynamics Relationshipsin the CMN Schema

Sync
—s—

74

75

Figure 4.11. GraphicalRelationships in the CMN Schema

systems per page are possible.

A system is a two dimensional object. Along the horizontal dimension, it is divided into syncs.

The temporal aspect of a sync (e.g. the point in time at which the sync begins, and its duration) have

already been discussed. Thegraphical aspect of a sync is reflected in itsposition onthepage: a partic

ular x-coordinate within the system, around which graphical components of the sync are built

Although those graphical objects (note heads, stems, accents and so on) may not lie directly on the

graphical syncposition, they all are placed withreference to it If a graphical sync moves (for exam

ple, as the resultof an editingoperation), all theconstituent graphical objects mustalsomove.

The vertical dimension of thesystem isdivided hierarchically. First,the system is separated into

orchestral sections. All instruments in the same musical family are thus grouped together. Each sec-

76

tion is divided into instruments, each of which consists of one or more parts. Independently, associ

ated with each instrument are one or more staves. Figure 4.12 shows graphically how this hierarchy is

represented in the orchestral score. This figure shows an example of multiple parts (Violin I and Vio

lin II) on one staff, and multiplestaves in one part (Piano). In CMN,sections that cover more than one

instrument are boundedby a square bracket, and multiplestaves in a single instrumentare boundedby

a curly bracket

Each staff consists of five lines, each line and each space between two lines constitutes a staff

degree. Graphically, a degree is half the vertical distance between two staff lines. This vertical

dimension, withinthe staff, partlydetermines the pitchof events on that staff.

Violin

Viola

Vcl.

Cb.

Piano

T
fL

n

Part Staff Instrument Section System

]]

]]

Figure 4.12. A Musical System

77

A rather large collection of graphical objects are associated with these various structures. Some

of these are shown in figure 4.13. All of them have definitions thatdefine theirgraphical structure in

some graphics representation language (suchas Postscript [Ado85]).

Most of these graphical objects have already been described under other aspects of the model.

The few that remain provide additional information to the score reader on interpretation of the score.

For example, staff lines provide the score reader with a reference grid to easily determine the degree of

other graphical entities.

4.3.6. The Textual Aspect

Other aids take the form of arbitrary annotations which provide terse textual comments on the

score or its performance. The annotations are applied in stylized fashion to various other entities.

Thus there are page annotations associated with the page entity, part annotations associated with the

beam

stem

staffline

bar line

accent
arpeggio

v x dynamic annotation

chord

Figure 4.13. Graphical Entities

78

part entity and soon. Figure 4.14 shows the ordered aggregate graph for thetextual aspect of CMN.

Score and movement annotationsinclude textual information relating to the title of the composi

tion, and other textual material that comes at the headof the piece. Instrument and part annotations

include text that labels the left margin of the system, indicating, for example, which instrument plays

the music on a particularset of staves.

System annotations occur at a particular sync, and usually are notated above the system. They

include textual annotations that give performance directions that apply to all parts at a point in time

(e.g. tempo indications such asAllegro, "quickly").

Various other indications annotate a particular staff at a point in time. These staff annotations

include information on how the score should be read (e.g. "a due," where one voice is to be read by

two parts sharing a staff), or how it should be performed (e.g. "pizzicato," where the notes on a staff

should be plucked rather than bowed by a stringed instrument).

Figure 4.14. Textual Relationshipsin the CMN Schema

79

Dynamic annotations are associated with a givenchord to indicate that this chord, and perhaps

subsequent ones in its voice, should have a particular dynamic level. These include annotations such

as"/' forforte (loud) and "p" tot piano (soft).

In vocal music, where words are spoken at particular pitches, the words themselves are

represented textually in the score. In this case, linesof text are aggregated under eachstaff. The text

is divided into syllables, each under a single sync. This term is used in a somewhat stylized fashion.

These vocal "syllables" are not necessary the actual syllables of a word, but rather those word parts

notated a one point in the score (multiple syllables are often sung on one note).

Every instance of a textual annotation has a particular font associated with it Sometimes the

font is fixed by convention, as with the characters used in piano fingerings or dynamic markings.

Other times the notator has considerable latitude in selecting fonts. For example, the lyrics of a song

might be in Roman or Italic characters, and the title of a composition might be set in a variety of

typefaces or sizes.

This concludes the description of the entities in the musical database schema. A prototype

implementation of this schema has been made, and is included in appendix C. By way of summary,

this prototype contains 55 entities, with 2S1 attributes, both native and inherited.

4.4. An Example from Music

In this section an instance graph for a small musical example will be developed. Figure 4.IS

shows a fragment of music, representing one measure from a piano score. For reference, each of the

chords in this figure is indicated by a dashed box. In spite of the small size of the fragment, it contains

large number of entities:a measure,a part, syncs (sets of simultaneouschords), voices, chords, staves,

notes, and graphical elements such as flags, stems, accents and dots. In figure 4.16, musical icons have

been replaced by database entities,each represented by a named box (for the purposes of the example,

the set of entities has been simplified slightly). The entities are positioned in figure 4.16 so as to

roughly correspond with their actual locations in the measure of music as shown in figure 4. IS. The

four chords are again indicated by dashed boxes.

These entities form the nodes of the instance graph. To determine the P-edges and S-edges of

the instance graph,refer to the HO graph for this set of musical objects, shown in figure 4.17. Again,

^
?

UPP
' J

Figure 4.15. A Measure of Music (chords are indicated by boxes)

Sync Sync

Chert Noa Dot

r

1 1
| AccMwstf No*

1

AccM

Noa

1 Chord

I Acdiml Noa Sura Chortl Noa Sun

1 1No* Noa

Figure 4.16. Entities of the Instance Graph

80

Sync

Chad No

Pb(

Stems Flags

I

Accents Note

1

Accidentals Dots

Figure 4.17. HO Graph for a Subset of Musical Entities

81

each edge in this HO graph defines one orderingon the musical data.

Unfortunately, if one were to view all the edgesof the instance graph simultaneously, the graph

would be unreadable. Therefore, the next five figures each show a subset of the edges in the instance

graph forourexample.

Figure 4.18 shows the ordering of the staves and voices of this measure under the part entity.

Bgure 4.19 displaysboth the ordering of syncs within measures anddie ordering of chordswithin each

sync. The ordering of chordswithin syncs is shown in figure 4.20, alongwith the orderings of stems,

flags and accents under chords. Notice that there are no S-edges for this latter group of orderings,

since each such ordered set in our example contains a single stem, flag, or accent This is not neces

sarilytrue. Forinstance, therecould be multiple flags associated with a given chord.

ICoy.

< P4df« "Objectcnda pat"

•'. •• S-adft:"Next caff aid* pat"

< - S-odfo: "Nut vole*cnda pat"

Sync Syne

, Chord. Noa Dot

Accident - Noa

Aocidcnol Noa Sam Chord. Noa ; Sam

Figure 4.18. Orderings under the "Part" Entity

82

Sync]

Chord Noa

Pit,

4P-odia"SyncanJamMan"

<Stdga"NutiyncInmil"

♦—•P^dcc"Chardunderiync"

<—•—S^dts"Neilctoid(niync"

GD

ICbwdlNoa•Dot

Acdderca!Noa
l:

H

Accident'Noa.Sam

CZ1c
Syar

H

CborrilNoa

Figure4.19.OrderingsundertheMeasureandItsSyncs

83

**•

84

Syne Syne Sync

I Veto It—^ 10*"1! •Noa i Dm

Veto, I ISaa I

^ |ckM'| ""• •

< Pedfj: "Chordundervoice"

< S-edp: "Nen chordin voice"

<• — P odey "Sam, fttf. orecoeatunderdart"

AoctdorCkl Noa 0

Q«
v noa i

h 0 n3<""""Q

Figure 4.20. Ordering of Chords and Their GraphicalComponents

\ _

---0

Similarly, figure 4.21 shows the ordering of noteswithin chords, andthe orderings of accidentals

and dots within notes. Again, accidentals and dots form ordered sets with a single element in this

example, therefore no S-edges are shown for them. Finally, the ordering of notes undertheirparent

staves is shown in figure 4.22.

Although thisexample is small, the instance graph is complicated. Tallying theobjects manifest

in this singlemeasure (including some not included in the simplifiedinstance graph above), there are a

total of 60 database entity instances.

Evenin this simple example, the complexity of the topological information inherent in CMNis

evident. CMN has historically been read by human perfomiers needing to derive large amounts of

information from the score in "almost" real time. The emphasis for musical notationhas been to pro

vide the performer at a glance with virtually all the information necessary to render the music. The

notation itself has therefore evolved over time to provide as concisely as possible a very large and

diverse quantity of musical information, including pitch, rhythm, phrasing, dynamics (e.g. volume),

harmonicstructure,declamation(e.g. of syllablesof text in a song), and so forth.

Staff |

Key:

Sedf*: "Next noa mcfcDrt"

* - - |Vod|K "Accidentalordot akternoa"

Sync Sync

IcherdM 1Note K 1 Del I

B
\V*l •—i I—» /r*i —i— r-» Nea I Sara ICberdH—f—1-NeM.I Sam

Q 0
Figure 4.21. Ordering ofNotes (by Chord) with Their Graphical Components

\.

85

Syne

Q—0

PIM

Key:

H*dj»: "Noa ender mV"

Sedge: "Nen noa in taff"

Figure 422. Ordering of Notes by Staff

86

Sync

Chord - Jl Net, I

PU8

4.5. Projecting the Size of Music Databases

Having determined the set of entities required to represent a CMN score, the size of this

representation for a particular score instance may be predicted. This section considers the question,

"How much information must a music data manager manage?" As with any general purpose data

manager, the answer to this question is highly application dependent In spite of this, some general

characterizationsabout the size of music databases may be made that do not assume a particular appli

cation. An empirical analysis wasperformed in an indirect fashion, intending to derivean "order-of-

magnitude" estimate of the size of musical objects. A simple model for predicting musical informa

tion density is developed later in this section, based on our results.

4.5.1. Counting the Entities of a CMN Score

The "unit of publication" (i.e. a book) was chosen as the musical object for analysis. The

advantage of this is that the information density within a given bookis fairly constant while the infor-

87

mation density between different books representing, for example, different genres of music varies

widely.

For the practical problem of determining the size of objects, a statistical approach was used.

Assuming (very roughly, to be sure) that the density of musical information is unifonnly distributed

over the book, sampleswere taken on a page bypage basis to extrapolate the total amountof informa

tion.

Our approach, then, was as follows: For each unit of publication,determine the number of each

musical entity as defined by the schema of the previous section. This was done by taking a random

sample of pages, counting the entities on those pages, and extrapolating the total number of entities

from thiscount. In those cases where exact amounts were available (where, for example, measures or

pages were already numbered), the exact values were used in preference to the statistical extrapola

tions.

Figure 4.23shows our results for threedifferent kindsof books. They are all similarin that they

contain exclusively musical material. Other possibilities were not considered, such as thematic

indices, which contain musical material embedded in a large amount of bibliographic (textual) infor-

Collection: Opera: Symphony:
Entities Broadway Die Beethoven's

Tunes Fledermaus Fifth

performers 2 48 29
movements 69 18 4

pages 176 704 136
lines 900 704 186
measures 4,000 4,000 1566
parts 140 100 40
staves 200 300 30
voices 350 400 60
syncs 20,000 22,000 8,000
chords 52,000 520,000 96,000
notes 65,000 660,000 160,000
rests 5,000 58,000 80,000
beams 6,000 66,000 7,000
syllables 14,000 58,000 0

Total 170,000 1,400,000 350,000

Figure 4.23. Numberof Entitiesin MusicalObjects

88

mation.

The three books are:

(1) A collectionofBroadway tunes, scored forvoice andpiano [Leo81],

(2) A three-act opera,Die Fledermaus, by J. Strauss [Str68],

(3) Symphony Nr. 5, by L. van Beethoven [Bee60].

As can be seen from the data in figure 4.23, the number of entities is dominated by the number

of notes and chords.

4.5.2. Predicting Database Size

It would be useful to predict the database size for a given musical score based on a small set of

readily determinable parameters, such as the length of the score, the number of parts, and so on. In

this section, the relationshipbetween these parameters and the resultantdatabase size is determined.

The total number of entities, e, in a score will form the basis for our estimate of its size. This

assumes that all entities are of about the same size. This is reasonable for the above examples, where

at least two-thirds of the entities in a score are one of two types, notes or chords. By noting the dura

tion (performance time) of a score, and the numberof performers in the orchestra, the average density

of the score can be calculated:

a -J-

where:

davg is the score density in entitiesperperformer persecond
e is the number ofentities

t is the duration of the score

p is the number of performers in the score

Given the density of a score (or perhaps, the density expected in a particular genre of scores),

score size is determined by the formula:

S —tpdmgStmity

where:

s is the size of the score representation in the database
t is the duration of the composition in seconds
p is the number of performers in the score
davg is the average density (as above)
Stntity is the average size of anentity(assume 4 bytes)

89

The average density parameter and total size for our three sample scores are shown in figure

4.24, along with the rate of information flow during performance, measured in kilobytes per perfor

mance second.

We hypothesize that scores of a similar genre have similar densities. Indeed, the two classical

orchestral piece considered above have densities of 3.6 and 4.0. The higher density, 10.6, of the piano

vocal work can be explained by two factors. First, the piano is physically capable of producing multi

ple notes simultaneously (and, unlike, say, the violin, does so most of the time). Second, a composi

tion for two performers will generally use both of them continuously, whereas in an orchestralcompo

sition, large subsets of the orchestra are often silent

It would be interesting to test this hypothesis; to determine, once the music data manager is in

operation, whether there is indeed a strong correlation between orchestration or compositional style

and information density.

Gomberg [Gom77] did actually perform a DARMS encoding of a sophisticated orchestral com

position. He encoded approximately twenty percentof Elliot Carter's "Double Concerto for Harpsi

chord and Pianowith Two Chamber Orchestras" [Car62]. The approximate size of Gomberg's encod

ing is 500 kilobytes, with 3000 bytes per page, 300 bytes per performance second. According to the

our model,

t = 1500 seconds (known)
p = 21 voices (known)

Collection: Opera: Symphony:
Entities Broadway Die Beethoven's

Tunes Fledermaus Fifth

Entities e 170,000 1,400,000 350,000
Performance time t

(seconds)
8000 8000 3000

Densitydmg 10.6 3.6 4.0

Size s
(megabytes) 8 67 17

Kilobytes per
performance- 1 8 5
second

Figure 4.24. ProjectedDatabase Size

90

davg =4 (assumed)
Sem - 4 (assumed)

Therefore:

s - 504 Kilobytes

This result supports ourhypothesis thatdensityis consistent across scoresof similargenre.

4.6. Summary

In the context of Common Musical Notation, the large number ofentities that make up a concep

tual representation of music have been explored. These entities have attributes that fall into one of

three classes: temporal, timbral, or graphical. The timbral aspect of music entities can be subdivided

into threemore classes: pitch, articulation and dynamics. Within the graphical view, an important set

of attributes relate to textual information.

The hierarchical ordering graph that represents the relationships among the entities within each

of these aspects was presented. This entailed a careful enumeration and definition of all the entities

that constitute our representation for CMN scores.

The information density of actualmusical scores, based on a statistical analysis of the number of

entities per unit of publication, was then calculated. This may be used to give a rough value of the

expected size of an arbitrary composition. The most obvious conclusion from this analysis is that

musical compositions have a very high information density. Any musical information management

system that is to handle even single compositions of moderate complexity must manage a large quan

tity of information.

91

CHAPTER 5

An Access Method for Ordered Aggregation

An access method that is useful for manipulating ordered data will be described in this chapter.

This access method, based on a data structure known as the A-tree, providesan efficient way to mani

pulate the ordering of entities within a relation. A design is presented for this access method as an

extension to the INGRES database system, and to its data definition and manipulation language,

QUEL.

The chapter begins by describing previous proposals for representing ordered relations in section

5.1, anduser-defined aggregate functions in section 5.2. These two concepts serve as the starting point

for our proposal.

This proposal supports inherited attributes whose values are determined by an aggregate func

tionoverthe siblings thatparticipate in anordering. These ordered, aggregate functions are described

in section 5.3.

An ordered relation may be stored in either a flat file format (called an orderedheap) or in an

A-tree structure. The specification of these is presented in section 5.4. In order to use thisdata struc

ture, the database system makes use of procedures supplied bythe user.1 The procedures that the user

mustcode in order to support anordered aggregate function are described in section 5.5.

In section 5.6, we present the extensions to our data definition language needed to support A-

trees. These commands allow the user to register ordered aggregates with the system, associate

ordered aggregate functions withentities, and create A-trees overordered relations.

The algorithms employed by the database system to manipulate ordered relations and determine

the value of orderedaggregate functions arespecifiedin section 5.7.

A prototype A-tree implementation has been built, and various performance tests have been per

formed. These are presentedin section 5.8.

1It should beclear thatdie"user" in thecontext of "user-defined aggregates" is theapplication programmer developing
aclient for the musical data manager. Such auser should notbeconfused with the end-user of the application, for whom
all database operations are presumably transparent.

92

Until this point, we have only been considering relations with a single, global ordering. Section

5.9 discusses the case where the entities in the relation participate in multiple orderings, and section

5.10 considers hierarchical orderings.

An extension to this implementation, supporting multiple orderings, is then explored. This

involves storing a multi-ordered relation as an multi-linked list This allows for a graph representation

of the ordereddata. This structure is often more space efficient, and graphpartitioningtechniques may

result in superiorquery performance. These issues aredetailed in section 5.11.

Section 5.12 briefly discusses other issues such as additional implementation alternatives and

performanceoptimizations.

5.1. Previous Proposals for Representing Order

In this section, previous proposals for implementing notions of orderingwill be discussed. They

fall into two classes: sorted relations and orderedrelations. The latter class contains several interesting

proposals, such as orderedB-trees and event trees, which will be presented in detail.

5.1.1. Sorted Relations

Although the original descriptionof the relational model specified that the records in a relation

are not ordered [Cod70], implementations of relational databases have typically provided a means to

sort the records of a relation by using one or more of its attributes as a "key." Relations may be

stored in ISAM [IBM66] or B-tree [BaM72,Com79] data structures to allow efficient access via the

key value, and to maintain the records in sorted order after insertions or deletions. Relations that are

ordered by a key value are "sorted relations."

The ordering structures presentedin chapter 3 arenot well modeled by sortedrelations. Because

ordering in sorted relations is dependent on the value of a native key attribute, which doesn't exist for

many ordered relations (as was shown in chapter 3), these techniques are not suitable for the music

database. This shortcoming of sortedrelations motivatedthe development of orderedrelations.

93

5.1.2. Ordered Relations

A common implementation of the entity model, built on the relational model, puts each entity

instance into a data record, and all the recordsof a singleentity type in a single relation. If the entities

are ordered, we can reflect that ordering by the order in which the records are situated in the relation.

A relation whose records are ordered in this way is an orderedrelation. The database system must

properly maintain this ordering. For example, the system may not arbitrarily rearrange the records of

the relation, as it might otherwise do if the relation were unordered.

The TEXT relation [SSK82] serves as a simple example of such an ordered relation. It models

the lines of text in a document. Each record in the TEXT relation represents one line of text These

lines are obviously ordered; whether one line in a document is before or after another line is well

defined.

Suppose we implement the TEXT relation as a sorted relation, by introducing the attribute "line

number" as a key.2 If the relation is then sorted online number, the lines become properly ordered.

This does not, however, accurately model the TEXT relation. As lines are inserted or deleted from this

relation, the "line numbers" must all be changed, even when the order of the remaining objects

remains the same. For this case where the records in a relation are ordered, yet no key properly deter

mines the ordering, sorted relations are not appropriate. An ordered relation is used instead.

QUEL normallyallows the comparisonof attribute values in a query. In an ordered relation, the

records themselves (as entities) may be compared. For example, a valid query on the ordered TEXT

would be,

range of tl, t2 is TEXT
retrieve (tl.all)

where tl before t2

and t2.1ine = "a line of text"

This query retrieves all the lines prior to the line, "a line of text" The range variables, tl and t2 in this

example,represent entitiesthat may be compared. The comparison is welldefined because the entities

are ordered.

* In this model, a line numberrepresents the ordinate position of a line withina document (for example, the fifth line in
the document has line number five). Such line numbersarenecessarily consecutive. This notiondiffers from the concept
of line number used by some text manipulation systems.

94

5.1.3. Ordered B-Trees

A structure for implementingtext as an ordered relation is presented in [SSK82]. In this propo

sal, each line of text is stored as a record in the TEXT relation. Because this proposal does not use an

entity model, orderinghad to be reflectedin an attribute of the TEXT relation. The line number, asso

ciated with each line of text, is presented as such an attribute. Rather than having the user update

every line number whenever an insertionor deletion is performed, an auxiliary data structure is used to

maintain correct line numbers for each record without user intervention. This data structure is called

an Ordered B-tree (OB-tree). it is presented briefly here; a complete description may be found in

[Lyn82].

An OB-tree is similarto a B+-tree [Com79] in that data is storedin leaf pages, and a multi-level

index is provided to access the data. An example of an OB-tree is shown in figure 5.1. Pointers to the

records in the relation (i.e. tuple identifiers, or TID's) are stored in the leaf pages of the OB-tree. The

orderof the records is represented by the orderin which the TID's are stored. Each internal recordof

the OB-tree maintains a count of the TID's in the subtree below it.

Internal page:

'll! 7 10i (counts)

y-^r-H (pointers)

Leaf page:

(TID's)
Root

11 7 10

2 3 2

\
4 2 4

/ \
)/ » A *

/
/

\

•• ! '• • • 1 !•
i i

•' •

>
i

i i

i •

• • • •

Figure 5.1. An OB-tree (from [StR80, p. 15])

95

In order to find a particular line, given its line number, the data manager scans the root of the

OB-tree, determining which subtree contains the particular line. Suppose we wish to find line 15 using

the OB-tree of figure 4.23. Scanning the root shows that the left subtree contains lines 1 through 11,

and the middle subtree contains lines 12 though 18. We therefore must find the fourth line in the mid

dle subtree, by scanning its root, and so on. One page is scanned at each level of the tree until a leaf

page is encountered. The TID for the desiredrecordis found on this page.

In order to insert or delete TID's from this data structure (corresponding to insertion or deletion

of lines of text in the TEXT relation), algorithmssimilar to those for B+-tree insertion and deletion are

used. The important point is that for a single insertion, rather than updating all the line numbers which

follow the insertionpoint, we merely need to updateone value at eachnon-leaf level of the OB-tree.

5.1.4. Other Proposals for Ordered Relations

An almost identical approach is used in the EXODUS system [CDR86] for storing "large data

objects." A large data object consists of a variable length string of bytes split among several disk

pages. An OB-tree index provides efficient access to any substring at a given ordinate position, deter

mined by a "byte number" instead of a "line number." Algorithms for inserting blocks of bytes at an

arbitrary point in the stringare presentedin this proposal. In the OB-tree for a largestorageobject, the

internal records of the index contain counts of the number of data bytes (rather than data records) in

the leaf pages below.

In a proposal for managing events and processes, a similarextension to B-trees was presented

[Rub85]. In this proposal, anevent is anentity thatbeginsat a particular point in time. They form an

ordered entity set such that an event e xis before anotherevent «2in the ordering if e xstarts at an ear

lier point in time than e 2.

Each event is stored in an EVENT relation, along with the amount of time until the startof its

succeeding event (the delay). The start time of any event can be calculated by summing the delays

from the beginning of the ordering up to the givenevent An auxiliary tree index allows the start time

to be calculated for a given record withoutrequiring a sequential scanofevery preceding record. For

each record in the EVENT relation, its TID anddelay are storedin this index, as shown in figure 5.2.

Each internal record of the B-tree index contains the sum of all the delay values under it.

i 2 I 6j3 partial sums

S » \ poaur*

Leaf pigs
1

delays1 I 0

i • MD't

1 3 2

! 1

.2<6 3
i 1
i3!4

I

/ N
/

1]
o I 2 : 1 0 ! o ; 2 ' i i 0 i'l' 3 ijoji it i oil U'':>

i 1

i i i i

; 1

i i ! •>!•• !••;•

Oil 344 46 7 S 8 10 11 14 15 15 17 18 19 19 20 22 23 24 ovan«uttun«

Figure 5.2. A StartTime Index for Events (from [Rub85, p. 15])

96

Referring to this figure, suppose we want to find the event at start time 20. We first scan the root.

The first subtree under the root must contain start times within the range 0 through 6, the second sub

tree covers 6 through 17, and the third subtree covers 17 through 24. The event at start time 20 there

fore must lie under the third subtree. Its left child is seen to contain start times in the range 17 through

20. We then scan this leaf page. Beginning with a start time of 17, we add the delays for successive

records on this page, until we reach the desired start time of 20 at the fourth record. We then take the

TID from this record,which points to the desireddatarecordin the EVENT relation. Thus, ratherthan

scanningevery leaf page to determine the sum of the delay values, a traversal of the index from root to

leaf suffices to find the event with a given starttime.

Insertions and deletions are performed as for B-trees, with the addition that the internal partial

sums must be properly updated.

5.2. User-Defined Aggregates

In the TEXT example, the index maintained a count of the data records in the ordering. In the

EVENT example, it maintained a sum over the delays associated with each event "Count" and

97

"sum" are each instances of aggregate functions provided by query languages such as QUEL. Our

proposalgeneralizes theseexamples so that arbitrary aggregate functions may be incorporated into the

index.

The INGRES system [HSW75]has been extended to provide a facility for defining abstract data

types (ADTs) and abstract data type operators [Fog82,Ong82,Ong83]. The result ADT INGRES,

has been further extended to incorporate user-defined aggregates, including aggregates over abstract

data types [Han84]. Our proposal further develops this workby extending ADT INGRES to support

user-defined ordered aggregates (to be definedpresently) over ordered relations.

An example of an ADT is the data type box used for graphical descriptions (for instance, in a

VLSI application, as described in [SRG83]). A straightforward implementation of the box type uses a

group of four floating-point numbers to specify the vertices of a rectangle. An example of an ADT

operator on boxes would be the overlap operator, "II". This operatortakes two boxes as arguments,

and returns true if they overlap. The following example (from [SRG83, p. 5ft]) demonstrates the use

of this ADT operator

create BOXES (owner = integer,
layer = string,
box_desc = box_ADT)

append to BOXES (owner = 99,
layer = "polysilicon",
box_desc = "0,0,2,3")

range of bis BOXES
retrieve (b.box_desc)

where b.box.desc II "0,0,1,1"

First, the BOXESrelationis created. It containsan integerattribute "owner," a characterstring

attribute "layer," and an ADT attribute, "box_desc." The second statement inserts a record into the

BOXES relation. The attribute value "0,0,2,3" is translated by the query parser into a box: a rectan

gle with onecomerat x=0, y=0, andtheopposite comer at x=2, y=3. The thirdstatement retrieves all

boxes that overlap theunit square (the square with one comer at x=0, y=0, andthe other atx=l, y=l).

Theprocedures to manipulate boxes and to implement theoverlap operator aresupplied bytheuser.

Hansonextends the notionof user-defined ADT operators to user-defined aggregates. He gives

twoexamples of aggregates on boxes[Han84, p. 3ff]:

98

(1) Computethe area occupiedby a set of possiblyoverlapping boxes. For example, find the area of

boxes in the polysilicon layer:

range ofb is BOXES
retrieve (area(b.box_desc where b.layer = *'polysilicon''))

(2) Compute the smallest box containing a set of boxes (the bounding box). For example, find all

boxes that overlap the bounding box of the polysilicon layer

range of bl, b2 is BOXES
retrieve (b.all)

where b.box_desc II bounding_box(b.box_desc where b.layer = "polysilicon")

Determining aggregate function values is performed by scanning sequentially through the

records of the relation. At each record, particular values are passed to a routine which accumulates

state information used to calculate the aggregate value. This routine is called the Next routine. For

example, the aggregate average(x) (where x is an attribute in the relation being scanned) maintains

two numbers in its state: the sum of x values, and a count of the number of records scanned. For each

record scanned, the Next routine adds an x value to the sum, and increments the count. When the scan

is complete, the average may be calculated by dividing the resultant sum by the count (this is done by

another user-defined procedure, the Resultroutine).

By allowing the user to define the structure of this state information, as well as the routine used

to incrementally accumulate this state, user-defined aggregatefunctions are supported. To process the

bounding box aggregate function in a query such as:

range ofb is BOXES
retrieve (bounding_box(b.box_desc where b.layer="polysilicon"))

the system sequentially scans through a set of boxes that satisfy the qualification (i.e. boxes in the

polysilicon layer), and, for each box, calls Next to accumulate state information. The state, in this

case, is initially an empty box (the "state box"). As each box is scanned by the system, the Next pro

cedure extends the state box to cover this scanned box. When the scan is complete, the state box is

returned to the data manager as the result of the aggregatecalculation.

99

5.3. Ordered Aggregate Functions

The aggregates described in the previous section take an unordered set of entities (e.g. boxes)

and calculate a single value based on them (e.g. a bounding box). An ordered aggregate function, on

the other hand, takes an ordered set of records, and defines one value for each record. In terms of the

entities stored in an ordered relation, the ordered aggregate function defines an inherited attribute

whose value for any particular entity instancedepends on the position of that instance in the ordering.

The following sections containseveralexamples of ordered aggregate functions.

5.3.1. Examples of Ordered Aggregate Functions

It can be seen that the line numbers of the TEXT relation are the result of such an ordered aggre

gate calculation. A line number for a given record is the "count" aggregate applied to the records

previous to it in the ordering. This definition of line number remains correct in the face of arbitrary

insertions and deletions from the TEXT relation. Similarly, the start time of an event in the ordered

EVENT relation results from applying the ordered aggregate for summation to the delay values previ

ous to this event in the ordering.

In addition to the ordered aggregates for counting and summation (hereafter called

"ordered.count" and "ordered.sum," respectively), other application specific ordered aggregates

might be useful. Suppose we wish to model a queue, whose length changes over time, as elements are

added and removed from the queue. For example, a process scheduler may have a queue of runnable

processes. At regular time intervals, we sample the length of the queue, and store it in the database.

This set of queue length samples constitutes an ordered relation (each sample is an entity, and each

entity is before or after some other entity). We want to know the average length of this queue in the

vicinity of a given point in time. This is commonly known as the "load average" of the system.

The averaging function used for this example is typically an exponentially weighted average.

The exponentially weighted average at a given point in time is a functionof the queue length at all pre

vious sample points. Samples in the recent past are moreheavily weighted than samples in the distant

past(The assumption in this example is that"recent history predicts future behavior"). Figure 5.3(a)

shows a histogram of a queue length samples,and an associated exponential average. The exponential

average serves as a "smoothing function" over the raw data samples. These samplesarestoredin the

Queue

Length

20

18

16

14

12

10

8

6

4

2

A

Time

(a)

RUNQUEUE

Queue Time Load

Length (ordered count) (exponential average)

13 0 13.00
14 1 13.20

7 2 11.96

2 3 9.97

11 4 10.17

5 5 9.14

10 6 9.31

11 7 9.65

7 8 9.12

10 9 9.30

7 10 8.84

19 11 10.87

9 12 10.50

16 13 11.60

19 14 13.08

3 15 11.06

(b)
Figure S3. Exponential Average of Queue Lengths

exponential

average

(s = 02)

100

101

RUNQUEUE relation, shown in figure 5.3(b). The only native attribute in this relation is queue

length. The time attribute is an instance of the ordered count aggregate, analogous to the "line

number" attribute in theTEXT relation. The third column, the exponential average, contains thenew

ordered aggregate for exponential averaging. Its value at a given data point is calculated by taking a

weighted average of the average at the previous data point and the data point itself (the weight or

scale factor, in this example is 0.2). Theexponential average maybecomputed by therecurrence rela

tion:

x~0 =a0

x~i =sai + (l-s)xi-l

where:

ax is queue length at time i,
Jr- is the exponential average at time i,
s is the scale factor forweightingthe average (0<s <1).

It is a straightforward mathematical exercise to determine the algorithms for accumulating state infor

mationin amanner analogous to thatused for the ordered_sum and ordered_count aggregates. This is

included, forcompleteness, in appendix E.

5.3.2. Components of an Ordered Aggregate Function

The recurrence relation in the above example contains components common to every ordered

aggregate function. These are:

An ordering. In the example, theordering is thatof the samples in theRUNQUEUE relation.

State information. This is x: in theexample. It neednot be anatomic value,but may be anarbi

trary structure. For example, we have seen that the regular average function has two elements in its

state, a sum and a count

Attribute parameters. These are the attribute values taken from the entities in the ordering,

which are used to calculate the aggregate function value. In the example, the queue length, a, is an

attribute parameter. In the ordered_sum aggregate, the attribute over which we are summing is the

parameter. The ordered_count aggregate requires no such parameter.

Constants. In contrast to the parameters whosevaluesvary within the computation of a particu

lar ordered aggregate, there may also be constants associated with the aggregate calculation. For

102

example, over a given ordered setof queue length samples, there are many different exponential aver

age functions, depending onour choice of die "scale factor" constant s. At the time we define an

inherited attribute to have the value of an ordered aggregate function, we fix the value of constants

associated with that function. To be clear, it should be noted that these so-called "constants" may

vary among different instances of the ordered aggregate, butwithin a single instance of an ordered

aggregate function, the valuesof these constants are fixed.

A result. The result value of the ordered aggregate function at any point in the ordering is a

function of the state at thatpoint In the exponential average, it is merely the statevalue,x;.

5.4. Implementation of Ordered Relations

Having detailed the components of ordered entities andordered aggregate functions, theirimple

mentation is now considered. The simplest implementation, the ordered heap, is discussed first, fol

lowed by a morecomplicated data structure, the A-tree, that provides betterperformance for calculat

ing orderedaggregate functions, at the price of increasedspace and complexity.

5.4.1. Ordered Heaps

A simple implementation of the ordered TEXT relation stores the records of the relation on a

doubly-linked list of disk pages, as shown in figure 5.4. This flat file structure is known as an ordered

heap? Within a page, the ordering of records is represented by their position. A record is before

First Disk Page:

v-*

Data Record

Ordering ofRecords

Figure 5.4. An Ordered Relation as a Linked List of Disk Pages

1The term"heap" is used to refer to anunstructured collection of objects (thisusage is familiar in database systems, as
well as in programming languages, such as Pascal). This should not be confused with the data structure, also known as a

103

another recordon the samediskpage if it is stored closer to the beginning of the disk page. In com

paringrecords on different pages, the ordering is represented by the links. AJl the records on onepage

are before those records on the pages following it along the forward links of the list. A sequential

scan of an ordered heap therefore retrieves its records in order.

5.4.2. The A-tree Data Structure

Just as sorted relations may be maintainedsimply in heaps or efficientlyin B-trees, ordered rela

tions may be maintained either in orderedheaps or ordered trees. The following proposal for ordered

trees generalizes those mentioned above.

The data structure used to index ordered relations with ordered aggregates is a tree of disk

pages, as shown in figure 5.5. The disk pages are divided into internal and tea/pages. Each record in

an internal page contains state information for one or more ordered aggregates, plus a pointer to a child

page. Each record in a leaf page contains one data record from the relation (or possibly a TID pointing

Internal pages

containing aggregate

state information

Leaf pages

containing

data records

Root

Figure 5.5. The A-tree Data Structure

heap,used by algorithmssuch as "heap sort", forwhich a heap is a partiallyorderedbinary tree.

104

to the data record; this is discussed in section 4.9). Additionally, each page in the data structure

(except for the root) has a pointer to a parent internal record. Finally, all pages within a level of the

tree are doubly linked so they may be efficiently scanned, either forward or backward.

The data structure has the following characteristics:

All leaf nodes are at the same distance from the root of the tree. This is guaranteed by the inser

tion and deletion algorithms, as with B -trees.

All pages are at least half full, except possibly the root. In other words, if p is the number of

bytes on a page, and r, is the size of the i 'th record (the records need not all be the same size), then the

total size of recordson a non-root page is bounded above and below:

The ordering of entities in the ordered relation is reflected in the layout of records on the leaf

pages. Scanning the leaf pages (following their forward pointers) accesses the data records in order.

The internal pages of the A-tree contain summary information for any number of ordered aggre

gates that have been associated (by define inheritance statements) with the ordered relation. The

Ordered B-tree is thus a special case of this datastructure, where the summary information in an inter

nal record consists of the count of the leaf records rooted at that internal record. The index used for

event start times is another special case of an A-tree, where the summary information for an internal

record is the sum of a particular attribute (e.g. the delay attribute)over its subtree.

Note that the A-tree index provides no additional information beyond what is present in the

ordered set of data records. Ordered aggregates such as ordered_count and ordered.sum may be

determined by a sequential scan of the data. The index serves as a mechanism to improve on the

amount of computation andon the numberof page accesses required by the sequential scan. The inter

nal pageseffectively supply summary information that precomputes the aggregate over subsets of the

data.

105

5.5. User-coded Routines

In orderto implement a particular ordered aggregate, the user must supply the database system

with a set of routines that determine how the aggregate is to be computed. Every calculation of an

ordered aggregate value fora given entity (i.e. every query that references an attribute calculated using

an ordered aggregate) must "scan" the ordered relation up to the given entity in order to perform the

calculation. In the absence of an index, this scan is performed sequentially over the ordered heap.

Five routines are needed to implement this scan. We now describe each routine, and, as an example,

show their implementation for the ordered_sum orderedaggregate.

InitializeScan: The InitializeScan routine is called at the start of each scan. It allows the user to

allocate the space for aggregate state information, and initialize that state.

For the ordered aggregate "sum," the state consists of a running sum over the course of the

scan. It therefore consists of a single integer, and is initialized to zero.

Nextlnner. The summary information stored in an inner (non-leaf) record is simply the cumula

tive state for the subtree rooted at that record. Thus, as the scan passes through an inner record,

Nextlnner is called with three parameters: the cumulative state (up to this record), the state for this

record, and any constants associated with the ordered aggregate calculation (the scale factor seen in

the exponential average ordered aggregate is anexample of such a constant). The result of this routine

is the cumulative state up to and including the inner record.

For the ordered_sum aggregate, the summary information consists of the sum over some data

field in the leaf records rooted in a particular internal record. Thus, given a running sum (the current

state), and summary information (from the internal record), we return a new current state whose value

is these two states added together.

NextLeaf. The manner in which leaf records are accumulated into the state is generally different

than the way in which internal records are accumulated. NextLeaf performs this function, given three

parameters: the cumulative state and constants, as before, and a list of attribute values from the leaf

record that enter into the aggregate calculation. The function accumulates these values into the state,

and returns the updated state.

106

The ordered_sum aggregate has a single attribute parameter, the attribute over which we are

summing (this was the delay attribute in the EVENT example). The new state for a given leaf record

is the old state plus the value of the attributeparameter in this record.

Result. After the scan is completed, the state must be converted into a result value using this rou

tine. For the ordered.sum aggregate, the accumulated state is the sum itself, so this is simply returned

as the resultant value.

Compare: Under certain circumstances the user must provide a routine which takes two resultant

aggregate values and determines their relationship one to the other. The Compare routine takes two

results and returns a negative number, zero, or a positive number, depending on whether the first result

is less than, equal to, or greater than the second result (respectively).

5.6. Defining Ordered Aggregates and A-trees

We now discuss further extensionsto our DDL to provide the user with the commands to define

aggregate functions and build A-trees over ordered relations.

5.6.1. Registering Ordered Aggregates with the Data Manager

A set of these routines for a given ordered aggregate function may be bundled into an executable

file, to be loadedon demand by the database system (the mechanism for accomplishing this in ADT

INGRES is discussed in [Fog82]). The user must inform the system of the existence of this file. The

command to register an ordered aggregate function (similar to that used to register user-defined aggre

gates in [Han84]) is:

ordered_aggregate_definition:
define ordered aggregate aggregate_name

[(parameter {, parameter })]
returns type
[ascending Idescending]
file = file.name

parameter

formal_parameter_name = [constant] type

This definition associates the name of an ordered aggregate ("aggregate_name") with the file

that contains the executable routines implementing that aggregate ("file.name"). The parameters in

this specificationare formal parameters, much like those that would be used at the head of the routines

107

that implement the ordered aggregate. When records are scanned to evaluate an ordered aggregate,

parameters which are to be fixed during the scan are declared to be constant. The remaining parame

ters will be assigned values from the attributes of the data records (as described in the next section).

The type produced by the Result routine is specified in the result clause. Both parameter and

return types may be arbitrary ADT's. For example, the ordered sum aggregate sums over integers, and

returns an integer result It is specified by the statement:

define ordered aggregate ordered.sum
(summand = integer)
returns string
file = "/aggregates/osum.o"

As an aside, Hanson's proposal also suggests the generalized type numeric to indicate an arbi

trary numeric type, and the return type typeof(formal_parameter_name) to indicate a return value

whose type matches a particular parameter type. These both would be appropriate, for example, in the

ordered_sumaggregate, since one may sum over integers or floatingpoint numbers, and the type of the

result matches the type of the summand.

Certain ordered aggregates generate values that are guaranteed to be monotonically increasing

or decreasing over ordered records. The ascending and descending keywords indicate this to the data

manager, to allow for more efficient processing (as will be demonstrated when the actual traversal

algorithms are discussed later in this chapter). The ordered_count aggregate has this property:

define ordered aggregate ordered.count
returns integer
ascending
file = "/aggregates/ocounto"

The ordered_countaggregate takes no parameters, and produces an integer result that is guaranteed to

ascend monotonically over the ordering. Notice that the ordered_sum aggregate cannot use the

ascendingclause, as bothpositive and negative integers maybe added to the sum. The running sum

mation may therefore increase or decrease.

5.6.2. Associating Ordered Aggregates with an Ordered Relation

An ordered aggregate attribute is a special form of inherited attribute. In chapter 3, we formu

lated a general syntax for representing inherited attributes. Using that syntax, we associate line

108

numbers with the TEXT relation as follows:

define entity TEXT (line = string)

/* declare the elements of the TEXT relation to be ordered */
define ordering (TEXT)

range oft is TEXT
define inheritance t (line_number = ordered_count(t))

This last statement is equivalent to:

range of t,tl is TEXT
define inheritance t (line_number = count(tl by t where tl before t))

The shorter syntax serves two purposes: it is more concise and readable, and the query processor can

easily detect ordered aggregates on which it can apply the processing optimizations developed in this

chapter.

5.6.3. Creating an A-tree Index

After the inherited attributes for an ordered relation have been defined, the user may specify that

an A-tree is to maintained over the relation. This is done using the modify command:

modify relation_name to A-tree

The relation indicated by "relation_name" must be an ordered relation. If the relation already

contains records, then the internal pages of the A-tree are created using this algorithm:

Create A-tree Index

R is the relation to be indexed.

1. If/? contains a single page, then make thatpage the root
of the A-tree, and stop

2. Create a new, empty internal page and make it the root
3. p «- the first disk page of/?
4. Create a new, empty internal record, rp
5. Setthe child of rp tobep
6. Set the parent ofp to be rp
7. Insertrp intotherootpage
8. p'«- the page afterp
9. Create a new, empty internal record, rp>
10. Setthechild of rp> tobep'
11. Setthe parent ofp' toberp-
12. Insert rp> after rp

Insertion (steps 7 and 12) involves updating the summaryinformationof the internal records in the A-

109

tree. Also, if the root becomes full, it is split, increasing the height of the tree. These are both per

formed as part of the insertion algorithm,presented in the next section.

5.6.4. Defining Order Using Sort Keys

Because a sort key defines an order on a set of relations, we provide a function to globally order

a relation using a sort key. This is accomplished with the reorder command. A set of ordered entities

containing the sort key must be defined, for example:

define entity TEXT (initial_line_number = integer)
define ordering (TEXT)

reorder TEXT on initial.line.number

In this example, the reorder command will sort the set of TEXT records on their initial line number,

and define the ordering of TEXT records to be that induced by the sort Subsequent insertions could

then be performed (using the before and after clauses) against the newly generated ordering.

In general, this approach appears to provide a convenient means of establishing an ordering

among a large number of existing records.

5.7. Retrieval from Ordered Relations

Queries that involve ordered relations must support an extended set of retrieval operations

beyond those of ordinary relations. For a particular query, the following cases may occur.

• The before and after operators may appear in the qualification of the query.

• Ordered aggregateattributes may appear in the target list and/or the qualification of the query.

We now consider the implementation to support each of these cases.

5.7.1. Implementing the Before and After Operators

In the absence of an index, the before and after operators may be implemented using a sequen

tial scanover an ordered heap. Given tworecords r, andr2, the records maybe compared as follows:

110

Comparison using Sequential Scan of an Ordered Relation

1. If r xand r 2are not in the same relation, return "not comparable"
3. p i <- the page on which r, lies
2. p 2<- the page on which r2 lies
4. If/? i =/>2» then
5. If rx < r2, return "before"
6. If rj =r2, return "is"
7. If ri >r2, return "after"
8. P*~P\
9. Up is the last page, return "after"
10.p <— the page after/?
11. If r2 is on/?, return "before"
12. Go to step 10

This routine returns one of {not comparable, before, is, after}. A qualification such as "x before y" is

met if and only if the comparison algorithm returns "before." The comparisons in steps 5-7 compare

the locations of the records on the page. If the r 2is not on the same page as r], the algorithm searches

subsequent pages (following the forward links in step 10) for r2.

This algorithm for evaluating the order operators is unfortunately rather inefficient, in that it may

require a sequential scan of the ordered relation (steps 10-12) to evaluate the order operators. In the

presence of an A-tree, the order operators may be evaluated much more efficiently. The algorithm for

comparing two records using an A-tree, is:

Comparison using A-tree Traversal

1. If r i and r 2are not in the same relation, return' 'not comparable''
2. p i <- the page on which r, lies
3. p 2 <- the page on which r 2lies
4. If/?, =/?2, then
5. If rx < r2, return "before"
6. If/*!=/•*return "is"
7. Ifr,>r2, return "after"
8. rx <-parent ofp,
9. r2<- parent ofp2
10. Go to step 2

Again, the comparison operators in steps 5-7 compare the locations of the records with respect to the

beginningof the page. The loop in steps 2-10 is performed, at most, onceper level of the A-tree,since

p xwill equal p2 when they reach the root, at which point the algorithm terminates.

Ill

5.7.2. Implementing Retrieval of Ordered Aggregate Attributes

When an ordered aggregate attribute appears in the qualification of a query, the records of an

ordered relation must be scanned to determine the value of the ordered aggregate associated with a

particular record, and if that value satisfies the qualification.

There are three types of scans which the system must implement in order to support this opera

tions: sequential scan, top down A-tree traversal and bottom up A-tree traversal. For reference, we

will use this query as an example:

retrieve (TEXT.line)
where TEXTJine_number < 10

In this query, the ordered aggregate attribute appears in the qualification, compared to a constant value.

Queries can in general be reduced to this form by the process of query decomposition [WoY76]. Such

simple queries are known as "one variable queries." We will call the constant in the qualification the

"search value."

5.7.3. Sequential Scan

When the system needs to determine the value to be associated with a given ordered aggregate

attribute in a one variable query, the following algorithm is used:

s is the current state,
p is the current disk page,
r is the current record.

1. s «- InitializeScan ()
2. p <- the first page of the ordered relation
3. For each record r inp:
4. s <— NextLeaf (ss)
5. Substitute Result{s) for the aggregate attribute in the query,

and the values in r for the remaining attributes
6. If the query qualification is satisfied, return the values

in the target list

For certain qualifications, the loop at step 3 may be terminatedprematurelyif the ordered aggre

gate function was registered using the ascending or descending clauses. For example, we nave seen

that the ordered_count aggregate is defined as ascending. Thus, in our example query,

retrieve (TEXT.line)
where TEXTJinejuumber < 10

112

the algorithm could stop scanning the TEXT relation afterit founda line_numberequal to 10,because

the system is guaranteed that all future line numbers are greater than 10, and thus do not satisfy the

query.

5.7.4. Top-Down Traversal

Top-down traversal is used on ordered relations that have an A-tree index, to efficiently deter

mine the record that has a given ordered aggregate value. It is only useful for aggregates that are

ascending or descending. Our example query has these properties, and is resolved by the following

steps:

Top-down Traversal

x is the search value,
s is the current state,
p is the currentdisk page,
r is the current record.

I. s 4- InitializeScan ()
3. p «- the root page of the A-tree
4. If/? is an internal page:
5. For each internal record r in p:
6. s <— Nextlnner (sj)
7. if x < Result (s) then
8. p <r- child of r
9. Go to step 4
10. Otherwise p is a leaf:
II. For each leaf record r in p:
12. s <-NextLeaf (s,r)
13. ifx > Result(s)\hen
14. Mark record r and stop

At the end of this procedure, some leaf record has been marked. If the qualification is of the

form "attribute = jc," or "attribute > x", then all the records satisfying this qualification are at or

beyond the marked record, and a sequential scan may be performed starting at the marked record. If

the qualificationis of the form "attribute < jc " (as in our example query), a sequential scan from the

beginningof the relation up to the marked record retrieves all die qualifying records.

If the ordered aggregate is defined to be descending, then the sense of the comparisons in steps

7 and 13 of the above algorithm must be reversed.

113

5.7.5. Bottom-Up Traversal

Under certain circumstances, the query processor, given a record in an ordered relation, needs to

find the value of an ordered aggregate attribute for that record. This would occur in the processing of a

query against the RUNQUEUE relation (described in section 5.2.1, above) to find the load at a point in

time:

range ofq is RUNQUEUE
retrieve (q.load)

where q.time = 5

This is processed by performing a top-down traversal of the A-tree to find the record that satisfies the

qualification, namely the record whose ordered_count attribute "time" has a value of 5. Given this

record, the query processor needs to find its value for the ordered aggregate attribute "load." This is

done using a bottom-up traversal of the A-tree. Notice, in this example, that the same A-tree is used

for both traversals. Each internal record of the A-tree contains the summary information for both the

"time" attribute (an ordered.count value) and the "load" attribute (an exponential_aggregate value).

The followingalgorithmis used to perform a bottom-up traversalfrom record r'\

Bottom-up Traversal

s is die current state,
p is the current disk page,
r is the current record.

1. s <r-InitializeScan 0
2. r<r-r'
3. p «- the page on which r lies
4. For each record in p up to (but not including) r:
5. Ifp is an internal page, s «- Nextlnner(s ,r)
6. If p is a leaf page, s «- NextLeaf(s ,r)
7. If/? is the root, return Result(s)
8. Otherwise, r «- parent record of p
9. Go to step 3

Thisalgorithm returns (instep7) thevalue of theordered aggregate for record r'.

5.7.6. Updating Ordered Relations

For insertioninto orderedrelations, the syntaxof the append command is extendedas follows:

114

append to relationjuime
[after range_variable Ibefore range_variable]
(target_list)
where qualification

The standard form, appendto table_name now hastwoadditional clauses, to append before or

after records in an ordered relation. As an example, to insert a line of text prior to the eighth line of

text, one would say:

range oft is TEXT

append to TEXT before t (line =' 'inserted line of text'')
where tline_number = 8

Although the qualification in the above example selects a single record, this need not be the

case. For example, we might want to insert a line of text prior to every line that has the word "spe

cial" in it:

append to TEXT before t (line = "mark following line")
where tline = "* special *"

The asterisks in the string "* special *" cause the qualification to select every line that contains the

word "special" anywhere within it

In the above example, a single record is inserted repeatedly into a relation. It is also possible

that several different records may be inserted into an ordered relation at a single point. For example,

the following query inserts the first ten records of the NEWTEXT relation after line 5 of the TEXT

relation.

range oft is TEXT
range of new is NEWTEXT

append to TEXT after t (line = new.line)
where t.line_number = 5
and new.line.number < 10

Because NEWTEXT is an ordered relation, the data manager must perform the insertions so as

to assure that the order of the inserted records is preserved. In order to do this, the complete set of

insertions must be determined. In the above example, this involves retrieving the first ten lines of

NEWTEXT into a temporary ordered relation. Then, the data manager performs a bulk insertion of

the ordered temporary relation into the TEXT relation. The algorithms for bulk insertion are given in

115

[CDR86].

Replace commands also may take an after or before clause, which move existing records

within the ordering. For example, the following query moves lines 2 through 6 after line 7.

range of tl, t2 is TEXT
replace tl after t2

where tl.line_number >= 2
and tl.line_number <= 6
and t2.1ine_number = 7

Notice that the target list for such a replace may be missing, as in this example.

An update of this form must force the actual record to be moved (for this reason, it is similar to

an update of a key field in a sorted relation). It is processed by retrieving the old values into a tem

porary relation (as for append), deleting them from the original relation, and re-inserting them at then-

new location.

A form of bottom-up traversal is used when updates are performed on an ordered relation that

contains an A-tree. Any time a record is inserted, deleted, or modified on a leaf page, the summary

information in its parent page (and their parent pages) must be updated.

To correct this summary information when a page is modified, we rescan the entire page with

NextLeaf or Nextlnner. This results in a cumulative state that is then inserted into the parent record for

that page. The parent page is thus modified, and the correction percolates recursivelyto the top of the

tree. The algorithm for correcting the summary information after a modification to pagep' is as fol

lows:

Updating Summary Information

s is the current state,
p is the current disk page,
r is the current record.

1. s <— InitializeScan ()
2. p <r-p'
3. Ifp is the root, then stop
4. For each record r inp:
5. Ifp is an internal page, s <- Nextlnner (s ,r)
6. Ifp is a leaf page, s <- NextLeaf(s ,r)
7. r *- the parent record ofp
8. Set the "summary information" of r to s
9. p «- page on which r lies"
10. Go to step 3

116

These top-down and bottom-up traversal routines suffice to maintainthe A-tree under retrieval

and update. Two additional routines are necessary for insertion and deletion, namely those for split

ting and merging pages.

5.7.7. Splitting Pages

It may happen, after an insertionof a recordonto a page, that the set of records now on the page

is larger than the page size. In such an instance, the page mustbe split This is done as follows:

Split a Page

p is an overfull page.

1. Up is the root, split the root (see below),
then go on to step 2

2. Determine rp, therecord in theparent ofp that
points to p

3. Create a new, empty page,p'
4. Move the latter half of the records fromp intop'
5. Create a new, empty internal record rp>
6. Setthe child pointer of rp>top'
7. Setthe parent pointer ofp' to rp>
8. Insert rp> afterrp (recursively)
9. Update the summary information for pagesp andp'

Because this algorithm is invoked in response to an insertion (which caused a page to become

overfull), the subsequent insertion into the parent page is recursive. It may, in turn, cause the parent

page to become overfull. The parent page would then be split and so on.

In the case that the root is overfull, it must be split. This is accomplished by the following algo

rithm:

Split the Root

p is the overfull root.

1. Create a new page, which will be the new root,/?'
2. Create a new, empty internal record, rp
3. Setthe child pointer of rp top
4. Setthe parent pointer ofp to rp
5. Insert rp intothe (empty) root page p'

At this point P can be split using the previous algorithm,since it is no longer a root node.

117

5.7.8. Merging Pages

After a deletion, a page may be less than half full of records. This violates a constraint on the

A-tree structure, and the following algorithms correct thissituation. The merge operation for deletion

is analogous to the splittingoperation for insertion. It operates as follows:

Merge Page

p is a page that is less than half full.

1. If p is a non-leafrootpage, andp contains a singlerecord,
2. Delete the root (seebelow), thenstop
3. If there is no page afterp

p <- thepage beforep (which necessarily exists)
4. Setp' to be the page afterp (whichnowexists)
5. Let rp be theparent record thatpoints top
6. Let rp> be theparent record thatpoints top'
7. If the records ofp and/?' can all fit on onepage,
8. Append all the records ofp' top
9. Free the pagep'
10. Delete (recursively) rp >from theparent ofp, then stop
11. Otherwise,
12. Delete records from the beginningofp', and append

them top, until the two pages are equally full
13. Update the summaryinformationabovep, and abovep' if it exists

The effect of this procedure is to make sure, after deletion, that all pages are at least half full.

After steps 8-10, the single merged page must be at least half full because /?' was at least half full.

After step 12, both pages p and p' must be at least half full because the records in the two pages

together take up more than one page (guaranteed at step 7). Thus dividing the records evenly results

into two sets ensureseach set requiresno less than half a page.

Analogous to the operation of splitting the root on insertion, is the case where a root can be

deleted. This happens when the root is not a leaf, and after deletion contains only a single internal

record. The algorithm is:

Delete Root

Given: A root page p that is not a leaf,
containing a single record.

1. Set c to be the sole child ofp
2. Free page p, and set the new root to be c

118

5.7.9. Operators over Ordered Entities: first and last

The system provides two additional aggregate functions that evaluate over ordered data. The

first aggregate selects the first element in anordering, and last selects the lastone. These are provided

by the system,rather thanbeingimplemented asordered aggregate functions by the user, because:

• They have restricted semantics that typically allow for efficient implementation within the sys

tem as a specialcase (bypassing the scanandtraversal algorithms).

• They result in an entity, rather than an attribute value, and are thus distinguished syntactically

from other aggregate functions.

The system catalogs should include pointers to the first and last records ofeach ordering in order

to efficiendy support these aggregates. Certainsystems actions, such as inserting records at the end of

an orderingwhen no location is specified by the client, would make use ofthese pointers.

For example, to retrieve the line number of the last line in the TEXT relation, the command is:

retrieve (last(TEXT).line_number)

As with other aggregates, the value of the aggregate is calculated independendy from the query as a

whole. The aggregate value is then substituted into the query as a constant. In this case, the constant

is an entity (syntactically, a range variable).

In the above example, because the system catalogs maintain a pointer to the last record in an

ordered relation, the value of the line.number is readily accessible by doing a bottom-up traversal of

the A-tree from this last record (assuming that the A-tree exists).

As with ordinary aggregates, It is possible that these aggregates may be qualified. Forexample,

we may retrieve the first record containing a particular line:

retrieve (first(TEXT where TEXT.line = "marker").line_number)

In this case, the TEXT relationmust be scanned forqualifying records (those that contain "marker"),

and the first one returned. For the last aggregate, the relation could be scanned backwards.

119

5.8. A-tree Performance

We expected the performance of A-trees, in terms of storage utilization and overhead, to be

equivalent to that of B-trees. A simulation of the A-tree algorithms was coded in LISP, in order to

better understand the operation of the algorithms and determine their performance. This initial

hypothesis was bom out. The experiment performed 10,000 A-tree operations: first inserting 5000

random records, thendeleting those records in random order. At eachstep, page utilization and page

fault behavior were monitored. The simulation used a page size of 1024 bytes, leaf and inner record

sizes of 16bytes, anda buffer poolof 20 pages. Ourresults are summarized in figure 5.6, showingthe

number of pages, tree height, utilization, and number of faults per operation over the course of the

experiment

: in

(a) Number of Pages (b) Height ofA-Trec

A
3 ~

i

! 94 y\ i

1 70

47

23

/
. A

Z7-

.i
i i

i

i

2 4 6 8 10
thousands of operations

2 4 6 8
thousands of operations

10

(c) Page Utilization (d) PageFaults

(per cent) (per 100operations)

75

60 f \

351 -

281-

45 4-
i 211- •

30

15

.

i

i

i

i

140-

70-

S7 . .
I

2 4 6 8 10
thousands of operations

2 4 6 8
thousands ofoperations

10

F^*ure5.<i. A-tree Performance (5000 insertions followed by 5000 deletions)

120

The first graph shows the size of the data structure, in pages, after each operation. At 16 bytes

per record, a 1024 byte page contains at most 64 records. The number of pages increases linearly dur

ing insertion, and decreases linearly during deletion. The data structure requires 117 pages to store

5000 data records and 116 internal records.

The second graph shows theheight of the A-tree overthe course of the experiment The root is

split after insertion operations 65 and 2786. The height of the tree thenremains constant until a total

of 5000 records are inserted. During the subsequent deletions, the height of the tree decreases when

the record drops to 2896(atoperation 7104),andagain when it drops to 64 (at operation 9936).

Page utilization, shown in the next graph, is defined to be the number of bytes used for leaf

records, divided by the number of bytes in the data structure. In our experiment it turns out that less

than three per cent of the pages are internal, so that almost all the unutilized page space is in the

leaves. Except when the tree is nearly empty, the pageutilization of the A-tree remains fairly constant

in the vicinity of 69%. This agrees with the analyticalresult for B-trees derived by Yao [Yao78].

The final graph indicates the number of page faults per 100 operations. A small buffer (20

pages) was used in order to improve performance for access that was restricted to a small number of

pages. For the first 800 insertions, the entire data structure fit in the buffer, and no page faults were

required (except those needed to initialize the buffer). At that point the number of page faults

increases roughly linearly with the size of the data structure, until the height of the tree increases at

operation 2786. It then rapidly jumps from 0.7 page faults per operation to 2.8 page faults, where it

remains roughly level, until the index height again decreases. In this demonstration, the internal

records of the index remaincachedin the buffer pool,andaccess to leaf pagesresultsin page faults.

Because the performance of the A-tree depends primarily on its height the above experiment

could have inserted many more records with little additional degradation in performance. As long as

the heightof the A-tree does not change, the number of page faults perrecord access remains roughly

constant. The number ofrecords in a "full" tree is:

121

n -
n

where:

n is the number of leaf records in a "full" tree,
y is the page utilization,
h is the height of the tree,
p is the page size,
r,- is the size of an internal record,
0 is the size of a leaf record.

Using the parameters of the above experiment y = .69,p = 1024,r, = r, = 16, and A =3, we find that

the number of leaf records could be increased from 5000 to approximately 86,000 with no further

increase in the heightof the tree,andconsequently no significant degradation in performance.

The concludes ourdiscussion of A-tree performance. The next two sections consider the use of

A-trees to implement the case where individual entities participate in multiple orderings, and in

hierarchical orderings.

5.9. Multiple Orderings

The ordered set of records in an ordered relation (orin the leaf pages of an A-tree)may contain

actual data records. Alternatively, they may contain pointers to the data records (i.e. TID's). While

this latteralternative resultsin less performance (anextradisk accessis required to retrieve recorddata

givenarecord pointer), it allows us to define multiple orderings overa single setof data.

5.9.1. Multiple Orderings in Sorted Relations

In systems such as INGRES, a facility for providing multiple orderings is provided by "secon

dary indices." A relation maybesorted independently onmany different keys. One of these orderings

may be designated as "primary." The actual data records willbe stored in this order (these records

constitute the "base relation"). All other orderings are "secondary." Figure 5.7 shows a relation

with three fields, f\,f2, and /3, each a key in a different ordering. The data records themselves, in

the base relation, are sorted on /1. One secondary index contains the values for/2, plus a pointer to

the datarecord in the base relation. This index is then sorted on f2. The thirdrelation similarly pro

vides an ordering based onthe field / 3. By scanning the appropriate relation, thedata records maybe

retrieved in the desired order. The key values for the secondary ordering are duplicated in the secon

dary index, as a performanceoptimization.

Secondary Index
f2 TID

1

2

3

4

(sorted on/2)

Secondary Index
/3 TID

w

X

y 7
z

/

Base Relation

/l /2 /3

A 2 z

B 3 w

C 1 X

D 4 y

(sorted on/0

(sorted on/3)

Figure 5.7. Multiple Sort Orderings

122

5.9.2. Multiple Orderings in Ordered Relations

This same technique may be applied to ordered relations, allowingentities to participate in mul

tiple orderings. The syntax for specifying multiple orderings was presented in Chapter 3. Subsequent

discussion will make use of the following example,which defines threeorderings on relationX:

define entity X (attributes ofX...)
define ordering (X)
define ordering A (X)
define ordering B (X)

The define entity statement resultsin an unordered relation. Each orderingspecified by a define

ordering statement results in an ordered relation. If the ordering is unnamed, as in the first example,

the unorderedrelation associatedwith the child entity is converted into an ordered relation. The result-

123

ing ordered relation is primary. If the ordering is named, the resulting ordered relation is secondary

(ie. it contains pointers to the data records, which reside in another relation). This secondary relation

is given the name of it its ordering. Thus, in the above example, the system creates three ordered rela

tions. The relation X contains data records, and the relations A and B contain pointers to those data

records.

A particular database system might also support inhomogenous orderings in this way, if it allows

relations to contain records of different entity types (systems based on the "universal relation" model

[MRW86,Men84,Sag83] typically allow this). Because such records are typically of various sizes, it

is simpler to always implement them as secondary relations, even when unnamed (pointers to records

of different types are presumably all the same size, and thus are easier to manage). For example, an

ordering consisting of records from relations X and Y, intermixed, is specified by,

define ordering (X,Y)

and results in a secondary relation containing pointers to records in the X and Y relations. The system

would provide a unique name for the resulting ordered relation, such as "X_Y" for the above exam

ple.

Having defined multiple orderings of a relation, the system must determine what attributes to

copy from the base relation into the secondary relations. This depends on the ordered aggregates that

are defined on the relations. Those attributes involved in the calculation of an ordered aggregate are to

be included. For example, suppose the X relation contains the attribute "amount" and we wish to

maintain a running sum, given ordering B:

define entity X (amount = integer)
define ordering B (X)
range ofb is B
define inheritance b (balance = ordered_sum(b.amount))

This indicates to the system that,

(1) The attribute "amount" is to be duplicated from XxoB.

(2) The ordered aggregate attribute "balance" is to be maintained over the B ordering. The base

relation automatically inherits this attribute,so we may refer to "balance" as an attribute of the

X relation.

124

We now consider a musical example. Chords in the music database are involved in multiple

orderings. Every chord is independently ordered with otherchords into a group within a voice, and

withotherchords undera common sync. Suppose we wishto maintain countinformation overeach of

these, so as to be able to refer to "the n 'th chord in a given group" or "the y 'th chord in a given

sync". The base relation is calledCHORD, andthe two secondary indicesare GROUP.ORDER and

SYNQ.ORDER. The indices are modified to type A-tree, each containing ordered.count aggregates

to provide the ordinate information required.

When the define inheritance command is executed on a secondary relation, the system associ

ates the inherited attributes (in the attribute system catalog) with both the primary and secondary rela

tions. In this example, the CHORD relation inherits two new virtual attributes, group.ordinate and

sync_ordinate. Here are commands that generate these orderings:

define entity CHORD (chordattributes...)

define ordering GROUP.ORDER (CHORD)
define ordering SYNC.ORDER (CHORD)

range of g is GROUPJDRDER
define inheritance g (group_ordinate = ordered_count(g))

range ofs is SYNC_ORDER
define inheritance s (sync_ordinate = ordered_count(s))

modify GROUP.ORDER to A-tree
modify SYNC.ORDER to A-tree

The append command, when adding records, must now update these secondary indices also.

The syntax of the append command must be further extended to manage this properly. For example,

supposewe wish to insert a chord so that it precedesthe secondchord in its group, and follows the first

chord in its sync. The command would be:

range ofcl,c2 is CHORD

append to CHORD
before cl in GROUP_ORDER
after c2 in SYNC_ORDER
(attributes ofnew chord)
where cl.group_ordinate = 2
and c2.sync_ordinate = 1

125

One before or after clause is needed for each ordering that exists on the base relation. In the

case that the user does not specify such a clause (or leaves out one of many), the system must arbi

trarily place the object in the ordering. This is similar to the case where an insertion is made into a

sorted relation where the inserted record was not assigned a key value. The default location in the ord

ering could be set (arbitrarily) before the first record. This would be similar to the current treatment of

null values in the INGRES system.

5.10. Hierarchical Ordering

Up to this point, we have only considered global orderings, where the entire set of entities in a

relation participate in a single ordering. We now discuss hierarchical ordering, where each entity in a

relation hasa "parent" (typically an entity in another relation), andan ordering applies to those enti

ties that share a common parent

The previous example of chords ordered within groups and syncs was simplifiedin its presenta

tion, so as to ignore the hierarchical aspect of its orderings. In fact, two chords are only comparable

under GROUP_ORDER if they are membersof the same group (e.g. one cannot say a chord is before

or after another chord according to GROUP_ORDER,if the chords are not in the same group; they are

simply not comparable). This also holds true for the ordering of chords under syncs represented in

SYNQORDER.

The hierarchical orderingin this examplewouldbe specifiedusing the under clause, as we have

already seen.

define entity GROUP (group attributes...)
define entity GROUP (sync attributes...)
define entity CHORD (chord attributes...)

define ordering GROUP_ORDER (CHORD) under GROUP
define ordering SYNC.ORDER (CHORD) under SYNC

range of g is GROUP.ORDER
define inheritance g (group_ordinate = ordered_count(g))
range of s is SYNC_ORDER
define inheritance s (sync_ordinate = ordered_count(s))

In order to support hierarchical ordering, we must extend our implementation of ordered rela

tions and A-trees, as well as the syntax for append and replace.

126

5.10.1. Extending Ordered Relations to Support Hierarchical Ordering

The define entity statements in the aboveexample create the GROUP,SYNC and CHORD rela

tions. The define ordering statements generate the GROUP.ORDER and SYNC_ORDER secondary

relations. An example of the relationsresulting from the above definitionare shown in figure 5.8. At

the top of this figureis the musical fragment to be modeled, consistingof five chords, three syncs, and

two groups. For every chord in the CHORD relation, there is a record in the GROUP.ORDER rela

tion pointingto that chord. Additionally, records in the GROUP.ORDER relation contain a pointer to

the GROUP record under which the chord is ordered. In the example of figure 5.8, three chords are

ordered under group n in the GROUP relation, and two chords are ordered under group q. The type

of the GROUP and CHORD relations are not defined here (they are presumably unsorted). The

GROUP

attributes

chordjync_ordinau

I (undersync y)

/ (under sync W)

1 (under sync U)

2 (undersyncy)

2 (undcrsynoW)

Syncs:

Chords:

Groupn

Group q

Chords:

GROUP ORDER

(to CHORD,
above)

b c a

d d m

SYNC.ORDER

chord sync
m> tid

chord.groupjjrdinau

3 (under group /!)

1 (under group /t)

2 (under group /!)

2 (undergroup<?)

/ (undergroupq)

Figure 5.8. Hierarchically Ordered Relations

127

GROUP_ORDER relation is a hierarchically ordered relation, partitioned by GROUP TID. This parti

tioning is easily accomplished, for example, by sorting the ordered relation on its parent pointer field.

Then, within each partition, the order of records reflects the ordering of the entities within that parti

tion.

The SYNC_ORDER relation is ordered in the same way, with the syncs as parent entities. The

partitioningand ordering of chords under syncs is independent of their partitioningand orderingunder

groups.

5.10.2. Insertion and Update of Hierarchically Ordered Relations

The syntax for append and replace statements must now be extended to allow records to be

placed into relations that have ordered indexes. We therefore introduce the under clause. The follow

ing example inserts a new chord before the second chord in group q, and after the first chord in sync

u:

range ofcl,c2 is CHORD
range of g is GROUP
range ofsis SYNC

append to CHORD
before cl under g in GROUP_ORDER
after c2 under s in SYNC.ORDER
(attributes ofnew chord)
where cl.group.ordinate = 2
and c2.sync_ordinate = 1
and g is q
andsisK

This statement results in the insertion of one record into each of the CHORD, GROUP_ORDER, and

SYNC.ORDER relations. The record inserted into the CHORD relation would contain the attribute

values for the new chord. The record inserted into the GROUP_ORDER relation is placed before the

thrid record undergroup q. This record points to the chord entity in the CHORD relation, and has q

as its group TID. Similarly, a record is inserted into the SYNC.ORDER relation before the tenth

chordundersync u. This recordhas the TED of the new CHORD recordas its chord TID, and u as its

sync TID.

Suppose, in the abovequery, the under clausewere omitted. The resultingquery,

128

append to CHORD
before cl in GROUP_ORDER
after c2 in SYNC_ORDER
(attributes ofnew chord)
where cl.group_ordinate = 2
and c2.sync_ordinate = 1

would cause several chord entities to be inserted. The query would first determine all the chords that

are second in their group and first in their sync (there would in general be several such chords,

althoughthe example in figure5.8 containsonly one), and insert a new chord next to each of them.

In this example, the parent TED of the inserted record is determined implicitly. In general, when

a record x is inserted at a position before or after another record y, the parent of* is set to the parent

of y. If the user specifies a conflicting parent (using the under clause) then the update is malformed.

An example of such a non-functional updatewouldbe (referring again to figure5.8):

append to CHORD
before cl under g in GROUPJDRDER
(attributes ofnew chord)
where cl is b
and g is <?

Because chord b is not in group q, this command would be rejected by the system as malformed.

Replace statements are extended in the same way as append statements, with the before, after,

and under clauses. When a replace statement is specified this way, it is treated as a deletion followed

by an insertion, as before.

Although the above examples have all made use of secondary relations as hierarchically ordered

relations, a base relation itself may be hierarchically ordered. For example, if we extend the TEXT

relation to contain lines from several documents, rather just one, then the lines of TEXT are ordered

under a given document The TEXT relation is thus a hierarchically ordered base relation. The state

ments that specify this are:

define entity DOCUMENT (title = string)
define entity TEXT (line = string)

define ordering (TEXT) under DOCUMENT

range oft is TEXT
define inheritance t (line.number = ordered_count(t))

As shown in figure 5.9, the data records of the TEXT relation itself are partitioned by document and

DOCUMENT

(attribmts)

Haslet

Gettysburg Addict*

(document TID)
TEXT

(attributes)

To be, or oal CD be.

That U (be quection.

Whober 'tit oobterto cuffar

S Fourtoot* and,ovcd yean iga.

Out fsibeie brought fbitb on bbj corcldcqs

a new natton, coaocived in lib-

textJamjuanber

t (tader "Hamlet")

2 (tader "Hamlet")

3 (tader "Hamlet")

1 (utder "Getty*burg")

2 (under "Qeaytburg")

3 (tader "Oecryaburg")

Figure 5.9. A Hierarchically OrderedBase Relation

129

ordered within eachpartition. Eachrecord of theTEXT relation contains, in addition to theattributes

specifiedin the define entity statement a pointerto a DOCUMENT record. This orderedbase relation

maythenbe manipulated just as a secondary relation, withthe ordering left unnamed. Forexample, to

insert a new line after the second line of the "Gettysburg Address,*' the following statement is exe

cuted:

range oft is TEXT
range ofd is DOCUMENT

append to TEXT
after t under d

(line = "a new line of text")
where d.tide = "Gettysburg Address"
and tline_number = 2

Although we could have explicitly named the ordered relation by saying "after t underd inTEXT,"

it is not necessary because the base relation is assumed whenthe in clause is missing, as in thisexam

ple. Otherwise, thesyntax of this example is the same as that for orderings represented by secondary

relations.

5.10.3. Extending A-trees for Hierarchically Ordered Relations

In order to use A-trees to access hierarchically ordered relations, the searchandscan algorithms

presentedpreviously mustbe modified to accommodate partitions.

The internal record of an A-tree over a hierarchically ordered relation contains summary infor

mationforeach ordered aggregate, as before, but alsocontains thepartition value(i.e. theparentTED)

130

for the last leaf under the subtree coveredby that internalrecord. This is shown in figure5.10. Given

the specification of the TEXT relation, above, we have executed the statement

modify TEXT to A-tree

to create this A-tree. The algorithm to update the summary information in the internal records is

modified as follows to generatethe internalrecordvaluesshownin this figure.

Root:

Document TID b c

ordered_count state 2 3:
—•—r

child pointer li

Document TID

orderedjcount state

childpointer

c ' c

Document TID

TEXTMne

a a

'•AM

J i L

a \ \ a b b \ b j b \ c
-*—j>i : <—*-

TEXTMnejmmber 123 412 341

Figure 5.10. An A-tree for Hierarchical Ordering

v

i u I «•' i c
*—>

2 3

131

Updating Summary Information

s is the current state,
p is the current disk page,
r is the current record,
x is the current partition

1. P*-P'
2. Up is the root, then stop
3. For each record rinp:
4. If r begins a partition, then
5. s 4-InitializeScan()
6. x «- partition of r
7. Ifp is an internal page, s «- Nextlnner (s ,r)
8. Ifp is a leaf page, s «- NextLeaf(s ,r)
9. r <- the parent record otp
10. Set the' 'summary information'*of r to s
11. Set the *'partition'' of r to x
12. n <- page on which r lies
13. Go to step 2

In this algorithm, the scan is initialized at every partition, in steps 5-6, rather than once at the begin

ning.

All of the traversal algorithms are similarly modified. In each case where we scan the records of

a page, we notice if the partition value has changed. When this occurs, we update the current partition

value and call Initializescan().

The processing of aggregates that are defined as ascending or descending must be modified,

because such aggregate values are now only monotonic within a partition, rather than across the entire

relation. This can be seen in figure 5.11, where the line numbers (which are normally ascending) do

not steadily increase over the TEXT relatioa Thus, a command such as,

range oft is TEXT

retrieve (tline)
where tline.number < 10

returns the first ten lines of every document in the TEXT relation. Rather than terminating the scan

prematurely when a line number greater than or equal to 10 is found, we must continuescanningsub

sequent partitions.

132

5.11. Storing Orderings as Linked Lists

When the datain a relation participates in more than one ordering, the issue is raisedas to how

the data itself should be orderedso that accessvia each orderingis efficiently performed.

The simplest approach to thisproblem, and theonetaken in the preceding discussion, is to select

oneof the orderings asprimary, and store thedata records of therelation in that order. Any access of

the records via this primary ordering will thereby incur a minimum amount of paging activity. Of

course, sequential access via any secondary ordering will cause considerable paging activity, since

records that are"near" each otherin this ordering arenot necessarily nearby each other in the primary

ordering (where the data associated with the records is kept). We mightcall this approach "order by

placement". Whether an object is before or after another object depends on their respective storage

locations. Figure 5.11 givesanexample of thistype of ordering. As we have seen,we canretrieve the

records of such a relation in a particular order by selecting the ordered heap that implements the

desired ordering (either the primary or oneof the secondary relations), and scanning it sequentially.

We have also seen that an A-tree may be built over each ordered heap to eliminate the need for

sequential scans in many cases.

Secondary Indices

h 2 ; 3 ! 4
! i
i

• i i • i

i

» ! (

1

I

! A B C
i *—i

! 2 ; 3 1
1

4 :

i
i z w X y

Base Relation

Figure 5.11. Representing Orderby Placement

133

5.11.1. The Linked Heap Structure

An alternative implementation would be to represent the orderings by actual pointers from a

data record to each of its successors records (a record has one successor per ordering in which the

record participates). Anexample of "order bypointers" is shown in figure 5.12. Therecords in this

implementation are organized into linked lists. Thisdatastructure willbe calleda "linked heap." We

first discuss the structure of the linked heap, and its integration with A-trees; we then compare its

advantages and disadvantages with those of ordered heaps.

The placement of the records ontopages may be arbitrary, sinceit is no longer a factor in deter

mining what the "next" record is. In order to retrievethe records of this relation in a particular order,

we start at the first record in that ordering (whose address must be maintained separately by the sys

tem), and follow the successor pointers for that orderingto retrieve successive records.

When using linked heaps, the define ordering statement rather than defining a new ordered

heap, defines a single additional attribute on the base relation (generated by the define entity

B

attributes

i w

nil

ri r\ nil 'successor" pointers

nil ri

r\ ?2 record addresses

records on page

Figure 5.12. Representing Orderby Pointers

134

statement), whose value is the successor pointer for each record in the ordering.

When inserting a record into a linked heap at a particular point in the ordering, we may place the

new record into any free slot on existing pages, or at the beginningof a new page, and adjust its link

pointer and that of its predecessorso that it is properlyincorporated into the chain of records.

By slightly modifying the A-tree structure,we can provide efficient access to ordered aggregate

values on multi-ordered relations stored in linked heaps. When using secondary relations, every A-

tree had its own orderedheap at the leaf level. Now,because all orderinginformation is encapsulated

in the single relation, several A-trees will share this relation for their leaf levels. This is shown in

figure 5.13. In this example, the internal records contain the summary information to maintain the

orderedLcount aggregate over the records in the linked heap. The A-tree structure is modified as fol

lows:

The leaf level of the tree is a linked heap rather than an ordered heap.

Each record in the linkedheap contains one "successor" pointerper ordering. When a single

entity participates in multiple orderings, several A-trees share thesame linked heap fortheirleaflevel,

although each will use a distinct set of successor pointers.

Internal Records

Linked Heap

start ofordering

Figure 5.13. BuildingA-trees Over Linked Heaps

Root
5__2

135

Internal records at the lowest inner level of the A-tree contain pointers to leaf records in the

linked heap, rather than pointers to pages as before. The downward traversal will scan sequentially

through internal pages, and follow links at the leaf level. The set of records at the leaflevel that are

linked under a single internal record will bea called a chain. In figure 5.13, the first chain contains

records {a,b, c}, the second chainis {d,e}, andthe third is {tg}.

To find the record possessing aparticular ordered aggregate value, we select the A-tree associ

ated with the appropriate ordering and traverse down to the leaflevel as before. At the leaflevel,

rather than performing a page scan, we traverse the chain whose first element was indicated by the

lowest internal record.

The maximum number of leaf records directlyundera given internal record was previouslycon

strained by the size of a disk page. Now,thisrestriction is removed. Thus, there is no necessary upper

bound on chain length. When inserting a record into the linked heap, the system is free to split the

chain or not. If we decide not to split, the chain gets longer. If the chain is split in two, aninternal

record is inserted for the new chain.

There are two obvious approaches for determining when to split a chain. In the first approach

the system (or perhaps the user) fixes an arbitrary maximum chain length. As records are inserted, the

height of the tree mayincrease, butthe length of chains will bebounded (this is similar the behavior of

B-trees). Another possibility is to fixthe height of thetree, thus fixing thetotal number of chains. As

insertions are performed, thechains getlonger (this models thebehavior of ISAM indices).

5.11.2. Comparing the Two Approaches

The use of linkedheaps is arguably more complex than ourprevious proposal. The disadvan

tages associated withcomplexity apply in this case: theresulting system is harder to implement, debug,

and maintain.

Since A-tree traversal uses two different scanning mechanisms,sequentialscans of the internal

pages, and link traversal through the leafrecords, the implementation of these tasks is less modular

and more cumbersome.

136

Linked heaps may be more easily corrupted than ordered heaps. If a link field is destroyed,

traversal of the heap is impossible. In anordered heap, there is no data corruption (except perhaps to

thedouble links betweenleaf pages) thatcanprevent successful traversal of the relation.

There are two advantages to this new storage strategy. First it may be space efficient, sincethe

attribute parameter values needno longer be copied intoeachsecondary index. The space required for

TID pointers in the.secondary index is balanced by the space required for successor pointers in the

linked heap. Some additional space may be required in the internal records of the A-tree, since the

lowest level contains record pointers rather than page pointers. This space advantage only occurs if

there aremultiple orderings, since a primary ordered heap containsno TID pointers and thus takes less

space than a single linked heap.

More importantly, because the placement of records on pages is now arbitrary, we are free to

organize the records so that for a given record,many of its successors share its disk page rather than

just one. In other words, data can now be effectively clustered. In the previous proposal, sequential

scan of the primary relation was very fast but on the secondary relations was much slower, because

for every recordin the secondary relation,we incur a page fault to get the actualdata from the primary

relation. Using linked heaps, the datamay be clusteredwith respect to all orderings, rather than only a

single (primary) one. If the clustering is successful, we may traverse all of the orderings with

moderate performance.

5.11.3. Clustering

A linked heap with n records (n>1) andp orderings constitutes a graph G with the following

characteristics:

• every record in the linked heap is a vertex v of the graph, each vertex has a weight wv equal to

the size of the record.

• every successor pointer from a recordto another record is an edge e in the graph (we will con

sider the edges to be undirected), and each edge has a weight wt whose value is determined

below.

137

• The graph contains p(n-l) edges, and the degree of every vertex isbetween p and 2©

The graph for the linked heap shown in figure 5.12 is presented in figure 5.14. For clarity, the edges

from each of thethree orderings are shown using adifferent line type: solid, dotted, and dashed

For a given application, we may have information as to the relative frequency with which dif

ferent edges of the graph are traversed. Each edge is assigned an edge weight proportional tothis fre

quency. In the absence of this information, we can give every edge equal weight. The problem of

clustering the linked heap so as to minimize disk paging activity now reduces to a classical problem

called the "graph pardoning problem." That is:

Given a graph G with weighted vertices and edges, partition the vertex set suchthat the totalvertex
weight of every partition is less than p, and the total weight of all edges whose endpoints lie in dif
ferent partitionsis minimized.

The first constraint on vertex weight corresponds to the requirement that all the records in a partition

must fitontoonedisk page. The latter constraint minimizes the frequency of traversing from onedisk

page to another.

'; A
1 i

LL
!
i

1

i

: D

j 1

! c
1

._ _ -j

ordering {A,B,C,D}

ordenng {1,2,3,4}

ordering {w,x,y,z}

Figure 5.14. GraphRepresentationof a Linked Heap

138

There currently exists a large bodyof research on graph partitioning that may be brought to bear

on how such data should be clustered. Although the optimization problem is NP-complete [Mac78],

there are particular types of graphs, such as planar graphs [Had75] and trees [KuM77,Luk74], for

which fast algorithms are known. Unfortunately, multi-ordered lists (for example, thelist represented

in figure 5.14) are not of either of these forms.

5.11.4. Clustering Experiments

Another approach has been to find results that are good, though not necessarily optimal. Such

algorithms use heuristics to determine how a graph should be clustered

[AJM84,FiM82,KeL70,Luk75,Mac78,RSS84]. These algorithms are typically tested empirically,

that is, by applying them to either random graphs, or graphs that arise in a particular application.

Some previous empirical experiments in graph clustering have focused on actual CAD circuits

[HM82]. Such a circuit consistsof moduleswith various interconnections, andthe clusteringproblem

is to divide up the modules into groups (e.g. areas of a chip, or a circuit board) while minimizing the

number ofinterconnections between groups.

In order to have a rough idea as to whether such heuristic algorithms would be useful for multi

ply ordered lists, we performed some simple experiments. In them, we compare two clustering algo

rithms:

Primary ordering: One ordering is selected as primary, and the records of the relation are

assigned to pages according to this ordering. This is the same clustering that is performed when using

an ordered base relation with secondary indices.

Iterative Min-Cut. This algorithm has been suggested for partitioning CAD circuits [KeL70].

We use a linear time version of the algorithm presented in [FiM82]. The algorithm basic idea of the

algorithm is presented here. A heuristic is used to partitionthe entire graph into two halves such that

the number of edges that cross between the two halves (Le. the cut set) is small. Each half is further

partitioned using the same heuristic, and this continues recursively until the number of elements in a

partitioncan fit on one page.

In order to find a good division of the graphinto two partitions,the graph is first partitionedarbi

trarily. Then one node at a time is moved from one partitionto the other, so as 1) to keep the partitions

139

of roughly equal size, and 2) to decrease thesizeof the cutset if possible. Even if nomovedecreases

the cut set size, the best (i.e. least detrimental) move is performed anyway, in order to "climb out of

local minima." After a node is moved, it is "frozen" andnot subject to beingmoved again. After

every node is frozen, the partition seen so far that has the smallest cutsetis used as the start of another

pass. Whenacomplete pass cannot make the cutsetany smaller, thealgorithm terminates.

The multi-ordered list on whichthese algorithms weretestedhadthe following characteristics:

q the list contains 10,000 records,

• each record participates in 3 orderings,

• the maximum page size is 64 records.

We hypothesized thatthe correlation between the orderings wouldstrongly affect the results, so

we generated the second and third orderings so as to have particular correlation coefficients with

respect to the first ordering. Rather than selecting the successor of a given record randomly in the

secondaryorderings, a small set of successorcandidates was determined by consideringthose records

"near" to the given record in the primary ordering. Forexample, by setting the "nearness" parame

ter to 10, the successor for a given record in either secondary ordering is drawn from the set of 10

records nearest to the given record in the primary ordering (five beforeand five after). The experiment

was tested at several different values for the "nearness" factor.

Our results are summarized in figure 5.15. Foreach clustering algorithm, the quality of the clus

teringis plottedagainst the correlation among the orderings. The y-axis represents the percentage of

pointers which cross a disk pageboundary (when such a pointeris traversed, a page fault is generated).

The x-axis represents the "nearness" factor. At the left edge is perfect correlation (all three orderings

are the same), and at the rightedge is no correlation (selecting from 10,000neighbors in a universeof

10,000 records is identical to selecting a record at random).

As this diagram shows, selecting a primary ordering is alwayssuperior to the min-cut algorithm,

seemingto indicate that sophisticated graph clustering is not a useful tool to optimizeaccess to multi

ply ordered lists. This seems intuitively plausible, because multiple orderings display a particular pat

ternofedges(long linked lists) forwhich a primary ordering is reasonably defined. A "primary" ord

ering is not necessarily determinable in an arbitrary graph. The min-cut algorithm makes no

140

100

80 ; min-cut cluster

60

percentage of edges
crossing page boundaries 40 i

—— / primary order
20 / cluster

1 10 100 Ik 10k

successor distance

Figure 5.15. ComparisonofMin-Cut Clusteringwith PrimaryOrdering

assumptions about the structure of the graph and, while more broadly applicable, performs less well.

In any case, certainquestions remainopen:

There may be other clustering algorithms that perform better on multiply ordered lists. Algo

rithms such as simulated annealing [AJM84,RSS84] might be useful, especially if the number of enti

ties and the number of orderings are both large.

Because there is no global order among hierarchically ordered records, it is not clear how the

records should be ordered on the disk (this is one case where a primary ordering is not readily deter

minable, as mentioned above). Although the records within a partition may be ordered, it remains

unspecified how the partitions as a whole should be ordered. Does it make a difference whether there

are few large partitions (approximating a global ordering) rather than many small partitions (with

fewer sibling pointers)?

141

In hierarchically ordered data, there are pointers not only to successors, but also to parents. If

the system permits children andparents to be clustered together, the resulting graph structures are less

regular, and perhaps primaryordering would be less appropriate under those circumstances.

Clearly, there remain a large numberof openissuesassociated with the clustering of graph data.

At least preliminarily, it appears that primary ordering is a reasonable clustering technique for both

single orderings and multiple orderings.

5.12. Additional Issues

This section will consider a number of other issues that have surfaced in the course of the

development of the A-tree proposal. They are concerned with various ways in which the current

implementation could be made more general or more efficient In general, the issues have been clearly

identified, and their solution remains open for future research.

5.12.1. User Access to Tuning Parameters

We have identified certain parameters whose values might be determined by the user. The effect

ofvarious settings of these parameters on database performance remains to be explored.

x When an A-tree is initially built (with the modify to A-tree command), the initial utilization of

leaf pages may be set arbitrarily. As we have seen, with repeated insertions and deletions, this utiliza

tion should stabilize at 69%. A user may wish to set the initial utilization much lower, if a large

number of insertions are to be performed shortly after the A-tree is built The leaf pages will be rela

tively empty, and less likely to overflow when the insertionsare performed.

If ordering is implemented using linked heaps, then the issue of determining chain length is still

open. A user may wish to decide that the length of chains is to be fixed, and the height of the index is

variable. This follows the style of B-trees, and provides stable performance in the presence of a large

number of insertions and deletions. An empirical study for a given application could determine an

optimal value for this chain length.

Alternatively, the user may prefer that the height of the tree is to be fixed, and therefore the

number of chains is fixed, while the chain length is variable. This is similar to ISAM indexes.

Because the internal pages of the A-tree will not be modified, they can be utilized fully (we need not

142

reserveempty spaces for additional internal records). This providesoptimal tree height andindex size.

However, chains may become arbitrarily long, and thus the index performance degrades with inser

tions and deletions.

5.12.2. More Efficient Tree Traversal

Each internal record contains information that summarizes the contents of the data records in the

leaves of its subtree. For top down search over ordered aggregates, every page on the path from root

to leaf is scanned from left to right For each internal record scanned, a call to a user routine (Nex

tlnner) is made to calculate a new cumulative state value.

It might be more efficient to precalculate the values of the state at each record of a page, and

store this cumulative state value, rather than each individual summary record.

The advantage of storing the cumulative state value is that traversals which scan the internal

pages of the index may proceed with no calls to the Nextlnner routine. If calls to user supplied pro

cedures are expensive (in a particular system, such calls might incur a context switch within the

operating system, additional time to demand load the user code, or overhead associated with some

form of remote procedure call),this will provide a large savings.

The disadvantage of this approach is that the cost of updates is increased, and one additional

function must be supplied by the user for each ordered aggregate. According to the algorithm to

update summary information given previously, any time a leaf page is modified, every page on the

path from leaf up to (but not including) the rootis scanned. The resultant state from the scanned page

is stored in its parent's internal record, rp. With this new proposal, the cumulative state of every

record after rp in the parent page must also bemodified. The cumulative state tobestored in rp may

be determined by calling Nextlnner with the cumulative state stored in the record before rp, and the

summary information resulting from the scan of the child page. To determine the new cumulative

state to be placed in the next internal record (call it rq), the user must provide a new function called

UpdateState.

The UpdateState function takes both the old and new cumulative state of rp (the previous

record), and the oldcumulative state of rq (the current record), and determines the new cumulative

state for rq. Such a function typically involvesinverting the function of Nextlnner(i.e. givendie old

143

rp and rq values, wedetermine the summary information of rq, which we add to the new cumulative

state in rp to getthenewstate for rq).

Time must be spent scanning the root page in order to update the cumulative state for every

recordthere. This scan was not requiredby the original proposal.

The inversion performed by UpdateState is not necessarily defined for all ordered aggregate

functions. For example, the ordered_max function (whose value at a given record is themaximum of

some attribute value over the set of records up to andincluding the given one) has the "current max

imum" as the cumulative state at a given point Given only the cumulative state at a given internal

record and atits predecessor, there is no way to determine the summary information of its subtree: if

thetwocumulative states are equal, themaximum value may beinthesubtree of r9 orinthesubtree of

its predecessor. In that case, the new cumulative state cannot properly be determined for rq without

accessing its child page. In no other case does a user-coded routine need to perform a disk page

access, andthe performance penalty to do so may be unacceptable.

In summary, thisproposal makes retrievals faster, and updates more expensive. In an environ

ment where retrieval is commonbut update is rare, thiswill provide enhanced performance. The range

of implementable functions may benarrowed, if the new user-defined function UpdateState cannot be

implemented.

5.12.3. Parent Pointers

The above discussion of A-trees assumes that everypage of the data structure contains a pointer

to its parent record (except of course, the root page). This parent pointer is used in bottom-up traver

sal ofthe tree. Such a traversal would be required to perform a query such as:

retrieve (TEXT.line.number)
where TEXT.line = "A line of text"

Some search (possibly viaasecondary index) of the TEXT relation would find arecord containing the

appropriate line of text and then a bottom-up traversal would determine that line's ordinate position,

linejtumber.

In B-tree implementations where the leafrecords are sorted ona key field, such parent pointers

are unnecessary, since the path from leaftoroot is easily determined by taking the keyof aleafrecord

144

and performing a top-down traversal based on that key. The page addresses at each level of the tree

can then be saved for a subsequent bottom-up traversal.

This approachdoes not work when there is no key field stored in the leaf records. For example,

in the OB-trees developed.by Lynn (Lyn82], the absence of parent pointers disallows the retrieval

shown in the previous example. It is not possible to determine the "line_number" of a given line of

text unless that line was found by performing a top-down traversal of the index.

Although this problem is solved by maintaining parent pointers, the cost of this feature may be

quite high. In particular, any time an internal page is split or merged, a large set of child pages must

have there parent pointersupdated. Each such updaterequires a page access.

This issue can be resolved in three ways:

• Do not maintainparentpointers, anddisallowaccesses that require them.

• Support parent pointerson child pages, and toleratethe excess cost of maintaining them.

• Support parent pointers, but rather than keeping them on child pages, store them in a separate

data structure.

This last alternativeproves to be a desirable choice. If the size of such a structure is reasonable

(and it will be shown that this is true),a relation canbe maintained in memory that associates a parent

record address with every internal page of the A-tree. If we hashthis relation on the pageaddress, we

canefficientlydetermine the parent record fora given page.

How large is suchalist? Using the parameters ofourA-treesimulation, a page address requires

16bytes, and a recordaddress uses 24 bytes, so one entry in our list contains40 bytes. One suchentry

is required forevery internal record. Oursimulation showeda full treeof heightthree(1.4 Megabytes

of data) to contain 86,000 leaf records, and about 2000 internal records. Such a relation therefore

requires a to have a parent pointer relation of less than 80K bytes.

In some systems, this may be small enough to fit permanendy into main (or virtual) memory.

Alternatively, since locality of reference by a user in the orderedrelation will be reflected in the local

ity of reference to parent pointers, a memory cache of parent pointers mightbe effective. In such a

scheme, recently used parent pointers would be buffered in memory. If a parent pointer was needed

145

but not available, the internal records of the A-tree could be scanned to find it It would then be

rapidly available as long as it is retained in the cache.

It should be noted that this internal structure need not be crash recoverable, since it can easily be

reconstructed by traversingall the internal nodes of the A-tree. When the parentpointersaremodified,

such as when a child page is split the parent pointer relation must be updated to reflect the current

state of the database.

5.13. Summary

A-trees provide a general approach forsupporting user-defined indexing structures over abstract

data types. They are modeled after B-trees, with the information stored in the internal nodes of the

tree placed directly under user control. By supplying a small number of routines a user can easily

simulate existing ordered access methods, such as B-trees and OB-trees.

Additionally, the A-tree supports aggregate values calculated over ordered relations. Of particu

lar interestare thoses aggregates, known as ordered aggregates, which supply foreach record of a rela

tion an aggregate value based on that record andall previous records in the ordering. Examples of this

approach are found in databases thatmaintain ordinate record numbers andthose that maintain a per

record running total over an attribute of the relation.

It has been demonstrated that the performance of these A-trees under dynamic insertions and

deletions is the same as for B-trees.

By including a method of partitioning the data stored in an A-tree, hierarchical orderings are

supported. By permitting A-treesto be usedassecondary indices, multi-orderings are supported.

In the case where multi-orderings are presentthe data maybe stored asa graph. This results in

a space savings, andpotentially a time savings aswell. In this case, the issue of how die data (i.e. the

nodes of the graph) shouldbe clustered needsto be addressed. It remains to be seen whether general

purpose graph partitioning algorithms may be brought to bearto solve this problem.

146

CHAPTER 6

Temporal Data Management

Information which represents music is fundamentally temporal in nature. This, of course, is not

unique to the musical domain. Numerous other information domains, such as on-line calendars

[And81], project scheduling [MoP64], transaction management [SLR76], (with its issues of temporal

serializability [Pap79]) and version maintenance [KaL82] involve the manipulation of temporal data.

It is surprising, therefore, that none of the three major data models, hierarchical, network, nor rela

tional, as originally formulated, addressesthe issue of time management

A large amount of research has therefore gone into various extensions to these models to incor

porate temporal data. A reading of the literature (see, for example, the survey by Bolour [BAD82])

makes it obvious that the issue of what constitutes an appropriate representation for this data is far

from settled. In the course of this chapter, we discuss how time in the music database is different,

though related, to many of the referencesto temporal datato be found in this research.

This chapterbegins in section 6.1 by surveying a number of these research efforts, with an eye

toward determining the characteristics of the musical information domain which distinguish it from

other domains. Just as with the representation of musical data in general, we are concerned with the

management of temporal data on two distinct levels. Section 6.2 will first focus on the conceptual

level. In order to crystalize the semantics of time within the musical data manager, the notions of time

line and event are defined. We make use of the hierarchically ordered entities of chapter 3 to model

these entities. We define a set of queries over the data, and show in section 6.3 how A-trees provide

for the efficient solutionof these queries.

The actual query language programs that implement time lines using A-trees will then be given

in section 6.4.

An interesting application of multiple time lines to music involves the mapping between dif

ferent musical time frames, such as score time and performance time. We introduce the concept of

time maps and tempo maps in section 6.5, and show how they can be used in conjunction with time

147

lines to provide a flexible mapping between time frames.

6.1. Time in Database Research

There seems to be agreement that the lack of time modeling facilities in first generation data

managers was a serious deficiency (a discussion of this can be found in [ACJ83]). There does not

appear to be a consensus,however, on how to address this problem. The majorreasonseems to be that

there areactuallythreeindependent datamanagement problems involving time (roughly in the orderof

the amount of attention they've received from the database research community):

• How to model data which is updated over time.

Most databases can be viewed in this way, since update itself is a temporal phenomenon. The

data in these databases are not temporal in nature, except insofaras they model facts in their domain

that are true over a periodof time (i.e. until they are updated). Queriesagainstthese databases aretyp

ically of the form, "what is the value of datum x at time /?"

• how to model temporal data itself.

Examples of temporal data are processes, events, and calendars. The data in suchdatabases is

itself explicitly temporal in nature. We can ask a query such as "At whattime does event e occur?"

This datais subjectto update just as in the previous case, andso we can combinethe two perspectives

to get queriesof the form "As of time fo,atwhat time doesevent e occur?"

• how to model die natural language constructsof tense andmodality within the query language.

Facts in the database represented by natural language often have complex temporal aspects. A

sentence such as "John had been going to the store." represents an event with temporal attributes that

are not trivially modeled. Although it mightbe interesting to explore the application of temporal logic

[HC73, Pri67,ReU71] to musical databases, we will not pursue this issue here.

6.1.1. Historical Databases

Often, a database contains information intended to model some aspect of "the real world". A

datum in such a database is an implicit assertion of a fact (e.g. the fact that a given employee earns a

given salary). Database systems have been concerned withthe "current view" of die relevant infor

mation. In other words, as the state of the world changes, the database is updated after the fact to

148

reflect these changes, and the previous state is "forgotten." Such a database which contained employ

ees and their salariescould answer the query:

What is Jane's salary?

but could not answer the query:

What was Jane's salaryon March 2,1978?

A solution to this latter query is made possible by maintaining an historical database. When

ever an update to a relation is introduced into the historicaldatabase, rather than overwriting previous

state information, the new information is appended to the relation. The previous state information is

thus preserved. This non-destructive update was first suggested in [Sch77]. Proposed systems that

incorporate this nondestructive update to maintain historical state information include GemStone

[CoM84], TQuel [Sno84], and Postgres [StR85].

Clifford and Warren [C1W83] discuss a formal semantics, based on intensional logic, for this

data model. In particular, they model the database as a succession of states; each state transition is

triggeredby an update to the database.

It was noted by Lum, et al., in [LDE84] that this approachonly supports a single notion of time,

"physical time". It did not support updates which take effect in another time frame. For example,

suppose the user wishes to form an update:

(At 5/1/86) raise Sue's salaryto 60,000 dollars,retroactive to 4/1/86.

There is no way to record this tact. Its was suggestedtherefore that both physical time (i.e. the time

that the update is processed) and logical time (i.e. the time mat the update is "effective") be recorded.

This allows queriesto be posed that look like:

What was Sue's salary on 4/1/86(logicaltime) as of 5/1/86(physicaltime).

Snodgrass argues in [SnA85] that the distinctionbetween physical time and logical time is not

well defined, and that a more appropriate division of time distinguishes between valid time and tran

saction time. The valid time of a record indicates precisely die periodduring which the values in the

record accurately model the real world. The transaction time of a record indicates the period from

when a recordis enteredinto die database until it is superceded by an updated version. Ibese two time

149

lines are conceptually independent In the same proposal, Snodgrass includes the notion of user-

defined time for times related to a particular event. In the employee database, for example, the event

"grant Sue a raise" has a physical time, at which the updated salary is recorded in the database, a

valid time at which the raise is actually granted, and a user-defined time when the raise becomes effec

tive.

It appears that these types of extensions could continue indefinitely; particular applications

might refer to an arbitrary number of "interesting" time lines. Music, in particular, is often structured

by using similar sequences of events, each organized within a different time frame. Thus, a canon or

fugue consists of similar melodies shifted in time with respect to a particular point in time. Another

example is found in compositions where two instances of a melody are started at the same time, but

proceed at slightly different rates (so called, "phase music"). One may view such a composition as

consisting of two identical instances of event sets, each performed in a different time frame. This

notion will be made more precise in our discussion oftime maps, in section 6.5.

6.1.2. Modeling Temporal Information

Existing research on modeling explicitly temporal informationhas focused on the notion of an

event, which is the unit of temporal action.

The TERM (Time-extended Entity-Relationship Model) system [Klo83], is an example of a sys

tem which includes a notion of "valid time" in order to support histories of entities within the data

base. This system, however, also models point events, which are inherently temporal in nature. They

demonstrate a number ofdifferent types ofevent sequences, for example:

• Events arepoints in time at which an attribute takes on a new value (e.g. via update). The value

of the attribute remains constant until the next event changes the value of the attribute for the

same entity.

• Events are points in time at which an attribute is known (e.g. via a measurement) to have a cer

tain value. The value is continuously changing over time. It is known with precision at event-

points, and perhapscan be determined at other points via an induction formula, such as interpo

lation.

150

• Events cantake place at regular intervals along a time line thatdoesnot matchreal ("clock")

time. For example, banking deposits and withdrawals occur every banking day. No meaning is

ascribed to the value of an attribute in between these times.

Shosham and Kawagoe [ShK86] continue this analysis. They define "time sequences", as

values of an attribute associated with points in time fora givenentity. These time series are classified

according to their structure andinterpretation as being:

• regular or irregularin the time domain,

• continuous, step-wiseconstant, or discrete in die interval between points. A special case of the

step-wise constant is where the attribute value is boolean. This constitutes an interval (from

attribute true to attribute false).

Similar event models were developed earlier by Bruce [Bru72] and by Findler [HC73]. These

proposalswere oriented toward a naturallanguage interface that managed temporal queries, particular

the mapping of tense in English to precise query language constructs. Findlerwas additionally con

cerned with temporal inference, inferring the overall temporal order of events given a number of

specifications such as "event e t preceded event e2"-

Various proposals for organizing temporal information within the conceptual level of a database

schema have been developed. Anderson [And81] developed a model that organizes events into

decomposable hierarchies, known as processes. Barbie [BaP85], in the Temporal Semantics Office

System, considers the relationship between events especially important, and introduces into his model

the notion of causality as a connection between events.

6.1.3. Modeling Musical Events

The role of temporal datamanagement in the music domainhas been recognizedexplicitly by a

few researchers. Some tools have been developed forediting sets of events, such as the ELED system

[DeK85]. Other musical score editors, such as INTERSCORE [Pni84b] have made use of the event

typologies mentioned above. The INTERSCORE system maintainsthree semi-independent time lines

under user control:

151

• a conceptual representation of a composition, which would include bom static and dynamic

tempo indications (e.g.metronome markings, accelerandi, etc.),

• theperformance of thecomposition, which would include rubato andphrasing,

• a' 'piano roll'' score that the user may edit

An important issue in timing musical events is that of synchronization. Groups of events are

often specified to occur simultaneously. Although the temporal location of these events might be

ambiguously specified, the simultaneity of those events mustnot be violated. One construct used to

model flexible temporal location of events while preserving simultaneity is the time map discussed

later in this chapter.

6.2. Events as Ordinate Data

We can define our temporal domain to consist of two types of entities, time lines and events. In

this section, we specify the attributesof these entities, and explore a set of operations specific to time

lines.

An event is the atomic unit of activity. It is defined as follows:

define entity EVENT
(start_time = integer,
duration = integer)

We define a timeline to be the time over which a particular set of musical events occur. A par

ticular composition may consist of a number of time lines. A time line is defined as:

define entity TIMELINE
(duration = integer)

The single attribute, "duration", determines the total durationof the time line. A typical value for the

duration of a time line might be the temporaldistance from the beginning of the first event in the time

line to the end of the last event

Events are hierarchically ordered under time lines:

define ordering (EVENT)
under TIMELINE

152

Having characterized these time lines, consider how we might want to edit them. The standard

update mechanisms (allowing, for example, update of any attribute of any tuple) can be applied to any

of the tuples in our relation to give simple, standard editing functions. For example, changing the

duration of event merely involves replacing the value of a "duration" attribute in an instance of the

EVENT entity.

However, there are more complex editing operations which are particularto time-ordered data.

Operations that modify time lines as a whole are found in most systems that implement the musical

task of "sequencing" (organizing and editing the order and placement of events). We will describe to

types of insertion, "splice-in" and "overlay", two types of deletion, "splice-out" and "remove",

and a retrieval operation, "get-event".

6.2.1. The Splice-in Operation

This operation makes a "break" in the first time line at the insertion point, and "splices" the

second time line into the break. All events in the first time line which are initiated after the break get

slid forward in time by die durationof the second time line. Figure6.1 demonstrates the process.

^1

Ex
Ei

i

El
E*

E5 mm*
i : i

—^H
Ex mmmm \ insertion point

7\
Ey mmmms

E*
Ex Ew mmmm E4

E2 Ex mmmm

Figure 6.1. The SPUCE-IN Operation

J i

153

Inthis example, events ontime line T2 are spliced into time line Tx. The result is called Ty

This is not the only way in which a splice operation could be defined. For example, we do not

consider in this operation any change in the durations of events. Therefore, events which overlap

before die splice may notoverlap afterward (as for events £3 and £4 in figure 6.1).

The process of splicing time lines models real world modifications in schedules. For example,

incitingasetof speakers inaconference agenda pushes all future speakers forward in time by a fixed

amount In the musical example, inserting some musical material into acomposition causes all future

musical eventsto occur ata later time. Notice thatthe temporal relationship among these future events

remains unchanged, and that events which are simultaneous prior to the operation remain so after the

operation.

6.2.2. The Overlay Operation

The second form of merging time lines employs the "overlaying" operation. In this form of

update, we identify the time origin of the second time line with a point on the first time line (the

overlay-point). We then place each event of the second time line onto the first time line bydetermin

ing the offset of the event start times with respect to their new time origin. Allevents inthe first time

line remain unmodified. Figure 6.2 demonstrates the overlaying of one time line onto another. T2 is

-overlaidonto Tx, and the result is called T3.

Overlaying two time lines is intended to model the process of running two event streams in

parallel. The time line, ina sense, branches at the overlay-point into two parallel streams of events.

We do not however, maintain information regarding this separation, and the overlaid events become

indistinguishable from thoseon the original timeline.

Corresponding to the above forms ofinsertion into the time line, there are two types ofdeletion

in a time line. The first form "splices out" a section of the time line, and the other form eliminates

events from an intact time line.

6.2.3. The Splice-out Operation

The process of taking out asection ofthe time line and splicing together the remaining ends is

the inverse of the "splice-in" operation described earlier. We delimit aportion of the time line tobe

154

*i
ex mmmmmm

r, L J L

Figure 6.2. The OVERLAY Operation

removed. All events initiated during that time are eliminated. All events initiated after that time are

slid earlier in time (i.e. moved up in the schedule). Figure 6.3 shows an example of the splice-out

operatioa

6.2.4. The Remove Operation

The second form of deletion merely eliminatesa set of events from a time line. Unlike the splic

ing operations, the removalof a set of events does not effect the placementof otherevents. Figure 6.4

demonstrates the remove-event operation.

In order to obtain the set of events used by an operationsuch as the remove operation,a retrieve

functionmust of coursebe provided.

7\ 'iii

Before deletion

J I

After deletion

Before remove

After remove

Ew mmmm E4
Er maasmmm'

Ev mmsmm

Deletion interval

£*

Figure 63. The SPLICE-OUT Operation

Event set

Figure 6.4. The REMOVE Operation

155

156

6.2.5. The Interval-retrieve Operation

For completeness, a retrieval operation is defined over time lines. Given a time line and an

interval (a start_time and a duration), the "interval-retrieve" operation returns the set of all events on

the time line which are initiated during the given interval

This provides a reasonably complete set of operations to be applied to time lines. The following

sections will discuss how time lines may be implemented using A-trees in order to efficiendy support

these operations.

6.3. Using A-trees to Index Time lines

The definition for events mentioned in the previous section, specifying a native "start-tune"

attribute, is not a good one for the operations presented. In order to demonstrate its deficiencies, con

sider the operation of splicing one time line (presumably a small time fragment) into another (presum

ably a large one). This can be accomplished by the query language program shown in figure 6.5. In

general, this set of queries needs to modify nearly every tuple in both time lines. Every event on Tx

after the insertion point is modified in step 2, and every event on T2 is modified in step 3. We would

/* 7*! and T2 are time lines */
/* insertionj>oint is a point in Txtime */

/* Step 1: Get bounding length of T2 */
replace TIMELINE (Duration =

max(EVENT.start_time + EVENT.duration
where EVENT under T2)

where TIMELINE is T2

/* Step 2: Slide tail of time line T i forward in time */
replace EVENT

(start_time = EVENT.start_time + TIMELINE.duration)
where TIMELINE is T2
and EVENT under T {
and EVENT.start_time > insertion_point

I* Step 3: All the events on T2 get moved to Ti */
/* starting at insertion point */
replace EVENT under T,

(startJune = inseraonjpoint + EVENT.start_time)
where EVENT under T2

Figure 63. Naive Insertion ofan Event

157

like to be able to perform operations such as these, which are conceptually local operations (in this

case, local to the "insertion point" withinT\) withoutmaking these more global modifications to the

database (in this case, modifying as much as all ofTx after the insertion point).

We solve this dilemma with an A-tree index. Given a very large number of tuples in the

EVENT relation, we may establish an index which provides rapid access for the splice and retrieval

operations.

Underthe splicingoperations, we noticethe following invariants:

• Simultaneous events remain simultaneous.

• The distance between event start times is unchanged for pairs of events which do not span the

splicing point

• Forall pairs which spanthe splicingpoint the distance is changed only by a constant

It can be seen from the above invariants that a goodquantity on which to index is the distance

(in time) between consecutive events.

Initially, we eliminate allreferences to start time with respect to the time line origin, andreplace

them with references to time with respect to the start time of the preceding event We will call this

new attribute the delay of an event. In doing this, we have replaced a set of previously independent

eventplacements witha set of interdependent descriptions. The links nowprovide theordering infor

mation among the events. Figure 6.6 shows a time line and its associated ordered structure. Each

entry of thelist contains its delay from theprevious entry. The start timeof aneventis nowmerely the

sum ofits delay andall precedingdelays. The modifieddefinitions are:

define entity TIMELINE (duration = integer)
define entity EVENT (delay = integer)

define ordering (EVENT) under TIMELINE

define inheritance EVENT (start.time = ordered_sum(EVENT.delay))

modify EVENT to A-tree

The splicing process now becomes very simple. We need merely insert one set of events

between two events in another, making only local changes (including adjustment of the index). The

process of inserting delays onto a point on the list implicidy slides die future events forward on the

Elt
!3l

(a)

Ei

1

3

3 r

(b)

Figure 6.6. Ordered Structure for Time Line

jEs Event

*jTl Detory
! 3 ! Duration

158

timeline.

The modify statement builds an A-tree index which allows us to efficiently calculate the

start.time attribute. We do this by building the tree on top of the event list. The start_time is main

tained as an ordered aggregate that sums over the delay attribute. Figure 6.7 shows such a tree over a

set of events on a time line. The internal records of this tree contain the summaryinformation for the

"ordered_sum" aggregate. For a given internal record, this summary information is the sum of the

delay values rooted at that record. At the leaf level, the delays and durations are stored (because this is

a primary index, the data records themselves are stored, rather thanpointers to the data records). For

reference, thediagram of eventsrepresented bythisparticular treeis alsogiven.

6.4. Implementing Time Line Operations

What follows is a detailed description of the query language programs necessary to implement

time lines andevents, andefficiemly support thesplice andoverlay operations.

6.4.1. Inserting Events

Four pieces of information are needed to install an event the name of the event, e, the name of

the time line on which it is to be installed, t, the start time of the event, s, and the duration of the

event d. Given these constants, the commands shown in figure 6.8 insert the event The first step

partial sums 6 11'7 j

partial sums l;3j2

(a)

3 4|

/ \
jlil 0 ll 2J1 1
!2:4 5 4j 2|3:3

159

delay
duration

J I I L J I L J L i I I

12 16 20

(b)

Figure 6.7. An A-tree and The Events Which It Indexes

I* find the predecessor of e at s */
retrieve into PREDEVENT (event = EVENT, olddelay = EVENT.delay)

where EVENT.start_time = last(EVENT^tart_time
where EVENT.start_time < s))

and EVENT under t

/* update its delay */
replace EVENT (delay = s - EVENT.start_time)

where EVENT is PREDEVENT.event

/* install the new event */
range ofel is EVENT
append to EVENT after el under t

(delay = el.start_time + PREDEVENT.old_delay - s,
duration = d)
where el is PREDEVENT.event

Figure 6.8. Inserting an Event

24 28

160

determines the predecessor of e, and the second step alters its delay to reflect the fact that a new event

is beinginserted. The thirdstep actuallyinsertsthe newevent e with the correct delay value.

6.4.2. Implementing the Overlay Operation

To overlay the events on a time line T2 onto another time line Tx, we want to preserve start

times of all the events. The simplestway to do this is to select the small number ofevents in each time

line that are local to the insertion, and materialize their start times in a temporary relation. This allows

us to perform insertions without automatically updating the virtual start time attributes. This tem

porary relation will be called OVERLAY. Here is the fragment of the query language that implements

the overlay operation.

define entity OVERLAY (event = EVENT, start.time = integer)
define ordering (OVERLAY)
define inheritance OVERLAY (ordinate = ordered_count(OVERLAY))

range ofel, e2 is EVENT
range ofol, o2 is OVERLAY

/* slide T2 forward by Overlay point */
replace EVENT (delay = overlayjoint + EVENT.delay)

where EVENT is first(EVENT under T2)

I* get into a temporary relation the relevant events of T x,
materializing their start_time attribute values in the process */

retrieve into OVERLAY (event= el, startjdme = el.start_time)
where el under ?!
and e2 under T2
and el.start.time >= first(e2 under r2).start_time
and el.start_time <= last(e2 under r^-startjime

/* add T i boundary events to OVERLAY */
append into OVERLAY (event=el, start_time=el.start_time)

where el under Tx
and el.start_time = last(e 1 under Tx

where eLstartJime < first(OVERLAY).start_time).start_time

161

append into OVERLAY
(event = el, start.time = el.start_time)
where el under Tx
and el.start_time = first(EVENT.start_time under T t

where el.start_time > last(OVERLAY).start_time).start_time
and ol is last(ol where ol.startjtime < el.start_time)

/* add T2 events to OVERLAY */
append into OVERLAY

(event = e2, start_time = e2.start_time)
where e2 under T2

I* having done all the appends, reorganize OVERLAY */
reorder OVERLAY by start_time

/* Update EVENT to reflect events in OVERLAY */
replace EVENT under T,

(delay = o2.start_time - ol.start_time)
where EVENT is o2.event

and ol.ordinate = o2.ordinate -1

destroy OVERLAY

This program first creates the temporary relation, OVERLAY as an ordered relation. We will

fill the OVERLAY relation with events from the EVENT relation. Notice that for each event, start

time is a virtual attribute provided by an ordered aggregate over the hierarchically ordered EVENT

relation. In the OVERLAY relation, on the other band, start.time is a physical (materialized) attribute.

A replace statement then slides all the start times on T2 forward by the overlay point This

requires only a single update to the first delayvalue.

The next four statements fill the OVERLAY relation. First, we collect all the relevant events in

Tu those that overlap the time space of T2 (as modified). The next two statements each add a single

additionalevent to the OVERLAY relation at the boundariesof the T2 time space. We then add all of

the events in T2 to the OVERLAY relation. Because we did.not specify where in the OVERLAY ord

ering these appended records should be placed, their ordering is at this point unknown. We explicidy

reorder the OVERLAY records, by sorting them on their start times.

We then go back to the EVENT relation, and update all die events that are involved in the

OVERLAY time space. The delays are easily calculated, since the OVERLAY relation orders the

start times ofsuccessive events.

162

6.4.3. Implementing the Splice Operation

In splicing one time line into another, the relative distance between events (that is, their delay)

remains constant We can use the A-tree over the EVENT relation to automatically maintain the

appropriate values for each event's start time.

To splice one time line into another, the following QUEL fragment is executed. It splices the

events in T2 into time line 71 at the given insertionjoint.

range ofel,e2 is EVENT

replace e2 after el under Tx
where el under Tj
and e2 under T2
and el is last(EVENT under T,

where EVENT.start_time < insertion_point)

This splice operation can be done in a single query. We merely transfer events from T2 to Tx,

inserting them after the insertion point

6.5. Using Inheritance to Define Time Maps

An important property of musical events is that they are composed using one time frame (score

time) and performed using a slightly different one (performance time). In an orchestral concert the

conductor is typically responsible for coordinating the translation of score time into performance time.

This notion of translation between time frames is formalized in [Jaf85] through the concept of time

and tempo maps.

This discussion concludes with a demonstration that, by integrating our inheritance

specifications with the ordered aggregate attributes provided by the A-tree index, we can implement

tempo and time maps as presented in [Jaf85].

We begin by reviewing some definitions. "Score time" is the temporal point at which events

are scheduled to begin in an abstract time space(for example, the fourthbeat of the sixtieth measure of

a composition). "Performance time" is the actual time at which the event is performed (for example,

forty secondsafterthe start of the composition). In this system, die tempo (i.e. rate of score time pas

sage with respect to real time) of a set ofevents may be specified as an arbitrary function of score time

(see figure 6.9). The upper graphin this figure shows tempo as a function of time. This constitutes a

Tempo

^1

i M
\

/L !:•/: \/

^r

Perform
ance

Tim
e

a

I:;
i;;;

i
i

I
•:

I;;
i!•

î^

iJr
î/^\ '•>

Score Time

Figure 6.9. Tempo andTime Maps

163

tempomap. In a CMN score,annotations such aspresto (fast) or lento(slow) indicateabsolute tempo.

The fiat portions of the graph represent those temposettings. Otherannotations, such asaccelerando

(accelerate) and rallentando (slow down) signify a tempo that changesover time. The sloped portions

of the graphshow this type of tempo indication.

The lower graph results from integrating the tempo function over score time. Since the tempo

function mapsthe rate of change of performance time ateachpointin score time, die integration in the

lowergraph represents the pointin performance time corresponding to aparticular point in score time.

This is a time map.

A tempo map therefore represents a flexible transformation from one time frame into another.

The utility of this mapping lies in the fact that it preserves simultaneity. Events that are simultaneous

164

in the original time frame remain simultaneous in the resultant time frame (the actual point in the

resultant time frame at which the events occur is determined by the particular tempo map).

A tempo map is represented in the database by a relationship between points in score time (the

time units in which the events are placed on time lines), and the tempo at those points. If the tempo is

specified at regular intervals, the following relation suffices:

define entity TEMPOMAP (tempo = integer)
define ordering (TEMPOMAP)

The time map can be derived from this tempo map by integration, in other words, by summing over the

tempo values. The A-tree structure to accomplish this is:

define inheritance MAP

score.time = ordered_count(MAP),
performance_time = ordered_sum(MAP.tempo))

Now, given a events and tempo maps, we can define the performance time of these events using the

inheritance definition shown in figure 6.10. This definition adds two attributes to the EVENT entity:

"performancejstart.time," and "performance_duration." They are calculated dynamically based on

the values of the start_time in the EVENT relation, and the time mapping indicated by the scorejime

and the performance.time in the MAP entity.

Using this mechanism, the MAP may be modified at will by the user, and the start times of all

mapped time attributes will be automatically maintained by the system. The only native attributes

required by the calculation are the delay and duration attributes for events, and the tempo attribute at

each discrete point in time. From these, start.time, performance_start_time, and

performancejduration are all determined.

range of Ml, M2 is MAP

define inheritance EVENT

(performance_start_time = Ml.performancejime,
performance_duration= M2.performance_time - Ml.performance_time)
where EVENT.start_time = Ml.score_time
and EVENT.start_time + EVENT.duration = M2.score_time

Figure 6.10. Inheriting Performance Time

165

6.6. Summary

Temporal information in the database hastwo faces: the temporal aspect of insertion andupdate

in the database (operations which take place at points in time), andthe temporal semantic content of

the data itself. Although much research in modeling temporal informationin the database has applied

to the former aspect we areconcernedhere with the latter.

We havepresented a detailed application of A-trees to the management of temporal information.

In this model, the unit of temporal information is the event. Events are hierarchically ordered under

particular time lines.

Several operations aredefined on these time lines:

Splicing one time line into another,

Overlaying one time line onto another,

Deleting a section ofa time line,

Removing a set ofevents from a time line,

Retrieving a set ofevents on a time line.

After defining the A-tree used to index the event relation, the QUEL program fragments for

splicing and overlaying time lines are given.

Musicusesmanydifferent kinds of time, suchas score time, score time, andperformance time.

The mapping between these time spaces maybe specified using time maps [Jaf85]. These time maps

themselves maybe defined asordered relations. We have shown howa relational view definition built

ontopof theordered eventrelation can provide flexible mapping from onetimespace to another.

166

CHAPTER 7

Conclusion

7.1. Summary of Research

This research has focused on two majorareas in the developmentof a data manager for a musi

cal database. The first is a data model for musical information, and the otheris a strategy for effec

tively implementing thismodel. What follows is a summary ofourresearch on these issues.

7.1.1. Data Modeling

Before a reasonable musical informationmanager can be constructed, a model of musical infor

mationitself is required. The tools forbuilding thismodel, andmany aspects of the model itself, have

been the focus of this research.

Fundamental aspects of musical information, either as CMN scores or event time lines, incor

porate the concepts of order and hierarchy. The interaction between these two concepts provides a

basis for Ordered Aggregation Hierarchies, which serve as our primary tool for modeling musical

information.

These hierarchies provide a framework around which we organize attribute inheritance. Enti

ties inherit attribute values by performing various computations on the attributes of their parents,

siblings, and children in their hierarchies. These related entities in turn may inherit attributes from

their immediate relatives. In thisway, averyrich structure is provided for propagating attribute values

through the hierarchy.

7.1.2. Implementation Strategies

Upon developing this data model, it became clear that access methods currently available in

database systems are insufficiendy powerful to support it Using the entity-relationship model as a

starting point, a number of extensions to a relational database system were developed to support the

efficient use of hierarchical ordering.

167

Underlying these extensions is a new relation type, the ordered relation, and a new access

method, the A-tree. A-trees allow for the efficient calculation of a large class of aggregate functions

over ordered relations. These functions are named ordered aggregates. The client interface

developed for A-trees permits a high degree of controlby the client over the specific use of the access

path, allowing the implementation of a wide variety of ordered aggregates. We presentedexamples of

line numbers, running balances, and exponential averages to indicate a variety of uses for ordered

aggregation.

In additionto supporting the notionsofhierarchy and ordering in the data,A-trees solve, in part,

the problemof efficiently implementing complex attribute inheritance. This is possible when the enti

ties participating in the inheritance function are the aggregation of siblingsofa given entity.

Formore general types of inheritance, there is no alternative but to provide some means of stor

ing functional specifications (i.e. procedural data) in the database. We have modified a relational view

mechanism to support these specifications. When a query references an inherited attribute, die query

is modified to compute the value of the attribute based on its inheritance specification. This may be

efficiendy implemented by precomputingsuch values and cachingthe results in the database.

7.2. Further Research

In an obvious sense, this dissertation is incomplete. It intends to develop a data manager for

musical information, yet only addresses a subset of the issues presented by such a system. In orderto

demonstrate the viability of such a tool, the following tasks need be done:

• Build the model extensions and access methods into an actual relational system.

It is possible to use a standard relational database to store musical information; the extensions to

the relational model suggested by this thesis affect the naturalness of the representation, and so affect

the efficiency of utilizing the information. These extensions need to be incorporated into an actual

relationalsystem to determine there effectiveness.

Although simulations and analysis indicate that particular performance improvements may be

realizedby the access methods developed by this research, they have yet to be used under realcondi

tions. A "road test" of these techniques is required.

168

• Develop front end tools for the datamanager.

Such tools include a score editor or event sequencing tool, or perhaps analysis programs. Any

existingprogram thatoperates on musical information couldin theory be modifiedto use the database

back end. This might proveto be a simple pathto actual usageof the datamanager.

• Assess the performance ofthe datamanager.

Given a userprogram (such as an analysis program) thathas been modifiedto read its musical

information inputout from the data manager, it is a simple exercise to compare its performance to the

same program operating on its own data. Onewouldexpecta performance penalty in usinga general

purpose data manager (in place of application-specific code). It remains to be seenwhedier ornot this

penalty is acceptable.

169

APPENDIX A

A Music Font

This appendix contains the set of icons and linears(as described in Chapter 2) used in the proto

type music database developed in the course of our research. Most of these objects are referenced

explicidy by the schema given in appendix C.

The various objects are presented in their outline form, to make their construction more clearly

visible. They are represented as Postscript procedures [Ado85]„ and may thus be scaled to any size,

and rendered on a variety of graphicsdevices.

Figure A.L Accents

7tfff

^P=^

#

i

FT^T

^=^

° A 7-jr

///< y o

Figure AJJ. Annotations

170

M*- _£^rf

p**«»

^

171

^

<>
whot»<!l-t«»l

^4-
F<U-lMd

«H-f

flifdown

/

~-^\^

97 T
doufete-thvp "^-

Figure AJ. Chord and Note Parts

172

breve-rest whole-rest half-rest

quarter-rest eighth-rest sixteenth-rest

Q^j

Figure A.4. Rests

8-cl«f

(uotblt)

f-c\tf

(ubw)

""p"—S '

<j£lM

^UL^«-*=*

(udto)

QJ

Mo

^ o

^
(alienor)

Figure A.5. Gefs

173

^Tv
±

^^V

=rrQ^U.

7X
T¥zte-V=

/ /Z_ii

174

nultipU-iBtt

14

h»nxeettMmcka-kft

8va

oil]

^c^ff^p^^P^-^Si^

Figure A.6. Horizontal Linears

V—J

few-Uia

dsn*bwlti»

3

•3

•1

3

Mi>4KM*.bv.||iw>

-•i '

MMo«M»taf-gf»

! I

!<St*«>aM*6if-Uni

BV&o-W

ZJ
=5-4

ifpt|yft"^lra'rl

r

S3

2
S2

•rp*ffjo

Figure A.7. Vertical Linears

175

=33

/
\=

•i^=-

176

APPENDIX B

An Example of Update to Inherited Attributes

An example of update to inherited attributes was presented in chapter3. This appendix contains

the actualprogram fragment to perform the update.

In this example, we wish to modify the start time of a chord c t to be synchronous with the start

time of chordc2. The program is written using pseudo-code (primarily to represent control structures)

intermixed with QUEL.

Here is an overview of the program:

Find chords before and after c xin its voice
Move c i to new group,and fix instance graph
Get a group for c xto go into
Find chords before and after c xin sync
Move c xinto new sync, and fix instance graph
Recalculate durations oisold and ^
Recalculate start times of syncs, and passthem downward
Recalculate starttimes of groups in movement

Here is the program fragment to set the start time ofchordc xequal to thatof chordc 2:

/* find chords before and after c xin voice */
find effort withmaximum start_time

where chord.start_time < c 2.start_time
andchord.voice_parent = c i.voice_parent

find c^ withminimum start_time
where chord.start_time > c 2.start_time
and chord.voice_parent = c i.voice_parent

/* move c xto new group, and fix instance graph */
gold = c 1.group_parent
/* get a group for c xto go into */
tf 4iwj&«-group_parent != c^r.group_parent then

make a new groupg^
£MM,.start_time = c 2.start_time
gnn .duration = c x.duration
gn*w .voice_parent= c i.voice_parent
e?,^.voice_oidinate =Cj^«.voice_ordinate +1
replace group(voice_ordinate = group,voice.ordinate+ 1)

where group.voice_parent = £MW.voice_parent
and group,voice.ordinate > gWH,.voice_ordinate

ci.group_parent = ^flw
c i.group_ordinate = 1

else

gww *- c_subjbefore .group_parent
Ci.group_parent = £BW
c].group_ordinate =c^^.group.oidinate + 1
replace chord (group.ordinate = chord.group_ordinate + 1)

where chord.group_parent = c ,.group_parent
and chord.group_ordinate > c i.group_ordinate

/* find chords before and after c xin sync */
find effort withmaximumsync_ordinate

where chord.sync_ordinate is < c2.sync_ordinate
and chontsync_parent = c 2.sync_parent

find cafier withrriinimum sync_ordinate
where chord.sync_ordinate is > c2.sync_ordinate
and chord.sync_parent = c 2.sync_parent

/* move c i into new sync, and fix instance graph */
^oid = c l.sync_parent
Snew = c2.sync_parent
c i.sync_parent = 5B<W
c !.sync_ordinate =c^w.sync_ordinate + 1

replace chord (sync.ordinate = chord.sync_oidinate + 1)
where chord.sync_parent = c i.sync_parent
and chordsync_ordinate > c i.sync_ordinate

/* recalculate durations of sotd and 5^ */
replace sync (duration = min(chord.duration where

chord.sync_parent -s^))
where sync.uid is sold

replace sync (duration = min(chord.duration where
chord.sync_parent = sMW))

where sync.uid is snew

I* recalculate start times of syncs, and pass them downward */
for every sync s

where s .movement_parent = c i.movement_parent:

replace sync (start_time = sum(sync.duration
where sync.movement_parent = s .movement_parent
and sync.movement_ordinate < s .movement.ordinate))

where sync.uid = s

replace chord (start.time = s .start_time)
where chord.sync_parent = s

replace note (start_time = s .start_time)
where note.sync_parent = s

I* recalculate start times of groups in movement */
for every groupg

where g .movement_parent = c i.movement_parent:

replace group (startjime = min(chord.start_time
where chord.group_parent = g))

where group.uid = g

177

178

APPENDIX C

Musical Database Schema

The following database schema was developed to representCMN scores and MIDI information

as the basis for a musical information database. It is based loosely on an entity-relationship model.

The following presentation is broken into three parts:

• The data types used by the schema,

• The relations, each with its attributes (both native and inherited),

• The indices providing appropriate access paths,as well as ordered aggregate attributevalues, for

the relations.

C.l. Data Types

FigureC.l summarizes the data types used by the schema.

Str andNum should be self-explanatory. A Date is a six byte strings that map to a day, month

and year. Attributesof type Ref,reference fields, are keys, typically entity uid's, thatareimported into

a relation. They allow a record to "point" to a record in another entity. Text and Binary data types

are variable length byte strings. The only distinction between these two types lies in their use, rather

than their representation. Text strings aretypically used to store human readable information, such as

program fragments. Binary data is typically machine readable, as are, for example, MIDI command

strings.

The remaining types have more complex underlying representations, but they have fixed sizes

andinterpretations. A Time element is eithera duration, or, interpreted relative to a time line origin, a

pointon sometime line. A Tspan is the portion of a timelinedelimited by a pairof time points.

There are three graphical types. A Dist is a distance in graphical space. A point is a pair of

(x,y) distances from the graphical origin. A Bbox is the bounding box definedby a pairof pointsindi

cating two opposite corners of the rectangle (typically the one closest to the graphical origin, and the

one furthest).

Type Length Description
Str * Fixed length character strings
Num * Integer numbers

Date 6 Calendar dates

Ref t Reference fields

Text § Arbitrary length text (ASCII)

Binary § Arbitrary length byte strings

Tune 4 A temporal duration or point in time

Tspan 8 A time span

Dist 4 A graphical distance

Point 8 A point in graphical space

Bbox 16 A bounding box in graphical space

Degree 1 A staff degree

Pitch 2 A musical pitch (MIDI)

* The length of these attributes is fixed in the schema
t The length of a reference attribute is the length

of the imported key (see text).
§ The length of these attributes varies dynamically as the

objects are created and modified

Figured. Summary ofDataTypes

179

A Degree refers to vertical positionson the staff. The bottom line of a staff is degree zero, and

each line and space above the staff is numbered consecutively. Positions below the staff are

represented by negative numbers. Hnally, Pitch is an enumerated type that may be represented in two

bytes.

C.2. Relations and Attributes

The following (long) table consists of all relations and their attributes. For every attribute, its

type and byte length are given. For reference attributes,the relation and key name to be imported are

given. For inherited attributes the inheritance function is given. Some of these inheritance functions

are single queries, others are arbitrary database procedures. In the latter case, the name of the pro

cedure is given. Key fields are marked with an asterisk.

In general every entity that exists on a page has a bounding box. It may also have a normative

point indicating its logical position on the page. Every movement has its own timeline. Every entity

180

that exists on a time line has a time span and a normative time point associated with it Associated

with each ordered aggregation are three attributes: A count attribute in the parent entity, and a refer

ence pointer to the parent and ordinate position in the child entity. Of course, not every reference

pointer exists because of a ordered aggregationconstruct.

Ordering the entities of the schema in a listing such as this one is problematic, since most enti

ties belong to several different groups, and thus they do not admit to a linear ordering. In general, the

more abstractentities come first, followed by lower level objects below.

Score

Composer

Biblio

GraphDef

Page

*uid Num 4

movement.cnt Num 4

page_cnt Num 4

*uid Num 4

name Str 50

born Date 6

died Date 6

country Str 20

score Ref 4 Score/uid
composer Ref 4 Composer/uid
tide Str 40

subtide Str 40

compositiondate Date 6

publicationdate Date 6

refid Str 40

*uid Num 4

name Str 40

postscript Text 40

*uid Num 4

score_par Ref 4 Score/uid
score_ord Num 4

system_cnt Num 4

page.number Num 4

bbox Bbox 16

tspan Tspan 8

Movement

*uid Num 4

score_par Ref 4 Score/uid
score_ord Num 4

first_page Ref 4 Page/uid
last_page Ref 4 Page/uid
measure_cnt Num 4

instrum.cnt Num 4

system_cnt Num 4

tspan Tspan 8

Annot

*uid Num 4

label Str 100

Page Ref 4 Page/uid
location Point 4

size Num 2

font Ref 4 Font/uid
position Ref 4 PositionAud

Font

*uid Num 4

name Str 40

Position

*uid Num 4

name Str 20

hfactor Num 2

vfactor Num 2

AnScore

score_parent Ref 4 Score/uid
score.ordinate Num 4

annot Ref 4 Annot/uid

InstDef

*uid Num 4

name Str 40

type Str 20

low Num 4

high Num 4

description Text —

AnMove

movement_par Ref 4 Movement/uid
movement_ord Num 4

annot Ref 4 Annot/uid

Measure

*uid Num 4

movement_par Ref 4 Movement/uid

movement_ord Num 4

sync_cnt Num 4

score_par Num 4

tspan Tspan 8

measure.number Num 4

181

AnPage

System

Sync

Barline

Section

Instrum

annot Ref 4 Annot/uid

pageref Ref 4 Page/uid

*uid Num 4

page_par Ref 4 Page/uid
page_ord Num 4

movementjpar Num 4

movement_ord Num 4

section_cnt Num 4

sync_cnt Num 4

bbox Bbox 16

tspan Tspan 8

*uid Num 4

system_par Ref 4 System/uid
system_ord Num 4

measure_par Ref 4 Measure/uid
measure_ord Num 4

syllable_cnt Num 4

chord_cnt Num 4

rest_cnt Num 4

bbox Bbox 16

location Point 8

time Time 4

sync Ref 4 Sync/uid
graphdef Ref 4 GraphDef/uid
measure Ref 4 Measure/uid

*uid Num 4

system_par . Ref 4 System/uid
system_ord Num 4

instrum_cnt Num 4

bbox Bbox 16

tspan Tspan 8

*uid Num 4

instdef Ref 4 InstDef/uid
movement_j>ar Ref 4 Movement/uid
movement_ord Num 4

part_cnt Num 4

systmst_cnt Num 4

tspan Tspan 8

annot Ref 4 Annot/uid

182

Duration

Systlnst

Staff

Metersig

AnSystem

Part

KeyDef

Keysig

KeyDefg

*uid

notehead

resthead

w_num

w_denom
flags
dots

stem_p

Num

Ref

Ref

Num

Num

Num

Num

Str

4

4

4

4

4

1

1

1

GraphDef/uid
GraphDef/uid

♦uid

instrum_par
instrum.ord
section_par
section_ord
bbox

tspan

Num

Ref

Num

Ref

Num

Bbox

Tspan

4

4

4

4

4

16

8

Instrum/uid

Section/uid

♦uid

systinst_par
systinst.ord
text_cnt

bbox

gr_spaceheight
tspan

Num

Ref

Num

Num

Bbox

Num

Tspan

4

4

4

4

16

4

8

Systlnst/uid

sync

staff

graphdef
beats

per

Ref

Ref

Ref

Num

Ref

4

4

4

4

4

Sync/uid
Staff/uid
GraphDef/uid

Duration/uid

sync

annot

Ref

Ref

4

4

Sync/uid
Annot/uid

♦uid

instrum_par
instrument_ord
tspan
annot

Num

Ref

Num

Tspan
Str

4

4

4

8

4

Instrum/uid

♦uid

tonality
Num

Str

4

1

staff

sync

keysig_def

Ref

Ref

Ref

4

4

4

Staff/uid
Sync/uid
KeyDef/uid

keydef
accidental

degree

Ref

Ref

Degree

4

4

1

KeyDef/uid
GraphDef/uid

183

Voice

Degree

Group

Clef

Event

Text

AnStaff

Beam

♦uid Num 4

part_par Ref 4 Part/uid
part_ord Num 4

group_cnt Num 4

event_cnt Num 4

tspan Tspan 8

♦uid Num 4

staff_par Ref 4 Staff/uid

staff_ord Num 4

location Point 4

bbox Bbox 16

staffline Ref 4 GraphDef/uid
degree Degree 1

♦uid Num 4

voice_par Ref 4 Voice/uid
voice_ord Num 4

chord_cnt Num 4

rest_cnt Num 4

tspan Tspan 8

graphdef Ref 4 GraphDef/uid
degree Ref 4 Degree/uid
sync Ref 4 Sync/uid

♦uid Num 4

degree Ref 4 Degree/uid
voice_par Ref 4 Voice/uid
voice_ord Num 4

perf_volume Num 4

perf_pitch Num 4

♦uid Num 4

staff_par Ref 4 Staff/uid
staff_ord Num 4

annot Ref 4 Annot/uid
staff Ref 4 Staff/uid
sync Ref 4 Sync/uid

beam_gd Ref 4 GraphDef/uid
group_ref Ref 4 Group/uid

184

Chord

Accent

Hag

Note

Dot

Accident

Rest

Stem

DynDef

♦uid Num 4

sync_par Ref 4 Sync/uid
sync_ord Num 4

group_par Ref 4 Group/uid
duration Ref 4 Duration/uid
tspan Tspan 8

location Point 8

bbox Bbox 16

group_ord Num 4

accent_gd Ref 4 GraphDef/uid
chord Ref 4 Chord/uid

flag^d Ref 4 GraphDef/uid
chord Ref 4 Chord/uid

♦uid Num 4

event_par Ref 4 Event/uid
event_ord Num 4

chord_par Ref 4 Chord/uid
event_chord Num 4

location Point 8

tspan Tspan 8

dot_gd Ref 4 GraphDef/uid
note Ref 4 Note/uid

note Ref 4 Note/uid
accid_gd Ref 4 GraphDef/uid

♦uid Num 4

sync_par Ref 4 Sync/uid
sync_ord Num 4

group_par Ref 4 Group/uid
group_;ord Num 4

degree Ref 4 Degree/uid
duration Ref 4 Duration/uid
rest_gd Ref 4 GraphDef/uid

stem_gd Ref 4 GraphDef/uid
chord Ref 4 Chord/uid
grjength Num 4

♦uid Num 4

annot Ref 4 Annot/uid
perf_volume Num 4

perf_vol_slope Num 2

persistence Str 1

185

Dynamic
dynamic_def
chord

Ref

Ref

4

4

DynDef/uid
Chord/uid

Hairpin
hairpin_gd
group_ref
perf_vol_slope

Ref

Ref

Num

4

4

2

GraphDef/uid
Group/uid

Midi

event

command

commandjength

Ref

Str

Num

4

10

1

Event/uid

Slur

slur_gd
group_ref
slur_gr_pl
slur_gr_p2

Ref

Ref

Num

Num

4

4

4

4

GraphDef/uid
Group/uid

Tie

tie_gd
event

Ref

Ref

4

4

GraphDef/uid
Event/uid

Syllable
♦uid

sync_par

sync_ord
text_par
text_ord
syllable_annot

Num

Ref

Num

Ref

Num

Ref

4

4

4

4

4

4

Sync/uid

Text/uid

Annot/uid

Notehead

notehead_gd
note

Ref

Ref

4

4

GraphDef/uid
Note/uid

GrParm

♦parmname Str 20

GDefParm

grparm

graphdef
Ref

Ref

20

4

GrParm/parmname
GraphDef/uid

HomePart

staff

part
row

Ref

Ref

Num

4

4

4

Staff/uid
Part/uid

186

187

APPENDIX D

Sample Rule Sets for Musical Virtual Attributes

In this appendix, the rule sets used in the examples of section 3.6 are collected together. The

example determines the volume attribute of a note. It is presented mosdy without comment.

There presentation here is intended to indicate the complexityof what at first might seem a sim

ple inheritance function, as well as the variety of constructs (relational constructs, programming

language control structures, and functional apparatus in the style of DAPLEX [Shi81]) needed for

these operations.

The following rale set, given a note n, determines the volume of the note, volume(n), and the

rate of change of that volume over time, slope(/i).

/♦ Find the dynamic which "covers" note n ♦/

range of n is NOTE
range ofd is DYNAMIC
retrieve d.uid

where voice(d) = voice(n)
and time(d) < time(n) < time(next(d))

dynamic(n) <— d.uid

/♦ Find the volume of the note n ♦/

volume(n) <- volume(dynamic(n)) +
slope(n) ♦ (time(n) - time(dynamic(n)));

/♦ Find the slope of this volume for n: ♦/

slope(note)«- slope(dynamic(n));

ifslope_sign = 0
then slope(d) <- 0.
done.

if ENDUNEAR € type(d) then
if (abs_nearby(d))

slope(d) <- slope(prev(d))
else

slope(d) <- 0;
done

else if (not ENDUNEAR e type(next(d)))
slope(d) <- (volume(Iiext(d)) - volume(d))

duration(d)

else if (abs_nearby(next(d)))
, ,_iv (volume(next(next(d))) - volume(d))

siope(d) 4— ——^~—~—~~~~~~—~~~——^~*
(duration(d) + duration(next(d)))

else /♦ untagged end with no nearby fixed ♦/
. ... (slope_sign(d) ♦ DEFAULT_CRESC)

Sl0pe(d) « duration(d) ;
abs_nearby(vol):

fixed_nearby(vol) <-
slope_sign(next(vol)) = 0 &&
duration(vol) < SMALL_INTERVAL; /♦ say, 1 second? ♦/

duration(vol):
duration(vol) «- time(next(vol)) - time(vol);

time(sync):
if(prev(sync))

time(sync) «- time(prev(sync)) + duration(prev(sync))
else

time(sync) <- 0

voice(note):
voice(note) <— voice(group(chord(note)));

sync(note):
sync(note) <- sync(chord(note));

time(note):
time(note) <- time(sync(note));

time(vol):
time(vol) <- time(sync(vol));

duration(sync):
duration(sync) <- rriinimum(duration(chord)

where sync(chord) = sync)

188

189

APPENDIX E

The Ordered Aggregate for Exponential Average

We present here an implementation of the ordered aggregate that maintains the exponential

average, as described in section 5.3.1.

E.l. The Averaging Function

An exponential average x, associated with each element in an ordered set of values,

A=(ao,at,a2, •••,an|.

is defined by the following recurrence relation:

Xq =sao

Xj =sai + (l-s)Xi_,

Intuitively, the exponential average x$ associated with element ^ is an average of all preceding

elements {a© • ** %}. Those elements toward the end of the ordering (that is, close to a<) are weighted

heavily, and those at the beginning are weighted very little.

The rate at which the weight decreases is exponential, and is controlled by the scaling factor, s,

0 < s < 1. As s increases, the weight of a, in the average xj is increased.

E.2. Declaring the Aggregate Function

define ordered aggregate exp.avg
(scale = constant float, value = float)
returns float

file = ,4/aggregates/expavg.o"

The exponential average aggregate is declared to take twoparameters, *'scale'*and "value" of

type float The scale parameter corresponds to the weighting factor s, and the value parameter

corresponds to the elements of the set A.

As an example of the use of thisordered aggregate, we review the structure of the RUNQUEUE

relation presented in section 5.3.1:

190

define entity RUNQUEUE (length = integer)
define ordering (RUNQUEUE)

This relationstores an ordered set of values, representing the length of a queue sampledat regular time

intervals. We associate an attribute representing the exponentialaverage at each point in time, and call

it the load:

range of q is QUEUE
define inheritance q (load = exp_avg(0.2,q.length))

The system will recognize that the scale parameter is taking a constant value, and that the length

parameter, when it is used, must be converted from an integer to a float value.

E.3. User Routines for Exponential Average

We need to provide five routines for an A-tree to efficiendy determine the value of \ for every

record in a relation. These routines, discussed in section 5.5, will be presented here. The routines are

written in the C programming language, though for these examples, the syntax is occasionally

modified for the sake of clarity.

E.3.1. InitializeScan

typedef float ♦RESULT;
typedef float ♦VALUESrj;
typedef struct {

float weighted_sum;
int count;

} ♦STATE;

STATE InitializeScanO
{

state = alloc_state(sizeof(struct state));
•state -> weighted_sum = 0.0;
state -> count = 0;
retum(state);

}

This routine is called by the system at the beginning of each scan. STATE is a pointer to the

state information. The system provides the alloc_state() routine to generate a block of memory that

will be recovered automatically whenthescan is completed. The state for this aggregate consists of a

runningweightedsum, and a count of the numberof objectscurrentlyin the weightedsum.

191

E.3.2. NextLeaf

STATE NextLeaf(state, constant, parameter)
STATE state;
VALUES constant, parameter,
{

a «- ♦parameter[0];

s <- ♦constant[0];

x«- state->weighted_sum;

x<-(l-s)x+sa;
state->weighted_sum = x; •

retum(state);

}

The system calls NextLeaf when scanning data records. The parameter list consists of those

nonconstant parameters defined by the define ordered aggregate statement. In thisexample, the only

parameter is "value," which is taken from the "length" attribute of the RUNQUEUE records (as

specified in the define inheritance statement above).

The VALUES structure whichcontains theseparameters is implemented as an array of pointers.

In this way, each parameter may be a different type of object The user routine is responsible for

knowing the type ofeach value, as determined by the define ordered aggregate statement.

E.3.3. Next Inner

STATE NextInner(cumstate^iewstate,constant)
STATE cumstate,newstate;
VALUES constant;

{
x <- cumstate -> weighted_sum;
i <- cumstate -> count;
i' <— newstate -> count;
x'«- newstate -> weighted_sum;
s «- ♦constant[0];

x<-x(l-sy' +x';
i <- i + i';

cumstate->count = i;
cumstate->weighted_sum = x;

retum(cumstate);

192

E.3.4. Result

RESULT Result(state)
STATE state;

{
returo(& state -> weighted.sum);

}

This routine returns a pointer to the result of the aggregate calculation, namely, the weighted

sum.

E.3.5. Compare

Compare(rl, r2)
RESULT rl,r2;

{
return (+rl - *r2);

}

This routine compares two results, and returns a negative number if the first is less than the second,

zeroif they are equal, anda positivenumber if the first resultis greater thanthe second.

In summary, the exponential average aggregate canbe implemented quitesimplyusingtheinter

face developed in chapter 5. A total of lessthan 70 lines of code needbe provided by the.user for this

example.

193

APPENDIX F

Summary of Proposed Query Language Extensions

The following extensions to QUEL have been proposed in this dissertation to support hierarchi

cal ordering, as defined in chapter 3, and hierarchically ordered relations, as described in chapter 5.

Standard BNF descriptions [Bac59] are used to present the syntax of statements in the extended

query language. Words in boldface are Uteral, or key words. Square brackets indicate optional

clauses, and curly braces indicate clauses that may be repeated zero or more times.

F.l. Data Definition Language Extensions

We begin with those statements that define entities, attributes, aggregates, and orderings. The

data model developed in chapter 3 is implemented by these extensions. A collection of these state

ments define the schema for a particular database design.

F.l.1. The define entity Statement

The define entity statement defines an entity and its associated native attributes.

The syntax for this statement is:

define_entity_statement:
define entity entity_name (attribute.spec {, attribute.spec })

attribute_spec:
attribute_name = type

entity_name:
relation_name

type:
entity.name I
adtjname I
intemal_type

The name of the entity defined by the define entity statement is "entity_name". The native

attributes of this entity are also given in this statement The type of each attribute is either an built-in

"intemal.type," such as i4 for a four byte integer, or c20 for a 20 character string, or else an abstract

194

data type "adt_name," defined by the user. The abstract data type must have been previously

registered withthesystem. This is accomplished withadefine adt statement, asproposed in [Ong82].

If the type of anattribute is specified by anentity.name, thenit maybe represented internally by

a pointer to a record in the entity relation so specified. This is identical to the entity reference

specifications of GEM [Zan83].

F.1.2. The define ordering Statement

The define ordering statement specifies that the entities in a given relation are to be considered

as an ordered set or a hierarchically ordered set. Its syntax is:

define_ordering_statement:
define ordering [order.name] (child_entity {, child.entity })

[under parent.entity]

order_name:
relation_name

child_entity:
entity_name

parent.entity:
entity.name

This statement defines an ordering,named "order.name" over entities whose types are given as

the "child_entity" parameters. If there are multiple children, then the ordering is inhomogeneous

(entities from different relations participate in the ordering).

If the under clause is included, then the ordering is hierarchical. Every instance of a child entity

is associated with an instance type "parent.entity." The children are partitioned by parent and

ordered within their partition.

The system will generate an ordered relation for each define ordering statement. The

"order_name" field may be omitted if,

(1) the orderingcontains only a single' 4child_entity'' entry, and

(2) that child entity is not currently an orderedrelation.

If these conditions hold, and the order.name is omitted, then the base relation indicated by the

"child.entity" is defined to be an ordered relation. The relation name associatedwith the child entity

195

may then be used as an "order_name" in future definitions (i.e. the system assigns the child entity

name as the "order_name" for an unnamed ordering).

If an order_name is specified, thena new relation is defined as a secondary index over the child

entities. This index is a relation whose attribute is a pointer (i.e. tuple identifier, or TID) to a child

entity.

If theparent_name is specified in an under clause, thena pointerto a parententityis included as

an attribute in the resultant ordered relation.

F.1.3. The define aggregate Statement

User definedaggregatesare registeredwith the systemusing the define aggregate statement. Its

syntax is:

define_aggregate_statement:
define [ordered] aggregate aggregatejname

[(parameter_spec {, parameter_spec })]
returns retumjype
[ascending Idescending]
file = file_name

parameterjspec:
formal_parameter_name = parameter_type

retumjype:
entity_name I
adt.typel
intemal_type I
typeof (formal_parameter_name)

parameter_type:
entity.name I
adt_typel
intemal_type I
constant

If the ordered keyword is omitted from the define aggregate statement, then this command is

implemented as a user-defined aggregate as specified in [Han84]. The "aggregate.name" is the name

the user wishes to associate with the aggregate function whose implementation is stored in the file

"file_name." The remaining clauses characterize the aggregate function implemented in this file.

A call to an aggregate function defines a set of records over which an aggregate value is to be

calculated. Some of the parameters to the aggregate function are taken from attribute values in each

196

record, and some are constant over the set, independent of the records over which the aggregate is cal

culated. Each such parameter is given a "formal_parameter_name" anda "parameter_type." If the

type is constant, then that parameter is fixed over the aggregate calculation. Otherwise, the type is

defined to be the type of the attribute value taken from each record over which the aggregate will be

calculated.

Unlike aggregate functions which calculate a single value based on a set of records, an ordered

aggregate function determines a distinct value for each record in its set. The value for a given record

depends on the attributesof that record and all recordsprevious to it in the ordering.

If the result of an ordered aggregate function is guaranteed to increase monotonically over its

ordered set then it may be declared as ascending. If it decreases, it may be declared as descending.

These clauses allow for more efficient processing by the system when the ordered aggregate functions

meet these special criteria.

F.1.4. The define inheritance Statement

The define inheritance statement associates inherited attributes with an entity. These attributes

are added to the set of attributes already defined for the given entity. The syntax for inheritance

definition is:

define_inheritance_statement:
define inheritance range.variable (target_list)

where qualification

This syntax is similar to the syntax for the replace statement, but its effect is to define additional

attribute values, rather than to replace existing attribute values. The expressions which appear in the

"targetjist" and "qualification" are not evaluated at this time, but at the time the inherited attribute

is accessed. In this respect they are similarto views [Sto75], except that they are defined at the attri

bute level, rather than at the relation level.

F.2. Data Manipulation Language Extensions

Given a database schema, the various manipulations of its data are accomplished using the data

manipulation language of QUEL, which permits retrieval, update, and insertion into the database. We

also include the statements which allow the user to define the storage type of database relations in this

197

section.

F.2.1. The modify Statement

A new storage type has been introduced, the A-tree, and so an additional form of the modify

command is provided to convert an ordered relationto this storage type:

modify order_name to A-tree

An "order.name" indicates an ordered relation. It was defined using the define ordering command.

As was mentioned, the name of the child entity in an unnamed ordering may be used as an order_name

in this context (this is the case where a base relation itself is an ordered relation).

F.2.2. The reorder Statement

The position of records in an ordered relation may be determined at the time each record is

inserted (using the append before or append after constructs). Alternatively, the records may be

inserted in arbitrary order, and the reorder statement may then be used to establish an order based on

the sort order of an attribute within the relation.

The syntax is:

reorder order.name on attribute_name

The effect is to order all the entities participating in the given ordering according to the ordering

induced by sorting the entities on attribute.name.

F.2.3. User-Defined Aggregate Expressions

Expressions in queries, appearing eitherin the target list or the qualification, may contain refer

ences to user-defined aggregate functions. Ordered aggregates are invoked as terms within an expres

sion using the following syntax:

ordered_aggregate_term:
ordered_aggregate_name (parameter {, parameter }
[in orderjoame] [where qualification])

This syntax is similar to those for existing aggregates in QUEL, except that:

198

(1) multiple parameters may be specified. If the corresponding formal parameter in the define

aggregate statement is of type constant, then this actualparametermust be a constant Other

wise, it must be an attribute (of a relation) whose type is consistent with the type of the

corresponding formal parameter.

(2) The by clause, which is used to partition regular aggregate functions, is not applicable for

ordered aggregates.

(3) The ordering for the ordered aggregate function may be explicidy given in an in clause. If it is

not given, the parameters must all be taken from a single ordered relation which implicidy

defines the ordering for the aggregate.

F.2.4. Expressions of Type "Entity"

As in GEM,we permitexpressions to operateon entitiesthemselves,and expressions to evaluate

to an entity value. An expression of type entity may be

(1) an attribute value whose type was defined as "entity_name,"

(2) a range variable, whose value at any point in the scan of an entity relation is the current record

of that range variable. The type of such an entity is determined syntactically by the range state

ment where the range variable is declared.

(3) An operation that evaluates to an entity value, for example, the first and last aggregate func

tions.

All three of these objects are syntactically equivalent We therefore allow expressions such as

"(<*.&).<?" where a is a relation name, b is an attribute of a whose type is entity x, and c is an attribute

ofx.

F.2.5. Comparison of Entities

The qualification of a query consists of a series of boolean terms of the form "aoperatorb,"

where operator is one of the comparison operators (<, £, =, >, or £). These terms are combined using

the boolean operators and, or, and not. We extend the set of boolean operators with those that com

pare entities, rather than values. Because the ordering of entities is not intrinsic to the entities (as the

ordering of, say, integers is intrinsic), but rather is determined by a user-defined ordering, the

199

comparison operators for entities take three parameters: the two entities to be compared, and the ord

ering by which they are to be compared. The syntaxfor these comparisons is as follows:

boolean.term:
expression entity_comparator expression [in order_name]

entity.comparator:
is I before I after I under

In order to support entity comparison, we extend the query language to include expressions that

result in objects of type "entity." When we compare two such expressions,

• is evaluates to "true" if the expressions refer to the same entity,

• before evaluates to "true" if the two entities are comparable, and the first entity is before the

second one in the ordering specified by the in clause,

• after evaluates to "true" if the two entities are comparable, and the first entity is after the

second one in the ordering specified by the in clause, and

• under evaluates to "true" if the two entities are comparable, and the first entity is under the

second one in the hierarchical ordering specified by the in clause.

Two entities are comparable if theyparticipate in the same ordering. For before and after, the

entities must bothparticipate as children in the ordering. Forunder, the first entitymustbe a child in

the ordering, and the secondentitymustbe a parent. Thus, in thiscase,the ordering mustbe hierarchi

cal. Whenever twoentities are notcomparable, theentity_comparator operations evaluate to "false."

F.2.6. The append Statement

The append statement is modified to allow for insertion of records at a particular location within

an ordering.

append.statement:
append relation_name

[location]
[(targetjist)]
where qualification

location:

[before entity]
[after entity]
[under entity] in order_name

200

In order for a "location" to be specified for an insertion, the "relation_name" must refer to an

ordered relatioa The location then pinpoints the record after which, before which, or under which (in

the case of hierarchical orderings) the insertion should be performed. If more than one of these locator

clauses is specified, the location may be over-constrained. In other words, there may not exist an

insertion point such that the neighboring records each satisfy the location constraints. In this case, the

append statement is non-functional.

If multiple entities in the database satisfy the qualification, then this set of entities must form an

ordered relation, which will be properly inserted en-masse at the given location. The ordering of these

entities will be preserved by the system (the batch insertion algorithms presented in [CDR86] may be

used for this purpose).

.F.2.7. The replace Statement

The replace statement is extended in a similar manner

replace entity
[location]
[(targetJist)]
where qualification

If the entity is a member of an ordered relation, then the location statement may be specified to

set a new location for the entity within the ordering. The target list is now optional It makes sense to

change the location of an entity without modifying any of its attribute values. The qualification deter

mines die set on which the replacement will occur. If multiple entities satisfy the qualification, and

location is specified, then they themselves must form an ordered relation, which will be correcdy

inserted into the ordering at the new location.

201

References

[Ado85] Adobe Systems, PostScript Language Reference Manual, Addison-Wesley, Reading,

MA, 1985.

[Alp80] Alphonce, B., "Music Analysis by Computer", Computer Music Journal4, 2 (Summer

1980), 26-35.

[And81] Anderson, T. L., The Database Semantics of Time, Ph.D. Dissertation, University of

Washington, 1981.

[AnK86a] Anderson, D. and Kuivila, R., "A Model of Real-Time Computation for Computer

Music", Proceedings of the International Computer Music Conference, The Hague,

Netherlands, 1986,35-42.

[AnK86b] Anderson, D. and Kuivila, R., FORMULA on the Atari ST, (no listed publisher), October

1986.

[AJM84] Aragon, C, Johnson, D., MeGeoch, L. and Schevon, C, "Optimization By Simulated

Annealing: An Experimental Evaluation", Technical Report Draft, September 1984.

[ACJ83] Ariav, G., Clifford, J. and Jarke, M., "Panel on Time and Databases", Proceedings of the

ACM-SIGMOD International Conference on the Management of Data, Ann Arbor, MI,

May 1983,243-245.

[Ash83] Ashley, R., "Production Systems: Three Applications in Music", Proceedings of the

International ComputerMusic Conference, Rochester, NY, 1983,160-172.

[Ash85] Ashley, R. D., "KSM: An Essayin Knowledge Representation in Music", Proceedings of

the International Computer Music Conference, Bumaby, British Columbia, 1985, 383-

390.

[Bac47] Bach-Gesellschaft, Johann Sebastian Bach'sWerke, Breitkopf Haertel, Leipzig, 1947.

[Bac59] Backus, J., "The syntax andsemantics of the proposed international algebraic language of

the Zurich ACM-GAMM Conference", Proceedings of the International Conference on

202

Information Processing, 1959,125-132.

[BaP85] Barbie, F. and Pemici, B., "Time Modeling in Office Information Systems", Proceedings

of the ACM-SIGMOD International Conference on the Management of Data 14, 4

(December 1985), 51-62.

[BaM72] Bayer, R. and McCreight, E., "Organization and maintenance of largeordered indexes",

Acta Informatica I (1972), 173-189.

[Bee60] Beethoven, L., SymphoniesNo. 5,6, 7, Edwin Kalmus, 1960.

[BoW77] Bobrow, D. and Winograd, T., "An Overview of KRL: Knowledge Representation

Language", Cognitive Science 1,1 (1977), 2-46.

[B0S8I] Bobrow, D. and Stefik, M., "Tne Loops Manual", Technical Report KB-VLSI-81-13,

Xerox Palo Alto Research Center, Palo Alto, CA, 1981.

[BAD82] Bolour, A., Anderson, T., Dekeyser, L. and Wong, H., "The Role of Time in Information

Processing: A Survey", ACM SIGMOD Record 12,3 (1982), 27-50.

[BDR85] Braegger, R., Dudler, A., Rebsamen, J. and Zehnder, C, "Gambit: An Interactive

Database Design Tool for Data Structures, Integrity Constraints, and Transactions", IEEE

Transactions on Software EngineeringSE-U, 7 (July 1985), 574-583.

[Bru72] Bruce, B. C, "A Model for Temporal References and Its Application in a Question

Answering Program", Artificial Intelligence 3 (1972), 1-25.

[BRB78] Buxton, W., Reeves, W., Baeker, R. and Mezei, L., "The Use of Hierarchy and Instance

in a Data Structure for Computer Music", Computer Music Journal 2, 4 (Winter 1978),

10-20.

[BSR79] Buxton, W., Sniderman, R., Reeves, W„ Patel, S. and Baeker, R., "The Evolution of the

SSSP Score Editing Tools", ComputerMusicJournal3,4 (1979), 14-26.

[BPR81] Buxton, W., Patel,S., Reeves, W. and Baecker, R., "Scope in Interactive Score Editors",

Computer Music Journal 5,3 (Fall 1981), 50-56.

[Byr84] Byrd, D., Music Notation By Computer, Ph.D. Dissertation, Department of Computer

Science, Indiana University, 1984.

203

[CDR86] Carey, M., DeWitt D., Richardson, J. and Shekita, E., "Object and File Management in

the EXODUS Extensible Database System", Proceedings of the International Conference

on Very Large Data Bases, Kyoto, August 1986.

[Car62] Carter, E., Double Concerto for Harpsichord and Piano with Two-Chamber Orchestras,

Associated Music Publishers, New York, 1962.

[CMR82] Chafe, C, Mont-Reynaud, B. and Rush, L., "Toward an Intelligent Editor of Digital

Audio: Recognition of Musical Constructs", Computer Music Journal 6,1 (Spring 1982),

30-41.

[Che76] Chen, P., "The Entity-Relationship Model: Toward a Unified View of Data", ACM

Transactions on Database Systems 1,1 (March 1976), 9-36.

[C1W83] Clifford, J. and Warren, D., "Formal Semantics for Time in Databases", ACM

Transactions on Database Systems 8,2 (June 1983), 214-254.

[Cod70] Codd, E., "A Relational Model of Data for Large Shared Data Banks", Communications

ofthe ACM 13,6 (June 1970), 377-387.

[Cod79] Codd, E. R, "Extending the Database Relational Model to Capture More Meaning",

ACAf Transactions on Database Systems 4,4 (December 1979), 397-434.

[Com79] Comer, D., "The Ubiquitous B-Tree", ACMComputing Surveys 11, 2 (June 1979), 121-

137.

[CoM84] Copeland, G. and Maier, D., "Making Smalltalk a Data Base System", Proceedings of

the ACM-SIGMOD International Conference on the Management of Data, Boston, MA,

June 1984,316-325.

[Dan86] Dannenberg, R., "A Structure for Representing, Displaying and Editing Music",

Proceedings of the International Computer Music Conference, The Hague, Netherlands,

1986,153-160.

[DeK85] Decker, S. L. and Kendall, G. S., "A Unified Approach to the Editing of Time-Ordered

Events", Proceedings of the International Computer Music Conference, Burnaby, British

Columbia, 1985,69-78.

204

[DeF84] Deering, M. and Faletti, J., "Database Support for Storage of AI Reasoning Knowledge",

Proceedings of the First International Workshop on Expert Data Base Systems, Kiawah,

SC, October 1984.

[Don63] Donato, A., Preparing Music Manuscript, Prentice-Hall, Englewood Cliffs, NJ, 1963.

[Ebc84] ' Ebcioglu, K., "An Expert System for Schenkerian Synthesis of Chorales in theStyle of J.

S. Bach", Proceedings of the International Computer Music Conference, Paris, 1984,

233-242.

[Eri77] Erickson, R., DARMS: A Reference Manual, (no listed publisher), 1977.

[ErW83] Erickson, R. and Wolff, A., "The DARMS Project: Implementation of an Artificial

Language for the Representation of Music", Trends in Linguistics 19 (1983).

[FiM82] Fiduccia, C. and Mattheyses, R., "A Linear-Time Heuristic for Improving Network

Partitions", Proceedings ofthe 19th Design Automation Conference, 1982,175-181.

[RC73] Findler, N. V. and Chen, D., "On the Problems ofTime, Retrievalof Temporal Relations,

Causality, and Coexistence", International Journal of Computer and Information

Sciences 2,3 (1973), 161-185.

[Fog82] Fogg, D., "Implementation of Domain Abstraction in the Relational Database System

INGRES", Masters Report, Department of Electrical Engineering and ComputerScience,

University of California Berkeley, Berkeley, CA, November 1982.

[Fox79] Fox, M. S., "On Inheritance in Knowledge Representation", Proceedings of the Sixth

International Joint Conferenceon ArtificalIntelligence, Tokyo, 1979,282-284.

[FWA84] Fox, M. S., Wright, J. M. and Adam, D., "Experiences with SRL: An Analysis of a

Frame-based Knowledge Representation", Intelligent Systems Laboratory Technical

Report, Robotics Institute, Camegie-MellonUniversity, Pittsburgy,PA, June 1984.

[Fry84] Fry, C, "Flavors Band: A Language for Specifying Musical Style", Computer Music

Journal 8,4 (Winter 1984), 20-34.

[GoR83] Goldberg, A. and Robson, D., Smalltalk-80: The language and its Implementation,

Addison-Wesley, Reading, MA, 1983.

205

[Gom77] Gomberg, D. A., "A Computer-Oriented System for Music Printing", Computersand the

Humanities 11 (1977), 63-80. This article is based on the author's D.Sc. dissertation from

Washington University (1975) of the same tide.

[Gro84] Gross, D.,' 'Computer Applications to Music Theory: A Retrospective", ComputerMusic

Journal 8,4 (Winter 1984), 35-42.

[Had75] Hadlock, F., "Finding a Maximum Cut of a Planar Graph in Polynomial Time", SIAM

Journal ofComputing4,3 (September 1975), 221-225.

[Han84] Hanson, E., "User-Defined Aggregates in the Relational Database System INGRES",

Masters Report, Computer Science Division, University of California Berkeley, Berkeley,

CA, December 1984.

[HSW75] Held, G., Stonebraker, M. and Wong, E., "INGRES - A Relational Database System",

Proceedings ofthe NationalComputerConference, Anaheim, CA, May 1975,409-416.

[HeS86] Hewlett, W. and Selfridge-Field, E., Directory of Computer Assisted Research in

Musicology, Center for Computer AssistedResearch in the Humanities, Menlo Park, CA,

June 1986.

[Hil70] Hiller, L., "Music Composed with Computers: A Historical Survey", in The Computer

and Music, H. Lincoln (editor), CornellUniversity Press,Ithaca, NY, 1970,42-96.

[Hug86] Huggins, C, Symphony: A Fontfor Music, Adobe Systems, 1986.

[IBM66] IBM, "OS ISAM Logic", Technical ReportGY28-6618, IBM Corporation, White Plains,

NY, June 1966.

[ISW84] loannidis, Y., Shinkle, L. and Wong, E„ "Enhancing INGRES with Deductive Power: A

Position Paper", Proceedings of the First International Workshop on Expert Data Base

Systems, Kiawah, SC, October 1984.

[IoW85] loannidis, Y. and Wong, E., "An Algebraic Approach to Recursive Inference",

Electronic Research Laboratory Memorandum M85/93,University of California Berkeley,

Berkeley, CA, December 1985.

206

[Jaf85] Jaffe, D., "Ensemble Timing in ComputerMusic", Computer MusicJournal 9,4 (Winter

1985).

[Jun83] Junglieb, S., "MIDI Hardware Fundamentals", Polyphony 8,4 (1983), 34-38.

[Kar72] Karkoschka, E., Notation in New Music, Praeger Publishers, New York, 1972. trans. R.

Koenig.

[KaL82] Katz, R. and Lehman, T., "Storage Structures for Versions and Alternatives", Computer

Sciences Technical Report #479, University of Wisconsin, Madison, July 1982.

[KeL70] Kemighan, B. and Lin, S., "An Efficient Heuristic Procedure for Partitioning Graphs",

Bell System Technical Journal 49,2 (February 1970), 291-307.

[Klo83] Klopprogge, M. R., "Term: An Approach to Include the Time Dimension in the Entity-

Relationship Model", in Entity-Relationship Approach to Information Modeling and

Analysis, P. Chen (editor), Elsevier Science Publishers, Amsterdam, 1983,473-508.

[Knu86] Knuth, D., TheMETAFONT Book, Addison-Wesley, Reading, MA, 1986.

[Kra79] Krasner, M. A., Digital Encoding ofSpeech and Audio Signals Based on the Perceptual

Requirements of the Auditory System, Ph.D. Dissertation, Lincoln Laboratory,

Massachusetts Institute ofTechnology, Lexington, MA, June 1979.

[KuM77] Kundu, S. and Misra, J., "A Linear Tree Partitioning Algorithm", SIAM Journal of

Computing 6,1 (March 1977), 151-154.

[LeG78] Lee, R. M. and Gerritsen, R., "Extended Semantics for Generalization Hierarchies",

Proceedings of the ACM-SIGMOD International Conferenceon the Management ofData,

Austin, TX, May 1978,18-25.

[Leo81] Leonard, H., Broadway! TheBestFrom Broadway's Top Shows, Hal LeonardPublishing

Corporation, 1981.

[Lin77] Lincoln, H. B., "Encoding, Decoding and Storing Melodies for a Data Base of

Renaissance Polyphony: A Progress Report", Proceedings of the Third International

Conference on Very Large Data Bases,Tokyo, October 1977,277-282.

207

[LoA85] Loy, G. and Abbott, C, "Programming Languages for Computer Music Synthesis,

Performance, and Composition", ACM Computing Surveys17,2 (June 1985), 235-265.

[Luk74] Lukes, J., "Efficient Algorithm for the Paitioning of Trees", IBM Journal of Research

and Development 18,3 (May 1974), 217.

[Luk75] Lukes, J., "Combinatorial Solution to the Partitioning of General Graphs", IBMJournal

ofResearch and Development 19,2 (March 1975), 170.

[LDE84] Lum, V., Dadam, P. and Erbe, R., "Designing DBMS Support for the Temporal

Dimension", Proceedings of the ACM-SIGMOD International Conference on the

Management ofData, Boston, MA, June 1984,115-130.

[Lyn82] Lynn, N., "Implementation of Ordered Relations in a Data Base System", Masters

Report, Department of Electrical Engineering and Computer Science, University of

California Berkeley, Berkeley, CA, September 1982.

[Mac78] MacGregor, R., On Partitioning a Graph: A Theoretical and Empirical Study, Ph.D.

Dissertation, Computer Science Division, University of California Berkeley, Berkeley,

CA, June 1978.

[MRW86] Maier, D., Rozenshtein, D. and Warren, D., "Window Functions", in Advances in

ComputingResearch, P. Kanellakis (editor), JAI Press, London, 1986,213-246.

[Mat69] Mathews, M., The Technology ofComputerMusic, Massachusetts Institute of Technology

Press, Cambridge, MA, 1969.

[MaM70] Mathews, M. and Moore, R, "GROOVE - A Program to compose, store and edit

functions of time", Communications oftheACM13,12 (December 1970),715-721.

[Ma083] Maxwell, J. T. and Omstein, S. M., "Mockingbird: A Composer's Amanuensis",

Technical Report CSL-83-2, Xerox Palo Alto Research Center, Palo Alto, CA, January

1983.

[McL86a] McLean, B., "The DARMS Cube: The Design of a Data Structure for Score Processing

Applications",Symposium onComputers andMusic Research, Oxford, July 1986.

208

[McL86b] McLean, B., A Database System for Score-Processing Applications in Musical

Computing, Ph.D. Dissertation, State University of New York, Binghamton, 1986. In

preparation.

[Men84] Mendelzon, A., "Database states and their tableaux", ACM Transactions on Database

Systems 9,2 (1984), 264-282.

[MoP64] Moder, J. J. and Philips, C. R., Project Management with CPM and PERT, Reinhold, New

York, 1964.

[Moo85] Moore, F. R., "The Cmusic Sound Synthesis Program", Computer Audio Research

Laboratory Technical Report,Universityof California, San Diego, La Jolla, CA, 1985.

[Ong82] Ong, J., "The Design and Implementation of Abstract Data Types in the Relational

Database System INGRES", Masters Report, Department of Electrical Engineering and

ComputerScience,University ofCalifornia Berkeley, Berkeley,CA, September1982.

[Ong83] Ong, J., "Implementation of Data Abstraction in the Relational Database System

INGRES", ACM-SIGMOD International Conference on theManagement ofData, 1983.

[OpS75] Oppenheim, A. and Schafer, R., Digital Signal Processing, Prentice-Hall, Englewood

Cliffs, NJ, 1975.

[Ove82] Overmyer, R., *'Implementationof a Time Expert in a Database System'', ACMSIGMOD

Record 12,3 (1982), 51-60.

[Pap79] Papadimitriou, C, "The Serializability of Concurrent Database Operations",JACM26,4

(1979), 631-653.

[Pri67] Prior, A., in Past, Present, Future, Oxford University Press, 1967.

rPru84a] Prusinkiewicz, P., "INTERSCORE - An interactive score editor for microcomputers",

Proceedings of the Fourth Symposium on Small Computers in theArts, Philadelphia, PA,

1984,58-64.

[Pru84b] Prusinkiewicz, P., "Time Management in Interactive Score Editing", Proceedings of the

International ComputerMusicConference, Paris, 1984,275-280.

209

[Rea69] Read, G., Music Notation, Allyn and Bacon, Boston, 1969.

[Rel84] RelationalTechnology Incorporated, INGRES Reference Manual, Version 2.1,

Relational Technology Incorporated, Alameda, CA, July 1984.

[ReU71] Rescher, N. and Urquhart A., in TemporalLogic, Springer Verlag, New York, 1971.

[Roa79] Roads, C, "Grammars as Representations for Music", Computer Music Journal 3, 1

(March 1979), 48-56.

[Roa85] Roads, C, "Research in Music and Artificial Intelligence", ACM Computing Surveys 17,

2 (June 1985), 163-190.

[RoC84] Rodet, X. and Cointe, P., "FORMES: Composition and Scheduling of Processes",

Computer Music Journal 8,3 (Fall 1984), 32-50.

[Rol85] Roland,MPU-401 Technical Reference Manual, Roland DG Corporation, 1985.

[RSS84] Romeo, F., Sechen, C. and Sangiovanni-Vincentelli, A., "Simulated Annealing Research

at Berkeley", Proceedings of the International Conference on Computer Design, Port

Chester, NY, 1984.

[Ros70] Ross, T., TheArt ofMusic Engraving and Processing,Hansen Books, Miami, 1970.

[RoL85] Roussopoulos, N. and Leifker, D., "Direct Spatial Search on Pictorial Databases Using

Packed R-trees", Proceedings of the ACM-SIGMOD International Conference on the

Management ofData 14,4 (December 1985), 17-31.

[Rub85] Rubenstein,W. B., "Indices forTime-Ordered Data", Masters Thesis, ComputerScience

Division, University ofCalifornia Berkeley, Berkeley, CA, May 1985.

[Sag83] Sagiv, Y., "A characterization of globally consistent databases and their correct access

paths", ACM Transactionson Database Systems8,2 (1983), 266-286.

[Sch50] Schmieder, W., Thematische-systematisches Verzeichnis der musikalischen Werker von

Johann SebastianBach, BreitkopfHaertel, Leipzig, 1950.

[Sch83] Schottstaedt, B., "Pla: A Composer's Idea of Language", Computer MusicJournal7, 1

(1983), 11-20.

210

[Sch77] Schueler, B., "Update Reconsidered", in Architecture and Models in Data Base

Management Systems, Nijsson (editor), North-Holland Publishing Company, Amsterdam,

1977,129-161?.

[Shi81] Shipman, D., "The Functional Data Model and the Data Language DAPLEX", ACM

Transactions on Database Systems 6,1 (March 1981), 140-173.

[STZ84] Shmueli, O., Tsur, S. and Zfira, H., "Rule Support in Prolog", Proceedings of the First

International Workshop on Expert Data Base Systems, Kiawah, SC, October 1984, 547-

565.

[Sho82] Shoshani, A., "Statistical Databases: Characteristics, Problems, and Some Solutions",

Proceedings of the International Conference on Very Large Data Bases, Mexico City ,

1982,208-222.

[SOW84] Shoshani, A., Olken, F. and Wong, H., "Characteristics of Scientific Databases",

Proceedings of the InternationalConference on Very Large Data Bases, 1984,147-160.

[ShK86] Shoshani, A. and Kawagoe, K., "Temporal Data Management", Technical Report LBL-

21143, Lawrence Berkeley Laboratory,Berkeley, CA, February 1986.

[Smi72] Smith, L.,' 'SCORE - A Musician'sApproachto ComputerMusic'', Journal of theAudio

Engineering Society 20,1 (January 1972), 7-14.

[Smi73] Smith, L., "Editing and Printing Music by Computer", Journal of Music Theory 17,2

(1973), 292-308.

[Sno84] Snodgrass, R., "The Temporal Query Language TQuel", Proceedings of the ThirdACM

SIGACT-SIGMOD Symposium on Principles of Data Base Systems, Waterloo, Ontario,

April 1984,204-212.

[SnA85] Snodgrass, R. and Ann, I., "A Taxonomy of Time in Databases", Proceedings of the

ACM-SIGMOD International Conference on the Management of Data 14, 4 (December

1985), 236-246.

[SLR76] Steams, R., Lewis, P. and Rosenkrantz, D., "Concurrency Control for Database

Systems", Proceedings of the IEEE Symposium on Foundations of Computer Science,

211

1976,19-32.

[StB86] Stefik, M. and Bobrow, D., "Object-Oriented Programming: Themes and Variations", AI

Magazine 6,4 (Winter 1986), 40-62.

[Sto75] Stonebraker, M., "Implementation of Integrity Constraints and Views by Query

Modification", Proceedings of the ACM-SIGMOD International Conference on the

Management of Data, San Jose, CA, June 1975. Also available as Electronic Research

Laboratory Memorandum M514, March 1975.

[StR80] Stonebraker, M. and Rowe, L., "Database Portals: A New Application Program

Interface", Electronic Research Laboratory Memorandum M82/80, University of

California Berkeley, Berkeley, CA, November 1980.

[SSK82] Stonebraker, M., Stetmer, H., Kalash, J., Guttman, A. and Lynn, N., "Document

Processing in a Relational Data Base System", Electronic Research Laboratory

Memorandum M82/32, University of California Berkeley, Berkeley, CA, May 1982.

[SRG83] Stonebraker, M., Rubenstein, W. B. and Guttman, A., "Application of Abstract Data

Types and Abstract Indices to CAD Databases", Proceedings of theEngineering Design

Applications ofACM-IEEE DataBaseWeek, San Jose, CA, May 1983. Also available as

Electronic Research Laboratory Memorandum M83/3 from University of California

Berkeley.

[SAH85] Stonebraker, M., Anton, J. and Hanson, E., "Extending a Data Base System with

Procedures", Electronic Research Laboratory Memorandum M85/59, University of

California Berkeley, Berkeley, CA, 1985.

[StR85] Stonebraker, M. and Rowe, L., "The Design of POSTGRES", Electronic Research

LaboratoryMemorandum M85/95, November 1985.

[SSH86] Stonebraker, M., Sellis, T. and Hanson, E., "An Analysis of Rule Indexing

Implementations in Database Systems", Proceedings of the First International

Conference on Expert DataBaseSystems, Kiawah, SC, April 1986.

212

[Str68] Strauss, J.,DieFledermaus, Edition Eulenburg GmbH, Zurich, 1968.

[Tho85] Thomas, M.T., "Vivace: A Rule Based AI System for Composition", Proceedings ofthe

International Computer Music Conference, Bumaby, British Columbia, 1985,267-275.

[TsZ84] Tsur, S. and Zaniolo, C, "An Implementation of GEM - supporting a semantic data

model on a relational back-end", Proceedings of the ACM-SIGMOD International

Conference on theManagement ofData, Boston,MA, June 1984,286-295.

[Wen77] Wenker, J.,An AnalyticalStudy ofAnglo-Canadian Folksong, Ph.D. Dissertation, Indiana

University, 1977.

[WU85] Wilson, T. A., "Data Reduction of Musical Signals", Proceedings of the International

Computer Music Conference, Bumaby, British Columbia, 1985,25-32.

[Win75] Winograd, T., "Frame Representation and the Declarative/Procedural Controversy", in

Representation and Understanding, D. Bobrow and A. Collins (editor), Academic Press,

New York, 1975,185-210.

[Wol77] Wolff, A. B., "Problems of Representation in Musical Computing", Computers and the

Humanities 11 (1977), 3-12.

[WoY76] Wong, E. and Youssefi, K., "Decomposition - A Strategy for Query Processing", ACM

Transactions on Database Systems1,3 (September 1976), 223-241.

[Yao781 Yao, A., "On Random 2-3 Trees", Acta Informatica 9,2 (1978), 159-170.

[Zan83] Zaniolo, C, "The Database Language GEM", Proceedings of the ACM-SIGMOD

International Conference on theManagement ofData, Ann Arbor, MI, May 1983.

	Copyright notice1987
	ERL-87-69 (1 of 3)
	ERL-87-69 (2 of 3)
	ERL-87-69 (3 of 3)

