Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



DATA MANAGEMENT OF MUSICAL INFORMATION

by

W. B. Rubenstein

Memorandum No. UCB/ERL M87/69

8 June 1987



DATA MANAGEMENT OF MUSICAL INFORMATION

by

William Bradley Rubenstein

Copyright © 1987

Memorandum No. UCB/ERL M87/69

8 June 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



Data Management of Musical Information

William Bradley Rubenstein

Extended Abstract

This dissertation explores various issues related to the application of computer data management

techniques to musical information. The contribution of this work is twofold:

. It extends an existing data model (the entity-relationship model) to support a database schema

for musical information.

. It develops particular data management access methods to effectively manipulate information in

the musical database.

Because the music domain has not previously been considered as an application area for data-
base management systems, this thesis begins with a discussion of existing research regarding data
management in a variety of ‘‘unusual’’ data domains. Also, the current role of computer technology in
music applications is briefly surveyed. These discussions provide the context for the presentations
which follow. Signal processing applications used for music synthesis are not included in this

research, as they have been considered extensively elsewhere.

A close look at existing computer systems that manipulate musical information allows us to
determine the types of musical information that should be supported by a music database. For the pur-
poses of this research, musical information includes sound, graphical representations (such as musical
scores), bibliographic information, and conceptual representations of music (such as structural descrip-
tions of musical compositions). These various types of musical informat.ion are analyzed, focusing
particularly on the conceptual representations necessary to formally encode musical scores expressed
in Common Musical Notation (CMN). The entity-relationship model is taken as a starting point for a

CMN database schema.



2

A new feature is added to the entity-relationship model to represent the notion of ordered sets of
entities. Typically, an ‘‘ordering’’ occurs when one entity consists of an ordered set of other eantities.
This property is called hierarchical ordering. Such a relationship occurs, for example, when an
ordered set of notes constitutes a chord, or an ordered set of measures forms a movement of a con'lpo‘
sition.

An inherited attribute is an attribute of an entity whose value is a function of attribute values in
other related entities. A method is proposed for representing attribute inheritance among entities, and
various approaches to the problem of managing this inheritance among entities within the music data-
base are considered. Several examples demonstrate that inheritance under hierarchical ordering is
more complex than that supported by standard generalization hierarchies. It is demonstrated how a

relational view mechanism may be used to implement this attribute inheritance.

Using these two data modeling tools, hierarchical ordering and attribute inheritance, a schema is
developed for CMN. Entities from the CMN schema are divided into groups according to various
aspects of the infonnatioﬁ: tempo;al, timbral, and graphical. The schema is built up from the interrela-
tionships among entities within each group.

To implement hierarchical ordering using existing relational database technology, extensions to
relational access methods are developed. Entity ordering is supported by the introduction of ordered

relations.

One form of attribute inheritance found in our application involves an attribute whose value
depends on an ‘‘aggregate function’’ computed over its related entities. Aggregate functions common
in database systems include count, sum, average, minimum, and maximum. A data access method is
presented which supports this special case much more efficiently than the relational view mechanism.
The data structure underlying this method, known as the A-tree, provides a general solution for the
support of:

. user-defined aggregate functions, and

J user-defined orderings, including hierarchical orderings.

The performance behavior for A-trees is shown to be similar to that of the well-known B-tree

structure on which it is based.



3
As an example of the use of ordered relations and A-trees, the manipulation of time and events
in the musical database is explored in detail. A model of temporal information is presented based on

time lines and hierarchically ordered event sets.

The dissertation closes with a summary of questions left open by the present research, particu-
larly those remaining issues that need be addressed in order to develop a functional database system

appropriate to the management of musical information.



Acknowledgements

A number of people deserve my thanks for their help in the preparation of this dissertation.

Foremost, I would like to thank Professor Michael Stonebraker, my research advisor. He has
been a constant source of good advice and encouragement. To my knowledge, there has not previ-
ously been an inter-disciplinary thesis between music and computer science in our department, and the
lack of precedent made this thesis somewhat more of a risk for him to sponsor. What we have leamed
in the mean time has I hope made the risk worthwhile. In any case, I owe Professor Stonebraker my
deepest gratitude for his support, both material, intellectual and, for lack of a better word, spiritual.

His enthusiasm has been unflagging.

The process of generating a dissertation which covers such widely divergent fields requires pati-
ence and forbearance on the part of its readers. I have been especially fortunate to have Professors
Richard Karp, in the computer science department, and Richard Felciano, in the music department, in
this regard.

I would like to thank the members of the INGRES group with whom many fruitful conversations
were held over both the form and the content of this thesis, especially Eric Hanson, onto whose desk
my papers continually overflowed. Also Margaret Butler, Yannis Ioannidis, and Timos Sellis, into
whose office I occasionally overflowed. These people supplied both technical competence and moral
support during this research.

Willis Johnson and Amy Jo Bilson helped edit the final versions of the dissertation. I would like
to thank them also.

This research was supported by the National Science Foundation, grant #DMC-8504633, the Air

Force Office of Scientific Research, grant #83-0254, and a fellowship from the Shell Oil Foundation.

Finally, I wish to thank the folks at the Coffee Connection for the 239 cups of hot chocolate

required for the completion of this thesis.



Chapter 1. Introduction

1.1.

INNE

1.2.

1.3.

Chapter 2. Musical Information

2.1.

2.2.

2.3.

24.

- 2.5.

2.6.

2.6.1.

2.6.2.

2.6.3.

2.7.

Chapter 3. Hierarchical Ordering and Inherited Attributes

i1

i1l

3.1.1.1.

3.1.1.2.

3.1.2.

3.13.

Table of Contents

Introduction

Organization of the Dissertation

The Music Data Manager (MDM)

Research Context

Sound Representations

Bibliographical Information

Meta-musical Information

Common Musical Notation

Other Graphical Notations

Encodings for Representations

Conceptual Representations of Sound

Conceptual Representations of Graphical Scores

Other Score Representations

Summary

Adding Hierarchical Ordering to the Entity-Relationship Model

---------------------------

The Entity-Relationship Model

Entities

Relationships

Ordering

Generalization and Aggregation

11

12

15

18

21

24

26

26

28

29

29

29

30

31

32



3.14.

3.1.5.

3.1.6.

3.1.7.

3.18.

3.2

3.2.1.

3.22.

3.3.

34.

34.1.

34.2.

35.

Chapter 4. A Database Schema for Common Musical Notation

4.1.

4.1.1.

4.1.2.

4.2.

43.

43.1.

43.2.

433.

434.

4.35.

43.6.

44.

Instance Graphs

Defining Hierarchical Ordering in a Schema

Types of Hierarchical Ordering

Recursive Ordering

Manipulation of Ordered Entities

Inherited Attributes

Inheritance in Database Research

Representing Inherited Attributes

Implementing Inheritance using Query Modification

An Example of Complex Inheritance .

Entities for Representing Dynamic Markings

Database Procedures for Determining Note Volume

Summary

CMN Entities

.....................

Aspects of CMN

Hierarchical Ordering Graphs for CMN Aspects

The Temporal Aspect

Other Aspects

The Timbral Aspect

The Pitch Aspect

The Articulation Aspect

The Dynamics Aspect

The Graphical Aspect ....

The Textual Aspect

An Example from Music

33

34

35

41

41

46

49

51

53

55

57

60

61

61

63

65

65

68

68

70

71

73

73

77

79



45.

45.1.

45.2.

4.6.

Chapter 5. An Access Method for Ordered Aggregation

5.1

5.1.1.

5.1.2.

5.13.

5.14.

5.2

5.3.

5.3.1.

5.3.2.

54.

54.1.

54.2.

5.5.

5.6.

5.6.1.

5.6.2.

5.6.3.

5.6.4.

5.7.

5.7.1.

572,

Projecting the Size of Music Databases

Counting the Entities of a CMN Score

Predicting Database Size

Summary

Previous Proposals for Representing Order .......

Sorted Relations

Ordered Relations

Ordered B-Trees

Other Proposals for Ordered Relations ..

User-Defined Aggregates

Ordered Aggregate Functions .

Examples of Ordered Aggregate Functions

Components of an Ordered Aggregate Function .

Implementation of Ordered Relations

Ordered Heaps ........

The A-tree Data Structure

User-coded Routines ......

Defining Ordered Aggregates and A-trees

Registering Ordered Aggr.egates with the Data Manager

Associating Ordered Aggregates with an Ordered Relation .

Creating an A-tree Index

Defining Order Using Sort Keys

Retrieval from Ordered Relations

Implementing the Before and After Operators

Implementing Retrieval of Ordered Aggregate Attributes

86

86

33

91

92

92

93

94

95

99

101

102

102

103

105

106

106

107

108

109

109

109

111



5.73.
574.
5.7.5.
5.7.6.
5.7..
5.738.
5.79.
538.

5.9.

59.1.
592.

5.10.

5.10.1.

5.10.2.

5.10.3.

5.11.

5.11.15.

5.11.2.

5.11.3.

5.11.4.

5.12.

5.12.1.

5.12.2,

5.12.3.

5.13.

Chapter 6. Temporal Data Management

Sequential Scan

Top-Down Traversal

Bottom-Up Traversal

Updating Ordered Relations ..

Splitting Pages

Merging Pages

Operators over Ordered Entities: first and last

A-tree Performance

Multiple Orderings

Multiple Orderings in Sorted Relations ...

.....................................

Multiple Orderings in Ordered Relations .

Hierarchical Ordering

Extending Ordered Relations to Support Hierarchical Ordering
Insertion and Update of Hierarchically Ordered Relations

Extending A-trees for Hierarchically Ordered Relations

Storing Orderings as Linked Lists

.....

The Linked Heap Structure

Comparing the Two Approaches

Clustering

Clustering Experiments

Additional Issues

User Access to Tuning Parameters

More Efficient Tree Traversal

Parent Pointers

Summary

.....

iv
111

112

113

113
116
117
118
119
121
121
122
125
126
127
129
132
133
135
136
138
141
141
142
143

145

146



6.1.

6.1.1.

6.1.2.

6.1.3.

6.2.

6.2.1.

6.2.2.

6.2.3.

6.24.

6.2.5.

6.3.

6.4.

6.4.1.

6.4.2.

6.4.3.

6.5.

6.6.

Chapter 7. Conclusion

7.1.

1.1.1.

7.1.2.

7.2

Appendix A. A Music Font ...
Appendix B. An Example of Update to Inherited Attributes

Appendix C. Musical Database Schema

Time in Database Research

Historical Databases

Modeling Temporal Information

Modeling Musical Events

Events as Ordinate Data

The Splice-in Operation

The Overlay Operation

The Splice-out Operation

The Remove Operation

The Interval-retrieve Operation

Using A-trees to Index Time lines

Implementing Time Line Operations

Inserting Events

Implementing the Overlay Operation

Implementing the Splice Operation

Using Inheritance to Define Time Maps

Summary

Summary of Research

Data Modeling

Implementation Strategies ..........

Further Research

...........................

147

147

149

150

151

152

153

153

154

156

156

158

158

160

162

162

165

166

166

166

166

167

169

176

178



C.1.

C.2.

Appendix D. Sample Rule Sets for Musical Virtual Attributes

Appendix E. The Ordered Aggregate for Exponential Average

E.l.

E.2.

E3.

E3.l.
E3.2.
E.3.3.
E34.

E3.5.

Appendix F. Summary of Proposed Query Language Extensions

F.L

F.1.1.
F.1.2.
F.1.3.

'F.l4.

F.2.

F.2.1.
F.2.2.
F.23.
F.24.
F.2.5.

F.26.

Data Types

Relations and Attributes

The Averaging Function

.......................

.....................

Declaring the Aggregate Function

User Routines for Exponential Average

InitializeScan

NextLeaf

NextInner

Result

Compare .

Data Definition Language Extensions

The define entity Statement .

The define ordering Statement

The define aggregate Statement

The define inheritance Statement

Data Manipulation Language Extensions

The modify Statement

The reorder Statement

User-Defined Aggregate Expressions

Expressions of Type *‘Entity’’

Comparison of Entities

The append Statement

178

179

187

189

189

189

190

150

191

191

192

192

193

193

193

194

195

196

196

197

197

197

198

198

199



F2.17.

The replace Statement

200

'
i
e T



List of Figures

Chapter 1. Introduction

Figure 1.1.  The Music Data Manager and Its Clients

Chapter 2. Musical Information

Figure 2.1.  Musical Information as Digitized Sound

Figure 2.2. A Thematic Index Entry [Sch50]

Figure 2.3.  Iconic Graphical Object

Figure 2.4.  Linear Graphical Objects: Horizontal, Vertical and Rotating

Figure 2.5. A Non-linear Slur

Figure 2.6.  Possible Transformations for Graphical Objects

Figure 2.7.  Non-standard Musical Notation [Kar72]

Figure 2.8. A Piano Roll

Figure 2.9.  Instrument Specific Notation: Lute Tablature

Figure 2.10. Equitone Notation [Kar72, p. 86]

Figure 2.11. Layers of Conceptual Abstraction

Figure 2.12. A Fragment of CMusic [Moo85]

Figure 2.13. Sample MIDI Stream

Figure 2.14. DARMS Encoding (from [Eri77])

Chapter 3. Hierarchical Ordering and Inherited Attributes

...........................

Figure 3.1.  An Entity-Relationship Graph

Figure 3.2. A Simple Instance Graph

Figure 3.3.  An HO graph for a Single Ordering

Figure 3.4. A Hierarchy of Orderings

Figure 3.5. Two Orderings Under One Parent

10

13

14

14

15

16

17

19

20

21

22

23

25

28

31

34

36

37

38



Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.
Figure 3.10.
Figure 3.11.

Figure 3.12.

Chapter 4.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 4.8.
Figure 4.9.
Figure 4.10.
Figure 4.11.
Figure 4.12.
Figure 4.13.
Figure 4.14.
Figure 4.15.
Figure 4.16.
Figure 4.17.

Figure 4.18.

An Ordering with Inhomogeneous Children

An Entity Ordered Under Two Parents

An Example of Recursive Hierarchical Ordering

CMN Dynamic Markings

The DYNAMIC Entity

Example of Dynamic Markings

Dynamic Interpretation Values

A Database Schema for Common Musical Notation .....................

The Entities of a CMN Schema

Aspects of Musical Entities

Temporal Relationships in the CMN Schema

Dividing a Score into Syncs

Examples of Chord Groups

Timbral Relationships in the CMN Schema

Pitch Relationships in the CMN Schema

Pitch Entities: Enharmonic Pitches

Articulation Relationships in the CMN Schema

Dynamics Relationships in the CMN Schema

Graphical Relationships in the CMN Schema

A Musical System

Graphical Entities

Textual Relationships in the CMN Schema

A Measure of Music (chords are indicated by boxes)

Entities of the Instance Graph

HO Graph for a Subset of Musical Entities

Orderings under the *‘Part’’ Entity

39

40

42

55

55

56

57

61

62

63

66

67

68

69

71

72

74

75

76

77

78

80

80

81

82



Figure 4.19. Orderings under the Measure and Its Syncs ... . 83

Figure 420. Ordering of Chords and Their Graphical Components 84
Figure 4.21. Ordering of Notes (by Chord) with Their Graphical Components .........cc.ceceeeees 85
Figure 422. Ordering of Notes by Staff 86
Figure 4.23. Number of Entities in Musical Objects ...... . 87
Figure 4.24. Projected Database Size 89
Chapter 5. An Access Method for Ordered Aggregation » 91
Figure 5.1.  An OB-tree (from [StR80, p. 15]) 94
Figure 5.2. A Start Time Index for Events (from [Rub85, p. 15]) wccvevvnrevmnncnnecevnnecnnnncenne 96
Figure 5.3.  Exponential Average of Queue Lengths 100
Figure 5.4.  An Ordered Relation as a Linked List of Disk Pages 102
Figure 5.5.  The A-tree Data Structure 103
Figure 5.6.  A-tree Performance (5000 insertions followed by 5000 deletions) ............cceuc. 119
Figure 5.7.  Multiple Sort Orderings 122
Figure 5.8.  Hierarchically Ordered Relations 126
Figure 5.9. A Hierarchically Ordered Base Relation . 129
Figure 5.10. An A-tree for Hierarchical Ordering 130
Figure 5.11. Representing Order by Placement 132
Figure 5.12. Representing Order by Pointers 133
Figure 5.13. Building A-trees Over Linked Heaps 134
Figure 5.14. Graph Representation of a Linked Heap 137
Figure 5.15. Comparison of Min-Cut Clustering with Primary Ordering 140
Chapter 6. Temporal Data Management 146
Figure 6.1.  The SPLICE-IN Operation . 152

Figure 6.2.  The OVERLAY Operation 154




Figure 6.3.
Figure 6.4.
Figure 6.5.
Figure 6.6.
Figure 6.7.
Figure 6.8.
Figure 6.9.

Figure 6.10.

Chapter 7. Conclusion

Appendix A. A Music Font

Figure A.1.
Figure A.2,
Figure A.3.
Figure A.4.
Figure A.5.
Figure A.6.

Figure A.7.

Appendix B. An Example of Update to Inherited Attributes

Appendix C. Musical Database Schema

Figure C.1.

Appendix D. Sample Rule Sets for Musical Virtual Attributes
Appendix E. The Ordered Aggregate for Exponential Average

Appendix F. Summary of Proposed Query Language Extensions

The SPLICE-OUT Operation

The REMOVE Operation

Naive Insertion of an Event

Ordered Structure for Time Line

An A-tree and The Events Which It Indexes

Inserting an Event

Tempo and Time Maps

Inheriting Performance Time

Accents

Annotations ..

Chord and Note Parts

Rests

Clefs

Horizontal Linears ..

Vertical Linears ......

...........................

Summary of Data Types

.......................

.....................

155

155

156

158

159

159

163

164

166

169

169

170

171

172

173

174

175

176

178

179

187

189

193



CHAPTER 1

Introduction

1.1. Introduction

Several research projects have recently focused on extending the applicability and usefulness of
information management techniques and database systems to a variety of application areas. In the
technical field, these include design data such as is generated by VLSI (Very Large Scale Integration)
chip development and other CAD (Computer-Aided Design) processes [SRG83]. In the field of
artificial intelligence, databases are being applied to thie management of ‘‘knowledge bases’’ to sup-
port deduction and inference [DeF84]. In each of these cases, the data model, which serves as the pri-
mary tool for describing the representation of the data, has undergone successive extension and
refinement. The entity-relationship model [Che76] serves as the starting point for our representation of
musical information. This dissertation is concerned with those extensions and refinements necessary

to support applications that manage this information.

Our formal definition of *‘musical information’’ begins in the next chapter. For the moment, it
is worthwhile to note certain features of music that motivate our research into musical information as

an interesting data management domain.
. Mausical representations, such as music notation, have complex, rich semantics.

In particular, they must convey more information than simple lists, tables, and spatial representations,
that are the mainstay of ‘‘traditional’’ database applications.
. The complexity of musical information is easily bounded, and therefore amenable to data

management.

For example, cases of ambiguity which abound in natural language are more rare (though not unk-
nown) in music. Additionally, the syntax and semantics of representations such as common musical

notation are already reasonably well defined.



. The uses of musical information are, in a sense, limited and well understood.

For our purposes, typical examples of operations on musical data are production (e.g. composition and
synthesis), editing, performance, and analysis. Intentionality and planning, which complicate artificial

intelligence problems, are considered to be outside the domain of this research.

1.1.1. Organization of the Dissertation

The remainder of this dissertation is organized as follows. The next section, Section 1.2, intro-
duces the Music Data Manager, its purpose as a system, and its potential clients. This sets the context
for subsequent discussion regarding the operation of such a data manager. Section 1.3 concludes this
chapter with an overview of research in related areas. The previous work that supports this thesis falls
under several disparate research domains. Rather than presenting them all in detail here, discussion of

research in each particular topic area will be pursued within the chapter devoted to that topic.

Chapter 2 discusses the various properties of musical information, and how they may be
represented. It presents a wide variety of types of music information, including sound, graphical data,

and bibliographic information, as well as conceptual representations of music.

Chapter 3 then discusses a semantic feature which pervades conceptual representations of music,
hierarchical ordering. This construct has not been supported by existing data models. The chapter
goes on to discuss the representation of inheritance in the music database. A class of inheritance
induced by hierarchical ordering, designated complex attribute inheritance, is explored. It is shown
that the relationships presented by the hierarchical ordering schema induce atypical inheritance seman-
tics, similar to certain types of inheritance explored in the artificial intelligence domain, but quite dif-
ferent from that seen in database research.

Using the tools for representing hierarchical ordering developed in the previous chapter, chapter
4 explores the development of a database schema for common musical notation (CMN). The large
number of entities are considered from the point of view of their temporal, timbral, and graphical
aspects. For each such perspective, the hierarchical ordering relationships among the entities of CMN
are discussed in detail.



2

Chapter 5 considers those issues related to the implementation of ordering and inheritance
within a relational database system. The notion of ordered relations is introduced as a means of imple-
menting hierarchical ordering. The remainder of chapter 5 is concerned with inheritance involving
aggregate functions over ordered relations. By extending previous research regarding user-defined
aggregate functions and ordered relations, an efficient access method is developed that supports an
important class of inheritance functions in a general way. This access method is based on the A-tree

data structure.

As an example of a hierarchical ordering application, chapter 6 addresses a very important
aspect of the music information manager, that of time and events. A survey is presented of recent
research that has considered the incorporation of time and temporal information into databases.
Notions of time lines and event sets are defined, as well as the operations that are be performed upon

them. Then, the necessary A-tree structures for efficiently performing these operations are described.

Finally, chapter 7 summarizes the findings of this thesis, and discusses the issues raised by this

work which may become the object of future research.

1.2. The Music Data Manager (MDM)

A music data manager (MDM) provides a service to other programs, known as clients. The
MDM delivers musical information, the client program uses it. For example, a music typesetting pro-
gram would be a client, as would a musical score editor, a compositional tool, or a program which per-
forms musicological analyses of compositions (figure 1.1). In current applications, these programs
each are required to perform their own data management. They each have incompatible internal
representations for the information they manipulate. Hdving a single MDM manage the musical infor-

mation used by each of these clients provides certain benefits:

. The considerable burden, in terms of program complexity, of managing the data is no longer
duplicated within every client.

. Any improvements or optimizations in the q{mlity of data management provided by the MDM
accrue to all its clients. Thus, optimizing one system causes improved performance in many

systems.



/ ¢

AN

ARV SR
"

g Client ‘ | Client i Client
; Editor i Harmonizer Analyzer ,/
4 A A
- ‘ : ! : ,
User User | ~ User
: ] .
Typesetter Composer Musicologist

Figure 1.1. The Music Data Manager and Its Clients

. Because all clients maintain their information in the same way, via the MDM, they can more
easily communicate with each other. For example, a music analysis program can easily process

the output of a composition program, if both have been designed to use the same MDM.

. A good data model within the MDM should allow the development of clients that are faster to
implement and easier to maintain, because the client need only manipulate a high-level musical

information abstraction.

The MDM must handle standard database operations, such as concurrency control and recovery,
as well as those particular to the musiéal domain. The primary extensions to traditional database sys-
tems considered by our research pertain to the modeling of music semami'cs, and the implementation
of structures to support the physical realization of that model. This requires that some decisions be
made a priori as to what type of clients will be served by the MDM. The following candidates are

considered:



4

Editors and typesetters: These systems, such as SCORE (Smi72], MOCKINGBIRD [MaO83],

and SMUT [Byr84], usually manipulate some form of musical score. They are highly interactive, and
they retrieve, modify, and generate musical information. Clients of this type are typically concerned

with a single musical work at a time.

Compositional Tools: Like editors, these systems are generative: they produce music (often in
both sound and graphic representations). A number of computer languages and paradigms for music
composition have been developed (see [LoA85] for a survey). A compositional tool might retrieve
compositions written in these languages from the MDM, play them, modify them, and update the data-

base.

Score Libraries: Large collections of musical scores, often containing the complete works of a
given composer or era, serve as the starting point for most musicological research. Like most informa-
tion retrieval systems, they must provide rapid data retrieval, but modification of the data is relatively
rare. In practice, these computerized libraries are often highly selective. For example, they may con-
tain only bibliographic information (as do most text based systems), or only incipits (opening melo-
dies) rather than complete scores (as in an incipits database of Renaissance polyphony [Lin77]). A
current index of computer assisted research in musicology [HeS86] lists twenty-five projects related to
thematic indices, and eleven projects involved in collecting full musical scores. Each of these projects

uses software specifically designed for its own application.

Music Analysis Systems: Music analysis involves applying particular operations to musical data.
Systems that perform various sorts of harmonic analysis, or those that determine melodic structure are
examples. Hewlett [HeS86] lists sixty ongoing research projects in music analysis. For musicologists,
there are a variety of computer applications in this domain [Alp80, Gro84]. However, most of these
research projects use custom deéiéned programs. The musical information used as input to these
analysis programs is typically not taken from a score library such as those described in the previous
paragraph. Rather, the score data to be analyzed must be hand coded into an appropriate format for

each analysis application.



1.3. Research Context

Because of the interdisciplinary nature of this dissertation, it draws ideas from several distinct
bodies of research in both music and computer science. Rather than discussing all of them in detail
here, each chapter will contain its own presentation of relevant research. However, in order to put this

dissertation in perspective, a brief outline is presented of the related fields on which this work is based.

From computer science, relevant research has been conducted in the areas of database data
modeling. Our starting point for a data model for music is the entity-relationship model [Che76],
which in tum is an extension of the relational model [Cod70]. We have made use of other extensions
to the relational model which are summarized in the RM/T proposal [Cod79]. These extensions have
been considered for several application domains, such as statistical databases [Sho82], scientific data-
bases [SOWB84], pictorial databases [RoL85], and computer-assisted design (CAD) databases

[SRG83].

Our proposals for managing attribute inheritance have benefited from research in the area of
knowledge representation. Most knowledge representation languages, such as KRL [BoW77] and
SRL [FWAB84] address this issue. With respect to complex attribute inheritance, research in ‘‘idiosyn-
cratic inheritance’’ [Fox79] has proven particularly applicable. Issues of inheritance, related to infer-
ence and deduction, have also been addressed in the database domain [ISW84, IoW85].

Many of the proposals in this paper stem from research on integrating abstract data types into
the INGRES relational database system [Fog82,Ong82], particularly a data type representation for
time [Ove82). A proposal for incorporating user-defined aggregate functions over abstract data types

has also, proven directly applicable to our music representation problem [Han84].

In the music domain, this research is supported by previous work in the area of music represen-
tation. These include practical presentations of music notation [Don63, Rea69], as well as more
theoretical analysis of notational systems [Wol77]. Score representations have been explored in the
DARMS system [McL86a, McL86b], and in the composition/editing domain under the SSSP project
[BRB78-BPR81]. Additionally, the field has seen research in artificial intelligence approaches to
music representation [Roa79], and in expert systems [Ash83, Ash85]. Another recently proposed score

representation [Dan86] incorporates versions and multiple views into its structure, relating to database



research in version control, as in [KaL82].

In both the database and music domains, the issue of managing temporal information has
received considerable attention (see [BADS82] for a survey). This dissertation makes particular use of
research in temporal modeling [And81, ShK86]. Time has also been considered specifically in music
systems [DeK85, MaM70, Pru84b]. These systems are all concerned with the representation of tem-
poral data, such as events and processes that transpire over time, multiple independent time lines, and

virtual time.



CHAPTER 2

Musical Information

The information within the music manager incorporates several different facets of music, which

we divide roughly into five categories,
. sound information,

. bibliographic information,

. ‘‘meta-musical’’ information.

. graphical information, and

. conceptual representations,

Each of these types of information will be discussed in this chapter, demonstrating the wide vanety of

types of information which must be integrated i mto the musical data manager.

2.1. Sound Representations

Obviously, one fundamental type of object which a music information manager needs to
represent is the sound of the music itself. The simplest representation of sound in a digital computer is
merely an array of numbers, the result of digitizing the sound. Figure 2.1 shows an example of a sim-
ple method of digitization. On the left is a waveform represented by a curved line. Its amplitude is
sampled at regular intervals, as indicated on the time axis. These samples form an approximation to
the original waveform. This approximation is shown as the shaded region in the figure. The amplitude

of the waveform at each sample point may be stored in a table, as shown at right.

The error associated with this digitized representation comesponds roughly to the difference

between the line and the shaded region in figure 2.1. This error may be decreased by:
(1) increasing the rate at which samples are taken (the sample frequency), or

(2) increasing the precision of the sample values (for example, using 16 bit integers rather than 8 bit

integers).



Sound Waveform Digitized Waveform
amplitude time amp.
4 —%— )

. 1 2
37 2 3
2 33
1 — 4 2

‘ 5 0
‘l’ 6 2
R 7 3
.
3

Figure 2.1, Musical Information as Digitized Sound

Both of these measures increase the amount of data to be stored for a given piece of sound.
Detailed analysis of this representation and its limitations may be found in signal processing texts,
such as [OpS75].

Digital audio devices of professional quality typically use 16-bit integers for each sample, and
record 48,000 samples per second of sound. This implies that ten minutes of musical sound can be

recorded with acceptable accuracy by storing 57.6 megabytes of data.

Much research in audio signal processing analyzes methods for reducing this massive storage
requirement while still preserving the aurally perceptible properties of the sound. From an information
theoretic point of view, the digitized sound stream can be compacted in two ways: by eliminating
redundant information from the sound stream, and by eliminating aurally imperceptible information

from the sound stream.

Wilson [Wil85] surveys a number of these data reduction techniques of the first type, and Kras-

ner [Kra79] discusses various encodings which are based on sound perception.

In contrast to random sound, or speech, music has a much greater burden of structure over and
above that detected by these signal processing meﬁods. This structure is what differentiates music
from sound. For instance, thythmic structure (e.g. a ‘‘beat’’) and timbral structure (e.g. that some
sounds are generated by one instrument and some by another) may exist in musical sound. Such

abstractions remain hidden at this level of representation.



9

The extraction of such structure, given only a sound representation, has proven to be quite
difficult. Research by Chafe, et al. [CMR82], has found that a great deal of world knowledge (beyond
that provided by the music at hand) is necessary to ‘‘understand’’ the structure of even the most simple
musical pieces. Such knowledge might include an understanding of how the sound was produced (e.g.
that individual notes are produced by particular instruments that constitute an orchestra), knowledge of
the musical style or historical context of a piece (e.g. baroque or jazz), or knowledge of the perfor-
mance practice of a piece (e.g. operas are performed with singers on the stage and an orchestra in the
pit). Their research studies automated transcription, the generation of written musical scores, which
exhibit much of the high level structure of a piece, from audio signals. Such work uses signal process-
ing techniques to detect pitches and temporal distribution, followed by knowledge-based heuristic pro-

gramming to detect musical structures, such as rhythmic constructs.

2.2. Bibliographical Information

An important use of music databases is as a reference for musicological research. Such a refer-
ence may provide several types of information. One common reference tool is the thematic index.
Such an index is an organization of the works of a particular composer or period, including for each
work sufficient musical (i.e. thematic) material to identify the composition. This is often a fragment of
the melody or the key voices from the first several measures of the composiﬁ;)n. Figure 2.2 shows a
typical entry in a thematic index.

In addition to the thematic material that identifies the composition, several other pieces of infor-
mation are provided in a highly compressed format. These are the orchestration or setting of the com-
position (Besetzung), when and where ?t was composed, how many measures (Takte) it contains, where
copies (Abschriften) of the manuscript are located, editions (Ausgaben) in which it is printed, and arti-
cles written about it (Literatur). In the language of data management, these are each bibliographic

anributes of the composition.

Once a bibliographic collection becomes established as definitive for a particular composer or
body of music, the identifier created by the bibliographer may be widely understood to refer to a par-
ticular piece. Thus, the accepted name for the fugue in this example is as “BWV 578."”" ““BWV™’

identifies the index (Bach Werke Verzeichnis), and **578"" identifies the composition. In this particular



10

- ) ’
97¢S Fuge g-moll
Hesetzung, Orgel.
BGA XXXVIIL, 116. - 1% Weimar win 1708 (oder schon in Arnstadt?),

R | ) ————— ==
A — x x x —x ————————x x=]

) e -g ',‘:.=.=———-—' " "". LR T
— ’ - ;" a—s x x — x

[7] g - v . ] 1 | by IV i ‘y'. l' ;’ —

AS Takte

Abschriften. 2 Sciten im Andreas Bach-Buch (S. 65¥—677), Lpz. III. §. 4.— In Konvolut quer £° ,.nus
Krebs"XNnachlaB*, BB in Mux. ms. Bach P 803 (S. 205—211). — Weiterhin in zahlreichen Einzelhandschriften
u. Smlbdn. von der 2.Hilfte des 18. bis zur 1. Hilfte des 19. Jhs.

Ausgaben. In C. T. Beckers,,Caecilia®, Bd. I7, S. 91. Veréfentl. nach e. Hs. vom Jabre 1754.— Peters Orgel.
werke Bd. IV, S.40.— Breitkopf & Hiirtel EB 3174, S. 72.— Hofmeister (Joh. Scerever).

. Literatur. Spitta I 309f.— Spitta VA 110.— Schweitzer 248.— Frotscher II §77f.— Neumann 51.— Keller
38— RBJ 1912: 131; 1930: 4, 44, 126; 1937: 62,

Figure 2.2. A Thematic Index Entry [Sch50]

index, compositions are ordered chronologically.

Bibliographic information may be found in attributes at all levels of musical structure. At the
highest level, compositions are placed in time (e.g. they have a ‘‘composition date’ as an attribute),
and are attributed to a composer. Individual sections of a composition may be borrowed from other
composition, and thus they themselves may have a different composition date and composer. At the
lowest level, the time at which individual notes are placed in a composition, and who placed them,
constitute a form of bibliographic information. One might thus speak of a ‘‘micro-bibliography’’ as

the internal history of a composition,



11

2.3. Meta-musical Information

Many of the ‘‘meanings’’ of musical information can be described either declaratively or pro-
cedurally. For example, consider the treble clef symbol. The meaning of this graphical icon might be

described thus:

All subsequent notes on the same staff as the treble clef have a mapping from staff degree to scale pitch
which is **Every Good Boy Does Fine’* (to use a favorite grade-school mnemonic).

This meaning can be interpreted declaratively, whereby all subsequent notes have the “‘treble clef’’
pitch interpretation, or procedurally, whereby the treble clef means that subsequent note heads are to
be performed (or ‘‘mapped to pitches’’) in a particular way. In the first case, an icon determines a pro-

perty of a passage. In the second case, the icon tells how to interpret the subsequent notes.

A more vivid example is provided by a musical accidental such as the sharp sign (#). A group
of sharps placed at the beginning of a section of music composed in a particular style constitute a key
signature. A key signature consisting of three sharps carries a declarative meaning, stating a fact

about the tonality of the musical passage:
The piece is in the key of A major (or f# minor).
It also carries the procedural meaning:

Perform all notes notated as F, C, or G one semitone higher than written.

Much of the information contained in the music database may be derived procedurally from
other declarative data in the database. Suppose that the database contains, as part of a score representa-
tion, a note object. An attribute of this note would be the staff on which the note lies. Another attri-
bute would be the performance pitch of the note. However, the performance pitch of a note depends
procedurally (as in the above two examples) on other elements on the same staff line, such as clefs and
key signatures. In fact, there are other pieces of information, such as stylistic inféxmation about a
composition, which govem the interpretation of performance pitch from graphical criteria. These rules
constitute ‘‘meta-musical’’ information, and are part of the musical data to be maintained with the

score.

This issue of maintaining procedural information will be explored in more detail in chapter 3, in

the discussion on complex attribute inheritance.



12

2.4. Common Musical Notation

In the case that the *‘listener’’ of a piece of music is a person (as opposed to a recording device),
raw audio information is in general not sufficient for the recipient to fully understand the performance.

For example, the following operations, related to the transcription of sounds into scores, are difficult

for human experts to execute.! Given an audio representation (e.g. a recording) of a piece of music:
. Determine the rhythmic structure of a composition that contains multiple independent voices.
. Determine what pitches are being played, in the face of complex harmonic structures.

. Determine what instruments (even assuming they are familiar to the listener) are performing

which musical events.

A useful written notation for music conveys the above information clearly from composer to

performer, along with additional information which is similarly obscured in the audio representation.

Music, like natural language, has many written forms which developed slowly over time along
different paths within different culmrés. Although there is no universal written musical form, there is
a reasonably well defined language of music notation which has been codified for Western tonal music
used from about the 17th century to the present. We will refer to this as common musical notation

(CMN).

As a “‘language’’ of musical notation, CMN has its grammatical rules. These may be found in
standard textbooks [Don63,Rea69]. More exacting notators, such as engravers who print music,

require more detailed graphical information such as is presented in [Ros70).

Consider the score page as a purely graphical construct, that is, as uninterpreted black shapes
(graphical objects) on a white page. We can collect the graphical objects in a CMN score into a
‘‘font,’’ analogous to a font of alphabetic characters. Representations for such fonts are included in
specifications such as PostScript [Ado85] and Metafont [Knu86]. Attempts have been made to create
music fonts in this same manner, as in the Symphony™ font [Hug86]. In the course of our work, we

bave developed our own music font, which is outlined in appendix A..

! The difficulty of these operations is one of accurately interpreting perceptual data. The problems associated with this
interpretation are common knowledge among those who have experience in music transcription. For this reason, we may
speak of music transcribers as *‘experts.”’



13

Most graphical objects in the musical score fall into two categories, iconic and linear. Icons are
graphical objects which have a particular shape, and which can logically be scaled to a larger or
smaller size. Icons also have a fixed orientation. Figure 2.3 demonstrates these transformations. The
characters in ‘‘alphabetic’’ foats, in contrast, are not typically linear. They are only iconic in nature

(i.e. alphabetic characters in a particular font are not usually subjected to stretching or rotation).

Linear objects (or linears, for short) have, in addition to their particular shape, an axis along
which they are aligned. In general, given two points in the plane, a linear object can be stretched
between them. Examples of linears are bar lines (whose axes are vertical) and staves (whose axes are
borizontal). Certain linears may be rotated arbitrarily. Rotating linears include certain slurs and

beams. These examples are depicted in figure 2.4.

With very few exceptions, all CMN elements can be represented with either icons — defined by
shape, size, and position; or linears — defined by shape, size and the positions of the two endpoints. An
example of an exception would be the less common complex slur, which can follow a somewhat arbi-

trary path (see figure 2.5).

Valid transformations of the bass clef icon:

D4 9

Magnification Reduction
‘ Invalid iconic transformations:
9.
S LR C
Vertical Horizontal Rotation
scaling scaling

Figure 2.3. Iconic Graphical Object




14

beam (rotating)

3
bar line (vertical)
_ AN [ &
AN 1
AN ! VA
AN ' yd
f‘ N . \ slur (rotating)
’l D
[ ,
/
staff lines (horizontal)

Figure 2.4. Linear Graphical Objects: Horizontal, Vertical and Rotating

Figure 2.5. A Non-linear Slur




15

Figure 2.6 summarizes the graphical transformations that may be applied to each of the different

types of graphical objects. Organizing the graphical objects of a CMN score in this way greatly
simplifies the process of representing such a score. Rather than specifying each graphical object com-
pletely, we need only refer to its type by name, and supply its relevant parameters (e.g. location and

scale).

2.5. Other Graphical Notations

The various symbols of CMN have developed slowly over time into a reasonably stable set.
However, musicians, as artists, occasionally develop their own notational extensions to CMN to better
express their musical intentions, as in the two score excerpts in figure 2.7. While these examples, with
their unusual staff structure and odd grouping constructs, lie clearly outside the realm of CMN, the
boundary between experimental music notation and CMN is not always so clear cut. Over time, new
notations become common practice and enter the realm of CMN. Many of these marginal notationat

practices are covered in [Rea69].

Other types of musical notation have been used for representing music. One which has received
prominent attention in computer applications is the piano roll notation, so named because it looks simi-
lar to the rolls of punched paper used in player pianos. This notation only contains information about
when notes start and when they end. The piano roll is essentially a map of the state of a musical key-

board against time. Unlike actual player piano rolls, we typically see time progressing to the left along

Icon Linear

Transform Horizontal |{ Vertical | Rotating

(e.g. clef staff bar slur)
Translation . . . .
Magnification . . . d
Reduction ) . . .
Horizontal
scaling L ] L ]
Vertical . .
scaling
Rotation .

Figure 2.6. Possible Transformations for Graphical Objects




e * 2
—_
A
2 SRt s
'rem ”o R“'” L] e .
,.1::-"" l( 111 . qi
l] T - o | ] -
@ — 1 7 ;= e X P
) L IEHPR .
= s | Y ;[-' . | Commemana
p e —-qj": -—"-IH-'. | ! Ak | D---—
i i O =TT
I} ! st '
e 1] [T ] =1
v h—_[:.':r-.m [ st 55 e T I . — -]
elrpatia | o e i e i 1 —— I 1
P———— PPP = pp e PP J‘——r =
-: - _—— o]
— —_

. R
Oorren

=3 e i S e L |
@L'T i — = == |

WES I!—‘| /TT!\\
= | \T-JJ .............

Page 16A of Transicion by Kagel
tin (Kar72, p. 105])

T
I 1
5 == i ——
|
f
|

Page 24 of Circles by Berio
nin (Kar72. p. a9))

Figure 2.7. Non-standard Musical Notation [Kar72]




17
the x-axis, and pitch (usually quantized by semitones) increasing upward along the y-axis. Figure 2.3
shows an example. At the top of the figure is a piano roll representation of the first six measures of a

Bach fugue (Bacd7]. The CMN score for those measures is shown at the bottom of the figure. Each

Pitch Entrance of
. Fugue Subject

Time
““ XVIIL
FUGE.
G-moll.
e f == %"" o=
Manual. __.t.__l:—:'i'_ - - - v~ =
Pedal. ——— — —

"
- ' [ 7

2 v — —_— ——

' —n

I
Cws i J -— .
H- N ————
D =

Figure 2.8. A Piano Roll




18
note is represented by a black rectangle. The entrances of the fugue, which are normally hidden in a
piano roll notation, have been shaded in grey. They are clearly distinguished in the CMN score below

by a change in note stem direction.

Some existing systems have been developed to edit and display piano rolls, such as SCORED
[BSR79] and INTERSCORE [Pru84a]. The popularity of piano roll notation is explained by the ease
of translation between note event streams (as generated by a variety of electronic music keyboard pro-

ducts) and piano rolls.

Other graphical notations have been developed. These are typically oriented towards specific
instruments, as in the case of tablature notation for fretted instruments such as the lute, shown in figure
2.9. In this notation, each of the six staff lines represents one string on the lute. Another example is
Equitone'uotadon, developed more recently as a repla'cement for CMN (unsuccessfully, at present).

Figure 2.10 shows an example of this type of notation.

2.6. Encodings for Representations

Before discussing how these various representations are to be encoded for the data manager, let

us consider the various levels at which such an encoding may be done.

A number of layers of semantic abstraction can be formed for musical information. At the
lowest level are uninterpreted bit streams, both digitized sound or raster graphics. Figure 2.11 sum-
marizes one possibility for the various layers which can be built on top of these. At each layer, an
example of an existing representation language for that layer is given. These and similar representa-
tions will be discussed in the remainder of this section.

In the sound domain, music may be organized into event streams, as with industry standard
MIDI (Musical Information Data Interchange) event lists [Jun83). More abstractly, it may be
represented by various programming language specifications, as in the CMusic system [Moo85]. In
the graphical domain, the lowest level of encoding is simply digitized (raster) graphics. This can be
abstracted into its constituent graphical shapes,' icons and linears, and described using a graphical
definition language such as PostScript [Ado85]. Finally, a CMN score constitutes an abstract represen-

tation of the graphical aspect of a piece of music.



19

Suite in sol minore

BWYV 995
PRELUDE 11 Versioos (Lipsia) .
ol 4 LNMIN L h D
’=¢g =i e m— :

I rhrry

PR .Y I EEY B
—z—a—&ﬁi\_}; == o
— =B N e ;T_‘ S -
& 2 RTLLE NIV Y.
- o y — i ——— = =

Page 1 of Suite in sol minore (BWV 995) by Bach;
Lute Tablature with modern transcription by Paclo Cherici.
(in [Bac80, p. 12))

Figure 2.9. Instrument Specific Notation; Lute Tablature




20

4 — 1 2 —L—".l .
3o o 1. e.Al g2 DR S-U
" G

Notated in Equitone

Page El of Enjambements by Cerha
Figure 2.10. Equitone Notation [Kar72, p. 86]




21

Sound Graphic
| |
; Procedural Representation Abstract CMN Score |
i !
! (CMausic) 4 (DARMS) |
! i
Event Stream Iconic Representation
(MIDI) (PostScript) 5
| ,
Digitized Sound Concrete E Digitized Graphics ;

Figure 2.11. Layers of Conceptual Abstraction

2.6.1. Conceptual Representations of Sound

‘‘Conceptual representations’’ are those representations of musical information which highlight
the structure, or deep semantic content, of a musical composition. These tend to take the form of pro-
cedural languages for composition (similar to programming languages). Examples would be composi-
tion languages such as Music V [Mat69], CMusic [Moo85], or Flavors Band [Fry84). Such languages
allow the user to define voices, and the structure of the event streams in which these voices participate.
For example, in CMusic, we can define voices to have (roughly) a particular harmonic contour, and a
particular articulation (i.e. envelope). We then can define various sets of ‘‘notes’” using control struc-
tures to indicate repeated sections, and so on. The resulting representation of a piece of music looks
somewhat like a computer program, in that it has declarations, definitions, control Structuxes, and state-

ments. In this domain, the effect of executing a statement is (typically) to cause voices to sound.

Figure 2.12 shows a small sample of CMusic. Figure 2.12(a) shows a fragment of CMusic to
define an instrument (i.e. sound generator), shown schematically in figure 2.12(b). This instrument is
given a name in line 1, ‘‘flute’’. One oscillator (oscl described in line 2) generates an envelope for the
tone. The other oscillator (osc2 described in line 3) generates the waveform of the tone. Line 6
defines the waveform to be a sine wave, and line 7 establishes a typical envelope shape for oscl.



22

osc b2pSpSf2d;
osc  blb2p70d:
bl;

N A
g

(»)

®)

3.  aomO fhute
9. 3 {pé duration)
P10 phoec {pS Ydracion))
IR -18B (p6 arplinade )
12 220He; (p7 frequency )

©

Figure 2.12. A Fragment of CMusic [M0085]

After defining the waveform, a single note is played (figure 2.12(c)). The note statement in lines
8 to 12 defines the duration, amplitude and frequency of the note played on the *‘flute’’ instrument.

A MIDI (Musical Information Data Interchange) stream is an industry standard representation of
music at the note or event level [Jun83). The following description is slightly simplified. MIDI is
based on a keyboard model, where each key is assigned a particular pitch, and keys can either be
activated (down) or deactivated (up). The actual effect of keys going up and down is left to the device
receiving the MIDI stream. A sample MIDI stream (for an ‘‘A major’’ scale) is described by figure
2.13. This particular example uses a protocol which puts time delays between events in the byte

stream [Rol85]. The columns of the table are:



23

Delay | MIDI command | Time Command
(hex.) (hex.) (secs.) description

50 | 92 39 2E | 3.625 | A3 key on(channel 2)

54 3B 1IF | 4325 | Blkeyon

08 39 00| 4392 | A3keyoff

3F 3D 2A | 4917 | C#dkeyon

oC 3B 00 | 5.017 | B3 keyoff

3B 3E 22 | 5508 | Ddkeyon

05 3D 00 | 5550 | C#dkeyoff

50 40 10 | 6217 | E4keyon

ocC 3E 00 | 6.317 | D4 key off

3A 42 11| 6.800 | Fidkeyon

0A 40 00 | 6.883 | Edkey off

3C 44 27 | 7.383 | Gi#dkeyon

09 42 00 | 7458 | Fidkeyoff

48 45 2C | 8.058 | Adkeyon

08 44 00 | 8.125 | Gid key off

438 45 00 | 8.725 | Adkeyoff

Figure 2.13. Sample MIDI Stream

1)

@

3)

)

The delay in time units (typically 1/120 second) from the previous event to this event. These are

- given in hexadecimal notation.

A two or three byte MIDI command, typically representing channel, key, and volume. These
are given in hexadecimal notation. A channel corresponds roughly to an instrument or voice.
The key number is derived from a mapping of the piano keyboard onto consecutive integers.
The volume integer ranges from one for most soft to 127 (hexadecimal ‘‘7F’’) for most loud,
with zero reserved to indicate the termination of a note event. Only this column and the previ-

ous one are actually part of a MIDI byte stream, the other columns are explanatory.

The time at which this event occurs, relative to the beginning of the event stream. This is there-

fore a cumulative event delay. It is given, in this table, in seconds.
A description of the effect of the MIDI command.

This representation of musical events is not particularly general. For example, it has no way to

represent events which are modified over their duration (such would be the case for a note which

slowly grows louder over its duration). In fact, MIDI does not have the ability to represent non-point

events at all. Notes must remain fixed over their duration; for example, once a note is turned on, its



volume or timbre cannot be changed under MIDI control, it can only be turned off.2

2.6.2. Conceptual Representations of Graphical Scores

Now we tumn our consideration to representations of graphical scores. Several methods have
been developed to represent graphical scores in a form amenable to information storage and retrieval.
Such systems include DARMS (Digital Alternate Representation of Musical Scores) (Eri77, E*W83], a
general purpose encoding language whose goal is to objectively represent any score material notated
using CMN. MUSTRAN [Wen77] is similar to DARMS, although its focus is on ethnomusicological
material. Smith’s system, SCORE [Smi72,Smi73] (now known as MS), is oriented toward producing
very high quality graphical output. This system has interactive score editing tools that give the user

very fine control over the music typesetting process.

As an example of these graphical languages, figure 2.14 shows a small piece of music, along
with its DARMS encoding. This system was intended to encode musical scores onto punch cards (the
project was started by Stefan Bauer-Mengelberg in the 1960’s). It generally utilizes one letter codes
for each attribute of an object found on the score. Numbers are used typically to indicate vertical posi-
tion: 21 (or 1 for short) is the bottom line, 22 is the bottom space, and so forth. The other abbrevia-

tions are summarized in figure 2.14(c).

DARMS has a very flexible input protocol, allowing information to be entered from the page in
a variety of orders (a measure at a time, whole lines at a time, etc.). Also, redundant information can
often be suppressed, so that repeated note durations or pitches can be rapidly entered. Programs have
been written to convert this ‘‘user DARMS"’ into ‘‘canonical DARMS’’ (the programs have been
whimsically named ‘‘canonizers’’). A canonical DARMS encoding presents the score information in
a consistent order, and explicitly includes all repeated information [ErW83, McL86a]. Systems to gen-
erate a graphical CMN score from a DARMS encoding have also been designed [Gom77].

? In prastice, this is not quite true. The timbral aspects of notes on a particular channel may be modified over time by
MIDI commands that affect, for example pitch bend. However, these cannot be applied on a note by note basis. All
notes active on a given channel are affected simultancously.



25

(a) A Fragmeant of Music

14 1G 'K2# 00@¢TENORS R2W /

(7.@¢GLO-$47)/(8(9878))/

9E 9,@RI-$ 8, @A$ / (7,@IN_$ 6) 7,@EX-$/

(4D,@CEL-$ (8786))/
(4D 31) 4,@SIS$ / 8Q,@¢DE-$ E,@08 //
(b) Its DARMS Encoding
Abbreviation | Meaning

I4 Instrument (or voice) definition #4
IG G (treble) clef
IK Key signature ({K2#: two sharps)
00 Annotation above the staff
R Rest (two whole rests)

@text$ Literal string
¢ Capitalize next letter

(notes) Beam grouping
w Whole duration
Q Quarter duration
E Eighth duration
D Stems down
/ Bar line

(c) Abbreviation Key for the DARMS Encoding

Figure 2.14. DARMS Encoding (from [Eri77])




26

2.6.3. Other Score Representations

Representations for music have been developed which are embedded into programming
languages. An example of this is the LISP-based Flavors Band system developed by Fry [Fry84].
Flavors Band is intended for the procedural representation of jazz and popular musical styles. The sys-
tem is primarily concemed with the pitch-time structure of a composition. In this respect it is similar
to the MIDI specification [Jun83] in that it does not easily represent timbral or dynamic modifications

to a single pitch over time.

PLA [Sch83] and Formes [RoC84] take an object-oriented approach toward representing the
structural specification of musical scores. PLA is based on the text-based music representation,
SCORE [Smi72]. Formes is written in LISP. Both provide a notion of messages, part of the object-
oriented programming paradigm. A particular message is interpreted independently by each object
type. Individual instruments of a composition may then respond to musical directives in their own
way. For example, if a sound-generating instrument is sent the message dolce (sweetly), it might
appropriately respond by decreasing its volume, lessening its vibrato, changing its timbral structure,
and so on. A different instrument might interpret the dolce directive in an entirely different fashion.

PLA produces Music V note lists as output. Like Formes, PLA does not operate in real time.

An entire specification is converted into digitized sound via several processes. This digitized sound

cannot be played until all the processing has been completed.

A different approach is taken by the FORMULA system, built onto the FORTH programming
language [AnK86a, AnK86b). This real-time system supports algorithmic composition by allowing the
user to manipulate multiple processes which independently schedule events (or attributes of existing

events) over time. Events may actually produce sounds as they are scheduled interactively by the user.

2.7. Summary

In this chapter, musical information has been shown to consist of different types of data, includ-
ing sound, graphics, text, and conceptual abstractions. Each of these data types has its own peculiari-

ties of representation and manipulation.



27

Musical applications such as tools for score editing, composition, or analysis require the ability

to manage these different types of information. A data manager also requires, in addition to informa-
tion describing a particular piece of music, rules (what we have termed *‘meta-musical information’”)

describing how the piece should be transformed, for instance, from its graphical form into sound.

Focusing specifically on CMN, we have seen how the graphical entities that constitute CMN
scores may be divided into two graphical categories, iconic objects and linear objects. These together

constitute the *‘font’’ with which CMN scores are notated.

Several encodings for both musical sounds and music notation have been developed. We have
categorized these by their level of abstraction, with uninterpreted graphics data and digitized sound at
the lowest level, and music descriptions such as CMN and programming languages at the highest level.
In the next chapter, we consider structural characteristics of the more abstract representations, particu-

larly of CMN.



28
CHAPTER 3

Hierarchical Ordering and Inherited Attributes

Because the music domain consists of well understood structural components (for example,
CMN scores consist of staves, measures, notes, rests, etc.), the entity-relationship data model [Che76]
provides us with a natural basis for describing musical information. This chapter begins with a review
of the important features of the entity-relationship model. Essentially, each structure is represented in
the database by an entity. In order to represent the relationships among these structures, we introduce
the concept of hierarchical ordering as a tool for data modeling. We use three complementary

representations for describing hierarchical ordering:
. Instance graphs as a pictorial representation of hierarchically ordered data,
. A data definition language (DDL) for hierarchical ordering,

. Hierarchical ordering graphs (HO graphs) to represent hierarchical ordering at the database

schema level.

Section 3.1 begms with some background related to the use of ordering and hierarchy in data-
base design. After introducing our representation of the entity-relationship data model, we present our

extensions for hierarchical ordering.

In section 3.2, we consider an approach to representing inheritance in the music database. After
a discussion of related proposals in other domains, we consider attribute inheritance in the music

domain, and how it relates to these previous proposals.

A method has been developed to implement inherited attributes using a variant of the ‘‘query
modification’’ technique used for maintaining views in a relational system. This will be presented in
section 3.3.

There remains a type of inheritance that requires the full power of procedural specification to
determine the values of inherited attributes. An extended example of this complex attribute inheri-

tance is given in section 3.4. In this example, we present the inheritance procedures to determine the



29

‘‘note volume'’ attribute for notes in a music database.
3.1. Adding Hierarchical Ordering to the Entity-Relationship Model

3.1.1. The Entity-Relationship Model

As a basis for the discussion which follows, we briefly review the entity-relationship model
[Che76]. The domain to be modeled is represented by a variety of entity types. In the musical score

domain, examples of entity types include compositions, measures, chords, notes, staves, and so on.

The actual objects within the domain are represented by entity instances. Each instance is of a
particular type. Thus the composition entitled *‘The Star Spangled Banner” is an entity instance of
type ‘‘composition.”’ Every entity instance of a given type has a set of attributes associated with it. In
the above example, ‘‘title’’ is seen to be one attribute of the ‘‘composition’’ entity type.

Within every entity instance of a particular type, each attribute is assigned a distinct value.
Every entity instance of a given type has the same set of attributes, though the value of each attribute
varig from instance to instance. For example, every composition is defined to have a title, and the

value of that title is typically different for each composition.
A database schema, from our perspective, is the set of definitions necessary to describe the entity
types in a database, their associated attributes, and the types of their interrelationships. Throughout

this chapter, we develop a data definition language (DDL) to express them.!

3.1.1.1. Entities
An entity is defined by the define entity statement, whose syntax is:

define_entity_statement:
define entity entity_name
[ ( attribute_spec { , attribute_spec } ) ]

attribute_spec:
attribute_name = attribute_type

The allowable ‘‘attribute_types’’ are determined by the implementation of this model, which will be

! DDL statements will be presented using BNF syntax descriptions [Bac59]. Key words will be given in bold face type,
clauses surrounded by square brackets, [ ], are optional, and clauses surrounded by curly brackets, { }, may be included
zero or more times. Upper and lower case letters are always distinct in key words (e.g. name, Name, and NAME are all
different words).



30
covered in chapter 5. Generic types such as integer and string will be used in this chapter. Thus, we
might define an entity type, *'DATE,”

define entity DATE (day = integer, month = integer, year = integer)

A date entity has three integer attributes: its day, month, and year. Given this definition, we may mani-
pulate a date as an atomic object, or we may refer to the individual attribute values within a particular

date.

3.1.1.2. Relationships

A general description of relationships among entities is found in [Che76). For the purposes of
our discussion, we are interested in modeling two particular types of relationships, ‘‘m to n’’ relation-
ships and *‘1 to »’’ relationships.

To express ‘‘m to n'’ relationships, we use the define relationship statement. Its syntax is
similar to that of the define entity statement. Two (or more) entities are related by using their entity
names as the types of the attributes of the relationship. For example, suppose that we wish to model
compositions that are composed by many people (not common, to be sure). This represents an ‘‘m to
n”" relationship between people and compositions, because one person may be the composer of many
compositions, and one composition may be written by many composers. This would be expressed as

follows:

define entity PERSON (name = string, ...)
define entity COMPOSITION (title = string, ...)

define relationship COMPOSER (composer = PERSON, composition = COMPOSITION)
For a given instance of a COMPOSER relationship, the ‘‘composer’’ attribute references an instance
of a person, and the ‘‘composition’’ attribute references an instance of a composition.
A *‘1 to n’ relationship may be specified implicitly in the definition of an entity. Consider the
relationship between compositions and their dates of composition. This is a *‘1 to n’’ relationship
because an single date is associated with each composition, and an arbitrary number of compositions

are associated with a single date. This relationship is expressed by the statement:

define entity COMPOSITION ( title = string, composition_date = DATE )



31
A composition, as defined in this example, has two attributes. The first is a title, of type character
string, and the second is the date on which the composition was composed. For a given entity instance
of type COMPOSITION, the value of this latter attribute is a reference to some entity instance of type
DATE.

Chen introduces a pictorial notation for representing entities and relationships, an example of
which is shown in figure 3.1. This graph shows the definitions of PERSON, COMPOSITION, and
DATE, and the relationships COMPOSER and COMPOSITION-DATE mentioned previously. In this
type of representation, entity types are shown in rectangular boxes, and relationships are shown in
diamond-shaped boxes. Lines are drawn from relationships to the entities which they reference. The

type of the relationship (m to n or 1 to n) is indicated on these lines.

3.1.2. Ordering

Neither the relational model, nor the entity-relationship model incorporates any concept of ord-
ering among elements stored in the database. Actual relational database systems, on the other hand,

usually implement some form of ordering among data records. This is typically provided by allowing

' PERSON . | . COMPOSITION ' DATE
: ! ;

Figure 3.1. An Entity-Relationship Graph




32
the database designer to designate key attributes for a relation, allowing the system to sort the data

records so that they are ordered by ascending (or descending) key value.

This use of ordering may be seen purely as a performance optimization in relational databases.
An important relational operation is to select data records that have a particular key value (or range of

key values). This may be efficiently performed on relations that are sorted, because the desired

records are all stored together, rather than being randomly distributed throughout the relation.>

In contrast to this, we are interested in modeling a domain where an important attribute of the
data is the participation of entities in various orderings. For example, a musical score consists of an
ordered set of measures of music, and the fact that one measure follows another measure is a concept

which must be modeled by the database definition.

" We therefore extend our DDL with a statement to express orderings among entity sets. The syn-

tax for the define ordering statement, in its simplest form, is:

define_ordering_statement:
define ordering order_name (entity_name)

This represents the simple case where all the instances of an entity type participate in an ordering. For

example, suppose compositions are ordered in the database according to their ‘‘importance.”’ This is

modeled by the statement:
define ordering IMPORTANCE (COMPOSITION)

Having defined an ordering such as IMPORTANCE, we will see later in this chapter how queries may
be formulated to determine which compositions are more or less important than other compositions,
and how the importance of a composition is fixed (at the time of insertion or modification) with respect

to other compositions.

3.1.3. Generalization and Aggregation

The ability to model hierarchies has also proven important in the musical domain. Smith and
Smith discuss two orthogonal types of hierarchy, generalization and aggregation, that apply to data
modeling [LeG78,Smi72). Their ideas were later implemented in database systems such as GEM

? Of course, this is only truc if the desired selection is compatible with the choice of sort key. For instance, a relation



33
[TsZ84] and GAMBIT {BDR85].

Generalization hierarchies relate certain types of objects to generic objects. For example, an
entity of type ‘‘boy’’ and one of type ‘‘girl’’ may both be related to the generic object ‘‘child’’. A
child, in turn, is a specialization of the generic type ‘‘person’’. In the artificial intelligence domain,
generalization hierarchies are sometimes known as is-g hierarchies [BoW77]. A girl is 4 kind of child,
and a child is g kind of person.

Generalization hierarchies do not seems to be widely applicable as a tool for modeling musical
information. For example, we do not find a musical object, x, to be a kind of musical object, y, which
in tumn is a kind of musical object, z.

In contrast to generalization hierarchies modeling the ‘‘kind of’’ relation, aggregation hierar-
chies model the ‘‘part of’’ relation. They provide a very powerful and expressive tool for representing
such aspects of musical information as score structure. These hierarchies have many levels. For
example, a note is a part of a chord, which in turn is a part of a voice, and so on’. In implementations
such as GEM, an aggregation represents a fixed number t;f objects, each of differént type, that com-

bine to form a single aggregate object.

3.1.4. Instance Graphs

This notion of aggregation hierarchies must be altered in order to represent the ordered sets that

occur in the music database. Unlike the aggregation hierarchies presented in [Smi72],

. the number of entities participating in an aggregation is not fixed by the schema.

. the entities participating in an aggregation form an ordered set. One maf therefore speak of
‘‘the n-th gnﬁty" in an aggregation.

. All entities within an aggregation are typically (though not necessarily) of the same type.

The term hierarchical ordering will be used for this new form of aggregation. In its most general
form, hierarchical ordering occurs when a group of database objects (of one or more types) forms an

ordered set associated with a distinct parent object. For instance, a particular set of notes aggregate to

sorted on composition title cannot efficiently support a selection based on composer name.
3 In this chapter, we will be drawing many examples for our data mode! from the musical domain. The various entitics

(c.g. notes, chords, and voices) will be defined more precisely in the next chapter. Readers already familiar with music
notation may rely on their ‘‘common sense’” understanding of the semantics of these musical objects.



34
form a given chord. An instance graph, such as the one in figure 3.2, shows this relationship pictori-
ally. This graph, in its entirety, could represent, for example, a four note chord. It consists of a parent,
oy, and an ordered set of children, { 4, v, w,x }. The ordering among the children is indicated here by
arrows from one child to the next one in the ordering. Such edges of the graph are called S -edges, as
they indicate a relationship among siblings. Each child also has a relationship with its parent, indi-
cated in the example by P-edges. Notice that each child has an ordinal position under its parent. For

example, we may speak of the node w in this figure as the third child of the parent labeled y .*

Instance graphs represent actual pieces of data in the database, such as particular chords. In
order to model chords in general, (i.e. what a chord is), the hierarchical ordering exhibited in the

instance graphs must be defined in the database schema.

3.1.5. Defining Hierarchical Ordering in'a Schema

In an aggregation hierarchy, the number and type of elements in the aggregation are fixed by the
schema. For example, a piano is an aggregation of one keyboard, a fixed number of strings, a sound-
ing mechanism, and a bench. A piano bench in tum is an aggregation of four legs and a cushion. For

entities in the musical score, this characterization is insufficient. Specifically:

Parent y i

Ordered Siblings

key:

——> P-edge: ‘‘Parent within a hierarchy’’
- - P S-edge: ‘‘Next sibling within an ordering’’

Figure 3.2. A Simple Instance Graph

* The pointers in an instance graph should not be misinterpreted as an indication of the physical implementation of these
objects within the data manager. They merely serve to indicate graphically the ordering and hicrarchy among objects.



35
. The number of objects in an aggregation is typically not fixed. For instance, under the aggrega-

tion of notes into chords, different chords typically have different numbers of notes.

. The objects in an aggregation are ordered. For instance, given two measures in a score, one

must be prior to the other.

These characteristics distinguish hierarchical ordering from aggregation hierarchies. The define

ordering statement is extended as follows to model hierarchical ordering:

define_ordering_statement :
define ordering [ order_name ] ( child_entity { , child_entity } )
[ under parent_entity ]

child_entity :
entity_name

parent_entity :
entity_pame .

One such statement defines a single instance of hierarchical ordering. *‘‘Order_name’’ is the name of
the ordering. This is followed by one or more child relations whose instances will participate in the
ordering. The under clause specifies the relation from which parent entities are taken, determining the
type of the entity instance under which each ordering will be grouped. For example, a schema con-
taining musical notes ordered within chords would be specified as:

define entity CHORD (chord attributes...)
define entity NOTE (note attributes...)

define ordering note_in_chord (NOTE) under CHORD
In this simple example, the ordering is named *‘note_in_chord.’’ It consists of a single child type,
NOTE, under the parent type, CHORD. This schema definition would allow reference to, for instance,

‘*‘the third note in chord x."’

The semantics of various forms of the define ordering statement, as when the order name is

missing, or when there are multiple child types, will be the focus of the next section.

3.1.6. Types of Hierarchical Ordering

It will generally be more convenient to present ordering definitions in pictorial form. We there-
fore make use of the hierarchical ordering graph (HO graph), an example of which is shown in figure
33. This graph represents a single ordering. In general, each edge in the HO graph corresponds to



36

—
i I
! :

parent
‘ ; 1:

; .
{  order_name

|

!

child 1 child 2y ee

Figure 3.3. An HO graph for a Single Ordering

one define ordering statement.
We now consider several cases of hierarchical ordering.

Multiple Levels of Hierarchy. An object that is a parent in one ordering may be a child in

another. Thus we may specify orderings in this way:

define ordering e (X) under Y
define ordering f (W) under X

The HO-graph for this example is shown in figure 3.4(a). An instance graph is shown in 3.4(b). This
type of ordering is quite common in music. For example, we might interpret this instance graph as
representing notes within chords within a measure. Referring to the figure, the ordering e then
represents the ordering. of chords in each measure, and f represents the ordering of notes within

chords.

Multiple Orderings Under a Parent. Figure 3.5 shows a slightly more complex case, where two

different objects share the same parent, each under its own ordering. It is specified by two statements:

define ordering e (W) under Y
define ordering f (X) under Y

Figure 3.5(a) shows the HO graph, and figure 3.5(b) shows an example of an instance graph which
would be possible under this schema. This type of ordering schema occurs, for example, where both



(a) HO graph:

Y
)
g e
X
-~
i
w
(b) Instance graph:
1‘ ;
AN
. i i
.xl ......................... ’; xzj ..................... x3
—— —— =
/\\ ’—“~§ Tl
-~ ~ - . -~ o l ,
wy TP w, w; “"’; wa ~ ) st We
key:

— P-edge for ordering e
- »  S-edge for ordering e

Figure 3.4. A Hierarchy of Orderings

- - > P-edge for ordering f
‘== S-edge for ordering f




38

(a) HO graph: |

€
>

(b) Instance graph:

=P X ,L""‘ X1s .

—>  P-edge for ordering e - -—--» P-edge for ordering f
> S-edge for ordering e --—->  S-edge for ordering f

Figure 3.5. Two Orderings Under One Parent

parts and staves are ordered within an instrument (e.g. the portion of a score system dedicated to the
violin instrument may contain three violin parts, notated on two staves). From this figure, Y represents
the instrument entity type, W woul& be the saff type, and X would be the part type. The edges can
then be named: e would be ‘‘the ordered set of parts per instrument’’ and f would be *‘the ordered set

of staves per instrument."’

Inhomogeneous Orderings. The set of siblings in a particular ordering may not be of homogene-
ous type. Where two (or more) different types participate in a single ordering, we express their rela-

tionship by the single define statement:
define ordering e (W,X) under Y
Figure 3.6 presents an HO graph that demonstrates this situation.

An example of this can be found in the music domain, where a musical voice consists of an

ordered sequence of chords and rests, intermixed (this is a simplified view, for the purpose of this



39

(a) HO graph: l Y !
! i !
| e
LOWX
i |
(b) Instance graph:

key:
—>  P-edge: “‘w or x under y”’

---> S-edge: “‘Next w or x within y”’ bevened
I | Child of type x
Figure 3.6. An Ordering with Inhomogeneous Children

example). Every rest and chord, by our definition, has some voice as parent. The element at. a particu-
lar position of the ordering, say, ‘the second object under voice V,”’ must be either a chord or a rest.
Of course, it can’t be both, since there is only one ‘‘second object.’’ This differs from the previous
case, where a parent covered two child types under different orderings; then it made sense to speak of

‘‘the second part for the violin instrument’’ as well as *‘the second staff for the violin instrument.””

Multiple Parents: Another possible configuration is for an entity to have multiple parents. Fig-
ure 3.7 shows the HO graph and instance graph for this definition:

define ordering e (X) under Y
define ordering f (X) under Z

The HO graph in figure 3.7(a) shows an entity type X participating in one ordering e under parent Y
and another ordering f under parent Z. A typical instance under this schema is shown in figure 3.7(b),
while the table in figure 3.7(c) tabulates the ordinate position of each child node (of type X ) under

- each of its parents (of types Y and Z).



(a) HO graph:

(b) Instance graph:

key:
——> P-edge: ‘‘xundery”’ - - » P-edge: “xunderz”
""" > S-edge: ‘‘Next x withiny”’ =-=» S-edge: “‘Next x within z’’
Ordinate Position of x;
Order e f
name
Parent Y4 Y2 Z4 Zs
Child:
X1 1 - 2 -
X2 - 1 - 3
X3 2 - - 2
X4 3 - 1 -
Xs - - 1
()

Figure 3.7. An Entity Ordered Under Two Parents




41

In the musical domain, this multi-ordering structure is quite common. For example, a note has a
chord as parent, under the ordering named ‘‘ordered set of notes per chord.’’ A note also has a staff as
parent, under the ordering ‘‘next note per staff’’. A chord may lie on multiple staves, so two notes that
are members of the same ‘‘per chord’’ ordering are not necessarily members of the same ‘‘per staff’’

ordering.

3.1.7. Recursive Ordering

Suppose that the parent in an ordering is of the same type as one of the children. In that case,
the ordering is recursive. An example from music would be found in the grouping of chords under
beams. A beam groups consists of an ordered set of smaller beam groups intermixed with chords.

This would be defined as follows:
define ordering (BEAM_GROUP, CHORD) under BEAM_GROUP

The HO graph for this ordering is shown in figure3.8(a). Figure 3.8(b) contains a fragment of musical
-notation with several layers of beam groups. The six chords in this fragment are labeled ¢, to ¢ The
instance graph for the chords and beam groups is shown in figure 3.8(c). Every object in this instance

graph is either a group (Iabeled g;) or a chord (labeled ;).

Certain restrictions on recursive ordering are necessary, to prevent the occurrence of instance
graphs that are malformed. One difficulty arises if the P-edges for a given ordering form a cycle.
Because this would mean that an instance is ‘‘part of’ itself, such cycles in the instance graph are
disallowed. Similarly, cycles among the S-edges of a given ordering are not permitted, because they

result in the situation where an object is *‘before itself”’ in the ordering.

In the above discussion, several types of hierarchical ordering have been explored. We now
consider the ways in which queries may be constructed that make use of the information provided by

these orderings.

3.1.8. Manipulation of Ordered Entities

We use QUEL [Rel84] as a basis for our data manipulation language. Three new operators are
added to QUEL to support hierarchical ordering: before, after, and under. Unlike other QUEL opera-

tors, the ordering functions operate on entities (represented by range variables in QUEL), rather than



42

(a) HO Graph:

; Group
———

Group, Chord

(b) Group/Chord Notation: —

— AR S

€y €y C3 C4 Cs Cg
(<) Instance graph:

cl ........ h.gz. ......... >cs

key:
—> P-edge: **Group or chord under group’’
""" > S-edge: ‘‘Next group or chord within parent group”’

Figure 3.8. An Example of Recursive Hierarchical Ordering

on attribute values. In this way they are similar to the entity equivalence operator, is, introduced in the

GEM extensions to QUEL [Zan83]. As an example of the is operator, recall the schema for composers
and compositions:

define entity PERSON (name = string, ...)
define entity COMPOSITION (title = string, ...)

define relationship COMPOSER (composer = PERSON, composition = COMPOSITION)
A query to find all the composers of ‘*The Star Spangled Banner’’ would be’:

retrieve (PERSON.name)
where COMPOSITION.title = *“The Star Spangled Banner’’
and COMPOSER.composition is COMPOSITION
and COMPOSER.composer is PERSON



43

Unlike other operators, the is operator takes entities (i.e. range variables) rather than attribute values as
operands.

The ordering operators each take two range variables and an optional ordering name as

operands. The syntax for a qualification using the ‘‘before’’ operator is representative:

before_clause :
range_variable before range_variable [ in order_name ]

The after and under operators have similar syntax. For the before and after operators, the types of
both range variables are taken from the child types of the ordering indicated by *‘‘order_name.’’ For
the under clause, the type of the first range variable is taken from the children of the ordering, and the

type of the second is the parent type in the ordering. The clause,
a before b in order_name

evaluates to ‘‘true”’ if ¢ and b both have the same parent with respect to the hierarchical ordering
indicated by order_name, and a is before b in that ordering. If @ and b have different parents, then

they are not comparable, and the before clause evaluates to ‘‘false.”
Given these definitions of NOTE and CHORD,

define entity CHORD (name = integer, other chord attributes...)
define entity NOTE (name = integer, other note attributes...)

define ordering note_in_chord (NOTE) under CHORD

range of nl, n2 is NOTE
range of cl is CHORD

bere are examples of the use of the ordering operators:
Given a note n, retrieve the notes prior to # in its chord:

retrieve (nl.name)
where nl before n2 in note_in_chord
and n2.name =n

Retrieve the potes that follow note n:

? As in GEM and later versions of INGRES, a range variable with the same name as its entity type is implicitly declared
for cach entity type.



retrieve (nl.name)
where nl after n2 in note_in_chord
and n2.name =»n

Retrieve the notes under chord ¢ :

retrieve (nl.name)
where nl under ¢l in note_in_chord
and cl.name =¢

Retrieve the parent chord of note n:

retrieve (cl.name)
where nl under cl in note_in_chord
and nl.name = n

3.2. Inherited Attributes

One of the principal motivations for organizing entities into a hierarchy is to allow attribute
values associated with one entity to depend on those associated with another entity. For example, one
attribute of a sync is its temporal location (i.e. the time at which the sync begins). All of the chords
which belong to a single sync inherit this temporal location. We can thus refer to the temporal loca-
tion of a particular chord, while guaranteeing that a set of chords defined to be simultaneous are indeed
so (by virtue of their inclusion under the same sync). In this example, the temporal location of a

chord is dependent on the temporal location of its parent sync.

An application such as a music typesetting program presents a more complex example. Suppose

the application wants to query the music database:
. Given a note, n, what are the graphical coordinates (x, y) at which to draw it?

In a database that stored NOTE entities with position attributes x and y, this might be translated into

the QUEL command:

retrieve (NOTE.x, NOTE.y)
where NOTE.name = n

Storing graphical coordinates in the NOTE relation in this way suffers two serious drawbacks.

The first drawback is that important integrity constraints on positional information are missing

from such a schema. Here are two examples of integrity constraints on the position of a note:



45

. Notes in the same chord must have the same x position.

That is to say that notes in the same chord must be aligned vertically.

. The distance between the y position of a note and the y position of the staff on which the note
lies (i.e. the y position of the bottom line of that staff) must be exactly a multiple of half the dis-
tance between staff lines.

In other words, a note head must sit on a staff line or a space, but nowhere else.

The second drawback is that storing the positional information of a note with the note itself is
not robust in the presence of updates. For example, suppose that we insert a2 measure of music into a
score. This must cause the position of all subsequent notes to change. Or suppose we perform the
musically innocuous operation of moving a staff line slightly. Perhaps, for visual aesthetic reasons, we
displace a staff line up or down on the page. The (x,y) po;ition of every note on the staff must
change because of that operation. There is no mechanism, within the database definition, to indicate

that an update to staff position must cause an update to the position of several notes.

The root of the problem is that, although position is an attribute of a m;te, insofar as it is mean-
ingful to ask ‘‘What is the position of note n?”’, the value of the position attribute is actually depen-
dent on many other attribute values. For example, note position depends on note pitch, the vertical
position of the staff on which the note lies, the horizontal position of the sync in which the note is a
member (indirectly, via some chord), and the positions of other notes in the same chord (since the note
may swing to one side or the other of the chord stem depending on the placement of other notes on the

same chord stem).

When the value of an attribute is functionally dependent on the values of attributes in other enti-
ties, we say that this attribute value is inherited. The above example demonstrates complex attribute
inheritance. The inheritance is considered complex because the attribute v;alue is not simply the value
of a similar attribute in some *‘parent’’ object in the database, but is rather an arbitrary function of a

number of relevant attributes distributed among several database objects.

¢ Such an integrity constraint, 2s stated, is incomplete, of course. For cxample, it does not ailow for the case where two
notes in a chord differ by a single staff degree. In that case, the notes are on opposite sides of the stem, rather than verti-
cally aligned.



46
Given the above description of inherited attributes, the following sections relate this form of
inheritance to other types of inheritance that have been explored in previous research, and then present

a proposal for incorporating inherited attributes into the music data manager.

3.2.1. Inheritance in Database Research

Existing research concerned with attribute inheritance, as it relates to the music database, falls

into three domains:

. Artificial intelligence research focusing on knowledge representation,

. Database research involved in data modeling and data definition language design, and
. Music research focusing on the modeling of musical information.

Much early debate in artificial intelligence research focused on whether knowledge should have
a procedural or a declarative representation, that is, whether knowledge should be represented by algo-
rithms or by facts. The arguments for both sides of this issue are discussed by Winograd [Win75],
who proposes a frame representation to capture the connections between various concepts. He focuses

on inheritance of attributes in a generalization hierarchy.

The inheritance of attributes along a generalization hierarchy is very simple. If an object x is a
specialization of another object y, then all the attributes of y are inherited directly to x. For example,
if an attribute of the ‘‘person’ concept is that a person is alive, then an inherited attribute of the
‘“child’’ concept is that a child is alive (because a child is a person).

Later knowledge representations, such as KRL [BoW77], extend the semantics of frames to
include distinctions between classes of objects (such as ‘‘person’’), and instances of objects (such as
‘‘the person named Jane Smith’’). They also permit a much more general specification of inheritance,
allowing essentially general types of links between concepts. Still, in this system, inheritance is an
implicit consequence of these links. .

Fox [Fox79] proposed that inheritance should be separated functionally from the structure of the
knowledge representation. In this proposal, inheritance itself is a concept to be modeled. Inheritance
concepts take different forms, each with its own attributes (which determined the specific type of
inheritance). The inheritance displayed by generalization hierarchies (is—a inheritance) is one exam-



47
ple of such an inheritance concept. He uses the term idiosyncratic inheritance to describe the arbitrary

forms of inheritance that do not fit into predefined inheritance classes.

His language for determining the nature of such an inheritance specifically includes constructs
for determining what attributes are to be passed to the inheriting concept, and what attributes are to be

added, excluded, contradicted, restricted, refined or generalized.

This approach has the power of specifying arbitrary types of inheritance, while still maintaining
the succinctness of established inheritance classes, such as that of generalization hierarchies. This
form of inheritance specification was incorporated into the SRL system [FWA84]. However, this sys-
tem still does not address the problem of complex inheritance, for instance, it does not provide a means

to inherit, say, the largest value from a set of related objects.

A number of systems and languages have recently made use of the object-oriented paradigm
(see [StB86] for a survey and introduction). In these systems, such as SMALLTALK [GoR83] and
LOOPS ['B(.)SSI], entities known as objects contain both procedural and state information. The objects
are manipulated by sending messages to them. Objects are typically divided into classes and instances.

For example, ‘‘person”’ is a class, and ‘‘Jane Smith"’ is an instance of that class.

Every instance inherits the properties of the class of which it is 2 member. All the properties of
persons in general are properties of ‘‘Jane Smith’’. In addition, classes are organized into a generali-
zation hierarchy, and so instances further inherit the properties of all classes that are superordinate to
the class of persons (i.e. the class of mammals, and the class of animals). |

From our perspective, there are two advantages to the object-oriented paradigm. First, the func-
tional separation between classes and instances accurately models the music database distinction
between entity types and entity instances. Secondly, the notion of procedural attachment, that is, asso-
ciating procedural information with any class object in the generalization hierarchy, provides the abil-
ity to handle arbitrarily complex computations to determine the value of an attribute (at the time an

instance of the class receives a message to produce that value).

The disadvantage of this approach is that by restricting inheritance to the paths of the generaliza-
tion hierarchy, it is insufficiently powerful to model those cases where classes are organized as aggre-
gation hierarchies, as in hierarchically ordered data.



48

‘When an instance receives a message, it checks to see if the class of that instance knows how to
respond to the message. If not, it passes the message on to its parent in the geperalization hierarchy.
In a sense, this *‘passing on’’ is the operative part of this inheritance. A limitation of object oriented

systems is the restriction they place on which classes provide the information to respond to messages.

Recent research in database management has looked into issues related to knowledge representa-
tion and inheritance. A number of proposals, for example [DeF84], have endeavored to make use of
the data management services of the database in order to efficiently bandle a large body of static world
knowledge. Others have taken the object-oriented approach and considered the problem of data
management of objects, for example GEMSTONE system built onto SMALLTALK [CoM84] and the

EXODUS system {CDR86].

A knowledge base typically contains a very large number of rules and procedures. For a given
task, only a small number of those rules may apply. One of the primary problems faced by
knowledge-based systems is the problem of efficiently determining which rules are relevant to a query.
Much of the impetus for using database systems to store procedural information is the attractive possi-
bility of using sophisticated data management techniques to perform efficient selection of rules

[SSH86].

The role of artificial intelligence in music has been surveyed by Roads in [Roa85] which con-
tains a large bibliography of relevant literature. Four specific application areas are noted in this sur-

vey: composition, performance, music theory, and digital sound processing.

The use of production (i.e. rule-based) systems is particularly interesting to us insofar as their
process of inference closely models the complex attribute, inheritance we wish to capture. Ioannidis
has suggested extensions to QUEL to support production systems [ISW84]. Such systems have been
used for both composition, and musical analysis in the music domain. The general application of
automatic composition systems is surveyed by Hiller [Hil70]). Actual systems include a production
system employing Schenkerian synthesis to generate four-part chorales by Ebcioglu [Ebc84] and a
similar system using more general synthesis rules designed by Thomas [Tho85). Rule sets for per-
forming phrase structure analysis are given in the context of a gemeral production system in

[Ash83, Ash85].



49
3.2.2. Representing Inherited Attributes

The set of attributes associated with an entity may be divided into two types: Those whose
values are native to the entity instance, and those whose values are inherited from some other entity.
If it makes semantic sense to update the a@bum for a given instance, while leaving the instance graph
unchanged, then the attribute is native. Thus an attribute such as *‘stem direction’’ is native to a chord.
All the connections to and from the chord may remain unaltered in the instance graph if the stem direc-
tion changes from ‘‘up’’ to ‘‘down.’’ Temporal location is not a native attribute of a chord, since

changing the temporal location of a chord necessitates moving it from one sync to another.

Native attributes are associated with entities at the time they are defined with the define entity
statement. For example, the native attribute for stem direction is incorporated into the definition of the

CHORD entity as follows:

define entity CI-IORD (... stem_direction = string ... )

We extend the syntax of our DDL as follows to provide a definition for inherited attributes:

deﬁne_inheﬁtance_stétement:
define inheritance entity ( target_list )
where qualification

entity:
range_variable

target_list:
attribute_name = expression { , attribute_name = expression }

The define inheritance command adds additional attributes to an existing entity. The value of an
inherited attribute is the value of the expression associated with the attribute by this definition,
evaluated at the time the value is accessed. The syntax of this statement is similar to that of the
replace command in QUEL, but rather than replacing an attribute value, the define inheritance state-

ment adds new attribute values to the entity associated with the given range variable.
In the presence of hierarchical ordering, we can divide inheritance functions into three broad

categories: downward inheritance in the hierarchy, inheritance from ordered aggregation, and upward

inheritance in the hierarchy. We will now consider examples of inheritance taken from each category.



50
Downward Inheritance in the Hierarchy: Attribute values may propagate down the hierarchy. A
child thus inherits attributes of its parents (and recursively, of its ancestors). In this way a note inherits

temporal location (i.e. the start_time attribute) from a chord. This would be defined as follows:

define entity CHORD (start_time = i4, other native chord attributes...)
define entity NOTE (native note attributes...)

define ordering note_in_chord (NOTE) under CHORD

define inheritance NOTE (start_time = CHORD.start_time)
where NOTE under CHORD in note_in_chord

Inheritance from Ordered Aggregation: A child under a given parent may inherit attribute
values that depend functionally on the set of siblings of which the child is a member, and on the posi-
tion of the child within that ordered set. A measure, for example, has the attribute measure number,
which is a count of the number of measures preceding it in its ordering under a given movement. This

could be specified by:

define entity MOVEMENT (native movement attributes...)
define entity MEASURE (native measure attributes...)

define ordering measure_in_movement (MEASURE) under MOVEMENT
range of m1, m2 is MEASURE
define inheritance m1

(measure_number = 1 + count(m2 by ml
where m2 before m! in measure_in_movement))

In this example, m1 refers to a given measure, and m2 is used to count the set of measures previous to
ml. The first méasure in a movement will have measure number 1, the second will have 2, and so on.
This syntax is obviously rather cumbersome. In fact, this example represents a special type of aggre-
gate function (related to the ‘‘count’’ function in this example) that will be discussed in chapter 5. In

the course of that discussion a more natural syntax will be discussed.

Upward Inheritance in the Hierarchy: In this case, a parent attribute depends on an aggregate
function of the attributes of its children. For example, a beam group consists of an ordered set of
chords. Every group has the attribute start fime that depends on the start times of its constituent
chords: the beam group starts when its first chord starts. Start time is thus inherited upward, from

chords to groups. This inheritance is defined as follows:



51

define entity GROUP (beam group attributes...)
define entity CHORD (chord attributes...)

define ordering chord_in_group (CHORD) under GROUP
define inheritance GROUP

(start_time = min(CHORD.start_time by GROUP
where CHORD under GROUP in chord_in_group))

3.3. Implementing Inheritance using Query Modification

When the user presents a query that requires access to the value of an inherited attribute, the sys-
tem must determine the value of the inheritance expression for that attribute at that point in time. In
this section, an implementation of inherited attributes based on query modification is developed.
Query modification has been used as a means of supporting both integrity constraints and relational

views [Sto75], each of which displays similarities to inherited attributes.

When the system encounters a define inheritance statement, it catalogues the association
between the (new) inherited attribute names and the entity type of the range variable specified by the

statement. The system also catalogues the expression that is associated with the attribute name.

Every time a query references an attribute, the system catalog (the ATTRIBUTE relation) indi-
cates whether the attribute is inherited or not. If it is inherited, the expression is substituted into the

query for the attribute value, and the resulting query is then processed.
Here is the algorithm to be performed for every inherited attribute referenced within a query.
Given:
a term of the form m .n within a query Q, where m is a range variable over relation X, and
an int;eritance definition of the form:

rangeofp is X
define inheritance p (y =¢) where ¢

where e is an expression (possibly involving p ), and q is a qualification.

(1) Rename every range variable in ¢ and q other than p so that they don’t conflict with range vari-
ablesusedin Q.



52

(2) Replace every occurrence of p ine by m.
(3) Substitute ¢ for m.n in the query Q.
(4) Replace every occurrence of p in g by m.
(5) Addg to the qualifications of the query Q.
In the following paragraphs, examples are presented for each of the inheritance examples of the
previous section.
Find the pitch and start time of every note prior to the note whose start time is less than 100. For this
example, assume *‘pitch’’ is a native attribute of NOTE. The query is:

range of n is NOTE
retrieve (n.pitch, n.start_time) where n.start_time < 100

The inheritance statement (from the previous section) is:

define inheritance NOTE (start_time = CHORD.start_time)
where NOTE under CHORD in note_in_chord

The result of applying our query modification algorithm to the query is:

range of ¢’ is CHORD

range of n is NOTE

retrieve (n.name, ¢ ’.start_time)
where ¢’.start_time < 100
and n under ¢’ in note_in_chord

The query modification algorithm introduces a unique range variable ¢’ to replace CHORD, as a result
of step (1) of the algorithm.

Retrieve the start time of measure number 20. Assume that start time is a native attribute of a measure.
The query is: .

range of m is MEASURE
retrieve (m.start_time) where m.measure_number = 20

The inheritance statement (from the previous section) is:

range of m1, m2 is MEASURE
define inheritance ml
{measure_number = 1 + count(m2 by m1
where m2 before ml in measure_in_movement))

The result of query modification is:



53
range of m is MEASURE
range of m’ is MEASURE
retrieve (m.start_time)
where 1 + count(m’ by m
where m’ before m in measure_in_movement) = 20

In this example, m’ is introduced in step (1) as the unique value for range variable m2.
Find all pairs of groups that begin at the same time. Assume that the ‘‘pame’”’ attribute is native to
groups. The query is:

range of gl, g2 is GROUP
retrieve (gl.name, g2.name) where gl.start_time = g2.start_time

The inheritance statement (from the previous section) is:

define inheritance GROUP
(start_time = min(CHORD .start_time by GROUP
where CHORD under GROUP in chord_in_group))

The result of query modification is:

range of gl, g2 is GROUP
range of ¢’, ¢” is CHORD
retrieve (gl.name, g2.name)
where min(c ’.start_time by gl
where ¢’ under gl in chord_in_group) =
min(c”.start_time by g2
where ¢ ” under g2 in chord_in_group)

In this example, the query modification process introduces two unique range variables, ¢’ and ¢ ”, for

the two references to the inherited attribute, ‘‘start_time."’

The above examples demonstrate cases where fairly simple queries are modified into compara-
tively complicated queries involving multiple aggregate functions and so forth. Inherited attributes
that involve aggregate calculations are quite common in the musical domain, and techniques to optim-

ize their performance will be explored in chapter 5.

3.4. An Example of Complex Inheritance

Under certain circumstances, the query language itself is insufficient to support an inheritance
function. Complete procedural specifications are then required to determine the manner in which an
inherited attribute is to be calculated. The procedures to be used in determining an attribute value may
be specified in the form of rules, as is done in languages such as PROLOG [STZ84]. One attribute



54
that requires this type of rule-based inheritance is that of the volume of a note. This section presents

the rules for determining note volume.

Such a rule set would be used, for instance, by a system which reads the music database for the
purpose of performing a score (either for analytical reasons, proofreading purposes, or for actual per-

formance).

We begin by determining how volume (in music, known as dynamics’) is notated in CMN

scores. Dynamic markings in music scores take several forms:

. Global indications of absolute volume at the beginning of a movement.
. Dynamic markings associated with voices.

. Dynamic markings associated with chords (or notes).

Another way to look at these dynamic notations is by observing the nature of their effect on
notes. Global markings affect all the notes in a movement, in every part. Markings associated with a
voice affect all notes in the voice from the point in the marking until the next marking for that voice.
Markings for a single chord affect only that chord, and no subsequent ones.

The effect of a marking may be absolute, that is, it may indicate a particular volume level
independent of the preceding context, or it may be relative, dependent on preceding context. For
example, the indication f (forte, loud) is an absolute dynamic indication: the following notes are to be
played loudly. The indication piu f (piu forte, more loud) is a relative indication that the following
notes should be played at a fixed volume slightly higher than that of the preceding notes. The indica-
tion crescendo (get louder) is a relative indication that the following notes should begin at this point to
increase their volume over time, smoothly to the next dynamic marking, which usually is an absolute
marking.

Some markings, the ‘‘momentary”’ dynamics, affect only the notes in the chord under the mark-
ing. Subsequent notes are not affected. They may be relative to previous context, as the sfz (sfor-

zando, suddenly louder) marking, or may be absolute, as is fp (forte-piano, loud then soft). Figure 3.9

7 There is a conflict between the computer and music vocabularies in their use of the word *‘dynamic’’. In computer sci-
ence usage, a dynamic attribute is an attribute of an entity computed according to given rules. A dynamic marking, on
the other hand, is a score annotation which (roughly) directs performance volume, according to musical usage. The
meaning in any particular instance should be clear from context.



55
presents a list of the various dynamic markings.

3.4.1. Entities for Representing Dynamic Markings

Figure 3.10 presents the dynamic entity. Each dynamic marking is stored in this relation, and is
uniquely identified by its wid attribute. The location of the marking is determined by the values of
voice_parent and sync_parent which locate the marking in the score by voice and by time, respec-
tively. The marking is the actual text of the dynamic marking, for example, ‘‘f’ or ‘‘cresc’’. A given
marking is has one ordinate position under its parent voice, voice_ordinate, and one under its parent

sync, sync_ordinate.

Type Symbol  Name Meaning
Absolute
ik fortissimo very loud
f forte loud
mf mezzo-forte  medium loud
mp mezzo-piano  medium soft
P piano soft
pp pianissimo very soft
Relative
cresc crescendo get louder
dim diminuendo __get softer
Momentary
sz sforzato loud
P forte-piano loud attack,
then immediately soft
Modifiers
sempre  always sempre ff *‘still very loud’’
poco slightly poco f *‘almost loud’’
subito suddenly sub. p ‘‘suddenly soft’’
piu more piu f‘‘louder”

Figure 3.9. CMN Dynamic Markings

DYNAMIC | Native Inherited
uid abs_nearby
voice_parent slope
sync_parent time
voice_ordinate | slope_sign
sync_ordinate | type
marking volume

Figure 3.10. The DYNAMIC Entity




56

There are also inherited attributes in the ‘‘dynamic’’ relation: abs_nearby is a boolean attribute
which is true if there is an absolute dynamic marking in the same voice in a nearby sync. This is used
to fix the value of relative dynamic markings, and will become clear when the actual rules are dis-
cussed. Slope is the rate of change of volume over time, for notes subsequent to the marking. For a
marking such as crescendo, it is non-zero. The time at which a marking occurs is derived from the
time of its sync. This would be expressed in units such as seconds from the beginning of the move-
ment. The volume, slope_sign and type are derived from the mark itself, in the context of various

stylistic factors. They indicate the effect of the marking.
Certain dynamic markings which have a linear range, require two entries in the table, the *‘hair-
pin"’ crescendo is an example. In figure 3.11, which shows changes in dynamic over a single voice,

the volume starts at piano in Sync s ,, a hairpin crescendo begins at s, and ends at s 5 50 that 5 is forze.

i Syncs: s, $2 S3 S Ss S6

|

i /

’ /

! ! -
i —L. —
| &

— |
| p [
| - ‘
i -
| —

H ' s
DYNAMICS
uid | voice | sync | markin voice ordinate
d, vy S P 0
d, Vi S "start cresc.” 1
dy | vy S "end cresc.” | 2
dy | vy Ss f 3

Figure 3.11. Example of Dynamic Markings




57

The note entity is just as before, with the addition of inherited attributes for volume, volume

slope, and voice. Syncs and chords enter into the calculation, with the attributes already mentioned.
Finally, there needs to be a mapping from dynamic markings to their meanings. This will in

general be dependent on the style of the music and the whim of the performer, but figure 3.12 gives a
typical example of this DYNAMIC_INTERPRETATION relation.

3.4.2. Database Procedures for Determining Note Volume

Now, for each inherited attribute, a procedure will be given to derive the value of the attribute
for a particular entity. For conciseness, the pseudo-code language used for specifying the rules will be
functional, in the manner of DAPLEX [Shi81]. This allows the use of inherited or inherent attributes

to be syntactically indistinguishable. For example, the uid of a note n, an inherent attribute, will be

DYNAMIC INTERPRETATION
mark volume | slope sign
f 50 0 ABSOLUTE,
PERSISTENT
mf 40 0 ABSOLUTE,
PERSISTENT
mp 30 0 ABSOLUTE,
PERSISTENT
p 20 0 ABSOLUTE,
PERSISTENT
piuf 10 0 RELATIVE,
PERSISTENT
piup -10 0 RELATIVE,
PERSISTENT
cresc. 0 1 ABSOLUTE,
PERSISTENT,
STARTLINEAR
dim. 0 -1 ABSOLUTE,
PERSISTENT,
STARTLINEAR
end cresc. 10 0 RELATIVE,
PERSISTENT,
ENDLINEAR
sk 20 -1 RELATIVE,
MOMENTARY
P 50 -1 ABSOLUTE,
MOMENTARY

Figure 3.12. Dynamic Interpretation Values




58
represented as uid (n ), and the volume of note », an inherited attribute, will be volume (n). If an attri-
bute is a uid field, this functional operation can be applied recursively, implying a relational join. For
example, *‘slope(prev(d))’’ refers to the slope of the dynamic marking previous to the dynamic mark-
ing d. Occasionally, relational constructs will be required; the syntax for these will be taken from
QUEL.

Here are the rules for determining the volume of a note:

/* Find the dynamic which *‘covers’’ note n */
range of nis NOTE
range of d is DYNAMIC
retrieve d.uid

where voice(d) = voice(n)

and time(d) < time(n) < time(next(d))
dynamic(n) < d.uid
/* Find the volume of the note n */

volume(n) & volume(dynamic(n)) +
. slope(n) * (time(n) - time(dynamic(n)));

/* Find the slope of this volume for n: */

slope(note) « slope(dynamic(n));

Notice that the retrieve statement is guaranteed to retum a single dynamic record, because the time
attributes are monotonically increasing. We determine both the volume and the slope of the volume

for a note with these rules.

A note also has volume slope, if the volume is to change over the course of the note (this is actu-
ally a simplification, since it assumes that the change must occur linearly over the course of the note.
For other types of volume change, several notes would have to be tied to together to form a piecewise

linear approximation of the change in volume over time).

if slope_sign=0
then slope(d) « 0.
done.

if ENDLINEAR € type(d) then
if (abs_nearby(d))
slope(d) ¢ slope(prev(d))
else
slope(d) « 0;
done



59
else if (not ENDLINEAR € type(next(d)))

(volume(next(d)) — volume(d))
duration(d)

else if (abs_nearby(next(d)))

slope(d) «

(volume(next(next(d))) — volume(d))

slope(d) € == juration(d) + duration(uext(d)))

/* untagged end with no nearby fixed */
else

(slope_sign(d) * DEFAULT_CRESC)

slope(d) ¢ duration(d) :

A few characteristics of this type of rule set are worth noting:

It is essentially expressible in a relational language such as QUEL, with the proviso that control

structures (e.g. if-then-else constructs, in this case) must be made available.

The prev (for previous) and next operations are defined on orderings, which must therefore be
supported. The result of these operations is a uid, from which attributes may be projected. This
corresponds to a relational join. Other operators, for example, chord(note), when composed in this
way, also imply a relational join. In this example, the join is between the chord.uid and

note.chord_parent in the chord and note relations.

The set of entities on which a given note volume depends is egsily determined by running the
rule set to completion, and taking note of every object in the database that is read. The database sys-
tem, by a locking mechanism as developed in [SAH85], may cache the resultant values in the database,

“and only recalculate them when relevant entities are updated. This is known as early evaluation.
Alternatively, the data manager may invoke the database procedure at the time the inherited attribute

value is requested by the client. This is termed lazy evaluation.

In fact, the data manager may materialize inherited attribute values at any time between operand
update and value retrieval. In particular, a database daemon may perform this materialization asyn-
chronously to client access. When a large set of values need to be materialized, the optimal strategy is
to materialize first those that will be needed soonest by the client. When this information is not

known, heuristics similar to those used for existing buffer prefetch strategies may be used.



3.5. Summary

In this chapter, we have presented the semantics of hierarchical ordering in detail. They are
represented schematically by HO graphs at the schema level, and by instance graphs at the entity
instance level. The power of this construct lies in its ability to model the *‘part of’’ relationship, where

an entity consists of an ordered set of other entities.

This construct is found throughout the schema for musical information. The instance graphs for
music are very complex, with a large number of subordinate objects in even conceptually small

amounts of music, such as a single bar.

An advantage of HO graphs lies in their semantic power in organizing attribute inheritance. We
have shown three types of inheritance: upward along the hierarchy, downward along the hierarchy,
and laterally over ordered aggregations. All of these inheritances may be mapped into a query

language such as QUEL, with suitable extensions to the data definition language.

We have demonstrated a form of query modification that can be used to support this inheritance,
by translating references to inberited attributes into expressions containing references to native attri-

butes.

"Certain types of inheritance require a more géneral specification mechanism, and we explore one
example of such an inherited attribute in detail. In this example, a general procedural specification is
used to define the relationship between notes and their performance volumes.

Throughout this chapter, we have developed a data definition language to represent entities, rela-
tionships, and the hierarchical orderings in which they participate within the music database. This
language may be used to represent the data model itself, in the form of a meta-database.

In the next chapter we provide a complete description of the entities of the musical notation

database, and the hierarchical orderings in which they pasticipate.



61
CHAPTER 4

A Database Schema for Common Musical Notation

In order to allow a user to refer to meaningful units of musical information, it must first be deter-
mined what those units are. This chapter analyzes in detail the entities that compose Common Music
Notation (CMN), and their interrelationships.

Section 4.1 begins with an overview of the entities of the CMN schema, and categorizes them

into several different aspects. An HO graph will be presented for each aspect of the CMN score.

Section 4.2 focuses on the particular aspect of musical notation that represents temporal infor-
mation. This presentation serves as an example of an application of the data modeling techniques
introduced in the previous chapter. Although the representation of temporal attributes will be covered
in detail, the discussion is intended to be accessible to those with little background in musical notation.

Section 4.3 continues the exercise of the previous section, developing the HO graphs for the
remaining aspects. In focusing on the details of CMN, this section assumes familiarity with musical

notation on the part of the reader.

-

Section 4.4 takes a very small fragment from a musical score, and, using the HO graphs already

developed, presents the instance graph for this specific musical example.

Finally, in section 4.5, some published scores are analyzed, and the approximate size of the data-
bases we might expect to build from them is determined. A simple predictive model is proposed for

determining the size of a database representation based on the information density of the score.

4.1. CMN Entities

In many data management domains, there are only a handful of entities. For example, the stan-
dard company database contains employees, jobs, departments, parts, suppliers, and orders. Musical
information has, even at first glance, many more entities than this. These entities are summarized in

figure 4.1, and will be discussed in the following sections.



62

Entity type Description

Score The unit of musical composition.

Movement A temporal subsection of the score.

Measure A temporal subsection of the movement.

Sync Sets of simultaneous events.

Group A group of contiguous chords and rests in
a voice.

Chord A set of notes in one voice at one sync.

Event An atomic unit of sound; oune or more
notes.

Note An atomic unit of music; a pitch in a
chord.

Rest A “‘chord’’ containing no notes.

MIDI A MIDI note event.

MIDI coatrol A MIDI control event at a point in time.

Orchestra A Set of Instruments performing a Score

Section A family of instruments.

Instrument The unit of timbral definition.

Part Music assigned to an individual performer.

Voice The unit of homophony.

Text In vocal music, a line of text associated
with the notes.

Syllable The piece of text associated with a single
note.

Page One graphical page of the score.

System One line of the score on a page.

Staff A division of the system, associated with
an instrumeant.

Degree A division of the staff (line and space).

Graphical Definitions All the graphical icons and linears.

Instrument Definitions Instrument patches and specifications.

Other graphical attributes | Accents, Accidentals, Annotations, Arpeg-

gii, Barlines, Beams, Clefs, Duration dots,
Fingerings, Flags, Hairpins, Key signa-
tures, Meter signatures, Note heads, Rests,
Slurs, Staff lines, Stems, Ties, Letters, etc.

Figure 4.1. The Entities of a CMN Schema




63
4.1.1. Aspects of CMN

Each musical entity contains various attributes. For example, attributes of a ‘‘note’’ entity are
its position, shape, size, start time, parent chord, and so on. Musical entities in the CMN score have
several aspects and subaspects, as shown in figure 4.2. These may be thought of as different views on
the musical schema.! Roughly, the temporal aspect pertains to when musical events are performed.
The timbral aspect refers to how they are performed (e.g. by what instrument, at what pitch, how
loudly, etc.). This aspect itself admits a finer characterization, into pitch, articulation, and dynamic
(i.e. volume) subaspects of the data. The graphical aspect is concerned with how musical events are
notated graphically. A subaspect within the graphical aspect of the score is concerned with with tex-

Aspects of Musical Entities
il " .
i i
Temporal i Timbral . Graphical ‘
| ; ;
; | i ‘ ;
l . Pich ! . Textual ;
‘ .
|
| |
Articulation
] i
i Dynamic
i i
]

Figure 4.2. Aspects of Musical Entities

! The term view has a specific technical meaning in databases, thus the term aspect will be preferred in this discussion.



64
tual material, including a variety of score annotations, as well as the lyrics (or libretti) associated with

melodies.

The utility of this notion of aspect may be suggested by example. A musical note, as it appears

on a score page, possess attributes associated with each of these aspects.

The temporal aspect of a musical entity refers to those attributes and relationships which model
the entity’s placement in time. A note has attributes related to the time at which it is performed in the

course of a composition.

Because CMN groups musical events by *‘instrument,’’ one may refer to the timbral aspect of

certain entities. A note has a timbral aspect that refers (roughly) to the instrument that *‘performs’’ it.

A pote may have several attributes reflecting its pitch aspect. These include such things as its
staff degree, associated accidentals, and relations to key signatures and clefs. There is also a notion of
performance pitch (either MIDI key codes or frequency information) that is indirectly associated with

notes.

A note inherits various articulative attributes. These reflect roughly how the note is performed.
They include modal attributes such as staccato (shortened or clipped) or marcato (marked or stressed).
Also, a note may have inherited various performance attributes, such as when a violin note is played

pizzicato (plucked) or arco (bowed).

Another attribute which a note must inherit is its dynamic value, which indicates how loudly it is
to be played. In the graphical score, these are given as annotations such as forte (loud) or pianissimo
(very soft). Such attributes are not typically assigned directly to a note, but rather are inherited by the

note from the context in which it lies.

Finally, since CMN is a graphical notation, musical entities have a graphical aspect, relating to
their representation on the written page. For a note, this includes its various graphical components,
such as the note head, stem, associated accidentals, flags, dots, accents, and so on. Each of these has a
shape or size and location on the page. These are all graphical attributes. A subclass of graphical
objects on the score page may be considered to be textual objects. Although individual note entities do
not have a textual aspect, there are a variety of textual annotations associated with pages, systems,

staves, syncs and individual chords.



65
4.1.2. Hierarchical Ordering Graphs for CMN Aspects

Two strategies are used here to organize the representation of musical entities. First, the entities
are arranged into groups by the aspects in which their attributes participate. Not every entity has attri-
butes in every aspect (MIDI events, for example, have no graphical aspect in CMN). Many entities, as
was seen for note entities, will appear in the graphs for several aspects. For each aspect, an HO graph
is defined. Towards the top of each graph will be abstract structures that give form to the music. At
the bottom of the graph will be the low level objects that make up the physical attributes of the music.*

4.2. The Temporal Aspect

Before discussing the entities involved in the temporal aspect of a CMN score, certain uses of
the word ‘‘time,’’ as it appears in music, must be defined. Specifically, a distinction must be made

between *‘performance time’’ and *‘score time.’’

The location in time at which a musical event is actually initiated, and how long it lasts, are
recorded in performance time. The units of performance time are seconds. Score time, on the other
hand, is measured in rhythmic units. Musical structures in CMN, such as notes, chords and measures,

may fall into a more or less regular thythmic structure whose unit is the beat.

The duration of a beat, however, is consistently distorted in performance. This distortion may be
noted in the score, by directives such as accelerando to speed up a passage or ritardando to slow
down. Altematively, they may be inherent in the style of the music, as in the rubato associated with
certain musical styles. Thus the mapping betweer the location of events in score time, and their loca-
tion in performance time, may be arbitrarily complex. When an orchestra performs, it is the role of the

conductor to establish this relationship between score time and performance time.

The HO graph for temporal attributes may now be considered. The relationships among the
temporal aspects of musical entities are shown in figure 4.3. To review the elements of the graph,
each box contains one or more entity types. The solid arrows refer to hierarchical ordering of child
types under a parent type, while the dotted arrows indicate hierarchical ordering under entities not
shown in this graph (they appear under other aspects). The indirect relationship indicated by the dot-
ted lines arises because the given HO graph does not include all the entities in the musical schema.

* In this discussion, entity names will appear in italics.



66

Figure 4.3. Temporal Relationships in the CMN Schema

A musical score is the compositional unit of the database. Its temporal attribute is the duration
of the composition. This duration is the sum of the durations of its constituent movements. A move-
ment is a somewhat arbitrary (though widely used) unit of performance. These movements are further
subdivided in time, into measures. Measures determine rhythmic divisions of a passage. Where a
musical passage has a rthythmic pulse (i.e. a bear), each measure consists of an integral number of

such pulses.

The various musical events within a passage (such as notes) are typically aligned on these
pulses. Each such point of alignment constitutes a sync. This term is taken from the Mockingbird sys-
tem [MaO83]. A sync has, as a temporal attribute, the point in score time at which it occurs. This can
be specified as a number of beats (units of score time) from the start of the measure in which the sync

occurs. Figure 4.4 shows how a measure is divided into syncs. The notes within a sync are grouped



67

i Sequence Beat

; ; Duration
| T 1
‘ > 1 0o | 10
—_— > 2 . 20 | 5
—> 3 25 ‘ S

Figure 4.4. Dividing a Score into Syncs

into chords (by voice, as shall be shown in the timbral definition). The start times of notes and chords
are inherited from their parent syncs.

In addition to the grouping of chords into syncs into measures, particular musical voices may be
independently organized into melodic groups. Groups have a variety of semantic functions in music.
-As shown in figure 4.5, these include phrasing (e.g. notes covered by a slur) and timing (e.g. beams
and tuplets). A group has a the temporal attribute, ‘‘duration,’’ which is a function of the duration of

its constituent chords and rests.

Rests, like chords, have temporal location and duration, although they result in no performance
(MIDI) information.

An event, from the temporal point of view, determines the placement in time of each atomic unit
of sound. It has a unique start and end time, and is performed by a specific voice. An event is thus a
unit of performance. A note, on the other hand, is the notated unit of music. These two are not neces-
sarily the same, as, for example, when two notes are tied together. The Tie is a musical construct that

binds multiple note entities under a single event entity.

At the bottom of the graph appears the MIDI entity. This assumes a MIDI model [Jun83], where

individual musical ‘‘events’’ have particular starting and ending times. For scores that use CMusic



68

Slur: Beam:
in /-\
: o®
» Tupler: [ S
é A o '
N ; . : ’ |

—— .
i i
t

Figure 4.5. Examples of Chord Groups

style note lists, these can easily be extrapolated from the MIDI event information. MIDI events consti-
tute performance information, and so their temporal parameters are given in performance time (i.e.
seconds). There are MIDI commands to control note events, as well as control information such as the

actuation of a control switch other than a keyboard key (e.g. the sostenuto pedal of a piano).

4.3. Other Aspects

For completeness, the HO-graphs for the remaining aspects of CMN are presented here. The
description of these graphs will be more terse than that of the previous section, and familiarity with

CMN is assumed.

4.3.1. The Timbral Aspect

We now consider those entities that have attributes which relate to the type of sound they model,

that is, their timbre. The HO graph for the timbral aspect of CMN is shown in figure 4.6.

Apart from the description of individual scores, the database contains definitions for each kind of
instrument. For the classical composer, an instrument has various attributes such as its family (e.g.
the trombone belongs to the brass family), pitch range, notational transposition, standard clef, and so

on. For the com;;oser of synthesized music, an instrument may be defined by a ‘‘patch,’’ the set of



69

—— ————
i i Instrument
—:———|S°°r° | Defnitions

| Movement

!_Eﬁ ' - - 1
| Chord : Event |

Note

- MIDI
Figure 4.6. Timbral Relationships in the CMN Schema

parameters for a given piece of sound synthesis equipment, or by an algorithmic definition of the

sound, such as a CMusic instrument definition.

The instruments used within a composition refer directly to these definitions, and indirectly (via
graphical constructs to be described momentarily) to the individual score. The score itself is divided
into movements, as already mentioned. In this schema, movements have not only a temporal aspect (as
shown in the previous section), but a timbral one as well, in that each timbral voice of the score is

defined (arbitrarily) to be one instance of an instrument over the course of one movement.
A part is a single instance of an instrument. For example, in a symphony, there is a single musi-

cal instrument known as the *‘violin.’”” A composition may be scored for several violin parts, typically
named ‘‘first violin,”” “‘second violin,”” and so on. When modeling compositions for acoustical



70
instruments, each part represents a single instrument (or set of instruments performing strictly in
unison). For compositions destined for synthesized voices, the parts are typically associated with indi-
vidual MIDI channels.

Each part consists of one or more voices. Musicologically, a voice is defined to be a homo-
phonic subset of a part. In other words, while a voice may contain multiple simultaneous notes (such
as a chord), it does not contain any polyphonic structure. Each chord within a single voice must end
(in score time, not necessarily in performance time) before the next chord in that voice may begin. For
instruments such as the violin, when played conventionally, each part consists of one voice, since the
violin is not played polyphonically. For barp or piano, which have the ability to produce polyphonic
textures, a part may consist of many voices. Synthesizers are commonly configured both polyphoni-

cally and monophonically, depending on their technical capability and the will of the composer.

Voices consist of non-overlapping sequences of chords which in tumn consist of sets of simul-
taneous notes. These entities, groups, chords, notes, as well as events and MIDI information, all
inherit their timbral attributes from the voice entity of which they are a part. For example, the MIDI
channel associated with a particular instance of a MIDI entity is inherited from the part, containing the

voice, containing the event, containing the MIDI command.

4.3.2. The Pitch Aspect

Associated with many (not all) events is a notion of pitch. Some instruments, such as cymbals
and certain drums, have no pitch associated with their events. Figure 4.7 shows the ordered aggregate

graph for the pitch aspect of entities in the CMN schema.

Just as the temporal aspect reflects both score time and performance time, the pitch aspect
reflects both notated pitch and performed pitch. When the score is performed, pitch refers roughly to
the fundamental frequency of the performed note. This pitch attribute is associated with the event
entity, and is inherited by MIDI objects.

Notated pitch reflects a semantic pitch concept which is not exactly identical to this performance
attribute. These notated entities, note heads, accidentals, clefs, and key signatures, are shown in figure
4.8. The staff degree (in the context of a given clef for that staff) on which a note is placed, and the

accidentals associated with the event group, determine the pitch with respect to the tonality of the



71

\
f \ \\
— \\\
! Event \
- \\\
\
\\
\ \\
A\ \
\
\\
' MIDI Noteheads - Accidentals Clefs Keysigs

Figure 4.7. Pitch Relationships in the CMN Schema

composition, as indicated by a keysig (key signature) entity. Thus there are enharmonic notes: dif-
ferent notated pitches (such as b-natural and c-flat) that refer to equivalent performance pitches (figure

4.8).

4.3.3. The Articulation Aspect

Various aspects of performance nuance are grouped under the category of articulation. The HO

graph for entities that have an articulation aspect is shown in figure 4.9.

The ways in which chords are emphasized or accented, pointed or broadened, fall under this
category. The entities that mark these attributes of a chord are accents or various annotations such as

Jfermate, or omaments such as mordents and trills.



72

key signature

9 a
staff degrees
1 !

clef accidentals
Figure 4.8. Pitch Entities: Enharmonic Pitches
Slurs Accents System = | MIDI
: Annotations ¢ (control)

Arpeggii

Figure 4.9. Articulation Relationships in the CMN Schema

'
\



73

Groups of chords are also subject to articulation. When applied to groups, this is typically
known as phrasing. It is indicated by slurs, as well as staff annotations such as caesurae. Because of
the subtle nature of phrasing, it is often not indicated directly in the score, but implied by other proper-
ties, such as dynamic contour, pitch contour, or orchestration. These may be represented by instances
such as MIDI control eatities, which often serve an articulative function. Although not reflected

directly in CMN, they are made available in the database to effect various nuances of performance.

4.3.4. The Dynamics Aspect

Attributes associated with the dynamic aspect model the loudness of musical events.? The enti-

ties associated with these attributes are shown in figure 4.10.

A score may contain hairpins (for lack of widely accepted term) that indicate increasing or
decreasing volume in a voice over score time. These are relative dynamic markings. Absolute dynam-
ics are also specified by dynamics annqtatians such as f (forte) for loud and p (piano) for soft. There is
a fixed class of approximately twenty such annotations (as discussed in section 3.6). Events have a

performance dynamic attribute which is derived from these notational cues. MIDI entities inherit the

dynamic attribute of their event parent.

4.3.5. The Graphical Aspect

Because CMN is a graphical notation intended to capture both the temporal and timbral features
of the score, the graphical aspect of the schema is more complex than the previous ones. Figure 4.11
shows the ordered aggregate graph for the graphical aspect of CMN, excluding the textual sub-aspect,

which will be considered separately.

In this schema, the score and movement entities have graphical attributes such as title page infor-
mation (e.g. title, composer, date of composition, librettist, etc.). A movement is divided into a
number of pages. A page is divided into one or more systems. A system corresponds to one line of

music. In orchestral scores, there is often one system per page. For single instrument scores, many

? This is slightly different than volume, insofar as changes in loudness typically involve timbral modifications in addition
to volume change.

? Unfortunately, the MIDI protocol has no means to specify continuous change in volume within a single sound event. It
may be roughly simulated by concatenating several MIDI sound events within an event entity, cach with a stepwise
change in volume. ’



74

Instrument

/ /
/ /
Hairpins Dynamic
Annotations

. Event

Note

. MIDI

System

Annotations

Figure 4.10. Dynamics Relationships in the CMN Schema




75

Figure 4.11. Graphical Relationships in the CMN Schema

systems per page are possible.

A system is a two dimensional object. Along the horizontal dimension, it is divided into syncs.
The temporal aspect of a sync (e.g. the point in time at which the sync begins, and its duration) have
already been discussed. The graphical aspect of a sync is reflected in its position on the page: a partic-
ular x-coordinate within the system, around which graphical components o'f' the sync are built.
Although those graphical objects (note heads, stems, accents and so on) may not lie directly on the
graphical sync position, they all are placed with reference to it. If a graphical sync moves (for exam-

ple, as the result of an editing operation), all the constituent graphical objects must also move.

The vertical dimension of the system is divided hierarchically. First, the system is separated into

orchestral sections. All instruments in the same musical family are thus grouped together. Each sec-



76
tion is divided into instruments, each of which consists of one or more parts. Independently, associ-
ated with each instrument are one or more staves. Figure 4.12 shows graphically how this hierarchy is
represented in the orchestral score. This figure shows an example of muitiple parts (Violin I and Vio-
lin IT) on one staff, and multiple staves in one part (Piano). In CMN , sections that cover more than one
instrument are bounded by a square bracket, and multiple staves in a single instrument are bounded by

a curly bracket.

Each staff consists of five lines, each line and each space between two lines constitutes a staff
degree. Graphically, a degree is half the vertical distance between two staff lines. This vertical

dimension, within the staff, partly determines the pitch of events on that staff.

Part Staff Instrument Section System

[

N |
Violin o
Viola

Vel

— . | o

Figure 4.12. A Musical System




77

A rather large collection of graphical objects are associated with these various structures. Some

of these are shown in figure 4.13. All of them have definitions that define their graphical structure in
some graphics representation language (such as Postscript [Ado85]).

Most of these graphical objects have already been described under other aspects of the model.

The few that remain provide additional information to tﬁe score reader on interpretation of the score.

For example, staff lines provide the score reader with a reference grid to easily determine the degree of

other graphical entities.

4.3.6. The Textual Aspect

Other aids take the form of arbitrary annotations which provide terse textual comments on the
score or its performance. The annotations are applied in stylized fashion to various other entities.

Thus there are page annotations associated with the page entity, part annotations associated with the

/ flag

rest
""'”\ hairpin
. /
\\ ; ﬁ ” /. _-]
) — = f
., L —f S .2
T o® \
—'{%_,
J /\ g _& ™ staff line
/ ‘ﬁé_._—:t—; N \\
— AN AN
- g < AN
bar line ° \\ \\ \
: \
accent ; \ \ .
arpeggio

slur accidental

\\ ® dynamic annotation

N chord
Figure 4.13. Graphical Entities




78

part entity and so on. Figure 4.14 shows the ordered aggregate graph for the textual aspect of CMN.

Score and movement annotations include textual information relating to the title of the composi-
tion, and other textual material that comes at the head of the piece. Instrument and part annotations
include text that labels the left margin of the system, indicating, for example, which instrument plays

the music on a particular set of staves.

System annotations occur at a particular sync, and usually are notated above the system. They
include textual annotations that give performance directions that apply to all parts at a point in time

(e.g. tempo indications such as Allegro, *‘quickly’’).

Various other indications annotate a particular staff at a point in time. These staff annotations
include information on how the score should be read (e.g. ‘‘a due,’”’ where one voice is to be read by
two parts sharing a staff), or how it should be performed (e.g. ‘‘pizzicato,”” where the notes on a staff

should be plucked rather than bowed by a stringed instrument).

Figure 4.14. Textual Relationships in the CMN Schema




79
Dynamic annotations are associated with a given chord to indicate that this chord, and perhaps
subsequent ones in its voice, should have a particular dynamic level. These include annotations such

as “‘f’ for forte (loud) and ‘‘p’’ for piano (soft).

In vocal music, where words are spoken at particular pitches, the words themselves are
represented textually in the score. In this case, lines of fext are aggregated under each staff. The text
is divided into syllables, each under a single sync. This term is used in a somewhat stylized fashion.
These vocal ‘‘syllables’’ are not necessary the actual syllables of a word, but rather those word parts

notated a one point in the score (multiple syllables are often sung on one note).

Every instance of a textual annotation has a particular font associated with it. Sometimes the
font is fixed by convention, as with the characters used in piano fingerings or dynamic markings.
Other nmes the notator has considerable latitude in selecting fonts. For example, the lyrics of a song
might be in Roman or Italic characters, and the title of a composition might be set in a variety of

typefaces or sizes.

This concludes the description of the entities in the musical database schema. A prototype
implementation of this schema has been made, and is included in appendix C. By way of summary,

this prototype contains 55 entities, with 251 attributes, both native and inherited.

4.4. An Example from Music

In this section an instance graph for a small musical example will be developed. Figure 4.15
shows a fragment of music, representing one measure from a piano score. For reference, each of the
chords in this figure is indicated by a dashed box. In spite of the small size of the fragment, it contains
large number of entities: a measure, a part, syncs (sets of simultaneous chords), voices, chords, staves,
notes, and gmphichi elements such as flags, stems, accents and dots. In figure 4.16, musical icons have
been replaced by database entities, each represented by a named box (for the purposes of the example,
the set of entities has been simplified slightly). The entities are positioned in figure 4.16 so as to
roughly correspond with their actual locations in the measure of music as shown in figure 4.15. The

four chords are again indicated by dashed boxes.

.These entities form the nodes of the instance graph. To determine the P-edges and S-edges of

the instance graph, refer to the HO graph for this set of musical objects, shown in figure 4.17. Again,



80

g

sye

Voice | ' Crord Im- Dt
1 — —— c—
[~

Voice
F~—- === ————-=
|\ - T -T-TT-T--=-=-=-
| Acldwal | Now —
| e =
| — —_—
| Chod.
| —e—— ‘Ne.
I  e—
| — —
! Accléancal N Sua Sum
f — - —_—
|
1
1

Figure 4.16. Entities of the Instance Graph




81

Part

Measure
A
' i
Sync I Voice

Stems Flags * Accents Note
: 7~N
__Z\__
lAcc:identals Dots

Figure 4.17. HO Graph for a Subset of Musical Entities

each edge in this HO graph defines one ordering on the musical data.

Unfortunately, if one were to view all the edges of the instance graph simultaneously, the graph
would be unreadable. Therefore, the next five figures each show a subset of the edges in the instance

graph for our example.

Figure 4.18 shows the ordering of the staves and voices of this measure under the part entity.
Figure 4.19 displays both the ordering of syncs within measures and the ordering of chords within each
sync. The ordering of chords within syncs is shown in figure 4.20, along with the orderings of stems,
flags and accents under chords. Notice that there are no S-edges for this latter group of orderings,
since each such ordered set in our example contains a single stem, flag, or accent. This is not neces-

sarily true. For instance, there could be multiple flags associated with a given chord.



82

Pedge “*Object under pan™
S-odge: *Next ruef undes pan™®
S.edga: *~Naxt volos xnder pan'*

S T
Veice ,Chord.  Now | Dw
: A
—
. Swm
—
e — Accect
— —
Chord ! _
—_ Now
 Acersl . Now  Swm ot N
1 :
+ Nows Note

Figure 4.18. Orderings under the ‘‘Part’’ Entity

1]




SOUAS I pUe ANSES 4 I9pun SSUUSPIO ‘6T 2mByy

T 7 won
—_— —_— ks Uy poy3 e, BSpe-g
.. , . ! s Jepun PactyD., #8peg
Cumg, N | wag b moN | meoy L aintvmy 0) 3ol jrey., 39pe-g
. ¢ ; . ! ISP 2UD RUE., BEped
—_—
v w
s _ Y ;
L moy rmppoy | ‘ . o
1 i ; !
a4 ’ !
. /‘ 1 —
R / ! o307
wag oS /‘ !
! i
aon wa . wen ! DN
Lasa g '
- —_— -
-~
-
1
;
. gog !

-_p
c-
>
e
oy

ud

€8



£ S |
(N Y
\ N
‘ " Now |
.\ j .......................... : H
Chd -------
Now |

1 '-
.~ ’ 1
o
Koy Accidenal Now | [ swm cuu} - = = 4 s5um
€——  PRedge: “Chord cndes voice™ -

< S-edgm: **Next chord in voice'” —
€ - Pedga: ~Stam, fizg, or scoant ender chord™ | Now . No.'

Figure 4.20. Ordering of Chords and Their Graphical Components

Similarly, figure 4.21 shows the ordering of notes within chords, and the orderings of accidentals
and dots within notes. Again, accidentals and dots form ordered sets with a single element in this
example, therefore no S-edges are shown for them. Finally, the ordering of notes under their parent

staves is shown in figure 4.22.

Although this example is small, the instance graph is complicated. Tallying the objects manifest
in this single measure (including some not included in the simplified instance graph above), there are a

total of 60 database entity instances.

Even in this simple example, the complexity of the topological information inherent in CMN is
evident. CMN has historically been read by human performers needing to derive large amounts of
information from the score in ‘‘almost’’ real time. The emphasis for musical notation has been to pro-
vide the performer at a glance with virtually all the information necessary to render the music. The
notation itself has therefore evolved over time to provide as concisely as possible a very large and
diverse quantity of musical information, including pitch, thythm, phrasing, dynamics (e.g. volume),

harmonic structure, declamation (e.g. of syllables of text in a song), and so forth.



85

€ Redg: ~Now wder ctord"™

i Mesmre
™ e | s, sy
Volos ::ll—{'«nll— Det Cherd Note
H
; ' St Smm
Voics _— —
Plag
Sun "Accers
H Note
. [
/
\ — U
Accescal |- — Suen Chiord Jt—t=—] ‘Nota. | Swm
r ) = ]

S-odge: “Nestcom inclord”
€ = - Pedg “Accidental or ot wnder 0w ™

= =

Figure 4.21. Ordering of Notes (by Chord) with Their Graphical Components




86

€  Redge: “Now mder mtr™ /
o S-edpe: “Next om in sl

—

Figure 4.22, Ordering of Notes by Staff

4.5. Projecting the Size of Music Databases

Having determined the set of entities required to represent a CMN score, the size of this
representation for a particular score instance may be predicted. This section considers the question,
‘‘How much information must a music data manager manage?’’ As with any general purpose data
manager, the answer to this question is highly application dependent. In spite of this, some general
characterizations about the size of music databases may be made that do not assume a particular appli-
cation. An empirical analysis was performed in an indirect fashion, intending to derive an ‘‘order-of-
magnitude’’ estimate of the size of musical objects. A simple model for predicting musical informa-

tion density is developed later in this section, based on our results.

4.5.1. Counting the Entities of a CMN Score

The ‘‘unit of publication™ (i.e. a book) was chosen as the musical object for analysis. The

advantage of this is that the information density within a given book is fairly constant, while the infor-



87
mation density between different books representing, for example, different genres of music varies
widely.

For the practical problem of determining the size of objects, a statistical approach was used.
Assuming (very roughly, to be sure) that the density of musical information is uniformly distributed
over the book, samples were taken on a page by page basis to extrapolate the total amount of informa-
tion.

Our approach, then, was as follows: For each unit of publication, determine the number of each
musical entity as defined by the schema of the previous section. This was done by taking a random
sample of pages, counting the entities on those pages, and extrapolating the total number of entities
from this count. In those cases where exact amounts were available (where, for example, measures or
pages were already numbered), the exact values were used in preference to the statistical extrapola-
tions.

Figure 4.23 shows our results for three different kinds of books. They are all similar in that they
contain exclusively musical material. Other possibilities were not considered, such as thematic

indices, which contain musical material embedded in a large amount of bibliographic (textual) infor-

Collection: Opera: Symphony:
Entities Broadway Die Beethoven's
Tunes Fledermaus Fifth

performers 2 48 29
movements 69 18 4
pages 176 704 136
lines 900 704 186
measures 4,000 4,000 1566
parts 140 100 40
staves 200 300 30
voices 350 400 60
syncs 20,000 22,000 8,000
chords 52,000 520,000 96,000
notes 65,000 660,000 160,000
rests 5.000 58,000 80,000
beams 6,000 66,000 7,000
syllables 14,000 58,000 0
Total 170,000 1,400,000 350,000

Figure 4.23. Number of Entities in Musical Objects




88

mation.
The three books are:
(1) A collection of Broadway tunes, scored for voice and piano [Leo81],
(2) A three-act opera, Die Fledermaus, by J. Strauss [Str68],
(3) Symphony Nr. 5, by L. van Beethoven [Bee60).

As can be seen from the data in figure 4.23, the number of entities is dominated by the number

of notes and chords.

4.5.2. Predicting Database Size

It would be useful to predict the database size for a given musical score based on a small set of
readily determinable parameters, such as the length of the score, the number of parts, and so on. In

this section, the relationship between these parameters and the resultant database size is determined.

The total number of entities, e, in a score will form the basis for our estimate of its size. This
assumes that all entities are of about the same size. This is reasonable for the above examples, where
at least two-thirds of the entities in a score are one of two types, notes or chords. By noting the dura-
tion (performance time) of a score, and the number of performers in the orchestra, the average density

of the score can be calculated:

dpg = —
avg p
where:
d,,, is the score density in entities per performer per second
e is the number of entities
¢ is the duration of the score
p is the number of performers in the score

Given the density of a score (or perhaps, the density expected in a particular genre of scores),

score size is determined by the formula:

§= tpdcvg Sensiry

where:

5 is the size of the score representation in the database
t is the duration of the composition in seconds

p is the number of performers in the score

d,, is the average density (as above)

Sentiry 1S the average size of an entity (assume 4 bytes)



89
The average density parameter and total size for our three sample scores are shown in figure
4.24, along with the rate of information flow during performance, measured in kilobytes per perfor-

mance second.

We hypothesize that scores of a similar genre have similar densities. Indeed, the two classical
orchestral piece considered above have densities of 3.6 and 4.0. The higher density, 10.6, of the piano
vocal work can be explained by two factors. First, the piano is physically capable of producing multi-
ple notes simultaneously (and, unlike, say, the violin, does so most of the time). Second, a composi-
tion for two performers will generally use both of them continuously, whereas in an orchestral compo-

sition, large subsets of the orchestra are often silent.

It would be interesting to test this hypothesis; to determine, once the music data manager is in
operation, whether there is indeed a strong correlation between orchestration or compositional style

and information density.

Gomberg [Gom77] did actually perform a DARMS encoding of a sophisticated orchestral com-
position. He encoded approximately twenty percent of Elliot Carter’s “‘Double Concerto for Harpsi-
chord and Piano with Two Chamber Orchestras’’ [Car62]. The approximate size of Gomberg’s encod-
ing is 500 kilobytes, with 3000 bytes per page, 300 bytes per performance second. According to the
our model, ‘

¢t = 1500 seconds (known)
p =21 voices (known)

Collection: Opera: Symphony:
Entities Broadway Die Beethoven’s
Tunes | Fledermaus | __ Fifth |

Entities e 170,000 1,400,000 350,000
Performance time ¢
(seconds) 8000 8000 3000
Density d,,, 10.6 3.6 4.0
Size s
(megabytes) 8 67 17
Kilobytes per
performance- 1 8 5
second

Figure 4.24. Projected Database Size




90
d,,e =4 (assumed)
Sens =4 (assumed)

Therefore:
s =504 Kilobytes

This result supports our hypothesis that density is consistent across scores of similar genre.

4.6. Summary

In the context of Common Musical Notation, the large number of entities that make up a concep-
tual representation of music have been explored. These entities have attributes that fall into one of
three classes: temporal, timbral, or graphical. The timbral aspect of music entities can be subdivided
into three more classes: pitch, articulation and dynamics. Within the graphical view, an important set

of attributes relate to textual information.

The hierarchical ordering graph that represents the relationships among the entities within each
of these aspects was presented. This entailed a careful enumeration and definition of all the entities

that constitute our representation for CMN scores.

The information density of actual musical scores, based on a statistical analysis of the number of
entities per unit of publication, was then calculated. This may be used to give a rough value of the
expected size of an arbitrary composition. The most obvious conclusion from this analysis is that
musical compositions have a very high information density. Any musical information management
system that is to handle even single compositions of moderate complexity must manage a large quan-

tity of information.



91
CHAPTER §

An Access Method for Ordered Aggregation

An access method that is useful for manipulating ordered data will be described in this chapter.
This access method, based on a data structure known as the A-tree, provides an efficient way to mani-
pulate the ordering of entities within a relation. A design is presented for this access method as an
extension to the INGRES database system, and to its data definition and manipulation language,
QUEL.

The chapter begins by describing previous proposals for representing ordered relations in section
5.1, and user-defined aggregate functions in section 5.2. These two concepts serve as the starting point

for our proposal.

This proposal supports inherited attributes whose values are determined by an aggregate func-
tion over the siblings that participate in an ordering. These ordered aggregate functions are described

in section 5.3.

An ordered relation may be stored in either a flat file format (called an ordered heap) or in an
A-tree structure. The specification of these is presented in section 5.4. In order to use this data struc-
ture, the database system makes use of procedures supplied by the user.! The procedures that the user

must code in order to support an ordered aggregate function are described in section 5.5.

In section 5.6, we present the extensions to our data definition language needed to support A-
trees. These commands allow the user to register ordered aggregates with the system, associate

ordered aggregate functions with entities, and create A-trees over ordered relations.

The algorithms employed by the database system to manipulate ordered relations and determine

the value of ordered aggregate functions are specified in section 5.7.

A prototype A-tree implementation has been built, and various performance tests have been per-

formed. These are presented in section 5.8.

1 It should be clear that the *‘user’” in the context of *‘user-defined aggregates®’ is the application programmer developing
a client for the musical data manager. Such a user should not be confused with the end-user of the application, for whom
all database operations are presumably transparent.



92
Until this point, we have only been considering relations with a single, global ordering. Section
5.9 discusses the case where the entities in the relation participate in multiple orderings, and section

5.10 considers hierarchical orderings.

An extension to this implementation, supporting multiple orderings, is then explored. This
involves storing a multi-ordered relation as an multi-linked list. This allows for a graph representation
of the ordered data. This structure is often more space efficient, and graph partitioning techniques may

result in superior query performance. These issues are detailed in section 5.11.

Section 5.12 briefly discusses other issues such as additional implementation alternatives and

performance optimizations.

5.1. Previous Proposals for Representing Order

In this section, previous proposals for implementing notions of ordering will be discussed. They
fall into two classes: sorted relations and ordered relations. The latter class contains several interesting

proposals, such as ordered B-trees and event trees, which will be presented in detail.

5.1.1. Sorted Relations

Although the original description of the relational model specified that the records in a relation
are not ordered [Cod70], implementations of relational databases have typically provided a means to
sort the records of a relation by using one or more of its attributes as a ‘‘key.’’ Relations may be
stored in ISAM [IBM66] or B-tree [BaM72, Com79] data structures to allow efficient access via the
key value, and to maintain the records in sorted order after insertions or deletions. Relations that are

ordered by a key value are ‘‘sorted relations.”’

The ordering structures presented in chapter 3 are not well modeled by sorted relations. Because
ordering in sorted relations is dependent on the value of a native key attribute, which doesn't exist for
many ordered relations (as was shown in chapter 3), these techniques are not suitable for the music

database. This shortcoming of sorted relations motivated the development of ordered relations.



93
5.1.2. Ordered Relations

A common implementation of the entity model, built on the relational model, puts each entity
instance into a data record, and all the records of a single entity type in a single relation. If the entities
are ordered, we can reflect that ordering by the order in which the records are situated in the relation.
A relation whose records are ordered in this way is an ordered relation. The database system must
properly maintain this ordering. For example, the system may not arbitrarily rearrange the records of

the relation, as it might otherwise do if the relation were unordered.

The TEXT relation [SSK82] serves as a simple example of such an ordered relation. It models
the lines of text in a document. Each record in the TEXT relation represents one line of text. These
lines are obviously ordered; whether ope line in a document is before or after another line is well

defined.

Suppose we implement the TEXT relation as a sorted relation, by introducing the attribute ‘‘line

number’’ as a key.2 If the relation is then sorted on line number, the lines become properly ordered.
This does not, however, accurately model the TEXT relation. As lines are inserted or deleted from this
relation, the ‘‘line numbers’’ must all be cha'nged. even when the order of the remaining objects
remains the same. For this case where the records in a relation are ordered, yet no key properly deter-

mines the ordering, sorted relations are not appropriate. An ordered relation is used instead.

QUEL normally allows the comparison of attribute values in a query. In an ordered relation, the
records themselves (as entities) may be compared. For example, a valid query on the ordered TEXT

would be,

range of t1, 12 is TEXT
retrieve (t1.all)

where t1 before t2

and t2.line = ‘“a line of text’’

This query retrieves all the lines prior to the line, *‘a line of text.”” The range variables, t1 and t2 in this
example, represent entities that may be compared. The comparison is well defined because the entities

are ordered.

2 In this model, a line number represents the ordinate position of a line within a document (for example, the fifth line in
the document has line number five). Such line numbers are necessarily consecutive. This notion differs from the concept
of line number used by some text manipulation systems.



94
5.1.3. Ordered B-Trees

A structure for implementing text as an ordered relation is presented in [SSK82]. In this propo-
sal, each line of text is stored as a record in the TEXT relation. Because this proposal does not use an
entity model, ordering had to be reflected in an attribute of the TEXT relation. The line number, asso-
ciated with each line of text, is presented as such an attribute. Rather than having the user update
every line number whenever an insertion or deletion is performed, an auxiliary data structure is used to
maintain correct lme mmbers for each record without user intervention. This data structure is called
an Ordered B-tree (OB-tree). it is presented briefly here; a complete description may be found in

[Lyn82].

An OB-tree is similar to a B *-tree [Com79] in thgt data is stored in leaf pages, and a multi-level
index is provided to access the data. An example of an OB-tree is shown in figure 5.1. Pointers to the
records in the relation (i.e. tuple identifiers, or TID’s) are stored in the leaf pages of the OB-tree. The
order of the records is represented by the order in which the TID’s are stored. Each intemal record of

the OB-tree maintains a count of the TID's in the subtree below it.

Internal page:
‘11 7 10 (counts)
- N (pointers)
Letpag: -
e mew R

/

oofoi T foole i olclocle oo T| ofee ']—.T. " oleefe | ‘ee cece l

1 i,,

ﬁgm 5.1. An OB-tree (from [StR80, p. 15])




95

In order to find a particular line, given its line number, the data manager scans the root of the
OB-tree, detemlinihg which subtree contains the particular line. Suppose we wish to find line 15 using
the OB-tree of figure 4.23. Scanning the root shows that the left subtree contains lines 1 through 11,
and the middle subtree contains lines 12 though 18. We therefore must find the fourth line in the mid-
dle subtree, by scanning its root, and so on. One page is scanned at each level of the tree until a leaf

page is encountered. The TID for the desired record is found on this page.

In order to insert or delete TID's from this data structure (corresponding to insertion or deletion
of lines of text in the TEXT relation), algorithms similar to those for B *-tree insertion and deletion are
used. The important point is that for a single insertion, rather than updating all the line numbers which

follow the insertion point, we merely need to update one value at each non-leaf level of the OB-tree.

5.1.4. Other Proposals for Ordered Relations

An almost identical approach is used in the EXODUS system [CDR86] for storing *‘large data
objects.’” A large data object consists of a variable length string of bytes split among several disk
pages. An OB-tree index provides efficient access to any substring at a given ordinate position, deter-
mined by a ‘‘byte number”’ instead of a ‘‘line number.”’ Algorithms for inserting blocks of bytes at an
arbitrary point in the string are presented in this proposal. In the OB-tree for a large storage object, the
internal records of the index contain counts of the number of data bytes (rather than data records) in

the leaf pages below.

. In a proposal for managing events and processes, a similar extension to B-trees was presented
[Rub85]. In this proposal, an event is an entity that begins at a particular point in time. They form an
ordered entity set, such that an event ¢, is before another event e , in the ordering if e, starts at an ear-
lier point in time than e ,.

Each event is stored in an EVENT relation, along with the amount of time until the start of its
succeeding event (the delay). The start time of any event can be calculated by summing the delays
from the beginning of the ordering up to the given event. An auxiliary tree index allows the start time
to be calculated for a given record without requiring a sequential scan of every preceding record. For
each record in the EVENT relation, its TID and delay are stored in this index, as shown in figure 5.2.

Each internal record of the B-tree index contains the sum of all the delay values under it.



96

locernal page:
!2|6i3, partial sums
v poirgers
Leaf page:
—_—
ii1.0 delays
e Roocc
.

i*l®*:®* T o
V617

! P i C N
o 1jol 271fof 'o o lz2ir]s| wielz| 1|t ein l2.1.1
ofo o . o'efe o .0 o o|le. ‘eje]e ofo{o ie o sle. e o o
; | ] { ; : Lo i 1 L :
o 11 3 4 & 4 6 7 8 8 10 11 14 1815 17 18 19 19 20 284 cvent start time

Figure 5.2. A Start Time Index for Events (from [Rub85, p. 15])

Referring to this figure, suppose we want to find the event at start time 20. We first scan the root.
The first subtree under the root must contain start times within the range 0-through 6, the second sub-
tree covers 6 through 17, and the third subtree covers 17 through 24. The event at start time 20 there-
fore must lie under the third subtree. Its left child is seen to contain start times in the range 17 through
20. We then scan this leaf page. Beginning with a start time of 17, we add the delays for successive
records on this page, until we reach the desired start time of 20 at the fourth record. We then take the
TID from this record, which points to the desired data record in the EVENT relation. Thus, rather than
scanning every leaf page to determine the sum of the delay values, a traversal of the index from root to

leaf suffices to find the event with a given start time.

Insertions and deletions are performed as for B-trees, with the addition that the internal partial
sums must be properly updated.
5.2. User-Defined Aggregates

In the TEXT example, the index maintained a count of the data records in the ordering. In the

EVENT example, it maintained a sum over the delays associated with each event. ‘‘Count’’ and



97
‘‘sum’’ are each instances of aggregate functions provided by query languages such as QUEL. Our
proposal generalizes these examples so that arbitrary aggregate functions may be incorporated into the
index.

The INGRES system [HSW75] has been extended to provide a facility for defining abstract data
types (ADT’s) and abstract data type operators [Fog82,0ng82,0ng83). The result, ADT INGRES,
has been further extended to incorporate user-defined aggregates, including aggregates over abstract
data types [Han84]. Our proposal further develops this work by extending ADT INGRES to support

user-defined ordered aggregates (to be defined presently) over ordered relations.

An example of an ADT is the data type box used for graphical descriptions (for instance, in a
VLSI application, as described in [SRG83]). A straightforward implementation of the box type uses a
group of four floating-point numbers to specify the vertices of a rectangle. An example of an ADT
operator on boxes would be the overlap operator, “‘IlI”’. This operator takes two boxes as arguments,
and returns true if they overlap. The following example (from [SRG83, p. 5ff]) demonstrates the use

of this ADT operator:

create BOXES (owner = integer,
layer = string,
box_desc = box_ADT)

append to BOXES (owner =99,
layer = *‘polysilicon’’,
box_desc =*0,0,2,3"")

range of b is BOXES

retrieve (b.box_desc)
where b.box_desc Il *‘0,0,1,1"’

First, the BOXES relation is created. It contains an integer-attribute ‘‘owner,”’ a character string
attribute “‘layer,”” and an ADT attribute, *‘box_desc.’’ The second statement inserts a record into the
BOXES relation. The attribute value ‘“0,0,2,3" is translated by the query parser into a box: a rectan-
gle with one corner at x=0, y=0, and the opposite comer at x=2, y=3. The third statement retrieves all
boxes that overlap the unit square (the square with one comer at x=0, y=0,Aand the other at x=1, y=1).

The procedures to manipulate boxes and to implement the overlap operator are supplied by the user.

Hanson extends the notion of user-defined ADT operators to user-defined aggregates. He gives

two eiamples of aggregates on boxes [Han84, p. 3ff]:



98
(1) Compute the area occupied by a set of possibly overlapping boxes. For example, find the area of

boxes in the polysilicon layer:

range of b is BOXES
retrieve (area(b.box_desc where b.layer = *‘polysilicon’"))

(2) Compute the smallest box containing a set of boxes (the bounding box). For example, find all

boxes that overlap the bounding box of the polysilicon layer:

range of bl, b2 is BOXES
retrieve (b.all)
where b.box_desc Il bounding_box(b.box_desc where b.layer = “‘polysilicon’’)

Determining aggregate function values is performed by scanning sequentially through the
records of the relation. At each record, particular values are passed to a routine which accumulates
state information used to calculate the aggregate value. Thxs routine is called the Next routine. For
example, the aggregate average(x) (where x is an attribute in the relation being scanned) maintains
two aumbers in its state: the sum of x values, and a count of the number of records scanned. For each
record scanned, the Next routine adds an x value to the sum, and increments the count. When the scan
is complete, the average may be calculated by dividing the resultant sum by the count (this is done by

another user-defined procedure, the Result routine).

By allowing the user to define the structure of this state information, as well as the routine used
to incrementally accumulate this state, user-defined aggregate functions are supported. To process the

bounding box aggregate function in a query such as:

range of b is BOXES
retrieve (bounding_box(b.box_desc where b.layer=*‘polysilicon’"))

the system sequentially scans through a set of boxes that satisfy the qualification (i.e. boxes in the
polysilicon layer), and, for each box, calls Next to accumulate state information. The state, in this
case, is initially an empty box (the *‘state box’’). As each box is scanned by the system, the Next pro-
cedure extends the state box to cover this scanned box. When the scan is complete, the state box is

returned to the data manager as the result of the aggregate calculation.



5.3. Ordered Aggregate Functions

The aggregates described in the previous section take an unordered set of entities (e.g. boxes)
and calculate a single value based on them (e.g. a bounding box). An ordered aggregate function, on
the other hand, takes an ordered set of records, and defines one value for each record. In terms of the
entities stored in an ordered relation, the ordered aggregate function defines an inherited attribute
whose value for any particular entity instance depends on the position of that instance in the ordering.

The following sections contain several examples of ordered aggregate functions.

5.3.1. Examples of Ordered Aggregate Functions

It can be seen that the line numbers of the TEXT relation are the result of such an ordered aggre-
gate calculation. A lme number for a given record is the ‘‘count’’ aggregate applied to the records
previous to it in the ordering. This definition of line number remains correct in the face of arbitrary
insertions and deletions from the TEXT relation. Similarly, the start time of an event in the ordered
EVENT relation results from applying the ordered aggregate for summation to the delay values previ-

ous to this event in the ordering.

In addition to the ordered aggregates for counting and summation (hereafter called
‘‘ordered_count’’ and ‘‘ordered_sum,”’ respectively), other application specific ordered aggregates
might be useful. Suppose we wish to model a queue, whose length changes over time, as elements are
added and removed from the queue. For example; a process scheduler may have a queue of runnable
processes. At regular time intervals, we sample the length of the queue, and store it in the database.
This set of queue length samples constitutes an ordered relation (each sample is an entity, and each
entity is before or after some other entity). We want to know the average length of this queue in the

vicinity of a given point in time. This is commonly known as the ‘‘load average’’ of the system.

The averaging function used for this example is typically an exponentially weighted average.
The exponentially weighted average at a given point in time is a function of the queue length at all pre-
vious sample points. Samples in the recent past are more heavily weighted than samples in the distant
past (The assumption in this example is that ‘‘recent history predicts future behavior’’). Figure 5.3(a)
shows a histogram of a queue length samples, and an associated exponential average. The exponential

average serves as a ‘‘smoothing function’’ over the raw data samples. These samples are stored in the



100

Queue

Length

20
18

14
12
10

N &~ OV 0

Figure 5.3. Exponential Average of Queue Lengths

A
]
r
~ ’ ‘ exponential
2N B average
- g (s=0.2)
Time
(a)
RUNQUEUE
Queue Time Load
Length | (ordered count) | (expomential average) |
13 0 13.00
14 1 13.20
7 2 11.96
2 3 9.97
11 4 10.17
5 5 9.14
10 6 9.31
11 7 9.65
7 8 9.12
10 9 9.30
7 10 8.84
19 11 10.87
9 12 10.50
16 13 11.60
19 14 13.08
3 15 11.06
(b)




101
RUNQUEUE relation, shown in figure 5.3(b). The only native attribute in this relation is queue
length The time attribute is an instance of the ordered count aggregate, analogous to the ‘‘line
number’’ attribute in the TEXT relation. The third column, the exponential average, contains the new
ordered aggregate for exponential averaging. Its value at a given data point is calculated by taking a
weighted average of the average at the previous data point and the data point itself (the weight, or
scale factor, in this example is 0.2). The exponential average may be computed by the recurrence rela-

tion:

X9 =4y
X; =sa; +(l-s)x;,

where:
a; is queue length at time 7,
X; is the exponential average at time i,
s is the scale factor for weighting the average (0<s <1).

It is a straightforward mathematical exercise to determine the algorithms for accumulating state infor-
mation in a manner analogous to that used for the ordered_sum and ordered_count aggregates. This is

included, for completeness, in appendix E.

5.3.2. Components of an Ordered Aggregate Function

The recurrence relation in the above example contains components common to every ordered

aggregate function. These are:
An ordering. In the example, the ordering is that of the samples in the RUNQUEUE relation.

State information. This is x; in the example. It need not be an atomic value, but may be an arbi-
-trary structure. For example, we have seen that the regular average function has two elements in its

state, a sum and a count.

Aunribute parameters. These are the attribute values taken from the entities in the ordering,
which are used to calculate the aggregate function value. In the example, the queue length, a, is an
artribute parameter. In the ordered_sum aggregate, the attribute over which we are summing is the

parameter. The ordered_count aggregate requires no such parameter.

Constants. In contrast to the parameters whose values vary within the computation of a particu-

lar ordered aggregate, there may also be constants associated with the aggregate calculation. For



102
example, over a given ordered set of queue length samples, there are many different exponential aver-
age functions, depending on our choice of the ‘‘scale factor’’ constant, s. At the time we define an
inherited attribute to have the value of an ordered aggregate function, we fix the value of constants
associated with that function. To be clear, it should be noted that these so-called ‘‘constants’” may
vary among different inStances of the ordered aggregate, but within a single instance of an ordered

aggregate function, the values of these constants are fixed.

A result. The result value of the ordered aggregate function at any point in the ordering is a

function of the state at that point. In the exponential average, it is merely the state value, x;.

5.4. Implementation of Ordered Relations

Having detailed the components of ordered entities and ordered aggregate functions, their imple-
mentation is now considered. The simplest implementation, the ordered heap, is discussed first, fol-
lowed by a more complicated data structure, the A-tree, that provides better performance for calculat-

ing ordered aggregate functions, at the price of increased space and complexity.

5.4.1. Ordered Heaps

A simple implementation of the ordered TEXT relation stores the records of the relation on a

doubly-linked list of disk pages, as shown in figure 5.4. This flat file structure is known as an ordered

heap.® Within a page, the ordering of records is represented by their position. A record is before

First Disk Page:

o

.

L TR T T

— —_— —_—

Data Record — >
Ordering of Records

Figure 5.4. An Ordered Relation as a Linked List of Disk Pages

3 The term **heap’’ is used to refer to an unstructured collection of objects (this usage is familiar in database systems, as
well as in programming languages, such as Pascal). This should not be confused with the data structure, also known as a



103
another record on the same disk page if it is stored closer to the beginning of the disk page. In com-
paring records on different pages, the ordering is represented by the links. All the records on one page
are before those records on the pages following it along the forward links of the list. A sequential

scan of an ordered heap therefore retrieves its records in order.

5.4.2. The A-tree Data Structure

Just as sorted relations may be maintained simply in heaps or efficiently in B-trees, ordered rela-
tions may be maintained either in ordered heaps or ordered trees. The following proposal for ordered

trees generalizes those mentioned above.

The data structure used to index ordered relations with ordered aggregates is a tree of disk
pages, as shown in figure 5.5. The disk pages are divided into internal and leaf pages. Each record in
an internal page contains state information for one or more ordered aggregates, plus a pointer to a child

page. Each record in a leaf page contains one data record from the relation (or possibly a TID pointing

Root

Internal pages
containing aggregate
state information N

ss' s

Leaf pages / ¥ A v
containing S s e
data records ; F— -

Figure 5.5, The A-tree Data Structure

heap, used by algorithms such as **heap sort’, for which a heap is a partially ordered binary tree.



104
to the data record; this is discussed in section 4.9). Additionally, each page in the data structure
(except for the root) has a pointer to a parent intemnal record. Finally, all pages within a level of the
tree are doubly linked so they may be efficiently scanned, either forward or backward.

The data structure has the following characteristics:

All leaf nodes are at the same distance from the root of the tree. This is guaranteed by the inser-

tion and deletion algorithms, as with B -trees.

All pages are at least half full, except possibly the root. In other words, if p is the number of
bytes on a page, and r; is the size of the i "th record (the records need not all be the same size), then the

total size of records on a non-root page is bounded above and below:

% <Yrisp
The ordering of entities in the ordered relation is reflected in the layout of records on the leaf

pages. Scanning the leaf pages (following their forward pointers) accesses the data records in order.

The internal pages of the A-tree contain summary information for any number of ordered aggre-
gates that have been associated (by define inheritance statements) with the ordered relation. The
Ordered B-tree is thus a special case of this data structure, where the summary information in an inter-
nal record consists of the count of the leaf records rooted at that internal record. The index used for
event start times is another special case of an A-tree, where the summary information for an internal

record is the sum of a particular attribute (e.g. the delay attribute) over its subtree.

Note that the A-tree index provides no additional information beyond what is present in the
ordered set of data records. Ordered aggregates such as ordered_count and ordered_sum may be
determined by a sequential scan of the data. The index serves as a mechanism to improve on the
amount of computation and on the number of page accesses required by the sequential scan. The inter-
nal pages effectively supply summary information that precomputes the aggregate over subsets of the

data.



105

5.5. User-coded Routines

In order to implement a particular ordered aggregate, the user must supply the database system
with a set of routines that determine how the aggregate is to be computed. Every calculation of an
ordered aggregate value for a given entity (i.e. every query that references an attribute calculated using
an ordered aggregate) must ‘‘scan’’ the ordered relation up to the given entity in order to perform the
calculation. In the absence of an index, this scan is performed sequentially over the ordered heap.
Five routines are needed to implement this scan. We now describe each routine, and, as an example,

show their implementation for the ordered_sum ordered aggregate.

InitializeScan: The InitializeScan routine is called at the start of each scan. It allows the user to

allocate the space for aggregate state information, and initialize that state.

For the ordered aggregate ‘‘sum,” the state consists of a running sum over the course of the

scan. It therefore consists of a single integer, and is initialized to zero.

Nextlnner: The summary information stored in an inner (non-leaf) record is simply the cumula-
tive state for the subtree rooted at that record. Thus, as the scan passes through an inner record,
Nextlnner is called with three parameters: the cumulative state (up to this record), the state for this
record, and any constants associated with the ordered aggregate calculation (the scale factor seen in
the exponential average ordered aggregate is an example of such a constant). The result of this routine

is the cumulative state up to and including the inner record.

For the ordered_sum aggregate, the summary information consists of the sum over some data
field in the leaf records rooted in a particular intemnal record. Thus, given a running sum (the curment
state), and summary information (from the internal record), we return a new current state whose value

is these two states added together.

NextLeaf: The manner in whicﬁ leaf records are accumulated into the state is generally different
than the way in which internal records are accumulated. NextLeaf performs this function, given three
parameters: the cumulative state and constants, as before, and a list of attribute values from the leaf
record that enter into the aégxegate calculation. The function accumulates these values into the state,

and retums the updated state.



106
The ordered_sum aggregate has a single attribute parameter, the attribute over which we are
summing (this was the delay attribute in the EVENT example). The new state for a given leaf record

is the old state plus the value of the attribute parameter in this record.

Resulr: After the scan is completed, the state must be converted into a result value using this rou-
tine. For the ordered_sum aggregate, the accumulated state is the sum itself, so this is simply returned

as the resultant value.

Compare: Under certain circumstances the user must provide a routine which takes two resultant
aggregate values and determines their relationship one to the other. The Compare routine takes two
results and returns a negative oumber, zero, or a positive number, depending on whether the first result

is less than, equal to, or greater than the second result (respectively).

5.6. Defining Ordered Aggregates and A-trees

We now discuss further extensions to our DDL to provide the user with the commands to define

aggregate functions and build A-trees over ordered relations.

5.6.1. Registering Ordered Aggregates with the Data Manager

A set of these routines for a given ordered aggregate function may be bundled into an executable
file, to be loaded on demand by the database system (the mechanism for accomplishing this in ADT
INGRES is discussed in {Fog82]). The user must inform the system of the existence of this file. The
command to register an ordered aggregate function (similar to that used to register user-defined aggre-

gates in [Han84]) is:

ordered_aggregate_definition:
define ordered aggregate aggregate_name
[ ( parameter { , parameter } ) ]
returns type
[ ascending | descending )
file = file_pame

parameter:
formal_parameter_name = [ constant ] type

This definition associates the name of an ordered aggregate (‘‘aggregate_name’’) with the file
that contains the executable routines implementing that aggregate (*‘file_name’'). The parameters in

this specification are formal parameters, much like those that would be used at the head of the routines



107
that implement the ordered aggregate. When records are scanned to evaluate an ordered aggregate,
parameters which are to be fixed during the scan are declared to be constant. The remaining parame-

ters will be assigned values from the attributes of the data records (as described in the next section).

The type produced by the Result routine is specified in the result clause. Both parameter and
return types may be arbitrary ADT’s. For example, the ordered sum aggregate sums over integers, and

returns an integer result. It is specified by the statement:

define ordered aggregate ordered_sum
(summand = integer)
returns string
file = *‘/aggregates/osum.o’’

As an aside, Hanson's proposal also suggests the generalized type numeric to indicate an arbi-
trary numeric type, and the return type typeof(formal_parameter_name) to indicate a retum value
whose type matches a particular parameter type. These both would be appropriate, for example, in the
ordered_sum aggregate, since one may sum over integers or floating point numbers, and the type of the

result matches the type of the summand.

Certain ordered aggregates generate values that are guaranteed to be monotonically increasing
or decreasing over ordered records. The ascending and descending keywords indicate this to the data
manager, to allow for more efficient processing (as will be demonstrated when the actual traversal

algorithms are discussed later in this chapter). The ordered_count aggregate has this property:

define ordered aggregate ordered_count
returns integer
ascending
file = *‘/aggregates/ocount.0’’

The ordered_couht aggregate takes no parameters, and produces an integer result that is guaranteed to
ascend monotonically over the ordering. Notice that the ordered_sum aggregate cannot use the
ascending clause, as both positive and negative integers may be added to the sum. The running sum-

mation may therefore increase or decrease.

5.6.2. Associating Ordered Aggregates with an Ordered Relation

An ordered aggregate attribute is a special form of inherited attribute. In chapter 3, we formu-

lated a general syntax for representing inherited attributes. Using that syntax, we associate line



108

numbers with the TEXT relation as follows:

define entity TEXT (line = string)

/* declare the elements of the TEXT relation to be ordered */
define ordering (TEXT)

range of tis TEXT
define inheritance t (line_number = ordered_count(t))

This last statement is equivalent to:

range of t,tl is TEXT
define inheritance t (line_number = count(tl by t where t1 before t))

The shorter syntax serves two purposes: it is more concise and readable, and the query processor can
easily detect ordered aggregates on which it can apply the processing optimizations developed in this
chapter.

5.6.3. Creating an A-tree Index

After the inherited attributes for an ordered relation have been defined, the user may specify that

an A-tree is to maintained over the relation. This is done using the modify command:

modify relation_name to A-tree

The relation indicated by *‘relation_name’’ must be an ordered relation. If the relation already

contains records, then the internal pages of the A-tree are created using this algorithm:

Create A-tree Index
R is the relation to be indexed.

1. If R contains a single page, then make that page the root
of the A-tree, and stop

. Create a new, empty internal page and make it the root

p ¢ the first disk page of R

.. Create a new, empty internal record, r,,

Set the child of , to be p

Set the parent ofp tober,

Insen r, into the root page

p’ & the page afterp

. Create a new, empty internal record, -

10 Set the child of 7, tobe p*

11. Set the parent ofp tobe r,

12. Insert r,,- after 7,

PENAMAWLN

Insertion (steps 7 and 12) involves updating the summary information of the internal records in the A-



109
tree. Also, if the root becomes full, it is split, increasing the height of the tree. These are both per-

formed as part of the insertion algorithm, presented in the next section.

5.6.4. Defining Order Using Sort Keys

Because a sort key defines an order on a set of relations, we provide a function to globally order
a relation using a sort key. This is accomplished with the reorder command. A set of ordered entities

containing the sort key must be defined, for example:

define entity TEXT (initial_line_number = integer)
define ordering (TEXT)

reorder TEXT on initial_line_number

In this example, the reorder command will sort the set of TEXT records on their initial line number,
and define the ordering of TEXT records to be that induced by the sort. Subsequent insertions could

then be performed (using the before and after clauses) against the newly generated ordering.

In general, this approach appears to provide a convenient means of establishing an ordering

among a large number of existing records.

5.7. Retrieval from Ordered Relations

Queries that involve ordered relations must support an extended set of retrieval operations

beyond those of ordinary relations. For a particular query, the following cases may occur.
. The before and after operators may appear in the qualification of the query.
. Ordered aggregate attributes may appear in the target list and/or the qualification of the query.

We now consider the implementation to support each of these cases.

5.7.1. Implementing the Before and After QOperators

In the absence of an index, the before and after operators may be implemented using a sequen-

tial scan over an ordered heap. Given two records r, and r ,, the records may be compared as follows:



110
Comparison using Sequential Scan of an Ordered Relation

. If r and r, are not in the same relation, return ‘‘not comparable’”
. P ¢ the page on which r lies

. pq < the page on which r, lies

. Ifpy=p, then

If r| < r,, retum ‘‘before’’

Ifr; =r,, return “‘is”’

If ry > r,, retum *‘after”’

<P <p

. If p is the last page, return ‘‘after”’
10. p « the page after p

11.If r5 is on p, return ‘‘before’’

12. Go to step 10

N W

VPN

This routine returns one of {not comparable, before, is, after}. A qualification such as *‘x before y’’ is
met if and only if the comparison algorithm returns *‘before.”” The comparisons in steps 5-7 compare
the locations of the records on the page. If the r; is not on the same page as rj, the algorithm searches

subsequent pages (following the forward links in step 10) for 7,.

This algorithm for evaluating the order operators is unfortunately rather inefficient, in that it may
require a sequential scan of the ordered relation (steps 10-12) to evaluate the order operators. In the
presence of an A-tree, the order operators may be evaluated much more efficiently. The algorithm for

comparing two records using an A-tree, is:

Comparison using A-tree Traversal

1. If r and r, are not in the same relation, return *‘not comparable’’
2. p, ¢ the page on which r lies

3. p, « the page on which r, lies

4. If p,=p,, then

5. Ifr, <r, return ‘“‘before’”

6. Ifr,=r, retum “‘is”

7. Ifr;>r, retum ‘‘after’’

8. ry &« parent of p,

9. ry ¢ parent of p,

10. Go to step 2

Again, the comparison operators in steps 5-7 compare the locations of the records with respect to the
beginning of the page. The loop in steps 2-10 is performed, at most, once per level of the A-tree, since

p1 will equal p, when they reach the root, at which point the algorithm terminates.



11
5.7.2. Implementing Retrieval of Ordered Aggregate Attributes

When an ordered aggregate attribute appears in the qualification of a query, the records of an
ordered relation must be scanned to determine the value of the ordered aggregate associated with a

particular record, and if that value satisfies the qualification.

There are three types of scans which the system must implement in order to support this opera-
tions: sequential scan, top down A-tree traversal and bottom up A-tree traversal. For reference, we

will use this query as an example:

retrieve (TEXT line)
where TEXT line_number < 10

In this query, the ordered aggregate attribute appears in the qualification, compared to a constant value.
Queries can in general be reduced to this form by the process of query decomposition [WoY76]. Such
simple queries are known as ‘‘one variable queries.”” We will call the constant in the qualification the

‘‘search value.”’

5.7.3. Sequential Scan

When the system needs to determine the value to be associated with a given ordered aggregate

attribute in a one variable query, the following algorithm is used:

s is the current state,
p is the current disk page,
r is the current record.

1. s & InitializeScan()

2. p ¢ the first page of the ordered relation

3. Foreachrecordr inp:

4. s & NextLeaf (sr)

5. Substitute Result (s ) for the aggregate attribute in the query,
and the values in r for the remaining attributes

6. If the query qualification is satisfied, return the values
in the target list '

For certain qualifications, the loop at step 3 may be terminated prematurely if the ordered aggre-
gate function was registered using the ascending or descending clauses. For example, we bave seen

that the ordered_count aggregate is defined as ascending. Thus, in our example query,

retrieve (TEXT line)
where TEXT .line_number < 10



112
the algorithm could stop scanning the TEXT relation after it found a line_number equal to 10, because
the system is guaranteed that all future line numbers are greater than 10, and thus do not satisfy the

query.

5.7.4. Top-Down Traversal

Top-down traversal is used on ordered relations that have an A-tree index, to efficiently deter-
mine the record that has a given ordered aggregate value. It is only useful for aggregates that are

ascending or descending. Our example query has these properties, and is resolved by the following

steps:

Top-down Traversal

x is the search value,

s is the current state,

p is the current disk page,
r is the current record.

1. s « InitializeScan()

3. p « the root page of the A-tree
4. If p is an internal page:

5. Foreach internal record 7 inp:
6. S & Nextlnner (s )

7 if x < Result(s) then

8. p ¢ child of r

9. Go to step 4

10. Otherwise p is a leaf:

11. Foreach leaf record r inp:
12. s & NextLeaf (s,r)

13.  ifx 2 Result(s) then

14. Mark record r and stop

At the end of this procedure, some leaf record has been marked. If the qualification is of the
form ‘‘attribute = x,’’ or ‘‘attribute > x*’, then all the records satisfying this qualification are at or
beyond the marked record, and a sequential scan may be performed starting at the marked record. If
the qualification is of the form *‘attribute < x*’ (as ir.x our example query), a sequential scan from the

beginning of the relation up to the marked record retrieves all the qualifying records.

If the ordered aggregate is defined to be descending, then the sense of the comparisons in steps
7 and 13 of the above algorithm must be reversed.



113
5.7.5. Bottom-Up Traversal

Under certain circumstances, the query processor, given a record in an ordered relation, needs to
find the value of an ordered aggregate attribute for that record. This would occur in the processing of a
query against the RUNQUEUE relation (described in section 5.2.1, above) to find the load at a point in
time:
range of q is RUNQUEUE

retrieve (q.load)
where g.time =5

This is processed by performing a top-down traversal of the A-tree to find the record that satisfies the
qualification, namely the record whose ordered_count attribute ‘‘time’’ has a value of 5. Given this
record, the query processor needs to find its value for the ordered aggregate attribute ‘‘load.’’ This is
do;le using a bottom-up traversal of the A-tree. Notice, in this example, that the same A-tree is used
for both traversals. Each internal record of the A-tree contains the summary information for both the

‘‘time’” attribute (an ordered_count value) and the *‘load’’ attribute (an exponential_aggregate value).
The following algorithm is used to perform a bottom-up traversal from record r”:

Bottom-up Traversal

s is the current state,
p is the current disk page,
r is the current record.

[T

. § ¢ InitializeScan()

rer’

. p < the page on which r lies

. For each record in p up to (but not including) r:
If p is an intemal page, s ¢ NextInner(s,r)
If p is a leaf page, s & NextLeaf (s,r)

. If p is the root, return Result (s)

. Otherwise, r < parent record of p

. Gotostep3

CONAUAWLN

This algorithm returns (in step 7) the value of the ordered aggregate for record r’.

5.7.6. Updating Ordered Relations

For insertion into ordered relations, the syntax of the append command is extended as follows:



114
append to relation_name
[ after range_variable | before range_variable ]

(target_list)
where qualification

The standard form, append to table_name now has two additional clauses, to append before or
after records in an ordered relation. As an example, to insert a line of text prior to the eighth line of

text, one would say:

range of t is TEXT

append to TEXT before t (line = *‘inserted line of text’")
where t.line_number = 8§

Although the qualification in the above example selects a single record, this need not be the
case. For example, we might want to insert a line of text prior to every line that has the word ‘‘spe-
cial’’ in it:

append to TEXT before t (line = ‘‘mark following line’’)
where t.line = *‘* special *"’

The asterisks in the string *‘* special *'’ cause the qualification to select every line that contains the
word ‘‘special’’ anywhere within it.

In the above example, a single record is inserted repeatedly into a relation. It is also possible
that several different records may be inserted into an ordered relation at a single point. For example,

the following query inserts the first ten records of the NEWTEXT relation after line 5 of the TEXT

relation.

range of t is TEXT
range of new is NEWTEXT

append to TEXT after t (line = new.line)

where tline_number = 5
and new.line_number < 10

Because NEWTEXT is an ordered relation, the data manager must perform the insertions so as
to assure that the order of the inserted records is preserved. In order to do this, the compléte set of
insertions must be determined. In the above example, this involves retrieving the first ten lines of
NEWTEXT into a temporary ordered relation. Then, the data manager performs a bulk insertion of

the ordered temporary relation into the TEXT relation. The algorithms for bulk insertion are given in



115
(CDR86].

Replace commands also may take an after or before clause, which move existing records

within the ordering. For example, the following query moves lines 2 through 6 after line 7.

range of t1, t2 is TEXT

replace t1 after 2
where t1.line_number >= 2
and tl.line_number <=6
and 2.line_noumber =7

Notice that the target list for such a replace may be missing, as in this example.

An update of this form must force the actual record to be moved (for this reason, it is similar to
an update of a key field in a sorted relation). It is processed by retrieving the old values into a tem-

porary relation (as for append), deleting them from the original relation, and re-inserting them at their

new location.

A form of bottom-up traversal is used when updates are performed on an ordered relation that
contains an A-tree. Any time a record is inserted, deleted, or modified on a leaf page, the summary

information in its parent page (and their parent pages) must be updated.

To correct this summary information when a page is modified, we rescan the entire page with
NextLeaf or NextInner. This results in a cumulative state that is then inserted into the parent record for
that page. The parent page is thus modified, and the correction percolates recursively to the top of the
tree. The algorithm for correcting the summary information after a modification to page p’ is as fol-

lows:

Updating Summary Information

s is the current state,
p is the current disk page,
r is the current record.

1. s « InitializeScan()

2.pep’

3. If p is the root, then stop

4. Foreachrecord r inp:

5. Ifp is anintemnal page, s « NextInner(s,r)
6. Ifp is aleaf page,s « NextLeaf (s,r)

7. r « the parent record of p

8. Set the ‘‘summary information” of  to s

9. p & page on which r lies"

10. Goto step 3



116
These top-down and bottom-up traversal routines suffice to maintain the A-tree under retrieval
and update. Two additional routines are necessary for insertion and deletion, namely those for split-

ting and merging pages.

5.7.7. Splitting Pages

It may happen, after an insertion of a record onto a page, that the set of records now on the page

is larger than the page size. In such an instance, the page must be split. This is done as follows:

Split a Page
p is an overfull page.

1. If p is the root, split the root (see below),
then go on to step 2
2. Determine r,,, the record in the parent of p that
points to p
. Create a new, empty page, p’
. Move the latter half of the records from p intop”
. Create a new, empty internal record r,,-
. Set the child pointer of r,- to p*
. Set the parent pointer of p” to r,,-
. Insert r, after r, (recursively)
. Update the summary information for pages p and p’

O 00~ W

Because this algorithm is invoked in response to an insertion (which caused a page to become
overfull), the subsequent insertion into the parent page is recursive. It may, in turn, cause the parent

page to become overfull. The parent page would then be split, and so on.

In the case that the root is overfull, it must be split. This is accomplished by the following algo-
rithm:
Split the Root
p is the overfull root.

1. Create a new page, which will be the new root, p’
2. Create a new, empty intemnal record, r,

3. Set the child pointer of 7, to p

4. Set the parent pointer of p to r,,

5. Insert r, into the (empty) root page p*

At this point, p can be split using the previous algorithm, since it is no longer a root node.



117
5.7.8. Merging Pages

After a deletion, a page may be less than half full of records. This violates a constraint on the
A-tree structure, and the following algorithms correct this situation. The merge operation for deletion

is analogous to the splitting operation for insertion. It operates as follows:
Merge Page
P 1is a page that is less than half full.

. If p is a non-leaf root page, and p contains a single record,

Delete the root (see below), then stop

. If there is no page after p

P ¢ the page before p (which necessarily exists)

. Set p’ to be the page after p (which now exists)

. Let r, be the parent record that points to p

. Let r, be the parent record that points to p*

. If the records of p and p’ can all fit on one page,

Append all the records of p’ to p

Free the page p’

10. Delete (recursively) 7, from the parent of p , then stop

11. Otherwise,

12. Delete records from the beginning of p’, and append
them to p, until the two pages are equally full

13. Update the summary information above p, and above p’ if it exists

The effect of this procedure is to make sure, after deletion, that all pages are at least half full.
After steps 8-10, the single merged page must be at least half full because p’ was at least half full.
After step 12, both pages p and p” must be at least half full because the records in the two pages
together take up more than one page (guaranteed at step 7). Thus dividing the records evenly results

into two sets ensures each set requires no less than half a page.

Analogous to the operation of splitting the root on insertion, is the case where a root can be
deleted. This happens when the root is not a leaf, and after deletion contains only a single internal
record. The algorithm is:

Delete Root

Given: A root page p that is not a leaf,
containing a single record.

1. Set ¢ to be the sole child of p
2. Free page p, and set the new root to be ¢



118

5.7.9. Operators over Ordered Entities: first and last

The system provides two additional aggregate functions that evaluate over ordered data. The
first aggregate selects the first element in an ordering, and last selects the last one. These are provided

by the system, rather than being implemented as ordered aggregate functions by the user, because:

. They have restricted semantics that typically allow for efficient implementation within the sys-
tem as a special case (bypassing the scan and traversal algorithms).

. They result in an entity, rather than an attribute value, and are thus distinguished syntactically
from other aggregate functions.
The system catalogs should include pointers to the first and last records of each ordering in order

to efficiently support these aggregates. Certain systems actions, such as inserting records at the end of

an ordering when no location is specified by the client, would make use of these pointers.
For example, to retrieve the line number of the last line in the TEXT relation, the command is:
retrieve (last(TEXT).line_number)
As with other aggregates, the value of the aggregate is calculated independently from the query as a

whole. The aggregate value is then substituted into the query as a constant. In this case, the constant

is an entity (syntactically, a range variable).

In the above example, because the system catalogs maintain a pointer to the last record in an
ordered relation, the value of the line_number is readily accessible by doing a bottom-up traversal of

the A-tree from this last record (assuming that the A-tree exists).

As with ordinary aggregates, It is possible that these aggregates may be qualified. For example,

we may retrieve the first record containing a particular line:
retrieve (first(TEXT where TEXT.line = ‘‘marker’’).line_number)

In this case, the TEXT relation must be scanned for qualifying records (those that contain ‘‘marker’"),

and the first one returned. For the last aggregate, the relation could be scanned backwards.



119
5.8. A-tree Performance

We expected the performénoe of A-trees, in terms of storage utilization and overhead, to be
equivalent to that of B-trees. A simulation of the A-tree algorithms was coded in LISP, in order to
better understand the operation of the algorithms and determine their performance. This initial
hypothesis was bom out. The experiment performed 10,000 A-tree operations: first inserting 5000
random records, then deleting those records in random order. At each step, page utilization and page
fault behavior were monitored. The simulation used a page size of 1024 bytes, leaf and inner record
sizes of 16 bytes, and a buffer pool of 20 pages. Our results are summarized in figure 5.6, showing the

number of pages, tree height, utilization, and number of faults per operation over the course of the

experiment.
: (a) Number of Pages (b) Height of A-Tree
117 - 3- 1
. ! '
: 94 - \ : j i
- \ ) .
| 70 \ ‘ :
47 - . i
7 \, 1-
23 /
F ' . 1 1
2 4 6 8 10 2 4 6 8 10
thousands of operations thousands of operations
(c) Page Utilization (d) Page Faults
(per cent) (per 100 operations)
-, . 351 -
N /’V'\A/\-"\/\M/\/\I‘ ojl - A M ’.\ ;g,.»'}?n
60 Cts AT
. [ ] [}
45+ ' 21 - ' i
i i ! )
30 4 ; 140 - ; !
o ' 'v“’\f\\'-‘\;“-.d
15 ? 70 - /_,./ -\
L ) ! 1 1 : .\
2 4 6 8 10 2 4 6 8 10
thousands of operations thousands of operations

Figure 5.6. A-tree Performance (5000 insertions followed by 5000 deletions)




120

The first graph shows the size of the data structure, in pages, after each operation. At 16 bytes

per record, a 1024 byte page contains at most 64 records. The number of pages increases linearly dur-
ing insertion, and decreases linearly during deletion. The data structure requires 117 pages to store

5000 data records and 116 internal records.

The second graph shows the height of the A-tree over the course of the experiment. The root is
split after insertion operations 65 and 2786. The height of the tree then remains constant until a total
of 5000 records are inserted. During the subsequent deletions, the height of the tree decreases when
the record drops to 2896 (at operation 7104), and again when it drops to 64 (at operation 9936).

Page utilization, shown in the next graph, is defined to be the number of bytes used for leaf
records, divided by the number of bytes in the data structure. In our experiment, it turns out that less
than three per cent of the pages are internal, so that almost all the unutilized page space is in the
leaves. Except when the tree is nearly empty, the page utilization of the A-tree remains fairly constant,

in the vicinity of 69%. This agrees with the analytical result for B-trees derived by Yao [Ya078].

The final graph indicates the number of page faults per 100 operations. A small buffer (20
pages) was used in order to improve performance for access that was restricted to a small number of
pages. For the first 800 insertions, the entire data structure fit in the buffer, and no page faults were
required (except those needed to initialize the buffer). At that point, the number of page faults
increases roughly linearly with the size of the data structure, until the height of the tree increases at
operation 2786. It then rapidly jumps from 0.7 page faults per operation to 2.8 page faults, where it
remains roughly level, until the index height again decreases. In this demonstration, the internal
records of the index remain cached in the buffer pool, and access to leaf pages results in page faults.

Because the performance of the A-tree depends primarily on its height, the above experiment
could have inserted many more records with little additional ciegradation in performance. As long as
the height of the A-tree does not change, the number of page faults per record access remains roughly

constant. The number of records in a *‘full’’ tree is:



121

‘lh-l ro0

-2 2

\ J

where:

n is the number of leaf records in a *‘full’’ tree,

y is the page utilization,

h is the height of the tree,

p is the page size,

r; is the size of an internal record,

ry is the size of a leaf record.

Using the parameters of the above experiment, y =.69, p =1024, r; =r, = 16, and h =3, we find that
the number of leaf records could be increased from 5000 to approximately 86,000 with no further

increase in the height of the tree, and consequently no significant degradation in performance.

The concludes our discussion of A-tree performance. The next two sections consider the use of
A-trees to implement the case where individual entities participate in multiple orderings, and in

hierarchical orderings.

5.9. Multiple Orderings

The ordered set of records in an ordered relation (or in the leaf pages of an A-tree) may contain
actual data records. Altematively, they may contain pointers to the data records (i.e. TID’s). While
this latter alternative results in less performance (an extra disk access is required to retrieve record data

given a record pointer), it allows us to define multiple orderings over a single set of data.

5.9.1. Multiple Orderings in Sorted Relations

In systems such as INGRES, a facility for providing multiple orderings is provided by ‘‘secon-
dary indices.’’ A relation may be sorted independently on many different keys. One of these orderings -
may be designated as ‘‘primary.’”’ The actual data records will be stored in this order (these records
constitute the ‘‘base relation’’). All other orderings are ‘‘secondary.’”’ Figure 5.7 shows a relation
with three fields, f,, f 1, and f 3, each a key in a different ordering. The data records themselves, in
the base relation, are sorted on f,. One secondary index contains the values for f 5, plus a pointer to
the data record in the base relation. This index is then sorted on f ;. The third relation similarly pro-
vides an ordering based on the field f ;. By scanning the appropriate relation, the data records may be
retrieved in the desired order. The key values for the secondary ordering are duplicated in the secon-

dary index, as a performance optimization.



122

Secondary Index
f2 TID
1 o—
Base Relation
2 | e f1 f2 f3
3 -
Al 2 z
4 | o
(sorted on f 5)
B 3 w
Secondary Index cl1i1| x
fs TID
w o
D 4 y
x &
y | = (sorted on f ;)
z o——
(sorted on f ;)

Figure 5.7. Multiple Sort Orderings

5.9.2. Multiple Orderings in Ordered Relations

This same technique may be applied to ordered relations, allowing entities to participate in mul-
tiple orderings. The syntax for specifying multiple orderings was presented in Chapter 3. Subsequent

discussion will make use of the following example, which defines three orderings on relation X :

define entity X (attributes of X...)
define ordering (X)

define ordering A (X)

define ordering B (X)

The define entity statement results in an unordered relation. Each ordering specified by a define
ordering statement results in an ordered relation. If the ordering is unnamed, as in the first example,

the unordered relation associated with the child entity is converted into an ordered relation. The result-



123
ing ordered relation is primary. If the ordering is named, the resulting ordered relation is secondary
(ie. it contains pointers to the data records, which reside in another relation). This secondary relation
is given the name of it its ordering. Thus, in the above example, the system creates three ordered rela-
tions. The relation X contains data records, and the relations A and B contain pointers to those data

records.

A particular database system might also support inhomogenous orderings in this way, if it allows
relations to contain records of different entity types (systems based on the *‘universal relation’’ model
[MRW386, Men84, Sag83] typically allow this). Because such records are typically of various sizes, it
is simpler to always implement them as secondary relations, even when unnamed (pointers to records
of different types are presumably all the same size, and thus are easier to manage). For example, an

ordering consisting of records from relations X and Y, intermixed, is specified by,

define ordering (X,Y)

and results in a secondary relaﬁoix containing pointers to records in the X and Y relations. The system
would provide a unique name for the resulting ordered relation, such as *‘X_Y"’ for the above exam-

ple.

Having defined multiple orderings of a relation, the system must determine what attributes to
copy from the base relation into the ;econduy relations. This depends on the ordered aggregates that
are defined on the relations. Those attributes involved in the calculation of an ordered aggregate are to
be included. For example, suppose the X relation contains the attribute ‘‘amount,”’ and we wish to

maintain a running sum, given ordering B:

define entity X (amount = integer)

define ordering B (X)

range ofbisB

define inheritance b (balance = ordered_sum(b.amount))

This indicates to the system that,
(1) The attribute ‘‘amount’’ is to be duplicated from X to B.

(2) The ordered aggregate attribute ‘‘balance’’ is to be maintained over the B ordering. The base
relation automatically inherits this attribute, so we may refer to ‘‘balance’” as an attribute of the

X relation.



124
We now consider a musical example. Chords in the music database are involved in multiple
orderings. Every chord is independently ordered with other chords into a group within a voice, and
with other chords under a common sync. Suppose we wish to maintain count information over each of
these, so as to be able to refer to *‘the n’th chord in a given group’’ or ‘‘the y’'th chord in a given
sync’’. The base relation is called CHORD, and the two secondary indices are GROUP_ORDER and
SYNC_ORDER. The indices are modified to type A-tree, each containing ordered_count aggregates
to provide the ordinate information required.

When the define inheritance command is executed on a secondary relation, the system associ-
ates the inherited attributes (in the artribute system catalog) with both the primary and secondary rela-
tions. In this example, the CHORD relation inherits two new virtual attributes, group_ordinate and
sync_ordinate. Here are commands that generate these orderipg;;:

define entity CHORD (chord attributes...)

define ordering GROUP_ORDER (CHORD)
define ordering SYNC_ORDER (CHORD)

range of g is GROUP_ORDER .
define inheritance g (group_ordinate = ordered_count(g))

range of s is SYNC_ORDER
define inheritance s (sync_ordinate = ordered_count(s))

modify GROUP_ORDER to A-tree
modify SYNC_ORDER to A-tree
The append command, when adding records, must now update these secondary indices also.
The syntax of the append command must be further extended to manage this properly. For example,
" suppose we wish to insert a chord so that it precedes the second chord in its group, and follows the first
chord in its sync. The command would be: |

range of cl,c2 is CHORD

append to CHORD
before c1 in GROUP_ORDER
after c2 in SYNC_ORDER
(attributes of new chord)
where cl.group_ordinate = 2
and c2.sync_ordinate = 1



125

One before or after clause is needed for each ordering that exists on the base relation. In the

case that the user does not specify such a clause (or leaves out one of many), the system must arbi-
trarily place the object in the ordering. This is similar to the case where an insertion is made into a
sorted relation where the inserted record was not assigned a key value. The default location in the ord-
ering could be set (arbitrarily) before the first record. This would be similar to the current treatment of

null values in the INGRES system.

5.10. Hierarchical Ordering

Up to this point, we have only considered global orderings, where the entire set of entities in a
relation participate in a single ordering. We now discuss hierarchical ordering, where each entity in a
relation has a “‘parent’’ (typically an entity in another relation), and an ordering applies to those enti-

ties that share a common parent.

The previous example of chords ordered within groups and syncs was simplified in its presenta-
tion, so as to ignore the hierarchical aspect of its orderings. In fact, two chords are only comparable
uader GROUP_ORDRER if they are members of the same group (e.g. one cannot say a chord is before
or after another chord according to GROUP_ORDER, if the chords are not in the same group; they are
simply not comparable). This also holds true for the ordering of chords under syncs represented in
SYNC_ORDER.

The hierarchical ordering in this example would be specified using the under clause, as we have
already seen.

define entity GROUP (group attributes...)
define entity GROUP (sync attributes...)
define entity CHORD (chord attributes...)

define ordering GROUP_ORDER (CHORD) under GROUP
define ordering SYNC_ORDER (CHORD) under SYNC

range of g is GROUP_ORDER
define inheritance g (group_ordinate = ordered_count(g))

range of s is SYNC_ORDER
define inheritance s (sync_ordinate = ordered_count(s))

In order to support hierarchical ordering, we must extend our implementation of ordered rela-

tions and A-trees, as well as the syntax for append and replace.



126
5.10.1. Extending Ordered Relations to Support Hierarchical Ordering

The define entity statements in the above example create the GROUP, SYNC and CHORD rela-
tions. The define ordering statements generate the GROUP_ORDER and SYNC_ORDER secondary
relations. An example of the relations resulting from the above definition are shown in figure 5.8. At
the top of this figure is the musical fragment to be modeled, consisting of five chords, three syncs, and
two groups. For every chord in the CHORD relation, there is a record in the GROUP_ORDER rela-
tion pointing to that chord. Additionally, records in the GROUP_ORDER relation contain a pointer to
the GROUP record under which the chord is ordered. In the example of figure 5.8, three chords are
ordered under group n in the GROUP relation, and two chords are ordered under group ¢. The type
of the GROUP and CHORD relations are not defined here (they are presumably unsorted). The

Syncs: w ] y
Chords: b ¢ a
o e —
Groupq — —
Chords: e d
GROUP GROUP_ORDER CHORD
group  chord
artributes TID 7D anributes chord.group_ordinate
m / I : a 3 (under group N1)
'
n \ . ! b 1 (under group 1)
P . 1 c 2 (under group 1)
q X : f d 2 (under group q)
r ; : . 1 (under group )
SYNC_ORDER SYNC
(ro CHORD, chord  sync
chord.sync_ordinate above) m 0 anributes
1 (under sync ) a ‘-\ [ » “ ‘
1 (under sync W) b ; v '
‘_/‘ —
1 (undor sync i) ¢ x_ » w ;
g
2 (undersync ) d 4\« — — _\ : x :
2 (undersync W) ¢ ‘-/ " y

Figure 5.8. Hierarchically Ordered Relations




127

GROUP_ORDER relation is a hierarchically ordered relation, partitioned by GROUP TID. This parti-

tioning is easily accomplished, for example, by sorting the ordered relation on its parent pointer field.

Then, within each partition, the order of records reflects the ordering of the entities within that parti-
tion.

The SYNC_ORDER relation is ordered in the same way, with the syncs as parent entities. The

partitioning and ordering of chords under syncs is independent of their partitioning and ordering under

groups.

5.10.2. Insertion and Update of Hierarchically Ordered Relations

The syntax for append and replace statements must now be extended to allow records to be
placed into relations that have ordered indexes. We therefore introduce the under clause. The follow-
ing example inserts a new chord before the second chord in group ¢, and after the first chord in sync

u:

range of cl,c2 is CHORD
range of g is GROUP
range of s is SYNC
append to CHORD
before cl under g in GROUP_ORDER
after c2 under s in SYNC_ORDER
(autributes of new chord)
where cl.group_ordinate =2
and c2.sync_ordinate = 1
and gisq
andsisu

This statement results in the insertion of one record into each of the CHORD, GROUP_ORDER, and
SYNC_ORDER relations. The record inserted into the CHORD relation would contain the attribute
values for the new chord. The record inserted into the GROUP_ORDER relation is placed before the
thrid record under group ¢q. This record points to the chord entity in the CHORD relation, and has ¢
as its group TID. Similarly, a record is inserted into the SYNC_ORDER relation before the tenth
chord under sync u. This record has the TID of the new CHORD record as its chord TID, and u as its

sync TID.

Suppose, in the above query, the under clause were omitted. The resulting query,



128
append to CHORD
before cl1 in GROUP_ORDER
after ¢2 in SYNC_ORDER
(attributes of new chord)
where cl.group_ordinate =2
and c2.sync_ordinate = 1

would cause several chord entities to be inserted. The query would first determine all the chords that
are second in their group and first in their sync (there would in general be several such chords,

although the example in figure 5.8 contains only one), and insert a new chord next to each of them.

In this example, the parent TID of the inserted record is determined implicitly. In general, when
a record x is inserted at a position before or after another record y, the parent of x is set to the parent
of y. If the user specifies a conflicting parent (using the under clause) then the update is malformed.

An example of such a non-functional update would be (referring again to figure 5.8):

append to CHORD
before c1 under g in GROUP_ORDER
(attributes of new chord)
whereclis b
andgisq

Because chord b is not in group g, this command would be rejected by the system as malformed.

Replace statements are extended in the same way as append statements, with the before, after,
and under clauses. When a replace statement is specified this way, it is treated as a deletion followed

by an insertion, as before.

Although the above examples have all made use of secondary relations as hierarchically ordered
relations, a base relation itself may be hierarchically ordered. For example, if we extend the TEXT
relation to contain lines from several documents, rather just one, then the lines of TEXT are ordered
under a given document. The TEXT relation is thus a hierarchically ordered base relation. The state-
ments that specify this are:

define entity DOCUMENT (title = string)
define entity TEXT (line = string)

define ordering (TEXT) under DOCUMENT

range of t is TEXT
define inheritance t (line_number = ordered_count(t))

As shown in figure 5.9, the data records of the TEXT relation itself are partitioned by document, and



129

DOCUMENT TEXT
(atributes) {docwmens TID) (actribuzes) text.lina_mionber
Hanles j To be, ornot © be 1 (under “Hamlee™")
Gettysburg Address . That is the questicn. 2 (wder “Hamlet")
! Whrethar *tis cobler o suffer 3 (under “Hamlet’')
i Four score and soven years ego, 1 (under “Geurysburg™)
, Ouxr fathers brought forth on this continent 2 (under “Getysburg™)
' s new nasion, conceived in [ib. 3 (under “"Gemtysburg™)

Figure 5.9. A Hierarchically Ordered Base Relation

ordered within each partition. Each record of the TEXT relation contains, in addition to the attributes
specified in the define entity statement, a pointer to a DOCUMENT record. This ordered base relation
may then be manipulated just as a secondary relation, with the ordering left unnamed. For example, to
insert a new line after the second line of the ‘‘Gettysburg Address,’’ the following statement is exe-
cuted: N

range of t is TEXT
range of d is DOCUMENT
append to TEXT

after t under d

(line = “‘a new line of text’’)

where d.title = **Gettysburg Address’’
and t.line_number =2

Although we could have explicitly named the ordered relation by saying *‘after t under d in TEXT,”
it is not necessary because the base relation is assumed when the in clause is missing, as in this exam-
ple. Otherwise, the syntax of this example is the same as that for orderings represented by secondary

relations.

5.10.3. Extending A-trees for Hierarchically Ordered Relations

In order to use A-trees to access hierarchically ordered relations, the search and scan algorithms

presented previously must be modified to accommodate partitions.

The internal record of an A-tree over a hierarchically ordered relation contains summary infor-

mation for each ordered aggregate, as before, but also contains the partition value (i.e. the parent TID)



130
for the last leaf under the subtree covered by that internal record. This is shown in figure 5.10. Given
the specification of the TEXT relation, above, we have executed the statement,

modify TEXT to A-tree

to create this A-tree. The algorithm to update the summary information in the intemal records is

modified as follows to generate the internal record values shown in this figure.

Root:

-
Document TID b ' ci
— ]

. : i
ordered_countstate 2 : 3

child pointer ‘ '
Document TID albd i c ¢ i
ordered_count state; 3 ' 2 < 1i2
child pointer : s . \
_/ BN
DocumemTID ala | a | a b b: :rb bic: .clc
! il < ‘T T < >
TEXT line ' | i P |
j ! —_
TEXT .line_ number 1 2 3 4 1 2 3 4 1 2 3

Figure 5.10. An A-tree for Hierarchical Ordering




131
Updating Summary Information

s is the current state,

p is the current disk page,
r is the current record,

x is the current partition

l. pep’
2. If p is the root, then stop
3. Foreachrecord 7 inp:
If r begins a partition, then
s «lInitializeScan()
X ¢ partition of r
If p is an internal page, s ¢ NextInner(s,r)
If p is aleaf page, s « NextLeaf (s,r)
9. r & the parent record of p
10. Set the ‘‘summary information’’ of 7 to s
11. Set the ‘‘partition’’ of r to x
12. p « page on which r lies
13. Go to step 2

RNAL A

In this algorithm, the scan is initialized at every partition, in steps 5-6, rather than once at the begin-
ning.

All of the traversal algorithms are similarly modified. In each case where we scan the records of
a page, we notice if the partition value has changed. When this occurs, we update the current partition
value and call InitializeScan().

The processing of aggregates that are defined as ascending or descending must be modified,
because such aggregate values are now only monotonic within a partition, rather than across the entire
relation. This can be seen in figure 5.11, where the line numbers (which are normally ascending) do

not steadily increase over the TEXT relation. Thus, a command such as,

range of t is TEXT

retrieve (t.line)
where tline_number < 10

returns the first ten lines of every document in the TEXT relation. Rather than terminating the scan
prematurely when a line number greater than or equal to 10 is found, we must continue scanning sub-

sequent partitions.



132
5.11. Storing Orderings as Linked Lists

When the data in a relation participates in more than one ordering, the issue is raised as to how

the data itself should be ordered so that access via each ordering is efficiently performed.

The simplest approach to this problem, and the one taken in the preceding discussion, is to select
one of the orderings as primary, and store the data records of the relation in that order. Any access of
the records via this primary ordering will thereby incur a minimum amount of paging activity. Of
course, sequential access via any secondary ordering will cause considerable paging activity, since
records that are ‘‘near’’ each other in this ordering are not necessarily nearby each other in the primary
ordering (where the data associated with the records is kept). We might call this approach *‘order by
placement’’. Whether an object is before or after another object depends on their respective storage
locations. Figure 5.11 gives an example of this type of ordering. As we have seen, we can retrieve the
records of such a relation in a particular order by selecting the ordered heap that implements the
desired ordering (either the primary or one of the secondary relations), and scanning it sequentially.
We have also seen that an A-tree may be built over each ordered heap to eliminate the need for

sequential scans in many cases.

Secondary Indices
12;3§4 w!xiy z
BAREESEE AR

. A B | C | D
L2 3 1 4 |
Ez w x yI

Base Relation

Figure 5.11. Representing Order by Placement




133
5.11.1. The Linked Heap Structure

An altemative implementation would be to represent the orderings by actual pointers from a
data record to each of its successors records (a record has one successor per ordering in which the
record participates). An example of *‘order by pointers’’ is shown in figure 5.12. The records in this
implementation are organized into linked lists. This data structure will be called a *‘linked heap.”” We
first discuss the structure of the linked heap, and its integration with A-trees; we then compare its

advantages and disadvantages with those of ordered beaps.

The placement of the records onto pages may be arbitrary, since it is no longer a factor in deter-
mining what the ‘‘next’’ record is. In order to retrieve the records of this relation in a particular order,
we start at the first record in that ordering (whose address must be maintained separately by the sys-

tem), and follow the successor pointers for that ordering to retrieve successive records.

When using linked heaps, the define ordering statement, rather than defining a new ordered
beap, defines a single additional attribute on the base relation (generated by the define entity

i
1
1 '
A 1 B C D
2 | 3 1 4 attributes
|
: | i
: i l | :
; z bW . S y
i i !
: ' ! i
! i ,
r, . T3 L Te nil |
5 i I |
ra | |1y . nil | ' “‘successor’ pointers
i : : i
; o i : i
! nil | i T3 N r ;
. j [ : !
| |
! ry rs rs rs ! record addresses
i

recordsonpage ———>
Figure 5.12. Representing Order by Pointers




134

statement), whose value is the successor pointer for each record in the ordering.

When inserting a record into a linked heap at a particular point in the ordering, we may place the
new record into any free slot on existing pages, or at the beginning of a new page, and adjust its link
pointer and that of its predecessor so that it is properly incorporated into the chain of records.

By slightly modifying the A-tree structure, we can provide efficient access to ordered aggregate
values on multi-ordered relations stored in linked heaps. When using secondary relations, every A-
tree had its own ordered heap at the leaf level. Now, because all ordering information is encapsulated
in the single relation, several A-trees will share this relation for their leaf levels. This is shown in
figure 5.13. In this example, the intenal records contain the summary information to maintain the
ordered_count aggregate over the records in the linked heap. The A-tree structure is modified as fol-

lows:
The leaf level of the tree is a linked heap rather than an ordered heap.

Each record in the linked heap contains one ‘‘successor’’ pointer per ordering. When a single
entity participates in multiple orderings, several A-trees share the same linked heap for their leaf level,

although each will use a distinct set of successor pointers.

2| .
Root " .
°1?
2 | 12
Internal Records ¢ »
i Rl R
\ [ T~
Y | ‘ ; i_' |
. g a b f' 'c el ild
Linked Heap o KX Tl » Iy i e i
. '—K" \A l I E !
y\_/’\_)u\./
start of ordering

Figure 5.13. Building A-trees Over Linked Heaps




135

Internal records at the lowest inner level of the A-tree contain pointers to leaf records in the
linked heap, rather than pointers to pages as before. The downward traversal will scan sequentially
through internal pages, and follow links at the leaf level. The set of records at the leaf level that are
linked under a single intemal record will be a called a chain. In figure 5.13, the first chain contains

records {a, b, ¢}, the second chain is {d, e}, and the third is {f, g}.

To find the record possessing a particular ordered aggregate value, we select the A-tree associ-
ated with the appropriate ordering and traverse down to the leaf level as before. At the leaf level,
rather than performing a page scan, we traverse the chain whose first element was indicated by the

lowest internal record.

The maximum number of leaf records directly under a given intemal record was previously con-
strained by the size of a disk page. Now, this restriction is removed. Thus, there is no necessary upper
bound on chain length. When inserting a record into the linked heap, the system is free to split the
chain or not. If we decide not to split, the chain gets longer. If the chain is split in two, an internal

record is inserted for the new chain.

There are two obvious approaches for determining when to split a chain. In the first approach
the system (or perhaps the user) fixes an arbitrary maximum chain length. As records are inserted, the
height of the tree may increase, but the length of chains will be bounded (this is similar the behavior of

~B-uees). Another possibility is to fix the height of the tree, thus fixing the total number of chains. As

insertions are performed, the chains get longer (this models the bebavior of ISAM indices).

5.11.2. Comparing the Two Approaches

The use of linked heaps is arguably more complex than our previous proposal. The disadvan-
tages associated with complexity apply in this case: the resulting system is harder to implement, debug,
and maintain.

Since A-tree traversal uses two different scanning mechanisms, sequential scans of the internal
pages, and link traversal through the leaf records, the implementation of these tasks is less modular

and more cumbersome.



136

Linked heaps may be more easily corrupted than ordered heaps. If a link field is destroyed,

traversal of the heap is impossible. In an ordered heap, there is no data corruption (except perhaps to
the double links between leaf pages) that can prevent successful traversal of the relation.

There are two advantages to this new storage strategy. First, it may be space efficient, since the
attribute parameter values need no longer be copied into each secondary index. The space required for
TID pointers in the secondary index is balanced by the space required for successor pointers in the
linked heap. Some additional space may be required in the internal records of the A-tree, since the
lowest level contains record pointers rather than page pointers. This space advantage only occurs if
there are multiple orderings, since a primary ordered heap contains no TID pointers and thus takes less
space than a single linked heap.

More importantly, because the placement of records on pages is now arbitrary, we are free to
organize the records so that for a given record, many of its successors share its disk page, rather than
just one. In other words, data can now be effectively clustered. In the previous proposal, sequential
scan of the primary relation was very fast, but on the secondary relations was much slower, because
for every record in the secondary relation, we incur a page fault to get the actual data from the primary
relation. Using linked heaps, the data may be clustered with respect to all orderings, rather than only a
single (primary) one. If the clustering is successful, we may traverse all of the orderings with

moderate performance.

5.11.3. Clusterin_g

A linked heap with n records (n>1) and p orderings constitutes a graph G with the following

characteristics:

. every record in the linked heap is a vertex v of the graph, each vertex has a weight w, equal to
the size of the record.
. every successor pointer from a record to another record is an edge e in the graph (we will con-

sider the edges to be undirected), and each edge has a weight w, whose value is determined
below.



137

. The graph contains p (n—1) edges, and the degree of every vertex is between p and 2p

The graph for the linked heap shown in figure 5.12 is presented in figure 5.14. For clarity, the edges
from each of the three orderings are shown using a different line type: solid, dotted, and dashed.

For a given application, we may have information as to the relative frequency with which dif-
ferent edges of the graph are traversed. Each edge is assigned an edge weight, proportional to this fre-
quency. In the absence of this information, we can give every edge equal weight. The problem of
clustering the linked heap so as to minimize disk paging activity now reduces to a classical problem
called the ‘‘graph partioning problem.’’ That is:

Given a graph G with weighted vertices and edges, partition the vertex set such that the total vertex
weight of every partition is less than p, and the total weight of all edges whose end points lic in dif-
ferent partitions is minimized.

The first constraint on vertex weight corresponds to the requirement that all the records in a partition

must fit onto one disk page. The latter constraint minimizes the frequency of traversing from one disk

page to another.
A ....................... B
— | :
L
T ~l‘ _i
D | ____ | C
————— —: i
— ordering {A,B,C,D}
e ondering (12,34
=~== ordering (wx,y,z}

Figure 5.14. Graph Representation of a Linked Heap




138

There currently exists a large body of research on graph partitioning that may be brought to bear

on how such data should be clustered. Although the optimization problem is NP-complete [Mac78],
there are particular types of graphs, such as planar graphs [Had75] and trees [KuM?77, Luk74], for
which fast algorithms are known. Unfortunately, multi-ordered lists (for example, the list represented

in figure 5.14) are not of either of these forms.

5.11.4. Clustering Experiments

Another approach has been to find results that are good, tho'ugh not necessarily optimal. Such
algorithms use  heuristics to determine how a graph should be clustered
[ATM84, FiM82,KeL70, Luk75, Mac78, RSS84). These algorithms are typically tested empirically,
that is, by applying them to either random graphs, or graphs that arise in a particular application.
Some previous empirical experiments in graph clustering have focused on actual CAD circuits
[FiM82]. Such a circuit consists of modules with various interconnections, and the clustering problem
is to divide up the modules into groups (e.g. areas of a chip, or a circuit board) while minimizing the

number of interconnections between groups.

In order to have a rough idea as to whether such beuristic algorithms would be useful for multi-
ply ordered lists, we performed some simple experiments. In them, we compare two clustering algo-
rithms:

Primary ordering: One ordering is selected as primary, and the records of the relation are
assigned to pages according to this ordering. This is the same clustering that is performed when using

an ordered base relation with secondary indices.

Iterative Min-Cut: This algorithm has been suggested for partitioning CAD circuits [KeL70].

We use a linear time version of the algorithm presented in [FiM82]. The algorithm basic idea of the

algorithm is presented here. A heuristic is used to partition the entire graph into two halves such that

the number of edges that cross between the two halves (i.e. the cut set) is small. Each half is further

partitioned using the same beuristic, and this continues recursively until the number of elements in a
partition can fit on one page.

" In order to find a good division of the graph into two partitions, the graph is first partitioned arbi-

trarily. Then one node at a time is moved from one partition to the other, so as 1) to keep the partitions



139
of roughly equal size, and 2) to decrease the size of the cut set, if possible. Even if no move decreases
the cut set size, the best (i.e. least detrimental) move is performed anyway, in order to *‘climb out of
local minima.” After a node is moved, it is *‘frozen’’ and not subject to being moved again. After
every node is frozen, the partition seen so far that has the smallest cut set is used as the start of another

pass. When a complete pass cannot make the cut set any smaller, the algorithm terminates.
The multi-ordered list on which these algorithms were tested had the following characteristics:
° the list contains 10,000 records,
. each record participates in 3 orderings,
. the maximum page size is 64 records.

We hypothesized that the correlation between the orderings would strongly affect the results, so
we generated the second and third orderings so as to have particular correlation coefficients with
respect to the first ordering. Rather than selecting the successor of a given record randomly in the
secondary orderings, a small set of successor candidates was determined by considering those records
‘“‘near’’ to the given record in the primary ordering. For example, by setting the ‘‘neamess’’ parame-
ter to 10, the successor for a given record in either secondary ordering is drawn from the set of 10
records nearest to the given record in the primary ordering (five before and five after). The experiment

was tested at several different values for the *‘neamess’’ factor.

Our results are summarized in figure 5.15. For each clustering algorithm, the quality of the clus-
tering is plotted against the correlation among the orderings. The y-axis represents the percentage of
pointers which cross a disk page boundary (when such a pointer is traversed, a page fault is generated).
The x-axis represents the ‘‘neamess’’ factor. At the left edge is perfect correlation (all three orderings
are the same), and at the right edge is no correlation (selecting from 10,000 neighbors in a universe of
10,000 records is identical to selecting a record at random).

As this diagram shows, selecting a primary ordering is always superior to the min-cut algorithm,
seeming to indicate that sophisticated graph clustering is not a useful tool to optimize access to multi-
ply ordered lists. This seems intuitively plausible, because multiple orderings display a particular pat-
tern of edges (long linked lists) for which a primary ordering is reasonably defined. A *‘primary’’ ord-

ering is not necessarily determinable in an arbitrary graph. The min-cut algorithm makes no



140

100
80 min-cut cluster
60

percentage of edges
crossing page boundaries 40

primary order

20 cluster

1 10 100 1k 10k

successor distance

Figure 5.15. Comparison of Min-Cut Clustering with Primary Ordering

assumptions about the structure of the graph and, while more broadly applicable, performs less well.

In any case, certain questions remain open:

There may be other clustering algorithms that perform better on multiply ordered lists. Algo-
rithms such as simulated annealing [AJM84, RSS84] might be useful, especially if the number of enti-

ties and the number of orderings are both large.

Because there is no global order among hierarchically ordered records, it is not clear how the
records should be ordered on the disk (this is one case where a primary ordering is not readily deter-
minable, as mentioned above). Although the records within a partition may be ordered, it remains
unspecified how the partitions as a whole should be ordered. Does it make a difference whether there
are few large partitions (approximating a global ordering) rather than many small partitions (with
fewer sibling pointers)?



141
In hierarchically ordered data, there are pointers not only to successors, but also to parents. If
the system permits children and parents to be clustered together, the resulting graph structures are less

regular, and perhaps primary ordering would be less appropriate under those circumstances.

Cleardy, there remain a large number of open issues associated with the clustering of graph data.
At least preliminarily, it appears that primary ordering is a reasonable clustering technique for both

single orderings and multiple orderings.

5.12. Additional Issues

This section will consider a number of other issues that have surfaced in the course of the
development of the A-tree proposal. They are concemed with various ways in which the current
implementation could be made more general or more efficient. In general, the issues have been clearly

identified, and their solution remains open for future research.

5.12.1. User Access to Tuning Parameters

We have identified certain parameters whose values might be determined by the user. The effect

of various settings of these parameters on database performance remains to be explored.

N When an A-tree is initially built (with the modify to A-tree command), the initial utilization of
leaf pages may be set arbitrarily. As we have seen, with repeated insertions and deletions, this utiliza-
tion should stabilize at 69%. A user may wish to set the initial utilization much lower, if a large
number of insertions are to be performed shortly after the A-tree is built. The leaf pages will be rela-

tively empty, and less likely to overflow when the insertions are performed.

If ordering is implemented using linked heaps, then the issue of determining chain length is still
open. A user may wish to decide that the length of chains is to be fixed, and the height of the index is
variable. This follows the style of B-trees, and provides stable performance in the presence of a large
number of insertions and deletions. An empirical study for a given application could determine an
optimal value for this chain length.

Alternatively, the user may prefer that the height of the tree is to be fixed, and therefore the
pumber of chains is fixed, while the chain length is variable. This is similar to ISAM indexes.
Because the internal pages of the A-tree will not be modified, they can be utilized fully (we need not



142
reserve empty spaces for aﬁditional internal records). This provides optimal tree height and index size.
However, chains may become arbitrarily long, and thus the index performance degrades with inser-

tions and deletions.

5.12.2. More Efficient Tree Traversal

Each internal record contains information that summarizes the contents of the data records in the
leaves of its subtree. For top down search over ordered aggregates, every page on the path from root
to leaf is scanned from left to right. For each intemal record scanned, a call to a user routine (Nex-

tinner) is made to calculate a new cumulative state value.

It might be more efficient to precalculate the values of the state at each record of a page, and

store this cumulative state value, rather than each individual summary record.

The advantage of storing the cumulative state value is that traversals which scan the internal
pages of the index may proceed with no calls to the NextInner routine. If calls to user supplied pro-
cedures are expensive (in a particular system, such calls might incur a context switch within the
operating system, additional time to demand load the user code, or overhead associated with some
form of remote procedure call), this will provide a large savings.

The disadvantage of this approach is that the cost of updates is increased, and one additional
function must be supplied by the user for each ordered aggregate. According to the algorithm to
update summary information given previously, any time a leaf page is modified, every page on the
path from leaf up to (but not including) the root is scanned. The resultant state from the scanned page
is stored in its parent’s internal record, r,. With this new proposal, the cumulative state of every
record after r, in the parent page must also be modified. The cumulative state to be stored in 7, may
be determined by calling Nextlnner with the cumulative state stored in the record before r,, and the
summary information resulting from the scan of the child page. To determine the new cumulative
state to be placed in the next internal record (call it r,), the user must provide a new function called
UpdateState.

The UpdateState function takes both the old and new cumulative state of r, (the previous
record), and the old cumulative state of r, (the current record), and determines the new cumulative

state for r,. Such a function typically involves inverting the function of NextInner (i.e. given the old



143
r, and r, values, we determine the summary information of r,, which we add to the new cumulative

state in 7, to get the new state for r,).

Time must be spent scanning the root page in order to update the cumulative state for every

record there. This scan was not required by the original proposal.

The inversion performed by UpdateState is not necessarily defined for all ordered aggregate
functions. For example, the ordered_max function (whose value at a given record is the maximum of
some attribute value over the set of records up to and including the given one) has the ‘‘current max-
imum’’ as the cumulative state at a given point. Given only the cumulative state at a given internal
record and at its predecessor, there is no way to determine the summary information of its subtree: if
the two cumulative states are equal, the maximum value may be in the subtree of r, or in the subtree of
its predecessor. In that case, the new cumulative state cannot properly be determined for r, without
accessing its child page. In no other case does a user-coded routine need to perform a disk page
access, and the performance penalty to do so may be unacceptable.

In summary, this proposal makes retrievals faster, and updates more expensive. In an environ-
ment where retrieval is common but update is rare, this will provide enhanced performance. The range
of implementable functions may be narrowed, if the new user-defined function UpdateState cannot be

implemented.

5.12.3. Parent Pointers

The above discussion of A-trees assumes that every page of the data structure contains a pointer
to its parent record (except, of course, the root page). This parent pointer is used in bottom-ﬁp traver-

sal of the tree. Such a traversal would be required to perform a query such as:

retrieve (TEXT.line_number)
where TEXT line = ‘A line of text”’

Some search (possibly via a secondary index) of the TEXT relation would find a record containing the
appropriate line of text, and then a bottom-up traversal would determine that line’s ordinate position,
line_number.

In B-tree implementations where the leaf records are sorted on a key field, such parent pointers

are unnecessary, since the path from leaf to root is easily determined by taking the key of a leaf record



144
and performing a top-down traversal based on that key. The page addresses at each level of the tree

can then be saved for a subsequent bottom-up traversal.

This approach does not work when there is no key field stored in the leaf records. For example,
in the OB-trees developed.by Lynn [Lyn82], the absence of parent pointers disallows the retrieval
shown in the previous example. It is not possible to determine the ‘‘line_number’’ of a given line of

text, unless that line was found by performing a top-down traversal of the index.

Although this problem is solved by maintaining parent pointers, the cost of this feature may be
quite high. In particular, any time an internal page is split or merged, a large set of child pages must

have there parent pointers updated. Each such update requires a page access.
This issue can be resolved in three ways:
. Do not maintain parent pointers, and disallow accesses that require them.
. Support parent pointers on child pages, and tolerate the excess cost of maintaining them.

. Support parent pointers, but rather than keeping them on child pages, store them in a separate

data structure.

This last alternative proves to be a desirable choice. If the size of such a structure is reasonable
(and it will be shown that this is true), a relation can be maintained in memory that associates a parent
record address with every internal page of the A-tree. If we hash this relation on the page address, we

can efficiently determine the parent record for a given page.

How large is such a list? Using the parameters of our A-tree simulation, a page address requires
16 bytes, .and a record address uses 24 bytes, so one entry in our list contains 40 bytes. One such entry
is required for every internal record. Our simulation showed a full tree of height three (1.4 Megabytes
of data) to contain 86,000 leaf records, and about 2000 internal records. Such a relation therefore

requires a to have a parent pointer relation of less than 80K bytes.

In some systems, this may be small enough to fit permanently into main (or virtual) memory.
Alternatively, since locality of reference by a user in the ordered relation will be reflected in the local-
ity of reference to parent pointers, a memory cache of parent pointers might be effective. In such a

scheme, recently used parent pointers would be buffered in memory. If a parent pointer was needed



145
but not available, the internal records of the A-tree could be scanned to find it. It would then be
rapidly available as long as it is retained in the cache.

It should be noted that this internal structure need not be crash recoverable, since it can easily be
reconstructed by traversing all the internal nodes of the A-tree. When the parent pointers are modified,
such as when a child page is split, the parent pointer relation must be updated to reflect the current
state of the database.

5.13. Summary

A-trees provide a general approach for supporting user-defined indexing structures over abstract
data types. They are modeled after B-trees, with the information stored in the internal nodes of the
tree placed directly under user control. By supplying a small number of routines a user can easily

simulate existing ordered access methods, such as B-trees and OB-trees.

Additionally, the A-tree supports aggregate values calculated over ordered relations. Of particu-
lar interest are thoses aggregates, known as ordered aggregates, which supply for each record of a rela-
tion an aggregate value based on that record and all previous records in the ordering. Examples of this
approach are found in databases that maintain ordinate record numbers and those that maintain a per

record running total over an attribute of the relation.

It has been demonstrated that the performance of these A-trees under dynamic insertions and
deletions is the same as for B-trees.

By including a method of partitioning the data stored in an A-tree, hierarchical orderings are
supported. By permitting A-trees to be used as secondary indices, multi-orderings are supported.

In the case where multi-orderings are present, the data may be stored as a graph. This results in
a space savings, and potentially a time savings as well. In this case, the issue of how the data (i.e. the

nodes of the graph) should be clustered needs to be addressed. It remains to be seen whether general

purpose graph partitioning algorithms may be brought to bear to solve this problem.



146
CHAPTER 6

Temporal Data Management

Information which represents music is fundamentally temporal in nature. This, of course, is not
unique to the musical domain. Numerous other information domains, such as on-line calendars
[And81], project scheduling [MoP64], transaction management [SLR76], (with its issues of temporal
serializability [Pap79]) and version maintenance [KaL82] involve the manipulation of temporal data.
It is surprising, therefore, that none of the three major data models, hierarchical, network, nor rela-

tional, as originally formulated, addresses the issue of time management.

A large amount of research has therefore gone into various extensions to these models to incor-
porate temporal data. A reading of the literature (see, for example, the survey by Bolour [BAD82])
makes it obvious that the issue of what constitutes an appropriate representation for this data ns far
from settled. In the course 'of this chapter, we discuss how time in the music database is different,

though related, to many of the references to temporal data to be found in this research.

This chapter begins in section 6.1 by surveying a number of these research efforts, with an eye
toward determining the characteristics of the musical information domain which distinguish it from
other domains. Just as with the representation of musical data in general, we are concerned with the
management of temporal data on two distinct levels. Section 6.2 will first focus on the conceptual
level. In order to crystalize the semantics of time within the musical data manager, the notions of time
line and event are defined. We make use of the hierarchically ordered eatities of chapter 3 to model
these entities. We define a set of queries over the data, and show in section 6.3 how A-trees provide
for the efficient solution of these queries.

The actual query language programs that implement time lines using A-trees will then be given
in section 6.4.

An interesting application of multiple time lines to music involves the mapping between dif-
ferent musical time frames, such as score time and performance time. We introduce the concept of

time maps and tempo maps in section 6.5, and show how they can be used in conjunction with time



147

lines to provide a flexible mapping between time frames.

6.1. Time in Database Research

There seems to be agreement that the lack of time modeling facilities in first generation data
managers was a serious deficiency (a discussion of this can be found in [ACJ83]). There does not
appear to be a consensus, however, on how to address this problem. The major reason seems to be that
there are actually three independent data management problems involving time (roughly in the order of

the amount of attention they’ve received from the database research community):
. How to model data which is updated over time.

Most databases can be viewed in this way, since update itself is a temporal phenomenon. The
data in these databases are not temporal in nature, except insofar as they model facts in their domain
that are true over a period of time (i.e. until they are updated). Queries against these databases are typ-

ically of the form, ‘‘what is the value of datum x at time ¢?"’
. how to model temporal data itself. -

Examples of iemporal data are processes, events, and calendars. The data in such databases is
itself explicitly temporal in nature. We can ask a query such as ‘‘At what time does event e occur?’’
This data is subject to update just as in the previous case, and so we can combine the two perspectives

-

to get queries of the form ‘‘As of time ¢, at what time does event ¢ occur?’’
. how to model the natural language constructs of tense and modality within the query language.

Facts in the database represented by natural language often have complex temporal aspects. A
sentence such as ‘‘John had been going to the store.’”’ represents an event with temporal attributes that
are not trivially modeled. Although it might be interesting to explore the application of temporal logic

[FiC73, Pri67, ReU71] to musical databases, we will not pursue this issue here.

6.1.1. Historical Databases

Often, a database contains information intended to model some aspect of *‘the real world’’. A
datum in such a database is an implicit assertion of a fact (e.g. the fact that a given employee earns a
given salary). Database systems have been concerned with the ‘*‘current view’’ of the relevant infor-

mation. In other words, as the state of the world changes, the database is updated after the fact to



148
reflect these changes, and the previous state is *‘forgotten.’” Such a database which contained employ-
ees and their salaries could answer the query:

What is Jane's salary?
but could not answer the query:

What was Jane's salary on March 2, 19787

A solution to this latter query is made possible by maintaining an historical database. When-
ever an update to a relation is introduced into the historical database, rather than overwriting previous
state information, the new information is appended to the relation. The previous state information is
thus preserved. This non-destructive update was first suggested in [Sch77]. Proposed systems that
incorporate this nondestructive update to maintain historical state information include GemStone

[CoM84], TQuel [Sno84], and Postgres [StR85].

Clifford and Warren [CIW83] discuss a formal semantics, based on intensional logic, for this
data model. In particular, they model the database as a succession of states; each state transition is

triggered by an update to the database.

It was noted by Lum, et al., in [LDE84] that this approach only supports a single notion of time,
‘‘physical time’’. It did not support updates which take effect in another time frame. For example,

suppose the user wishes to form an update:
(At 5/1/86) raise Sue’s salary to 60,000 dollars, retroactive to 4/1/86.

There is no way to record this fact. Its was suggested therefore that both physical time (i.e. the time
that the update is processed) and logical time (i.e. the time that the update is ‘‘effective’’) be recorded.
This allows queries to be posed that look like:

‘What was Sue’s salary on 4/1/86 (logical time) as of 5/1/36 (physical time).

Snodgrass argues in [SnA85] that the distinction between physical time and logical time is not
well defined, and that a more appropriate division of time distinguishes between valid time and tran-
saction time. The valid time of a record indicates precisely the period during which the values in the
record accurately model the real world. The transaction time of a record indicates the period from

when a record is entered into the database until it is superceded by an updated version. These two time



149
lines are conceptually independent. In the same proposal, Snodgrass includes the notion of user-
defined time for times related to a particular event. In the employee database, for example, the event
‘‘grant Sue a raise’’ has a physical time, at which the updated salary is recorded in the database, a
valid time at which the raise is actually granted, and a user-defined time when the raise becomes effec-
tive.

It appears that these types of extensions could continue indefinitely; particular applications
might refer to an arbitrary number of ‘‘interesting’’ time lines. Music, in particular, is often structured
by using similar sequences of events, each organized within a different time frame. Thus, a canon or
fugue consists of similar melodies shifted in time with respect to a particular point in time. Another
example is found in compositions where two instances of a melody are started at the same time, but
proceed at slightly different rates (so called, ‘‘phase music’’). One may view such a composition as
consisting of two identical instances of event sets, each performed in a different time frame. This

notion will be made more precise in our discussion of time maps, in section 6.5.

6.1.2. Modeling Temporal Information

Existing research on modeling explicitly temporal information has focused on the notion of an

event, which is the unit of temporal action.

The TERM (Time-extended Entity-Relationship Model) system [Klo83], is an example of a sys-
tem which includes a notion of ‘‘valid time’’ in order to support histories of entities within the data-
base. This system, however, also models point events, which are inherently temporal in nature. They

demonstrate a number of different types of event sequences, for example:

. Events are points in time at which an attribute takes on a new value (e.g. via update). The value
of the attribute remains constant until the next event changes the value of the attribute for the

same entity.

. Events are points in time at which an attribute is known (e.g. via a measurement) to have a cer-
tain value. The value is continuously changing over time. It is known with precision at event-
points, and perhaps can be determined at other points via an induction formula, such as interpo-

lation.



150
. Events can take place at regular intervals along a time line that does not match real ( “‘clock’’)
time. For example, banking deposits and withdrawals occur every banking day. No meaning is

ascribed to the value of an attribute in between these times.

Shoshani and Kawagoe [ShK86] continue this analysis. They define *‘time sequences’, as
values of an attribute associated with points in time for a given entity. These time series are classified
according to their structure and interpretation as being:

. regular or irregular in the time domain,

. continuous, step-wise constant, or discrete in the interval between points. A special case of the
step-wise constant is where the attribute value is boolean. This constitutes an interval (from

attribute true to attribute false).

Similar event models were developed earlier by Bruce [Bru72] and by Findler [FiC73]. These
proposals were oriented toward a natural language interface that managed temporal queries, particular
the mapping of tense in English to precise query language constructs. Findler was additionally con-
cerned with temporal inference, inferring the overall temporal order of events given a number of

specifications such as ‘‘event e, preceded event e,"’.

Various proposals for organizing temporal information within the conceptual level of a database
schema have been developed. Anderson [And81] developed a model that organizes events into
decomposable hierarchies, known as processes. Barbic [BaP85], in the Temporal Semantics Office
System, considers the relationship between events especially important, and introduces into his model

the notion of causality as a connection between events.

6.1.3. Modeling Musical Events

The role of temporal data management in the music domain has been recognized explicitly by a
few researchers. Some tools have been developed for editing sets of events, such as the ELED system
[DeK85]. Other musical score editors, such as INTERSCORE [Pru84b] have made use of the event
typologies mentioned above. The INTERSCORE system maintains three semi-independent time lines

under user control:



151
. a conceptual representation of a composition, which would include both static and dynamic

tempo indications (e.g. metronome markings, accelerandi, etc.),
. the performance of the composition, which would include rubato and phrasing,
«  a‘‘piano roll”” score that the user may edit.

An important issue in timing musical events is that of synchronization. Groups of events are
often specified to occur simultaneously. Although the temporal location of these events might be
ambiguously specified, the simultaneity of those events must not be violated. One construct used to

model flexible temporal location of events while preserving simultaneity is the time map discussed

later in this chapter.

6.2. Events as Ordinate Data

We can define our temporal domain to consist of two types of entities, fime lines and events. In
this section, we specify the attributes of these entities, and explore a set of operations specific to time
lines.

An event is the atomic unit of activity. It is defined as follows:

define entity EVENT
(start_time = integer,
duration = integer)
We define a time line to be the time over which a particular set of musical events occur. A par-

ticular composition may consist of a number of time lines. A time line is defined as:

define entity TIMELINE
(duration = integer)

The single attribute, ‘‘duration’’, determines the total duration of the time line. A typical value for the

duration of a time line might be the temporal distance from the beginning of the first event in the time
line to the end of the last event.

Eveants are hierarchically ordered under time lines:

define ordering (EVENT)
under TIMELINE



152

Having characterized these time lines, consider how we might want to edit them. The standard
update mechanisms (allowing, for example, update of any attribute of any tuple) can be applied to any
of the tuples in our relation to give simple, standard editing functions. For example, changing the
duration of event merely involves replacing the value of a ‘‘duration’’ attribute in an instance of the

EVENT entity.

However, there are more complex editing operations which are particular to time-ordered data.
Operations that modify time lines as a whole are found in most systems that implement the musical
task of ‘‘sequencing’’ (organizing and editing the order and placement of events). We will describe to
types of insertion, ‘‘splice-in’’ and ‘‘overlay’’, two types of deletion, *‘splice-out’’ and ‘‘remove”’,

and a retrieval operation, ‘‘get-event’’.

6.2.1. The Splice-in Operation

This operation makes a ‘‘break’’ in the first time line at the insertion point, and *‘splices’’ the
second time line into the break. All events in the first time line which are initiated after the break get
slid forward in time by the duration of the second time line. Figure 6.1 demonstrates the process.

insertion point

Figure 6.1. The SPLICE-IN Operation




153

In this example, events on time line T, are spliced into time line T,. The result is called T.
This is not the only way in which a splice operation could be defined. For example, we do not
consider in this operation any change in the durations of events. Therefore, events which overlap

before the splice may not overlap afterward (as for events E ; and E 4 in figure 6.1).

The process of splicing time lines models real world modifications in schedules. For example,
inserting a set of speakers in a conference agenda pushes all future speakers forward in time by a fixed
amount. In the musical example, inserting some musical material into a composition causes all future
musical events to occur at a later time. Notice that the temporal relationship among these future events

remains unchanged, and that events which are simultaneous prior to the operation remain so after the

operation.

6.2.2. The Overlay Operation

The second form of merging time lines employs the ‘‘overlaying’® operation. In this form of
update, we identify the time origin of the second time line with a point on the first time line (the
overlay-point). We then place each event of the second time line onto the first time line by determin-
ing the offset of the event start times with respect to their new time origin. All events in the first time
line remain unmodified. Figure 6.2 demonstrates the overlaying of one time line onto another. T is

-overlaid onto T, and the result is called T'5.

Overlaying two time lines is intended to model the process of running two event streams in
parallel. The time line, in a sense, branches at the overlay-point into two parallel streams of events.
We do not however, maintain information regarding this separation, and the overlaid events become

indistinguishable from those on the original time line.

Comesponding to the above forms of insertion into the time line, there are two types of deletion
in a time line. The first form ‘‘splices out’’ a section of the time line, and the other form eliminates

events from an intact time line.

6.2.3. The Splice-out Operation

The process of taking out a section of the time line and splicing together the remaining ends is

the inverse of the *‘splice-in’’ operation described earlier. We delimit a portion of the time line to be



154

overlay point

Figure 6.2. The OVERLAY Operation

removed. All events initiated during that time are eliminated. All events initiated after that time are
slid earlier in time (i.e. moved up in the schedule). Figure 6.3 shows an example of the splice-out

operation.

6.2.4. The Remove Operation

The second form of deletion merely eliminates a set of events from a time line. Unlike the splic-
ing operations, the removal of a set of events does not effect the placement of other events. Figure 6.4

demonstrates the remove-event operation.

In order to obtain the set of events used by an operation such as the remove operation, a retrieve

function must of course be provided.



155

T,
After deletion
Figure 6.3. The SPLICE-OUT Operation
T,
T, i ' 1 | ! : 1 ] | |

After remove
Figure 6.4. The REMOVE Operation




156

6.2.5. The Interval-retrieve Operation

For completeness, a retrieval operation is defined over time lines. Given a time line and an
interval (a start_time and a duration), the *‘interval-retrieve’’ operation returns the set of all events on
the time line which are initiated during the given interval.

This provides a reasonably complete set of operations to be applied to time lines. The following
sections will discuss how time lines may be implemented using A-trees in order to efficiently support

these operations.

6.3. Using A-trees to Index Time lines

The definition for events mentioned in the previous section, specifying a native *‘start-time’’
. attribute, is not a good one for the operations presented. In order to demonstrate its deficiencies, con-
sider the operation of splicing one time line (presumably a small"time fragment) into another (presum-
ably a large one). This can be accomplished by the query language program shown in figure 6.5. In
general, this set of queries needs to modify nearly every tuple m both time lines. Every event on T

after the insertion point is modified in step 2, and every event on T, is modified in step 3. We would

/* T, and T, are time lines */
[* insertion_point is a pointin T | time */

/* Step 1: Get bounding length of T', */
replace TIMELINE (Duration =
max(EVENT .start_time + EVENT.duration
where EVENT under T»)
where TIMELINE is T,

/* Step 2: Slide tail of time line T, forward in time */
replace EVENT
(start_time = EVENT .start_time + TIMELINE.duration)
where TIMELINE is T,
and EVENT under T,
and EVENT.start_time > insertion_point

/* Step 3: All the events on T, get moved to T, */
/* starting at insertion point */
replace EVENT under T,
(start_time = insertion_point + EVENT .start_time)
where EVENT under T,
Figure 6.5. Naive Insertion of an Event




157
like to be able to perform operations such as these, which are conceptually local operations (in this
case, local to the *‘insertion point’* within T ) without making these more global modifications to the
database (in this case, modifying as much as all of T, after the insertion point).

We solve this dilemma with an A-tree index. Given a very large number of tuples in the
EVENT relation, we may establish an index which provides rapid access for the splice and retrieval
operations.

Under the splicing operations, we notice the following invariants:

. Simultaneous events remain simultaneous.

o  The distance between event start times is unchanged for pairs of events which do not span the
splicing point.
. For all pairs which span the splicing point, the distance is changed only by a constant.

It can be seen from the above invariants that a good quantity on which to index is the distance

(in time) between consecutive events.

Initially, we eliminate all references to start time with respect to the time line origin, and replace
them with references to time with respect to the start time of the preceding event. We will call this
new attribute the delay of an event. In doing this, we have replaced a set of previously independent
event placements with a set of interdependent descriptions. The links now provide the ordering infor-
mation among the events. Figure 6.6 shows a time line and its associated ordered structure. Each
entry of the list contains its delay from the previous entry. The start time of an event is now merely the

sum of its delay and all preceding delays. The modified definitions are:

define entity TIMELINE (duration = integer)
define entity EVENT (delay = integer)

define ordering (EVENT) under TIMELINE
define inheritance EVENT (start_time = ordered_sum(EVENT.delay))

modify EVENT to A-tree

The splicing process now becomes very simple. We need merely insert one set of events
between two events in another, making only local changes (including adjustment of the index). The

process of inserting delays onto a point on the list implicitly slides the future events forward on the



158

E,
El E4
E, Es
T, | | ! 1 : !
(a)
T,/\’gElé : E Es! Event
| J 37 3, De
— j i w
13 P4 4. | 3 | Duration
®)
Figure 6.6. Ordered Structure for Time Line
time line.

The modify statement builds an A-tree index which allows us to efficiently calculate the
start_time attribute. We do this by building the tree on top of the event list. The start_time is main-
tained as an ordered aggregate that sums over the delay attribute. Figure 6.7 shows such a tree over a
set of events on a time line. The internal records of this tree contain the summary information for the
‘“‘ordered_sum’’ aggregate. For a given internal record, this summary information is the sum of the
delay values rooted at that record. At the leaf level, the delays and durations are stored (because this is
a primary index, the data records themselves are stored, rather than pointers to the data records). For

reference, the diagram of events represented by this particular tree is also given.
6.4. Implementing Time Line Operations
What follows is a detailed description of the query language programs necessary to imp!ement
time lines and events, and efficiently support the splice and overlay operations.
6.4.1. Inserting Events

Four pieces of information are needed to install an event: the name of the event, ¢, the name of
the time line on which it is to be installed, ¢, the start time of the event, s, and the duration of the

event, d. Given these constants, the commands shown in ﬁgure 6.8 insert the event. The first step



159

partial sums :6 117!

partial sums 1,312

.0[1,0{ {2{1'0 l0 2] ‘1.1]0 . , delay
4|23 15533 12| 2:4|3' i3[1°3; 42(2] 2.4 54 2:3.3| duration

)
Figure 6.7. An A-tree and The Events Which It Indexes

/* find the predecessor of e at s */
retrieve into PREDEVENT (event = EVENT, olddelay = EVENT.delay)
where EVENT .start_time = last(EVENT .start_time
where EVENT start_time < s5))
and EVENT under ¢

/* update its delay */
replace EVENT (delay = s - EVENT.start_time)
where EVENT is PREDEVENT.event

/* install the new event */
range of el is EVENT
append to EVENT after el under ¢
(delay = el.start_time + PREDEVENT.old_delay - s,
duration =d)
where el is PREDEVENT.event
Figure 6.8. Inserting an Event




160
determines the predecessor of ¢, and the second step alters its delay to reflect the fact that a new event

is being inserted. The third step actually inserts the new event e with the correct delay value.

6.4.2. Implementing the Overlay Operation

To overlay the events on a time line T, onto another time line T, we want to preserve start
times of all the events. The simplest way to do this is to select the small number of events in each time
line that are local to the insertion, and materialize their start times in a temporary relation. This allows
us to perform insertions without automatically updating the virtual start time attributes. This tem-
porary relation will be called OVERLAY. Here is the fragment of the query language that implements

the overlay operation.

define entity OVERLAY (event = EVENT, start_time = integer)
define ordering (OVERLAY)
define inheritance OVERLAY (ordinate = ordered_count(OVERLAY))

range of el, e2 is EVENT
range of o1, 02 is OVERLAY

/* slide T, forward by Overlay point */
* replace EVENT (delay = overlay_point + EVENT.delay)
where EVENT is first(EVENT under T,)

/* get into a temporary relation the relevant events of Ty,
materializing their start_time attribute values in the process */

retrieve into OVERLAY (event= el, start_time = el.start_time)
whereel under T,
and e2 under T,
and el.start_time >= first(e2 under T',).start_time
and el.start_time <= last(e2 under T,).start_time

/* add T, boundary events to OVERLAY */
append into OVERLAY (event=el, start_time=¢1.start_time)
whereel under T,
and el.start_time = last(el under T, .
where el.start_time < first(OVERLAY).start_time).start_time



161

append into OVERLAY

(event = el, start_time = el.start_time)

where el under T,

and el.start_time = first(EVENT .start_time under T,

where el.start_time > last(OVERLAY).start_time).start_time

and o1 is last(ol where ol.start_time < el.start_time)
/* add T, events to OVERLAY */
append into OVERLAY

(event = e2, start_time = e2.start_time)

where e2 under T,

/* having done all the appends, reorganize OVERLAY */
reorder OVERLAY by start_time

/* Update EVENT to reflect events in OVERLAY */
replace EVENT under T,

(delay = o2.start_time - ol.start_time)

where EVENT is 02.event

and ol.ordinate = o2.ordinate - 1

destroy OVERLAY

This program first creates the temporary relation, OVERLAY as an ordered relation. We will
fill the OVERLAY relation with events from the EVENT relation. Notice that, for each event, start
time is a virtual attribute provided by an ordered aggregate over the hierarchically ordered EVENT
relation. Inthe OVERLAY relation, on the other hand, start_time is a physical (materialized) attribute.

A replace statement then slides all the start times on T, forward by the overlay point. This

requires only a single update to the first delay value.

The next four statements fill the OVERLAY relation. First, we collect all the relevant events in
T,, those that overlap the time space of T, (as modified). The next two statements each add a single
additional event to the OVERLAY relation at the boundaries of the T, time space. We then add all of
the eveats in T, to the OVERLAY relation. Because we did.not specify where in the OVERLAY ord-
ering these appended records should be placed, their ordering is at this point unknown. We explicitly
reorder the OVERLAY records, by sorting them.on their start times.

We then go back to the EVENT relation, and update all the events that are involved in the
OVERi.AY time space. The delays are easily calculated, since the OVERLAY relation orders the

start times of successive events.



162
6.4.3. Implementing the Splice Operation

In splicing one time line into another, the relative distance between events (that is, their delay)
remains constant. We can use the A-tree over the EVENT relation to automatically maintain the

appropriate values for each event'’s start time.

To splice one time line into another, the following QUEL fragment is executed. It splices the

events in T, into time line T, at the given insertion_point.

range of el,e2 is EVENT
replace e2 after el under T
where el under T,
and e2 under T,
and el is last(EVENT under T,
where EVENT.start_time < insertion_point)
This splice operation can be done in a single query. We merely transfer events from T, to T,

inserting them after the insertion point.

6.5. Using Inheritance to Define Time Maps

An important property of musical events is that they are composed using one time frame (score
time) and performed using a slightly different one (performance time). In an orchestral concert, the
conductor is typically responsible for coordinating the translation of score time into performance time.
This notion of translation between time frames is formalized in {Jaf35] through the concept of time

and tempo maps.

This discussion concludes with a demonstration that, by integrating our inheritance
specifications with the ordered aggregate attributes provided by the A-tree index, we can implement

tempo and time maps as presented in [Jaf85].

We begin by reviewing some definitions. ‘‘Score time”’ is the temporal point at which events
are scheduled to begin in an abstract time space (for example, the fourth beat of the sixtieth measure of
a composition). ‘‘Performance time’’ is the actual time at which the event is performed (for example,
forty seconds after the start of the composition). In this system, the tempo (i.e. rate of score time pas-
sage with respect to real time) of a set of events may be specified as an arbitrary function of score time

(see figure 6.9). The upper graph in this figure shows tempo as a function of time. This constitutes a



163

Tempo
;Ek
Performance

Time A
|
|
|
|

Score Time

Figure 6.9. Tempo and Time Maps

tempo map. In a CMN score, annotations such as presto (fast) or lento (slow) indicate absolute tempo.
The flat portions of the graph represent those tempo settings. Other annotations, such as accelerando
(accelerate) and rallentando (slow down) signify a tempo that changes over time. The sloped portions

of the graph show this type of tempo indication.

The lower graph results from integrating the tempo function over score time. Since the tempo
function maps the rate of change of performance time at each point in score time, the integration in the
lower graph represents the point in performance time corresponding to a particular point in score time.
This is a time map.

A tempo map therefore represents a flexible transformation from one time frame into another.

The utility of this mapping lies in the fact that it preserves simultaneity. Events that are simultaneous



164
in the original time frame remain simultaneous in the resultant time frame (the actual point in the

resultant time frame at which the events occur is determined by the particular tempo map).

A tempo map is represented in the database by a relationship between points in score time (the
time units in which the events are placed on time lines), and the tempo at those points. If the tempo is
specified at regular intervals, the following relation suffices:

define entity TEMPOMAP (tempo = integer)
define ordering (TEMPOMAP)

The time map can be derived from this tempo map by integration, in other words, by summing over the

tempo values. The A-tree structure to accomplish this is:

define inheritance MAP
score_time = ordered_count(MAP),
performance_time = ordered_sum(MAP.tempo))

Now, given a events and tempo maps, we can define ‘the performance time of these events using the
inheritance definition shown in figure 6.10. This definition adds two attributes to the EVENT entity:
‘‘performance_start_time,’’ and *‘performance_duration.’’ They are calculated dynamically based on
the values of the start_time in the EVENT relation, and the time mapping indicated by the score_time

and the performance_time in the MAP entity.

Using this mechanism, the MAP may be modified at will by the user, and the start times of all
mapped time attributes will be automatically maintained by the system. The only native attributes
required by the calculation are the delay and duration attributes for events, and the tempo attribute at
each discrete point in time. From these, start_time, performance_start_time, and

performance_duration are all determined.

range of M1, M2 is MAP

define inheritance EVENT
(performance_start_time = M1.performance_time,
performance_duration = M2.performance_time - M1.performance_time)
where EVENT start_time = M1.score_time
and EVENT start_time + EVENT.duration = M2.score_time
Figure 6.10. Inheriting Performance Time




165

6.6. Summary

Temporal information in the database has two faces: the temporal aspect of insertion and update
in the database (operations which take place at points in time), and the temporal semantic content of
the data itself. Although much research in modeling temporal information in the database has applied

to the former aspect, we are concerned here with the latter.

We have presented a detailed application of A-trees to the management of temporal information.
In this model, the unit of temporal information is the event. Events are hierarchically ordered under

particular fime lines.
Several operations are defined on these time lines:
. Splicing one time line into another,
. Overlaying one time line onto another,
. Deleting a section of a time line,
. Removing a set of events from a time line,
. Retrieving a set of events on a time line.
After defining the A-tree used to index the event relation, the QUEL program fragments for
‘splicing and overlaying time lines are given.
Music uses many different kinds of time, such as score time, score time, and performance time.
The mapping between these time spaces may be specified using time maps [Jaf85). These time maps
themselves may be defined as ordered relations. We have shown how a relational view definition built

on top of the ordered event relation can provide flexible mapping from one time space to another. ’



166

CHAPTER 7

Conclusion

7.1. Summary of Research

This research has focused on two major areas in the development of a data manager for a musi-
cal database. The first is a data model for musical information, and the other is a strategy for effec-

tively implementing this model. What follows is a summary of our research on these issues.

7.1.1. Data Modeling

Before a reasonable musical information manager can be constructed, a model of musical infor-
mation itself is required. The tools for building this model, and many aspects of the model itself, have
been the focus of this research.

Fundamental aspects of musical information, either as CMN scores or event time lines, incor-
porate the concepts of order and hierarchy. The interaction between these two concepts provides a
basis for Ordered Aggregation Hierarchies, which serve as our primary tool for modeling musical
information.

These hierarchies provide a framework around which we organize attribute inheritance. Enti-
ties inherit attribute values by performing various computations on the attributes of their parents,
siblings, and children in their hierarchies. These related entities in tum may inherit attributes from
their immediate relatives. In this way, a very rich structure is provided for propagating attribute values

through the hierarchy.

7.1.2. Implementation Strategies

Upon developing this data model, it became clear that access methods currenty available in
database systems are insufficiently powei'ﬁxl to support it. Using the entity-relationship model as a
starting point, a number of extensions to a relational database system were developed to support the
efficient use of hierarchical ordering. ‘



167

Underlying these extensions is a new relation type, the ordered relation, and a new access
method, the A-tree. A-trees allow for the efficient caiculation of a large class of aggregate functions
over ordered relations. These functions are named ordered aggregates. The client interface
developed for A-trees permits a high degree of control by the client over the specific use of the access
path, allowing the implementation of a wide variety of ordered aggregates. We presented examples of
line numbers, running balances, and exponential averages to indicate a variety of uses for ordered

aggregation.

In addition to supporting the notions of hierarchy and ordering in the data, A-trees solve, in part,
the problem of efficiently implementing complex attribute inheritance. This is possible when the enti-
ties participating in the inheritance function are the aggregation of siblings of a given entity.

For more general types of inheritance, there is no alternative but to provide some means of stor-
ing functional specifications (i.e. procedural data) in the database. We have modified a relational view
mechanism to support these specifications. When a query references an inherited attribute, the query
is modified to compute the value of the attribute based on its inheritance specification. This may be

efficiently implemented by precomputing such values and caching the results in the database.

7.2. Further Research

In an obvious sense, this dissertation is incomplete. It intends to develop a data manager for
musical information, yet only addresses a subset of the issues presented by such a system. In order to

demonstrate the viability of such a tool, the following tasks need be done:
. Build the model extensions and access methods into an actual relational system.

It is possible to use a standard relational database to store musical information; the extensions to
the relational model suggested by this thesis affect the naturalness of the representation, and so affect
the efficiency of utilizing the information. These extensions need to be incorporated into an actual

relational system to determine there effectiveness.
Although simulations and analysis indicate that particular performance improvements may be
realized by the access methods developed by this research, they have yet to be used under real condi-

tions. A ‘‘road test’’ of these techniques is required.



168
. Develop front end tools for the data manager.

Such tools include a score editor or event sequencing tool, or perhaps analysis programs. Any
existing program that operates on musical information could in theory be modified to use the database
back end. This might prove to be a simple path to actual usage of the data manager.

. Assess the performance of the data manager.

Given a user program (such as an analysis program) that has been modified to read its musical
information input out from the data manager, it is a simple exercise to compare its performance to the
same program operating on its own data. One would expect a performance penalty in using a general
purpose data manager (in place of application-specific code). It remains to be seen whether or not this
penalty is acceptable.



169
APPENDIX A

A Music Font

This appendix contains the set of icons and linears (as described in Chapter 2) used in the proto-
type music database developed in the course of our research. Most of these objects are referenced
explicitly by the schema given in appendix C.

The various objects are presented in their outline form, to make their construction more clearly
visible. They are represented as Postscript procedures [Ado85],, and may thus be scaled to any size,
and rendered on a variety of graphics devices.

M AN

} ninl T m
e
— - T [ |
S
i | , ——

Figure A.1. Accents




wpo

tepeas-3-bar

7=

Figure A.2. Annotations




171

black-o-hasd

N
NP,

A

1-tmed Q

treenolo-boem

double-st

Rag-down

doudle-shasp

Figure A.3. Chord and Note Parts




172

. ' i

breve-rest ; i whole-rest I half-rest ‘% '
. ! |
. . 1

quarter-rest cighth-rest ! , sixteenth-rest

Figure A.4. Rests




173

gclef

(s treble)

f<clef

(as bass)

cclef
(as alto)

— ;.—-l-—-—- ¥
. l/ O splef o ////‘
/IL " (as enen) ; f7.. N
J

Figure A.5. Clefs




174

o multiple-rest
T T il
diminuendo horizontal-bracket-left
T 8va
crescendo erill
) ALAAAAAAAA
Pﬁ%

Figure A.6. Horizontal Linears




175

] kefi-doudie-bar-ine ' wpeggio ;
S e ——— -
|- ! N |
—= e :
L : :
_ g .
’E- M :
— | e———— _—_—————
dantine dghedoudle-teniine ¢ brace s
f———— ey ~——e—— — =T ! —————
: . b i
—_— — ra— {
] , R :
! : \ \ i
T i Y I M
. < ii :
= T ! I '
. | | ()i
+ dommd-bar-tine | upegglo-ap : A :
E———— T L — !
] ' : \ — '
w—r———ry H
H 1
a————]_.— H |
; !
1 | tracks 1
—  ——— :
\ e
. | e
thin-dosble-bar-tine apeggio-down ! [ T,
: : f——— ]
g Al
: 5 .
: |

i
;

Figure A.7. Vertical Linears




176

APPENDIX B

An Example of Update to Inherited Attributes

An example of update to inherited attributes was presented in chapter 3. This appendix contains

the actual program fragment to perform the update.

In this example, we wish to modify the start ime of a chord ¢ to be synchronous with the start
time of chord ¢,. The program is written using pseudo-code (primarily to represent control structures)

intermixed with QUEL.
Here is an overview of the program:

Find chords before and after ¢, in its voice

Move ¢, to new group, and fix instance graph

Get a group for ¢ to go into

Find chords before and after ¢, in sync

Move ¢, into new sync, and fix instance graph
Recalculate durations of s, and s,,,,

Recalculate start times of syncs, and pass them downward
Recalculate start imes of groups in movement

Here is the program fragment to set the start time of chord ¢, equal to that of chord ¢ :

/* find chords before and after ¢, in voice */
find Cpepore With maximum start_time
where chord.start_time < ¢ ,.start_time
and chord.voice_parent = ¢ ,.voice_parent

find ¢ 4,, with minimum start_time
where chord.start_time > ¢ ,.start_time
and chord.voice_parent = ¢ ,.voice_parent

/* move ¢, to new group, and fix instance graph */
8oid = € .group_parent
/* get a group for ¢ to go into */
if Cpefore -gTOUP_parent != ¢ 4,,.group_parent then
make a new group g,
8new-Start_time = ¢ ,.start_time
&new-duration = ¢ |.duration )
8new-VOiCe_parent = ¢ ;.voice_parent
8&new-voice_ordinate = cp,py, .voice_ordinate + 1
replace group (voice_ordinate = group.voice_ordinate + 1)
where group.voice_parent = g,,,,.voice_parent
and group.voice_ordinate > g,,,, .voice_ordinate
¢ .group_parent = g,,,,,
¢.group_ordinate = 1
else



8new ¢ ¢_sub_before .group_parent

€).group_parent = g,,,,

¢ .group_ordinate = Cp,p, -group_ordinate + 1

replace chord (group_ordinate = chord.group_ordinate + 1)
where chord.group_parent = ¢ ,.group_parent
and chord.group_ordinate > ¢ |.group_ordinate

/* find chords before and after ¢ in sync */

find Cpepre With maximum sync_ordinate
where chord.sync_ordinate is < c,.sync_ordinate
and chord.sync_parent = c ,.sync_parent

find c 4., with minimum sync_ordinate
where chord.sync_ordinate is > ¢,.sync_ordinate
and chord.sync_parent = ¢ ,.sync_parent

/* move ¢ into new sync, and fix instance graph */
Soid = C1.Sync_parent

Snew = C2.Sync_parent

C\.Sync_parent = s,,,,

¢ \.sync_ordinate = ¢y, .Sync_ordinate + 1

replace chord (sync_ordinate = chord.sync_ordinate + 1)
where chord.sync_parent = ¢ y.sync_parent
and chord.sync_ordinate > ¢ ;.sync_ordinate

/* recalculate durations of s,y and s, */
replace sync (duration = min(chord.duration where
chord.sync_parent = 5,,4))
where sync.uid is Sold

replace sync (duration = min(chord.duration where
chord.sync_parent = s,,,,,)) ’
where sync.uid is s,,.,

/* recalculate start times of syncs, and pass them downward */
for every sync s
where s.movement_parent = ¢ . movement_parent:

replace sync (start_time = sum(sync.duration
where sync.movement_parent = s .movement_parent
and sync.movement_ordinate < s . movement_ordinate))
where sync.uid = s

replace chord (start_time = s .start_time)
where chord.sync_parent =5

replace note (start_time = s .start_time)
where note.sync_parent = s

/* recalculate start times of groups in movement */ -

for every group g
where g .movement_parent = ¢ ,.movement_parent:

replace group (start_time = min(chord.start_time
where chord.group_parent = g ))
where group.uid = g

177



178

APPENDIX C

Musical Database Schema

The following database schema was developed to represent CMN scores and MIDI information

as the basis for a musical information database. It is based loosely on an entity-relationship model.
The following presentation is broken into three parts:

. The data types used by the schema,

. The relations, each with its attributes (both native and inherited),

. The indices providing appropriate access paths, as well as ordered aggregate attribute values, for

the relations.

C.1. Data Types
Figure C.1 summarizes the data types used by the schema.

Str and Num should be self-explanatory. A Date is a six byte strings that map.to a day, month
and year. Attributes of type Ref, reference fields, are keys, typically entity uid’s, that are imported into
a relation. They allow a record to ‘‘point’’ to a record in another entity. Text and Binary data types
are variable length byte strings. The only distinction between these two types lies in their use, rather
than their representation. Text strings are typically used to store human readable information, such as
program fragments. Binary data is typically machine ieadable, as are, for example, MIDI command
strings.

The remaining types have more complex underlying representations, but they have fixed sizes
and interpretations. A Time element is either a duration, or, interpreted relative to a time line origin, a
point on some time line. A Tspan is the portion of a time line delimited by a pair of time points.

There are three graphical types. A Dist is a distance in graphical space. A point is a pair of
(x,y) distances from the graphical origin. A Bbox is the bounding box defined by a pair of points indi-
caﬁng two opposite corners of the rectangle (typically the one closest to the graphical origin, and the
one furthest).



179

Len Description
Str * Fixed length character strings
Num * Integer numbers
Date 6 Calendar dates
Ref t Reference fields
Text § Arbitrary length text (ASCII)
Bipary § Arbitrary length byte strings
Time 4 A temporal duration or point in time
Tspan 8 A time span
Dist 4 A graphical distance
Point 8 A point in graphical space
Bbox 16 A bounding box in graphical space |
Degree 1 A staff degree
Pitch 2 A musical pitch (MIDI)

* The length of these attributes is fixed in the schema

T The length of a reference attribute is the length
of the imported key (see text).

§ The length of these attributes varies dynamically as the
objects are created and modified

Figure C.1. Summary of Data Types

A Degree refers to vertical positions on the staff. The bottom line of a staff is degree zero, and
each line and space above the staff is numbered consecixtively. Positions below the staff are
represented by negative numbers. Finally, Pitch is an enumerated type that may be represented in two

bytes.

C.2. Relations and Attributes

The following (long) table consists of all relations and their attributes. For every attribute, its
type and byte length are given. For reference attributes, the relation and key name to be imported are
given. For inherited attributes the inheritance function is given. Some of these inheritance functions
are single queries, others are arbitrary database procedures. In the latter case, the name of the pro-

cedure is given. Key fields are marked with an asterisk.

In general every entity that exists on a page has a bounding box. It may also have a normative

point indicating its logical position on the page. Every movement has its own timeline. Every entity



180
that exists on a time line has a time span and a nommative time point associated with it. Associated
with each ordered aggregation are three attributes: A count attribute in the parent entity, and a refer-
ence pointer to the parent and ordinate position in the child entity. Of course, not every reference

pointer exists because of a ordered aggregation construct.

Ordering the entities of the schema in a listing such as this one is problematic, since most enti-
ties belong to several different groups, and thus they do not admit to a linear ordering. In general, the

more abstract entities come first, followed by lower level objects below.

Score
*uid Num 4
movement_cnt Num 4
page_cnt Num 4
Composer
*uid Num 4
name Str 50
bom Date 6
died Date 6
country Str 20
Biblio
score Ref 4  Scorefuid
composer Ref 4  Composer/uid
title St 40
subtitle Su 40
compositiondate  Date 6
publicationdate Date 6
refid Su 40
GraphDef
*uid Num 4
name Str 40
postscript Text 40
Page
*uid Num 4
score_par Ref 4  Scorefuid
score_ord Num 4
system_cnt Num 4
page_number Num 4
bbox Bbox 16
tspan Tspan 8



Movement

Annot

Font

Position

AnScore

InstDef

AnMove

Measure

*uid
score_par
score_ord -
first_page
last_page
measure_cnt
instrum_cnt
system_cnt
tspan

*uid
label
Page
location
size
font
position

*uid
name

*uid
name
hfactor
vfactor

score_parent
score_ordinate
annot

*uid
name
type
low
high

description

movement_par
movement_ord
annot

*uid
movement_par
movement_ord
sync_cnt
score_par

tspan
measure_number

Num
Ref

Ref
Ref
Num
Num
Num
Tspan

Num
Str
Ref
Point

Ref
Ref

Num
Str

Num

Ref
Num
Ref

Num
Str
Str
Num
Num
Text

Ref
Num
Ref

PN

P IR A AR A N

181

Scorefuid

Page/uid
Page/uid

Page/uid

Font/uid
Position/uid

Scorefuid
Annot/uid

Movement/uid

Annot/uid

Movement/uid



AnPage

System

Sync

Barline

Section

annot
pageref

*uid

page_par
page_ord
movement_par
movement_ord
section_cnt

sync_cnt
bbox

tspan

*uid
system_par
system_ord
measure_par
measure_ord
syllable_cnt
chord_cnt
rest_cnt
bbox
location
time

sync
graphdef
measure

*uid
system_par
system_ord
instrum_cnt
bbox

tspan

*uid

instdef
movement_par
movement_ord
part_cnt
systinst_cnt
tspan

annot

Ref
Ref

Num
Ref
Num

Num
Num
Num
Bbox
Tspan

Num
Ref

Num
Ref

Num
Num
Num

Bbox

Point
Time

Ref

4

[ N0 N S P N N A

PORELPLEELEAMLEL

L

- - N R

RO IR SN R R A )

182

Annot/uid
Page/uid

Page/uid

System/uid

Measure/uid

Sync/uid
GraphDef/uid
Measure/uid

System/fuid

InstDef/uid
Movement/uid

Annot/uid



Duration

SystInst

Staff

Metersig

AnSystem

Part

KeyDef

Keysig

KeyDefg

*uid
notehead
resthead
w_num
w_denom
flags

dots
stem_p

*uid
instrum_par
instrum_ord
section_par
section_ord
bbox

tspan

*uid
systinst_par
systinst_ord
text_cnot

bbox
gr_spaceheight
tspan

sync
staff
graphdef
beats

per

sync
annot

*uid
instrum_par
instrument_ord

tspan
annot

*uid
tonality

staff

sync
keysig_def

keydef
accidental

degree

Ref
Ref
Num
Num
Num
Num
Str

Ref

Ref
Num
Ref

Ref
Ref

Num
Ref
Num
Tspan
Str

Num
Str

Ref
Ref
Ref

Ref
Ref
Degree

——rm DA

—
CONS L b h

-0 SN NP S N N

- LN I N S PR N R IR R R

LN

183

GraphDef/uid
GraphDef/uid

Instrum/uid
Section/uid

SystInst/uid

Sync/uid
Staff/uid
GraphDef/uid

Duration/uid

Sync/uid
Annot/uid

Instrum/uid

Staff/uid
Sync/uid
KeyDef/uid

KeyDeffuid
GraphDeffuid



Voice

Degree

Group

Clef

Event

Text

AnStaff

Beam

*uid
part_par
part_ord
group_cnt
event_cnt

tspan

*uid
staff_par
staff_ord
location
bbox
staffline
degree

*uid
voice_par
voice_ord
chord_cnt
rest_cot
tspan

graphdef
degree
sync

*uid

degree
voice_par
voice_ord
perf_volume
perf_pitch

*uid
staff_par
staff_ord

annot
staff

sync

beam_gd
group_ref

Ref
Num

Num
Tspan

Num
Ref
Num
Point
Bbox
Ref
Degree

Num
Ref
Num
Num
Num
Tspan

Ref
Ref
Ref

Ref
Ref
Num
Num
Num

Ref
Num

Ref
Ref
Ref

Ref
Ref

I AR R

&b PR R R R LR R -2 A SR R o '—&ah&#&

Lo

184

Part/uid

Staff/uid

GraphDeffuid

Voice/uid

GraphDef/uid
Degree/uid
Sync/uid

Degree/uid
Voice/uid

Staff/uid

Annot/uid
Stafffuid
Sync/uid

GraphDef/uid
Group/uid



Chord

Accent

Flag

Note

Dot

Accident

Rest

Stem

DynDef

*uid
sync_par
sync_ord
group_par
duration
tspan
location
bbox
group_ord

accent_gd
chord

flag_gd
chord

*uid
event_par
event_ord
chord_par
event_chord
location

tspan

dot_gd
note

note
accid_gd

*uid
sync_par
sync_ord
group_par
group_ord
degree
duration
rest_gd

stem_gd
chord

gr_length

*uid

annot
perf_volume
perf_vol_slope
persistence

- Tspan

Ref
Num
Ref
Ref

Point
Bbox 1
Num

L < - - N N N N

Ref
Ref

L 8

Ref
Ref

o

Num
Ref
Num
Ref
Num
Point
Tspan

-3 N R N A

Ref
Ref

L

Ref
Ref

&

Ref
Num
Ref
Num
Ref
Ref
Ref

LSRR N A R R

Ref
Ref

LR

Num
Ref

Num
Num

Ll S IR R A

185

Syncfuid

Group/uid
Duration/uid

GraphDef/uid
Chord/uid

GraphDef/uid
Chord/uid

Event/uid
Chord/uid

GraphDef/uid

Note/uid

Note/uid
GraphDef/uid

Sync/uid
Group/uid
Degree/uid

Duration/uid
GraphDef/uid

GraphDef/uid
Chord/uid

Annot/uid



Dynamic

Hairpin

Midi

Slur

Tie

Syllable

Notehead

GrParm

GDefParm

HomePart

dynamic_def
chord

hairpin_gd
group_ref
perf_vol_slope

event
command
command_length

slur_gd

group_ref
slur_gr_pl
slur_gr_p2

tie_gd
event

*uid

sync_par
sync_ord
text_par
text_ord
syllable_annot

potehead_gd
note

*parmname

grpamm
graphdef

staff
part
row

Ref 4
Ref 4
Ref 4
Ref 4
Num 2
Ref 4
Str 10
Num 1
Ref 4
Ref 4
Num 4
Num 4
Ref 4
Ref 4
Num 4
Ref 4
Num 4
Ref 4
Num 4
Ref 4
Ref 4
Ref 4
Str 20
Ref 20
Ref 4
Ref 4
Ref 4
Num 4

186

DynDef/uid
Chord/uid

GraphDef/uid
Group/uid

Event/uid

GraphDef/uid
Group/uid

GraphDeffuid
Event/uid

Sync/uid
Text/uid

Annot/uid

GraphDef/uid
Note/uid

GrPamm/parmname
GraphDef/uid

Staff/uid
Part/uid



APPENDIX D

Sample Rule Sets for Musical Virtual Attributes

187

In this appendix, the rule sets used in the examples of section 3.6 are collected together. The

example determines the volume attribute of a note. It is presented mostly without comment.

There presentation here is intended to indicate the complexity of what at first might seem a sim-

these operations.

ple inheritance function, as well as the variety of constructs (relational constructs, programming

language control structures, and functional apparatus in the style of DAPLEX [Shi81]) needed for

The following rule set, given a note n, determines the volume of the note, volume(n ), and the

rate of change of that volume over time, slope(n ).

/* Find the dynamic which ‘‘covers’’ note n */

range of nis NOTE
range of d is DYNAMIC
retrieve d.uid
where voice(d) = voice(n)
and time(d) < time(n) < time(next(d))

dynamic(n) « d.uid
/* Find the volume of the note n */

volume(n) « volume(dynamic(n)) +
slope(n) * (time(n) - time(dynamic(n)));

/* Find the slope of this volume for n: */
slope(note) ¢ slope(dynamic(n));

if slope_sign=0
then slope(d) « 0.
done.

if ENDLINEAR ¢ type(d) then
if (abs_pearby(d))
slope(d) < slope(prev(d))
else
slope(d) « 0;
done

else if (not ENDLINEAR € (next(d)))

(volume(next(d)) — volume(d))

slope(d) ¢ duration(d)



else if (abs_nearby(next(d)))
slope(d) « (volume(next(next(d))) - volume(d))

(duration(d) + duratxon(next(d)))
else /* untagged end with no nf Ey C
slope(d) (slope_sign(d) * D FAULT CRESC) ,

duration(d)

abs_pearby(vol):
fixed_nearby(vol) «
slope_sign(next(vol)) =0 &&
duration(vol) < SMALL_INTERVAL,; /* say, 1 second? */

duration(vol):
duration(vol) < time(next(vol)) - time(vol);

time(sync):
if (prev(sync))
time(sync) < time(prev(sync)) + duration(prev(sync))
else
time(sync) « 0

voice(note):

voice(note) < voice(group(chord(note)));
sync(note):

sync(note) ¢ sync(chord(note));
time(note):

time(note) < time(sync(note));
time(vol):

time(vol) « time(sync(vol));

duration(sync): '
duration(sync) < minimum(duration(chord)
where sync(chord) = sync)

188



189
APPENDIX E

The Ordered Aggregate for Exponential Average

We present here an implementation of the ordered aggregate that maintains the exponential
average, as described in section 5.3.1.

E.1. The Averaging Function

An exponential average X, associated with each element in an ordered set of values,

A={a,a5,2, ", %)
is defined by the following recurrence relation:

=529
= sa; + (1-8)x;,

IR

Intuitively, the exponential average X; associated with element a, is an average of all preceding
elements {3, - - - a;}. Those elements toward the end of the ordering (that is, close to a;) are weighted

heavily, and those at the beginning are weighted very little.

The rate at which the weight decreases is exponential, and isvcontrolled by the scaling factor, s,

0 <s < 1. Ass increases, the weight of a; in the average X; is increased.

E.2. Declaring the Aggregate Function

define ordered aggregate exp_avg
(scale = constant float, value = float)
returas float
file = ‘‘/aggregates/expavg.o’’

The exponential average aggregate is declared to take two parameters, ‘‘scale’” and *‘value’’ of
type float. The scale parameter corresponds to the weighting factor s, and the value parameter

corresponds to the elements of the set A.

As an example of the use of this ordered aggregate, we review the structure of the RUNQUEUE

relation presented in section 5.3.1:



190

define entity RUNQUEUE (length = integer)
define ordering (RUNQUEUE)

This relation stores an ordered set of values, representing the length of a queue sampled at regular time
intervals. We associate an attribute representing the exponential average at each point in time, and call

it the load:

range of q is QUEUE
define inheritance q (load = exp_avg(0.2,q.length))
The system will recognize that the scale parameter is taking a constant value, and that the length

parameter, when it is used, must be converted from an integer to a float value.

E.3. User Routines for Exponential Average

We need to provide five routines for an A-tree to efficiently determine the value of X; for every
record in a relation. These routines, discussed in section 5.5, will be presented here. The routines are
written in the C programming language, though for these examples, the syntax is occasionally
. modified for the sake of clarity.

E.3.1. InitializeScan

typedef float *RESULT;
typedef float *VALUES(];

typedef struct {
float weighted_sum,;
int count;
} *STATE;
STATE InitializeScan()
{
state = alloc_state(sizeof(struct state));
- state -> weighted_sum = 0.0;

state -> count = 0;
return(state);

This routine is called by the system at the beginning of each scan. STATE is a pointer to the
state information. The system provides the alloc_state() routine to generate a block of memory that
will be recovered automatically when the scan is completed. The state for this aggregate consists of a

running weighted sum, and a count of the number of objects currently in the weighted sum.



191
E.3.2. NextLeaf

STATE NextLeaf{(state, constant, parameter)
STATE state;
VALUES constant, parameter;
{
a ¢ *parameter{0];
s « *constant[0];
X & state->weighted_sum;

X (1-s)x+sa;
state->weighted_sum =x; .

return(state);

The system calls NextLeaf when scanning data records. The parameter list consists of those
nonconstant parameters defined by the define ordered aggregate statement. In this example, the only
parameter is ‘‘value,”” which is taken from the “‘length’’ attribute of the RUNQUEUE records (as

specified in the define inheritance statement above).

The VALUES structure which contains these parameters is implemented as an array of pointers.
In this way, each parameter may be a different type of object. The user routine is responsible for

knowing the type of each value, as determined by the define ordered aggregate statement.
E.3.3. NextInner

STATE Nextlnner(cumstate ,newstate,constant)
STATE cumstate,newstate;
VALUES constant;
{
X ¢ cumstate -> weighted_sum;
1 & cumstate -> count;
i’ & newstate -> count;
x’ ¢ newstate -> weighted_sum;
s « *constant[0];

x & x(1-5)" +x%
ie—i+i]

cumstate->count = i;
cumstate->weighted_sum = x;

return(cumstate);



192
E.3.4. Result

RESULT Result(state)
STATE state;

{
}

return(& state -> weighted_sum);

This routine returns a pointer to the result of the aggregate calculation, namely, the weighted

sum.

E.3.5. Compare

Compare(rl, 12)
RESULT rl, r2;
{

}

retum (*rl - *r2);

This routine compares two results, and returns a negative number if the first is less than the second,

zero if they are equal, and a positive number if the first result is greater than the second.

In summary, the exponential average aggregate can be implemented quite simply using the inter-

face developed in chapter 5. A total of less than 70 lines of code need be provided by the user for this

example.



193
APPENDIX F

Summary of Proposed Query Language Extensions

The following extensions to QUEL have been proposed in this dissertation to support hierarchi-

cal ordering, as defined in chapter 3, and hierarchically ordered relations, as described in chapter 5.

Standard BNF descriptions [Bac59] are used to present the syntax of statements in the extended
query language. Words in boldface are literal, or key words. Square brackets indicate optional

clauses, and curly braces indicate clauses that may be repeated zero or more times.

F.1. Data Definition Language Extensions |

We begin with those statements that define entities, attributes, aggregates, and orderings. The
data model developed in chapter 3 is implemented by these extensions. A collection of these state-

meats define the schema for a particular database design.

F.1.1. The define entity Statement
The define entity statement defines an entity and its associated native attributes.
The syntax for this statement is:

define_entity_statement :
define entity entity_pame ( attribute_spec { , attribute_spec } )

attribute_spec :
attribute_pame = type

entity_name :
relation_name

type :
entity_name |
adt_name |
intemal_type

The name of the entity defined by the define entity statement is ‘‘entity_name’’. The native
attributes of this entity are also given in this statement. The type of each attribute is either an built-in

““internal_type,’’ such as i4 for a four byte integer, or ¢20 for a 20 character string, or else an abstract



194
data type ‘‘adt_name,’’ defined by the user. The abstract data type must have been previously

registered with the system. This is accomplished with a define adt statement, as proposed in [Ong82].

_If the type of an attribute is specified by an entity_name, then it may be represented intemally by
a pointer to a record in the entity relation so specified. This is identical to the entity reference

specifications of GEM [Zan83].

F.1.2. The define ordering Statement

The define ordering statement specifies that the entities in a given relation are to be considered

as an ordered set, or a hierarchically ordered set. Its syntax is:

define_ordering_statement :
define ordering [ order_name ] ( child_entity { , child_entity } )
[ under parent_entity ]

order_name :
relation_name

child_entity :
entity_name

parent_entity :
entity_name

This statement defines an ordering, named *‘order_name’’ over entities whose types are given as
the *‘child_entity”’ parameters. If there are multiple children, then the ordering is inhomogeneous

(entities from different relations participate in the ordering).

If the under clause is included, then the ordering is hierarchical. Every instance of a child entity
is associated with an instance type ‘‘parent_entity.’’ The children are partitioned by parent, and
ordered within their partition.

The system will generate an ordered relation for each define ordering statement. The
*‘order_name’’ field may be omitted if,

(1) the ordering contains only a single *‘child_entity’’ entry, and
(2) that child entity is not currently an ordered relation.

If these conditions hold, and the order_name is omitted, then the base relation indicated by the

*‘child_entity’’ is defined to be an ordered relation. The relation name associated with the child entity



195
may then be used as an ‘‘order_name’’ in future definitions (i.e. the system assigns the child entity

name as the ‘‘order_name’’ for an unnamed ordering).

If an order_name is specified, then a new relation is defined as a secondary index over the child
entities. This index is a relation whose attribute is a pointer (i.e. tuple identifier, or TID) to a child

entity.

If the parent_name is specified in an under clause, then a pointer to a parent entity is included as

an attribute in the resultant ordered relation.

F.1.3. The define aggregate Statement

User defined aggregates are registered with the system using the define aggregate statement. Its

syntax is:

define_aggregate_statement :
define [ ordered ] aggregate aggregate_name
[ ( parameter_spec { , parameter_spec } ) ]
returns return_type
[ ascending | descending ]
file = file_name '

parameter_spec :
formal_parameter_name = parameter_type

return_type :

entity_pame |

adt_type |
intemal_type |
typeof ( formal_parameter_name )

parameter_type :
entity_oame |

adt_type |
intemal _type |
constant

If the ordered keyword is omitted from the define aggregate statement, then this command is
implemented as a user-defined aggregate as specified in [Han84). The ‘‘aggregate_name’’ is the name
the user wishes to associate with the aggregate function whose implementation is stored in the file

‘‘file_name.’’ The remaining clauses characterize the aggregate function implemented in this file.

A call to an aggregate function defines a set of records over which an aggregate value is to be

calculated. Some of the parameters to the aggregate function are taken from attribute values in each



196
record, and some are constant over the set, independent of the records over which the aggregate is cal-
culated. Each such parameter is given a ‘‘formal_parameter_name’’ and a ‘‘parameter_type.’’ If the
type is constant, then that parameter is fixed over the aggregate calculation. Otherwise, the type is
defined to be the type of the attribute value taken from each record over which the aggregate will be

calculated.

Unlike aggregate functions which calculate a single value based on a set of records, an ordered
aggregate function determines a distinct value for each record in its set. The value for a given record

depends on the attributes of that record and all records previous to it in the ordering.

If the result of an ordered aggregate function is guaranteed to increase monotonically over its
ordered set, then it may be declared as ascending. If it decreases, it may be declared as descending.
These clauses allow for more efficient processing by the system when the ordered aggregate functions

meet these special criteria.

F.1.4. The define inheritance Statement

The define inheritance statement associates inherited attributes with an entity. These attributes
are added to the set of attributes already defined for the given entity. The syntax for inheritance
definition is:

define_inheritance_statement :
define inheritance range_variable ( target_list )
where qualification

This syntax is similar to the syntax for the replace statement, but its effect is to define additional
attribute values, rather than to replace existing attribute values. The expressions which appear in the
*‘target_list’* and *‘qualification’’ are not evaluated at 'this time, but at the time the inherited attribute
is accessed. In this respect, they are similar to views [Sto75], except that they are defined at the attri-

bute level, rather than at the relation level.

F.2. Data Manipulation Language Extensions

Given a database schema, the various manipulations of its data are accomplished using the data
manip_ulation language of QUEL, which permits retrieval, update, and insertion into the database. We

also include the statements which allow the user to define the storage type of database relations in this



197
section.
F.2.1. The modify Statement

A new storage type has been introduced, the A-tree, and so an additional form of the modify

command is provided to convert an ordered relation to this storage type:
modify order_name to A-tree

An ‘“‘order_name’’ indicates an ordered relation. It was defined using the define ordering command.
As was mentioned, the name of the child entity in an unnamed ordering may be used as an order_name

in this context (this is the case where a base relation itself is an ordered relation).

F.2.2. The reorder Statement

The position of records in an ordered relation may be determined at the time each record is
inserted (using the append before or append after constructs). Altematively, the records may be
inserted in arbitrary order, and the reorder statement may then be used to establish an order based on
the sort order of an attribute within the relation.

The syntax is:

reorder order_name on attribute_name

The effect is to order all the entities participating in the given ordering according to the ordering

induced by sorting the entities on attribute_name.

F.2.3. User-Defined Aggregate Expressions

Expressions in queries, appearing either in the target list or the qualification, may contain refer-
ences to user-defined aggregate functions. Ordered aggregates are invoked as terms within an expres-

sion using the following syntax:

ordered_aggregate_term :
ordered_aggregate_name ( parameter { , parameter }
[ in order_name ] [ where qualification ] )

This syntax is similar to those for existing aggregates in QUEL, except that:



198

(1) multiple parameters may be specified. If the corresponding formal parameter in the define
| aggregate statement is of type constant, then this actual parameter must be a constant. Other-
wise, it must be an attribute (of a relation) whose type is consistent with the type of the

corresponding formal parameter.

(2) The by clause, which is used to partition regular aggregate functions, is not applicable for

ordered aggregates.

(3) The ordering for the ordered aggregate function may be explicitly given in an in clause. If it is
not given, the parameters must all be taken from a single ordered relation which implicitly

defines the ordering for the aggregate.

F.2.4. Expressions of Type ‘‘Entity”’

As in GEM, we permit expressions to operate on entities themselves, and expressions to evaluate

to an entity value. An expression of type entity may be
(1) anattribute value whose type was defined as ‘‘entity_name,”’

(2) arange variable, whose value at any point in the scan of an entity relation is the current record
of that range variable. The type of such an entity is determined syntactically by the range state-

ment where the range variable is declared.

(3) An operation that evaluates to an entity value, for example, the first and last aggregate func-
tions.
All three of these objects are syntactically equivalent. We therefore allow expressions such as

*“(a.b).c’’ where a is a relation name, b is an attribute of a whose type is entity x, and ¢ is an attribute

of x.

F.2.5. Comparison of Entities

The qualification of a query consists of a series of boolean terms of the form ‘‘aoperatorb,”
where operator is one of the comparison operators (<, <, =, >, or 2). These terms are combined using
the boolean operators and, or, and not. We extend the set of boolean operators with those that com-
pare entities, rather than values. Because the ordering of entities is not intrinsic to the entities (as the

ordering of, say, integers is intrinsic), but rather is determined by a user-defined ordering, the



199

comparison operators for entities take three parameters: the two entities to be compared, and the ord-

ering by which they are to be compared. The syntax for these comparisons is as follows:

boolean_term :
expression entity_comparator expression [ in order_name ]

entity_comparator :
is | before | after | under

In order to support entity comparison, we extend the query language to include expressions that
result in objects of type ‘‘entity.”” When we compare two such expressions,
. is evaluates to ‘‘true” if the expressions refer to the same entity,

. before evaluates to ‘‘true’’ if the two entities are comparable, and the first entity is before the

second one in the ordering specified by the in clause,

J after evaluates to ‘‘true’’ if the two entities are comparable, and the first entity is after the

second ope in the ordering specified by the in clause, and

. under evaluates to ‘‘true’’ if the two entities are comparable, and the first entity is under the

second one in the hierarchical ordering specified by the in clause.

Two entities are comparable if they participate in the same ordering. For before and after, the
entities must both participate as children in the ordering. For under, the first entity must be a child in
the ordering, and the second entity must be a parent. Thus, in this case, the ordering must be hierarchi-

cal. Whenever two entities are not comparable, the entity_comparator operations evaluate to ‘‘false.”

F.2.6. The append Statement

The append statement is modified to allow for insertion of records at a particular location within

an ordering.

append_statement :
append relation_name

[ location ]
[ ( target_list) ]
where qualification
location :
[ before entity ]
{ after entity ]

[ under entity ] in order_name



200

In order for a *‘location’’ to be specified for an insertion, the ‘‘relation_name’’ must refer to an
ordered relation. The location then pinpoints the record after which, before which, or under which (in
the case of hierarchical orderings) the insertion should be performed. If more than one of these locator
clauses is specified, the location may be over-constrained. In other words, there may not exist an
insertion point such that the neighboring records each satisfy the location constraints. In this case, the

append statement is non-functional.

If multiple entities in the database satisfy the qualification, then this set of entities must form an
ordered relation, which will be properly inserted en-masse at the given location. The ordering of these
entities will be preserved by the system (the batch insertion algorithms presented in [CDR86] may be

used for this purpose).

JF.2.7. The replace Statement
The replace statement is extended in a similar manner:

replace entity
[ location ]

[ (target_list ) }
where qualification

If the entity is a2 member of an ordered relation, then the location statement may be specified to
set a new location for the entity within the ordering. The target list is now optional. It makes sense to
change the location of an entity without modifying any of its attribute values. The qualification deter-
mines the set on which the replacement will occur. If multiple entities satisfy the qualification, and
location is specified, then they themselves must form an ordered relation, which will be correctly

inserted into the ordering at the new location.



[Ado85]

[Alp80]

[And81]

[AnK86a]

[AnK86b]

[ATM84]

[ACJ83]

[Ash83]

[Ash85]

[Bac47]

[Bac59]

201

References

Adobe Systems, PostScript Language Reference Manual, Addison-Wesley, Reading,
MA, 1985.

Alphonce, B., ‘‘Music Analysis by Computer’’, Computer Music Journal 4, 2 (Summer

1980), 26-35.

Anderson, T. L., The Database Semantics of Time, Ph.D. Dissertation, University of

Washington, 1981.
Anderson, D. and Kuivila, R., ‘‘A Model of Real-Time Computation for Computer
Music’’, Proceedings of the International Computer Music Conference, The Hague,

Netherlands, 1986, 35-42.

Anderson, D. and Kuivila, R., FORMULA on the Atari ST, (no listed publisher), October
1986.

Aragon, C., Johnson, D., MeGeoch, L. and Schevon, C., ‘‘Optimization By Simulated
Annealing: An Experimental Evaluation’’, Technical Report Draft, September 1984.

Ariav, G., Clifford, J. and Jarke, M., ‘‘Panel on Time and Databases”’, Proceedings of the
ACM-SIGMOD International Conference on the Management of Data, Ann Arbor, MI,

May 1983, 243-245.

Ashley, R., “‘Production Systems: Three Applications in Music”’, Proceedings of the

International Computer Music Conference, Rochester, NY, 1983, 160-172.

Ashley, R. D., “KSM: An Essay in Knowledge Representation in Music’’, Proceedings of
the International Computer Music Conference, Bumaby, British Columbia, 1985, 383-

390.
Bach-Gesellschaft, Johann Sebastian Bach’s Werke, Breitkopf Haertel, Leipzig, 1947.

Backus, J., ‘“The syntax and semantics of the proposed international algebraic language of

the Zurich ACM-GAMM Conference”’, Proceedings of the International Conference on



[BaP85]

[BaM72]

[Bee60]

[BoW77]

[BoS81]

{(BADS2]

(BDR8S]

[Bru72]

[BRB78]

[BSR79]

(BPR81]

{(Byr84]

202

Information Processing, 1959, 125-132.
Barbic, F. and Pemici, B., ‘‘Time Modeling in Office Information Systems’’, Proceedings

of the ACM-SIGMOD International Conference on the Management of Data 14, 4

{December 1985), 51-62.

Bayer, R. and McCreight, E., ‘‘Organization and maintenance of large ordered indexes’’,
Acta Informatica 1 (1972), 173-189.

Beethoven, L., Symphonies No. 5, 6, 7, Edwin Kalmus, 1960.

Bobrow, D. and Winograd, T., ‘‘An Overview of KRL: Knowledge Representation
Language’’, Cognitive Science 1, 1 (1977), 2-46.

Bobrow, D. and Stefik, M., ‘“The Loops Manual’’, Technical Report KB-VLSI-81-13,

Xerox Palo Alto Research Center, Palo Alto, CA, 1981.

Bolour, A., Anderson, T., Dekeyser, L. and Wong, H., ‘‘The Role of Time in Information

Processing: A Survey’’, ACM SIGMOD Record 12, 3 (1982), 27-50.

Braegger, R., Dudler, A., Rebsamen, J. and Zehnder, C., ‘‘Gambit: An Interactive
Database Design Tool for Data Structures, Integrity Constraints, and Transactions’’, IEEE

Transactions on Software Engineering SE-11, 7 (July 1985), 574-583.

Bruce, B. C., ““A Model for Temporal References and Its Application in a Question
Answering Program™’, Artificial Intelligence 3 (1972), 1-25.

Buxton, W., Reeves, W., Baeker, R. and Mezei, L., ‘‘The Use of Hierarchy and Instance
in a Data Structure for Computer Music’’, Computer Music Journal 2, 4 (Winter 1978),

10-20.

Buxton, W., Sniderman, R., Reeves, W,, Patel, S. and Baeker, R., ‘“The Evolution of the

SSSP Score Editing Tools’, Computer Music Journal 3, 4 (1979), 14-26.

Buxton, W., Patel, S., Reeves, W. and Baecker, R., ‘‘Scope in Interactive Score Editors™’,

Computer Music Journal 5, 3 (Fall 1981), 50-56.

Byrd, D., Music Notation By Computer, Ph.D. Dissertation, Department of Computer

Science, Indiana University, 1984.



[CDR86]

{Car62)

[CMR82]

[Che76]

[CIW83]

[Cod70]

[Cod79]

[Com79]

[CoM84]

[Dan86]

[DeK385]

203
Carey, M., DeWitt, D., Richardson, J. and Shekita, E., ‘‘Object and File Management in
the EXODUS Extensible Database System’’, Proceedings of the International Conference

on Very Large Data Bases, Kyoto, August 1986.

Carter, E., Double Concerto for Harpsichord and Piano with Two-Chamber Orchestras,
Associated Music Publishers, New York, 1962.

Chafe, C., Mont-Reynaud, B. and Rush, L., ‘‘Toward an Intelligent Editor of Digital
Audio: Recognition of Musical Constructs’’, Computer Music Journal 6, 1 (Spring 1982),
30-41.

Chen, P., ‘““The Entity-Relationship Model: Toward a Unified View of Data’’, ACM

Transactions on Database Systems 1, 1 (March 1976), 9-36.

Clifford, J. and Warren, D., ‘‘Formal Semantics for Time in Databases’’, ACM

Transactions on Database Systems 8, 2 (June 1983), 214-254.

Codd, E., ‘A Relational Model of Data for Large Shared Data Banks’’, Communications

of the ACM 13, 6 (June 1970), 377-387.

Codd, E. F., ‘‘Extending the Database Relational Model to Capture More Meaning’’,

ACM Transactions on Database Systems 4, 4 (December 1979), 397-434,

Comer, D., ‘‘The Ubiquitous B-Tree’’, ACM Computing Surveys 11, 2 (June 1979), 121-

137.

Copeland, G. and Maier, D., ‘‘Making Smalltalk a Data Base System’’, Proceedings of
the ACM-SIGMOD International Conference on the Management of Data, Boston, MA,

June 1984, 316-325.

Dannenberg, R., ‘‘A Structure for Representing, Displaying and Editing Music’’,
Proceedings of the International Computer Music Conference, The Hague, Netherlands,

1986, 153-160.

Decker, S. L. and Kendall, G. S., “‘A Unified Approach to the Editing of Time-Ordered
Events’’, Proceedings of the International Computer Music Conference, Bumaby, British

Columbia, 1985, 69-78.



[DeF84]

{Doné63]

[Ebc84]

(Exi77]
[Erws3]

[FiM82]

[FC73]

[Fog82]

[Fox79]

[FWAS84]

[Fry84]

[GoR83]

204
Deering, M. and Faletti, J., ‘‘Database Support for Storage of AI Reasoning Knowledge’’,
Proceedings of the First International Workshop on Expert Data Base Systems, Kiawah,
SC, October 1984.
Donato, A., Preparing Music Manuscript, Prentice-Hall, Englewood Cliffs, NJ, 1963.
Ebciogly, K., ‘*‘An Expert System for Schenkerian Synthesis of Chorales in the Style of J.
S. Bach’’, Proceedings of the International Computer Music Conference, Paris, 1984,

233-242.
Erickson, R., DARMS: A Reference Manual, (no listed publisher), 1977.

Erickson, R. and Wolff, A., *‘The DARMS Project: Implementation of an Aurtificial
Language for the Representation of Music'’, Trends in Linguistics 19 (1983).

Fiducci.a, C. and Mattheyses, R., ‘‘A Linear-Time Heuristic for Improving Network
Partitions’’, Proceedings of the 19th Design Automation Conference, 1982, 175-181.
Findler, N. V. and Chen, D., **On the Problems of Time, Retrieval of Temporal Relations,
Causality, and Coexistence’’, International Journal of Computer and Information
Sciences 2, 3 (1973), 161-185.

Fogg, D., ‘‘Implementation of Domain Abstraction in the Relational Database System

INGRES’’, Masters Report, Department of Electrical Engineering and Computer Science,

University of California Berkeley, Berkeley, CA, November 1982.

Fox, M. S., *‘On Inheritance in Knowledge Representation’’, Proceedings of the Sixth

International Joint Conference on Artifical Intelligence, Tokyo, 1979, 282-284.

Fox, M. S., Wright, J. M. and Adam, D., ‘‘Experiences with SRL: An Analysis of a
Frame-based Knowledge Representation’’, Intelligent Systems Laboratory Technical

Report, Robotics Institute, Camegie-Mellon University, Pittsburgy, PA, June 1984.

Fry, C., “‘Flavors Band: A Language for Specifying Musical Style”’, Computer Music
Journal 8, 4 (Winter 1984), 20-34.

Goldberg, A. and Robson, D., Smalltalk-80: The language and its Implementation,
Addison-Wesley, Reading, MA, 1983.



[Gom77]

[Gro84]

[Had75]

[Han84]

[HSW75]

[HeS86]

[Hil70]

[Hug86]

(IBM66)

[ISW84]

[ToW35]

205
Gomberg, D. A, ‘‘A Computer-Oriented System for Music Printing’’, Computers and the
Humanities 11 (1977), 63-80. This article is based on the author’s D.Sc. dissertation from
Washington University (1975) of the same title.

Gross, D., ‘‘Computer Applications to Music Theory: A Retrospective’’, Computer Music

Journal 8, 4 (Winter 1984), 35-42.

Hadlock, F., “Finding a Maximum Cut of a Planar Graph in Polynomial Time’’, SIAM

Journal of Computing 4, 3 (September 1975), 221-225.

Hanson, E., ‘‘User-Defined Aggregates in the Relational Database System INGRES',
Masters Report, Computer Science Division, University of California Berkeley, Berkeley,
CA, December 1984,

Held, G., Stonebraker, M. and Wong, E., ‘‘INGRES — A Relational Database System’’,

Proceedings of the National Computer Conference, Anaheim, CA, May 1975, 409-416.

Hewlett, W. and Selfridge-Field, E., Directory of Computer Assisted Research in
Musicology, Center for Computer Assisted Research in the Humanities, Menlo Park, CA,
June 1986.

Hiller, L., ‘‘Music Composed with Computers: A Historical Survey”’, in The Computer

and Music, H. Lincoln (editor), Comell University Press, Ithaca, NY, 1970, 42-96.
Huggins, C., Symphony: A Font for Music. Adobe Systems, 1986.

IBM, “‘OS ISAM Logic’’, Technical Report GY28-6618, IBM Corporation, White Plains,
NY, June 1966.

Ioannidis, Y., Shinkle, L. and Wong, E., ‘‘Enhancing INGRES with Deductive Power: A
Position Paper’’, Proceedings of the First International Workshop on Expert Data Base

Systems, Kiawah, SC, October 1984.

Ioannidis, Y. and Wong, E., ‘‘An Algebraic Approach to Recursive Inference’’,
Electronic Research Laboratory Memorandum M85/93, University of California Berkeley,

Berkeley, CA, December 1985.

[~



[Jaf35]

{Jun83]

[Kar72]

[KaL82]

[KeL70]

[K1083]

[Kou86]

(Kra79]

(KuM77]

[LeG78]

[Leo81]

[Lin77]

206
Jaffe, D., ‘‘Ensemble Timing in Computer Music’’, Computer Music Journal 9, 4 (Winter

1985).

Junglieb, S., ‘‘MIDI Hardware Fundamentals’’, Polyphony 8, 4 (1983), 34-38.
Karkoschka, E., Notation in New Music, Pracger Publishers, New York, 1972. trans. R.
Koenig.

Katz, R. and Lehman, T., ‘‘Storage Structures for Versions and Alternatives’’, Computer

Sciences Technical Report #479, University of Wisconsin, Madison, July 1982.

Kemighan, B. and Lin, S., ‘‘An Efficient Heuristic Procedure for Partitioning Graphs’’,
Bell System Technical Journal 49, 2 (February 1970), 291-307.

Klopprogge, M. R., *“Term: An Approach to Include the Time Dimension in the Entity-

Relationship Model’’, in Entity-Relationship Approach to Information Modeling and

Analysis, P. Chen (editor), Elsevier Science Publishers, Amsterdam, 1983, 473-508.
Knouth, D., The METAFONT Book, Addison-Wesley, Reading, MA, 1986.

Krasner, M. A., Digital Encoding of Speech and Audio Signals Based on the Perceptual
Requirements of the Auditory System, Ph.D. Dissertation, Lincoln Laboratory,
Massachusetts Institute of Technology, Lexington, MA, June 1979.

Kundu, S. and Misra, J., ‘A Linear Tree Partitioning Algorithm’’, SIAM Journal of
Computing 6, 1 (March 1977), 151-154.

Lee, R. M. and Gerritsen, R., ‘‘Extended Semantics for Generalization Hierarchies’’,
Proceedings of the ACM-SIGMOD International Conference on the Management of Data,

Austin, TX, May 1978, 18-25.

Leonard, H., Broadway! The Best From Broadway’s Top Shows, Hal Leonard Publishing

Corporation, 1981.

Lincoln, H. B., “‘Encoding, Decoding and Storing Melodies for a Data Base of
Renaissance Polyphony: A Progress Report’’, Proceedings of the Third International

Conference on Very Large Data Bases, Tokyo, October 1977, 277-282.



[LoA8S]

[Luk74]

[Luk75]

[LDES4]

[Lyn82]

[Mac78]

[MRW36]

[Mat69]

(MaM70]

[Ma083]

[McL86a)

207
Loy, G. and Abbott, C., ‘“‘Programming Languages for Computer Music Synthesis,

Performance, and Composition’’, ACM Computing Surveys 17, 2 (June 1985), 235-265.

Lukes, J., “‘Efficient Algorithm for the Partioning of Trees’’, IBM Journal of Research

and Development 18, 3 (May 1974), 217.

Lukes, J., ‘‘Combinatorial Solution to the Partitioning of General Graphs’’, IBM Journal

of Research and Development 19, 2 (March 1975), 170.

Lum, V., Dadam, P. and Erbe, R., ‘‘Designing DBMS Support for the Temporal
Dimension’’, Proceedings of the ACM-SIGMOD International Conference on the

Management of Data, Boston, MA, June 1984, 115-130.

Lyon, N., “Implementation of Ordered Relations in a Data Base System’’, Masters
Report, Department of Electrical Engineering and Computer Science, University of

California Berkeley, Berkeley, CA, September 1982,

MacGregor, R., On Partitioning a Graph: A Theoretical and Empirical Study, Ph.D.
Dissertation, Computer Science Division, University of Califomia Berkeley, Berkeley,
CA, June 1978.

Maier, D., Rozenshtein, D. and Warren, D., ‘‘Window Functions”’, in Advances in
Computing Re:search, P. Kanellakis (editor), JAI Press, London, 1986, 213-246.

Mathews, M., The Technology of Computer Music, Massachusetts Institute of Technology
Press, Cambridge, MA, 1969.

Mathews, M. and Moore, F., *‘GROOVE - A Program to compose, store and edit
functions of time”’, Communications of the ACM 13, 12 (December 1970), 715-721.
Maxwell, J. T. and Omstein, S. M., ‘“Mockingbird: A Composer’s Amanuensis’’,
Technical Report CSL-83-2, Xerox Palo Alto Research Center, Palo Alto, CA, January

1983.

McLean, B., ‘‘The DARMS Cube: The Design of a Data Structure for Score Processing

Applications’’, Symposium on Computers and Music Research, Oxford, July 1986.

(2]



208

(McL86b] McLean, B., A Database System for Score-Processing Applications in Musical

[Men84]

[MoP64]

[Mo085]

[Ong82]

[Ong83]

[OpS75]

[Ove82]

[Pap79]

[Pri67]

{Prud4a]

(Prug4b)

Computing, Ph.D. Dissertation, State University of New. York, Binghamton, 1986. In
preparation.
Mendelzon, A., ‘‘Database states and their tableaux’’, ACM Transactions on Database

Systems 9, 2 (1984), 264-282.

Moder, J. J. and Philips, C. R., Project Management with CPM and PERT, Reinhold, New
York, 1964.

Moore, F. R., ““The Cmusic Sound Synthesis Program’’, Computer Audio Research

Laboratory Technical Report, University of California, San Diego, La Jolla, CA, 1985.

Ong, J., “The Design and Implementation of Abstract Data Types in the Relational
Database System INGRES’’, Masters Report, Department of Electrical Engineering and

Computer Science, University of Califomia Berkeley, Berkeley, CA, September 1982.

Ong, J., ‘‘Implementation of Data Abstraction in the Relational Database System

INGRES"’, ACM-SIGMOD International Conference on the Management of Data, 1983.

Oppenheim, A. and Schafer, R., Digital Signal Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1975.

Ovemmyer, R., ‘‘Implementation of a Time Expert in a Database System’’, ACM SIGMOD

Record 12, 3 (1982), 51-60.

Papadimitriou, C., ‘‘The Serializability of Concurrent Database Operations’’, JACM 26, 4
(1979), 631-653.

Prior, A., in Past, Present, Future, Oxford University Press, 1967.

Prusinkiewicz, P., “INTERSCORE - An interactive score editor for microcomputers’,
Proceedings of the Fourth Symposium on Small Computers in the Arts, Philadelphia, PA,
19849 58'64.

Prusinkiewicz, P., ‘*Time Management in Interactive Score Editing'’, Proceedings of the

International Computer Music Conference, Paris, 1984, 275-280.



[Rea69]

[Rel84]

[ReU71]

[Roa79]

[Roa85]

[RoC84]

[Rol85]

[RSS84]

[Ros70]

{RoL85]

[Rub85]

[Sag83]

[Sch50]

[Sch83]

209
Read, G., Music Notation, Allyn and Bacon, Boston, 1969.

Relational Technology Incorporated, INGRES Reference Manual, Version 2.1,

Relational Technology Incorporated, Alameda, CA, July 1984.
Rescher, N. and Urqubart, A., in Temporal Logic, Springer Verlag, New York, 1971.

Roads, C., ‘‘Grammars as Representations for Music’’, Computer Music Journal 3, 1

(March 1979), 48-56.

Roads, C., ‘‘Research in Music and Artificial Intelligence’’, ACM Computing Surveys 17,
2 (June 1985), 163-190.

Rodet, X. and Cointe, P., *“FORMES: Composition and Scheduling of Processes”,
Computer Music Journal 8, 3 (Fall 1984), 32-50.

Roland, MPU-401 Technical Reference Manual, Roland DG Corporation, 1985.

Romeo, F., Sechen, C. and Sangiovanni-Vincentelli, A., ‘‘Simulated Annealing Research
at Berkeley’’, Proceedings of the International Conference on Computer Design, Port

Chester, NY, 1984.
Ross, T., The Art of Music Engraving and Processing, Hansen Books, Miami, 1970.

Roussopoulos, N. and Leifker, D., ‘‘Direct Spatial Search on Pictorial Databases Using
Packed R-trees’’, Proceedings of the ACM-SIGMOD International Conference on the

Management of Data 14, 4 (December 1985), 17-31.

Rubenstein, W. B., “Indices for Time-Ordered Data’’, Masters Thesis, Computer Science
Division, University of California Berkeley, Berkeley, CA, May 1985.
Sagiv, Y., ‘A characterization of globally consistent databases and their correct access

paths’’, ACM Transactions on Database Systems 8, 2 (1983), 266-286.

Schmieder, W., Thematische-systematisches Verzeichnis der musikalischen Werker von

Johann Sebastian Bach, Breitkopf Haertel, Leipzig, 1950.

Schottstaedt, B., ‘‘Pla: A Composer’s Idea of Language’’, Computer Music Journal 7, 1
(1983), 11-20.

‘s



(Sch77]

[Shi81]

[STZ84)

[Sho82]

[SOW84]

-

[ShK386]

[Smi72]

[Smi73]

{Sno84]

[SnA85]

[SLR76]

210
Schueler, B., ‘‘Update Reconsidered’’, in Architecrure and Models in Data Base
Management Systems, Nijsson (editor), North-Holland Publishing Company, Amsterdam,
1977, 129-1617.

Shipman, D., ‘‘The Functional Data Model and the Data Language DAPLEX'’, ACM

Transactions on Database Systems 6, 1 (March 1981), 140-173.

Shmueli, O., Tsur, S. and Zfira, H., ‘‘Rule Support in Prolog’’, Proceedings of the First
International Workshop on Expert Data Base Systems, Kiawah, SC, October 1984, 547-

565.

Shoshani, A., *‘Statistical Databases: Characteristics, Problems, and Some Solutions’’,
Proceedings of the International Conference on Very Large Data Bases, Mexico City ,
1982, 208-222.

Shoshani, A., Olken, F. and Wong, H., ‘‘Characteristics of Scientific Databases”’,
Proceedings of the International Conference on Very Large Data Bases, 1984, 147-160.
Shoshani, A. and Kawagoe, K., ‘‘Temporal Data Management’’, Technical Report LBL-
21143, Lawrence Berkeley Laboratory, Berkeley, CA, February 1986.

Smith, L., *‘SCORE - A Musician’s Approach to Computer Music’’, Journal of the Audio
Engineering Society 20, 1 (January 1972), 7-14.

Smith, L., ‘“Editing and Printing Music by Computer’’, Journal of Music Theory 17, 2
(1973), 292-308.

Snodgrass, R., “The Temporal Query Language TQuel”’, Proceedings of the Third ACM

SIGACT-SIGMOD Symposium on Principles of Data Base Systems, Waterloo, Ontario,

April 1984, 204-212.

Snodgrass, R. and Abn, 1., ‘A Taxonomy of Time in Databases’’, Proceedings of the
ACM-SIGMOD International Conference on the Management of Data 14, 4 (December
1985), 236-246.

Steams, R., Lewis, P. and Rosenkrantz, D., ‘‘Concurrency Control for Database

Systems’’, Proceedings of the IEEE Symposiwm on Foundations of Computer Science,



[StB36]

[Sto75]

[StR80]

[SSK82]

[SRG83]

[SAHS8S]

[StR85]

[SSH86]

211
1976, 19-32.

Stefik, M. and Bobrow, D., ‘‘Object-Oriented Programming: Themes and Variations™’, A/

Magazine 6, 4 (Winter 1986), 40-62.

Stonebraker, M., “Implementation of Integrity Constraints and Views by Query
Modification’’, Proceedings of the ACM-SIGMOD International Conference on the
Management of Data, San Jose, CA, June 1975. Also available as Electronic Research

Laboratory Memorandum M514, March 1975.

Stonebraker, M. and Rowe, L., ‘“‘Database Portals: A New Application Program
Interface’’, Electronic Research Laboratory Memorandum M82/80, University of

California Berkeley, Berkeley, CA, November 1980.

Stonebraker, M., Stetmer, H., Kalash, J., Guttman, A. and Lyon, N., ‘“‘Document
Processing in a Relational Data Base System’’, Electronic Research Laboratory
Memorandum M82/32, University of California Berkeley, Berkeley, CA, May 1982.

Stonebraker, M., Rubenstein, W. B. and Guttman, A., **Application of Abstract Data
Types and Abstract Indices to CAD Databases’’, Proceedings of the Engineering Design
Applications of ACM-IEEE Data Base Week, San Jose, CA, May 1983. Also available as
Electronic Research Laboratory Memorandum M83/3 from University of California

Berkeley.

Stonebraker, M., Anton, J. and Hanson, E., ‘‘Extending a Data Base System with
Procedures’’, Electronic Research Laboratory Memorandum M85/59, University of

California Berkeley, Berkeley, CA, 1985.
Stonebraker, M. and Rowe, L., ‘‘The Design of POSTGRES'’, Electronic Research

Laboratory Memorandum M85/95, November 1985.

Stonebraker, M., Sellis, T. and Hanson, E., ‘“An Analysis of Rule Indexing
Implementations in Database Systems’, Proceedings of the First International

Conference on Expert Data Base Systems, Kiawah, SC, April 1986.



[Str68]

[Tho85]

(TsZ84]

[Wen77]

[Wil85]

[Win75]

[Wol77]

[WoY76]

[Yao78]

[Zan83]

212

Strauss, J., Die Fledermaus, Edition Eulenburg GmbH, Zurich, 1968.
Thomas, M. T., ‘‘Vivace: A Rule Based AI System for Composition”’, Proceedings of the

International Computer Music Conference, Bumaby, British Columbia, 1985, 267-275.

Tsur, S. and Zaniolo, C., ‘‘An Mplehenmﬁon of GEM - supporting a semantic data
model on a relational back-end’’, Proceedings of the ACM-SIGMOD International

Conference on the Management of Data, Boston, MA, June 1984, 286-295.

Wenker, J., An Analytical Study of Anglo-Canadian Folksong, Ph.D. Dissertation, Indiana

University, 1977.

Wilson, T. A., ‘“‘Data Reduction of Musical Signals’’, Proceedings of the International

Computer Music Conference, Burnaby, British Columbia, 1985, 25-32.

Winograd, T., “‘Frame Representation and the Declarative/Procedural Controversy’’, in
Representation and Understanding, D. Bobrow and A. Collins (editor), Academic Press,
New York, 1975, 185-210.

Wolff, A. B., ““Problems of Representation in Musical Computing’’, Computers and the
Humanities 11 (1977), 3-12.

Wong, E. and Youssefi, K., ‘*Decomposition - A Strategy for Query Processing’’, ACM

Transactions on Database Systems 1, 3 (September 1976), 223-241.
Yao, A., *‘On Random 2-3 Trees’’, Acta Informatica 9, 2 (1978), 159-170.

Zaniolo, C., ‘““The Database Language GEM'’, Proceedings of the ACM-SIGMOD

International Conference on the Management of Data, Ann Arbor, Ml, May 1983.



	Copyright notice1987
	ERL-87-69 (1 of 3)
	ERL-87-69 (2 of 3)
	ERL-87-69 (3 of 3)

