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ABSTRACT

In this paper a new, integrated, macro-cell layout system called Mosaico is
presented. Mosaico implements a complete layout pipeline from high-level
description to final layout Well-tested tools like the channel routers Yacr
and Chameleon are used together with recently-developed tools for power and
ground routing, channel definition and ordering, and floorplanning and place
ment The system handles macro-cells of any rectilinear shape and efficiently
uses all the interconnect layers offered by the technology. Cells with floating
pins and variable aspect ratios can be accomodated. Unlike other layout sys
tems, no rectilinear slicing-structure placement is required; this is due to the
new, generalized channel definition and ordering algorithm. Every tool in
Mosaico runs from and generates symbolic-layout views of the design. A
spacing program takes the results after detailed routing in symbolic form and
produces mask geometries, while guaranteeing that the design rules are
satisfied. The Oct data manager is used to store the design at each stage of
the layout process. The amount of data stored at each stage is stated in a set
of policies that are respected by all tools, making the system modular and
extensible. Mosaico is tightly coupled with synthesis and verification tools in
the Berkeley design environment
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1. Introduction.

A critical component of an efficient IC synthesis system is a set of optimized place

ment and routing tools. Some of the early silicon compilers [l], [2] had a fixed floorplan

resulting in serious inemciencies with respect to the silicon area occupied by the design.

Recently attention has focused on layout systems tightly coupled to logic synthesis [3]. In

this paper Mosaico. a complete set of placement and routing tools tightly coupled with

logic synthesis, module generation, compaction, verification, and timing analysis, is

described.

One of the main requirements for a layout system in a general design environment

such asthe one being developed at Berkeley [4] is the ability to support avariety of layout

styles. The ThunderBird system [5] has previously been developed to place and route

standard-cell designs. The Mosaico system consists of a set of tools for the placement and

routing of macro-cells, a design style that is rapidly gaining importance in IC design.

Other tools have been developed over the years to place and route macro-cells, both in

industry. e.g. the systems described in [6], and in universities, eg. the PI system [7] and

the BBL system [8]. Mosaico differs from other systems in several ways, the most impor

tant difference being that no constraints are imposed on the layout style used to imple

ment the macro-cells. Furthermore Mosaico is tightly coupled to Berkeley's logic synthesis

system [4] through the use of module generators. That is. each macro-cell is optimized at

the logic level with the characteristics of the target implementation style accounted for.

The Mosaico fioorplanner is then used to produce specifications for the aspect ratio and pin

positions of the macro-cell. The combination of the optimized logic equations and the

geometric information from the fioorplanner comprise the input to the module generator:

the generator output is then used in the placement phase of Mosaico.

In Mosaico the fioorplanning and tne placement (F&P) tasks are considered in an

unified framework: in fact the same program is used for both tasks. The process starts as

fioorplanning with some or all of the cells not fully specified, and becomes placement as



soon as all the macro-cells have fixed implementations. The tool used for F&P is based on

simulated annealing. Simulated annealing has proven to be a robust optimization tech

nique that consistently produces results with high area efficiency. In addition its flexibility

makes it attractive for applications such as the macro-cell problem where there are many

degrees of freedom.

The routing part of the system targets the fabrication technologies now emerging that

provide multiple interconnect layers. To achieve design-rule independence the entire

Mosaico system operates at the symbolic-layout level, rather than the physical-layout

level. A spacing step is carried out prior to mask generation to ensure that the layout is

design-rule correct.

Mosaico has been configured in a highly modular manner to ease the introduction of

new tools into the system. The modularity has been achieved by using one data represen

tation for the design, regardless of the point in the design cycle. No transformation

between representation formats is required, and all data is stored using a common data

manager.

The remainder of the paper is organized as follows. In section one the overall struc

ture of the system is presented. In the following sections, the tools that comprise the sys

tem are described in the order in which they appear in the design flow. Results obtained

on a number of test cases are then presented, followed by some of the directions for future

development of Mosaico.

2. Mosaico Overview

An overview of the structure of Mosaico. the management of the design data, and the

initialization of the system are given in this section.



2.1. Pipeline Structure

Mosaico consists of five main steps:

1. Fioorplanning and Placement

2. Channel Definition

3. Global Routing

4. Detailed Routing

5. Spacing

The five basic steps are nominally executed in sequence, that is. as a pipeline. The

pipeline is represented in Figure 1 together with the sequence of symbolic views that are

stored at each step in the Oct data manager [9]. Each step is described in detail in the fol

lowing sections.

In an ideal situation each step in the pipeline would be executed once only. In reality

iteration of some or all of the steps is usually required. For example, if the routing area

estimated in the placement phase is not sufficient, at least one of the macro-cells must be

moved. This in turn may require that the unrouted areas be re-processed by the channel

definition procedure. A description of the feedback loops in the Mosaico system is

included later in this paper.

22. Data Management

Figure 1 illustrates one of the most important feature of Mosaico system, namely its

modularity. Modularity is achieved by enforcing the rule that all the information pro

duced at each stage of the pipeline must be stored in the data manager. Each of the tools

in the pipeline reads its input data from aview in the data manager and produces as its

output another view which contains the previous data updated with the information

added by the tool. This modularity provides the Mosaico system with a great deal of

flexibility since every tool can be replaced in the pipeline with another one that requires

the same data as input and provide the same data as output.



The kev issue in achieving ihis flexibility is to control the structure of and the
amount of data stored at each stage of the pipeline. The set of data has to be rich enough
«, provide the tool with the information it needs while being general enought to allow
interfacing different tools based on different of algorithms. This task is made easy by the
characteristics of the design data manager Oct. Oct provides the user with ageneral way
wstore the data items and the dependency relations among them. The tools read and
write Oct views using alibrary of procedures. As aresult, the tools need not be concerned
with" the storage format used by Oct. nor are they affected by any changes to the internal

structure of Oct.

The particular data items used, and the relations among them, are not part of Oct:
rather, they are decided upon by the community of tool-makers. An example of such a
decision is the manner used to describe the permutability of terminals. This set of deci
sions is referred to as the pcHcy for the design. Since the policy is not part of Oct it can be
changed easily: and since all concerned parties participate in the definition of the policy it
provides them with an efficient protocol for storing and exchanging information at each
stage of the pipeline.

Another important advantage of storing all intermediate results in the data manager
is that the p.peline can be restarted at every level. Moreover .11 the intermediate results
can be graphically displayed by Vem. ageneral-purpose graphics editor for Oct views [9].
Vem can be used to view the design at any point, from the floorplan stage down to the
complete design after detailed routing and spacing. Finally, tools that complete more than
one of steps outlined in Figure 1can easily be inserted in the pipeline at the expense of
loosing the ease with which all the steps of the layout procedure can be unbundled and
re-executed.

23. Pipeline Initialization

The starting point for the design is ahigh-level description of the chip expressed in
the Bdsyn language [3]. The designer determines the partitioning of the design into



macro-cells by means of this description. The initial set of dau required for the Mosaico

system consists' of aset of instances of macro-cells connected by anet-list. The Bdsyn
description is used to produce automatically the net-list and the instances, both of which

are placed into asymbolic view of the chip named unplanned.

The implementations of the macro-cells are generated separately, either by an

automatic module generator or by manual design. When the Mosaico pipeline is started

not all of the macro-cells need to be completely specified. For some macro-cells the com

plete layout may be known while for others only estimations of their parameters or aset

of constraints may exist. For example, some of the pins may have to be positioned on

specific sides of the cell, or atarget aspect ratio may be desired even if arange of aspect

ratios is feasible.

Since several representations of each cell may be available. Mosaico searches the

available views in aspecific order so that view with the most complete information for the

fioorplanning phase is used. If none of the views is present an artificial view is created in
which the macro-cell is represented as a 'soft celT. Le.. as acell for which only estima

tions of its area and of its aspect ratio are available . For such acell the terminals are left

free to move around the boundary of the cell unless ordering constraint are present. Such

adescription for macro-cells issuitable for the fioorplanning step.

3. Fioorplanning and Placement

In the Mosaico environment, the activity of fioorplanning and placement (F&P) is

handled in a unified framework: in fact there is no distinction between fioorplanning and

placement at the algorithmic level. At the fioorplanning stage some of the parameters

(aspect ratio, pin positions) of the macro-cells may be varied: at the placement level all the

macro-cell parameters are fixed and the only remaining degrees of freedom are the posi

tions and orientations of the cells. The F&P maintains a global view of the chip and

directs the interactions with module generation and timing verification.



The F&P iterations are started by an initial fioorplanning operation in which the most

detailed description available for each cell is retrieved from the dau manager. In this ini
tial representation most of the cells are described only in terms of their input/output sig
nals and estimated area. Some cells may be described at the logical or behavioral level.
For such cells an area estimation is performed, based on the complexity of the cell and on
the features of the module generator that will be used to produce it.

After each iteration the fioorplanner produces as output the position and orientation

of each cell and also the shape and pin positions for those cells that were not completely
specified. This information is passed to the module generators, namely Gem [10]. Wolfe
[11]. and Topogen [12]. The generators differ in the layout styles they implement. Gem
produces macro-cells using agate matrix approach featuring multiple row and column
folding. Wolfe generates macro-cells by assembling standard cells using the Tim-
berWolfSC package [13] combined with the channel routers Yacr and Chameleon. Topogen
produces individual cells in the standard-cell style: these cells may be combined into
larger cellsusing Wolfe.

The input to the module generators comes from two sources, one being the floor-
planner which specifies geometric constraints as described above. The other data is the
logic description produced by the logic optimization tool Mis [3]. If amodule generator is
unable to satisfy all the constraints imposed on aparticular cell, the actual shape of the
generated cell is fed back to the F&P and anew iteration is started.

The F&P also interacts with the timing analyzer Hummingbird [14]. The job of the

timing analyzer is to critique the floorplan from the point of view of the timing. It per
forms two tasks: first it checks the arrival times of signals required for the correct func

tioning of the circuit. Then it marks each net with information about the maximum and
minimum delay through that net. If the requirements are not met anew iterations of the
fioorplanner is necessary. The timing information is used to update the constraints imposed
by the F&P on the maximum or minimum length for the specific nets. Correction of the



violations of the timing requirements may require more than just anew placement. In

fact for some of the modules a transistor re-sizing may be necessary or some of the

modules may need to be re-synthesized with the new delay targets in mind. In both these

cases the intervention of the designer is presently required.

As the F&P task is repeatedly executed more and more refined representations of the

chip are generated. The macro-cells gain their physical implementation, the information
available to the F&P tool increases, and the fioorplan task turns more into a placement

task.

3.1- F&P Algorithm

The tool presently used for F&P is the TimberWolfMC package [15]. The program
is based on the simulated annealing algorithm which provides the package the flexibility

that isneeded in order to use one tool for both fioorplanning and placement.

A list of basic features includes:

• Cells maybe represented by any Manhattan polygon
• Cells are allowed to have aspect ratios that vary over a continuous or

discrete range

• Cells can have multiple implementations and the most suitable will be
selected

• Cells may have variable pin positions
• Weights can be assigned to each net to bias the placement

During F&P the total estimated interconnect length is minimized, and apenalty func

tion approach is used to drive the total amount of cell overlapping toward zero at the end

of the annealing procedure. The length of each net is estimated using the half-perimeter of

the bounding box of the pins connected to the net: the calculation is based on the exact pin

locations. A dynamic algorithm [15] is used to estimate the routing area necessary around

each cell to complete the routing. The use of this estimation algorithm has resulted in the

generation of placements which require very little modification during detailed routing.

After the placement is completed TimberWolfMC performs a placement refinement

based on a more accurate estimation of the routing area required. The estimation is

-J
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slices must have bends, no constraints need lo be imposed to the placement.. The lack of

constraints is particularly important in Mosaico since the simulated-annealing-based F&P

produces structures that are more general than the rectilinear slicing structure.

In Mosaico the slices are allowed to have bends. The configuration of the slice deter

mines the type of its corresponding detailed routing problem. For example in the simple

case where the slice has no bends, the problem is an ordinary channel-routing problem

with two fixed sides (the top and bottom) and two open sides (the left and right). A

single-bend slice produces an "L-shaped" channel.

It was proved in [17] that if only rectangular cells are present, an L-shaped slice is

the most complex shape that can result from the slicing algorithm. However this result

does not hold if* the cells are general Manhattan shapes. In this case k-bend slices

(fc-0,/,2,3,...) are necessary to guarantee a feasible slicing of the placement for any combi

nation of cells. In Figure 2 an example of atwo-bend slice is presented.

The generalized slicing algorithm inherits all the properties of the ordinary slicing

strategy and handles a larger class of problems. As in the simple case no switch-box

router is necessary since all the generalized channels have floating terminals on two open

sides.

4.1. Channel Definition Algorithm

A divide-and-conquer strategy similar to the one necessary to find arectilinear slicing

structure is used [16]. The differences compared to the standard algorithm are in the

method used to determine the next slice. The Atlas algorithm consists of the following

steps:

• Using ascan-line approach generate afioorplan graph [17]
• Repeat the slicing procedure until the chip is completely subdivided: i.c.

at each step find the minimal-cost slice through the graph.
• The routing order is UFO (i.e.. The last slice found is the first to be

routed)
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The cost of a slice is determined by ihe number of bends in the slice, the number of

orthogonal edges on the slice, and the number of external junctions [17] that are created by
the slice. Note that the selection of a path with the smallest number ef jogs and the max

imum number of orthogonal edges to the path will eliminate as many potential jogs in

future slices as possible. This is a greedy approach to find the set of slices with the smal
lest total number of bends. Presently a more sophisticated algorithm that should prodece

a nearly "optimal" slicing is under development.

The hierarchy introduced by the slicing procedure corresponds to the binary tree that

is used to store the data in Oct. This routing order is used in the router server described

below, and the new Oct view is the input to the next step in the pipeline.

5. Global Router

After the channel definition and ordering step described in the previous section the

data must be prepared for the global router. This operation calls for the construction of

the channel graph. In the channel graph, nodes represent intersections between channels

while edges represent channels or sections of them. Each edge in the graph is assigned a

weight that represents the maximum number of tracks that can be accommodated in the
channel. Once the channel graph is built all the connected terminals of the macro-cell

instances are projected to the closest edge in the channel graph. The channel graph with

the positions of the terminals on its edges and anet list is the information necessary for
global routing. The weights on edges are interpreted as capacity constraints. It is impor

tant to note that the input to the global router is completely symbolic and therefore

totally independent of the layout style.

When the global router finishes, each net consists of a sequence of subnets, each of

which is assigned to one of the edges of the channel graph. When a net exits one channel

to enter another one a pseudo-terminal is created.
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Presently two different algorithms to perform ihe global route can be selected. The

first algorithm is based on simulated annealing and it gives results that are marginally
better at the expenses of a longer computation time. The second algorithm is faster and

may be used interactively. The two algorithms are briefly described in what follows.

5.1. Simulated-Annealing-Based Global Router

The simulated-annealing global routing algorithm has been developed as part of the

TimberWolfMC package [15]. The algorithm has the following features:

• No dependence on the routing order
• Multi-pin nets are handled in the same fashion as two-pin nets
• Electrically-equivalent pins are utilized to minimize the routing length

The algorithm has two basic stages. During the first stage it attempts to generate the

M shortest routes for each net. a task which can readily be accomplished for two-pin nets

[IS]. For nets consisting of more than two pins, an algorithm has been developed which

generalizes the approach in [18].

In the second stage of the algorithm selects asingle route from the M alternatives for

each net. Let n{ represent anet. where i €{1. ••• .N) and where N is the number of

nets. Furthermore, let nf represent the *-th alternative route for net n,. where

k €{1. ••• . M). Asimulated annealing algorithm is then used to select alternativent '

for each i 6 {l. • • • .N] such that the total routing length is minimized subject to the

channel-edge capacity constraints. This approach enables the global router to avoid the

routing-order dependence problem. Rip-up and re-route strategies are never needed to

complete or improve the- global routing.

5.2. N-Layer Global Router

Nlagr is a global router that can handle n layers of interconnect and over-the-cell

routing. Over-the-cell routes are represented by fixed-capacity edges on the graph while

routing areas between cells are represented by edges whose capacities can be exceeded with

a penalty. Nlagr has the following characteristics:
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• The number of bends, and number of channels through which a net
passes are minimized.

• User-specified critical nets are routed first. All other nets are routed
based on (estimated) shortest-length first. The estimate used is one-half
the perimeter of the minimum enclosing rectangle of the net."

• Nets can be weighted to preferor avoid specific layers.

There are two different algorithms incorporated in Nlagr. The first uses an extended

shortest-path algorithm: the extension accounts for multi-terminal nets. At each iteration

a path is determined from the existing partial path to the nearest unconnected pin on the

same net. The search for the new connection is performed by expanding first the nodes of

the channel graph that are close to the existing path. The expansion proceeds until an

unconnected pin is reached. In the expansion procedure no particular direction is privileged

since no unconnected pin has been selected as the target. For this reason the method is

referred to as undirected search. The results provided by the method depend on the choice

of the first pin and several heuristics are provided to select it.

In the second algorithm, named directed search, the pins of the net are connected in a

specified order. First aleast-cost path is found from the first pin to the second pin. Next

the least-cost incremental path is found to the third pin (i.e.. the first pin among those not

yet connected) and so on as in [19]. The order in which unconnected pins are processed is

determined by sorting them according to a cost which consists of two terms. The first

term is the cost of the path connecting the expanded nodes in the channel graph to the

already-existing path. This cost is the same as that used in the first algorithm. The

second term is an estimation of the distance between the unconnected pin and the closest

expanded node. The presence of the second cost term makes the search proceed rapidly in

the direction of the target. This algorithm is strongly dependent on the pin ordering.

Several schemes are provided for ordering the pins prior to routing.

According to experimental results undirected search seems to be better than directed

search, although slower. The dependency of directed search on pin ordering can be used to

provide interactive optimization. In this mode of operation the global router is typically

run first in the undirected-search mode. The order in which the pins were connected is
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preserved and used to back-annotate the nei list. Next the optional interactive mode is

entered: the user may then modify the pin order and run the router in directed search

mode.

6. Router Server

The router server Spider performs the detailed routing of the circuit based on the

placement, the global router output, the channel order, and the design rules. Spider can

handle k-bend routing regions with irregular edges, and wires with different widths, a cru

cial feature necessary to route special nets like power and ground along with the standard

signal nets. Spider also chooses the best layer for floating pins whenever more than one

layer is permitted.

The actual routing is performed one channel at a time. The order is determined by

Atlas as described in Section 4 of this paper. Spider retrieves the channel order from the

data manager by traversing the binary tree that represents the hierarchy in depth-first

order. Then it selects one of the symbolic routers available according to the nature of the

channel being processed. Presently the library of routers that can be used by Spider con

sists of three symbolic routers: the two-layers channel router Yacr2 [20], the multi-layer

channel router Chameleon [21], and a general-area router called Mighty [22]. The selection

of the particular router is based on a set of rules, such that the simplest router that can

successfully route the area is selected. To make it easy to extend the tool library by

adding new symbolic routers, the selection rules are kept separate from the core of the

program by storing them in a file that can be modified by the user.

Once the symbolic router is selected. Spider prepares the input data in the suitable

format. Since all of the routers in the Mosaico library are grid-based. Spider starts by

defining a grid. The symbolic grid in the"vertical" direction (the columns) can be built in

two different ways. The first choice is to use a uniform grid, where the spacing between

grids is determined by the wire widths, the contact widths, and the spacing rules. The
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second approach is anon-uniform grid. In thus case the vertical grid lines are placed to

obtain the best possible alignment with the actual locations of the pins. This method is

especially useful in dealing with wires that differ in width. Regardless of the type of grid

selected, it is not always possible for every pin to be located exactly on agrid line. In this

situation an attempt is made to obtain abetter alignment of the terminals on the two sides

of the routing area by slightly varying the offset between the macro-cells on either side.

After the alignment procedure each pin that is still not on agrid line will be connected to

the nearest adjacent one by a jog.

In the "horizontal" direction, the grid lines (rows) are initially spaced uniformly. If

the general-area router is used, the situation is alittle more involved since an estimation of

the space necessary to complete the routing must be computed. The spacing is definitively

determined only after the routing is completed and the actual width of each wire has been

computed. Presently, the non-uniform grid base is the default setting.

After the selected router completes, a post-processing step is performed to try to

reduce the number of jogs by shifting wires while maintaining the design rules. A simple

optimization step is then performed to minimize the number of vias.

When the routing of a particular region is completed, the compactor is invoked to

space the region and the adjacent macro-cells according to the design rules. The combina

tion of the cells and the routing is then considered to be a new. large macro-cell for the

following steps in the layout process. A word of caution is in order about the use of the

compactor in this channel-by-channel manner. By compacting one channel it is possible to

generate a misalignment in the next channel to be routed, possibly increasing its density

and possibly increasing the area of the chip. To avoid this problem a more global view of

the routing problem is necessary, which is accomplished by looking at the next area to be

routed and setting constraints on the compactor to avoid increasing the density in the next

channel.
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7. Power and Ground Routing

The routing of the power and ground nets is more involved than the routing of regu

lar nets because of the following considerations:

• Voltage drops due to the finite conductance of interconnect and contacts
have an adverse effect on the noise margins of the cells.

• The maximum current densities tolerated by an interconnect layer cannot
be exceeded, otherwise metal migration might result.

The implications of the above are that the power and ground nets might have variable wire

segment widths.

In a technology with only one layer of low-resistance interconnect (metal), a planar

routing of the power and ground nets might be very desirable. However, in modern tech

nologies two layers of metal are available. Therefore the policy used in Mosaico is to route

power and ground using the existing global and channel routers. The exact procedure will

be described later.

It is assumed that there are always power and ground rings around the chip. The

existence of these rings is important for insuring correct functionality of the chip. If the

power pads were not connected through a ring, some of them might be at different poten

tials due to wiring inductance: this in turn might result in latch-up problems in a CMOS

design.

For the sake of the placement task, the part of the ring which passes under a pad is

considered to be part of the pad cell itself. Therefore the location of the power and

ground rings is automatically adjusted by movements of the pads. After the completion

of the placement stage, the unconnected segments of the power and ground rings are tiled

together with additional pieces of material of the same layer. Each pad cell has three pins,

one for the pad itself and one for each of the power and ground connections. Thus the

number of possible connections to each of the power and ground rings is equal to the total

number of pads in the chip.
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Treating the power and ground nets as regular ones imposes "false" constraints on

the placement since power and ground are connected to every block of the chip. Further

more since no assumption is made on the amount of current that can flow across a macro-

cell without damaging the internal power (ground) connection it follows that each macro-

cell must be connected directly to the rings.

The following steps describe the algorithm used to route power and ground.

1. Before the placement stage, decompose the power (ground) net into

smaller nets. Each of these nets contains two sets of equivalent pins,

one is the power (ground) pins of a given macro-cell, and the other is

the set of all the power (ground) pins on the ring. Then the original

power (ground) net is discarded, and the resulting nets are treated as

regular ones with high priority in the placement and global-routing

stages in order to keep their length as short as possible.

2. After the global routing stage, merge the power (ground) nets in such a

manner that every channel contains at most two power (ground) nets.

The upper limit of two happens when the two nets enter the channel

from its opposite ends and both terminate inside the channel. An impli

cation of this merging is that all the nets which stem from the same

power (ground) pad pin are merged into a single net. This step is

shown in Figure 3.

3. After the merging step, find the power requirements of the pseudo-pins

of the power and ground nets at the boundaries of the channels.

4. After the symbolic detailed routing of each channel, find the subnet

widths of power and ground nets in the routed channel. This step is

shown in Figure 4.
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8. Layout Spacing

As noted above, all steps in the Mosaico pipeline are carried out at the symbolic-

layout level. In addition, the module generators used in the system generate symbolic lay

out as well. Symbolic layout spacing (or compaction) is thus an essential part of the sys

tem for several reasons. First, all designs must be spaced to ensure that they are design-

rule correct: this has the advantageous effect of eliminating design-rule checking, since the

layouts are correct-by-construction. Second, the use of generalized symbolic layout pro

vides a mechanism for producing technology-independent designs. The spacing techniques

used in Mosaico are capable of updating the symbolic layout primitives themselves (e.g..

transistors, contacts), as well as the spacings between them. Also, by the use of a variety

of spacing techniques various optimizations of the layout can be performed over arange of

area/cpu-time tradeoffs. Presently two spacers are available in Mosaico: each is described

below.

8.1. One-Dimensional Spacing

Spares [23] is aconstraint-based spacer that, to meet the requirements ofmodern cir

cuit design and fabrication technologies, has been designed to be as general as possible.

Some of the features of Spares that help in achieving generality are:

• Full support of upper-bound and user-defined constraints
• Detection and identification of overconstrained elements

• Adjustable positioning of non-critical-path circuit elements
• Dependencies among constraints to enforce symmetry during spacing
• A hierarchy and technology-independent symbolic layout abstraction
• Selectable constraint modes, such as virtual grid and relative grid

• Terminal merging of arbitrary layout elements
• Automatic jog insertion

Spares consists of two major modules: the constraint graph builder and the constraint

graph solver. The constraint graph is constructed from the relative placement of the sym

bolic layout elements and a table of spacing rules. The solver performs critical-path

analysis, positions the elements that are not on the critical path, and identifies
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overconstrained problems. Spares uses successive one-dimensional spacings in alternating

directions, as do most other spacers and compactors.

The symbolic layout abstraction used throughout the system is appropriate for any

level of the hierarchy: that is. any shape representable by Manhattan polygons with any

number of terminals is allowed. Since Spares spaces designs represented in this manner,

any layout from any level of the hierarchy can be spaced. It is not necessary to have one

program for transistor-level layouts and another for cell-level layouts. Features such as

terminal merging that work only on the transistor-level in other systems work for any

level in the case of Spares.

8.1.1. Constraint Types and Representation

In addition to lower-bound constraints, upper-bound constraints are heavily used in

Spares. For example two constraints, an upper-bound and a lower-bound, are used to

describe terminals so that the wire segment connected to the terminal may slide along it.

Fixed constraints (i.e.. an upper-bound and a lower-bound of equal value) are used in

Spares to allow the user to space by either virtual or relative grid. Spares also supports a

special type of constraint called an active constraint, which forces the relative spacing

between one pair of nodes to be the same as the relative spacing between another. Active

constraints are used to maintain symmetry among layout elements.

Two constraint graphs. GX(V.£) and Gy(V.£). which represent the relationships

among objects in the horizontal and vertical directions, respectively, are constructed. Each

vertex vf €V represents an element in the layout, and each directed edge eu €E represents

a constraint between Vj and Vj.

8.1.2. Constraint Graph Solution

The constraint graph for a particular direction is analyzed to determine the locations

of the layout elements in that dimension through a two-phase process, the first phase

being a critical-path analysis. The elements that lie on the critical path determine the
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8.2.2. Constraint-Graph Modification

Since the zone-refining process requires many local movements, constraint-graph

modification dominates the cpu-time. Solving the longest path problem on the constraint

graphs usually takes less than three percent of the total run-time, because only a small

number of clustered components are moved in oneoperation.

As a result the current emphasis is on finding an efilcient algorithm for updating the

constraint graphs: this process is aided by a new data structure in which all the com

ponents are attached to cells in a coarse grid. With this grid approach, searching and sort

ing times are bounded by constants. Due to this new data structure, run-times have been

reduced by factors of five to ten over those of the first implementation.

9. Pipeline Iteration

The two loops shown in Figure 1 are provided to account for situations in which the

routing area available after placement is insufficient to complete the routing. This situa

tion can occur both during global routing and during detailed routing. In both cases the

extra routing area that is required can be provided by spacing apart the macro-cells delim

iting the routing region. If the additional area can be provided without drastically chang

ing the order and structure of the routing areas then the pipeline is started again from the

point where the exception occurred. In this situation all of the work already completed is

preserved.

If the addition of the extra area requires a change such that the organization of the

routing area is no longer feasible then two possible solutions exist. In the first the channel

definition procedure is re-executed to reorganize the areas not yet routed. The second is

performed when the first solution fails: the pipeline is re-started at the placement stage

using a more conservative estimate for the routing area requirements.
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10. Interactive Capabilities

The Mosaico pipeline is operated by means of ascript that execute the entire pipeline

or subsections of it. The script-based approach provides the user with agreat deal of flexi

bility: the script can be modified both in the sequence of the calls to the tools and in the

parameters that are input to the tools. e.g.. the parameters used in the simulated annealing

procedures.

In addition to the tools described in the previous sections, a set of graphical interac

tive aids is provided to help the user judge the quality of the layout at any stage of the

pipeline. One tool allows the user, for aselected macro-cell, to see arepresentaUon of its

connections with the other cells drawn from cell center to cell center. Another aid allows

the user to see the optimal position of a selected macro-cell as computed by a force-

directed algorithm. Both of these programs may be used at any point following the place

ment step. A third tool uses the information available after the global router completes.

It allows the user to select a terminal and highlight the path of the net connected to that

terminal as determined by the global router. This aid is used to judge the quality of the

placement combined with the channel definition and global routing, prior to the detailed

routing.

These tools are closely linked to Vem [9] and are presented to the user as menu

options. These aids together with the other Vem editing capabilities allow the user to

modify existing views, quickly evaluate the effect of modifications on the quality of the

layout, and determine whether or not to run the complete pipeline.

11. Applications and Results

The Mosaico system is presently under test on aset of macro-cell examples provided

by industry. The examples, whose characteristics are summarized in Table 1. consist of

macro-cells with fixed aspect ratios and fixed pin-positions. Table 2 contains the area

statistics after placement, routing, and spacing. The cpu-time required to place and route
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the examples is reported in Table 3while the results are depicted in Figures 5. 6. and 7.

The interactions of Mosaico with the module generators and the liming analyzer is

still in a preliminary test phase and significant results are not available at the present

time.

12. Conclusions and Future Work

In this paper Mosaico. an integrated set of tools for macro-cell layout, has been

presented. Mosaico is designed to interact closely with the other tools in the Berkeley

design system. A major point of interaction occurs at the fioorplanning stage, where

Mosaico exchanges information with module generators and timing analyzers. All the lay

out procedures are carried out at the symbolic-layout level, which provides the system

Circuit #Macro-Cells #Pads #Nets #Pins # Channels

ckl 8 29 58 IT

ck2 12 39 262 691 54

ck3 23 17 129 458 43

Table 1. Characteristics of the test circuits.

Circuit Placed Routed Compacted Area savings
(%) after com
paction

ckl 1592x1415 1678x1562 1533x1433 16

ck2 17305x15620 17033x14982 15670x14982 1

ck3 2902x3607 4216x4080 n.a. n.a.

Table 2. Area at various stages of the pipeline (in X).

Circuit Placement
Routing

Global Detailed
Compaction

ckl 140 22 21

ck2 n.a 926 482 960

ck3 1203 74 140 n.a.

Table 3. CPU time (seconds. VAX-8650).
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with technology independence. Furthermore Mosaico is closely coupled with the design
manager Oct to achieve an open system with agreat deal of modularity and flexibility.

In Mosaico well-tested tools like the detailed routers Yacr and Mighty cohabit with
new tools that have been developed explicitly for the system, such as the channel
definition and ordering procedure and the power and ground router.

Future development will occur on all steps in the pipeline. In particular the channel
definition and ordering algorithm will be enhanced to better take into consideration the
influence of the channel definition on the performance of the detailed routers. Also the

interactions between the router server Spider and the spacers will be enhanced to provide

for layouts in which particular spacing constraints between elements are present. In gen
eral the set of tools available will be enlarged to provide the user with the choice of

several parallel paths for each stage in the pipeline.
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