

Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EFFICIENT SUPPORT FOR RULES AND DERIVED

OBJECTS IN RELATIONAL DATABASE SYSTEMS

by

Eric N. Hanson

Memorandum No. UCB/ERL M87/70

24 August 1987

EFFICIENT SUPPORT FOR RULES AND DERIVED

OBJECTS IN RELATIONAL DATABASE SYSTEMS

by

Eric N. Hanson

Copyright © 1987

Memorandum No. UCB/ERL M87/70

24 August 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

This research was supported by the National Science Foundation, Grant DMC-8504633 and by the
Defense Advanced Research Projects, Contract N00039-84-C-0089.

/

EFFICIENT SUPPORT FOR RULES AND DERIVED

OBJECTS IN RELATIONAL DATABASE SYSTEMS

by

Eric N. Hanson

Copyright © 1987

Memorandum No. UCB/ERL M87/70

24 August 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

This research was supported by the National Science Foundation, Grant DMC-8504633 and by the
Defense Advanced Research Projects, Contract N00039-84-C-0089.

Efficient Support for Rules and Derived Objects
in Relational Database Systems

Eric N. Hanson

Abstract

This thesis presents the design and analysis of a collection of algorithms to support triggers,

inference rules, and derived data objects (e.g. views) in relational database systems. A basic com

ponent of algorithms for testing rule conditions is known as rule indexing. Given a collection of

rule conditions and a database record, a rule indexing algorithm finds all the conditions that are

satisfied by that record. A rule indexing technique called basic locking has been previously pro

posed. Basic locking is known as a lock-based algorithm because it places special locks on data

records and in conventional indexes. Two other lock-based rule indexing methods, reduced basic

locking and mark intersection are proposed here, and the performance all three algorithms is

analyzed.

A view maintenance algorithm is a method for maintaining and incrementally updating a

physically stored copy of a database view. A new view maintenance algorithm called Rete view

maintenance (RVM) is proposed in this thesis. RVM is based on the Rete Network, a type of

discrimination network used to test rule conditions in forward-chaining rule interpreters. Methods

are discussed for improving the performance of view maintenance algorithms by utilizing rule

indexing techniques. A collection of algorithms is also proposed to allow maintenance of material

ized aggregates and aggregate functions.

By keeping a stored copy of a view up-to-date using a view maintenance algorithm, it is pos

sible to process view queries directly using the copy. The conventional way to process queries

against views is to use query modification, whereby a view query is translated into an equivalent

query that refers only to the base relations. A performance analysis is presented which compares

the average cost of a view query for these two alternatives for different view types, including a

simple selection from one relation, the join of two relations, and an aggregate over one relation.

A related performance analysis is also presented comparing the costs ofdifferent algorithms

for querying database procedures. The database procedures analyzed are made up of one or more

database queries stored in the field of arecord. The value of adatabase procedure is the result of

executing the query or queries in its definition. Three different algorithms for processing queries

against database procedures are evaluated. The first algorithm is to always execute the queries in

the procedure. The second algorithm requires caching the last value returned by executing the

queries in the procedure; if the cached value is valid when the procedure is queried, the value

from the cache is returned. Otherwise, the procedure value is recomputed, and written to refresh

the cache. The third algorithm is to use aview maintenance method to keep astored copy ofthe

procedure result up-to-date at all times, and return the result whenever it is requested. As in the

case for views, the average query cost for each algorithm is compared.

Finally, enhancements to the rule sublanguage of the POSTGRES database management

system are proposed to increase the power of the language and to simplify implementation of

rule-based applications. Methods are presented for implementing the new language features

efficiently using rule indexing and view maintenance techniques.

Professor Michael Stonebraker
Committee Chairman

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Michael Stonebraker, for

giving me the opportunity to work in the field of database management, and for providing

indispensable guidance for this research. I also wish to thank the other members of my thesis

committee, Professors Lawrence A. Rowe and William Cooper, for reviewing this dissertation.

The other graduate students in the database research group at UC Berkeley, including Margaret

Butler, Brad Rubenstein, Timos Sellis and Yiannis loannidis provided helpful comments on this

work. Careful editing by Kaaren Bock greatly improved chapter 1, and her stylistic comments

helped me present the other chapters more effectively. Finally, I thank Jeff Anton, our system

manager, for keeping our computers running smoothly throughout the course of my research.

Table of Contents

Chapter 1. INTRODUCTION l

1.1. Background 1

1.2. Research on Rule Systems 2

1.2.1. Database Rule Systems 2

1.2.1.1. Triggers and Alerters 3

1.2.1.2. Deductive Databases 7

1.2.2. Rule Systems In Artificial Intelligence 10

1.3. Rule Indexing 13

1.3.1. Rule Indexing for Selection Predicates 13

1.3.2. Rule Indexing Techniques for Join Predicates 18

1.4. Derived Objects 27

1.5. Thesis Overview 30

Chapter 2. LOCK-BASED RULE INDEXING 32

2.1. Introduction 32

2.2. Rule Indexing Algorithms 33

2.2.1. Motivation for Mark Intersection 33

2.2.2. The Mark Intersection Algorithm 35

2.2.3. Reduced Basic Locking 38

2.3. Performance Characteristics 39

2.3.1. The Predicate Model 40

Table of Contents Hi

2.3.2. Performance of Basic Locking 41

2.3.3. Performance of Mark Intersection 4*

2.3.3.1. Cost of Screening the Locks 41

2.3.3.2. Number of Locks That Survive Screening 43

2.3.4. Performance of Reduced Basic Locking 43

2.4. Performance Results 44

2.4.1. Simplified Analysis ofMark Intersection 46

2.5. Storage Utilization 48

2.5.1. Size of the RULES Relation 49

2.5.2. Storage Use in Reduced Basic Locking 49

2.5.3. Storage Use in Basic Locking 51

2.5.4. Storage Use in Mark Intersection ^1

2.6. Storage Analysis Results 52

52
2.7. Discussion

Chapter 3. MAINTAINING DERIVED OBJECTS 55

3.1. Staticly Optimized View Maintenance Algorithms 57

^73.1.1. Algebraic View Maintenance *"

3.1.2. Maintaining Views Using aRete Network 61

3.1.3. The Rete View Maintenance Algorithm 63

3.2. Dynamicly Optimized View Maintenance and Sharing 70

70
3.3. Database Procedures

713.4. Aggregate Maintenance

3.4.1. Basic Aggregate Processing Algorithms

Table of Contents lv

uuwuaiiv5 74

3.4.3. Scalar Aggregate Maintenance •

3.4.2. Fundamentals of Aggregate Maintenance

75

3.4.3.1. Non-Unique

77
3.4.3.2. Unique

783.4.4. Aggregate Function Maintenance

783.4.4.1. Unqualified, Non-unique

793.4.4.2. Unqualified, Unique

803.4.4.3. Qualified, Non-unique

813.4.4.4. Qualified,Unique

813.5. QUEL Commands Containing Aggregates

84
3.6. Discussion •

Chapter 4. VIEW MATERIALIZATION PERFORMANCE 88
. ... 88

904.2. Deferred View Maintenance **

904.2.1. Hypothetical Relations

4.2.2. Efficient Implementation of Hypothetical Relations 91

934.3. Performance Comparison

934.3.1. Description of View Models

95
4.3.2. Model 1 Cost Analysis

4.3.2.1. Cost of Deferred View Maintenance Assuming Model 1

4.3.2.2. Cost of Immediate Assuming Model 1

4.3.2.3. Cost Using Query Modification Assuming Model 1

4.3.3. Performance Results for Model 1

Table of Contents v

4.3.4. Model 2: 2-Way Join View 106

4.3.4.1. Cost of Deferred Assuming Model 2 107

4.3.4.2. Cost of Immediate View Maintenance Assuming Model 2 108

4.3.4.3. CostUsing Query Modification Assuming Model 2 109

4.3.5. Performance Results for Model 2 11°

4.3.6. Model 3: Aggregates Over Model 1Views 114

4.3.7. Performance Results for Model 3 116

4.4. Discussion H®

Chapter 5. PERFORMANCE OF PROCEDURE MATERIALI

ZATION METHODS , 123

5.1. Procedure Maintenance Algorithms « 123

5.2. Procedure Models Analyzed 124

5.3. Cost Analysis for Model 1Procedures 128

5.3.1. Model 1: Cost of Always Recompute Strategy 128

5.3.2. Model 1: Cost of Cache and Invalidate 129

5.3.3. Model 1: Cost of Update Cache (Non-Shared) 132

5.3.4. Model 1: Cost of Update Cache (Shared) 134

5.4. Performance Results for Model 1 Procedures 136

5.5. Cost Analysis for Model 2 Procedures 147

5.5.1. Model 2: Cost of Always Recompute 148

5.5.2. Model 2: Cost of Cache and Invalidate 149

5.5.3. Model 2: Cost of Update Cache (Non-Shared) 149

5.5.4. Model 2: Cost of Update Cache (Shared) I50

Table of Contents vi

5.6. Performance Results for Model 2 Procedures 151

5.7. Summary and Conclusions 154

Chapter 6. AN ENHANCED DATABASE RULE LANGUAGE

158

6.1. Weaknesses in the Query Language 158

6.1.1. Negated Conditions 158

6.1.2. Executing a List of Statements 162

6.1.3. A Conditional Abort Command 163

6.2. Processing Commands Containing Proposed Features 164

6.3. Alternate Rule Semantics 166

6.3.1. Language Features to Support Alternate Rule Semantics 169

6.3.2. Examples Using New Rule Syntax 171

6.4. Testing Rule Conditions 175

6.4.1. Conditions Without Negation 175

6.4.2. Conditions With Negation 178

6.4.3. The Rule Execution Strategy 178

6.4.4. Conflict Resolution 179

6.4.5. Act 180

6.4.6. Match 180

6.5. Discussion 180

Chapter 7. CONCLUSION 182

7.1. Summary 182

7.2. Comparison with Other Research' 186

Table of Contents vii

7.3. Implications of This Work 189

7.4. Limitations of Results . 190

7.5. Directions for Future Research 190

Table of Contents viii

List of Figures

Chapter 1. INTRODUCTION l

Figure 1.1. Representation of predicates as rectangles 15

Figure 1.2. Function of the Rete Network 19

Figure 1.3. Example Rete Network 21

Chapter 2. LOCK-BASED RULE INDEXING 32

Figure 2.1. Example tuple with locks 6et by the Mark Intersection algorithm 36

Figure 2.2. Cost of BL, RBL and MI versus tQ 45

Figure 2.3. Cost of MI versus BL as number of indexed attributes varies 46

Figure 2.4. Cost of MI versus Cost of BL Assuming Only Two Predicate Types 48

Figure 2.5. Amount of storage used by lock-based rule indexing algorithms 53

Chapter 3. MAINTAINING DERIVED OBJECTS 55

Figure 3.1. Standard algebraic view maintenance (no sharing) 59

Figure 3.2. Algebraic view maintenance using shared subexpression 60

Figure 3.3. Rete network for example rule 62

Figure 3.4. Rete network used for view maintenance 63

Figure 3.5. Error using non-depth-first propagation 68

Figure 3.6. Augmenting Rete network with locking 69

Chapter 4. VIEW MATERIALIZATION PERFORMANCE 88

Figure 4.1. Access methods of relations in performance model 94

List of Figures ix

Figure 4.2. View Materialization Cost Parameters 95

Figure 4.3. Default Parameter Values •' 95

Figure 4.4. Model 1: Query Cost 102

Figure 4.5. Model 1: Algorithm Comparison 1°4

Figure 4.6. Model 1: Algorithm Comparison 1°5

Figure 4.7. Model 1: Algorithm Comparison 1°6

Figure 4.8. Model 2: Query Cost HI

Figure 4.9. Model 2: Algorithm Comparison 112

Figure 4.10. Model 2: Algorithm Comparison 113

Figure 4.11. Model 3: Query Cost H7

Figure 4.12. Model 3: Algorithm Comparison •. 118

Chapter 5. PERFORMANCE OF PROCEDURE MATERIALI

ZATION METHODS 123

Figure 5.1. Rete networks for type Px and P2 procedures in model 1 134

Figure 5.2. Query cost versus update probability for high cache invalidation cost (60

ms) »37

Figure 5.3. Query'cost versus update probability for low cache invalidation cost (0

ms) 138

Figure 5.4. Query cost versus update probability for large objects (/=0.01) 139

Figure 5.5. Query cost versus update probability for small objects (/=0.0001) 140

Figure 5.6. Query cost versus update probability for single-tuple objects [fsssl/N)

141

Figure 5.7. Query cost versus update probability for high locality (Z=0.05) 142

List of Figures x

Figure 5.8. Query cost versus P for large number of objects (^=^2=1000) 143

Figure 5.9. Query cost versus sharing factor (SF) 144

Figure 5.10. Areas where each method wins for object size versus update probability

145

Figure 5.11. Areas where each method wins assuming high locality (Z=0.05) 146

Figure 5.12. Measure of closeness between Cache and Invalidate and Update Cache 147

Figure 5.13. Measure of closeness (/2s1) 1*8

Figure 5.14. Model 2: Rete Network for P2Procedures 150

Figure 5.15. Model 2: Query cost for default parameters 152

Figure 5.16. Model 2: Query cost of Update Cache alternatives versus sharing factor

153

Figure 5.17. Model 2: Winners for update probability versus object size 154

Chapter 6. AN ENHANCED DATABASE RULE LANGUAGE

158

Figure 6.1. General rule syntax 169

Chapter 7. CONCLUSION 182

CHAPTER 1

INTRODUCTION

1.1. Background

Many different applications require the ability to specify rule, about information stored in a
database management system. In partial response to this need, commercially available datable
system, contain several speciafoed rule mechanisms. Two examples are proton .uo,y,tem,,
which support rule, that allow or dissaUow certain database action, such a. reading or updating
part of arelation, and integrity control .uUytem,, which permit the user to define logical asser
tions that adatabase is required to satisfy. Proposals for future database systems include more
sophisticated rule .ystems, including trigger, and inference rule.. Atrigg« *acondition and an
associated action to be executed if database updates cause the condition to become true. An infer-
ence rule specifies how to derive new information from existing facts when querying the database.

Another important class of database facilities involves support for derived object,. Derived
objects are computed from other data stored in the database. Asimple example of aderived
object is adatabase view. Another type of derived object is the result of acollection of database
commands, also known as adataoa.e procedure ISAH84.SAH8S1. Athird type of derived object is
an aggregate, which is afunction that takes aset of values as input, and returns asingle value.
Two commonly used aggregate, are sum and average. The use of views and database procedures
can simplify access to data because they free the user from specifying complicated queries. Using
derived objects can also improve performance of application, if the value, of frequently accessed
object, are computed in advance and .tored. Rule, and derived object, are closely related
because the condition of arule (e.g.. atrigger) has astructure similar to the definition of aderived

object (e.g., a view).

1. INTRODUCTION 2

Facilities to support rules and derived objects in a database management system (DBMS)

should be efficient, and the DBMS should still provide good performance for queries and updates.

Therefore, the design and implementation of a system to support rules and derived objects in a

DBMS deserves careful attention. The subject of this thesis is efficient support for rules and

derived objects in adatabase environment. The remainder of this chapter presents areview of

previous research related to rules and derived objects, and an outline of the dissertation.

1.2. Research on Rule Systems

In the past 15 years, there has been alarge amount of research related to rule-base systems.

This work is divided between the fields of database management and artificial intelligence. Sec

tion 1.2.1 is abrief review of the work done in the database community. Section 1.2.2 covers the

related work from artificial intelligence.

1.2.1. Database Rule Systems

There have been several proposals for increasing the power of the rules systems in database

managers. The most important work relative to this thesis focuses on database triggers and alert

ers (an alerter is atrigger that sends amessage to auser or application program as its action).
The flow of execution of triggers is called forward chaining, because the action of one rule can

change the database, causing another rule to execute. A separate area of research focuses on

deductive inference rules. Deductive inference follows apattern of execution known as backward
chaining since rules are processed in reverse. For example, consider the following collection of

facts and rules, where "-•" represents logical implication.

A

To see if Cis true using backward chaining, the system attempts to show that B is true. This in

1. INTRODUCTION 3

turn leads to an attempt to show that A is true. Since A is stored in the database, it is true, so

the systemconcludes that C is true.

Section 1.2.1.1 discusses previous work on database triggers and alerters and section 1.2.1.2

covers research on deductive inference in databases.

1.2.1.1. Triggers and Alerters

The first work on database triggers was Eswaran's consideration of the impact of such rules

on other database functions, including authorization and concurrency control [Esw76]. He con

cluded that since triggers can be defined to monitor database activity and copy data, they should

execute with no more privileges than the person who created them and they should be carefully

monitored by the database administrator (DBA). He also showed that to maintain serializability

of transactions, the database concurrency control mechanism must treat reads and writes per

formed by triggers as part of the transaction that caused the trigger to execute.

Later work by Buneman and Clemons discusses two classes of triggers identified as simple

and complex [BuC79]. Simple triggers are those with conditions based on a single tuple from one

relation. For example, consider an employee-department database with the following schema:

EMP(name, age, salary, dept, job)
DEPT(dname, building, floor)

An example of a simple trigger is the following:

If an employee's salary is greater than 100,000 dollars
then append his name to the HIGH-ROLLER relation

Complex triggers have conditions based on two or more relations. These conditions have the

same structure as relational algebra expressions. One can also think of a complex trigger condi

tion as the definition of a database view. The condition becomes true if the database changes so

that the view contains a new tuple. An example of a complex trigger is:

1. INTRODUCTION 4

If a new name enters the view B23EMPS, which has the definition

define view B23EMPS (EMP.name)
where EMP.dept = DEPT.dname
and DEPT.bldg = "B23"

then send the employee with that name the fire safety instructions
for building B23.

Buneman and Clemons envision add and delete triggers that are awakened when a tuple logi

cally enters or leaves a database view, respectively [BuC79]. The complex trigger above is an add

trigger. The triggering mechanism they propose requires recomputing the view after each update.

The new value of the view is then compared to the old one to see whether or not to execute the

rule. Because recomputing the view is expensive, they developed a theorem-prover that attempts

to 6how when an update command cannot cause a view to change by examining the command

before execution. The view is recomputed only if the theorem-prover determines that an update

might have caused it to change. The theorem-prover is based in part on the notion of readily

ignorable updates or RIU's. An RIU is an update that can be determined in advance not to affect

the view used as the condition of a rule. For example, any update to the age field of EMP is an

RIU with respect to a rule condition referring only to the salary field.

Most other work on triggers focuses on rules of the simple type. Chang proposes a way to

use chains of two or more simple alerters to achieve the affect of a complex alerter [Cha82]. Sim

ple triggers were proposed for the experimental relational DBMS System R, but never imple

mented [ABC76,CAE76]. Anew commercial system from Sybase provides a full implementation

of a restricted form of simple triggers |How86|. As opposed to complex triggers, Sybase trigger

conditions can specify only whether a record was inserted into ordeleted from a relation. Yet the

action of a Sybase trigger can be a general program written in TRANSACT-SQL, an extended

version of IBM's SQL query language [CAE76] provided by Sybase. TRANSACT-SQL programs

can contain any SQL statement, as well as commands to support the following:

1. INTRODUCTION

• control flow (WHILE, IF-ELSE, GOTO)
• transaction handling (BEGIN TRAN, COMMIT TRAN,

ROLLBACK TRAN, SAVE TRAN)
• output and error handling (PRINT, RAISERROR)
• setting an interval or absolute timer (WAITFOR)

Stonebraker proposed a form of complex triggers quite different from those envisioned by

Buneman and Clemons [Sto85|. These rules can be formed by tagging any command in the QUEL

query language [HSW75] with the keyword always. Commands tagged with always logically

appear to run indefinitely. A trigger to force Fred's salary to always be equal to Sam's salary can

be expressed as follows:

" always replace EMP (salary = E.salary)
from E In EMP

where EMP.name = "Fred"

and E.name = "Sam"

(The from clause above defines a tuple variable E over EMP in the new syntax used by the

POSTGRES system [StR86].) Given this rule, whenever a command such as

replace EMP (salary = 1000) where EMP.name = "Sam"

is processed, the trigger should be awakened to update Fred's salary.

In general, the system must store a collection of triggers:

Tj: always <command> relname-1 (Target-list-1) where PREDICATE-1

Tn: always <command> relname-n (Target-list-n) where PREDICATE-n

When a user update U is processed, the system must find all triggers Tj for which there exists a

tuple t modified or inserted by U that might cause T$ to have an effect. A trigger Tj definitely

does not have to execute unless the following conditions are satisfied:

t satisfies PREDICATE-i

and
the fields of t changed by the update command contain an attribute
that appears in Target-list-i or PREDICATE-i

1. INTRODUCTION 6

Under some circumstances, the system may awaken a trigger Tieven when the condition above is

not satisfied. Unnecessary rule activations of this form are called false drops. This is not a prob

lem because the semantics of always rules are designed so that they can be executed more often

than necessary without changing the database. For example, the rule for setting Fred's salary

equal to Sam's salary that was presented previously can be run any number of extra times since it

will overwrite Fred's salary field with an equal value, leaving the database in the correct state.

The only penalty for finding false drops is that time is wasted processing a trigger which does not

actually do anything. A implementation of always rules is being undertaken as part of the

POSTGRES system [SHP871.

An important class of rules are known as integrity constraints. Integrity constraints are a

special case of triggers. The purpose of an integrity constraint is to ensure that the database

meets some condition. A simple type of integrity constraint called value integrity specifies that

the data values in a relation must meet some condition. An example of a value integrity con

straint is the following:

The value of EMP.salary in each record must be between 10,000 and 50,000
dollars.

A more complex type of integrity constraint is referential integrity [DatSla]. A referential

integrity constraint specifies that if adomain D supplies primary key values for a relation Rlt
and values from D appear in attribute Aof arelation R2, then any value, say d, from domain D

which appears in R2 must be the primary key of some record in Rv Atypical example of a

referential integrity constraint is the following:

No EMP record may have a dept field value that is not the dname value of
some record in DEPT (in other words, no employee may work in a department
that does not exist).

Arule to enforce an integrity constraint must determine that the constraint has been violated,

and then take some action, such as aborting the current command, or refusing to accept a partic-

1. INTRODUCTION 7

ular record. The fact that integrity constraints must act in response to changes to the database

made by updates explains why integrity constraints are a special case of triggers.

1.2.1.2. Deductive Databases

A growing body of research focuses on extending databases with a logical inferencing capa

bility similar to that found in the logic programming language PROLOG [Bra86,GaM78,GMN81].

Addition of inference rules to the database in these proposals is normally presented as an exten

sion of the database view system, allowing views to be defined using a collection of possibly recur

sive rules called Horn clauses [End72|. Processing a collection of inference rules for a large data

base is potentially very expensive. Past research has considered methods to optimize recursive

queries that arise in databases which have been extended with recursive inference rules

[Ioa85,UU85, Zan85, Zan86|.

As an example of recursive inference, consider the relation

parent-of (parent, child)

Given parent-of, a view

ancestor (name, descendent)

can be defined recursively using the following rules:

define view ancestor (name=parent-of.parent, descendent=parent-of.cbild)

define view ancestor (name=ancestor.name, descendent=parent-of.child)
where ancestor.descendent=parent-of.parent

Given this definition one can query the ancestor view directly. For example, the following query

retrieves the names of all the ancestors of "Bob."

retrieve (ancestor.name)
where ancestor.descendent = "Bob"

This query is implicitly recursive because ancestor is defined using a recursive rule.

1. INTRODUCTION 8

Other research has focused on productive ways to couple databases with logic programming

systems. Jarke et al. developed an optimizing PROLOG front-end to an SQL-based relational

database system [CAE76, JCV84]. This system allows users to query the underlying relational

database using PROLOG. It attempts to optimize performance by

1. caching the results of previous SQL queries in the front-end,
thus limiting the number of query evaluations performed by the back-end.

2. allowing the back-end to execute all operations it is capable of performing,
such as testing simple predicates.

3. using semantic query optimization techniques |ASU79].

Additional semantic optimization methods that can be applied in the front-end are discussed in

[Jar86]. Sciore and Warren advocate a tighter coupling between PROLOG and a DBMS to

improve efficiency and facilitate sharing of data |ScW86]. They propose building into the PRO

LOG runtime system components of the DBMS including disk and buffer management, indexing,

query optimization, and concurrency control.

Another form of inference rule is described in the proposal for always rules in POSTGRES

|Sto85,SHP87]. The POSTGRES rule manager chooses as an optimization whether or not to use

forward or backward chaining to process an always rule. If forward chaining is selected, an

always rule is a trigger (forward chaining is called early evaluation). If backward chaining is

selected, it is an inference rule (backward chaining is called late evaluation). Early rules are pro

cessed as described in the discussion above on the use of always rules as triggers. Late rules are

processed by modifying the query when data is retrieved. For example, consider the following rule,

which is assumed to be designated late by the system:

always replace EMP (salary = E.salary)
from E In EMP
where EMP.name = "Bob" and E.name =* "Jim"

Suppose the following query is submitted:

1. INTRODUCTION 9

retrieve (EMP.salary) where EMP.name = "Bob"

When this query executes, the system notices that the rule above might affect the salary of Bob.

The system then substitutes Bob's tuple into the rule, forming the following subquery:

retrieve (salary = E.salary)
from E In EMP
where "Bob" = "Bob" and E.name *= "Jim"

This subquery is run, and the value it returns is used as Bob's salary.

The proposal for always rules supports the use of rule priorities to resolve conflicts between

rules. Any always rule can be given a priority, which is a real number in the range [0,1]. The

effective value of any field is the one assigned by the highest priority rule. This is accomplished

by attaching a priority to each field of a tuple written by a rule. Forexample, a possible collection

of prioritized rules is:

always replace .5 EMP (salary = 1000)
where EMP.name = "Sam"

always replace .5 EMP (salary = E.salary)
from E in EMP
where EMP.name = "Fred"

and E.name = "Sam"

always replace .7 EMP (salary = 2000)
where EMP.status = "mgr"

Given these rules, the salary of Fred will normally be 1000. However, if Fred is promoted from a-

worker to a manager the priority mechanism causes his salary to bechanged from 1000 to 2000.

Priority situations are common in Al applications and are straightforwardly supported in the

scheme of |Sto85,SHP87]. Priorities are difficult to handle in rule systems that utilize the view

processing system for inference (see [Ioa86,UU85j). This difficulty arises since if multiple rules are

used to define a single view, the view by definition contains the union of all tuples derived using

those rules. In priority situations, the union of all tuples is not the desired outcome. The value of

1. INTRODUCTION 10

each field of a tuple should be the one designated by the highest priority rule. Any attempt to

add priorities to a view mechanism would require some yet-to-be-devised ad hoc method for merg

ing multiple tuples retrieved using the view definition.

1.2.2. Rule Systems In Artificial Intelligence

A subset of the research done on Al programming environments focuses on production rule

systems, which are closely related to database triggers. An early production rule system known as

OPS5 [For81] combines a forward chaining rule execution engine with a database, called the work

ing memory, that consists of relations with named attributes. The database resides entirely in

virtual memory, and is valid only during the execution of a single OPS5 program. In OPS5, rela

tions are created using a literallse statement, e.g.

(llterallre emp name age salary mgr)

creates a relation "emp" with the attributes shown. Rules are defined using the p (production)

statement. Each rule has a name, a condition, and an action. For example, an OPS5 rule

"zerorule" that will zero the salary of any employee currently earning more than 50,000 dollars is

specified as follows:

(p zerorule
(emp 'salary > 50000)
->

(modify 1 'salary 0))

The effect of statement (modify 1 'salary 0) is to write 0 into the salary field of the data item

matching condition element number 1. In general, rule conditions can contain one or more

negated or non-negated elements. Negated conditions are signified by placing a "-" in front of a

term. Rule actions can contain one or more of the following statments:

modify update one or more fields of a data element matching a
condition term

1. INTRODUCTION 11

remove delete a data element matching a condition term
make insert a new data element into working memory
call call a user defined procedure

An example of a more complex rule is the following, which deletes employees who earn more than

their manager, and places their names in the table "delemp":

(p salaryrule
(emp 'salary <x> 'mgr <y> 'name <z>)
(emp 'salary < <x> 'name <y>)
->

(make delemp 'name <z>)
(remove 1))

Joins between more than one tuple in the condition are specified with pattern-matching variables

such as <x>, <y> and <z> above. The first appearance of a variable will match any value,

and that value is bound to the variable. When the variable appears later, it has the value that

was bound to it when it first occurred. When the above rule fires, the emp record of an employee

earning more than his or her manager matches condition element number 1, and the manager's

emp record matches condition element number 2. The effect of the make statement in the action

of the rule is to create a "delemp" record with a name field containing the value currently bound

to the variable <z> (the employee's name). The remove statement then deletes the record

matching condition element number 1 (the employee's record).

In OPS5, rules are tuple-oriented, meaning that they are awakened and run for each unique

combination of data elements that match the condition. With the example rule above, the net

outcome would be affected by the order in which tuples were deleted. In a database environment,

it would be preferred to process a set of tuples during execution of a single rule. Processing a set

of tuples at one time would be more efficient that processing tuples individually since database

query processors are tuned to process large sets of tuples. It would also avoid order-dependent

outcomes that can occur when rules are fired once for each qualifying tuple.

1. INTRODUCTION 12

Frame-based Al languages including FRL [RoG77], KRL |BoW77|, KEE |FiK85], and ART

|Sho87] also provide rule processing capability. A frame is simply arecord with acollection of

named fields or slots. In frame-based systems, an is-a hierarchy connecting the frames provides a

simple but very efficient form of inference, with abuilt-in priority mechanism. To determine the

value of a slot in a particular frame, one first looks at that frame. If it contains a value in that

slot, that value is returned. If it does not contain avalue, the frames above the current frame in

the is-a hierarchy are examined. For example, one frame for "vehicle" might have a slot "has-

wheels" containing the value TRUE. Another frame for "truck" containing no value for "has-

wheels" could be connected to "vehicle" using an is-a link. A third frame for "boat" (also con

nected to "vehicle") might have a "has-wheels" slot containing FALSE. One could infer that a

truck has wheels by simply following the link to the vehicle frame. However, the value "has-

wheels" = FALSE in the "boat" frame would over-ride the default value TRUE found in the

"vehicle" frame.

Frame-based systems also provide procedural attachments that allow triggering of a demon

procedure when a frame slot, is read or written [Min75|. The more advanced frame-based systems

including KEE and ART have built-in forward and backward chaining rule processors that use the

frame hierarchy as the database of facts. The forward chaining mechanism is otherwise similar to

OPS5, and the backward chaining mechanism is similar to that found in the logic programming

language PROLOG [Bra86].

Some recent work in Al has focused on issues of large knowledge bases, and the storage of

data objects on secondary storage. Examples are work on persistent LISP [But86,Mis84], and

methods for storing Al reasoning knowledge in adatabase system [DeF86,FWA86].

1. INTRODUCTION 13

1.3. Rule Indexing

Rule-based applications require the ability to determine efficiently which rule conditions

match a given tuple or collection of tuples. Algorithms for performing thb task are called rule

indexing methods [SSH86]. Rule indexing can be applied in a database system to determine

1. when to awaken a trigger,
2. when an inference rule should be applied, and
3. when the precomputed value of a derived object (e.g., a database procedure)

should be invalidated or refreshed.

Below, in section 3.1, a collection of rule indexing techniques are discussed which work for rule

conditions that are selections from a single relation. Section 3.2 discusses rule indexing techniques

for handling conditions that contain joins.

1.3.1. Rule Indexing for Selection Predicates

Selection predicates on a single relation R are typically boolean combinations of terms of

the form

expression relop constant

where expression is of the form R.attribute, or is a function of one or more attributes of R, and

relop is one of {<,>,<,>,=s,^}. The following are some examples of selection predicates of

this type on the relation EMP:

EMP.name = "Bob"

EMP.salary < 50000 and EMP.salary > 30000
EMP.salary / EMP.age > 1000

In general, the problem of rule indexing for selection predicates is to determine for each predicate

P%, for l<t <M, the subset 5,- of the tuples in a relation R such that each tuple in 5t- matches

Pi, and no other tuples in R match P,. Several approaches to solving this rule indexing problem

have been suggested. Using a brute force solution, every inserted or deleted data element must be

interpreted against all predicates Px ' **Pm Obviously, if M is not small this algorithm has

1. INTRODUCTION 14

serious performance problems. A slightly more sophisticated rule indexing scheme combines

interpretation with indexing on one or more terms of the predicate. In this scheme, an index (e.g.,

a hash table) is created using terms extracted from the predicates as keys. An example of a term

that might be extracted is one of the form <attribute=constant>. For each data element

inserted into or deleted from the database, the index is searched to find potentially matching

predicates. The element is then interpreted against all predicates found by the search. This algo

rithm performs reasonably well when the number of rules indexed under most keys is small. If the

number becomes large, performance degrades 6ince many predicates will have to be interpreted

after each insertion or deletion of a data element.

Another method for rule indexing iscalled predicate indexing [SSH86J. Predicate indexing is

based on an fl-tree storage structure, a multi-dimensional extension of the B-tree designed for

indexing spatial data (which must be represented as rectangular regions in an JV-dimensional

space). For a full discussion ofalgorithms for manipulating and searching an fl-tree, the reader is

refered to the original paper on fl-trees [Gut84|. One property of the .R-tree is that makes it pos

sible to find all the rectangular regions indexed that contain a particular point efficiently. In the

predicate indexing algorithm, the predicates to be indexed must be represented as rectangular

regions in an N-dimensional space. This space is defined by arelation A with N attributes (the

predicates are defined on A). Predicate indexing operates by first building an J2-tree index on the

set of predicates Px • • • PM in question. Note that a tuple t in relation A represents apoint in

the iV-dimensional space defined by A. Hence, finding all the predicates that match t can be

done quickly by searching the .R-tree. For example, consider a relation

R(x,y)

and the following predicates on R:

Px. 0<x<7and0<y<5
P2: 3<x<10and3<y<8
P* 5<x<9andl<y<10

1. INTRODUCTION 15

These predicates can be represented rectangles, as shown in figure 1.1. Consider a tuple t in R

with the value <x=6,y=2>. By examining figure 1.1, it can bee seen that the rectangles for Px

and Pa contain the point for t, but P2 does not overlap the point. Hence, t satisfies Px and P8

but not P2. The .R-tree provides an efficient rule indexing mechanism for predicates that can be

represented as rectangular regions because it makes it possible to determine quickly which rectan

gles contain a point.

A rule indexing method known as basic locking [Sto85] is related to locking methods used for

database concurrency control |Gra78|. Basic locking utilizes special persistent locks, called tri^er

10
1 1 1 1 1

1 1 1 1 1

i i i

i i i

1

1

1 1 1 1 1 i i i

i i i

1

1

i i i

i i i

i i i

L _ J. 1;Pf- "\-" 1 1 I

1 I 1

i

i i _ _t!
i i i i

iiii

• i i i i i

i i i i i i

i I

l 1

10

Figure 1.1. Representation of predicates as rectangles

1. INTRODUCTION 16

locks or t-locks, which are placed on data records and in conventional indexes. The scheme util

izes a relation

RULES(id, name, rule-def)

to hold the rule base. The "id" field contains a unique identifier for the rule, "name" contains an

optional user-supplied name for the rule, and "rule-def" contains the rule definition, including its

predicate.

For each rule defined, an access plan is constructed using a conventional query optimizer

[Sel79]. This plan is executed and each tuple it reads is marked with a (-lock that contains the

"id" of the predicate. If a sequential 6can of the relation is used, then all tuples in the relation will

be marked. In this case, conventional lock escalation will convert record locks to a relation lock.

Otherwise, an index will be used for access and (-locks will be set on data records and on the key

interval inspected in the index. Such index interval locks are required to deal correctly with inser

tion of new records, as explained momentarily.

If a tuple x is inserted, then the collection of markers must be found for the new tuple. As

a result of the insertion, values will be inserted into all indexes on the relation. If such a value is

covered by a key-range lock, then a corresponding t-Iock will be added to the data tuple contain

ing the value.

To find the collection of predicates that cover a tuple x, one first collects all the (-locks on

x. The locks include the id's of rules that might match the tuple. Since these (-locks represent a

superset of the predicates that actually match the tuple, relevant tuples in the RULES relation

must be checked to determine whether x actually satisfies each predicate.

For example, assuming that there is a B-tree index on EMP.salary and no index on

EMP.age, the qualification:

Q: EMP.salary = 1000 and EMP.age > 30

1. INTRODUCTION 17

will set (-locks in the salary index and on all data records that it reads (i.e., those with salary =

1000). Supposed the following tuple b inserted into EMP:

x: <name="Jane'\ age=35, salary=1000, job="Salesperson", dept="Sales">

When x is inserted, the salary index must be updated to point to x. Since the salary field has

value 1000, x will conflict with the (-lock set in the salary index for Q. A copy of this (-lock

(and possibly others) will be stored directly on x.

Not all predicates indicated by the (-locks a tuple will necessarily match the tuple. The rea

son that a superset of the tuples that match each predicate must be locked is that a non-indexed

attribute may be modified so that a record matches a predicate it did not match before the

update. For example, the age field of an employee record may be updated from 30 to 31. Since

there is no secondary index on age, the basic algorithm would have no way of discovering that it

should now be marked without searching the salary index. This search should be avoided if only

age is updated (in database systems such as INGRES [SWK76] and System R [ABC76J, it is not

necessary to read or write any index pages to update a non-indexed field correctly). Because of

this problem, (-locks must be set on all tuples that potentially satisfy a predicate based on the

interval locks the predicate has set in one index. In effect, key interval locks in the indexes are

used to implement predicate locks to determine whether new tuples conflict with existing rules.

Setting (-locks on index intervals is analogous to the use of predicate locks to solve the problem

of phantoms in concurrency control [EGL76].

This strategy is called basic locking because it sets (-locks on all objects for which a normal

query would set read or write locks. It requires no changes to conventional execution of access

plans, so it can be properly called a locking mechanism. The advantage of this scheme is that it

is closely coupled to normal query processing. New qualifications can be added using normal facili

ties, and locks for new tuples are found as byproducts of normal update processing.

1. INTRODUCTION 18

Both fl-tree-based predicate indexing and basic locking are designed for predicates on only

one relation. Both algorithms can be extended to partially index predicates that contain joins.

This is done by indexing separately all single-relation selection predicates that appear in a join

predicate. However, this is only a partial solution to the problem of indexing join predicates. In

the next subsection, some rule indexing algorithms are described which support predicates that

contain joins.

1.3.2. Rule Indexing Techniques for Join Predicates

A form of indexing used in production rule systems for Al programming is the Rete Match

Algorithm |For82]. Rete Match was invented for OPS5, and is also used in OPS83 |For84) and

ART [Gev87,Sho87|. The algorithm utilizes a data structure called a Rete network that elim

inates the interpretation step of brute force and indexing methods, and also handles join predi

cates naturally. Direct interpretation of patterns is avoided by compiling all the patterns together

in advance to form a network. The Rete Match Algorithm maintains a conflict set showing each

pattern and the data elements that match it. Changes to the database are represented by tokens

which are tuple values tagged with a "+" or a "-" to show whether the tuple was inserted or

deleted, respectively. Modifications are treated as deletions followed by insertions. The network

can be viewed as a black box that receives tokens as input, and outputs changes to the conflict

set, as shown in Figure 1.2.

The output of the Rete network compiler is adiscrimination network containing the follow

ing types of nodes:

• root node: The single root node receives all tokens input to the net, and broadcasts the tokens

to all successors.

• T-const nodes: These nodes test input tokens for simple conditions of the form

1. INTRODUCTION

changes to database

V

Rete Network

V

changes to conflict set

Figure 1.2. Function of the Rete Network

19

attribute operator constant

where the operator can be one of {<,>,<,>,=,^}. AH tokens that pass the test are passed

on to the successors of the T-const node. Tokens that do not pass the test are discarded.

• a-memory nodes: These nodes serve to hold the output of T-eonst nodes. A token input to

an a-memory node containing a "+" tag is added to the memory. A token with a "-" tag is

deleted from the memory.

• and Nodes: These nodes specify joins of the form

left-input.attribute operator rigbUinput.attribute

The left and right inputs of an and node are memory nodes.

1. INTRODUCTION 20

• not nodes: These nodes are used to implement negated conditions. They are similar to and

nodes, except that they keep reference counts with tokens in the left memory showing how many

tokens they match in right memory. If the reference count is zero, the token is forwarded to the

successor nodes of the not node.

• ^-memory nodes: These nodes hold the output ofand nodes and not nodes.

• P nodes: One of these nodes is associated with each rule. If a token with a "+" tag makes it to

a P node, a pair consisting of that rule and token is added to the conflict set.

The compiler recognizes common subexpressions in rule conditions and generates shared

nodes to improve efficiency. Consider as an example a Rete network constructed for the following

two OPS5 rules:

; delete Bob if he works on the first floor
(p rulel

(emp *name Bob 'dept <x>)
(dept 'dname <x> 'floor 1)
->

(remove 1))

; delete every programmer who works on the first floor
(p rule2

(emp 'job Programmer "dept <x>)
(dept 'dname <x> 'floor 1)
->

(remove 1))

The network for these two rules is shown in Figure 1.3. This network has shared nodes for the

condition term

(dept 'dname <x> 'floor 1)

that appears in both rules.

As an example of how the Rete network operates, suppose that the following tuple is

inserted into EMP:

T: <name="Jack", age=28, job="Programmer", salary = 30000, dept="Engineering">

t-const

nodes

1. INTRODUCTION

root

class = emp

name = Bob

a-memory

left.dept

right.dname

job = Programmer

a-memory

P (rulel)

Figure 1.3. Example Rete Network

floor = 1

a-memory

left.dept

right,dname

P (rule2)

21

The tuple T is first placed at the root node of the network. Assume T is first passed to the node

labeled "class=dept." T does not meet the qualification of that node, so T is discarded there. T

is then passed to the node labeled "class=emp." T meets this qualification since it is in the EMP

relation, so T is passed on to both successors. Suppose T is first passed to the node labeled

"name=Bob." T does not meet this qualification, so it is discarded at that node. T is then passed

to the node labeled "job=Programmer." T meets this condition, so it is passed on to the a-

memory following the node labeled "job=Programmer". A copy of T is 6tored in the a-memory,

and T is passed to the subsequent and node. The opposite a-memory is then consulted to see if

T joins with a tuple there. Assuming that there is a tuple

1. INTRODUCTION 22

S: <dname="Engineering", floor = 1>

in the opposite a-memory, a new token T* is constructed that contains both S and T. T* is

passed on to the P node for rule2. In OPS5, this causes an instantiation of rule2 to be made eli

gible for execution. This instantiation consists of a pair containing rule2 and the token V (other

instantiations of rule2 for different tokens may be also be eligible for execution).

It is important to note that the Rete network has the same structure as a relational data

base query plan [Sel79j; the T-const nodes correspond to scans, and the and nodes correspond to

joins. The discrimination network output by a Rete network compiler contains a fixed query pro

cessing plan for all the patterns. In current expert system shells, including OPS5, OPS83 and

ART, this plan is constructed using heuristics, and is not optimized with regard to the database.

The Rete network described above is a fairly sophisticated and efficient form of rule indexing

for predicates that may contain joins. Using the Rete algorithm, only an incremental amount of

computation is necessary each time a tuple is inserted or deleted. The work on database triggers

by Buneman and Clemons describes a more primative type of rule indexing for predicates that

may contain joins [BuC79|. This method has efficiency problems for two reasons:

1. before every database update command the system must verify
whether each rule will be affected, and

2. if a rule condition based on some view V is affected, V must
be recomputed, even though only a small fraction of it may
have changed.

Another algorithm proposed for incremental update of materialized database views can also

be used for rule indexing, and it automatically handles predicates with joins [BLT86]. This algo

rithm will be called algebraic view maintenance (AVM). One can think of a relational algebra

expression defining a view as a database predicate. Whenever a new tuple enters a view, it means

that the tuple satisfies the equivalent predicate. AVM works by maintaining a materialized copy

of the view. As updates change the database, the algorithm incrementally alters the 6tored view

1. INTRODUCTION 23

to reflect the current state of the database. AVM can be used for rule indexing in the following

way. Consider a trigger T whose condition is defined by a view V. If V is maintained using

AVM, then if a new tuple enters V, T can be made eligible to run.

Input to the AVM algorithm consists of the following sets of tuples:

Rx, R2,... RN the N base relations
Ax, A2,... An the N sets of tuples inserted into the

base relations by the current transaction
Dx, D2,... Dn the N sets of tuples deleted from the

base relations by the current transaction

The sets Ax • • •Ajv and Dx • *•Pjv must contain the net changes to the database made by one

transaction. Hence, the following conditions must hold:

1. Ai n *><«*
2. Air\Ri=<f> (otl<i<N
3. Di C Rf

Condition 1 must be true since a tuple that is inserted and later deleted is not part of the net

change to the relation. Condition 2 must bold since appending a tuple to a relation that already

contains an identical tuple does not constitute a net change. Condition 3 must be true because a

tuple cannot be part of the net deletions from a relation unless the tuple was previously in the

relation.

The definition of a view V can be represented by a select-project-cross-product expression,

where Ox represents selection based on a predicate X, ny represents projection ofthe set of attri

butes Y, and X represents cross-product, as follows.

V*= nYiax(RxXR2X • • *XRN))

Consider an example with two relations, Rx(a,b) and R&bf), and a view V defined as fol

lows, where Y={a,e} and X=(P1.a=5 and Rx.b=R2.b):

1. INTRODUCTION 24

V-iry(*x<J?iXJy)
The value of V given the original contents of the database will be called V0. The following

expression shows the value of Vafter an append-only transaction that updates both Rx and R2.

Vx - nyiaxURi U ^i)X(*2 U ^2)))
Selection and projection both distribute over union, so the above expression simplifies as follows:

Vx = tfy^fliXflz U^1**2 U*iX^2U^iXA2))
= *y(*x(tfiX*2)) UM'xUiXi^)) UM'xt*iXA2)) U*y("x(^iXA2))
= V0 U*y(*xUiXtf2)) U M"x(^iXA2)) U*y(*x<^iXA2))

This algebraic simplification shows that V can be refreshed by computing the value of the last

three expressions shown above and unioning the results to the stored copy of V(V0). In practice,

the query optimizer can be used to find the most efficient method available for computing these

subexpressions.

AVM becomes slightly more complicated when both deletions and insertions occur in tran

sactions. One problem is that tuples in V may have been contributed by more than one source,

since the projection operation can map multiple input tuples to the same value. If it appears that

atuple should be deleted from V, but V is stored with duplicates removed, it is impossible to

decide what action to take without recomputing V from the base relations. To overcome this

difficulty without wasting disk space by physically storing duplicates, each tuple in Vmust con

tain aduplicate count indicating how many sources contributed the tuple. If an identical value is
already stored when atuple is inserted into V, its duplicate count is incremented. Otherwise the
tuple is inserted with aduplicate count of 1. Conversely, the duplicate count of the stored value
is decremented when atuple is deleted. If the count becomes 0, the tuple is physically removed

from V.

Extending the previous example, consider atransaction that inserts and deletes tuples from

both Rx and R2. The new version of the view, Vx, is represented as follows:

1. INTRODUCTION 25

vx = M'xWtfi-^i) U >ii)x((tf2-i>2) U ^2)))
Using

R%> - (iJ.-D.)
Rj = (Rt-Dt)

we can rewrite the formula above as

vx = *)/(*jA(*i' U AJxW U ^2)))
Multiplying out this expression yields

Vx = xyiffxiRlXR*! (J * i'XA2 U AXXRJ U ^iX^2))
Expanding the RXXR2 term of the above gives the following (the remaining terms are indicated

by ellipsis):

vx = rrY{<TX{(Rl-D1)x(R2-D2) U **'))

= *y(*x(tfiX(i22-2>2) - DXX(R2-D2) (J • • •))

= M*x(*iXJ*2-i^Xl>2-Z>iX(i*2-Z>2)U '••))
Re-writing the second occurrence of Rx as (i?/ U -^l) 8*ves

Vi = M*x(*iX-R2 - (JV (J DX)XD2 - DXX{R2-D2) U *•'))
Multiplying the second term through, and substituting R2 for (R2—D2) leaves

V\ = *vW*iXi?2 " ^i'XD2 - Z>iXD2 - DxXRj (J '' *))
The projection operation n has the distributive property for both "—" and " (J " when these

operations are implemented using duplicate counts |BLT86|. Applying these distributive proper

ties to the expression above, we are left with

Vi = M'aK*iX*2))- >r>W*i'XD2)) • • •

= V0- itfajARiXDHh M**PiXJ*2'))- M*xPiXZ>2))

U M^^i'XAjJ) (J XyivxiAiXRj)) U *Y<**<^lXA2))

As expected, the first term of this expression is V0, the previous stored value of V. To update the

stored copy of V so that its value becomes Vv the remaining expressions must be evaluated and

1. INTRODUCTION 26

either inserted into or deleted from V as required, maintaining the correct duplicate counts.

The method presented by Blakeley et al. for determining how to refresh the view when both

deletions and insertions occur is slightly different than the one shown here, and is in fact not

always correct |BLT86|. Using that scheme, the expression below would be used to refresh the

view:

Vx = ny{<TX{RxXR2 U AXXA2 \J AXXR2 (J RiXA2

-DXXD2-DXXR2-RXXD2))

Using this expression can cause improper update of the duplicate counts. For example, suppose

tuples tx in Rx and (2 in R2 joined together to produce a result tuple in V0. If a transaction

deleted both tx and (2, then the result of joining tx to (2 would be deleted from V0 three times,

not just once as it should be. This erroneous deletion happens since tx is in both Rx and Dx, and

12 is in both R2 and D2. The formulation given in this paper (using Rf=Rx—Dx and

R2=R2—D2) does not have this problem.

As originally described by Blakeley, the algorithm requires that every view definition must

be interpreted for every inserted or deleted tuple to see if the view might change. Interpreting

every view definition against every tuple may require a significant amount of CPU time if there

are many views. Alternatively, to eliminate this costly interpretation step it is straightforward to

extend the algebraic view maintenance algorithm with a mechanism similar to basic locking.

Blakeley's original AVM algorithm maintains copies of views just after each update transac

tion. This procedure, whereby views are maintained as soon as possible, will be called immediate

view maintenance, or 6imply immediate. An alternative is possible, in which views are main

tained only before queries that read data from the view. This scheme will becalled deferred view

maintenance, or deferred. This method has been implemented in the ADMS± system [RoK86| for

materializing copies of views on workstations attached to a mainframe. In that scheme, the main

frame maintains a shared global database, and workstations update local copies of views when

1. INTRODUCTION 27

they process queries. Deferred view maintenance will be discussed in more detail in chapter 4.

This section has discussed rule indexing methods for both single-relation selection predicates

and join predicates. Rule indexing and the maintenance of derived database objects are closely

related. As an example of this relationship, the rule indexing method proposed by Buneman and

Clemons maintains materialized views as an intermediate step [BuC79]. In general, any efficient

algorithm for maintaining materialized copies of derived objects (e.g., as algebraic view mainte

nance) can also serve as a good rule indexing scheme. Support for derived objects is discussed

further in the next section.

1.4. Derived Objects

A derived object is a value returned by a function applied to the database. The most com

monly used type of derived object in relational database systems is the view. The standard

method for retrieving data from a view is query modification [Sto75j. Using this technique,

queries to the view are translated into queries on the underlying base relations. A complete

materialized copy of the view is never formed. For example, consider the following view

definition:

define view ED (EMP.all, DEPT.all)
where EMP.dept = DEPT.dname

Suppose the query

retrieve (ED.name) where ED.floor = 1

is submitted. Query modification would translate this query into the following one that depends

only on the base relations EMP and DEPT:

retrieve (EMP.name)
where EMP.dept =» DEPT.dname
and DEPT.floor = 1

The query optimizer will find an efficient method for processing this modified query. AVM is

1. INTRODUCTION 28

another method for processing views that was discussed previously in the context of rule indexing

[BLT86]. Using this method, views are materialized in advance and maintained incrementally.

View queries are processed against the stored copy of the view.

Some other algorithms for maintaining derived objects have also been proposed. A

differential view update algorithm similar to AVM is described in [H0T86]. A method for main

taining materialized views that is less general than AVM was presented by Shmueli and Itai

|ShI84j. An algorithm that allows maintenance of database snapshots, which are copies of views

consisting of selections and projections of a single base table, is presented in [AdL80,LHM86].

An algorithm called caching allows storage of derived objects (Sel86b,StR86|. To maintain

the answer to a QUEL retrieve command, the system processes the command normally, locks

each record read with a persistent invalidate lock or I-lock and writes the retrieved value of the

object to disk. If a conventional write lock later conflicts with an I-lock, the object for which the

I-lock was set is marked as invalid. When an object is read, it will be recomputed and written

back to disk only if it was previously invalidated. A possible optimization is to use idle CPU and

disk resources to recompute invalidated objects.

Another important class of derived objects are aggregates. In QUEL, built-in aggregates can

be invoked either as scalar aggregates or aggregate functions [Eps79,HSW75]. A scalar aggregate

can be computed independently from the rest of the query containing it, and will yield a single

scalar value as a result. The following is the general form of a scalar aggregate :

aggregate-operator (aggregate-expression [where qualification])

The aggregate-operator may be any one of the built-in aggregate operators (e.g., avg, sum, count,

min, and max), aggregate-expression may be any legal QUEL expression yielding a scalar value,

and qualification is a legal QUEL qualification. For example, suppose the relation EMP con-

In descriptions of syntax, keywords are shown in bold, place holders for expressions are indicated in italics, items
enclosed by"p and "1" are optional, and items are surrounded by"{" and ")" can be repeated rero or more times.

tained the following tuples:

1. INTRODUCTION

name dept salary

Bob Toy 10,000

Jim Toy 20,000

Al Fire 10,000

Susan Fire 12,000

29

The scalar aggregate

avg(EMP.salary where EMP.dept = "Toy")

returns 15,000 in this case.

Unlike scalar aggregates, aggregate functions return a set of values. When an aggregate

function is computed the tuples to be aggregated are partitioned on the value of one or more

attributes. By convention, the value being aggregated in an aggregate function is called the

aggregate expression, and the value determining the partition is called the by-list. The general

form of an aggregate function is:

aggregate-operator (aggregate-expression by by-list [where qualification])

The set returned by an aggregate function is represented by a temporary relation with two

attributes, one containing an aggregate value, and one containing a by-list value. Continuing the

example above, the aggregate function

avg(EMP.salary by EMP.dept)

returns the following temporary relation:

dept avg

Toy 15,000
Fire 11,000

Scalar aggregates and aggregate functions as described here will be called general aggregates

because they can be used to compute an aggregate over the result of any query that can be

expressed in relational algebra [Cod70].

1. INTRODUCTION 30

Aggregation often involves a large amount of computation due to the volume of data that

must be processed. Since aggregates are often expensive to compute, but normally require little

space to store, they are attractive candidates for caching or differential maintenance. In the con

text of relational database systems, previous research has analyzed ways to precompute aggregate

results and save previous results for future use |BBD82|. These methods do not handle general

aggregates. Rather, they can only be used to cache aggregates over a whole relation. Other

research has concentrated on ways to maintain derived data, including aggregates, in a

functional/binary association data model |KoP81,Pai80]. Thb approach is based on a program-

transformation technique that takes the program text of a transaction procedure as input, and

outputs a derivative procedure. The derived object is incrementally updated to the correct state

after the transaction by executing the derivative procedure. Using this technique, aggregates

similar in structure to general aggregates can be maintained. However, the method is not applica

ble to the relational data model and high level query languages like QUEL and SQL.

1.5. Thesis Overview

The subject of this thesis is efficient support for rules and derived objects in a database

management system. Chapter 1 has presented an overview of previous research on rules and

derived objects. Chapter 2 presents a collection of physical locking algorithms for rule indexing,

and analyzes the time and storage requirements of these schemes. Chapter 3 proposes several

variations of AVM, and ako a new view maintenance algorithm called Rete view maintenance

(RVM). It then discusses how any view maintenance algorithm can be applied to the task of

maintaining several types of materialized objects, including general aggregates, database pro

cedures, and views and procedures containing aggregates. Chapters 4 and 5 present two separate

performance studies of techniques for materializing derived objects. The two chapters focus on

views and database procedures, respectively. Chapter 6 discusses the semantics of forward-

chaining rules in a DBMS and proposes extensions to the rules system described in [SHP87] to

1. INTRODUCTION 31

allow rules with more powerful conditions and actions. Chapter 7 summarizes the results of this

work and presents conclusions.

CHAPTER 2

LOCK-BASED RULE INDEXING

32

2.1. Introduction

A previous paper on rule indexing compared the performance of basic locking and i?-tree-

based predicate indexing [SSH86]. The paper recognized that when supporting an inference

mechanism two alternative strategies are possible: early and late. The early strategy finds all

rules that match a tuple at the time the tuple is inserted or modified and then stores the

identifiers of those rules on the tuple. The late strategy finds matching rules when the tuple is

retrieved by a query. If updates are frequent, late matching is most efficient. Early matching is

preferred when retrievals outnumber updates. Note that the late strategy is only applicable in

situations where predicate matching can be delayed until retrieval time. For example, triggers

must run immediately after updates that activate them. Thus, early matching must be used to

support testing trigger conditions. The issue of whether to perform early or late matching for

inference rules depends only on the fraction of operations that are updates. The choice of whether

to do matching early or late is independent of the particular rule indexing algorithm used. Thus,

the early versus late issue is not considered here.

This chapter presents two lock-based rule indexing methods in addition to basic locking and

analyzes the performance characteristics and storage requirements of all three methods. Support

for triggers and inference rules is emphasized in the discussion, although rule indexing techniques

are also applicable to maintaining materialized views and database procedures. The chapter is

organized as follows. Section 2.2 describes the proposed rule-indexing methods. Section 2.3

analyzes the performance of the algorithms based on a simplified model of the database and rules.

Section 2.4 gives the results of the performance analysis. Section 2.5 analyzes the memory

2. LOCK-BASED RULE INDEXING 33

requirements of each algorithm. Section 2.6 presents the results of the memory usage analysis.

Finally, Section 2.7 summarizes the chapter.

2.2. Rule Indexing Algorithms

The key operation that must be performed when processing triggers or inference rules in a

database system is

(A)

Given a tuple and a set of rule conditions, determine the subset of the
conditions that match the tuple.

Since rules are in one-to-one correspondence with conditions, this matching process determines the

set of rules that apply to the tuple. Basic locking (BL) is one way to perform operation (A). Two

other locking algorithms are presented below. The first, called mark intersection (MI), is a gen

eralization of BL that is more efficient in some circumstances because it reduces the number of

rules that must be read from the RULES relation. The second, called reduced basic locking

(RBL), is a modified version of basic locking that requires less memory for locks.

2.2.1. Motivation for Mark Intersection

To simplify the problem of locking data covered by a rule, the basic locking algorithm locks

only one term from the rule predicate. For example, suppose that the relation

EMP(name, age, salary, dept, job)

has B-tree indexes on attributes name, dept and job, and no indexes on the other attributes. The

following rule has two predicate terms, both of which have indexes:

(B)

always replace emp (salary = 30000)
where emp.dept = "Accounting" and emp.job = "Programmer"

2. LOCK-BASED RULE INDEXING 34

However, the basic locking algorithm will choose only one index in which to place locks. As an

example, assume that there are 10 different departments and 100 different jobs. Since JOB has

the most selective index, JOB will be scanned, and t-locks will be set in the JOB index and on all

data records with a job title of "Programmer." Now, consider the following update:

(C)

append emp (name = "Robert", job = "Programmer",
dept = "Records", salary = 20000, age = 35)

When this update is processed, the index on JOB will be updated to insert the value "Program

mer", which will break a Mock for the rule (B) above. At this time, the system knows that the

new tuple matches a specific rule on the JOB attribute. In basic locking, the system now has no

choice but to retrieve rule (B) from the RULES relation, and check the new tuple against the rule

predicate to see if it applies. This "false drop" will incur a cost in both CPU and disk I/O. Since

Robert is not in the Accounting department, the rule does not match.

It would be best if the false drop could be avoided in this case. From the definition of the

predicate of (B), the system has the information that a tuple must match (B) on both JOB and

DEPT for (B) to be triggered. If it could somehow take advantage of this knowledge, the false

drop could be avoided. For example, rather than locking only the JOB index for the value "Pro

grammer," the system could lock the DEPT index for "Accounting" as well. Then, when (C) was

executed, a Mock for rule (B) would be broken in the JOB index, but not the DEPT index

because the inserted tuple does not have DEPT = "Accounting". If the system knew that any

tuple must break a Mock on DEPT and JOB to trigger (B), then it could avoid searching into the

RULES relation. One way to make thb information available is to store it with all Mocks for the

rule (B). Using this method, a Mock for (B) has the form

< rule-id = A; attributes-to-match =» JOB, DEPT>

Then, if a new tuple did not break a Mock for rule (B) on every attribute in the attributes-to-

2. LOCK-BASED RULE INDEXING 35

match set, the system would know that (B) could not be triggered. The fabe drop would thus be

avoided.

2.2.2. The Mark Intersection Algorithm

Thb section formally describes the mark intersection algorithm. The algorithm operates as

follows.

Rule Qualifications: All rule qualifications (predicates) P are assumed to be conjunctions of

simple restriction terms, p{, for l<t <k as follows

Psp! and p2 *** and p*

The assumption that all conditions are conjunctions does not limit the generality of mark intersec

tion. Predicates containing a mixture of and and or operators can be broken down into disjunc

tive normal form (an or ofand'ed clauses) and the clauses can be indexed separately.

Placement of Locks: If a predicate term b on an attribute with an index, t-locks for the term

are set in that index. For example, the predicate

(D)

EMP.salary < 10000
and EMP.dept = "Engineering"
and EMP .job = "Technician"

would set t-locks on dept and job because they have indexes, but not on the unindexed attribute

salary.

If insertion of a record breaks a Mock in the index on attribute A, a copy of the Mock b

placed on the record on attribute A. As an example, consider the following tuple in EMP:

< James, 28, 15000, Engineering, Draftsman>

This tuple would have a Mock for (D) on DEPT, but not on SALARY or JOB.

2. LOCK-BASED RULE INDEXING 36

Lock Format: As previously shown in an example, t-locks in the mark intersection scheme are

pairs of the form

<rule-id, set of attributes to match>

The rule-id b a four-byte integer. The set of attributes to match can be represented by a bit

map. Each bit position corresponds to an attribute of the relation. If there b a "1" in the bit

position for an attribute, then that attribute b in the set of attributes to match for the rule. For

example, assuming that attributes are in the same order shown in the definition of the EMP rela

tion, a rule with predicate (D) would have the bit map 00111.

Intersecting the Locks on a Tuple: When given a tuple with its set of Mocks, the problem

the system must solve b to determine which of those locks require a search into the RULES rela

tion. For example, suppose a pairof rules with the following predicates are given:

(E) emp.dept = "Toy" and emp.job = "Clerk"
(F) emp.dept = "Records" and emp.job = "Clerk" and emp.salary > 20000

Consider the tuple

<Richard, 30, 15000, Toy, Clerk>

Thb tuple b shown inFigure 2.1 with the t-locks it has from the predicates (E) and (F). It can be

determined as follows by examining the t-locks shown in the figure that the tuple does not match

Attribute Value T-Locks

name Richard none

age 30 none (no index on salary)
salary 15000 none (no index on salary)
dept Toy <E; DEPT, JOB>
job Clerk <E; DEPT, JOB>, <F; SALARY, DEPT, JOB>

Figure 2.1. Example tuple with locks set by the Mark Intersection algorithm

2. LOCK-BASED RULE INDEXING 37

(F), but it does match (E). Looking at the lock for (F) on JOB, it can be seen that there must be

locks for (F) on SALARY, DEPT and JOB for (F) to match the tuple. There are no locks for (F)

on SALARY and DEPT, so the tuple definitely does not satisfy the qualification of (F). However,

(E) has locks on both the necessary attributes, DEPT and JOB, so (E) might match the tuple.

Thus, only (E) must be fetched from the RULES relation and interpreted against the tuple to see

if the tuple matches (E).

An algorithm for determining exactly which rules must be retrieved from the RULES rela

tion based on the Mocks on a tuple b described below. The variable SetlndexedAttrs b a set con

taining the attributes of the relation that have indexes. For example, for the EMP relation, Setln

dexedAttrs «=* {name, dept, job}.

T-Lock Screening Algorithm:

Input:

A tuple with its collection of Mocks.

Data Structures:

The primary data structure used will be ahash table that will contain triples of
the form <RuleID, SetToMatch, SetMatched>. SetToMatch b the set of attri
butes that must have a Mock for Rule© for a search into RULES to be neces
sary. SetMatched b the set of attributes for which aMock from rule Rule©
has been found 60 far.

2. LOCK-BASED RULE INDEXING 38

Algorithm
1. initialize an empty hash table

2. for each attribute A of the tuple do
for each Mock <RuleID, SetToMatch> on A do

compute the hash function of RulelD
if no Mock for RulelD is in the hash table

IndexedSet := SetToMatch f) SetlndexedAttrs
store <RuIeID, IndexedSet, {A}> in hash table

else (a Mock for RulelD was previously found)
add A to the SetMatched associated with RulelD

end if

end

end

3. SurvivingRulesSet = <j>
for each entry <RuleID, SetToMatch,SetMatched> in the hash table do

If SetToMatch = SetMatched
add RulelD to SurvivingRulesSet

end

Output

When the algorithm finishes, the SurvivingRulesSet contains identifiers for all
the rules that must be retrieved from RULES.

Processing the Surviving Rules: The rules with RulelD's in SurvivingRulesSet are processed in

the same way as rules that have a lock broken when using the Basic Locking algorithm.

2.2.3. Reduced Basic Locking

Both the basic locking and the mark intersection algorithms required that Mocks be stored

directly on data records. However, it is not 6trictly necessary to store the locks directly on the

data records because they can be derived when needed by searching the indexes. Electing to

derive {-locks when necessary rather than storing them saves disk space at the expense of requir

ing more computation and I/O time.

The idea above leads to the reduced basic locking algorithm which b very similar to basic

locking. The only difference b that when one wishes to find the rules matching a tuple using RBL,

all indexes on the relation must be searched to derive the locks for the tuple. These are the t-

2. LOCK-BASED RULE INDEXING 39

locks that would normally be on the tuple in BL.

As an example, consider the tuple

< Jessica, 22, 30000, Accounting, Manager>

Suppose that the JOB field of thb record was updated to "Vice President" by a replace state

ment. In BL and MI, only the JOB index would be consulted to derive any new Mocks on the

value "Vice President"; the Mocks stored on the NAME and DEPT fields would still be valid.

Since the JOB index must be updated anyway, no extra I/O b required. However, if RBL were

being used and it was necessary to find the locks for the tuple at the time of the update, the

indexes on NAME and DEPT would abo have to be searched to collect Mocks for all the indexed

attributes.

2.3. Performance Characteristics

This section presents a performance analysis of the three lock-based rule indexing schemes:

BL, MI, and RBL. The parameters used in the analysis are the following:

Parameter Description

Ci The cost of evaluating a predicate for a given tuple in ms
C2 The cost of reading a page in ms
B The size of the page in bytes
N The number of tuples in the relation
F The number of fields in the relation

Fj The number of fields in the relation with an index

S The width of individual fields in the relation in bytes
A The assumed width of pointers in bytes

LSIZE The assumed width of Mocks in bytes
t The number of rules

M The number of terms in a rule predicate

Q The fraction of records matching a single term of a
predicate

These parameter settings are used by default unless otherwise specified:

2. LOCK-BASED RULE INDEXING

Parameter Default

Ci 1

C2 30

B 4000

N 1,000,000
F 6

S 10

Fi 3

t 10,000

Q 0.0001

M 3

LSIZE 4 in BL, RBL
8 in MI

40

The parameters chosen simplify the situation that would occur in reality. In particular, M and

Q would vary for each predicate and predicate term, respectively. An attempt b made to

minimize the affect of thb simplification by selecting appropriate values for M and Q.

2.3.1. The Predicate Model

In the subsequent analysb, it b assumed that each predicate b a conjunction of M simple

restriction terms. These terms may be either equality restrictions or simple range restrictions

based on the operators {<,>,<»>}. The following b a list of legal terms:

EMP.name = "Fred"

EMP.name > "Q"
20000 < EMP.salary < 30000

Recall that at least one term of every predicate must be on an indexed attribute so that an

index interval can be locked. Thus, it b assumed that terms are dbtributed such that the first

term of every predicate b selected at random from among the Fj indexed attributes. The remain

ing Af—1 predicate terms are selected at random from among the remaining F—l attributes.

In the performance analysb that follows, the total cost of determining which predicates

match a single tuple is estimated for each of BL, RBL and MI.

2. LOCK-BASED RULE INDEXING 41

2.3.2. Performance of Basic Locking

In thb algorithm, a tuple insert incurs zero I/O overhead since new Mocks are derived dur

ing the standard index updates. The extra CPU cost b negligible. The only significant cost

occurs in finding covering predicates. The predicates corresponding to all Mocks must be

accessed (at cost Cx each) and then checked (at cost C2) to find the ones that actually cover the

tuple. The expected number of t-locks on atuple in BL is simply the total number of rules, t,

times the probability Q that arule matches atuple. Therefore, the expected total cost of finding

predicates matching a tuple b

TOTAL = t.Q.(Cj+C2)

2.3.3. Performance of Mark Intersection

The Mark Intersection algorithm determines which predicates match a specific rule in two

steps. The first step screens the locks initially on the tuple. The second step retrieves rules from

the RULES relation for each lock that survives the screening, and tests these rules against the

tuples directly. Thus, the expected total cost of determining which predicates match atuple b

TOTAL = (cost of screening locks) +
(Cj+C^tbe number of locks that survive the screening)

2.3.3.1. Cost of Screening the Locks

Screening the locks can be done in time linear in the number of locks using the hashing-

based algorithm presented earlier. To get areasonable estimate of the cost of screening the locks

it b assumed that if there are F locks on the tuple then the cost of screening them all b Cx.

CUsing thb estimate, there bacost of y- per t-lock to screen the locks. Thus, if there are T«-

locks on a tuple, the cost to screen them b:

2. LOCK-BASED RULE INDEXING 42

The expected number of Mocks on the tuple, NrwcKS, * ** 8«m over the number of

attributes, F, of the following:

(the expected number of rules that have exactly i t-locks on atuple) i

The first term of the above will be called S(i). The total number of Mocks per tuple bexpressed

using by the following sum:

Nnoacs = 27* S{i)
«—1

The expected number of rules S(i) for which there are • identical t-locks on atuple b

m-x £ (# of rules with exactly j indexed attributes).
S(*) == 27 (probability that exactly l of them match the tuple)

The expected number of rules with exactly j indexed attributes b simply the probability
that arule has j indexed attributes, which will be called P{j), times t, the total number of rules.
Application of standard techniques of dbcreet probability yields the following expression for the

function P:

PU) -

0 if j>Af or i>F/
or i<(F/+Af)-F or ;<1

F/-1 F-Fj
Af-i

F-l
M-l

otherwise

The probability that exactly • out of the / indexed attributes of arule actually match the

tuple bQ*(l-Q),~*. This yields the following final expression for 5(t):

5(0-£(i/,U))-«'(i-«)M)

2. LOCK-BASED RULE INDEXING 43

2.3.3.2. Number of Locks That Survive Screening

An estimate for the number of rules that "survive" the initial screening b needed. By the

definition of the Mark Intersection algorithm, a rule that has exactly t indexed attributes survives

the screening for a tuple only if the tuple has t-locks from that rule on all t of those attributes.

Thus, the number of rules with exactly i indexed attributes that survive the screening b

(the expected number ofrules with f indexed attributes) •
(the probability that all i indexed terms of arule match atuple)

The expected number of rules with I indexed attributes b t-P(i). The probability that all I

indexed terms of a rule match a tuple b simply Q*. Thb leads to the following expression for the

expected total number ofrules that will survive the screening for a given tuple:

NsuKWE = 27W) 0 ' Qi
I—l

The value of Nsurvive fe dominated by the size of the first non-zero term in thb sum since

Q«1. Sometimes, the first few terms of the sum are zero because P(t) b zero if there b no

way for a given rule to have only I indexed attributes. For example, if there are 5 total attri

butes (F = 5), 3 indexes (F/ = 3), and 4terms per predicate (M = 4) then at least two of the

predicate terms must lie on an indexed attribute, so P(1)=0. The estimates for the cost to

screen locks and the number of rules that survive the screening yield the following formula for the

over-all expected cost of the Mark Intersection algorithm:

TOTAL —-4-Ntmcks +(Ci+C2)JVsi/kwve

2.3.4. Performance of Reduced Basic Locking

In RBL, an update in place must be implemented as a delete followed by an insert so that

the t-locks covering the modified tuple can be rederived. If the system could otherwbe actually

do the update in place, it could usually avoid extra I/O to modify the indexes. The overhead per

2. LOCK-BASED RULE INDEXING 44

update to perform rule processing using RBL b thus the same as that for basic locking, plus the
cost of thb extra index I/O. It b assumed that the fraction of updates that are modifications in

place bPWl and the default for P^ b0.5. All other updates insert anew tuple. The cost to find

which rules match atuple using basic locking will be called CBL. An estimate of average cost per

update to determine which rules match the updated tuple bequal to that for basic locking for a

fraction 1-P/P of the updates. For a fraction PIP of the updates (those in place), F, indexes

must be consulted. It b assumed as asimplification that B-tree index pages are packed full, and

that index records are composed of <key,pointer> pairs of size 5+4 bytes. Since there are B

bytes per page, the height ofan index, HIt b the following:

H, log
B

N

S+4

Thus, an estimate of the average cost to determine the predicates matching atuple in RBL b as

follows:

TOTAL = {1-Pip)CBl + F/p^F/Hj+Cfi)

The overhead of thb method for updates in place may seem too high to justify the space

savings it provides. However, in asystem that implements updates as deletes followed by inserts,

the cost ofRBL is identical to that for BL, so RBL may be preferred because it saves storage.

2.4. Performance Results

In this subsection the cost functions for the different algorithms are plotted to allow com

parison of their performance characterbtics. All algorithms discussed are sensitive to the product

of the total number of rules, t, and the probability, Q, that a predicate term matches a tuple.

Figure 2.2 shows the cost of BL, RBL, and MI versus tQ (the average number of t-locks per tuple

in BL). This graph was created by holding t fixed, and varying Q from 0to .0020.

2. LOCK-BASED RULE INDEXING

800.00 1

600.00 -

ms per

tuple 40000 "I

200.00 -

0.00
0.00 5.00 10.00 15.00

t-locks per tuple (tQ)

Figure 2.2. Cost of BL, RBL and MI versus tQ

45

20.00

The mark intersection algorithm b also sensitive to the fraction of attributes that have an

index. To indicate this sensitivity, Figure 2.3 shows a family of4 curves obtained by fixing F at

6, M at 3, and varying Fj from 1 to 4. The curves plot the total overhead for rule processing

per tuple versus tQ, holding t fixed and varying Q as before. The curve for MI using / indexed

attributes b labeled "MI-j" for / =* 1 through 4. The cost ofbasic locking b also shown. Notice

that the cost of basic locking b almost identical to that for MI-1. Thb indicates that most of the

cost incurred by BL b to read rule definitions from the RULES relation. MI-1 reads the same

number of pages from RULES as BL, while MI-2, MI-3, and MI-4 perform successively fewer reads

because they are able to successfully screen out some of the t-locks on each tuple.

ms per

tuple

2. LOCK-BASED RULE INDEXING

800.00 1

600.00 -

400.00 "

200.00 "

0.00
0.00 5.00 10.00 15.00

t-locks per tuple in BL {tQ)

MI-2

MI-3

MI-4

20.00

Figure 2.3. Cost of MI versus BL as number of indexed attributes varies

46

2.4.1. Simplified Analysis of Mark Intersection

The preceding analysis of the Mark Intersection Algorithm assumed that the terms of predi

cates were uniformly distributed over the collection of F attributes, with the restriction that at

least one term must lie on an indexed attribute. However, in reality, it b reasonable to speculate

that terms would be more likely to lie on indexed attributes than non-indexed ones. Hence, the

performance of MI might be better than previously indicated. In an attempt to measure the effect

of the bias toward placing terms on indexed attributes, an analysis b performed here in which

there are only two types of predicates, some with one indexed attribute, and others with two.

2. LOCK-BASED RULE INDEXING 47

It b unlikely that both terms will have the 6ame selectivity in practice. To account for

differences in term selectivity, it b assumed that the first term of every predicate has selectivity

Q, and the second term has selectivity Q1. The default selectivity of Q1 will be .01, which b

much higher than the default value .0001 for Q.

The cost formula derived for BL still applies for this comparison, but the formula for the

cost of MI can be simplified. In the new cost formula for MI, the cost to screen the t-locks on a

tuple b the same as previously derived. If X b the fraction of rules that have a single indexed

term, and 1-X b the fraction that have two, then the expected number of t-locks per tuple,

NfiocKSt 1* M foDows:

Ntwcks = XtQ+(\-X)t(Q+Q')
The number of locks that survive the screening, JVsurvive fe tne following in this case:

NsuRvivB^XtQ + (l-X)rQQ'

The formula for the total cost of MI in thb situation is still the same as derived before; only

Ntwcks and NSURVIVE change. By plugging the above values for these parameters into the

total cost formula form MI, it can be seen that as X approaches 1 (most predicates have 1

indexed term), the total cost for MI becomes exactly that for BL, plus asmall amount of overhead

to screen the locks. However, as X approaches zero (most predicates have two indexed terms) the

cost drops rapidly because most t-locks will be successfully screened, avoiding much access to the

RULES relation.

The results of thb simplified analysb are shown in Figure 2.4, which plots the total cost of

rule processing versus X for both BL and MI. The figure shows that in the case of MI, cost

decreases linearly as the fraction ofrules with two indexed terms increases. The cost ofBL stays

constant because only one indexed term b ever used. If every rule has two indexed terms, the

cost of MI is smaller because the majority of reads from the RULES relation are avoided by inter

secting locks. However, MI does have to pay a cost to screen the locks, and there are many more

ms per

tuple

2. LOCK-BASED RULE INDEXING 48

40.00

30.00 -

20.00 "

10.00 -

0.00
0.00 0.20 0.40 0.60 0.80 1.00

fraction of rules with 1 indexed term (X)

Figure 2.4. Cost of MI versus Cost of BL Assuming Only Two Predicate Types

locks set by MI than by BL since Q' b much larger than Q. If there were no extra cost to screen

locks, MI would be a factor of 100 better than BL for X=0. When Q'=0.1 the overhead of

screening locks balances out the benefits of saving reads to the rules relation, so BL and MI have

approximately the same cost for all values of X.

2.5. Storage Utilization

The storage requirements of the three algorithms vary significantly. RBL has the smallest

storage requirements since it sets locks for a single predicate term in the indexes only, not on the

data. BL requires somewhat more storage because it sets the same index locks as RBL, and abo

2. LOCK-BASED RULE INDEXING 49

puts 4-byte locks on each tuple that conflicts with an index lock. MI requires the most storage,

using interval locks in more than one index, and placing 8-byte locks on each tuple that conflicts

with an index lock.

2.5.1. Size of the RULES Relation

All three algorithms use an identical RULES relation containing one tuple for each rule.

Recall that the formant of RULES b

RULES(id, name, rule-def)

The size of RULES b estimated as follows. The id field requires four bytes and name requires 16

bytes. The rule-def attribute has subfields containing the number of bytes indicated below:

field definition bytes

text

predicate
text of rule

compact representation
of rule predicate

100

A/(25+4)

The estimate above for the size of the predicate field is based on the fact that each of the M rule

terms will have up to 2 constants of length S bytes each, plus another 2 bytes to indicate the

attribute on which the term lies and 2 bytes to represent the operators for the term. The com

plete expression for the size of a single tuple in RULES b

Y = 4+16+100+M(2S+4)

Given thb tuple size, the number ofbytes occupied by RULES, SPACErules* »

SPACERt/LESf^tY

2.5.2. Storage Use in Reduced Basic Locking

The only storage used in RBL b that for the locks set in the indexes, plus the size of the

RULES relation. In general a rule predicate term can have the form

2. LOCK-BASED RULE INDEXING 50

constant x lower.op attribute upper.op constant2
where lower.op and upper.op are one of the relational operators {<,<}• To lock an interval

of thb form in aB-tree, ahierarchical locking scheme bemployed (see Appendix 1for acomplete

description of the algorithm for placing interval locks). The structure of an interval lock b

t =» [RulelD, RuleType, constant^ lower.op, constant* upper.op]

Locks of this form require LSIZE bytes for the RulelD, 1byte for the RuleType, lower.op and

upper.op, and Sbytes each for conetantx and constant* The size of an index interval lock,

ILSIZE, is the following:

ILSIZE = Z+LSIZE+2S

To get an estimate of the amount of space used to set interval locks, observe that for Q=.0001
and JV=1,000,000, each interval lock covers 100 tuples. To get amore accurate count of the

total number of pages used, it b assumed here that B-tree pages are packed 69% full as derived

in !Yao78]. Index records contain one data value and a4-byte pointer, so leaf pages in the index
contain .69B/(S+4) records. For the default values of Band S, the number of records in aleaf

index page b approximately 200. The probability that a lock will span a page boundary b
100/200=1/2, so the expected number of locks, TERMLOCKS, set by asingle predicate term

in a B-tree b

TERMLOCKS = yl+y-2= 1.5

The amount of space used by the range locks set by all t rules is

SPACErglocks = t-TERMLOCKSJLSIZE
Thb yields the following expression for the total amount of storage space used by the rule subsys

tem in RBL:

SPACErbl = SPACErglocks+SPACErules

To determine the amount of storage used by the data and indexes using no rule processing,

it b assumed that all Fj indexes are secondary. In the data relation itself, the N tuples have F

2. LOCK-BASED RULE INDEXING

fields, each of width 5bytes. There are Ft indexes, each with atotal of S<key,ointer> -*

more

lows:

SPACEdata = N-S-F+F,- ^ —

2.6.3. Storage Use in Basic Locking
The Basic Locking a,gorithm use. the same amount of storage .pace to mark the indexes as

atup., and thus the expected number of Mocks per tuple, is simply tQ. Since there are 4byte,
per ,-lock in BL. each tuple will have, on the average. 4«Q extra bytes. Ucluding the size of the
rule, relation, the total storage used by the rule subsystem in BL is the Mowing:

SPACEBL =SPACEwies+SPACEKHocKS+WtQ)

2.6.4. Storage Use in Mark Intersection

iudexed rule terms times the si,e of a,-lock times the probabiUty that aterm matches aUp.e.

. ot i\ f«, .=1 2 ••• F. The simplified expres-expected number of rules with j indexed terms, t.P(j), for ,-1A

sion for T b

r = t ZjP(j)

There are 8bytes per .lock o. data tuples in JT- the expected number of byte, copied per
t,p,e by Mocks i, 8-T-Q. Extra data is also reouired to p.ace locks in the indexes. The raUo of
the total number of indexed terms in RBL to the number in Ml is T/t, so the total amount of

2. LOCK-BASED RULE INDEXING 52

data used for index locks in Ml is the following:

LsPACEgoiacKS
This yields the following expression for the total number of bytes used in Ml:

SPACEui =SPACERUlE^jSPACEgaUx:K^-1'QN

2.6. Storage Analysis Results

To compare the amount of space used by the three algorithms, Figure 2.S shows the space
occupied by the data and the RULES relation and the amount of space required by the three
different ru.e indexing a.gorithm, A. expected, the figure shows that MI requires more storage
than BL and RBL because MI locks more than one attribute per rule, and .-locks in MI contain 8
bytes instead of 4. RBL is dear* the most economical user of storage among the three algo-
rithms. The Une .bowing the amount of .pace occupied by the RULES relation demonstrates that
RBL uses very litt.e space for locks. Also, range lock, in the indexes occupy asmall amount of
space compared with the actual locks on tuples. The relative amount of space used for locks in
indexes and on data records is illustrated by the difference in the amount, of .torage used by BL
and RBL (BL puts t-locks on tuples in the database and RBL doe. not).

2.7. Discussion

The choice between the three lock-based rule indexing methods evaluated in this paper
depends on the database and rule environment. In general, basic locking appears to be the
method of choice because: (1) it is easy to implement as abyproduct of normal query processing.
(2) it perform. weU with a.mall to moderate number of rules, and (3) it require, only slightly
more disk .pace than occupied by the data itself. However, if the RULES relation is based pri-
„,arily on disk, and asignificant fraction of all rules have more than one indexed predicate term,
roark intersection can be much more efficient than the other methods. Mark intersection

150.00 1

100.00 -

Storage in

MBytes

50.00 "

0.00

2. LOCK-BASED RULE INDEXING

Original
Database

Size

MI

BL

RBL

RULES
., relation

10000 20000 30000 40000 50000

Number of Rules (t)

Figure 2.5. Amount of storage used by lock-based rule indexing algorithms

53

provides thb speed-up because it uses t-locks that contain more information than in basic locking.
This extra information allows many rules to be screened by intersecting locks, thus avoiding some

reads from the RULES relation. Due to its high index I/O requirements, reduced basic locking b

only suitable for trigger processing in database systems where updates in place are performed as
deletes followed by inserts. Thb allows RBL to "piggy-back" its searches for t-locks in the

indexes with the index updates performed when the new tuple value b inserted. RBL bnot suit
able for processing inference rules because it would cause one or more index lookups for each tuple

read-only query, which b an unacceptable performance burden.
on a

2. LOCK-BASED RULE INDEXING 54

Unfortunately, if the RULES relation is on secondary storage, there appears to be apractical
limit of only afew rules with aMock on each tuple using any of these «hemes. For example,
using BL with KJ-10 (i.e. approximately 10 rule, have aMock on each tuple) Figure 2.2 .hows
that about 300 ms are required per tuple to do rule processing, which is avery large amount of
time to spend processing one tuple. This observation makes it clear that to achieve acceptable
performance for alarger number of rules, access to the RULES relation must be speeded up by
keeping some or all of it in high-speed memory. With the advent of large memories, maintaining
most of RULES in high speed memory should prove feasible. Astandard LRU replacement algo
rithm using avery large buffer pool would likely keep asufficiently Urge portion of RULES in
memory to avoid most of the I/O observed in the analysis in this paper. Because MI spends extra
CPU time intersecting locks to avoid probe, into the RULES relation, the difference in perfor

mance between MI and BL will narrow if these probes are made less expensive, making BL even

more attractive.

55

CHAPTER 3

MAINTAINING DERIVED OBJECTS

This chapter present, acollection of algorithms for processing queries against views and
other derived data objects. When auser wishes to retrieve part or all of aview, the conventional
way to procew the request is to construct the result from the base relations using query
modification lSto75]. Another method for answering queries against view, is to keep astored copy
of the view and read it directly during query processing. The simplest way to maintain the view
is to use the caching procedure described in chapter 1, whereby the view is recomputed before a
query if it has been invalidated by apreceding update. Amore sophisticated version of this
method is to use adifferential view maintenance algorithm (e.g., AVM) to keep the stored copy of
the view up to date. Several other differential view maintenance algorithms are proposed in this
chapter. In addition, methods are presented for maintaining materialized copies of other types of

derived objects, including:

1. database procedures
2. aggregates
3. views or procedures containing aggregates

Before describing aspecific view maintenance algorithm, it is useful to develop ataxonomy

for classifying them. On. type of classification already introduced i, the distinction between
immediate and deferred view maintenance. Recall that immediate algorithms maintain views
after each update transaction, while deferred algorithms maintain views before queries that read
views. Asecond type of classification involves the time at which the compilation and optimiza-
tion step is performed in aview maintenance algorithm. If this step is delayed until just before
computing the expressions required to refresh the view, the algorithm is called dynamicly optim-
izcd or simply dynamic. If compilation and optimization is performed in advance, the algorithm

3. MAINTAINING DERIVED OBJECTS 56

b described as staticly optimized or static. The third classification regards whether or not the
algorithm factors out shared subexpressions. Algorithms that use common subexpression elimina
tion techniques are called shared and those that do not are called non-shared. In summary, view
maintenances algorithms can be classified according to the following criteria:

1. immediate versus deferred
2. dynamic versus static
3. non-shared versus shared

The original AVM algorithm described in |BLT86] is immediate, dynamic, and non-shared.
Astaticly optimized version of algebraic view maintenance called .taticAVM (SAVM) is proposed
in this chapter. In general, version, of both AVM and SAVM are possible which are either
immediate or deferred, or either shared or non-shared. Aview materialization algorithm called
Rete vie, maintenance (RVM) is also proposed in this chapter. RVM utilizes aRete network to
perform view maintenance. RVM i. .taticly optimized because it takes acollection of view
definition, in advance and builds an optimized structure for maintaining the views. Possible
optimization strategies are to share common subexpressions between views, and arrange join ord
ering, in an efficient way. Because common subexpressions are combined when the Rete network
is built, RVM is classified as ashared algorithm. Anon-shared version of RVM could be con
structed, but this possibility will not be discussed since sharing subexpressions in RVM is straight-
forward and clearly preferable. Both immediate and deferred versions of RVM are possible.

Static AVM and Rete view maintenance are presented in detail below. Methods are then
given for maintaining aggregates and database procedures, as well as views and procedures con
taining aggregates. The chapter conclude, with adiscussion of the different alternatives available
for materializing derived database objects.

3. MAINTAINING DERIVED OBJECTS «

3.1. Staticly Optimized View Maintenance Algorithms

3.1.1. Algebraic View Maintenance

It i, possible to extend the algebraic view maintenance algorithm to avoid the compilation
overhead incurred in dynamic AVM, and also to take advantage of shared subexpressions in away
similar to Rete view maintenance. An algorithm is presented her. that makes use of apre-
compiled execution plan to perform algebraic view maintenance. The algorithm has two main
components. The first component takes as input acollection of view definitions VltV2, ••VM,
and produces as output acollection of plans for maintaining the views. The plans are reprinted
as adirected acyclic graph, in anon-shared version of SAVM, the graph is acollection of disjoint
trees. In ashared version of SAVM, the graph is acollection of trees that may share some sub-
trees. The leaf nodes of the graph represent scans of relations, and internal nodes represent joins.
Each node is assigned alevel number. Base relations appear at level 0, the result, of selection,
from a.ingle base table appear at level 1, two-way join node, are at level 2, and so on up to level
J. In general, anode at leveli (where i>l) joins one node from level i-1 with another node at
alevel less than i. An update transaction may append or delete tuples from each of the base
relations. In general, after an update transaction, the following sets of tuples may be present:

Rv R2,... RN - base relations
Ax, A2,... AN - appended tuples
Di, Dj,... DN - deleted tuple.

Given these sets as input, the algorithm must find the sets of tuples to be inserted into and
deleted from the views V„V2> •••VM. These insertion and deletion sets are denoted as follows:

DVlf Dy, ... DVn

The value ofthese sets is found using the following algorithm:

3. MAINTAINING DERIVED OBJECTS 58

for i = 1 to J do
for all nodes n at level t do

compute An and Dn
end

end

At any level • the Aand Dsets for all nodes at levels less than t have been computed, so they
can be used to help compute the A and D sets for level i nodes. Suppose that aview V^ has

another view Vj as asubexpression. Then in ashared version of SAVM, the sets Av, DVj. and Vj
are used to help compute Ay{ and ZV<-

As an example of the benefits that can be obtained by combining shared subexpressions, con

sider the following pair of views:

define view Vx (Rxa\\, #2all, #s-aU)
where .Rj.a = J22-b
and J?2.c = -Ea-d

define view V2 (J?2.all, ^3-all)
where J?2.c —R*&

Using the standard dynamic AVM algorithm, both these views are maintained separately. Sup
pose aset of tuples A, is appended to *,. To find the sets of tuples to append to V, in this

situation, the following query must be run:

retrieve (Aj.all, J?2.all, flj.all)
where Aj.a = R&h
and J?2-c =s ^**^

Apossible execution plan for the above query is shown in Figure «... (The plan is drawn with the
leaves at the top and internal nodes at the bottom to so that the style of presentation is the same
as for Rete networks.) By analyzing the definitions of the two views in advance, it is possible to
identify that Vt is asubexpression of V,. This makes it possible to find the set of tuples that
need to be appended to V, using the following query:

retrieve (A,.all, V2.ali)
where Ai.a = V2.b

3. MAINTAINING DERIVED OBJECTS

Ai Rz

index scan index scan
sequential scan on 5 on d

outer inner

nested loop join

Ava=R2.b

outer

inner

nested loop join

left.c=/M

tuples to append to V!

Figure 3.1. Standard algebraic view maintenance (no sharing)

59

Aplan for executing this query is shown in Figure 3.2. This plan requires computation of only a
two-way join, as opposed to the three-way join required by the original plan. This could provide

a substantial cost savings.

The previous example showed how shared subexpressions can be useful because they reduce
the number of joins that are performed. Sharing subexpressions can also improve performance by
eliminating redundant computation. For example, consider the views Vx and V2 previously
defined. Suppose that tuples A2 and 2>2 are inserted into and deleted from J?* respectively. The
algorithm will first find the net changes to V2 (AVt and Dvj. This will be done by executing the

following queries:

3. MAINTAINING DERIVED OBJECTS

sequential scan index scan on b

outer inner

nested loop join

Aj.o=V2.6

tuples to append to Vx

Figure 3.2. Algebraic view maintenance using shared subexpression

to find Av;-

retrieve (A2.all, flj.all)
where A2.c = Rz-d

to find Dyi

retrieve (I>2.all, Rsa\\)
where P2.c =* flj.d

60

Aya and
Dv.wffl be used at the next level to compute the changes to V, (AVl and Dy} as follows:

3. MAINTAINING DERIVED OBJECTS 61

to find Ayt:

retrieve (f^.all, .A^all)
where Rx.& = Ay^b

to find Dyj

retrieve (flj.all, Dv^\\)
where Rx.a= Dy^b

The effort for computing Ayt and Dy9 was spent only once, and shared between Vx and V2. After

AVl, DVv Ay9 and Py8have been found, they are used to update the stored copies of Vx and V2.

Note that of the two parts of this algorithm, only the second part has been described com

pletely here. The first stage in the algorithm (constructing a pre-compiled execution plan for the

views) is a complex optimization problem. Aheuristic algorithm that merges individually optim

ized execution plans for each view into a global execution plan is straightforward to construct.

Such an algorithm will not, however, produce a globally optimal plan. Previous work on

multiple-query optimization (e.g. [Sel86a,Sel86b]) can serve as a starting point for future research

into methods for constructing an optimized merged execution plan for maintaining a collection of

views.

3.1.2. Maintaining Views Using a Rete Network

The Rete network was designed to find combinations of tuples that match production-rule

predicates. Because relational database views have the same structure as the rule predicates used

in OPS5, a Rete network can be used to find new tuples that satisfy a view qualification. For

example, consider the following view, which lists all the technicians that work in building B23:

define view AP (EMP.all, DEPT.all)
where EMP.job = "Technician"
and DEPT.building = "B23"
and EMP.dept = DEPT.dname

The equivalent OPS5 rule condition has the form

3. MAINTAINING DERIVED OBJECTS 62

(EMP *job Technician *dept <x>)
(DEPT 'dname <x> "building B23)

This condition would be represented by the Rete network shown in Figure 3.3. The bottom node
in the network is aP-»ode containing the rule associated with the condition. However, if this P
node is replaced by a^-memory node, a, shown in Figure 3.4. all tuples contained in that node
will match the qualification of the view AP.

root

class = emp class = dept

job = Technician building = B23

o-memory
a-memory

and
left.dept = right.dname

Figure 3.3. Rete network for example rule

3. MAINTAINING DERIVED OBJECTS

root

class = emp class = dept

job = Technician building = B23

o-memory ft-memory

and
left.dept = right.dname

^-memory = view AP

Figure 3.4. Rete network used for view maintenance

63

3.1.3. The Rete View Maintenance Algorithm

In general, given a collection of views, a Rete network can be constructed that has a
memory node corresponding to each view. The desired semantics are that each memory node
associated with aview Vshould contain the current value of V. The meaning of "current value-

is defined as the value of V that would be retrieved by the command

retrieve (V.all)

given the current contents of the base relations. Although all tuples in amemory node will match
the qualification of the view associated with the node, it must be demonstrated that the set of

3. MAINTAINING DERIVED OBJECTS 64

tuples in each memory node is exactly equal to the current value of the corresponding view.

Consider the following algorithm for maintaining acollection of views, V* •••VN using a

Rete network R^.

Algorithm A

input:

output:

method:

Theorem:

1 Aversion of Rete network RN where each memory node associated
' with one of the views Vx, •••VN has the correct current value.

2 Adatabase transaction X represented by Rete Network
tokens tXlt2 ' • ' tm. This can be a list of + or -
tokens in any order. Updates in place are represented by
a - token for the old value followed by a + token for the
new value.

Aversion of RN where each memory node associated with
Vi, • ' *Vn nas tne correct current vaIue for tne
database after transaction X has been executed.

fdr i = 1 to m do
pass Uthrough RN> allowing its effects to propagate
as far as possible using a depth-first traversal through
the network.

end

Algorithm Ais correct. In other words, after it executes, every memory node associated with a
view Vcontains the current value of Vwith respect to the database after execution of transaction

X.

3. MAINTAINING DERIVED OBJECTS M

Proofc

This can be shown by induction on the number of tokens min transaction X. To simplify the
proof, it is assumed that every memory node corresponds to aunique view. This does not affect
the results, since for agiven collection of views and corresponding Bete network, extra "dummy"
views can be added for the memory nodes that do not already correspond to aview in the original

collection.

Base case: m =1

Here, the transaction X consists of asingle token tx, representing insertion or deletion of a

single base relation tuple Y. It is necessary to show the following:

If insertion ofY causes a tuple t to enter the view corresponding to a memory
node M, Algorithm Acauses one and only one instance of t to be added to M.
Similarly, if deletion of Y causes atuple t to leave the view corresponding to
M, the algorithm removes one and only one instance of t from M.

Suppose Mis an a-memory node. Then if tx reaches M, tx matched the qualification for

M. To move Mto the correct state, if the tag of tx is -, tx should be deleted from M, and if it

is +, it should be inserted. This is exactly what the Rete network algorithm will do. Thus, views
corresponding to a-memory nodes are left in the correct state after passing atoken through the

Rete network.

The depth of a memory node M is defined as the maximum number of memory nodes

between Mand the root. Assume that aU views corresponding to memory nodes of depth <k
are updated correctly using Algorithm A(the base case has been proven above for depth=0, in
the case of a-memory nodes). Suppose the token of tx is +. Consider a^-memory U of depth

*+l. Let 5 be the set of new elements that need to be inserted into U to bring M to the

correct state, given the insertion of Y. Every tuple « in S must correspond to the join of two

tuples, elrft and rright, from the input memories of M (if not, then the input memories are

3. MAINTAINING DERIVED OBJECTS 66

incorrect, but since they are at depth < k, they must be correct). Tuples tm and t^li may be

old values that already existed in the input memories, or new ones that entered those memories

because of insertion of Y. The following combinations of new and old tuples may occur in S:

*left *right
new old

old new

new new

The (old,old) combination is not possible since such a tuple would not be added to M by inser

tion of Y. If a tuple 8 in 5 is of the form (new.old), then a single "new" t^ tuple will be

inserted into the left input memory of M (this follows since the depth of that input memory node

is <k). If this *ieft tuple joins to an "old" tuple t^ in the right input memory for M, then a

single token [+,<*ieft>*right>l wiH be passed to M. Hence, exactly one corresponding tuple will

be inserted into M. Using a similar argument, if a new tuple arrives at the right input memory

of M, one and only one instance of each (old,new) tuple in S will be added to M.

The case of (new.new) tuples in 5 is somewhat more complicated. Clearly, if a new t^

value arrives before the new tri^ii value, the tleft value will not combined with the t^t value to

form a token to pass to M. However, when the new trigijt value arrives later, it will join to the

t^ value, and a single token [+,<*!eft*<right>l wil1 be V^* on t0 M- This wiU cause one and

only one tuple <t]eft.<rigbt> to be inserted into M. A symmetric argument holds for the case

where the new t^ arrives before the new tWt. Hence, every tuple s in S is inserted into M

exactly once, and no other tuples are inserted. Algorithm A thus leaves all memory nodes of

depth ife+1 in the correct state when a + token is passed through the network. By induction, all

memory nodes are left in the correct state after insertion of a+ token. The proof for - tokens is

similar, and will not be shown. Hence, Algorithm A leaves all memory nodes in the correct state

for transactions of length m=l.

3. MAINTAINING DERIVED OBJECTS 67

Induction Step:

Assume that Algorithm Ais correct for all transactions of length j or less. The affect of a

transaction of length j+1 is simply the affect of two transactions run serially, one of length j
(which is assumed correct) followed by one of length 1(which was shown to be correct in the base
case). Hence, applying Algorithm Afor atransaction of length /+1 must leave all memory nodes
(i.e., views) in the correct state. By induction, this shows that Algorithm Ais correct for all tran-

sactions of length m >1. LJ

It is important that the effects of tokens are propagated in depth-first order through the net

work in Algorithm A. For example, consider the view JP consisting of all the programmers work

ing in the same department as John:

define view JP (EMP.all, E.all) using E in EMP
where EMP.name — "John"
and E.job = "Programmer"
and EMP.dept = E.dept

ARete network for maintaining JP is shown in in Figure 3.5. Suppose that John is a program

mer. Since John is a programmer, there is initially a tuple Tin JP that consists of John's EMP

tuple joined with itself. Also, both the left and right a-memories will contain John's tuple. Now,
suppose John's tuple is deleted from EMP, and a- token for it is placed at the root of the net
work. Using depth-first propagation, John's tuple would be deleted from one a-memory (say the
left), and that would cause Tto be deleted from the ^-memory JP. Then, John would be deleted
from the right a-memory, leaving JP in the correct state. However, using non-depth-first propa

gation, the following anomaly could occur. John's tuple could be deleted from the left a-memory,

then the right one. Then the system would test whether John's tuple that was just deleted on the

left joined to any tuples on the right. The answer would be no, so Twould remain in JP, which is

incorrect. This illustrates that the depth-first propagation used in Algorithm A is essential to

3. MAINTAINING DERIVED OBJECTS

root

class = EMP

name = John

a-memory

job = Programmer

a-memory

AND

left.dept = right.dept

JP (^-memory)

Figure 3.5. Error using non-depth-first propagation

68

maintaining the views in the correct state.

Apotential performance problem with the Rete network as previously described is that
tokens are "broadcast" from the root to aU t-const nodes. If the number of f-const nodes is
,„ge as would be expected in adatabase system with alarge number of rules, testing the pred.
.ate. at all ,-co.st nodes will be very expensive. Fortunately, it is straightforward to apply lock-
based rule indexing to reduce this cos, Consider the general Rete network shown in Figure 3.6.
All parts of the network above the dotted line in the figure can be encoded by setting locks in the
catalogs, and conventional indexes. Rathe, than arule identifier, each lock would contain a

3. MAINTAINING DERIVED OBJECTS 69

root

class = Rx class = R2 class = RM

Ci Cj CN
can encode using locks

a-memory a-memory a-memory

Figure 3.0. Augmenting Rete network with locking

conflicted with the lock. For example, if a rule had the condition

EMP.dept = "Toy"

then £-const nodes for "class = EMP" and "dept = Toy" would be placed in a normal Rete net

work. Assuming there is an index on the EMP.dept field, these t-const nodes can be replaced by

putting a lock record containing the value "Toy" in the index. This record would point to the a-

memory node that would normally come after the t-const node "dept = Toy".

3. MAINTAINING DERIVED OBJECTS 70

3.2. Dynamicly Optimized View Maintenance and Sharing

An important feature of the shared version of SAVM as well as RVM is that the cost of pro

cessing any shared subexpression is paid only once. As originally described, the standard

(dynamic) AVM algorithm does not take advantage ofshared subexpressions. In general, dynamic

AVM must compute the result of k relational-algebra expressions QX,Q2, ' ' ' ,Qk to maintain

views after each transaction. It is possible to extend dynamic AVM to factor out common-

subexpressions in Qx,Q2t ' ' ' ,Qk> us»n8 techniques described in [Sel86a,Sel86b]. Clearly, this

shared, dynamic version of AVM would have a large run-time optimization cost.

3.3. Database Procedures

As described in Chapter 1, database procedures are collections of queries stored in the data

base. Since database procedures are collections of one or more queries, they have the same struc

ture as a collection of views. This allows any view materialization method to be used to material

ize the results of stored procedures. The most straightforward method to allow the result of a

stored procedure to be retrieved is to simply run the queries in the procedure definition. This

approach is analogous to query modification, and was used in the system described in

[SAH84.SAH85].

Another method for maintaining procedures is caching [Sel86b,Sel87,StR86]. Caching

involves storing the result of a procedure in the database. If the database is updated in a way

that would change the value ofthe result, then the cached value is invalidated. When retrieving a

cached procedure value, if the cache is valid, the value is returned. Otherwise, the value is recom

puted and written to refresh the cache.

Alternatively, any incremental view maintenance algorithm can be employed to maintain

up-to-date copies of the results of database procedures. To accomplish this using the standard

AVM algorithm, each query inside a procedure is maintained individually. Using Rete view

3. MAINTAINING DERIVED OBJECTS 71

maintenance, all queries in database procedures are encorporated into a single Rete network. The

result of each query is maintained as a memory node in the network. Using shared, staticly

optimized AVM, a shared execution plan is produced for all the queries in all procedures present in

the system. Changes to the value of each stored query are found using this plan.

3.4. Aggregate Maintenance

The aggregate maintenance procedures presented here allow any general aggregate to be

materialized. In order to maintain consistency, the algorithms are designed so that the value ofa

materialized aggregate will be identical to the result of processing the same aggregate convention

ally. The algorithms presented by Epstein for processing aggregates in QUEL queries are used as

a guideline* [Eps79,HSW75]. These are briefly reviewed below.

3.4.1. Basic Aggregate Processing Algorithms

To compute a scalar aggregate, a state data structure is used to keep track of the calcula

tions made up to the current time. For example, the state of the computation of the avg (aver

age) aggregate can be represented as a pair of numbers, one equal to the average of the values

seen so far and the other equal to the count of those values. By convention, the state of an aggre

gate is required to contain the current value of the aggregate at all times. The following simple

algorithm is used in INGRES to compute the value of a scalar aggregate:

1. Initialize variables to hold the aggregate state

2. For each tuple meeting the qualification of the aggregate,
update the state.

At the end of this procedure, the value of the state contains the result.

The aggregate maintenance algorithms presented in this chapter are discussed in terms of the QUEL query
language (HSW75J. However, the techniques presented here can also be used to maintain aggregates expressed in
other query languages, including SQL [CAE781 and POSTQUEL (StR86l (see appendix 2 for a description of the
POSTQUEL aggregate syntax).

3. MAINTAINING DERIVED OBJECTS 72

To compute aggregate functions, for each unique value of the by-list apair of the form
<state,by-value> is maintained . This set of values can be put in atemporary relation with
attributes for the state, and each component of the by-list. For example, the aggregate

avg(EMP.salary by EMP.dept, EMP.job)

accumulates its results in the relation

TEMP(count, average, dept, job)

The state of the aggregate is represented by the count and average attributes, and the by-list

entry is composed ofthe dept and job attributes.

The algorithm to compute an aggregate function is:

1. Create atemporary relation with the required attributes.

2 For each tuple satisfying the qualification
a if the temporary relation already contains atuple with the
same by-list value, update the state value of the tuple
b. otherwise, add atuple to the temporary relation with the
new by-list value and the correct initial state

When this algorithm finishes, the temporary relation contains the result of the aggregate function.

There are afew variations on standard scalar aggregates and aggregate functions discussed
above. Aggregates can be classified as either uniaue or non-uniaue. With aunique aggregate,
duplicates are removed from the input before the result is computed. Duplicates are not removed
in non-unique aggregates. Consider the following sample database:

name dept salary job
Bob Toy 10,000 Clerk
Jim Toy 20,000 Buyer
Al Fire 10,000 Fire-fighter
Susan Fire 12,000 Fire-fighter |

The count-unique (countu) aggregate below returns the value 3because there are only 3unique

values of salary in this table.

3. MAINTAINING DERIVED OBJECTS 73

countu(EMPsalary)

The non-unique count aggregate returns 4when used in the same fashion.

Also, there are some important differences in the way aggregate functions are processed,
depending on whether or not they have a qualification. If an aggregate function has a
qualification, there is aproblem when using the basic algorithm just described. For example, sup
pose one wished to determine the number of programmers working in each department. The fol-
lowing aggregate function perforins the desired computation:

count (EMP.name by EMP.dept where EMP.job = "programmer")

Vadepartment has no employees with the job title "programmer," then that department will not
appear in the result. To be correct, the result should contain these departments and show that
they have zero programmers. To handle situations like the above, if an aggregate function has a
qualification clause, then before beginning the computation, the temporary relation to hold the
result of the aggregate must be initialized with atuple for e»er„ by-list value that could take part
in the aggregate. To perform the initialization, the system projects the attributes of the by-list
into the result relation along with an initialized state value. The normal algorithm is then used to
compute the aggregate function, and it will only be required to update tuples in the result rela-
tion, not create new ones.

In general, aggregates can be divided into the following classes:

scalar aggregates

non-unique
unique

aggregate functions

unqualified, non-unique
unqualified, unique
qualified, non-unique
qualified, unique

This chapter describes methods to maintain aggregates in each of these classes.

3. MAINTAINING DERIVED OBJECTS 74

3.4.2. Fundamentals of Aggregate Maintenance

Before amaterialized copy of any aggregate can be maintained, it must be initialized to the

correct value for the current contents of the database. When an aggregate is installed, its value

will be computed using conventional aggregate processing algorithms. From that point onward,

the aggregate state will be updated as necessary when the database changes.

Essential to maintaining any materialized aggregate is a pair of incremental update func

tions (IUFs) to modify the aggregate on inserts and deletes, respectively. These functions will be
called /^rt and /delete. Thus, if Vis the current state of the aggregate, and avalue T is
inserted into the set ofvalues being aggregated, V is updated as follows:

VWinserttV.T)

Similarly, if avalue Tis deleted from the set being aggregated, Vis updated as shown below:

V:=/delete(V,r)

For example, asimple pair of IUFs exist for the average aggregate. The state of the aggre

gate can be represented as apair containing acount Nand current average A. Thus, the incre-

mental update functions are:

, /insert! [NA],T)

return ([N+l, (N-A+T) / (JV+1)])
}

ftoU I"J- 1-r)

{ return ([N-l, (N-A-T) / (N-l)])
}

Update functions of this sort can be found for most of the common aggregates that are built into
current database systems (e.g. .um and count) as well as many user-defined aggregates [Han84l.
It is more difficult to find update functions for certain aggregates, such as mln and max. The
/*«, function for these aggregates is simple to create. However, aproblem arises with deletion.
Consider, for example, maintenance of amax aggregate. Suppose that the state of this aggregate

3. MAINTAINING DERIVED OBJECTS 7S

is represented by the current maximum value. If avalue less than the current maximum is
ddeted. the /«. function does not change the aggregate state. However, consider the case
where avalue equal to the current maximum is deleted. The aggregate state may change if there
is no other value in the set being aggregated that is equal to the deleted value. If the aggregate
state contains only one value, then there is no way of knowing what the new maximum is without
completely recomputing the aggregate. Abetter way to represent the state of the aggregate max
is to maintain a,tate eel of up to kof the current largest values in the set being aggregated (e.g.
avalue *=10 might be chosen). In this way. some deletions of the maximum value can be
tolerated. If there are many deletions of large values, the aggregate state set may become empty.
When this sort of "underflow" occurs, it becomes necessary to recompute the aggregate and
refresh the state set with k new values.

To make it possible to maintain aggregates like mln and max. where error conditions such
as underflow may occur, an error code INVALIDATE may be returned by /^ and /**, If
INVALIDATE is returned, the system marks the aggregate invalid, and will reinitialize the aggre

gate state at the end of the current transaction.

Update functions do not exist at all for some aggregates, particularly those that are sensitive
to the order in which the values are processed. An example of such an aggregate is achecksum of
astream of bytes. In such cases, there is no hope of incrementally updating the aggregate - it
must be completely recomputed. Thus, aggregates for which no incremental update functions exist

are not considered here.

3.4.3. Scalar Aggregate Maintenance

3.4.3.1. Non-Unique
The general form of anon-unique scalar aggregate is

aggregate.operator (aggregate.expression where qualification)

3. MAINTAINING DERIVED OBJECTS ™

Since this aggregate is non-unique, it is a function of all the tuples returned by the following

query, without removing duplicates:

retrieve (value = aggregatemexpression)
where qualification

The value of the relation retrieved by the query above will be called Agglnput.

In general, the value retrieved by the command above is the same as that of the following

relational algebra expression:

ffxMfli* ' ' ' XRN)))
where X is the target list, and Y is the qualification, i.e.,

Xs {value = aggregatemezpression }

and

y= qualification

The semantics of the project operation ware modified slightly so that duplicates are not removed.

Suppose that sets Ax •••AN are appended to each of relations J^ •••RN, and similarly,
Dt-'-Ds are deleted from *,•••RN- Using an algorithm for incremental view update
(either AVM or RVM) one can determine the values to be inserted into Agglnput, and the values
to be deleted from Agglnput solely from Ax •••AN. Dx •••DN. and the contents of the base
relations, Rx •••*N. This will yield two relations, Awi and Dnet, containing the net changes
(insertions and deletions respectively) to Agglnput. Amaterialized copy of Agglnput does not
have to be maintained. This is extremely important, since it can save alarge amount of storage,

and it also significantly reduces the time required to maintain the aggregate.

To update the state Vof anon-unique aggregate based on the values of Anti and Dnei, the

following steps are performed:

3. MAINTAINING DERIVED OBJECTS 77

for each value a in Anti
V:=/iMert(V,a)

for each value d in Dnti

Performing this procedure after each base relation update that affects the aggregate will keep the

aggregate in the correct state.

3.4.3.2. Unique

Aggregates that require duplicate removal can be maintained in a way similar to non-unique

aggregates. To do this, a method is needed to determine when a unique value enters or leaves

Agglnput. This can be accomplished by maintaining a duplicate-free copy of Agglnput at all

times using a view-maintenance algorithm. Unfortunately, this makes the cost to maintain a

unique aggregate significantly higher for a non-unique one. The version of Agglnput maintained

contains a set of <value, count> pairs, where value is a unique tuple value, and count is a dupli

cate count. The net change sets, AQti and Duti, used to update Agglnput also contain <value,

count> pairs. Furthermore, it is known that Antt f\ Dnei is empty. Duplicate-free versions of

the net change sets, which will be called Antt* and Z>net'» are needed to correctly update the

aggregate state. These can be produced while Agglnput is being maintained. The algorithm for

producing Anei' and Dntt' during the process of incrementally updating Agglnput is 6hown below:

for each value <a, count> in Anet do
if a tuple <a, count'> exists in Agglnput then

set count' := count' + count

else do

add <o, count*> to Agglnput
add a to Anti*

end

end

3. MAINTAINING DERIVED OBJECTS 78

for each value <d, count> in Daet do
If a tuple <d, count'> exists in Agglnput then

set count' :=» count' - count
if count' becomes 0 then do

remove <</,count'> from Dnti
add d to 2>Bet'

end

else

end

end

/* this should never happen */
signal an error

The values of Anti' and Dnet' can be used to update the state of the unique aggregate (V) just as

Anti and Dnei are used for non-unique aggregates.

3.4.4. Aggregate Function Maintenance

It is assumed below that the value of the aggregate function to be maintained has already

been initialized. The resulting relation, which will be called AggResult, is stored in the database.

AggResult has the following schema:

AggResult (state, count, byvalue)

Here, state contains the current aggregate state for all tuples with a by-list value byvalue. The

count field tells how many tuples in Agglnput had a particular byvalue. The count is required so

that tuples can be deleted from AggResult when the count goes to zero. As a simplification, the

discussion below treats state and byvalue as individual attributes; in reality, they might be com

posed of more than one attribute each.

3.4.4.1. Unqualified, Non-unique

Unqualified, non-unique aggregate functions have the form

aggregatemoperator (aggregatemexpression by byjist)

The following retrieve command defines the input relation (Agglnput) for this aggregate func-

3. MAINTAINING DERIVED OBJECTS 79

tion:

retrieve (value = aggregatemexpression , byvalue =* byjist)

The net changes {Antt and Dnet) to Agglnput are determined using a view maintenance algo

rithm. The system does not have to maintain a materialized copy of Agglnput since it is not

needed to compute Anti and Dnet. Again, this provides substantial cost savings.

Given Anti and Pnet» AggResult can be updated by the following procedure, where INITIAL

represents the initial state value for the aggregate:

for each tuple <o, by.value> in AMido
If a tuple < V, count, by.value> exists in AggResult then

replace it with </bsert(^a)» count + 1, by.value >
else

insert into AggResult a tuple
</infiert(INITIAL , a), 1, by.value>

end If

end

for each tuple <d, by.value> in Dnet d©
if a tuple < V, count, by.value> exists in AggResult then

if count = 1 then
there will be no tuples left in AggResult with this by.value, so

delete <d, count, by.value> from AggResult
else

replace the tuple in AggResult with
</delete(y»a)» count " 1 »by.valuO

end if

else

There is no tuple with the same by.value in AggResult.
This should never happen, so signal an error.

end if

end

3.4.4.2. Unqualified, Unique

Unqualified, unique aggregates are maintained using the same algorithm for unqualified,

non-unique aggregates, except that Anti and jDnet are replaced by their duplicate-free counter

parts, AMt and DMi'. The duplicate-free change sets are found in the same way presented for

unique scalar aggregates. This requires keeping a materialized copy of Agglnput.

3. MAINTAINING DERIVED OBJECTS 80

3.4.4.3. Qualified, Non-unique

Recall that the general form ofan aggregate function is

aggregate-operator (aggregate-expression by by-list
[where qualification])

The semantics of aggregate functions require that atuple be present in AggResult for each possi
ble unique by-list value, even if no tuples for that value match the qualification. Thus, the system

for maintaining a qualified aggregate has the following two parts:

1. aprocedure to maintain the correct set of by-list values in AggResult

2. aprocedure to update the aggregate state for existing by-list values in AggResult

When adatabase update occurs that causes the value of AggResult to change, procedure 1is per

formed before procedure 2. These procedures are implemented as follows:

Procedure 1

The incremental view update algorithm is used to maintain amaterialized copy of the answer to

the following query:

retrieve unique (by-list)

The result of this query will be called ByValues. If atuple t= enters ByValues, then the

following tuple is created, and inserted into AggResult:

<state = INITIAL, count = 0, byvalue = £>

If atuple t= leaves ByValues, the tuple with byvalue - Bis deleted from AggResult.

Procedure 2

As database updates occur, the incremental view maintenance algorithm is used to find the net
change sets, AB,t and D^, for the relation AggResult retrieved by the following query:

3. MAINTAINING DERIVED OBJECTS

retrieve (value =» aggregate-expression, byvalue —by-list)
where qualification

AggResult is not kept physically materialized. Aoet and DDrt are used as input to the algorithm
described below. The only difference between this algorithm, and the one for unqualified aggre-
gates is that here it bnot necessary to insert or delete AggResult tuples since that has been ban-

died in procedure 1.

for each tuple <o, by.value> in Auti do
if there is a tuple <V, count, by.valuO in AggResult
replace itwith </insert(V,a), count + 1, by.value >

end

for each tuple <d, by.valuO inPnetdo
If there is a tuple <V, count, by.valuO in AggResult then

replace the tuple in AggResult with
<fdtkjy,a), count - 1, by.valuO

end

81

3.4.4.4. Qualified, Unique

Qualified, unique aggregate functions are handled using an algorithm identical to that for
qualified, non-unique aggregates, except that the duplicate-free sets AWJ and DMt' are used in
place of Awi and Pnet. ADet' and DMi* are determined using the algorithm previously described.
This requires aduplicate-free copy of Agglnput to be maintained using aview maintenance algo-

rithm.

3.5. QUEL Commands Containing Aggregates

Using QUEL that contains aggregates, more general database objects or views can be
retrieved than using aggregate-free QUEL. QUEL retrieve commands (or view definitions) contain

ing aggregates can be divided into several classes. These include

3. MAINTAINING DERIVED OBJECTS 82

class 1: queries containing scalar aggregates, and no tuple variables at
the top level (i.e., outside the scope ofany aggregate)

class 2: queries containing scalar aggregates, and one or more tuple
variables at the top level

class 3: queries containing aggregate functions

Methods for maintaining objects containing aggregates in each of these classes are discussed

below.

Class 1

The general form of a class 1 query is the following:

retrieve (/i=/i, • • • ,'»=/n)
where Q(/„+i, " ' tfm)

Above, all the expressions fx • • • fm can contain any combination ofconstants and scalar aggre

gates. This type of query always retrieves either one tuple, or none. The following is an example

of 6uch a query:

retrieve (a=avg(EMP.salary))

A mechanism to materialize the results of such retrieve commands is a small extension of the

schemes presented earlier for maintaining the results of scalar aggregates (both qualified and

unqualified). To maintain the result of a class 1 query, every aggregate in it is maintained

separately using techniques previously presented. Whenever one or more of the aggregates

changes due to a database update, then the command is re-run using the currently materialized

values of all the aggregates. The value returned replaces the previous stored result for the com

mand.

Class 2

The next class of queries to consider are those containing simple aggregates, and one or

more tuple variables at the top level. In general, class 2 queries have the same form as class 1

queries except that the functions fx- ••fm can be functions of attributesalue pairs (e.g.

3. MAINTAINING DERIVED OBJECTS 83

EMP.salary). An example is the query that retrieves all employees who earn the average salary:

retrieve (EMP.all) where EMP.salary = avg(EMP.salary)

The same algorithm for maintaining class 1 aggregates works for class 2.

The main problem with maintaining the result of a class 2 query is that any small change in

the aggregate can require a large amount of recomputation to be done to update the result. For

example, changing the salary of one employee can change the average salary, and thus completely

change the value retrieved by command above. This property makes it unattractive to always

maintain a materialized copy of such a command. An alternative that is likely to perform better

is to always maintain the aggregates and use them to compute the final value of the object on

demand. For example, if the materialized average salary is 20K, then when a user wants to access

the value of the command above, the following command will be run instead:

retrieve (EMP.all) where EMP.8alary = 20K

Class 3

The extent of change to an object whose definition contains an aggregate function is usually

not as great as in the case of class 2 objects. Consider a general retrieve command

retrieve (fi=/i, • • • ,/„=/»)
where Q(/B+„ " ' tfm)

where one or more of the /,- is an aggregate function. When processing a query of this form using

conventional techniques, an aggregate function is computed separately, forming a temporary rela

tion (AggResult). AggResult is then bound to the rest of the command by query modification.

The modified query has the following structure:

retrieve (iW/, • • • /„=/„')
where Q{fn+i9,' " Jm)
and AggResult.byvalue = R .byvalue

Here, // • • • fmf are the same as fx • • • fm except that all occurrences in /1 • **fm of an

3. MAINTAINING DERIVED OBJECTS 84

aggregate function are replaced by the expression

AggResult.Result

This represents the field of AggResult that contains the result of the aggregate. The modified
command is just an ordinary query containing acollection of selects, project, and joins. To main
tain the answer to this query, the system must perform the following steps:

1. find the net changes (Xnet and DMt) for AggR«»K »°d
any other relations participating in the query

2 apply any incremental update algorithm (e.g. AVM or RVM)
' to bring the stored result of the query to the correct state.

The net changes to AggResult are found as abyproduct of the aggregate function maintenance
algorithm. Old and new AggResult tuples are saved by the algorithm instead of discarded. The
net changes to base relations appearing in the command are found as usual.

3.6. Discussion

In this chapter acollection of algorithms has been presented for maintaining derived objects
in relational database systems. The following is asummary of the view maintenance algorithms

that were discussed:

1. dynamic, non-shared AVM
2. dynamic, shared AVM
3. static, non-shared AVM
4. static, shared AVM
5. RVM (static, shared)

Immediate and deferred versions of all the above are possible.

The main difference between the staticly optimized view maintenance algorithms and the
dynamicly optimized ones is in planning and optimization cost. Staticly optimized algorithms pay
alarge planning cost once, and have no planning overhead at run time (i.e., at the time view
maintenance is performed). Dynamicly optimized algorithms pay alarge planning cost at run

3. MAINTAINING DERIVED OBJECTS 85

time. A disadvantage of static algorithms is that they produce a fixed execution plan for main

taining views which will not necessarily be optimal at run time. An interesting topic for future

research would be to find ways to construct an efficient Rete network for RVM or compiled execu

tion plan for SAVM given statistics about the structure of the base relations and the frequency of

database updates.

Shared algorithms have an advantage over non-shared algorithms because they avoid redun

dant computation. However, there is a relationship between planning cost and sharing - it costs

more to construct a shared plan. This is particularly significant for dynamic algorithms because

they pay a planning cost each time the view is updated. For static algorithms, it is less significant

since planning cost is paid only once, and amortized over many changes to the view.

Deferred view maintenance algorithms may gain an advantage over immediate ones because

using a deferred strategy, large sets of tuples may be processed a few times (i.e., after each query),

rather than processing small sets of tuples many times (i.e., after each update). However, there is

overhead in a deferred strategy for maintaining the net changes to the base relations in a data

structure between transactions. These issues are discussed more fully in chapter 4.

The RVM algorithm has the same advantages and disadvantages as other shared, static

view maintenance algorithms. A potential drawback of RVM is the time and storage required to

maintain the memory nodes in the Rete network. A potentially serious drawback of RVM given

the advent of high-speed multiprocessor hardware (e.g. SPUR [Hi186]) is that RVM cannot exploit

parallelism easily because tokens must be propagated depth-first through the network. Using

AVM, each expression to be computed could be assigned to a different processor.

This chapter also presented algorithms for maintaining database procedures and aggregates.

Because database procedures are simply collections of queries, any view maintenance algorithm

can be applied to maintain them. Algorithms for maintaining scalar aggregates and aggregate

functions can be built on top of any view materialization algorithm. Non-unique scalar aggregates

3. MAINTAINING DERIVED OBJECTS 86

(those that do not require duplicate removal) are very promising candidates for materialization

because they do not require maintenance of the complete view defined by the qualification of the

aggregate; only the result of the aggregate computation must be stored. Unqualified, non-unique

aggregate functions also have this attractive property.

It is not essential to keep derived objects materialized. However, the decision of whether or

not to materialize an object can have a large impact on performance. For materializing objects,

the costs of query modification, algebraic view maintenance, Rete view maintenance, and caching

are all different. Each may perform best, depending on environmental factors, including the fre

quency of queries and updates, and the structure of the database and the objects.

The relative performance of different algorithms for materializing derived database objects is

analyzed in the next two chapters. The focus of chapter 4 is the performance of different methods

for processing queries against views. Chapter 5 analyzes the performance of different algorithms

for processing queries that retrieve the results of database procedures. In general, the following

strategies are possible for processing queries against derived objects:

1. query modification
2. caching
3. differential maintenance

All the view maintenance algorithms presented in this chapter fall into the differential mainte

nance category. The following table shows the topics covered in chapters 4 and 5:

algorithm ch.4

(views)
ch.5

(procedures)

query modification X X

caching X

differential maintenance

immediate, non-6hared, static (AVM)
deferred, non-shared, static (AVM)
immediate, shared, static (RVM)

x

x

x

X

X

X

Only staticly optimized algorithms are considered in chapters 4 and 5. Dynamicly optimized

3. MAINTAINING DERIVED OBJECTS 87

algorithms are not considered because of their high run-time planning and optimization costs.

The main goal of chapter 4is to explore the differences between query modification, and deferred

and immediate differential view maintenance techniques. In chapter 4, the model analyzed con

sists of asingle large view. Algorithms that take advantage of shared subexpressions are not con

sidered in chapter 4because they would provide no advantage in this environment. Also, chapter

4does not consider caching as an alternative since it is an inefficient technique for large views.

In chapter 5, caching is analyzed because it may be a worthwhile option for processing

queries that retrieve the results of database procedures. Caching is more promising in this

environment for the following reasons:

(1) procedures are typically much smaller than views and hence less likely to be
invalidated by updates, and

(2) queries that access adatabase procedure read the entire result returned by
the procedure, not just part of it, as is usually the case with queries against
views.

Because there will typically be a large number of database procedures, many of which contain

shared subexpressions, the use of a shared view maintenance algorithm may be advantageous.

Hence, RVM is analyzed in chapter 5 as an example of ashared, static view maintenance algo

rithm. No deferred view maintenance algorithms are explored in chapter 5 because the deferred

versus immediate issue is explored thoroughly in chapter 4. Chapter 4 shows that the immediate

strategy is usually superior to deferred, although the performance difference between the two is

6mall.

88

CHAPTER 4

VIEW MATERIALIZATION PERFORMANCE *

4.1. Introduction

In order to process queries against views, some sort of view materialization strategy is

required. Conventional systems process queries against views using query modification, as

described in Chapter 1 [Sto75]. This procedure translates queries referring to views into queries

involving only the base relations. Recently, algorithms have been proposed for maintaining

materialized copies of views (see [BLT86] and chapter 3). Given a materialized view, a query can

be processed using the stored view directly, as ifitwere an ordinary base relation.

This chapter will analyze and compare the performance of the following algorithms for pro

cessing view queries:

1. query modification
2. differential maintenance

a. immediate, non-shared, static (AVM)
b. deferred, non-shared, static (AVM)

In the rest of this chapter, 2.a. will be called "immediate view maintenance" or simply "immedi

ate," and 2.b. will be called "deferred view maintenance" or "deferred." The performance analysis

will consider the differences between query modification and differential view maintenance in gen

eral, and the differences between immediate and deferred view maintenance in particular.

The types of views considered are those that can be defined using only the SELECT, PRO

JECT and JOIN operations. The cost of the various methods when applied to processing aggre

gate queries is also analyzed.

Aversion ofthe material presented In this chapter has been published as aseparate paper (Han87).

4. VIEW MATERIALIZATION PERFORMANCE 89

An important way to improve the performance of algorithms that maintain physically stored

copies of views is to use a.creening algorithm to test each tuple inserted into or deleted from the
base relations. If atuple passes the screening test, then its insertion or deletion may cause the

state of the view to change, so the tuple must be used to try to update the view. If the tuple fails

the screening test then it cannot cause the view to change, so it does not need to be used to
refresh the view. In the scheme described in [BLT861 screening is done by substituting atuple
into aview predicate, which is then tested to see if it is still satisfiable. If so, the tuple passes the
screening test, otherwise it fails. This test is performed for every tuple inserted into arelation,

incurring asignificant CPU cost, especially if there are many views.

An alternative screening mechanism that will usually be more efficient can be built using

rule indexing [SSH86). Using rule indexing, the index intervals covered by one or more clauses of
the view predicate are locked using Mock.. When atuple is inserted into the relation, if an index
record containing aHock is disturbed, then the tuple passes the screening test. Otherwise, the
tuple fails the test implicitly. Since tbb screening test can produce "false drops" (i.e., tuples
which pass the screening test but do not satisfy the view predicate), asecond stage screening test,
substituting the tuple into the view predicate, is required. This strategy is assumed for both
immediate and deferred view maintenance in the performance analysis of this chapter.

This chapter is organized as follows. The implementation of deferred view maintenance

analy*ed will be briefly described in Section 4.2. In Section 4.3, cost formulas for each of the algo
rithms are derived for three different view models:

1. selection-projection views
2. two-way natural join views
3. aggregates over selection-projection views

The performance of the algorithms is compared for each model. Finally, Section 4.4 presents con
clusions, and suggests directions for future research on view materialitation methods.

4. VIEW MATERIALIZATION PERFORMANCE 90

4.2. Deferred View Maintenance

To implement deferred view maintenance, amethod must be found to save the net changes
(^,-net and P.-net) for each base relation, ft, for 1<«*<N, over aperiod encompassing more
than one transaction. Given mechanism to save the net changes, differential view maintenance can

be done whenever desired (hence the name deferred view maintenance). It is assumed in this

chapter that to refresh the materialized view on adeferred basis, 4-net and Drnet are calcu

lated and then input to the static, non-shared AVM algorithm.

Apreviously developed technique caUed hypothetical relations [WoS83l can be adapted to
the purpose of computing 4*4 and P,-net. The basic algorithm for implementing hypothetical
relations is briefly described below. Efficient implementation of hypothetical relations to support

deferred view maintenance will be discussed after the basic algorithm is presented.

4.2.1. Hypothetical Relations

The hypothetical relation (HR) scheme uses three tables for each relation rather than one.

Each relation has associated with it tables R, D and A, for base tuples, deletions and insertions,

respectively [AgD83]. The data value of atuple will simply be called "value." Each tuple will also
have aunique identifier field "id." This yields the following schema for each relation:

it*(id, value)
D(id, value)
A(id, value)

The true value of the relation {RT) is (R LM) " *>- Thc 8Ct difference operation "~" ab°Ve

has the normal meaning, based on all fields ofthe tuple, including id.

To append atuple to RT, atransaction inserts that tuple in A, placing the value of the sys

tem clock or other monotonicly increasing source in the id field. If duplicate-free semantics are

desired, the system must ensure that the tuple is not already in (R \J A)-D before appending it

to A. To delete the "tuple from the relation, acopy of its value, including the id it had in R or

4. VIEW MATERIALIZATION PERFORMANCE °1

A, is placed in P. To modify an existing tuple, its old value will be put in P, and its new value

in A. When retrieving data from RT, queries are processed against both R and A, and any

tuples found are checked to make sure they are not already in P (if they are, they are ignored).

Given this structure of the HR, the expressions for computing A-net and P-net from R, A

and P are the following:

A-net := A-P
P-net := D-A

After a view refresh that uses A-net and P-net, the files used to store the hypothetical relation

will be reset as follows:

R;=(R\JA)~D
A:=^
P:=^

4.2.2. Efficient Implementation of Hypothetical Relations

The problem with the most straightforward implementation of hypothetical relations is that

retrieving atuple from R requires three disk accesses rather than just one. To retrieve atuple t

from RT using the HR scheme this way, an attempt must be made to read t from both Rand A,

and then P must be read to make sure that t has not been deleted.

Fortunately, a method developed in [SeL76] can be used to eliminate most page accesses

when using adifferential file. In this method, aBloom filter [BIO70] consisting of an array of bits

B[l..m], with each entry initially zero, is used for each differential file. It is assumed that some

subset of the fields of each record called the key uniquely identifies the record. For each record in

the differential file, a hash function h mapping the key ofarecord to an integer in the range 1to

mis computed, and the corresponding entry in B is set to 1. Then, to test whether arecord t is

in the differential file, if B[h(Lkcy)]=Qt t is not present; otherwise, if B[h(t.key)]=l, it might

be present, so the differential file must be searched to see if it is there. Using the method pro-

4. VIEW MATERIALIZATION PERFORMANCE 92

posed in [SeL76] one can design aBloom filter with any desired ability to screen out accesses to

records not present in the differential file given asufficient number of bits m.k

As another measure to help speed up accesses to the differential file, A and P for each rela

tion R wUl be combined into asingle file, AD. An extra attribute "role" will be added to tuples

in AP to indicate whether they are appended or deleted tuples. This storage structure wiU speed

up the majority of updates, which modify existing records without changing the key. For exam

ple, if AD is maintained using aclustered hashing access method on the key, then when atuple t

is updated to t'without having its key changed, Vwill hash to the same page as t. Thus, amax

imum of only three disk I/Os will be required to update asingle tuple t in R given the key for I.

The procedure to perform this update is the following:

Read the tuple. (Check the Bloom filter to see if t could be in AD. If not, read t from R.
Otherwise, read AP to see if it is there. If t is not in AD, read R. This might require 2
I/O's, but the probability can be made arbitrarily small by increasing m. Hence, only one
I/O is counted here for simplicity.)

I/O #2*
Read the page where the new value of t (f) will lie in AP. (Place both t andIt prime on
the page. The role values of t and Vare "deleted" and "appended" respectively.)

I/O #3:
Write this page back to disk.

Three I/O's is only one more I/O than necessary to perform aone-tuple update using asingle file

to store the relation. If separate files for A and P were used, at least five I/O's would be

required rather than three since R must be read, and A and P must both be read and written.

In the remainder of the chapter, the sets of inserted and deleted tuples will still be referred

to as A and P, even though they are stored in the AP table. It is assumed that AD will be par

titioned to form A and P when necessary.

4. VIEW MATERIALIZATION PERFORMANCE 93

4.3. Performance Comparison

Each of the view materialization methods presented will have different performance charac

teristics. For example, because query modification pays no overhead for base relation updates, it

will clearly be the algorithm ofchoice if the ratio ofupdates to view queries is very high. On the

other hand, if this ratio is low, then a view maintenance algorithm will probably perform best.

This section discusses in detail the factors affecting performance and derives cost functions for

each view materialization algorithm for view models 1-3.

4.3.1. Description of View Models

The structure of view models 1-3 is as follows:

model

Model 1

Model 2

Model 3

view structure

selection and projection of a single relation R
natural joinof two relations, Rx and R2, on a key field
aggregates (e.g. sum, average) over a Model 1-type view

The views have the following definitions:

Model 1:

retrieve {R.fields)
where Cj(R)

Here, the target list projects exactly one half of the attributes of R, and the qualification clause

Cf{R) restricts relation R with selectivity /.

Model 2:

retrieve (/^.fields, A2.fields)
where Cf{Rx)
and Rx.& = R2.b

For Model 2, the target list projects one half of the attributes of both Rx and R2, and the clause

Cf(Rx) restricts Rx with selectivity /.

4. VIEW MATERIALIZATION PERFORMANCE 94

Model 3:

retrieve (a = agg(f?.b where Cj(R)))

For Model 3, the clause Cj{R) again restricts R with selectivity /.

Only two types of operations will be considered in the models: updates to the base relations,

and queries to the view. No other operations are relevant to the performance issue being studied.

It is assumed that exactly k update operations, and q queries to the view will be run. For each

model, a formula for the average cost perquery, over all k updates and q queries, will be derived.

The access methods of the relations involved are shown in figure 4.1. Generous assumptions

will be made for all view materialization schemes regarding how queries and other operations are

performed using these clustered indexes. Since these performance benefits will be given to all

algorithms, the results should not be biased toward any one 6cheme.

The parameters important to the analysis are shown in Figure 4.2. The default values of

these parameters, which will be used unless stated otherwise, are shown in Figure 4.3.

relation(s) access method

R,Ri

R2
materialized view (V)

differential file {AD)

£?+-tree primary index on field used in
view predicate terms Cj(R) and
C/(*i)
bashed primary index on join field (b)
B+-tree primary index on field used in
view predicate terms Cj(R) and
C,(R,)
hashed primary index on a key field

Figure 4.1. Access methods of relations in performance model

parameter

N
S

B
b
T
d
k
I

9
u

P

f
/.
/rta

c2
C8

4. VIEW MATERIALIZATION PERFORMANCE

definition

number of tuples in relation
bytes per tuple
bytes per block
total blocks (b =» NS/B)
number of tuples per page (T=B/S)
number of bytes in a £+-tree index record
number of update transactions on base relation
number of tuples modified by each update transaction
number of times view queried
number oftuples updated between view queries (u=kl/q)
probability that a given operation is an update (P=k/(k+q))
view predicate selectivity for Model 1
fraction of view retrieved per query
size of R2 as a fraction ofRx
CPU cost to screen a record against a predicate in milliseconds
(ms)
Cost in ms of a disk read or write
Cost in ms per tuple per transaction to manipulate A and P
data structures in immediate view maintenance

Figure 4.2. View Materialization Cost Parameters

N 100,000 / .1

S 100 fv .1

B 4,000 fit* .1

k 100 Ci 1

I 25 c2 30

1 100 c, 1

d 20

Figure 4.3. Default Parameter Values

95

4.3.2. Model 1 Cost Analysis
In Model 1,the view is formed by projecting exactly one half of the attributes of tuples from

4. VIEW MATERIALIZATION PERFORMANCE 96

R and applying apredicate with selectivity /. Thus, the result will contain / times N tuples^
^ne^valu^hat U be measured for each view maintenance scheme is the average cost of aquery
that retrieves a fraction /„ of the tuples in the view.

4.3.2.1. Cost ofDeferred View Maintenance Assuming Model 1

In deferred view maintenance, it is assumed that the view is refreshed every time it is
queried. After the refresh is finished, the result of the query is computed. The average cost of a
query to the view, which will be called TOTALdeferredi, bas several components. The first is the
cost to read the result of the query from the copy of the view stored on disk. The second is the
cost to refresh the view. The third is the cost to screen incoming and deleted tuples to see if they
might affect the state of the view. Finally, the fourth is the cost to maintain the hypothetical
relation(s). The average value of each of these costs are added together to get the average cost

per query, TOTALd€ferredi. In summary,

TOTALdrferredl = . , . »
(cost to retrieve result of query from stored copy or view)

+ (cost to refresh the view) .
+(average cost per query to screen tuples to see if they affect view)
+(average cost per query to maintain hypothetical relation)

It is assumed that no duplicates are formed by projecting half the attributes, so the view has

fN tuples and fb/2 pages. Afraction fv of the view is read during each access, requiring
//v6/2 page reads, at acost of C2 each. One search of the B+-tree will also be necessary to
locate the position in the view to begin scanning. Since there are d bytes per index record, the
height of the B+-tree, not including the data pages, is determined as follows. The number of
index records per page, and thus the index fanout, is B/d. There is one index record for each of
the fN tuples in the view. Assuming as asimplification that all pages are packed full, the height

of the view index (#vi) is thus

Hvi^llogpwfN]
Additionally, each tuple read from the view must be screened against the query predicate, at a

4. VIEW MATERIALIZATION PERFORMANCE 97

cost of Cj, for a total cost per view access of CxfvfN. Thus, the total cost Cqueryi to query a

materialized view is

CqUeryl =C2^ji+C&* +CxffvN
The next cost to consider is that for the hypothetical relation overhead. It is only necessary

to measure the cost in excess of that required to perform normal base relation updates. As a

simplification, the assumption is made that only tuples in R are updated, and never tuples in AD.

The cost to maintain the HR for a single insertion into R in this situation is the following:

1. read the original tuple from R
2. read the page inAD where the modified tuple will be placed
3. write this page in AD

Step (2) is the only extra I/O required compared with keeping R in asingle file and updating it

directly. The normal cost to update R would be one read and one write, or 2C2, per tuple

updated. If the cost of step (2) is averaged over all queries and updates, the cost per query to

maintain the HR is at most the cost of one I/O (C2) times the number of tuples update per view

query (ti). The total cost is likely to be somewhat less than this, however, since AD often has a

small number of pages, and there are / tuples modified per transaction. The cost can be modeled

more accurately using a function for estimating the number of pages touched when accessing k

out of n records in a file occupying m disk pages. This function, which will be called y(n,m,k),

has been previously derived [Yao77|*. The number of tuples in AD will be twice the number of

*Given that there are n total records on m blocks, a formula giving the expected
number of blocks that will be accessed to modify k records is known as the Yao function,
denoted by y(n,mtk) [Yao77]. Let Cj be the number of ways that 6 items can be selected
from a items (a >6). If the number of records per block is p=*nfm, then the formula giv
ing the expected number of block accesses is CX*P/CJ. An alternative to the above called
Cardenas* approximation that is very close if the blocking factor is large (e.g. n/m> 10) is
m(l_(l_l/m)*) [Car75]. Cardenas' approximation gives good results unless m ap
proaches 1. Clearly, any stored object must occupy at least one page. The approximation
used in this thesis is that if k< 1, the expected number of pages touched is k. If * is
greater than 1, and m is less than 1, the expected number of pages touched is 1. Otherwise,
if m is less than some upper bound U (17=2 is used) and k is more than 1, the minimum of
k and m is returned. If none of the above conditions apply, Cardenas' approximation is

4. VIEW MATERIALIZATION PERFORMANCE 98

tuples updated per view query (2u). The number of pages in AD will thus be 2ti divided by the

number of tuples per page (T). The number of pages in AD touched per transaction is thus

y(2u,2u/T,l). Averaged over q queries and k updates, the total cost of the extra accesses to

AD is thus the following:

CAD = C2iy(2«,2"0

Consider now the cost to refresh the view V once. This first involves the cost to read all of

AP. Since u tuples are updated per view query, AD has approximately 2ti elements. There are

« T records per page, soAD has 2u/T pages. Thus, the cost Cj&t^ of reading AD is

CADread ™ ^2~

Another cost is incurred to screen updates to see whether they have a chance of affecting the

view. Recall that to screen incoming tuples to 6ee whether they can affect a view, rule indexing is

used in combination with a more stringent satisfiability test. For the view maintenance methods

analyzed, it is assumed that the screening is performed as follows:

if

(1) a tuple breaks a t-lock for the predicate of view V, and
(2) the predicate for V with t substituted into it is still satisfiable,

then

a marker indicating this is placed on t.

In both the deferred and immediate view update algorithms, a tuple will be used to update a

stored view V only if the tuple has a marker for V. A fraction / of the ti tuples inserted into R

per query will conflict with a t-lock set for V in step (1) above, and thus must be passed on to

step (2). Step (1) has essentially no overhead, and step (2) costs Cx. Thus, the average overhead

per query to screen tuples to see if they affect V is:

used. This approach gives an accurate estimate of the expected number of pages touched
for a wide range of parameter settings.

4. VIEW MATERIALIZATION PERFORMANCE 99

Cscreen = Oxfu

Also, approximately fu tuples per query will be inserted into and deleted from the view,

respectively, for a total of 2« tuple updates. Each insertion or deletion from the view requires

reading the B+-tree view index, and reading and writing a data block. However, somewhat less

than 2/ti pages of the view may actually have to be updated during arefresh, since there may be

more than one record per block in the view. Using the Yao function, since there are fN tuples

and fb/2 blocks in the view, the number ofview blocks accessed (Xx) is approximately

Xx = y(fN,£-,2fu)
Each access requires reading the index, reading and writing a data block, and writing a leaf-level

index block (splits of internal index pages are infrequent, so their cost will be ignored as a

simplification). This requires 3 I/Os, plus anumber of I/Os equal to the height of the index on V

{Hy$. Thus, the cost to refresh the view, Cdef.refreshi» k *» follows

Cdtf-refreshl = C2 (3+Jfyi) Xx

The following is the final expression for the cost per query to the view V using deferred

refresh:

TOTALdeferredl = CAD+GADTt%A+Gqwryl+Cd4-r<£r&hl+Gtcr<xn

4.3.2.2. Cost of Immediate Assuming Model 1

The cost per view access of performing immediate view maintenance, TOTALtamediitei' *

as follows:

TOTALiiroiiedUtel =
(cost to query view)

+ (total cost to modify stored view) / (# ofview accesses)
+(total cost to screen tuples inserted into R to see ifthey should enter view)

/ (# of view accesses)
+ (overhead per query tomaintain A and P sets in adata structure during

transaction processing)

The cost CqUeryi to query the view is the same as for deferred view maintenance. The cost to

4. VIEW MATERIALIZATION PERFORMANCE 100

update the stored view when atransaction modifies R, which will be called Ci^refreshi. *con>
puted much like Cdef.,efreshi. The difference is that approximately 2fl tuples in the view must be
modified once per transaction, rather than modifying 2/u view tuples once per query. Since
some of these 2// tuples may lie on the same page, the number of view pages touched (X2) can

be estimated using the Yao function as follows:

X,-»(/Nf^2/l)
Similar to the case for deferred view maintenance, updating a tuple in Vrequires a B+-tree
search, the read and write of a data block, and the write of an index block. This requires
(3+iJvi) I/Os for each view page touched, as before. Since there are k updates for every q
queries, the average cost per query to update the view is:

C-unm-refreshl —J°2 (3+#vi) X2
The COSt Cscreen *> screen thc *' tuPleS inserted into R fe U^0*11*"1-

Finally, since immediate view maintenance must update the view after every transaction,

the data structures used to maintain the Aand P sets must be reset once per transaction. The

overhead per query to do this, which will be called Coverhe*d. wffl be estimated as C, for each of

the fl tuples in Aand P,multiplied by the number of updates per query (k/q)t i.e.,

CmhMd - (C.2/1)-

This gives the following expression for the total cost of immediate view maintenance:

TOTALinanediitel = CqUeryi+Cinun.refr«hl+C»creen+Coverhe»d

4.3.2.3. Cost Using Query Modification Assuming Model 1

The cost of using query modification rather than materializing the view in advance is con

sidered here (this option will perform best in some circumstances, e.g. if the ratio of updates to
queries is high). Three different methods for retrieving the view from Rwill be considered:

4. VIEW MATERIALIZATION PERFORMANCE 101

(1) a clustered (primary) index scan for which no extra tuples must be
read (clustered)

(2) an unclustered (secondary) index scan (unclustered)

(3) a sequential scan of the entire relation (sequential)

Using a clustered index scan, the number of pages that must be read from R is equal to the size

of the view, which is fb, times the fraction of the view retrieved, fv. The number of tuples

retrieved is ffvN, and each of these tuples must be tested against the view predicate at a cost of

Cx. Also, to find the point to begin the scan, a search of the B+-tree index on R is required. The

height of the index is

H\ =[logLB/rfjNJ
Thus, for the clustered scan (1), the total cost to retrieve the view per access is

TOTALdustered = W/^+C^/^+C^i

Using an unclustered scan (2), a larger number ofpages must be read from R. Searching for

ffvN tuples out ofa total ofb pages will require approximately y(N,bfNffv) reads. The sys

tem must still do an index search and test Nffv tuples against the view predicate. Thus, the

total cost for case (2) is

TOTALUIlclu8tered = C2.y(N,b,Nffv)-rCxNffv+C2Hi

Using a sequential scan of the entire relation (3), all 6 pages must be read, and all N tuples

must be screened against the view predicate, resulting in the following total cost:

TOTAL8equeati1i = C26+C1JV

4.3.3. Performance Results for Model 1

To indicate the differences in cost with respect to the probability P that an operation is an

update, Figure 4.4 plots the total cost of deferred, immediate, clustered and unclustered versus P

for the standard parameter settings (sequential is not shown since it is off the scale). This setting

of the parameters models a situation where the view contains 10,000 tuples, and each query

m
s

1
r

8
e
r

y

4. VIEW MATERIALIZATION PERFORMANCE

50000.00 1

40000.00 -

30000.00 "

20000.00 "

10000.00 -

0.00
0.00

query modification using
unclustered index scan

0.20 0.40 0.60 0.80

update probability (P)
Model 1 (1 table, simple selection/projection view): Total cost of a view query versus update pro
bability P.

Figure 4.4. Model 1: Query Cost

deferred
view
maintenance

immediate
view

maintenance

102

query modification
using clustered
index scan

1.00

retrieves 1,000 tuples. In this situation, query modification using a clustered access path has per

formance equal or superior to deferred and immediate. One would expect that clustered would

perform well here since the number of pages that must be read is small when using a clustered

index. The only advantage that deferred and immediate have over clustered is that there are

twice as many tuples per page in the view compared with the base relation. However, the extra

overhead paid by deferred and immediate to maintain the materialized copies of the view offsets

this. Deferred and immediate would perform even less well compared to query modification if the

view projected all the attributes of relation R instead of only halfof them.

4. VIEW MATERIALIZATION PERFORMANCE 103

It is surprising that deferred and immediate view maintenance have almost identical cost

under these circumstances. Once reason for this is that for low values of P, materialization

methods have nearly equal cost for virtually any parameter setting. This occurs since for low

update probability, a large fraction of the cost of both algorithms is for processing queries against

the materialized view, and both algorithms do this the same way. The fraction of the cost that is

for updating views is inconsequential for small P, regardless of the view maintenance algorithm

used. Another cause of the close match is that the hypothetical relation overhead in deferred

view maintenance counteracts the other advantages it holds over immediate view maintenance. If

more than one disk is available, and I/O operations can be issued concurrently by a program, then

it would be possible to significantly decrease the cost of maintaining hypothetical relations (e.g. by

putting R, A and P on separate disks and reading from them simultaneously). This would give

deferred maintenance an advantage over the immediate scheme for a wider range of parameter

settings. However, these assumptions are not made here since they would require extra hardware,

and operating system functionality not readily available in all computer systems.

Assuming the view is maintained with a clustered index on a commonly used access path,

the view materialization methods are significantly superior to query modification when only an

unclustered access path is available on the base relation. This has implications for physical data

base design, since a materialized view could be clustered on one attribute, and the base relation on

another. In this situation, the query optimizer could chose to process a view query in one of two

ways, depending on the query predicate. If the predicate could be processed most efficiently using

the clustered index on the base relation, query modification would be chosen to execute the query.

Otherwise, the query could be processed against the materialized view, using the clustered view

index as an alternate access path.

An interesting tradeoff among the algorithms centers around the parameters /, P, and fv.

To illustrate the relationship between these parameters, Figure 4.5 plots the region where each

4. VIEW MATERIALIZATION PERFORMANCE 104

algorithm has lowest cost for different values of P and /, with /„ fixed at .1. Although deferred

is never the most efficient algorithm under these parameter settings, larger values for / improve

the performance of deferred relative to immediate view maintenance. This occurs due to the

nature of the Yao function, combined with the fact that increasing / increases the size of A and

P proportionately. Larger values of P tend to favor the algorithm with the least overhead per

update transaction (i.e., query modification). Reducing the total fraction fv of the view retrieved

also tends to favor using query modification, since the overhead of the view maintenance schemes

1.00 1

0.80-

update
probability °-60"

(P)

0.40

0.20"

0.00
0.00

query modification using

clustered index scan wins

immediate view maintenance wins

0.20 0.40 0.60 0.80

view predicate selectivity (/)

Model 1 (1 table, simple selection/projection view): Regions where each algorithm performs best
for / versus P (fraction of view retrieved (/„) = .1).

Figure 4.5. Model 1: Algorithm Comparison

1.00

4. VIEW MATERIALIZATION PERFORMANCE 105

is independent of /„, but the cost per query decreases with /„. When the value of /„ is lowered

to .01, as shown in Figure 4.6, query modification using aclustered index scan performs best over

an even larger area. In Figure 4.7, C8, the overhead per tuple for maintaining the main-memory-

based A and P sets in immediate view maintenance was increased from 1 to 2 ms, while setting

/w=.l. The affect of this change can be seen by comparing Figure 4.5 and Figure 4.7. The fact

that deferred view maintenance now performs best in part of Figure 4.7 shows that the cost of the

view materialization methods is very sensitive to the overhead for maintaining the A and P sets.

1.00 1

0.80-

update 0 60 -j
probability

(P)

0.40

0.20-

0.00
0.00

query modification using

clustered index scan wins

immediate view

maintenance wins

0.20 0.40 0.60 0.80

view predicate selectivity (/)
Model 1 (1 table, simple selection/projection view): Regions where each algorithm performs best
for / versus P (fraction of view retrieved (fv) =» .01).

1.00

Figure 4.6. Model 1: Algorithm Comparison

update

probability

(P)

4. VIEW MATERIALIZATION PERFORMANCE

1.00 i

0.80"

0.60-

0.40-

0.20"

0.00

query modification using

clustered index scan wins

deferred view maintenance wins

immediate view

maintenance wins

0.20 0.40 0.60 0.80

view predicate selectivity (/)

Model 1 (1 table, simple selection/projection view): Regions where each algorithm performs best
for / versus P (overhead per tuple for maintaining A and P data structures in immediate view
maintenance (C3) = 2, fraction of view retrieved (/tf) = .1).

Figure 4.7. Model 1: Algorithm Comparison

1.00

106

4.3.4. Model 2: 2-Way Join View

In this section, the performance of the different view maintenance algorithms is compared

for view model consisting of a two way join. It is assumed that every tuple of Rx that matches

restriction clause Cj in the view definition joins to exactly one tuple in R2, so V has f-N tuples

total. Also, both Rx and R2 contain tuples of size S bytes, and only half the attributes of each

relation are projected in the target list of the view definition. Thus, the tuples in V also contain S

bytes each. The query and update activity assumed is the same as for Model 1, except that all

4. VIEW MATERIALIZATION PERFORMANCE 107

updates are to Rx rather than R (R2 is never updated).

4.3.4.1. Cost of Deferred Assuming Model 2

For Model 2, the cost per query of doing deferred view maintenance is determined as fol

lows:

TOTALdererred2 — (cost to read AP)
+ (cost to refresh view)
+ (cost to query view)
+ (cost per query to screen new tuples against view predicate)

The costs Cad and CADre»d of updating and reading the HR, respectively, from Model 1are

unchanged for Model 2. The cost to refresh the view before it is queried (using deferred view

maintenance), which will be called Cdef.refr«h2» wiU be determined as follows. To refresh V, the

value of the following expression must be computed (the notation V(X,Y) means the expression

for V evaluated with X and Y in place of Rx and R2, respectively:

vi*tA) U n^M - V(P^2)
The V(RX,R2) term is already computed and stored as the previous version ofthe view (V0). No

terms containing A2 and P2 are shown since R2 is never updated. Thus, only V(AX,R2) and

V(DX,R2) must be computed. Recall that there is a clustered hashing index on R2 that can be

used as an access path to join tuples in Ai and Dx to R2. The cost to join the Ax and Dx sets to

R2 is determined as follows: R2 has fRaN tuples and fRp pages, and there are « tuples in each

of A! and Dx at refresh time. Thus, the total number of pages that must be read from R2 to

perform these two joins is

Xz-y(fRaN,fRj>,2fu)

It is assumed that pages read for the first join 6tay in the buffer pool for the second.

There is also a CPU cost of Cx for matching each of the 2u tuples in Ax and Dx with the

joining tuple in R2. Furthermore, for each joining tuple, a page must be read and written from

the stored view. Using the Yao function, since the view has fN tuples of size S bytes, and a

4. VIEW MATERIALIZATION PERFORMANCE 108

fraction / of the tuples in Ax and Dx join to exactly one tuple in R& the actual number of view

pages that will be updated is approximately

X4-y(/7V,/6,2/ti)

Each page update requires reading the B+-tree index on the view, as well as reading and writing

the data page, and writing the index leaf page (i.e., 3+Hyi I/Os). Thus, the total cost Cdef.refresh2

to update the view every time it is queried is:

Cdef.refr«h2 = C^+C^t!+C2(3+ffvi).X4

When the view is queried, both deferred and immediate view maintenance pay the same

cost, Cquery2. This consists of searching the view index to find the starting point, and then per

forming a clustered index scan to retrieve a fraction fv of the view. This costs C2 per page, and

C| per tuple scanned. Summing the cost of the index search and 6can yields the following expres

sion for CquMy2:

Cquery2 - C&^CJJb+CJJN

Both deferred and immediate view maintenance pay an average screening cost of C8creen per

query to the view. Given Cdef.rerresh2. Cqueiy2. and Cscreen»tne expression for the total cost using

deferred view maintenance assuming Model 2 is

TOTALdeferred2 — CADre»d+C<|ef.refresh2+^query2+CgCreen

4.3.4.2. Cost of Immediate View Maintenance Assuming Model 2

The cost TOTALfrnjnedfct^ of doing immediate view maintenance combined with rule index

ing in Model 2 is

TOTALimjned»te2 =
(cost per query to update view)

+ (cost to query view once)
+ (total overhead per query to maintain A and P sets)
+ (cost to screen new tuples against view predicate)

To find the cost per query Cimn>refresh2 of maintaining the materialized view, the cost to refresh

4. VIEW MATERIALIZATION PERFORMANCE 109

the view after each transaction must first be found. The components of this refresh cost are the

I/O cost of reading the pages of R2 to which tuples in Ax and Dx join and reading and writing

modified pages of V, plus the CPU cost of handling each tuple in Ax and Dx. Since Ax and Dx

both contain / tuples at the end of each transaction, and a fraction / of these match the view

predicate and must be joined to R2, the number ofpages that must be read from R2 is

Xb = y(fRiNJRJ>,2fl)

Each tuple in Ax and Dx joins to some tuple in R2, so each causes one tuple to enter or leave V.

The number of modified pages of V is

X< = y(fN,fb,2fl)

Again, for each of these pages, the index on V must be read, the page must be read and written,

and an index leaf page is written, requiring 3+J-fvj page I/Os. There is also a CPU cost ofC! for

handling each of the 2/ tuples in Ax and Dx. Averaging the per-transaction cost of updating V

over k transactions and q queries, the estimated cost per query is as follows:

Cinanrefresttf = —WCs+CAZ+H*)Xi)

Given Ciinm.refresh2 and Cquery2» tne following expression shows the total cost of immediate view

maintenance using rule indexing, assuming Model 2:

TOTALimTO(ji»t«2 a= Cimm.rerresh2+Cqu«y2+^overhead+C'»creeii

4.3.4.3. Cost Using Query Modification Assuming Model 2

Another important cost to measure is that to materialize a view directly from the base rela

tions. A frequently used join strategy called nested-loops (or loopjoin) involves scanning one

(outer) relation, and for each of its elements, searching the other (inner) relation to find all joining

tuples. Ifan index is present on the join field of the inner relation, it can be used for the search.

It is assumed that the nested-loops join algorithm is used to join Rx and R2 in Model 2. Rx

will be the outer relation, and R2 will be the inner one. Since there is a hash index on the join

4. VIEW MATERIALIZATION PERFORMANCE 110

field ofR2, it will be used for the inner search. The assumption is made that pages ofR2 stay in

the buffer pool throughout the computation of the join after they are read the first time. With

the advent of very large main memories, this is reasonable since R2 contains only fRaNS bytes,

which is approximately 1 Mbyte using the standard parameter settings. Under these assumptions,

nested loop join has the following cost components, with the actual costs shown below:

cost component

read B+-tree on Rx
read part of Rx using clustered scan
CPU cost to screen Rl tuples scanned
read pages from R2 using hash index
CPUcost to.match Rx tuples to R2 tuples

actual cost

OJfvN
C&UrFJrPJIvN)
CxNffv

Summing the above cost components gives the following formula TOT^^fe for the total cost to

compute the join using nested loops:

TOTloopjoin —C2[logLB/6JiVl+C2//v6
+ C2y(fR9N,fRib,ffvN)-r2CxNffv

4.3.5. Performance Results for Model 2

The actual cost per query for deferred view maintenance, immediate view maintenance, and

query modification using a nested loop join with an index on the inner relation are plotted in Fig

ure 4.8 using the standard parameter settings. This figure indicates that the results for Model 2

are significantly different than to those for Model 1. When the view joins data from more than

one relation, differential view maintenance algorithms (deferred and immediate) perform better

relative to query modification. By maintaining a materialized copy of the view, the query cost is

greatly reduced, since each result tuple is stored on exactly one page. In effect, maintaining the

view serves as an effective way of clustering related data on the same page. However, as the

update probability P increases, the overhead for maintaining the materialized view overwhelms

the advantage gained by clustering, so query modification becomes more attractive. Also, similar

m
s

1

3
e

r

y

4. VIEW MATERIALIZATION PERFORMANCE

80000.00 1

60000.00 -

40000.00 -

20000.00

0.00
0.00 0.20 0.40 0.60 0.80

update probability (P)

111

deferred,
immediate

view

maintenance

query

modification

1.00

Model 2: Total cost per query using deferred view maintenance, immediate view maintenance,
and query modification (fraction of view retrieved (/v) = .1).

Figure 4.8. Model 2: Query Cost

to Model 1, as the fraction of the view retrieved (/v) is decreased, the advantage of query

modification grows. Query modification performs better for smaller values of /„ because making

fv smaller reduces the query cost, while the amount of overhead paid by deferred and immediate

algorithms for updating the view stays the same.

An important special case to consider is when the view is large, and the queries read a small

amount of data. For example, this special case arises using the standard EMP and DEPT rela

tions, and view ED joining the two. The majority ofqueries in this situation might retrieve only

a single tuple from ED. Also, updates usually change only one EMP tuple. This example was

4. VIEW MATERIALIZATION PERFORMANCE 112

modeled by setting /=1, fv=l/N and /=1, and the results showed that query modification is

superior to deferred and immediate view maintenance under these circumstances for all values of

F>.07. Thus, query modification is almost always the preferred method for answering small

queries against large views. Other effects of varying /„ are shown using two figures. Figure 4.9

plots the areas where deferred view maintenance, immediate view maintenance and query

modification using nested loops each have best performance for different values of P and /, with

/„ set to .1 (recall that the nested loop join uses an index on the inner relation). Figure 4.10

1.00 1

0.80-

update 0 60 .j
probability

(P)

0.40 i

0.20-

0.00

query modification wins

immediate view maintenance wins

deferred view
maintenance

wins

i i i • •

0.00 0.20 0.40 0.60 0.80 1.00

view predicate selectivity (/)
Model 2(2-way join view): Regions where each algorithm performs best for / versus P (fraction
of view retrieved (/»)=.!)•

Figure 4.0. Model 2: Algorithm Comparison

4. VIEW MATERIALIZATION PERFORMANCE 113

shows the same information with fv set to .01. The view materialization methods perform better

than query modification over a much wider area in Model 2 than in Model 1. In particular, view

materialization is superior to query modification in Model 2 for much higher update probability.

For example, for a view with selectivity /=0.5, the trade-off between query modification occurs

in Figure 4.5 (Model 1) at around P=0.3, yet it happens in Figure 4.9 (Model 2) at approxi

mately P=0.7.

1.001

0.80-

Update 0.601
probability

(P)
0.401

0.20-

0.00

query modification wins

immediate view maintenance wins

0.00 0.20 0.40 0.60 0.80

view predicate selectivity (/)
Model 2 (2-way join view): Regions where each algorithm performs best for / versus P (fraction
of view retrieved (/v)s*01).

Figure 4.10. Model 2: Algorithm Comparison

1.00

4. VIEW MATERIALIZATION PERFORMANCE 114

In Model 2, the assumption is made that exactly halfof the attributes from relations Rx and

R2 are projected in the view. Projecting a subset of the attributes in the view gives some advan

tage to view materialization since when the view is queried, less total I/O is necessary than if all

attributes of Rx and R2 are projected. However, even if all attributes of Rx and R2are projected

in the view, the results are similar to those described above (query modification does not perform

markedly better). The reason the results do not change significantly is that the clustering of view

tuples on a single page achieved by view materialization provides the primary performance advan

tage. Even when all attributes of Rx and R2 are projected in the view, the advantage of clustering

dominates the extra I/O cost required for reading data from the larger materialized view.

4.3.6. Model 3: Aggregates Over Model 1 Views

Aggregates such as sum, count and average are an often-used feature of database systems.

As discussed in detail in Chapter 3, many aggregates can be incrementally updated as changes

occur to the data from which they are computed. Incremental maintenance of aggregates is done

by defining a state for the aggregate, functions for updating it in case of deletion or insertion of

values in the set being aggregated, and a function for finding the current value of the aggregate

given the state. The notion of incrementally maintaining aggregates is extremely attractive since

the aggregate state can be read quickly because it normally requires less than one disk block of

storage, while it often takes a large amount of I/O to recompute the aggregate from scratch.

Thus, it would appear that an aggregate need not be used often to justify the expense of main

taining a materialized version of it.

To compare the performance of maintaining aggregates versus computing them from

scratch, Model 3 is is analyzed. In this model, the tuples for which the aggregate is computed do

not need to be kept in a separate materialized view. Only the aggregate state must be stored.

4.VIEW MATERIALIZATION PERFORMANCE 115

For this model, a query to the view consists of simply reading the state of the aggregate.

Using the deferred view maintenance scheme in Model 3, the cost TOTALdeferreds Per °.uerv to

the view is

TOTALdeferreds =
(cost to read hypothetical database)

+ (cost to read the aggregate state)
+ (cost per query toupdate the aggregate state if necessary)
+ (cost per query of screening tuples to see if aggregate is affected)

The cost to read the hypothetical database is C^cad. unchanged from Model 1. The cost to

query the aggregate is the cost to read a single page, i.e.,

CqueryS ™ ^2
The cost to update the aggregate is the cost ofone write times the probability that at least one

tuple modified since the last query to the view lies in the set being aggregated (no read is neces

sary since the aggregate must be read to answer the query). There are 2ti modified tuples in the

hypothetical database per query to the view, and each has probability / of lying in the aggre

gated set. The probability that at least one of these tuples will lie in the aggregated set is equal

to 1minus the probability that none of the tuples lie in the set. Thus, the probability that at least

one of the tuples lies in the set is (l-fl-/)2")• This yields the following expression for the cost

per query to update the view:

Cdef-refreshS a C2(*~(l"/))
The final value of TOTALdeferreds » the following:

TOTALdeferreds = C^ead+Cquery3+Cdef-refresh3+C«ereeii

Using the immediate view update algorithm, the cost per query to maintain the aggregate is

TOTALimmedUteS ™
(cost to read the aggregate state)

+ (cost per query to update the aggregate state if necessary)
+ (cost per query of screening tuples to see ifaggregate is affected)

The cost to read the aggregate state is C^rys- The cost per transaction to update the aggregate

4. VIEW MATERIALIZATION PERFORMANCE 116

state is C2 times the probability that at least one tuple modified by the transaction matches the

qualification of the aggregate. This probability is (l-(l-/)2(). The cost per query to update the

aggregate state is thus as follows:

CimnvrefreshS = ~J-(l-(l"/))
The cost of screening tuples is again Cg^n. yielding the following expression for

TOTALjnunedUteS1

TOTALimroedi&teS ~ CqueryS+^imnvrefreshS"*"^screen

The actual cost of recomputing the aggregate for each query using a clustered index scan is

the same as the cost of query modification in Model 1, which isTOTAL^,^^ This cost will be

compared to TOTALijnmediiteS a°d TOTALdeferreds-

4.3.7. Performance Results for Model 3

To compare the total cost of using deferred view maintenance, immediate view maintenance,

and a clustered index scan to compute an aggregate, the total cost of all three is plotted versus P

in Figure 4.11. In this figure, /=.l and /v=l, so the fraction of the data being aggregated is

0.1. Even when the update probability is very high, it still pays to maintain a large aggregate like

this one. For example, when F=.95 the cost per query when keeping the aggregate materialized

is only about 5% of that to compute the aggregate completely. For small update probabilities,

the difference is even more dramatic. When P=.20, the average cost per query is only slighly

more than C2 (30 ms) if the aggregate is materialized. Approximately 17 seconds are needed to

completely recompute the aggregate.

Figure 4.12 shows how the costs of aggregate materialization and standard aggregate pro

cessing depend on update probability and the size of update transactions. The curves in the figure

indicate where materialization and standard processing using a clustered index scan have equal

cost. Each curve represents a different value of the selectivity of the qualificationof the aggregate

m
s

1

4. VIEW MATERIALIZATION PERFORMANCE

20000.00 -]

15000.00 -

10000.00 -

5000.00 -

0.00

query modification
using clustered index scan

0.000 0.200 0.400 0.600 0.800

update probability (P)

Model 3 (single-relation aggregate): Average cost of an aggregate query versus P for deferred and
immediate view maintenance, and standard processing using a clustered index scan.

Figure 4.11. Model 3: Query Cost

117

deferred,
immediate

aggregate
maintenance

1.000

(/). Query modification using a clustered index scan performs best above each curve, and

immediate maintenance performs best below. It is interesting to note that maintaining material

ized aggregates is most attractive when / is largest. Aggregates over large amounts of data are

thus the best candidates for materialization. Since the number of tuples updated per transaction

(/) will usually be small, it is often worthwhile to maintain materialized aggregates even if their

conditions match a small number of tuples (i.e., / is small). Cost savings can be obtained by

materializing aggregates in significantly more cases than for other views.

4. VIEW MATERIALIZATION PERFORMANCE 118

1.00

0.80

update 0.60 -

probability

(P)
0.401

0.20"

aggregate
predicate
selectivity

0.00 -• • ' '—• •
0.000 100.000 200.000 300.000 400.000 500.000

tuples modified per update operation (/)
Model 3 (single-relation aggregate): Equivalent cost curves for immediate view maintenance, and
standard aggregate processing using a clustered index scan. Above curves standard processing is
best; immediate maintenance wins below.

Figure 4.12. Model 3: Algorithm Comparison

4.4. Discussion

The performance analysis presented has shown that the choice of the most efficient view

materialization algorithm is highly application-dependent. The results are most sensitive to the

following parameters:

4. VIEW MATERIALIZATION PERFORMANCE 119

1. the total fraction of operations that are updates (P).

2. the selectivity factor of the view predicate (/).

3. the fraction of the view retrieved by each query (/„).

4. the number of tuples written by each update (/).
5. the cost of maintaining the sets of inserted and deleted tuples (either in main
memory, or in disk-based hypothetical relations).

Situations where P is high, / is high, or /„ is small, tend to favor not materializing the

view at all. Rather, it is best to perform query modification, and retrieve the result from the base

relations using a good access plan selected by the query optimizer. An important example of this

type of situation is for large views (e.g. the ED view on EMP and DEPT) and queries that always

retrieve a single record. When this example was modeled using /«=»1, /™1, and fval/(number

of tuples in the view), it was found that query modification nearly always outperforms materializ

ing the view in advance.

If /„ is large, and P is not extremely high, then it becomes desirable to maintain views in

materialized form. Higher values of P, and / favor deferred view maintenance over the immediate

scheme because large sets of tuples will be accumulated A and D sets of the hypothetical relation

before each query. The deferred view maintenance strategy will thus perform a few large updates

to the view rather than many small ones. This reduces the total number of I/Os required to

maintain the view due to the nature of the Yao function [Yao77|. Conversely, if P is low,

immediate view maintenance has a slight advantage over deferred maintenance.

A phenomenon observed throughout this study was that deferred and immediate view

maintenance had nearly equal cost, especially when the update probability (P) was low. Because

the two algorithms have costs that are so close, it is clear that by far the most important issue

regarding view materialization strategies is whether to use some differential view maintenance

algorithm or use query modification. The actual view maintenance algorithm chosen is of secon

dary importance.

4. VIEW MATERIALIZATION PERFORMANCE 120

There are a few reasons why deferred and immediate view maintenance were so close in per

formance. One reason is that for small values of P, view maintenance overhead is always small

relative to the cost of queries, regardless of the view maintenance algorithm used. Deferred and

immediate view maintenance were close for higher values of P as well because the advantages and

disadvantages disadvantages of the two methods nearly canceled each other. The main advantage

of deferred view maintenance is that fewer disk writes to the stored copy of a view must be per

formed than in immediate view maintenance. The reason for this is that triangle inequality holds

for the Yao function, which is a main determinant of the number of writes to the view. More pre

cisely,

y(n,m,o+6) < y(n,m,a)+y(n,m,6).

for all a, b>0. On the other hand, the advantage of immediate view maintenance is that less

overhead is usually required to maintain the A and D sets, since they usually will not have to be

written to disk (they should fit in the buffer pool except for transactions that update a large frac

tion of the database). In deferred view maintenance, the A and D sets must be written to disk,

since they may live for more than one transaction. Reducing or increasing the overhead of main

taining A and D in either algorithm could give that algorithm a slight overall performance

advantage.

Even though the expected cost per query in deferred and immediate view maintenance is

nearly equal, deferred view maintenance may be preferred for other reasons. The first is that

deferred maintenance seems seems more fair than immediate maintenance because the deferred

method makes the transactions that actually use a view (the queries) pay most of the cost of

maintaining it. Update transactions pay only the overhead to maintain the differential file data

structure. Also, if there is idle CPU and disk time available, it is likely to be useful to put it to

work refreshing views asynchronously. This can be done in deferred view maintenance, but not in

the immediate scheme. Making use of idle CPU and disk time would improve the response time

of view queries in some situations since the views would not have to be refreshed prior to a query,

4. VIEW MATERIALIZATION PERFORMANCE 121

yet update transactions would still pay little overhead to maintain the view. The evaluation of

the usefulness of this optimization is an interesting topic for future study.

Deferred view maintenance may also be preferred in some situations due to the nature of the

database architecture. The ADMS± system [RoK86| is based on an architecture where asingle

mainframe computer keeps an up-to-date copy of the database, and acollection of workstations is

connected to the mainframe via anetwork. All updates submitted from workstations are sent to

the mainframe for processing. Users at workstations may define acollection of database views

that can be kept materialized using adeferred view maintenance algorithm. Aview query sub

mitted from a workstation is processed by first sending a message to the mainframe to see

whether the base relations on which the view depends have been updated. If they have, the

changes are sent back to the workstation, which updates the view, and then evaluates the query

locally. If the user at the workstation is willing to tolerate answers that may be out of date,

queries can be processed locally without sending any messages to the mainframe. If immediate

view maintenance were used instead of deferred maintenance in ADMS±, the mainframe would

have to broadcast changes continually to the workstations, incurring a high overhead for com

munication. Another reason that deferred maintenance is advantageous in ADMS± is that the

system makes use of awrite ahead log recovery scheme for transaction processing, and the net
changes to base relations that occur after some time Tcan be easily extracted from the log. This
means that ADMS± does not have to use ahypothetical relation data structure to maintain rela

tions, which is asignificant cost savings. Hence, in an architecture like ADMS±, deferred view

maintenance is clearly preferred over immediate view maintenance.

This analysis has shown that the performance benefits of differential view update algorithms

relative to query modification are greater for two-way join views (Model 2) than for simple restric
tions (Model 1). This performance pattern is due to the natural clustering of view tuples on a
single disk page that occurs when the view is materialized in advance. The performance benefits

4. VIEW MATERIALIZATION PERFORMANCE 122

of view maintenance algorithms should be even greater for views joining three or more relations.

View maintenance algorithms would prove particularly useful in situations where

1. the update probability is low, and
2. views are complex.

These conditions are met in many statistical and scientific database applications. Also, some

databases become almost read-only as they age. For example, consider the situation faced by an

aircraft manufacturer when assembling a new plane. A complete description of the plane (e.g.

where each part is installed, who made each part etc.) must be maintained for purposes of future

maintenance, legal documentation etc. This description is updated frequently while the plane is

being built. However, when the construction job is finished, the database will seldom (if ever) be

updated again. Materializing views on this database would probably not be appropriate while the

plane was being built. However, it could be worthwhile after the plane was finished.

One could speculate that the most significant applications of differential view update may

not be related to processing queries against views, 6ince this 6tudy has shown that query

modification is still quite effective. Rather, view materialization might have a greater impact in

applications where a complete copy of the answer to a query is always needed. For example,

materialization could support conditions for complex triggers and alerters, as described in

[BuC79j. As another example, it could be used as a basis for a "window on a database" facility,

where the result of a query would be displayed and updated in real time.

Finally, the performance of different view materialization schemes depends significantly on

the database and view structure, and the distribution of queries and updates. Thus, an interesting

topic for future research would be to devise an adaptive method to choose the appropriate view

materialization algorithm. Future implementation and empirical testing of view maintenance

algorithms is also needed to help gain a fuller understanding of the tradeoffs involved.

123

CHAPTER 5

PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

The same types of algorithms that can be used for view processing can also be applied to

database procedures. As with views, different methods have different costs. This chapter presents

a performance analysis comparing different algorithms for processing queries that retrieve the

value of a database procedure. The chapter is organized as follows. Section 5.1 reviews the

different algorithms that can be used for procedure maintenance. Section 5.2 describes the two

procedure models (model 1 and model 2) that will be analyzed. Section 5.3 analyzes the cost of

procedure maintenance using model 1. Section 5.4 presents the performance results obtained for

model 1. Section 5.5 analyzes the cost of maintaining model 2 procedures. Section 5.6 gives the

performance results for model 2. Finally, section 5.7 summarizes and presents conclusions.

5.1. Procedure Maintenance Algorithms

As described in chapter 3, the following algorithms can be used for processing database pro

cedure queries:

Always Recompute:
Compute the value of the procedure from the base relations on each access
(this strategy is equivalent to a special case of query modification in
which the entire view is retrieved).

Cache and Invalidate:

When the procedure is accessed, if a valid result for it is cached,
use it. Otherwise, recompute the value and refresh the cache. If
an update command occurs that would change the value of the
procedure result, the currently cached result is marked invalid.
(This method is also known as simply "caching").

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 124

Update Cache:
Maintain a materialized answer to each query in the procedure definition
by using a differential view maintenance algorithm. Process procedure
queries by returning the stored value.

As discussed in chapter 3, view maintenance algorithms can be divided into two classes,

shared and non-shared, depending on whether shared subexpressions elimination is used. In this

chapter, both a shared and non-shared algorithm are analyzed. A non-shared, static version of

AVM is compared with Rete view maintenance, which is shared and static. Any mention of AVM

in this chapter refers to the non-shared, static version of the algorithm.

The performance model for procedures presented in this chapter is different than the one

given in Chapter 4 for views because there are differences between view and procedure use. When

a view is queried, usually only a small fraction of it is retrieved. In contrast, the entire value of a

procedure is retrieved when it is accessed. The number of procedures in a database is likely to be

much larger than the number of views. Views also usually contain a large amount of data, while

procedure values are typically small. The new performance model for procedures is discussed

below.

5.2. Procedure Models Analyzed

Two different models for the structure of procedures will be analyzed. In both models 1 and

2, it is assumed that each stored procedure consists of a single retrieve query. In model 1, pro

cedures may be of two types. The first type (Pj) is a simple selection of one relation, Rx. The

second type (P2) is a join query. Procedures of type Pi have the following structure:

Pv

retrieve (Pi.all)
where Cf{Rx)

Type P2 procedures have the form:

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 125

P2, Model 1 (2-way join):

retrieve (P^fields, #2.fields)
where i?i.a = R2.b
and Cf{Rx)
and Cj\R2)

The difference between model 1 and model 2 is that in model 2, type P2 procedures are three-way

joins instead of two-way joins. Type P2 procedures have this structure in model 2:

P2, Model 2 (3-way join):

retrieve (Pj.fields, i?2.fields, i?3.fields)
where Pj.a = R2.b
and R2.c = i?8.d
and Cj{Rx)
and CflRJ

The width of tuples in both Px and P2 procedures is S bytes. The selectivity of the clauses of the

form Cx{Ri) is X (e.g. the selectivity of Cf(Rx) is /). For type P2 procedures the expected

number of tuples the procedure will contain is determined as follows. Let / be the product of

the selectivities of the simple restriction terms Cj and Cj% (f =f f2). It is assumed that the

expected number of tuples in a procedure of type P2 is

/•maxO^UPalJPjl)

= /# mMNtfR9N,fR9N)

= /'iV
The database contains Nx procedures of type Px, and N2 of type P2. Using a shared view

maintenance algorithm there is a possibility of sharing subexpressions in this model. Procedures

of type Px can form a shared subexpression for procedures of type P2 if the selection term

Cf(Rx) is the same. The models contain a parameter SF which is the sharing factor. It is

assumed that a fraction SF of the type P2 procedures are able to use a type Px procedure as a

shared subexpression. If SF is 0, then no sharing takes place, and if SF is 1, every type P2 pro

cedure has a shared subexpression.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 126

In the models, k update operations and q procedure accesses occur. Each update modifies /

tuples of Rx in place. Relations R2 and Rz are not modified. Each procedure access reads the

entire contents of a single stored procedure, which is selected at random from the total collection

of Nx-rN2 procedures.

Using Cache and Invalidate, when an update causes a stored procedure value to become

invalid, this fact must be recorded. The most obvious way to do this is to read the first page of

the object, set a flag on it that says the object is invalid, and write it back. Reading and writing

the page requires an amount of time equal to 2C2 (60 ms) per invalidation. An alternative is to

use a data structure kept in high-speed memory with an entry for each procedure indicating

whether or not it is valid. One way to make this data structure recoverable is to use a reliable

battery power supply for the portion of memory containing it. Another is to log the identifiers of

invalidated procedures in a conventional write-ahead recovery log [Gra78]. If the data structure is

checkpointed periodically, it can be recovered by playing the latest part of the log against the last

checkpoint after a crash. Using either of these methods, the cost per invalidation is much less

than 2C2 (using battery-backed-up memory, it is essentially zero compared to the cost of reading

and writing a page). To measure the significance of the cost ofan invalidation, a parameter for it

called Cinval is included in the models.

A summary of the parameters used in the procedure cost model is shown below. Parameters

that are unchanged from the performance model for views presented in Chapter 4 are not listed.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

meaning

number of Pi-type procedures
number of Pytype procedures
sharing factor (fraction of P2

procedures that have a Pi procedure
as a shared subexpression)

size of Rz as a fraction of N
selectivity factor of predicate term Cj9
cost to record invalidation of a cached

procedure value

The default values of the parameters for the procedure cost analysis are

N 100,000 / .001

S 100 /2 .1

B 4,000 /rt9 .1

k 100 /*. .1

I 25 Ci 1

q 100 c2 30

d 20 Cinvil 0

SF .5

127

The parameters will have the values shown unless stated otherwise. The default for / (.001) is

smaller than for views because procedures typically contain a small number of tuples. Using this

value of /, type Pi procedures contain /JV=100 tuples. Type P2 procedures contain /*iV=10

tuples for the default parameters.

The relations involved have the following access methods:

relation

Ri
R2
R>

B-tree primary index on «*..« ««^- -
hashed primary index on attribute a
hashed primary index on attribute c

access method
field used by selection predicate Cj(Rx)

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 128

5.3. Cost Analysis for Model 1 Procedures

5.3.1. Model 1: Cost of Always Recompute Strategy
The expected cost to compute a procedure value is

the fraction of procedures that are of type Px, times
the cost to compute a procedure of type Px (Cquerypi)

+

the fraction of procedures that are of type P2, times
the cost to compute a procedure of type P2 (Cqueryp2).

CJqueryPi is the cost to search a B-tree index and read fN tuples from Rx. The height of the B-

tree index on Rx is H\, as defined in chapter 4. Each of the fN tuples read must be tested

against the procedure predicate at a cost of Cx each. The number of pages read from disk at cost

C2 each is is \f*b]. The complete expression for CqueryP1 is

CqueryP2 " tne cost to do a tw°-way join to retrieve the tuples of a procedure of type P2. It is

assumed that the value of this procedure is found using a B-tree index scan on Pi and joining

qualifying Pi tuples with P2 using the hash index on P2. The number ofpages ofR2 that must

be read to do the join is

The total cost is

CqUeryP2 = CJN+Ct\f.b]+CJIl+CJN+Cjrl
The expected cost to find the value of a single procedure is

'ProcessQuery = "Jv+JV"' ^"y^1"1" Nx-rN2 C<»uefyp2
The cost of a procedure access when the procedure must be computed from scratch each time is

simply

Nt
CqueryPl+

Nt

Nx+N2 Nt+Nt

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 129

TOTRecompUtei = CprocessQuery

5.3.2. Model 1: Cost of Cache and Invalidate

The expected cost of accessing the result of a stored procedure using Cache and Invalidate

has three components:

1. the probability that a stored procedure value is invalid (IP) times
the cost to compute the value and store it (Tx)

2. the probability that the stored value is valid (1—IP) times
the cost to read the stored value (T2)

3. the cost of marking the procedure invalid if necessary (Tj)

These components give the following formula for the expected cost per read of a stored procedure

value when using caching:

TOTcachelnvall = H> Tx + (1-1P) T2 + Tz
The expected cost to compute the procedure value is CprocesSQuery. After the values of the pro

cedures are found, the result must be written to update the cache. Type Px procedures have

f/'H pages, and type P2 procedures have 1/ -61 pages. Thus, the average size ofa stored pro

cedure value is

ProcSize =
"i I

AYrA2 r/-*i+
N*

Nx-rN2 "I
The cost to write the procedure value, CWrifccKhe, »s tne cost to rea<l tne Pa8es currently in the

cache, change their value, and write them back, which is

CwriteCache =B 2C2ProcSlze

The complete value for 7\ is the following:

7*1 = CprocejjQucy+CwriteCache

T2 is simply the cost to read the cached procedure value, i.e.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 130

T2 = C2ProcSize

The cost per update transaction of marking stored procedures invalid (T3) is determined as fol

lows. For a single stored procedure, the probability that any update transaction will invalidate it

(^invil) k one rninus the probability that the procedure is not invalidated. Thus, the value of

Pbvil i8

Pm = i-(i-/)a
The cost to mark a procedure value invalid is Cjnvj. Since there are Nx+N2 total procedures,

the expected cost to mark objects invalid after an update is

(N1+JV2)PinvilCinvd

Averaging to find the total cost of invalidation per query, the complete expression for T3 is

r»=T^+7V2)P»^tovd

Finally, the probability IP that the cache will be invalidated between reads of the procedure

value must be found. To account for locality of reference, it is assumed that a fraction Z of all

procedures receives a fraction 1—Z of all references. The remaining procedures receive a fraction

Z of the references. For example, if Z=0.2 then 20% of the procedures are accessed 80% of the

time. The value of IP is equal to

The probability that an access is to a heavily-accessed object (1—Z)
times the probability that a heavily accessed object is invalid [Zx)

+

the probability that an access is to a seldom-accessed object (Z)
times the probability that a seldom accessed object is invalid (Z2).

It is assumed that each update transaction has an equal probability of invalidating any procedure.

Each access reads a single stored procedure. The expected number of update transactions {X)

between accesses to a single heavily-accessed procedure is equal to

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 131

(1) the total number of procedure accesses between queries to
an individual frequently-accessed procedure

times

(2) the number of updates per query.

To find (1) recall that the probability that aquery is to a frequently accessed object is 1-Z. If n

is the total number of objects (n =JVi+N2) then there are Zn total frequently-accessed objects.

Thus, the probability PF that any query is to a particular frequently accessed object is

The value of(1) is l/PF. The value of(2) is k/q. The complete formula for X is

X=—- = n Z k
PF q 1-Z q

Each update transaction modifies / tuples, for a total of 2/ new and old tuple values. Each of

these tuple values has a probability / of breaking a t-lock and invalidating a procedure. The

complete formula for Zx is

The expression for Z2 is similar, except that X is replaced by Y, where Y is the expected number

of update transactions between queries that read a seldom-accessed procedure. The formula for

Y, which can be found using an analysis similar to the one for Z, is

v \-Zk

The expression for Z2, and the final formula for IP are shown below.

zt = Mi-/)™

IP = (l-Z)Zj+Z z2

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 132

5.3.3. Model 1: Cost of Update Cache (Non-Shared)

The following factors contribute to the average cost of retrieving the value of a procedure

maintained using AVM:

• the cost to screen updated tuples when t-locks are broken to see if
they cause a procedure value to change,

• the cost to compute the sets of tuples to be inserted into and
deleted from the procedure value,

• the cost to read and write the procedure value to refresh its contents,

• the overhead to maintain the sets of modified base relation tuples
{Ant% and DDet) in an auxiliary data structure during each
update, and

• the cost to read the result of the stored procedure when it is accessed.

For screening new tuples there is an expected cost of NxCxfl for the Nx procedures of type Pi

and N2Cxfl for the N2 procedures of type P2.

To compute the changes to procedures of type Px, there is no extra cost. For type P2 pro

cedures, a cost is incurred to join qualifying Pi tuples with R2. The join requires joining 2//

tuples from Pi to P2 using the hash index on the join field of P2. R2 has fRaN tuples and fRab

blocks. Thus, for a single type P2 procedure, the following number of page reads are required:

Y2=v(fRiNJR%b,2fl)

The cost to refresh the stored copies of procedures is found in the following way. Procedure

values of type Pi contain fN tuples, and fb blocks. Each update command modifies / tuples

(equivalently, / tuples are deleted and / are inserted). Thus, the expected number of pages that

must be read and written from a type Px procedure after each update command is

Yz = l(fN,fb,2fl)

The total selectivity of the condition of a type P2 procedure is / so there are / N tuples and

f*b blocks in a procedure oftype P2. Thus, refreshing a procedure oftype P2 after atransaction

that modifies I tuples requires the following expected number of block reads and writes:

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 133

Y4 = y{f'NSbt2f*l)

There is also overhead to maintain the sets of new and old tuples (Anet and Dnti) during

each transaction. It is assumed that there is one Anei and Dnet set for each procedure that has a

lock broken by the update transaction. These sets are maintained in data structures created on

the fly. The total size of all the AMi and Dnet sets is equal to the total number of locks broken,

which is 2fl(Nx+N2). There is an overhead of C3 per tuple to maintain these sets during a tran

saction.

The expected size in pages of a stored procedure value is ProcSize, so the average cost to

read a stored procedure value is

Crewi = C2ProcSize

The components of the cost of a procedure access using AVM to implement the Update

Cache strategy are summarized below.

cost componentmponeni

dviccu Pi tuples for type Px procedures
screen Rx tuples for type P2 procedures
refresh procedures of type Px
refresh procedures of type P2
maintain AX,DX sets
join Pi tuples to R2
average cost to read a procedure

screen

name

^screenPl
^screenP2
CrefreshPl
Crefr«hP2
^overhead
^join
Cre»d

value

NxCxfl
N2CJl
NxC22Yz
N2C22Y4
Cz2fl{Nx-rN2)
N2C2Y2
C2ProcSize

The cost CreM{ is paid once each time a procedure value is read. The other cost components are

paid once each update operation. These components must be multiplied by kjq to find the cost

per access. Hence, the average cost of a procedure access using AVM in model 1 procedures is as

follows:

TOTnon.8i,M.e<ii = Cre^+^C8creenpi+CBereenp2+CrefreshPi+Crefres|1p2+COVerl,e»d+C'job)
9

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 134

5.3.4. Model 1: Cost of Update Cache (Shared)

The shared view maintenance algorithm analyzed here is Rete view maintenance. The Rete

network used to maintain individual procedures of type Pi and P2 is shown in Figure 5.1. The

costs for screening tuples against the predicate term C/(Pi) of procedures of type Pi and to

refresh stored copies of those procedures is the same as for AVM. Because a fraction SF of type

P2 procedures have a shared subexpression, screening costs must only be paid for the remaining

fraction 1—SF. The total cost of screening tuples against the predicate term Cj(Rx) of type P2

procedures is

CscreenP2.Ret« = A^l-SFJC^

can be shared

Figure 5.1. Rete networks for type Px and P2 procedures in model 1

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 135

For the fraction 1—SF of type P2 procedures that do not have a shared subexpression, the left a-

memory node must be refreshed. The cost of refreshing the a-memory nodes for these procedures

is

Crefresh.a = N2(l-SF)2C2r8

For each of the tuples inserted into or deleted from the left a-memory, the right memory must be

checked for joining tuples. The cost to check for joining tuples is the cost to make 2fl probes

into the right memory, which contains f**N tuples, where the value of / is

The expected number of pages that must be read from one right a-memory is

r% = vU"N,!"b,ifi)
The total cost of these reads for all N2 procedures of type P2 is

•/join»ar = N2C2Yb

The average cost of reading a procedure value when it is accessed is Cnw&. The components of

the cost of accessing a procedure that is maintained using RVM are summarized in the table

below.

cost component name value

screen Rx tuples for Pi CscreenPl (unchanged)
screen Pi tuples for P2 CscreenP2-Rete JVi(l-SF)Ci/2/
refresh procedures of type Px CrefreshPl (unchanged)
refresh left a-memory for

procedures of type P2 ^refresh-ar Ayi-SFpCtfi
refresh procedures of type P2 CrefreshP2 (unchanged)
read right a-memory Y)o!n-or N2c2r5
read procedures Pi, P2 Cre»d (unchanged)

Creid i* Paid once Per <luery- The other costs shown in the table are paid once per update. The

average cost per query of maintaining procedures after updates is found by multiplying these

figures by the number of updates per query (k/q). The average total cost per query when main-

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 136

taining procedures using RVM is

TOTshtxedi = Cread+ HC5creenPl+CScreenI»^Rete+CrefreshPl+Crefresli.a+CrefreshP2+Cjoiii.o)
9

5.4. Performance Results for Model 1 Procedures

In this section, the results of the performance analysis for model 1 procedures are presented

and discussed. Several figures show the cost of a procedure access for various parameter values

using Always Recompute, Cache and Invalidate, and both the shared and non-shared versions of

Update Cache. Other figures plot the area where each algorithm performs best for the update

probability P versus the object size /.

Figure 5.2 shows query cost versus update probability, assuming that the Cache and Invali

date strategy marks procedures invalid using the straightforward method that requires two disk

I/Os. This situation is modeled by setting C'my9f=Wms. Figure 5.3 plots the same curves for

Cinvil—0. Figures 5.2 and 5.3 clearly show that the total cost per query using Cache and Invali

date is highly sensitive to the value of C-mvti. Thus, if Cache and Invalidate is implemented, it is

important to keep Cmval small. C^d can be limited using one of the techniques previously

described (e.g. a data structure in battery-backed-up memory). In both figures, the cost of Cache

and Invalidate and both versions ofUpdate Cache are equal when the update probability P is zero

because there is never any overhead to update or recompute procedure values. In Figure 5.3, there

is a significant difference in the cost of Cache and Invalidate and Update Cache for 0<P<0.7.

This difference occurs for the following reasons.

1. For /=0.001 it is less expensive to incrementally update
an object when only a few tuples change than to invalidate and
recompute it.

2. Update Cache suffers from false invalidations, which are
invalidations that are not necessary because the object does not
really change.

For type P2 procedures, the probability that an object has really been made invalid given that a

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 137

m
s

I

4000.00 1

3000.00 '

Cache and Invalidate
Update Cache

(Rete)
Update Cache

(Algebraic)

r 2000.00 -

3
e
r

y

Always Recompute

1000.00 -

0.00
0.000 0.200 0.400 0.600 0.800 1.000

P

Figure 5.2. Query cost versus update probability for high cache invalidation cost (60 ms)

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

4000.00 1

3000.00 -
m
s

l
r

a
e
r

y

2000.00 "

1000.00 -

Update Cache

(Rete) Update Cache

(Algebraic)

Cache and
Invalidate

Always
Recompute

o.oo-^ • ' ' ' »
0.000 0.200 0.400 0.600 0.800 1.000

138

Figure 5.3. Query cost versus update probability for low cache invalidation cost (0 ms)

new tuple matches the predicate C/(Pi) is f2 (the selectivity of the other selection term). Hence,

the probability that an invalidation is false is l-/2. Since the default value of / is 0.1, the pro

bability of false invalidation is significant. For values of P>0.6 in Figure 5.3, the cost of Cache

and Invalidate levels off at a plateau slightly above the cost ofAlways Recompute because stored

procedure values are virtually never valid. The slight difference between the two curves

represents the effort wasted by Cache and Invalidate towrite back procedure values after they are

computed. The cost of both Update Cache strategies rises dramaticly for large values of P

because stored procedure results must be updated repeatedly between queries.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 139

The cost per query using larger objects (/=0.01) is plotted in Figure 5.4. For this value of

/, type Pi procedures contain 1,000 records and type P2 procedures contain 100 records. When

the update probability is low, it is significantly more efficient to incrementally update a large

object than to mark it invalid and require it to be recomputed. Incremental maintenance is supe

rior in this case because only a small amount of work is required to bring an object to the correct

state when only a few tuples in it change. Invalidation requires the next query to completely

recompute the object, which is expensive for large objects. The cost per query for small objects

(/=0.0001) is shown in Figure 5.5. For this value of /, type Pi and P2 procedures contain 10

m
s

I

40000.00 n

30000.00 -

r 20000.001

3
e
r

y

10000.00 H

0.00

Update Cache

-zzz.

Update Cache
(Algebraic)

Cache and
Invalidate

Always
Recompute

i i i i i

0.000 0.200 0.400 0.600 0.800 1.000

Figure 5.4. Query cost versus update probability for large objects (/=0.01)

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 140

1000.00 1 Update Cache
(Algebraic)

750.00 -

m

I
r 500.001

3
e
r

y
250.00 i

0.00

Cache and
Invalidate

Always
Recompute

0.000 0.200 0.400 0.600 0.800 1.000

Figure 5.5. Query cost versus update probability for small objects (/=0.0001)

tuples and 1 tuple, respectively. Figure 5.5 shows that when procedures are small, Cache and

Invalidate is very competitive with the Update Cache strategies. Furthermore, Cache and Invali

date does not suffer from the severe performance degradation that affects Update Cache when the

update probability becomes large. The case where objects are as small as possible (one tuple) is

examined in Figure 5.6. In this figure, JVi=100, iV2=0 and f=l/N, meaning that aU pro

cedures are selections of one tuple from a single relation. Cache and Invalidate is essentially

equivalent to Update Cache under these conditions, except that the performance of Cache and

Invalidate does not degrade severely for large P.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

800.00 1

600.00 i

m
s

1
r 400.00 i

a
e
r

y
200.00

Update Cache
(Algebraic and Rete)

Cache and
Invalidate

Always
Recompute

0.00
0.000 0.200 0.400 0.600 0.800 1.000

Figure 5.6. Query cost versus update probability for single-tuple objects {f=l/N)

141

Figure 5.7 shows the cost per query assuming that the locality of reference is high

(Z=0.05). Again, Cache and Invalidate is very competitive with Update Cache for low P, and

superior for large P. The affect of high locality of reference is similar to the affect of small

objects.

The affect ofa large number ofobjects is modeled in Figure 5.8 by setting Jv"i=Jv"2=lQ00.

The cost of Cache and Invalidate and Update Cache is the same for zero update probability, but

cost increases more rapidly as P increases it does in Figure 5.3. Varying the total number of

objects changes the slope of the curves for the Update Cache strategies, and changes the value of

P where the cost of Cache and Invalidate reaches its plateau. Figure 5.9 compares the two

m
s

P
e

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 142

4000.00 -I

3000.00 "

Update Cache
(Rete) Update Cache

(Algebraic)

r 2000.00" Cache and
Invalidate

Always
Recompute

3
e
r

y
1000.00 -

0.00
0.000 0.200

i i

0.400 0.600 0.800 1.000

Figure 5.7. Query cost versus update probability for high locality (Z=0.05)

m
s

P
e
r

a
e
r

y

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 143

4000.00 1

3000.00 -

2000.00 -

1000.00 -

0.00

Update Cache
(Rete) Update Cache

(Algebraic)

Cache and
Invalidate

Always
Recompute

i i i i i

0.000 0.200 0.400 0.600 0.800 1.000

Figure 5.8. Query cost versus P for large number of objects (JVj=iV2=1000)

different Update Cache algorithms (AVM and RVM) focusing on the effect of the level of sharing

(SF). In model 1, the cost ofRVM becomes comparable to AVM only when almost every type P2

procedure has a shared subexpression for its selection term on Pi. The reason RVM performs

poorly compared to AVM for small sharing factors is that RVM must pay overhead to refresh

copies of left a-memory nodes. When procedures contain only two-way joins (as in model 1) only

a high level of sharing can make RVM competitive with AVM. Different results are obtained for

the three-way join case analyzed later for model 2.

Figure 5.10 shows the regions where each algorithm performs best for different object sizes

and update probabilities. The area where Cache and Invalidate wins in Figure 5.10 is

m
s

P
e

r

3
e
r

y

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 144

iooo.oo n

800.00 -

600.00 -

400.00 -

200.00 -

Update Cache
(Rete)

Update Cache
(Algebraic)

0.00
0.000 0.200 0.400 0.600 0.800 1.000

SF

Figure 5.0. Query cost versus sharing factor (SF)

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

Cache and
Invalidate wins

1.00 n

0.80

0.60-

0.40"

0.20"

0.00

Always Recompute
wins

Update Cache
(Algebraic) wins

0.0001 0.0010 0.0100

f

• i

0.1000 1.000

Figure 5.10. Areas where each method wins for object size versus update probability

145

insignificant, except that it shows that its cost is close to the cost of Update Cache in the vicinity.

As expected, the methods with a per-update overhead do not do as well as Always Recompute

when the update probability P is large. An interesting phenomenon observed is that Update

Cache wins for a smaller range of values for P when objects are large than when they are 6mall.

This phenomenon occurs because it is highly likely that any update will affect a large object, 60

such an object must be maintained often. However, when objects are small, updates are likely not

to affect them at all, so little overhead is incurred.

In Figure 5.11, the locality of reference is higher than in the previous figure (£=0.05).

Cache and Invalidate benefits from the increased locality but Update Cache does not. Cache and

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

1.00-1

0.80"

0.60-

0.40-

Cache

and
Invalidate

wins

Always Recompute
wins

Update Cache
(Algebraic) wins

0.20-

0.00 h

0.0001 0.0010 0.0100

f

0.1000 1.000

Figure 5.11. Areas where each method wins assuming high locality (Z=0.05)

146

Invalidate performs best when objects are small (/<0.002). The reason this occurs is that incre

mentally updating small objects costs nearly as much as recomputing them and writing back the

results.

To demonstrate how close Update Cache and Cache and Invalidate are, Figure 5.12 shows

the area where Cache and Invalidate is within a factor of two of Update Cache or better for the

default parameter settings. When the update probability P is high, Cache and Invalidate is close

to or superior to Update Cache because the cost ofUpdate Cache rises rapidly as P grows. Cache

and Invalidate is also close to Update Cache for small objects when the update probability is low.

Figure 5.13 shows the same information with /2=1» which reduces the probability of false

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

1.001

0.80-

0.60-

0.40-

0.20-

0.00

Cache and Invalidate within

factor of two or better of

Update Cache

(also in area marked *)

Update Cache Wins by
factor of two or more

0.0001 0.0010 0.0100 0.1000 1.000

Figure 5.12. Measure of closeness between Cache and Invalidate and Update Cache

147

invalidation to zero. Cache and Invalidate performs even better for small objects in this situation.

5.5. Cost Analysis for Model 2 Procedures

The cost of maintaining model 2 procedures is analyzed in this section. The difference

between models 1 and 2 is that type P2 procedures required a three-way join in model 2 rather

than a two-way join. Below, the cost formulas for model 2 are presented. Most of the formulas

remain unchanged, so only the differences from model 1 are 6hown.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

1.00-1

0.80-

0.60-

0.40

0.20"

Cache and Invalidate

within factor of two

or better of Update Cache

f

0.00 -» =•» • r

0.0001 0.0010 0.0100 0.1000 1.000

Figure 5.13. Measure ofcloseness (/2=1)

148

5.5.1. Model 2: Cost of Always Recompute

The cost of Always Recompute is different in model 2 than model 1 because a three-way join

is required to construct the value of a procedure of type P2 instead of a two-way join. The cost

to compute this three-way join is CqueiyP2r. The value of a type-P2 procedure is found by

(1) using a B-tree index scan on Rx to find tuples matching Cf{Rx),
(2) joining qualifying Rt tuples with R2 using the hash index on R2, and
(3) joining the resulting tuples to Rz using the hash index on i?8.

The cost of (1) plus (2) is the same as Cqueryi. Part (3) requires reading the foUowing number of

pages from Rji

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

Yt = y{fRJ»,fR}>,fN)

An additional fN predicate tests are required. The complete expression for Cqueryp2 is

Cq„eiyP2' = C^+C^+CJJV

The average cost of computing a procedure value from scratch in model 2 is

TOTRecompute

t 1

CqueiyPl+
N3

Nt+Nt Ny+Nt 'queryP2

149

5.5.2. Model 2: Cost of Cache and Invalidate

The cost formula for caching in model 2 (TOTc»chelnv«12) fe found simply by replacing

CqueryP2 bv CqUeryP2 •

5.5.3. Model 2: Cost of Update Cache (Non-Shared)

In model 2 the tuples resulting from the join of Rx and R2 must be joined to R3 when the

non-shared algorithm (AVM) is used. The join of tuples from Rx to R2 requires reading Y2 pages

from R2. The fN tuples resulting from this join are then joined to R& Rz has fRJV tuples and

fRtb blocks, so this last join requires the following number of page reads:

The total join cost (Cjoinr) is

Cjob' - WWW)
The total cost per query for AVM in model 2 is found by substituting C^' for Cj0-m in the for

mula from model 1, yielding the formula

TOTnoD.s|,ared2 s= ^^^1+—{C8creeopi+Cgereenp2+Crefresilp1+Crefresilp2+Coveri,esa+Cj0in)
9

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 150

5.5.4. Model 2: Cost of Update Cache (Shared)

The cost components CgcreenPi. cScreenP3-Rete. CrefreshPi and Cntrt^-a Me unchanged from

the analysis for model 1. In model 2, a ^-memory rather than an a-memory forms the right input

to the and node above a type P2 procedure, as shown in Figure 5.14. The part of the figure in

the dashed box can be a shared subexpression. A fraction SF of the type P2 procedures 6hare

that portion of the network with a procedure of type Px. Tuples that reach the left input of the

and node must be joined to the ^-memory node. The ^-memory contains f2 N tuples and f2 b

blocks, where f2 has the following value:

can be a shared

subexpression

left.a =
right.b

CjlRi)

a-memory

. x, left.c =
and Y right.d
^-memory

Figure 5.14. Model 2: Rete Network for P2Procedures

5.PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 151

It a Utt%

The following number of pages must be read from the ^-memory node to perform the join:

n=v(/2*Xf2"M/0
The expected cost to join tuples from the left input to the ^-memory after each update is

CrefreshP2 is the same as for model 1 because type P2 procedures are the same size as in model 1,

and the expected number of tuples in a type P2 procedure that change after an update transac

tion is still the same. The average cost to read a procedure in model 2 is also unchanged from

model 1. Thus, the only difference in cost from model 1 is that Cj0-m.a is replaced by C^.^. The

total cost formula for maintaining procedures using RVM in model 2 is

TOTsh»red2 == ^read+ ^Cscreenp1+CscreenP2-Rete+CTefreshPl+C'refresh-o+ '̂refreshP2+^job-^)

5.6. Performance Results for Model 2 Procedures

The performance results for Model 1 and Model 2 are similar, as can be seen by comparing

Figure 5.15 with Figure 5.3. The main difference is that the shared view maintenance algorithm

(RVM) performs significantly better in model 2 than in model 1 compared to the non-shared algo

rithm (AVM). Figure 5.16 shows the performance of the two algorithms versus thesharing factor

SF. For a sharing factor of approximately 0.47, the two algorithms are equivalent in cost. For

higher sharing factors, RVM is superior to AVM. RVM has an advantage in this situation

because when tuples in Rx change, they must be joined only to the right ^-memory, but AVM

must join the tuples to R2 and then join the resulting tuples to Rs. Using RVM, as the sharing

factor increases, the cost of maintaining the left a-memory becomes less than the advantage pro

vided by the precomputed subexpression in the ^-memory. Figure 5.17 shows the areas where

each algorithm performs best for update probability versus object size in Model 2. Figure 5.17 is

similar to Figure 5.10 for Model 1, except that the best version of Update Cache is RVM instead

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 152

m
s

I
r

3
e
r

y

8000.00 n

6000.00 "

4000.00 -

2000.00 -

Update Cache

(Algebraic
and

Rete)

Cache and
Invalidate

Always
Recompute

0.00
0.000 0.200 0.400 0.600 0.800 1.000

Figure 5.15. Model 2: Query cost for default parameters

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 153

1000.00 1

800.00 1

m
s

| 600.00 i
T

3
e 400.001

y

200.00 -

0.00 -t

Update Cache

(Algebraic)

Update Cache
(Rete)

i i i i i

0.000 0.200 0.400 0.600 0.800 1.000

SF

Figure 5.10. Model 2: Query cost of Update Cache alternatives versus sharing factor

of AVM.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

1.001

0.80-

0.60"

0.40"

0.20-

0.00

Always Recompute
wins

Update Cache (Rete)
wins

0.0001 0.0010 0.0100

f

i i

0.1000 1.000

Figure 6.17. Model 2: Winners for update probability versus object size

154

5.7. Summary and Conclusions

This study has brought out several points regarding the effectiveness of Always Recompute,

Cache and Invalidate, and Update Cache for processing database procedures. It is critical to use

some method to limit the cost of marking a procedure invalid in Cache and Invalidate. Other

wise, its performance is significantly worse than that of Update Cache. If a low-cost invalidation

method is used and procedure results are small, Cache and Invalidate is as efficient (or only

slightly worse than) Update Cache. A problem with Update Cache is that its performance

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 155

degrades severely at high update probabilities. Cache and Invalidate does not suffer from this

problem if the invalidation cost is small. Its performance is only slightly worse than that of

Always Recompute for high update probability. This phenomenon makes Cache and Invalidate a

much safer algorithm than Update Cache if there is a possibility that update frequency will be

high. Both Cache and Invalidate and Update Cache bring substantial savings if the update proba

bility is small. For example, using / =0.0001 (as shown in Figure 5.5), with P=0.1, Cache and

Invalidate andUpdate Cache outperform Always Recompute by factors of approximately 5 and7,

respectively. Update Cache is significantly better than Cache and Invalidate for large objects

when update probability is low. This occurs because it is inexpensive to incrementally update a

large object when it changes relative to the cost of recomputing it entirely. Another interesting

observation made in this study is that Update Cache sometimes outperforms Cache and Invalidate

for both small and large objects when update probability is low. This occurs because Cache and

Invalidate can suffer from false invalidations.

There are major differences in performance between Always Recompute, Cache and Invali

date, and Update Cache which depend primarily on update probability and object size. For the

different versions of Update Cache, including a shared algorithm (RVM) and a non-shared algo

rithm (AVM), relative performance is insensitive to update probability and object size. The

important parameters when comparing AVM and RVM are

(1) the likelihood of finding shared subexpressions (sharing factor),
(2) the number of joins in a procedure query, and
(3) the relative frequency of updates to different relations.

Increasing the sharing factor makes RVM perform better, but does not affect the performance of

AVM. In the analysis of this chapter, when procedures contain only two-way joins (as in model 1)

AVM is never significantly better than RVM. This will be true in general for two-way joins

because the cost saved by RVM through sharing subexpressions is canceled by the overhead of

maintaining a-memory nodes. If procedures contain joins of three or more relations (as in model

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 156

2) RVM can perform better than AVM. This is possible because there will be precomputed subex

pressions containing joins of two or more relations. These subexpressions can be used to limit the

total number of joins that RVM must perform compared to AVM. For example, in model 2,

RVM only has to compute a two-way join, but AVMmustdo a three-way join.

The relative frequency of updates to different relations is an important factor that was not

analyzed in this chapter. Static optimization methods will use statistics on relative update fre

quency when designing an optimal plan for maintaining procedures (e.g. an optimized Rete net

work). Hence, the plan produced will be efficient for the given update pattern. Because ofthis, it

is expected that the benefits of static optimization observed in the analysis performed in this

chapter will be observed in actual application. However, further study of staticly optimized pro

cedure (or view) maintenance algorithms is needed before this can be concluded with certainty.

The shared version of AVM described in chapter 3 was not analyzed in this chapter. Shared,

static AVM will probably outperform both non-shared, static AVM and RVM when the sharing

factor is high. This is likely because shared, static AVM benefits from shared subexpressions

without paying overhead to maintain the Rete network memory nodes used in RVM. A potential

drawback of the staticly optimized algorithms is their fixed execution plan (e.g. the Rete network),

which may cause them to become more costly than dynamicly optimized algorithms if the struc

ture of the database or the update frequency changes significantly. Experience is needed to know

whether the drawbacks of the fixed execution plan used in staticly optimized algorithms will

overwhelm the advantages gained by avoiding run-time compilation overhead, and by combining

shared subexpressions.

An important issue with the Cache and Invalidate and Update Cache strategies is how to

decide whether or not to maintain a cached copy of given object. Sellis has considered this issue

for Cache and Invalidate [Sel86b,Sel87|. The question is even more important for Update Cache

because the potential cost of awrong decision (e.g. maintaining an object when the update proba-

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 157

bility is too high) is much larger than for Cache and InvaUdate. How to make this decision when

using Update Cache is an interesting problem for future study.

One would expect the results of database procedures to be small in most applications. This

expectation combined with the observations made in this study suggest the following strategy for

implementing database procedures. Always Recompute should be implemented first because it is

simplest. If sufficient resources are available to implement a second method, Cache and Invalidate

should be chosen. It will give good performance benefits for small objects, and it does not degrade

significantly if the system makes a mistake (e.g. by caching an object that is seldom accessed).

The Update Cache strategy can be added later if the programming effort can be justified. This

will make it possible to efficiently maintain stored procedure values that are large. The same code

written to implement Update Cache can be used to support materialized views and complex

trigger condition testing as well.

158

CHAPTER 6

AN ENHANCED DATABASE RULE LANGUAGE

The initial proposal for POSTGRES database management system allows powerful rules to

be defined by tagging POSTQUEL commands with the keyword always. There are, however,

some difficulties with the always rule proposal. These difficulties can be broken down into two

separate dimensions. First, always rules suffer from shortcomings in the POSTQUEL language

itself, since such rules are simply POSTQUEL commands tagged with a special modifier. Second,

the semantics of always rules specify that a command tagged as such appears to run forever (as

a practical matter, it runs until it no longer changes the database). It is not clear that these

semantics alone are adequate for building rule-based applications. This chapter analyzes both

these issues. Based on this analysis, enhancements to POSTQUEL are proposed to increase its

power, and some new rule semantics different than always are proposed.

6.1. Weaknesses in the Query Language

6.1.1. Negated Conditions

A feature commonly needed in rule-based systems is the ability to specify a negated rule

condition. Negated conditions are true if there does not exist any record or collection of records

in the database matching some pattern. Measurements of several large expert systems written in

OPS5 show that approximately 30% of all production rules contain one or more negated condition

elements [GuF83]. Negated conditions are sometimes used to define rules that draw some conclu

sion if no evidence to the contrary exists. For example, in an expert system for automobile troub

leshooting, the following rule might be specified:

6. AN ENHANCED DATABASE RULE LANGUAGE 159

if the starter won't crank and

it is not known that the battery is charged
then

hypothesize that the battery is dead

In the original QUEL query language, there is no direct way to specify a negated condition

[HSW75J. However, the "any" aggregate can be used to check if there are no values matching

some condition as follows:

any (targetJiat [from fromjist \ [where qual]) = 0

(The count aggregate can be used in the same fashion.) Use ofan any or count aggregate is an

inconvenient and unintuitive method for specifying negated conditions. Thus, a special aggregate

no which returns a boolean value is proposed here. A new aggregate syntax has been proposed

for POSTQUEL, the POSTGRES query language [RoS87,StR86] (see Appendix 2 for a description

of the new aggregate syntax). The new syntax allows grouping in aggregate functions to be

specified explicitly, rather than implicitly as in the original QUEL |Eps79,HSW75,SWK76|. Based

on the POSTQUEL aggregate notation, the syntax of the no function is as follows:

no '{targetJist [from fromjist] | where qual] *}*

The meaning of this function is the same as the expression above using the any aggregate. Note

that no does not have to be built-in to the POSTGRES system since it can be defined using the

facility for creating user-defined aggregates.

By using no like an aggregate function, a negated clause can be linked to the outer partofa

query. For example, consider a situation where there are two relations:

STUDENT (id, name,...)
ENROLLED (id, name,...)

STUDENT contains information about students who were enrolled last year, and ENROLLED

contains information about currently enrolled students. The field "id" of both relations is a

unique identifier for a student. Suppose one wishes to delete all STUDENT records for students

6. AN ENHANCED DATABASE RULE LANGUAGE 160

who are not currently enrolled. This deletion can be expressed as follows using no:

delete STUDENT where
no{ENROLLED.id where STUDENT.id —ENROLLEDJd}

The above is much simpler than the following equivalent command expressed in standard QUEL:

delete STUDENT where
any(STUDENT.id by STUDENT.id

where STUDENT.id «- ENROLLED.id) = 0

It is also simpler than the equivalent command expressed in the POSTQUEL aggregate syntax

using the any aggregate:

delete STUDENT where
any{ENROLLED.id where STUDENT.id = ENROLLED.id} = 0

It is clearly easier to express negation using no than using an any or count aggregate.

However, an even simpler syntax is possible for specifying some negated conditions. It is proposed

here that the operators In and not in also be added to POSTQUEL (both these operators are

included in the SQL query language [CAE76]). The syntax of the in and not in operators for

POSTQUEL is

scalarmexp op set^exp

where op is either In or not in, scalar_exp returns a single value and set.exp returns a set of

values. A scalarmexp has the same syntax as defined for expressions in POSTQUEL. A set.exp

has the form

'{' scalar_exp [from fromjist] [where qual] '}'

(the argument to a POSTQUEL aggregate is also a set.exp). The syntax of the set.exp is nearly

identical to the relation-constructor mechanism of the RIGEL database programming language

[RoS79].

The in and not in operators have nested iteration semantics, as in SQL . In general, a
s
POSTQUEL aggregates also hive nested iteration semantics.

6. AN ENHANCED DATABASE RULE LANGUAGE 161

query containing an In or not in operator has the following structure, where op is either in or

not In:

retrieve (target.list)
where Qx and cxpl op {cxp2 where Q2)

The portion of the query

retrieve (targetJist)
where Q x

is referred to as the outer block and

{txp2 where Q2)

as the inner block.

As an example, using the not In operator, the delete statement above can be specified as

follows:

delete STUDENT where
STUDENT.id not in {ENROLLED.id}

This example demonstrates that the not in operator simplifies the specification ofnegated condi

tions even further than the no function in some situations.

The no function and the in and not in operators are not strictly necessary. Both no and

not In can be simulated using aggregates asshown in previous examples. The in operator can be

simulated using an equi-join, as described in [GaW87,Kim82| (details of how these transforma

tions are performed will be discussed in a later section). The no, In and not in facilities have

been added to the query language because they allow a large class ofqueries, updates and rules to

be specified in a more convenient and understandable way.

6.AN ENHANCED DATABASE RULE LANGUAGE 162

6.1.2. Executing a List of Statements

When specifying rules in an expert systems application, it is important that a list of state

ments can be executed when a rule fires. If all rules can execute only one statement in their

action, programming becomes difficult. For example, a technique commonly used in expert sys

tems is to reason using certainty factors (CF's) like those found in MYCIN [ShB75,Sho76]. Acer

tainty factor is a real number in the range |0,1] which indicates the measure of belief in a fact.

The belief status of a fact with a CF of 0 is completely unknown, while a fact with a CF of 1 is

believed with certainty. In a forward chaining rules system like OPS5 or ART, certainty factor

combination is typically done using a rule with the following structure:

there is a fact Fx supporting conclusion A with certainty X and
there is a fact F2 supporting conclusion A with certainty Y

then do
create a new fact F8 supporting conclusion A with certainty X+Y—XY
delete Fx
delete F2

end

This rule has multiple commands in its action. It would be cumbersome to program it in a

language that allowed the action ofa rule to contain only one statement.

All rules specifiable in the rule sublanguage of POSTQUEL are single POSTQUEL com

mands tagged with a modifier [StR86,SHP87| In POSTQUEL, using the execute command it is

possible to specify a list of statements to be run. Hence, it is possible to create a rule who's action

is a list of statements as follows:

execute (dummy = " ... list ofstatements ... ")

Unfortunately, the execute command is awkward for specifying a block of commands to run

because a dummy field name and extra quotation marks are required. Hence, the following varia

tion of the execute command is proposed (the existing executesyntax isstill legal):

6. AN ENHANCED DATABASE RULE LANGUAGE 163

execute (stmt { ; stmt })

For example, the following command purges all information about the Toy department from the

employee/department database:

execute (delete EMP where EMP.dept="Toy" ;
delete DEPT where DEPT.dname="Toy")

The primary advantages of the new variation of the execute command are that it provides a

clean way to specify a collection of commands to be executed, and it facilitates specification of

rules that have more than one command in their action (use of execute to specify rules will be

discussed in section 6.3). This execute syntax makes it explicit that a group of statements are to

be executed together. The database system is therefore free to optimize them all at once, forming

an efficient joint execution plan [Sel86b]. Also, the system can attempt to execute the statements

in parallel, which may yield significant performance improvements on multi-processors (e.g. SPUR

[HU86]), or even on a uni-processor if increased disk utilization can be achieved.

6.1.3. A Conditional Abort Command

It is sometimes necessary for database transactions to abort themselves due to exceptional

conditions. For example, an abort might be required if the user presses the BREAK key, or if the

database application determines that an update violates an integrity constraint. Rules designed

to enforce integrity constraints may also need to abort the current transaction if the constraints

are violated. To facilitate transaction aborts in both user applications and rules, a command

abort is proposed here. The syntax of abort is as follows:

abort [(targetJist)] [from fromjist] [where qual \

The target list, from clause, and where clause are all optional. If the target list is not specified,

a dummy target list of the form

(DummyAttribute = "constant")

6. AN ENHANCED DATABASE RULE LANGUAGE 164

is implicitly created. The abort command aborts the current transaction if there are any tuples

retrieved by a query with the targetJist, fromjist, and qual specified. For example, consider

the following relation containing one record for each employee of a city government:

PUBSERVANTS(name,...)

Suppose there is a law that no individual can hold more than one city job. An application could

run the following abort command to enforce this integrity constraint (tid is a unique tuple

identifier field):

abort

from pi, p2 in PUBSERVANTS
where pi.name = p2.name
and pi.tid != p2.tid

Because abort is a full-fledged query language command, it can be used in conjunction with the

rule syntax to be described later. This will allow construction of rules to enforce integrity con

straints.

6.2. Processing Commands Containing Proposed Features

Normal query processing can be extended in a straightforward way to handle the no, in and

not In functions, the new variation of the execute command, and the abort command. The

function

no { targetJist [from fromjist] [where qual] }

can be defined in POSTGRES as a user-defined aggregate. It would be implemented in a way very

similar to the any aggregate, except that it would return a boolean value FALSE when any

would return the integer value 1, and a boolean value TRUE when any would return the integer

0.

To allow processing of the in operator, query modification can be applied as described in

[Kim82|. A query of the form

6. AN ENHANCED DATABASE RULE LANGUAGE 165

retrieve (targetJist)
where Qx and (txpx In (txp2 where Q2))

can be translated into the following normal query:

retrieve (targetJist)
where Qx and Q2 and expx = exp2

The resulting command is an ordinary retrieve which can be submitted directly to thequery pro

cessor. The query optimizer can often find a more efficient execution plan for the conventional

form than for the nested form. For a complete description of the algorithms for translating

nested queries into a canonical representation without nesting, the reader b referred to the paper

by Kim !Kim82| and subsequent papers that describe some errors in Kim's work and their solution

[GaW87,Kie84].

Implementation of the not in operator is straightforward because it is a special case of the

no function. The following two commands are equivalent:

CI.

retrieve (targetJist)
where Qx and expx not in (cxp2 where Q2)

C2.

retrieve (targetJist)
where Qx and no(cxpx where txpx = txp2 and Q2)

In CI, Qi consists of all the parts of the qualification that are not part of either the left or right

operands of the not In operator. To process a query of type CI, it can be transformed into one

oftype C2, which can be reduced toone using an any aggregate as discussed previously.

Consider an execute command with the following form:

execute (stmt { ; stmt })

Thb command can be processed easily by executing the statements one after the other. As men

tioned previously, performance can be improved in some cases by applying multi-statement query

6. AN ENHANCED DATABASE RULE LANGUAGE

optimization techniques and also by attempting to parallelize execution of the statements.

An abort command has the following structure:

abort | (targetJist)] [from fromjist | \ where qual]

This command can be implemented easily using the following steps:

1. form the query

retrieve (targetJist) [from fromjist] | where qual]

2. Begin execution of this query. If a tuple is returned, halt execution
and perform any actions needed to abort thecurrent command (e.g.
undo the effects of the transaction if necessary).

3. Otherwise, if no tuples are returned, continueexecution of the
current transaction.

166

6.3. Alternate Rule Semantics

Although the usefulness of always semantics for rules is clear, there are other possible

meanings for rules. A list of desirable rule semantics with significantly different properties

includes:

rule type

always
new

old

rule semantics

appear to always have just been run
execute once whenever one or more new tuples

match qualification
execute once whenever one or more tuples that

used to match qualification no longer match

These rule semantics have strengths that are quite different, so it is instructive to look at the use

fulness of each for different applications. Because they appear to run forever, always rules are a

natural mechanism for maintaining certain types of complex integrity assertions. For example,

consider an assertion that all employees must make the salary specified for their job. Supposed

the correct salaries are specified using a relation

6. AN ENHANCED DATABASE RULE LANGUAGE 167

SALTABLEQob, salary)

Using this relation, the desired integrity assertion can be enforced using the following always

rule:

always replace EMP (salary = SALTABLE.salary)
where EMP .job = SALTABLE.job

An area where always rules do not provide the desired semantics is in certain types of

expert systems applications. For example, consider the following collection of rules that might be

taken from an expert system for automotive trouble-shooting:

if
the car won't start and there is a gasoline smell

then
hypothesize that the carburetor is flooded

if
there is a leaking fuel line and
there is a hypothesis that the carburetor is flooded

then

delete the hypothesis that the carburetor is flooded

Using always semantics, these two rules cause an infinite loop, since when the second rule deletes

the hypothesis that the carburetor is flooded the first rule wakes up and re-asserts the hypothesis.

In this situation, new semantics are needed since they will cause the rules to behave as desired,

i.e. execution of the second rule will not cause the first rule to wake up again. Rules with new

semantics are similar to production rules found in expert system shells, including OPS5, KEE,

ART, and many others [FiK85,For81,Gev87,Sho87]. The semantics of production rules have pro

ven to bequite useful for constructing rule-based applications in those systems.

Both new and old rules are useful for specifying transition constraints. These include sim

ple constraints, such as "an employee's new salary may not be more than 10% of their old

salary," as well as more complex constraints like referential integrity [Dat81b]. Examples of use

of new and old rules to enforce these kinds of integrity constraints will be shown in section 6.3.2.

6. AN ENHANCED DATABASE RULE LANGUAGE 168

There are some forms of constraints for which the old semantics are essential. For example,

a different type of referential integrity rule might specify that no DEPT record can be deleted if

there are still employees working in that department. A rule like this must be able to wake up

when data is deleted from the database, which is not possible using new and always.

The three different types of rule semantics discussed so far, always, new, and old, are

each useful in their own right. Together, they allow a broad class of useful rules to be specified.

Furthermore, always, new, and old rules are significantly different from each other - there is no

straightforward way to simulate any one with the others. Hence, we argue that all three types of

rules should be provided by a database rules system.

One might make the case that there are other types of rules besides always, new, and old

that are useful. A list of other possible rule semantics is shown below:

rule type rule semantics

once

repeat N
at list'Of'times
sleep t

execute once when new tuple matches condition and delete self
same as new, but deletes self after N wake-ups
execute once daily at each time shown on Ust-of-times
execute once every t time units

This list could probably be extended indefinitely. Since it would be virtually impossible to provide

every desired type of rule semantics, the position taken here is that the best approach is to pro

vide only a small, general set of rule semantics (i.e. always, new and old). These can be used to

simulate the others. For example, once can be simulated easily with new by having a rule delete

itself with the last statement in its action (an example of this will be given in section 6.3.2). The

repeat semantics can be simulated with new by having a rule count how many times it has run,

and delete itself after TV executions. Similarly, if there is a relation TIME that is updated periodi

cally by the system (say once per minute), new can be used to simulate at and sleep by referring

to TIME in rule conditions.

6. AN ENHANCED DATABASE RULE LANGUAGE 169

6.3.1. Language Features to Support Alternate Rule Semantics

An attractive feature of always rules, is that they can be specified using a simple extension

of the database query language - ordinary POSTQUEL commands can be turned into rules just

by tagging them with a special modifier. This is an elegant property of the rule language that is

desirable to maintain. Thus, rules with new and old semantics will be specified in the sameway,

by tagging POSTQUEL commands with the keywords new and old respectively.

The general syntax of rules in the proposed version of POSTQUEL is shown in figure 6.1 .

When a statement with this syntax is submitted to the DBMS, the appropriate rule is registered

with the system. The rulejargetjist may be either an ordinary target list, or the special symbol

«*\ which acts as a place holder in the case that no target list is specified. If '*' is used instead of

an explicit target list, the '*' is implicitly replaced with a target list defined as follows:

rule —*• tag command

tag —» always I metajag

metajag —• for [new I old] rulejargetjist
[from fromjist]
[where qual \

rulejargetjist -*••*' I (targetJist)

command -*• retrieve
I replace
I delete
I append
I do

Figure 0.1. General rule syntax

*A BNF grammar b mixed with the Qand {} notation to describe the syntax here. Non-terminals are shown in
italics and terminals are shown in bold.

6.AN ENHANCED DATABASE RULE LANGUAGE 170

1. If there are no tuple variables at the outermost nesting level in the where
clause, '*' is replaced by a dummy target list with the following definition:

(DummyAttribute =» "constant")

2. If there are tuple variables tx,t2, • • ' tk at the outermost nesting level in the
where clause, then '*' is replaced by the following:

(tl.aM2.ail,...,t*.aIl)

Rules with new and old semantics can refer to two special sets of tuples:

NEW those tuples most recently matching
(rulejargetjist) where qual

OLD those tuples that just left
(rulejargetjist) where qual

NEW and OLD cannot be referenced in always rules. The NEW and OLD sets will be formed

through the use ofan immediate view maintenance algorithm; details ofthis are discussed in sec

tion 6.4.

The precise meaning of new and old rules is specified below. A new or old rule R has a

for clause associated with it. This for clause has a target list and a qualification, which implicitly

defines a database view V. Let V0 be the initial contents of V before the start of an update tran

saction T. Suppose T executes and attempts to commit. Let the new contents of V (reflecting

the updates made by T) be V^. The definition of the OLD and NEW sets at this point is as fol

lows:

OLD = V0 - Vj
NEW = V, - V0

If the rule R has new semantics and NEW is not empty, then R is eligible to run. If R has old

semantics and OLD is not empty, then R is eligible to run. Otherwise, R isnot awakened. When

R runs, it has read-only access to the values stored in NEW and OLD. NEW and OLD cannot be

updated.

6. AN ENHANCED DATABASE RULE LANGUAGE 171

In general, a transaction in the DBMS extended with rules will consist of the execution of

the body of the transaction T, followed by execution of zero or more rules, Rx, • **RN. Con

sider a point in time P that lies after execution of T and before the first rule RXt or between exe

cution of any adjacent pair of rules, Ri and Ri+X. At point P, the values of the NEW and OLD

sets reflect all changes to the database made after the start of the transaction T, and prior to P.

Suppose P lies just before rule Rj. The value of V at this point is VJ. During execution of rule

Ri, the OLD and NEW sets have the following values:

old = v0 - v;
new = v;— V0

There is an exception to the above if the same rule executes more than once. Suppose that one

rule R occurs in the sequence Rx, • • •Rpf as both J*,- and Rj, where j>i. In this case, the value

of OLD and NEW seen by the execution ofRj is the following:

OLD -Vt-Vj
NEW = Vj - Vi

The above discussion has not considered the issue of how to select the order of execution

Rlt • • • RN for the rules. This question will be addressed in a later section.

6.3.2. Examples Using New Rule Syntax

Rules of the form described above are useful for a variety of purposes. Several examples are

given below:

One-Shot Rules

As mentioned previously, there are situations where a rule should execute only once, and

then disappear (this is the once rule semantics described previously). One-shot rules can be

implemented using new rules in combination with the POSTGRES remove rule command. For

example, consider the following rule, which waits for a record for an employee named "Bob" to be

6. AN ENHANCED DATABASE RULE LANGUAGE 172

inserted, and then performs its action and removes itself:

define rule BobRule is
for new (EMP.all) where EMP.name •» "Bob"
execute

(
... rule action ...

remove rule BobRule

)

Logging Update History

The following rule makes a log entry each time a record of a Toy department employee is

inserted or modified.

for new (EMP.all) where EMP.dept = "Toy"
append to TOYLOG (NEW.all, time=TOD(), user=User())

When this rule executes, the temporary relation NEW contains all newly inserted or modified

EMP with the value "Toy" in the dept field. Hence, the desired records are appended to TOY-

LOG when the rule executes.

Transition Constraints

By making use of the abort command, the rule below aborts the current transaction if a

Toy department employee gets a raise ofmore than 10%.

for old (EMP.all) where EMP.dept = "Toy"
abort where NEW.salary > l.l*OLD.salary and NEW.name = OLD.name

Non-always semantics

Aproblem with always semantics in some situations is that the rule always wakes up when

data it has written is updated by the user. Forexample, one might wish to specify the rule

if Bob's salary changes
then Set Jim's salary to Bob's salary

Using an always rule, one would attempt to specify this as follows:

6. AN ENHANCED DATABASE RULE LANGUAGE 173

always replace EMP (salary = E.salary)
from E In EMP
where EMP.name="Jim" and E.name •» "Bob"

However, this rule will cause any user update to Jim's salary to be refused [SHP87]. This is not

the desired meaning. A rule with thecorrect semantics can bespecified using new as follows:

for new (EMP.all) where EMP.name = "Bob"
replace EMP (salary=E.salary)
from E in EMP
where EMP.name = "Jim" and E.name = "Bob"

Notice that the above rule will run whenever any field of Bob's EMP record is updated. The rule

condition can be modified as shown below so that it only fires when the salary field of Bob's

record is updated:

for new (EMP.salary) where EMP.name = "Bob"
replace EMP (salary=E.salary)
from E in EMP
where EMP.name = "Jim" and E.name = "Bob"

Expert System Support

The new semantics are also suitable for supporting rule-based expert system applications.

Consider an expert system designed to assist a broker in trading stocks. This system uses a large

shared database of information on corporations. Some rules that might be present in such a sys

tem are shown below:

Automated Stock Trader:

rulel:
if at least 4 aluminum companies have value > X

and
there is no goal to analyze the metal market

then hypothesize aluminum strong

rule2:
If at least 4 steel companies have value > Y

and
there is no goal to analyze the metal market

then hypothesize steel strong

6. AN ENHANCED DATABASE RULE LANGUAGE 174

rule3:
if hypothesize aluminum strong

and

hypothesize steel strong
then

delete aluminum hypothesis
delete steel hypothesis
create a goal to analyze metal market

rule4:
if goal is to analyze metal market
then execute metal market analysis procedure

In actual implementation, the expert system might be based on a database with the following

schema:
company(name, product, value) —company database
hypothesis(name) —current hypothesis
goal(name) - current goals
procedures(name, code) —collection of stored procedures

Using new notation, the rules above can be written as follows:

define rule rulel is

for new * where
count(company.tid where company.product = "aluminum"

and company.value > X) > 4
append to hypothesis(name="aluminum strong")

define rule rule2 is

for new * where
count(company.tid where company.product = "steel"

and company.value > X) > 4
append to hypothesis(name="steel strong")

define rule rule3 is

for new (hl.al!,h2.all)
from hl,h2 In hypothesis
where hl.name="aluminum strong"

and h2.name = "steel strong"
execute (

delete hypothesis where hypothesis.name="a!uminum strong" or
hypothesis.name="steel strong" ;

append to goaI(name="Analyze Metal Market")
)

6. AN ENHANCED DATABASE RULE LANGUAGE 175

define rule rule4 is
for new (goal.name) where goal.name = "Analyze Metal Market
execute (procedures.code)

where procedures.name=wMetalsAnalysisw

This example would be extremely difficult to specify using only the previously proposed features
of the POSTGRES rule language. For example, rule 3benefits from the use of the execute com

mand since its action contains multiple statements. Furthermore, if always semantics were used,

rule 3would interact with rules 1and 2in an undesirable way. The first two rules would wake up

and reinsert the hypothesis tuples "steel strong" and "aluminum strong" when rule 3deleted

them unless specific measures were taken to prevent it from happening.

6.4. Testing Rule Conditions

This section discusses methods for testing the conditions of rules with old and new seman

tics. Testing of both negation-free conditions and conditions with negation is discussed. The

issue of conflict resolution is also addressed.

6.4.1. Conditions Without Negation

Any immediate view maintenance algorithm can be used to test the conditions of new and
old rules that do not use negation (deferred view maintenance algorithms are not applicable
because it is essential to know immediately whether a rule should fire). The new semantics can
be implemented by making arule eligible to run whenever aset of new tuples (Anet) enters the
view corresponding to the condition of the rule. The special tuple variable NEW ranges over Antt
during execution of the rule. The old semantics are implemented in asimilar fashion, except that
arule becomes eligible to run whenever aset of old tuples (Dttet) leaves the view defined by the

rule condition. The tuple variable OLD ranges over DMt **en *e rule executes.

6. AN ENHANCED DATABASE RULE LANGUAGE 176

Because any immediate view maintenance algorithm can be used to test rule conditions, one

would like to determine which algorithm performs best in this application. To analyze the cost of

condition testing, the assumption can be made that conditions have the same structure as the

database procedures analyzed in chapter 5. The only difference incost between procedure mainte

nance and rule condition testing is that the query cost (i.e. the cost to read the procedure value) is

not included for condition testing. Only the maintenance overhead is included. The query cost is

exactly equal for both differential view maintenance algorithms analyzed in chapter 5 (RVM and

static, non-shared AVM) so comparing the cost of the two for rule condition testing would yield

the same results as for procedures. Hence, the performance results found when comparing the two

algorithms in chapter 5 are valid for rule condition testing aswell.

A performance problem with testing rule conditions using a view maintenance algorithm is

that the view defined by the condition must be maintained on disk, and this can be expensive. It

is necessary to maintain a complete copy of the view because it may contain duplicates. A tuple

that is "inserted" into the view might thus result only in causing the duplicate count of an exist

ing tuple to be incremented. Such a tuple does not constitute a netchange to theview so it is not

placed in the NEW set for the rule corresponding to the view. Fortunately, there is a restricted

class of rule conditions for which the view does not have to be physically stored, resulting in sub

stantial cost savings. Below, this class of conditions is described, and a method is presented for

computing the NEW and OLD sets for conditions that belong to the class. The class includes all

relational algebra expressions R that satisfy the following restriction:

Restriction A:

(1) All base relations appearing in R are stored withduplicates removed,

and

(2) R does not include the projection operation, or R projects a
unique tuple identifier for each relation appearing in the expression.

For an expression R that satisfies Restriction A, it is possible to determine NEW and OLD

6. AN ENHANCED DATABASE RULE LANGUAGE 177

without maintaining a physically materialized copy of the entire view. If a tuple is found to be in

NEW after an update transaction, it is guaranteed to be a new tuple for the view because every

tuple in the view is unique (similarly for OLD). Uniqueness is assured by Restriction A.

There is a significant performance advantage using expressions that satisfy Restriction A:

there is no overhead to write data to a physically materialized copy of the result of the expres

sion. The only cost is to compute AMi and DDet for each view after each update transaction.

As an example, consider the following POSTQUEL target list and qualification, which

represents the condition of a new rule.

(EMP.all, DEPT.aII)
where EMP.dept = DEPT.dname
and EMP.age > 50
and DEPT.dname = "Fire"

Assume that there is B-tree index on EMP.age. When the rule with this condition is installed, t-

locks will be set in this index to lock the range of values age > 50. This expression satisfies Res

triction A because there is no projection (all attributes of EMP and DEPT appear in the result,

and it is assumed that there are no duplicates in EMP or DEPT). Suppose that a transaction

appends the following single tuple EMP:

t = <name = "Bob", dept = "Fire", age = 55, salary = 20K, job ="Firefighter">

This tuple will break the t-lock set on EMP.age > 50. The value ofAMt can be found by execut

ing the following query:

retrieve (t.all, DEPT.aII)
where t.dept = DEPT.dname
and t.age > 50
and DEPT.dname = "Fire"

There is no need to maintain a materialized view containing all the tuples that match the rule

condition.

6. AN ENHANCED DATABASE RULE LANGUAGE 178

6.4.2. Conditions With Negation

Rule conditions using negation can also be tested using extended versions of the Rete and

algebraic view maintenance algorithms. The no function can be implemented directly in RVM

using not nodes in the Rete network (see the description of the Rete match algorithm in Chapter

1). Using AVM, negated conditions can be implemented by converting the no function into the

equivalent condition based on the any aggregate, and then using the algorithm for maintaining

views with aggregates presented in Chapter 3. The not in function reduces to no, so it can be

implemented using the same method.

6.4.3. The Rule Execution Strategy

As discussed by Eswaran [Esw76|, to maintain serializability and recoverability of transac

tions in a DBMS enhanced with triggers, the rules awakened directly or indirectly by a transaction

must run as part of that transaction. To achieve this, the concurrency control subsystem must

treat reads and writes performed by rule actions as part of the transaction that caused the rule to

fire. Similarly, the recovery subsystem must associate all of a rule's reads and writes with the

transaction that triggered the rule. If these protocols are observed, concurrency control and

recovery methods that are correct for normal transaction processing will work properly in the

presence of rules.

A transaction in a DBMS enhanced with triggers has the following two parts, which are run

in order:

(1) execution of the body of the transaction

(2) execution of rules

After (1) and during (2) there is a collection of rules that are eligible to run, which is known

as the conflict set. The DBMS must use some strategy for executing these rules. Borrowing ter

minology from the OPS5 expert systems shell, the strategy for executing triggers is called the

6. AN ENHANCED DATABASE RULE LANGUAGE 179

Recognize-Act Cycle [For8l|. This cycle consists fo the following steps:

(1) Conflict Resolution: Select one eligible rule for execution. If no rule has a
satisfied condition, cease execution of rules and attempt to commit the current
transaction.

(2) Act: Execute the action part of the chosen rule.

(3) Match: Based on the changes to the database made by execution of the pre
vious rule, determine which other rules are eligible to run, and add them to the
conflict set. Go to step (1).

6.4.4. Conflict Resolution

The following conflict resolution scheme is proposed for the rules system described in this

chapter (this is a modified version ofthe LEX strategy used in the OPS5 system [For81]). The set

of rules eligible to run can be divided into the following categories:

(a) always rules that have been awakened due to a t-lock conflict

(b) new rules that have tuples in their NEW set

(c) old rules that have tuples in their OLD set

All these rules are treated uniformly. The recency of a rule is the time at which its condition was

most recently satisfied, where time is measured as follows. All update commands executed as part

of a transaction (including commands that are part of rule actions) are assigned a sequence

number. These numbers are assigned to commands in strictly ascending order. The recency of an

always rule is defined to be the highest sequence number of a command in the transaction that

has broken a *-lock for the rule. The recency of a new or old rule is the highest sequence

number of any command that has caused a tuple to be inserted into the NEW or OLD set, respec

tively. Rules are ranked according to their recency, with the most recent rule having highest

priority.

Conflict resolution chooses one rule from the conflict set for execution using the following

algorithm:

6. AN ENHANCED DATABASE RULELANGUAGE 180

1. Discard from the conflict set any rules that have already fired. If a discard
ed rule is of the new or old variety, delete from the NEW and OLD sets associ
ated with the rule all tuples that were present before execution of the body of
the rule. If no rules remain, conflict resolution fails and no rule is returned.

2. If one rule is more recent than all the others, return it.

3. If more than one rule is tied as most recent, choose one of them at random
and return it.

Prioritizing rules based on recency results in a depth-first execution of rules, i.e. rules triggered by

other rules execute immediately without waiting for already-eligible rules to run. This is impor

tant because it has the effect of allowing localized tasks being performed by an expert system

application to complete without being interrupted by other rules. Expert systems programmers

depend on this depth-first rule execution for control flow in forward-chaining rule based applica

tions like those written in OPS5 and ART |For81,Sho87].

6.4.5. Act

The rule returned by conflict resolution is simply passed to the query processor for execu

tion.

6.4.6. Match

Rule matching is accomplished using one of the condition testing algorithms described in sec

tion 6.4.

6.5. Discussion

This chapter has proposed enhancements to the database rule language proposed in [Sto85].

Some of the enhancements were needed due to inadequacies in POSTQUEL itself. These include

the no and not In functions to allow negated rule conditions to be specified easily, and the exten

sion of the execute command to allow execution of a block of POSTQUEL statements in a con

venient way. Other extensions were needed because the alwaya modifier is not adequate to

6. AN ENHANCED DATABASE RULE LANGUAGE 181

specify all the types of rules desired for expert system applications. A modifier for was proposed

which turns POSTQUEL commands into production rules similar to the forward chaining rules

found in OPS5 and other expert systems shells. These rules can have either new or old seman

tics. Methods for implementing rules using these new features were also discussed. In particular,

the algebraic and Rete view maintenance algorithms can be used to test the conditions of new

and old rules. It was argued that the relative performance of RVM and static, non-shared AVM

when applied to testing rule conditions will be the same as observed in chapter 5. Finally, a gen

eral strategy was proposed for executing always, new, and old rules in a DBMS.

182

CHAPTER 7

CONCLUSION

The focu6 of this thesis has been the design and analysis of methods for efficiently support

ing rules and derived objects in a relational database system. Section 7.1 summarizes the results

presented in chapters 2-6. Section 7.2 provides a comparison of this work with other research.

Section 7.3 discusses the implications of this thesis for the field of database management. Section

7.4 considers some limitations of the work. Finally, section 7.5 discusses possibilities for future

research on support for rules and derived objects in a DBMS.

7.1. Summary

In chapter 2, a new lock-based rule indexing algorithm called Mark Intersection was pro

posed, and compared with two other lock-based rule indexing algorithms (Basic Locking and

Reduced Basic Locking). The results showed that Mark Intersection is at worst approximately

equivalent to Basic Locking in efficiency, and is superior if predicates tend to have more than one

term that lies on an indexed attribute. However, Basic Locking performs quite well in most cases,

it uses less storage space than Mark Intersection, and it is significantly easier to implement.

Hence, Basic Locking is the algorithm of choice unless most predicates have a large number of

terms, and many of them lie on indexed attributes. Reduced Basic Locking is a space-saving ver

sion of Basic Locking that is applicable only if updates in place are implemented as deletes fol

lowed by inserts (otherwise a large amount of wasted I/O must be done to search every index on

a relation after a tuple is modified). Mark Intersection and Basic Locking can be used to help sup

port both triggers and inference rules, but Reduced Basic Locking is only viable for triggers.

7. CONCLUSION 183

Chapter 3 presented a collection of techniques for maintaining materialized copies of objects

derived from a database. A new incremental view maintenance algorithm called Rete View

Maintenance was proposed and proved correct. An interesting feature of the RVM algorithm is

that it is staticly optimized, and shared, i.e. a complete execution plan for maintaining views (the

Rete network) is compiled in advance, and shared subexpressions are evaluated only once. The

AVM algorithm proposed by Blakeley |BLT86] is dynamically optimized since planning how to

update materialized views is done after each transaction that modifies the base relations. Also,

standard AVM does not take advantage of shared subexpressions (i.e. it is non-shared). The fol

lowing variations of AVM where also proposed in the chapter:

1. dynamic, shared
2. static, non-shared
3. static, shared

In addition, any of the view maintenance algorithms discussed in chapter 3 can be implemented in

either an immediate or deferred manner. Based on the use of any view maintenance algorithm, a

class of algorithms was developed for maintaining materialized aggregates and aggregate func

tions. Finally, methods were proposed for materializing database procedures, as well as views and

procedures containing aggregates and aggregate functions.

Chapter 4 analyzed the performance of different methods for answering queries that refer to

views, including query modification, deferred view maintenance, and immediate view maintenance.

An interesting finding was that deferred and immediate view maintenance performed almost

equally, independent ofthe parameters ofthe model. One reason for this is that the advantage of

the deferred strategy (i.e., processing large sets of tuples to update views instead ofsmall ones and

thus doing less total I/O) is approximately offset by a disadvantage (i.e., the overhead of main

taining base relations using a hypothetical relation algorithm). The other more important reason

is that if the ratio of updates to queries is low, the cost of processing queries far outweighs the

cost to incrementally update views. Hence, the fairly small differences in the cost of immediate

7. CONCLUSION 184

and deferred view maintenance strategies become insignificant.

Since view materialization algorithms are close in cost, the main issue becomes whether to

maintain a view in materialized form and query it directly versus performing query modification

to process view queries. For simple selection-projection views on a single table with a clustered

access path available for processing view queries, materializing a view is almost never worthwhile

because query modification reads nearly the minimum possible number of pages to process a

query. Maintaining a materialized view becomes more attractive when the view involves joins.

The reason materialization becomes attractive for views with joins is that the parts of a tuple in a

materialized view reside on a single page, whereas if the view is not materialized, many pages

must be read to construct the tuple. In other words, view materialization is a very effective data

clustering mechanism.

Even though deferred and immediate view maintenance differ only slightly in cost, there are

other reasons why one algorithm may be preferred. For example, deferred may be superior in

some distributed database architectures because it limits communication overhead (e.g. ADMS±

[R0K86]). Another is that if there is substantial free I/O and CPU time available, it can be put to

use refreshing views if immediate maintenance is not used (one can view this strategy as inter

mediate between immediate and deferred).

Chapter 5 explored some performance aspects of algorithms for processing queries that

retrieve the value of database procedures. The algorithms considered were

1. AlwaysRecompute (construct procedure value from base relations)

2. Cache and Invalidate (read the stored procedure result if it is valid;
otherwise compute the result and write it back)

3. Update Cache (use a view maintenance algorithm to maintain and
incrementally update the stored procedure value)

Two different versions of Update Cache were considered: one based on a non-shared view materi

alization algorithm (AVM), and another based on a shared one (RVM). There are dramatic

7. CONCLUSION 185

differences in performance between Always Recompute, Cache and Invalidate, and Update Cache.

The differences in performance between the shared and non-shared versions of Update Cache are

less pronounced.

One finding was that the cost of Cache and Invalidate is highly sensitive to the cost of

invalidating a cached object. If it is necessary to read and write a page from an object just to

invalidate it, Cache and Invalidate performs poorly. Hence, it is important to used some tech

nique to reduce the cost of invalidating cached objects (e.g. a table in battery-backed primary

storage listing the validity status of each object). Assuming that some low-cost invalidation tech

nique is used, Cache and Invalidate performs approximately as well as Update Cache if update

probability is low, objects are small, and there is some locality of reference among cached objects.

Cache and Invalidate always becomes superior to Update Cache as the update probability

approaches 1. The reason Cache and Invalidate outperforms Update Cache for high update pro

bability is that repeatedly invalidating a cached object costs almost nothing, but updating an

object many times per query is expensive. Hence, Cache and Invalidate is a much safer algorithm

to use than Update Cache if there is a possibility that the ratio of updates to queries might be

high.

Another finding was that Cache and Invalidate is not a good algorithm to use if objects are

large (e.g., more than one disk page in size). Update Cache is superior for large objects because

the bigger an object is, the more likely it is that an update transaction will invalidate it. When a

large object is invalidated, only a small part of it has usually changed. Thus, Update Cache can

maintain a large object very efficiently after it has been made invalid, while Cache and Invalidate

must pay a high cost to recompute the object.

In chapter 6 some enhancements to the POSTQUEL query language [StR86] were proposed

to increase its power for specifying queries and rules. A function no was developed to allow

negated conditions to be specified. Addition of operators in and not In was also proposed as a

7. CONCLUSION 186

way to make certain queries and rules easier to specify. It was observed that the rule language

formed by enhancing QUEL with the alwaya modifier is not adequate to express some rules com

monly needed in expert systems applications. One problem is that it is inconvenient to specify

rules that have more than one command has their action. To solve this problem, a modified ver

sion of the command execute was proposed to allow a block of QUEL statements to be executed.

Furthermore, the built-in iteration implied by alwaya semantics makes it difficult to specify some

rules. To overcome this problem, the addition of another modifier new was proposed. The

semantics of new rules are similar to production rules in expert systems shells such as OPS5

[For81|. Finally, a modifier old was proposed to allow expression of rules that fire when data no

longer matches a condition.

7.2. Comparison with Other Research

The analysis in chapter 2 focussed on the differences among lock-based rule indexing tech

niques. A previous paper on rule indexing in database systems [SSH86] compared one lock-based

technique (basic locking) with a method based on the J?-tree (predicate indexing). The paper con

cluded that if the i?-tree structure is so large that it must be disk-based, then basic locking is

superior to predicate indexing unless the number of rules covering each tuple is large. The rela

tive performance of i2-tree-based rule indexing and lock-based rule indexing is affected

significantly by the total number of rules. However, the number of rules does not affect the rela

tive performance of different lock-based techniques. Thus, if mark intersection and reduced basic

locking were compared directly to predicate indexing, results similar to those found in [SSH86]

would be expected.

In chapter 3, the discussion on view maintenance identifies the issue of static versus dynamic

optimization, which is not discussed in previous work on the subject [BLT86]. Using a dynami

cally optimized view maintenance algorithm, an execution plan for incrementally updating views

7. CONCLUSION 187

must be found after each update transaction that affects those views. Thus, the issue of static

versus dynamic optimization is important because planning overhead may be high using dynamic

optimization, especially if many views are being maintained.

The aggregate materialization methods described in chapter 3 allow maintenance of aggre

gates or aggregate functions over the result of any query composed of selects, projects and joins.

In this sense, they can be considered completely general. A previous paper on maintaining general

aggregates describes techniques that are not applicable to the relational data model |KoP8l].

Other work on maintenance of aggregate information has focussed on special cases. A simple

example of this is the practice of maintaining aggregate information such as the sum of values in

a column, the total number of tuples in a relation etc. Another special-case aggregate mainte

nance method is the ordered index known as the A-tree |Rub86,Rub87]. The A-tree allows fast

computation of aggregates over ranges of an ordered collection of records. For example, consider

the relation

EVENT(id, duration)

where an ordering of events is implied, and there is an A-tree on the "duration" attribute. This

structure makes it possible to efficiently answerquestions like the following:

1. Assuming that the first event starts at time 0, when does the event with id
= X start?

2. How much time elapsed between the start of event X and the end of event
Y?

It would not be feasible to use the aggregate maintenance algorithms of chapter 3 to maintain

materialized answers to every possible query of this form that might be asked. The techniques of

chapter 3 are applicable to a different problem: maintaining the answer to a single aggregate

query. Of course, if it were important to be able to efficiently answer range queries over a view

V, and both materialized views and A-trees were available, V could be materialized, and an A-tree

index could be constructed on top of V.

7. CONCLUSION 188

The performance issues regarding different view materialization algorithms had not been stu

died in detail prior to the work presented in chapter 4. Previous work related to maintenance of

derived data objects (e.g., views [BLT86,BuC79,RoK86] and database snapshots [AdL80,LHM86])

has focussed mainly on algorithms for performing the task.

The intent of the work presented in chapter 5 is to give a better intuitive picture of the

tradeoffs between the different strategies for processing queries against database procedures

(AlwayB Recompute, Cache and Invalidate and Update Cache). The material presented there is

the first detailed performance study comparing the three alternatives. Other work on database

procedures discusses the implementation of the Always Recompute strategy in a version of

INGRES [SAH84,SAH85|, and suggests that Cache and Invalidate would perform well in some

situations [StR86]. Work by Sellis focuses on the optimization issues involved in choosing whether

to process procedure queries using Always Recompute or Cache and Invalidate [Sel86b,Sel87|.

Sellis developed a method to decide whether an object should be cached depending on the cost cri

terion involved. He does not present any performance figures comparing the cost of Cache and

Invalidate and Always Recompute for different parameter values. Also, his work does not con

sider the possibility of using a view maintenance algorithm to support an Update Cache strategy.

The work presented in chapter 6 proposes new features to be added to the query language

POSTQUEL to allow easy specification of negated rule conditions. The ability to specify a

negated condition in a convenient syntax is provided by the not In operator in the SQL language

|CAE76|. In addition, chapter 6 describes an extension to POSTQUEL that allows complex

triggers to be specified. These triggers are similar to the production rules found in expert systems

shells (e.g. OPS5 [For81]). Triggers with production rule semantics differ from those with always

semantics proposed in [Sto85|. These two styles of triggers complement each other since they

have different strengths and weaknesses. Previous work on complex triggers in database systems

considered only implementation issues |BuC79]. It did not propose an extension to a query

7. CONCLUSION 189

language to allow specification of rules. Other query languages with facilities to support triggers

allow simple triggers only, not complex ones [CAE76,Esw76,How86|.

7.3. Implications of This Work

A primary implication of this thesis is that it appears worthwhile to implement a view

maintenance algorithm as part of a general-purpose relational DBMS. A great deal of mileage can

be gotten from a single implementation of the view maintenance algorithm. The same code used

to support materialized views can be used as a basis for materialized aggregates and database pro

cedures. Furthermore, the code can be used to test complex trigger conditions efficiently.

Facilities to allow maintenance of derived objects will improve performance in query-

intensive applications. The performance improvement can be great if common queries retrieve

aggregate values or retrieve data from views or procedures that contain joins. There appears to

be a large class of applications that utilize complex databases which are not frequently updated.

Many statistical, scientific, technical and engineering database applications fit this model. These

applications need the benefits provided by general-purpose relational systems (e.g. data indepen

dence, views, integrity control, protection etc.), but the performance of current database systems

is in many cases not adequate |RKC87]. A database system equipped with the ability to

efficiently maintain materialized objects would thus be a useful tool to support these applications.

It is quite significant that efficient implementation of complex triggers is now feasible

through the combined use of rule indexing and view maintenance techniques. Although the notion

of complex triggers has existed for several years [BuC79], such triggers have not been imple

mented in a general-purpose relational database system. A key reason for this is that it was not

clear how to efficiently implement complex triggers in a DBMS up to this point. Finally, the

results of chapter 6 show that it is possible to create a database rule language to support complex

triggers with just a few extensions to a query language.

7. CONCLUSION 190

7.4. Limitations of Results

The limitations of this the results of this thesis are primarily due to simplifying assumptions

that were required in the performance studies of chapters 2, 4 and 5. Some assumptions were

necessary to make analytical performance evaluation tractable. For example, it is assumed in

chapter 2 that all rule predicates have the same selectivity, and that ranges they cover are uni

formly distributed over the data. Similar uniformity assumptions are made in chapters 4 and 5.

Ideal assumptions are also made regarding placement of indexes, so that all join predicates can be

processed using nested loop join with an index on the inner relation. Although simplifying

assumptions were made, the results presented still serve as a useful basis of comparison for the

algorithms studied. It should be possible to make well-informed design decisions based on the

results. It will be appropriate to review the results later after some of the algorithms analyzed

have been implemented in real systems and actual usage patterns are established. Implementation

of lock-based rule indexing techniques, rules, and database procedures is being undertaken for the

POSTGRES system |StR86|. The implementation will provide a useful testbed for further

analysis of some of the performance issues studied in this thesis.

7.5. Directions for Future Research

The work presented in this thesis suggests several topics that should be explored further.

First, the performance analysis done in this thesis could be extended by taking into consideration

the total amount of main memory available for the buffer pool. This would give a better picture

of the cost of the rule indexing techniques and the algorithms for maintaining derived objects that

were analyzed in chapters 2, 4 and 5. Since rule indexing and object maintenance techniques

appear to be potentially quite useful, a prototype implementation of them should be built into a

DBMS. It will then be valuable to do empirical tests that compare the performance of object

maintenance techniques with conventional methods.

7. CONCLUSION 191

If facilities for maintaining materialized objects are included in a relationaldatabase system,

many new optimization problems arise. In general, there are two possible options:

1. Maintain a copy of the object and process queries against it
by reading all or part of the stored copy.

2. Compute all or part of the object on demand.

Option 1 in effect provides new alternatives for the physical database designer. These new possi

bilities complicate the physical database design process. Now, physical database design involves

the following tasks:

1. selection of primary and secondary indexes for base relations

2. selection of derived objects (e.g. views and procedures) to maintain
in materialized form

3. selection of primary and secondary indexes for materialized views

An interesting area for future research is to develop both manual and automatic techniques for

performing tasks 2 and 3. Sellis has addressed this this optimization issue for database procedures

[Sel87]. This work can serve as a starting point for future research on how to decide whether or

not to materialize a view. Previous work on physical database design can provide a foundation

for future research on methods for deciding how to index a materialized view [HaC76,WoK80].

Once the decision is made to materialize a view and appropriate indexes are defined on the

attributes of the view, the system must decide whether to process a query against the view by

reading the materialized view or using a normal query plan that accesses the base relations. Pro

cessing the query using the materialized view is not always the best choice (e.g. the base relations

might be clustered on an access path useful for processing the query, while the materialized view

is clustered on another access path). Fortunately, extending a conventional query optimizer

[Sel79] to make this decision is straightforward. The optimizer can find the best plan for process

ing the query normally, and the best one to process the query using the stored view. The plan

that should be used is the one with least expected cost.

7. CONCLUSION 192

Another optimization issue arises due to the work presented in chapter 3 on staticly optim

ized view maintenance algorithms (RVM and SAVM). Using a staticly optimized view mainte

nance algorithm, when given a collection ofviews, an efficient structure must be found for main

taining those views. In the case of RVM this structure is a Rete network, and in the case of

SAVM the structure is a shared execution plan. Current expert system shells that use a Rete net

work for testing rule conditions (For81,For82,Sho87) use heuristics to construct the network.

This appears satisfactory in an environment where the data base and rule base are small (e.g. at

most a few thousand facts and rules) and will thus fit entirely into main memory. In a database

environment where the number of facts and rules may be far greater, the optimization issue is

much more important. Hence, an interesting area for future research is to find algorithms for con

structing optimized Rete nets and shared execution plans for RVM and SAVM, respectively.

Besides the issues of optimization, there are transaction processing questions that must be

addressed if support for materialized objects is added to a DBMS. Future research is required on

concurrency control and recovery in database systems enhanced with rules and derived objects.

It appears that all the pieces are finally available for building a highly general yet efficient

database rules system. A high-priority area research area is the construction of a working rules

system in a DBMS (this is being undertaken as part of the POSTGRES project [StR86,SHH87]).

It is important to prototype some large database rule applications. The knowledge gained through

this endeavor will be invaluable to researchers attempting refine the rules system. It will also pro

vide a sound basis for making decisions about the design of future database rule processing facili

ties.

7. CONCLUSION 193

APPENDIX 1

Implementation of T-loeka in B-Tree Indexes

All lock-based rule indexing algorithms require the ability to set Mocks on ranges of data in

a B-tree index. For predicate terms of the form attribute = constant, aMock is set in the index

by inserting adummy record for the value constant. The dummy record has fields to hold con
stant, a tag indicating that the lock is for an equality condition, and the indentifier of the rule

that set the lock.

The problem of locking ranges of values is slightly more complex. Predicate terms specify

ing ranges can beof the following form:

constant x lower.op attribute upper.op constant2
The symbols lower.op and upper.op are either < or <, and either or both of the constants can

be positive or negative infinity. Allowing the constants to be infinity handles the special case of
open-ended ranges such as attribute < constant. Recall that.the structure of aB-tree index

page is the following:

ptr0, kcyx, ptrXi • • *, kcym, ptrm
Everything in asubtree pointed to by ptr{ has akey value that is > ktVi and < hyM. Inter
vals are locked in the following way. The structure of an interval Mock set by a rule with

identifier RulelD is

t = pule©, RuIeType, constantx, lower.op, eonetant2, upper.op)

Locks are set in the tree using the following recursive algorithm, which is initially called on the

root page of the tree:

7. CONCLUSION W*

LockRangefPage, Mock)

if Page is a leaf or the lock range covers all values on Page then
put a copy of (-lock on the page and return

else
for each ptrt on Page such that the interval [keyit key^j) overlaps the lock range do

LockRange(tp<r,-.. Mock)
end

end if

}

When a new value k is inserted into a B-tree containing interval locks the insertion algo

rithm must determine the set of locks thatconflict with the new value. This is done by executing

the following section of code for each page visited on the trip from the root to the leaf

(ConflictSet is initially empty):

if page is an internal node then
ConflictSet := ConflictSet |J {locks on page }

else /* this is a leaf page */
ConflictSet := ConflictSet

M {T I T is a Mock with a range that covers k }
end if

After the insertion, ConflictSet contains the set oflocks that conflict with k.

The question arises as to what action to take when a B-tree page must be split or merged.

In the case ofmerges, the set of locks on the two pages must simply be unioned together to form

the set of locks for the new page. For splits, if the page being split is a leaf node, each new page

contains all the locks from the old page that overlap some value on the new page. If the page

being split is an internal node, the lock set from the original page is copied to both of the new

pages.

7. CONCLUSION 195

APPENDIX S

This appendix describes the new aggregate syntax proposed for the POSTQUEL language

[StR86] and discusses how POSTQUEL aggregates are processed. A comparison of the old QUEL

aggregate notation [Eps79,HSW75] with the new POSTQUEL syntax is then given.

New Aggregate Syntax for POSTQUEL

The goal of the POSTQUEL aggregate notation is to make all linkage between the inner

and outer part of the query explicit, thus simplifying specification of complex aggregate queries.

The general form of a POSTQUEL aggregate is as follows:

aggregatemname '{* exp [from fromjist \ \ where qual | *}*

Using this syntax, all tuple variables appearing in the query are global unless they are re-defined

in the from clause of an aggregate. Scalar aggregates can be specified in much the same way as

in QUEL. For example, the following POSTQUEL query retrieves the average salary of employ

ees working in the Sales department:

retrieve (a = avg{EMP.salary where EMP.dept = "Sales"})

In general, a query containing an aggregate function consbts of an outer block and one or more

nested inner blocks (inner blocks may in turn contain other nested blocks). The semantics of a

nested query of this form are that it appears to be processed using the following algorithm known

as nested iteration:

For each tuple t that meets the qualification of the outer block, substitute t
into the inner block(s) and evaluate them. Form a modified query by replacing
the inner block(s) with the values they return. Evaluate the condition of this
query, and if it is true, add t to the result.

7. CONCLUSION 196

Processing POSTQUEL Aggregates

As an example, a query to retrieve all department records for departments with an average

employee salary ofgreater than 15,000 dollars can be specified as follows in POSTQUEL:

Qv

retrieve (DEPT.aII)
where avg {EMP.salary whereEMP.dept=DEPT.dname) > 15000

Using nested iteration, the outer block of Qx retrieves every DEPT record, and the inner block is

evaluated once for each one. For example, suppose that there is a DEPT tuple with dname =

"Toy". When processing Qx using nested iteration, the following subquery is formed:

retrieve (dname « "Toy",...)
where avg {EMP.saIary whereEMP.dept="Toy"} > 15000

Then the avg aggregate is evaluated. Suppose that the result is that the average Toy department

salary is 13,000 dollars. Then the following subquery would be formed:

retrleve(dname = "Toy",...)
where 13000 > 15000

Since 13,000 is not greater than 15,000, no tuple is retrieved, so the Toy department record is not

part of the result.

Although the nested iteration algorithm is useful for defining the semantics of aggregation

queries, it is often not the most efficient way to process aggregates. For example, suppose that

there are 20 records for each unique dname value in the DEPT relation (e.g. 20 Toy department

records, 20 Sales department recores, etc.). In this case, using nested iteration, the inner block

would be evaluated 20 times for each dname - a tremendous waste of effort!

The SQL query language |CAE76] also provides aggregate queries with nested iteration

semantics. Previous research has shown how to translate nested aggregate queries written in SQL

into a form that can be processed much more efficiently [GaW87,Kie84,Kim82]. These techniques

7. CONCLUSION 197

are directly applicable to processing nested aggregation queries in POSTQUEL. For brevity, these

techniques are not reviewed here; the reader is referred to the original sources for a complete dis

cussion. The principle behind the techniques is illustrated below using an example. Consider the

query Qx given previously. Qx can be transformed into the following query which makes use of

an explicit by clause rather than nested iteration to express grouping:

retrieve (DEPT.all)
where avg(EMP.salary by DEPT.dname

where DEPT.dname=EMP.dept) > 15000

This syntax is not legal for user queries in POSTQUEL, however the system may construct

queries with this structure for purposes of optimization *. QJ can be processed using the follow

ing steps, as described in [Eps79]:

1. Initialize a relation TEMP to hold the result of the aggregate
function as follows:

retrieve unique intoTEMP(count=0, avg=0, dname=DEPT.dname)

2. Run the following query (without removing duplicates), and for each
tuple retrieved, update the count and avg fields of the appropriate tuple
in TEMP:

retrieve (EMP.salary, DEPT.dname)
where EMP.dept = DEPT.dname

3. Modify Qj to form the following query:

retrleve(DEPT.all)
where TEMP.avg > 15000
and TEMP.dname = DEPT.dname

4. Execute Qx and return the result.

*Since aggregate queries bised on nested iteration can be translated into aformat using an explicit by clause, the
techniques for maintaining the results of aggregation queries proposed in chapter 3 can be used with nested itera-techniques for maintaining
tion queries as welL

7. CONCLUSION 198

The procedure outlined above can be significantly more efficient than nested iteration. For exam

ple, in the case where there are 20 DEPT records for each unique dname value, each EMP record

would be accessed 20 times using nested iteration, but only once using the above algorithm.

Comparlaon of QUEL and POSTQUEL Aggregate Notation

The QUEL aggregate function syntax has proven difficult for users to master. A major

problem with the QUEL notation is that the result relation of an aggregate function is implicitly

linked to the outer part of the query. In order to successfully specify specify a non-trivial query

containing an aggregate function, the user must understand the fairly complex algorithm used to

perform the linkage. As an example, consider the following schema for a database containing

information about authors and the books they have written or co-written:

author(aid, name,...) /* unique authors */
book(bid, title,...) /* unique books */
ab(aid, bid) /* relationship showing authorship ofa book */

Consider a query to find all pairs of authors that have co-authored more than three books

together. This query can be specified as follows using QUEL:

range of a, a2 ta author
range of b ia book
range of abl, ab2 ia ab
retrleve(a.all,a2.all)
where count(b.bid by a.aid, a2.aid

where a.aid=abl.aid and abl.bid = b.bid
and a2.aid = ab2.aid and ab2.bid = b.bid
and a.aid != a2.aid) >= 3

The tuple variables a and a2 in the target list of this command are not the same as a and a2 in

the aggregate function (this is an example of the source of confusion using QUEL aggregates).

The above query is processed in INGRES as follows. The aggregate function in the query is com

puted to form the following temporary relation showing pairs of authors, and the number ofbooks

they have co-authored.

TEMP(count, aidl, aid2)

7. CONCLUSION 199

The original query is then modified to form the following:

retrleve(a.aU,a2.all)
where TEMP.count >= 3

and TEMP.aidl = a.aid

and TEMP.aid2 = a2.aid

The result of this modified query is returned to the user.

The same query can be specified as follows using POSTQUEL:

retrleve(a.all,a2.all)
from a, a2 in author, b In book, abl, ab2 In ab
where count {b.bid where a.aid = abl.aid and abl.bid = b.bid

and a2.aid = ab2.aid and ab2.bid = b.bid
and a.aid != a2.aid} >«= 3

Here, a and a2 refer to the same tuple in both the target list and the aggregate. The meaning of

this query is more clear from the text of the query itself than it is in the QUEL example because

linkage between the aggregate and the outer part of the query is specified explicitly using a and

a2.

200

References

|AdL80] Adiba, M. E. and Lindsay, B. G., "Database Snapshots", Proceedings of the

International Conference on Very Large Data Bases, October 1980, 86-91.

|AgD83] Agrawal, R. and DeWitt, D. J., "Updating Hypothetical Data Bases", Information

Processing Letters 16 (April 1983), 145-146, North Holland .

|ASU79] Aho, A. V., Sagiv, Y. and Ullman, J. D., "Efficient Optimization of a Class of

Relational Expressions", ACM Transactions on Database Systems 4, 4 (1979), 435-

454.

[ABC76] Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P., Gray, J. N.,

Griffiths, P. P., King, W. F., Lorie, R. A., Mc Jones, P. R., Mehl, J. W., Putzolu, G. R.,

Traiger, I. L., Wade, B. W. and Watson, V., "System R: Relational Approach to

Database Management", ACM Transactions on Database Systems 1, 2 (June 1976),

97-137.

[BBD82] Bates, D., Boral, H. and DeWitt, D. J., "A Framework for Research in Database

Management for Statistical Analysis", Proceedings of the 1982 ACM-SIGMOD

Conference on Management of Data, June 1982.

[BLT86] Blakeley, J. A., Larson, P. and Tompa, F. W., "Efficiently Updating Materialized

Views", Proceedings of the 1986 ACM-SIGMOD Conference on Management of

Data, Washington DC, May 1986, 61-71.

[Blo70] Bloom, B. H., "Space/Time Trade-offs in Hash Coding with Allowable Errors", CACM

IS, 7 (July 1970).

References 201

|BoW77] Bobrow, D. and Winograd, T., "An Overview of KRL, a Knowledge Representation

Language", Cognitive Science 1,1 (Jan.-Mar. 1977).

[Bra86] Bratko, PROLOG Programming for Artificial Intelligence, 1986.

[BuC79| Buneman, O. P. and Clemons, E. K., "Efficiently Monitoring Relational Databases",

ACM Transactions on DatabaseSystems 4, 3 (September 1979), 368-382.

[But86] Butler, M., "An Approach to Persistent Lisp Objects", Proceedings of the Thirtieth

Computer Society International Conference, San Francisco, CA, March 1986.

[Car75] Cardenas, A. F., "Analysis and Performance of Inverted Data Base Structures",

CACM 18, 5 (May 1975), 253-263.

[CAE76] Chamberlin, D. D., Astrahan, M. M., Eswaran, K. P., Griffiths, P. P., Lorie, R. A.,

Mehl, J. W., Reisner, P. and Wade, B. W., "SEQUEL 2: A Unified Approach to Data

Definition, Manipulation, and Control", IBM Journal of Research and Development

20, 6 (1976).

[Cha82j Chang, S. K., "Database Alerters for Knowledge Management", Proceedings of the

Workshop on Self-Describing Data Structures, Univ. of Maryland, College Park,

October 1982.

[Cod70] Codd, E. F., "A Relational Model ofData for Large Shared Data Banks", CACM IS, 6

(June 1970), 377-387.

|Dat81a] Date, C. J., "Referential Integrity", Proceedings of the 7th VLDB Conference, Cannes

France, September 1981.

pat81b] Date, C. J., An Introduction toDatabase Systems, Addison Wesley, 1981.

[DeF86] Deering, M. and Faletti, J., "Database Support for Storage of AI Reasoning

Knowledge", in Expert Database Systems/Proceedings From the First International

Workshop, L. Kerschberg (editor), 1986, Benjamin/Cummings.

References 202

[End72] Enderton, H. B., A Mathamatical Introduction to Logic, 1972.

[Eps79| Epstein, R., "Techniques for Processing of Aggregates in Relational Database

Systems", UCB/ERL M79/8, University ofCalifornia, February 1979.

[EGL76] Eswaran, K. P., Gray, J. N., Lorie, R. A. and Traiger, I. L., "The Notions of

Consistency and Predicate Locks in a Database System", CACM 19, 11 (November,

1976).

(Esw76) Eswaran, K. P., "Specifications, Implementations and Interactions of a Trigger

Subsystem in an Integrated Database System", IBM Research Report RJ1820(26414),

IBM Research Laboratory, San Jose, CA, August 1976.

|FiK85| Fikes, R. and Kehler, T., "The Role of Frame-Based Representation and Reasoning",

CACM28, 9 (September 1985).

lFor8l] Forgy, C. L., "OPS5 User's Manual", CMU-CS-81-135, Carnegie-Mellon University,

Pittsburgh, PA 15213, July 1981.

[For82] Forgy, C. L., "Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern

Match Problem", Artificial Intelligence 19 (1982), 17-37, North Holland.

(For84] Forgy, C. L., "OPS83 Report", CMU-CS-84-133, Carnegie-Mellon University,

Pittsburgh, PA 15213, May 1984.

[FWA86] Fox, M. S., Wright, J. M. and Adam, D., "Experiences with SRL: An Analysis of a

Frame-based Knowledge Representation", in Expert Database Systems/Proceedings

From the First International Workshop, L. Kerschberg (editor), 1986,

Benjamin/Cummings.

[GaM78| H. Gallaire and J. Minker, eds., Logic and Data Bases, Plenum Press, New York, NY ,

1978.

References 203

[GMN81] H. Gallaire, J. Minker and J. M. Nicolas, eds., Advances in Data Base Theory ,

Plenum Press, New York, NY , 1981.

|GaW87] Ganski, R. A. and Wong, H. K. T., "Optimization of Nested SQL Queries Revisited",

Proceedings of the 1987 ACM-SIGMOD Conference on Mangagement of Data, San

Francisco CA, May 1987.

[Gev87l Gevarter, W. B., "The Nature and Evaluation of Commercial Expert System Building

Tools", IEEE Computer, May 1987.

|Gra78] Gray, J. N., "Notes on Data Base Operating Systems", IBM Research Report RJ2254,

IBM Research Laboratory, San Jose, CA, August 1978.

[GuF83j Gupta, A. and Forgy, C. L., "Measurements on Production Systems", CMU-CS-83-

167, December 1983.

[Gut84] Guttman, A., 4«R-Trees: A Dynamic Index Structure for Spatial Searching",

Proceedings of the 1984 ACM-SIGMOD Conference on Management of Data,

Boston, June 1984.

[HaC76] Hammer, M. and Chan, I., "Index Selection in aSelf-Adaptive Data Base System",

Proceedings of the 1976 ACM-SIGMOD Conference on Management of Data,

Washington DC, June 1976.

[Han84] Hanson, E. N., "User-Defined Aggregates in the Relational Database System

INGRES", Masters Report, University ofCaliforia, Berkeley CA, December 1984.

[Han87| Hanson, E. N., "A Performance Analysis of View Materialization Strategies",

Proceedings of the 1987 ACM-SIGMOD Conference on Management of Data, San

Francisco CA, May 1987.

[HSW75] Held, G., Stonebraker, M. and Wong, E., "INGRES - ARelational Database System",

Proc. of the National Computer Conference, 1975.

References 204

[Hil86| Hill, M., "et al., "Design Decisions in SPUR", IEEE Computer, November 1986.

[HoT86| Horwitz, S. and Teitelbaum, T., "Generating Editing Environments Based on Relations

and Attributes", ACM Transactions on Programming Languages and Systems 8 , 4

(October 1986), 577-608.

[How86] Howe, L., "Sybase Data Integrity For On-Line Applications", Sybase, Inc. 2910

Seventh Street, Berkeley California 94710,1986.

|Ioa85) loannidis, Y., "A Time Bound on the Materialization of Some Recursively Defined

Views", Proceedings of the Uth International Conference on Very Large Data Bases,

Stockholm, August 1985.

[Ioa86] loannidis, Y., "Enhancing INGRES with Deductive Power", in Expert Database

Systems/Proceedings From the First International Workshop, L. Kerschberg (editor),

1986, Benjamin/Cummings.

[JCV84] Jarke, M., Clifford, J. and Vassiliou, Y., "An Optimizing Prolog Front-End to a

Relational Query System", Proceedings of the 1984 ACM-SIGMOD Conference on

Management of Data, Boston, June 1984.

|Jar86] Jarke, M., "External Semantic Query Simplification: A Graph-Theoretic Approach

and its Implementation in PROLOG", in Expert Database Systems/Proceedings From

the First International Workshop, L. Kerschberg (editor), 1986, Benjamin/Cummings.

[Kie84| Kiessling, W., "SQL-Like and QUEL-Like Correleation Queries With Aggregates

Revisited", UCB/ERL M84/75, Univ. California, Berkeley, September 1984.

|Kim82] Kim, W., "On Optimizing an SQL-like Nested Query", ACM Transactions on

Database Systems 4, 4 (September 1982), 443-469.

(KoP8l| Koenig, S. and Paige, R., "A Transformational Framework for the Automatic Control

of Derived Data", Proceedings of the 7th International conference on Very Large

References 205

Data Bases, France, 1981,306-318.

[LHM86| Lindsay, B. G., Haas, L., Mohan, C, Pirahesh, H. and Wilms, P., "A Snapshot
Differential Refresh Algorithm", Proceedings of the 1986 ACM-SIGMOD

International Conference on Management ofData, June 1986, 53-60.

|Min75] Minsky, M., "A Framework for Representing Knowledge", in The Psychology of
Computer Vision, P. Winston (editor), New York, NY, 1975, McGraw Hill.

[Mis84] Mishkin, N., "Managing Permanent Objects", PhD Thesis, Department of Computer
Science, Yale University, New Haven, Connecticut, 1984.

[PaiSO] Paige, R., "An Efficient Implementation of Automatic Finite Differencing",
Department of Computer Science, Rutgers University, August 1980.

tRoG77] Roberts, I. and Goldstein, R., "NUDGE, AKnowledge-Based Scheduling Program",
Proceedings of the 5th International Joint Conference on Artificial Intelligence ,

Cambridge, MA, August 1977, 257-263.

|RoK86] Roussopoulos, N. and Kang, H., "Principles and Techniques in the Design of ADMS±",
Computer, December 1986.

[RoS79] Rowe, L. A. and Shoens, K. A., "Data Abstraction, Views and Updates in RIGEL",
Proceedings of the 1979 ACM-SIGMOD International Conference on Management

of Data, Boston Massachusetts, June 1979.

|RoS87] Rowe, L. A. and Stonebraker, M. R., "The POSTGRES Data Model", Proceedings of
the ISth International Conference on Very Large Data Bases, Brighton England,

August 1987.

[Rub86] Rubenstein, W. B., "A-Trees: An Indexing Abstraction for Ordered Aggregates", U.C.
Berkeley Memo No. UCB/ERL/M86/77,12 September 1986.

References 206

[RKC87] Rubenstein, W. B., Kubicar, M. S. and Cattell, R. G. G., "Benchmarking Simple

Database Operations", Proceedings of the 1987 ACM-SIGMOD Confernence on

Management of Data, San Francisco, May 1987.

|Rub87] Rubenstein, W. B., "Data Management of Musical Information", PhD Dissertation,

Dept. of Computer Science, U.C. Berkeley, Berkeley CA, June 1987.

|ScW86] Sciore, E. and Warren, D. S., "Towards an Integrated Database-PROLOG System", in

Expert Database Systems/Proceedings From the First International Workshop, L.

Kerschberg (editor), 1986, Benjamin/Cummings.

[Sel79] Selinger, P., "et al., "Access Path Selection in a Relational Database Management

System", Proceedings of the 1979 ACM-SIGMOD International Conference on

Management of Data, Boston, MA, June 1979.

|Sel86a] Sellis, T., "Global Query Optimization", Proceedings of the 1986 ACM-SIGMOD

International Conference on Management of Data 15, 2 (June 1986), 191-205.

[Sel86b] Sellis, T., "Optimization of Extended Relational Database Systems", PhD Thesis,

University of California, Dept of EECS, Berkeley CA, 1986.

[Sel87| Sellis, T. K., "Efficiently Supporting Procedures in Relational Database Systems",

Proceedings of the 1987 ACM-SIGMOD Conference on Mangagement of Data, San

Francisco CA, May 1987.

[SeL76] Severance, D. and Lohman, G., "Differential Files: Their Application to the

Maintenance of Large Databases", ACM Transactions on Database Systems 1, 3

(September 1976), 256-267.

[ShI84] Shmueli, O. and Itai, A., "Maintenance of Views", Proceedings of the 1984 ACM-

SIGMOD Conference on Management of Data, Boston, June 1984.

References 207

[ShB75] Shortliffe, E. H. and Buchanan, B. G., "A Model of Inexact Reasoning in Medicine",
Mathematical Biosciences 23 (1975), 251-379.

[Sho76] Shortliffe, E. H., Computer-Based Medical Consultations: MYCIN, American

Elsevier, New York, 1976.

[Sho87| Shoup, A., personal communication, Inference Corporation, San Francisco, CA,

1987.

[Sto75] Stonebraker, M., "Implementation of Integrity Constraints and Views by Query
Modification", Proceedings of the 1975 ACM-SIGMOD International Conference on

Management ofData, San Jose, CA, June 1975.

[SWK76] Stonebraker, M., Wong, E., Kreps, P. and Held, G., "The Design and Implementation
of INGRES", ACM Transactions on Database Systems I, 3 (September 1976), 189-

222.

[SAH84] Stonebraker, M., Anderson, E., Hanson, E. and Rubenstein, B., "QUEL as aData
Type", Proceedings of the 1984 ACM-SIGMOD International Conference on

Management of Data, Boston, MA, June 1984.

[Sto85] Stonebraker, M., "Triggers and Inference in Data Base Systems", Proceedings of the
Islamorada Expert Database Conference, February 1985.

[SAH85] Stonebraker, M., Anton, J. and Hanson, E., "Extending aData Base System with
Procedures", (to appear in ACM Transactions on Database Systems, September

1987), Berkeley, CA, July 1985.

[SSH86J Stonebraker, M., Sellis, T. and Hanson, E., "An Analysis of Rule Indexing
Implementations in Data Base Systems", Proceedings of the First Annual Conference

on Expert Database Systems, Charleston SC, April 1986.

References 208

(StR86] Stonebraker, M. and Rowe, L., "The Design of POSTGRES", Proceedings of the 1986

ACM-SIGMOD Conference on Management of Data, 1986.

|SHH87J Stonebraker, M., Hanson, E. and Hong, C, "The Design of the POSTGRES Rules

System", Proc. 1987 IEEE Data Engineering Conference, Los Angeles California,

February 1987.

[SHP87| Stonebraker, M., Hanson, E. and Potamianos, S., "A Rule Manager for Relational

Database Systems", IEEE Transactions on Software Engineering, 20 May 1987.

[U1185] Ullman, J., "Implementation of Logical Query Languages for Data Bases", Proceedings

of the 1985 ACM-SIGMOD International Conference on Management of Data,

Austin, TX, May 1985.

[W0K8OJ Wong, E. and Katz, R. R, "Logical Design and Schema Conversion for Relational and

DBTG Databases", in Entity-Relationship Approach to Systems Analysis and

Design, North Holland Publishing Co., 1980, Amsterdam.

[WoS83| Woodfill, J. and Stonebraker, M., "An Implementation of Hypothetical Relations",

Proceedings of the Ninth Very Large Data Base Conference, Florence, Italy,

December 1983.

[Yao77] Yao, S. B., "Approximating Block Accesses in Database Organizations", CACM 20, 4

(April 1977).

!Yao78] Yao, A. C, "On Random 2-3 Trees", Acta Informatica 9, 2(1978).

|Zan85] Zaniolo, C, "The Representation and Deductive Retrieval of Complex Objects",

Proceedings of the 11th International Conference on Very Large Data Bases,

Stockholm, August 1985.

|Zan86] Zaniolo, C, "Safety and Compilation of Non-Recursive Horn Clauses", Proceedings of

the First International Conference on Expert Database Systems, Charleston, SC,

References 209

Aprill986,

	Copyright notice1987
	ERL-87-70 (1 of 3)
	ERL-87-70 (2 of 3)
	ERL-87-70 (3 of 3)

