Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

EFFICIENT SUPPORT FOR RULES AND DERIVED
OBJECTS IN RELATIONAL DATABASE SYSTEMS

by

Eric N. Hanson

Memorandum No. UCB/ERL M87/70

24 August 1987

EFFICIENT SUPPORT FOR RULES AND DERIVED
OBJECTS IN RELATIONAL DATABASE SYSTEMS

by

Eric N. Hanson

Copyright © 1987

Memorandum No. UCB/ERL M87/70

24 August 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

This research was supported by the National Science Foundation, Grant DMC-8504633 and by the
Defense Advanced Research Projects, Contract N00039-84-C-0089.

EFFICIENT SUPPORT FOR RULES AND DERIVED
OBJECTS IN RELATIONAL DATABASE SYSTEMS

by

Eric N. Hanson

Copyright © 1987

Memorandum No. UCB/ERL M87/70

24 August 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

This research was supported by the National Science Foundation, Grant DMC-8504633 and by the
Defense Advanced Research Projects, Contract N00039-84-C-0089.

Efficient Support for Rules and Derived Objects
in Relational Database Systems

Eric N. Hanson

Abstract

~

This thesis presents the design and analysis of a collection of algorithms to support triggers,
inference rules, and derived data objects (e.g. views) in relational database systems. A basic com-
ponent of algorithms for testing rule conditions is known as rule indezing. Given a collection of
rule conditions and a database record, a rule indexing algorithm finds all the conditions that are
satisfied by that record. A rule indexing technique called basic locking has been previously pro-
posed. Basic locking is known as a lock-based algorithm because it places special locks on data
records and in conventional indexes. Two other lock-based rule indexing methods, reduced dasic
locking and mark intersection are proposed here, and the performance all three algorithms is

analyzed.

A view maintenance glgorsthm is a method for maintaining and incrementally updating a
physically stored copy of a database view. A nmew view maintenance algorithm called Rete view
maintenance (RVM) is proposed in this thesis. RVM is based on the Rete Network, a type of
discrimination network used to test rule conditions in forward-chaining rule interpreters. Methods
are discussed for improving the performance of view maintenance algorithms by utilizing rule
indexing techniques. A collection of algorithms is also proposed to allow maintenance of material-

ized aggregates and aggregate functions.

By keeping a stored copy of a view up-to-date using a view maintenance algorithm, it is pos-
sible to process view queries directly using the copy. The conventional way to process queries

against views is to use query modification, whereby a view query is translated into an equivalent

query that refers only to the base relations. A performance apalysis is presented which compares
the average cost of a view query for these two alternatives for different view types, including a

simple selection from one relation, the join of two relations, and an aggregate over one relation.

A related performance analysis is also presented comparing the costs of different algorithms
for querying database procedures. The database procedures analyzed are made up of one or more
database queries stored in the field of a record. The value of 3 database procedure is the result of
executing the query or queries in its definition. Three different algorithms for processing queries
against datahase procedures are evaluated. The first algorithm is to always execute the queries in
the procedure. The second algorithm requires caching the last value returned by executing the
queries in the procedure; if the cached value is valid when the procedure is queried, the value
from the cache is returned. Otherwise, the procedure value is recomputed, and written to refresh
the cache. The third algorithm is to use a view maintenance method to keep a stored copy of the
procedure result up-to-date at all times, and return the result whenever it is requested. As in the

case for views, the average query cost for each algorithm is compéred.

Finally, enhancements to the rule sublanguage of the POSTGRES database management
system are proposed to increase the power of the language and to simplify implementation of
rule-based applications. Methods are presented for implementing the new language features

efficiently using rule indexing and view maintenance techniques.

a

Professor Michael Stonebraker
Committee Chairman

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Michael Stonebraker, for
giving me the opportunity to work in the field of database management, and for providing
indispensable guidance for this research. I al§o wish to thank the other members of my thesis
committee, Professors Lawrence A. Rowe and William Cooper, for reviewing this dissertation.
The other graduate students in the database research group at UC Berkeley, including Margaret
Butler, Brad Rubenstein, Timos Sellis and Yiannis Ioannidis provided helpful comments on this
work. Careful editing by Kaaren Bock greatly improved chapter 1, and her stylistic comments
belped me present the other chapters more effectively. Finally, I thank Jefl Anton, our system

manager, for keeping our computers running smoothly throughout the course of my research.

Chapter 1. INTRODUCTION

1.1.

1.2.

1.2.1.

1.2.1.1.

1.2.1.2.

1.2.2.

1.3.

1.3.1.

1.3.2.

14.

1.5.

Chapter 2. LOCK-BASED RULE INDEXING

2.1

2.2.

2.2.1.

2.2.2.

223. .

23.

23.1.

Table of Contents

Background

Research on Rule Systems

Database Rule Systems

Triggers and Alerters

Deductive Databases

Rule Systems In Artificial Intelligence

Rule Indexing

Rule Indexing for Selection Predicates

Rule Indexing Techniques for Join Predicates

Derived Objects

Thesis Overview

Introduction

Rule Indexing Algorithms

Motivation for Mark Intersection

The Mark Intersection Algorithm

Reduced Basic Locking

Performance Characteristics

The Predicate Model

10

13

13

18

27

30

32

32

33

33

35

38

39

40

2.3.2.

23.3.

233.1.

2.3.3.2.

234.

24.

24.1.

2.5.

2.5.1.

2.5.2.

2.5.3.

2.54.

2.6.

27.

Table of Contents

Performance of Basic Locking

Performance of Mark Intersection

Cost of Screening the Locks

Number of Locks That Survive Screening

Performance of Reduced Basic Locking

Performance Results

Simplified Analysis of Mark Intersection

Storage Utilization

Size of the RULES Relation

Storage Use in Reduced Basic Locking

Storage Use in Basic Locking

Storage Use in Mark Intersection

Storage Analysis Results

Discussion

.....

Chapter 3. MAINTAINING DERIVED OBJECTS

3.1

3.1.1.

3.1.2.

3.1.3.

3.2.

3.3.

34.

3.4.1.

Staticly Optimized View Maintenance Algorithms

Algebraic View Maintenance

Maintaining Views Using a Rete Network

The Rete View Maintenance Algorithm

Dynamicly Optimized View Maintenance and Sharing

Database Procedures

Aggregate Maintenance

Basic Aggregate Processing Algorithms

41

41

41

43

43

44

46

48

49

49

51

51

52

52

55

57

57

61

63

70

70

71

71

Table of Contents iv

. 342. Fundamentals of Aggregate Maintenance 74
3.4.3. Scalar Aggregate Maintenance , 75
3.4.3.1. Non-Unique 75
3.4.3.2. Unique ' 77
3.4.4. Aggregate Function Maintenance 78
3.4.4.1. Unqualified, Non-unique 78
3.4.4.2. Unqualified, Unique 79
3.4.4.3. Qualified, Non-unique 80
3.4.4.4. Qualified, Unique 81
3.5. QUEL Commands Containing Aggregates 81
3.6. Discussion , ' 84 .
Chapter 4. VIEW MATERIALIZATION PERFORMANCE ... 88
4.1. Introduction 88
4.2. Deferred View Maintenance - 90
4.2.1. Hypothetical Relations 90
4.2.2. Efficient Implementation of Hypothetical Relations 91
4.3. Performance Qomparison 93
4.3.1. Description of View Models 93
4.3.2. Model 1 Cost Analysis 95
4.3.2.1. Cost of Deferred View Maintenance Assuming Model 1 96
4.3.2.2. Cost of Inmediate Assuming Model 1 99
4.3.2.3. Cost Using Query Modification Assuming Model 1 100

4.3.3. Performance Results for Model 1 101

Table of Contents

434. Model 2: 2-Way Join View

4.3.4.1. Cost of Deferred Assuming Model 2

4.3.4.2. Cost of Inmediate View Maintenance Assuming Model 2

4.3.4.3. Cost Using Query Modification Assuming Model 2

4.3.5. Performance Results for Model 2

4.3.6. Model 3: Aggregates Over Model 1 Views

4.3.7. Performance Results for Model 3

4.4. Discussion

Chapter 5. PERFORMANCE OF PROCEDURE MATERIALI-
ZATION METHODS

5.1. Procedure Maintenance Algorithms

5.2. Procedure Models Analyzed

5.3. Cost Analysis for Model 1 Procedures

5.3.1. Model 1: Cost of Always Recompute Strategy

5.3.2. Model 1;: Cost of Cache and Invalidate

5.3.3. Model 1: Cost of Update Cache (Non-Shared)

5.3.4. Model 1: Cost of Update Cache (Shared)

5.4. Performance Results for Model 1 Procedures

5.5. Cost Analysis for Model 2 Procedures

5.5.1. Model 2: Cost of Always Recompute

5.5.2. Model 2: Cost of Cache and Invalidate

5.5.3. Model 2: Cost of Update Cache (Non-Shared)

5.5.4. Model 2: Cost of Update Cache (Shared)

106

107

108

109

110

114

116

118

123

123

124

128

128

129

132

134

136

147

148

149

149

150

5.6.

5.7.

Table of Contents

Performance Results for Model 2 Procedures

Summary and Conclusions

Chapter 8. AN ENHANCED DATABASE RULE LANGUAGE

6.1.

6.1.1.

6.1.2.

6.1.3.

6.2.

6.3.

6.3.1.

6.3.2.

6.4.

6.4.1.

6.4.2.

6.4.3.

6.4.4.

6.4.5.

6.4.6.

6.5.

Chapter 7. CONCLUSION

7.1

7.2.

- A Conditional Abort Command

Weaknesses in the Query Language

Negated Conditions

Executing a List of Statements

Processing Commands Containing Proposed Features

Alternate Rule Semantics

Language Features to Support Alternate Rule Semantics

Examples Using New Rule Syntax

Testing Rule Conditions

Conditions Without Negation

Conditions With Negation

The Rule Execution Strategy

Conflict Resolution

Act

Match

Discussion

Summary

Comparison with Other Research’

vi

151

154

158
158
158
162
163
164

166

. 169

171

175

175

178

178

179

180

180

180

182

182

186

Table of Contents vii

7.3. Implications of This Work : 189

74. Limitations of Results 190

7.5. Directions for Future Research 190

Table of Contents viii

List of Figures

Chapter 1. INTRODUCTION 1
Figure 1.1. Representation of predicates as rectangles 15
Figure 1.2. Function of the Rete Network 19
Figure 1.3. Example Rete Network 21
Chapter 2. LOCK-BASED RULE INDEXING 32
Figure 2.1. Example tuple with locks set by the Mark Intersection algorithm 36
Figure 2.2. Cost of BL, RBL and MI versus {Q 45
Figure 2.3. Cost of MI versus BL as number of indexed attributes variesccccreereneeee. 46
Figure 2.4. Cost of MI versus Cost of BL Assuming Only Two Predicate Types | 48
Figure 2.5.. Amount of storage used by lock-based rule indexing algorithmsc.cuc.e.. 63
Chapter 3. MAINTAINING DERIVED OBJECTS 55
Figure 3.1. Standard algebraic view maintenance (no sharing) 59
Figure 3.2. Algebraic view maintenance using shared subexpression 60
Figure 3.3. Rete network for exz;mple rule 62
Figure 3.4. Rete network used for view maintenance 63
vFigure 3.5. Error using non-depth-first propagation 68
Figure 3.6. Augmenting Rete network with locking 69
Chapter 4. VIEW MATERIALIZATION PERFORMANCE 88

Figure 4.1. Access methods of relations in performance model 94

List of Figures ix

Figure 4.2. View Materialization Cost Parameters 95
Figure 4.3. Default Parameter Values : 95
Figure 4.4. Model 1: Query Cost 102
Figure 4.5. Model 1: Algorithm Comparison 104
Figure 4.6. Model 1: Algorithm Comparison 105
Figure 4.7. Model 1: Algorithm Comparison 106
Figure 4.8. Model 2: Query Cost 111
Figure 4.9. Model 2: Algorithm Comparison 112
Figure 4.10. Model 2: Algorithm Comparison 113
Figure 4.11. Model 3: Query Cost 117
Figure 4.12. Model 3: Algorithm Comparison < 118

Chapter 5. PERFORMANCE OF PROCEDURE MATERIALI-
ZATION METHODS 123

Figure 5.1. Rete networks for type P and P procedures in model 1 134

Figure 5.2. Query cost versus update probability for high cache invalidation cost (60

ms) 137

Figure 5.3. Query ‘cost versus update probability for low cache invalidation cost (0

ms) 138
Figure 5.4. Query cost versus update probability for large objects (f==0.01) ..coervrerrrennene 139
Figure 5.5. Query cost versus update probability for small objects (f==0.0001) ...cccceece- 140

Figure 5.6. Query cost versus update probability for single-tuple objects (f=1/N)

141

Figure 5.7. Query cost versus update probability for high locality (A1 R11;) R— 142

Figure 5.8.

Figure 5.9.

Figure 5.10.

List of Figures

Query cost versus P for large number of objects (Ny=N,=1000)

Query cost versus sharing factor (SF)

Areas where each method wins for object size versus update probability

Figure 5.11.
Figure 5.12.
Figure 5.13.
Figure 5.14.
Figure 5.15.

" Figure 5.16.

Areas where each method wins assuming high locality (Z=0.05)cccoecruens
Measure of closeness between Cache and Invalidate and Update Cache

Measure of closeness (f,=1)

Model 2: Rete Network for P, Procedures

Model 2: Query cost for default parameters

Model 2: Query cost of Update Cache alternatives versus sharing factor

Figure 5.17.

Model 2: Winners for update probability versus object sizecceceereeucenen.

Chapter 8. AN ENHANCED DATABASE RULE LANGUAGE

Figure 6.1.

Chapter 7. CONCLUSION

General rule syntax

143

144

145

146

147

148

150

152

153

154

158

169

182

CHAPTER 1

INTRODUCTION

1.1. Background

Many different applications require the ability to specify rules about information stored in a
database management system. In partial response to this need, commercially available database
systems contain several specialized rule mechanisms. Two examples are protection subsystems,
which support rules that allow or dissallow certain database actions such as reading or updating
part of a relation, and integrity control subsystems, which permit the user to define logical asser-
tions that a database is required to satisfy. Proposals for future database systems include more
sophisticated rule systems, including triggers and inference rules. A trigger is a condition and an
associated action to be executed if database updates cause the condition to become true. An infer-

ence rule specifies how to derive new information from existing facts when querying thé database.

Another important class of database facilities involves support for derived objects. Derived
objects are computed from other data stored in the database. A simple example of a derived
object is a database view. Another type of derived object is the result of a collection of database
commands, also known as a database procedure [SAH84,SAH85]. A third type of derived object is
an aggregate, which is a function that takes a set of values as input, and returns a single value.
Two commonly used aggregates are sum and average. The use of views and database procedures
can simplify access to data because they free the user from specifying complicated queries. Using
derived objects can also improve performance of applications if the values of frequently accessed
objects are computed in advance and stored. Rules and derived objects are closely related
because the condition of a rule (e.g., 3 trigger) has a structure similar to the definition of a derive-d

object (e.g., a view).

1. INTRODUCTION 2

Facilities to support rules and derived objects in 2 database management system (DBMS)
should be efficient, and the DBMS should still provide good performance for queries and updates.
Therefore, the design and implementation of a system to support rules and derived objects in a
DBMS deserves careful attention. The subject of this thesis is efficient support for rules and
derived objects in a database environment. The remainder of this chapter presents a review of

previous research related to rules and derived objects, and an outline of the dissertation.

1.2. Research on Rule Systems

In the past 15 years, there has been a large amount of research related to rule-base systems.
This work is divided between the fields of database management and artificial intelligence. Sec-
tion 1.2.1 is a brief review of the work done in the database community. Section 1.2.2 covers the

related work from artificial intelligence.

1.2.1. Database Rule Systems

There have been several proposals for increasing the power of the rules systems in database
managers. The most important work relative to this thesis focuses on database triggers and alert-
ers (an alerter is a trigger that sends a message to a user or applica.tion program as its action).
The flow of execution of triggers is called forward chaining, because the action of one rule can
change the database, causing another mlé to execute. A separate area of research focuses on
deductive inference rules. Deductive inference follows a pattern of execution known as backward
chaining since rules are processed in reverse. For example, consider the following collection of

facts and rules, where “‘—" represents logical implication.
A
A—-B
B—C

To see if C is true using backward chaining, the system attempts to show that B is true. This in

1. INTRODUCTION . 3

turn leads to an attempt to show that A is true. Since A is stored in the database, it is true, so

the system concludes that C is true.

Section 1.2.1.1 discusses previous work on database triggers and alerters and section 1.2.1.2

covers research on deductive inference in databases.

1.2.1.1. Triggers and Alerters

The first work on database triggers was Eswaran’s consideration of the impact of such rules
on other database functions, including authorization and concurrency control [Esw76]. He con-
cluded that since triggers can be defined to monitor database activity and copy data, they should
execute with no more privileges than the person who created them and they should be carefully
monitored by the database administrator (DBA). He also showed that to maintain serializability
of transactions, the database concurrency control mechanism must treat reads and writes per-

formed by triggers as part of the transaction that caused the trigger to execute.

Later work by Buneman and Clemons discusses two classes of triggers identified as aimple
and complez [BuC79]. Simple triggers are those with conditions based on a single tuple from one

relation. For example, consider an employee-department database with the following schema:

EMP(name, age, salary, dept, job)
DEPT(dname, building, floor)

Anp example of a simple trigger is the following:

if an employee's salary is greater than 100,000 dollars
then append his name to the HIGH-ROLLER relation

Complex triggers have conditions based on two or more relations. These conditions have the
same structure as relational algebra expressions. One can also think of a complex trigger condi-
tion as the definition of a database view. The condition becomes true if the database changes so

that the view contains a new tuple. An example of a complex trigger is:

1. INTRODUCTION 4

if a new name enters the view B23EMPS, which has the definition
deflne view B23EMPS (EMP.name)
where EMP.dept = DEPT.dname
and DEPT.bldg = “B23"

then send the employee with that name the fire safety instructions
for building B23.

Buneman and Clemons envision add and delete triggers that are awakened when a tuple logi-
cally enters or leaves a database view, respectively [BuC79]. The complex trigger above is an add
trigger. The triggering mechanism they propose requires recomputing the view after each update.
The new value of the view is then compared to the old one to see whether or not to execute the
rule. Because recomputing the view is expensive, they developed a theorem-prover that attempts
to show when an update command cannot cause a view to change by examining the command
before execution. The view is recomputed only if the theorem-prover determines that an update
might have caused it to change. The theorem-prover is based in part on the notion of readily
ignorable updates or RIU's. An RIU is an update that can be determined in advance not to affect
the view used as the condition of a rule. For example, any update to the age field of EMP is an

RIU with respect to a rule condition referring only to the salary field.

Most other work on triggers focuses on rules of the simple type. Chang proposes a way to
use chains of two or more simple alerters to achieve the aflect of a complex alerter [Cha82]. Sim-
ple triggers were proposed for the experimental relational DBMS System R, but never imple-
mented [ABC76,CAE76]. A new commercial system from Sybase provides a full implementation
of a restricted form of simple triggers [How86]. As opposed to complex triggers, Sybase trigger
conditions can specify only whether a record was inserted into or deleted from a relation. Yet the
action of a Sybase trigger can be a general program written in TRANSACT-SQL, an extended
version of IBM's SQL query language |[CAE76] provided by Sybase. TRANSACT-SQL programs

can contain any SQL statement, as well as commands to support the following:

1. INTRODUCTION 5

e control low (WHILE, IF-ELSE, GOTO)

o transaction handling (BEGIN TRAN, COMMIT TRAN,
ROLLBACK TRAN, SAVE TRAN)

e output and error handling (PRINT, RAISERROR)

e setting an interval or absolute timer (WAITFOR)

Stonebraker proposed a form of complex triggers quite different from those envisioned by
Buneman and Clemons [Sto85]. These rules can be formed by tagging any command in the QUEL
query language [HSW75] with the keyword always. Commands tagged with always logically
appear to run indefinitely. A trigger to force Fred's salary to always be equal to Sam’s salary can

be expressed as follows:

" always replace EMP (salary = E.salary)
from E In EMP
where EMP.name = “Fred”
and E.name = “Sam"

(The from clause above defines a tuple variable E over EMP in the new syntax used by the

POSTGRES system [StR86].) Given this rule, whenever a command such as
replace EMP (sa]ary = 1000) where EMP.name = “Sam"
is processed, the trigger should be awakened to update Fred's salary.
In general, the system must store a collection of triggers:

T,: always <command> relname-1 (Target-list-1) where PREDICATE-1

Ty always <command> relname-n (Target-list-n) where PREDICATE-n

When a user update U is processed, the system must find all triggers T; for which there exists a
tuple ¢ modified or inserted by U that might cause T; to have an effect. A trigger T; definitely

does not have to execute unless the following conditions are satisfied:

t satisfies PREDICATE-i

and
the fields of t changed by the update command contain an attribute
that appears in Target-list-i or PREDICATE-i

1. INTRODUCTION 6

Under some circumstances, the system may awaken a trigger T; even when the condition above is
not satisfied. Unnecessary rule activations of this form are called false drops. This is not a prob-
lem because the semantics of always rules are designed so that they can be executed more often
than necessary without changing the database. For example, the rule for setting Fred’s salary
equal to Sam’s salary that was presented previously can be run any number of extra times since it
will overwrite Fred's salary field with an equal value, leaving the database in the correct state.
The only penalty for finding false drops is that time is wasted processing a trigger which does not
actually do amything. A implementation of always rules is being undertaken as part of the

POSTGRES system [SHP87}.

An important class of rules are known as sntegrity constraints. Integrity constraints are a
special case of triggers. The purpose of an integrity constraint is to ensure that the database
meets some condition. A simple type of integrity constraint called value integrity specifies that
the data values in a relation must meet some condition. Ap example of a value integrity con-

straint is the following:

The value of EMP.salary in each record must be between 10,000 and 50,000
dollars.

A more complex type of integrity constraint is referential integrity [Dat81a]. A referential
integrity constraint specifies that if a domain D supplies primary key values for a relation Ry,
and values from D appear in attribute A of a relation R, then any value, say d, from domain D
which appears in R, must be the primary key of some record in Ry. A typical example of a

referential integrity constraint is the following:

No EMP record may have a dept field value that is not the dname value of
some record in DEPT (in other words, no employee may work in a department
that does not exist).

A rule to enforce an integrity constraint must determine that the constraint has been violated,

and then take some action, such as aborting the current command, or refusing to accept a partic-

1. INTRODUCTION 7

ular record. The fact that integrity constraints must act in respo:ise to changes to the database

made by updates explains why integrity constraints are a special case of triggers.

1.2.1.2. Deductive Databases

A growing body of research focuses on extending databases with a logical inferencing capa-
bility similar to that found in the logic programming language PROLOG [Brag6, GaM78, GMNS1|.
Addition of inference rules to the database in these proposals is normally presented as an exten-
sion of the database view system, allowing views to be defined using a collection of possibly recur-
sive rules called Horn clauses [End72]. Processing a collection of inference rules for a large data-
base is potentially very expemsive. Past research bas considered methods to optimize recursive
queries that arise in databases which have been extended with recursive‘ inference rules

[loa85, U185, Zan85, Zan86).
As an example of recursive inference, consider the relation
parent-of (parent, child)
Given parent-of, a view
ancestor (name, descendent)
can be defined recursively using the following rules:

define view ancestor (name=parent-of.parent, descendent=parent-of.child)

define view ancestor (name=ancestor.name, descendent=parent-of.child)
where ancestor.descendent=parent-of.parent

Given this definition one can query the ancestor view directly. For example, the following query

retrieves the names of all the ancestors of “Bob.”

retrieve (ancestor.name)
where ancestor.descendent = “Bob"

This query is implicitly recursive because ancestor is defined using a recursive rule.

1. INTRODUCTION 8

Other research has focused on productive ways to couple databases with logic programming
systems. Jarke et al. developed an optimizing PROLOG front-end to an SQL-based relational
database system [CAE76,JCV84]. This system allows users to query the underlying relational

database using PROLOG. It attempts to optimize performance by

1. caching the results of previous SQL queries in the front-end,
thus limiting the number of query evaluations performed by the back-end.

2. allowing the back-end to execute all operations it is capable of performing,
such as testing simple predicates.

3. using semantic query optimization techniques [ASU79).

Additional semantic optimization methods that can be applied in the front-end are discussed in
[Jar86]. Sciore and Warren advocate a tighter coupling between PROLOG and a DBMS to
improve efficiency and facilitate sharing of data [ScW86]. They propose building into the PRO-
LOG runtime system components of the DBMS including disk and buffer management, indexing,

query optimization, and concurrency control.

Another form of inference rule is described in the proposal for always rules in POSTGRES
[Sto85,SHP87]. The POSTGRES rule manager chooses as an optimization whether or not to use
forward or backward chaining to process an always rule. If forward chaining is selected, an
always rule is a trigger (forward chaining is called early evaluation). If backward chaining is
selected, it is an inference rule (backward chaining is called late evaluation). Early rules are pro-
cessed as described in the discussion above on the use of always rules as triggers. Late rules are
processed by modifying the query when data is retrieved. For example, consider the following rule,

which is assumed to be designated late by the system:'

always replace EMP (salary = E.salary)
from E In EMP
where EMP.name = “Bob" and E.name = “Jim”

Suppose the following query is submitted:

1. INTRODUCTION 9

retrieve (EMP.salary) where EMP.name = “Bob”

When this query executes, the system notices that the rule above might affect the salary of Bob.

The system then substitutes Bob's tuple into the rule, forming the following subquery:

retrieve (salary = E.salary)
from E In EMP
where “Bob” = “Bob" and E.name = *“Jim"

This subquery is run, and the value it returns is used as Bob’s salary.

The proposal for always rules supports the use of rule priorities to resolve conflicts between
rules. Any always rule can be given a priority, which is a real number in the range [0,1]. The
eflective value of any field is the one assigned by the highest priority rule. This is accomplished
by attaching a priority to each field of a tuple written by a rule. For example, a possible collection

of prioritized rules is:

always replace .5 EMP (salary = 1000)
where EMP.name = “Sam”

always replace .5 EMP (salary = E.salary)
from E in EMP

where EMP.name = “Fred”

and E.name = “Sam"

always replace .7 EMP (salary = 2000)
where EMP status = “mgr"”

Given these rules, the salary of Fred will normally be 10060. However, if Fred is promoted from a

worker to a manager the priority mechanism causes his salary to be changed from 1000 to 2000.

Priority situations are common in Al applications and are straightforwardly supported in the
scheme of [Sto85,SHP87]. Priorities are difficult to handle in rule systems that utilize the view
processing system for inference (see [[0a86,UNI85]). This difficulty arises since if multiple rules are
used to define a single view, the view by definition contains the union of all tuples derived using

those rules. In priority situations, the union of all tuples is not the desired outcome. The value of

1. INTRODUCTION 10

each field of a tuple should be the one designated by the highest priority rule. Any attempt to
add priorities to a view mechanism would require some yet-to-be-devised ad hoc method for merg-

ing multiple tuples retrieved using the view definition.

1.2.2. Rule Systems In Artificial Intelligence

A subset of the research done on Al programming environments focuses on production rule
systems, which are closely related to database triggers. An early production rule system known as
OPSS5 [For81] combines a forward chaining rule execution engine with a database, called the work-
ing memory, that consists of relations with named attributes. The database resides entirely in
virtual memory, and is valid only during the execution of a single OPS5 program. In OPSS, rela-

tions are created using a literallze statement, e.g.
(literalize emp name age salary mgr)

creates a relation “‘emp” with the attributes shown. Rules are defined using the p (production)
statement. Each rule bas a name, a condition, and an action. For example, an OPS5 rule
“zerorule” that will zero the salary of any employee currently earning more than 50,000 dollars is

specified as follows:

(p zerorule
(emp “salary > 50000)
->
(modify 1 “salary 0))

The effect of statement (modify 1 “salary 0) is to write O into the salary field of the data item
matching condition element pumber 1. In general, rule conditions can contain one or more
negated or non-negated elements. Negated conditions are signified by placing a *-" in front of a

term. Rule actions can contain one or more of the following statments:

modify update one or more fields of a data element matching a
condition term

1. INTRODUCTION 11

remove delete a data element matching a condition term
make insert a new data element into working memory
call call a user defined procedure

An example of a more complex rule is the following, which deletes employees who earn more than

their manager, and places their names in the table “delemp’:

(p salaryrule
(emp “salary <x> “mgr <y> ‘name <z>)
(emp “salary < <x> ‘name <y>)
->
(make delemp “name <z>)
(remove 1))

Joins between more tl!'an one tuple in the condition are specified with pattern-matching variables
such as <x>, <y> and <z> above. The first appearance of a variable will match any value,
and that value is bound to the variable. When the variable appears later, it has the value that
was bound to it when it first occurred. When the above rule fires, the emp record of an employee
earning. more than his or her manager matches condition element number 1, and the manager’s
. emp record matches condition element number 2. The effect of the make statement in the action
of the rule is to create a “delemp’ record with a name field containing the value currently bound
to the variable <z> (the employee's name). The remove statement then deletes the record

matching condition element number 1 (the employee’s record).

In OPS5, rules are tuple-oriented, meaning that they are awakened and run for each unique
combination of data elements that match the condition. With the example rule above, the net
outcome would be affected by the order in which tuples were deleted. In a database environment,
it would be preferred to process a set of tuples during execution of a single rule. Processing a set
of tuples at one time would be more efficient that processing tuples individually since database
query processors are tuned to process large sets of tuples. It would also avoid order-dependent.

outcomes that can occur when rules are fired once for each qualifying tuple.

1. INTRODUCTION 12

Frame-based Al languages including FRL [RoG77], KRL [BoW77|, KEE [FiK85], and ART
[Sho87] also provide rule processing capability. A frame is simply a record with a collection of
named fields or slots. In frame-based systems, an is- hierarchy connecting the frames provides a
simple but very efficient form of inference, with a built-in priority mechanism. To determine the
value of a slot in a particular frame, one first looks at that frame. If it contains a value in that
slot, that value is returned. If it does not contain a value, the frames above the current frame in
the is-a hierarchy are examined. For example, one frame for “yehicle” might have a slot “has-
wheels” containing the value TRUE. Another frame for “truck” containing no value for “has-
wheels” could be connected to “vehicle” using an is-a link. A third frame for “boat” (also con-
nected to “vehicle”) might have a “has-wheels” slot containing FALSE. One could infer that a
truck has wheels by simply following the link to the vehicle frame. However, the value ‘has-
wheels” = FALSE in the “boat” frame would over-ride the default value TRUE found in the

“‘vehicle frame.

Frame-based systems also provide procedural attachments that allow triggering of a demon
procedure when a frame slot is read or written [Min75]. The more advanced frame-based systems
including KEE and ART have built-in forward and backward chaining rule processors that use the
frame hierarchy as the database of facts. The forward chaining mechanism is otherwise similar to
OPSS5, and the backward chaining mechanism is similar to that found in the logic programming

language PROLOG [Bra86].

Some recent work in Al has focused on issues of large knowledge bases, and the storage of
data objects on secondary storage. Examples are work on persistent LISP [ButSG,Mi584], and

methods for storing Al reasoning knowledge in a database system [DeF86,FWAS6].

1. INTRODUCTION 13

1.3. Rule Indexing

Rule-based applications require the ability to determine efficiently which rule conditions
match a given tuple or collection of tuples. Algorithms for performing this task are called rule

indezing methods [SSH86]. Rule indexing can be applied in a database system to determine

1. when to awaken a trigger,

2. when an inference rule should be applied, and

3. when the precomputed value of a derived object (e.g., a database procedure)
should be invalidated or refreshed.

Below, in section 3.1, a collection of rule indexing techniques are discussed which work for rule
conditions that are selections from a single relation. Section 3.2 discusses rule indexing techniques

for handling conditions that contain joins.

1.3.1. Rule Indexing for Selection Predicates

Selection predicates on a single relation R are typically boolean combinations of terms of

the form
ezpression relop constent

where ezpression is of the form R.attribute, or is a function of one or more attributes of R, and
relop is one of {<,>,<,>,==,5}. The following are some examples of selection predicates of

(png bty |

this type on the relation EMP:

EMP.name = “Bob”
EMP .salary < 50000 and EMP .salary > 30000
EMP salary [EMP.age > 1000

In general, the problem of rule indexing for selection predicates is to determine.for each predicate
P;, for 1<t <M, the subset S; of the tt;ples in a relation R such that each tuple in S; matches
P;, and no other tuples in R match P;. éeveral approaches to solving this rule indexing problem
have been suggested. Using a brute force solution, every inserted or deleted data element must be

interpreted against all predicates Pj - < - Py;. Obviously, if M is not small this algorithm has

1. INTRODUCTION 14

serious performance problems. A slightly more sophisticated rule indexing scheme combines
interpretation with indexing on one or more terms of the predicate. In this'scheme, an index (e.g.,
a hash table) is created using terms extracted from the predicates as keys. An example of a term
that might be extracted is one of the form <attribute=constant>. For each data element
inserted into or deleted from the database, the index is searched to find potentially matching
predicates. The element is then interpreted against all predicates found by the search. This algo-
rithm performs reasonably well when the number of rules indexed under most keys is small. If the
number becomes large, performance degrades since many predicates will have to be interpreted

after each insertion or deletion of a data element.

Another method for rule indexing is called predicate indezing [SSH86]. Predicate indexing is
based on an R-tree storage structure, a multi-dimensional extension of the B-tree designed for
indexing spatial data (which must be represented as rectangular regions in an /N-dimensional
space). For a full discussion of algorithms for manipulating and searching an R-tree, the reader is
refered to the original paper on R-trees [Gut84]. One property of the R-tree is that makes it pos-
sible to find all the rectangular regions indexed that contain a particular point efficiently. In the
predicate indexing algorithm, the predicates to be indexed must be represented as rectangular
regions in an N-dimensional space. This space is defined by a relation A with N attributes (the
predicates are defined on A). Predicate indexing operates by first building an R-tree index on the
set of predicates P - * + P in question. Note that a tuple ¢ in relation A represents a point in
the N-dimensional space defined by A. Hence, finding all the predicates that match ¢ can be

done quickly by searching the R-tree. For example, consider a relation
R{x,y)
and the following predicates on R:

P;: 0<z<7 and 0<y <5
P,: 3<z<10and 3<y<8
Py 5<2<9and 1<y<10

1. INTRODUCTION 15

These predicates can be represented rectangles, as shown in figure 1.1. Consider a tuple t in R
with the value <x=6,y=2>. By examining figure 1.1, it can bee seen that the rectangles for P,
and P, contain the point for ¢, but P, does not overlap the point. Hence, t satisfies P; and Pj
but not P;. The R-tree provides an efficient rule indexiog mechanism for predicates that can be
represented as rectangular regions because it makes it possible to determine quickly which rectan-

gles contain a point.

A rule indexing method known as basic locking [Sto85)] is related to locking methods used for

database concurrency control [Gra78]. Basic locking utilizes special persistent locks, called trigger

Py
10 | | 1 (| | | i ! t
I DU S AR Y Y SN IS DU SR
f 1 1 | 1] | | !
1 [1 Po (1 | | |
iy gl i i 1 1 1
| | ! 1 | ! 1
[JEE P SR S e s e B S
1 ! ! | 1 | I
lpde by c de e =L o d o e - -
IP! I i] | 1
| | t !] 1 1
y 5 1 1 1 1 T Tr T
[1 | 1 |
-=-=--r-t-a--fF-r-t--"1--f -
! | 1 [M
-l - b - 1 4 1
| 1 1 I 1 | \
SN S WY AU B N 1 HU QU DU SR
| t | | 1 | i
1 1 | | 1 1 |
it Dl iy B B] 1 -1
1 [1 ! | | ! [!
0 - emlan -l -
0 S 10
X

Figure 1.1. Representation of predicates as rectangles

1. INTRODUCTION 16

locks or t-locks, which are placed on data records and in conventional indexes. The scheme util-

izes a relation
RULES(id, name, rule-def)

to hold the rule base. The *id” field contains a unique identifier for the rule, “‘name’ contains an
optional user-supplied name for the rule, and “‘rule-def” contains the rule definition, including its

predicate.

For each rule defined, an access plan is constructed using a conventional query optimizer
[Sel79]. This plan is executed and each tuple it reads is marked with a t-lock that contains the
“id" of the predicate. If a sequential scan of the relation is used, then all tuples in the relation will
be marked. In this case, conventional lock escalation will convert record locks to a relation lock.
Otherwise, an index will be used for access and t-locks will be set on data records and on the key
interval inspected in the index. Such index interval locks are required to deal correctly with inser-

tion of new records, as explained momentarily.

If a tuple z is inserted, then the collection of markers must be found for the new tuple. As
a result of the insertion, values will be inserted into all indexes on the relation. If such a value is
covered by a key-range lock, then a corresponding t-lock will be added to the data tuple contain-

ing the value.

To find the collection of predicates that cover a tuple z, one first collects all the t-locks on .
Z. The locks include the id's of rules that might match the tuple. Since these ¢-locks represent a
superset of the predicates that actually match the tuple, relevant tuples in the RULES relation

must be checked to determine whether z actually satisfies each predicate.

For example, assuming that there is a B-tree index on EMP.salary and no index on

EMP.age, the qualification:

@: EMP.salary = 1000 and EMP.age > 30

1. INTRODUCTION ' 17

will set t-locks in the salary index and on all data records that it reads (i.e., those with salary =

1000). Supposed the following tuple is inserted into EMP:
z: <name="Jane", age=35, salary=1000, job=""Salesperson”, dept="Sales" >

When z is inserted, the salary index must be updated to point to z. Since the salary field has
value 1000, z will conflict with the ¢-lock set in the salary index for @. A copy of this ¢-lock

(and possibly others) will be stored directly on z.

Not all predicates indicated by the t-locks a tuple will necessarily match the tuple. The rea-
son that a superset of the tuples that match each predicate must be locked is that a non-indexed
attribute may be modified so that a record matches a predicate it did not match before the
update. For example, the age field of an employee record may be updated from 30 to 31. Since
there is no secondary index on age, the basic algorithm would have no way of discovering that it
should now be marked without searching the salary index. This search should be avoided if only
age is updated (in database systems such as INGRES [SWKT76] and System R [ABC76], it is not
necessary to read or write ;ny index pages to update a non-indexed field correctly). Because of
this problem, t-locks must be set on all tuples that potentially satisfy a predicate based on the
interval locks the predicate has set in one index. In effect, key interval locks in the indexes are
used to implement predicate locks to determine whether new tuples conflict with existing rules.
Setting t-locks on index intervals is analogous to the use of predicate locks to solve the problem

of phantoms in concurrency control [EGL76].

This strategy is called basic locking because it sets t-locks on all objects for which a normal
query would set read or write locks. It requires no changes to conventional execution of access
plans, so it can be properly called a locking mechanism. The advantage of this scheme is that it
is closely coupled to normal query processing. New qualifications can be added using normal facili-

ties, and locks for new tuples are found as byproducts of normal update processing.

1. INTRODUCTION 18

Both R-tree-based predicate indexing and basic locking are designed for predicates on only
one relation. Both algorithms can be extended to partially index predicates that contain joins.
This is done by indexing separately all single-relation selection predicates that appear in a join
predicate. However, this is only a partial solution to the problem of indexing join predicates. In
the next subsection, some rule indexing algorithms are described which support predicates that

contain joins.

1.3.2. Rule Indexing Techniques for Join Predicates

A form of indexing used in production rule systems for Al programming is the Rete Match
Algorithm [For82]. Rete Match was invented for OPS5, and is also used in OPS83 [For84] and
ART [Gev87,5ho87]. The algorithm utilizes a data structure called a Rete network that elim-
inates the interpretation step of brute force and indexing methods, and also handles join predi-
cates naturally. Direct interpretation of patterns is avoided by compiling all the patterns together
in advance to form a network. The Rete Match Algorithm maintains a conflict set showing each
pattern and the data elements that match it. Changes toA the database are represented by tokens
which are tuple values tagged with a “+" or a “~" to show whether the tuple was inserted or
deleted, respectively. Modifications are treated as deletions followed by insertions. The network
can be viewed as a black box that receives tokens as input, and outputs changes to the conflict

set, as shown in Figure 1.2.

The output of the Rete network compiler is a discrimination network containing the follow-

ing types of nodes:

e root node: The single root node receives all tokens input to the net, and broadcasts the tokens

to all successors.

e T-const nodes: These nodes test input tokens for simple conditions of the form

1. INTRODUCTION 19

changes to database

l

Rete Network

!

changes to conflict set

Figure 1.2. Function of the Rete Network

attribute operator constant

where the operator can be one of {<,>,<,>,=,7}. All tokens that pass the test are passed

on to the successors of the T-const node. Tokens that do not pass the test are discarded.

e a-memory nodes: These nodes serve to hold the output of T-const nodes. A token input to
an a-memory node containing a “+" tag is added to the memory. A token with a “-" tag.is

deleted from the memory.
o and Nodes: These nodes specify joins of the form
left-input.attribute operator right-input.attribute

The left and right inputs of an and node are memory nodes.

1. INTRODUCTION 20

e not nodes: These nodes are used to implement pegated conditions. They are similar to and
nodes, except that they keep reference counts with tokens in the left memory showing how many
tokens they match in right memory. If the reference count is zero, the token is forwarded to the

successor nodes of the not node.
e f-memory nodes: These nodes hold the output of and nodes and not nodes.

o P nodes: One of these nodes is associated with each rule. If a token with a *+" tag makes it to

a P node, a pair consisting of that rule and token is added to the conflict set.

The compiler recognizes common subexpressions in rule conditions and generates shared
nodes to improve efficiency. Consider as an example a Rete network constructed for the following

two OPS5 rules:

; delete Bob if he works on the first floor
(p rulel

(emp “name Bob “dept <x>)

(dept “dname <x> “floor 1)

-

(remove 1))
: delete every programmer who works on the first floor
(p rule2

(emp “job Programmer “dept <x>)

(dept “dname <x> “floor 1)

-2

(remove 1))

The network for these two rules is shown in Figure 1.3. This network has shared nodes for the

condition term
(dept “dname <x> “floor 1)
that appears in both rules.

As an example of how the Rete network operates, suppose that the following tuple is

inserted into EMP:

T: <name="Jack”, age=28, job="Programmer”, salary = 30000, dept="Engineering"' >

1. INTRODUCTION 21

root

class = emp class = dept

t-const
nodes

name = Bob job = Programmer

| \ \ ﬂoorl =1

a-memory a-memory

a-memory

left.dept

left.d_ept xig-it.dname

right.dname P (rule2)

P (rulel)

Figure 1.3. Example Rete Network

The tuple T is first placed at the root node of the network. Assume T is first passed to the node
labeled “class=dept.” T does not meet the qualification of that node, so T is discarded there. T
is then passed to the node labeled “class=emp." T meets this qualification since it is in the EMP
relation, so T is passed on to both successors. Suppose T is first passed to the node labeled
“name==Bob."” T does not meet this qualification, so it is discarded at that node. T is then passed
to the node labeled “job=Programmer.” T meets this condition, so it is passed on to the a-
memory following the node labeled *“job=Programmer". A copy of T is stored in the a-memory,
and T is passed to the subsequent and node. The opposite a-memory is then consulted to see if

T joins with a tuple there. Assuming that there is a tuple

1. INTRODUCTION 22

S: <dname="Engineering”, floor = 1>

in the opposite a-memory, a new token T' is constructed that contains both S and T. T is
passed on to the P node for rule2. In OPSS, this causes an instantiation of rule2 to be made eli-
gible for execution. This instantiation consists of a pair containing rule2 and the token T (other

instantiations of rule2 for different tokens may be also be eligible for execution).

It is important to note that the Rete network has the same structure as a relational data-
base query plan [Sel79); the T-const nodes correspond to scans, and the and nodes correspond to
joins. The discrimination network output by a Rete network compiler contains a fixed query pro-
cessing plan for all the patterns. In current expert system shells, including OPS5, OPS83 and

ART, this plan is constructed using heuristics, and is not optimized with regard to the database.

The Rete network described above is a fairly sophisticated and efficient form of rule indexing
for predicates that may contain joins. Using the Rete algorithm, only an incremental amount of
computation is necessary each time a tuple is inserted or deleted. The work on database triggers
by Buneman and Clemons describes a more primative type of rule indexing for predicates that

may contain joins [BuC79]. This method has efficiency problems for two reasons:

1. before every database update command the system must verify
whether each rule will be affected, and

2. if a rule condition based on some view V is affected, V must

be recomputed, even though only a small fraction of it may
have changed.

Another algorithm proposed for incremental update of materialized database views can also
be used for rule indexing, and it automatically handles predicates with joins [BLT86]. This algo-
rithm will be called algebraic view maintenance (AVM). One can think of a relational algebra
expression defining a view as a database predicaté. Whenever a new tuple enters a view, it means
that the tuple satisfies the equivalent predicate. AVM works by maintaining a materialized copy

of the view. As updates change the database, the algorithm incrementally alters the stored view

1. INTRODUCTION 23

to reflect the current state of the database. AVM can be used for rule indexing in the following
way. Consider a trigger T whose condition is defined by a view V. It V is maintained using

AVM, then if a new tuple enters V, T can be made eligible to run.

Input to the AVM algorithm consists of the following sets of tuples:

Ry, Ry, ... Ry the N base relations

Ay, Ay, .. Ay the N sets of tuples inserted into the
base relations by the current transaction

D,, D,, ... Dy the N sets of tuples deleted from the
base relations by the current transaction

The sets A, * * - Ay and Dy - - * D)y must contain the net changes to the database made by one

transaction. Hence, the following conditions must hold:

1. A; O Di=¢
2. A;\Ri=¢ for1<i<N
3. D;CR;

Condition 1 must be true since a tuple that is inserted and later deleted is not part of the net
change to the relation. Condition 2 must hold since appending a tuple to a relation that already
contains an identical tuple does not constitute a net change. Condition 3 must be true because a
tuple cannot be part of the net deletions from a relation unless the tuple was previously in the

relation.

The definition of a view V can be represented by a select-project-cross-product expression,
where oy represents selection based on a predicate X, my represents projection of the set of attri-
butes Y, and X represents cross-product, as follows.

V = aox(RXRsX * * * XRN))
Consider an example with two relations, Ry(a,b) and Ry(b,c), and a view V defined as fol-

lows, where Y={a,c} and X=(R;.6=5 and R;.b=R,.}):

1. INTRODUCTION 24

V = ay{ox(R1XRy))
The value of V given the original contents of the database will be called V. The following

expression shows the value of V after an append-only transaction that updates both R, and R,.
Vy = mlox{(Ry U A)X(Rz U A2)))
Selection and projection both distribute over union, so the above expression simplifies as follows:
Vy = m{ox(RiXR; U A1 XR; U Ry X4: U A1 XA))
= ny{ox(R1XR2)) U mlox(41XR2)) U riox(RyXA2)) U mrlox({A1XA4z))
= Vo U mlox{A1XR,)) U mrlox(R1XA2)) U my(ox(A1XAs))

This algebraic simplification shows that V can be refreshed by computing the value of the last
three expressions shown above and unioning the results to the stored copy of V (Vi). In practice,
the query optimizer can be used to find the most efficient method available for computing these

subexpressions.

AVM becomes slightly more complicated when both deletions and insertions occur in tran-
sactions. One problem is that: tuples in V may have been contributed by more than one source,
since the projection operation can map multiple input tuples to the same value. If it appears that
a tuple should be deleted from V, but V is stored with duplicates removed, it is impossible to
decide what action to take without recomputing V from the base relations. To overcome this
difficulty without wasting disk space by physically storing duplicates, each tuple in V must con-
tain a duplicate count indicating how many sources contributed the tuple. If an identical value is
already stored when a tuple is inserted into V, its duplicate count is incremented. Otherwise the
tuple is inserted with a duplicate count of 1. Conversely, the duplicate count of the stored value
is decremented when a tuple is deleted. If the count becomes 0, the tuple is physically removed

from V.

Extending the previous example, consider a transaction that inserts and deletes tuples from

both R, and R;. The new version of the view, V, is represented as follows:

1. INTRODUCTION 25

V; = m{ox(((R,=D,) U A1) X((R:—D3) U A2)))
Using

R = (R,—D,)
Ry = (R;—D,)

we can rewrite the formula above as

Vi = mox((Ry U A)X(Rs U A2))

Multiplying out this expression yields
Vi = m{ox(RyX Ry U R{'X Az U A1 XRy' U 41X 4,))
Expanding the R,'X R, term of the above gives the foliowing (the remaining terms are indicated

by ellipsis):

Vi = m{ox((Ry—Dy)X(R;=D2) U - *))
= m{ox(R1X(R;—D3) — D1X(Rs=Da) U ***))
= ﬂ'y(ﬂx(R1XRz - Rlxpz - DIX(R2—D2) U o))

Re-writing the second occurrence of R; as (Ry' | J D,) gives

Vy = m{ox(R,XRy = (Ry' U D1)XDz = Dy X(Ry=Dg) U - -)
Multiplying the second term through, and substituting R,' for (Ry—D) leaves

Vi = adox(R\XRy — R/XDy — DyXDy = DyXRy'J **)
The projection operation 7 has the distributive property for both “—" and * |J " when these
operations are implemented using duplicate counts [BLT86]. Applying these distributive proper-

ties to the expression above, we are left with

Vi = n{ox(R X R;))— m{ox(Ry'XDy)) * -+
= Vo= my{ox(Ry'X Dy))— ay{ox(D1 X RJ"))— m{ox{D1XDy))
U mlox(Ri'XAj) U mlox(A1XRy)) U mriox{4;XA))

As expected, the first term of this expression is Vj, the previous stored value of V. To update the

stored copy of V so that its value becomes Vj, the remaining expressions must be evaluated and

1. INTRODUCTION 26

either inserted into or deleted from V as required, maintaining the correct duplicate counts.

The method presented by Blakeley et al. for determining how to refresh the view when both
deletions and insertions occur is slightly different than the one shown here, and is in fact not
always correct [BLT86]. Using that scheme, the expression below would be used to refresh the

view:

Vy = mflox(RiXRs U A XAz U 41 XR2 U R1X A,
—D;XDg—D,XRz—Rl)(Dg))

Using this expression can cause improper update of the duplicate counts. For example, suppose
tuples ¢; in Ry and t, in R, joined together to produce a result tuple in Vo. If a transaction
deleted both ¢, and t,, then the result of joining ¢, to t; would be deleted from Vg three times,
not just once as it should be. This erroneous deletion happens since ¢, is in both R, and D), and
t, is in both R, and D,. The formulation given in this paper (using R/)=R;~D,; and

Ry'=R,—D,) does not bave this problem.

As originally described by Blakeley, the algorithm requires that every view definition must
be interpreted for every inserted or deleted tuple to see if the view might change. Interpreting
every view definition against every tuple may require a significant amount of CPU time if there
are many views. Alternatively, to eliminate this costly interpretation step it is straightforward to

extend the algebraic view maintenance algorithm with a mechanism similar to basic locking.

Blakeley’s original AVM algorithm maintains copies of views just after each up@ate transac-
tion. This procedure, whereby views are maintained as soon as possible, will be called immediate
view masntenance, or simply immediate. An alternative is possible, in which views are main-
tained only before queries that read data from the view. This scheme will be called deferred view
maintenance, or deferred. This method has been implemented in the ADMS+ system [RoKS86] for
materializing copies of views on workstations attached to a mainframe. In that scheme, the main-

frame maintains a shared global database, and workstations update local copies of views when

1. INTRODUCTION 27

they process queries. Deferred view maintenance will be discussed in more detail in chapter 4.

This section bas discussed rule indexing methods for both single-relation selection predicates
and join predicates. Rule indexing and the maintenance of derived database objects are closely
related. As an example of this relationship, the rule indexing method proposed by Buneman and
Clemons maintains materialized views as an intermediate step [BuC79]. In general, any efficient
algorithm for maintaining materialized copies of derived objects (e.g., as algebraic view mainte-
nance) can also serve as a good rule indexing scheme. Support for derived objects is discussed

further in the next section.

1.4. Derived Objects

A derived object is a value returned by a function applied to the database. The most com-
monly used type of derived ob;iect in relational database systems is the view. The standard
method for retrieving data from a. view is query modification [Sto75]. Using this technique,
queries to the view are translated into queries on the underlying base relations. A complete
materialized copy of the view is mever formed. For example, consider the following view

definition:

define view ED (EMP.all , DEPT.all)
where EMP.dept = DEPT.dname

Suppose the query
retrieve (ED.name) where ED.floor = 1

is submitted. Query modification would translate this query into the following one that depends

only on the base relations EMP and DEPT:

retrieve (EMP.pame)
where EMP.dept = DEPT.dname
and DEPT .floor = 1

The query optimizer will find an efficient method for processing this modified query. AVM is

1. INTRODUCTION 28

another method for processing views that was discussed previously in the context of rule indexing
[BLT86]. Using this method, views are materialized in advance and maintained incrementally.

View queries are processed against the stored copy of the view.

Some other algorithms for maintaining derived objects have also been proposed. A
differential view update algorithm similar to AVM is described in [HoT86]. A method for main-
taining materialized views that is less general than AVM was presented by Shmueli and Itai
[Shi84). An algorithm that allows maintenance of database snapshots, which are copies of views

consisting of selections and projections of a single base table, is presented in [AdL80,LHMS6].

An algorithm called caching allows storage of derived objects [Sel86b,StR86]. To maintain
the answer to 3 QUEL retrieve command, the system processes the command normally, locks
each record read with a persistent invalidate lock or I-lock and writes the retrieved value of the
object to disk. If ; conventional write lock later conflicts with an I-lock, the object for which the
I-lock was set is mark.ed as invalid. When an object is read, it will be recomputed and written
back to disk only if it was previously invalidated. A possible optimization is to use idle CPU and

disk resources to recompute invalidated objects.

Another important class of derived objects are aggregates. In QUEL, built-in aggregates can
be invoked either as scalar aggregates or aggregate functions [Eps79, HSW75]. A scalar aggregate
can be computed independently from the rest of the query containing it, and will yield a single

scalar value as a result. The following is the general form of a scalar aggregate.:
aggregate-operator (aggregate-ezpression [where qualification])

The eggregate-operator may be any one of the built-in aggregate operators (e.g., avg, sum, count,
min, and max), aggregate-ezpression may be any legal QUEL expression yielding a scalar value,

and qualification is a legal QUEL qualification. For example, suppose the relation EMP con-

.ln descriptions of syntax, keywords are shown in bold, place holders for expressions are indicated in italics, items
enclosed by “["* and “J" are optional, and items are surrounded by *{" and)" can be repeated zero or more times.

1. INTRODUCTION 29

tained the following tuples:

pame dept salary
Bob Toy 10,000
Jim Toy 20,000
Al Fire 10,000
Susan Fire 12,000

The scalar aggregate
avg(EMP salary where EMP dept = “Toy")
returns 15,000 in this case.

Unlike scalar aggregates, aggregate functions return a set of values. When an aggregate
function is computed the tuples to be aggregated are partitioned on the value of one or more
attributes. By convention, the value being aggregated in an aggregate function is called the
aggregate expression, and the value determining the partition is called the by-liat. ;I‘he general

form of an aggregate function is:
aggregate-operator (aggregate-ezpression by by-list [where gualification })
The set returned by an aggregate function is represented by a temporary relation with two

attributes, one containing an aggregate value, and one containing a by-list value. Continuing the

example above, the aggregate function
avg(EMP.salary by EMP.dept)

returns the following temporary relation:

dept avg
Toy 15,000
Fire 11,000

Scalar aggregates and aggregate functions as described here will be called general aggregates
because they can be used to compute an aggregate over the result of any query that can be

expressed in relational algebra [Cod70].

1. INTRODUCTION 30

Aggregation often involves a large amount of computation due to the volume of data that
must be processed. Since aggregates are often expensive to compute, but normally require little
space to store, they are attractive candidates for caching or differential maintenance. In the con-
text of relational database systems, previous research has analyzed ways to precompute aggregate
results and save previous results for future use [BBD82|. These methods do not handle general
aggregates. Rather, they can only be used to cache aggregates over a whole relation. Other
research has concentrated on ways to maintain derived data, including aggregates, in a
functional/binary association data model [KoP81,Pai80]. This approach is based on a program-
transformation technique that takes the program text of a transaction procedure as input, and
outputs a derivative procedure. The derived object is incrementally updated to the correct state
after the transaction by executing the derivative procedure. Using this technique, aggregates
similar in structure to geﬁeral aggregates can be maintained. However, the method is not applica-

ble to the relational data model and high level query languages like QUEL and SQL.

1.5. Thesis Overview

The subject of this thesis is efficient support for rules and derived objects in a database
management system. Chapter 1 has presented an overview of previous research on rules and
derived objects. Chapter 2 presents a collection of physical locking algorithms for rule indexing,
and analyzes the time and storage requirements of these schemes. Chapter 3 proposes several
variations of AVM, and also a new view maintenance algorithm called Rete view masintenance
(RVM). It then discusses how any view maintenance algorithm can be applied to the task of
maintaining several types of materialized objects, including general aggregates, database pro-
cedures, and views and procedures containing aggregates. Chapters 4 and 5 present two separate
performance studies of techniques for materializing derived objects. The two chapters focus on
views and database procedures, respectively. Chapter 6 discusses the semantics of forward-

chaining rules in a DBMS and proposes extensions to the rules system described in [SHP87] to

" 1. INTRODUCTION 31

allow rules with more powerful conditions and actions. Chapter 7 summarizes the results of this

work and presents conclusions.

32

CHAPTER 2

LOCK-BASED RULE INDEXING

2.1. Introduction

A previous paper on rule indexing compared the performance of basic locking and R-tree-
based predicate indexing [SSH86]. The paper recognized that when supporting an inference
mechanism two alternative strategies are possible: early and late. The early strategy finds all
rules that match a tuple at the time the tuple is inserted or modified and then stores the
identifiers of those rules on the tuple. The late strategy finds matching rules when t.he tuple ‘is
retrieved by a query. If updates are frequent, late matching is most efficient. Early matching is
preferred when retrievals outnumber updates. Note that‘ the late strategy is only applicable in
situations where predicate matching can be delayed until retrieval time. For example, triggers
must run immediately after updates that activate them. Thus, early matching must be used to
support testing trigger conditions. The issue of whether to perform early or late matching for
inference rules depends only on the fraction of operations that are updates. The choice of whether
to do matching early or late is independent of the particular rule indexing algorithm used. Thus,

the early versus late issue is not considered here.

This chapter presents two lock-based rule indexing methods in addition to basic locking and
analyzes. the performance characteristics and storage requirements of all three methods. Support
for triggers and inference rules is emphasized in the discussion, although rule indexing techniques
_are also applicable to maintaining materialized views and database procedures. The chapter is
organized as follows. Section 2.2 describes the proposed rule-indexing methods. Section 2.3
analyzes the performance of the algorithms based on a simplified model of the database and rules.

Section 2.4 gives the results of the performance analysis. Section 2.5 analyzes the memory

2. LOCK-BASED RULE INDEXING 33

requirements of each algorithm. Section 2.6 presents the results of the memory usage analysis.

Finally, Section 2.7 summarizes the chapter.

2.2. Rule Indexing Algorithms

The key operation that must be performed when processing triggers or inference rules in a

database system is

(A)

Given a tuple and a set of rule conditions, determine the subset of the
conditions that match the tuple.

Since rules are in one-to-one correspondence with conditions, this matching process determines the
set of rules that apply to the tuple. Basic locking (BL) is one way to perform operation (A). Two
other locking algorithms are presented below. The first, called mark intersection (MI), is a gen-
eralization of BL that is more efficient in some circumstances because it reduces the number of
rules that must be read from the RULES relation. The second, called reduced basic locking

(RBL), is a modified version of basic locking that requires less memory for locks.

2.2.1. Motivation for Mark Intersection

To simplify the problem of locking data covered by a rule, the basic locking algorithm locks
only one term from the rule predicate. For example, suppose that the relation
EMP(pame, age, salary, dept, job)
has B-tree indexes on attributes name, dept and job, and no indexes on the other attributes. The
following rule has two predicate terms, both of which have indexes:

(B)

always replace emp (salary = 30000)
where emp.dept = “Accounting” and emp.job = “Programmer”

2. LOCK-BASED RULE INDEXING 34

However, the basic locking algorithm will choose only one index in which to place locks. As an
example, assume that there are 10 different departments and 100 different jobs. Since JOB has
the most selective index, JOB will be scanned, and t-locks will be set in the JOB index and on all

data records with a job title of “Programmer.” Now, consider the following update:

(©)

append emp (name = “Robert”, job = “Programmer"’,
dept = “Records”, salary = 20000, age = 35)

When this update is processed, the index on JOB will be updated to insert the value “Program-
mer”, which will break a t-lock for the rule (B) above. At this time, the system knows that the
new tuple matches a specific rule on the JOB attribute. In basic locking, the system now has no
choice but to retrieve rule (B) from the RULES relation, and check the new tuple against the rule
predicate to see if it applies. This *false drop” will incur a cost in both CPU and disk 1/O. Since

Robert is not in the Accounting department, the rule does not match.

It would be best if the false drop could be avoided in this case. From the definition of the
predicate of (B), the system has the information that a tuple must match (B) on both JOB and
DEPT for (B) to be triggered. If it could somehow take advantage of this knowledge, the false
drop could be avoided. For example, rather than locking only the JOB index for the value “Pro-
grammer,” the system could lock the DEPT index for “Accounting” as well. Then, when (C) was
executed, a t-lock for rule (B) would be broken in the JOB index, but not the DEPT index
because the inserted tuple does not have DEPT = “Accounting”. If the system knew that any
tuple must break a t-lock on DEPT and JOB to trigger (B), then it could avoid searching into the
RULES relation. One way to make this information available is to store it with all t-locks for the

rule (B). Using this method, a ¢-lock for (B) has the form
<rule-id = A; attributes-to-match = JOB, DEPT>

Then, if a new tuple did not break a t-lock for rule (B) on every attribute in the attributes-to-

2. LOCK-BASED RULE INDEXING 35

match set, the system would know that (B) could not be triggered. The false drop would thus be

avoided.

2.2.2. The Mark Intersection Algorithm

This section formally describes the mark intersection algorithm. The algorithm operates as

follows.

Rule Qualifications: All rule qualifications (predicates) P are assumed to be conjunctions of

simple restriction terms, p;, for 1 <¢ <k as follows
P=p,andp, " andp;

The assumption that all conditions are conjunctions does not limit the generality of mark intersec-
tion. Predicates containing a mixture of and and or operators can be broken down into disjunc-

tive normal form (an or of and’ed clauses) and the clauses can be indexed separately.

Placement of Locks: If a predicate term is on an attribute with an index, ¢-locks for the term

are set in that index. For example, the predicate

(D)

EMP salary < 10000
and EMP.dept = “Engineering”
and EMP.job = “Technician"

would set t-locks on dept and job because they have indexes, but not on the unindexed attribute

salary.

If insertion of a record breaks a t-lock in the index on attribute A, a copy of the t-lock is

placed on the record on attribute A. As an example, consider the following tuple in EMP:
< James, 28, 15000, Engineering, Draftsman>

This tuple would have a ¢-lock for (D) oo DEPT, but not on SALARY or JOB.

2. LOCK-BASED RULE INDEXING 36

Lock Format: As previously shown in an example, t-locks ip the mark intersection scheme are

pairs of the form
<rule-id, set of attributes to match>

The rule-id is a four-byte integer. The set of attributes to match can be represented by a bit
map. Each bit position corresponds to an attribute of the relation. If there is a “1” in the bit
position for an attribute, then that attribute is in the set of attributes to match for the rule. For
example, assuming that attributes are in the same order shown in the definition of the EMP rela-

tion, a rule with predicate (D) would have the bit map 060111.

Intersecting the Locks on a Tuple: When given a tuple with its set of ¢t-locks, the problem
the system must solve is to determine which of those locks require a search into the RULES rela~

tion. For example, suppose a pair of rules with the following predicates are given:

(E) emp.dept = “Toy" and emp.job = “Clerk”
(F) emp.dept = “Records” and emp.job = “Clerk” and emp. salary 2 20000

Consider the tuple
<Richard, 30, 15000, Toy, Clerk>

This tuple is shown in Figure 2.1 with the ¢-locks it has from the predicates (E) and (F). It can be

determined as follows by examining the f-locks shown in the figure that the tuple does not match

Attribute | Value T-Locks

name Richard | none

age 30 nope (no index on salary)

salary 15000 none (no index on salary)

dept Toy <E; DEPT, JOB>

job Clerk <E; DEPT, JOB>, <F; SALARY, DEPT, JOB>

Figure 2.1. Example tuple with locks set by the Mark Intersection algorithm

2. LOCK-BASED RULE INDEXING 37

(F), but it does match (E). Looking at the lock for (F) on JOB, it can be seen that there must be
locks for (F) on SALARY, DEPT and JOB for (F) to match the tuple. There are no locks for (F)
on SALARY and DEPT, so the tuple definitely does not satisfy the qualification of (F). However,
(E) has locks on both the necessary attributes, DEPT and JOB, so (E) might match the tuple.
Thus, only (E) must be fetched from tht; RULES relation and interpreted against the tuple to see

if the tuple matches (E).

An algorithm for determining exactly- which rules must be retrieved from the RULES rela-
tion based on the t-locks on a tuple is described below. The variable SetIndexedAttrs is a set con-
taining the attributes of the relation that have indexes. For example, for the EMP relation, Setln-

dexedAttrs = {name, dept, job}.

T-Lock Screening Algorithm:

Input:

A tuple with its collection of t-locks.

Data Structures:

The primary data structure used will be a hash table that will contain triples of
the form <RuleID, SetToMatch, SetMatched>. SetToMatch is the set of attri-
butes that must have a t-lock for RuleID for a search into RULES to be neces-
sary. SetMatched is the set of attributes for which a t-lock from rule RuleID
has been found so far.

2. LOCK-BASED RULE INDEXING 38
Algorithm
1. initialize an empty hash table
2. for each attribute A of the tuple do
for each t-lock <RuleID, SetToMatch> on A do
compute the hash function of RuleID
if no t-lock for RulelD is in the hash table
IndexedSet := SetToMatch M SetIndexedAttrs
store <RulelD, IndexedSet, {A }> in hash table
else (a t-lock for RuleID was previously found)
add A to the SetMatched associated with RuleID
end if
end
end
3. SurvivingRulesSet = ¢
for each entry <RuleID, SetToMatch, SetMatched>> in the hash table do
If SetToMatch = SetMatched

add RulelD to SurvivingRulesSet
end

Output

When the algorithm Bnishes, the SurvivingRulesSet contains identifiers for all
the rules that must be retrieved from RULES.

Processing the Surviving Rules: The rules with RuleID's in SurvivingRulesSet are processed in

the same way as rules that have a lock broken when using the Basic Locking algorithm.

2.2.3. Reduced Basic Locking

Both the basic locking and the mark intersection algorithms required that t-locks be stored
directly on data records. However, it is not strictly necessary to store the locks directly on the
data records because they can be derived when needed by searching the indexes. Electing to
derive t-locks when necessary rather than storing them saves disk space at the expense of requir-

ing more computation and I/O time.

The idea above leads to the reduced basic locking algorithm which is very similar to basic
locking. The only difference is that when one wishes to find the rules matching a tuple using RBL,

all indexes on the relation must be searched to derive the locks for the tuple. These are the ¢-

2. LOCK-BASED RULE INDEXING

locks that would normally be on the tuple in BL.

As an example, consider the tuple

< Jessica, 22, 30000, Accounting, Manager>

39

Suppose that the JOB field of this record was updated to ““Vice President” by a replace state-

ment. In BL and MI, only the JOB index would be consulted to derive any new t-locks on the

value ‘‘Vice President'; the t-locks stored on the NAME and DEPT fields would still be valid.

Since the JOB index must be updated anyway, no extra I/O is required. However, if RBL were

being used and it was necessary to find the locks for the tuple at the time of the update, the

indexes on NAME and DEPT would also have to be searched to collect t-locks for all the indexed

attributes.

2.3. Performance Characteristics

This section presents a performance analysis of the three lock-based rule indexing schemes:

BL, MI, and RBL. The parameters used in the analysis are the following:

Parameter

Description

C,
B

Fr

The cost of evaluating a predicate for a given tuple in ms

The cost of reading a page in ms

The size of the page in bytes

The number of tuples in the relation

The number of fields in the relation

The number of fields in the relation with an index

The width of individual fields in the relation in bytes

The assumed width of pointers in bytes

The assumed width of ¢-locks in bytes

The number of rules

The number of terms in a rule predicate

The fraction of records matching a single term of a
predicate

These parameter settings are used by default unless otherwise specified:

2. LOCK-BASED RULE INDEXING 40

Parameter Default
C 1
C, 30
B 4000
N 1,000,000
F 6
S 10
Fr 3
t 10,000
Q@ 0.0001
M 3
LSIZE 4 in BL, RBL
8 in Ml

The parameters chosen simplify the situation that would occur in reality. In particular, M and
@ would vary for each predicate and predicate term, respectively. An attempt is made to

minimize the affect of this simplification by selecting appropriate values for M and Q.

2.3.1. The Predicate Model

In the subsequent analysis, it is assumed that each predicate is a conjunction of M simple
restriction terms. These terms may be either equality restrictions or simple range restrictions

based on the operators {<,>,<,2}. The following is a list of legal terms:

EMP.name = “Fred”
EMP.name 2> “Q"
20000 < EMP .salary < 30000

Recall that at least one term of every predicate must be on an indexed attribute so that an
_index interval can be locked. Thus, it is assumed that terms are distributed such that the first
term of every predicate is selected at random from among the Fy indexed attributes. The remain-

ing M—1 predicate terms are selected at random from among the remaining F'—1 attributes.

In the performance analysis that follows, the total cost of determining which predicates

match a single tuple is estimated for each of BL, RBL and MI.

2. LOCK-BASED RULE INDEXING 41

2.3.2. Performance of Basic Locking

In this algorithm, a tuple insert incurs zero 1/0O overhead since new t-locks are derived dur-
ing the standard index updates. The extra CPU cost is negligible. The only significant cost
occurs in finding covering predicates. The predicates corresponding to all t-locks must be
accessed (at cost C, each) and then checked (at cost Cy) to find the ones that actually cover the
tuple. The expected number of ¢-locks on a tuple in BL is simply the total number of rules, t,
times the probability @ that a rule matches a tuple. Therefore, the expected total cost of finding

predicates matching a tuple is
TOTAL = t.Q{C;+Cs)
2.3.3. Performance of Mark Intersection

The Mark Intersection algorithm determines which predicates match a specific rule in two
steps. The first step screens the locks initially on the tuple. The second step retrieves rules from
the RULES relation for each lock that survives the screening, and tests these rules against the

tuples directly. Thus, the expected total cost of determining which predicates match a tuple is

TOTAL = (cost of screening locks) +
(C;+C,)(the number of locks that survive the screening)

2.3.3.1. Cost of Screening the Locks

Screening the locks can be done in time linear in the number of locks using the hashing-
based algorithm presented earlier. To get a reasonable estimate of the cost of screening the locks

it is assumed that if there are F locks on the tuple then the cost of screening them all is C,.
e o . C, : .
Using this estimate, there is a cost of v per t-lock to screen the locks. Thus, if there are Tt-

locks on a tuple, the cost to screen them is:

2. LOCK-BASED RULE INDEXING 42

The expected number of t-locks on the tuple, Nrzocks, is the sum over the number of

attributes, F', of the following:

(the expected number of rules that have exactly ¢ t-locks on a tuple)
The fitst term of the above will be called S(#). The total number of t-locks per tuple is expressed

using by the following sum:

Nriocks = f:"' 5(i)

The expected number of rules S(¢) for which there are § identical t-locks on a tuple is

. F . . .
o of rules with exactly j indexed attributes) -
S() E (probability that exactly i of them match the tuple)

je=i

The expected number of rules with exactly j indexed attributes is simply the probability

that a rule has j indexed attributes, which will be called P(;), times ¢, the total number of rules.

Application of standard techniques of discreet probability yields the following expression for the

function P:

0 if ;>Mor j>F;
or j<(Fi+M)—F or j<1

F=1||F-F;
j-1{{M-j

1
F—l]
| M-1

P(j) =

otherwise

The probability that exactly § out of the J indexed attributes of a rule actually match the

tuple is Q'(1-Q)’."". This yields the following final expression for S(s):

s6)= 5t P - (@° (1-Q¥)
J==3

2. LOCK-BASED RULE INDEXING 43

2.3.3.2. Number of Locks That Survive Screening

An estimate for the number of rules that “survive” the initial screening is needed. By the
definition of the Mark Intersection algorithm, a rule that has exactly ¢ indexed attributes survives
the screening for a tuple only if the tuple has t-locks from that rule on all ¢ of those attributes.

Thus, the number of rules with exactly ¢ indexed attributes that survive the screening is

(the expected number of rules with i indexed attributes) -
(the probability that all i indexed terms of a rule match a tuple)

The expected number of rules with ¢ indexed attributes is ¢-P(i). The probability that all ¢
indexed terms of a rule match a tuple is simply Q‘.. This leads to the following expression for the
expected total number of rules that will survive the screening for a given tuple:
F .
Nsyrvive = ‘g(P(i) t). Q"
The value of Ngygvive is dominated by the size of the first non-zero term in this sum since
Q <<1. Sometimes, the first few terms of the sum are zero because P(i) is zero if there is no
way for a given rule to have only ¢ indexed attributes. For example, if there are 5 total attri-
butes (F = 5), 3 indexes (F; = 3), and 4 terms per predicate (M = 4) then at least two of the
predicate terms must lie on an indexed attribute, o P(1)=0. The estimates for the cost to
screen locks and the number of rules that survive the scréening yield the following formula for the

over-all expected cost of the Mark Intersection algorithm:

C
TOTAL = —Nrocks + (CrtC)Nsurvive

2.3.4. Performance of Reduced Basic Locking

In RBL, an update in place must be implemented as a delete followed by an insert so that
the ¢-locks covering the modified tuple can be rederived. If the system could otherwise actually

do the update in place, it could usually avoid extra 1/0 to modify the indexes. The overbead per

2. LOCK-BASED RULE INDEXING 44

update to perform rule processing using RBL is thus the same as that for basic locking, plus the
cost of this extra index I/O. It is assumed that the fraction of updates that are modifications in
place is Ppp, and the default for Pyp is 0.5. All other updat.es insert a new tuple. The cost to find
which rules match a tuple using basic locking will be called Cg;. An estimate of average cost per
update to determine which rules match the updated tuple is equal to that for basic locking for a
fraction 1—Pyp of the updates. For a fraction Pp of the updates (those in place), F; indexes
must be consulted. It is assumed as a simplification that B-tree index pages are packed full, and
that index records are composed of <key,pointer> pairs of size S+4 bytes. Since there are B

bytes per page, the height of an index, Hj, is the following:

=pa e

Thus, an estimate of the average cost to determine the predicates matching a tuple in RBL is as

follows:

TOTAL = (1-Pip)Cp + Pip(CoFtH+C 1)
The overhead of this method for updates in place may seem too high to justify the space
savings it provides. However, in a system that implements updates as deletes followed by inserts,

the cost of RBL is identical to that for BL, so RBL may be preferred because it saves storage.

2.4. Performance Results

In this subsection the cost functions for the different algorithms are plotted to allow com-
parison of their performance characteristics. All algorithms discussed are sensitive to the product
of the total number of rules, ¢, and the probability, @, that a predicate term matches a tuple.
Figure 2.2 shows the cost of BL, RBL, and MI versus tQ (the average number of t-locks per tuple

in BL). This graph was created by holding ¢ fixed, and varying @ from 0 to .0020.

2. LOCK-BASED RULE INDEXING 45

800.00 -
RBL

BL

600.00

ms per

200.00 -

0.00 v 4 v v
0.00 5.00 10.00 15.00 20.00

t-locks per tuple (:Q)

Figure 2.2. Cost of BL, RBL and MI versus tQ

The mark intersection algorithm is also semsitive to the fraction of attributes that have an
index. To indicate this sensitivity, Figure 2.3 shows a family of 4 curves obtained by fixing F at
6, M at 3, and varying Fy from 1 to 4. The curves plot the total overhead for rule processing
per tuple versus tQ, holding ¢t fixed and varying @ as before. The curve for Ml using 7 indexed
attributes is labeled *“MI-5” for § = 1 through 4. The cost of basic locking is also shown. Notice
tha.t the cost of basic locking is almost identical to that for MI-1. This indicates that most of the
cost incurred by BL is to read rule definitions from the RULES relation. MI-1 reads the same
number of pages from RULES as BL, while MI-2, MI-3, and MI-4 perform successively fewer reads

because they are able to successfully screen out some of the ¢-locks on each tuple.

2. LOCK-BASED RULE INDEXING 46

800.00 -
MI-1
600.00 BL
ms per
tuple
400.00 - MI-2
200.00 - MI-3
__ MI-4
0.00 -

0.00 500 1000 1500 20.00
t-locks per tuple in BL (tQ)

Figure 2.3. Cost of MI versus BL as number of indexed attributes varies

2.4.1. Simplified Analysis of Mark Intersection

The preceding analysis of the Mark Intersection Algorithm assumed that the terms of predi-
cates were uniformly distributed over the collection of F attributes, with the restriction that at
least one term must lie on an indexed attribute. However, in reality, it is reasonable to speculate
that terms would be more likely to lie on indexed attributes than non-indexed ones. Hence, the
performance of MI might be better than previously indicated. In an attempt to measure the effect
of the bias toward placing terms on indexed attributes, an analysis is performed here in which

there are only two types of predicates, some with one indexed attribute, and others with two.

2. LOCK-BASED RULE INDEXING 47

It is unlikely that both terms will have the same selectivity in practice. To account for
differences in term selectivity, it is assumed that the first term of every predicate has selectivity
Q, and the second term has selectivity @'. The default selectivity of Q' will be .01, which is

much higher than the default value .0001 for @ .

The cost formula derived for BL still applies for this comparison, but the formula for the
cost of MI can be simplified. In the new cost formula for MI, the cost to screen the t-locks on 2
tuple is the same as previously derived. If X is the fraction of rules that have a single indexed
term, and 1—X is the fraction that have two, then the expected number of t-locks per tuple,
Nrrocks: is as follows:

Nrocks = XtQ +(1-X)t(@+Q")

The number of locks that survive the screening, Nsygyzvg is the following in this case:
Nayrmne=XtQ + (1-X)tQQ"

The formula for the total cost of MI in this situation is still the same as derived before; only
Nriocks and Nsyryvive change. By plugging the above values for these parameters into the
total cost formula form MI, it can be seen that as X approaches 1 (most predicates have 1
indexed term), the total cost for MI becomes exactly that for BL, plus a small amount of overhead
to screen the locks. However, as X approaches zero (most predicates have two indexed terms) the
cost drops rapidly because most t-locks will be successfully screened, avoiding much access to the

RULES relation.

Theé results of this simplified analysis are shown in Figure 2.4, which plots the total cost of
_rule processing versus X for both BL and MI. The figure shows that in the case of MI, cost
decreases linearly as the fraction of rules with two indexed terms increases. The cost of BL stays
constant because only one indexed term is ever used. If every rule has two indexed terms, the
cost of MI is smaller because the majority of reads from the RULES relation are avoided by inter-

secting locks. However, MI does have to pay a cost to screen the locks, and there are many more

2. LOCK-BASED RULE INDEXING 48

40.00 1
BL
30.00 -
ms per Ml
tuple
20.00 -
10.00
0.00

000 020 040 060 080 100

fraction of rules with 1 indexed term (X))

Figure 2.4. Cost of MI versus Cost of BL Assuming Only Two Predicate Types

locks set by MI than by BL since Q' is much larger than Q. If there were no extra cost to screen
locks, MI would be a factor of 100 better than BL for X=0. When Q'=0.1 the overhead of
screening locks balances out the benefits of saving reads to the rules relation, so BL and MI have

approximately the same cost for all values of X.

2.5. Storage Utilization

The storage requirements of the three algorithms vary significantly. RBL bas the smallest
storage requirements since it sets locks for a single predicate term in the indexes only, not on the

data. BL requires somewhat more storage because it sets the same index locks as RBL, and also

2. LOCK-BASED RULE INDEXING 49

puts 4-byte locks on each tuple that conflicts with an index lock. MI requires the most storage,
using interval locks in more than one index, and placing 8-byte locks on each tuple that conflicts

with an index lock.

2.6.1. Size of the RULES Relation

All three algorithms use an identical RULES relation containing one tuple for each rule.

Recall that the formant of RULES is
RULES(id, name, rule-def)

The size of RULES is estimated as follows. The id field requires four bytes and name requires 16

bytes. The rule-def attribute has subfields containing the number of bytes indicated below:

field definition bytes
text text of rule 160
predicate | compact representation
of rule predicate M(25+4)

The estimate above for the size of the predicate field is based on the fact that each of the M rule
terms will have up to 2 constants of length S bytes each, plus another 2 bytes to indicate the
attribute on which the term lies and 2 bytes to represent the operators for the term. The com-

plete expression for the size of a single tuple in RULES is

Y = 4+16+100+M(25+4)
Given this tuple size, the number of bytes occupied by RULES, SPACE gy, s, is

SPACE gy1es=tY

2.5.2. Storage Use in Reduced Basic Locking

The only storage used in RBL is that for the locks set in the indexes, plus the size of the

RULES relation. In general a rule predicate term can have the form

2. LOCK-BASED RULE INDEXING 50

constant, lower_op attribute upper_op constant;

where lower_op and upper_op are one of the relational operators { <, < }. To lock an interval
of this form in a B-tree, a hierarchical locking scheme is employed (see Appendix 1 for a complete

description of the algorithm for placing interval locks). The structure of an interval lock is
t = [RuleID, RuleType, constant,, lower_op, constanty, upper_op]

Locks of this form require LSIZE bytes for the RulelD, 1 byte for the RuleType, lower_op and
upper_op, and S bytes each for constant, and constanty. The size of an index interval lock,
ILSIZE, is the following:

_ ILSIZE = 3+LSIZE+2S

To get an estimate of the amount of space used to set interval locks, observe that for @ =.0001
| and N=1,000,000, each interval lock covers 100 tuples. To get a more accurate count of the
total number of pages used, it is assumed here that B-tree pages are packed 69% full as derived
in [Ya078]. Index records contain one data value and a 4-byte pointer, so leaf pages in the index
contain .89B /(S+4) records. For the default values of B and S, the number of records in a leaf
index page is approximately 200. The probability that a lock will span a page boundary is
100/200=1/2, so the expected number of locks, TERMLOCKS, set by a single predicate term

in a B-tree is

TERMLOCKS = %-.1-»-;-.2 =15

The amount of space used by the range locks set by all ¢ rules is

SPACE perocks = t TERMLOCKS.ILSIZE

This yields the following expression for the total amount of storage space used by the rule subsys-

tem in RBL:

SPACE g = SPACE RGIDCKS"'SPACE RULES

To determine the amount of storage used by the data and indexes using no rule processing,

it is assumed that all F; indexes are secondary. In the data relation itself, the N tuples have F

2. LOCK-BASED RULE INDEXING 51

fields, each of width S bytes. There are F indexes, each with a total of N <key,pointer> pairs,
and each pair contains S+4 bytes. Only the leaf-level pages are counted because there are far
more than contained in the upper levels. The total storage occupied by the data is thus as fol-

lows:

N(5+4)

SPACEpara = N-S-F+F1—5

2.5.3. Storage Use in Basic Locking

The Basic Locking algorithm uses the same amount of storage space to mark the indexes as
does RBL, plus extra storage to mark the data records. The expected pumber of rules that match
a tuple, and thus the expected number of t-locks per tuple, is simply tQ. Since there are 4 bytes
per t-lock in BL, each tuple will have, on the average, 4tQ extra bytes. Including the size of the

rules relation, the total storage used by the rule subsystem in BL is the following:

SPACEpg, = SPACE pyLest SPACE pgrockst N(4tQ)

2.5.4. Storage Use in Mark Intersection

In MI, the average number of bytes of t-locks per tuple is the expected total number of
indexed rule terms times the gize of a t-lock times the probability that a term matches 3 tuple.
The expected total pumber of indexed rule terms, which will be called T, is the sum of j times the
expected number of rules with J indexed terms, t-P(j), for 5=1,2, " * * F. The simplified expres-

gion for T is

F
T=t) iPlj)
j=0
There are 8 bytes per ¢-lock on data tuples in Ml so the expected number of bytes occupied per
tuple by t-locks is 8.T-Q. Extra data is also required to place locks in the indexes. The ratio of

the total number of indexed terms in RBL to the number in Ml is T/t, so the total amount of

2. LOCK-BASED RULE INDEXING 52

data used for index locks in M1 is the following:

-Z-'SPACE RGLOCKS

This yields the following expression for the total number of bytes used in ML

SPACE y; = SPACE pyest %SPACERG,OCKS—»&T-Q-N

2.8. Storage Analysis Results

To compare the amount of space used by the three algorithms, Figure 2.5 shows the space
occupied by the data and the RULES relation and the amount of space required by the three
different rule indexing algorithms. As expected, the figure shows that MI requires more storage
than BL and RBL because MI locks more than one attribute per rule, apd t-locks in MI contain 8
_ bytes instead of 4. RBL is clearly the most economical user of storage among the three algo-
rithms. The line showing the amount of space occupied by the RULES relation demonstrates that
RBL uses very little space for locks. Also, range locks in the indexes occupy a small amount of
space compared with the actual locks on tuples. 'The relative amount of space used for locks in
indexes and on data records is illustrated by the difference in the amounts of storage used by BL

and RBL (BL puts t-locks on tuples in the database and RBL does not).

2.7. Discussion

The choice between the three lock-based rule indexing methods evaluated in this paper
depends on the database and rule enviropment. In general, basic locking appears to be the
method of choice because: (1) it is easy to implement as a byproduct of normal query processing,
(2) it performs well with a small to moderate number of rules, and (3) it requires only slightly
more disk space than occupied by the data itself. However, if the RULES relation is based pri-
marily on disk, and a significant fraction of all rules have more than one indexed predicate term,

mark intersection can be much more efficient than the other methods. Mark intersection

2. LOCK-BASED RULE INDEXING 53

150.00 1
Original
Database
Size
100.00
Ml
Storage in
MBytes
50.00 -
BL
RBL
[
== RULES
0.00 - v v v » relation

0 10000 20000 30000 40000 50000

Number of Rules (t)

Figure 2.5. Amount of storage used by lock-based rule indexing algorithms

provides this speed-up because it uses t-locks that contain more information than in basic locking.
This extra information allows many rules to be screened by intersecting locks, thus avoiding some
.reads from the RULES relation. Due to its high index 1/O requirements, reduced basic locking is
only suitable for trigger processing in database systems where updates in place are performed as
deletes followed by inserts. This allows RBL to “piggy-back” its searches for t-locks in the
indexes with the index updates performed when the new tuple value is inserted. RBL is not suit-
able for processing inference rules because it would cause one or more ind;ax Jookups for each tuple

on a read-only query, which is an unacceptable performance burden.

2, LOCK-BASED RULE INDEXING 54

Unfortunately, if the RULES relation is on secondary storage, there appears to be a practical
limit of only a few rules with a t-lock on each tuple using any of these schemes. For example,
using BL with tQ =10 (i.e. approximately 10 rules have a t-lock on each tuple) Figure 2.2 shows
that about 300 ms are required per tuple to do rule processing, which is a very large amount of
time to spend processing one tuple. This observation makes it clear that to achieve acceptable
performance for a larger pumber of rules, access to the RULES relation must be speeded up by
keeping some or all of it in high-speed memory. With the advent of large memories, maintaining
most of RULES in high speed memory should prove feasible. A standard LRU replacement algo-
rithm using a very lar.ge buffer pool would likely keep a sufficiently large portion of RULES in
memory to avoid most of the I/O observed in the apalysis in this paper. Because MI spends extra
CPU time intersecting locks to avoid probes into the RULES relation, the difference in perfor-
mance between MI and BL will narrow if these probes are made less expensive, making BL even

more attractive.

55

CHAPTER 3

MAINTAINING DERIVED OBJECTS

This chapter presents a collection of algorithms for processing queries against views and
other derived data objects. When a user wishes to retrieve part or all of a view, the conventional
way to process the request is to construct the result from the base relations using query
modification [Sto75]. Another method for answering queries against views is to keep a stored copy
of the view and read it directly during query processing. The simplest way to maintain the view
is to use the caching procedure described in chapter 1, whereby the view is recomputed before a
query if it has been invalidated by a preceding update. A more sophisticated version of this
method is to use a differential view maintenance algorithm (e.g., AVM) to keep the st.ored copy of
the view up to date. Several other differential view maintenance algorithms are proposed in this
chapter. In addition, methods are presented for maintaining materialized copies of other types of

derived objects, including:

1. database procedures
2. aggregates
3. views or procedures containing aggregates

Before describing a specific view maintenance algorithm, it is useful to develop a taxonomy
for classifying them. One type of classification already introduced is the distinction between
immediate and deferred view maintenance. Recall that immediate algorithms maintain views
after each update trapsaction, while deferred algorithms bﬁntain views before queries that read
views. A second type of classification involves the time at which the compilation and optimiza-
tion step is performed in a view maintenance algorithm. If this step is delayed until just before
computing the expressions required to refresh the view, the algorithm is called dynamicly optim-

ized or simply dynamic. If compilation and optimization is perforbed in advance, the algorithm

3. MAINTAINING DERIVED OBJECTS 56

is described as staticly optimized or static. The third classification regards whether or not the
algorithm factors out shared subexpressions. Algorithms that use common subexpression elimina-
tion techniques are called shared and those that do not are called non-shared. In summary, view

maintenances algorithms cap be classified according to the following criteria:

1. immediate versus deferred
2. dynamic versus static
3. non-shared versus shared

The original AVM algorithm described in [BLT86] is immediate, dynamic, and non-shared.
A staticly optimized version of algebraic view maintenance called static AVM (SAVM) is proposed
in this chapter. In general, versions of both AVM and SAVM are possible which are either
immediate or deferred, or either shared or non-shared. A view materialization algorithm called
Rete view maintenance (RVM) is also proposed in this chapter. RVM utilizes a Rete network to
perform view maintenance. RVM is staticly optimized because it takes; a collection of view
definitions in advance and builds an optimized structure for maintaining the views. Possible
optimization strategies ;re to share common subexpressions between views, and arrange join ord-
erings in an efficient way. Because common subexpressions are combined when the Rete network
is built, RVM is classified as a shared algorithm. A pon-shared version of RVM could be con-
structed, but this possibility will not be discussed since sharing subexpressions in RVM is straight-

forward and clearly preferable. Both immediate and deferred versions of RVM are possible.

Static AVM and Rete view maintenance are presented in detail below. Methods are then
given for maintaining aggregates and database procedures, as well as views and procedures cob-
taining aggregates. The chapter concludes with a discussion of the different alternatives available

for materializing derived database objects.

3. MAINTAINING DERIVED OBJECTS 57
3.1. Staticly Optimized View Maintenance Algorithms

3.1.1. Algebraic View Maintenance

It is possible to extend the algebraic view maintenance algorithm to avoid the compilation
overhead incurred in dynamic AVM, and also to take advantage of shared subexpressions in a way
similar to Rete view maintenance. An algorithm is presented bere that makes use of a pre-
compiled execution plan to perform algebraic view maintenance. The algorithm has two main
components. The first component takes as input a collection of view definitions ViV Vs
and produces as output a collection of plans for maintaining the views. The plans are represented
as a,directéd acyclic graph.. in a non-shared version of SAVM, the graph is a collection of disjoint
trees. In a shared version of SAVM, the graph is a collection of trees that may share some sub-
trees. The leaf nodes of the graph represent scans of relations, and internal nodes represent joins.
Each node is assigned a level number. Base relations appear at level 0, the results of selections
from.a single base table appear at level 1, two-way join nodes are a‘t level 2, and 5o on up to level
J. In general, a node at level ¢ (when; i >1) joins one node from level {—1 with another node at

a level less than ¢. An update transaction may append or delete tuples from each of the base

relations. In general, after an update transaction, the following sets of tuples may be present:

Ry, Ry, .. Ry — base relations
A, Ay, ... Ay =~ appended tuples
Dy, Dy, ... Dy — deleted tuples

Given these sets as input, the algorithm must find the sets of tuples to be inserted into and

deleted from the views V},Vy, * * * Viyy. These insertion and deletion sets are denoted as follows:

Ay, Ay, - Avy
Dy, Dy, ... Dy,

The value of these sets is found using the following algorithm:

3. MAINTAINING DERIVED OBJECTS 58

fort = 1toJ do
for all nodes n at level ¢ do
compute A, and D,
end
end

At any level § the A and D sets for all nodes at levels less than § have been computed, so they
can be used to help compute the A and D sets for level § nodes. Suppose that a view V; bas
another view VJ as a subexpression. Then in a shared version of SAVM, the sets AV,, DV’. and V;

are used to help compute Ay, and Dy,

As an example of the benefits that can be obtained by combining shared subexpressions, con-

sider the folowing pair of views:

define view V; (Ry.all, Ry.all, Ryall)
where R;.a = Rpb
and Rg.c = Rad

define view Vj (R2.all, Ry.all)
where Ry.c = R3d

Using the standard dynamic AVM algorithm, both these views are maintained separately. Sup-
pose a set of tuples A, is appended to R;. To find the sets of tuples to append to Vj in this

situation, the following query must be run:

retrieve (4;.all, Raall, Ry.all)
where A;.3 = Rpb
and R,.c = Ryd

A possible execution plan for the above query is shown in Figure 3.1. (The plan is drawn with the
leaves at the top and internal nodes at the bottom to 8o that the style of presentation is the same -
as for Rete networks.) By analyzing the definitions of the two views in advance, it is possible to
identify that V) is a subexpression of V,. This makes it possible to find the set of tuples that

peed to be appended to V; using the following query:

retrieve (4,.all, Vpall)
where A;.2 = V,b

3. MAINTAINING DERIVED OBJECTS 59

Al R2 RS
. index scan index scan
sequential scan on b on d

outer inner

nested loop join

Al.ﬂ =R2.b inner

outer

nested loop join
left.c=R 3.d

tuples to append to V,

Figure 3.1. Standard algebraic view maintenance (no sharing)

A plan for executing this query is shown in Figure 3.2. This plan requires computation of only a
two-way join, as opposed to the three-way join required by the original plan. This could provide

a substantial cost savings.

The previous example showed how shared subexpressions can be useful because they reduce
the number of joins that are performed. Sharing subexpressions can also improve performance by
eliminating redundant computation. For example, consider the views V; and V; previously
defined. Suppose that tuples Ag and Dy are inserted into and deleted from R, respectively. The
algorithm will first find the net changes to V3 (Av, and Dy,). This will be done by executing the

following queries:

3. MAINTAINING DERIVED OBJECTS 60

Ay Ve
sequential scan index scan on b
te .
outer inner

nested loop join

Al.a =V2.b

tuples to append to V;

Figure 3.2. Algebraic view maintenance using shared subexpression

to find AVJ

retrieve (Aj.all, Ry.all)
where Agc = R3d

to find Dy;

retrieve (Dj.all, Ra.all)
where Dg.c = Rsd

Ay, and Dy, will be used at the next level to compute the changes to V; (Ay, and Dy) as follows:

3. MAINTAINING DERIVED OBJECTS 61

to find Ay,

retrleve (R;.all, Ay all)
where R;.a = Ay, b

to find Dy;

retrieve (Ry.all, Dy,all)
where Ry.a = Dy, b

The effort for computing Ay, and Dy, was spent only once, and shared between V) and V. After

Ay, Dy, Ay, and Dy, have been found, they are used to update the stored copies of V; and V.

Note that of the two parté of this algorithm, only the second part has been described com-
pletely here. The first stage in the algorithm (constructing a pre-compiled execution plan for the
views) is 3 complex optimization problem. A heuristic algorithm that merges individually optim-
ized execution plans for each view into a global execution plan is straightforward to construct.
Such an algorithm will not, however, produce a globally optimal plan. Previous work on
multiple-query optimization (e.g. [Sel86a, Sel86b]) can serve as a starting point for future research
into methods for constructing an optimized merged execution plan for maintaining a collection of

views.

3.1.2. Maintaining Views Using a Rete Network

The Rete network was designed to find combinations of tuples that match production-rule
predicates. Because relational database views have the same structure as the rule predicates used
in OPS5, a Rete network can be used to find new tuples that satisfy a view qualification. For

example, consider the following view, which lists all the technicians that work in building B23:

define view AP (EMP.all, DEPT.all)
where EMP .job = "Technician”
and DEPT .building = "B23”

and EMP.dept = DEPT.dname

The equivalent OPSS rule condition has the form

3. MAINTAINING DERIVED OBJECTS 62

(EMP “job Technician "dept <x>)
(DEPT “dname <x> “building B23)

This condition would be represented by the Rete petwork shown in Figure 3.3. The bottom node
in the network is a P-node containing the rule associated with the condition. However, if this P
node is replaced by a B-memory node, as shown in Figure 3.4, all tuples contained in that node

will match the qualification of the view AP.

root
class = emp lass — dept
job = Technician building = B23
a-memory a-memory
and left.dept = right.dname
P

Figure 3.3. Rete petwork for example rule

3. MAINTAINING DERIVED OBJECTS 63

root
class = emp class = dept
job = Technician building = B23
o-memory a-memory

left.dept = right.dname

g-memory = view AP

Figure 3.4. Rete network used for view maintenance

3.1.3. The Rete View Maintenance Algorithm

In general, given a collection of views, a Rete network can be constructed that has a
memory node corresponding to each view. The desired semantics are that each memory node
associated with a view V should contain the current value of V. The meaning of “current value”

is defined as the value of V that would be retrieved by the command
retrleve (V.all)

given the current contents of the base relations. Although all tuples in a memory pode will match

the qualification of the view associated with the node, it must be demonstrated that the set of

tuples in each me

3. MAINTAINING DERIVED OBJECTS

Consider the following algorithm for maintaining a collection of views, Vo

Rete network Ry.

Algorithm A

input:

output:

64

mory node is exactly equal to the current value of the corresponding view.

Vv using a

1. A version of Rete network Ry where each memory node associated

with one of the views Vy, * = * Vjy has the correct current value.

2. A database transaction X represented by Rete Network
tokens 1,82 " * * ty. This can be a list of + or —
tokens in any order. Updates in place are represented by
a — token for the old value followed by a + token for the
new value.

A version of Ry where each memory node associated with
V,, * * - Vjy has the correct current value for the
database after transaction X bas been executed.

method:

Theorem:

Algorithm

view V contains the current value of V with respect to th

X.

for i = 1tom do
pass t; through Ry, allowing its effects to propagate
as far as possible using 3 depth-first traversal through
the network.

end

A is correct. In other words, after it executes, every memory node assoc

jated with a

e database after execution of transaction

3. MAINTAINING DERIVED OBJECTS 65

Proofs

This can be shown by induction on the number of tokens m in transaction X. To simplify the
proof, it is assumed that every memory node corresponds to a unique view. This does not affect
the results, since for a given collection of views and corresponding Rete network, extra “dummy”
views can be added for the memory nodes that do not already correspond to a view in the original

collection.

Base case: m==1

Here, the transaction X consists of a single token ¢y, representing insertion or deletion of a

single base relation tuple Y. It is necessary to show the following:

It insertion of Y causes a tuple ¢ to enter the view corresponding to a memory
pode M, Algorithm A causes one and only one instance of t to be added to M.
Similarly, if deletion of Y causes a tuple ¢ to leave the view corresponding to
M, the algorithm removes one and only one instance of ¢ from M.

Suppose M is an a-memory node. Then if t, reaches M, ¢ matched the qualification for
M. To move M to the correct state, if the tag of ¢, is —, ¢, should be deleted from M, and if it
is +, it should be inserted. This is exactly what the Rete network algorithm will do. Thus, views
corresponding to a-memory nodes are left in the correct state after passing a token through the

Rete network.

The depth of a memory node M is defined as the maximum number of memory nodes
between M and the root. Assume that all views corresponding to memory nodes of depth <k
are updated correctly using Algorithm A (the base case has been proven above for depth=0, in
the case of a-memory nodes). Suppose the token of ¢, is +. Consider a S-memory M of depth
k+1. Let S be the set of new elements that need to be inserted into M to bring M to the
correct state, given the insertion of Y. Every tuple & in S must correspond to the join of two

tuples, tjer, 8nd frigny, from the input memories of M (if not, then the input memories are

3. MAINTAINING DERIVED OBJECTS : 66

incorrect, but since they are at depth < k, they must be correct). Tuples ¢jp and &5, may be
old values that already existed in the input memories, or new ones that entered those memories

because of insertion of Y. The following combinations of new and old tuples may occur in S:

trere Lright
new old
old new
pew new

The (old,0ld) combination is not possible since such a tuple would not be added to M by inser-
tion of Y. If a tuple 8 in S is of the form (new,0ld), then a single “new” tyn tuple will be
inserted into the left input memory of M (this follows since the depth of that input memory node
is <k). If this)., tuple joins to an ;‘old” tuple ¢y, in the right input memory for M, then a
single token [+,<tj.n.t rizht>] will be passed to M. Hence, exactly one corresponding tuple will
be inserted into M. Using a similar argument, if a new tuple arrives at the right input memory

of M, one and only one instance of each (old,new) tuple in S will be added to M.

The case of (new,new) tuples in S is somewhat more complicated. Clearly, if a new ¢jer,
value atrives before the new ¢y, value, the ¢, value will not combined with the ¢, value to
form a token to pass to M. However, when the new ¢, value arrives later, it will join to the
tier, value, and a single token [+,<tjun.trighe>] Will be passed on to M. This will cause one and
only one tuple <?jef,frigni> to be inserted into M. A symmetric argument holds for the case
where the new ¢, arrives before the new f)r,. Hence, every tuple & in S is inserted into M .
exactly once, and no other tuples are inserted. Algorithm A thus leaves all memory nodes of
depth k+1 in the correct state when a + token is passed through the network. By ind;lction, all
memory nodes are left in the correct state after i:;sertion of a + token. The proof for - tokens is
similar, and will not be shown. Hence, Algorithm A leaves all memory nodes in the correct state

for transactions of length m=1.

3. MAINTAINING DERIVED OBJECTS 67

Induction Step:

Assume that Algorithm A is correct for all transactions of length 7 or less. The affect of a
transaction of length j+1 is simply the affect of two transactions run serially, one of length J
(which is assumed correct) followed by one of length 1 (which was shown to be correct in the base
case). Hen;:e, applying Algorithm A for a transaction of length j+1 must leave all memory nodes
(i.e., views) in the correct state. By induction, this shows that Algorithm A is correct for all tran-

sactions of length m >1. O

It is important that the effects of tokens are propagated in depth-first order through the net-
work in Algorithm A. For example, consider the view JP consisting of all the programmers work-

ing in the same department as John:

define view JP (EMP.all, E.all) using E in EMP
where EMP.name == ‘“John"

and E.job = “Programmer”

and EMP.dept = E.dept

A Rete network for maintaining JP is shown in in Figure 3.5. Suppose that John is a program-
mer. Since John is a programmer, there is initially a tuple T in JP that consists of John’s EMP
tuple joined with itself. Also, both the left and right a-memories will contain John's tuple. Now,
suppose John's tuple is deleted from EMP, and a — token for it is placed at the root of the net-
work. Using depth-first propagation, John's tuple would be deleted from one a-memory (say the
left), and that would cause T to be deleted from the f-memory JP. Then, John would be deleted
from the right a-memory, leaving JP in the correct state. However, using non-depth-first propa-
gation, the following anomaly could occur. John's tuple could be deleted from the left a-memory,
then the right one. Then the system would test whether John's tﬁple that was just deleted on the
left joined to any tuples on the right. The answer would be no, so T would remain in JP, which is

incorrect. This illustrates that the depth-first propagation used in Algorithm A is essential to

3. MAINTAINING DERIVED OBJECTS 68

root

class = EMP

T

name = John job = Programmer

a-memory a-memory

AND
left.dept = right.dept

JP (f-memory)

Figure 3.5. Error using non-depth-first propagation

maintaining the views in the correct state.

A potential performance problem with the Rete network as previously described is that
tokens are “broadcast” from the root to all t-const nodes. If the pumber of t-const modes is
large, as would be expected in a database system with a large number of rules, testing the predi-
cates at all ¢-const nodes will be very expensive. Fortunately, it is straightforward to apply lock-
based rule indexing to reduce this cost. Consider Qhe general Rete petwork shown in Figure 36.
All parts of the network above the dotted line in the figure cab be encoded by setting locks in the
catalogs, and conventional indexes. Rather than a rule identifier, each lock would contain a

pointer to a place in the petwork where a deleted or inserted tuple should be deposited if it

3. MAINTAINING DERIVED OBJECTS. 69

root

class = R, class = R, class = RM

I

- e e e am e an em e e e e e e e o e W ek em = En e e e - e WD W@ = o e

Figure 3.8. Augmenting Rete network with locking

conflicted with the lock. For example, if a rule had the condition

EMP.dept = “Toy”
then ¢t-const nodes for “class = EMP" and “dept = Toy" would be placed in a normal Rete net-
work. Assuming there is an index on the EMP.dept field, these t-const nodes can be replaced by

putting a lock record containing the value “Toy"” in the index. This record would point to the a-

memory node that would normally come after the ¢-const node “dept = Toy"'.

3. MAINTAINING DERIVED OBJECTS . 70

3.2. Dynamicly Optimized View Maintenance and Sharing

An important feature of the shared version of SAVM as well as RVM is that the cost of pro-
cessing any shared subexpression is paid only once. As originally described, the standard
(dynamic) AVM algorithm does not take advantage of shared subexpressions. In general, dynamic
AVM must compute the result of k relational-algebra expressions @1,@2, * * * ;@ to maintain
views after each tramsaction. It is possible to extend dynamic AVM to factor out common-
subexpressions in Q@4,@9, * * ,@%, using techniques described in [Sel86a, Sel86b]. Clearly, this

shared, dynamic version of AVM would have a large run-time optimization cost.

3.3. Database Procedures

As described in Chapter 1, database procedures are collections of querie;‘. stored in the data-
base. Since database procedures are collections of one or more queries, they have the same struc-
ture as a collection of views. This allows an.y view materialization method to be used to material-
ize the results of stored procedures. ‘The most straightforward method to allow the result of a
stored procedure to be retrieved is to simply run the queries in the procedure definition. This
approach is analogous to query modification, and was used in the system described in

[SAH84,SAHSS).

Another method for maintaining procedures is caching [Sel86b, Sel87,StR86]. Caching
involves storing the result of a procedure in the database. If the database is updated in a way
that would change the value of the result, then the cached value is invalidated. When retrieving a
cached procedure value, if the cache is valid, the value is returned. Otherwise, the value is recom-

puted and written to refresh the cache.

Alternatively, any incremental view maintenance algorithm can be employed to maintain
up-to-date copies of the results of database procedures. To accomplish this using the standard

AVM algorithm, each query inside a procedure is maintained individually. Using Rete view

3. MAINTAINING DERIVED OBJECTS 71

maintenance, all queries in database procedures are encorporated into a single Rete network. The
result of each query is maintained as a memory node in the network. Using shared, staticly
optimized AVM, a shared execution plan is produced for all the queries in all procedures present in

the system. Changes to the value of each stored query are found using this plan.

3.4. Aggregate Maintenance

The aggregate maintenance procedures presented here allow any general aggregate to be
materialized. In order to maintain consistency, the algorithms are designed so that the value of a
materialized aggregate will be identical to the result of processing the same aggregate convention-
ally. The algorithms presented by Epstein for processing aggregates in QUEL queries are used as

a guideline' [Eps79,HSWT75]. These are briefly reviewed below.

3.4.1. Basic Aggregate Processing Algorithms

To compute a scalar aggregate, a state data structure is used to keep track of the calcula-
tions made up to the current time. For example, the state of the computation of the avg (aver-
age) aggregate can be represented as a pair of numbers, one equal to the average of the values
seen so far and the othgr equal to the count of those values. By convention, the state of an aggre-
gate is required to contain the current value of the aggregate at all times. The following simple

algorithm is used in INGRES to compute the value of a scalar aggregate:

1. Initialize variables to hold the aggregate state

2. For each tuple meeting the qualification of the aggregate,
update the state.

At the end of this procedure, the value of the state contains the result.

L]

The aggregate maintenance algorithms presented in this chapter are discussed in terms of the QUEL query
language [HSW75]. However, the techniques presented here can also be used to maintain aggregates expressed in
other query languages, including SQL [CAE78] and POSTQUEL [StR88] (see appendix 2 for a description of the
POSTQUEL aggregate syntax).

3. MAINTAINING DERIVED OBJECTS 72

To compute aggregate functions, for each unique value of the by-list a pair of the form
<state,by-value> is maintained . This set of values can be put in a temporary relation with

attributes for the state, and each component of the by-list. For example, the aggregate

avg(EMP salary by EMP .dept, EMP.job)
accumulates its results in the relation
TEMP(count, average, dept, job)
The state of the aggregate is represented by the count and average attributes, and the by-list

entry is composed of the dept and job attributes.
The algorithm to compute an aggregate function is:

1. Create a temporary relation with the required attributes.

2. For each tuple satisfying the qualification
a. if the temporary relation already contains a tuple with the
same by-list value, update the state value of the tuple

b. otherwise, add a tuple to the temporary relation with the
pew by-list value and the correct initial state

When this algorithm finishes, the temporary relation contains the result of the aggregate function.

There are a few variations on standard scalar aggregates and aggregate functions discussed
above. Aggregates can be classified as either unique or non-unigue. With a unique aggregate,
duplicates are removed from the input before the result is computed. Duplicates are not removed

in non-unique aggregates. Conpsider the following sample database:

pame dept salary job
Bob Toy 10,000 Clerk

Jim Toy 20,000 Buyer

Al Fire 10,000 Fire-fighter
Susan Fire 12,000 Fire-fighter

The count-unique (countu) aggregate below returns the value 3 because there are only 3 unmique

values of salary in this table.

3. MAINTAINING DERIVED OBJECTS 73

countu(EMP salary)
The non-unique count aggregate returns 4 when used in the same fashion.

Also, there are some important differences in the way aggregate functions are processed,
depending on whether or pot they have 3 qualification. If an aggregate function has a
qualification, there is 3 problem when using the basic algorithm just described. For example, sup-
pose one wished to determine the number of programmers working in each department. The fol-

lowing aggregate function performs the desired computation:
count (EMP.name by EMP.dept where EMP.job = “programmer”’)

If a department has no employees with the job title “programmer,” then that department will not
appear in the result. To be correct, the result should contain these departments and show that
they have zero programmers. To handle situations like tﬁe above, if an aggregate function has a
qualification clause, then before beginning the computation, the temporary relation to hold the
result of the aggregate must be initialized with a tuple for every by-list value that could take part
in the aggregate. To perform the initialization, the system projects the attributes of the by-list
into the result relation along with an initialized state value. The normal algorithm is then used to
compute the aggregate funcfion, and it will only be required to update tuples in the result rela-

tion, not create new ones.
In general, aggregates can be divided into the following classes:

scalar aggregates

pon-unique
unique

aggregate functions
unqualified, non-unique
unqualified, unique

qualified, pon-unique
qualified, unique

This chapter describes methods to maintain aggregates in each of these classes.

3. MAINTAINING DERIVED OBJECTS 74

3.4.2. Fundamentals of Aggregate Maintenance

Before a materialized copy of any aggregate can be maintained, it must be initialized to the
correct value for the current contents of the database. When an aggregate is installed, its value
will be computed using conventional aggregate processing algorithms. From that point onward,

the aggregate state will be updated as necessary wheh the database changes.

Essential to maintaining any materialized aggregate is a pair of incremental update func-
tions (IUFs) to modify the aggregate on inserts and deletes, respectively. These functions will be
called fipsert 30d fdeleter ThUS, if V is the current state of the aggregate, and a value T is
inserted into the set of values being aggregated, V is updated as follows:

Vi={ inserV,T)

Similarly, if a value T is deleted from the set being aggregated, V is updated as shown below:

Vi=f de!ew(VtT)

For example, a simple pair of IUFs exist for the average aggregate. The state of the aggre-
gate can be represented as a pair containing a count N and current average A. Thus, the incre-

mental update functions are:

. Jinserl [N;A], T)

\ return ([N+1, (N-A+T) [(N+1)])

fdelete([NrA]:T)

} return ([N-1, (N-A-T) | (N-1)])

Update functions of this sort can be found for most of the common aggregates that are built into
current database systems (e.g. sum and count) as well as many user-defined aggregates [Han84).
It is more difficult to find update functions for certain aggregates, such as min and max. The
f insert function for these aggregates is simple to create. However, a problem arises with deletion.

Consider, for example, maintenance of a max aggregate. Suppose that the state of this aggregate

3. MAINTAINING DERIVED OBJECTS 75

is represented by the current maximum value. If a value less than the current maximum is
deleted, the fgelete function does not change the aggregate state. However, consider the case
where a value equal to the current maximum is deleted. The aggregate state may change if there
is no other value in the set being aggregated that is equal to the deleted value. If the aggregate
state contains only one value, then there is no way of knowing what the new maximum is without
completely recomputing the aggregate. A better way to represent the state of the aggregate max
is to maintain a state set of up to k of the current largest values in the set being aggregated (e.g.
a value k=10 might be chosen). In this way, some deletions of the maximum value can be
tolerated. If there are many deletions of large values, the aggregate state set may become empty.
When this sort of ‘‘underfiow” occurs, it becomes necessary to recompute the aggregate and

refresh the state set with k new values.

To make it possible to maintain aggregates like min and max, where error conditions such
as underfiow may occur, an error code INVALIDATE may be returned by Jigsert 804 [getere If
INVALIDATE is returned, the system marks the aggregate invalid, and will re-initialize the aggre-

gate state at the end of the current transaction.

Update functions do not exist at all for some aggregates, particularly those that are sensitive
to the order in which the values are processed. An example of such an aggregate is a checksum of
a stream of bytes. In such cases, there is no hope of incrementally updating the aggregate - it
must be completely recomputed. Thus, aggregates for which no incremental update functions exist

are not considered here.

3.4.3. Scalar Aggregate Maintenance
3.4.3.1. Non-Unique

The general form of a non-unique scalar aggregate is

aggregate_operator (aggregate_ezpression where qualification)

3. MAINTAINING DERIVED OBJECTS 76

Since this aggregate is non-unique, it is a function of all the tuples returned by the following

query, without removing duplicates:

retrieve (value = aggregate. ezpression)
where gqualification

The value of the relation retrieved by the query above will be called Agglnput.
In general, the value retrieved by the command above is the same as that of the following
relational algebra expression:

axloWR1X * + * XRN)))
where X is the target list, and Y is the qualification, i.e.,

X= {value= aggregate_ezpression }
and
Y= qualification
The semantics of the project operation are modified slightly so phat duplicates are not removed.

Suppose that sets Ay * - * Ay are appended to each of relations R, * * * Ry, and similarly,
D, - - - Dy are deleted from Ry ‘- Ry. Using an algorithm for incremental view update
(either AVM or RVM) one can determine the values to be inserted into Agglnput, and the values
to be deleted from Aggluput solely from A, * * * AN, D, - - Dy, and the contents of the base
relations, R, * - * Ry. This will yield two relations, Ape and Dy, containing the net changes
(insertions and deletions respectively) to Aggloput. A materialized copy of Agglnput does not
bave to be maintained. This is extremely important, since it can save a large amount of storage,

and it also significantly reduces the time required to maintain the aggregate.

To update the state V of a non-unique aggregate based on the values of Ape, 80d Dy, the

following steps are performed:

3. MAINTAINING DERIVED OBJECTS 7

for each value @ in A,
Vi={inser(V,a)

for each value d in Dy,
Vi f getete(Vid)

Performing this procedure after each base relation update that affects the aggregate will keep the

aggregate in the correct state.

3.4.3.2. Unique

Aggregates that require duplicate removal can be maintained in a way similar to non-unique
aggregates. To do this, a method is needed to determine when a unique value enters or leaves
Agglnput. This can be accomplished by maintaining a duplicate-free copy of Agglnput at all
times using a view-maintenance algorithm. Unfortunately, this makes the cost to maintain a
unique aggregate significantly higher for a non-unique one. The version of Agginput maintained
contains a set of <value, count> pairs, where value is a unique tuple value, and count is a dupli-
cate count. The net change sets, Ay, and Dy, used to update Aggloput also contain <value,
count> pairs. Furthermore, it is known that Ap. (M) Dpe is empty. Duplicate-free versions of
the net change sets, which will be called A’ and D/, are needed to correctly update the
aggregate state. These can be produced while Agglnput is being maintained. The algorithm for

producing A, and D, during the process of incrementally updating Agglnput is shown below:

for each value <a, count> in A, do
If a tuple <ga, count’> exists in Agglnput tben
set count’ := count’ + count
else do
add <a, count’> to Aggloput
add a to Anet'
end
end

3. MAINTAINING DERIVED OBJECTS 78

for each value <d, count> in D, do '
If a tuple <d, count’> exists in Agglnput then
set count’ :== count’ - count
If count’ becomes 0 then do
remove <d, count’> from D,

add d to Dm’
end
else
/* this should never happen */
signal an error
end

end

The values of A, and D, can be used to update the state of the unique aggregate (V) just as

Ape and Dy, are used for non-unique aggregates.

3.4.4. Aggregate Function Maintenance

It is assumed below that the value of the aggregate function to be maintained has already
been initialized. The resulting relation, which will be called AggResult, is stored in the database.

AggResult has the following schema:
AggResult (state, count, byvalue)

Here, state contains the current aggregate state for all tuples with a by-list value byvalue. The
count field tells how many tuples in Agglnput had a particular byvalue. The count is required so
that tuples can be deleted from AggResult when the count goes to zero. As a simplification, the
discussion below treats state and byvalue as individual attributes; in reality, they might be com-

posed of more than one attribute each.

3.4.4.1. Unqualified, Non-unique
Unqualified, non-unique aggregate functions have the form
aggregate_operator (aggregate_ezpression by by_list)

The following retrleve command defines the input relation (AggInput) for this aggregate func-

3. MAINTAINING DERIVED OBJECTS 79

tion:
retrieve (value = aggregate_ezpression , byvalue = by_list)

The net changes (A, and Dye) to Agglnput are determined using a view maintenance algo-
rithm. The system does not have to maintain a materialized copy of Agglnput since it is not

needed to compute A, and Dy Again, this provides substantial cost savings.

Given Apq and Dy, AggResult can be updated by the following procedure, where INITIAL

represents the initial state value for the aggregate:

for each tuple <a, by_value> in A,y do .
if a tuple <V, count, by_value> exists in AggResult then
replace it with < fipeert(V,8), count + 1, by_value >

else
insert into AggResult a tuple
< finsent(INITIAL ; @), 1, by_value>
end If
end

for each tuple <d, by_value> in Dy, do
if a tuple <V, count, by_value> exists in AggResult then
if count = 1 then
there will be no tuples left in AggResult with this by_value, so
delete <d, count, by_value> from AggResult
else
replace the tuple in AggResult with
< f gelete(V,8), count - 1, by_value>
end If -
else
There is no tuple with the same by_value in AggResult.
This should never happen, so signal an error.
end If
end

3.4.4.2. Unqualified, Unique

Unqualified, unique aggregates are maintained using the same algorithm for unqualified,
non-unique aggregates, except that A, and D, are replaced by their duplicate-free counter-
parts, Ay, and D, . The duplicate-free change sets are found in the same way presented for

unique scalar aggregates. This requires keeping a materialized copy of Aggluput.

3. MAINTAINING DERIVED OBJECTS 80

3.4.4.3. Qualified, Non-unique
Recall that the general form of an aggregate function is

aggregate-operator (aggregate-ezpression by by-list
[where gualification])

The semantics of aggregate functions require that a tuple be present in AggResult for each possi-
ble unique by-list value, even if no tuples for that value match the qualification. Thus, the system

for maintaining a qualified aggregate has the following two parts:

1. a procedure to maintain the correct set of by-list values in AggResult

2, a procedure to update the aggregate state for existing by-list values in AggResult

When a database update occurs that causes the value of AggResult to change, procedure 1 is per-

formed before procedure 2. These procedures are implemented as follows:

Procedure 1

The incremental view update algorithm is used to maintain a materialized copy of the answer to

the following query:
retrieve unique (by-list)

The result of this query will be called ByValues. If a tuple t= > enters ByValues, then the

following tuple is created, and inserted into AggResult:
<state = INITIAL, count = 0, byvalue = B>
If a tuple t= < B> leaves ByValues, the tuple with byvalue = B is deleted from AggResult.

Procedure 2

As database updates occur, the incremental view maintenance algorithm is used to find the net

change sets, Ape 80d Dy, for the relation AggResult retrieved by the following query:

3. MAINTAINING DERIVED OBJECTS 81

retrieve (value = aggregate-ezpression, byvalue by-list)
where qualification

AggResult is not kept physically materialized. A and Dy are used as input to the algorithm
described below. The only difference between this algorithm, and the one for unqualified aggre-
gates is that here it is not necessary to insert or delete AggResult tuples since that has been han-

dled in procedure 1.

for each tuple <a, by_value> in Aye do
if there is a tuple <V, count, by_value> in AggResult
replace it with < fipsert(V,6), count + 1, by_value >
end

for each tuple <d, by_value> in Dye do
if there is a tuple <V, count, by_value> in AggResult then
replace the tuple in AggResult with
< f detete(V,8), count - 1, by_value>
end

3.4.4.4. Qualified, Unique

Qualified, unique aggregate functions are handled using an algorithm identical to that for
qualified, non-unique aggregates, except that the duplicate-free sets A, and D, are used in
place of Ape, and Dyt Apet’ and D, are determined using the algorithm previously described.
This requires a duplicate-free copy of Agglnput to be maintained using a view maintenance algo-

rithm.

3.5. QUEL Commands Containing Aggregates

Using QUEL that contains aggregates, more general database objects or views can be
retrieved than using aggregate-free. QUEL. QUEL retrieve commands (or view definitions) contain-

ing aggregates can be divided into several classes. These include

3. MAINTAINING DERIVED OBJECTS 82
class 1: queries containing scalar aggregates, and no tuple variables at
the top level (i.e., outside the scope of any aggregate)

class 2: queries containing scalar aggregates, and one or more tuple
variables at the top level

class 3: queries containing aggregate functions

Methods for maintaining objects containing aggregates in each of these classes are discussed

below.
Class 1
The general form of a class 1 query is the following:

retrieve ([;=fy, " dn=F2a)
where Q(fn41, * * * +fm)

Above, all the expressions f; * - * f can contain any combination of constants and scalar aggre-
gates. This type of query always retrieves either one tuple, or none. The following is an example

of such a query:
retrieve (a=avg(EMP salary))

A mechanism to materialize the results of such retrieve commands is a small extension of the
schemes presented earlier for maintaining the results of scalar aggregates (both qualified and
unqualified). To maintain the result of a class 1 query, every aggregate in it is maintained
separately using techniques previously presented. Whenever one or more of the aggregates
changes due to a database update, then the command is re-run using the currently ‘materialized
values of all the aggregates. Tile value returned replaces the previous stored result for the com-

mand.
Class 2

The next class of queries to consider are those containing simple aggregates, and one or
more tuple variables at the top level. In general, class 2 queries have the same form as class 1

queries except that the functions f,--- f,, can be functions of attribute.value pairs (e.g.

3. MAINTAINING DERIVED OBJECTS 83

EMP .salary). An example is the query that retrieves all employees who earn the average salary:
retrieve (EMP.all) where EMP salary = avg(EMP.salary)
The same algorithm for maintaining class 1 aggregates works for class 2.

The main pr&)blem with maintaining the result of a class 2 query is that any small change in
the aggregate can require a large amount of recomputation to be done to update the result. For
example, changing the salary of one employee can change the average salary, and thus completely
change the value retrieved by command above. This property makes it unattractive to always
maintain a materialized copy of such a command. An alternative that is likely to perform better
is to always maintain the aggregates and use them to compute the final value of the object on
demand. For example, if the materialized average salary is 20K, then when a user wants to access

the value of the command above, the following command will be run instead:

retrleve (EMP.all) where EMP.salary = 20K

Class 3

The extent of change to an object whose definition contains an aggregate function is usually

not as great as in the case of class 2 objects. Consider a general retrieve command

retrieve (! 1=f1 =S u)
where Q(f,.-u, **yfm)

where one or more of the f; is an aggregate function. When processing a query of this form using
conventional techniques, an aggregate function is computed separately, forming a temporary rela-
tion (AggResult). AggResult is then bound to the rest of the command by query modification.

The modified query has the following structure:
retrieve ([,=f,, * - la,=f,"

where Q(fn-ﬂ" e '!m')
and AggResult.byvalue = R .byvalue

_Here, fy'** f,,' are the same as f, - - - f,,, except that all occurrences in f; * - * fp, of 20

3. MAINTAINING DERIVED OBJECTS ‘ 84

aggregate function are replaced by the expression
AggResult.Result

This represents the field of AggResult that contains the result of the aggregate. The modified
command is just an ordinary query containing a collection of selects, projects and joins. To main-

tain the answer to this query, the system must perform the following steps:

1. find the net changes (Ape 30d D) for AggResult and
any other relations participating in the query

2. apply any incremental update algorithm {e.g. AVM or RVM)
to bring the stored result of the query to the correct state.

The net changes to AggResult are found as a byproduct of the aggregate function maintenance
algorithm. Old and new AggResult tuples are saved by the algorithm instead of discarded. The

net changes to base relations appearing in the command are found as usual.

3.8. Discussion

In this chapter a collection of algorithms has been presented for maintaining derived objects
in relational database systems. The following is a summary of the view maintenance algorithms

that were discussed:

dynamic, non-shared AVM
dynamic, shared AVM
static, non-shared AVM
static, shared AVM

RVM (static, shared)

el ol ol

Immediate and deferred versions of all the above are possible.

The main diference between the staticly optimized view maintenance algorithms and the
dynamicly optimized ones is in planning and optimization cost. Staticly optimized algorithms pay
a large planning cost once, and have no planning overhead at run time (i.e., at the time view

maintenance is performed). Dynamicly optimized algorithms pay a large planning cost at run

3. MAINTAINING DERIVED OBJECTS 85

time. A disadvantage of static algorithms is tba.t they produce a fixed execution plan for main-
taining views which will not necessarily be optimal at run time. An interesting topic for future
research would be to find ways to construct an efficient Rete network for RVM or compiled execu-
tion plan for SAVM given statistics about the structure of the base relations and the frequeacy of

database updates.

Shared algorithms have an advantage over non-shared algorithms because they avoid redun-
dant computation. However, there is a relationship between planning cost and sharing - it costs
more to construct a shared plan. This is particularly significant for dynamic algorithms because
they pay a planning cost each time the view is updated. For static algorithms, it is less significant

since planning cost is paid only once, and amortized over many changes to the view.

Deferred view maintenance algorithms may gain an advantage over immediate ones because
using a deferred strategy, large sets of tuples may be processed a few times (i.e., after each query),
rather than processing small sets of tuples :;mny times (i.e., after each update). However, there is
overhead in a deferred strategy for maintaining the net changes to the base relations in a data

structure between transactions. These issues are discussed more fully in chapter 4.

The RVM algoritbm bas the same advantages and disadvantages as other shared, static
view maintenance algorithms. A potential drawback of RVM is the time and storage required to
maintain the memory nodes in the Rete network. A potentially serious drawback of RVM given
the advent of high-speed multiprocessor hardware (e.g. SPUR [Hil86]) is that RVM cannot exploit
parallelism easily because tokens must be propagated depth-first through the metwork. Using

AVM, each expression to be computed could be assigned to a different processor.

This chapter also presented algorithms for maintaining database procedures and aggregates.
Because database procedures are simply collections of queries, any view maintenance algorithm
can be applied to maintain them. Algorithms for maintaining scalar aggregates and aggregate

functions can be built on top of any view materialization algorithm. Non-unique scalar aggregates

3. MAINTAINING DERIVED OBJECTS 86

(those that do not require duplicat:e removal) are very promising candidates for materialization
because they do not require maintenance of the complete view defined by the qualification of the
aggregate; only the result of the aggregate computation must be stored. Unqualified, non-unique

aggregate functions also have this attractive property.

It is pot essential to keep derived objects materialized. However, the decision of whether or
not to materialize an object can have a large impact on performance. For materializing objects,
the costs of query modification, algebraic view maintenance, Rete view maintenance, and caching
are all different. Each may perform best, depending on environmental factors, including the fre-

quency of queries and updates, and the structure of the database and the objects.

The relative performance of different algorithms for materializing derived database objects is
analyzed in the next two chapters. The focus of chapter 4 is the performance of different methods
for processing queries against views. Chapter 5 analyzes the performance of different algorithms
for processing queries that retrieve the results of database procedures. In general, the following

strategies are possible for processing queries against derived objects:

1. query modification
2. caching
3. differential maintenance

All the view maintenance algorithms presented in this chapter fall into the differential mainte-

nance category. The following table shows the topics covered in chapters 4 and 5:

algorithm ch. 4 ch.5
(views) | (procedures)

query modification X x
caching b
differential maintenance x X

immediate, non-shared, static (AVM) x x

deferred, non-shared, static (AVM) x

immediate, shared, static (RVM) x

Only staticly optimized algorithms are considered in chapters 4 and 5. Dynamicly optimized

3. MAINTAINING DERIVED OBJECTS 87

algorithms are not considered because of their high run-time planning and optimization costs.
The main goal of chapter 4 is to explore the differences between query modification, and deferred
and immediate differential view maintenance techniques. In chapter 4, the model analyzed con-
sists of a single large view. Algorithms that take advantage of shared subexpressions are not con-
sidered in chapter 4 because they would provide no advantage in this _environment. Also, chapter

4 does not consider caching as an alternative since it is an inefficient technique for large views.

In chapter 5, caching is analyzed because it may be a worthwhile option for processing
queries that retrieve the results of database procedures. Caching is more promising in this

environment for the following reasons:

(1) procedures are typically much smaller than views and bence less likely to be
invalidated by updates, and

(2) queries that access a database procedure read the entire result returned by

the procedure, not just part of it, as is usually the case with queries against
views. '

Because there will typically be a large number of database procedures, many of which contain
shared subexpressions, the use of a shared view maintenance algorithm may be advantageous.
Hence, RVM is analyzed in chapter 5 as an example of a shared, static view maintenance algo-
rithm. No deferred view maintenance algorithms are explored in chapter 5 because the deferred
versus immediate issue is explored thoroughly in chapter 4. Chapter 4 shows that the immediate
strategy is usually superior to deferred, although the performance difference between the two is

small.

88

CHAPTER 4

VIEW MATERIALIZATION PERFORMANCE *

4.1. Introduction

In order to process queries against views, some sort of view materialization strategy is
required. Conventional systems process queries against views using query modification, as
described in Chapter 1 [Sto75]. This procedure translates queries referring to views into queries
involving only the base relations. Recently, algorithms have been proposed for maintaining
materialized copies of views (see [BLT86} and chapter 3). Given a materialized view, a query can

be processed using the stored view directly, as if it were an ordinary base relation.

This chapter will analyze and compare the performance of the following algorithms for pro-

cessing view queries:

1. query modification

2. differential maintenance
a. immediate, non-shared, static (AVM)
b. deferred, non-shared, static (AVM)

In the rest of this chapter, 2.a. will be called “immediate view maintenance” or simply “immedi-
ate,” and 2.b. will be called “‘deferred view maintenance” or “deferred.” The performance analysis
will consider the differences between query modification and differential view maintenance in gen-

eral, and the differences between immediate and deferred view maintenance in particular.

The types ot" views considered are those that can be defined using only the SELECT, PRO-
JECT and JOIN qperations. The cost of the various methods when applied to processing aggre-

gate queries is also analyzed.

L]
A version of the material presented in this chapter has been published as a separate paper [Han87).

4. VIEW MATERIALIZATION PERFORMANCE 89

An important way to improve the perfo:ménce of algorithms that maintain physically stored
copies of views is to use a screening algorithm to test' each tuple inserted into or deleted from the
base relations. If a tuple passes the screening test, then its insertion or deletion may cause the
state of the view to change, so the tuple must be used to try to update the view. If the tuple fails
the screening test then it cannot cause the view to change, so it does not need to be used to
refresh the view. In the scheme described in [BLT86] screening is done by substituting a tuple
into a view predicate, which is then tested to see if it is still satisfiable. If so, the tuple passes the
screening test, otherwise it fails. This test is performed for every tuple inserted into a relation,

incurring a significant CPU cost, especially if there are many views.

An altetnativg screening mechanism that will usually be more efficient can be built using
rule indexing [SSH86]. Using rule indexing, the index intervals covered by one or more clauses of
the view predicate are locked using t-locks. When a tuple is inserted into the relation, if an index
record containing a t-l¢'>ck is disturbed, then the tuple passes the screening test. Otherwise, the
tuple fails the test implicitly. Since this screening test can produce “false drops” (i.e., tuples
which pass the screening test but do not satisfy the view predicate), a second stage screening test,
substituting the tuple into the view predicate, is required. This strategy is assumed for both

immediate and deferred view maintenance in the performance analysis of this chapter.

This chapter is organized as follows. The implementation of deferred view maintenance
analyzed will be briefly described in Section 4.2. In Section 4.3, cost formulas for each of the algo-

rithms are derived for three different view models:

1. selection-projection views
2. two-way natural join views
3. aggregates over selection-projection views

The performance of the algorithms is compared for each model. Finally, Section 4.4 presents con-

clusions, and suggests directions for future research on view materialization methods.

4. VIEW MATERIALIZATION PERFORMANCE 90

4.2. Deferred View Maintenance

To implement deferred view maintenance, a method must be found to save the net changes
(A;-et and D;-net) for each base relation, R;, for 1<{ <N, over a period encompassing more
than one tranéaction. Given mechanism to save the net changes, differential view maintenance can
be done whenever desired (hence the name deferred view maintenance). It is assumed in this
chapter that to refresh the materialized view on a deferred basis, A;-net and D;-net are calcu-

lated and then input to the static, non-shared AVM algorithm.

A previously developed technique called hypothetical relations [WoS83] can be adapted to
the purpose of computing A;-net and D;-net. The basic algorithm for implementing hypothetical
relations is briefly described below. Efficient implementation of hypothetical relations to support

deferred view maintenance will be discussed after the basic algorithm is presented.

4.2.1. Hypothetical Relations

The hypothetical relation (HR) scheme uses three tables for each relation rather than one.
Each relation has associated with it tables R, D and A, for base tuples, deletions and insertions,
respectively [AgD83]. The data value of a tuple will simply be called “value.” Each tuple will also

have a unique identifier field *id.” This yie]ds the following schema for each relation:

R(id, value)
D(id, value)
A(id, value)

The true value of the relation (Ry) is (R {J A) — D. The set difference operation “—" above

bas the normal meaning, based on all fields of the tuple, including id.

To append a tuple to Ry, a transaction inserts that tuple in A, placing the value of the sys-
tem clock or other monotonicly increasing source in the id field. If duplicate-free semantics are
desired, the system must ensure that the tuple is not already in (RU A)=D before appending it

to A. To delete the 'tuple from the relation, a copy of its value, including the id it bad in R or

4. VIEW MATERIALIZATION PERFORMANCE 91

A, is placed in D. To modify an existing tuple, its old value will be put in D, and its new value
in A. When retrieving data from Ry, queries are processed against both R and A, and any

tuples found are checked to make sure they are not already in D (if they are, they are ignored).

Given this structure of the HR, the expressions for computing A-net and D-pet from R, A

and D are the following:

A-pet ;= A-D
De-pet ;= D-A

After a view refresh that uses A-pet and D-pet, the files used to store the hypothetical relation

will be reset as follows:

(R UA)-D
¢
¢

R
A
D

4.2.2. Efficient Implementation of Hypothetical Relations

The problem with the most straightforward implementation of hypothetical relations is that
retrieving a tuple from R requires three disk accesses rather than just one. To retrieve a tuple ¢
from Ry using the HR scheme this way, an attempt must be made to read ¢ from both R and A,

and then D must be read to make sure that ¢ bas not been deleted.

Fortunately, 2 method developed in [SeL76] can be used to eliminate most page accesses
when using a differential file. In this method, a Bloom filter [Blo70] consisting of an array of bits
B[l..m], with each entry initially zero, is used for each differential file. It is assumed that some
subset of the felds of each record called the key uniquely identifies the record. For each record in
the differential file, a hash function k mapping the key of a record to an integer in the range 1 to
m is computed, and the corresponding entry in B is set to 1. Then, to test whether a record ¢ is
in the differential file, if B[h(t.key)]=0, t is not present; otherwise, if B[h(t.key)|=1, it might

be present, so the differential file must be searched to see if it is there. Using the method pro-

4. VIEW MATERIALIZATION PERFORMANCE 92

posed in [SeL76] one can design a Bloom filter with any desired ability to screen out accesses to

records not present in the differential file given a sufficient number of bits m k

As another measure to help speed up accesses to the differential file, A and D for each rela-
tion R will be combined into a single file, AD. An extra attribute “role” will be added to tuples
in AD to indicate whether they are appended or deleted tuples. This storage structure will speed
up the majority of updates, which modify existing records without changing the key. For exam-
ple, if AD is maintained using a clustered bashing éccess method on the key, then when a tuple ¢
is updated to t' without having its key changed, t! will hash to the same page as ¢. Thus, a max-
imum of only three disk I/Os will be required to update a single tuple ¢ in R given the key for t.

The procedure to perform this update is the following:

1/0 #1:
Read the tuple. (Check the Bloom filter to see if ¢ could be in AD. If not, read ¢t from R.
Otherwise, read AD to see if it is there. If ¢ is not in AD, read R. This might require 2
1/O’, but the probability can be made arbitrarily small by increasing m. Hence, only one
1/O is counted here for simplicity.)

1/0 #2: ‘
Read the page where the new value of ¢ (t) will lie in AD. (Place both ¢t and ¢ prime on
the page. The role values of ¢ and ¢! are “deleted” and “appended” respectively.)

1/0 #3:
Write this page back to disk.
Three 1/O’s is only one more I/O than necessary to perform a one-tuple update using a single file

to store the relation. If separate files for A and D were used, at least five 1/O’s would be

required rather than three since R must be read, and A and D must both be read and written.

In the remainder of the chapter, the sets of inserted and deleted tuples will still be referred
to as A and D, even though they are stored in the AD table. It is assumed that AD will be par-

titioned to form A and D when necessary.

4. VIEW MATERIALIZATION PERFORMANCE 93

4.3. Performance Comparison

Each of the view materialization methods presented will bave different performance charac-
teristics. For example, because query modification pays no overhead for base relation updates, it
will clearly be the algorithm of choice if the ratio of updates to view queries is very high. On the
other hand, if this ratio is low, then a view maintenance algorithm will probably perform best.
This section discusses in detail the factors affecting performance and derives cost functions for

each view materialization algorithm for view models 1-3.

4.3.1. Description of View Models

The structure of view models 1-3 is as follows:

model view structure

Model 1 | selection and projection of a single relation R

Model 2 | natural join of two relations, R, and Ry, on a key field
Model 3 | aggregates (e.g. sum, average) over a Model 1-type view

The views have the following definitions:

Model 1:

retrieve (R .fields)
where C;(R)

Here, the target list projects exactly one half of the attributes of R, and the qualification clause

Cy(R) restricts relation R with selectivity f.

Model 2:
retrleve (R, .fields, R, fields)

where C;(R,)
and Rl.a = Rz.b

For Model 2, the target list projects one half of the attributes of both R, and R,, and the clause

Cy(R,) restricts Ry with selectivity f.

4. VIEW MATERIALIZATION PERFORMANCE 94

Model 3:

retrleve (a = agg(R.b where C;(R)))
For Model 3, the clause Cy(R) again restricts R with selectivity f.

Only two types of operations will be considered in the models: updates to the base relations,
and queries to the view. No other operations are relevant to the performance issue being studied.
It is assumed that exactly k update operations, and ¢ queries to the view will be run. For each

model, a formula for the average cost per query, over all k updates and g queries, will be derived.

The access methods of the relations involved are shown in figure 4.1. Generous assumptions
will be made for all view materialization schemes regarding how queries and other operations are
performed using these clustered indexes. Since these performance benefits will be given to all

algorithms, the results should not be biased toward any one.scheme.

The parameters important to the analysis are shown in Figure 4.2. The default values of

these parameters, which will be used unless stated otherwise, are shown in Figure 4.3.

relation(s) access method

R, R, B*-tree primary index on field used in
view predicate terms Cy(R) and
Cy(Ry)

R, bashed primary index on join field (b)

materialized view (V) | B*-tree primary index on field used in
view predicate terms Cy(R) and
Cy(Ry)

differential file (AD) | hashed primary index on a key field

Figure 4.1. Access methods of relations in performance model

4. VIEW MATERIALIZATION PERFORMANCE

95

parameter definition

N number of tuples in relation

S bytes per tuple

B bytes per block

b total blocks (6 = NS/B)

T number of tuples per page (T=B/S)

d pumber of bytes in a B*-tree index record

k number of update transactions on base relation

l number of tuples modified by each update transaction

q number of times view queried

u pumber of tuples updated between view queries (u==kl/q)

P probability that a given operation is an update (P=k [(k+q))

I view predicate selectivity for Model 1

Jo fraction of view retrieved per query
IR, size of R, as a fraction of R,

C CPU cost to screen a record against a predicate in milliseconds

(ms)
C, Cost in ms of a disk read or write ‘
Cs Cost in ms per tuple per transaction to manipulate A and D
data structures in immediate view maintenance

Figure 4.2. View Materialization Cost Parameters

N 100,000 | / 1
s wo | f, 1
B 4000 | fp, 1
k 100 | C, 1

! 25 | C, 30
q 100 Cg 1
d 20

Figure 4.3. Default Parameter Values

4.3.2. Model 1 Cost Analysis

In Model 1, the view is formed by projecting exactly one half of the attributes of tuples from

4. VIEW MATERIALIZATION PERFORMANCE 86

R, and applying a predicate with selectivity f. Thus, the result will contain f times N tuples.
The value that will be measured for each view maintenance scheme is the average cost of a query
that retrieves a fraction f, of the tuples in the view.

4.3.2.1. Cost of Deferred View Maintenance Assuming Model 1

In deferred view maintenance, it is assumed that the view is refreshed every time it is
queried. After the refresh is Gnished, the result of the query is computed. The average cost of a
query to the view, which will be called TOTALgeferreds» has several components. The first is the
cost to read the result of the query from the copy of the view stored on disk. The second is the
cost to refresh the view. The third is the cost to screen incoming and deleted tuples to see if they
might aflect the state of the view. Finally, the fourth is the cost to maintain the hypothetical
relation(s). The average value of each of these costs are added together to get the average cost

_per query, TOTALgeferreds- In summary,

TOTALgeferreas =
(cost to retrieve result of query from stored copy of view)
+ (cost to refresh the view)
+ (average cost per query to screen tuples to see if they affect view)
+ (average cost per query to maintain hypothetical relation)

It is assumed that no duplicates are formed by projecting half the attributes, so the view has
[N tuples and fb/2 pages. A fraction f, of the view is read during each access, requiring
f1.,b/2 page reads, at a cost of C, each. One search of the B*-tree will also be necessary to
locate the position in the view to begin scanning. Since there are d bytes per index record, the
height of the BY-tree, not including the data pages, is determined as follows. The number of
index records per page, and thus the index fanout, is B/d. There is one index record for each of
the fN tuples in the view. Assuming as a simplification that all pages are packed full, the height
of the view index (H;) is thus |

Hy= [I°8[B/d]fN]

Additionally, each tuple read from the view must be screened against the query predicate, at a

4. VIEW MATERIALIZATION PERFORMANCE 97

cost of C,, for a total cost per view access of Cyf, fN. Thus, the total cost Cqyery; to query a

materialized view is

I1ob
Cquert = Ca=5— + CaHlyi + Cuf fuN

The next cost to consider is that for the hypothetical relation overhead. It is only necessary
to measure the cost in excess of that required to perform normal base relation updates. As a
simplification, the assumption is made that only tuples in R are updated, and never tuples in AD.

The cost to maintain the HR for a single insertion into R in this situation is the following:

1. read the original tuple from R
2. read the page in AD where the modified tuple will be placed
3. write this page in AD

AStep (2) is the only extra I/O required compared with keeping R in a single file and updating it
directly. The normal cost to update R would be one read and one write, or 2C,, per tuple
updated. If the cost of step (2) is averaged over all queries and updates, the cost per query to
maintain the HR is at most the cost of one 1/O (C,) times the number of tuples update per view
query (u). The total cost is likely to be somewhat less than this, however, since AD often has a
small number of pages, and there are ! tuples modified per transaction. The cost can be modeled
more accurately using a function for estimating the number of pages touched when accessic; k
out of 1 records in a file occupying m disk pages. This function, which will be called y(n,m,k),

has been previously derived leo77l.. The number of tuples in AD will be twice the number of

*Given that there are m total records on m blocks, a formula giving the expected
pumber of blocks that will be accessed to modify k records is known as the Yao function,
denoted by y(n,m,k) [Yao77]. Let C{ be the number of ways that b items can be selected
from a items (g >b). If the number of records per block is p=n /m, then the formula giv-
ing the expected number of block accesses is CP?/C}. An alternative to the above called
Cardenas’ approzimation that is very close if the blocking factor is large (e.g. n/m>10)is
m(1=(1—=1/m)*) [Car75]. Cardenas’ approximation gives good results unless m ap-
proaches 1. Clearly, any stored object must occupy at least one page. The approximation
used in this thesis is that if k< 1, the expected number of pages touched is k. tkis
greater than 1, and m is less than 1, the expected number of pages touched is 1. Otherwise,
it m is less than some upper bound U (U=2 is used) and k is more than 1, the minimum of
k and m is returned. If none of the above conditions apply, Cardenas’ approximation is

4. VIEW MATERIALIZATION PERFORMANCE 98

tuples updated per view query (2u). The number of pages in AD will thus be 2u divided by the
pumber of tuples per page (T). The number of pages in AD touched per transaction is thus
y(2u,2u /T,l). Averaged over q queries and k updates, the total cost of the extra accesses to

AD is thus the following:

k 2u
Cap = Cz‘; y(2u ’T’l)
Consider now the cost to refresh the view V once. This first involves the cost to read all of

AD. Since u tuples are updated per view query, AD has approximately 2u elements. There are

T records per page, 50 AD has 2u /T pages. Thus, the cost Cppreag of reading AD is

Capread = Co

Another cost is incurred to screen updates to see whether they have a chance of affecting the
view. Recall that to screen incoming tuples to see whether they can affect a view, rule indexing is
used in combination with a more stringent satisfiability test. For the view maintenance methods

analyzed, it is assumed that the screening is performed as follows:

i
(1) a tuple breaks a t-lock for the predicate of view V, and

(2) the predicate for V with ¢ substituted into it is still satisfiable,
then
a marker indicating this is placed on ¢.

In both the deferred and immediate view update algorithms, a tuple will be used to update a
stored view V only if the tuple has a marker for V. A fraction f of the u tuples inserted into R
per query will conflict with a t-lock set for V in step (1) above, and thus must be passed on to
step (2). Step (1) bas essentially no overhead, and step (2) costs C;. Thus, the average overhead

per query to screen tuples to see if they affect V is:

used. This approach gives an accurate estimate of the expected number of pages touched
for a wide range of parameter settings.

4. VIEW MATERIALIZATION PERFORMANCE 99

Cicreen = C1fu

Also, approximately fu tuples per query will be inserted into and deleted from the view,
respectively, for a total of 2u tuple updates. Each insertion or deletion from the view requires
reading the B*-tree view index, and reading and writing a data block. However, somewhat less
than 2fu pages of the view may actually have to be updated during a refresh, since there may be
more than one record per block in the view. Using the Yao function, since there are SN tuples

and fb /2 blocks in the view, the number of view blocks accessed (XX,) is approximately

Xy = y(/N,Z250)
Each access requires reading the index, reading and writing a data block, and writing a leaf-level
index block (splits of internal index pages are infrequent, so their cost will be ignored as a
simplification). This requires 3 1/Os, plus a number of 1/Os equal to the height of the index on V'

(H,;)- Thus, the cost to refresh the view, Cyer.refreshy, is s follows

Caef-refresis = C2 (3+Hy;) X,
The following is the final expression for the cost per query to the view V using deferred

refresh:

TOTALgeterreds = Cap+Cabread+CauerystCaef-refresh1+Csereen

4.3.2.2. Cost of Immediate Assuming Model 1

The cost per view access of performing immediate view maintenance, TOTALjmmediater» 8

as follows:

TOTALimmedister =
(cost to query view)
+ (total cost to modify stored view) / (# of view accesses) :
+ (total cost to screen tuples inserted into R to see if they should enter view)
| (# of view accesses)
+ (overhead per query to maintain A and D sets in a data structure during
transaction processing)

The cost C to query the view is the same as for deferred view maintenance. The cost to
queryl _

4. VIEW MATERIALIZATION PERFORMANCE 100

* update the stored view when a transaction modifies R, which will be called Cimm refresh1: is com-
puted much like Cyet.refreshs- The difference is that approximately 2fI tuples in the view must be
modified once per transaction, rather than modifying 2fu view tuples once per query. Since
some of these 2f tuples may lie on the same page, the number of view pages touched (X) can

be estimated using the Yao function as follows: 2

X, = y(N,Z-211)
Similar to the case for deferred view maintenance, updating a tuple in V requires a B*-tree
search, the réad and write of a data block, and the write of an index block. This requires
(3+H,;) 1/Os for each view page touched, as before. Since there are k updates for every ¢

queries, the average cost per query to update the view is:

Cimmrefresht = %Cz (3+Hy) X,
The cost Cyereen to screen the kI tuples inserted into R is unchanged.
Finally, since immediate view maintenance must update the view after every transaction,
the data structures used to maintain the A and D sets must be reset once per transaction. The
overhead per query to do this, which will be called Coverbeads Will be estimated as C; for each of |

the f! tuples in A and D, multiplied by the pumber of updates per query (k/q), i.e.,

k
Coverbead = (Cazf l)'q'

This gives the following expression for the total cost of immediate view maintenance:

TOTALimmediaste1 = Cqueryl"'cinmnfrechl"'cmeen'*'coverhud

4.3.2.3. Cost Using Query Modification Assuming Model 1

The cost of using query modification rather than materializing the view in advance is con-
sidered here (this option will perform best in some circumstances, e.g. if the ratio of updates to

queries is high). Three different methods for retrieving the view from R will be considered:

4. VIEW MATERIALIZATION PERFORMANCE 101
(1) a clustered (primary) index scan for which no extra tuples must be
read (clustered)
(2) an unclustered (secondary) index scan (unclustered)

(3) a sequential scan of the entire relation (sequential)

Using a clustered index scan, the number of pages that must be read from R is equal to the size
of the view, which is fb, times the fraction of the view retrieved, f,. The number of tuples
retrieved is ff,N, and each of these tuples must be tested against the view predicate at a cost of
C;. Also, to find the point to begin the scan, a search of the B*-tree index on R is required. The

height of thg index is

H;,= IIOng/d.IN] -

Thus, for the clustered scan (1), the total cost to retrieve the view per access is

TOTAL ustered = C2bf fo+CiNSffo+CoH;

Using an unclustered scan (2), a larger pumber of pages must be read from R. Searching for
Jf.N tuples out of a total of b pages will require approximately y(N,b,Nff,) reads. The sys-
tem must still do an index search and test Nff, tuples against the view predicate. Thus, the

total cost for case (2) is

TOTALypclustered = C2¥(N,8,Nff,)+C NS fo+CoH;
Using a sequential scan of the entire relation (3), all b pages must be read, and all N tuples

must be screened against the view predicate, resulting in the following total cost:
TOTALgquential = Cb+C)N
4.3.3. Performance Results for Model 1

To indicate the differences in cost with respect to the probability P that an operation is an
update, Figure 4.4 plots the total cost of deferred, immediate, clustered and unclustered versus P
for the standard parameter settings (sequential is not shown since it is off the scale). This setting

of the parameters models a situation where the view contains 10,000 tuples, and each query

4. VIEW MATERIALIZATION PERFORMANCE 102

50000.00
deferred
- view
40000.00 maintenance
m 3 . [3 . 13
s query modification using m‘}{g‘%dlate
p 30000.00 - unclustered index scan maintenance
e
r
§ 20000.00
r
y
10000.00 - query modification
using clustered
index scan
0.00 v v

000 020 040 060 080 100
update probability (P)

Model 1 (1 table, simple selection/projection view): Total cost of a view query versus update pro-
bability P.

Figure 4.4. Model 1: Query Cost

retrieves 1,000 tuples. In this situation, query modification using a clustered access path has per-
formance equal or superior to deferred and immediate. One would expect that clustered would
perform well here since the number of pages that must be read is small when using a clustered
index. The only advantage that deferred and immediate have over clustered is that there are
twice as many tuples per page in the view compared with the base relation. However, the extra
overhead paid by deferred and immediate to maintain the materialized copies of the view offsets
this. Deferred and immediate would perform even less well compared to query modification if the

view projected all the attributes of relation R instead of only half of them.

4. VIEW MATERIALIZATION PERFORMANCE 103

It is surprising that deferred and immediate view maintenance have almost identical cost
under these circumstances. Once reason for this is that for low values of P, materialization
methods have nearly equal cost for virtually any parameter setting. This occurs since for low
update probability, a large fraction of the cost of both algorithms is for processing queries against
the materialized view, and both algorithms do this the same way. The fraction of the cost that is
for updating views is inconsequential for small P, regardless of the view maintenance algorithm
used. Another cause of the close match is that the hypothetical relation overbead in deferred
view maintenance counteracts the other advantages it holds over immediate view maintenance. If
more than one disk is available, and I/O operations can be issued concurrently by a program, then
it would be possible to significantly decrease the cost of maintaining hypothetical relations (e.g. by
putting R, A and D on separate disks and reading from them simultaneously). This would give
deferred maintenance an advantage over the immediate scheme for a wider range of parameter
settings. However, these assumptions are not made bere since they would require extra hardware,

and operating system functionality not readily available in all computer systems.

Assuming the view is maintained with a clustered index on a commonly used access path,
the view materialization methods are significantly superior to query modification when only an
unclustered access path is available on the base relation. This has implications for physical data-
base design, since a materialized view could be clustered on one attribute, and the base relation on
another. In this situation, the query optimizer could chose to process a view query in one of two
ways, depending on the query predicate. If the predicate could be processed most efficiently using
the clustered index on the base relatipn, query modification would be chosen to execute the query.
Otherwise, the query could be processed against the materialized view, using the clustered view

index as an alternate access path.

An interesting tradeoff among the algorithms centers around the parameters f, P, and f,.

To illustrate the relationship between these parameters, Figure 4.5 plots the region where each

4. VIEW MATERIALIZATION PERFORMANCE 104

algorithm has lowest cost for different values of P and f, with f, fixed at .1. Although deferred
is never the most efficient algorithm under these parameter settings, larger values for f improve
the performance of deferred relative to immediate view maintenance. This occurs due to the
nature of the Yao function, combined with the fact that increasing f increases the size of A and
D proportionately. Larger values of P tend to favor the algorithm with the least overhead per
update transaction (i.e., query modification). Reducing the total fraction f, of the view retrieved

also tends to favor using query modification, since the overhead of the view maintenance schemes

1.00
0.80 - .
query modification using
update clustered index scan wins
probability 0-60 7
(P)
0.40
0.20
immediate view maintenance wins
0.00 -

000 020 040 060 080 1.00

view predicate selectivity (f)

Model 1 (1 table, simple selection/projection view): Regions where each algorithm performs best
for f versus P (fraction of view retrieved (f,) = .1).

Figure 4.5. Model 1: Algorithm Comparison

4. VIEW MATERIALIZATION PERFORMANCE 105

is independent of f,, but the cost per query decreases with f,. When the value of f, is lowered
to .01, as shown in Figure 4.6, query modification using a clustered index scan performs best over
an even larger area. In Figure 4.7, Cy, the overbead per tuple for maintaining the main-memory-
based A and D sets in immediate view maintenance was increased from 1 to 2 ms, while getting
fo=.1. The affect of this change can be seen by comparing Figure 4.5 and Figure 4.7. The fact
that deferred view maintenance now performs best in part of Figure 4.7 shows that the cost of the

view materialization methods is very sensitive to the overhead for maintaining the A and D sets.

1.00 <

0.80 -

update g0 = query modification using

probability . .
(P) clustered index scan wins
0.40
0.20 - immediate view
maintenance wins
e

0.00 — . ~
000 020 040 060 08 1.00

view predicate selectivity (f)

Model 1 (1 table, simple selection/projection view): Regions where each algorithm performs best
for f versus P (fraction of view retrieved (f,) = .01).

Figure 4.6. Model 1: Algorithm Comparison

4. VIEW MATERIALIZATION PERFORMANCE 106

1.00 -
0.80 query modification using
clustered index scan wins

update
probability 0.60
(P)
deferred view maintenance wins
0.40 =
//

0.20 - immediate view
maintenance wins

0.00 =

000 020 040 060 080 1.00

view predicate selectivity (f)

Model 1 (1 table, simple selection/projection view): Regions where each algorithm performs best
for f versus P (overhead per tuple for maintaining A and D data structures in immediate view
maintenance (C3) = 2, fraction of view retrieved (f,) = .1).

Figure 4.7. Model 1: Algoritbm Comparison

4.3.4. Model 2: 2-Way Join View

In this section, the performance of the different view maintenance algorithms is coqxpared
for view model consisting of a two way join. It is assumed that every tuple of Ry that matches
restriction clause C; in the view definition joins to exactly one tuple in Ry, so V has f-INV tuples
total. Also, both R; and R, contain tuples of size S bytes, and only half the attributes of each
relation are projected in the target list of the view definition. Thus, the tuples in V also contain S

bytes each. The query and update activity assumed is the same as for Model 1, except that all

4. VIEW MATERIALIZATION PERFORMANCE 107
updates are to R, rather than R (R, is never updated).

4.3.4.1. Cost of Deferred Assuming Model 2

For Model 2, the cost per query of doing deferred view maintenance is determined as fol-

lows:

TOTAL geferred2 = (cost to read AD)
+ (cost to refresh view)
+-(cost to query view)
+ (cost per query to screen new tuples against view predicate)

The costs Cop and Capreaq of updating and reading the HR, respectively, from Model 1 are
unchanged for Model 2. The cost to refresh the view before it is queried (using deferred view
maintenance), which will be called Cgef.refresh2s Will be determined as follows. To refresh V, the
value of the following expression must be computed (the notation V(X,Y) means the expression
for V evaluated with X and Y in place of R; and R, respectively:

VIR,Rz) U ViAyR,) — VID1,Ry)

The V(R,,R,) term is already computed and stored as the previous version of the view (V). No
terms containing A, and D, are shown since R is never updated. Thus, only V(A,R,) and
V(D,,R,) must be computed. Recall that there is a clustered hashing index on R, that can be
used as an access path to join tuples in A; and D, to R,. The cost to join the A; and D, sets to
R, is determined as follows: Ry has fg N tuples and fp} pages, and there are u tuples in each
of A; and D, at refresh time. Thus, the total pumber of pages that must be read from Rj to
perform these two joins is

X3 = y(fRJv;fRab ’2.'“)

It is assumed that pages read for the first join stay in the buffer pool for the second.

There is also a CPU cost of C; for matching each of the 2u tuples in A, and Dy with the
joining tuple in R,. Furthermore, for each joining tuple, a page must be read and written from

the stored view. Using the Yao function, since the view bas fN tuples of size S bytes, and a

4. VIEW MATERIALIZATION PERFORMANCE 108

fraction f of the tuples in A; and D join to exactly one tuple in Ry, the actual number of view
pages that will be updated is approximately

X(=y(fN,fb,2fu)
Each page update requires reading the Bt-tree index on the view, as well as reading and writing
the data page, and writing the index leaf page (i.e., 3+H,; 1/Os). Thus, the total cost Cger.refresh?

to update the view every time it is queried is:

Caet.refresiz = C2Xa+Cy2u+Cy(3+H)-X
When the view is queried, both deferred and immediate view maintenance pay the same
cost, Cquem- This consists of searching the view index to find the starting point, and then per-
forming a clustered index scan to retrieve a fraction f, of the view. This costs C, per page, and
C, per tuple scanned. Summing the cost of the index search and scan yields the following expres-

sion for Coyery2:

Cqueryz = Cszi+szv Jo+Cifo SN

Both deferred and immediate view maintenance pay an average screening cost of Cyereen Per
query to the view. Given Cgef refresh2: Cque,;,g, and Cjereen, the expression for the total cost using

deferred view maintenance assuming Model 2 is

TOTALgeferred2 = CapreadtCaet.retreshatCquery2tCocreen
4.3.4.2. Cost of Immediate View Maintenance Assuming Model 2

The cost TOTAL;nmediatez Of doing immediate view maintenance combined with rule index-

ing in Model 2 is

TOTALimmediatez =
(cost per query to update view)
+ (cost to query view once)
+ (total overhead per query to maintain A and D sets)
+ (cost to screen new tuples against view predicate)

To Bnd the cost per query Cimmrefresh2 ©f maintaining the materialized view, the cost to refresh

4. VIEW MATERIALIZATION PERFORMANCE 109

the view after each transaction must first be found. The components of this refresh cost are the
1/O cost of reading the pages of R, to which tuples in A, and D, join and reading and writing
modified pages of V, plus the CPU cost of bandling each tuple in A, and D,. Since A, and D,
both contain ! tuples at the end of each transaction, and a fraction f of these match the view
predicate and must be joined to R,, the number of pages that must be read from R, is
X5 =y(frN.frd:2/1)
Each tuple in A, and D, joins to some tuple in R, so each causes one tuple to enter or leave V.
The number of modified pages of V is
Xo = y(fN,fb,2f1)

Again, for each of these pages, the index on V must be read, the page must be read and written,
and an index leaf page is written, requiring 3+H.; page 1/Os. There is also a CPU cost of Cy for
bandling each of the 2/ tuples in A, and D,. Averaging the per-transaction cost of updating 1 4

over k transactions and q queries, the estimated cost per query is as follows:

k
Cimmvrefresh2 = ;(C'.‘X 5+Cz(3+H “)X B)

Given Cimn refreshz 30d Cgyery2, the following expression shows the total cost of immediate view

maintenance using rule indexing, assuming Model 2:

TOTALimmediatez = immrefmshz"'cquem'i'coverbnd"'cmm
4.3.4.3. Cost Using Query Modification Assuming Model 2

Another important cost to measure is that to materialize a view directly from the base rela-
tions. A frequently used join strategy called nested-loops (or loopjoin) involves scanning one
(outer) relation, and for each of its elements, searching the other (inner) relation to find all joining

tuples. If an index is present on the join field of the inner relation, it can be used for the search.

It is assumed that the nested-loops join algorithm is used to join R, and R, in Model 2. R,

will be the outer relation, and R, will be the inner one. Since there is a hash index on the join

4. VIEW MATERIALIZATION PERFORMANCE 110

field of R,, it will be used for the inner search. The assumption fs made that pages of R, stay in
the buffer pool throughout the computation of the join after they are read the first time. With
the advent of very large main memories, this is reasonable since R contains only fg NS bytes,
which is approximately 1 Mbyte using the standard parameter settings. Under these assumptions,

nested loop join has the following cost components, with the actual costs shown below:

cost component actual cost
read B¥-tree on R, C,H;
read part of R, using clustered scan Cof fub
CPU cost to screen R1 tuples scanned CiffoN
read pages from R, using hash index Coy(frN:frD: S N)
CPU cost to. match R, tuples to R, tuples C,Nff,

Summing the above cost components gives the following formula TOT uepjoin for the total cost to

compute the join using nested loops:

TOTioopjoin = Ca[logyasN]+Caf fub
+ Coy(frN,SrD S foN)+2CNf £,

4.3.5. Performance Results for Model 2

The actual cost per query for deferred view maintenance, immediate view maintenance, and
query modification using a nested loop join with an index on the inner relation are plotted in Fig-
ure 4.8 using the standard parameter settings. This figure indicates that the results for Model 2
are significantly different than to those for Model 1. When the view joins data from more than
one relation, differential view maintenance algorithms (deferred and immediate) perform better
relative to query modification. By maintaining a materialized copy of the view, the query cost is
greatly reduced, since each result tuple is stored on exactly one page. In effect, maintaining the
view serves as an effective way of clustering related data on the same page. However, as the
update probability P increases, the overbead for maintaining the materialized view overwhelms

the advantage gained by clustering, so query modification becomes more attractive. Also, similar

4. VIEW MATERIALIZATION PERFORMANCE 111

80000.00 -
deferred,
immediate
60000.00 view
Igl maintenance
4
T 40000.00 -
i
r
y
20000.00 -
query
modification
0.00 v Y v v '
0.00 0.20 0.40 0.60 0.80 1.00

update probability (P)

Model 2: Total cost per query using deferred view maintenance, immediate view maintenance,
and query modification (fraction of view retrieved (f,) = .1).

Figure 4.8. Model 2: Query Cost

to Model 1, as the fraction of the view retrieved (f,) is decreased, the advantage of query
modification grows. Query modification performs better for smaller values of fv because making
S, smaller reduces the query cost, while the amount of overhead paid by deferred and immediate

algorithms for updating the view stays the same.

An important special case to consider is when the view is large, and the queries read a small
amount of data. For example, this special case arises using the standard EMP and DEPT rela-
tions, and view ED joining the two. The majority of queries in this situation might retrieve only

a single tuple from ED. Also, updates usually change only one EMP tuple. This example was

4. VIEW MATERIALIZATION PERFORMANCE 112

modeled by setting f=1, f,=1/N and {=1, and the results showed that query modification is
superior to deferred and immediate view maintenance under these circumstances for all values of
P>.07. Thus, query modification is almost always the preferred method for answering small
queries against large views. Other efects of varying f, are shown using two figures. Figure 4.9
plots the areas where deferred view maintenance, immediate view maintenance and query
modification using nested loops each have best performance for different values of P and [, with

fv set to .1 (recall that the nested loop join uses an index on the inner relation). Figure 4.10

1.00 7

query modification wins

0.80 -
update g gp = deferred view
probability ma&ﬁnance

(P)

0.40
immediate view maintenance wins

0.20

0.00 v . v -y T]
0.00 0.20 0.40 0.60 0.80 1.00

view predicate selectivity (f)

Model 2 (2-way join view): Regions where each algorithm performs best for f versus P (fraction
of view retrieved (f,)=.1).

Figure 4.9. Model 2: Algorithm Comparison

4. VIEW MATERIALIZATION PERFORMANCE 113

shows the same information with f, set to .01. The view materialization methods perform better
than query modification over a much wider area in Model 2 than in Model 1. In particular, view
materialization is superior to query modification in Model 2 for much higher update probability.
For example, for a view with selectivity f=0.5, the trade-off between query modification occurs
in Figure 4.5 (Model 1) at around P==0.3, yet it happens in Figure 4.9 (Model 2) at approxi-

mately P=0.7.

1.00
0.80 - - query modification wins

update 0.60

probability
(P)
0.40
immediate view maintenance wins

0.20 -
0.00 _

0.00 0‘.20 0'.40 0.60 0.80 1.00

view predicate selectivity (f)

Model 2 (2-way join view): Regions where each algorithm performs best for [versus P (fraction
of view retrieved (f,)=.01).

Figure 4.10. Model 2: Algorithm Comparison

4. VIEW MATERIALIZATION PERFORMANCE 114

In Model 2, the assumption is made that exactly half of the attributes from relations R, and
R, are projected in the view. Projecting a subset of the attributes in the view gives somé advan-
tage to view materialization since when the view is queried, less total 1/O is necessary than if all
attributes of R, and R, are projected. However, even if all attributes of R, and R, are projected
in the view, the results are similar to those described above (query modification does not perform
markedly better). The reason the results do not change significantly is that the clustering of view
tuples on a single page achieved by view materialization provides the primary performance advan-
tage. Even when all attributes of R, and R, are projected in the view, the advantage of clustering

dominates the extra 1/O cost required for reading data from the larger materialized view.

4.3.6. Model 3: Aggregates Over Model 1 Views

Aggregates such as sum, count and average are an often-used feature of database systems.
As discussed in detail in Chapter 3, many aggregates can be incrementally updated as changes
occur to the data from which they are computed. Incremental maintenance of aggregates is done
by defining a state for the aggregate, functions for updating it in case of deletion or insertion of
values in the set being aggregated, and a function for finding the current value of the aggregate
given the state. The notion of incrementally maintaining aggregates is extremely attractive since
the aggregate state can be read quickly because it normally requires less than one disk block of
storage, while it often takes a large amount of 1/O to recompute the aggregate from scratch.
Thus, it would appear that an aggregate need not be used often to justify the expense of main- -

taining a materialized version of it.

To compare the performance of maintaining aggregates versus computing them from
scratch, Model 3 is is analyzed. In this model, the tuples for which the aggregate is computed do

not need to be kept in a separate materialized view. Only the aggregate state must be stored.

4. VIEW MATERIALIZATION PERFORMANCE 115

For this model, a query to the view consists of simply reading the state of the aggregate.
Using the deferred view maintenance scheme in Model 3, the cost TOTAL geferreds Per query to

the view is

TOTALqgeferreds =
(cost to read hypothetical database)
+ (cost to read the aggregate state)
+ (cost per query to update the aggregate state if necessary)
+ (cost per query of screening tuples to see if aggregate is affected)

The cost to read the hypothetical database is Copresd, Unchanged from Model 1. The cost to
query the aggregate is the cost to read a single page, ie.,

Cquerya =C,
The cost to update the aggregate is the cost of one write times the probability that at least one
tuple modified since the last query to the view lies in tl;e set being aggregated (no read is neces-
sary since the aggregate must be read to answer the query). There are 2u modified tuples in the
hypothetical database per query to the view,' and each has probability f of lying in the aggre-
gated set. The probability that at least one of these tuples will lie in the aggregated set is equal
to 1 minus the probability that none of the tuples lie in the set. Thus, the probability that at least
one of the tuples lies in the set is (1—(1—f)?*). This yields the following expression for the cost
per query to update the view:

Caet-retrests = Cel1-(1=1)*)
The final value of TOTAL gferreds is the following:

TOTALgeferreds = CADrewd+Cquery3+Cdef-re{tah3+Comen
Using the immediate view update algorithm, the cost per query to maintain the aggregate is
TOTALimmedistes =
(cost to read the aggregate state)

+ (cost per query to update the aggregate state if necessary)
+ (cost per query of screening tuples to see it aggregate is affected)

The cost to read the aggregate state is Cqu,,ya. The cost per transaction to update the aggregate

4. VIEW MATERIALIZATION PERFORMANCE 116

state is C, times the probability that at least one tuple modified by the transaction matches the
qualification of the aggregate. This probability is (1—(1—f)*'). The cost per query to update the

aggregate state is thus as follows:

C
Cimm refreshs = -%k-(l—(l-f %)

The cost of screening tuples is again Cioreen Yielding the following expression for

TOTALma;‘m:

TOTALimmediates = Cquery3+Cixtun-refmh3+Cscreen

The actual cost of recomputing the aggregate for each query using a clustered index scan is
the same as the cost of query modification in Model 1, which is TOTAL gjystereq- This cost will be

compared to0 TOTAL;mmediates 30d TOTALgeterreds-

4.3.7. Performance Results for Model »3

To compare the total cost of using deferred view maintenance, immediate view maintenance,
and a clustered index scan to compute an aggregate, the total cost of all three is plotted versus P
in Figure 4.11. In this figure, f=.1 and f,==1, so the fraction of the data being aggregated is
0.1. Even when the update probability is very high, it still pays to maintain a large aggregate like
this one. For example, when P=.95 the cost per query when keeping the aggregate materialized
is only about 5% of that to compute the aggregate completely. For small update probabilities,
the difference is even more dramatic. When P=.20, the average cost per query is only slighly
more than C, (30 ms) if the aggregate is materialized. Approximately 17 seconds are needed to

completely recompute the aggregate.

Figure 4.12 shows how the costs of aggregate materialization and standard aggregate pro-
cessing depend on update probability and the size of update transactions. The curves in the figure
indicate where materialization and standard processing using a clustered index scan have equal

cost. Each curve represents a different value of the selectivity of the qualification of the aggregate

4. VIEW MATERIALIZATION PERFORMANCE 117

20000.00 -

query modification

15000.00 using clustered index scan
m deferred,
s immediate
g r' aggregate
T 16000.00 - maintenance
e
r
y
5000.00 -
0.00 e e —————

0.000 0.200 0.400 0.600 0.800 1.000
update probability (P)

Model 3 (single-relation aggregate): Average cost of an aggregate query versus P for deferred and
immediate view maintenance, and standard processing using a clustered index scan.

Figure 4.11. Model 3: Query Cost

(f). Query modification using a clustered index scan performs best above each curve, and
immediate maintenance performs best below. It is interesting to note that maintaining material-
ized aggregates is most attractive when f is largest. Aggregates over large amounts of data are
thus the best candidates for materialization. Since the number of tuples updated per transaction
(!) will usually be small, it is often worthwhile to maintain materialized aggregates even if their
conditions match a small pumber of tuples (i.e., f is small). Cost savings can be obtained by

materializing aggregates in significantly more cases than for other views.

4. VIEW MATERIALIZATION PERFORMANCE ‘ 118

1.00 f=-"1
=.1
0.80 -
f=.01
update 0.60 - \
probability aggregate
(P) predicate
0.40 selectivity
0.20
0.00

0.000 100.000 206.000 300.000 400.000 506.000
tuples modified per update operation ()

Model 3 (single-relation aggregate): Equivalent cost curves for immediate view maintenance, and
standard aggregate processing using a clustered index scan. Above curves standard processing is
best; immediate maintenance wins below.

Figure 4.12. Model 3: Algorithm Comparison

4.4, Discussion

The performance analysis presented has shown that the choice of the most efficient view
materialization algorithm is highly application-dependent. The results are most sensitive to the

following parameters:

4. VIEW MATERIALIZATION PERFORMANCE 119

1. the total fraction of operations that are updates (P).
2. the selectivity factor of the view predicate (f).

3. the fraction of the view retrieved by each query (f,).
4. the number of tuples written by each update (I).

5. the cost of maintaining the sets of inserted and deleted tuples (either in main
memory, or in disk-based hypothetical relations).

Situations where P is high, f is high, or f, is small, tend to favor not materializing the
view at all. Rather, it is best to perform query modification, and retrieve the result from the base
relations using a good access plan selected by the query optimizer. An important example of this
type of situation is for large views (e.g. the ED view on EMP and DEPT) and queries that always
retrieve a single record. When this example was modeled using f==1, =1, and f,==1/(number
of tuples in the view), it was found that query modification nearly always outperforms materializ-

ing the view in advance.

It f, is large, and P is not extremely high, then it becomes desirable to maintain views in
materializéd forrp. Higher values of P, and [favor deferred view maintenance over the immediate
scheme because large sets of tuples will be accumulated A and D sets of the hypothetical relation
before each query. The deferred view maintenance strategy will thus perform a few large updates
to the view rather than many small ones. This reduces the total number of 1/Os required to
maintain the view due to the nature of the Yao function [Ya077]. Conversely, if P is low,

immediate view maintenance has a slight advantage over deferred maintenance.

A phenomenon observed throughout this study was that deferred and immediate view
maintenance had nearly equal cost, especially when the update probability (P) was low. Because
the two algorithms have costs that are so close, it is clear that by far the most important issue
regarding view materialization strategies is whether to use some differential view maintenance
algorithm or use query modification. The actual view maintenance algorithm chosen is of secon-

dary importance.

4. VIEW MATERIALIZATION PERFORMANCE 120

There are a few reasons why deferred and immediate view maintenance were 8o close in per-
formance. One reason is that for small values of P, view maintenance overbead is always small
relative to the cost of queries, regardless of the view maintenance algorithm used. Deferred and
immediate view maintenance were close for higher values of P as well because the advantages and
disadvantages disadvantages of the two methods nearly canceled each other. The main advantage
of deferred view maintenance is that fewer disk writes to the stored copy of a view must be per-
formed than in immediate view maintenance. The reason for this is that triangle inequality holds
for the Yao function, which is a main determinant of the number of writes to the view. More pre-
cisely,

y(n,m,a+b) < y(n,m,a)+y(n,mpb).
for all ¢, 5>0. On the other hand, the advantage of immediate view maintenance is that less
overhead is usually required to maintain the A and D sets, since they usually will not have to be
written to disk (they should fit in the buffer pool except for transactions that update a large frac-
tion of the database). In deferred view maintenance, the A and D sets must be written to disk,
since they may live for more than one transaction. Reducing or increasing the overhead of main-
taining A and D in either algorithm could give that algorithm a slight overall performance

advantage.

Even though the expected cost per query in deferred and immediate view maintenance is
nearly equal, deferred view maintenance may be preferred for other reasons. The first is that
deferred maintenance seems seems more fair than immediate maintenance because the deferred
method makes the transactions that actually use a view (the queries) pay most of the cost of
maintaining it. Update transactions pay only the overhead to maintain the differential file data
structure. Also, if there is idle CPU and disk time available, it is likely to be useful to put it to
work refreshing views asynchronously. This can be done in deferred view maintenance, but not in
the immediate scheme. Making use of idle CPU and disk time would improve the response time

of view queries in some situations since the views would not have to be refreshed prior to a query,

4. VIEW MATERIALIZATION PERFORMANCE | 121

yet update transactions would still pay little overhead to maintain the view. The evaluation of

the usefulness of this optimization is an interesting topic for future study.

Deferred view maintenan.ce may also be preferred in some situations due to the nature of the
database architecture. The ADMSz system [RoK86] is based on an architecture where a single
mainframe computer keeps an up-to-date copy of the database, and a collection of workstations is
connected to the mainframe \.ria a petwork. All updates submitted from workstations are sent to
the mainframe for processing. Users at workstations may define a collection of database views
that can be kept materialized using a deferred view maintenance algorithm. A view query sub-
mitted from a workstation is processed by first sending a message to the mainframe to see
whether the base rela.tions on which the view depends have been updated. If they have, the
changes are sent back to the workstation, which updates the view, and then evaluates the query
locally. If the user at the workstation is willing to tolerate answers that may be out of date,
queries can be processed locally without sending any messages to the mainframe. If immediate
view maintenance were used instead of deferred maintenance in ADMS%, the mainframe would
have to broadcast changes continually to the workstations, incurring a high overhead for com-
munication. Another reason that deferred maintenance is advantageous in ADMSz is that the
system makes use of a write ahead log recovery scheme for transaction processing, and the net
changes to base relations that occur after some time T can be easily extracted from the log. This
means that ADMSz does not have to use a hypothetical relation data structure to maintain rela-
tions, which is a significant cost savings. Hence, in an architecture like ADMS, deferred view

maintenance is clearly preferred over immediate view maintenance.

This analysis has shown that the performance benefits of differential view update algorithms
relative to query modification are greater for two-way join views (Model 2) than for simple restric-
tions (Model 1). This performance pattern is due to the natural clustering of view tuples on a

single disk page that occurs when the view is materialized in advance. The performance benefits

4. VIEW MATERIALIZATION PERFORMANCE 122

of view maintenance algorithms should be even greater for views joining three or more relations.
View maintenance algorithms would prove particularly useful in situations where

1. the update probability is low, and
2. views are complex.

These conditions are met in many statistical and scientific database applications. Also, some
databases become almost read-only as they age. For example, consider the situation faced by an
aircraft manufacturer when assembling a new plane. A complete description of the plane (e.g.
where each part is installed, who made each part etc.) must be maintained for purposes of future
maintenance, legal documentation etc. This description is updated frequently while the plane is
being built. However, when the construction job is finished, the database will seldom (if ever) be
updated again. Materializing views on this database would probably not be appropriate while the

plane was being built. However, it could be worthwhile after the plane was finished.

One could speculate that the most significant applications of differential view update may
not be related to processing queries against views, since this study has shown that query
modification is still quite effective. Rather, view materialization might have a greater imﬁact in
applications where a complete copy of the answer to a query is always needed. For example,
materialization could support conditions for complex triggers and alerters, as described in
[BuC79]. As another example, it could be used as a basis for a “window on a database” facility,

where the result of a query would be displayed and updated in real time.

Finally, the performance of different view materialization schemes depends signiﬁcéntly on
the database and view structure, and the distribution of queries and updates. Thus, an interesting
topic for future research would be to devise an adaptive method to choose the appropriate view
materialization algorithm. Future implementation and .empitical testing of view maintenance

algorithms is also needed to help gain a fuller understanding of the tradeoffs involved.

123

CHAPTER b

PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

The same types of algorithms that can be used for view processing can also be applied to
database procedures. As with views, different methods have different costs. This chapter presents
a performance analysis comparing different algorithms for processing queries that retrieve the
value of a database procedure. The chapter is organized as follows. Section 5.1 reviews the
different algorithms that can be used for procedure maintenance. Section 5.2 describes the two
procedure models (model 1 and model 2) that will be analyzed. Section 5.3 analyzes the cost of
procedure maintenance using model 1. Section 5.4 presents the performance results obtained for
model 1. Section 5.5 analyzes the cost of maintaining model 2 procedures. Section 5.6 gives the

performance results for model 2. Finally, section 5.7 summarizes and presents conclusions.

5.1. Procedure Maintenance Algorithms

As described in chapter 3, the following algorithms can be used for processing database pro-

cedure queries:

Always Recompute:
Compute the value of the procedure from the base relations on each access
(this strategy is equivalent to a special case of query modification in
which the entire view is retrieved).

Cache and Invalidate:
When the procedure is accessed, if a valid result for it is cached,
use it. Otherwise, recompute the value and refresh the cache. If
an update command occurs that would change the value of the
procedure result, the currently cached result is marked invalid.
(This method is also known as simply ‘“‘caching”).

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 124

Update Cache:
Maintain a materialized answer to each query in the procedure definition
by using a differential view maintenance algorithm. Process procedure
queries by returning the stored value.

As discussed in chapter 3, view maintenance algorithms can be divided into two classes,
shared and non-shared, depending on whether shared subexpressions elimination is used. In this
chapter, both a shared and non-shared algorithm are analyzed. A non-shared, static version of
AVM is compared with Rete view maintenance, which is shared and static. Any mention of AVM

in this chapter refers to the non-shared, static version of the algorithm.

The performance model for procedures presented in this chapter is different than the one
given in Chapter 4 for views because there are differences between view and procedure use. When
a view is queried, usually only a small fraction of it is retrieved. In contrast, the entire value of a
procedure is retrieved when it is accessed. The number of procedures in a database is likely to be
much larger than the number of views. Views also usually contain a large amount of data, while
procedure values are typically small. The new performance model for procedures is discussed

below.

5.2. Procedure Models Analyzed

Two different models for the structure of procedures will be analyzed. In both models 1 and
2, it is assumed that each stored procedure consists of a single retrieve query. In model 1, pro-
cedures may be of two ty];es. The first type (P;) is a simple selection of one relation, R;. The
second type (Py) is a join query. Procedures of type Py have the following structure:
Py

retrieve (R,.all)
where Cy(R,)

Type P, procedures have the form:

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 125

P,, Model 1 (2-way join):
retrieve (R;.fields, R,.fields)
where R;.a = Ryb

The difference between model 1 and model 2 is that in model 2, type P, procedures are three-way

joins instead of two-way joins. Type P, procedures have this structure in model 2:

P,, Model 2 (3-way join):
retrieve (R,.fields, R,.fields, R, fields)
where R;.a = R,b
and Rz.c = R;.d

and CI(RI)

The width of tuples in both P, and P, procedures is S bytes. The selectivity of the clauses of the
form Cx{R;) is X (e.g. the selectivity of Cy(R,) is f). For type P, procedures the expected
pumber of tuples the procedure will contain is determined as follows. Let f * be the product of
the selectivities of the simple restriction terms C; and Cy, (f ‘=f f 2). It is assumed that the

expected number of tuples in a procedure of type P, is

f*max(1Ry|,IRy1,|Ryl)
= f. max(N:fkuN’fRN)
=f'N

The database contains N, procedures of type P;, and N, of type P,. Using a shared view
maintenance algorithm there is a possibility of sharing subexpressions in this model. Procedures
of type P, can form a shared subexpression for procedures of type P, if the selection term
C;(R,) is the same. The models contain a parameter SF which is the sharing factor. It is
assumed that a fraction SF of the type P, procedures are able to use a type P; procedure as a
shared subexpression. If SF is 0, then no sharing takes place, and if SF is 1, every type P, pro-

cedure has a shared subexpression.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 126

In the models, £ update operations and g procedure accesses occur. Each update modifies {
tuples of R, in place. Relations R, and Rj are not modified. Each procedure access reads the
entire contents of a single stored procedure, which is selected at random from the total collection

of Ny+N, procedures.

Using Cache and Invalidate, when an update causes a stored procedure value to become
invalid, this fact must be recorded. The most obvious way to do this is to read the first page of
the object, set a flag on it that says the object is invalid, and write it back. Reading and writing
the page requires an amount of time equal to 2C, (60 ms) per invalidation. An alternative is to
use a data structure l;ept in high-speed memory with an entry for each procedure indicating
whether or not it is valid. One way to make this data structure recoverable is to use a reliable
battery power supply for the portion of memory containing it. Another is to log the identifiers of
invalidated procedures in a conventional write-ahead recovery log [Gra78]. If the data structure is
checkpointed periodically, it can be recovered by playing the latest part of the log against the last
checkpoint after a crash. Usiné either of these methods, the cost per invalidation is much less
than 2C, (using battery-backed-up memory, it is essentially zero compared to the cost of reading
and writing a page). To measure the signiﬁt;ance of the cost of an invalidation, a parameter for it

called Cyy, is included in the models.

A summary of the parameters used in the procedure cost model is shown below. Parameters

that are unchanged from the performance model for views presented in Chapter 4 are not listed.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 127

parameter | meaning

N, number of Py-type procedures

N, number of Pxtype procedures

SF sharing factor (fraction of Py
procedures that have a Py procedure
as a shared subexpression)

IR, size of Rj as a fraction of N

f2 selectivity factor of predicate term Cy,

Cinval cost to record invalidation of a cached

procedure value

The default values of the parameters for the procedure cost analysis are

N

Laa ~>Wn

100,000
100
4,000
100

25

100

20

f 00
f2 1
IR, d
IR, 1
C 1
C, 30
Ciaval 0

1

The parameters will have the values shown unless stated otherwise. The default for f (.001) is

smaller than for views because procedures typically contain a small number of tuples. Using this

valye of f, type P, procedures contain fN=100 tuples. Type P, procedures contain f ‘N=10

tuples for the default parameters.

The relations involved have the following access methods:

relation

access method

B-tree primary index on field used by selection predicate Cy(R,)

hashed primary index on attribute a
hashed primary index on attribute ¢

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 128

65.3. Cost Analysis for Model 1 Procedures
5.3.1. Model 1: Cost of Always Recompute Strategy

The expected cost to compute a procedure value is

the fraction of procedures that are of type P,, times
the cost to compute a procedure of type Py (Cqueryp1)

+

the fraction of procedures that are of type P,, times
the cost to compute a procedure of type Py (Cqyeryp2)-

CqueryP1 i8 the cost to search a B-tree index and read SN tuples from R,. The height of the B-
tree index on R, is H;, as defined in chapter 4. Each of the fIN tuples read must be tested
against the procedure predicate at a cost of Cy each. The number of pages read from disk at cost
Cy each is is [f-b]. The complete expression for Cqyeryps i
Caueryp1 = C1f N +C,[f-b]+C,H;

Cauerypz is the cost to do a two-way join to retrieve the tuples of a procedure of type Po. It is
assumed that the value of this procedure is found using a B-tree index scan on R; and joining
qualifying R, tuples with R, using the hash index on R2. The number of pages of R that must
be read to do the join is

Yl = V(IR,NyfR,b va)

The total cost is

Cqueypz = C1f N+C5[f]+ CoHi+C1 S N+CoYy

The expected cost to find the value of a single procedure is

Ny

2
N+ N3 N+Nz

The cost of a procedure access when the procedure must be computed from scratch each time is

CProceasQuery = Cquelyl’l"' Cqueryl’z

simply

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 129
TOTRecomputel = CProestuery

5.3.2. Model 1: Cost of Cache and Invalidate

The expected cost of accessing the result of a stored procedure using Cache and Invalidate

has three components:

1. the probability that a stored procedure value is invalid (IP) times
the cost to compute the value and store it (T})

2. the probability that the stored value is valid (1—IP) times
the cost to read the stored value (T')

3. the cost of marking the procedure invalid if necessary (T’s)

These components give the following formula for the expected cost per read of a stored procedure

value when using caching:

TOTcachetovan = IP Ty + (1=-1P) T, + Ty
The expected cost to compute the procedure value is CprocessQuery- After the values of the pro-

cedures are found, the result must be written to update the cache. Type P; procedures have

[£-8] pages, and type P, procedures have [f .-b] pages. Thus, the average size of a stored pro-

cedure value is

ProcSize =

N N,
][]+ | e lf'.bl
Nyt+Na | Ny+N,
The cost to write the procedure value, CwriweCache: i5 the cost to read the pages currently in the

cache, change their value, and write them back, which is

Cw,;wc;che = 2C,ProcSize

The complete value for T, is the following:

T,= CProcessQuery+CWriveCache

T, is simply the cost to read the cached procedure value, i.e.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 130

T, = C,ProcSize

The cost per update transaction of marking stored procedures invalid (T3) is determined as fol-
lows. For a single stored procedure, the probability that any update transaction will invalidate it
(Pigval) is one minus the probt;bility that the procedure is not invalidated. Thus, the value of
Pipvar is

The cost to mark a procedure value invalid is Cipy,1. Since there are N+, total procedures,
the expect;ed cost to mark objects invalid after an update is

(N1+N3)PialCiaval
Averaging to find the total cost of invalidation per query, the complete expression for T,is

Ty= %(N 1+N2)PinnalCioval
Finally, the probability IP that the cache will be invalidated between reads of the procedure
value must be found. To account for locality vol’ reference, it is assumed that a fraction Z of all
procedures receives a fraction 1—Z of all references. The remaining procedures receive a fraction

Z of the references. For example, if Z=0.2 then 20% of the procedures are accessed 80% of the

time. The value of IP is equal to

The probability that an access is to a heavily-accessed object (1—2)
times the probability that a heavily accessed object is invalid (Z,)

-+

the probability that an access is to a seldom-accessed object (Z)
times the probability that a seldom accessed object is invalid (Z3).

It is assumed that each update transaction has an equal probability of invalidating any procedure.
Each access reads a single stored procedure. The expected number of update transactions (X))

between accesses to a single heavily-accessed procedure is equal to

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 131

(1) the total number of procedure accesses between queries to
an individual frequently-accessed procedure
times

(2) the number of updates per query.

To find (1) recall that the probability that a query is to 3 frequently accessed object is 1-Z. If n
is the total number of objects (n=N;+N,) then there are Zn total frequently-accessed objects.

Thus, the probability P that any query is to a particular frequently accessed object is

1
Pp=(1-2)-27
The value of (1) is 1/Pp. The value of (2) is k/g. The complete formula for X is

_Yk__ Zk
Pr q 1-Z q

Each update transaction modifies [tuples, for a total of 2! pew and old tuple values. Each of

X

these tuple values has a probability f of breaking a t-lock and invalidating a procedure. The
complete formula for Z, is

Z, =1-(1-f¥¥
The expression for Z is similar, except that X is replaced by Y, where Y is the expected number
of update transactions between queries that read a seldom-accessed procedure. The formula for

Y, which can be found using an analysis similar to the one for Z, is

1-Z k
Z
The expression for Z, and the final formula for IP are shown below.

Y=mn

Z,=1-(1-f)"*

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 132

5.3.3. Model 1: Cost of Update Cache (Non-Shared)

The following factors contribute to the average cost of retrieving the value of a procedure

maintained using AVM:

o the cost to screen updated tuples when t-locks are broken to see if
they cause a procedure value to change,

o the cost to compute the sets of tuples to be inserted into and
deleted from the procedure value,

o the cost to read and write the procedure value to refresh its contents,
o the overhead to maintain the sets of modified base relation tuples
(Apet 30d D) in an auxiliary data structure during each

update, and

o the cost to read the result of the stored procedure when it is accessed.

For screening new tuples there is an expected cost of NyC,fl for the IN; procedures of type P,

and N,C, f! for the N, procedures of type Ps.

To compute the changes to procedures of type Py, there is no extra cost. For type P, pro-
cedures, a cost is incurred to join qualifying R, tuples with Ry. The join requires joining 211
tuples from R, to R using the hash index on the join field of R,. R, bas fp N tuples and fpb

blocks. Thus, for a single type P, procedure, the following number of page reads are required:

Yo=y(frN.frd 2S1)

The cost to refresh the stored copies of procedures is found in the following way. Procedure
values of type P,‘contain SN tuples, and fb blocks. Each update command modifies | tuples
(equivalently, I tuples are deleted and | are inserted). Thus, the expected number of pages that
must be read and written from a type Py procedure after each update command is

Ys = y(SN,fb,21)
The total selectivity of the condition of a type Py procedure is f ® 80 there are f *N tuples and
I *b blocks in a procedure of type P,. Thus, refreshing a procedure of type P, after a transaction

that modifies ! tuples requires the following expected number of block reads and writes:

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 133

Yo=y(f'N.fb,2f1)
There .is also overhead to maintain the sets of new and old tuples (A,e and D) during
each transaction. It is assumed that there is one Ay, 3nd Dy set for each procedure that has a
lock broken by the update transaction. These sets are maintained in data structures created on
the fly. The total size of all the A, and D, sets is equal to the total number of locks broken,.
which is 2f{(IN;+Nj). There is an overhead of C; per tuple to maintain these sets during a tran-

saction.

The expected size in pages of a stored procedure value is ProcSize, so the average cost to
read a stored procedure value is
Cresa = CoProcSize
The components of the cost of a procedure access using AVM to implement the Update

Cache strategy are summarized below.

cost component neme velue

screen R, tuples for type Py procedures | Cyereenpr | N1Cif!
screen R, tuples for type P, procedures | Cyereenpz | N2C1f!

refresh procedures of type Py CretrestP1 | IN1C22Y3
refresh procedures of type P, Cretreshpz | IN2C22Y
maintain A,,D, sets Coverbead | Ca2fU(Ny+N5)
join R, tuples to R, Cjoin N,C,Y,
average cost to read a procedure Cresd C,ProcSize

The cost C,.,4 is paid once each time a procedure value is read. The other cost components are
paid once each update operation. These components must be multiplied by k /g to find the cost
per access. Hence, the average cost of a procedure access using AVM in model 1 procedures is as

follows:

k
TOTnon—sbsredl = Ctead+ ;(CscreenPl+Cureenl’z"'cufreshl’l"’crel’rah?z"'Coverhesd"'Cjoin)

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

5.3.4. Model 1: Cost of Update Cache (Shared)

network used to maintain individual procedures of type P; and P, is shown in Figure 5.1. The
costs for screening tuples against the predicate term C;(R,) of procedures of type P, and to
refresh stored copies of those procedures is the same as for AVM. Because a fraction SF of type
P, procedures have a shared subexpression, screening costs must only be paid for the remaining

fraction 1—SF. The total cost of screening tuples against the predicate term C !(R 1) of type P,

The shared view maintenance algorithm analyzed bere is Rete view maintenance. The Rete

procedures is

CscreenP2-Rete = N, 2(1-SF)le 2

can be shared

- an an en en En em o - - e ar e e e e e e s e e o

R, : : R, ! R,
|] !
1] 1
[} | |
| [}]
| | |
Cy(R,) ! : Cy(Ry) : Cr{R2)
] ! [}
| S | | |
: !
e-memory : : a-memory | a-memory
l
P,
left.a
and = right.b

P,

Flgure 5.1. Rete networks for type P, and P, procedures in model 1

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 135

For the fraction 1—SF of type P, procedures that do not have a shared subexpression, the left a-
memory node must be refreshed. The cost of refreshing the a-memory nodes for these procedures
is

Crefresh-a = No(1-SF)2C,Y;3

For each of the tuples inserted into or deleted from the left a-memory, the right memory must be
checked for joining tuples. The cost to check for joining tuples is the cost to make 2fl probes
into the right memory, which contains f **N tuples, where the value of f *is

I"=Ff2fr,

The expected number of pages that must be read from one right a-memory is

Ys =y(f"N.S7b,211)
The total cost of these reads for all N, procedures of type P, is

Cioin-a = N2Ca¥’s

The average cost of reading a procedure value when it is accessed is Cpeag. The components of

the cost of accessing a procedure that is maintained using RVM are summarized in the table

below.

cost component name value
screen R, tuples for Py CscreenP1 (unchanged)
screen R tuples for P, CscreenP2-Rete | N1(1=SF)C,f2!
refresh procedures of type Py | CrefreshP1 (unchanged)
refresh left a-memory for

procedures of type P, Crefresh-o N,(1-SF)2C,Y,
refresh procedures of type Py | CrereshP2 (unchanged)
read right a-memory Cioin-o NoCoY5
read procedures Py, P, Cread (unchanged)

Cread i5 Paid once per query. The other costs shown in the table are paid onc¢e per update. The
average cost per query of maintaining procedures after updates is found by multiplying these

figures by the number of updates per query (k/q). The average total cost per query when main-

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 136
taining procedures using RVM is

k
TOTshuedl = Creld"' TI'(Cscreen?l"’CScreenPﬁ-Ret.e"‘CrefreshPl+Crdr5h-a+crdmhf’z+cjoin-a)

5.4. Performance Results for Model 1 Procedures

In this section, the results of the performance analysis for model 1 procedures are presented
and discussed. Several figures show the cést of a procedure access for various parameter values
using Always Recompute, Cache and Invalidate, and both the shared and non-shared versions of
Update Cache. Other figures plot the area where each algorithm performs best for the update

probability P versus the object size f.

Figure 5.2 shows query cost versus update probability, assuming that the Cache and Invali-
date strategy marks procedures invalid using the straightforward method that requires two disk
1/0s. This situation is modeled by setting Ciyy,=—60ms. Figure 5.3 plots the same curves for
Cinvai=0. Figures 5.2 and 5.3 clearly show that the total cost per query using éache and Invali-
date is highly sensitive to the value of Cigya. Thus, if Cache and Invalidate is implemented, it is
important to keep Cipyal small. Cigya can be limited using one of the techniques previously
described (e.g. a data structure in battery-backed-up memory). In both figures, the cost of Cache
and Invalidate and both versions of Update Cache are equal when the update probability P is zero
because there is never any overhead to update or recompute procedure values. In Figure 5.3, there
is a significant difference in the cost of Cache and Invalidate and Update Cache for 0<P<L0.7.

This difference occurs for the following reasons.

1. For f£="0.001 it is less expensive to incrementally update
an object when only a few tuples change than to invalidate and
recompute it. ‘

2. Update Cache suffers from false invalidations, which are

invalidations that are not necessary because the object does not
really change.

For type P, procedures, the probability that an object has really been made invalid given that a

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 137

4000.00 Cache and Invalidate Update Cache
(Rete)
Update Cache
(Algebraic)
3000.00 -
m
s
I 2000.00 -
q Always Recompute
r
y
1000.00
0.00

0.000 0.200 0.400 0.600 0.800 1.000
| P

Figure 5.2. Query cost versus update probability for high cache invalidation cost (60 ms)

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 138

4000.00
Update Cache
(Rete) Update Cache
(Algebraic)

3000.00 -
m
s
¢

2000.00 1 Cache and
8 Invalidate

) [[

r Always
y Recompute

1000.00 -

0.00

0.000 0200 0400 0600 0800 1.000
P

Figure 5.3. Query cost versus update probability for low cache invalidation cost (0 ms)

new tuple matches the predicate Cy(R,) is [(the selectivity of the other selection term). Hence,
the probability that an ipvalidation is false is 1—f,. Since the default value of f is 0.1, the pro-
bability of false invalidation is significant. For values of P>0.6 in Figure 5.3, the cost of Cache
and Invalidate levels off at a plateau slightly above the cost of Always Recompute because stored
procedure values are virtually pever valid. The slight difference between the two curves
represents the eflort wasted by Cache and Invalidate to write back procedure values after they are
computed. The cost of both Update Cache strategies rises dramaticly for large values of P

because stored procedure results must be updated repeatedly between queries.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 139

The cost per query using larger objects (f==0.01) is plotted in Figure 5.4. For this value of
f, type P, procedures contain 1,000 records and type P, procedui'es contain 100 records. When
the update probability is low, it is significantly more efficient to incrementally update a large
object than to mark it invalid and require it to be recomputed. Incremental maintenance is supe-
rior in this case because only a small amount of work is required to bring an object to the correct
‘state when only a few tuples in it change. Invalidation requires the pext query to completely
recompute the object, which is expensive for large objects. The cost per query for small objects

(f=0.0001) is shown in Figure 5.5. For this value of f, type P, and P, procedures contain 10

40000.00 =
Update Cache
(Rete) Update Cache
(Algebraic)
30000.00 -
m
s
e
I 20000.00
d
r
y
10000.00 = Cache and
- Z Invalidate
. . Always
| Recompute
0.00 M v v L v v
0.000 0200 0.400 0.600 0.800 1.000
P

Figure 6.4. Query cost versus update probability for large objects (f=0.01)

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 140

1000.00 1 Update Cache
(Algebraic)
Update Cache
750.00 - (Rete)
m
s
.
r 500.00
g Cache and
! | — Invalidate
250.00 Always
Recompute
0.00

0.000 0200 0400 0.600 0.800 1.000
P

Figure 5.5. Query cost versus update probability for small objects (f=>0.0001)

tuples and 1 tuple, respectively. Figure 5.5 shows that when procedures are small, Cache and
Invalidate is very competitive with the Update Cache strategies. Furthermore, Cache and Invali-
date does not suffer from the severe performance degradation that affects Update Cache when the
update probability becom?s large. The case where obiét;ts are as small as possible (one tuple) is
examined in Figure 56. In this figure, N;=100, N;=0 and f=1/N, meaning that all pro-
cedures are selections of one tuple from a single relation. Cache and Invalidate is essentially
equivalent to Update Cache under these conditions, except that the performance of Cache and

Invalidate does not degrade severely for large P.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 141

800.00 9
Update Cache
600.00 9 (Algebraic and Rete)
s
g
T 400.00 1
e
¢ .
y
200.00 - Cache and
J[Invalidate
Always
1/ - Recompute
0.00

0.000 0200 0400 0600 0.800 1.000
P

Figure 5.8. Query cost versus update probability for single-tuple objects (f=1/N)

Figure 5.7 shows the cost per query assuming that the locality of reference is high
(Z=0.05). Again, Cache and Invalidate is very competitive with Update Cache for low P, and
superior for large P. The aflect of high locality of reference is similar to the affect of. small

objects.

The affect of a large number of objects is modeled in Figure 5.8 by setting NV, 1=N2=1000.
The cost of Cache and Invalidate and Update Cache is the same for zero update probability, but
cost increases more rapidly as P increases it does in Figure 5.3. Varying the total number of
objects changes the slope of the curves for the Update Cache strategies, and changes the value of

P where the cost of Cache and Invalidate reaches its plateau. Figure 5.9 compares the two

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 142

“<ogo =mov wf

4000.00 4
Update Cache
(Rete) Update Cache
(Algebraic)
3000.00 -
2000.00 Cache and
__—— Invalidate
Always
Recompute
1000.00 <
0.00 =¥ " . . — .
0.000 0.200 0.400 0.600 0.800 1.000
P

Flgure 5.7. Query cost versus update probability for high locality (Z=0.05)

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 143

4000.00 § Update Cache
(Rete) Update Cache
(Algebraic)

3000.00 -
m
s
p
r

2000.00 Cache and
3 P Invalidate
g Always
y Recompute

1000.00 -

0.00 = v v v v '
0.000 0200 0.400 0.600 0.800 1.000
P

Figure 5.8. Query cost versus P for large number of objects (N;=IN,=1000)

different Update Cache algorithms (AVM and RVM) focusing on the effect of the level of sharing
(SF). In model 1, the cost of RVM becomes comparable to AVM only when almost every type P,
procedure has a shared subexpression for its selection term on R;. The reason RVM performs
poorly comp'aied to AVM for small sharing factors is that RVM must pay overhead to refresh
copies of left a-memory nodes. When procedures contain only two-way joins (as in model 1) only
a high level of sharing can make RVM competitive with AVM. Different results are obtained for

the three-way join case analyzed later for model 2.

Figure 5.10 shows the regions where each algorithm performs best for different object sizes

and update probabilities. The area where Cache and Invalidate wins in Figure 5.10 is

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS

144

<“mosgo oY ul

1000.00 N
800.00 -
Update Cache
(Rete)
600.00 -
Update Cache\
Algebraic
400.00 < (Alg)
200.00 -
0.00

0.000 0200 0400 0600 0.800 1.000
SF

Figure 5.9. Query cost versus sharing factor (SF)

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 145

1.00 1
Cache and
Invalidate wins
0.80 - Always Recompute
wins
0.60
P
0.40 -
Update Cache
Algebraic) wins
0g0 (Aleebraic)
0.00 v v . .
0.0001 0.0010 0.0100 0.1000 1.000

f

Figure 5.10. Areas where each method wins for object size versus update probability

insignificant, except that it shows that its cost is close to the cost of Update Cache in the vicinity.
As expected, the methods with a per-update overhead do not do as well as Always Recompute
when the update probability P is large. An interesting phenomenon observed is that Update
Cache wins for a smaller range of values for P when objects are large than when they are small.
This phenomenon occurs because it is highly likely that any update will affect a large object, so
such an object must be maintained often. Howeyer, when objects are small, updates are likely not

to affect them at all, so little overhead is incurred.

In Figure 5.11, the locality of reference is higher than in the previous figure (Z=0.05).

Cache and Invalidate benefits from the increased locality but Update Cache does not. Cache and

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 146

1.00
Cache Always Recompute
0809 and wins
Invalidate
wins
0.60 -
P
0.40 -
Update Cache
(Algebraic) wins
0.20 <
0.00

0.0001 0.0010 0.0100 0.1000 1.000
f

Figure 5.11. Areas where each method wins assuming high locality (Z=0.05)

Invalidate performs best when objects are small (f <0.002). The reason this occurs is that incre-
mentally updating small objects costs nearly as much as recomputing them and writing back the

results.

To demonstrate how close Update Cache and Cache and Invalidate are, Figure 5.12 shows
the area where Cache and Invalidate is within a factor of two of Update Cache or better for the
default parameter settings. When the update probability P is high, Cache and Invalidate is close
to or superior to Update Cache because the cost of Update Cache rises rapidly as P grows. Cache
and Invalidate is also close to Update Cache for small objects when the update probability is low.

Figure 5.13 shows the same information with f,=1, which reduces the probability of false

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 147

1.00
Cache and Invalidate within
0.80 factor of two or better of
Update Cache
(also in area marked *)
0.60 <

0.40

Update Cache Wins by
0.20 factor of two or more

N
0.00 -

0.0001 0.0010 0.0100 0.1000 1.000

f

Figure 5.12. Measure of closeness between Cache and Invalidate and Update Cache

invalidation to zero. Cache and Invalidate performs even better for small objects in this situation.

5.6. Cost Analysis for Model 2 Procedures

The cost of maintaining model 2 procedures is analyzed in this section. The difference
between models 1 and 2 is that type P, procedures required a three-way join in model 2 rather
than a two-way join. Below, the cost formulas for model 2 are presented. Most of the formulas

remain unchanged, so only the differences from model 1 are shown.

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 148

1.00 1
0.80 Cache and Invalidate
within factor of two
or better of Update Cache
0.60 -
P
0.40
Update Cache
0.20 wins by factor
of two or more
0.00

0.0001 0.0010 0.0100 0.1000 1.000
f

Figure 5.13. Measure of closeness (f;==1)

5.5.1. Model 2: Cost of Always Recompute
The cost of Always Recompute is different in model 2 than model 1 because a three-way join
is required to construct the value of a procedure of type P, instead of a two-way join. The cost

to compute this three-way join is Cquerypz'. The value of a type-P5 procedure is found by

(1) using a B-tree index scan on R, to find tuples matching Cy(Ry),
(2) joining qualifying R; tuples with R using the hash index on R,, and
(3) joining the resulting tuples to R using the hash index on Rj.

The cost of (1) plus (2) is the same as Cyerys- Part (3) requires reading the following number of

pages from Ry:

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 149

Yy = y(frN:frd:fN)
An additional fNN predicate tests are required. The complete expression for Cquerypz' is
anersz' = Cqueryx+02Y6+le N

The average cost of computing a procedure value from scratch in model 2 is

N,

N+ N,

2
TOTReeompuuz = Cquetyl’l"' m Cquersz'

5.5.2. Model 2: Cost of Cache and Invalidate
The cost formula for caching in model 2 (TOTCycheloval2) is found simply by replacing

CqueryP2 by Cquersz"

5.5.3. Model 2: Cost of Update Cache (Non-Shared)

In model 2 the tuples resulting from the join of R, and R, must be joined to R3 when the
non-shared algorithm (AVM) is used. The join of tuples from R, to R requires reading Y, pages
from R,. The fN tuples resulting from this join are then joined to R3. Rghas SrJN tuples and
Srb blocks, so this last join requires the following number of page reads:

Y; = y(frN.frd,2f1)

The total join cost (C;qyp') is

Cjoin' = NoCo(Y+Y7)
The total cost per query for AVM in model 2 is found by substituting C;qyy’ for C;q, in the for-

mula from model 1, yielding the formula

k
TOTnon-sh:redz = Creul"' ;(Cscreenﬂ”'CscreenP2+CufreshPx+CreIresth+Coverhesd+cjoin')

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 150

5.56.4. Model 2: Cost of Update Cache (Shared)

The cost components CycreenP1r CscreenP2-Retes CrefreshP1 804 Crefresh-o are unchanged from
the analysis for model 1. In model 2, a f-memory rather than an a-memory forms the right input
to the and node above a type P, procedure, as shown in Figure 5.14. The part of the figure in
the .dashed box can be a shared subexpression. A fraction SF of the type P, procedures share
that portion of the network with a procedure of type P;. Tuples that reach the left input of the
and node must be joined to the f-memory node. The S-memory contains f ;‘N tuples and f ;'b

blocks, where £, has the following value:

- - e wr e e e s am e W

| |

! Rx ' Rz R 3

i |

| |

] . [}

| |

{ |

: Cy(R,) : Cy{Rs)
: | : |

[} [}

| a-memory | a-memory
1 1

| |

left.c =
can be a shared right.d
subexpression p-memory

left.a =
right.b

and

P,

Flgure 5.14. Model 2: Rete Network for P, Procedures

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 151

fﬁ.. ==f2fﬂn

The following number of pages must be read from the f-memory node to perform the join:

Yo =y(f2'N.f2b,2f1)
The expected cost to join tuples from the left input to the B-memory after each update is

Cjoin-s = N2CoYs
CrefreshPz is the same as for model 1 because type P, procedures are the same size as in medel 1,
and the expected number of tuples in a type P, procedure that change after an update transac-
tion is still the same. The average cost to read a procedure in model 2 is also unchanged from
model 1. Thus, the only difference in cost from model 1 is that Cjqip , is replaced by Cjqin.g. The

total cost formula for maintaining procedures using RVM in model 2 is

k
TOT spared2 = Creadt ;(Csmenprf'CScmnnaeu+Crermhpx+Crermh.a'*'cnrmhn'i'cjoin.p)

5.6. Performance Results for Model 2 Procedures

The performance results for Model 1 and Model 2 are similar, as can be seen by comparing
Figure 5.15 with Figure 5.3. The main difference is that the shared view maintenance algorithm
(RVM) performs significantly better in model 2 than in model 1 compared to the non-shared algo-
rithm (AVM). Figure 5.16 shows the performance of the two algorithms versus the sharing factor
SF. For a sharing factor of approximately 0.47, the two algorithms are equivalent in cost. For
higher sharing factors, RVM is superior to AVM. RVM bhas an advantage in this situation
because when tuples in R, change, they must be joined only tolthe right f-memory, but AVM
must join the tuples to R, and then join the resulting tuples to Ry. Using RVM, as the sharing
factor increases, the cost of maintaining the left a-memory becomes less than the advantage pro-
vided by the precomputed subexpression in the S-memory. Figure 5.17 shows the areas where
each algorithm performs best for update probability versus object size in Model 2. Figure 5.17 is

similar to Figure 5.10 for Model 1, except that the best version of Update Cache is RVM instead

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 152

8000.00 -
Update Cache
(Algebraic
and
6000.00 - Rete)
m
)
g 4000.00 -
g) Cache and
e Invalidate
r
y Always
2000.00 - Recompute

0.00 v - , v -
0.000 0200 0400 0600 0.800 1.000

P

Figure 5.15. Model 2: Query cost for default parameters

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 153

1000.00

. Update Cache
800.00 \ (Algebraic)

m
)
g 600.00 - \
r . :
3 Update Cache
¢ 400.00 - (Rete)
y

200.00 -

0.00

0.000 0200 0400 0.600 0.800 l'.OOO
SF

Figure 5.16. Model 2: Query cost of Update Cache alternatives versus sharing factor

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 154

1.00 9

Always Recompute
wins

0.80 -

0.60 <

0.40
Update Cache (Rete)
wins
0.20 -

0.00

0.0001 0.0010 0.0100 0.1000 1.000
f

Figure 5.17. Model 2: Winners for update probability versus object size

of AVM.

5.7. Summary and Conclusions

This study has brought out several points regarding the effectiveness of Always Recompute,
Cache and Invalidate, and Update Cache for processing database procedures. It is critical to use
some method to limit the cost of marking a procedure invalid in Cache and Invalidate. Other-
wise, its performance is significantly worse than that of Update Cache. If a low-cost invalidation
method is used and procedure results are small, Cache and Invalidate is as efficient (or only

slightly worse than) Update Cache. A problem with Update Cache is that its performance

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 155

degrades severely at high update probabilities. Cache and Invalidate does not suffer from this
prol;lem it the invalidation cost is small. Its performance is only slightly worse than that of
Always Recompute for high update probability. This phenomenon makes Cache and Invalidate a
much safer algorithm than Update Cache if there is a possibility that update frequency will be
bigh. Both Cache and Invalidate and Update Cache bring substantial savings if the update proba-
bility is small. For example, using f==0.0001 (as shown in Figure 5.5), with P=0.1, Cache and
Invalidate and Update Cache outperform Always Recompute by factors of approximately 5 and 7,
respectively. Update Cache is significantly better than Cache and Invalidate for large objects
when update probability is low. This occurs because it is inexpensive to incrementally update a
large object when it changes relative to the cost of recomputing it entirely. Another interesting
observation made in this study is that Update Cache sometimes outperforms Cache and Invalidate
for both small and large objects when update probability is low. This occurs because Cache and

Invalidate can suffer from false invalidations.

There are major differences in performance between Always Recompute, Cache and Invali-
date, and Update Cache which depend primarily on update probability and object size. For the
different versions of Update Cache, including a shared algorithm (RVM) and a non-shared algo-
rithm (AVM), relative performance is insensitive to update probability and object size. The

important parameters when comparing AVM and RVM are

(1) the likelihood of finding shared subexpressions (sharing factor),
(2) the number of joins in a procedure query, and
(3) the relative frequency of updates to different relations.

Increasing the sharing factor makes RVM perform better, but does not affect the performance of
AVM. In the analysis of this chapter, when procedures contain OI;Iy two-way joins (as in model 1)
AVM is never significantly better than RVM. This will be true in general for two-way joins
because the cost saved by RVM through sharing subexpressions is canceled by the overhead of

maintaining a-memory nodes. If procedures contain joins of three or more relations (as in model

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 156

2) RVM can perform better than AVM. This is possible because there will be precomputed subex-
pressions containing joins of Qwo or more relations. These subexpressions can be used to limit the
total number of joins that RVM must perform compared to AVM. For example, in model 2,

RVM only has to compute a two-way join, but AVM must do a three-way join.

The relative frequency of updates to different relations is an important factor that was not
analyzed in this chapter. Static optimization methods will use statistics on relative update fre-
quency when designing an optimal plan for maintaining procedures (e.g. an optimized Rete net-
work). Hence, the plan produced will be efficient for the given update pattern. Because of this, it
is expected that the benefits of static optimization observed in the analysis performed in this
chapter will be observed in actual application. However, further study of staticly optimized pro-

cedure (or view) maintenance algorithms is needed before this can be concluded with certainty.

The shared version of AVM described in chapter 3 was not analyzed in this chapter. Shared,
static AVM will probably outperform both non-shared, static AVM and RVM when the sharing
factor is high. This is likely because shared, static AVM benefits from shared subexpressions
without paying overhead to maintain the Rete network memory podes used in RVM. A potential
drawback of the staticly optimized algorithms is their fixed execution plan (e.g. the Rete network),
which may cause them to become more costly than dynamicly optimized algorithms if the struc-
ture of the database or the update frequency changes significantly. Experience is needed to know
whether the drawbacks of the fixed execution plan used in staticly optimized algorithms will
overwhelm the advantages gained by avoiding run-time compilation overhead, and by combining

shared subexpressions.

An important issue with the Cache and Invalidate and Update Cache strategies- is how to
decide whether or not to maintain a cached copy of given object. Sellis has considered this issue
for Cache and Invalidate [Sel86b,Sel87]. The question is even more important for Update Cache

because the potential cost of a wrong decision (e.g. maintaining an object when the update proba-

5. PERFORMANCE OF PROCEDURE MATERIALIZATION METHODS 157

bility is too high) is much larger than for Cache and Invalidate. How to make this decision when

using Update Cache is an interesting problem for future study.

One would expect the results of database procedures to be small in most applications. This
expectation combined with the observations made in this study suggest the following strategy for
implementing database procedures. Always Recompute should be implemented first because it is
simplest. If sufficient resources are available to implement a second method, Cache and Invalidate
should be chosen. It will give good performance benefits for small objects, and it does not degrade
significantly if the system makes a mistake (e.g. by caching an object that is seldom accessed).
The Update Cache strategy can be added later if the programming effort can be justified. This
will make it possible to efficiently maintain stored procedure values that are large. The same code
written to implement Update Cache can be used to support materialized views and complex

trigger condition testing as well.

158

CHAPTER 6

AN ENHANCED DATABASE RULE LANGUAGE

The initial proposal for POSTGRES database management system allows powerful rules to
be defined by tagging POSTQUEL commands with the keyword always. There are, however,
some difficulties with the always rule proposal. These difficulties can be broken down into two
separate dimensions. First, always rules suffer from shortcomings in the POSTQUEL language
itself, since such rules are simply POSTQUEL commands tagged with a special modifier. Second,
the semantics of always rules specify that a command tagged as such appears to run forever (as
a practical matter, it runs until it no longer changes the database). It is not clear that these
semantics alone are adequate for building rule-based applications. This chapter analyzes both
these issues. Based on this analysis, enhancements to POSTQUEL are proposed to -increase its

power, and some new rule semantics different than always are proposed.

6.1. Weaknesses in the Query Language

6.1.1. Negated Conditions

A feature commonly needed in rule-based systems is the ability to specify a negated rule
condition. Negated conditions are true if there does not ezist any record or collection of records
in the database matching some pattern. Measurements of several large expert systems written in
OPSS5 show that approximately 30% of all production rules contain ot;e or more negated condition
elements {GuF83]. Negated conditions are sometimes used to define rules that draw some conclu-
sion if no evidence to the contrary exists. For example, in an expert system for automobile troub-

leshooting, the following rule might be specified:

6. AN ENHANCED DATABASE RULE LANGUAGE 159

If the starter won't crank and

it is not known that the battery is charged
then

hypothesize that the battery is dead

In the original QUEL query language, there is no direct way to specify a negated condition
[HSW75]. However, the “‘any” aggregate can be used to check if there are no values matching

some condition as follows:
any (target_list [from from_list | [where gual]) =0

(The count aggregate can be used in the same fashion.) Use of an any or count aggregate is an
inconvenient and unintuitive method for specifying negated conditions. Thus, a special aggregate
no which returns a boolean value is proposed here. A new aggregate syntax has been proposed
for POSTQUEL, the POSTGRES query language [Ro§87,StR86] (see Appendix 2 for a description
of the new aggregate syntax). The mew syntax allows grouping in aggregate functions to be
specified explicitly, rather than implicitly as in the original QUEL |Eps79, HSW75, SWK76)]. Based

on the POSTQUEL aggregate notation, the syntax of the no function is as follows:
no ‘{"target_list [from from_list | | where qual] ‘}’

The meaning of this function is the same as the expression above using the any aggregate. Note
that no does not have to be built-in to the POSTGRES system since it can be defined using the

facility for creating user-defined aggregates.

By using no like an aggregate function, a negated clause can be linked to the outer part of a

query. For example, consider a situation where there are two relations:

STUDENT (id, name, ...)
ENROLLED (id, name, ...)

STUDENT contains information about students who were enrolled last year, and ENROLLED
contains information about currently enrolled students. The field “id” of both relations is a

unique identifier for a student. Suppose one wishes to delete all STUDENT records for students

6. AN ENHANCED DATABASE RULE LANGUAGE 160

who are not currently enrolled. This deletion can be expressed as follows using no:

delete STUDENT where
no{ENROLLED.id where STUDENT.id == ENROLLED.id}

The above is much simpler than the following equivalent command expressed in standard QUEL:

delete STUDENT where
any(STUDENT.id by STUDENT.id
where STUDENT.id = ENROLLED.id) = 0

It is also simpler than the equivalent command expressed in the POSTQUEL aggregate syntax

using the any aggregate:

delete STUDENT where
any{ENROLLED.id where STUDENT.id = ENROLLED.id} = 0

It is clearly easier to express megation using mo than using an any or count aggregate.
However, an even simpler syntax is possible for specifying some negated conditions. It is proposed
bere that the operators In and not In also be added to POSTQUEL (both these operators are
_included in the SQL query language [CAE76]). The syntax of the in and not In operators for
POSTQUEL is

scalar_ezp op set_ezp

where op is either In or not In, scalar_ezp returns a single value and set_ezp returns a set of
values. A scalor_ezp has the same syntax as defined for expressions in POSTQUEL. A set_ezp
has the form

{* scalar_ezp | from from_list | | where qual] ‘}'

(the argument to 8 POSTQUEL aggregate is also a set_ezp). The syntax of the set_ezp is nearly

identical to the relation-constructor mechanism of the RIGEL database programming language

[RoS79).

The In and not In operators have nested iteration semantics, as in SQL'. In general, a

.POSTQUEL aggregates also have nested iteration semantics.

6. AN ENHANCED DATABASE RULE LANGUAGE 161

query containing an in or not In operator has the following structure, where op is either in or

not In:

retrieve (target_list)
where Q, and ezp, op {czp, where Q,}

The portion of the query

retrieve (target_list)
where Q,

is referred to as the outer block and

{ezp, where @}

as the snner block.

As an example, using the not In operator, the delete statement abové can be specified as

follows:

delete STUDENT where
STUDENT.id not in {ENROLLED.id}

‘This example demonstrates that the not In operator simplifies the specification of negated condi-

tions even further than the no function in some situations.

The no function and the in and not In operators are not strictly necessary. Both mo and
not in can be simulated using aggregates as shown in previous examples. The in operator can be
simulated using an equi-join, as described in [GaWS?,Kim82] (details of how these transforma-
tions are performed will be discussed in a later section). The no, In and not In facilities bave
been added to the query language because they allow a large class of queries, updates and rules to

be specified in a more convenient and understandable way.

6. AN ENHANCED DATABASE RULE LANGUAGE 162

8.1.2. Executing a List of Statements

When specifying rules in an expert systems application, it is important that a list of state-
ments can be executed when a rule fires. If all rules can execute only one statement in their
action, programming becomes difficult. For example, a technique commonly used in expert sys-
tems is to reason using certainty factors (CF’s) like those found in MYCIN [ShB75,5ho76]. A cer-
tainty factor is a real number in the range [0,1] which indicates the measure of belief in a fact.
The belief status of a fact with a CF of 0 is completely unknown, while a fact with a CF of 1 is
believed with certainty. In a forward chaining rules system like OPS5 or ART, certainty factor

combination is typically done using a rule with the following structure:

if
there is a fact F; supporting conclusion A with certainty X and
there is a fact F, supporting conclusion A with certainty ¥
then do
create a new fact F'y supporting conclusion A with certainty X+4Y-XY
delete F 1
delete Fo
end

This rule has multiple commands in its action. It would be cumbersome to program it in a

language that allowed the action of a rule to contain only one statement.

All rules specifiable in the rule sublanguage of POSTQUEL are single POSTQUEL com-
mands tagged with a modifier [StR86,SHP87] In POSTQUEL, using the execute command it is
possible to specify a list of statements to be run. Hence, it is possible to create a rule who's action

is a list of statements as follows:
execute (dummy = * ... list of statements ... ")

Unfortunately, the execute command is awkward for specifying a block of commands to run
because a dummy field name and extra quotation marks are required. Hence, the following varia-

tion of the execute command is proposed (the existing execute syntax is still legal):

6. AN ENHANCED DATABASE RULE LANGUAGE 163

execute (stmt { ; stmt })

For example, the following command purges all information about the Toy department from the

employee/department database:

execute (delete EMP where EMP.dept=*Toy" ;
delete DEPT where DEPT.dname="Toy")

The primary advantages of the new variation of the execute command are that it provides a
clean way to specify a collection of commands to be executed, and it facilitates specification of
rules that have more than one command in their action (use of execute to specify rules will be
discussed in section 6.3). This execute syntax makes it explicit that a group of statements are to
be execu.tea together. The database system is therefore free to optimize them all at once, forming
an efficient joint execution plan [Sel86b]. Also, the system can attempt to execute the statements
in parallel, which may yield significant performance improvements on multi-processors (e.g. SPUR

[Hil86]), or even on a uni-processor if increased disk utilization can be achieved.

68.1.3. A Conditional Abort Command

It is sometimes necessary for database transactions to abort themselves due to exceptional
conditions. For example, an abort might be required if the user presses the BREAK key, or if the
database application determines that an update violates an integrity constraint. Rules designed
to enforce integrity constraints may also need t6 abort the current transaction if the constraints
are violated.. To facilitate transaction aborts in both user applications and rules, a command

abort is proposed here. The syntax of abort is as follows:
abort | (target_list) | [from from_list | [where qual]

The target list, from clause, and where clause are all optional. If the target list is not specified,

a dummy target list of the form

(DummyAttribute = *constant”)

6. AN ENHANCED DATABASE RULE LANGUAGE 164

is implicitly created. The abort command aborts the current transaction if there are any tuples
retrieved by a query with the target_list, from_list, and qual specified. For example, consider

the following relation containing one record for each employee of a city government:
PUBSERVANTS(name, ...)

Suppose there is a law that no individual can hold more than one city job. An application could
run the following abort command to enforce this integrity constraint (tid is a unique tuple

identifier field):

abort

from pl, p2 in PUBSERVANTS
where pl.name = p2.name
and pl.tid != p2.tid

Because abort is a full-fledged query language command, it can be used in conjunction with the
rule syntax to be described later. This will allow construction of rules to enforce integrity con-

straints.

6.2. Processing Commands Containing Proposed Features

Normal query processing can be extended in a straightforward way to handle the no, In and
not In functions, the new variation of the execute command, and the abort command. The

function
no { target_list [from from_list | | where qual] }

can be defined in POSTGRES as a user-defined aggregate. It would be implemented in a way very
similar to the any aggregate, except that it would return a boolean value FALSE when any
would return the integer value 1, and a boolean value TRUE when any would return the integer
0.

To allow processing of the In operator, query modification can be applied as described in

[Kim82]. A query of the formn

6. AN ENHANCED DATABASE RULE LANGUAGE 165

retrieve (target_list)
where @, and (ezp, in (ezp, where @2))

can be translated into the following normal query:

retrieve (target_list)
where Q, and @, and ¢zp, = ezp,

The resulting command is an ordinary retrieve which can be submitted directly to the query pro-
cessor. The query optimizer canv often find a more efficient execution plan for the conventional
form than for the nested form. For a complete description of the algorithms for translating
nested queries into a canonical representation without nesting, the reader is referred to the paper
by Kim [Kim82] and subsequent papers that describe some errors in Kim's work and their solution

[GaW87,Kie84].

Implementation of the not In operator is straightforward because it is a special case of the

no function. The following two commands are equivalent:

Cl.

retrieve (target_list)
where Q, and ¢zp,; not In (czp; where @2)

C2.

retrleve (target_list) .
where Q, and no(ezp, where ezp, = czp, and Q@3)

In C1, @, consists of all the parts of the qualification that are not part of either the left or right
operands of the not In operator. To process a query of type Cl, it can be transformed into one

of type C2, which can be reduced to one using an any aggregate as discussed previously.
Consider an execute command with the following form:
execute (stmt { ; stmt })

This command can be processed easily by executing the statements one after the other. As men-

tioned previously, performance can be improved in some cases by applying multi-statement query

6. AN ENHANCED DATABASE RULE LANGUAGE 166

optimization techniques and also by attempting to parallelize execution of the statements.
Ap abort command has the following structure:
abort | (target_list)| [from from_list | | where qual]
This command can be implemented easily using the following steps:

1. form the query

retrieve (target_list) | from from_list | | where qual
2. Begin execution of this query. If a tuple is returned, halt execution
and perform any actions needed to abort the current command (e.8.

undo the effects of the transaction if necessary).

3. Otherwise, if no tuples are returned, continue execution of the
current transaction.

68.3. Alternate Rule Semantics

Although the usefulness of always semantics for rules is clear, there are other possible
meanings for rules. A list of desirable rule semantics with significantly different properties

includes:

rule type | rule semantics
always | appear to always have just been run

new execute once whenever one or more new tuples
match qualification
old execute once whenever one or more tuples that

used to match qualification no longer match

These rule semantics have strengths that are quite different, so it is instructive to look at the use-
fulness of each for different applications. Because they appear to run forever, always rules are a
natural mechanism for maintaining certain types of complex integrity assertions. For example,
consider an assertion that all employees must make the salary specified for their job. Supposed

the correct salaries are specified using a relation

6. AN ENHANCED DATABASE RULE LANGUAGE 167

SALTABLE(job, salary)

Using this relation, the desired integrity assertion can be enforced using the following always

rule:

always replace EMP (salary = SALTABLE salary)
where EMP .job = SALTABLE.job

An area where always rules do not provide the desired semantics is in certain types of
expert systems applications. For example, consider the following collection of rules that might be

taken from an expert system for automotive trouble-shooting:

if

the car won't start and there is a gasoline smell
then

bypothesize that the carburetor is flooded

it

there is a leaking fuel line and

there is a hypothesis that the carburetor is flooded
then

delete the hypothesis that the carburetor is flooded

Using always semantics, these two rules cause an infinite loop, since when the second rule deletes
the bypothesis that the carburetor is fooded the first rule wakes up and re-asserts the hypothesis.
In this situation, new semantics are needed since they will cause the rules to behave as desired,
i.e. execution of the second rule will not cause the first rule to wake up again. Rules with new
semantics are similar to production rules found in expert system shells, including OPSS, KEE,
ART, and many others [FiK85,Fot81,Gev87,Sh087]. The semantics of production rules have pro-

ven to be quite useful for constructing rule-based applications in those systems.

Both new and old rules are useful for specifying transition constraints. These include sim-
ple constraints, such as “an employee's new salary may not be more than 10% of their old
salary,” as well as more complex constraints like referential integrity [Dat81b]. Examples of use

of new and old rules to enforce these kinds of integrity constraints will be shown in section 6.3.2.

6. AN ENHANCED DATABASE RULE LANGUAGE 168

There are some forms of constraints for which the old semantics are essential. For example,
a different type of referential integrity rule might specify that no DEPT record can be deleted if
there are still employees working in that department. A rule like this must be able to wake up

when data is deleted from the database, which is not possible using new and always.

The three different types of rule semantics discussed so far, always, new, and old, are
each useful in their own right. Together, they allow a broad class of useful rules to be specified.
Furthermore, always, new, and old rules are significantly different from each other - there is no
straightforward way to simulate any one with the others. Hence, we argue that all three types of

rules should be provided by a database rules system.

One might make the case that there are other types of rules besides always, new, and old

that are useful. A list of other possible rule semantics is shown below:

rule type rule semantics

once execute once when new tuple matches condition and delete self
repeat N same as new, but deletes self after N wake-ups

at list-of-times | execute once daily at each time shown on list-of-times

sleep ¢ execute once every ¢ time units

This list could probably be extended indefinitely. Since it wonid be virtually impossible to provide
every desired type of rule semantics, the position taken here is that the best approach is to pro-
* vide only a small, general set of m}e semantics (i.e. always, new and old). These can be used to
simulate the others. For example, once can be simulated easily with new by having a rule delete
itself with the last statement in its action (an example of this will be given in section 6.3.2). The
repeat semantics can be simulated with new by having a rule count how many times it has run,
and delete itself after N executions. Similarly, if there is a relation TIME that is updated periodi-
cally by the system (say once per minute), new can be used to simulate at and sleep by referring

to TIME in rule conditions.

6. AN ENHANCED DATABASE RULE LANGUAGE 169

6.3.1. Language Features to Support Alternate Rule Semantics

An attractive feature of always rules, is that they can be specified using a simple extension
of the database query language — ordinary POSTQUEL commands can be turned into rules just
by tagging them with a special modifier. This is an elegant property of the rule language that is
desirable to maintain. Thus, rules with new and old semantics will be specified in the same way,

by tagging POSTQUEL commands with the keywords new and old respectively.

The general syntax of rules in the proposed version of POSTQUEL is shown in figure 6.1°.
When a statement with this syntax is submitted to the DBMS, the appropriate rule is registered
with the system. The rule_target_list may be either an ordinary target list, or the special symbol
‘*' which acts as a placé bolder in the case that no target list is specified. If **’ is used instead of

an explicit target list, the “*' is implicitly replaced with a target list defined as follows:

rule — tag command
tag — always | meta_tag

meta_tag — for [new | old | rule_target_list
[from from _list |
| where qual |

rule_target_list — **' | (target_list)

command — retrieve
| replace
| delete
| append
| do

Figure 6.1. General rule syntax

"A BNF grammar is mixed with the [} and {} notation to describe the syntax here. Non-terminals are shown in
italics and terminals are shown in bold.

6. AN ENHANCED DATABASE RULE LANGUAGE 170
1. If there are no tuple variables at the outermost nesting level in the where
clause, **' is replaced by a dummy target list with the following definition:
(DummyAttribute = *constant”)

2. If there are tuple variables ¢,,t5, * * * ¢; at the outermost nesting level in the
where clause, then ‘*' is replaced by the following:

(ty.all, toall, ..., tg.all)

Rules with new and old semantics can refer to two special sets of tuples:

NEW those tuples most recently matching
(rule_target_list) where qual
OLD those tuples that just left
(rule_target_list) where qual

NEW and OLD cannot be referenced in always rules. The NEW and OLD sets will be formed
through the use of an immediate view maintenance algorithm; details of this are discussed in sec-

tion 6.4.

The precise meaning of new and old rules is specified below. A new o.r old rule R has a
for clause associated with it. This for clause has a target list and a qualification, which implicitly
defines a database view V. Let Vj be the initial contents of V before the start of an update tran-
saction T. Suppose T executes and attempts to commit. Let the new contents of V (reflecting
the updates made by T) be V;. The definition of the OLD and NEW sets at this point is as fol-

lows:

NEW=V1—V0

If the rule R has new semantics and NEW is not empty, then R is eligible to run. If R has old
semantics and OLD is not empty, then R is eligible to run. Otherwise, R is not awakened. When

R runs, it has read;only access to the values stored in NEW and OLD. NEW and OLD cannot be

updated.

6. AN ENHANCED DATABASE RULE LANGUAGE 171

In general, a transaction in the DBMS extended with rules will consist of the execution of
the body of the transaction T, followed by execution of zero or more rules, R;, * * * Ry. Con-
sider a point in time P that lies after execution of T and before the first rule R;, or between exe-
cution of any adjacent pair of rules, R; and R;,,. At point P, the values of the NEW and OLD
sets reflect all changes to the database made after the start of the transaction T, and prior to P.
Suppose P lies just before rule R;. The value of V at this point is V;. During execution of rule

R;, the OLD and NEW sets have the following values:

OLD=V°-V';
NEW:V}—VO

There is an exception to the above if the same rule executes more than once. Suppose that one

rule R occurs in the sequence R, * - * Ry 3s both R; and R;, where >1. In this case, the value

of OLD and NEW seen by the execution of R,- is the following:

OLD = V; - V;
NEW = V; - V;

The above discussion has mot considered the issue of how to select the order of execution

Ry, * * * Ry for the rules. This question will be addressed in a later section.

6.3.2. Examples Usix;g New Rule Syntax

Rules of the form described above are useful for a variety of purposes. Several examples are

given below:
One-Shot Rules

As mentioned previously, there are situations where a rule should execute only once, and
then disappear (this is the once rule semantics described previously). One-shot rules can be
implemented using new rules in combination with the POSTGRES remove rule command. For

example, consider the following rule, which waits for a record for an employee named “Bob” to be

6. AN ENHANCED DATABASE RULE LANGUAGE 172

inserted, and then performs its action and removes itself:

define rule BobRule is
for new (EMP.all) where EMP.name = “Bob”
execute

... rule action ...

remove rule BobRule

)

Logging Update History

The following rule makes a log entry each time a record of a Toy department employee is

inserted or modified.

for new (EMP.all) where EMP.dept = “Toy”
append to TOYLOG (NEW.all, time=TOD(), user=User())

When this rule executes, the temporary relation NEW contains all newly inserted or modified
EMP with the value “Toy” in the dept field. Hence, the desired records are appended to TOY-

LOG when the rule executes.
Transition Constraints

By making use of the abort command, the rule below aborts the current transaction if a

Toy department employee gets a raise of more than 10%.

for old (EMP.all) where EMP.dept = “Toy"
abort where NEW.salary > 1.1*OLD.salary and NEW.name = OLD.name

Non-always semantics

A problem with always semantics in some situations is that the rule always wakes up when

data it has written is updated by the user. For example, one might wish to specify the rule

if Bob's salary changes
then Set Jim's salary to Bob's salary

Using an always rule, one would attempt to specify this as follows:

6. AN ENHANCED DATABASE RULE LANGUAGE 173

always replace EMP (salary = E.salary)
from E in EMP
where EMP.name="Jim" and E.name = “Bob"

However, this rule will cause any user update to Jim’s salary to be refused [SHP87]. This is not

the desired meaning. A rule with the correct semantics can be specified using new as follows:

for new (EMP.all) where EMP.pame = “Bob”
replace EMP (salary=E.salary)

from E in EMP

where EMP.name = “Jim"” and E.name = “Bob”

Notice that the above rule will run whenever any field of Bob’s EMP record is updated. The rule
condition can be modified as shown below so that it only fires when the salary field of Bob's

record is updated:

for new (EMP .salary) where EMP.name = “Bob”
replace EMP (salary=E.salary)

from E in EMP

where EMP.name = “Jim"” and E.name = “Bob”

Expert System Support

The new semantics are also suitable for supporting rule-based expert system applications.
Consider an expert system designed to assist a broker in trading stocks. This system uses a large
shared database of information on corporations. Some rules that might be present in such a sys-

tem are shown below:

Automated Stock Trader:

rulel:
If at least 4 aluminum companies have value > X
and
there is no goal to analyze the metal market
then hypothesize aluminum strong

rule2:
§f at least 4 steel companies have value > Y
and
there is no goal to analyze the metal market
then hypothesize steel strong

6. AN ENHANCED DATABASE RULE LANGUAGE 174

rule3:
if bypothesize aluminum strong
and
bypothesize steel strong
then
delete aluminum hypothesis
delete steel hypothesis
create a goal to analyze metal market

rule4:
if goal is to analyze metal market
then execute metal market analysis procedure

In actual implementation, the expert system might be based on a database with the following

schema:
company(name, product, value) - company database
bypothesis(name) - current hypothesis
goal(name) - current goals
procedures(name, code) - collection of stored procedures

Using new notation, the rules above can be written as follows:

defilne rule rulel is
for new * where _
count(company.tid where company.product = “aluminum”
and company.value > X) 2 4
append to hypothesis(name="aluminum strong")

define rule rule2 is
for new * where
count(company.tid where company.product = “steel”
and company.value > X) > 4
append to hypothesis(name="'steel strong”)

define rule rule3 is

for new (h1.all,h2.all)

from h1,b2 in hypothesis

where hl.name="aluminum strong"

and h2.0ame = “‘steel strong”

execute (

delete hypothesis where hypothesis.name=="aluminum strong" or
bypothesis.name="steel strong"’ ;

append to goal(name="Analyze Metal Market")

6. AN ENHANCED DATABASE RULE LANGUAGE 175

define rule ruled is
for new (goal.name) where goal.name = “Analyze Metal Market”
execute (procedures.code)
where procedures.namen”MetalsAnalysis”

This example would be extremely difficult to specify using only the previously proposed features
of the POSTGRES rule language. For example, rule 3 benefits from the use of the execute com-
mand since its action contains multiple statements. Furthermore, if always semantics were used,
rule 3 would interact with rules 1 and 2 in an undesirable way. The first two rules would wake up
and reinsert the bypothésis tuples “‘steel strong” and “sluminum strong” when rule 3 deleted

them unless specific measures were taken to prevent it from happening.

8.4. Testing Rule Conditions

This section discusses methods for testing the conditions of rules with old and new seman-
tics. Testing of both negation-free conditions and conditions with negation is discussed. The

issue of conflict resolution is also addressed.

6.4.1. Conditions Without Negation

Any immediate view maintenance algorithm can be used to test the conditions of new and
old rules that do mot use negation (deferred view maintenance algorithms are not applicable
because it is essential to know immediately whether a rule should fire). The new semantics can
be implemented by making a rule eligible to rup whenever a set of new tuples (Apet) enters the
view corresponding to the condition of the rule. The special tuple variable NEW ranges over Ape
during execution of the rule. The old semantics are implemented in a similar fashion, except that
a rule becomes eligible to run whenever a set of old tuples (D pet) leaves the view defined by the

rule condition. The tuple variable OLD ranges over D e When the rule executes.

6. AN ENHANCED DATABASE RULE LANGUAGE 176

Because any immediate view maintenance algorithm can be used to test rule conditions, one
would like to determine which algorithm performs best in this application. To analyze the cost of
condition testing, the assumption can be made that conditions bave the same structure as the
database procedures analyzed in chapter 5. The only difference in cost between procedure mainte-
pance and rule condition testing is that the query cost (i.e. the cost to read the procedure value) is
not included for condition .testing. Only the maintenance overhead is included. The query cost is
exactly equal for both differential view maintenance algoritbms analyzed in chapter 5 (RVM and
static, non-shared AVM) so comparing the cost of the two for rule condition testing would yield
the same results as for procedures. Hence, the performance results found when comparing the two

algorithms in chapter 5 are valid for rule condition testing as well.

A performance problem with testing rule conditions using a view maintenance algorithm is
that the view defined by the condition must be maintained on disk, and this can be expensive. It
is necessary to maintain a complete copy of the view because it may contain duplicates. A tuple
that is “inserted” into the view might thus result only in causing the duplicate count of an exist-
ing tuple to be incremented. Such a tuple does not constitute a net change to the view so it is not
placed in the NEW set for the rule corresponding to the view. Fortunately, there is a restricted
class of rule conditions for which the view does not have to be physically stored, resulting in sub-
stantial cost savings. Below, this class of conditions is described, and a method is presented for
computing the NEW and OLD sets for conditions that belong to the class. The class includes all

relational algebra expressions R that satisfy the following restriction:

Restriction A:

(1) Al base relations appearing in R are stored with duplicates removed,
and

(2) R does not include the projection operation, or R projects a
unique tuple identifier for each relation appearing in the expression.

For an expression R that satisfies Restriction A, it is possible to determine NEW and OLD

6. AN ENHANCED DATABASE RULE LANGUAGE 177

without maintaining a physically materialized copy of the entire view. If a tuple is found to be in
NEW after an update transaction, it is guaranteed to be a new tuple for the view because every

tuple in the view is unique (similarly for OLD). Uniqueness is assured by Restriction A.

There is a significant performance advantage using expressions that satisfy Restriction A:
there is no overhead to write data to a physically materialized copy of the result of the expres-

sion. The only cost is to compute A, and Dy, for each view after each update transaction.

As an example, consider the following POSTQUEL target list and qualification, which

represents the condition of a new rule.

(EMP.all , DEPT.all)

where EMP.dept = DEPT.dname
and EMP.age > 50 .

and DEPT.dname = “Fire"

Assume that there is B-tree index on EMP.age. When the rule with this condition is installed, t-
locks will be set in this index to lock the range of values age > 50. This expression satisfies Res-
triction A because there is no projection (all attributes of EMP and DEPT appear in the result,
and it is assumed that there are no duplicates in EMP or DEPT). Suppose that a transaction

appends the following single tuple EMP:
t = <name = “Bob”, dept = “Fire"”, age = 55, salary = 20K, job ="Firefighter">
This tuple will break the t-lock set on EMP.age > 50. The value of Ay, can be found by execut-

ing the following query:

retrieve (t.all, DEPT.all)
where t.dept = DEPT.dname
and t.age > 50

and DEPT.dname = “Fire”

There is no need to maintain a materialized view containing al] the tuples that match the rule

condition.

6. AN ENHANCED DATABASE RULE LANGUAGE 178

6.4.2. Conditions With Negation

Rule conditions using negation can also be tested using extended versions of the Rete and
algebraic view maintenance algorithms. The no function can be implemented directly in RVM
using not nodes in the Rete network (see the description of the Rete match algorithm in Chapter
1). Using AVM, negated conditions can be implemented by converting the no function into the
equivalent condition based on the any aggregate, and then using the algorithm for maintaining
views with aggregates presented in Chapter 3. The not in function reduces to no, so it can be

implemented using the same method.

6.4.3. The Rule Execution Strategy

As discussed by Eswaran [Esw76], to maintain serializability and recoverability of transac-
tions in 2 DBMS enhanced with ttiggel;s, the rules awakened directly or indirectly by a transaction
must run as part of that transaction. T¢-> achieve this, the concurrency control subsystem must
treat reads and writes performed by rule actions as part of the transaction that caused the rule to
fire. Similarly, the recovery subsystem must associate all of a rule’s reads and writes with the
transaction that triggered the rule. If these protocols are observed, concurrency control and
recovery methods that are correct for normal transaction processing will work properly in the

presence of rules.
A transaction in a DBMS enhanced with triggers has the following two parts, which are run
in order:

(1) execution of the body of the transaction

(2) execution of rules

After (1) and during (2) there is a collection of rules that are eligible to ruﬁ, which is known
as the conflict set. The DBMS must use some strategy for executing these rules. Borrowing ter-

minology from the OPS5 expert systems shell, the strategy for executing triggers is called the

6. AN ENHANCED DATABASE RULE LANGUAGE 179

Recognize-Act Cycle [For81]. This cycle consists fo the following steps:

(1) Conflict Resolution: Select one eligible rule for execution. If no rule has a
satisfied condition, cease execution of rules and attempt to commit the current
transaction.

(2) Act: Execute the action part of the chosen rule.

(3) Match: Based on the changes to the database made by execution of the pre-

vious rule, determine which other rules are eligible to run, and add them to the
conflict set. Go to step (1).

6.4.4. Conflict Resolution

The following conflict resolution scheme is proposed for the rules system described in this
chapter (this is a modified version of the LEX strategy used in the OPS5 system [For81]). The set

of rules eligible to run can be divided into the following categories:

(a) always rules that have been awakened due to a t-lock conflict
(b) new rules that have tuples in their NEW set

(c) old rules that have tuples in their OLD set

All these rules are treated uniformly. The recency of a rule is the time at which its condition was
most recently satisfied, where time is measured as follows. All update commands executed as part
of a transaction (including commands that are part of rule actions) are assigned a sequence
number. These numbers are assigned to commands in strictly ascending order. The recency of an
always rule is defined to be the highest sequence number of a command in the transaction that
bas broken a t-lock for the rule. The recency of a new or old rule is the highest sequence
number of any command that has caused a tuple to be inserted into the NEW or OLD set, respec-
tively. Rules are ranked according to their recency, with the most recent rule having highest
priority.

Conflict resolution chooses one rule from the conflict set for execution using the following

algorithm:

6. AN ENHANCED DATABASE RULE LANGUAGE 180

1. Discard from the conflict set any rules that have already fired. If a discard-
ed rule is of the new or old variety, delete from the NEW and OLD sets associ-
ated with the rule all tuples that were present before execution of the body of
the rule. If no rules remain, conflict resolution fails and no rule is returned.

2. If one rule is more recent than all the others, return it.

3. If more than one rule is tied as most recent, choose one of them at random
and return it.

Prioritizing rules based on recency results in a depth-first execution of rules, i.e. rules triggered by
other rules execute immediately without waiting for already-eligible rules to run. This is impor-
tant because it has the effect of allowing localized tasks being performed by an expert system
application to complete without being interrupted by otber rules. Expert systems programmers
depend on this depth-first rule execution for control flow in forward-chaining rule based applica-

tions like those written in OPS5 and ART [For81,Sho87).

6.4.5. Act

The rule returned by conflict resolution is simply passed to the query processor for execu-

tion.

6.4.6. Match

Rule matching is accomplished using one of the condition testing algorithms described in sec-

tion 6.4.

6.6. Discussion

This chapter has proposed enhancements to the database rule language proposed in [Sto85].
Some of the enhancements were needed due to inadequacies in POSTQUEL itself. These include
the no and not In functions to allow negated rule conditions to be specified easily, and the exten-
sion of the execute command to allow execution of a block of POSTQUEL statements in a con-

venient way. Other extensions were needed because the always modifier is not adequate to

6. AN ENHANCED DATABASE RULE LANGUAGE 181

specify all the types of rules desired for expert system applications. A modifier for was proposed
which turns POSTQUEL commands into production rules similar to the forward chaining rules
found in OPS5 and other expert systems shells. These rules can have either new or old seman-
tics. Methods for implementing rules using these new features were also discussed. In particular,
the algebraic and Rete view maintenance algorithms can be used to test the conditions of new
and old rules. It was argued that the relative performance of RVM and static, non-shared AVM
when applied to testing rule conditions will be the same as observed in chapter 5. Finally, a gen-

eral strategy was proposed for executing always, new, and old rules in a DBMS.

182

CHAPTER 7

CONCLUSION

The focus of this thesis has been the design and analysis of methods for efficiently support- .
ing rules and derived objects in a relational database system. Section 7.1 summarizes the results
presented in chapters 2-6. Section 7.2 provides a comparison of this work with other research.
Section 7.3 discusses the implications of this thesis for the field of database management. Section
7.4 considers some limitations of the work. Finally, section 7.5 discusses possibilities for future

research on support for rules and derived objects in a DBMS.

7.1. Summary

In chapter 2, a new lock-based rule indexing algorithm called Mark Intersection was pro-
posed, and compared with two other lock-based rule indexing algoritbms (Basic Locking and
Reduced Basic Locking). The results showed that Mark Intersection is at worst approximately
equivalent to Basic Locking in efficiency, and is superior if predicates tend to have more than one
term that lies on an indexed attribute. However, Basic Locking performs quite well in most cases, '
it uses less storage space than Mark Intersection, and it is significantly easier to implement.
Hence, Basic Locking is the algorithm of choice unless most predicates have a large number of
terms, and many of them lie on indexed attributes. Reduced Basic Locking is a space-saving ver-
sion of Basic Locking that is applicable only if updates in place are implemented as deletes fol-
lowed by inserts (otherwise a large amount of wasted 1/O must be done to search every index on
a relation after a tuple is modified). Mark Intersection and Basic Locking can be used to help sup-

port both triggers and inference rules, but Reduced Basic Locking is only viable for triggers.

7. CONCLUSION 183

Chapter 3 presented a collection of techniques for maintaining materialized copies of objects
derived from a database. A new incremental view maintenance algorithm called Rete View
Maintenance was proposed and proved correct. An interesting feature of the RVM algorithm is
that it is staticly optimized, and shared, i.e. a complete execution plan for maintaining views (the
Rete network) is compiled in advance, and shared subexpressions are evaluated only once. The
AVM algorithm proposed by Blakeley [BLT86] is dynamically optimized since planning how to
update materialized views is done after each transaction that modifies the base relations. Also,
standard AVM does not take advantage of shared subexpressions (i.e. it is non-shared). The fol-

lowing variations of AVM where also proposed in the chapter:

1. dynamic, shared
2. static, non-shared
3. static, shared

In addition, any of the view maintenance algorithms discussed in chapter 3 can be implemented in
either an immediate or deferred manner. Based on the use of any view maintenance algorithm, a
class of algorithms was developed for maintaining materialized aggregates and aggregate func-
tions. Finally, methods were proposed for materializing database procedures, as well as views and

procedures containing aggregates and aggregate functions.

Chapter 4 analyzed the performance of different methods for answering queries phat refer to
views, including query modification, deferred view maintenance, and immediate view maintenance.
An interesting finding was that deferred and immediate view maintenance performed almost
equally, independent of the parameters of the model. One reason for this is that the advantage of
the deferred strategy (i.e., processing large sets of tuples to update views instead of small ones and
thus doing less total 1/0) is approximately offset by a disadvantage (i.e., the overhead of main-
taining base relations using a hypothetical relation algorithm). The other more important reason
is that if the ratio of updates to queries is low, the cost of processing queries far outweighs the

cost to incrementally update views. Hence, the fairly small differences in the cost of immediate

7. CONCLUSION 184

and deferred view maintenance strategies become insignificant.

Since view materialization algorithms are close in cost, the main issue becomes whether to
maintain a view in materialized form and query it directly versus performing query modification
to process view queries. For simple selection-projection views on a single table with a clustered
access path available for processing view queries, materializing a view is almost never worthwhile
because query modification reads nearly the minimum possible number of pages to process a
query. Maintaining a materialized view becomes more attractive when the view involves joins.
The reason materialization becomes attractive for views with joins is that the parts of a tuple in a
materialized view reside on a single page, whereas if the view is not materialized, many pages
must be read to construct the tuple. In other words, view materialization is a very effective data

clustering mechanism.

Even though deferred 3l;d immediate view maintenance differ only slightly in cost, there are

- other reasons why one algorithm may be preferred. For example, deferred may be superior in
some distribqted database architectures because it limits communication overhead (e.g. ADMS

[RoKS86]). Another is that if there is substantial free 1/0 and CPU time available, it can be put to

use refreshing views if immediate maintenance is not used (one can view this strategy as inter-

mediate between immediate and deferred).

Chapter 5 explored some performance aspects of algorithms for processing queries that

retrieve the value of database procedures. The algorithms considered were

1. Always Recompute (construct procedure value from base relations)

2. Cache and Invalidate (read the stored procedure result if it is valid;
otherwise compute the result and write it back)

3. Update Cache (use a view maintenance algorithm to maintain and
incrementally update the stored procedure value)

Two different versions of Update Cache were considered: one based on a non-shared view materi-

alization algorithm (AVM), and another based on a shared one (RVM). There are dramatic

7. CONCLUSION 185

differences in performance between Always Recompute, Cache and Invalidate, and Update Cache.
The differences in performance between the shared and non-shared versions of Update Cache are

less pronounced.

One finding was that the cost of Cache and Invalidate is highly sensitive to the cost of
invalidating a cached object. If it is necessary to read and write a page from an object just to
invalidate it, Cache and Invalidate performs poorly. Hence, it is important to used some tech-
nique to reduce the cost of invalidating cached objects (e.g. a table in battery-backed primary
storage listing the validity status of each object). Assuming that some low-cost invalidation tech-
nique is used, Cache and Invalidate performs approximately as well as Update Cache if update

probability is low, objects are small, and there is some locality of reference among cached objects.

Cache and Invalidate always becomes superior to Update Cache as the update probability
approaches 1. The reason Cache and Invalidate outperforms Update Cache for high update pro-
bability is that repeatedly invalidating a cached object costs almost nothing, but updating an
object many times per query is expensive. Hence, Cache and Invalidate is a much safer algorithm
to dse than Update Cache if there is a possibility that the ratio of updates to queries might be

high.

Another finding was that Cache and Invalidate is not a good algorithm to use if objects are
large (e.g., more than one disk page in size). Update Cache is superior for large objects because
the bigger an object is, the more likely it is that an updat.'e transaction will invalidate it. When a
large object is invalidated, only a small part of it has usually changed. Thus, Update Cache can
maintain a large object very efficiently after it has been made invalid, while Cache and Invalidate

must pay a high cost to recompute the object.

In chapter 6 some enhancements to the POSTQUEL query language [StR86] were proposed
to increase its power for specifying queries and rules. A function no was developed to allow

negated conditions to be specified. Addition of operators in and not In was also proposed as a

7. CONCLUSION 186

way to make certain queries and rules easier to specify. It was observed that the rule language
formed by enhancing QUEL with the always modifier is not adequate to express some rules com-
monly needed in expert systems applications. One problem is that it is inconvenient to specify
rules that have more than one command has their action. To solve this problem, a modified ver-
sion of the command execute was proposéd to allow a block of QUEL statements to be executed.
Furthermore, the built-in iteration implied by always semantics makes it difficult to specify some
rules. To overcome this problem, the addition of another modifier new was proposed. The
semantics of new rules are similar to production rules in expert systems shells such as OPS5

[For81]. Finally, a modifier old was proposed to allow expression of rules that fire when data no

longer matches a condition.

7.2. Comparison with Other Research

The analysis in chapter 2 focussed on the differences among lock-based rule indexing tech-
niques. A previous paper on rule indexing in database systems [SSH86] compared one lock-based
technique (basic locking) with a method based on the R-tree (predicate indexing). The paper con-
cluded that if the R-tree structure is so large that it must be disk-based, then basic locking is
superior to predicate indexing unless the number of rules covering each tuple is large. The rela-
tive performance of R-tree-based rule .indexing and lock-based rule indexing is affected
significantly by the total number of rules. However, the number of rules does not affect the rela-
tive performance of different lock-based techniques. Thus, if mark intersection and reduced basic
locking were compared directly to predicate indexing, results similar to those found in [SSHS6]

would be expected.

In chapter 3, the discussion on view maintenance identifies the issue of static versus dynamic
optimization, which is not discussed in previous work on the subject [BLT86]. Using 2 dynami-

cally optimized view maintenance algorithm, an execution plan for incrementally updating views

7. CONCLUSION 187

must be found after each update transaction that affects those views. Thus, the issue of static
versus dynamic optimization is important because planning overhead may be high using dynamic

optimization, especially if many views are being maintained.

The aggregate materialization methods described in chapter 3 allow maintenance of aggre-
gates or aggregate functions .over the result of any query composed of selects, projects and joins.
In this sense, they can be considered completely general. A previous paper on maintaining general
aggregates describes techniques that are not applicable to the relational data model [KoP81].
Other work on maintenance of aggregate information has focussed on special cases. A simple
example of this is the practice of maintaining aggregate information such as the sum of values in
a column, the total number of tuples in a relation etc. Another special-case aggregate mainte-
nance method is the ordered index known as the A-tree [Rub86,Rub87]. The A-tree allows fast
computation of aggregates over ranges of an ordered collection of records. For example, consider

the relation
EVENT(id, duration)

where an ordering of events is implied, and there is an A-tree on the “duration” attribute. This

structure makes it possible to efficiently answer questions like the following:

1. Assuming that the first event starts at time 0, when does the event with id
= X start?

2. How much time elapsed between the start of event X and the end of event
Y?

It would not be feasible to use the aggregate maintenance algorithms of chapter 3 to maintain
materialized answers to every possible query of this form that might be asked. The techniques of
chapter 3 are applicable to a different problem: maintaining the answer to a single aggregate
query. Of course, if it were important to be able to efficiently answer range queries over a view
V, and both materialized views and A-trees were available, V could be materialized, and an A-tree

index could be constructed on top of V.

7. CONCLUSION 188

The performance issues regarding different view materialization algorithms had not been stu-
died in detail prior to the work presented in chapter 4. Previous work related to maintenance of
derived data objects (e.g., views [BLT86,BuC79,RoK86] and database enapshots |AdL80,LHM86})

has focussed mainly on algorithms for performing the task.

The intent of the work presented in chapter 5 is to give a better intuitive picture of the
tradeofis between the different strategies for processing queries against database procedures
(Always Recompute, Cache and Invalidate and Update Cache). The material presented there is
the first detailed performance study comparing the three alternatives. Other work on database
procedures discusses the implementation of the Always Recompute strategy in a version of
INGRES [SAH84,SAH85|, and suggests that Cache and Invalidate would perform well in some
situations [StR86]. Work by Sellis focuses on the optimization issues involved in choosing whether
to process proct_edure queries using Always Recompute or Cache and Invalidate [Sel86b, Sel87].
Sellis developed a method to decide whether an object should be cached depending on the cost cri-
terion involved. He does not present any performance figures comparing the cost of Cache and
Invalidate and Always Recompute for different parameter values. Also, his work does not con-

sider the possibility of using a view maintenance algorithm to support an Update Cache strategy.

The work presented in chapter 6 proposes new features to be added to the query language
POSTQUEL to allow easy specification of negated rule conditions. The ability to specify a
negated condition in a convenient syntax is provided by the not in operator in the SQL language .
[CAE?6]. In addition, chapter 6 describes an extension to POSTQUEL that allows complex
triggers to be specified. These triggers are similar to the production rules found in expert systems
shells (e.g. OPS5 [For81]). Triggers with production rule semantics differ from those with always
semantics proposed in [Sto85]. These two styles of triggers complement each other since they
bave different strengths and weaknesses. Previous work on complex triggers in database systems

considered only implementation issues [BuC79]. It did not propose an extemsion to a query

7. CONCLUSION 189

language to allow specification of rules. Other query languages with facilities to support triggers

allow simple triggers only, not complex ones [CAE76,Esw76, How86.

7.3. Implications of This Work

A primary implication of this thesis is that it appears worthwhile to implement a view
maintenance algorithm as part of a general-purpose relational DBMS. A great deal of mileage can
be gotten from a single implementation of the view maintenance algorithm. The same code used
to support materialized views can be used as a basis for materialized aggregates and database pro-

cedures. Furthermore, the code can be used to test complex trigger conditions efficiently.

Facilities to allow maintenance of derived objects will improve performance in query-
intensive applications. The performance improvement can be great if common queries retrieve
aggregate values or retrieve data from views or procedures that contain joins. There appears to
be a large class of applications that utilize complex databases which are not frequently updated.
Many statistical, scientific, technical and engineering database applications fit this model. These
applications need the benefits provided by general-purpose relational systems (e.g. data indepen-
dence, views, integrity control, protection etc.), but the performance of current database systems
is in many cases not adequate |[RKC87]. A database system equipped with the ability to

efficiently maintain materialized objects would thus be a useful tool to support these applications.

It is quite significant that efficient implementation of complex triggers is n'ow feasible
through the combined use of rule indexing and view maintenance techniques. Although the notion
of complex triggers has existed for several years [BuC79], such triggers have not been imple-
mented in a general-purpose relational database system. A key reason for this is that it was not
clear how to efficiently implement complex triggers in a DBMS up to this point. Finally, the
results of .chapter 6 show that it is possible to create a database rule language to support complex

triggers with just a few extensions to a query language.

7. CONCLUSION 190

7.4. Limitations of Results

The limitations of this the results of this thesis are primarily due to simplifying assumptions
that were required in the performance studies of chapters 2, 4 and 5. Some assumptions were
necessary to make analytical performance evaluation tractable. For example, it is assumed in
chapter 2 that all rule predicates have the same selectivity, and that ranges they cover are uni-
formly distributed over the data. Similar uniformity assumptions are made in chapters 4 and 5.
Ideal assumptions are also made regarding placement of indexes, so that all join predicates can be
processed using nested loop join with an index on the inner relation. Although simplifying
assumptions were made, the results presented still serve as a useful basis of comparison for the
algorithms studied. It should be possible to make well-informed design decisions based on the
results. It will be appropriate to review the results later after some of the algorithms analyzed
have been implemented in real systems and actual usage patterns are established. Implementation
of lock-based rule indexing techniques, rules, and database procedures is being undertaken for the
POSTGRES system [StR86].. The implementation will provide a useful testbed for further

analysis of some of the performance issues studied in this thesis.

7.5. Directions for Future Research

The work presented in this thesis suggests several topics that should be explored further.
First, the performance analysis done in this thesis could be extended by taking into consideration
the total amount of main memory available for the buffer pool. This would give a better picture
of the cost of the rule indexing techniques and the algorithms for maintaining derived objects that
were analyzed in chapters 2, 4 and 5. Since rule indexing and object maintenance techniques
appear to be potentially quite useful, a prototype implementation of them should be built into a
DBMS. It will then be valuable to do empirical tests that compare the performance of object

maintenance techniques with conventional methods.

7. CONCLUSION 191

If facilities for maintaining materialized objects are included in a relational database system,

many new optimization problems arise. In general, there are two possible options:

1. Maintain a copy of the object and process queries against it
by reading all or part of the stored copy.

2. Compute all or part of the object on demand.

Option 1 in effect provides new alternatives for the pbysical database designer. These new possi-
bilities complicate the physical database design process. Now, physical database design involves

the following tasks:

1. selection of primary and secondary indexes for base relations

2. selection of derived objects (e.g. views and procedures) to maintain
in materialized form

3. selection of primary and secondary indexes for materialized views

An interesting area for future research is to develop both manual and automatic techniques for
performing tasks 2 and 3. Sellis has addressed this this optimization issue for database procedures
[Sel87). This work can serve as a st;arting point for future research on how to.decide whether or
not to materialize a view. Previous work on physical database design can provide a foundation

for future research on methods for deciding how to index a materialized view [HaC76, WoK80].

Once the decision is made to materialize a view and appropriate indexes are defined on the
attributes of the view, the system must decide whether to process a query against the view by
reading the materialized view or using a normal query plan that accesses the base relations. Pro-
cessing the query using the materialized view is not always the best choice (e.g. the base relations
might be clustered on an access path useful for processing the query, while the materialized view
is clustered on another access path). Fortunately, extending a conventional query optimizer
[Sel79] to make this decision is straightforward. The optimizer can find the best plan for process-
ing the query normally, and the best one to process the query using the stored view. The plan

that should be used is the one with least expected cost.

7. CONCLUSION 192

Another optimization issue arises due to the work presented in chapter 3 on staticly optim-
ized view maintenance algorithms (RVM and SAVM). Using a staticly optimized view mainte-
nance algorithm, when given a collection of views, an efficient structure must be found for main-
taining those views. In the case of RVM this structure is 3 Rete network, and in the case of
SAVM the structure is a shared execution plan. Current expert system shells that use a Rete net-
work for testing rule conditions [For81,For82,5ho87] use heuristics to construct the network.
This appears satisfactory in an environment where the data base and rule base are small (e.g. at
most a few thousand facts and rules) and will thus fit entirely into main memory. In a database
environment where the number of facts and rules may be far greater, the optimization issue is
much more important. Hence, an interesting area for future research is to find algorithms for con-

structing optimized Rete nets and shared execution plans for RVM and SAVM, respectively.

Besides the issues of optimization, there are transaction processing questions that must be
addressed if support for materialized objects is added to a DBMS. Future research is required on

concurrency control and recovery in database systems enhanced with rules and derived objects.

It appears that all the pieces are finally available for building a highly gex;eral yet efficient
database rules system. A high-priority area research area is the construction of a working rules
system in a DBMS (this is being undertaken as part of the POSTGRES project [StR86,SHHS7]).
It is important to prototype some large database rule applicitions. The knowledge gained through
this endeavor will be invaluable to researchers attempting refine the rules system. It will also pro-
vide a sound basis for making decisions about the design of future database rule processing facili-

ties.

7. CONCLUSION 193
APPENDIX 1

Implementation of T-locks in B-Tree Indexes

All lock-based rule indexing algorithms require the ability to set t-locks on ranges of data in
a B-tree index. For predicate terms of the form attribute = constant, 8 t-lock is set in the index
by inserting a dummy record for the value constant. The dummy record bas fields to bold con-
stant, a tag indicating that the lock is for an equality condition, and the indentifier of the rule

that set the lock.

The problem of locking ranges of values is slightly more complex. Predicate tergmf specify-
ing ranges can be of thg following form:
constant, lower_op attributc upper_op constants
The symbols lower_op and upper_op are either < or <, and either or both of the constants can
be positive or negative infinity. Allowing the constants to be infinity ha;xdles the special case of
open-ended ranges such as attribute < constant. Recall that.the structure of a B-tree index
page is the following:
ptro, keyy, ptry, s keym, Ptrm
Everything in a subtree pointed to by ptr; bas a key value that is > key; and < key;y,. Inter-
vals are locked in the following way. The structure of an interval t-lock set by a rule with

identifier RulelD is
t = |RuleID, RuleType, constant,, lower_op, constantg, upper_op|

Locks are set in the tree using the following recursive algorithm, which is initially called on the

root page of the tree:

7. CONCLUSION 194

LockRange(Page, t-lock)
If Page is a leaf or the lock range covers all values on Page then
put a copy of ¢t-lock on the page and return
else
for each ptr; on Page such that the interval [key;, key;41) overlaps the lock range do
LockRange(tptr;. t-lock)

end
end if

}

When a new value k is inserted into a B-tree containing interval locks the insertion algo-
rithm must determine the set of locks that conflict with the new value. This is done by executing
the following section of code for each page visited on the trip from the root to the leaf

(ConflictSet is initially empty):

if page is an internal node then
ConflictSet := ConflictSet | J { locks on page }
else /* this is a leaf page */
ConflictSet := ConflictSet
U { T | Tis a t-lock with a range that covers k}
end if

After the insertion, ConflictSet contains the set of locks that conflict wi_th k.

The question arises as to what action to take when a B-tree page must be split or merged.
In the case of merges, the set of locks on the two pages must simply be unioned together to form
the set of locks for the new page. For splits, if the page being split is a leaf node, each new page
contains all the locks from the old page that overlap some value on the new page. If the page
being split is an internal node, the lock set from the original page is copied to both of the new

pages.

7. CONCLUSION 195

APPENDIX 2

This appendix describes the new aggregate syntax proposed for the POSTQUEL language
[StR86] and discusses how POSTQUEL aggregates are processed. A comparison of the old QUBL

aggregate notation [Eps79,HSW75] with the new POSTQUEL syntax is then given.

New Aggregate Syntax for POSTQUEL

The goal of the POSTQUEL aggregate notation is to make all linkage between the inner
and outer part of the query explicit, thus simplifying specification of complex aggregate queries.

The general form of a POSTQUEL aggregate is as follows:
aggregate_name ‘{’ ezp | from from_list | | where qual] ‘}’

Using this syntax, all tuple variables appearing in the query are global unless they are re-defined
in the from clause of an aggregate. Scalar aggregates can be specified in much the same way as
in QUEL. For example, the following POSTQUEL query retrieves the average salary of employ-

ees working in the Sales department:
retrieve (a = avg{EMP.salary where EMP.dept = “Sales"})

In general, a query containing an aggregate function consists of an outer block and one or more
nested inner blocks (inner blocks may in turn contain other nested blocks). The semantics of a
nested query of this form are that it appears to be processed using the following algorithm known

as nested iteration:

For each tuple ¢ that meets the qualification of the outer block, substitute ¢
into the inner block(s) and evaluate them. Form a modified query by replacing
the inner block(s) with the values they return. Evaluate the condition of this
query, and if it is true, add ¢ to the result.

7. CONCLUSION 196

Processing POSTQUEL Aggregates

As an example, a query to retrieve all department records for departments with an average

employee salary of greater than 15,000 dollars can be specified as follows in POSTQUEL:

Qx

retrieve (DEPT.all)
where avg {EMP.salary where EMP.dept=DEPT.dname} > 15000

Using nested iteration, the outer block of @, retrieves every DEPT record, and the inner block is
evaluated once for each one. For example, suppose that there is a DEPT tuple with dname =

“Toy"”. When processing @, using nested iteration, the following subquery is formed:

retrieve (dname = “Toy", ...)
where avg {EMP salary where EMP dept—-“Toy"} > 15000

Then the avg aggregate is evaluated. Suppose that the result is that the average Toy department

salary is 13,000 dollars. Then the following subquery would be formed:

retrieve(dname = “Toy", ...)
where 13000 > 15000

Since 13,000 is not greater than 15,000, no tuple is retrieved, so the Toy department record is not

part of the result.

Although the nested iteration algorithm is useful for defining the semantics of aggregation
queries, it is often not the most efficient way to process aggregates. For example, suppose that
there are 20 records for each unique dname value in the DEPT relation (e.g. 20 Toy department
records, 20 Sales department recores, etc.). In this case, using nested iteration, the inner block

would be evaluated 20 times for each dname - a tremendous waste of effort!

The SQL query language [CAE76] also provides aggregate queries with mested iteration
semantics. Previous research has shown how to translate nested aggregate queries written in SQL

into a form that can be processed much more efficiently [GaW87,Kie84,Kim82]. These techniques

7. CONCLUSION 197

are directly applicable to processing nested aggregation queries in POSTQUEL. For brevity, these
techniques are not reviewed here; the reader is referred to the original sources for a complete dis-
cussion. The principle behind the techniques is illustrated below using an example. Consider the
query @, given previously. @; can be transformed into the following query which makes use of
an explicit by clause rather than nested iteration to express grouping:
Q"
retrieve (DEPT.all)

where avg(EMP.salary by DEPT.dname
where DEPT.dname=EMP .dept) > 15000

This syntax is not legal for user queries in POSTQUEL, however the system may construct
queries with this structure for purposes of optimization ’ Q,' can be processed using the follow-

ing steps, as described in [Eps79):

1. Initialize a relation TEMP to hold the result of the aggregate
function as follows: :

retrleve unique into TEMP(count=0, avg=0, dname==DEPT.dname)

2. Run the following query (without removing duplicates), and for each
tuple retrieved, update the count and avg fields of the appropriate tuple
in TEMP:

retrieve (EMP .salary, DEPT.dname)

where EMP.dept = DEPT.dname

3. Modify @,' to form the following query:
Q"

retrieve(DEPT.all)

where TEMP.avg > 15000

and TEMP.dname = DEPT.dname

4. Execute Q," and return the result.

y Since aggregate queries based on nested iteration can be translated into » format using an explicit by clause, the
techniques for maintaining the results of aggregation queries proposed in chapter 3 cas be used with nested iters-
tion queries as well.

7. CONCLUSION 198

The procedure outlined above can be significantly more efficient than nested iteration. For exam-
ple, in the case where there are 20 DEPT records for each unique dname value, each EMP record

would be accessed 20 times using nested iteration, but only once using the above algorithm.
Comparison of QUEL and POSTQUEL Aggregate Notation

The QUEL aggregate function syntax has proven difficult for users to master. A major
problem with the QUEL notation is that the result relation of an aggregate function is implicitly
linked to the outer part of the query. In order to successfully specify specify a mon-trivial query
containing an aggregate function, the user must understand the fairly complex algorithm used to
perform the linkage. As an example, consider the following schema for a database containing

information about authors and the books they have written or co-written:

author(aid, name, ...) /* unique authors */
book(bid, title, ...) /* unique books */
ab(aid, bid) /* relationship showing authorship of a book */

Consider a query to find all pairs of authors that have co-authored more than three books

together. This query can be specified as follows using QUEL:

range of a, a2 Is author

range of b is book

range of abl, ab2Is ab

retrieve(a.all,a2.all)

where count(b.bid by a.aid, a2.aid
where a.2id=abl.aid and abl.bid = b.bid
and a2.aid = ab2.aid and ab2.bid = b.bid
and a.aid != a2.3id) >=3

The tuple variables a and a2 in the target list of this command are not the same as a an& a2 in
the aggregate function (this is an example of the source of confusion using QUEL aggregates).
The above query is processed in INGRES as follows. The aggregate function in the query is com-
puted to form the following temporary relation showing pairs of authors, and the number of books

they have co-authored.

TEMP(count, aidl, aid2)

7. CONCLUSION 199

The original query is then meodified to form the following:

retrieve(a.all,a2.all)
where TEMP.couni >=3
and TEMP.aid1 = a.aid
and TEMP.aid2 = a2.aid

The result of this modified query is returned to the user.
The same query can be specified as follows using POSTQUEL:

retrieve(a.all,a2.all)

from a, a2 In author, b in book, abl, ab2 In ab

where count {b.bid where a.aid = abl.aid and abl.bid = b.bid
and 22.aid = ab2.aid and ab2.bid = b.bid
and a.aid = a2.aid} >=3

Here, a and a2 refer to the same tuple in both the target list and the aggregate. The meaning of
this query is more clear from the text of the query itself thao it is in the QUEL example because

linkage between the aggregate and the outer part of the query is specified explicitly using a and

a2.

[AdL80)

[AgDe3]

[ASUT9]

[ABCT6]

[BBDS2]

[BLTS6)

[Blo70]

200

References

Adiba, M. E. and Lindsay, B. G., “Database Snapshots”, Proceedings of the

International Conference on Very Large Data Bases, October 1980, 86-91.

Agrawal, R. and DeWitt, D. J., “Updating Hypothetical Data Bases”, Information

Processing Letters 16 (April 1983), 145-146, North Holland .

Abo, A. V., Sagiv, Y. and Ullman, J. D., “Efficient Optimization of a Class of
Relational Expressions”, ACM Transactions on Database Systems 4, 4 (1979), 435-

454.

Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P., Gray, J. N,
Griffiths, P. P., King, W. F., Lorie, R. A., McJones, P. R., Mehl, J. W, Putzolu, G. R.,
Traiger, 1. L., Wade, B. W. and Watson, V., “System R: Relational Approach to
Database Management”, ACM Transactions on Database Systems 1, 2 (June 1976),

97-137.

Bates, D., Boral, H. and DeWitt, D. J., “A Framework for Research in Database
Management for Statistical Analysis”, Proceedings of the 1982 ACM-SIGAMOD

Conference on Management of Data, June 1982.

Blakeley, J. A., Larson, P. and Tompa, F. W., “Efficiently Updating Materialized
Views”, Proceedings of the 1986 ACM-SIGMOD Conference on Management of

Data, Washington DC, May 1986, 61-71.

Bloom, B. H., “Space/Time Trade-offs in Hash Coding with Allowable Errors”, CACM

18, 7 (July 1970).

[BoW77)

[Bras8é6]

{BuC79)

[Buts6)

[Car75)

[CAET6]

[Chas2]

[Cod70}

[Dat81a]

[Dat81b}

[DeF86]

References 201

Bobrow, D. and Winograd, T., “An Overview of KRL, a Knowledge Representation

Language”, Cognitive Science 1, 1 (Jan.-Mar. 1977).
Bratko, PROLOG Programming for Artificial Intelligence, 1986.

Buneman, O. P. and Clemons, E. K., “Efficiently Monitoring Relational Databases”,

ACM Transactions on Database Systems 4, 3 (September 1979), 368-382.

Butler, M., “An Approach to Persistent Lisp Objects"”, Proceedings of the Thirtieth

Computer Society International Conference, San Francisco, CA, March 1986.

Cardenas, A. F., “Analysis and Performance of Inverted Data Base Structures”,

CACM 18, 5 (May 1975), 253-263.

Chamberlin, D. D., Astraban, M. M., Eswaran, K. P., Griffiths, P. P., Lorie, R. A,,
Mehl, J. W., Reisner, P. and Wade, B. W., “SEQUEL 2: A Unified Approach to Data
Definition, Manipulation, and Control”, IBM Journal of Research and Depelopment

20, 6 (1976).

Chang, S. K., “Database Alerters for Knowledge Management”, Proceedings of the
Workshop on Self-Describing Data Structures, Univ. of Maryland, College Park,

October 1982.

Codd, E. F., “A Relational Model of Data for Large Shared Data Banks"”, CACM 18, 6

(June 1970), 377-387.

Date, C. J., “Referential Integrity”, Proceedings of the th VLDB Conference, Cannes

France, September 1981.
Date, C. J., An Introduction to Database Systems, Addison Wesley, 1981.

Deering, M. and Faletti, J., “Database Support for Storage of Al Reasoning
Knowledge", in Ezpert Database Systems/Proceedings From the Firast International

Workshop, L. Kerschberg (editor), 1986, Benjamin/Cummings.

[End72]

[Eps79)

[EGL76]

[Esw76]

[FiK8s5]

[For8i]

[For82)

[For84]

[FWAS6]

[GaM78]

References 202

Enderton, H. B., A Mathamatical Introduction to Logic, 1972.

Epstein, R., “Techniques for Processing of Aggregates in Relational Database

Systems”, UCB/ERL M79/8, University of California, February 1979.

Eswaran, K. P., Gray, J. N,, Lorie, R. A. and Traiger, 1. L., “The Notions of
Consistency and Predicate Locks in a Database System”, CACM 18, 11 (November,

1976).

Eswaran, K. P., “Specifications, Implementations and Interactions of a Trigger
Subsystem in an Integrated Database System”, IBM Research Report RJ1820(26414),

IBM Research Laboratory, San Jose, CA, August 1976.

Fikes, R. and Kebler, T., “The Role of Frame-Based Representation and Reasoning”,

CACM 28, 9 (September 1985).

Forgy, C. L., “OPS5 User’s Manual”, CMU-CS-81-135, Carnegie-Mellon University,

Pittsburgh, PA 15213, July 1981.

Forgy, C. L., “Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern

Match Problem”, Artificial Intelligence 19 (1982), 17-37, North Holland.

Forgy, C. L., “OPS83 Report”, CMU-CS-84-133, Carnegie-Mellon University,

Pittsburgh, PA 15213, May 1984.

Fox, M. S., Wright, J. M. and Adam, D, “Experiences with SRL: An Analysis of a
Frame-based Knowledge Representation”, in Ezpert Database Systems/Proceedings
From the First International Workshop, L. Kerschberg (editor), | 1986,
Benjamin/Cummings.

H. Gallaire and J. Minker, eds., Logic and Data Bases, Plenum Press, New York, NY ,

1978.

References 203

[GMNS1] H. Gallaire, J. Minker and J. M. Nicolas, eds., Advances in Data Base Theory ,

|GaWs?]

[Gev87]

|Gra78]

[GuF83]

[Gut84]

[HaC76)

[Han84]

[Han87]

[HSW7s)

Plenum Press, New York, NY , 1981,

Ganski, R. A. and Wong, H. K. T., “Optimization of Nested SQL Queries Revisited”,
Proceedings of the 1987 ACM-SIGMOD Conference on Mangagement of Data, San

Francisco CA, May 1987.

Gevarter, W. B., “The Nature and Evaluation of Commercial Expert System Building

Tools”, IEEE Computer, May 1987.

Gray, J. N., “Notes on Data Base Operating Systems”, IBM Research Report RJ2254,

IBM Research Laboratory, San Jose, CA, August 1978.

Gupta, A. and Forgy, C. L., “Measurements on Production Systems”, CMU-CS-83-

167, December 1983.

Guttman, A., “R-Trees: A Dynamic Index Structure for Spatial Searching”,

1Proceedinga of the 1984 ACM-SIGMOD Conference on Management of Data,

Boston, June 1984.

Hammer, M. and Chan, 1., “Index Selection in 3 Self-Adaptive Data Base System”,
Proceedings of the 1976 ACM-SIGMOD Conference on Management of Data,

Washington DC, June 1976.

Hanson, E. N. “User-Defined Aggregates in the Relational Database System

INGRES", Masters Report, University of Califoria, Berkeley CA, December 1984.

Hanson, E. N., “A Performance Analysis of View Materialization Strategies”,
Proceedings of the 1987 ACM-SIGMOD Conference on Management of Data, San

Francisco CA, May 1987.

Held, G., Stonebraker, M. and Wong, E., “INGRES - A Relational Database System”,

Proc. of the National Computer Conference, 1975.

[Hitse]

[HoTg6]

[Hows6)

[Toass)

[loag6]

[Jcvsd)

|Jar86]

[Kie84]
[Kims2]

[KoP81]

References 204

Hill, M., “et al., “Design Decisions in SPUR", IEEE Computer, November 1986.
Horwitz, S. and Teitelbaum, T., “Generating Editing Environments Based on Relations

and Attributes”, ACM Transactions on Programming Languages and Systems 8 , 4

(October 1986), 577-608.
Howe, L., “Sybase Data Integrity For On-Line Applications”, Sybase, Inc. 2910

Seventh Street, Berkeley California 94710, 1986.

loannidis, Y., “A Time Bound on the Materialization of Some Recursively Defined
Views”, Proceedings of the 11th International Conference on Very Large Data Bases,

Stockholm, August 1985.

Ioannidis, Y., “Enbancing INGRES with Deductive Power”, in Ezpert Database

Systems /Proceedings From the First International Workshop, L. Kerschberg (editor),

- 1986, Benjamin/Cummings.

Jarke, M., Clifford, J. and Vassiliou, Y., “An Optimizing Prolog Front-End to a
Relational Query System”, Proceedings of the 1984 ACM-SIGMOD Conference on

Management of Data, Boston, June 1984.

Jarke, M., “External Semantic Query Simplification: A Graph-Theoretic Approach
and its Implementation in PROLOG", in Ezpert Database Systemas/Proceedings From

the First International Workshop, L. Kerschberg (editor), 1986, Benjamin/Cummings.

Kiessling, W., “SQL-Like and QUEL-Like Correleation Queries With Aggregates

Revisited”, UCB/ERL M84/75, Univ. California, Berkeley, September 1984.

Kim, W., “On Optimizing an SQL-like Nested Query”, ACM Transactions on

Database Systems 4, 4 (September 1982), 443-469.

Koenig, S. and Paige, R., “A Transformational Framework for the Automatic Control

of Derived Data”, Proceedings of the Tth International conference on Very Large

[LHM86]

[Min75)

[Miss4]

[Paiso]

[RoG77]

[RoKS6]

[RoST79]

[RoS87}

[Rubss6]

References 205

Data Bases, France, 1981, 306-318.

Lindsay, B. G., Haas, L., Mohan, C, Pirahesh, H. and Wilms, P., “A Snapshot
Differential Refresh Algorithm"”, Proceedings of the 1986 ACM-SIGMOD

International Conference on Management of Data, June 1986, 53-60.

Minsky, M., “A Framework for Representing Knowledge”, in The Psychology of

Computer Vision, P. Winston (editor), New York, NY, 1975, McGraw Hill.

Mishkin, N., “Managing Permanent Objects”, PhD Thesis, Department of Computer

Science, Yale University, New Haven, Connecticut, 1984.

Paige, R., “An Efficient Implementation of Automatic Finite Differencing”,

Department of Computer Science, Rutgers University, August 1980.

Roberts, 1. and Goldstein, R., “NUDGE, A Knowledge-Based Scheduling Program”,
Proceedings of the Sth International Joint Conference on Artificial Intelligence ,

Cambridge, MA, August 1977, 257-263.

Roussopoulos, N. and Kang, H., “Principles and Techniques in the Design of ADMS",

Computer, December 1986.

Rowe, L. A. and Shoens, K. A., “Data Abstraction, Views and Updates in RIGEL",
Proceedings of the 1978 ACM-SIGMOD International Conference on Management

of Data, Boston Massachusetts, June 1979.

Rowe, L. A. and Stonebraker, M. R., “The POSTGRES Data Model”, Proceedings of
the 1Sth International Conference on Very Large Data Bases, Brighton England,
August 1987. |

Rubenstein, W. B., “A-Trees: An Indexing Abstraction for Ordered Aggregates”, U.C.

Berkeley Memo No. UCB/ERL/M86/77, 12 September 1986.

[RKC87]

[Rub8?]

[Scwse6]

[Sel79)

[Sel86a]

[Sel86b]

[Se187}

[SeL76]

[Shisq]

References 4 206

Rubenstein, W. B., Kubicar, M. S. and Cattell, R. G. G., “Benchmarking Simple
Database Operations”, Proceedings of the 1987 ACM-SIGMOD Confernence on

Management of Data, San Francisco, May 1987.

Rubenstein, W. B., “Data Management of Musical Information”, PhD Dissertation,

Dept. of Computer Science, U.C. Berkeley, Berkeley CA, June 1987.

Sciore, E. and Warren, D. S., “Towards an Integrated Database-PROLOG System”, in
Ezpert Database Systems/Proceedings From the First International Workshop, L.

Kerschberg (editor), 1986, Benjamin/Cummings.

Selinger, P., “et al., “Access Path Selection in a Relational Database Management
System”, Proceedings of the 1979 ACM-SIGMOD International Conference on

Management of Data, Boston, MA, June 1979.

Sellis, T., “Global Query Optimization”, Proceedings of the 1986 ACM-SIGMOD

International Conference on Management of Data 15, 2 (June 1986), 191-205.

Sellis, T., “Optimization of Extended Relational Database Systems”, PhD Thesis,

University of California, Dept of EECS, Berkeley CA, 1986.

Sellis, T. K., “Efficiently Supporting Procedures in Relational Database Systems”,
Proceedings of the 1987 ACM-SIGMOD Conference on Mangagement of Data, San

Francisco CA, May 1987.

Severance, D. and Lohman, G., “Differential Files: Their Application to the
Maintenance of Large Databases”, ACM Transactions on Database Systems 1, 3
(September 1976), 256-267.

Shmueli, O. and Itai, A., “Maintenance of Views”, Proceedings of the 1984 ACM-

SIGMOD Coﬁference on Management of Data, Boston, June 1984.

[ShB7S)

[Sho76]

[Sho87]

[Sto75)

[SWK76)

[SAH84)

[Sto8s)

[SAHS3]

[SSHS6)

References 207

Shortliffe, E. H. and Buchanan, B. G, “A Model of Inexact Reasoning in Medicine”,

Mathematical Biosciences 23 (1975), 251-379.

Shortliffe, E. H., Computer-Based Medical Consultations: MYCIN, American

Elsevier, New York, 1976.

Shoup, A, personal communication, Inference Corporation, San Francisco, CA,

1987.

Stonebraker, M., “Implementation of Integrity Constraints and Views by Query
Modification”, Proceedings of the 1875 ACM-SIGMOD International Conference on

Management of Data, San Jose, CA, June 1975.

Stonebraker, M., Wong, E., Kreps, P. and Held, G., “The Design and Implementation
of INGRES", ACM Transactions on Database Systems 1, 3 (September 1976), 189-

222.

Stonebraker, M., Anderson, E., Hanson, E. am'l_ Rubenstein, B., “QUEL as a Data
Type", Proceedings of the 1984 ACM-SIGMOD International Conjference on

Management of Data, Boston, MA, June 1084.

Stonebraker, M., “Triggers and Inference in Data Base Systems”, Proceedings of the

Islamorada Ezpert Database Conference, February 1985.

Stonebraker, M., Anton, J. and Hanson, E., “Extending a3 Data Base System with
Procedures”, (to appear in ACM Transactions on Database Systems, September

1987), Berkeley, CA, July 1985.

Stonebraker, M., Sellis, T. and Hanson, E., “An Analysis of Rule Indexing

Implementations in Data Base Systems", Proceedings of the First Annual Conference

. on Ezpert Database Systems, Charleston SC, April 1986.

[StRs6]

[SHHS7]

[SHPS7]

[Ungs]

[WoK80)

[Wos83]

[Ya077]

[Yao78]

[Zan85)

|Zan86]

References 208

Stonebraker, M. and Rowe, L., “The Design of POSTGRES", Proceedings of the 1986

ACM-SIGMOD Conference on Management of Data, 1986.

Stonebraker, M., Hanson, E. and Hong, C., “The Design of the POSTGRES Rules
System”, Proc. 1987 IEEE Data Engineering Conference, Los Angeles California,

February 1987.

Stonebraker, M., Hanson, E. and Potamianos, S., “A Rule Manager for Relational

Database Systems”, JEEE Transactions on Software Engineering, 20 May 1987.

Uliman, J., “Implementation of Logical Query Languages for Data Bases”, Proceedings
of the 1985 ACM-SIGMOD International Conference on Management of Data,

Austin, TX, May 1985.

Wong, E. and Katz, R. H:, “Logical Design and Schema Conversion for Relational and
DBTG Databases”, in Entity-Relationship Approach to Systems: Anglysis and

Design, North Holland Publishing Co., 1980, Amsterdam.

Woodfll, J. and Stonebraker, M., “An Implementation of Hypothetical Relations”,
Proceedings of the Ninth Very Large Date Base Conference, Florence, Italy,

December 1983.

Yao, S. B., “Approximating Block Accesses in Database Organizations’, CACM £0, 4

(April 1977).
Yao, A. C., “On Random 2-3 Trees”, Acta Informatica 9, 2 (1978).

Zaniolo, C., “The Representation and Deductive Retrieval of Complex Objects”,

Proceedings of the 11th International Conference on Very Large Data Bases,

Stockholm, August 1985.

Zaniolo, C., “Safety and Compilation of Non-Recursive Horn Clauses™, Proceedings of

the First International Conference on Ezpert Database Systems, Charleston, SC,

Al
. IS
o~ - [}
. g i
Reéferences 209
. . . i R L B .- P . '
3 R S N P T) " R - PR !
. April 1986. : ' o
) oo : E - : T
‘ . ; B o :
e - - I " v oy
- . N . . . (R »'. - o
.
. L ¢ E B .
- . t,. L . N A <
ey T S Do PR . T
- . M v ; ‘.l .
B N 8 IS
: :
- - R ¢ I o : . R !
S e Tt - T : '
PR H N . 5 e . . ‘ . .
- . : . ! . nl
- - . . e . - M Il
" ol E . S :
RIICEES . i - . N N
. ' *
ST LT T e ’
Ju oo . - ;) t :

	Copyright notice1987
	ERL-87-70 (1 of 3)
	ERL-87-70 (2 of 3)
	ERL-87-70 (3 of 3)

