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The Arc Tree: An Approximation Scheme

To Represent Arbitrary Curved Shapes

1. Introduction

The exact representation of curved geometric objects in finite machines is only

possible if the objects can be described by finite mathematical expressions. Typical

examples for such objects are paraboloids or ellipses, which can be described by

functional equations such asjt2/fl2+v2/6^=l. Many applications, however, especially

in computer vision and robotics, do not fit this pattern. The objects to be represented

are rather arbitrary in shape, and some approximation scheme has to be employed to

represent the data. Any finite machine can only store an approximate representation

of the data with limited accuracy. In particular, the answerto any query is based on

this approximate representation and may therefore be approximate as well.

Of course, the initial description of a curved object, coming from a camera, a

tactile sensor, a mouse, or a digitizer may already be an approximate description of

the real object In most practical applications, this description will be a sequence of

curve points or a spline, i.e. a piecewise polynomial function that is smooth and con

tinuous. To support set, search, and recognition operators, however, it is more

efficient to represent the data by a hierarchy of detail [Hopc87], i.e. a hierarchy of

approximations, where higher levels in the hierarchy correspond to coarser approxi

mations of the curve. Geometric operators can then be computed in a hierarchical

manner: algorithms start out near the root of the hierarchy and try to answer the given

query at a very coarse resolution. If that is not possible, the resolution is increased
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where necessary. In other words, algorithms "zoom in" on those parts of the curve

that are relevant for the given query.

In this paper, we develop this theme of hierarchy of detail, focusing on the arc

tree, a balanced binary tree that serves asan approximation scheme to represent arbi

trary curved shapes. Section 2 gives a definition of the arc tree and an algorithm to

obtain the arc treerepresentation of a givencurve. Section 3 generalizes the concept

of the arc treeto include Telated approaches such asBallard's strip trees [Ball81] and

Bezier curves [Bezi74, Pavl82]. Sections 4 aaid 5 show how to use arc trees to per

form point queries and set operations, such as union or intersection. Both sections

also discuss theperformance of our implementation. Section 6 outlines howto embed

arc trees into an extended database system such as POSTGRES [Ston86b], and sec

tion 7 contains a summary and our conclusions.

2. Definition

A curve is a one-dimensional continuous point set in d -dimensional Euclidean

space Ed. For simplicity, we restrict this presentation to the case d=2. The generali

zation to arbitrary d is straightforward. A curve is open if it has two distinct end-

points, otherwise it is called closed', see figure 1 for some examples. Asmentioned in

the introduction, in practical applications, curves are usually given as a polygonal

path, i.e. a sequence of curve points, or as a spline, i.e. apiecewise polynomial func

tion that is smooth and continuous.

The arc tree scheme approximates curves byasequence of polygonal paths. Let

the curve C have length / and be defined by afunction C(t):[0,1]->E2, such that the



Figure 1: A closed and two open curves

length of the curve from C(0) to C(t0) is r07. The k-th approximation Ck

(£=0,1,2...) of C is a polygonal path consisting of 2* line segments ekj (i=1..2*),

such that ekj connects the two points C(—j—) and C(—)• Each edge eki can be

associated with an arc aki of length //2*, which is a continuous subset of C.

* 1 *

C(—r-) and C(—r-) are the common endpoints of ek,- and a*;. For itel, each fc-th
2* 2 *

approximation is a refinement of the corresponding (fc-l)-th approximation: the ver

tex set of the (fc-l)-th approximation is a true subset of the vertex set of the fc-th

approximation. See figure 2 for an example.

Figure2: A Oth, 1st and 2nd approximation of a curve



More formally, the k-ih approximation of C is defined by a piecewise linear

function Ck(t):[Oyl]—>E2 as follows. Here, t_ and t denote

respectively.

ft
and

t4

Ck(t) = «
C(t) r-2*=0..2*

zr-'C (r) +^C (r) otherwise

Then the following convergence theorem is easily proven.

Theorem 1: The sequence of approximation functions (Ck(t)) converges uniformly

towards C(r).

Proof: We have to prove max d(Ck(t),C(t)) -» 0, or that for any e, there is a K

such that for all k>K and for all t e [0,1], it is d(Ck(t),C(t)) <e. Here, d denotes

Euclidean distance. Let JT=log2—. Now assume (*) there were some t and some

k>K such that

d(Ci(f),C(»))Se

Then we have

d(Ct(f),C(t))*4-

d(Ck(t),C(.t))>
J
2*

2'
d(Ck(£,C(t)) + d(Ck(t),C(t))> -3-



l
2k

d(C(f),C(0) +d(C(t)tC(t)) >TJT

This is a contradiction to the definition of the *-th approximation. The arc from C (r)

to C(f) may not be longer than //2*. Hence, assumption (*) is wrong which proves

the theorem. D

Moreover, for each approximation Ck there is a well-defined area that contains

the curve. We have

Lemma 2: Let Eki denote the ellipse whose major axis is U2k and whose focal points

f-1

2* ' T
are the two endpoints Of the edge ekti, C(-^-) and C(—). Then the arc ak$i is

internal to Eki.

Proof: (by contradiction) LetX e akj denote a point external to Eki. Then

d<x,c(i^-))+dpc,c(,-^))>jr

Thus, the length ofaki would be greater than H2k which isacontradiction. D

Corollary 3: The curve C is internal to the area formed by the union of the bounding

ellipses, KjEki (£=0,1,..). •
i=o

See figure 3 for an example.



Figure 3: A curveC with its 2nd approximation C2 and corresponding ellipses E2fi *

The family of approximations of a given curve C can be stored efficiently in a

binary tree. The root of the tree contains the three points C(0), C(l/2) and C(l) and

is considered on level 1. If a tree node on level i contains point C(—) (x=1..2'-l)t
2l

2x—1 2x+lthen its left son contains point C( . ), and its right son contains point C( .+1 ).
2 ~

We call this tree the arc tree of the curve C. The arc tree is an exact representation of

C; each of its subtrees represents a continous subset of C. An inorder traversal of the

first k (fel) levels of the arc treeyields the vertices of the k-th approximation, sorted

by increasing r. Onthe other hand, a breadth-first traversal of the first k levels yields

these vertices in an order such that the first 2*+l vertices yielded form the i-th

approximation of C. See figure 4 for an example.

In practice, only a finite numberof levels of the arc tree is stored. An arc tree

with r levels is called an arc tree of resolution r. It is a balanced binary tree and it

represents the Oth through r-th approximation ofC.



Figure 4: A curve with approximations andits arctree. For a closed curve, it

isA =F.

An arc tree of resolution r can be constructed in two traversals of the given

curve C. In the first round, one determines the length / of C. If C is a spline (or a

polygonal path), / can be computed using the following formula for the arc length of

an analytical curve. If the curve is given by y =f (x), its length between the points

P x(x xj J and P2ix2,yi) is

*2

/ =jVi+//2(x)dx
*1

If it is given by x = x (t), y =y(t), its arc length is

'2

f/ =px^O +y^Odt

with Xi =x{fi) and y,- =y (ff). One may also attach a label to each knot of C indicat

ing the length accumulated so far. This does not require any additional computation,

but it will speed up the second round. In the second round, one picks up the curve



points C(—) (i e {0,1..2r}) and inserts them into the appropriate tree nodes while

performing a depth-first inorder traversal of the tree.

Note that arc trees can be used to represent any given curve that can be

parametrized with respect to arc length. This requirement poses no problem if the

input curve is given as a polygonal path or a spline. Nevertheless, there remain prob

lems with some curves such as fractals, for example [Mand77], or with curves that

are distorted by high-frequency noise. In both cases the concept of arc length

becomes somewhat meaningless and it is necessary to smooth the curve first before

the parametrization can take place.

3. Generalization

The arc tree parametrizes the given curve by arc length and localizes it by

means of bounding ellipses. At higher resolutions the number of ellipses increases,

but their total areadecreases, thus providing a better localization.

The arc treecan be viewed as just one instance of a large classof approximation

schemes that implement HopcrofVs ideaof hierarchy of detail [Hopc87]. Higher lev

els in the hierarchy correspond to coarser approximations of the curve. Associated

with each approximation is a bounding area that contains the curve. Set and search

operators are computed in ahierarchical manner: algorithms start outnear the root of

the hierarchy and try to solve the given problem at a very coarse resolution. If that is

not possible, the resolution is increasedwhere necessary.



In this section we will present several approximation schemes that are based on

the same principle, but that use different parametrizations or bounding areas. For all

of these schemes, it is fairly straightforward to obtain the representation of a given

spline. Moreover, the algorithms for the computation of set and search operators are

essentially the same as the ones for the arc tree, which are presented in sections 4 and

5. It is a subject of further research to conduct a detailed practical comparison of

these schemes to find out which schemes are suited best for certain classes of curves.

The first modification of the arc tree concerns the choice of the ellipses Eki as

bounding areas. These ellipses provide the tightest possible bound but, on the other

hand, ellipses are fairly complex objects, which has a negative impact on the perfor

mance of this scheme. For example, it is often necessary to test two bounding areas

for intersection; if the bounding areas are ellipses, this operation is rather costly. Our

implementation showed that it is in fact sometimes more efficient to replace the

ellipses by their bounding circles; see section 5.1. The circles provide a poorer locali

zation of the curve, but they are easier to handle computationally, which caused the

total performance to improve. Other alternatives would be to use bounding boxes

whose axes are parallel to the coordinate axes or to the axes of the ellipses. Both of

these approaches, however, proved to be less effective than the bounding circles.

If the curves to be represented are polygonal paths with relatively few vertices,

it is more efficient to break up the polygonal paths at their vertices rather than to

introduce artificial vertices C(l/2*). If a polygonal path has n+1 vertices Vj.. vn+1,

it can be represented exactly by a polygon arc tree of depth log2n as follows. The



root of the polygon arc tree contains the vertices Vj, V|-n/2-| +1, and vn+1. Its left son

contains thevertex V[-n/4] +1, itsright son thevertex Vf 3/4.n] +1, and soon,until all ver

tices are stored. Clearly, the arc length corresponding to a node is no more implicit;

it has to be stored explicitly with each node. In particular, at each node N it is neces

sary to know the lengths of the subcurves corresponding to N 's left and right subtree.

An example is given in figure 5.

10 ! vltv5,vg|77

Figure 5: A polygon and corresponding polygon arc tree.

The numbers in italics denote arc length.

It is easily seen that some of this length data is redundant Indeed, with some

care it is sufficient to store only one arc length datum per node. For this reason, the

storage requirements for a polygon arc tree are only about 20% to 40% higher than

for a regular arc tree of the same depth.

There are other structures that also implement some hierarchy of detail. One of

them is the strip tree, introduced by Ballard [Ball81]. As the arc tree, the strip tree

10
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represents a curve by a binary tree such that each subtree T represents a continuous

part Cj of the curve. C-r is approximated by the line segment connecting its end-

points (xbyb) and (xeye). The root node of T stores these two endpoints and two

widths Wj and wr, thus defining a bounding rectangle ST (the strip) that tightly

encloses the curve segment CT. ST has the same length as the line segment

((xb^b),(xe^e)) and its sides are parallel or perpendicular to it. See figure 6 for an

example of a curve and a corresponding strip tree. Clearly, this approach requires

some extensions for closed curves and for curves that extend beyond their endpoints

(fig. 7).

When a strip tree is constructed for a given curve C, a curve segment Cj is sub

divided further until the total strip width wt+wr is below a certain threshold. As it is

a non-trivial operation to obtain the strip ST for every curve segment CT, the con

struction of a strip tree for a given curve may be quite costly. To subdivide CT, one

can choose any point of Cj that lies on the boundary of the corresponding strip Sr.

Clearly, a strip tree is not necessarily balanced (see also figure 6) which has a nega

tive impact on its average-case performance. Note that arc trees are balanced, which

might give them an edge over strip trees in terms of average performance.

Also, a strip tree requires about twice as much space as an arc tree of same

depth: each arc tree node stores a minimum of two real numbers and two pointers,

whereas a strip tree node stores six real numbers and two pointers. Note, however,

that strip trees can be modified to require less storage. First, all subdivision points

belong to more than one strip and are therefore stored in more than one node. The
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Figure 6: A curve with strip, a hierarchy of strips, and a corresponding strip tree.

redundant data may be replaced by pointers or deleted, which may require that some

of the algorithms are slightly modified. Second, rather than storing wt and wr, one

may just store the maximum of these two widths. The resulting strip is potentially

12



Figure 7: A curve C that extends beyond its endpoints. There is no bounding

box of length / that contains C.

13

wider and provides a poorer localization. In both cases, some loss in performance is

likely, but it will probably be minor compared to the savings in storage space.

A very different approach to implement a hierarchy of detail is based on curve

fitting techniques such as Bezier curves [Bezi74] or B-splines [DeBo78]; see also

[Pavl82] for a good survey of these and related techniques. A Bezier curve of degree

m is an m-th degree polynomial function defined by m+1 guiding points P i.. Pm+\.

The curve goes through the points Px and Pm+i and passes near the remaining guid

ing points P2.. Pm in a well-defined manner. The points P2 through Pm may be

relocated interactively to bring the Bezier curve into the desired form. See figure 8

for two examples.

It can be shown that a Bezier curve lies within the corresponding characteristic

polygon, i.e. the convex hull of its guiding points. Also, a Bezier curve B canbe sub

divided into two Bezier curves Bj and B2 of same degree. The characteristic

polygons of Bx and B2 are disjoint and subsets of B*s characteristic polygon. They



P2

P4

PI

P3

Figure 8: Examples of Bezier polynomials with three and five guiding points.

therefore providea betterlocalization ofB; see figure 9.

Figure 9: A Bezier curve B partitioned into two curves Bx and B2 with

characteristic polygons.

Now we can derive a hierarchical representation of a given Bezier curve B as

follows. The first approximation is the edge segment connecting B 's endpoints; its

bounding area is given by B's characteristic polygon. The second approximation is

the polygonal path connecting the endpoints of Bx and B2; its bounding area is the

14
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union of the characteristic polygons of Bi and B2, and so on. There are various

efficient subdivision algorithms to obtain B xandB2 from a givenB; see forexample

[Pavl82], pp. 221-230.

The main problem with this approach seems to be that not every curve can be

approximated well by a low-order Bezier curve. A high-order Bezier curve, however,

is harder to partition and has a more complex characteristic polygon, which has an

adverse impact on the performance of this scheme. In practice, complex curves are

often approximated by several third-order Bezier curves. This would mean that the

bounding area of the first approximation is a union of convex polygons, which is

alreadyrather complex. Further approximations are then obtained by subdivisions of

each one of these polygons. Nevertheless, this approach seems very promising and

should be included in a practical comparison of the various approaches to implement

a hierarchy of detail.

We expect arc or strip trees to be superior to Bezier curves if the curves to be

represented are initially described by a long sequence of curve points andcan only be

described by high-order splinesor a large numberof simpler splines. This is often the

case if curves are input from a digitizer pad or a mouse. On the other hand, if a curve

is initially given by a few simple splines, it is probably more efficient to keep this

representation anduse splinesubdivision algorithms as described aboveto implement

a hierarchy of detail.

B-splines can be used in a way similar to Bezier curves to implement a hierar

chy of detail. Forappropriate subdivision algorithms, see [Bohm84].



Certainly, there are many more possibilities to implement a hierarchy of detail

as a tree structure similar to the schemes presented above. Note that in all of these

schemes it is possible to trade space with time as follows. Rather than storing all

lower level approximations explicidy, one could keep the source description of the

curve in main memory and compute finer approximations "on the fly" when needed.

This approach can be viewed as a procedural arc tree as finer approximations are

defined procedurally, i.e. by means of the appropriate subdivision algorithm that

computes finer approximations from coarser ones. This approach seems particularly

promising for the Bezier approach where highly efficient subdivision algorithms are

available. In the case of arc and strip trees, the computations to obtain finer approxi

mations are probablytoo complex to be repeated at every tree traversal.

As mentioned above, the algorithms for set and searchoperationsfor these vari

ous approximation schemes are all essentially the same. In the following two sec

tions, we give the algorithms for the arc tree scheme. In most cases, the correspond

ing algorithms for the other schemes are simply obtained by replacing the ellipses

Eki by the corresponding bounding areas, viz., the characteristic polygons for the

curve fitting approaches or the strips for the strip tree.

4. Hierarchical Point Inclusion Test

To demonstrate the power of the arc tree representation scheme, we first show

how to answer point queries on the arc tree. Given a point Ae E2 and a simple

* A point set issimple if it iscontinuous, closed and not self-intersecting. In two ormore dimensions this means inpar
ticular that it has no holes.
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closed curve C, a point query asks if A is internal to the simple point set enclosed by

C,P(C). For simplicity, we also describe this case by stating thatA is internal to C,

orthatA€P(C).

The point inclusion test is performed by a hierarchical algorithm called

HPOINT, which starts with some simple approximation C^p of C. For each edge

ekj ofCapP (i=1..2*), it checks if the replacement ofek± by the arc ak^ may affect

the internal/external classification of A. If there is no such edge eki, then

A € PiPgpp) is equivalent to A e P(C); HPOINT uses a conventional algorithm to

solve the point query A 6 PiC^)*! and terminates. Otherwise, HPOINT replaces

each edge ekj, whose replacement by aki may affect A*s classification, by the two

edges ek+i£i_i and ek+it2i. The resulting polygon is a closer approximation of C.

HPOINT proceeds recursively with that polygon.

If the maximum resolution has been reached without obtaining a result, then the

problem cannot be decided at that resolution. In fact, there are boundary points (such

as C(l/3)) that cannot be decided at any finite resolution. There are three ways to

resolve this situation: (i) the algorithm returns unclear, (ii) the algorithm considers

the point a boundary point, or (iii) the arc tree is extended at its leaf nodes to include

the source description of the curve; then, edges ek%i may eventually be replaced by

arcs a^j to allow an exact query evaluation. For HPOINT, we choose option (ii),

thus considering the boundary as having a nonzero width. In our definition of the

point inclusion test, where the given point set P(C) is closed, HPOINT returns

A e P(C), accordingly.



We are left with the problem of how to find out quickly if the replacement of

ek,i by aki may affect the internal/external classification of A. From lemma 2, we

obtain

Lemma 4: Let Cki denote the curve obtained from C by replacing the arcaki by the

straight Kne ekti. Then, if A is external to Ekj, it is AeP(C) equivalent to

AeP(C^)).

Proof: Because A is external to Eki, A may not lie on or between akj and eki.

Therefore, the replacement of akti by ekj may not affect the internal/external

classification ofA. •

It is therefore sufficient to check if A is internal to Eki. If yes, the replacement

of ekti by akj may affect the classification of A, otherwise it may not Letting the

initial approximation be Cq, HPOINT can be described more preciselyas follows.

Algorithm HPOINT

Input: A point A e E2. The arc tree Tc of asimple closed curve C.

Output:A e P(C)?

(1) Set the approximation polygon Cw toC0 and k to zero.

(2) For each edge ekj (i e {1..2*)) ofCw do

(2a) If A is one of the endpoints of ek%i, return true andstop.

(2b) Otherwise, ifA is internal to the ellipse Ekj, tag ekj.

18



(3) If Cfl-o has no tagged edges, use a conventional point inclusion algorithm to

determine ifA € P (Cq,p), return the result and stop.

(4) Otherwise, if A: is less than the maximum resolution, depth(Tc), replace each

tagged edge ek%i by the two edges e*+it2;_i and ek+i^i, increase k by one and

repeat from (2).

(5) Otherwise, retun true and stop.

Step (2a) is necessary for termination if A is a boundary point Step (2b) can

easily be done by computing the distances from A to the two focal points of Eki.

Step (4) can be performed by using C 's arc tree in the following manner. Each edge

19

2i-l

2k
ekj is associated with the subtree whose root contains the point C( k ). Note that

this is the curve point which corresponds to the center point of eki and which

e*+i,2i-i and**+it2i nave m common. If ekj is to be replaced by «jk+i^i_i and ek+lt2i,

HPOINT obtains that point from the tree node and continues recursively on both sub

trees of this node.

Steps (2) and (4) can now be performed during a top-down traversal of the arc

tree. Each subtree can be processed independently of the others, which offers a

natural way to parallelize the algorithm. If C^,p has nomore tagged edges, orif the

maximum resolution has been reached, the partialresults are collected in a bottom-up

traversal of the tree and put together to form the boundary of the final approximation

polygon Capp. At this point, A € P(C) is equivalent toA e P{C^p). Step (4) can be

performed by Shamos' algorithm, where one constructs a horizontal line L through A



and counts the intersections between L and the edges of Cw that lie to the left of A.

If the number of intersections is odd then A is internal, otherwise it is external.

Shamos' algorithm requires some special maintenance for horizontal edges; see

[Prep85] for details.

We implemented this algorithm on a VAX 8800 and ran several experiments to

see how HPOINT 's time complexity correlates with the complexity of the given

curve C and with the location of A with respect to C. Our running times should not

be considered in absolute terms as we did not make a strong effort to optimize our

programs. However, the figures are appropriate for comparative measurements. Fig

ures 10 and 11 show our results. Here, t is CPU time in ms, and r is the resolution at

whichthe query wasdecided. The dotted polygons are the r-th approximations of C,

respectively.

20

(a)r=2,t=4.0 (b)r=3,t=5.1 (c)r=3,t=5.5 (d)r=6,t=8.0

Figure 10:C is a spline with 12 knots.

Note that the use of alternative approximation schemes is unlikely to improve

the performance of our algorithms. To test a given point for inclusion in a given
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(a)r=2,r=4.0 (b)r=4,t=6.4 (c)r=4,t=7.1 (d)r=6,t=8.9

Figure 11: C is a spline with 36 knots.

ellipse has about the same complexity as the corresponding tests for a characteristic

polygon (say, a convex quadrilateral) or a strip. On the other hand, the test is some

what easier for circles or for boxes whose axes are parallel to the coordinate axes. In

both cases, however, the localization of the curve that is provided by these areas is

poorer than for the bounding areas above.

Our algorithm HPOINT is an application of Hopcroft's idea of hierarchy of

detail [Hopc87]. It solves the point inclusion problem by starting with a very simple

representation of C and introduces more complex representations only if they are

required to solve the problem. The algorithm "zooms in" on those parts of C thatare

interesting in the sense that they may change the internal/external classification of the

point A at a higher resolution. As our examples demonstrate, HPOINT terminates

very quickly if A is not close to C. The closer A gets to C, the higher is the
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resolution required to answer the point query. Due to a quick localization of the

interesting parts of C, the algorithm does not show the quadratic growth in the com

plexity of C that a worst-case analysis would predict.

5. Hierarchical Set Operations

In this section, we show how to detect and compute intersections, unions, and

differences of one- and two-dimensional point sets. We assume that the input point

sets are simple and that they are given by their arc trees or by the arc trees of their

boundaries. Again, the idea is to inspect approximations of the input curves by

increasing resolution and to "zoom in" on those parts of the boundaries that may

participate in an intersection.

5.1. Curve-Curve Intersection Detection

We first show how to test two given curves C and D for intersection. The

hierarchical algorithm HCURVES starts with simple approximations C^ and D^p

of C and D, respectively, and continues with approximations of higher resolutions

where necessary. We have

Lemma 5:The arcs ak%i and bkj corresponding to the edges ekti ofCw and/*j of

Dgpp, respectively, must intersect if the following three conditions are met:

(i) ek%i intersects fkJ,

(ii) the two endpoints of ek%i are external tothe ellipse Fkj corresponding tofkj,

(iii) the two endpoints offkj are external to the ellipse Ekii corresponding to ekti.



Proof: Any situation where all three conditions are met are topologically equivalent

to the situation in figure 12.

Figure 12
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The intersection of the two ellipses Eki and Fkj is a quadrilateral ABCD with

curved edges AB, BC, CD, and DA. The segment of the arc aki that is interior to

ABCD connects some point of AB with some point of CD. The segment of the arc

bkj that is interior to ABCD connects some point of BC with some point of DA.

Obviously, this is not possible without an intersection of the two arc segments, which

proves the lemma. D

Now the algorithmHCURVES proceeds as follows. Foreach pairof edges, ekti

ofCgpp andfkj ofD^ (i,je {0,1..2*}), HCURVES checks if their corresponding

arcs may intersect According to lemma 2, this can be done by testing if the

corresponding ellipses Eki and Fkj intersect. If yes, HCURVES puts tags onekj and

fkj and applies lemma 5 to see if the arcs must intersect. If yes, HCURVES reports

an intersection and stops. After all edges ekti of C^ have been processed,



HCURVES checks if there are any tagged edges. If no, HCURVES reports no inter

section and stops. Otherwise, HCURVES replaces all tagged edges by the

corresponding edges of the next higher approximation, increases k by one, and

proceeds recursively on the refined curves. If the maximum resolution has been

reached and there are still tagged edges, HCURVES interprets the situation as an

intersection of the boundaries and returns an intersection. More exacdy, HCURVES

can be described as follows.
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Algorithm HCURVES

Input: The arc trees Tc and TD of two curves C and D.

Output: C(~>p*W

(1) Set the approximation polygons C^ to C0, D^ to Dq, and k to zero.

(2) For each pair of edges ekj ofC^ and fkj ofDw do

(2a) Check if thetwoellipses Eki and Fkj intersect

(2b) Ifyes, tag ekti and fkj; if conditions (i) through (iii) in lemma 5are met or

if ekti and fkj share one or two endpoints, return true and stop.

(3) If there are notagged edges, return false and stop.

(4) If k is less than the maximum resolution, min(depth(Tc),depth(TD)), replace

each tagged edge ekti ofCw by the two edges e*+it2l_i and ek+it2i. Similarly

for each tagged edge/*j ofZ^. Increase k by one and repeat from (2).
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(5) Otherwise, the maximum resolution has been reached; return true and stop.

We implemented this algorithm onaVAX 8800 with a few slight modifications

to speed up execution. First, the test if the two ellipses Ek%i and Fkj intersect is

replaced by atest if the two circumscribing circles of Ek^ and Fkj intersect If those

do not intersect then the ellipses do not intersect either. Otherwise, we assume that

the ellipses may intersect and proceed accordingly. We made several experiments

with more accurate tests, such as to test bounding boxes of the two ellipses for inter

section, or to test the two ellipses themselves for intersection. In every case, the exe

cution times went up between 25% and 60%. The more accurate tests required a

significant amount of CPU time, but they only marginally reduced the number of

tagged edges.

Second, rather than performing step (2) for each pair of edges ek%i of C^p and

fkj of Dgpp, we maintain matrices to keep track which pairs of ellipses {EkjJFkj)

pass the intersection test in step (2a). Then, step (2) is executed for a pair of edges

(ekjjkj) if and only if the ellipses ^_i,f,/2] and F^.ltp;/2i, which correspond to

their parent edges, intersect Otherwise, it is known in advance that Eki and Fkj do

not intersect

Figures 13 and 14 give several examples for the performance of the algorithm.

Here, r denotes the resolution at which the algorithm is able to decide the query, and

t denotes the CPU time in ms.
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(a) r=5, t=27.6 (b) r=5, t=18.2 (c) r=3, t=3.2

Figure 13: C is a spline with 13 knots, D a spline with 8 knots.

X D

D

(a) r=4,t=17.4 (b) r=8,t=135.3 (c) r=4,t=5.6

Figure 14: C is a spline with 24 knots, D a spline with 23 knots.

Again, it is not clear if the use of alternative approximation schemes might yield

a better performance. The crucial operation in algorithmHCURVES is the test if two

bounding areas intersect In the case of circles, this is a trivial operation: two circles
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intersect if the distance between their centers is no more than the sum of their radii.

The corresponding tests for boxes or characteristic polygons (say, convex quadrila

terals) are about two to three times as complex.

Note that the running timesdo not growquadratically with the complexity of the

input curves. The example in figure 11 (b) requires a large amount of CPU time due

to the fact that the two curves are quite interwoven but do not intersect. It is therefore

necessary to get down to fairly high resolutions in order to determine that there is no

intersection. It seems that a case like this will require a lot of computation with any

other intersection detection algorithm as well.

5.2. Curve-Curve Intersection Computation

The intersection is actually computed by the hierarchical algorithm HCRVCRV,

a variation of algorithm HCURVES. HCRVCRV does not test if two arcs must

intersect It continues recursive refinement until one of the following two conditions

is met: (i) there are no more tagged edges, or (ii) the maximum resolution has been

reached. In case (i), C and D donot intersect Incase (ii), each tagged edge of Cw

isintersected with each tagged edge of£>w and the intersection points are returned.



Algorithm HCRVCRV

Input: The arc trees Tc and TD of two curves C andD.

Output: Cr^p

(1) Setthe approximation polygons Cw toC0, D^p toDq, and A: to zero.

(2) For each pair of edges ek± of C^ and fkj of D^, check if the two ellipses

Ekj and Fkj intersect If yes, tag ekti and fkj.

(3) If there are no tagged edges, return no intersection and stop.

(4) Otherwise, if k is less than the maximum resolution,

rrnn{depth(J'c)4epth(J't>)), replace each tagged edge ekj of C^p by the two

edges e^-n^-i and ek+1^. Similarly for each tagged edge fkj of D^p.

Increase k by one and repeat from (2).

(5) Otherwise, the maximum resolution has been reached. Intersect each tagged

edge eki with each tagged edge fkj, report all intersection points and stop.

We implemented this algorithmon a VAX 8800 with the same modifications as

in the case of HCURVES. Figures 15 and 16 give two examples for the performance

of the algorithm at various maximum resolutions r. P is an intersection point, d is

the distance between P and its approximation, Cr andDr are C 's andD *s approxi

mations at maximum resolution, and t is CPU time required to compute all intersec

tions.
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\D7

(c)r=3,t=13.7,d=5.6 (d)r=7,t=138.5,d=0.2

Figure 15: C is a spline with 13knots,D a splinewith 8 knots.



30

D

(a)P(142/464) (b)r=3,t=19.6,d=12.9

(c) r=4, t=38.7,d=5.0 (d) r=7, t=187.5, d=0.3

Figure 16:Both C and D are splines with 20 knots.

Note that the running times do not increase quadratically with the number of

edges, 2r, or with the complexity of the input curves. In fact, the increase in CPU

time is about cubical in r, i.e. polylogarithmic in the number of edges. The following

plot shows the increase in CPU time for both figures and for resolutions r=2 through

r=7. The broken lines indicate the distance d between the actual intersection point P

andthe corresponding intersection pointreturned by HCRVCRV at maximumresolu

tion r.



«A*

160

140

120

100

80

60

40

20

40

30

20

10

Fig. 15

31

Fig. 16

Fig. 15

4 5 6 7 > r

Figure 17

5.3. Curve-Area Intersection Detection

Given the arc trees of a curve C and a closed curve D, it is now easy to detect if

C intersects the point setP (D). First, oneemploys algorithm HCURVES to checkC

and D for intersection. If the two curves do not intersect, it may be possible that C is

internal to D. This can be checked by algorithm HPOINT by testing somepointof C

if it is internal to D. C and P (D) do not intersect if and only if both tests fail.

5.4. Curve-Area Intersection Computation

To actually compute the intersection of a curve with an area, we present the

hierarchical algorithm HCRVARA. Given the arc trees of a curve C and a simple

closed curve D, HCRVARA computes CpjP(D). The initiation and the recursion
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step of HCRVARA are identical to the corresponding sections of algorithm

HCRVCRV. As HCRVCRV, HCRVARA proceeds recursively until one of two con

ditions is met: (i) there areno more tagged edges, or (ii) the maximum resolution has

been reached.

In case (i), it may be that C is internal to D. A point queryon some point of C

suffices to decide if that is the case. In case (ii), each tagged edge of C^p is inter

sected with each tagged edge of D^p and subdivided at the intersection points into

disjoint edge segments. Now each edge segment of C^, is either internal orexternal

to Dapp. HCRVARA performs a point query for some point of C^p to see if it is

internal orexternal. Starting from that point, HCRVARA performs atraversal of C^

to label each edge as internal or external. The label is alternately internal or external,

changing at each intersection point. Some special handling is required for edges of

Capp that coincide with edges ofD^p; see figure 18 for an example.

Figure 18: The dotted segments ofC^p are internal, the broken segments external.

Finally, HCRVARA replaces all untagged internal edges of C^ by the

corresponding edges of maximum resolution, and returns the internal edges and edge
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segments of C^p. It follows amore exact description of HCRVARA.

Algorithm HCRVARA

Input: The arc treesTc andTD of acurveC anda simple closed curve D.

Output: Cr^iD)

(1) Set the approximation polygons Cw toC0, D^p toDq, and k to zero.

(2) For each pair of edges ekti of Cw and fkj of D^, check if the two ellipses

Ekj andFkj intersect If yes, tag ekj and fkj.

(3) If there areno tagged edges, return no intersection and stop.

(4) Otherwise, if & is less than the maximum resolution,

min(depth(Tc)4epth(TD)), replace each tagged edge ekti of Cvp by the two

edges ek+12i-x and ek+i#. Similarly for each tagged edge fmj of D^p.

Increase k by one and repeat from (2).

(5) Otherwise, the* maximum resolution has been reached. Intersect each tagged

edge eki with each tagged edge fkj and subdivide the edges ek%i at their inter

section points into disjoint segments.

(6) Perform apoint query for some point ofC^ to see if it is internal or external to

(7) Traverse C^ and label edges as internal or external. The label is alternately

internal or external, changing at each intersection point.



(8) Replace the internal untagged edges by the corresponding edges of maximum
resolution.

(9) Return the internal edges and edge segments ofC
*Trr

We implemented this algorithm on aVAX 8800 with the same modifications as

in the case ofHCURVES. Figures 19 and 20 give two examples for the output of the

algorithm at various maximum resolutions r. The dotted curves are the r-th approxi
mation of D, respectively.

D v D. D3 V..

(a) (b)r=2,t=8.4 (c)r=3,t=17.2 (d) r=5, t=42.5

Figure 19: C is aspline with 10 knots, D aspline with 18 knots.
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D / D

- A

(a) (b)r=3,t=21.5

D

, A

(c)r=4,t=41.7 (d)r=6,t=102.0

Figure 20: Both C andD are splines with 20 knots.

Again, the running times do not increase quadratically with the number of

edges, 2r, or with the complexity of the input curves. In fact, the increase in CPU

time is about cubical in r, i.e. polylogarithmic in the number of edges. Figure 21

shows the increase in CPU time for both figures and forresolutionsr-2 through r=7.
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5.5. Area-Area Intersection Detection

Given the arc trees of two closed curves C and D, it is now easy to detect if the

enclosed point sets P(C) and P(D) intersect. First, one employs algorithm

HCURVES to check C and D for intersection. If the two curves do not intersect, it

may bepossible that C is internal toD, or vice versa. This can bechecked by algo

rithm HPOINT bytesting some point of C if it is internal toD, and some point ofD

if it is internal to C. The two areas do not intersect if and only if all tests fail.

5.6. Area-Area Set Operations

Given the arc trees of two closed curve C and D, the intersection of P (C) and

P(D) can now be computed as follows. First, one employs algorithm HCRVARA to



compute CpP (D) and D pP (C). The resulting curves form the boundary of the

intersection P(C)p/>(D). Some special handling is required for those edge seg

ments that C and D have in common. HCRVARA has to be modified such that it

marks these segments in its output. These segments are included in the boundary if

and only if the corresponding edges of C and D havethe sameorientation; see figure

22.

*- D

c/
p(o ^-'.•:;'>/-1'̂ > P(D)

^

Figure 22: EFis included in the boundary ofP (C)r^P (D), AB is not.

We implemented this algorithm on a VAX 8800with the samemodifications as

in the caseof HCURVES. Figures 23 and 24 give two examples for the performance

of the algorithm atvarious maximum resolutions r. The broken curves are the r-th

approximations of C andD, respectively.
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(a) (b)r=2,t=15.8 (c)r=3,t=33.1 (d) i»5, t=79.6

Figure 23:C is a splinewith 10knots,D a spline with 20 knots.

.A-

D

(a) (b)r=3,t=44.1

C<

,:.j aJ\
fe<N po5

D

(c) r=4, t=85.9 (d) r=5, t=140.5

Figure 24: Both C and D are splines with 20 knots.

D
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Again, the running timesdo not increase quadratically with the maximum reso

lution or with the complexity of the input curves.

To obtain the boundary of the union />(C)p/>(D), one computes those seg

ments of C that are external to D and those segments of D that are external to C.

Again, the edge segments that C and D have in common are included if and only if

the corresponding edgesof C andD havethe same orientation.

To retrieve the boundary of the difference P{C)-P{D), one computes those

segments of C that are external toD and those segments of D that are internal to C.

The edge segments that C and D have in common are included if and only if the

corresponding edges of C and D do nothavethe same orientation.

6. Implementation in a Database System

As the previous sections have shown, the arc tree is an efficient scheme to

represent curves. In large-scale geometric applications such as geography orrobotics,

is is usually most efficient to have a separate data management component and to

maintain a geometric database to store a large number of geometric objects. In order

to use the arc tree representation scheme efficiendy in this context, it is therefore

necessary to embed arc trees as complex objects in the database system. This section

will discuss several ways to perform this embedding; we will restrict our analysis to

relational databases.

There are three major ways to implement complex objects in an extended rela

tional database system such as POSTGRES [Ston86b] or DASDBS [Paul87]. First,
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one may organize the data of a complex object in relational form and represent the

object as a set of tuples, each marked with a unique object identifier. Then the algo

rithms may be either programmed in an external host languagewith embedded query

language commands [RTI84], or within thedatabase system by means of user-defined

operators [Wong85], These approaches have been used in earlier attempts to extend

relational database systems to applications in geography and robotics

[Kung84,Gunt87]. Second, one supports a procedural data type to store expressions

in the query language or any other programming language directly in the database.

This approach is emphasized in the POSTGRES database system [Ston86a]. Third,

one may define an abstract data type (ADT) with corresponding operators and

abstract indices; see for example [Ston83]. The importance and suitability of ADT

mechanisms for geometric data management has also been discussed by Schek

[Sche86]. The following subsections will discussthese approaches in turn and evalu

ate their suitability to embed arc trees in a relational database.

6.1. The Pure Relational Approach

The traditional approach would be to represent a complex object as a set of

tuples, i.e. as a relation or subrelation. For the representation of an arc tree the fol

lowing database design may be used.

arctreenodes (tree-id = int, node-id = intt point-x = real,point-y = real,

left-son = int, right-son - int)

Then the algorithms for intersection detection and so on arecoded in a general-

purpose programming language (the host language) that allows the embedding of
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query commands to access the database. In the case of INGRES [Ston76], one may

use, for example, EQUEL/FORTRAN[RTI84].

For this approach, the relational data model as defined by Codd [Codd70] would

be sufficient It would not be necessary to extend the data model by new concepts

such as special data types, and query optimization could be carried out as usual.

Nevertheless, we do not believe that this approach will be very efficient For each

access to a tree node it is necessary to activate the interface between host language

and the database system. In order to get the left-son node of a given node N, for

example, it is necessary to process the following query.

range ofal, a2 is arctreenodes

retrieve (al.all)

where al.node-id = a2.left-son

and a2.node-id = N

Thisquery involves a join of the relation arctreenodes with itself. Then the resulting

tuple has to be returned to the host language before the execution of the program can

continue. This is a major effort to retrieve just one node, which may slow down the

overall performance of our algorithms considerably.

6.2. Relational Data Type and User Defined Features

A variation of this approach would be to represent the arc tree as above, but to

program the algorithms within the query language by means of a relational data type

and user defined data types and operators [Wong85]. First, the relational data type is

used to represent each arc tree as one tuple in a relation arctrees:
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arctrees(tree-id = int, nodes = arctreenodes using tree-id)

Here, the domain nodes is of the relational data type arctreenodes. A value of this

domain is the setof all tuples in arctreenodes that share the same tree-id value.

Second, the user has to define the geometric data types and operators that are

needed in this context, based on the data types and operators provided by the data

base system. For example, onemaydefine adata type line in twodimensions as

define type line (phase = real, dist = real)

where phase denotes the angle between the line and the x-axis, and dist is the dis

tance between the line and the origin. Then one defines an operator intersect as

define operator intersect (ll=line, I2=line) asz = boolean

where z-1 if 11.phase * 12.phase or 11.dist = I2.dist

Eventually, one will be able to program arc tree algorithms within the extended

query language. Clearly, each such program P that uses any of the userdefined data

types and operators can be mapped onto a program P in the basic query language.

Then the query optimization can be performed on P in the usual manner. Moreover,

there will be opportunities to perform some kind of global query optimization

[Sell85] because thequeries do nothave to be processed one by one, asin thecase of

the host language approach.

One problem with this approach is that it requires the definition of a lot of data

types and operators before algorithms can be coded. Also, it isnot sure if the database

can provide an efficient environment for the program execution. Finally, this

approach does not really make use of the special properties of the arc tree and the
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access paths required. The arc tree is avery regular structure, and the setof operators

to be performed is very limited. Any selective access to lower level subtrees is

embedded in a more complex operator, such asunion or intersection, that starts out at

the root of the tree and works its way down from there. Nevertheless, this approach

seems to be promising and should be included in a practical performance analysis.

63. Procedure as a Data Type

Another method to support complex objects is to introduce a procedural data

type; in particular, a data type query seems to be useful. This approach has first been

suggested by Stonebraker [Ston84] and it is currendy being implemented in

POSTGRES. The procedural data typerefers to components thatare complexobjects

themselves by means of a retrieval command. This approach provides easy access to

lower level components via the multiple-dot notation and provides efficient support

for shared subobjects.

Consider the following POSTGRES example with two objects apple and

orange and three relationspolygon, circle, and line.



name desc

apple retrieve (potygon.all) wherepolygonXd- 10

retrieve (circle.all) where circleXd = 40

orange retrieve (line.all) where lineXd -17

retrieve (po\ygon.all) wherepolygonXd = 10

Table 1:The object relation.
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Clearly, the polygon 10 is a complex object that is shared by both apple and orange.

To retrieve the areaof the shared polygon, for example, one may use the multiple-dot

notation [Zani83] as follows.

retrieve (object.desc.polygon.area) where object.name = 'apple*

In orderto improve performance, it is usually useful to precompute access plans

or even answers to stored queries. This precomputation step makes the query optimi

zation somewhat more complicated, but it improves overall efficiency. As discussed

in [Ston86a] , the procedural data type also provides efficient support for complex

objects with many levels of subobjects and complex objects with unpredictable com

position.

The arc tree is certainly an object with many levels of subobjects, but it has a

very regular structure and no shared subobjects. Furthermore, the set of operators to

be performed is very limited, and any selective access to lower level subtrees is
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embedded in a more complex operator, such as union or intersection, that starts out at

the root of the tree and works its way down from there. We therefore do not believe

that the procedural data type is an adequate embedding for arc trees; it is too compli

cated because it is too powerful. We advocate to use the simpler ADT scheme as

described in the following subsection.

6.4. Abstract Data Types

Although the arc tree is a useful representation scheme for the most important

geometric operators, it should not necessarily be visible to the user. On the contrary,

all set and search operators should be executed without revealing the internal

representation scheme - the arc tree- to theuser. Theonlyoperator where the internal

representation may be visible to the user is the rendering of approximations of the

curve. But even then, it seems preferable to offer an operator that maps an abstract

object of type curve and a resolution into an approximation of the curve. Note that

for noneof the common operators the userneeds to haveexplicitaccessto subtrees or

to retrieve or manipulate details of the arc tree. On the other hand, it is important to

implement the algorithms for set and search operations as efficiendy as possible. The

algorithms are complex, and their performance should notbe impeded unnecessarily

byan insufficient runtime environment or aninadequate implementation language.

Because of these considerations and because of the limited number of operators,

we believe that an embedding of the arc tree as an abstract data type (ADT) into an

extended database system is the superior solution to the problem. An ADT is an

encapsulation of a data structure (so that its implementation details are not visible to



an outside client procedure) along with a collection of related operators on this

encapsulated structure. The canonical example of an ADT is a stack with related

operators new, push, pop and empty.

In our case, the user is given an ADT curve; each curve is represented internally

as an arc tree, but this fact is completely transparent to the user. The operators

defined on curves are given in table 2. Internally, all of these operators can be imple

mented in a high level programming language such as LISP or C++. Because the

nodes of the arc trees are accessed along the parent-child pointers of the tree, it will

be useful to store nodes near their parent nodes.
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operator operand-1 operand-2 result

approximation curve integer curve

point inclusion test curve point boolean

curve-curve intersection detection curve curve boolean

curve-curve intersection computation curve curve set of points

curve-area intersection detection curve (closed) curve boolean

curve-area intersection computation curve (closed) curve set of curves

area-area intersection detection (closed) curve (closed) curve boolean

area-area intersection computation (closed) curve (closed) curve set of (closed) curves

area-area union computation (closed) curve (closed) curve set of (closed) curves

area-area difference computation (closed) curve (closed) curve set of (closed) curves

Table 2: The curve ADT.
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Note that it is not necessary to define a separate data type for closed curves. Each

operator that requires the input curves to be closed may just extend its type checking

by a test for closedness. Operators that return sets may just be implemented as

relation-valued operators (such as the common retrieve command that may return
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relations as well as single tuples).

7. Summary and Conclusions

We presented the arc tree, a balanced binary tree that serves as an approxima

tion scheme for curves. It is shown how the arc tree can be used to represent curves

for efficient support ofcommon set and search operators. The arc tree can be viewed

as just one instance of a large class of approximation schemes that implement some

hierarchy of detail. We gave an overview of several other approximation schemes

that are based on the same idea, and indicated how to modify the arc tree algorithms

to work with these schemes.

Several examples are given for the performance of our algorithms to compute

set and search operators such as point inclusion or area-area intersection detection

andcomputation. Theresults of thepractical analysis areencouraging: in most cases,

the computation of boolean operators such aspoint inclusion or intersection detection

can be completed on thefirst four or five levels of the tree. Also, thecomputation of

non-boolean operators such as intersection computation gives fairly good results even

if one restricts the computation to the first few levels. Finally, it is described how to

embed the arc tree as an abstract data type into an extended database system. It is

subject of future research toconduct a more comprehensive and systematic study of

these arc tree algorithms. Also, we arc planning to conduct a theoretical analysis of

the arc tree, and tocompare the arc tree toBallard's strip tree and Bezier curves, both

theoretically and practically.
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