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ABSTRACT

The efficient management of geometric data, such as points, curves, or polyhe-

dra in arbitrary dimensions, is of great importance in many complex database appli

cations like computer-aided design, robotics, or computer vision. To provideoptimal

support for geometric operators, it is crucial to choose efficient data representation

schemes. In this thesis, we first give a taxonomy of operators and representation

schemes for geometric data and conduct a critical survey of common representation

schemes. Several new schemes are presented for the efficientsupport of set operators

(union, intersection, difference) andsearch operators (pointlocation, rangesearch).

Polyhedral point sets are represented efficiently asconvex polyhedral chains, i.e.

algebraic sums of convex polyhedra (cells). Each cell is represented as an intersec

tion of halfspaces and encoded in a ternary vector. Then the computation of set

operators can be decomposed into (a) a collection ofvector operations, and (b) a gar

bage collection where vectors that represent empty cells are eliminated. All results of



the garbage collection are cached in the vectors, which speeds up future computa

tions.

To detect polyhedral intersections in arbitrary dimensions, we propose a dual

representation scheme for polyhedra. Using this scheme, we obtain time complexities

of 0(2dd\ogn) and Odld^'ho^n) for the hyperplane-polyhedron and the

polyhedron-polyhedron intersection detection problems, respectively. These results

are the first of their kind for dimensions larger than three.

The cell tree is a balanced search tree for polyhedrain arbitrary dimensions, and

is related to R-trees and binary space partitioning trees. It is designed for paged

secondary memory and should therefore serve well as an index structure for

geometric databases.

To represent curves, we introduce the arc tree, a balanced binary tree where

subtrees with roots on the same tree level represent continuous subcurves of equal

length. Each tree level is associated with an approximation of the curve; lower levels

correspond to approximations of higher resolution. We present algorithms and exper

imental results for the computation of various set and search operators and discuss

several options to embed arc trees as complex objects in an extended database

management system like POSTGRES.
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Chapter 1

Introduction

Modem database systems are no longer limited to business applications. Non

standard applications such as robotics, computer vision, computer-aided design, or

geographic data processing are becoming increasingly important, and geometric data

play a crucial role in many of these new applications. For efficiency reasons it is

essential that the special properties of geometric data be fully utilized in the database

management system. It is important to view geometric objects (such as points, lines,

polygons, polyhedra, or splines) as integral entities and not just as tuples of numbers

that may be used to represent them.

Furthermore, the special operators that are defined on geometric data need to be

supported. These operators are substantially different from the operators defined on

numerical data. In particular, we distinguish between

• set operators: union, intersection, set difference;

• search operators: point location (given a collection of geometric objects and a

point, find all objects that contain the point), range search (given a collection of

objects and a reference object, find all objects that intersect the reference

object);

• similarity operators: translation, rotation, and scaling; and

• recognition operators: given a collection of geometric objects and a reference



object, find all objects that resemble the reference object, according to some

given metric.

With the possible exception of the similarity operators, all of these operators are

harder to compute than most common numerical operators. To provide optimal sup

port for an operator, it is important to choose an efficient scheme to represent the

data. A representation scheme is the mapping of the original data objects into a set of

objects that are convenient to store and that facilitate the computation of a particular

class of operators.

Consider for example the various schemes to represent a polygon. By far, the

most common way to represent a polygon is by a list of its vertices, given by then-

coordinates relative to some coordinate system. Clearly, the computation of similar

ity operators is fairly easy in this scheme; it just involves a simple numerical compu

tation applied to all the coordinates. On the other hand, it is extremely difficult to

compute recognition operators, as it is a non-trivial task to determine if two given

vertex lists represent polygons that are similar, congruent, or even identical. In order

to support recognition operators, it is necessary to normalize vertex lists, such that

there is only one vertex list that represents a given polygon. Also, if two polygons are

similaror congruent, their representations shouldhave some components in common.

Even normalized vertex lists, however, do not provide efficient support for set and

search operators. For those operators, it is useful to represent polygons by means of a

hierarchical scheme such as quadtrees, polyhedral chains, cell trees, or arc trees.

These schemes will be discussed in detail in chapters2,3,5, and 6, respectively.



In a numerical computing environment, it is often sufficient to maintain only

one representation of the data. In geometric computing, on the other hand, it is often

necessary to store multiple representations of the same data in order to facilitate the

efficient computation of a great variety of geometric operators. Multiple representa

tions cause a significant overhead to ensure availability and consistency of the data,

and it is a subject of further research to see how extended database management sys

tems such as POSTGRES [Ston86] can be used efficiently in such a complex data

management environment.

The significance of representation schemes for efficient geometric data manage

ment was first recognized by Requicha, who gave an excellent taxonomy of

geometric representation schemes in [Requ80]. This thesis continues in that direc

tion: it starts with a survey of common representation schemes for geometric data,

then suggests some new schemes, and conducts several theoretical and practical ana

lyses to determine which schemes are good for which operators. We also discuss how

to embed these schemes in an extended database management system like

POSTGRES.

Chapter 2 considers some general properties of operators and representation

schemes and gives a survey of common representation schemes for two- and three-

dimensional geometric data. We propose several modifications to these schemes to

eliminate some of their flaws. In particular, we discuss how to normalize representa

tion schemes to be unique and to have invariants with respect to similarity operators.

Then, a geometric object is represented by a unique tuple (g ,z) where g is a set of



similarity operators, and z is a description of the invariant parts of the object. In

addition, means for defining distance functions that measure the difference between

two geometric objects are discussed. Distance functions are of great importance for

the definition and support of recognition operators. As an example, Fourier descrip

tors [Pers77] to implement normalization and distance functions are considered.

Chapter 3 introduces polyhedral chains as a new representation scheme for

polyhedral point sets in arbitrary dimensions. Each polyhedral point set is

represented as an algebraic sum of simple polyhedra (cells). In particular, we con

sider convex polyhedral chains (i.e. the cells are convex) and discuss an implementa

tion where each convex cell is represented as an intersection of halfspaces and

encoded in a ternary vector. The notion of vertex is abandoned completely. We show

how this approach allows us to decompose the computation of set operators on

polyhedral point sets into two independent steps. The first step consists of a collection

of vector operations; the second step is a garbage collection where vectors that

represent empty cells are eliminated.

In order to carry out the garbage collection efficiently, an algorithm is needed to

detect quickly whether two given convex cells intersect Chapter 4 represents a

digression into theoretical computational geometry, and new algorithms to detect

polyhedral intersections in arbitrary dimensions are considered. Our algorithms are

based on a dual representation scheme for geometric data, and they have polyloga-

rithmic time complexity. These results are the first of their kind for dimensions larger

than three.



Chapter 5 discusses how to use hierarchical data structures as representation

schemes to support search operators such as point locations and range searches. We

introduce the cell treet which is a hierarchical data structure to represent polyhedral

data in arbitrary dimensions that facilitates the computation of these search operators.

As Bayer's B-tree [Baye72, Come79] and Guttman's R-tree [Gutt84], the cell tree is a

balanced tree that is designed for paged secondary memory. It should therefore serve

well as an index structure for geometric databases.

Chapter 6 introduces yet another hierarchical data structure. The arc tree

represents a curve of length / by a balanced binary tree such that any subtree whose

root is on the k-xh tree level isrepresenting asubcurve of length //2*. Each tree level

is associated with an approximation of the curve; lower levels correspond to approxi

mations of higher resolution. The arc tree can be viewed as just one instance of a

large class of approximation schemes that implement some hierarchy of detail. Based

on these data structures, queries such as point search or intersection detection and

computation can be solved in a hierarchical manner. Algorithms start out near the

root of the tree and try to solve the queries at a very coarse resolution. If that is not

possible, the resolution is increased where necessary. Chapter 6 gives the definition

of the arc tree and a practical performance analysis for various kinds of set and search

operators. We also discuss several related schemes and various options to embed arc

trees as complex objects in an extended database management system like

POSTGRES [Ston86].

Chapter 7 contains our conclusions and directions for future work.



Chapter 2

Operators and Representation Schemes

for Geometric Data

2.1. Introduction

Many of the operators used in a geometric computation environment are sub

stantially different from the operators defined on numerical data. They are often

harder to compute, and it is not trivial to determine the smallest domain on which

they are closed. The computation of search operators such as point location and

range search, for example, usually requires complex hierarchical data structures such

as the R-tree [Gutt84]. The set operators such as union or intersection are not even

closed in the set ofpolyhedra (fig. 2.1).

Fig. 2.1: The intersection of two simple polyhedrais not necessarily a simple polyhedron.

In short, to deal with geometric data effectively, it is important to support the



computation of geometric operators by suitable representation schemes. The follow

ing two sections consider some general properties of operators and representation

schemes that are useful for classification and evaluation purposes. Sections 2.4 and

2.5 present an analysis of several representation schemes that are common in

geometric applications. We distinguish between elementary and hierarchical

representation schemes; hierarchical schemes represent an object by some combina

tion of simpler objects of the same dimension. We propose several modifications to

various schemes to eliminate some of their fiaws. In particular, we discuss how to

normalize representation schemes to be unique and to have invariants with respect to

similarity operators. Then, a geometric object is represented by a unique tuple (g,z)

where g is a sequence of similarity operators, and z is a description of the invariant

parts of the object. Also, it is discussed how to define distance functions that measure

the difference between two geometric objects. As an example, we discuss how to use

Fourier descriptors [Pers77] to implement normalization and distance functions. Sec

tion 2.6 summarizes the results of this chapter in table form and gives a brief over

view over the properties of the most common geometric representation schemes.

2.2. Properties of Operators

2.2.1. Operand and Result Spaces

An operator is a function f:DilxD%2x...xD*'-*R. The Dt are the

operand spaces, and R is the resultspace of the operator. Operators can be classified

according to their result space, such as boolean operators, where R=[true jalse}, or

metric operators, where R is the set of real numbers.
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Many common operators have only one operand space. They perform a mapping

D*-*/? and are called homogeneous. In this case, D is also called thedomain of the

operator. A homogeneous operator with R=D is called automorphic. An auto-

morphic operator is closed u\D,otD is closed under the operator.

It is often desirable to have operators that are closed in some domain. In order

to achieve this, one may embed an operator into another operator. An operator

/: Di1 xD22x...xD^-»J? is embedded in another operator

/+:D{ixD&x...xD£->/?+ if

(i) D,cD|+ 0=1.. r)

(ii) RzR+

(iii) foraU(d1..d*)eZ)f1xD|2x...xDrfc: f(dl..dk)=f+(dl..dk)

2.2.2. Order

The sum ki+ktf-... +kr is the order of the operator. According to their order,

operators are classified into unary, binary, ternary, or fc-ary operators.

Many common operators are binary or can be reduced to a binary operator as

follows. A set F={fk-I>k-*Dik =0,1,2..} of automorphic operators is called a

family of operators if

fk<Pi"Pk) =fz(fil(Pi • .PijX/ij^+i • .P/1+«2) •••A(Pi1+...H-i+i • -Pk))*

Clearly, in a family (fk) of operators, /x is the identical function, and /o maps any

operand into the neutral element. In particular, for ££2 it is

fk<Pi • -Pk) =fi(f2( • • • (f 2(^1^2)^3) • • )^ik)-



That is, each operator can be computed as a sequence of binary operators. The order

of the operator is reduced to 2.

2.2.3. Invariants

Let G denote some group of unary automorphic operators on D, i.e.

Gc {g'I>~->D}. The homogeneous operator f-Dk-*R is invariant with respect to

G if for all gt € G f(dltd2,... 4k) =/(£itf i*S2**2» • • • *&kdk) • An important

operator that is invariant with respect to similarity operators is the congruence test

operator that tests two given geometric figures for congruence. Invariants may sim

plify the computation of such operators significantly; see section 2.3.4.

2.2.4. Commutativity and Associativity

A homogeneous operator / is commutative if for all dt e D and all permuta

tions n/ (dlt... 4k>f (ntfj,... 4k)).

A binary automorphic operator is associative if for all dt^D

f (f (dx4j)4i>f (drf (d243)).

2.2.5. Examples: Numerical and Geometric Operators

The most common operators are the arithmetic operators +,-,*, and /. The

addition operator +, for example, usually represents a family of automorphic, com

mutative, and associative operators on the domain of real numbers. It embeds the

corresponding operators on the domains of rational or integer numbers. It is not

invariant with respect to any non-trivial group of operators.

Another example is the division operator /. It usually represents a binary, auto

morphic, non-commutative, non-associative operator on the domain of real numbers.
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It embeds the corresponding operators on the domains of rational or integer numbers.

Note, however, that the corresponding operator on integer numbers is not auto

morphic; the result spaceis, of course, the set of rational numbers.

In geometric applications, operators are often more complicated. That is, they

are harder to compute, it is usually less trivial to determine the smallest result space

in which they are closed, and it is harder to embed them into an automorphic opera

tor. Consider, for example, the regularized intersection operator p^*, as defined by

Tilove [Tilo80]. Given two point sets P and Q, this operator first obtains the simple

intersection P r^Q, and then computes the closure of its interior, yielding PC\*Q.

This way, the dimension of the result is equal to the lowest dimension of any of the

operands, andthe resulting point set hasno dangling edgesor faces (fig. 2.2).

(a) (b)/>n2
Figure 2.2

(c)Pn*Q

The regularized intersection operator represents a family of commutative opera

tors on the domain of d -dimensional polyhedra. Unfortunately, the operator is not
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closed in the set of simple polyhedra. It is only closed in the set of convex polyhedra

or in the set of polyhedral chains, which are discussed in chapter 3. The remaining

two regularized set operators, union (vj*) and difference (-*), arc both not even

closed in the set of convex polyhedra. (They are closed, however, in the set of

polyhedral chains.)

Other operators that are useful in geometric applications include the simple set

operators, unary metric operators such as volume, unary automorphic operators such

as the similarity operators (translation, rotation, and scaling), search operators such as

point location and range search, and several binary boolean operators such as the tests

for congruence or similarity, or the point inclusion test (given a point and a geometric

object, is the point inside the object?). The volume, the congruence test, and the

similarity test operator are all invariant with respect to the group of rigid body

motions (i.e. translations and rotations). The similarity test operator is invariant with

respect to the group of similarity operators.

2.3. Properties of Representation Schemes

Following Requicha [Requ80], a representation scheme is a relation s:M->R.

M, the modeling space, is a collection of objects to be represented. R, the represen

tation space, is a collection of representations. For example, in the case of relational

databases for geometric data, M contains multi-dimensional geometric objects, and

R contains basic database objects such as tuples and relations.

2.3.1. Domain and Range
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Requicha [Requ80] defines the domain D of s as the set of all representable

objects, i.e. D:={me M:s(m)*ty}. D should be as close to M as possible. The

range V of s is the set of all valid representations in R. It is defined as V :=

{re/?: s~*(r )*ty). R-V should be minimized as invalid representations may cause

various problems. They are often caused by redundancy in the representation.

2.3.2. Unambiguous and Unique Representations

A representation scheme s is unambiguous if s~l(v) is a single element set for

each element v of V. It is unique if s (d) is a single element set for each element d

ofD. Uniqueness is of crucial importance for recognition operators and in a database

environment where one should be able to determine the identity of two objects

immediately.

Non-unique representations schemes may be made unique by means of a nor

malization function n:R-»/?, such that n(r{)=n (r2) if and only if s~1(rx)=s~1(r2).

Then each object deD may be represented by n(s(d)) rather than by s(d)> andR

may be restricted to n (R). The resulting representation scheme is clearly unique. Sec

tion 2.4.1 gives some examples on how to find a suitable normalization function to

uniquely represent polygons and planarcurves.

2.3.3. Irredundant and Concise Representations

Non—redundancy and conciseness are two properties of representation schemes

that are harder to describe in a formal way. Informally spoken, a representation is

non-redundant if there are no parts in the representation that are functionally depen

dent on other parts of the representation. A representation scheme is concise if it
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needs relatively little storage space for its representations; it contains few redundant

data.

2.3.4. Invariants

Invariants are parts of a representation that do not change if certain operators

are performed on the represented object More formally, let G denote some group of

unary automorphic operators on R, i.e. Gc(^ ->R}. The quotient RIG denotes

the set of all equivalence classes in R under G. That is, each element in RIG is of the

form z = {grig e G} ,r 6R. Now, R =GxR/G, i.e. each element of R can be

represented asr =(giz),g e G,z gR/G. Clearly, the z -part of this representation is

invariant with respect to G, i.e. for all geG and all (g,z)e/?, it is

g(g,z)=(]f'g>z).

In a geometric environment it is highly desirable to have representation schemes

that have invariants with respect to similarity operators. These invariants are useful to

retrieve objects in the database that are congruent or similar to a given reference

object.

An operator / that is invariant with respect to G can now be computed using

only part of the representation:

/(ri^2»...»r*)

= /(tei>zi)»(£2>z2)»".»(£*»**))

= fiZ\liB\^M2liZi^ •••. AT'Cff*^*))

= / ((<Mi)»0M2)> •♦.» (<M*» OMdentity).
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The operator / can be computed using only the z-part fo the representation, which

may reduce the number of parameters considerably. An example for such an operator

is the congruence test operator C that tests two given geometric figures for

congruence. C is invariant with respect to the group of rigid body motions. Using the

same notation as above, it is

C(rxjr2>^
true if Zj=z2

false otherwise

The question is how to obtain a unique and concise representation of the invari

ants z of a given representation scheme. One possibility is to use a normalization

function n: R ->R such that n (rx) = n (r^ if and only if r j and r2 are equivalent

under G. Clearly, n (r{)=n (r£ is a concise representation of exactly those parts of r x

and r2 that are invariant under G, i.e. it is a representation of z. Section 2.4.1 gives

some examples on how to find suitable normalization function for polygons and

planar curves.

2.3.5. Distance Functions

In geometric applications it often happens that the given objects are slightly dis

torted. A geometric database system should therefore be able not only to retrieve

objects that are identical to a given reference object, but also recognize objects that

only resemble the reference object. Thus, one needs distancefunctions d:RxR -»E

that measure the resemblance between two representations and that are fairly easy to

compute. Of course, d should be a metric, i.e.

dfrifd^Oy rf(r1,r2) = 0<=> rj = r2
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d(rl,r2) = d(r2fl)

d(rltr3) £ d(r ^ + d(r2tr3)

Furthermore, in most cases one would like the distance function to be invariant with

respect to rigid body motions, i.e.

d(r1,r2) = d(grlgr2)

where g is a rigid body motion.

For an example, see section 2.4.1.2, where we show how to use Fourier descrip

tors [Pers77] to define distance functions on polygons and planar curves.

23.6. Continuity

Informally speaking, a representation scheme is continuous if it is robust with

respect to slight changes and distortions; if an object changes slightly, then its

representation should change only slightly as well. More formally, let p denote some

appropriatedistance function over the set of real world objects. Then a representation

is continuous if d(dx4i) and p(s~1(d{)1s~1(d2)) are roughly proportional. Con

tinuity alleviates the computation of recognition operators significantly, as similar

objects always have similar representations.

A simple example for a continuous representation scheme are vertex lists to

represent simple polygons. Local changes in the polygon shape cause only local

changes in the corresponding vertex list. It is usually more difficult to find representa

tions with invariants that are continuous because normalization functions are often

very sensitive to changes of the input object. Normalization functions based on

Fourier descriptors, however, do not have this disadvantage and lead to continuous
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representation schemes; see again section 2.4.1.2.

2.4. Elementary Representation Schemes

In this and the following section, we will describe and evaluate several common

representation schemes for geometric data. An elementary representation scheme is a

scheme in which the objects are not represented by some combination of simpler

objects of the same dimension. Elementary representations include various boundary

representation schemes, the sweep representation schemes, and the skeleton represen

tation schemes.

2.4.1. Boundary Representation Schemes

2.4.1.1. Vertex Lists for General Polygons

By far, the most common way to represent a polygon is by a list of its vertices,

given by their coordinates relative to some coordinate system. The vertex list is an

unambiguous representation scheme that is easy to understand. It is able to represent

any polygon, including polygons that are not simple (i.e. they may be self-

intersecting or have holes). For some examples see figures 2.3a-c.

However, the vertex list representation has the following severe disadvantages.

First, the representation is not unique. A circular shift of a vertex list produces

another vertex list that describes the same polygon. In the case of a general n-gon

without holes, there are n ways to construct a vertex list that represents the polygon.

In the case of polygons with holes, the representation scheme maps each polygon into

an even larger set of representations, as there are many ways to link a hole to its
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enclosing polygon (fig. 2.4a,b). The non-uniqueness of vertex lists makes the compu

tation ofrecognition operators quite hard, as it is a non-trivial task to determine if two

given vertex lists represent the same polygon.

u

(a) (b)

Figure 2.4

Second, a vertex list does not contain any invariants with respect to the most

common operators that are defined on polygons. Similarity operators will, in general,
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change each element of the representation, i.e. the representation does not support

any notion of congruence or similarity. There is no simple way to derive the fact that

two polygons are congruent or similar from their vertex lists.

Third, storing a list (as opposed to a set) of vertices requires that the order of

the list elements is maintained. This is inconvenient in a relational database environ

ment, because relations are sets of tuples. In order to maintain an order among the

tuples representing the vertices, one would have to introduce a special attribute

order-no. This attribute is not necessary in our representation scheme, which saves

storage space and associated overhead.

Finally, if vertex lists are used as a representation scheme for simple polygons

(i.e. no self-intersections or holes are allowed), there is an additional disadvantage.

Not all vertex lists represent simple polygons, i.e. some vertex lists are invalid

representations. There is no easy way to derive the fact that a polygon is simple from

its vertex list

There are several ways to modify vertex lists in a way that at least the most

severe of these disadvantages are eliminated. In order to introduce uniqueness and

invariants to the representation, one may normalize vertex lists by means of a distinct

vertex. Then, each vertex list that represents a polygon may be required to have the

distinct vertex as its first element. There are two features that characterize a given

vertex: the lengths of the two adjacent edges, and the size of the corresponding inte

rior angle. We base our definition of a distinct vertex on edge lengths because in

practical applications, angles tend to be distributed much less equally than edge
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lengths (consider, for example, rectilinear polygons which constitute a large fraction

of current applications).

We propose the following definition of a distinct vertex. Here, v denotes some

vertex of a given polygon, o^, denotes the interior angle at vertex v, and w denotes

v 's neighbor vertex in counterclockwise direction. Let EL(v) denote a sequence of

edge lengths of the given polygon, starting with the length of edge (v,w), and

proceeding counterclockwise. Analogously, let AN (v) denote a sequence of angles of

the given polygon, starting at angle o^, and proceeding counterclockwise. Finally, let

S (v) denote the concatenation of the sequences EL(v) and AN (v).

Given an n-gon Py its corresponding sequences S(v{)t 5(v2),..., S(vn) can be

sorted by increasing first element In case of a tie, the corresponding sequences are

sorted by increasing second element, and so on. The result is a sorted array of

sequences, and the distinct vertex is defined as the vertex v where S(v) is the first

sequence in that sorted array. If there are several vertices v lt v2.. v* that tie for the

distinct vertex, then any of those vertices may be declared distinct

Note that the distinct vertex of a polygon is defined in a way that is invariant

with respect to similarity operators. In particular, we propose to represent a polygon

P, given by its vertex list in conventional form,

{(*l*Vl)> (X2J2> (XnJn)}

by ihefactorized vertex list,

i<x,xTyrs, (xlty{)t (x2,y2\..., (xn_2,yn_2))
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such that

P =ty-roa'Scs P

where Xy and yy are the coordinates of the distinct vertex, tyis the translation defined

by thevector (xT y^), roa is the rotation about the origin by angle ot, scs is the scal

ing about the origin with ratio s, and P is the polygon represented by the vertex list

(in conventional form)

{(0,0), (1,0), (^7), (jc7,yi),.... (^2",y~2)}

This representation is unique with respect to all polygons without holes, and it

has invariant components with respect to all similarity operators. In particular, two

polygons are similar if and only if their representations only differ in their

corresponding values for a,xryy and s. Two polygons are congruent if they are

similar and if their corresponding values for s are identical.

Based on this representation, a polygon may be represented in a relational data

base in two relations polygons and coordinates which may be defined as follows.

polygons (pol -id =i4,a =i4, xy=i4, yy=i4,s =i4,

vlist = coordinates using pol-id)

coordinates (pol-id =i4,jc =i4,y =i4, order-no =i4)

Here, vlist is an attribute of data type relation, as defined by Wong [Wong85]. Each

value of this domain consists of the set of tuples of coordinates sharing the same

pol-id value. These tuples contain the coordinatesx lf y lt x2y y2 •. xn-2* yn-2- Note

that coordinates has to have an attribute order-no to keep the vertex list sorted.
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This representation still has some of the disadvantages we mentioned above.

First, it does not provide a unique way to represent polygons with holes. For this

case, a hierarchical representation scheme seems to be a superior solution. Second,

each representation is still a list and not a set of vertices. Third, for the case of simple

polygons, it still produces invalid representations. The integrity constraint that it

represents a simple polygon can not be easily enforced. However, there exist standard

algorithms to test a given vertex list in time 0(n\ogn) if it represents a simple

polygon; see for example [Prep85], pp. 271-279.

The described scheme of the factorized vertex list is unique for polygons

withoutholes and it is unambiguous, but unfortunately it is not continuous. Slight dis

tortions of a given polygon might change its representation fundamentally. Also, it is

an ad hoc scheme, which is not theoretically sound. A better approach to normaliza

tion are Fourier descriptors, which will be discussed in the following section.

2.4.1.2. Fourier Descriptors for Planar Curves

Another way to represent polygons is based on the use of the Fourier transfor

mation. This representation scheme has been introduced by Zahn and Roskies

[Zahn72] and refined later by Persoon and Fu [Pers77]. It is a much more general

scheme as it can be used to represent not only polygons, but general planar curves as

well.

The idea is to view a given curve as a path in the complex plane and to

parametrize it with respect to its arc length. The x- and y -coordinates of each curve

point become complex numbers x+iy, and the curve becomes a function c: [0,1]—>C,
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where C denotes the set of complex numbers. Then one computes the Fourier

descriptors of the function c(t) (f€[0,l]); the Fourier descriptors yn

(n=0,±1,±2...)are complex numbers with

Then it is

*(0= Eve*

Now, a curve is represented by a vector of complex numbers; in practice, only a

finite number of FDs (y_^ .. y#) may be stored, which corresponds to an approxima

tion of the original curve. Note that for n^0 the FDs yn are invariant with respect to

translations of the corresponding curve.

Given a function c(t), the FDs corresponding to this function are uniquely

defined. Nevertheless, the representation scheme is not unique at this point. The

function c(t) describing the curve varies with the choice of the starting point c(0);

there are infinitely many functions c(t) describing the same curve. Also, the scheme

does not have any explicit invariances with respect to rotations and scalings. How

ever, a simple normalization function can eliminate the dependency of FDs on start

ing point, orientation, and size. The resulting normalized representation scheme is

unique and has invariances with respect to similarity operators, such that it allows an

easy matching of a given curve against a database of curves, regardless of its original

starting point, orientation, and size.
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The operators in the representation space that affect the starting point, orienta

tion, and size of the original curve follow directly from properties of the Fourier

transformation. To change the size of the curve simply corresponds to a multiplica

tion of the FDs by a real constant. A rotation of the curve corresponds to a multipli

cation of each FD by e'e, where 0 is the angle of rotation (0e [0, 2tc]). To move

the starting point by a phase angle O corresponds to a multiplication of the /t-th FD

ynbyeM(OB[0t2n]).

Given the FDs of an arbitrary curve, the normalization function should yield a

standard size, orientation, and starting point. A standard size is easily defined by

requiring the FD yl to have unity magnitude. The normalization of orientation and

starting point affects only the phases of the FDs. Since there are two allowable opera

tions, the definition of standard orientation and starting point must involve the phases

of at least two FDs. One obvious choice is to require the phases of both yx and y2 to

be zero. This normalization scheme works fine, although the practical implementa

tion requires paying attention to a few details and some special cases, which are

beyond the scope of this presentation.

In the resulting representation scheme, a curve c is represented by the FDs of

the normalized version c of c, a rotation angle a, and a scaling factor s, such that

c=^'roascs -c

Here, ty0 denotes the translation by Re(y0) in x-direction and Im(y0) in y -direction.

Remember that all components of the representation except y0 are invariant with

respect to translations.
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This normalized representation scheme has several advantages. It is unique and

it has invariances with respect to all similarity operators. If the input curve is a

polygon, then the integrals above are discrete and the representation is very easy to

compute. Furthermore, the representation scheme is continuous, i.e. it is robust with

respect to slight changes and distortions of a given curve. In particular, the normali

zation function is very robust; similar curves are mapped into curves with a similar

orientation, size, and starting point. For some examples, see figure 2.5. These results

have been obtained from our implementation of FDs on a VAX 8800; each normali

zation took between 8 ms and 12 ms CPU time.

Finally, any norm defined on complex vectors may be used to define the dis

tance d between two representations. Using the Euclidean metric, for example, the

distance between two given representations r =(y_# . .yN) and rr = (y_N . .yN)

becomes

This metric has been used succesfully by Persoon and Fu [Pers77] to recognize

handwritten characters.

2.4.13. B-Rep and Wireframe for Three-Dimensional Objects

This and the following section are based on [Besl85], an overview of three-

dimensional object recognition. Surface boundary representations, or B-Reps, define

a solid object by a list of the three-dimensional surfaces that bound that object. For

example, a tetrahedron can be described by a set of four triangles in three-

d(rs) =
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Figure 2.5: The polygons (a) - (e) aremapped onto the polygons in (f). Note that

the polygons (a) and (b) are congruent S denotes the starting point
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dimensional space. Another more complex example is given in figure 2.6.

Figure 2.6: Surface boundary representation of a solid object (from [Requ83]).

Arbitrary surfaces can be approximated to any desired degree of accuracy by

utilizing more faces. Even more accuracy is obtained using boundary representations

that are based on quadric surfaces, higher order polynomials and splines.

All of these representation schemes are unambiguous for all polyhedra with

planar faces, and they approximate curved objects arbitrarily well. Depending on the

surface representation, they may have invariants with respect to translation operators,

where the slopes of the surfaces remain the same.

However, surface boundary representations are not unique and they contain

invalid representations. They do not provide good support for search, set, or recogni

tion operators. Surface boundary representations also may contain redundancies if,

for example, edges are defined in both adjacent surfaces. This flaw has been corrected

in some modern display systems such as UNIGRAFDC [Sequ83, Sequ85] where the
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actual geometry is stored only in the coordinates of the vertices. Higher-dimensional

objects such as edges of faces are defined by means of pointers: an edge is

represented by two pointers to its endpoints, a face by pointers to the edges of its

boundary, and so on.

Another boundary representation scheme is the wireframe scheme that defines a

solid object by a list of its edges in space. This representation scheme is only suitable

to represent polyhedra with planar faces. Of course, the slopes of the edges are invari

ant with respect to translations, and the lengths are invariant with respect to all rigid

body motions. The wireframe representation scheme has the same disadvantages as

the surface boundary representation scheme; moreover, it is ambiguous (fig. 2.7).

2.4.2. Sweep Representation Schemes

In sweep representations of three-dimensional objects, the object is represented

by a space curve which acts as the spine or axis of the object, a two-dimensional

cross-sectional figure, and a sweeping rule which defines how the cross-section is

swept and possibly modified along the space curve. For an example see figure 2.8.

Sweep representations can also be applied to two-dimensional objects.

Obviously, it is not possible to represent arbitrary point sets by means of sweep

representations. Also, if the representation scheme is used for simple point sets then

there exist invalid representations because sweep representations may also represent

self-intersecting point sets. The scheme is unambiguous, but it is not unique (fig.

2.9). It has invariants with respect to rigid body motions; only the axis of the object

has to be modified, the cross-section and the sweeping rule remain the same. The



Figure 2.7: Wireframe Ambiguity (from [Requ82]).

axis

cross-section

Figure 2.8: Sweeping rule: keep thecross-section

constant and orthogonal to the axis.
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sweep representation does not provide efficient support for set, search, or recognition

operators.

axis

cross-section

(a) sweeping rule: scale down the cross-section

linearly from its original size to zero.

cross-section

(b) sweeping rule: keep

the cross-section constant.

Figure 2.9: Non-uniquenessof sweep representations

2.4.3. Skeleton Representation Schemes

Skeleton schemes represent a geometric object by means of a graph. The edges

of the graph correspond to axes or to a skeleton of the object and arc obtained via a

skeletonizing algorithm. One way to define a skeleton is by means of the medial axis

tranformation (MAT), as proposed by Blum [Blum67], The MAT of an object m

with boundary b is defined as follows. For each point p in m, we find its closest

neighbor in b. If p has more than one such neighbor, then it belongs to the medial

axis (skeleton) of m. Some two-dimensional examples (using the Euclidean distance)

are given in figure 2.10.

Although the MAT yields an intuitively pleasing skeleton, a direct implementa

tion of the above definition is clearly impossible as it involves calculating the
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Figure 2.10: The medial axis transformation of three regions (from [Gonz87]).
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distance from every interiorpoint to every point of the object boundary. Some more

practical skeletonizing algorithms have been developed by Dyer and Rosenfeld

[Dyer79], Salari and Siy [Sala84], and Zhangand Suen [Zhan84].

Obviously, skeleton schemes are not always applicable, and they are neither

unique nor unambiguous. They are useful for giving a rough, short description of an

object, but they are certainly not a general-purpose representation scheme.

2.5. Hierarchical Representation Schemes

In a hierarchical representation scheme, the objects are represented by some

combination of simpler objects of the same dimension. Themost common hierarchi

cal representation schemes are occupancy schemes and constructive solid geometry

(CSG). In chapter 3 we propose a new hierarchical representation scheme, termed

polyhedral chains.

2.5.1. Occupancy Representation Schemes

Occupancy representations define an object by non -overlapping regions of
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space occupied by a particular object. They uniquely define the geometric extension

of an object. Usually, the regions are organized in some kind of hierarchical data

structure in order to facilitate the computation of set and search operators.

A very common occupancy representation scheme for two-dimensional data is

the quadtree [Same84], and in particular the region quadtree as a representation

scheme for bounded two-dimensional point sets. Suppose, the point set is given as a

two-dimensional array of l's and O's. The region quadtree is based on the successive

subdivision of this image array into four equal-sized quadrants. If the array does not

consist entirely of l's or entirely of O's, it is then subdivided into quadrants, subqua-

drants, etc. until blocks are obtained (possibly single pixels) that consist entirely of

l's or entirely of O's; that is, each block is entirely contained in the point set or

entirely disjoint from it

For example, consider the polygon in figure 2.11a, which is represented by the

23 by 23 binary array in figure 2.11b. The l's correspond topixels inside the point set

and the O's correspond to pixels outside the point set The resulting blocks for the

array of figure 2.11b are shown in figure 2.11c. The subdivision process is

represented by a 4-ary tree; the root node corresponds to the whole array, and each

son of a node represents a quadrant of the (sub)array represented by that node (fig.

2.1 Id).

Other common occupancy representation schemes include the octtree, a three-

dimensional version of the quadtree, or the general voxel representation, where an

object is represented by a list of disjoint identical geometric primitives.
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Figure 2.11: A quadtree (from [Same84])
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The most severe drawbacks of these occupancy schemes are that they require a

lot of storage space and that they are ambiguous. Usually, they only represent an

approximation of the actual object, based on the primitives provided. For example, a
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polygon whose edges are diagonal to the rectilinear quadtree grid can only be

represented approximately by a quadtree of finite depth. Furthermore, occupancy

schemes do not have invariants with respect to similarity operators. On the contrary,

they are very sensitive to any of these operators; a slight translation or rotation of an

object may change its representation in a major way.

In order to overcome some of those difficulties for the case of polygonal data,

Samet and Webber proposed the PM quadtree [Same85]. In the PM quadtree, regions

are subdivided until they contain only a small number of polygon edges and vertices;

these edges and vertices are then stored explicitly in the leafs of the tree. PM quad

trees store polygonal maps (i.e. collections of polygons, possibly containing holes)

without any loss of information. They are not overly sensitive to the positioning of

the map. However, they are not generalizable to more than two dimensions. Also,

they are not very useful for range searches and for set operations on the polygons.

For the reasons mentioned above, occupancy representation schemes are usually

not used as a main representation scheme; they may, however, be used as an addi

tional representation to support the computation of set and search operators.

2.5.2. Constructive Solid Geometry (CSG)

The CSG representation of a three-dimensional object is specified in terms of a

set of three-dimensional volumetric primitives (blocks, cylinders, cones, and spheres

are typical examples of bounded primitives), and a set of regularized set operators.

The object is represented by a binary tree whose leafs correspond to primitives and

whose internal nodes correspond to set operators. For an example see figure 2.12.
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The primitives are represented by means of a non-hierarchical scheme as described in

section 2.4.

Figure 2.12: CSG representation of asolid object (from [Requ83]).

CSG-trees provide an unambiguous scheme to represent any three-dimensional

object The interior nodes of a CSG-tree are invariant with respect to similarity

operators. Thus it only depends on the representation scheme for the primitives, how

well these operators are supported. Set operators can be carried out in a trivial way by

creating a new root node and attaching the CSG-trees of the two operands to the new

root

The drawbacks of CSG are as follows. CSG is not a unique representation

scheme. Search operators are very hard to compute: in order to determine if a given

pointis insideor outside the object, for example, one has to solve the point inclusion

problem for each primitive in the corresponding CSG-tree. Then the CSG-tree has to

be traversed to combine the results. A further disadvantage of the CSG
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representation is that it is hard torender the boundary of anobject from its CSG-tree.

Also, it is difficult to determine if a given CSG-treerepresents a non-empty point set

lTilo84].

Of course, it is possible to generalize CSG to two or more than three dimen

sions.The propertiesof the representation schemeremain the same.

2.5.3. Halfspaces for Convex Polyhedra

One special case of the CSG representation scheme deserves some special atten

tion because it evades most of the disadvantages mentioned above. Convex polyhedra

in Euclidean space £d can berepresented as the intersection of some finite number of

closed halfspaces in Ed, and each halfspace HS can be represented by means of a

vector a e Ed-{0} and a real number c, such that HS (a,c) = {jc e Ed: x -a £ c }.*

This representation scheme is unambiguous, and it does not contain invalid

representations. The order of the halfspaces is insignificant, which is convenient if the

representation scheme is used in a relational database system where the maintenance

of an order requires additional space and overhead.

The representation scheme has invariants with respect to translations: the a-

vectors remain unchanged. This property somewhat facilitates the computation of

translation operators. The representation scheme does not have any invariants or pro

vide any other support for other similarity operators. In particular, there is no simple

way to derive the fact that two convex polygons are congruent or similar from their

representations.

* * 7 denotes the inner product of vectors x and y.
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Given two convex polyhedra P and Q, their regularized intersection P (~\*Q

may be represented simply by the union of the sets of halfspaces representing P and

Q. The union and difference operators are not closed in the set of convex polyhedra

and can therefore not be computed within this representation scheme.

Note that this scheme is not necessarily unique because any given representation

may contain any number of redundant halfspaces, i.e. halfspaces HS(atc) whose

bounding hyperplane H(atc)- [x e Ed:x-a =c} does not embed a (d-\)-

dimensional face of the polyhedron. To make the representation scheme unique,

redundant hyperplanes must not be allowed; each representation must only contain a

minimum set of halfspaces. The computation of P {~\*Q then has to be extended by a

postprocessing step where all redundant halfspaces are deleted from the representa

tion of^n*C

Using this representation schemes for convex polyhedra, one could then

represent general polyhedra in Euclidean space Ed as a union ofconvex components.

This proposal is discussed in much detail in chapter 3, where we introduce the con

cepts of polyhedral chains and h-vectors.

2.6. Summary - Evaluation of Representation Schemes

In the following table, Af, D, R, and V denote the modeling space, the domain,

the representation space, and the range of a representation scheme. T stands for the

translation operator, M stands for the group of rigid body motions (i.e. translations

androtations), S stands for the group of similarities (i.e. rigid body motions and seal-
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ings),and R denotes recognition operators. Properties of simple setoperators (^j, p>,

and -) also hold for the corresponding regularized set operators (\j*, p>*» ^^ "*)•

In the last column, Supported Operators, the entries in parentheses denote operators

that are partly supported. Le. the computation of the operator is somewhat facilitated

by the representation, but there are representations that provide bettersupport.

Besides the representation schemes discussed in this chapter, the table also

includes information about various kinds of polyhedral chains and about a dual

representation scheme. These representation schemes will be discussed in detail in

chapters 3 and 4, respectively.



Representation Sch. M D=M R V=R . unamb. unique Invariants D closed w.r.L supported Op's

Set of halfspaces convex polyhedra y set of halfspaces y y n T *.n (T).n
Min. set of halfspaces convex polyhedra y set of halfspaces y y y T *-n <T.n)
Dual space convex polyhedra y two functions n y y T s>n intersection

detection

Vertex list simple polygons y vertex list n y n - s (S)
Factorized vertex list simple polygons y fact vertex list n y y S s S.R

Skeleton schemes simple polygons y set of axes n n n T s (R)

Vertex list general polygons y vertex list y y n - s (S)
Factorized vertex list general polygons y fact, vertex list y y n S s S,R

NormaTd Fourier desc. general polygons y seq. complex nos. n y n S s S.R

Sweep representation general polygons n axis, cross section
& sweeping rule

n y n M s (M)

Occupancy schemes general polygons y quadtree or

set of primitives
yf n y - s.n.u.- n»u.-

CSG general polygons y CSG-tree yf y n S s.rvu»- (S).n»u»-
Polyhedral chains +
factorized vertex list

general polygons y 2-D polyhedral
chain

y y n S s.rvu.- s.u

Convex polyhedral
chains + h-vector

general polygons y 2-D polyhedral
chain

y y n - s»n.u»- r>u.-

B-Rep 3-D polyhedra y set of polygons n y n T s CD

Wireframe 3-D polyhedra y set ofedges n n n T s CO
Sweep representation 3-D polyhedra n axis, cross section

& sweeping rule
n y n M s (M)

Skeleton schemes 3-D polyhedra y set ofaxes n n n T s (R)
Occupancy schemes 3-D polyhedra y octree or

set of primitives
yf n y - s.n»u»- H.U.-

CSG d-Dpolyh.(</2>3) y CSG-tree yf y n S s»n»u»- (s)«n»u»-
Polyhedral chains rf-Dpolyh.(rf>3) y polyhedralchain y y n ft s.rvu»- un
Convex polyhedral
chains + h-vector

d-Dpolyh.(d£3) y polyhedralchain y y n - s.r> Un n.u»-

t if the primitivesarepolygonal/polyhedral point setsas weO. t f dependingon the representation scheme for the cells pi: S.

to
oo
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Chapter 3

Polyhedral Chains

3.1. Introduction

In most current applications the polyhedra to be represented are simple, i.e.

self-intersections or holes are not allowed. Non-simple polyhedra, however, become

more and more important in areas like computer-aided design or geographic data pro

cessing. Several examples for the applications of self-intersecting polygons in the

area of IC mask description are given in [Newe80]. Geographic applications very

often need polygons with holes (for example, to represent areas whose altitude is

within a given range). Some applications may require polygonal objects that are

folded and keep track of the resulting multiple layers. Also, there are numerous appli

cations for higher-dimensional geometric objects, such as linear programming

[Dant63] or logic databases where geometric objects are used to represent predicates

[Ston86 ].

A representation scheme for geometric data should therefore take non-simple

polyhedra and higher-dimensional data into account. Furthermore, it has to support

some of the most common operators performed on geometric data, such as set and

search operators. Finally, the representation scheme should be closed under set

operators.

This chapter, which is an extended version of [Gunt87a], presents the idea of

polyhedral chains as a representation scheme for polyhedral data objects that meets

39
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these challenges. The restriction to polyhedra, rather than general point sets, is

justified by the fact that those are commonly used to approximate general shapes in

practice. Sections 3.2 and 3.3 give a definition of polyhedral chains and discuss their

properties. Sections 3.4 and 3.5 describe in detail a representation scheme for

polyhedral data objects that is based on convex chains. Each object is represented as

the algebraic sum of convex polyhedra (cells). Each cell in turn is represented as the

intersection of halfspaces and encoded in a vector. The notion of vertices is aban

doned completely as it is not needed for the set and search operators we intend to

support. In section 3.6 we show how this approach allows us to decompose the com

putation of set operators on polyhedral objects into two steps. The first step consists

of a collection of vector operations; the second step is a garbage collection where

vectors that represent empty cells are eliminated. Section 3.7 contains our conclu

sions.

3.2. Definition

In order to meet the demands mentioned above, we extend the notion of

polyhedron in the following way. A polyhedral r-chain in r-dimensional Euclidean

space Er [Whit57] is anexpression of the form

i=i

where a,- are integers and/?/ are simple r-dimensional polyhedra in Er, called cells.

Note that the cells are not necessarily bounded The algebraic convention is as fol

lows:
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qPf+fiP* = (<*+P)P»

Pi+Pj =PiU Py <=> Pi O P; =*

Op/=<|)

Two polyhedral chains areequivalent if they can be transformedinto each other

using these conventions. A polyhedral r-chain in Ed (r<d) consists of a finite set of

distinct r-dimensional hyperplanes, together with a polyhedral r-chain in each. A

hyperplane may be dropped out if the part of the chain in it is zero.

The semantics assigned to a polyhedral chain are as follows. The polyhedral

chain can beviewed as a function that maps each point t e Ed into an integer number

that indicates the number of cells present at this point More formally, the function fx

m

correspondingto a chain x = Xoc,7?j may be defined as
»=i

tepi

From the algebraic conventions for polyhedral chains it follows that two chains are

equivalent if and only if they correspond to the same function fx (t).

A polyhedral chainxP may be interpreted to represent some polyhedral point set

P, according to one of the following inside-outside conventions. There are several

conventions in common use to determine whether a given point t is to be considered

inside or outside of a polyhedral point set P. These include the parity, the oriented

multiply-covered, and the nonzero winding number convention [Newe80].

The parity convention determines the state of a point by the parity of the number
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of intersections between faces of the polyhedron P and a straight line drawn from the

point to infinity in any direction (fig. 3.1). Therefore,

reF <=> fXp(t) is odd.

Figure 3.1: Parity convention (from [Newe80]).

The oriented multiply-covered convention defines an orientation for the boun

dary of a polyhedron such that one sideof each boundary segment defines material

(i.e. inside) and the other side defines holes (outside), as in figure 3.2. Material that

overlaps material is simply material. Each hole is able to annihilate exactly one layer

of material. Moreover, holes in space are ignored. It is

teP <=*>fXp(t)>0

For applications of this convention, see again [Newe80].

For polygons, another way of describing the oriented multiply-covered conven

tion is to say that a point is considered to be inside the polygon if the winding

number of the boundary with respect to that point is greater than zero. The winding
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Figure 3.2: Oriented multipy-covered convention (from [Newe80]).

number of a polygon boundary with respect to a given point is defined as the net

number of times that a point on the boundary wraps around the given point while the

boundary point makes one complete traversalof the boundary.

To eliminate some of the flaws of this convention, Newell and Sequin [Newe80]

propose yet another convention, the so-called nonzero winding number convention.

According to this convention, a point is consideredto be inside a polygon if the wind

ing number of the boundary with respect to that point is nonzero (fig. 3.3). Using the

notation of polyhedral chains, this approach can be generalized to d dimensions and

described in a much simpler way. The winding number with respect to a point r is

simply fXp(t). According to the nonzero winding number convention, it is

teP <=>fXF(t)*0

According to any of the above inside-outside conventions, all equivalent chains

correspond to the same point set in Ed.
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Figure 3.3: Nonzero winding number convention (from [Newe80]).

Polyhedral chains are a simple and powerful tool to describe various kinds of

polyhedral objects. They may be used to describe any simple (i.e. non self-

intersecting) polyhedral point set in Ed (fig. 3.4a), as well as self-intersecting polyhe

dra of any shape (fig. 3.4b-c).

Unlike simple polyhedra, polyhedral chains are closed under all set operators

such as intersection (fig. 3.4a). Furthermore, the boundary of a convex polyhedron of

dimension d is a polyhedral chain of dimension (d-\). Hence, the complete set of

polyhedral chains of dimensions 0 through d in Ed is closed under the boundary

operator. For these reasons, polyhedral chains form an appropriate set for embedding

polyhedra.

3.3. Properties

Polyhedral chains may have the following properties. A polyhedral chain x is
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called disjoint if the cells are mutually non-overlapping, and it is called

non-negative if fx(t) is non-negative for all points t e E . Moreover, a chain is

called convex if all of its cells are convex.

Disjoint chains are useful for many operators that are frequently performed on

geometric data such as set operators or point locations. They are also useful to obtain

the function fx of some chain *, because for any disjoint chain x='£daipi, fx(t) is
i

simply the coefficient a* of the cell pk, where t e. pk. In order to transform an arbi

trary polyhedral chain into an equivalent disjoint one, one may use the d -dimensional

generalization of a plane sweep algorithm, similar to the one described in [Niev82].

The input to this algorithm is a map which is defined as a planar graph G embedded
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in the plane such that the edges of G intersect only at common vertices of G. If G is

connected, it subdivides the plane into r simply connected internal regions R j.. Rr

and one external unbounded region R0. In the algorithm, a straight line is swept

across the map; during the sweep a data structure is dynamically maintained that

keeps track of the regions that intersect the sweep line. This data structure is updated

each time the sweep line encounters a vertex of G. The algorithm retrieves vertex

lists of the polygonal regions Rx.. Rr in time O(n log n) where n is the number of

vertices of graph G.

Our application requires the following modifications. First, the algorithm has to

be generalized to d dimensions; this can be done in a straightforward manner.

Second, let E denote the d-dimensional graph consisting of the faces of the cellsp{.

The map graph G consists of the faces inE plus some extra faces toconnect the dif

ferent connected components of E. Hence, G is aconnected graph. For each/?,- inter

secting the sweep hyperplane, the algorithm retrieves the corresponding coefficient

a,-. The coefficient P,« corresponding to aregion R( is then obtained byadding the a,-

that correspond to the cells containing Rt. The sweep data structure has tokeep track

not only of the /?/, but also of the coefficients ft. With these modifications, the algo

rithm yields a disjoint polyhedral chain 2$,/^, equivalent to the original chain
i

i

In many cases multiple layers or negative space are not needed, because one

only distinguishes between the inside and the outside of a polyhedron. Applications
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like this are served well by non-negative chains xP where fXp(t) is 0 for outside

points and positive otherwise. Given some arbitrary, possibly self-intersecting

polyhedron, defined by a chain xP, one may transform xP into a non-negative chain

as follows. First, xP is transformed intoan equivalent disjoint chain xP', asdescribed

above. Then some inside-outside convention is chosen to map each coefficient of*//

into either 1 or 0, depending on whether the corresponding cell is inside or outside

the polyhedron. P now corresponds to the union of the cells in Xp'.

Convex chains have important applications because the convex cells can be

described in a very simple way, as described in chapter 2.5.3. If the set C of convex

cells to be represented is known and finite (as in the case of a geometric database),

the representation scheme can be simplified even further. Let H be a vector of all

hyperplanes that embed some face of some cell in C. Then each element of C can be

represented by an IHI-dimensional vector, consisting of l's, O's, and -l's. Each 1

or -1 selects a hyperplane from H, and associates an orientation with it. The resulting

set of halfspaces represents a convex polyhedron. This approach is conceptually sim

ple, provides support for set and search operators, and seems well suited for parallel

processing; it will be discussed in great detail in sections 3.4,3.5, and 3.6.

Any polyhedral chain can be transformed into an equivalent convex polyhedral

chain by splitting all the cells in the chain into convex pieces. There are several

efficient algorithms known to partition a given general polyhedron into disjoint con

vex components; see, for example, [Chaz84].

3.4. Convex Polyhedral Chains as Representation Scheme
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Consider a database consisting of a collection of (possibly self-intersecting) d-

dimensional polyhedra in Euclidean space Ed. The restriction to polyhedra, rather

than general subsets of Ed, is justified by the fact that those are commonly used to

approximate general shapes in practice [Faux79].

To support set and search operators, we represent the polyhedra in the database

as convex, non-negative, non-disjoint polyhedral chains. Formally, each data object

P isrepresented as achain in Ed,

m

Xp = I,Pi
i=l

with all Pi being convex. A point is inside P if and only if it is inside any of the cells

P/,i-e.

t € P <=> t e pi for some i=l.. m

Obviously, for any polyhedral chain in Ed there is an equivalent convex

polyhedral chain in Ed. Note that we do not require the p{ to be mutually disjoint.

Disjointness is hard to maintain and provides no particular advantages for the opera

tors we intend to support. Convex chains are ahierarchical representation scheme for

polyhedra that is unambiguous, but not necessarily unique, as there are infinitely

many ways to cover a non-convex polyhedron by convex components.

Polyhedral chains can be represented in a relational database system in a rela

tion polchains which may defined as follows.

polchains (id = i4, a,- = i4,pf = cell)
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Here, id is a unique identifier assigned to each polyhedral chain, cell is an abstract

data type that encapsulates some representation of the convex cellspt, such as for

example an h-vector, as describedin the following section.

3.5. The h-Vector

The next question is how to represent the convex cells pt. It is well known that

any convex polyhedron in Ed is the intersection of closed halfspaces in Ed. Each

halfspace in turn can be represented as a product h •// where H is an oriented (d-l)-

dimensional hyperplane and h is an integer number. Inparticular, leta e Ed-{0} and

c € E1; then the (rf-l)-dimensional set H(a,c) = [x e Ed-jc-a=c} defines a hyper

plane in Ed. A hyperplane H(a,c) defines two closed halfspaces

1•//(a,c) = {jc e Edvc -a £c} and -1•//(a,c) = [x e Ed:x -a <c). For completeness,

we define 0H(a,c) as Ed. A hyperplane H supports a convex cellp if H(->p*§

and it is p £ 1-H orp Q-1H. If// is any hyperplane supporting p thenpp// is

a face of p. The faces of dimension 1 are called edges; those of dimension 0 ver

tices. A supporting hyperplane H is called a boundary hyperplane is the face //p/?

is of dimension d-l.

Let H=//1//2. .//mi denote a vector of (d-l)-dimensional oriented hyper-

planes such that Hi is in H if and only if/// is a boundary hyperplane of some cellp

in the database. For simplicity, we require that for each (rf-l)-dimensional face/ of

any convex cell p there be a (rf-l)-dimensional face g of a data object P, such that

/ and g are both subsets of the same hyperplane. Then H can be restricted to include

only those hyperplanes that are boundary hyperplanes of some data object P in the
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database.

IHINow each cell p can be represented as a ternary vector hp = /0,1,-1/' , such

IHI

thatp = pi (hp)/-Hi. An example is given in figure 3.5.
i=l

Figure 3.5: h,=(0,1,-1,0,-1), h,=(-1,0,0,1,-1)

Note that for a given cell p, hp is by no means unique. For example, suppose

that hyperplane /// and cell p are disjoint and p is a subset of the halfspace 1•//,-.

Then it makes nodifference whether (hp),- is 0 or 1; the hyperplane Ht is redundant

with respect top. For a given p, the set of all possible hp -vectors is an equivalence

class which contains a unique vector with the minimum number of nonzero com

ponents. For this unique minimum hp every nonzero component corresponds to a

boundary hyperplane of p. Note that there is no unique minimum vector to represent

the empty set On the otherhand, there is a unique minimum vector to represent the

whole space Ed, viz., the vector 0,HI.

The insertion of new data objects is performed by adding new hyperplanes to H,
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if necessary. For simplicity we assume that the components of the ternary vectors hp

default to zero if they are not explicidy specified. Under this assumption an insertion

does not change the representations ofexisting cells.

The deletion of dataobjects may cause some hyperplanes in H to become redun

dant with respect to all cells in the database. The deletion of such a hyperplane from

H corresponds to a compression of each vector hp by one component. Although it

may not be efficient to perform this update after each single deletion, it might be

worthwhile to do such a clean-up after a certain number of deletions. Otherwise a

large number of redundant hyperplanes will inflate the representations unnecessarily.

It IHI is large, as it maywell be, the explicit storage representation of hp is not

feasible. However, the simple structure of hp allows many alternative data structures

to be used. As one example, hp could be represented by a set of (signed) pointers,

pointing to those hyperplanes that correspond to the nonzero elements.

Note that this approach to represent polyhedral data objects abandons the notion

of vertex completely. Representation of cells by h-vectors has both conceptual and

computational advantages. To represent cells in terms of boundary hyperplanes

rather than in terms of vertices is usually the most space-efficient way because no

adjacency relations need to be stored. This becomes especially important in higher

dimensions as the number of adjacencies may grow exponentially in the dimension;

see [Prep85], pp. 89-93. Furthermore, it seems that vertices are not necessary for the

search and set operators we intend to support. Search operators such as point location

or range search can be supported efficiently by search structures that are based on
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hyperplanes rather than vertices; examples for such structures are the binary space

partitioning tree or the cell tree, presented in chapter 5. All set operators on cells can

be computed efficiendy without using vertices by decomposing them into two parts:

(a) an operation on the h-vectors without references to the geometric coordinates of

thehyperplanes, and (b) a generic operation that tests whether a vector hp is null, i.e.

whether the intersection of the halfspaces specified by hp is empty. This decomposi

tion will be described in detail in the following section.

3.6. Set Operators

Let P and Q be two general polyhedral objects. We now show that the compu

tation of any set operator on P and Q canbe decomposed into: (a) operations on the

h-vectors, and (b) deleting the null vectors from the set of resulting h-vectors. The

following propositions are easily verified with the definitions of setoperators and of

polyhedral chains.

m

Proposition 3.1: LetP and Q berepresented byconvex polyhedral chains xP = ^P/

andxQ = £<&. Then xPkjQ ~x? +xq
k=l

Xpr&^ISPjnflk)

xp xpin-rvm

xp-q ~xpcH D

Proposition 3.2: Let hp denote a h-vector ofacell p. Then x- =-hp-H. •
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Foran example see figure 3.6. Note thatthe length of this chainequals the numberof

nonzero components of the vector hp. It is therefore desirable to keep this number

low, possibly at its minimum.

Figure 3.6: hp=(0,1,-1,0,-1), jc-=-1//2+1-//3+1//5
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Proposition 3.3: Let hp and h^ denote the h-vectors for two cells p and q respec

tively. Then h _ can be computed using the following table for each component

frpnq)i'

(Krv.A-

«f)i
PCrt-

0 1 -1

(h„)i

0 0 1 -1

1 1 1 *

-1 -1 * -1

Table 3.1: In those cases denoted by *, the hyperplane //, separates p and q, i.e.

p£l -Hi and <? c -1•//,-, orvice versa, and therefore p r^q=<t>. •

Note that both the intersection and the complementation operator aredefined on

the components of the h-vector. The components are independent of each other and

can therefore be processed in parallel. In particular, a systolic array [Kung79] seems

to be promising for an efficient implementation.

It follows from propositions 3.1-3.3 that for any set operation &, the h-vector

representation of P&Q can becomputed from the h-vector representations of P and

Q. However, the h-vectors in the resulting representation may not be minimal. Also,

some vectors may define empty sets, due to the fact that condition * is a sufficient,
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but not a necessary condition for non-intersection. Two cells p and q may not inter

sect, but there is no component (hp^),- where condition * occurs. In that case, the

resulting vector h^ defines an empty set Although that case isconsistent with our

data model, it is not desirable. A large number of empty cells p} in the convex

m

polyhedral chains xP=^Pj representing the data objects may slow down the system

performance considerably. We therefore need an efficient means for detecting empty

cells.

One approach would be to abandon the concept of minimality and to increase

the number of nonzero components in the h-vector, possibly to its maximum, i.e.

(V;=<

lifpc 1///

-1 ifp c-1//,.

0 otherwise
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Each nonzero component increases the chance that a separating hyperplane is found,

i.e. that condition * is met if two polyhedra do not intersect If each h-vector had a

maximum number of nonzero components then a separating hyperplane would be

detected immediately; i.e. condition * would be a necessary and sufficient condition

for non-intersection. On the other hand, this approach makes the identification of

boundary hyperplanes and therefore the cell complementation and boundary retrieval

operations muchmoredifficult Also, computing the above function for each cellp in

the database requires an immense amount of computation and produces a lot of data

that is probably never needed.

A garbage collector seems to be a better solution. Each time a new cell is com

puted as the intersection of two cells, the new cell is tagged. A background process

(the garbage collector) keeps checking the tagged cells in the database for emptiness.

If a cell is found non-empty, it is untagged. Otherwise, it is deleted from storage and

from the chains that contain that cell. Unfortunately, the representation of cells by

means of their h-vectors does not lead to an efficient algorithm to check cells for

emptiness. A better approach to this problem, based on geometric duality, is

presented in chapter 4 of this thesis. There we show that the time complexity to

check two cells for intersection is polylogarithmic and therefore sublinear in the

number of vertices of any of the cells.

In order to avoid duplicating computational effort and loosing information, we

propose to cache the results obtained by the garbage collector. Whenever acell inter

section p(~>fl is computed a second time, it should be immediately clear from the
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vectors hp and h^ if the intersection pryi is empty or not Whenever the garbage

collector checks a new cell r=p p#, it either discovers a separating hyperplane (if p

andq are disjoint) or it discovers that there are no separating hyperplanes (if p and q

intersect). This result can be cached by extending the notion of the h-vector to cap

ture more information in the following way.

Given a cell p and a hyperplane //;, there are two pieces of information about

the relationship between p and Hi that areof interest and that should be cached in the

component (hp )4-:

(i) Which side of //,- is p on? Possible answers are: to the left (-1), to the right

(+1), Hi intersects the interior ofp (I), or unknown (0).

(ii) Is Hi a boundary hyperplaneofp ? Yes (Y), No (N), or unknown (0).

Clearly, if //, intersects the interior of p then it can not be a boundary hyper

plane ofp. Also, if it is not known on which side of//,- p is on, then Ht must not be a

boundary hyperplane; otherwise, p would not be defined properly. Hence, of the 12

possible combinations, only 8 combinations make sense:



side

1 -1 I 0

boundary hyperplane?

Y

N

0

ok ok -

ok ok ok ok

ok ok

Table 3.2
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Now each cell p is represented as a vector hp with the following semantics.

Each component is one of the following eightcombinations.



(h;x- Meaning

(U) p £ l-///,//,-is a boundaryhyperplaneofp

(-1?) p c -1//,-, //,• is a boundary hyperplane ofp

(1,0) pel Hi, Hi may or may not be a boundary hyperplane ofp

(-1,0) p c -I*//,-, Hi may or may not be a boundary hyperplane ofp

(1JV) p £ \-Hi,Hi is not a boundary hyperplane ofp

(-1^) p c -1-///, //,• is not a boundary hyperplane ofp

OW Ht intersects the interior ofp

(OJV) Ht is not a boundary hyperplane ofp

Table 3.3
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Components that are not explicidy specified default to (0,W). It turns out that these

hp vectors are closed with respect to intersection of two cells. (hppA- is given by

the following table.
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Kr-A

(hj),

\ pfyr.

(U) (-i.y) (1,0) (-1.0) (W (-W (W GW

(h,4),-

(U) (1.0) * 0.0) * (1.0) * (1.0) d,0)t

(-i.y) * (-1.0) * H.0) * (-1.0) (-1.0) (-1.0)t

(1.0) (1.0) * (1.0) * (1.0) * (1.0) (1.0)t

(-1.0) * (-1.0) * H.0) * (-1.0) (-1.0) (-1.0)t

(W (1.0) * (1.0) * (W * (W (W

(-I/O * (-1.0) * (-1.0) * (-W (-W (-W

cw (1.0) (-1.0) 0.0) (-1.0) (W (-1.A0 flW <PJ0

<DJO (1.0)t (-1.0)t (1.0)t (-1.0)t (W (-w <DJO GW

Table 3.4

In those cases denoted by *, the hyperplane Hi separates p and q, i.e. p c 1*#j

and q C-l//,-, orvice versa, and therefore p ryi=$. Then there mustbe atleast one

separating hyperplane H-t that is a boundary hyperplane of p or q. In this case

(h )t- corresponds to one of the cases denoted by* or by t. Therefore, anew cell
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r^pr^q is certainly empty if any component (hp _A- corresponds to one of the

casesdenotedby *. Otherwise, it needs to be tagged if andonly if there is at leastone

component (hprw)i that corresponds to one ofthe cases with the t- Then the garbage

collectorwill check if the cell p ptf is in fact empty or not

If a tagged cell r=p fyj is found empty, this result canbe cached by the follow

ing updates. Let //; be a separating hyperplane and, w.l.o.g. let p d*//; and

qz-VHi.

TFfrf)i=W)

THENCE :=(1^)

IFO^-GWV)

THEN(h^:=(-lJV)

If, on the otherhand, a tagged cell r=p p# is found non-empty, we know that

there are no separating hyperplanes between p and q. For any hyperplane //,- that

may be a boundary hyperplane of p, either (a) q lies on the same sideof //f asp, or

(b) Hi intersects the interior of q. A similar condition holds for any hyperplane Ht

that may be a boundary hyperplane of q. This result can be cached by performing the

following updates.

IF «h;)i =(±U) OR (hp+)f =(±1,0)) AND (h+); =(0,W) AND Ht nq=$

THEN(h^f. :=(±l,AO

IF ((hp+X- =(±1,Y) OR (hp+); =(±1,0)) AND (h^£ =(0&) AND Ht n?**
'p

THEN(hiO,:=(/JV)
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IF ((h^ =(±1,7) OR (h^. =(±1,0)) AND (hp+)f =(0//) AND Hirp=$

THENCE :=(±1^V)

IF((hpi =(±1,7) OR (11+),. =(±1,0)) AND <h+)£ =(0^) AND//<nP*i>

THEN(h;)t:=(/^/)

Whenever p p|^ is computed again, it follows from the vectors hp and h+ if p

and q intersect or not. If they do intersect, the intersection cell will not have to be

tagged again.

When a new cell is inserted into the database, most of the components of its fa-

vector are zero. As set operations are performed on the data objects, the database

evolves. More and more zero components of the h-vectors are replaced, and the vec

tors carry more and more information. Therefore, it will happen less and less fre-

quendy that a new cell has to be tagged and checked for emptiness. Also, at some

point it may be more efficient to test a new cell r=p(yj for emptiness by checking

the hyperplanes that may be separating ones (i.e. the ones that correspond to com

ponents with a t) one by one if they are actually separating. If they are few enough

components with a t, this may be simpler and faster than using the dual approach

proposed in chapter 4.

Problems such as complementation, point location or boundary retrieval may be

solved by looking at only those hyperplanes that may be boundary hyperplanes, i.e.

the hyperplanes //,- where (hp*),- is (±l,Y) or (±1,0).

There are variations to this approach. First, one may prefer to always identify

the boundary hyperplanes of each cell, i.e. to avoid vector components (±1,0). This
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can be achieved by extending the garbage collector, such that each time an intersec

tion cell is found non-empty, its boundary hyperplanes are computed and the h-vector

is updated accordingly. Second, one may decide to simplify the update procedure

above by introducing additional aggregation states (1/^V) and (-11 Jf) which

represent (Iff) OR (/^V) and (-l^V) OR (/^V), respectively. Then the set of updates

for the case thatp and q intersect can be simplified to

IF ((hpi =(±\,Y) OR (hp+),- =(±1,0)) AND (h+),. =(0,AO

THEN(h+),- :=(±l/,AO

IF «h+),. =(±\,Y) OR (hpi =(±1,0)) AND (hp+),- =(0^)

THEN^,-:=(±1/^V)

In particular, it is not necessary anymore to check any hyperplane //,• that is a boun

dary hyperplane of p (q) if it intersects the interior of q (p), i.e. if

HiCtf (^ifiPH* II snU follows from the new vectors h* and h+ if p and q inter

sect or not If they do intersect, the intersection cell will not have to be tagged again.

As we will prove in chapter 4, the time complexity to check this condition for a par

ticular hyperplane //,• is logarithmic in the number of vertices ofq (p).

3.7. Summary

We introduced the concept of polyhedral chains as a representation scheme for

polyhedral data, and presented in detail a representation scheme based on convex

polyhedral chains. Each cell is represented as an intersection of halfspaces, encoded

in a vector. The notion of vertices is abandoned completely as it is not needed for the
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set and search operatorswe intend to support.

Basedon this representation, we described a scheme to decompose the computa

tion of set operators into two steps. The first step consists of a set of vector opera

tions; the second step is a garbage collection where thosevectors are eliminated that

represent empty cells. All results of the garbage collection are cached in the vectors

in such a way thatno computations have to be duplicated. As the database is learning

more and more information through the garbage collector, it will be able to detect

empty cells immediately such thatno additional test foremptiness is required.

Clearly, a systolic array [Kung79] seems to be promising for an efficient imple

mentation. Also, we believe that this approach is more amenable to parallel process

ing than a vertex-based approach. In particular, the components of the h-vectors are

processed independentiy from each other. Therefore, it seems possible to assign one

processor to each hyperplane in H and to carry outa significant fraction of the neces

sary computations locally without interprocessor communication.
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Chapter 4

A Dual Approach to Detect Polyhedral

Intersections in Arbitrary Dimensions

4.1. Introduction

In the previous chapter, we encountered the problem of detecting the intersec

tion of two convex cells. A fast solution to this problem direcdy affects the efficiency

of the garbage collector, which in turn has a direct impact on the efficiency of the h-

vector representation scheme as a whole. Detecting and computing intersections is a

fundamental problem in computational geometry [Lee84]. Fast solutions for inter

section problems are desirable in a wide range of application areas, including linear

programming [Dant63] , hidden surface elimination [Newm79] , or geometric data

bases. In many of these applications, the dimensionof the intersection problems may

be greater than three. This is particularly obvious in linear programming; another

example are database applications where geometric objects are used to represent

predicates [Kung84].

It was first noted by Chazelle and Dobkin [Chaz80] that it is often easier to

detect the intersection of two suitably preprocessed geometric objects rather than to

actually compute it. In the detection problem, one only asks if two objects intersect

or not; also, it is allowed to preprocesseach of the given objects separately.

In this chapter, which is an extended version of [Gunt87b], we present algo-

65
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rithms to solve the intersection detection problem in arbitrary dimensions for hyper

planes and convex polyhedra. A (d-dimensional, convex) polyhedron P in d-

dimensional Euclidean space Ed is defined to be the intersection of some finite

number of closed halfspaces inEd, such that the dimension of the smallest affine sub-

space containing P is d. As in chapter 3, we say that a hyperplane

H(a,c)={xeEd'jca=c] (a e Ed-{0), c e E1) supports a polyhedron P if

H(a,c)(~\P*$ and P cl\H(a,c). If H(a,c) is any hyperplane supporting P then

P(~>fl(a,c) is a face of P. The faces of dimension 1 are called edges; those of

dimension 0 vertices. A supporting hyperplane is called a boundary hyperplane if

the face H(a ,c)p^P is of dimension d-l. The faces of P that are a subset of some

supporting hyperplane H(a,c), with ad<Q, form the upper hull of P. Similarly, the

faces with ad20 form the lower hullofP.

So far, the intersection detection problem has only been considered in two and

three dimensions. In their original paper, Chazelle and Dobkin [Chaz80] solve the

d -dimensional hyperplane-polyhedron intersection problem in time Oflogn) (d=2)

and Oflog2/*) (d=3), and the polyhedron-polyhedron intersection problem in time

0(logn) (d=2) and OQof^n) (d=3). Here, n denotes the maximum number of ver

tices of any given polyhedron. Both problems require 0(n) (d=2) and 0(n2) (d=3)

space and preprocessing. A revised version of that paper has been published recendy

[Chaz87]. In the three-dimensional case, 0(nlogn) space and preprocessing are also

sufficient [Dobk80], in which case the running times given above have to be multi

plied by a log* factor.
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In a later paper, Dobkin and Kirkpatrick [Dobk83] improve the running times

of Chazelle and Dobkin for the three-dimensional case by a factor of logn. The new

upper bounds are OQogn) and OOog2/*) for the hyperplane-polyhedron and the

polyhedron-polyhedron problems, respectively. As the algorithms of Chazelle and

Dobkin, their algorithms require 0(n2) storage and preprocessing. Again, the results

of Dobkin and Munro [Dobk80] can be used to reduce the space and preprocessing

requirements in three dimensions to 0(n\ogn), in which case the running times

increase by a logn factor.

In d dimensions, we obtain upper time bounds of 0(2dd\ogn) to detect the

intersection of a hyperplane and a polyhedron, and 0((2rf)rf"1logd~1/i) to detect the

intersection of two polyhedra. These time bounds appear to be the first results for

d>3 and match the time bounds given by Dobkin and Kirkpatrick [Dobk83] for d=2

and d=3. Furthermore, our results seem to be the first of their kind that extend to

unbounded polyhedra as well.

We obtain our results by means of a geometric duality transformation in d-

dimensional Euclidean space Ed that is an isomorphism between points and hyper

planes [Prep79,Brow79,Lee84]. Each convex polyhedron P is represented by a set

of two functions in the dual space, TOPp,BOTp: Ed~1-^E1, such that ahyperplane

H intersects P if and only if the dual of H lies between TOPp and BOTp. Then,

two polyhedra P and Q intersect if and only if for all x e E*1"1, we have

T0Pp(x)2B0TQ(x) and TOPQ (x)2BOTp(x).

For d-2 and for the hyperplane-polyhedron intersection problem in d=3, the
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space and preprocessing requirements of the dual representation scheme are 0(n) and

therefore optimal. For the three-dimensional hyperplane-polyhedron intersection

problem, this represents an improvement over the results of Dobkin and Kirkpatrick

[Dobk83] by a factor of n. The three-dimensional polyhedron-polyhedron problem

takes quadratic space and preprocessing, asdoes the algorithm ofDobkin and Kirkpa

trick.

For general d, the scheme requires 0(/r *) space and 0(2dn2 d\ogn)

preprocessing. To improve these bounds is a subject of further research. In particular,

we suspect thatlower bounds may be achieved at the expense of slighdy higher time

bounds for the detection algorithms.

Section 4.2 introduces the dual representation scheme for convex polyhedra.

Sections 4.3 and 4.4 show how the hyperplane-polyhedron and the polyhedron-

polyhedron intersection detection problems can be solved efficiendy using the dual

scheme. Section 4.5 presents several extensions of our approach, and section 4.6

contains our conclusions.

4.2. The Dual Representation Scheme

If the hyperplane H(a,c) is non-vertical (i.e. ad * 0),then H intersects the d-th

coordinate axis in a unique and finite point and can berepresented byanequation

xd = b ix x+.. +bd-ixd-i*bd

where bt = -a{lad (i = 1.. d-\) andbd=c. FH denotes the function whose graph

is//, i.e.
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Fh'.E^^E1

*jsr (*i • •xd_x) = biXx+.. +bd_lxd_l+bd.

A point p =(p\..pd) lies above (on, below) H ifpd > (=,<) FH(px.. pd-{).

Brown [Brow79] defines a duality transformation D in Ed that maps hyper

planes into points and vice versa. The dual D(H) of hyperplane H is the point

(b i.. bd) in Ed. Conversely, the dual D(p) of apoint p is the hyperplane defined by

the equation

xd =-P\X\-PiX2- • • -Pd-ixd-i+Pd-

Lemma 4.1: A point p lies above (on, below) a hyperplane H if and only if the dual

D (H) lies below (on, above) D (p).

Proof: Let // be given by the equation FH(xi.. xd-{) = b xx x+.. +^-i^-i+^ and

letp = (pi.. prf) be a point above (on, below) //, i.e.

Pd >(=»<)*//(Pi--Prf-i) (*)•

Inserting D (H )=(b \..bd) into FD ^) yields

Fd(pP\..fy_i) =-Pi^i-• •-Pd-it>d-i*Pd >(=•<)^rf (dueto(*))

Hence, D (p) lies below (on, above) /)(//). D

A hyperplane // intersects a bounded polyhedron /* if and only if there are two

vertices v and w of P such that H lies between v and w (i.e. v lies on or above H

and w lies on or below //, or vice versa). Accordingto lemma 4.1, this is the case if

and only if the dualD (H) lies between the duals D (v) andD (w).
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This observation leads to a new representation scheme for bounded convex

polyhedra. Consider the functions TOPp ,BOTp lE^-JE1 that are defined for a

convex polyhedron P as follows. Here, V> denotes the set ofvertices ofP.

TOPp(x1. .xd_x) = max FD(y)(xx. .xd_x)
V € Vp

BOTp(xx..xd.x) = min FD(y)(xx. .xd„x)
V€ Vp

Obviously, both functions are piecewise linear, continuous, and TOPp is con

vex, whereas BOTp is concave [Rock70]. With this notation, a non-vertical hyper

plane Hintersects P if and only ifD(H) lies between TOPp and BOTp. More for

mally, the hyperplane H, given by the equation xd =bxxx+.. +bd-Xxd-X+bd, inter

sects P if and only if BOTp(bx. .bd_x)Zbd£TOPp(bx..bd_x). A two-

dimensional example ofapolyhedron P and the corresponding functions TOPp and

BOTp is given in figure 4.1.

(-310)

Figure 4.1
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It is easily possible to extend this representation scheme to unbounded polyhe

dra. For simplicity, however, the main part of this paper is restricted to bounded

polyhedra; the case of unbounded polyhedra is discussed in more detail in section

4.5.1.

The two functions TOPp and BOTp can be viewed asa mapping that map any

slope (bx..bd_x) of a non-vertical hyperplane into the maximum (JOPp) or

rninimum (BOTp) intercept bd such that the hyperplane given by

xd=bxxx+.. +bd_xxd-X+bd intersects the polyhedron. We have

Theorem 4.2: Each convex polyhedron P corresponds to exacdy one pair of func

tions (TOPp£OTp), and conversely.

Proof: The functions TOPp and BOTp are uniquely defined for any convex regular

polyhedron P, i.e. there is only one pair offunctions (TOPp J10TP) for any P.

Conversely, suppose there were two convex polyhedra P and Q such that P*Q,

but TOPp(xx..xd„x) =TOPQ(xx..xd_x) and BOTp(xx. .xd_x)

=BOT<* (xx.. xd_x) for all (xx.. xd„x) e EM.

Case 1: P(~\Q =<(>• Then mere exists anon-vertical separating hyperplane H such that

all points of P lie above H and all points of Q lie below H, or vice versa. There also

exists a hyperplane //' parallel toH that intersects P.H' does notintersect Q. Le.,

the dual D(//') lies between TOPp and BOTp, but not between TOPQ and BOTQ.

This is a contradiction to our assumption.

Case 2:Pr\Q*$. Because ofP*Q it is P-Q*§ or Q-P*$. W.Lo.g., let P-Q*$.

Let p be some interior point of P-Q. There exists a non-vertical separating
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hyperplane H such that all points ofQ lieabove H and pointp lies below H, orvice

versa. There also exists a hyperplane H' parallel to H that goes through p. Because

ofp € P, H' intersects P, but it does not intersect Q. Contradiction to our assump

tion as above. E

43. Hyperplane-Polyhedron Intersection Detection

For simplicity of presentation, we assume that the given hyperplane is non-

vertical. This can always be achieved by a suitablerotation of the coordinate system.

It is alsopossible to extend ourdetection algorithm to detect intersections witha vert

ical hyperplane; see section 4.5.2 for details.

A non-vertical hyperplane H, given by xd=bxxx+.. +bd_xxd_x+bd intersects a

bounded polyhedron P if and only if BOTp(bx.. bd.x) £bd<> TOPp(bx.. bd_x).

Moreover, an intersecting hyperplane H supports P if and only if

bd =BOTp(bx.. bd_x) orbd =TOPp(bx.. bd-X). Therefore, the intersection detec

tion problem can be solved by obtaining the functional values TOPp(bx.. bd„x) and

BOTp(bx ..bd_x). It follows from the definition of TOPp and BOTp that these

values can be found in time 0(d-n) bycomputing FD^(bx.. bd_x) for each vertex

v eVp. With somepreprocessing, however, one can obtain logarithmic time bounds

as follows.

It follows from [Brow79] that there is the following isomorphism between the

upper hull of the polyhedron P and the graph ofTOPp. Each A:-dimensional face /

of the upper hull ofP corresponds toexacdy one (d-fc-l)-dimensional face D(f) of
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TOPp 's graph, and vice versa. Furthermore, if two faces / xand f2 ofP 's upper hull

are adjacent, then so are the faces D(f x) and D(f^ of TOPp *s graph. The same iso

morphism exists between P 's lower hull and the graph ofBOTp. Hence, the graphs

ofTOPp and BOTp are polyhedral surfaces inEd, consisting of nomore than n con

vex (tf-l)-dimensional faces and no more than m=Q(n2) (rf-2)-dimensional faces.

Without loss of generality, we only show how toobtain TOPp (bx.. bd_x). The

projection ofTOPp 's graph on the (rf-l)-dimensional hyperplane J:bd=0 subdivides

J into no more than n convex (rf-l)-dimensional polyhedral partitions with no more

than m (d-2)-dimensional boundary segments. Any given partition E £/

corresponds to a vertex v(E) of P's upper hull, such that for any point

(Pi-Pd-i)eE> ^ is TOPp(px..pd-X) =FD(viE))(px. .pd.x). Hence,

TOPp (b x.. bd_x) can beobtained bya(d-l)-dimensional point location in/ to find

the partition E that contains the point (b x.. bd_x), followed by a computation of

FD(v(£))(* l ••^-i)«

For d=2 and d=3, the computation of F0(V<£))(&i.. bd-X) takes only constant

time. The point location can be performed in time O(logn), using the algorithm of

Edelsbrunner, Guibas, and Stolfi [Edel86a] for pointlocation in a monotone subdivi

sion. The total time complexity to detect the intersection of a hyperplane and a

polyhedron is therefore 0(logn). The space and preprocessing requirements are only

0(n), due to the fact that, in our case, the given partitions are convex and therefore

monotone.
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For general d, it takes time 0(d) to compute the functional value

FD(y(E))(.bi ••bd-i)- Dobkin and Iipton [Dobk76] solve a(d-l)-dimensional point

location problem with m (d-2)-dimensional boundary segments recursively as fol

lows. In a preprocessing step, they compute the 0(m2) (d-3)-dimensional intersec

tion segments formed by the m original boundary segments, and project them on

some (d-2)-dimensional hyperplane K. This way, the point location problem can be

solved by a point location problem inK, followed by abinary search of them origi

nal segments. Therefore, the time complexity of the point location is

TPL(d-l,m)

£ TPL(d-2/n2) +(d-l)(Llogmj +1)

£...

<i TPL(2^n2i"3) +£ (d-i)(\ 2l'"1logm +1)
»=i L J

=0(2rfrflogm)

=0(2*^*)

We obtain atotal time complexity of 0(2ddlogn).*

For general d, the space requirements of the dual algorithm are as follows. The

equations of the 0(n) faces require space 0(dn). The space requirements to store a

convex subdivision of E2 with m boundary segments, SP(2/n), is 0(m) [Edel86a].

For a subdivision of Ed_1 with m boundary segments, one has to store a subdivision

* Note that we assume that it takes time 0(d) to determineon which side of a given hyperplane
a point is located. Dobkin and Lipton [Dobk76] assume in their analysis that this can be done in
constant timeandconsequently obtain a timecomplexity of OC^logn).
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of the (rf-2)-dimensional projection hyperplane K with m2 boundary segments and a

sequence of no more than m boundary segments for each of the partitions. The

number of partitions isno more than m2^""2* [Edel86b]. Therefore,

SP(d-ljn)

^SP(d-2/n2) + m2(d-2)m

<> SP (d-3/nA) +m^'^m2 + m^^m

^SP(2^n2d'i) +0(m2~d)

=0(m2'-3*)

=0(n2d'2d).

We obtain a total space complexity of 0(n^ a).

The preprocessing requirements of this algorithm are as follows. Each (d-2)-

dimensional boundary segment of the subdivision is obtained from the original

polyhedron P in time 0(d) by dualization and projection. Here, we assume that P is

given by a list of its faces and the corresponding adjacency relations. As there are

m=0(n2) (d-2)-dimensional boundary segments, ittakes time 0(dn2) to obtain all of

them.

The preprocessing requirements to solve a point location problem in a convex

subdivision of E2 with m boundary segments, PRP (2/n), are 0(m) [Edel86a]. For a

subdivision ofE*1"1 with m boundary segments, one has to compute m2 intersections,

and to project them on some (d-2)-dimensional hyperplane K. For each of the
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OOn*"*) partitions, one has to sort the 0(m) boundary segments. Finally, one has

todo the necessary preprocessing for the subdivision ofK. Therefore,

PRP(d-l/n)

<: PRP (d-2jn2) +m2(</"2)mlogm

<, PRP (d-3jn4) +m4(d~3)m2logm2+ m^'^m logm

ZPRPQjn1 )+0(m2 'logrn2 )

=0(2dm2<,"3dlogm)

=0(2rfn2''"2<'logn).

We obtain atotal preprocessing time of0(2dn^~ dlogn). Theorem 4.3 summarizes

our results for the hyperplane-polyhedron intersection detection problem.

Theorem 4.3: Given a non-vertical (rf-l)-dimensional hyperplane H and a d-

dimensional convex polyhedron P, H and P can be tested for intersection in time

T(dji) with S(d,n) space andPP(d,n) preprocessing:



PnH=$*! T(dji) S(d,n) PP(d,n)

d=2 OQogn) 0(n) 0(n)

d=3 OQogn) 0(n) 0(n)

d>3 0(2rfdlogn) 0(n^2d) 0(2dn2d~2dlogn)

Proof: follows from the preceding discussion.
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4.4. Polyhedron-Polyhedron Intersection Detection

Two convexpolyhedraP and Q do not intersect if and only if there is a separat

ing non-vertical hyperplane between them. Any such hyperplane H does not inter

sect either P or Q, but there arehyperplanes //' and//" parallel to H, such that//'

is above H and //" is below //, and either //' intersectsP and //" intersects Q, or

vice versa. More formally, a non-vertical hyperplane H, given by the equation

Xd =b\x1+ ••+fy-i*<f-i+**»separates the polyhedra P and Q if and only if

TOPp(bv.. V-i) <bd <BOTQ(bx.. bd_x), or

TOp2(bx.. bd_x) <bd <BOTp(bx.. bd_x).

Therefore, two polyhedra P and Qintersect ifand only if*

(i) min (TOPp-BOTQ)(xx..xd_x) 2> 0,and
Cxi..*.i)6E"

(ii) min (TOPQ-BOTp)(xx.. jc^) £ 0.
(Xi-*-l)6E"

* We write (/-±gX*)for/(x)±g(x).
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See figure 4.2 for two examples. If both conditions are only met as equalities, then

only the boundaries of P and Q intersect, but not their interiors.

TOP0- x

TOP7

(a) no intersection: the points in the shaded area
are the duals of the separating hyperplanes.

Figure 4.2

BOJ9 nor*

(b) intersection

With the definitions of TOPp and BOTp, these conditions form a linear pro

gramming problem with no more than 2« constraints. According to Megiddo

[Megi84], the time complexity to solve this problem is bound by 2°(2 ^-2n. Hence,

the conditions can be tested in linear time 0(n) if the dimension is fixed. With some

preprocessing, however, the conditions can be tested in polylogarithmic time as fol

lows.

Without loss of generality, we only show how to test condition (i). We present a

multidimensional search technique that finds the minimum of a convex piecewise

linear function in arbitrary dimensions. The technique is recursive; it solves a d-
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dimensional problemby solving0(dlogn) (d-l)-dimensional problems, and so on.

In the two-dimensional case, condition (i) can be tested by a variation of Dobkin

and Kirkpatrick's algorithm [Dobk83] to detect the intersection of two polygons. The

graphs of TOPp and BOT& are monotone convex polygonal chains with edges

tx...tk and ux.. ut (k+l<2n); see also figure 4.1. The relative position and the

slopes of the edges tykl2\ and w^j §ive enough information to eliminate halfof the

edges of one (or both) chains from further consideration without missing the

minimum. The algorithm proceeds recursively, eliminating at least one quarter of the

remaining edges at each recursion level. Therefore, the rrjinimum is detected in time

0(logn) without any preprocessing or extraspace. A similaranalysis yields the same

bound to test condition (ii).

In order to solve the d-dimensional problem, we solve 0(d\ogn) (d-1)-

dimensional problems. It is well known [Dant63] that the global minimum of

TOPp-BOTQ occurs at some vertex of the graph ofTOPp-BOTQ, i.e. at some ver

tex M=(MX. .Md) of TO/^'s graph TG or BOTQ *s graph BG. Let (vx..vlTGl)

denote the sequence of vertices in VTG, sorted by increasing x coordinate. We con

sider the vertex vi \jg\ii\ an^ its Xj-coordinate bx, and compute the local minimum

of TOPp-BOTQ along the hyperplane xx=bx. This is a (d-l)-dimensional minimi

zation problem and can be solved recursively; let m=(mx=bx^n2,.. /nd) denote

some point where the local minimum is assumed. Due to the convexity of

TOPp-BOT&, we can determine the position of M relative to m from thelocal slope

ofTOPp-BOTQ. We have
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Lemma 4.4: It is Mx>(<)mx if and only if there is an 6o>0, such that for all e with

0<e<eo

TOPp-BOTQ(mx-tsn2.. md)

>(<) TOPp-BOTQ(mx..md)

>(<) TOPp-BOTQ(mx+zjn2.. md).

Otherwise, m isaglobal minimum ofTOPp-BOT&.

Proof: Due to the convexity of the function TOPp-BOTQ, there is always an £o>0,

such that forall e with 0<E<6o exacdy oneof the following conditions holds:

(i)TOPp-BOTQ(mx-ejn2-rnd)>TOPp-BOTQ(mx..md)

. >TOPp-BOTQ(mx+ejn2..md),

(ii) TOPp-BOTQ(mx-e^i2.. md)<TOPp-BOTQ(mx.. md)

<TOPp-BOTQ(mx+e^n2.. md),

(iii) TOPp-BOT^(mx-^m2.. md)ZTOPp-BOTQ(mx.. md)

A TOPp-BOTQ(mx+esn2. .md)ZTOPp-BOTQ(mx ..md)

If condition (iii) holds, then m is a local minimum. Because TOPp-BOT& is

convex, m also has to be a global minimum. Conversely, if m is a global minimum,

condition (iii) clearly has to be true.

We now show indirecdy that Mx>mx implies condition (i). Suppose that

Mx>mx, but (i) does not hold. Because m is not a global minimum, condition (ii) has

to be true. Let r =(rx^2=m2^3, ..jrd)denote the minimum ofTOPp-BOTQ along

the hyperplane x2=m2. Due to (ii) and to the convexity ofTOPp-BOTQ, it is rx<m x
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and rd<md. Therefore, the line segment (Ms) intersects the hyperplane xx=mx in

some point s = (sx=mxj2,.. fd). Because of Md<rd, it is sd<rd, and because of

rd<md, it is sd<md. This is a contradiction, because s lies on the hyperplane x\=mx,

and m is the minimum along this hyperplane. A two-dimensional example is given in

figure 4.3.

Figure 4.3

Hence, Mx>mx implies condition (i). Similarly, it can be shown that Mx<mx

implies condition (ii). Due to the mutual exclusiveness of conditions (i), (ii) and (iii),

we obtain that (i) implies Mx>m xand soon. This proves the lemma. D

Therefore, looking up the functional values TOPp-BOTQ(mx±Ejn2.. md) for

some suitable e>0 gives us enough information to eliminate half of the vertices in

Vjq (and some vertices in VBG) from the search without missing the global

minimum. If the search among the vertices in TG does not yield a global minimum,

one continues with a similar search among the remaining vertices of BG. Hence the
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global minimum isobtained in no more than log( ITGI)+log(\BG\) iterations.

The analysis of this algorithm obviously depends on the cardinalities of TG and

BG. A simple combinatorial analysis shows that at any recursion level it is

\TG\+\BG\£nd, i.e. the algorithm requires no more than 2d\ogn iterations. Each

iteration involves a (rf-l)-dimensional minimization and the four function lookups

necessary to obtain TOPp-BOTQ(mx±z/n2 ..md). As shown in section 4.3, each

lookup can be carried out in no more than 2d+1dlogn steps. We obtain a total time

complexity

T(d,n)

<: dlogn i4-2d+1d\ogn+r(d-l,n))

<2d+3d2\og*n+d\ognT(d-l,n)

<2d+3d2\ogln+d\ogn 2d+2(d-l)2\ogln+d(d-l)\og>nT(d-2,n)

< 22rf+5-,'t/l'login

=0((2d)d-1\og*-1n).

Of course, in practice one might be able to solve the intersection detection problem

much faster by checking at various stages if (TOPp-BOTQ)(xx. .xd_x)<0, or

(TOPQ-BOTp)(xx. .xd.x) <0.

For d=3, the space and preprocessing requirements of this algorithm are as fol

lows. The equations of the 0(n ) faces of P and Q require space 0(/i). For the mul

tidimensional binary search one has to store (a) a subdivision of the *raxis into no
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more than n+l partitions, and (b) a sequence of 0(n) boundary segments for each

one of the partitions. The total space requirements are therefore 0(n2). The prepro

cessing can be done in time 0(n2) by means of a plane sweep as described in

[Prep85], pp. 47-48.

For d>3, the data structures required to do the search are essentially the same as

the ones required to do the point location as described in section 4.3. Therefore, the

space and preprocessing requirements are the same as for the hyperplane-polyhedron

intersection detection problem. We obtain

Theorem 4.5: Given two d -dimensional convex polyhedra P and Q, P and Q can be

tested for intersection in time T(d,n) with S(djt) space and PP (d ,n) preprocessing:

PnQ=*t T(dji) S(d,n) PP(d,n)

d=2 0(\ogn) 0(n) 0(n)

d=3 OOog2/!) 0(n2) 0(n2)

d>3 0((2d)d~1\o^1n) 0(n2d'2d) 0(2dn2d~2d\ogn)

Proof: follows from the preceding discussion.

4.5. Extensions

4.5.1. Unbounded Polyhedra

Clearly, there exist functions TOPp and BOTp for an unbounded polyhedron

P, such that a hyperplane H intersects P if and only if the dual D (H) lies between

TOPp and BOTp. The question is how todefine these functions in a way that allows



84

to construct their graphs easily by dualization of the original polyhedron P. In the

case of bounded polyhedra, we base our definition on the notion of vertex, which is

obviously not sufficient for the unbounded case. One simple way to generalize our

definitions of TOPp and BOTp,

TOPp(xx. .xd_x) = max FD(v)(xx. .xd_x)

BOTp(xx. .xd_x) = min FD(v)(xx. .xd_x)
veVp

to anunbounded polyhedron P, is to enhance VP by some virtual vertices at infinity.

In particular, let CP denote a d-dimensional cube with edge length E(CP) that con

tains all vertices of P. The bounded polyhedron P C\CP has a set of vertices

VpriCp =Vp\jV> where V contains those vertices that are formed by intersections

of Cp with edges of P. As E (CP) goes to infinity, so do the vertices in V. The dual

D(v) of any vertex v e V goes towards a vertical hyperplane with a corresponding

function FDi7yEd-l-+±oo. Now the functions TOPp^Or/>:Ed"1-^E1^{±oo} are

defined as

TOPp (xx.. xd_x) = lim max _FD,v)(xx.. xd_x)
E{Cp)-^>ovevP\JV

BOTp(xx..xd_x)= lim min _FD,v)(xx. .xd„x)

Again, there is an isomorphism between the upper hull of P and the graph of

TOPp, as well as between the lower hull of P and the graph of BOTp [Brow79].

Note that the virtual vertices are only a conceptual aid. They do not have to be taken

into account when constructing the graphs by dualization. If the dual of P 's upper
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hull does not yield a finite value bd=TOPp(bx.. bd_x), then the functional value at

(b x.. bd„x) is assumed +00. Similarly, the default for BOTp(bx.. bd_x) is -<». The

algorithms to detect intersections do not have to be modified, exceptfor the possibil

itythat TOPp and BOTp may now assume the values ±00. A two-dimensional exam

ple is given in figure 4.4.

(0.511.75)

BOT*

Figure 4.4

4.5.2. Vertical Hyperplanes

Vertical hyperplanes pose a problem for the dual scheme because they do not

have a dual point with finite coordinates. However, for each vertical hyperplane H

there is a virtual dual point at infinity. Let (//„) denote a sequence of non-vertical

hyperplanes that converges towards H, such that all hyperplanes Hn have the same

(d-2)-dimensional point set Q in common (i.e. Q is the intersection of any two

hyperplanes Hni and//„2).
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Let FHm(xx.. xd_x) = bxxx+..+bd_xxd_x+bd. As described in section 4.3,

TOPp(bx ..bd_x) is obtained as follows. First, one performs a (d-l)-dimensional

point location in the projection of TOPpts graph on the hyperplane J:bd=0 to find

the partition E c/ that contains the point (b x .. bd_x). Then, one computes the func

tional value FD(v(E))(bx .. bd_x), where v (E) is the vertex of P that corresponds to

the partition E.

Lemma 4.6: There is an /i0e N such that for all n>n0 all duals D (//„) belong to the

same partition E £/.

Proof: Because Q is a subset of each hyperplane Hn, each dual point D (Hn) lies on

the dual non-vertical straight line D (Q). Clearly, (D (//„)) goes to infinity as n goes

to infinity. On the other hand, each partition E £/ is convex, and the number of par

titions is finite. From there, the lemma follows. D

In order to check H for intersection with some polyhedron P, one can now

proceed similarly as in the case of a non-vertical hyperplane. The partition E can be

obtained by a point location. Then, one computes the two limits

^TOPp(b\..b2-X)-FD{y{E))(bnx ..bS.x)) and

lim(FZ)Cv(£))0y ..b2_x)-BOrp(b\ ..b%_x)). H intersects/' if and only if both

limits are greater or equal zero. Moreover, H supports P if and only if at least one of

the limits is finite.
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4.6. Summary

We showed that in arbitrary, but fixed dimensions, the hyperplane-polyhedron

and the polyhedron-polyhedron intersection detection problems can be solved in log

arithmic and polylogarithmic time, respectively. For dimensions larger than three,

these results are the first of their kind. There are two reasons why, as of now, these

results are of primarily theoretical interest. First, the coefficient which is exponential

in d becomes prohibitively high for higher dimensions. Second, the space and

preprocessing requirements are not suitable for practical purposes. It is subject to

further research to improve these results in order to achieve practical algorithms for

intersection detection in higher dimensions. In particular, we suspect that lower

bounds for space and preprocessing may be achieved at the expense of slightly higher

time bounds for the detection algorithms.



Chapter 5

The Cell Tree:

An Index for Geometric Data

88

5.1. Introduction

In order to support the computation of search operators, such as point location

andrange search, one usually resorts to hierarchical data structures. Hierarchical data

structures provide a convenient representation scheme for geometric data, based on

the divide and conquerparadigm.

Hierarchical data structures are based on the principle of recursive decomposi

tion, and can be classified on the basis of the principle guiding the decomposition

process on each recursion level. In tree structures, the decomposition is guided by

the input data. In trie structures, the decomposition is independent of the input data.

For example, the decomposition may be into subspaces of the same shape as the ori

ginal space (termed a regular decomposition). Both for tree and trie structures, how

ever, the input data determines the recursion depth, i.e. at whatpoint the decomposi

tion is to terminate.

Region quadtrees [Same84], for example, are actually tries that organize two-

dimensional data. The decomposition process starts from a square that contains all

objects to be represented, and proceeds with a recursive subdivision into four equal-

sized quadrants; see chapter 2 for a more detailed description. A major practical

88
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problem with region quadtrees is that they do not take pagingof secondary memory

into account In particular, this becomes problematic for the generalization of region

quadtrees to multiple dimensions. The branching factor of the tree is 2d for d dimen

sions. At some point nodes will stretch over several pages which may decrease the

tree performance significantly.

Binary space partitioning (BSP) trees [Fuch80,Fuch83] are binary trees that

represent a recursive subdivision of a given space into subspaces by hyperplanes.

Each subspace is subdivided independent of its history and of the other subspaces.

Each hyperplane corresponds to an interior node of the tree, and each partition

corresponds to a leaf. Figure 5.1 gives an example of a BSP and the corresponding

BSP tree. BSP trees provide another way to represent polygonal data, but they are

typicallyvery deep which has a negative impacton tree performance. Also, insertion

and deletion of objects is very hard, i.e. they are not very dynamic. Finally, they do

not account for paging of secondary memory.

Polygon trees [Will82] are an interesting data structure to perform polygon

retrieval, which can be stated as follows. Given a set of n points in the plane and a

general polygon, find the subsetof these pointslying inside the polygon. If the points

are organized in a polygon tree, this problem can be solved in time 0(n 0&s; and

space 0(n). As the BSP tree, the polygon tree corresponds to a partition of the plane

into disjoint regions. It can be dynamized by means of standard dynamization tech

niques such as [Bent80], such that insertions and deletions of points can be inter

leaved with queries and no periodic reorganization is required. However, there is no
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Figure 5.1: A binary space partitioning with BSP tree (from [Nayl86]).
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obvious generalization of the polygon tree to solve range search queries or to solve

problems in three or more dimensions. Also, polygon treesdo not account for paging

of secondary memory.

In a database environment, hierarchical data structures are frequently used as

indices. The canonical example for such an index is the B-tree [Baye72, Come79], a

structure that is based on the ordering of one-dimensional key values. Morerecently,

several proposals for multi-dimensional database indices were made.
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R-trees, proposed by Guttman [Gutt84] , are a generalization of B-trees to

higher dimensions. They are used to retrieve data for non-point geometric objects

according to their locations in a multi-dimensional space. R-trees are designed for

data residing on paged secondary memory, and for use as a database index. They are

also fully dynamic, i.e. insertions and deletions can be interleaved with queries and

no periodic reorganization is required. R-trees are based on the nesting of multi

dimensional rectilinear boxes that, at the lowest level, are wrapped around the actual

data objects. Therefore, R-trees do not provide an exact representation of non-

rectilinear data objects and, consequently, do not give exact answers for this case. For

example, a range search on an R-tree only yields a set of boxes whose enclosed

objects may intersect the search space. One is left with the problem of testing the

objects for intersections with the search space and, optionally, computing the inter

sections. The search efficiency of R-trees is limited, because the rectilinear boxes

may be too rough anestimate for thedata objects enclosed. Especially for pointloca

tion problems, R-trees are inappropriate because the boxes on one level may be over

lapping. This means that one may have to follow several search paths for the same

search point. The latter problem led to the development of optimization techniques

to minimize the overlap [Rous85] and of the R+-tree [Ston86b] where the boxes on

the same tree level are non-overlapping.

For a more extensive survey of hierarchical data structures see, for example,

[Bent79] or [Same84].

Section 5.2 describes a scheme for a geometric database where all data objects
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are represented as convex chains, i.e. as algebraic sums of convex point sets (cells).

Section 5.3 considers various approaches to compute search operators in this scheme.

Section 5.4 introduces an index for this database, viz., a new hierarchical data struc

ture termed cell tree, and describes how to compute search operators with the tree.

Section 5.5 gives algorithms to perform insertions and deletions, and section 5.6 is a

brief summary of this chapter.

5.2. A Geometric Database Scheme Based on Convex Chains

Consider a database consisting of a collectionof (possiblyself-intersecting) reg

ular* d-dimensional polyhedra in Euclidean space Ed. In order to support search and

set operations efficiently, we use the scheme presented in chapter3 and represent the

data objects as convex chains, i.e. as sums of convex cells. Again,

H=HiH2 ..H\h\ denotes a vector of (d-l)-dimensional oriented hyperplanes such

that for each face/ of any data objectin the database there is a hyperplane in H that

embeds/.

Cells are stored in the form

(cid£J>)

Here, cid is a unique identifier which can be usedto retrieve the cell. S is a descrip

tion of the cell's shape (an h-vector, for example), andD is the set of data objects P

whose convex chains xP contain the cell.

* A point set is regular if it is the closureof its interior [Tilo80].
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Data objects are stored in the form

(didtCA)

Here, did is a unique identifier, and A denotes further attributes of the data object

which are of no importance in this context C is the set of cells in the corresponding

convex chain. Any cell p and any data object P are to meet the integrity constraint

p e P.C <=> P e pD for pointer consistency.

Although the decomposition of the original data objects into cells will take some

preprocessing time, we believe that it will eventually pay off by making searches and

updates simpler and faster. Note that this decomposition is completely transparent to

the user. Cells and the C-part of the data object representations cannot be seen or

manipulated by the user. The cost of maintaining the above integrity constraint

should therefore be negligible.

5.3. Searching by Space Partitioning

53.1. A Simple Search Tree

Both point location and range search problem could be performed using a sim

ple binary search tree with IH1+1 levels as follows. All interior nodes on the i-th

level of the tree are associated with the hyperplane i/f in H to induce the following

binary space partitioning ofEd. Let Nx and N_x denote the two descendant nodes ofa

given interior tree node N. Then each node N of the tree corresponds to a convex d-

dimensional polyhedron PN> defined by

7>roo/=Ed,and
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PN=X =>PNi=Xn*iHN (1=1,-1).

Fromthis definition it follows immediately thatthe polyhedra corresponding to nodes

on the same tree level are mutually disjoint and that their union is Ed.

Each leaf node M contains pointers to all cells whoseregular intersection with

PM is non-empty. An example of an arrangement of data objects and a correspond

ing search tree is given in figure 5.2.

HI

H2

©O OO ©O OO OO O© O© OO
Figure 5.2

Hi

H2

H3

H4

As we saw above, the insertion of a newcell usually requires H to be expanded
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by say r new hyperplanes. Correspondingly, the search tree has to be expanded by r

levels. Once this is done, the new cell p is inserted into the tree as follows.

Algorithm Insert(N,p). Given a search tree whose root node is N, insert a new cell

11. [Insert into left subtree.] If N is not a leaf, and pr^*VHN *<|>,

1nseTt(Nltpr\*l'HN)-

12. [Insert into right subtree.] If N is not a leaf, and ppi*-17/# *<|>,

Insert(iV*_i, p pi*-l-//jv).

13. [Insert into leaf node.] IfN is a leaf, install a pointer top in N.

5.3.2. Searching

In the point location problem, one searches all data objects that contain a given

search point A. Consider the function /: Ed-»/0,1-1J'H'

fi(A)=i

lifAe VHi and A 4 Hi

-1 if A g -IHi andA 4 Hi (i=l.. IHI)

OifAei/,-

Clearly, /,- (A) can be computed in time 0(d). A cellp containsA if and only if

/j(A)'(hp)j20 (i=l.. IHI). Point location can now be performed by means ofthe

following algorithm PSearch.
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Algorithm PSearch(AM). Given a search tree whose root node isN, find all cells in

the tree that contain a point A.

PSl. [Search subtree(s).] If N is not a leaf, compute /,(A), where #,=%. If

/,(A)=0, PSearch^A) and VSearch(N_lt A). Otherwise,

PSearch(Af/|(A),A).

PS2. [Search leaf node.] If N is a leaf, return all pointers in N.

In the range search problem, one searches all data objects that intersect a given

search space A. The general case of A being a non-convex polyhedral point set can

m

be solved by representing A as a convex chain xA=J^Ai and performing the search
i=l

for each cellAf. The union of all data objects yielded in the process is the set of data

objects intersecting the original search space A. This problem can be solved

efficiently with parallel processing as the solutions for the subproblems involving the

cellsA; can be solved independently of each other.

If A is a convex polyhedron, range search can be performed in amanner similar

to algorithm PSearch. Let the function g be defined as follows.

lifAc IHi

8i(A)=-{ -1 ifA c-l-ff, 0=1 •• IHI)
0 otherwise

The computation of g is somewhat more difficult than in the case of function /.

Unfortunately, the representation of A as a vector hA does not lead to an efficient
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method to compute g (A). With the dual representation scheme for convex polyhedra

that has been presented in chapter 4, however, each functional value gt (A) can be

computed in polylogarithmic time. A range search can now be carried out by means

of the following algorithm RSearch.

Algorithm RSearch(A^ ^4). Given a search tree whose root node is N, find all cells in

the tree that intersect a convex search space A.

RSI.[Search subtree(s).] If N is not a leaf, compute &(A), where Ht=HN. If

gi(A)=0,thenRSearch(NlfAr>flHN)andRSearch^.j,Ar^*-VHN). Oth

erwise, RSearch^^), A).

RS2. [Search leaf node.] IfN is a leaf, return all pointers in N.

5.3.3. Improvements

Clearly, this basic version of the search tree has too many nodes and is not very

efficient; it can be simplified in several ways. First, one may delete redundant nodes

from the tree. A node N on the i -th tree level is redundant if and only if the halfplane

HN does not intersect the interior of the associated convex polyhedron PN. In this

case the explicit computation of/,- or gt is not necessary, as it does not yield any new

information. Each redundant node N may be replaced by one of its descendants, N±

or iV_j, dependent if PN £ VHN or PN £-l-//#. Now a node on the i-th tree level

does not necessarily correspond to the hyperplane //,. It is therefore necessary to

store in each node N a pointer to the corresponding hyperplane HN. The resulting
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search tree has less nodes and is therefore always more efficient. For a two-

dimensional example see figure 5.3.

Hi

H2

(a)

(b) original tree (c) tree without redundant nodes

Figure 5.3

Second, one may go even further and prune all subtrees that do not contain any

cells. Clearly, this step is also guaranteed to improve the search performance. Other

than the elimination of redundant nodes, however, it depends on the cells represented

in the tree.

Third, it may be efficient to restrict or extend the set of hyperplanes that HN

maybe chosen from. For example, one may introduce additional hyperplanes besides
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the ones in H to make the search tree balanced. This step would guarantee a good

average-case performance; see for example the binary space partitioning tree,

described in section 5.1.

Finally, in order to adapt the search tree to paged main memory, it may be use

ful to represent the binary search tree by an n-ary tree structure with the same func

tionality. Then n can be chosen such that each tree node corresponds to one page.

These ideas lead to the design of the cell tree, which will be described in the follow

ing section.

5.4. The Cell Tree

5.4.1. Definition

A cell tree is an index structure for the set of cells in a database. As the R-tree,

to which it is related, a cell tree is a height-balanced tree. A search or, in particular, a

point location should therefore require visiting only a small number of nodes. Tree

nodes correspond to disk pages if the index is disk-resident The index if fully

dynamic; insertions and deletions can be interleaved with searches and no periodic

reorganization is required.

Each leaf node entry is a pointer to the representation of a cell. In the following,

E.C denotes the cell associated with a leaf node entry E. ED denotes the set of data

objects whose corresponding convex chains contain the cell E.C. Mt denotes the

maximum number of entries that fit in one leaf node, and mi<Mt/2 is a parameter

specifyingthe minimum numberof entries in a leaf node.
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Non-leaf nodes contain entries of the form

(cp,PtC)

Here, cp is a child pointer, i.e. the address of a lower level nodein the cell tree. P is

a convex, not necessarily bounded d -dimensional polyhedron. All cells in the data

base that overlap P are in the subtree that is rooted at this lower level node. C is a

convex subset of P, such that for each cell p in the subtree, C contains (p/V*). C

provides a more accurate localization of these cells, which may speed up search

queries. In the following, E.cp, EJ*, and E.C denote the corresponding attributes of

a non-leaf node entry E. M„i denotes the maximum number of entries fitting in one

non-leaf node, and m„/<M^/2 is a parameter specifying the minimum number of

entries in a non-leaf node. Finally, given a node N, its entry in its parent node is

denotedby EN, and the entries in N are denoted by Et(N).

A cell tree satisfies the following properties.

(1) Every leaf node contains between mt and Mt entries, and every non-leaf node

contains between m„/ andM^ entries unlessit is the root.

(2) For each entry (cp, P, C) in a non-leaf node, the subtree that cp points to con

tains a cell p if andonly ifp overlaps the convex polyhedron P.

(3) For each entry (cp,P, C) in a non-leaf node, Cc? is a convex polyhedron

that can be specified as the intersection ofP with at most k halfspaces in Ed.

For each cellp in the subtree pointed to by cp, it is (p p>P)£ C.

(4) For each non-leaf node N, the polyhedra Et (N )J> form abinary space partition

ing (BSP) of EN.P.
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(5) The root node has at least two children unless it is a leaf.

(6) All leaves are on the same level.

Figures 5.4 and 5.5 show the structure of a cell tree and a corresponding

arrangement of data objects, decomposed into cells. For simplicity, the polyhedra

E.C are omitted.

cl c5 c2 c3 c3 c4

Figure 5.4

Figure 5.5

PI P2

P6 P7

7\
c6 c7 c9 c7 c8

pi

P2
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In order to analyze the spacerequirementsof a cell tree, we denote the page size

by ps, and the number of bytes required to store a number or a pointer by q. Each

leafnode entry requires exactly q bytes, hence it is Mi={pslq\ . Each non-leaf node

entry Et(N) requires q bytes for the pointer Ei(N).cp, and k-d-q bytes for the k

(d-l)-dimensional hyperplanes that specify Ei(N).C if Et(N).P is known. The

polyhedra Et (N).P form a BSPof EN J* with no more than M^ partitions. Therefore,

the corresponding BSP-tree requires the storage of no more than A/^-l hyperplanes

and 2-Afn/-2 pointers. The total number of bytes to store a full non-leaf node is

therefore

M4-(q*k-d-q) + (M*-W'q + (2-^-2)•?

= q'(M,a<(k+l>d+3)-d-2)

As one node corresponds to one disk page ofps bytes, we obtain

«*«
ps/q+d+2
(*+l)d+3

Hence, in particular it is M„/<M/.

Therefore assumingm^^m^ the heightof a cell treecontaining N index records

is bound by log^N -1, because the branching factor of each node is at least mn/.

The maximum number of nodes is —
N

mt
+

N
+

N

mim,a mlmnl

+ ...+1. Except

for the root, the worst-case spaceutilization is m//M/ for leaf nodes, and m^lM^ for

non-leaf nodes.
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If a new cell is inserted into a cell tree, it may be inserted into no more than

Nlmi subtrees. Thus, the subsequent insertion of Q cells into a cell tree that is ini

tially empty will yield a cell tree with no more than

l-m/+2-m/+... + QlmA -mi =Q2/2mi index records. As confirmed by empirical

results [Fuch83], the actual number of index records is much smaller. It is usually no

more than twice the number of cells, and the largest found by Fuchs et al. was 2.33

times.

A new data object is inserted into the tree by inserting each of the cells in the

corresponding convex chain separately. The number of cells per object is highly

data-dependent. If all data objects are convex (as it is actually the case for layout

data, for example), there may be only one cell per dataobject

The parameters m^m^, and it are to be varied as partof the performance tun

ing. Large mz and m^ (i.e. close to A///2 or Af^/2, respectively) will increase the

space efficiency and decrease the height of the tree, whichmight in rum improve the

search performance. On the other hand, large mt and m„/ may cause updates to

become very expensive, as tree condensations will occur more frequently and be

more complex (see section 5.6.4). A large value for k allows a moreaccurate locali

zation of the cells in a subtree, which mightimprove the search performance. On the

other hand, k and M^ are inversely proportional. A large k will therefore yield a

small M„i. This might in turn increase the tree height and decrease the search perfor

mance.
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5.4.2. Searching

The cell tree allows efficient searches such as to find all data objects that overlap

a search space, where the search space may be of arbitrary shape. We give the algo

rithm for this range search problem; other searches can be implemented by variations

of this algorithm.

The search algorithm first decomposes the search space into not necessarily dis

joint convex components. For each component the search algorithm descends the

tree from the root in a manner similar to a B-tree or an R-tree. At each non-leaf node

the search space is decomposed further into several disjoint convex subspaces, and a

not necessarily convex remainder space. The remainder space is insignificant to the

search and therefore eliminated. The convex subspaces are each passed to one of the

subtreees to be decomposed recursively in the same manner. Note that this algorithm

differs from the equivalent R-tree algorithm where the subspaces are allowed to over

lap, thereby decreasing the search efficiency.

Algorithm Search(r,S). Given a cell tree with root node T, find all data objects that

overlap a search space S.

51. [Decompose S.] If S is not convex, find a set of cells 5/ such that J^S,- =5. For
i

each Si, Search(7,St) and stop.

52. [Search subtree.] If T is not a leaf, check each entry E{ (T) to determine whether

Ei(T).C overlaps S. If yes, SearchtT^Sr^E^TyC) where T' denotes the

node Ei(T).cp points to.
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S3. [Search leaf node.] If T is a leaf, check all entries £;(T) to determine whether

Ei(T).C overlaps 5. If yes, return all data objects in E-t (T)X>.

5.5. Updating the Cell Tree

53.1. Insertion

To insert a new data object, one inserts each cell in the corresponding convex

chain separately. Inserting index records for new cells is similar to insertion into a B-

or R-tree. Index records are added to the leaves. Nodes that overflow are split, and

splits propagate up and down the tree. Note, however, that the cell may be inserted

into several subtrees. Therefore the insertion of a cell may cause the creation of more

than one new index record.

Algorithm Celllnsert(r,p). Insert a new cell p into a cell tree with root node T.

CIl. [Insert into subtrees.] If T is not a leaf, check each entry £,(7) to determine

whether £l(7)./> overlaps p. If yes, expand Ei(T).C to include PC\Et(T)J>,

and Celllnsert(7", p) where 7" is the node £; (J").cp points to.

CI2. [Insert into leaf node.] If T is a leaf node, install a pointer to p as a new entry in

T. If T has now more thanMt entries, SplitNode(7) to obtain a valid cell tree.

53.2. Deletion

In order to delete a data object / from a cell tree that indexes the object, one
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processes each cell in the corresponding convex chain separately. For each cellJt, /

is removed from the set /,- JD. If /,- J) is empty then, the cell is no moreneeded. It is

removed from storage and from the cell tree.

Algorithm DeIete(/,7). Delete thedata object / from thecell tree withroot node 7.

Dl. [Decompose/.] Foreachcell/f e J.C, CeIlDeIete(/i,/,7).

D2. [Condense tree.] For each leaf node N from which cells were deleted,

CondenseTree(N).

Algorithm CellDeIete(/i>/,7). Delete the cell /,- of the data object / from the cell

tree with root node 7.

CDl.[Search subtree.] If 7 is not a leaf, checkeach entryE{ (7) to determine whether

EX1J)P overlaps /,-. If yes, CeUDeleteCjJJOt where 7' denotes the node

Ei(T).cp points to.

CD2.[Update leafnode.] If 7 is a leafnode, for each £,- (7), remove / from Et (T)X>.

If Ei(T)J) is now empty, delete the cell £/(7).C from storage, delete £,(7)

from 7, and contract ET .C, if possible.

53.3. Node Splitting

As mentioned, the polyhedra that correspond to sibling nodes are mutually non-

overlapping. This increases the search efficiency, especially for point location prob

lems, but it also makes tree updates more difficult For that reason, the splitting of a
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full node is more complicated in a cell tree than in related data structures such as the

R-tree.

The splitting is done in two steps. First, we search for a "good" hyperplane

along which the split is to be performed, and divide the set of node entries into two

subsets. Second, the split is executed and propagated across the tree.

Algorithm SplitNode(UV). Given anoverloaded leaf nodeXJV in a cell tree, splitLN

along a hyperplane, and propagate the split upward and downward if necessary.

SNl.[Initialize.] SetN=LN.

SN2.[Find hyperplane.] FindHyperpIane(iV"). Hx, H2 denote the two disjoint

halfspaces defined by the splitting hyperplane. Nx, N2 are subnodes of N such

thatNk contains all entries £,-(rV) where £;(N).C overlaps Hi. (A:=1,2)

SN3.[Grow tree taller.] If N is the root, create a new root whose only entry is

(qN,Ed,CP). Here, CP is a convex polyhedron with at most k faces that

encloses all cells in the cell tree, and qN is a pointer to N.

SN4.[Create new entries.] Let q1 and q2 be pointers to the roots of Nl and N2,

respectively. Create two new entries EN=(qi ,£# J* p//f J2N .Cp//;) (i=1,2)

and replace EN by ENl and £#2.

SN5.[Propagate split downwards.] Search the subtrees rooted at Nt (i=l,2) for cells

thatdo not overlap //, and delete the corresponding leaf node entries.

SN6.[Propagate split upwards.] If N's parent node has now more than M„i entries,
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set N to N 's parent node, and repeat from SN2.

SN7. [Condense tree.] For each leaf node LN from which entries have been deleted,

CondenseTree(LN).

FindHyperplane(iV) is some heuristic algorithm that finds a hyperplane along

which the node N is to be split. Any such hyperplaneH has to meet condition (*):

m £ \{Ei(N):Ei(N).C overlaps Hk]\£M (*=1,2)

Here, Hk denote the two disjoint halfspaces defined by H, m denotes mt or m^, and

M denotes Mt or M„j, depending on N being a leaf or a non-leafnode. H should

intersect a minimal number of polyhedra £f(iV).C, because each such intersection

causes the split to propagatedown the cell tree. A large numberof such intersections

may cause the split to become very costly.

Unfortunately, there is not always a hyperplane that fulfills condition (*). In par

ticular, for a leaf node N whose partition ENJ* has a convex subset that is covered

by more than Mt cells there is obviously no such hyperplane. In this case one may

subdivide cells in order to find a BSP of ENJP such that no partition overlaps more

than Mi cells. To perform the subdividing may become very costly. In this case, it

may well be more efficient to tolerate more thanMt entriesand allowoverflow pages.

In the case of N being a leaf node, FindHyperplane can be approached

efficiently by / plane sweeps [Prep85] across Ed, along / different directions. The

parameter / is to bevaried aspart of the performance tuning. A large / will cause the

splitting operation to be morecostly, but it mayyield a betterhyperplane.
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In the case of N being a non-leaf node, the hyperplanes in N's BSP-tree make

good candidates for the split. An appropriate heuristic would be to sort the hyper

planes by the number of leafs in the subtree rooted at the corresponding BSP-tree

node. These leafs correspond to BSP partitions that will certainly not be intersected

by the hyperplane. Then the hyperplanes are inspected in the order of decreasing

number of leafs. In particular, the hyperplane //* that corresponds to the root node of

the BSP-tree will be inspected first This hyperplane does not intersect any

polyhedron Ei(N).C. It will also fulfill condition (*) with high probability, which can

be shown by the following analysis.

The probability that H* does not fulfill condition (*) is equal to the probability

that the number of partitions on any side of//* isless than m^. The total number of

partitions in an overloaded node is at least Af^+1. Hence, after H* was first esta

blished (viz., when EN.P was split for the first time), at least M„/-l more partitions

were formed by further splittings of £#•/*. Assuming that the cells in the subtree

rooted atN are distributed equally across the subspace ENJ*, the probability that the

number of partitions on any side of//* isless than % is

O^-"1 •[l+^-lWA^-lXM^H... +(Mn/-l)(Mn/-2)... (A^-mrf+2)]

It is therefore important to keep m„i reasonably low.

Of course, it may be useful to also look at hyperplanes that are not part of the

BSP. Also, onemay use a plane sweep approach for non-leaf nodes aswell.
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53.4. Tree Condensation

The tree condensation eliminates underloaded nodes and reinserts their entries

on the correct tree level.

Algorithm CondenseTree(UV). Given a leaf node LN from which entries have been

deleted, eliminate the node if it has too few entries and relocate its entries. Propagate

the eliminations across the tree.

CT1.[Initialize.] Set N=LN. Set Q, the set of eliminated leaf node entries, to be

empty.

CT2.[Shorten tree.] If N is the root and it has only one entry, make the child the new

root and let TV be the new root

CT3.[Find parent entry.] If N is the root, go to CT6.

CT4.[Eliminate underloaded node.] If N has less than mt (m^) entries, delete EN

from its parent node, addEN to Q, and extend thepolyhedra P of ATs siblings

to cover £# JP.

CT5.[Move uponelevel in the tree.] SetN to itsparent node andrepeat from CT2.

CT6.[Reinsert orphaned leaf nodeentries.] Reinsert eachentry in Q.

Thepolyhedron extension in step CT4 can becarried outvery efficiently as fol

lows. Let Ni denote the siblings of node N. The polyhedra ENi J> and EN.P are the

partitions ofa BSP and stored as aBSP-tree. LetX# be the BSP-tree leaf correspond

ing to the partition ENF. If XNys parent node is replaced by XN*s sibling, the
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resulting tree represents a different BSP. This BSP is derived from the original BSP

by deleting the partition ENJ> and extending the partitions ENtJ> to cover EN J*.

This follows from the following lemma.

Lemma 5.1: Let B denote some BSP, and let X denote some leaf node in the BSP-

tree corresponding to B. If X*s parent is replaced by X 's sibling, the BSP B' that

corresponds to theresulting BSP-tree has the following properties:

(i) B' has one partition less than B.

(ii) Each partition in B' is a superset of some partition in B.

(iii) Each partition in B other than the one corresponding to X is a subset of some

partition in B'.

Proof:

(i) The tree transformation decreases the number of leafs by one. Hence, the

numberof partitions in the corresponding BSP decreases by one as well.

(ii) The tree transformation decreases the number of interior nodes by one. This

corresponds to the removal of one of one of the hyperplanes defining the BSP.

Hence, the partitions in B' are either identical to some partition in B, or they are

derived from some partition in B by removing one of the defining hyperplanes.

In any case, they are a superset of somepartition in B.

(iii) The tree transformation deletes the leaf corresponding to partition ENJ*. This,

together with (i) and (ii), implies (iii). O

The reinsertion algorithm attempts to reinsert nodes at the correct tree level
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without modifying the subtree rooted at that node. This procedure saves existing

structuresand avoids multiple rebuilding of the same subtree. If the reinsertionon the

same level is no more possible, the algorithm attempts to reinsert the descendants of

this node on the next lower level.

5.6. Summary

We presented the design of a database index for multidimensional geometric

data, termed cell tree. All data objects in the database are represented as algebraic

sums of convex point sets (cells). Thecell tree indexes the set of cells by means of a

binary spacepartitioning. It is a fully dynamic data structure, i.e. insertions anddele

tions may be interleaved with searches and no periodic reorganization is required.

Compared to related datastructures such as the R-tree, we believe thatthecell treeis

particularly efficient for non-rectilinear data objects and for the point location prob

lem. For the near future, we are planning to work on a theoretical and practical

analysis of the cell tree. In addition to a theoretical performance analysis, there is

further theoretical work required to obtain better heuristics for node splitting. In

order to optimize tree performance, different sets of parameters have to be tested in

an experimental implementation.
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Chapter 6

The Arc Tree: An Approximation Scheme

To Represent Arbitrary Curved Shapes

6.1. Introduction

The exact representation of curved geometric objects in finite machines is only

possible if the objects can be described by finite mathematical expressions. Typical

examples for such objects are paraboloids or ellipses, which can be described by

functional equations such asx1la7^y1lb'1=\. Many applications, however, especially

in computer vision and robotics, do not fit this pattern. The objects to be represented

are rather arbitrary in shape, and some approximation scheme has to be employed to

represent the data. Any finite machine can only store an approximate representation

of the data with limited accuracy. In particular, the answer to any query is based on

this approximate representation and may therefore be approximate as well.

Of course, the initial description of a curved object, coming from a camera, a

tactile sensor, a mouse, or a digitizer may already be an approximate description of

the real object. In most practical applications, this description will be a sequence of

curve points or a spline, i.e. a piecewise polynomial function that is smooth and con

tinuous. To support set, search, and recognition operators, however, it is more

efficient to represent the data by a hierarchy of detail [Hopc87], i.e. a hierarchy of

approximations, where higher levels in the hierarchy correspond to coarser approxi-

113
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mations of the curve. Geometric operators can then be computed in a hierarchical

manner: algorithms start out near the rootof the hierarchy andtry to answer the given

query at a very coarse resolution. If that is not possible, the resolution is increased

where necessary. In otherwords, algorithms "zoom in" on those parts of the curve

that are relevant for the given query.

In this chapter, we develop this theme of hierarchy of detail, focusing on the arc

tree, a balanced binary tree that serves as an approximation scheme to represent arbi

trary curved shapes. Section 6.2 gives a definition of the arc tree andan algorithm to

obtain the arc tree representation of a given curve. Section 6.3 generalizes the con

ceptof the arc tree to include related approaches such as Ballard's strip trees [Ball81]

and Bezier curves [Bezi74,Pavl82]. Sections 6.4 and 6.5 show how to use arc trees

to perform point queries and set operations, such as union or intersection. Both sec

tions alsodiscuss the performance of ourimplementation. Section 6.6 outlines how to

embed arc trees into an extended database system such as POSTGRES [Ston86a], and

section 6.7 is a summary of this chapter.

6.2. Definition

A curve is a one-dimensional continuous point set in d -dimensional Euclidean

space Ed. For simplicity, we restrict this presentation to the case d=2. The generali

zation to arbitrary d is straightforward. A curve is open if it has two distinct end-

points, otherwise it is called closed; see figure 6.1 for some examples. As mentioned

in the introduction, in practical applications, curves are usually given as a polygonal

path, i.e. a sequence of curve points, or as a spline, i.e. a piecewise polynomial
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function that is smooth and continuous.

Figure 6.1: A closed and two open curves

The arc tree scheme approximates curves by a sequence of polygonal paths. Let

the curve C have length / and be defined by a function C(t ):[0,1]-»E2, such that the

length of the curve from C(0) to C(t0) is f07. The k-th approximation Ck

(k=0,l,2...) of C is a polygonal path consisting of 2k line segments eki (i=l..2k),

such that ekj connects the two points C(—j--) and C(—j-). Each edge eki can be

associated with an arc aki of length U2k, which is a continuous subset of C.

C(—7-) and C(—r) are the common endpoints of ek± and akj. Forfc>l, each k-th

approximation is a refinement of the corresponding (fc-l)-th approximation: the ver

tex set of the (£-l)-th approximation is a true subset of the vertex set of the fc-th

approximation. See figure 6.2 for an example.

More formally, the fc-th approximation of C is defined by a piecewise linear

function Cfc(f):[0,l]-»E2 as follows. Here, t_ and t denote
v2l vT

and



Figure 6.2: A Oth, 1st and 2nd approximation of a curve

respectively.

Ck(t) =«
C(t) t-2k=0..2k

zr-'Cd)+3^-C (F) otherwise
L t-t_ t-±
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Then the following convergence theorem is easily proven.

Theorem 6.1: The sequence of approximation functions (Ck(t)) converges uniformly

towards C(t).

Proof: We have to prove max d(Ck(t),C(t)) -* 0, or that for any e, there is a K
0<f£l k-

such that for all k>K and for all t e [0,1], it is d(Ck(t),C(t)) <e. Here, d denotes

Euclidean distance. Let AT=log2—. Now assume (*) there were some t and some
e

k>K such that



d(Ck(t),C(t))*e

Then we have

I
2l

d(Ck(t),C(t))>^

d(Ck(t),C(t))>
2<

I
2k

d(Ck(t),C(t)) +d(Ck(t),C(t)) > -Zk
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=> d(C(t),C(t)) +d(C(t),C(t))>-ljr

This is a contradiction to the definition of the fc-th approximation. The arc from C (r)

to C(F) may notbe longer than H2k. Hence, assumption (*) is wrong which proves

the theorem. D

Moreover, for each approximation Ck there is a well-defined area that contains

the curve. We have

Lemma 62: Let Eki denote the ellipse whose major axis is U2k and whose focal

i-\

2k X
points are the two endpoints of the edge eki, C(——) and C(—). Then the arc aki

is internal to Eki.

Proof: (by contradiction) LetX e aki denotea pointexternal to Ekj. Then

d(X,C(^)) +dQC,C(-^-))>^jr
2* 2* 2*

Thus, the length ofaki would be greater than U2k which isacontradiction. •

Corollary 63: The curve C is internal to the area formed by the union of the bound-



ing ellipses, ^jE*,,* (k=0,1,..). •
i=o

See figure 6.3 for an example.
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Figure 6.3: A curve C with its 2nd approximation C2 andcorresponding ellipses E^

The family of approximations of a given curve C can be stored efficiently in a

binary tree. The root of the tree contains the three points C(0), C(l/2) and C(l) and

is considered on level 1. If a tree node on level i contains point C(—r) (x=1..2l-l),
2l

2x—1 2x+lthen its left son contains point C(——), and its right son contains point C(—j^-)-

We call this tree the arc tree of the curve C. The arc tree is an exact representation of

C; each of its subtrees represents a continoussubsetof C. An inordertraversal of the

first k (k>l) levels of the arc tree yields the vertices of the k-th approximation, sorted

by increasing t. On the other hand, a breadth-first traversal of the first k levels yields

these vertices in an order such that the first 2'+l vertices yielded form the i-th
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approximation of C. See figure 6.4 for an example.

Figure 6.4: A curve with approximations and its arc tree. For a closed curve, it

isA =F.

In practice, only a finite number of levels of the arc tree is stored. An arc tree

with r levels is called an arc tree of resolution r. It is a balanced binary tree and it

represents the Oth through r-th approximation of C.

An arc tree of resolution r can be constructed in two traversals of the given

curve C. In the first round, one determines the length / of C. If C is a spline (or a

polygonal path), / can be computed using the following formula for the arc length of

an analytical curve. If the curve is given by y =f (x), its length between the points

PiCr^i) andP^x^y^ is

*2

/ =JVl+//2(x)dbc
*i

If it is given by x =Jt(r),y =y (t), its arc length is

t————

/ =\^xa(t)+y'2(t)dt
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with Xi =x (ti) and yt =y (tt). One may also attach a label to each knot of C indicat

ing the length accumulated so far. This does not require any additional computation,

but it will speed up the second round. In the second round, one picks up the curve

points C(—) (i e {0,1..2r}) and inserts them into the appropriate tree nodes while
2r

performing a depth-first inorder traversal of the tree.

Note that arc trees can be used to represent any given curve that can be

parametrized with respect to arc length. This requirement poses no problem if the

input curve is given as a polygonal pathor a spline. Nevertheless, there remain prob

lems with some curves such as fractals, for example [Mand77], or with curves that

are distorted by high-frequency noise. In both cases the concept of arc length

becomes somewhat meaningless and it is necessary to smooth the curve first before

the parametrization can take place.

6 J. Generalization

The arc tree parametrizes the given curve by arc length and localizes it by

means of bounding ellipses. At higher resolutions the number of ellipses increases,

but their total areadecreases, thus providing a better localization.

The arc tree can be viewed as just one instance of a large class of approximation

schemesthat implement Hopcroft's ideaof hierarchy of detail [Hopc87]. Higher lev

els in the hierarchy correspond to coarser approximations of the curve. Associated

with each approximation is a bounding area that contains the curve. Set and search

operators are computed in a hierarchical manner: algorithms start out near therootof
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the hierarchy and try to solve the given problem at avery coarse resolution. If that is

notpossible, theresolution is increased where necessary.

In this section we will present several approximation schemes that are based on

the same principle, but that use different parametrizations or bounding areas. For all

of these schemes, it is fairly straightforward to obtain the representation of a given

spline. Moreover, the algorithms for the computation of set and search operators are

essentially the same as the ones for the arc tree, which are presented in sections 6.4

and 6.5. It is a subject of further research to conduct a detailed practical comparison

of these schemes to find out which schemes are suited best for certain classes of

curves.

The first modification of the arc tree concerns the choice of the ellipses Eki as

bounding areas. These ellipses provide the tightest possible bound but, on the other

hand, ellipses are fairly complex objects, which has anegative impact on the perfor

mance of this scheme. For example, it is often necessary to test two bounding areas

for intersection; if the bounding areas are ellipses, this operation israther costly. Our

implementation showed that it is in fact sometimes more efficient to replace the

ellipses by their bounding circles; see section 6.5.1. The circles provide a poorer

localization of the curve, butthey are easier tohandle computationally, which caused

the total performance to improve. Other alternatives would be to use bounding boxes

whose axes are parallel to the coordinate axes or to the axes of the ellipses. Both of

these approaches, however, proved to be less effective than the bounding circles.

If the curves to berepresented are polygonal paths with relatively few vertices,
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it is more efficient to break up the polygonal paths at their vertices rather than to

introduce artificial vertices C(V2k). If a polygonal path has n+1 vertices vx.. vn+1,

it can be represented exactly by a. polygonarc tree of depth log2n as follows. The

root of the polygon arc tree contains the vertices v^ V|-B/2-| +i, and vrt+1. Its left son

contains the vertex V[-rt/4-| +1, its right son the vertex v^3f4.^ +1, and so on, until all ver

tices are stored. Clearly, the arc length corresponding to a node is no more implicit;

it has to be stored explicidy with each node. In particular, at each node N it is neces

saryto know the lengths of the subcurves corresponding to N 's left and right subtree.

An example is given in figure 6.5.

10 j Vj,v5,v8 j11

4 h \6
* '

4 iv< i2

Figure 6.5: A polygon and corresponding polygon arc tree.

The numbers in italics denote arc length.

4 \v7 | 7
71
v. *

It is easily seen that some of this length data is redundant. Indeed, with some

care it is sufficient to store only one arc length datum per node. For this reason, the

storage requirements for a polygon arc tree are only about 20% to 40% higher than
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for a regular arc tree of the same depth.

There are other structures that also implement some hierarchy of detail. One of

them is the strip tree, introduced by Ballard [Ball81]. As the arc tree, the strip tree

represents a curve by a binary tree such that each subtree T represents a continuous

part CT of the curve. CT is approximated by the line segment connecting its end-

points (xbyb) and (xeye). The root node of T stores these two endpoints and two

widths W[ and wr, thus defining a bounding rectangle ST (the strip) that tightly

encloses the curve segment CT. ST has the same length as the line segment

((xb Jb )>(xe Je)) and its sides are parallel or perpendicular to it See figure 6.6 for an

example of a curve and a corresponding strip tree. Gearly, this approach requires

some extensions for closed curves and for curves that extend beyond their endpoints

(fig. 6.7).

When a strip tree is constructed for a given curve C, a curve segment CT is sub

divided further until the total strip width w/+wr is below a certain threshold. As it is

a non-trivial operation to obtain the strip Sj for every curve segment Cj, the con

struction of a strip tree for a given curve may be quite costly. To subdivide CT, one

can choose any point of CT that lies on the boundary of the corresponding strip ST.

Clearly, a strip tree is not necessarily balanced (see also figure 6.6) which has a nega

tive impact on its average-case performance. Note that arc trees are balanced, which

might give them an edge over strip trees in terms of average performance.

Also, a strip tree requires about twice as much space as an arc tree of same

depth: each arc tree node stores a minimum of two real numbers and two pointers,
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Figure 6.6: A curve with strip,a hierarchy of strips, and a corresponding strip tree.

whereas a strip tree node stores six real numbers and two pointers. Note, however,

that strip trees can be modified to require less storage. First, all subdivision points

belong to more than one strip and are therefore stored in more than one node. The
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Figure 6.7: A curve C that extends beyond its endpoints. There is no bounding

box of length / that contains C.

redundant data may be replaced by pointers or deleted, which may require that some

of the algorithms are slightly modified. Second, rather than storing wt and wr, one

may just store the maximum of these two widths. The resulting strip is potentially

wider and provides a poorer localization. In both cases, some loss in performance is

likely, but it will probably be minor compared to the savings in storage space.

A very different approach to implement a hierarchy of detail is based on curve

fitting techniques such as Bezier curves [Bezi74] or B-splines [DeBo78]; see also

[Pavl82] for a good survey of these and related techniques. A Bezier curve of degree

m is an m-th degree polynomial function defined by m+1 guiding points P i.. Pm+\*

The curve goes through the pointsPx andPm+i and passes near the remaining guid

ing points P2..Pm in a well-defined manner. The points P2 through Pm may be

relocated interactively to bring the Bezier curve into the desired form. See figure 6.8

for two examples.



126

P2

P4

PI
P3

Figure 6.8: Examples of Bezier polynomials withthree and five guiding points.

It can be shown that a Bezier curve lies within the corresponding characteristic

polygon, i.e. the convexhullof its guiding points. Also,a Beziercurve B can be sub

divided into two Bezier curves Bx and B2 of same degree. The characteristic

polygons of Bxand B2 are disjoint and subsets of B 's characteristic polygon. They

therefore provide a betterlocalization ofB; see figure 6.9.

Figure 6.9: A Bezier curve B partitioned into two curves Bx and B2 with

characteristic polygons.
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Now we can derive a hierarchical representation of a given Bezier curve B as

follows. The first approximation is the edge segment connecting B 's endpoints; its

bounding area is given by B 's characteristic polygon. The second approximation is

the polygonal path connecting the endpoints of Bx and B2, its bounding area is the

union of the characteristic polygons of Bx and B2, and so on. There are various

efficient subdivision algorithms to obtain B xandB2 from a given B; see for example

[Pavl82], pp. 221-230.

The main problem with this approach seems to be that not every curve can be

approximated well by a low-order Bezier curve.A high-order Bezier curve, however,

is harder to partition and has a more complex characteristic polygon, which has an

adverse impact on the performance of this scheme. In practice, complex curves are

often approximated by several third-order Bezier curves. This would mean that the

bounding area of the first approximation is a union of convex polygons, which is

already rather complex. Further approximations are then obtained by subdivisions of

each one of these polygons. Nevertheless, this approach seems very promising and

should be included in a practical comparison of the various approaches to implement

a hierarchy of detail.

We expect arc or strip trees to be superior to Bezier curves if the curves to be

represented are initially described by a long sequence of curvepoints and can only be

described by high-order splines or a large number of simpler splines. This is often the

case if curves are input from a digitizer pad or a mouse. On the otherhand, if a curve
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is initially given by a few simple splines, it is probably more efficient to keep this

representation and use spline subdivision algorithms as described above to implement

a hierarchy of detail.

B-splines can be used in a way similar to Bezier curves to implement a hierar

chy of detail. For appropriate subdivision algorithms, see [Bohm84].

Certainly, there are many more possibilities to implement a hierarchy of detail

as a tree structure similar to the schemes presented above. Note that in all of these

schemes it is possible to trade space with time as follows. Rather than storing all

lower level approximations explicidy, one could keep the source description of the

curve in main memory and compute finer approximations "on the fly" when needed.

This approach can be viewed as a procedural arc tree as finer approximations are

defined procedurally, i.e. by means of the appropriate subdivision algorithm that

computes finer approximations from coarser ones. This approach seems particularly

promising for the Bezier approach where highly efficient subdivision algorithms are

available. In the case of arc and strip trees, the computations to obtain finer approxi

mations are probably too complex to be repeated at every tree traversal.

As mentioned above, the algorithms for set and search operations for these vari

ous approximation schemes are all essentially the same. In the following two sec

tions, we give the algorithms for the arc tree scheme. In most cases, the correspond

ing algorithms for the other schemes are simply obtained by replacing the ellipses

Eki by the corresponding bounding areas, viz., the characteristic polygons for the

curve fitting approaches or the strips for the strip tree.
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6.4. Hierarchical Point Inclusion Test

To demonstrate the power of the arc tree representation scheme, we first show

how to answer point queries on the arc tree. Given a point A e E2 and a simple*

closed curve C, a point query asks if A is internal to the simple point set enclosed by

C,P(C). For simplicity, we also describe this case by stating that A is internal to C,

or that A eP(C).

The point inclusion test is performed by a hierarchical algorithm called

HPOINT, which starts with some simple approximation C^ of C. For each edge

ekj of Cgpp (i=\..2k), it checks if the replacement of eki by the arc aki may affect

the internal/external classification of A. If there is no such edge eki, then

A e PiPapp) is equivalent toA e P(C)\ HPOINT uses a conventional algorithm to

solve the point query A e /'(C^)? and terminates. Otherwise, HPOINT replaces

each edge eki, whose replacement by aki may affect A's classification, by the two

edges £*+i,2i_i and e*+it2*« The resulting polygon is a closer approximation of C.

HPOINT proceeds recursively with that polygon.

If the maximum resolution has been reached without obtaining a result, then the

problem cannot be decided at that resolution. In fact, there are boundary points (such

as C(l/3)) that cannot be decided at any finite resolution. There are three ways to

resolve this situation: (i) the algorithm returns unclear, (ii) the algorithm considers

the point a boundary point, or (iii) the arc tree is extended at its leaf nodes to include

* A point set is simple if it is continuous, closed and not self-intersecting. In two or more di
mensions this means in particular that it has no holes.
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the source description of the curve; then, edges ekj may eventually be replaced by

arcs akji to allow an exact query evaluation. For HPOINT, we choose option (ii),

thus considering the boundary as having a nonzero width. In our definition of the

point inclusion test, where the given point set P(C) is closed, HPOINT returns

A e P(C), accordingly.

We are left with the problem of how to find out quickly if the replacement of

eki by aki may affect the internal/external classification of A. From lemma 6.2, we

obtain

Lemma 6.4: Let Ckj denote the curve obtained from C by replacing the arc akj by

the straight line eki. Then, if A is external to Eki, it is A € P(C) equivalent to

AeP(CkJ)).

Proof: Because A is external to Ekj, A may not lie on or between aki and eki.

Therefore, the replacement of aki by ek± may not affect the internal/external

classification ofA. •

It is therefore sufficient to check if A is internal to Eki. If yes, the replacement

of eki by aki may affect the classification of A, otherwise it may not Letting the

initial approximation be C0, HPOINT can be described more precisely as follows.
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Algorithm HPOINT

Input: A point A e E2. The arc tree Tc ofasimple closed curve C.

Output * e P(C)1

(1) Setthe approximation polygon Cgpp toCq and k to zero.

(2) For each edge ek%i (i e {1..2*}) ofCw do

(2a) If A is one of the endpoints of eki, return true and stop.

(2b) Otherwise, ifA is internal to the ellipse Eki, tag ek^.

(3) If Cgpp has no tagged edges, use a conventional point inclusion algorithm to

determine ifA e P (Cgpp), return the result and stop.

(4) Otherwise, if it is less than the maximum resolution, depth(Tc), replace each

tagged edge ekj by the two edges e*+i,2i-i and ek+it2i, increase k by one and

repeat from (2).

(5) Otherwise, rerun true and stop.

Step (2a) is necessary for termination if A is a boundary point. Step (2b) can

easily be done by computing the distances from A to the two focal points of Eki.

Step (4) can be performed by using C's arc tree in the following manner. Each edge

2i—1eki is associated with the subtree whose root contains the point C( k ). Note that

this is the curve point which corresponds to the center point of eki and which

e*+i,2»-i Qn^ e*+i.2i nave m common. If ekj is tobe replaced byejt+lt2/_i and ek+if2i,
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HPOINT obtains that point from the tree node and continues recursively on both sub

trees of this node.

Steps (2) and (4) can now be performed during a top-down traversal of the arc

tree. Each subtree can be processed independently of the others, which offers a

natural way to parallelize the algorithm. If Cw has nomore tagged edges, orif the

maximum resolution has been reached, the partial results are collected in a bottom-up

traversal of the tree and put together to form the boundary of the final approximation

polygon Cgpp. At this point, A e P(C) isequivalent to A e P(C^p). Step (4) can be

performed by Shamos' algorithm, where one constructs a horizontal line L through A

and counts the intersections between L and the edges of Cw that lie tothe leftof A.

If the number of intersections is odd then A is internal, otherwise it is external.

Shamos' algorithm requires some special maintenance for horizontal edges; see

[Prep85] for details.

We implemented this algorithm on a VAX 8800 and ran several experiments to

see how HPOINT 's time complexity correlates with the complexity of the given

curve C and with the location of A with respect to C. Our running times should not

be considered in absolute terms as we did not make a strong effort to optimize our

programs. However, the figures are appropriate for comparative measurements. Fig

ures 6.10 and 6.11 show our results. Here, t is CPU time in ms, and r is the resolu

tion at which the query was decided. The dotted polygons are the r-th approxima

tions of C, respectively.

Note that the use of alternative approximation schemes is unlikely to improve
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(a)r=2,t=4.0 (b)r=3,t=5.1 (c)r=3,t=5.5 (d)r=6,t=8.0

Figure 6.10: C is a spline with 12 knots.

(a)r=2,r=4.0 (b) r=4, t=6.4 (C)r=4,t=7.1 (d) r=6, t=8.9

Figure 6.11: C is a spline with 36 knots.

the performance of our algorithms. To test a given point for inclusion in a given

ellipse has about the same complexity as the corresponding tests for a characteristic
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polygon (say, a convex quadrilateral) or a strip. On the other hand, the test is some

what easier for circles or for boxes whose axes are parallel to the coordinate axes. In

both cases, however, the localization of the curve that is provided by these areas is

poorer than for the bounding areas above.

Our algorithm HPOINT is an application of Hopcroft's idea of hierarchy of

detail [Hope87]. It solves the point inclusion problem by starting with a very simple

representation of C and introduces more complex representations only if they are

required to solve the problem. The algorithm "zooms in" on those parts of C that are

interesting in the sense that they may change the internal/externalclassification of the

point A at a higher resolution. As our examples demonstrate, HPOINT terminates

very quickly if A is not close to C. The closer A gets to C, the higher is the resolu

tion required to answer the point query. Due to a quick localization of the interesting

parts of C, the algorithm does not show the quadratic growth in the complexity of C

that a worst-case analysis would predict.

6.5. Hierarchical Set Operations

In this section, we show how to detect and compute intersections, unions, and

differences of one- and two-dimensional point sets. We assume that the input point

sets are simple and that they are given by their arc trees or by the arc trees of their

boundaries. Again, the idea is to inspect approximations of the input curves by

increasing resolution and to "zoom in" on those parts of the boundaries that may

participate in an intersection.
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6.5.1. Curve-Curve Intersection Detection

We first show how to test two given curves C and D for intersection. The

hierarchical algorithm HCURVES starts with simple approximations Cgpp and Dgpp

of C and D, respectively, and continues with approximations of higher resolutions

where necessary. We have

Lemma 65: The arcs aki and bkj corresponding to the edges eki of Cgpp and fkj of

Dgpp, respectively, must intersect if the following three conditions aremet:

(i) eki intersectsfkj,

(ii) thetwo endpoints ofeki are external to the ellipse Fkj corresponding tofkj,

(iii) thetwo endpoints offkj areexternal to the ellipse Ekj corresponding toeki.

Proof: Any situation where all three conditions are met are topologically equivalent

to the situation in figure 6.12.

Figure 6.12

The intersection of the two ellipses Ekj and Fkj is a quadrilateral ABCD with
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curved edges AB, BC, CD, and DA. The segment of the arc aki that is interior to

ABCD connects some point of AB with some point of CD. The segment of the arc

bki that is interior to ABCD connects some point of BC with some point of DA.

Obviously, this is not possible without an intersection of the two arc segments, which

proves the lemma. D

Now the algorithm HCURVES proceeds as follows. For each pair of edges, eki

ofCgpp and fkj ofDgpp (i,j e [0,1..2k)), HCURVES checks if their corresponding

arcs may intersect. According to lemma 6.2, this can be done by testing if the

corresponding ellipses Ekj and Fkj intersect. If yes, HCURVES puts tags onekj and

fkj and applies lemma 6.5 to see if the arcs must intersect. If yes, HCURVES

reports an intersection and stops. After all edges ek^ of Cgpp have been processed,

HCURVES checks if there are any tagged edges. If no, HCURVES reports no inter

section and stops. Otherwise, HCURVES replaces all tagged edges by the

corresponding edges of the next higher approximation, increases k by one, and

proceeds recursively on the refined curves. If the maximum resolution has been

reached and there are still tagged edges, HCURVES interprets the situation as an

intersection of the boundaries and returns an intersection. More exactly, HCURVES

can be described as follows.
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Algorithm HCURVES

Input: The arc trees Tc and TD of two curves C and D.

Output: Cr^p^l

(1) Setthe approximation polygons Cgpp to C0, Dgpp toDq, and k to zero.

(2) For each pair of edges ekj of Cgpp and fkj of Dgpp do

(2a) Check if the twoellipses Ekti and F* j intersect

(2b) If yes, tag ek± andfky, if conditions (i) through (iii) in lemma 6.5 are met

orif ek%i and fkj share one ortwoendpoints, return true and stop.

(3) If there are no tagged edges, return false and stop.

(4) If £ is less than the maximum resolution, min(depth(Tc)4epth(TD))y replace

each tagged edge eki of Cgpp by the two edges ek+it2i_i and ek+i>2i. Similarly

for each tagged edge/* j of Dgpp. Increase k by oneand repeat from (2).

(5) Otherwise, the maximum resolution has been reached; return true and stop.

We implemented this algorithm on a VAX 8800 with a few slight modifications

to speed up execution. First, the test if the two ellipses Eki and Fkj intersect is

replaced by atest if the two circumscribing circles of Ekj and Fkj intersect. If those

do not intersect then the ellipses do not intersect either. Otherwise, we assume that

the ellipses may intersect and proceed accordingly. We made several experiments

with more accurate tests, such as to test bounding boxes of the two ellipses for
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intersection, or to test the two ellipses themselves for intersection. In every case, the

execution times went up between 25% and 60%. The more accurate tests required a

significant amount of CPU time, but they only marginally reduced the number of

tagged edges.

Second, rather than performing step (2) for each pair of edges eki of Cgpp and

fkj of Dgpp, we maintain matrices to keep track which pairs of ellipses (EkjJ?k%j)

pass the intersection test in step (2a). Then, step (2) is executed for a pair of edges

(ekjjkj) if and only if the ellipses E*_i,r,72] and FA_lt|-y/2i, which correspond to

their parent edges, intersect. Otherwise, it is known in advance that Eki and Fkj do

not intersect.

Figures 6.13 and 6.14 give several examples for the performance of the algo

rithm. Here, r denotes the resolution at which the algorithm is able to decide the

query, and t denotes the CPU time in ms.

Again, it is not clearif the use of alternative approximation schemes might yield

a better performance. The crucial operation in algorithm HCURVES is the test if two

bounding areas intersect In the case of circles, this is a trivial operation: two circles

intersect if the distance between their centers is no more than the sum of their radii.

The corresponding tests for boxes or characteristic polygons (say, convex quadrila

terals) are about two to three times as complex.

Note that the running timesdo not grow quadratically with the complexity of the

input curves. Theexample in figure 6.11 (b) requires alarge amount of CPU time due

to the fact that the two curves are quite interwoven butdo not intersect It is therefore
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(a) r=5,t=27.6 (b) r=5,t=18.2 (c) r=3,t=3.2

Figure 6.13: C is a spline with 13 knots, D a spline with 8 knots.

X D "X D

! C
D

(a) r=4,t=17.4 (b) r=8,t=135.3 (c) r=4,t=5.6

Figure 6.14: C is a spline with 24 knots, D a spline with 23 knots.
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necessary to get down to fairly high resolutions in order to determine that there is no

intersection. It seems that a case like this will require a lot of computation with any

other intersection detection algorithm as well.
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6.5.2. Curve-Curve Intersection Computation

The intersection is actually computed by the hierarchical algorithm HCRVCRV,

a variation of algorithm HCURVES. HCRVCRV does not test if two arcs must

intersect. It continues recursive refinement until one of the following two conditions

is met: (i) there are no more tagged edges, or (ii) the maximum resolution has been

reached. Li case (i), C and D do not intersect. Incase (ii), each tagged edge of Cgpp

is intersected with each tagged edge ofDgpp and the intersection points are returned.

Algorithm HCRVCRV

Input: The arc trees Tc and TD of two curves C and D.

Output: C(->p

(1) Setthe approximation polygons CgpP to Cq, Dgpp toDq, and k to zero.

(2) For each pair of edges eki of Cgpp and fkj ofDgpp, check if the two ellipses

Ekti andFkj intersect. If yes, tage^ andfkj.

(3) If there are no tagged edges, return no intersection and stop.

(4) Otherwise, if it is less than the maximum resolution,

tmn(depth(Tc)4epth(TD)), replace each tagged edge eki of Cgpp by the two

edges ^+lt2/_1 and e*+it2/. Similarly for each tagged edge fkj of Dgpp.

Increase k by one and repeat from (2).
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(5) Otherwise, the maximum resolution has been reached. Intersect each tagged

edge eki with each tagged edge/*j, report all intersection points and stop.

We implemented this algorithm on a VAX 8800 with the same modifications as

in the case of HCURVES. Figures 6.15 and 6.16 give two examples for the perfor

mance of the algorithm at various maximum resolutions r.P is an intersection point,

d is the distance between P and its approximation, Cr and Dr are C 's and D 's

approximations at maximum resolution, and t is CPU time required to compute all

intersections.
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(b)r=2,t=5.6,d=17.2

D

"*\D7

(c)r=3,t=13.7,d=5.6 (d)r=7,t=138.5,d=0.2

Figure 6.15: C is a spline with 13 knots, D a spline with 8 knots.



(a) P(142/464) (b)r=3,t=19.6,d=12.9

D

(c) r=4, t=38.7, d=5.0 (d) r=7, t=187.5, d=0.3

Figure 6.16: Both C and D are splines with 20 knots.
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Note that the running times do not increase quadratically with the number of

edges, 2r, or with the complexity of the input curves. In fact, the increase in CPU

time is about cubical in r, i.e. polylogarithmic in the number of edges. The following

plot shows the increase in CPU time for both figures and for resolutions r=2 through

r=7. The broken lines indicate the distance d between the actual intersection point P

and the corresponding intersection point returned by HCRVCRV at maximum resolu

tion r.
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Fig. 6.16

Fig. 6.15

4 5 6 7 > '

Figure 6.17

6.5.3. Curve-Area Intersection Detection

Given the arc trees of a curve C and a closed curve D, it is now easy to detect if

C intersects the point set P (D). First, one employs algorithm HCURVES to check C

and D for intersection. If the two curves do not intersect, it may be possible that C is

internal to D. This can be checkedby algorithm HPOINT by testing some point of C

if it is internal to D. C and P (D) do not intersect if and only if both tests fail.

6.5.4. Curve-Area Intersection Computation

To actually compute the intersection of a curve with an area, we present the

hierarchical algorithm HCRVARA. Given the arc trees of a curve C and a simple

closed curve D, HCRVARA computes Cp^(D). The initiation and the recursion
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step of HCRVARA are identical to the corresponding sections of algorithm

HCRVCRV. As HCRVCRV, HCRVARA proceeds recursively until one of two con

ditions is met: (i) there are no more tagged edges, or (ii) the maximum resolution has

been reached.

In case (i), it may be that C is internal to D. A point query on some point of C

suffices to decide if that is the case. In case (ii), each tagged edge of Cgpp is inter

sected with each tagged edge of Z>w and subdivided at the intersection points into

disjoint edge segments. Now each edge segment of Cgpp is either internal orexternal

to Dgpp. HCRVARA performs a point query for some point of CgpP to see if it is

internal orexternal. Starting from that point, HCRVARA performs atraversal of Cgpp

to label each edge as internal or external. The label is alternately internal or external,

changing at each intersection point. Some special handling is required for edges of

Cgpp that coincide with edges ofDgpp; see figure 6.18 for an example.

Figure 6.18: Thedotted segments of CgpP are internal, the broken segments external.

Finally, HCRVARA replaces all untagged internal edges of Cgpp by the

corresponding edges of maximum resolution, and returns the internal edges and edge
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segments of C^-. It follows a more exact description of HCRVARA.'app

Algorithm HCRVARA

Input: The arc trees Tc and TD of a curve C and a simple closed curve D.

Output: C f>f> (D)

(1) Setthe approximation polygons Cgpp toC0, Dgpp toDq, and k to zero.

(2) For each pair of edges eki of Cgpp and fkj of jD^ , check if the two ellipses

Eki and Fkj intersect. If yes, tagekj andfkj.

(3) If there are no tagged edges, return no intersection and stop.

(4) Otherwise, if k is less than the maximum resolution,

Tmn(depth(Tc)^epth(TD)), replace each tagged edge eki of Cgpp by the two

edges £*+i,2i-i ^d ek+1£i. Similarly for each tagged edge fmj of Dgpp.

Increase k by one and repeat from (2).

(5) Otherwise, the maximum resolution has been reached. Intersect each tagged

edge eki with each tagged edge fkj and subdivide the edges eki at their inter

section points into disjoint segments.

(6) Perform apoint query for some point of Cgpp to see if it is internal orextemal to

(7) Traverse Cw and label edges as internal or external. The label is alternately

internal or external, changing at each intersection point.
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(8) Replace the internal untagged edges by the corresponding edges of maximum

resolution.

(9) Return the internal edges and edge segments of Cgpp.

We implemented this algorithm on a VAX 8800 with the same modifications as

in the case of HCURVES. Figures 6.19 and 6.20 give two examples for the output of

the algorithm at various maximum resolutions r. The dotted curves are the r-th

approximation ofD, respectively.

D \ D. D3 V... D,

(a) (b)r=2,t=8.4 (c) r=3, t=17.2 (d) r=5, t=42.5

Figure 6.19: C is a spline with 10 knots, D a spline with 18 knots.
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v A

(a) (b)r=3,t=21.5

D
6 ..

(c)r=4,t=41.7 (d)r=6,t=102.0

Figure 6.20: Both C and D are splines with 20 knots.

Again, the running times do not increase quadratically with the number of

edges, 2r, or with the complexity of the input curves. In fact, the increase in CPU

time is about cubical in r, Le. polylogarithmic in the number of edges. Figure 6.21

shows the increase in CPU time for both figures and for resolutions r=2 through r=l.
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63.5. Area-Area Intersection Detection

Given the arc trees of two closed curves C and D, it is now easy to detect if the

enclosed point sets P(C) and P(D) intersect. First, one employs algorithm

HCURVES to check C and D for intersection. If the two curves do not intersect, it

may be possible that C is internal to D, or vice versa. This can be checked by algo

rithm HPOINT by testing some point of C if it is internal to D, and some point of D

if it is internal to C. The two areas do not intersect if and only if all tests fail.

6^.6. Area-Area Set Operations

Given the arc trees of two closed curve C and D, the intersection of P (C) and

P (D) can now be computed as follows. First, one employs algorithm HCRVARA to
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compute C p/> (D) and D p^P (C). The resulting curves form the boundary of the

intersection P(C)r~>f(D). Some special handling is required for those edge seg

ments that C and D have in common. HCRVARA has to be modified such that it

marks these segments in its output. These segments are included in the boundary if

and only if the correspondingedges of C and D have the same orientation; see figure

6.22.

-V

Figure 6.22: EFis includedin the boundary of P (C )p/> (D), AB is not

We implemented this algorithm on a VAX 8800 with the same modifications as

in the case of HCURVES. Figures 6.23 and 6.24 give two examples for the perfor

manceof the algorithm atvarious maximum resolutions r. The brokencurves are the

r-th approximations of C and D, respectively.



D.
C -5

(a) (b)r=2,t=15.8 (c)r=3,t=33.1 (d) r=5, t=79.6

Figure 6.23: C is a spline with 10knots, D a spline with20 knots.

cjd>^s^/cjI);n>^

.a-

D

(a) (b)r=3,t=44.1

C4

......J \ r>J\
fc<\ P^S

D4 D5
(c) r=4, t=85.9 (d) r=5, t=140.5

Figure 6.24: Both C and D are splines with 20 knots.

151



152

Again, the running times do not increase quadratically with the maximum reso

lution or with the complexity of the input curves.

To obtain the boundary of the union P(C)f>f(D), one computes those seg

ments of C that are external to D and those segments of D that are extemal to C.

Again, the edge segments that C and D have in common are included if and only if

the corresponding edges of C and D have the same orientation.

To retrieve the boundary of the difference P(C)-P(D), one computes those

segments of C that are external to D and those segments of D that are internal to C.

The edge segments that C and D have in common are included if and only if the

corresponding edges of C and D do not have the same orientation.

6.6. Implementation in a Database System

As the previous sections have shown, the arc tree is an efficient scheme to

represent curves. In large-scale geometric applications such as geography or robotics,

is is usually most efficient to have a separate data management component and to

maintain a geometric database to store a large number of geometric objects. In order

to use the arc tree representation scheme efficiendy in this context, it is therefore

necessary to embed arc trees as complex objects in the database system. This section

will discuss several ways to perform this embedding; we will restrict our analysis to

relational databases.

There are three major ways to implement complex objects in an extended rela

tional database system such as POSTGRES [Ston86a] or DASDBS [Paul87]. First,
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one may organize the data of a complex object in relational form and represent the

object as a set of tuples, each marked with a unique object identifier. Then the algo

rithms may be either programmed in an extemal host language with embedded query

language commands [RTI84], or within the database system by means of user-defined

operators [Wong85]. These approaches have been used in earlier attempts to extend

relational database systems to applications in geography and robotics

[Kung84,Gunt87c]. Second, one supports a procedural data type to store expressions

in the query language or any other programming language directly in the database.

This approach is emphasized in the POSTGRES database system [Ston86c]. Third,

one may define an abstract data type (ADT) with corresponding operators and

abstract indices; see for example [Ston83]. The importance and suitability of ADT

mechanisms for geometric data management has also been discussed by Schek

[Sche86], The following subsections will discuss these approaches in turn and evalu

ate their suitability to embed arc trees in a relational database.

6.6.1. The Pure Relational Approach

The traditional approach would be to represent a complex object as a set of

tuples, i.e. as a relation or subrelation. For the representation of an arc tree the fol

lowing database design may be used.

arctreenodes(tree-id = int, node-id = int,point-x = real, point-y = real,

left-son = int, right-son = int)

Then the algorithms for intersection detection and so on are coded in a general-

purpose programming language (the host language) that allows the embedding of
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query commands to access the database. In the case of INGRES [Ston76], one may

use, for example, EQUEL/FORTRAN [RTI84].

For this approach, the relational data model as defined by Codd [Codd70] would

be sufficient. It would not be necessary to extend the data model by new concepts

such as special data types, and query optimization could be carried out as usual.

Nevertheless, we do not believe that this approach will be very efficient For each

access to a tree node it is necessary to activate the interface between host language

and the database system. In order to get the left-son node of a given node N, for

example, it is necessary to process the following query.

range ofal,a2 is arctreenodes

retrieve (al.all)

where al.node-id = a2.left-son

and a2.node-id = N

This query involves a join of the relation arctreenodes with itself. Then the resulting

tuple has to be returned to the host language before the execution of the program can

continue. This is a major effort to retrieve just one node, which may slow down the

overall performance of our algorithmsconsiderably.

6.6.2. Relational Data Type and User Defined Features

A variation of this approach would be to represent the arc tree as above, but to

program the algorithms within the query language by meansof a relational data type

and user defined data types and operators [Wong85]. First, the relational data type is

used to represent each arc tree as one tuple in a relation arctrees:
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arctrees (tree-id = int, nodes = arctreenodes using tree-id)

Here, the domain nodes is of the relational data type arctreenodes. A value of this

domain is the set of all tuples in arctreenodes that share the same tree-id value.

Second, the user has to define the geometric data types and operators that are

needed in this context, based on the data types and operators provided by the data

basesystem. For example,one may define a data type line in two dimensions as

define type line (phase = real, dist = real)

where phase denotes the angle between the line and the x-axis, and dist is the dis

tance between the line and the origin. Then one defines an operator intersect as

define operator intersect (Upline, 12-line) as z = boolean

where z=l if11.phase# 12.phase or 11.dist= 12.dist

Eventually, one will be able to program arc tree algorithms within the extended

query language. Clearly, each such program P that uses any of the user defined data

types and operators can be mapped onto a program P in the basic query language.

Then the query optimization can be performed on P in the usual manner. Moreover,

there will be opportunities to perform some kind of global query optimization

[Sell85] because the queries do not have to be processed one by one, as in the caseof

the host language approach.

One problem with this approach is that it requires the definition of a lot of data

types and operators before algorithms can be coded. Also, it is not sure if the database

can provide an efficient environment for the program execution. Finally, this

approach does not really make use of the special properties of the arc tree and the
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access paths required. The arc tree is avery regular structure, and the set of operators

to be performed is very limited. Any selective access to lower level subtrees is

embedded in a more complex operator, such as union orintersection, that starts outat

the root of the tree and works its way down from there. Nevertheless, this approach

seems tobe promising and should be included inapractical performance analysis.

6.6.3. Procedure as a Data Type

Another method to support complex objects is to introduce a procedural data

type; in particular, adata type query seems to be useful. This approach has first been

suggested by Stonebraker [Ston84] and it is currentiy being implemented in

POSTGRES. The procedural data type refers tocomponents that are complex objects

themselves by means of aretrieval command. This approach provides easy access to

lower level components via the multiple-dot notation and provides efficient support

for shared subobjects.

Consider the following POSTGRES example with two objects apple and

orange and three relations polygon, circle, and line.



name

apple

orange

desc

retrieve (polygonM) where polygon.id = 10

retrieve (circlcall) where circleJd = 40

retrieve (line.all)where line.id -17

retrieve (polygonM) where polygonXd = 10

Table 6.1: The object relation.
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Clearly, the polygon 10 isa complex object that is shared by both apple and orange.

Toretrieve the area of the shared polygon, forexample, onemay use themultiple-dot

notation [Zani83] as follows.

retrieve (object.desc.polygon.area) where objectname = 'apple*

Inorder to improve performance, it is usually useful toprecompute access plans

oreven answers tostored queries. This precomputation step makes the query optimi

zation somewhat more complicated, but it improves overall efficiency. As discussed

in [Ston86c] , the procedural data type also provides efficient support for complex

objects with many levels ofsubobjects and complex objects with unpredictable com

position.

The arc tree is certainly an object with many levels of subobjects, but it has a

very regular structure and no shared subobjects. Furthermore, the set ofoperators to

be performed is very limited, and any selective access to lower level subtrees is
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embedded in a more complex operator, such as union or intersection, that starts out at

the root of the tree and works its way down from there. We therefore do not believe

that the procedural data type is an adequate embedding for arc trees; it is too compli

cated because it is too powerful. We advocate to use the simpler ADT scheme as

described in the following subsection.

6.6.4. Abstract Data Types

Although the arc tree is a useful representation scheme for the most important

geometric operators, it should not necessarily be visible to the user. On the contrary,

all set and search operators should be executed without revealing the internal

representation scheme- the arc tree - to the user. The only operatorwhere the internal

representation may be visible to the user is the rendering of approximations of the

curve. But even then, it seems preferable to offer an operator that maps an abstract

object of type curve and a resolution into an approximation of the curve. Note that

for none of the common operators the user needs to have explicit access to subtrees or

to retrieve or manipulate details of the arc tree. On the other hand, it is important to

implement the algorithms for set and search operations as efficiendy as possible. The

algorithms are complex, and their performance should not be impeded unnecessarily

by an insufficient runtime environment or an inadequate implementation language.

Because of these considerations and because of the limited number of operators,

we believe that an embedding of the arc tree as an abstract data type (ADT) into an

extended database system is the superior solution to the problem. An ADT is an

encapsulation of a data structure (so that its implementation details are not visible to
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an outside client procedure) along with a collection of related operators on this

encapsulated structure. The canonical example of an ADT is a stack with related

operators new, push, pop and empty.

In our case, the user is given an ADT curve; each curve is represented internally

as an arc tree, but this fact is completely transparent to the user. The operators

defined on curves are given in table 6.2. Internally, all of these operators can be

implemented in a high level programming language such as LISP or C++. Because

the nodes of the arc trees are accessed along the parent-child pointers of the tree, it

will be useful to store nodes near their parent nodes.
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operator operand-1 operand-2 result

approximation curve integer curve

point inclusion test curve point boolean

curve-curve intersection detection curve curve boolean

curve-curve intersection computation curve curve set of points

curve-area intersection detection curve (closed) curve boolean

curve-area intersection computation curve (closed) curve set of curves

area-area intersection detection (closed) curve (closed) curve boolean

area-area intersection computation (closed) curve (closed) curve set of (closed) curves

area-area union computation (closed) curve (closed) curve set of (closed) curves

area-area difference computation (closed) curve (closed) curve set of (closed) curves

Table 6.2: The curve ADT.

Note that it is not necessary to define a separate data type for closed curves. Each

operator that requires the input curves to be closed may just extend its type checking

by a test for closedness. Operators that return sets may just be implemented as

relation-valued operators (such as the common retrieve command that may return
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relations as well as single tuples).

6.7. Summary

We presented the arc tree, a balanced binary tree that serves as an approxima

tion scheme for curves. It is shown how the arc tree can be used to represent curves

for efficient support of common set and search operators. The arc tree can be viewed

as just one instance of a large class of approximation schemes that implement some

hierarchy of detail. We gave an overview of several other approximation schemes

that are based on the same idea, and indicated how to modify the arc tree algorithms

to work with these schemes.

Several examples are given for the performance of our algorithms to compute

set and search operators such as point inclusion or area-area intersection detection

and computation. The resultsof the practical analysis areencouraging: in most cases,

the computation of boolean operators such as point inclusion or intersection detection

can be completed on the first four or five levels of the tree. Also, the computation of

non-boolean operators such as intersection computation gives fairly good results even

if one restricts the computation to the first few levels. Finally, it is described how to

embed the arc tree as an abstract data type into an extended database system. It is

subject of future research to conduct a more comprehensive and systematic study of

these arc tree algorithms. Also, we are planning to conduct a theoretical analysis of

the arctree, and to compare the arc tree to Ballard's striptree and Bezier curves, both

theoretically and practically.
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Chapter 7

Conclusions

The main theme of this thesis is the significance of suitable representation

schemes for efficient geometric data management While issues of representation are

important in anykind of computing environment, they gain a particular weight when

dealing with geometric data. There is a wide variety of geometric operators that are

commonly used, and there is simply no single representation that provides efficient

support for all of them. Compared to numeric operators, most geometric operators are

hard to compute, and in order to be reasonably fast, one has to precompute and store

intermediate results. A representation scheme can be viewed as the result of a

precomputation; it is anintermediate result, which can be used for thecomputation of

certain operators.

In this thesis, we first gave a survey of common representation schemes for

geometric data. Following that, several new schemes were proposed and analyzed to

determine which schemes are good for which operators.

In chapter 2 we described a general taxonomy for operators and representation

schemes and gave a survey of common representation schemes for two- and three-

dimensional geometric data. We pointed out the significance of uniqueness, of dis

tance functions, and of invariant parts in a representation scheme. All of these

features are especially important for the efficient support of recognition operators.

Many representation schemes can benormalized tobeunique and tohave invariances

162
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with respect to similarity operators. Also, we discussed how to define distance func

tions that measure the difference between two geometric objects. As an example, we

described how to use Fourier descriptors to implement normalization and distance

functions.

Chapter 3 introduced polyhedral chains as a new representation scheme for

polyhedral data in arbitrary dimensions. Each polyhedral point set is represented as

an algebraic sum of simple polyhedra. In particular, we considered convex

polyhedral chains and discussed an implementation, where each convex cell is

represented as an intersection of halfspaces and encoded in a ternary vector. We

showed how it is then possible to decompose the computation of set operators on

polyhedral point sets into two steps. The first step consists of a collection of vector

operations; the second stepis a garbage collection wherevectors that represent empty

cells are eliminated. All results of the garbage collection can be cached in the vectors

in such a way that the garbage collector never has to do any computation more than

once. As the database is learning more and more information through the garbage

collector, it will be able to detect empty cells immediately such that no additional test

for emptiness is required. As a result, the computation of set operators becomes fas

ter as the system is used

In order to carry out the garbage collection efficiendy, an algorithm is needed

that detects quickly if two given convex cells intersect. In chapter 4 we digressed

into theoretical computational geometry and presented a dual approach to detect

intersections of hyperplanes and convex polyhedra in arbitrary dimensions. In d
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dimensions, the time complexities of the dual algorithms are 0(2ddlogn) for the

hyperplane-polyhedron intersection problem, and 0((2J)d~1logrf"1/i) for the

polyhedron-polyhedron intersection problem. In two dimensions, these time bounds

are achieved with linear space and preprocessing. In three dimensions, the

hyperplane-polyhedron intersection problem is also solved with linear space and

preprocessing, which is an improvement over previously known results. Quadratic

space and preprocessing, however, is required for the polyhedron-polyhedron inter-

section problem. For general d, the dual algorithms require 0(;r ) space and

0(2dn*~ d\ogn) preprocessing. These results are the first of their kind for dimen

sions largerthan three, and the first that readily extend to unbounded polyhedra.

In chapter 5 we discussed how to use hierarchical data structures as representa

tion schemes that support search operators such as point and range searches, and

introduced the cell tree. The cell tree is a hierarchical data structure to represent

polyhedral data in arbitrary dimensions that facilitates pointand range searches. It is

a balanced tree that is designed for paged secondary memory and should therefore

serve well as an index structure for geometric databases.

In chapter 6 we presented the arc tree, another hierarchical data structure, that

serves as an approximation scheme to represent arbitrary curves. The arc tree

represents a curve of length / by a balanced binary tree such that any subtree whose

root ison the k-th tree level isrepresenting asubcurve of length //2*. Each tree level

is associated with an approximation of thecurve; lower levels correspond to approxi

mations of higher resolution. Based on thisdata structure, we described and analyzed
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hierarchical algorithms for several search and set operators. These algorithms start

out near the root of the tree and try to solve the queries at a very coarse resolution. If

that is not possible, the resolution is increased where necessary. The results of the

practical analysis are encouraging: in most cases, the computation of boolean opera

tors such as point inclusion test orintersection detection canbe completed on the first

four or five levels of the tree. Also, the computation of non-booleanoperators such as

intersection computation gives fairly good results even if one restricts the computa

tion to the first few levels. The arc tree can be viewed as just one instance of a large

class of approximation schemes that implement somehierarchy of detail. We gave an

overview of several other approximation schemes that are based on this idea, and

indicated how to modify the arc tree algorithms to work with these schemes. Several

possibilities were described to embed arc trees intoanextended database systemsuch

as POSTGRES, and it seems that the embedding as an abstract data type is most

promising.

As it should be clear from the above, in geometric computing it is necessary to

compute and store multiple representation of the given data in order to have the most

efficient representation available for every operator. In numeric computing, on the

other hand, one representation is usually sufficient. The maintenance of multiple

representations brings about difficult problems concerning their availability and

mutual consistency.

Multiple representations are very efficiently supported by two database mechan

isms, namely views and indices. To use views, some representation is declared the
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mainrepresentation and stored explicidy; other representations are views of this main

representation. In order to make the various representations more available, these

views should be precomputed and stored as well. In many cases, view updates may

be admissible, as they can be translated into updates of the main representation. The

consistency of the representations is monitored by demons that invalidate a precom

puted view if necessary (i.e. if thecorresponding main representation changes).

Anotherway to implementmultiplerepresentations are database indices, suchas

the R-tree or the cell tree, both indices for geometric data. The construction of an

index may require a lot of computation, but once it is constructed, it represents the

underlying data in such a way, that search operators can be computed on this

representation very efficiently. Of course, any update to thedata may cause the index

representation to change aswell,which brings up the need for efficient index update

algorithms.

Given the fact, that views and indices are standard features in database systems,

it seems preferable to have geometric data management performed by an off-the-shelf

database system, rather than by a user-written component. Extended database sys

tems such as POSTGRES also provide facilities to manage complex geometric data

objects, to define indices, and to support powerful artificial intelligence techniques

such as rules. Furthermore, a database system has other useful features, such as a

well-defined data model, or normalization techniques for redundancy avoidance.

Also, database systems are known for their ability to scale up well to manage larger

amounts of data. This is often not the case with user-written data managers, which
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may cause problems if the application is expanding morethan expected.

Forthe near future, we are planning to apply the resultsof this thesis andrelated

work in a practical setting. We intend to use POSTGRES to perform the geometric

data management of a major robotics and vision application. This project should give

us some insight into the practical problems with various geometric representation

schemes that we proposed. We are planning to compare the various possibilities to

embed representation schemes as complex objects in POSTGRES. Furthermore, the

POSTGRES implementation will show how mature the new generation of relational

database systemsreally is, and how their performance compares with special-purpose

data managers.
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