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NORMAL FORMS FOR CONSTRAINED NONLINEAR DIFFERENTIAL EQUATIONS
PART I: THEORY'

Leon O. Chua and Hiroe Oka' |

Abstract

This paper generalizes the theory of rormal forms for smooth vector fields to constrained equations
characterized by a system of nonlinear differential-algebraic equations. Such equations are widely encountered
in practical circuits and systems when parasitics play an important role in the system’s qualitative behavior.
Such parasitics are called small parameters in the associated singular perturbation problem. Our approach in
this paper is completely different from the literature on singular perturbation. Ours is based on the general
framework described in the tutorial paper by Chua and Kokubu [15], namely, the calculation of infinitesimal
deformations.

1. INTRODUCTION

We often encounter, especially in nonlinear circuit theory, ordinary differential equations of a singular
type; namely,

& ="f(x.y)}

) (1.1)
y=gk,y)

where - denotes a derivative with respect to time, x e R", y € R*™, and €€ R is a small parameter [1-8].
Since we are often interested in the behavior of the limifing system as € tends to zero, we must include the equa-
tion for € = 0 as well as € # 0 in our study. In this paper, we call them constrained equations. Therefore, the
mathematical object corresponding to such equations constitutes a larger set than the set of vector fields.

The following Van der Pol equation is a typical example of a constrained equation [1-2):

ex = (x—x°/3) + y}

. (1.2)
y=-x

where x,y € R. The phase portrait, shown in Fig. 1, of this system for small parameter € is described by a
rapid motion along the x-direction, and a slow motion near the curve y = X33 - x, which is obtained by set-
ting € = 0 in the first expression of (1.2). The name "constrained equation” comes from the observation that the
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3
orbits are constrained to lie on the curve y = x? — X for almost all times.

In this paper, we will give a new coordinate-free formulation for constrained equations. One advantage of
our formulation is that the normal forms associated with these equations can be obtained by essentially the same
method developed for vector fields, i.e., when € # 0. Methods for obtaining normal forms for vector fields have
been developed by Poincaré, Takens, Amold, and Ushiki [9-13]. Readers unfamiliar with this subject may con-
sult the recent tutorial paper on normal forms for nonlinear vector fields [14-15]. The main purpose of this
paper is to show that the general framework developed for vector fields in [14] can be successfully applied to
constrained equations as well. We will show, among other things, that the normal forms for constrained equa-
tions give a local classification according to the extent of the degeneracy of the constrained equation. For the
Van der Pol equation we can identify several types of local structures from the phase portrait in Fig. 1, and our
normal form theory in this paper will provide a systematic method for classifying such local structures.

There already exist several formulations for constrained equations such as Takens [10-12], Fenichel [16],
Sastry, and Desoer [5], Ikegami [7-8], etc. All of them, however, are completely different from our approach in
this paper. The main feature of our formulation is that we can consider constrained equations as an extension of
vector fields. Because of this generalization, our normal form theory for constrained equations contains that for
vector fields. Another advantage of our formulation is that the perturbation problem [17-20] associated with
constrained equation can also be treated in our formulation. This problem is generally referred to in the litera-
ture as the singular perturbation problem of ODE’s. In this paper, we will present a new point of view on this
classic problem.

. The outline of this paper is as follows. First, in order to discuss the normal form for constrained equa-
tions, we define in Section 2 an enlarged set of ODE’s which includes both the set of smooth vector fields
treated in [14] and the set of equation (1.1) for € = 0. Constrained equations are characterized in this enlarged
set in a coordinate-free manner. In Section 3, we calculate the infinitesimal deformation following the general
framework of normal forms developed in Chua and Kokubu [14]. Some results with detailed calculations are
given in Section 4. The final section and a comprehensive Appendix will appear in Part II of this paper. This 2-

part paper is based on the theory developed by Oka [22].
2. DEFINITION OF CONSTRAINED EQUATIONS

Let us begin with a heuristic approach for the formulation of constrained equations. Consider the con-
strained equation (1.1) and rewrite it as follows:

1,
e aF N @.1)
x—v(x),x—y .

0 ] n-r
where I, denotes the unit matrix of order k, and
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fx,y) :
v(x) = [g x.y )] ) 2.2)

Thus we identify (2.1) with the pair (A, v) which consists of a matrix

el, : 0
A=|--- ' 2.3)
0

In -r

and a vector field v.

A normal form of a constrained equation is defined as the simplest form among those which can be con-
sidered as equivalent to the original equation, based on some reasonable definition of equivalence. For example,
we may consider that a transformed equation obtained by a coordinate change is equivalent to the original one:
Let x = ¢(y) be the new coordinates, then the transformed equation is given by,

Ax = ADy)y =V [¢(Y)] @4

Thus, the transformed constrained equation is of the form

[ 0] & [apaw.vesm). @5)

Note that the first component Z(y) is no longer a constant matrix. Therefore we will enlarge our abstract
objects to include the set of all pairs |A(x), v(X) | consisting of a non-constant matrix A(x) and a vector field
v(x).

In order to apply the method of infinitesimal deformations described in [14], it is convenient to define our
constrained equations in a coordinate free manner. Therefore we will state all definitions on a manifold M. A
vector field v is defined on the manifold M in the usual fashion (see Chua and Kokubu [14]). We may consider
A as a mapping from xe M to the set of all matrices. Since our generalization in this paper depends crucially
on the theory of fiber bundles, a brief review of the necessary mathematical tools is given in the Appendix in
Part IT of this paper.

In this generalization, we identify A as a section of the vector bundle End (TM), where the endomorphism
bundle End (TM) is a vector bundle on M whose fiber at x consists of all linear maps of T, M, as depicted in
Fig. 2. As explained in Appendix I (Part IT), A may also be considered as a bundle endomorphism of TM, as
illustrated in Fig. 3. Thus we arrive at the following definition.

Definition 2.1: Generalized vector field

A generalized vector field on M is a pair (A,V) consisting of a bundle endomorphism A of TM and a
vector field v (see Fig. 3).

Let us define next the concepts of equivalence and the transformation of generalized vector fields. Recall
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that the generalized vector field (A, v) is defined by the equation
AX)X = v(x) (2.6)
in terms of local coordinates. Let us multiply a non-singular matrix-valued function P(x) to both sides of (2.6):
Px) A(X)x = P(x) v(x) Q.7
The transformed equation (2.7) may be considered to be equivalent to the original equation (2.6).

01 01
For example, let P(x) be the constant matrix [1 0]. Then P(x) = [1 0] acts on equation (1.1) as fol-

ok elE]- Palbe)

Hence, the transformed equation is given by:

lows:

)t =g(x,y) } 29
& =f(x,y)
Thus P(x) in this case corresponds to an interchange of the upper and the lower expressions.
For the generalized vector field (2.5), let us consider the following transformation:
po1 po) « 4 f60] » Doy 08 [p) o v o] @10

where D ¢ denotes the derivative (i.e., Jacobian matrix) of x = ¢(y). This transformed generalized vector field
is equivalent to the generalized vector field

4 o] < Daw.v o) ] e

by multiplying the non-singular matrix D ¢! [¢(y)] from the left to both components of (2.11). Let us formal-
ize the above heuristic consideration to the following coordinate-free definition:

Definition 2.2: Equivalence and Transformation

Let (A,v) and (A’, V') be generalized vector fields (g.v.f) on M. We say these (g.v.f.) are equivalent if
there exist a bundle automorphism P of TM and a diffeomorphism ¢ of M such that

@) = [PoToeas@eyt P oToovos] @.12)

holds, where T¢ denotes the tangent map of ¢. The pair (P ,9) is called a transformation of the g.v.f. We
will denote the right-hand side of (2.12) by (P, $)s (A, v), namely, the transformed g.v.f. of (A ,v) by (P , ).

The set of all transformations (P, ¢) forms a group, which we denote by G. This fact is shown in Appendix III
(Part II).
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In the case where A is a bundle automorphism i.e., A(X) is invertible, the g.vf. (A,v) is identified with
the g.v.f.
A7'A,AY) = (1d , A7), . (2.13)
where Id denotes the identity bundle automorphism. This in turn can be identified with the vector field
x = A7(x)v(x) (2.14)
Hence, the set of all g.v.f.’s contains the set of all vector fields (/d,v). Moreover the transformed equation of
(d,v) by (P, ) is expressed by
P ,0)s(d ,v) = (P oT¢old oT¢™! ,P oThovod™)
(2.15)
=(P,PoTHovod™)
which is equivalent to (/d, T ¢ ovo¢™"), upon applying the transformation (P~!,id), to (2.15). It follows that
P does not play an essential role in the case of vector fields, and the restricted equivalence relation
(Id ,v) ~ (Id,Tooved™') (2.16)
is the same as the ordinary equivalence relation for vector fields (see Chua and Kokubu [14]). In this sense, the
class of g.v.f.’s is an extension of the class of vector fields.
In the following, we will present several examples of g.v.f.’s.
Example 2.3

xx=-1, xeR 2.17)

By putting z = x2, this equation reduces to z = —2 whose explicit solution is given by

2

z=x2=x}-2t, (2.18)

where X is the initial condition. It follows from (2.18) that all solutions arrive at the origin x = 0 in finite
time, and cannot be extended beyond this time. In other words, (2.17) has an impasse point {21] at x = 0. Note
that there is no solution starting from the origin at ¢ = 0. A family of solutions of (2.17) is shown in Fig. 4.

Example 2.4
xx=-x , xeR. . (2.19)

We can easily solve (2.19) and obtain the family of solutions shown in Fig. 5. In this case, for each initial con-
dition, there exists a solution which can be extended at infinity. Observe, however, that this equation does not
have a unique solution at x = O because both x(¢) = 0 for all ¢ and x(¢) = —1 satisfy (2.19) with x(0) = 0.

In the preceding two examples, the existence or uniqueness of solutions is violated at x = 0. In general,

for any g.v.f. (A,v), the existence and/or uniqueness of solution breaks down where A is degenerate.
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Moreover, since the bundle endomorphism A(x) for these examples is given by A(X) = x, the rank of
A(X) varies with respect to the points x € R. In contrast, the rank of A(x) does not change in (1.1); indeed,
the bundle endomorphism A (x) for (1.1) is given by:

el, : 0
. (2.20)
0

In,

Note that A,(x) for € # O is not degenerate; in other words, the equation for € # 0 deﬁneé a vector field.
Observe that for € = 0, the rank of Ay(X) is n-r uniformly with respect to the points in M. For both cases,
Ay(x) and A (x)(ex0), the rank of A(X) is constant. It follows that the set of all g.v.f.’s is slightly larger than
what we are interested. Hence, we will characterize our "constrained equations" by restricting our g.v.f.’s to
those imbued with the additional condition that A(X) is of constant rank. Of course we must deal with these
constrained équations on a manifold.

First, let us introduce the rank map defined by

rk :End(TM) > N
(2.21)
A, = rank A, ,

where A; € End(TM) is a linear map of T,M and rank A, € N, where IN denotes the set of all non-
negative integers. This map is well-defined; that is, it is independent of the choice of local coordinates because,
by a change of coordinates y = ¢(x) of M, A, is transformed into 75 =D [¢’l(y)]°A¢-1(,)'D¢°l(J’).
Hence, the rank is invariant.

We say a linear map of an n-dimensional vector space has a corank r if its rank is equal to n—r. The

inverse image (rk )"‘(n —r) of the rank map rk defines a sub fiber bundle of End (TM ) whose standard fiber is
the set of all linear maps of T, M of corank r. We denote this fiber bundle by End " (TM).

A bundle endomorphism of TM of corank r is defined as a section of the bundle End ¢ )(TM ). In other
words, for a bundle endomorphism A of TM of corank r, the rank of A(x) = A I, is a constant equal to n-r,
and is independent of x € M.

Definition 2.5: Constrained Systems

A constrained system of corank r on M is a pair (A, v) consisting of a bundle endomorphism A of TM
of corank r and a vector field v on M. When we do not specify the corank, we simply say a constrained sys-
tem on M. The set of all constrained systems (resp.; of corank r) on M is denoted by CQ(M ) (resp.;
C XXM )). Hence



CXan) = o< S MC9((')(M ). 2.22)

Observe that CQ(M ) is a subset of the set of generalized vector fields, since it excludes such elements as
Examples 2.3 and 2.4. For any constrained system (A,v) of corank r and any transformation (P ,¢), the
transformed constrained system (P,9)s (A, V) is again a constrained system of corank 7. Thus 09(0 M),
and as a result CQ(M ), remains invariant under the action of the transformation group.

It follows from the above definition that equation (1.1) is identified with a family (A¢, v¢) of constrained
systems parametrized by €. Especially when € = 0 , (Ag, Vg) is of corank r. Therefore the family (A, V)
can be considered as an unfolding of a constrained system of corank r. This fact inspires us to establish in Part
IT of this paper a relationship between the singular perturbation problem for ODE’s and the bifurcation problem
for constrained systems.

We can also define a constrained surface in our formulation.
Definition 2.6: Constrained Surface

Let (A,v) denote a constrained system of corank » on M. The constrained surface S of (A,v) is
defined by

S = (xeMIv(x)e ImA(x)) (2.23)
where Im A(x) denotes the linear subspace of T, M consisting of all images of the linear map A(x) of T, M.
Example 2.6

For the equation (1.2), let us choose € = 0, then

3

X
—_— %
I (2.24)

00
Ax) = [0 1] , and v(x) = -x

Since the first component of A(x) maps to 0, it follows that the image of A(x) for (2.24) is the 1-dimensional
subspace x = 0. Consequently,

y—-=—+x=0). (2.25)

Observe that this constrained surface coincides with the slow surface obtained by putting € = 0 in the first
expression of the equation (1.2).

Example 2.9

Consider the following ODE:



§x =—y +xz — (x%4yHx
&y =x —yz - (Pydy

z=1

(2.26)

where (x,y,z)e R3. This system of equations defines a family of constrained systems (Ag,Ve) on R3,
parametrized by € = (g;, €;), where

g 0 -y +xz — (xHyHx
Ag=| & |, ve= |x+yz-@Mydy | . 227
0 1 1

When € = 0, (Ag,Vq) is of corank 2, whose constrained surface is given by

s * B3 -y +xz — x*y%)x =0 and
W€ x +yz — (x2yH)y =0
(2.28)
_ ; < R? x=y=0or

z =x2+y?
z
To obtain the righthand side of (2.28), we first multiply —y +xz — (x%y3)x by x and multiply
~x +yz - (x2+y2) y by y, then adding them to obtain z(x2+y2) - (x2+y2)(x2+y2) = 0. It follows that
(x2+y2)[z -x%+ yz] =0, or x2 + y2 =0and z =x%+ yz. It follows that the constrained surface S for
(2.27) consists of the z-axis, and the parabolic surface z = x2 + yz.

The phase portrait for (2.26) for small €, = €, > 0 is shown in Fig. 6. Here, the slow motion occurs
along the z-axis, and on the surface z = x2 + yz. Observe that in the lower half of the z-space, all trajectories
spiral rapidly towards the slow surface x =y = O; namely, the z-axis. Conversely, in the upper half of thé z-
space, all trajectories spiral rapidly away from the z-axis and converge towards the slow surface z = x2 + y2.

3. INFINITESIMAL DEFORMATION

In the preceding section, we introduced two important concepts; namely, the vector space of objects, and
the group of transformations. The structure of the transformation group G = AUT(TM) >q Diff (M) is
derived in Appendix III, (Part II), where AUT(TM) denotes the set of all bundle automorphisms of TM and
Diff(M) denotes the set of all diffeomorphisms of M. Here, let us investigate further the transformation group G
and its action on the set of constrained systems (generalized vector fields), henceforth denoted by QQ(M ), so
that we will be able to apply the general framework of normal form theory developed in Chua and Kokubu [14].
More precisely, we will study the one-parameter group of transformations in G and its infinitesimal deformation.



To obtain the exponential mapping from the set of infinitesimal generators to the transformation group, it
is convenient to consider the transformation g = (P ,$) € G as a diffeomorphism P oT ¢ of the tangent bundle
TM. The following lemma is needed for this purpose:

Lemma 3.1
The mapping
6:G = Diff(TM) , (P ,9) > PoT¢ @3.1)
is an injective group homomorphism.
Proof. First let us verify that
c [(P,¢)-(Q,w)] = o(P ,9)°c(@,V) . (2)
Applying the chain rule and the definition of the group operation of G, the left-hand side (l.h.s.) of (3.2) can be

written as follow:

Lhs. =P oT$oQ oT¢™ ,poy) = PoThpoQ oTH ™ oT (9 oV)

(3.3)
=P oT$oQ oTd  oTQoTYy =P oT9oQ oTYy .
Similarly, the right-hand side (r.h.s.) of (3.2) can be written as follows:
rhs. =P oT¢) o (QoTy) =P oThoQ oTy . (34)

Equations (3.3) and (3.4) imply (3.2). Finally, the injectivity of & follows directly from the definition of .
|

Since the mapping G is a group homomorphism, a one-parameter group g‘ = (P‘,¢’) in G induces a
one-parameter group 6(P*,¢') = P* oT¢" in the set Diff (TM) of diffeomorphisms of the tangent bundle TM.

On the other hand, an element (R ,Y) of the set of all g.v.f. Q(X(M ) can be considered as a vector
field on TM under the identification explained below.

For Y e'uX(M ) and R € END (TM), the set of all bundle endomorphisms of TM , we define two vector
fields Y, and R, on TM by the following local coordinate representation,

Y,x,8) = [x,é.Y(x).DY(x)-é]

R0 = [r.8.0.R00E]

where (x ,&) and (x,&,v,n) are the local coordinates of TM and T(TM) respectively, and Y (x), DY (x)
and R (x) are local expressions of Y, TY and R. Hence, both Y, and R, are elements of the tangent bundles
of the manifold TM , i.e., T(TM). Observe that Y, and R, are both well-defined, that is, they are independent
of the choice of local coordinates. (This is proved in Appendix IV (Part II).) Thus we can define the mapping K
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from QQ(M ) into OX(TM) as follows:

x: JQX o) > Xam)

R,Y) > R,+Y ).
where (R,Y) e QQ(M Jand (R, +Y ) e Q(TM ). Any element ¥ of Q(TM ) generates a flow on TM
or an exponential map exp (¢ ¥) in Diff (TM) as in the exposition of the general framework of normal forms for

vector fields (see Chua and Kokubu [14]). Through these three procedures G, x, and exp, we define the flow, or
the exponential map, which forms a one-parameter group (P, ') in G for an element of QQ(M ).

Definition 32: Exponential map
For an element (R ,Y) e gq (M), we define the exponential map expt (R ,Y) by
expt (R ,Y) = ¢l oexpt (R,+Y,)
for sufficiently small ¢. We call (R ,Y) the infinitesimal generator for the flow.

Proposition 3.3

The above definition of the exponential map exp is well-defined and expt (R, Y) forms a one-parameter
group in G . ‘

Proof. The exponential map exp¢(R,Y) is well-defined because expt x(R,Y) = expt(R,+Y,) is in the
image of the mapping G, and the injectivity of the mapping ¢ (Lemma 3.1).

) - (P oT$)
m m
(e}
G ~Diff (TM)
exp ’ exp
gXa) Xam)
K
W/ W
R,Y) R,+Y,

More precisely; for (P ,9) € G, since P and T¢ are bundle isomorphisms of TM , not necessarily cover-
ing identity, so is P oT¢. Conversely, for an arbitrary bundle isomorphism ®:TM — TM, we can choose
(P ,9)e G, such that o(P ,9) = @, where ¢ = to®, and P = PoT(Rn o®)”! ( & denotes a projection
TM — M). Thus the image Im G is the set of all bundle isomorphisms (not necessarily covering identity.)

-10-




On the other hand, for R ,¥)e X M), xR ,Y) = R,+Y,) is a vector field on TM, which is
expressed by a local chart.
R,+Y )x,E) = [x,é,Y(x). [DY(x)+R(x)]-§] .

Hence, the mapping exp¢(R ,+Y ) maps a point (xq,&p) € TM to the point [x(t) , §(t)] € TM which is the
solution of the differential equation,

x =Y(x) } (3.5)
t= pro+rm)e

under the initial conditions x(0) = xq, &(0) = £;. Note that the first equation is independent of &, thus the
solution defines a flow of the base space M, which is denoted by expt Y. By substituting this solution
x(t) = (expt Y)(xq) to the second equation, the resulting equation

é= [praw+raen) &
is linear with respect to the variable §. This induces a linear invertible transformation from T, M to T, z)M.

It follows that expt k(R ,Y) = expt(R_,+Y,) is a bundle isomorphism whose base map is expt Y for each
t, thereby proving well-definedness.

To show that expt (R ,Y) is a one-parameter group in G, recall that © is an injective group homomor-
phism ( Lemuna 3.1 ), hence [G'l Ihc] is also a group homomorphism. Thus,

exp(t+s)(R,Y) = 6 oexp(t+s)x(R ,Y) = 6 oexp (t+5)(R, +Y,)

o loexpt(R, +Y,)oexps(R,+Y,)

[o" oexp t(R‘+Y.)] . [o" oexps(R,,+Y,)]

expt (R ,Y) - expsR . Y).

Let us pause to consider an example on the computation of exp (R ,Y).

Example 3.4

. 2 00 y
Consider (R ,Y)e qu ), defined by R = 01l Y= ol Here we identify R with a matrix

which fixes a coordinate of R2. Recall that the flow expt(R,+Y,) on TM is given by a transformation

[x(O),&(O)] - [x-(t),&(t)] where [x(t),é(t)] is a solution of the differential equation (3.5) on TM :
namely,

-11-



(3.6)

G- 162 BellE)- B 26

Here we use (x ,y ,&,M) for a local coordinate of TR2 Equation (3.2) can be solved explicitly as follow:

x(t)=x0)+y@©)¢

po =30

50 = O -0 ] +n@e’
n@) = nO)e’

It follows that

@ & expt(R,+Y,):(x,y.E,M) - (x+yt,y.E-nme’ ,me’),
is the bundle isomorphism, and its base transformation is ¢‘:(x ,y) — (x+y¢,y). By the definition of

-1
G:(P,0) > PoTd, P’ is written by @ o [T¢' ] , whose base map is the identity. Restricting to the fiber

1 ¢
T, ‘,)Rz, we can obtain the bundle automorphism P* as follows: Since D ¢'(x ,y) = [0 1] and @' IT(,,, R

1 e*-1
“lo e |
= el o et
PP=lo e flo1] = o & |lo1
-l—t—-1+e‘
o«

Thus, the one-parameter group (P ,¢') = expt(R ,Y) is given by,

P 1 —t—1+¢
0 e

O :(x,y) = (x+yt,y).

Next we move on to obtain an explicit form of the infinitesimal deformation of the constrained system
(A, v), which is defined by,

12.



% _SRIR V(A Y).

To compute the infinitesimal deformation, we identify the bundle endomorphism A with a (1,1)-type tensor field
A through a natural vector bundle isomorphism, ’

End(IM) = TM @ T'M ,

which is presented in Appendix II (Part I). By this identification, the infinitesimal deformation is obtained as

follows:

Theorem 3.5: infinitesimal deformation

The infinitesimal deformation of a constrained system (A,v)e C Q(M ) [or a generalized vector
field (A,v)e g Q(M )] by a one-parameter group expt(R ,Y) is given by,

%L__om:m JY)a(A,v) = [R‘A—S(yA.R-v—[Y,v]] ,

where & y A denotes the Lie derivative of the tensor field Awith respect to the vector field Y, and [ , ] denotes
the Lie bracket for vector fields.

Proof: First we shall prove: For (R ,0)e g Q(M) and (0,Y)e QQ(M),

expt(R,0) = (% ,id)e G . X))
expt(0,Y) = (I ,expt Y)e G . (3.8)

Here ¢® denotes a bundle automorphism defined by e® &) on each tangent space T,M, where
R(&x) AR I7,p is a linear mapping .M — T, M; e®R®) is the exponential map of the linear mapping
R(x) in the usual sense and / denotes the identity of TM .

In a local chart, exp¢(R , 0) is defined as a flow of the differential equation,

x=0
E=R(x)- §}' G

On the other hand, [xl(t) ,f;l(t)] =co(e®,id)(xq,Ep) = [xo,em(x")f;o] is a solution of (3.9). In fact

d
I x1(t) =0

7:7 E(e) = % e®®Ey = R(x)e™ Uy = R(xy(t)) - &1(t)

Thus the relation (3.7) follows.

Similarly, exp ¢(0,Y') is defined as a flow of the differential equation,

13-




i=Y() } 610
E=DY(r)- & 10
Since [xz(t),E_,z(t)] = Go(l,expt Y)(xg,Ep) = [¢(t vX0) Do ,x0) - E.,o]

[where o ,x) = ¢'(x) = (expt Y)(x)] is a solution of (3.10); namely,

% T =2 020 = ¥ 06 .130)] = ¥ [c00]
L 80 =2D4¢.x0 & =D L 4¢.20 &

=D [Y(¢(t ,xo))] &, = DY [xz(t)] - D 4t ,x0) - &

=DY [xz(t)] &)
the relation (3.8) follows.

d
Lemma 3.6. —
dt

Proof. When we restrict to the tangent space T, M, the action of expt (R,00e G on (A,v)e CQ(M )

[or € QQ(M )] is interpreted as a matrix multiplication in the usual sense; that is, in terms of local coordi-
nates, we have

expt (R ,0):(A,v) = (R-A,R+V)
t=0) :

expt (R,0)¢(A,v) = (e®R,id)y(A,v) = [e‘R(")A(x),e'R(‘)v(x)] )

" Hence the infinitesimal deformation of (A,v) is given by (R-A,R-v), which can also be considered as a
matrix multiplication.
]

As for the infinitesimal deformation % l =o_t.aqzt (0,Y)4(A,v), we must recall again the identification of
14

a bundle endomorphism A with a (1,1)-type tensor field A. (Appendix II).

Lemma 3.7

d = |= -
4| expr0,1%@4,v) = [ L,A, [Y,vl]

Proof: As noted in the beginning of the proof of Theorem 3.5,
expt(0,Y):(A,v) = ({ ,expt Y)s(A,v)

= [T¢‘ cAoT¢) TH ovo@'y | = 0 A, 04V
where ¢' = exptY is a one-parameter group of diffeomorphisms.
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Since A is considered as a (1,1)-type tensor field A, and since the inﬁnitesimal deformation of A with

respect to the one-parameter group ¢’ is given by the Lie denvauve, ¢. = -Iyli , (this is the

definition of Lie derivative), we have only to sce that ¢4A = T¢' vo(T<|> y! is identified with the
transformed tensor field ¢‘+A = (T¢'®T" ¢) o K o ¢,

The tensor field A is written by Z A;;(y) =— ® dy; in terms of local coordinates ( Appendix II). By a

3)’.
coordinate change x = ¢(y) (x; = ¢,-(yl sY25 s Yn ), the tensor field Ais transformed as follows:
Vi 4o i
P AR dx;
dy‘ ? axj ? a (X)

l

3 ;!
iZinj()’)‘gy: ®dy; = iszij [¢ l(x)] % [ay, o) ——] Y [ 3;1 (x)dx,]

- ;; [t )a; [“"l(")] X (x)—‘l ® dx,

=D¢ [¢"(x)]~A [qr‘(x)]-b o7'x) .

On the other hand, the bundle endomorphism A is transformed into D ¢ [¢‘l(x)]-A [¢'l(x)]~D ¢~1(x) which

is the same as ¢, A

The preceding calculations are summarized by the following diagrams:

A—A

1O

OiA — 0lA



[@"(x),w"(x) :

gt
—

[¢"(x>.A [¢“‘(x)] Do) - é]

m m
A
™ ™
TY) ¢.A JTe
™
w w
.8 [x.D¢ [¢"<x>] ‘A [¢“(x)] Do) - &’]

For the vector field ve Q(M ), the infinitesimal deformation il‘ T¢' ovo(¢')! is given by the Lie

dt lt=0

bracket ~ [Y , v] (see Chua and Kokubu [14]) B (End of the proof of Lemma. 3.7.)

We are now ready to prove Theorem 3.5:

4
dt

l exnt{(R 0) + (0, Y)]#(A v)

Since exp? [(R ,0) + (O,Y)] differs from expz(R ,0) - exp#(0,Y) within 0(t?), the above expression

is equal to

%L;o [mt(R ,0) - mt(o,Y)]#(A,v) )

It follows from the Leibniz rule that

4
dt 1=0

From Lemmas 3.6 and 3.7, we have

R-A.R) + [-s(, A,- [Y.v]] -
This completes the proof of Theorem 3.5.

Using a local coordinate representation, we obtain,

expt(R ,0)y (A, V) + % l'aogmz(o,Y)#(A,v) .

[R-A—:ZYA,R-V— [Y,v]]

-

RA-HLyA= 5‘;’ [RikAkj - _3xk Y, + o, Ay — Ay ax,- ] o, ® dx; ’ -
aV, BY, d ) )
Rv"[Y,v]—E[R;ka—-a-;: Yk anVk]a_x,‘
9 9 _ _ d
where R = ZR,J o ®adxj,A= ZA,J o, ® dx;, Y—.ZY; -aT,de—Zvi —a;—
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For the one-parameter group (P*,¢') = expt(R ,Y) of Example 3.4, we will show that the infinitesimal

deformation, calculated directly from the definition of —dét. =0(P‘ ,0")4 (A, V), coincides with that obtained
!

from the formula (3.11).
Example 3.8

01 y . 1 —t=l1+e! .
11 4 . Recall that P* = 0 ¢! , 0 (x,y) = (x+yt,y)

Let us choose (A, V) to be [

in Example 34. Since (P*,¢')s(A,V) = [P‘ oT¢' oA o(TO), Pt 0T ovo(¢‘)-'] A (A', V), we
can write A’ and v as follows:

‘ 1 =1+ |1 ¢]fo 111 =
A=l ¢ [lo1]lt1]fo1

e'=1 —t+e'(t+1)
T Lé e'(1-t)

1 —r—1+e' |1 ¢] y
v = o ¢ 0 1] |1+x-yr)

y-He' ~1)(L+x—y1) |
e' (14+x—yt)

Therefore

d ef=1 —t+e'(t+1) | |yHe'-1)(1+x—yt)
dr e! ef1-t) |’ e’ (14x—yt)

: li‘zl' )

On the other hand, A and R (resp., v and Y') are expressed as tensor fields (resp., vector fields) as follows:

4a t gt =
dl|t=O(P ’¢)#(A’v)—

-9 9 9
A-ax®dy+ay®4x+ay®dy
—y 2 2

v=y p” + (1+x) 3

=9 =y 2
R-ay®dy,Y—y il

Therefore the formula (3.11) gives the infinitesimal deformation as follows:
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ORI

_ 9 ) ) _ 1
E(YA-—ax®dx+ay®dy-ax®dy-— [0 1]

e B2 2

2,2 Ao, 2 g [
W= P ax+(1+")ay]‘y 3y~ 5 = [y ]

Hence

11 1-x
R'A-£YA= 10l and R 'V—[va]= 1+x_y ’

which are identical with the above result.
4. NORMAL FORMS OF CONSTRAINED EQUATIONS

The purpose of this section is to define normal forms for constrained systems and to compute them by the
method of infinitesimal deformation presented in the previous section. In a naive sense, the (kth-order) normal
form of a constrained system is obtained by transforming its (kth-order truncation of the) Taylor expansion at a

“point in the phase space M into a form as simple as possible by appropriate coordinate changes. For clarity, we
“will begin with a discussion of the local expressions of constrained systems and the notion of jers. We will then
:give a precise definition of normal forms and a method for obtaining them, as well as several examples.

For simplicity, we will first treat the case where the phase space M is the n-dimensional Euclidean space
R" and choose the standard cartesian coordinate (X ,X3,...,X,). In this case, a generalized vector field (A , v)
on R" is given by a pair of a matrix-valued function A (x), and a vector-valued function v (X):

an(x, -+ ,a,® | [V
[A ®),vx) | = oo ,xe R*
a, l(x) y 7" 58y (X) Vp (X)
See Example 3.4.
Recall next the following definition of a jet given in Appendix 2 of Chua and Kokubu [14]:
Definition 4.1

Let f and g be smooth mappings from R” to R™ defined in a neighborhood of a point xge R*. We
say f and g are k-jet equivalent if every derivatives at X up to order k of f as well as the value f (xg) coin-
cide with those of g. This defines an equivalence relation and the equivalence class is called the k-jet of [ at
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X, denoted by j,fof .

Two pairs of mappings (f ;,f7) and (g, g,) are said to be (k,)-jet equivalent if f | is k-jet equivalent to
g1, and f, is l-jet equivalent to g,. The equivalence class of (f,,f,) is denoted by
JEHF1.fD = (F§ .f4). (Note that this notation is used in [14] for a different object.)

In a similar way as the k-jets of vector fields, the k-jet of a generalized vector field (A ,v) is identified
with its kth-order truncation a,-’}(x), v}‘(x) of the Taylor expansion of each component a;;(x), v;(x). We denote
the set of all k-jets [resp. (k,l)-jets] of g.v.f.'s at xq by Jfo Q q (resp., J,f(;' g Q). Since every constrained
system (A, X) itself is a generalized vector field, it is also expressed as a pair of a matrix-valued function and a
vector-valued function. However, the k-jet of the constrained system is not given by its usual kth-order trunca-
tion because of the following reason:

Example 4.2
Let A(x) € End (T R?) be a bundle endomorphism of TR? of corank 1 defined by

xy+y? x+y? :
A(x) = ’ y 1 ],(x,y)eR2

0 x
Its 1st-order truncation [y 1 ] is not of constant rank.

This observation shows that the kth-order truncation does not give a k-jet for the constrained system
because the k-jet (A*, v") of the constrained system (A, v) should have a bundle endomorphism A¥ with a
constant rank. This difficulty comes from the fact that not all components of the bundle endomorphism A of
constant rank are independent. For example, any bundle endomorphism

anx), ap®

A®) = [

2

an®) , m(x)] xeR

of TR? of corank 1 satisfies the relation,
a11(x) ax(x) — ap(x)an(x) = 0.

In general, we have only (n?-r?) independent components among the n2 components of A € End") (T R"), in
view of the following lemma..
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Lemma 4.3

Let A(x) be a nxn matrix-valued function on R” where A(Xg) is of corank r for some xge R”. Let P
be a non-singular nXn matrix with

Ey By
“IA(xg)P =
P Xo Co Dy

where D is a non-singular matrix of order (n-r). Then A(x) is of constant corank 7 for X near X, if and only
if, i
EX=Bx - -D®! Ckx

holds, where

PIAX)P =

E(X) B(x)
Cx) D) |-

Proof: Note that D (x) is non-singular for x near xp because D (x) is near Dy = D (xp). Multiplying

[1 -B(x)D!(x) [E(x) B(x)

0 I to Cx) D(x) from the left, we obtain,

[1 -B (x)D"(x)] [E x) B(x)

E®-BX)DIx)Cx) 0
0 I Cx) DX |~

C (%) D()|’

which is also of corank r. Hence,
EX) -BXDI®Cx =0

This lemma shows that the upper left part E (x) depends on the remaining 3 parts. Consequently, we can
choose only B (x), C(x) and non-singular D (x) as independent components. In other words, once we fix each

E B
B, C, and D, then we can reconstruct A = [C D] of corank r by putting E = B D”!C. Since bundle

' B
endomorphism A of corank r is determined only by such B, C, and D, we denote A as [C D] and call it the

canonical expression.

When we speak of the k-jets of constrained system (A , v) of corank r, we have only to take the kth-order
truncation of the canonical expression.

Example 4.4

The k-jet of the bundle endomorphism A(x) of Example 4.2 is given by



01 ,for k=0,

, for k=1,

2
X+
L ly ]. for k=2.
x+y?

x
As bundle endomorphisms having the 1-jet [y 1] and the 2-jet L 1 ], we can choose

and

5 +0(3) x +0Q)
y+o@ 1+00

and

y+0@3), 1+0@3)

xy+y3+0@), x+y2+0(3)]

respectively, where O (k) represents terms of the degree > k.

Now we proceed to the definition of k-jets of constrained systems on a general manifold M. Let (A,v)
be a constrained system of corank r on M. Recall that A is a section of the fiber bundle End® )(TM ) over M
introduced in Section 2, whose standard fiber is the space of linear mappings from T, M into itself of corank r.
From Lemma 4.3, this fiber is an (n 2, 2)-dimensional manifold. Hence, by fixing a local coordinate of M, A
has a local expression A :R"” — R"*"* a5 the canonical expression. Similarly, the vector field v is a section
of the tangent bundle TM and has a local expression V:R” — R”.

Definition 4.5

Two constrained systems (A ,v) and (A’, V") of corank r are said to be k-jet equivalent at xge M if, by
taking a local coordinate around x, the local expressions (A ,V) and (A’,¥’) are k-jet equivalent; namely,

r Yk . \kn r Yk r Nkn
o | d - a | d e
— . .. AX = |— [ A' X
ax, ox, @ ox, ox, Rt
- 4 . J . L - L
r ‘kl r ‘ku r Nkl r ‘kn
i e 9 vx) = i e G V(x)
ox, ox, ox, ox,
-~ 7 ~ - - . ~ L
forall ky, -+ ,k, with O < ky+ - - +k, < k. The k-jet equivalence class of (A, V) at xg is called

the k-jet of (A,v) at xq, which is denoted by jfo (A,v) = (A* ,v"). We denote the set of all k-jets of
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strained systems of corank r by Jfo 09(' .

Similar to the case of vector fields, several properties corresponding to those derived in Appendix 2 of
Chua and Kokubu [14] also hold for jets of constrained systems.

For a transformation (P ,$) € G of constrained systems, the k-jet of a bundle automorphism P and that
of a diffeomorphism ¢ are defined in the same manner as above, which we denote by P* and ¢", respectively.
Let Dif f, be the group of diffeomorphisms of M fixing a point x¢, and let Dif. f,fo denote the k-jets of Diff,
at this point. Also, let the space of k-jets of bundle automorphisms at x be denoted by AUT, ,fo.

Consider the k-jet of the transformed constrained system (P, $)s (A, v). Suppose (A, V) and (A", V") are
k-jet equivalent, then (P ,$)z(A,v) and (P ,¢)s(A’, V') are also k-jet equivalent. Moreover, as is shown in
the following Proposition, the higher order part of (P ,¢) does not affect the k-jet of (P ,$)s (A, V), because
the action is expressed by the composition of mappings P, ¢ and T¢.

Proposition 4.6

) Jff"’lG = AUT. fo A Dif f,f: ! forms a group.

@ For (P*,¢¥*) e JE*1G and (A% ,v*) e JE COK7, (P* , 6**)), (A%, v¥) is given by

P* ) = J5 [ a0 @)
where (P ,¢) and (A, v) are representatives of (P* , 9**1) and (A¥ ,v*), respectively. Moreover,

@* ), (P* 0t ] = [f vy - @50, - k)

holds for (@ , y**!), and (P* ,¢**") e /541G and (A%, v¥) e JE (OX".

Proof:

(1) The group multiplication is defined by
®* 0 - @y & [1h P oToo0 oTo D). i @ow)]

where (P ,¢) and (Q , ) are representatives of (P*,**!) and (Q* , y**1); respectively. By the chain
rule, the derivatives of P oT¢oQ oT ¢}, up to order k are determined by the derivatives of P and Q
up to order k£ and those of ¢ up to order k+1. The derivatives of ¢ o up to order k+1 are determined by
those of ¢ and Y up to order k+1. Therefore, the definition is independent of the choice of the representa-
tives. It is clear that this multiplication operation satisfies the axiom of group.
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(2) Since the action of (P ,$) on (A, V) is given by,
(P ,9)s(A,V) = (P oToAoT¢™ ,PoThovod™),

the k-jet of the transformed constrained system is determined by the k-jets of P, A and v, and the k+1 jet
of . Therefore, we have proved that (4.1) is well-defined. '

The proof for the latter half is as follows:
@* ™, [P* .04k )] = @* W, 4 (204 0]

= i [ v [e.onam)]

i ((ewe.)am]

(51 @wren),@af v

[(Q" A .¢"“)],(A" V).

Hence we have shown that the group Jfo"‘“G acts on the k-jets space of constrained systems. This group
action induces an equivalence relation among the k-jets of constrained systems in the same way as in the general
theory of normal forms for vector fields in [14]; namely, two k-jets (A* ,v*) and (A%, v*) are said w0 be
equivalent if there exists a (k.k+1)-jet (P* ,4)"”) of transformation of constrained systems such that

(A%, v*) = (P*,vh) (A%, vF)
holds.

A k-th order normal form of (A ,v) is a representative of the equivalence class of the k-jets of (A, V).

Our goal is to choose the simplest form as the representative.

Let us now consider the infinitesimal deformation of k-jets of constrained systems. In Section 3 we have
already obtained the infinitesimal deformation of constrained systems. We will now translate it into the k-jet

version.
For (kk+1)-jet of (R,Y), we can define a one-parameter group expt(R* ,Y**!) in J,f‘;""'lG by
expt(R*, Yk = jEkH [gmt(k .Y)] :

Appendix V (Part II) proves that this group is well-defined.

Theorem 4.7: infinitesimal deformation for k-jets

The infinitesimal deformation of a k-jet (A% ,v¥)e Jfo CQ(' of a constrained system of corank r by a
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local one-parameter group exp?(R* ,Y**1) of Jfo"‘”G is given by,

% |, ERERE, YR Ak v = [R" - A*—Z inAk RE . vE - [ykH ,v"]] : 4.2)

where R¥ - A* = jX (R-A), L pnA* = & Ly A, R* - v* = jE R-v) and [Y¥*),vF] = jE [Y V] for
representatives R, Y, A, v of R*, Y**!, A¥, v¥; respectively.

Proof: Recall that the action of JE**1G on J£ (X" is given by (4.1) and that the infinitesimal deformation

of a constrained system is given by Theorem 3.5; namely,

d = [R.-A- W=
E‘&mt(R.Y)#(A,v)- [RA ZyA,R-v [Y,v]].

Hence, it suffices to prove that the right-hand side of (4.2) is well-defined. But this follows from (3.11) in Sec-
tion 3. Observe that, since v does not necessarily vanish at x, and since Y vanishes at xg, [Y , v] determines
the well-defined k-jet.

n

It follows that-we can calculate the normal forms of constrained systems in principle via the general
theory of normal forms. The algorithm for the calculation is similar to that of normal forms of vector fields
[14]. In the case of vector fields, the classification of l-jets (Jordan normal forms) is given at the first stage (see
Chua and Kokubu [14]). Here, we must obtain a classification of the leading part for the constrained systems
_which correspond to the Jordan normal forms; that is, a classification of 0-jets of constrained systems. For a
}onstrained system (A, V), we choose

(Ao v0 = [AGD)., ¥G0))

for a chosen point x in M, which we call the leading part of (A, V) at xo. If (A, V) is of corank r, A is a
linear map of corank r, and vy is a vector. The leading part of (A , V) is then classified as follows.

Proposition 4.8: classification of leading part

Every leading part (Ag, Vo) of a constrained system is equivalent to one of the following forms

b2 k]
bl el

®

(i)
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(i)

b2 LBl

where ¢; A 1,0, ---,0e R* (k =r or n—r), and I,_, denotes the unit matrix of order n—r. Here,

"equivalent” means "equivalent in the sense of 0-jet."

Proof: Tt is necessary to show that there exists a (0, 1)-jet PO, ¢l) of transformation such that the transformed
leading part

(PO, 00k (B0, v0) = [PoToleAg o TO, PO o To! o voo 0y

assumes one of the above 3 forms.

By Lemma 4.3, a local coordinate expression of (A, Vo) can be chosen as follow:

BDIC B v
c ol lw ,detD #0.

Since ¢ is a diffeomorphism, we may write ¢1(x) = §'lx for some non-singular matrix J; hence we
have (T(|>l)"l = 0. Also, since P is a bundle automorphism, we may write P% o T(l)l = P for a non-singular

" matrix. Moreover, since Vg is a constant vector, ¢l has no effect on v,. Using these observations, we can iden-

tify (P°, &1 (Ag, Vo) with (P-AqQ,P-vp). Let us choose
— [Ir = D-l] — I, 0 - 0 0
P = o p-! |d Q= olci | to obain P-AgQ = |, I | Hence, the leading

) 0 0 vy vy M
part (Ag, Vo) is transformed into WA EEE where vy =P v, |

Vl’ 0 0
Our next step is to transform [Vz'] into one of the above forms without changing 01 . Note that
n-r

_ Pt 0 — |1 Q2
the matrices of the form P = and Q = -1 |» where P, P4 and Q, are non-singular, do not
P3 P4 0 P4

0 0
change Ay = [0 1 ] Indeed, we have
n-r
Py Offo o ||21 Q2 0 0
Py Py|(0 I, |0 P! I (A
VI’ _ Pl 0
The vector vy is, thus, transformed by P = Py P,|™ follows:
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Pl 0 Vl' Plv{ @3)
P3 P4 Vz’ = P3V1'+P4V2’ : )

If v,” O, there exist Py, P4 and P4 such that
Plvl' =e , P3VI’+P4V2' =0.
If vi’=0 and vy’#0, then Pv,’ =0, P3vy’ =0 and there exists a non-singular matrix P, such that
P4v)’ = e,_,. Finally, observe that for the last case when v,” = v,’ = 0, the right-hand side of (4.3) is always
0.
|

At the next stage, let us choose the 1-jet
A, v) = (Ag, Vo) + (A}, V),

where (A; ,V;) is the ith-order part of (A, v) which contains the specified leading part (Ag, V). Consider the
1st-order normal form problem for constrained systems, that is, to deform (A!, v!) into a simpler form without
changing the leading part (Ag, Vo). Just as in the case of vector fields [14], depending on the degree of degen-
eracy of the 1-jet, we will in general obtain several distinct 1st order-normal forms having the specified leading
part. The normal form corresponding to the least degenerate 1-jet is called the non-degenerate 1st-order normal
form. Just as in the case of vector fields, we can proceed inductively to solve the higher-order normal form
problems: Given the (k-1)-jet (A*¥~1 ,v¥™1y of a constrained system (A ,v) we derive the associated kth-order
normal forms by simplifying the kth order terms via a suitable one-parameter group of (k,k+1)-jet of transforma-
tions expt (R*,Y**) e JE4*1G which fix the (k-1)-jet (A%, v¥-1),

The following lemma corresponds to the key lemma for vector field normal forms ( Lemma 4.6 in [14])
which gives us an infinitesimal generator while keeping the lower jets of constrained systems invariant.

Lemma 4.9

Let (A*, v*) denote a k-jet of a constrained system in Jfo C 9(’ and let (A*™!, v¥~1) denote its (k-1)-
jet. If an infinitesimal generator (R* ,Y**) e J;o»"“QCX satisfies,

i {(R" YR (Ak .v")} =0,

where

{(Rk , Yk+l) ,(Ak , Vk)}

is defined by



#

[Rk_Ak_otYMAk REvE - [Yk-l-l,vk]] ,
then expt (R® , Y**1), (A¥ , v¥) leaves the (k-1)-jet (A¥™1, v¥~") invariant; that is
& expt RY Y, (A%, vF) = (AR, v,

Proof: Since the proof of this lemma is exactly the same as that for vector field normal forms, we omit it and

refer to [14] for the details.
|

By this lemma, in order to compute normal forms, we have only to choose an infinitesimal generator

(Rk ,Yk'l'l) SaﬁSfying,
k-1
{(R" YR (A% .v")} =i {(R" L YEH) (A ,v*)} =0 @4.4)

and solve the associated differential equation,

k
% Ax ,v5y@) = - {(R“ Yy Ak .v")(:)}

where (A*,v5)(t) = expt R*,Y ""‘1)# (A% ,v*)0). To simplify notations, we will henceforth denote
(A" ,v") by a* and (R" Y "*‘) by §"; respectively. Under condition (4.4), the above differential equation can
be regarded as a differential equation,

th' he(t) = - {§k a¥l + hk(t)} @4.5)
k

on H, 09(' » the set of all homogeneous constrained systems of order k. Here A, (¢) denotes the kth-order part
of (A% ,v")(t), and {-,-}; denotes the kth-order part of {-,-}. We also denote the set of all pairs (R, Yy,;)
by H, ,k+1g q, where R, is a homogeneous bundle endomorphism of order & while Y}, is a homogeneous
vector field of order k+1.

Example 4.10: Rapid Point

Consider a family of constrained systems on a 2-dimensional manifold whose leading part (Ag, Vo) is

00 1
equivalent to [[0 1] , [0] J We may assume that (A, V) itself is of this form without loss of generality.

First we consider the 1st-order normal form problem on H 1 By taking into account the canonical
expression ( Example 44 ), H, qu is spanned by,
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Hence, dimH,(O( =10. Let us

RLY? = (Ro.Y)) + (R1.Y5) such that {(R‘.Yz),(Al,vl)

for all & = (R, Ype Hy; GO, the above condition is satisfied. Note that H 12X is a linear space

spanned by
C ¢

.

\

Hence, the dimension of H 2 QQ( is equal to 14, and the 1st-order normal form problem becomes

d

X o—

dy

®dy ,0

J

Yy

.

r

y

3

d

dy

P )

dy

®dx,0

®dy,0

choose the

o -

-

o

o

0

% hy(8) = ~ {Eg,a0 + By())y = — (€} ag)y »

where gl = (R 1 Yﬁ, ag = (Ao,Vo), hl(t) = (Al ’ Vl)(t).

The result of the computation of {&;,ap} in terms of the above basis is summarized in Table 4.11.

Therefore, (4.6) can be recast as follow:

(1,2)-jet

of

= 0 holds. Here we choose (Rg, Y;) = O; then

N

infinitesimal



hy1() €11

=1 0 |=m®]
h1,30() E1,14
where hy1(¢), - - , hy10(t) are coefficients of A,(¢) with respect to the above basis for H 109(‘, and
11, - -+ » &1,14 are coefficients of &; with respect to that of Hj, 99(, and K denotes a 10 X 14 matrix

defined by Table 4.11. The initial condition is given by:
MO = (@, - by .

Note that K is surjective as a linear mapping from H, 299( Therefore, for the vector
[hm(O), ,hl,w(O)],mere exists €11, - - - »Er1a) such that

T
K& - Gl = (@, - ey

holds. Hence, by choosing such €, 1, - - - ,&; 14), the above differential equation reduces to the form,

hya(®) h1,1(0)
E . == .
h1,100t) h1,1000)
whose solution is given by:
hy () h1,100) h1,(0)
S S DY

hgo® | (riao©® | |hie©

Hence, £(1) = 4;(0) - 1 X h(0) = 0.
00 1
This means that any 1st-order term of (A1 ,vl) with the leading part 01/’ lo|]can be eliminated

00 1
by a suitable transformation generated by the (1,2)-jet (R;,Y,). Hence, we have obtained HO 1] , [0” as

the 1st-order normal form of this example.
|

By a similar argument to the above example, we can prove that the following holds for any k-jets in gen-
eral: for a constrained system (A, v), we choose

B, & {Hk.k+lgq’a0}k C H, CCX' ,

where ag is the O-jet of (A,v). If B, coincides with H; 09(’ itself, then any k-th order part (k >1) of
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(A,v) can be eliminated by a suitable transformation. In fact, since B, = HkCQ', there exists

Cee Hypn Q'X such that {§,,a¢} = A (0) for any h,(0)e H, C9(', and, by taking &% = {,, the
differential equation (4.5) becomes

2 h(e) = - (L. a0) = m(0).
It follows from the solution

hi(t) = h(0) — 18 (0) ,
that k(1) = 0.

For the above example, we can prove the following:

Proposition 4.12

00 1
For k > 1, any k-th order part of (A, v) with leading part HO 1] , [0]] can be eliminated. In other

words, the infinite- order normal form is simply'the leading part

sl ¢l

itself.

Proof:
. . . 1
It suffices to show that By coincides with H, Cq . Recall that

(AO’VO) = [% ® dy )%] ’

and that H, ! is spanned by
r 3 R r a'\
myun _Y_ . . 0, m.n _9_
SRR N )
;cmy"i®dx 0W PO xmy” iﬁ
ST -2
x"’y"i®dy,0
[ 7 % ‘

Recall also that H .1 X is spanned by




ax®dy'0 ’

s -

where m+n = k and m’ + n’ = k+1. Then,

i

—A— A —A —A
T > T =
<

.
{ -m'x™
-

ni - = ”‘"_Q.
y 3 ® dx ,0-,(Ao,vo)}k = [O,x y ™
m ni ] - m"_a_
Yy ax ®d)' ’ OJ ,(AO,VO)}k = a dy ]
3 ] 3
myr — ®dx ,01{, (Ag,V = |0, x™y" —
Yy ay ) (0 0)}k ay]
m ni@@,o\'(Ao’vo) - x”’y"i®dy.0
dy ) x dy
r.m n—li _a__ rom’~l..n’ a
nx"y ax®dy,x 8] (AoVo)} [Omx " 5
"‘y"'-a% ® dx ,x'"'y"'-fy-] ,(Ao,vo)}k = [-n'x"'y"-‘ ;’y ® dx , o]

Therefore the linear map Hk,k+l gq - H, qu, R s Yir)) o {(Rk'ylc+l)'(A0’v0)} is surjective.

This completes the proof.

As a generalization of the above argument, even if B, does not coincide with H 09( ", we can obtain

a theorem corresponding to the Reduction Theorem for vector field normal form (Theorem 5.4 in [14]) which
reduces the normal form problem on H, qu to that on a subspace ﬁk complementary to B, in H, C(X r.
To state this theorem, let ®; be the projection,

nk:JkCQ' '—)ék R

along B,.

Theorem 4.13  Reduction Theorem for constrained system normal forms
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The kth order normal form problem

Lm0 =~ a* + Oy @n
on H, (X" with

{E',k—l ’ak—l}k—l =0 “4.8)
can be reduced to that on ﬁk; namely,

% be(t) = - my [(6"“ ak 4 Bk(t)}k] 4.9)

with (4.8), where 5,‘ e ék. More precisely, if we arrive at some point in ﬁk by integrating (4.9) with (4.8)
under the initial condition 5,, (0), then we can also arrive there from h, (0) satisfying 7, [hk(O)] = 5,¢ (0), by
integrating (4.7) with (4.8) for suitable &¥’s,

The proof of this theorem is given in Appendix VI (Part II).
Let us pause to consider an example illustrating the use of the reduction theorem.
Example 4.14: Regular slow point

Consider the family of constrained systems on a 2-dimensional manifold, whose leading part (Aq, V) is
equivalent to

(4Rl

We may suppose that ag = (Ag, Vg) itself is of this form without loss of generality. In a similar manner as
Example 4.10, we consider the lst-order normal form problem in H qu Recall that the vector space
H, qu is 10-dimensional, whose basis has been obtained earlier. Also H, ;Q CX is spanned by the basis
derived earlier.

Consider the linear map

Hj, 99( - H, 09(1
E1=R,Y) - {§,a0},

which is expressed in terms of Table 4.15. Thus, the image B is spanned by,
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- 3
r 9 r -
2 ] [ 2 2
f‘ax®dy”‘ axJ' y 8x®dy’y 8xJ
(3 al [ a 3 ] &
—® ) ol K} —® ’ -~
AR N &AL At~
(3 2 ? 2
QL oa,0|l,yL@ax, x|, 0,y
[ & ]Pw ’w][ywl
\

and the complementary space ﬁl can be taken as the vector space spanned by,

-2l bo2lbez)

Note that the projection 1, : H ICQ(‘ —> B maps, for example,

2 [l 2 al [, 2
ul[Jc—aj-t-@dy,O]-nl‘[x ax®dy,x ax] [O,x ax]]

r

=- [0,x —

ox

-~

Since every element 51 € él can be written in the form

51=a[0,x a—ax]+[5[0,y %—]Py[o,x %],

the reduced 1st-order normal form problem becomes

% by(t) = - = [@0 ,al+ 51(1‘)}1] @10
1
=-T [{§0 ’ I;I(t)}l]

with {0, @)% = 0. Using the results from Table 4.17, we obtain

{§°e I3 QX 118°,a%° = 0}

(b2} w2 oo om )

Hence, &0 is given by
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§°=A[0,xaa] [ ®dy , a]+C[§y®dx,0]+D[%®dx,0].

Therefore (4.10) becomes

2 K 3 |]
I [a(t)[o x3—]+ﬁ(t)[0 y o ]+'y(t)[0,x g]J

=—u1[{A[0,x§] [ ®dy, -y-i]+Cb%®dx,O]+D[-§;—®dx,O],

a(:)[o, ;’]ﬂs(z)[o y aa]w(z)[o,x -%]}l]

that is,
d
E (!(t) =D a(t)
% B(t) = B a(t) + (4+D) P(r)

2 %) = C ate) - 4x0)
{4
The solution is given by,

alt) = af0) e

= a+DX B a0) ] o~ _
Be)=e B(0)+D_(A D){e 1}]

= ¢@*D¥ 5(0) + 8_34@2 (e"“—l)}

We) = e~ At [?(0) + =) CD afg) {e(D+A): l}]

If o(0) # 0, we can choose

a(l) = 0(0) e® = sign aO) == 1)
B =0

Y1) =0
upon choosing
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D =-log!la0) !

4 _
a0)(e™-1)

D+A
o(0)(ePHA-1)

B = B(0) X

C =-v0) x

for arbitrary constant A, providled A # 0and A #-D.
If (0) = 0 and B(0) # 0, Y(0) # 0, we can choose

ofl) =0
B(1) = sign B(O) = £ 1

Y1) =signy0)=x1,
upon choosing
D =-1log!B) | —log | ¥0) !

A=logly0)I.

For the other case corresponding to $(0) = 0 and/or ¥(0) = 0, we can normalize the non-zero coefficient

D gm 2
0V %

B and/or v, to 1. Hence, the 1st-order normal form problem for ag =

] is solved as fol-

low:

(i) Non-degenerate 1st-order normal form

Loy o (2 2,3

(A,v)-~ay®dy.d:xax+ay]
o o] [ex
=_01' 1]

o (2 2 2
) @A',vHh = ~ay@dy,:l:y ax"'(lix) ay]
o o] [xy
=_01’1:tx

-35-



(i) (Al,v) =

n
O O
- O
| I |
| ey 1
H
=<
| SE—
[ SE— ]

(s 2] _[loo] [o
Gv) Al',vh = $®d)':(lix)$ = Llo 1] |1z

.

00| [o]]
o wos[Eoa. 2] [53].[]

Let us proceed next to solve the 2nd-order normal form problem for the non-degenerate 1st-order normal form
(i). The vector space H 2CCX1 has a dimension equal to 15 and is spanned by the following basis:

/;2i®dy ol | 2 @ o) ’2—a-®dy o\
ox i R A ! '3’ ox ’

- o - J

o

‘
)

( 3 3 r2
®dce ,0], xy$®dx,0 ' |y

L

&l

¢ x2%®@,0 : xy%@dy,o , y2%®dy,0 >

L . 4

ax

¥

r 3 r 3 4
o,x2i O,X}'i ,[0,}’28

s

. 5 . 3 9
0,221, O.xy% '[o,yzi

Eeslbeslbrs]
O\

Similarly, the vector space H,3 Q 9( is spanned by

rza 3 4 a 9 rza
fg@dX,OJ,f}’g@dX,OJ,?’a@dx,oJ
’zi - r i rZi b
SR M G "R N
rza 3 r a 9 rza h
x“—®dx ,0|, — ®dx ,0], — ®dx,0

J U & P U J{
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The linear map

Hjs Q’-X - 1,0

defined by

€2 = (R2,Y3) = {&a0}

is represented by the results calculated in Table 4.18. Hence the image B, is spanned by

rad

,

ox

x2

L

(r

’

2
®dy,o0l|, w2
0.0 b3
a r N
Bx'?'xyax‘
2l | 2 )
_’0
O a3

)

®dy,0|, |y?=

@ ][”ay
2 9
' 2
0,y =
U7 oy

W
d d
a“y'y’a]
2
ay® ,0] g
d
® dx , 2xy ay]

®dy xzi‘ 4 dy aT ;2
x|’ ny D aul
J J .
2] [ 26 '
® ,xz_ ’ = ] 2
Yy P® ay j"
®dr , ] [—2xy—®dx 21] [—y2
dy
9
dy
Let us choose the complementary space 52 as the linear space spanned by,
\
29 2 29
Bx ’ f),xy axJ’[o'y ox >
9 r 4
d 9
= 1| 09 = |
) 7 ]

L

where the projection 75 : H 5 09( 1 §2 maps
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nz[[JCz-ga;@dy ,o]] =1c2¥[xzaix®dy ,xz-‘%]- [o,ﬁ%”

-]
and so on. We must next verify the condition (4.8); namely,
(€ha'}' =0
or equivalently, the conditions
{€nao} =

{€,a0} + {Egay} =0 ,

where E! = € + £,. From the first condition, we can again choose from Table 4.17

= 2 2 y 2 A
§O-A[0’,x ax]-r-B[ax@dy, y ax]"c[ay ®dx,0]

+D[i®dx.0].
ox

Using Table 4.15 and Table 4.19, the linear subspace satisfying (E!,a!}! = 0 is spanned by,
C ¢ :

3 9 r 3 3 N
f-g@h,od,?a@dx,OJ
r a 3 . a 4
x—®dx ,0|, [y =—®dx,0
" &

’ - | >

P 9 9 —y2 9
anx ®dy . "yax]'[z” Bx®dy' Y ax]

(.2 2
0,x ax]’[o"‘ ax]
\b

Hence, the reduced 2nd-order normal form problem is given by,

% byt) = —m, [{§l val+ 52(‘)}2]

= -1 [{go b)) + (&1 “l}z]

where
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and
%:A[O,xai]

0 0
§I=Cl[x%®dx,0]+cz[y%®dx,0 +C3[x3y-®dx,0]+c4y?y-®dx,0]

2 —xy 9 _y2 9
+C5[x 8x®dy' .4 3x]+c6{2y ax®d””’ ox

20
+C7[0.x ax]

The above differential equation, thus, becomes
i‘-“j})— =Cy-Cy-Aa

By choosing
A=0
C1—C7=-a(0
C,=-b(0)
Ceg=-c(0)
C3; =-d(0)
Ci=-¢e0

We can eliminate all coefficients of 1;2. The 2nd-order normal form with non-degenerate

al = [-i @dy ,tx i+—a- is obtained as follow:

dy ox  dy



Non-degenerate 2nd-order normal form

._[2 3.3
a‘= ‘ay®dy,:l:x ax+ay]

[ bl

Following the same algorithm as before, we can continue to calculate the higher-order normal forms.
Moreover, we can prove that the infinite- order normal form is given by the same form as (4.11). We can also
extend this algorithm to the n-dimensional case, instead of dimension 2. Such an extension is given in Appendix
VII (Part II).

|

*

Let us now make an attempt to classify the 2-dimensional normal forms for constrained systems. In a
similar manner as the case for vector fields, they are assumed to have a specified leading part. For the most

00 1
. non-degenerate case, that is, (i): HO 1] , [0] ], we have already obtained Proposition 4.12; the infinite-order

- normal form is given by (i) itself. Our next proposition gives a classification of 2-jet for constrained systems
00 0
whose leading part is equivalent to: (ii): o1l lil}

Proposition 4.17

If the leading part of a two-dimensional constrained system (A , v) of corank 1 is equivalent to (ii) in Pro-
position 4.8, then its 1st-order normal form is given by one of the following forms:

o B8] o (£ 2] o (691
oo B3] o 51

Moreover, if the 1-jet is equivalent to (@ ), its infinite-order normal form is (a,) itself. If the 1-jet is
equivalent to (a3), (a3 ), (@4), or (as); respectively, then the non-degenerate 2nd-order normal form is given
by,

, 00 +y + ax? , 00 ty + ax?
@) o 1> 1+x @) flo 1" 1+x2
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, 0 0| [£x2+ay? ) 0 0| [|tx%ty?
@ o 1] | 1= @) 1o 1] [1+aw

The above result is obtained by a direct calculation as in Example 4.14. Finally, let us consider constrained sys-

00 0
tems whose leading part is equivalent to (iii): “0 1] , [0] }

Proposition 4.18

If the leading part of a two-dimensional constrained system (A, V) of corank 1 is equivalent to (iii) in
Proposition 4.8, then its 1st-order normal form is given by one of the following forms:

+x bO- .:i:y 00 ty
o BBl o B o (631

S o
- O

o0 [p S]] o (B3] 1) oo [B2]-El)

where a is a constant. Moreover if the 1-jet of the constrained system is equivalent to (b ), (b2), (b3), (b4), or

==

(b s); respectively, then the non-degenerate 2nd-order normal form is given by,

, 0 O7 .:I:x 00 ty £x?
®) flo 1] lay]] @ [lo1] | 2«

, O 0- -:ty:l:xz , 0 0. +x2 + axy £y?
@ 1o 1] | w2 ®4) flo 1] tx
b (o o] [ =22 , o o] -:|:x2:l:y2
(5) ”0 l_’ _ay:l:xy:tyz (b6) “0 l-’ _:txy+ay2

For constrained systems of dimension greater than 3, or those of corank more than 2, we can, in principle,
compute their normal forms as in the 2-dimensional systems of corank 1. However, the computation becomes
increasingly more tedious and involved. See Oka [22] for the results.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

FIGURE CAPTIONS

1.

Phase portrait of the Van der Pol equation for very small € The portion of the orbits with double
arrowheads indicate a rapid motion whose velocity tends to infinity as € — 0.

Illustration of a bundle endomorphism.

An illustration of a generalized vector field (A, v).

(a) Phase portrait of (2.15). (b) Family of solution of (2.15) consisting of parabolas converging to
x = 0 at a finite time ¢.

(a) Phase portrait of (2.17). (b) Family of solutions of (2.17) consisting of parallel straight lines with
a slope equal to —1.

Phase portrait of (2.24) for small & = &, > 0. Orbits with a double arrowhead denote rapid

motion.
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0o 0]
1 — cee 0o
Table 4.11. Table of (&, a0}, & & H1, GO, ag= i ‘ [0]

® dx

® dx

X
a/3x

dx

o/3x

dx..

X
3/3x

dy

9/3x

dy

X
9/3y

dx

o/ dy

o/dy

dx

dy

Xy

3/ 53X

3/ 9x

3/dy

Xy

3/ 9y

3/ dy




00 0
Table 4.15. Calculations for {&;, ag}, ag= Ho l] ’ [1 H

® dx

® dx

—

S ® ;‘:Imx

S ® §’|QJ‘<

&-@;‘:lwx

&0 o«

%@Q’Iwk




Table 4.17. Calculation for {, g}




Table 4.18. Calculations for (&,,a)
! z

XZ\ 1 1
il ?53; ® dy 1 2
¥ ) ]
XZ\ -3
v g ® d .
7 .
)(2N . 1
xy p 3—‘;- ® dy ]
y2 )
Xz\ 1 1
Xy p % 1 2
.YZ.J 1
) 1 1
d > % 1 2
7 3
”2-’QCX ® ® ® ®
: dx dy dx dy




Table 4.19.

® dx

® dx

® dy
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