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NORMAL FORMS FOR CONSTRAINED NONLINEAR DIFFERENTIAL EQUATIONS

PARTI: THEORY*

ft
Leon O. Chua and Hiroe Oka'

Abstract

This paper generalizes the theory of normal forms for smooth vector fields to constrained equations

characterized by a system of nonlinear differential-algebraic equations. Such equations are widely encountered

in practical circuits and systems when porosities play an important role in the system's qualitative behavior.

Such parasitics are called small parameters in the associated singular perturbation problem. Our approach in

this paper is completely different from the literature on singular perturbation. Ours is based on the general

framework described in the tutorial paper by Chua and Kokubu [15], namely, the calculation of infinitesimal

deformations.

1. INTRODUCTION

We often encounter, especially in nonlinear circuit theory, ordinary differential equations of a singular

type; namely,

*-ff'y)\ (U)
where • denotes a derivative with respect to time, x e Rr, y e R"~r, and ee R is a small parameter [1-8].

Since we are often interested in the behavior of the limiting system as e tends to zero, we must include the equa

tion for 8 = 0 as well as £ * 0 in our study. In this paper, we call them constrained equations. Therefore, the

mathematical object corresponding to such equations constitutes a larger set than the set of vectorfields.

The following Van der Pol equation is a typical example of a constrained equation [1-2]:

ex = (x-x3/3)+y\
\ (1.2)

where x,y e R. The phase portrait, shown in Fig. 1, of this system for small parameter £ is described by a

rapid motion along the x-direction, and a slow motion near the curve y = x3/3 —xt which is obtained by set
ting £ = 0 in the first expression of (1.2). The name "constrained equation" comes from the observation that the
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the National Science Foundation, Grant MIP-8614000.
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orbits are constrained to lie on the curve y = x for almost all times.
3

In this paper, wewill give a new coordinate-free formulation for constrained equations. One advantage of

our formulation is that the normal forms associated with these equations can be obtained by essentially the same

method developed for vector fields, i.e., when £ * 0. Methods for obtaining normal forms for vector fields have

been developed by Poincare", Takens, Arnold, and Ushiki [9-13]. Readers unfamiliar with this subject may con

sult the recent tutorial paper on normal forms for nonlinear vector fields [14-15]. The main purpose of this

paper is to show that the general framework developed for vector fields in [14] can be successfully applied to

constrained equations as well. We will show, among other things, that the normal forms for constrained equa

tions give a local classification according to the extent of the degeneracy of the constrained equation. For the

Van der Pol equation we can identify several types of local structures from the phase portrait in Fig. 1, and our

normal form theory in this paper will provide a systematic method for classifying such local structures.

There already exist several formulations for constrained equations such as Takens [10-12], Fenichel [16],

Sastry, and Desoer [5], Dcegami [7-8], etc. All of them, however, are completelydifferent from our approach in

this paper. The main feature of our formulation is that we can consider constrained equations as an extension of

vector fields. Because of this generalization, our normal form theory for constrained equations contains that for

vector fields. Another advantage of our formulation is that the perturbation problem [17-20] associated with

constrained equation can also be treated in our formulation. This problem is generally referred to in the litera

ture as the singular perturbation problem of ODE's. In this paper, we will present a new point of view on this

classic problem.

The outline of this paper is as follows. First, in order to discuss the normal form for constrained equa

tions, we define in Section 2 an enlarged set of ODE's which includes both the set of smooth vector fields

treated in [14] and the set of equation (1.1) for £ = 0. Constrained equations are characterized in this enlarged

set in a coordinate-free manner. In Section 3, we calculate the infinitesimal deformation following the general

framework of normal forms developed in Chua and Kokubu [14]. Some results with detailed calculations are

given in Section 4. The final section and a comprehensive Appendix will appear in Part II of this paper. This 2-

part paper is based on the theory developed by Oka [22].

2. DEFINITION OF CONSTRAINED EQUATIONS

Let us begin with a heuristic approach for the formulation of constrained equations. Consider the con

strained equation (1.1) and rewrite it as follows:

0

0

X = V(X) , X ss (2.1)

where Ik denotes the unit matrix of order k, and



A =

V(X)= g(x,y)

Thus we identify (2.1) with the pair (A, v) which consists of a matrix

£/r

0

0

and a vector field v.

(2.2)

(2.3)

A normal form of a constrained equation is defined as the simplest form among those which can be con

sidered as equivalent to the original equation, based on some reasonable definition of equivalence. For example,

we may consider that a transformed equation obtained by a coordinate change is equivalent to the original one:

Let x = 4>(y) be the new coordinates, then the transformed equation is given by,

Ai =A£><Ky)y =v[<J)(y)J (2.4)
Thus, the transformed constrained equation is of the form

[A(y).*<y)] ^ [AD<j)(y),vo(j)(y)j (2.5)

Note that the first component A(y) is no longer a constant matrix. Therefore we will enlarge our abstract

objects to include the set of all pairs IA(x),v(x) Iconsisting ofanon-constant matrix A(x) and a vector field
v(x).

In order to apply the method of infinitesimal deformations described in [14], it is convenient to define our

constrained equations in a coordinate free manner. Therefore we will state all definitions on a manifold M. A

vector field v is defined on the manifold M in the usual fashion (see Chua and Kokubu [14]). We may consider

A as a mapping from x e M to the set of all matrices. Since our generalization in this paper depends crucially

on the theory of fiber bundles, a brief review of the necessary mathematical tools is given in the Appendix in

Part II of this paper.

In this generalization, we identify A as a section of the vector bundle End (TM), where the endomorphism

bundle End (TM) is a vector bundle on M whose fiber at x consists of all linear maps of TXM, as depicted in

Fig. 2. As explained in Appendix I (Part II), A may also be considered as a bundle endomorphism of TM, as

illustrated in Fig. 3. Thus we arrive at the following definition.

Definition 2.1: Generalized vector field

A generalized vector field on M is a pair (A, v) consisting of a bundle endomorphism A of TM and a

vector field v (see Fig. 3).

Let us define next the concepts of equivalence and the transformation of generalized vector fields. Recall

-3-



that the generalized vector field (A, v) is defined by the equation

A(x)x = v(x) (2.6)

in terms of local coordinates. Let us multiply a non-singular matrix-valued function P(x) to both sides of (2.6):

P(x) A(x) x = P(x) v(x) (2.7)

The transformed equation (2.7) may be considered to be equivalent to the original equation (2.6).

For example, let P(x) be the constant matrix
0 1

1 0
. Then P(x) =

0 1

1 0
acts on equation (1.1) as fol-

lows:

b i
1 0

£ 0

0 1

X

y.
=

0 1

1 0

/Ocy)"
g(x,y)

Hence, the transformedequation is given by:

y =g(x,y)\
ex =f(x,y)\'

Thus P(x) in this case corresponds to an interchange of the upper and the lower expressions.

For the generalized vector field (2.5), let us consider the following transformation:

(p^-1 (<l>(y)] oA[<t>(y)] oDQW.DQT1 [<Ky)j ov[<Ky)j]
where D § denotes the derivative (i.e., Jacobian matrix) of x = (j)(y). This transformed generalized vector field

is equivalent to the generalized vector field

[a [<Ky)j oD<Ky),v [<|>(y)]] (2.11)
by multiplying the non-singular matrix D<j>_1 [<j)(y)J from the left to both components of (2.11). Let us formal
ize the above heuristic consideration to the following coordinate-free definition:

Definition 22: Equivalence and Transformation

(2.8)

(2.9)

(2.10)

Let (A, v) and (A', v7) be generalized vector fields (g.v.f) on M We say these (g.v.f.) are equivalent if

there exista bundle automorphism P of TM and a diffeomorphism § of M such that

(A',v') =[/>o7(J)oAo(7'<j))-1,Po7'<|)ovo(J)-1J (2.12)

holds, where 7<t> denotes the tangent map of (J). The pair (P ,(j>) is called a transformation of the g.v.f. We

will denote theright-hand side of (2.12) by (P, <j>)# (A, v), namely, the transformed g.v.f. of (A, v) by (P ,<|>).

The set of all transformations (P, (j>) forms a group, which we denote by G. This fact is shown in Appendix III
(Part II).



In the case where A is a bundle automorphism i.e., A(x) is invertible, the g.v.f. (A, v) is identified with

the g.v.f.

(A-1A, A_1v) = {Id , A_1v) , (2.13)

where Id denotes the identity bundle automorphism. This in turn can be identified with the vector field

x = A_1(x)v(x) (2.14)

Hence, the set of all g.v.f.'s contains the set of all vector fields (Id, v). Moreover the transformed equation of

(Id, v) by (P, <J)) is expressed by

(P ,t)#(M ,v) = (P oT^Worf1,? oTijiovof1)
(2.15)

= (P,P or^ovo^-1)

which is equivalent to (/djijiovo^"1), upon applying the transformation (P_1,id)# to (2.15). It follows that

P does not play an essential role in the case of vector fields, and the restricted equivalence relation

(W,v) - (Id,T$ovo$-1) (2.16)

is the same as the ordinary equivalence relation for vector fields (see Chua and Kokubu [14]). In this sense, the

class of g.v.f.'s is an extension of the class of vector fields.

In the following, we will present several examples of g.v.f.'s.

Example 23

xx = -1 , * e R (2.17)

By putting z = x2, this equation reduces to z = -2 whose explicit solution is given by

z = x2 = x$ - It , (2.18)

where x0 is the initial condition. It follows from (2.18) that all solutions arrive at the origin x = 0 in finite

time, and cannot be extended beyond this time. In other words, (2.17) has an impasse point [21] at x = 0. Note

that there is no solution starting from the origin at t = 0. A family of solutions of (2.17) is shown in Fig. 4.

Example 2.4

x x = -x , x € R . (2.19)

We can easily solve (2.19) and obtain the family of solutions shown in Fig. 5. In this case, for each initial con

dition, there exists a solution which can be extended at infinity. Observe, however, that this equation does not

have a unique solution at x = 0 because both x(t) s 0 for all t and x(t) = -t satisfy (2.19) with x(0) = 0.

In the preceding two examples, the existence or uniqueness of solutions is violated at x = 0. In general,

for any g.v.f. (A, v), the existence and/or uniqueness of solution breaks down where A is degenerate.



Moreover, since the bundle endomorphism A(x) for these examples is given by A(x) = x, the rank of

A(x) varies with respect to the points x e R. In contrast, the rank of A(x) does not change in (1.1); indeed,

the bundleendomorphism Ae(jt) for (1.1) is given by:

£/r

0

0

In-r

(220)

Note that Ae(x) for £ * 0 is not degenerate; in other words, the equation for £ ^ 0 defines a vector field.

Observe that for £ = 0, the rank of A©(x) is n-r uniformly with respect to the points in M. For both cases,

Aq(x) and Ae(x)(£*0), the rank of A(x) is constant. It follows that the set of all g.v.f.'s is slightly larger than

what we are interested. Hence, we will characterize our "constrained equations" by restricting our g.v.f.'s to

those imbued with the additional condition that A(x) is of constant rank. Of course we must deal with these

constrained equations on a manifold.

First, let us introduce the rank map defined by

rk:End(TM)^>H
(2.21)

Ax —¥ rank Ax ,

where Ax e End(TM) is a linear map of TXM and rank Axe N, where N denotes the set of all non-

negative integers. This map is well-defined; that is, it is independent of the choice of local coordinates because,

by achange of coordinates y =<j>(*) of Mt Ax is transformed into A,, =D<J> [^(y)!'^-^^^^-
Hence, the rank is invariant.

We say a linear map of an n-dimensional vector space has a corank r if its rank is equal to n-r. The

inverse image (rk)~l (n-r) of the rank map rk defines a sub fiber bundle ofEnd(TM) whose standard fiber is
the set of all linear maps of TXM of corank r. We denote this fiber bundle byEnd^TM).

A bundle endomorphism of TM of corank r is defined as a section of the bundle End^TM). In other

words, for a bundle endomorphism A of TM of corank r, the rank of AQc) = AI TM is a constant equal to n-r,

and is independent ofxeM.

Definition 25: Constrained Systems

A constrained system of corank r on M is a pair (A, v) consisting of a bundle endomorphism A of TM

of corank r and a vector field v on M. When we do not specify the corank, we simply say a constrained sys

tem on M. The set of all constrained systems (resp.; of corank r) on M is denoted \iyQO(SM) (resp.;
C9((r)W). Hence



C^) =0Sr^MC9C(^) (2.22)

Observe thatC9((Af) is a subset of the set of generalized vector fields, since it excludes such elements as
Examples 2.3 and 2.4. For any constrained system (A,v) of corank r and any transformation (P ,<J>), the

transformed constrained system (P,<|>)# (A,v) is again aconstrained system ofcorank r. Thus C9C^(^)»
and as aresult QQ&M), remains invariant under the action of the transformation group.

It follows from the above definition that equation (1.1) is identified with a family (Ae, Vg) of constrained

systems parametrized by £. Especially when £ = 0 , (Ao,v0) is of corank r. Therefore the family (Ae,ve)

can be considered as an unfolding of a constrained system of corank r. This fact inspires us to establish in Part

II of this paper a relationship between the singular perturbation problem for ODE's and the bifurcation problem

for constrained systems.

We can also define a constrained surface in our formulation.

Definition 2.6: Constrained Surface

Let (A,v) denote a constrained system of corank r on M. The constrained surface S of (A,v) is

defined by

5 = [x e M Iv(jc) e Im A(*)} (2.23)

where Im A(x) denotes the linear subspace of TXM consisting of all images of the linear map A(x) of TXM.

Example 2.6

For the equation (1.2), let us choose £ = 0, then

A(x) =
b o y

x3

0 1
, and v(x) =

-X

(2.24)

Since the first component of A(x) maps to 0, it follows that the image of A(x) for (2.24) is the 1-dimensional

subspace x = 0. Consequently,

S =f eR2 >-t+*-oj (225)

Observe that this constrained surface coincides with the slow surface obtained by putting £ = 0 in the first

expression of the equation (1.2).

Example 2.9

Consider the following ODE:



ei* = - y + xz - (x2+y2)x
&& -x -yz - (*2+y2);y

z = 1

(2.26)

where (x ,y ,z)e R3. This system of equations defines a family of constrained systems (Ag.Vg) on R3,
parametrized by £ = (Ei, £2), where

Ae =

£1 0

£2

0 1

. ve =

-y + xz - (*2+y2)jt
x +yz - (x2+y2)y

1

(2.27)

When £ = 0, (A0,Vq) is of corank 2, whose constrained surface is given by

-y + xz - (x2+y2)x = 0 and|
x + yz - (x2+y2)y = 0

S =< eR3

eR3
x =y = 0 or

z =x2 + y2

(2.28)

To obtain the right-hand side of (2.28), we first multiply -y + xz - (;c2+y2);t by x and multiply
-x +yz -(x2+y2)y by y, then adding them to obtain z(x2+y2) - (x2+y2)(x2+y2) = 0. It follows that
(x2+y2)[z -x2 +y2] = 0, or x2 +y2 = 0 and z = x2 +y2. It follows that the constrained surface S for
(2.27) consists of the z-axis, and the parabolic surface z = x2 + y2.

The phase portrait for (226) for small £j = £2 > 0 is shown in Fig. 6. Here, the slow motion occurs

along the z-axis, and on the surface z = x2 + y2. Observe that in the lower half ofthe z-space, all trajectories
spiral rapidly towards the slow surface x = y = 0; namely, the z-axis. Conversely, in the upper halfof the z-

space, all trajectories spiral rapidly away from the z-axis and converge towards the slow surface z = x2 + y2.

3. INFINITESIMAL DEFORMATION

In the preceding section, we introduced two important concepts; namely, the vector space of objects, and

the group of transformations. The structure of the transformation group G = AUT(TM)>cDiff (M) is

derived in Appendix III, (Part H), where AUT(TM) denotes the set of all bundle automorphisms of TM and

Diff(M) denotes the set of all diffeomorphisms of M. Here, let us investigate further the transformation group G

and its action on the set of constrained systems (generalized vector fields), henceforth denoted by QQ((M)t so
that we willbe able to apply the general framework of normal form theory developed in Chua and Kokubu [14].

More precisely, we will study the one-parameter group of transformations in G and its infinitesimal deformation.



To obtain the exponential mapping from the set of infinitesimal generators to the transformation group, it

is convenient to consider the transformation g = (P , <|>) e G as a diffeomorphism P oT§ of the tangent bundle

TM. The following lemma is needed for this purpose:

Lemma 3.1

The mapping

a:G -> Diff(TM) , (P ,<J>) -» P <>r<|> (3.1)

is an infective group homomorphism.

Proof. First let us verify that

a[cP.Mfi.iio] =o(P ,(J>)oaG2 ,¥) • (3-2)
Applying the chain rule and the definition of the group operation of G, the left-hand side (l.h.s.) of (3.2) can be

written as follow:

l.h.s. = C(P oTtyoQ oKj)'1.^^ =P oT$°Q oT$rloT(§oy)
(3,3)

=P oTfyoQ or<J>_1 oTfyoTy =P o7<J>o(2 °r\y

Similarly, the right-hand side (r.h.s.) of (3.2) can be written as follows:

r.h.s. = (P °T<|>) o (Q °7» = P oT<()oj2 <>7> . (3.4)

Equations (3.3) and (3.4) imply (3.2). Finally, the injectivity of O follows direcdy from the definition of G.

•

Since the mapping a is a group homomorphism, a one-parameter group gl = (P',<)>') in G induces a

one-parameter group g(P*,<j>r) = P* °T§* in the setDiff (TM) of diffeomorphisms of the tangent bundle TM.

On the other hand, an element (R ,Y) of the set of all g.v.f. QQ(£M) can be considered as avector
field on TM under the identification explained below.

For Y€^(M) and Re END (TM), the set ofall bundle endomorphisms ofTM, we define two vector
fields Ym and P„ on TM by the following local coordinate representation,

y.(x,Q= [xf5.y(x),Droc)-§]
R.(x,S)= \x,$,0,R(x>$]

where (* ,£) and (x ,^»v »Tl) are me local coordinates of TM and T(TM) respectively, and Y(x), DY(x)

and P (x) are local expressions of Y, 7Y andP. Hence, both Y0 andP „ are elements of the tangent bundles

of the manifold TM, i.e., T(TM). Observe that Y\ and P„, are both well-defined, that is, they are independent

of the choice of local coordinates. (This is proved in Appendix IV (Part II).) Thus we can define the mapping k



from QQC(M) into QC(TM) as follows:

k:Q9((M)-><X(TM)
(RtY) -*(R.+Y,).

where (R,Y)e QQ((M) and (R.+Y0)<z Q((TM). Any element v of Q((TM) generates aflow on TM
or an exponential map exp (t v) in Diff (TM) as in the exposition of the general framework of normal forms for

vector fields (see Chua and Kokubu [14]). Through these three procedures a, K, and exp, we define the flow, or

the exponential map, which forms aone-parameter group (P'f $') in G for an element of CjQ((M).

Definition 32: Exponential map

For an element (R ,Y)€ QQ((M), we define the exponential map §xp.f (P ,Y) by

expr (R tY) = o"1 oexpr (P.+r,)

for sufficiently small f. We call (P , Y) the infinitesimal generator for the flow.

Proposition 3.3

The above definition of the exponential map gxp is well-defined and gxgf (P, 7) forms a one-parameter

group in G.

Proof. The exponential map exgf(P,y) is well-defined because expf K(P,y) = expf(P ++Y^) is in the

image of the mapping a, and the injectivity of the mapping c (Lemma 3.1).

(P,<j>) »(PoT$)

exp

Q9Cm

(R,Y)

+Diff (TM)
4

9C(TM)

exp

More precisely; for (P , §) e G, since P and T(|) are bundle isomorphisms of TM, not necessarily cover

ing identity, so is P oTty. Conversely, for an arbitrary bundle isomorphism <b:TM -» TM, we can choose

(P ,<$>)€ G, such that a(P ,<J>) = O, where <|> = rc<>0, and P = Oof^oO)"1 ( % denotes a projection

7M —=> M). Thus the image Im a is the set of all bundle isomorphisms (not necessarily covering identity.)

10-



On the other hand, for (R ,Y)e Q^C(M), k(R ,Y) =(R.+Y J is avector field on TM, which is
expressed by a local chart

(R.+Y0)(x,Z,)= \x,i,Y(x),\pY(x>*R(x)\(\ .
Hence, the mapping expr(P,+7J maps apoint (JC0,5o)e ™ to *e point [*(r),5(r)J eTM which is the
solution of the differential equation,

*=f° I I (3.5)5= [prcc) +P(*)J-5j
under the initial conditions x(0) =*0, 5(0) = 5o« Note that the first equation is independent of 5. thus the

solution defines a flow of the base space M, which is denoted by expr 7. By substituting this solution

x(t) = (expr Y)(xq) to the second equation, the resulting equation

5=\pY(x(t)) +R(x(t))]-Z,
is linear with respect to the variable 5- This induces a linear invertible transformation from TXqM to TX(fjM.

It follows that expr k(P , Y) = expt(Rm+Ym) is a bundle isomorphism whose base map is expr Y for each

r, thereby proving well-definedness.

To show that exp r (P ,Y) is a one-parameter group in G, recall that a is an injective group homomor

phism (Lemma 3.1), hence la-11 ^mo is also agroup homomorphism. Thus,

exp(t+s)(R ,Y) = g~1 oexp(t+s)k(R ,Y) =a"1 <>exp(r+s)(R.+Y0)

= <Tloexpt(R0+Y0)oexps(R0+Y0)

=fa^oexpr^+y,)] • [a-1 <> exp^(P,, +YJJ
= expr (P ,Y) • exp,y(P ,7) .

•

Let us pause to consider an example on the computation of exp t(R , Y).

Example 3.4

Consider (P ,Y)e QQCQR2), defined by P=
0 0

0 1 ,7 = . Here we identify P with a matrix

which fixes a coordinate of R2. Recall that the flow expt(R0 +Ym) on TM is given by a transformation
be(0),5(0) I -> U(r),5(r) I where lx(r),5(r) I is a solution of the differential equation (3.5) on TM;

namely,

-11-



x =y >
= 0

V 0 0 0 l] [5" "0 1 V >

j\.
^

0 1
+ 0 OJ h. —

0 1 J1. J

(3.6)

Here we use (x ,y ,5tT|) for a local coordinate of TR2. Equation (3.2) can be solved explicitly as follow:

x(t)=x(0) + y(0)t

y(t)=y(0)

5(0= [5(0)-il(0)J+rK0)6'-
ri(r) = Ti(0)c'

It follows that

O* ^ expr(P^+yj:(x,y,5,T|) ->(*+}*.? .5-ri+TK'.tk') .

is the bundle isomorphism, and its base transformation is <J>' :(x ,y) —» (x+yt ,y). By the definition of

c:(P,<|>) —>P©r<j),Pr is written byO* <> lr<|/ I , whose base map is the identity. Restricting to the fiber

1 r
r(Xty)R , we can obtain the bundle automorphism Pt as follows: Since Dty'(x ,y) =

1 e'-l"
0 el

»

P' =
1 e'-l

9 e*

1 r

0 1

-1

=

1 el-\

9 e*

1 -t

0 1

1 -t-l+e'
^

0 e* •

Thus, the one-parameter group (P' ,§') = gxpt(R ,Y) is given by,

P' =
1 -r-l+e'

0 el

$ \(x,y) ->(x+yt,y) .

0 1
and & IT R2

Next we move on to obtain an explicit form of the infinitesimal deformation of the constrained system

(A, v), which is defined by,

12-



4 expr(P,7)#(A,v).
dt u=o

To compute the infinitesimal deformation, weidentify the bundle endomorphism A with a (l,l)-type tensor field

A through a natural vector bundle isomorphism,

End(TM) =1 TM ® T*M ,

which is presented in Appendix II (Part n). By this identification, the infinitesimal deformation is obtained as

follows:

Theorem 35: infinitesimal deformation

The infinitesimal deformation of a constrained system (A,v)e Q,^(.(M) lor a generalized vector
field (A, v) e Q9((M) Iby aone-parameter group expr(P ,Y) is given by,

-^[=oexpr(P,y)#(A,v) =(p-A-^yA,Pv-[y,•]] ,
where ^yA denotes the Lie derivative of the tensor field A with respect to the vector field Y, and [ , ] denotes

the Lie bracket for vector fields.

Proof: First we shall prove: For(P,0)e QQ((M) and (0,y)e Q<X(M),
expr(P ,0) = (e* , id)€ G . (3.7)

expr(0,y) = (/,expry)sG . (3.8)

Here e denotes a bundle automorphism defined by e*^ on each tangent space TXM, where

R(x) = P \TxM is a linear mapping TXM -» TXM\ e^^ is the exponential map of the linear mapping

R(x) in the usual senseand / denotes the identity of TM.

In a local chart, exp t(R , 0) is defined as a flow of the differential equation,

x = 0 1

On the other hand, kiCO.SiCOj =<5o(etR ,id)(x0,^Q) =[xo.^^oj is asolution of (3.9). In fact

«

"f §l(r) ="f **W*> =̂ o)**^ =*(*i(0) -5i(0
Thus the relation (3.7) follows.

Similarly, expr(0, Y) is defined as a flow of the differential equation,
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x=Y(x) \
%=DY(x)-%\ <3'10>

Since [x2(r),52(OJ = ao(/,expry)(x0,5o) = [w,x0),D$(t ,x0) •5o]
[where <|>(r ,x) =tf(x) =(expr Y)(x) Jis asolution of (3.10); namely,

~ *2(0 =-jW,*o) =̂ (<K* .*o>] =y[*2(r)j

=D[y((J)(r ,x0))j •5o =DY [xa(0] •Z> «f ,*o) •5o

=Dy(x2(r)].52(0 .
the relation (3.8) follows.

Lemma3.6. -~ expr (P ,0)*(A,v) = (PA.Pv)
at l/=o

Proof. When we restrict to the tangent space TXM, the action of expr(P,0)e G on (A,v)e Q,Q((M)
[or e Q^WJis interpreted as amatrix multiplication in the usual sense; that is, in terms of local coordi

nates, we have

expr(P,0)#(A,v) =(e*,/rf)#(A,v) =[elR^A(x),etR^y(x)] .
Hence the infinitesimal deformation of (A,v) is given by (P-A,Pv), which can also be considered as a

matrix multiplication.

As for the infinitesimal deformation —
dt

expr (0,y)#(A, v), we must recall again the identification of
(=0

a bundle endomorphism A with a (l,l)-type tensor field A. {Appendix II).

Lemma 3.7

-^|/=oexpr(0,y)#(A,v)= [l^rA,-[y,v]j

Proof: As noted in the beginning of the proof of Theorem 3J,

expr(0,y)#(A,v) = (/.expr y)#(A,v)

=]Ttf oAo(TtfTl,Ttf ovoQ'y1] =(<|>JA,(|>jv)
where §* = exptY is a one-parameter group of diffeomorphisms.
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Since A is considered as a (l,l)-type tensor field A, and since the infinitesimal deformation of A with

respect to the one-parameter group <t>r is given by the Lie derivative, —— <$>iA = —©tyA , (this is the
dt t=o

definition of Lie derivative), we have only to see that <|>#A = r<J>r oAo(r<J>r)_1 is identified with the

transformed tensor field <J>r*A = (T^®T*^1) o A <> 0"1.

~ 3The tensor field A is written by ]£ A/y(y) -r— ® cfyj in terms of local coordinates (Appendix II). By a
ij °yi

coordinate changex = <J>(y) (xt = 4>* Cy 1»3'2» —»?«)»the tensor field A is transformed as follows:

dyt a^r1
*• =Z 3— <ty =2 -57- (*)<&/

j a*j j axj

3 ^ 3jc; 3 _ 3<t>; 3_2_ - y L —2_ - y _JLL (») -Si
dy,. ,- 3y,- ty 7 3*f axy

? A</(y) 4r ®*y =?Aiy (<|f'(*)] X — 00 —
dy,- 3** Z

/

3$;-1

3jt/ (*>&/

= £ —

=D(|) [^Coj-A (♦-1(r)]^«-1(r) •

On the other hand, the bundle endomorphism A is transformed into D§ l(j) l(x) I-A [(jf1^) D<J) ^x) which
is the same as <J># A

The preceding calculations are summarized by the following diagrams:

A ^A

10 j
<j>JA -^ <piA
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[<rW>t-Ioo-$] ^(x^A^x)) •D$-\x) -$)

♦.A

[x,D$ [<Tl(x)] .A[^(r)] •D^C*) •5']

For the vector field vg QC(M), the infinitesimal deformation -7- 7<|>r ov o(<J>r)_1 is given by the Lie
at \t=o

bracket - [Y ,v] (see Chuaand Kokubu [14]) • (End of the proofof Lemma. 3.7.)

We are now ready to prove Theorem35:

4Lfi»^.ir)#(A,x) =4at |r=o dt |*=o
ejgpr[(P,0) +(0,y)]#(A,v)

Since expr |(P ,0) +(0,y)J differs firom expr(P ,0) •espr(0,y) within 0(r2), the above
is equal to

-£\tts0 [expr(P ,0) •expr(0,y)J#(A,v).
It follows from the Leibniz rule that

dt
§xpr(P,0)#(A,v) +-^-

t=o dt
expr(0,y)#(A,v)

f=0

From Lemmas 3.6 and 3.7, we have

(PA,Pv) +f-s£yA,-[y,v]l =[p-A-^yA,Pv-[y,v]]

This completes the proof of Theorem 3.5.

Using a local coordinate representation, we obtain,

3A;,.
P;t.Afrf- _ Yk H—T~~ Afr,- —A;

dYt

dxt
PA-oTyA = 2;

ijk

p-v-[y,v] = £
3vi 3y,

^kj " Aik

_3_

an
a* i0^

whereP =E Py -^-® <fc, , A=£ A^ -^- 0 dty, y =J Yt ^-, and v=£ v,- 3^-
3*,- 3*,- 3jc,- 3jc,-

16-
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•< A'\ -For the one-parameter group (P , <(r ) = expr(P , Y) of Example 3.4, we will show that the infinitesimal

deformation, calculated directly from the definition of —
dt

from the formula (3.11).

Example 3.8

(P , <j> )#(A, v), coincides with that obtained
t=o

Let us choose (A, v) to be
0 1

1 1 *

y

l+x
. Recall that P' =

in Example 3.4. Since (P' ,(|>')#(A,v) = b>* oTtf oAo(rV)"1 ,P* °Ttf ovo^)"1! £ (A' .v*),
can write A' and v* as follows:

1 -r-l+e1

0
,tf(x,y) = (x+yt,y)

A' =

v* =

Therefore

1 -r

0 1

1 -t-l+e*

0 el

1 r

0 1

0 1

1 1

1

(

e'-l -t+e'(t+l)

e'(l-r)

1 -r-l+e' 1 r

0 1

ylie'-W+x-yt)
e'(\+x-yt)

y

l«x-yt)

d_
dt

(P',«><)#(A,v) =-|
r=o or

1 1

1 0

e'-l -r+e'(r+l)

e' e'(l-r)

l+x

l+x-y

y+(e'-W+x-yt)
e'(l+x-yt)

On the other hand, A and P (resp., v and Y) are expressedas tensor fields (resp., vector fields) as follows:

dx + -~ ® dy
By

P=^-®flfy,y =y -i-.
oy ax

Therefore the formula (3.11) gives the infinitesimal deformation as follows:

•17-
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Hence

PA =
0 0 0 1 0 0

0 1 1 1 1 1

-^-®dtc +-~®fl[y--|-®d[y =
ox ay ox

-1 -1

0 1

0 0 y 0

0 1 l+x
—

l+x

*yA = —

Pv =

[l\v] = >£-*£+(i+*>3 ->i-™i

PA- AA =
1 1

1 0

ay

, and P • v- [y,v] =
1-x

l+x-y

-l+X

y

which are identical with the above result

4. NORMAL FORMS OF CONSTRAINED EQUATIONS

The purpose of this section is to define normal forms for constrained systems and to compute them by the

method of infinitesimal deformation presented in the previous section. In a naive sense, the (kth-order) normal

form of a constrained system is obtained by transforming its (kth-order truncation of the) Taylor expansion at a

"point in the phase space M into a form as simple as possible by appropriate coordinate changes. Forclarity, we

"will begin with a discussion of the local expressions of constrained systems and the notion ofjets. We will then

~give a precise definition of normal forms and a method for obtaining them, as well as several examples.

For simplicity, we will first treat the case where the phase space M is the n-dimensional Euclidean space

Rn and choose the standard cartesian coordinate (x\ ,;t2,...,*„). In this case, a generalized vector field (A,v)

on R" is given by a pair ofa matrix-valued function A(x), and a vector-valued function v(x):

(a(x),v(x)] =
«n(x),

a«i(x), ><*nn(x)

V!(X)

v„'(x)
,xe R"

See Example 3.4.

Recall next the following definition of a jet given in Appendix 2 of Chuaand Kokubu [14]:

Definition 4.1

Let / and g be smooth mappings from Rrt to Rm defined in a neighborhood of a point x0e R". We

say / and g are k-jet equivalent if every derivatives atx0 up to order lc off as well as the value / (x0) coin

cide with those of g. This defines an equivalence relation and the equivalence class is called the k-jet of / at
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x0, denoted by jxJ.

Two pairs of mappings (fi ,fi) and (g j, g?) are said to be (k,l)-jet equivalent if /1 is k-jet equivalent to

gi, and /2 is /-jet equivalent to g2. The equivalence class of (/i,/^ is denoted by

Jxo(fl>f2) = (fi >fl)' (N°te th31 ^is notation is used in [14] for a different object.)

In a similar way as the k-jets of vector fields, the k-jet of a generalized vector field (A, v) is identified

with its kth-order truncation fi,*(x), v*(x) of the Taylor expansion of each component a,y(x), vy(x). We denote
the set of all k-jets [resp. (fc,/)-jets] of g.v.f.'s at Xq by JXq QQ((resp., Jx* Q^). Since every constrained
system (A ,x) itself is a generalized vector field, it is also expressed as a pair of a matrix-valued function and a

vector-valued function. However, the k-jet of the constrained system is not given by its usual kth-order trunca

tion because of the following reason:

Example 42

Let A(x) e £nd(1)(7R2) be a bundle endomorphism ofTR2 ofcorank 1defined by

jcy+y3 x+y2
A(x) = ,(x,y)<E&

Its lst-order truncation
0 x

y i
is not of constant rank.

This observation shows that the kth-order truncation does not give a k-jet for the constrained system

because the k-jet (A*, v*) of the constrained system (A,v) should have a bundle endomorphism A* with a
constant rank. This difficulty comes from the fact that not all components of the bundle endomorphism A of

constant rank are independent For example, any bundle endomorphism

*n(x) , al2(x)
A(x) =

<*2l(x) , A22(X)
,xeR"

of!TR2 ofcorank 1 satisfies the relation,

fln(x)«22(x) - *i2(x)a21(x) = 0 .

In general, we have only (n2-r2) independent components among the n2 components ofAs End^(JlcLn), in
view of the following lemma.
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Lemma 43

Let A(x) be a nxn matrix-valued function on R" where A(x0) is of corank r for some Xq e Rrt. Let P

be a non-singular nxn matrix with

^AW =[C0 Do.
where Dq is a non-singular matrix of order (n-r). Then A(x) is of constant corank r for x near x0, if and only

if,

E(x) = B(x)'D(xTl C(x)

holds, where

>-iP"1A(x)P =
E(x) B(x)

C(x) D(x)

Proof: Note that D(x) is non-singular for x near Xq because D(x) is near Dq = D(Xq). Multiplying

/ -B(x)D~l(x)
0 /

to

E(x) B(x)

C(x) D(x) from the left, we obtain,

/ -P(x)D_1(x)
0 /

E(x) B(x)

C(x) D(x)

which is also of corank r. Hence,

E(x) - B(x)D~\x)C(x) = 0

E(x)-B(x)D~l(x)C(x) 0
C(x) D(x)

This lemma shows that the upper left part E(x) depends on the remaining 3 parts. Consequently, we can

choose only B (x), C (x) and non-singular D (x) as independent components. In other words, once we fix each

E B
B, C, and D, then we can reconstruct A =

C D
-l,of corank r by putting E = B D C. Since bundle

endomorphism A of corank r is determined only by such B, C, and D, we denote A as

canonical expression.

When we speak of the k-jets of constrained system (A, v) of corank r, we have only to take the kth-order

truncation of the canonical expression.

Example 4.4

The k-jet of the bundle endomorphism A(x) of Example 42 is given by

•20-
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and

0

0 1

x

y i

, for k = 0 ,

, for k = 1 ,

x+y

\y i J
, for k = 2

As bundle endomorphisms having the 1-jet
x

y i
and the 2-jet

x+y

\f ! J
, we can choose

and

*y+0(3) * +0(2)

y+0(2) 1 + 0(2)

xy +y3 + 0(4) , *+;y2 + 0(3)
y+0(3), 1 + 0(3)

respectively, where 0(k) represents terms of the degree > k.

Now we proceed to the definition of k-jets of constrained systems on a general manifold M. Let (A, v)

be a constrained system of corank r on M. Recall that A is a section of the fiber bundle End^r\TM) over M

introduced in Section 2, whose standard fiber is the space of linear mappings from TXM into itself of corank r.

From Lemma 43, this fiber is an (n2-r2)-dimensional manifold. Hence, by fixing a local coordinate ofM, A

has a local expression A: Rn —» R" r as the canonical expression. Similarly, the vector field v is a section

of the tangent bundle TM and has a local expression v: R* -> R".

Definition 45

Two constrained systems (A, v) and (A', v') of corank r are said to be k-jet equivalent at xQ € M if, by

taking a local coordinate around Xq, the local expressions (A, v") and (A', v') are k-jet equivalent; namely,

3

3*!

*l
3

axn

3

3*!

*1
3

dxn

A(x) =

v(x) =

a

ax\

*i
a

dxn

K

. j • .

3

3^j

*:
3

axn

kn

A'(x)

v'(x)

for all ki, • • • ,kn with 0 < kx + • •• + kn < k. The k-jet equivalence class of (A, v) at x0 is called

the k-jet of (A,v) at x0, which is denoted by jXa(A,v) = (A* .v*). We denote the set of all k-jets of
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strained systems ofcorank rby JXn C9Cr.'Xq

Similar to the case of vector fields, several properties corresponding to those derived in Appendix 2 of

Chua and Kokubu [14] also hold for jets of constrained systems.

For a transformation (P ,<|>)€ G of constrained systems, the k-jet of a bundle automorphism P and that

of a diffeomorphism § are defined in the same manner as above, which we denote byP* and <J)*, respectively.
Let DiffXo be the group ofdiffeomorphisms ofMfixing apoint Xq, and let DiffXo denote the k-jets ofDiffXQ

at this point Also, let the space ofk-jets ofbundle automorphisms at jc0 be denoted by AUTXq .

Consider the k-jet of the transformed constrained system (P, <J>)# (A, v). Suppose (A, v) and (A', v') are

k-jet equivalent, then (P ,<|>)#(A,v) and (P ,<J>)#(A',y*) are also k-jet equivalent Moreover, as is shown in

the following Proposition, the higher order part of (P ,<J>) does not affect the k-jet of (P ,<|>)#(A, v), because

the action is expressed by the composition of mappings P, § andT§.

Proposition 4.6

(1) J***G =AUT*9 XDiffk+l forms agroup.

(2) For (P* ,<j>*+1) gJtf+1G and (A* ,v*) e /* Q9C. (P* .$k+\(A* ,v*) is given by

(Pk ,<|>*+1)# (A* ,v*) =yj [(P ,<|»# (A, v) j (4.1)

where (P ,<J>) and (A, v) are representatives of (P* ,<J)*+1) and (A* ,v*), respectively. Moreover,

(Qk V+1)# ((P* ,«>*+1)#(A* ,v*)] =[(Qk V+1) •(P* ,(j,*+1))# •(A* ,v*)
holds for (Qk ,y**1), and (P* ,fr**1)e J***lG and (A* ,v*)e JkQ CQC•
P/w/:

(1) The group multiplication is defined by

(/>*,<!>*+1)(fi*V+1) A [jfiCPor^.fior^.j '̂C***)]
where (P ,<|)) and (Q ,\|f) are representatives of (P* ,<|>*+1) and (fi* ,V*+1); respectively. By the chain
rule, the derivatives of P oT§oQ oTQT1, up to order jfc are determined by the derivatives of P and Q
up to order k and those of (J) up to order k+1. The derivatives of <j) o\|/ up to order k+1 are determined by

those of <j> and y up to order k+1. Therefore, the definition is independent of the choice of the representa

tives. It is clear that this multiplication operation satisfies the axiom of group.
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(2) Since the action of (P , <J>) on (A, v) is given by,

(P,<j))#(A,v) = (PoT(|)oAor(|)"1fPor<|)ovo(J)-1),

the k-jet of the transformed constrained system is determined by the k-jets of P, A and v, and the k+1 jet

of (J>. Therefore, we have proved that (4.1) is well-defined.

The proof for the latter half is as follows:

(Qk.v*+1)# [(P* ,4>*+1)#(A* ,v*)] =(Qk ,y^+\jk0 [(P.«#(A,v)j
=AAo[(fi.V)#[(/>.<l>)#(A,v)j]
=A*o((02.¥H^^)]#(A,v)j

•

Hence we have shown that the group /*j*+1G acts on the k-jets space ofconstrained systems. This group

action induces an equivalence relation among the k-jets of constrained systems in the same way as in the general

theory of normal forms for vector fields in [14]; namely, two k-jets (A*,v*) and (A'* ,v'*) are said to be
equivalent if there exists a (kjc+l)-jet (Pk ,<$>*+1) of transformation of constrained systems such that

(A,*,v,*) = (P*,v*)#(A*,v*)

holds.

A k-th order normal form of (A, v) is a representative of the equivalence class of the k-jets of (A, v).

Our goal is to choose the simplest form as the representative.

Let us now consider the infinitesimal deformation of k-jets of constrained systems. In Section 3 we have

already obtained the infinitesimal deformation of constrained systems. We will now translate it into the k-jet

version.

For (k,k+l)-jet of(P, Y), we can define aone-parameter group exp.t(Rk ,Yk+1) in Jx^+lG by

exp.f(P* ,y*+1) =jkf+l [expfCP ,7)] .
Appendix V (Part II) proves that this group is well-defined.

Theorem 4.7: infinitesimal deformation for k-jets

The infinitesimal deformation of a k-jet (A* ,v*) e /* C9Cr of a constrained system of corank r by a
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local one-parameter group §xp.f(P* ,Yk+l) ofJ%*+lG isgiven by,

4| exp.f(P*,r*+1)#(A*,
dt U=o

v*) = fp* •Ak-XyMAk ,Rk •v*-- [Yk+l .**]] » (4.2)

where Rk •A* =jk0(RA), <*y,+1A* = jxk0*YA, Rk-vk=jko (Pv) and [r*+1 ,v*] = Jx0 [Y ,v] for

representatives R, Y, A, v of Rk, Yk+l, A*,v*; respectively.

Proof. Recall that the action of/*j*+1G on /* C9^r is given by (4.1) and that the infinitesimal deformation
of a constrained system is given by Theorem 35; namely,

41 ejg>f(P,7)#(Afv)= fpA-^A.Pv - [r ,v]l
dt l*=o I J

Hence, it suffices to prove that the right-hand side of (4.2) is well-defined. But this follows from (3.11) in Sec

tion 3. Observe that, since v does not necessarily vanish at x0, and since Y vanishes at Xq, [Y , v] determines

the well-defined k-jet

It follows that we can calculate the normal forms of constrained systems in principle via the general

theory of normal forms. The algorithm for the calculation is similar to that of normal forms of vector fields

[14]. In the case of vector fields, the classification of 1-jets (Jordan normal forms) is given at the first stage (see

Chua and Kokubu [14]). Here, we must obtain a classification of the leading part for the constrained systems

which correspond to the Jordan normal forms; that is, a classification of 0-jets of constrained systems. For a

constrained system (A, v), we choose

(A0,v0) =[a(x0),v(xo)J
for a chosen point Xq in M, which we call the leading part of (A, v) at Xq. If (A, v) is of corank r, A0 is a

linear map of corank r, and v0 is a vector. The leading part of (A, v) is then classified as follows.

Proposition 4.8: classification of leading part

(i)

(ii)

Every leading part (Aq , Vq) of a constrained system is equivalent to one of the following forms

0 0

0 In-r

b o
o /„.r »

" 0
fn-r
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Oii)

0 0

o /„-,

where ek = (1,0, • • • ,0)e R* (k - r or n-r), and /„_r denotes the unit matrix of order n-r. Here,

"equivalent" means "equivalent in the sense of0-jet."

Proof: It is necessary to show that there exists a (0, l)-jet (P0,^1) of transformation such that the transformed

leading part

(P°,<|)1)#(Ao,Vo) =[p0o7VoAq o(7V)-1,P° oTV ovqo^1)-1]
assumes one of the above 3 forms.

By Lemma 43, a local coordinate expression of (A0, v0) can be chosen as follow:

BD~lC B
C D v2

, det D * 0

Since <|> is a diffeomorphism, we may write §l(x) =Q~lx for some non-singular matrix Q; hence we
have (T^1)"1 = Q. Also, since P isabundle automorphism, we may write P ° T^1 = P for anon-singular
matrix. Moreover, since v0 is aconstant vector, (j)1 has no effect on v0. Using these observations, we can iden

tify (P°,(|)1)#(Ao,Vq) with (PA0fi,Pvo). Let us choose

P =

-lIr -BD

0 D~l
and fi =

part (An, Vq) is transformed into

Ir 0

-D~lC In_

0 0

0 In-r

Vl'

v2'

V2'

, to obtain P-An-fi =

, where
Vi

v2'
= P

0 0

0 In-r

Our next step is to transform into one of the above forms without changing

Qi Qi

. Hence, the leading

o o

o /„_
Note that

the matrices of the form P =

/>, 0

/»3 P4 and fi =

. Indeed, we have

0 P7l
, whereP j, P4 and fi j are non-singular, do not

change Aq =
0 0

0 In-r

Px 0

P3 P4

0 0

0 In-r

Q\ Ql

40 Pf1

The vector

vi

v2'
is, thus, transformed by P =

0 0

0 /„-,

>i 0
P3 P4
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Px 0

p3 p4

vi

v2'

Pxy{

P3Vi'+P4V2'
(4.3)

If yx * 0, there exist Plt P3 and P4 such that

Pxyi=er , P^' + P^^O.

If v/ = 0 and v{ * 0, then P\V\ - 0, P3Vj' = 0 and there exists a non-singular matrix P4 such that

P4v2' = eB_r. Finally, observe that for the last case when y{ = y{ = 0, the right-hand side of (4.3) is always

0.

•

At the next stage, let us choose the 1-jet

(A1,v1) = (A0,v0) +(A1,v1),

where (A,-, v;) is the ith-order part of (A, v) which contains the specified leading part (A0, Vn). Consider the

lst-order normal form problem for constrained systems, that is, to deform (A1, v1) into a simpler form without

changing the leading part (A0, v0). Just as in the case of vector fields [14], depending on the degree of degen

eracy of the 1-jet we will in general obtain several distinct 1st order-normal forms having the specified leading

part The normal form corresponding to the least degenerate 1-jet is called the non-degenerate Ist-order normal

form. Just as in the case of vector fields, we can proceed inductively to solve the higher-order normal form

problems: Given the (k-l)-jet (A*-1 ,v*_1) of a constrained system (A,v) we derive the associated kth-order
normal forms by simplifying the kth order terms via a suitable one-parameter group of (k,k+l)-jet of transforma

tions gxpf (Rk,Yk+l) e J£*+1G which fix the (k-l)-jet (A*"1, v*_1).

The following lemma corresponds to the key lemma for vector field normal forms ( Lemma 4.6 in [14])

which gives us an infinitesimal generator while keeping the lower jets of constrained systems invariant

Lemma 4.9

Let (A* ,v*) denote ak-jet of aconstrained system in JkQ QQCr and let (A*-1, v*"1) denote its (k-1)-
jet If an infinitesimal generator (P*,Yk+l) e Jx**x\£ 9C satisfies,

jk;lkRk,Yk+l),(Ak,yk)\=0,
where

(P*,r*+1),(A*,v*)

is defined by
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fp*-A*-of:y4+1A* ,p*-v* - [y*+1,v*]j,
then expf (Rk ,Yk+\(Ak ,v*) leaves the (k-l)-jet (A*"1 ,v*_1) invariant; that is

a';1 smt (Rk ,y*+1)#(A*, v*) =(A*-1, v*-1).

Proof: Since the proofof this lemma is exacdy the same as that for vector field normal forms, we omit it and

refer to [14] for the details.

•

By this lemma, in order to compute normal forms, we have only to choose an infinitesimal generator

(Rk,Yk+l) satisfying,

\(Rk, r*+1), (A*, v*) \ =y*;1 \(Rk, ym) ,(Ak y)U (4.4)

and solve the associated differential equation,

-|. (A* ,v*)(0 =- i(Rk ,Yk+l),(Ak ,v*)(0 >

where (A* ,v*)(0 = expr (Rk ,Yk+\(Ak ,v*)(0). To simplify notations, we will henceforth denote
(Ak ,yk)by ak and (Rk ,Yk+l) by £*; respectively. Under condition (4.4), the above differential equation can
be regarded as a differential equation,

•jWO«-«k.«*-1+MO (4.5)

on Hi C9Cr, the set of all homogeneous constrained systems oforder k. Here h^t) denotes the kth-order part
of (A* ,v*)(0» and {•, -}k denotes the kth-order part of {•, •}. We also denote the set ofall pairs (Rk,Yk+{)
by Hkjc+iQy(> wnere Rk is ahomogeneous bundle endomorphism of order k while Yk+X is ahomogeneous
vector field of order k+1.

Example 4.10: Rapid Point

Consider a family of constrained systems on a 2-dimensional manifold whose leading part (A0, Vq) is

equivalent to
[o 0
[0 1 »

1

OJ . We may assume that (Aq ,v0) itself is of this form without loss of generality.

First we consider the Ist-order normal form problem on Hx

expression (Example 4.4 ), HXQQ(} is spanned by,
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*_2- ®dy,0
ax

y-Z-®dy,0
dx

x-^- ®dy,Q
ay

y^-®<fy,0
By

J V.

x-2-®dx,0
dy

y-Z- ® dx,0
dy

dX

0,
dx

°>x4rdy

0,y
dy

Hence, dimHx QfyQ = 10. Let us choose the (l,2)-jet of infinitesimal generator

(Rl,Y2) = (P0T1) + (Rx,Yj) such that 1XR1,Y2),(A} ,y^ r =0 holds. Here we choose (P0, Yx) = 0; then

for all ^ =(Rx,Y£e HizQQC* the above condition is satisfied. Note that H^QfyC is alinear space
spanned by

r

x -~- ® dx ,0
ax

y -^- ®dx ,0
d*

«/ V

^-®rfy,0

jc -2-®dx ,0
dy

y-|^®<fy ,0

y ^--®dx ,0
dy

> ^

x -^- ® ay ,0
9y

y ^-®<fy ,0
oy

dx

°-*2£

0,xy
3y

>

1

J

»

J

*

4

j

Hence, the dimension of#it2y9C is equal to 14, and the Ist-order normal form problem becomes

d

dt
*i(0 = - {5i.*o + *i(Oh = - {%\ «oh . (4.6)

where %x = (PlfY£, a0 = (Aq ,v0), /»j(r) = (A!, ViXO-

The result of the computation of {?i,tfo} in terms of the above basis is summarized in Table 4.11.

Therefore, (4.6) can be recast as follow:
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d_
dt

Hi(0
= -(*)

"«u"

W> £l,14

where fci,i(0. ••• ,hXtX0(t) are coefficients of hx(t) with respect to the above basis for #iG90. and
£1,1, ' ' ' . 5i,i4 are coefficients of %x with respect to that of HX2Q9t, and K denotes a10 x 14 matrix
defined by Table 4.11. The initial condition is given by:

Ai(0)= [/tU(0), ••• ,/»i,io(0)].
Note that K is surjective as a linear mapping from #i,2ySX.. Therefore, for the vector

p»i,i(0) , ••• , /»i,io(0)J» there exists (5^ »***»5u4> such that

*<5T. •••.^M? =[^l.l(0) . •••.Hio(0)]T
holds. Hence, by choosing such (£xx, • • • »?i,i4)» the above differential equation reduces to the form,

d

dt

*uW *u(Q)

*uo(0 AUo(0)

whose solution is given by:

*u(0 Ai.i(0)

-r

Ai.i(0)

*uo(0 /»i,io(0) ^i.io(O)

Hence, hx(l) = /^(O) - 1 x hx(0) = 0.

This means that any Ist-order term of (A1, v1) with the leading part
0 0

0 1

by a suitable transformation generated by the (l,2)-jet (Rx$ Y£. Hence, we have obtained

the Ist-order normal form of this example.

can be eliminated

0 0

0 1
as

By a similar argument to the above example, we can prove that the following holds for any k-jets in gen

eral: for a constrained system (A, v), we choose

Bk £ {HkMXQ9(,a0}k czHkCQCr ,

where a0 is the 0-jet of (A, v). If Bk coincides with Hk C9^r itself, then any k-th order part (k £.1) of
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(A,v) can be eliminated by a suitable transformation. In fact since Bk = HkQ,QC, there exists
Cjfc€ttM+iQ9t such that {Cjk.aol =hk(0) for any hk(0)eHk C9tf\ and, by taking 5* =?*, the
differential equation (4.5) becomes

•jA*<0 =-K*.flo}=MQ>.

It follows from the solution

hk(t) = hk(0) - thk(0) ,

that ^(1) = 0.

For the above example, we can prove the following:

Proposition 4.12

For k > 1, any k-th order part of (A, v) with leading part

words, the infinite- order normal form is simply the leading part

itself.

Proof:

[o o"
[0 1 »

1

°1

[b o
Jo 1 »

i

0

It suffices to show that Bk coincides with Hk Q,QC- Recall that

(A0,v0) = ^®<ry
dy

d

•ax
»

and that Hk l is spanned by
• * » *

X^y* JL ®dy f0
ax

» 0,xmyn ^-
dx

' T f *

[ ay J t 0, xmyn 4-
dy

» *

® dy ,0

Recall also that Hktk+X y9C is spanned by

-30-

can be eliminated. In other



r r

xmyn J_ 0 ^ f0
OX

*myB -~ ® dx , o
9y

o,xmy' -£-
dx

"\

J

xmyn -2-®dy , 0
dx

xmyn 4- ®flfy ,0
ay

m\.n' 30,xmy* -^-
3y

^

where m+n = & and m' + n' = fc+1. Then,

{

xOTyn ~- ® dx , 0
dx

xmyrt -|- ®rfy ,0
dx

*my* -T- ® <fc , o
ay

.m^.n d

.(Ao,v0H =

,(Ao,v0n =

.(Ao,v0n =

0,xmyrt 4-
dx

xmyn 4- ®<b .0
dx

m„n d0,xOTy
dy

* y -^- <8> rfy , 0
dy

.(Aq.Vq)^ = ,m,.n axmyn -^- ® rfy , 0
dy

-n'xmyBM T7- ®rfy ,xmyfl' -^-
dx dx

-m'xm'-lyn' -|- ®dx ,xmy"' —
dy dy

.(Ao,v0n =

. (A0,v0n =

,m X y —
dx

-n'xm'yn -1 -|- ®dx ,0
ay

Therefore the linear map HkMl QQ( -+ Hk C90, (** .**+1) -> 1(^.^+1).(A0, Vq) I is surjective.

This completes the proof.

•

As a generalization of the above argument, even if Bk does not coincide with Hk C 9Cr, we can obtain
a theorem corresponding to the Reduction Theorem for vector field normal form (Theorem 5.4 in [14]) which

reduces the normal form problem on Hk QQC1 to that on asubspace Bk complementary to Bk inHk C(yCr.
To state this theorem, let nk be the projection,

along Bk.

Theorem 4.13 Reduction Theorem for constrained system normal forms
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The kth order normal form problem

•j;hk(t) =-{%k,ak-l +hk(t))k (4.7)

oni/*C9(rwith

{5*-1,a*-1}*"1=0 (4.8)

can be reduced to that on Bk; namely,

•j5*W--m[{5*-I,aw +4(')}*] (4.9)

with (4.8), where bk(t)e Bk. More precisely,
A

if we arrive at some point in Bk by integrating (4.9) with (4.8)
A

under the initial condition bk(0), then we can also arrive there from hk(0) satisfying nk \hk(0) -=bk(P), by

integrating (4.7) with (4.8) for suitable Zf's.

The proof of this theorem is given in Appendix VI (Part II).

Let us pause to consider an example illustrating the use of the reduction theorem.

Example 4.14: Regular slow point

Consider the family of constrained systems on a 2-dimensional manifold, whose leading part (Aq , v0) is

equivalent to

[o o"
1° l »

ol
1

We may suppose that a0 = (A0,v0) itself is of this form without loss of generality. In a similar manner as

Example 4.10, we consider the Ist-order normal form problem in Hx CQC1. Recall that the vector space
Hx C9C1 *s 10-dimensional, whose basis has been obtained earlier. Also Hx^\j yC is spanned by the basis
derived earlier.

Consider the linear map

which is expressed in terms of Table 4.15. Thus, the image B x is spanned by,
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'i®*-'-! y &•*•>&

xi®*-xi 9 <*,*, ^

x -£-®dx ,0
dy

y — ® dX ,X —
dy dy °-*i

V

and the complementary space Bx can be taken as the vector space spanned by,

{0 ,x
3x °->i »

Note that the projection kx :HxC "-X1 -* 5 xmaps, for example,

*i x -^- ® dfy ,0
dx

= Kl X — ® rfy ,X —
ax ax

0,X —
ax

A A

Since every element bxe Bx can be written in the form

by = a 0.x-I-
ax

+p ••'4 + Y dy

the reduced Ist-order normal form problem becomes

jlbx(t)=-itx[{^,a° +bx(t)}x]

=-*i({$°.*i(0}i]
with {§° , a0}0 = 0. Using the results from Table 4.17, we obtain

\t0e'gQ9t lK0,a°}0 =ol

°-*i

^ ^

0,x
dx

a <*^ a
dy

dx ,0
_a_
ax

./ S

Hence, 4° is given by

-33-
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%" = A O.x-f
dx

+ B £•*->£ + C
dy

dx , 0 + D -Z- ® dx ,0
dx

Therefore (4.10) becomes

dt

* » « » ^ » > <

<x(0 °-*£ + KO °"4J + 7(0
» t . . « .

rr » « » *

= -*! 1* °-*£ + £ i •*•-*£ + C -|- ®<fc ,0
[ay J

+ D 4-®dx ,0
ax»V. L J

» ^ • ' » « 1 1

<x(0 O.x^-
ax

V. J

+ P(0 0,ya7 + 7(0 0 3y J},]
that is,

— o(0 = D a(t)

dt

d_
dt

p(0 = Ba(r) + (A+D)p(r)

Kt) = Ca(t)-Ay(t)

The solution is given by,

a(O = a(0)eD'

P(0 =e(A+°* p(0) + Ba(P> JgCP-(**P» - 11L D-<^+D) [ J

= gC^X
—A

_ a-At
7(0 = * ?»+•¥&• {"'-i]

If a(0) * 0, we can choose

<x(l) = a(0) eD = sign a(0)(= ± 1)

P(D = 0

7(1) = 0 ,

upon choosing
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D = - log I <x(0) I

B = p(0) x
a(0)(<rA-l)

D+AC =-7(0)x
<m(eD+A-\)

for arbitrary constant A, provided A * 0 and A * -D.

If <X(0) = 0 and P(0) * 0,7(0) * 0, we can choose

<X(1) = 0

p(l) = sign p(0) = ± 1

1(1) = signT(0)=±l ,

upon choosing

D = - log I p(0) I - log I7(0) I

A = log I y(0) I .

For the other case corresponding to P(0) = 0 and/or 7(0) = 0, we can normalize the non-zero coefficient

P and/or y, to ± 1. Hence, the Ist-order normal form problem for a0 = i®*4 is solved as fol-

low:

(i) Non-degenerate Ist-order normal form

(A1,v1) =

(ii) (A1,v1) =

_a_
ay

0 0

0 1

*>±xTx+i
±x

1

i0^^i+(1±x)i
0 0

0 1

±y
l±x
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(iii) (A1^1)- i^o^i+i
0 0

0 1

±y
i

(iv) (A1,v1) = i0*'(1±*>i =

b o
0 1 *

o 1
l±xj

(v) (A1.*1)- i**-i =

0 0

0 1 f

b]
i

Let us proceed next to solve the 2nd-order normal form problem for the non-degenerate Ist-order normal form

(i). The vector space H2C90 has adimension equal to 15 and is spanned by the following basis:

r
x2 4- ®dy .o

dx

x2 4~ ®dx ,0
dy

x2 -— ® dy , 0
dy

.2 a

xy -^Gxty .0

xy ~-®dx ,0
dy

xy -^®dy ,0

.2 3
ax °-"£ °'y t

,2 a .2 a

V^
dy °-"t °-y^

Similarly, the vector space //2t3 y 9( is spanned by

l\
y2

a

ax
® dy ,0

r

k

a

ay
% dx ,0

y2
a

ay
%dy ,0

7

x2 ^ ®dx ,0
ax

» xy ^L®dx ,0
ax

*

* *

y24~®dx ,0
dx

» «

*2j-x®Jy.o t

» «

xy -|- ®dy ,0
dx

f

» ^

y2 -^ ®dy ,0

x2 -^- ®dx ,0
ay

v. J

»

» «

*y -|- ®dx ,0
I * J

»

• *<

y2 4- ®dx ,0
I * J
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.2 a .2 axz -z- ® dy , 0
ay

xy -Or ®dfy ,0
dy

yL -£- ® dy , 0
dy

0.x2i
ax

.2 3
dy

°,J5,&

°'"f

.2 3
°^tx

.2 3
°'y^

vi
Hence, the dimension of#2,3 y v( is equal to 20.

The linear map

defined by

?2 = (^2^3) -»{?2.flo}

is represented by the results calculated in Table 4.18. Hence the image B2is spannedby

y

r "\

r

2 a a . 2 ax'6 -r- ® d[y , xx —
ax ax

x2^-®dy ,x2^-
ay ay

n #»

,2 a

a ^^ a

a ^ a

a ^ ,„ _2 axz -^- ® dx , 0
ay

-2xy -£- ® dx , xz -^~
dy dy

.2 3

A

Let us choose the complementary spaceB2 as the linear space spanned by,

dx

.2 a
ay

0,xy
dx °->2i

°-"t
where the projection rc2:i/2C9( *—> 52 maPs
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> /•

.2 a
«2 x'-®dy,0 = K2 x24-®dy ,x24-

dx dx

r» 2 3
ax

j v,

.2 a
dx

and so on. We must next verify the condition (4.8); namely,

ft1.*1}1 = o

or equivalently, the conditions

{5o.*o}=0

{^a0} + {^o,ax) =0 ,

where c;1 = cjo + §j. From the first condition, we can again choose from Table 4.17

So=A 0,x
dx

+ B

+ D -2- ® dx ,0
dx

i«*-'i + C
ay

dx ,0

Using Table 4.15 and Table 4.19, the linear subspace satisfying {^.a1}1 = 0 is spanned by,
r,

x •%- ® dx ,0
dx

x -^- ® dx ,0
ay

y T7- ®dx ,0
ax

y •—• ®dx ,0
dy

*£•*•-*£ 2ji9*--j2i

,2 a
dx

0,x
ax

^

Hence, the reduced 2nd-order normal form problem is given by,

~ b2(t) =-k2[{^1 ,a1 +b2(t)}2]

where
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bn- a
t\ idO.x'6 —

dx

dx

+ b

x T7- ®dx ,0
dx

+ C>

°-*£ + c

y ~- ® dx ,0
dx

n 2 3
+ d 0 ,x

+ C, x -— ® dx ,0
ay

2 a

ay

+ Ct

+ e O.xy-^
dy

y -^-®dx ,0
ay

2 a

and

+ c5 *£•*•-*£ + c, 2>i8*--^ + C< 0.x
ax

The above differential equation, thus, becomes

^l=Cl-C1-Aa
dt

dt °2

df

a' =

M£l =C,-24d

dr

By choosing

A =0

C1-C7 = -a(0)

C2 = -fc(0)

C6 = -c(0)

C3 = -d(0)

C4 = -e(0)

We can eliminate all coefficients of b2. The 2nd-order normal form with non-degenerate

is obtained as follow:£•*•**£♦£
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Non-degenerate 2nd-order normal form

a2 = i**>±xi+i
0 0

0 1

±x

1

(4.11)

Following the same algorithm as before, we can continue to calculate the higher-order normal forms.

Moreover, we can prove that the infinite- order normal form is given by the same form as (4.11). We can also

extend this algorithm to the n-dimensional case, instead of dimension 2. Such an extension is given in Appendix

VII (Part II).

Let us now make an attempt to classify the 2-dimensional normal forms for constrained systems. In a

similar manner as the case for vector fields, they are assumed to have a specified leading part. For the most

[o 0
Jo 1 t

1
non-degenerate case, that is, (i): , we have already obtained Proposition 4.12; the infinite-order

normal form is given by (i) itself. Our next proposition gives a classification of 2-jet for constrained systems

whose leading part is equivalent to: (ii):

Proposition 4.17

[o o
Jo 1 »

o]
1

If the leading part of a two-dimensional constrained system (A, v) of corank 1 is equivalent to (ii) in Pro

position 4.8, then its Ist-order normal form is given by one of the following forms:

(ax)

(a4)

0 0 ±x

0 1 f 1

0 0 0

0 1 »

l±x

(ax)

(a5)

0 0

0 1

0 0

0 1

±y
l±x («3>

0 0

0 1

±y
l

Moreover, if the 1-jet is equivalent to (ax), its infinite-order normal form is (ax) itself. If the 1-jet is

equivalent to (a2), (a3), (a4), or (a5); respectively, then the non-degenerate 2nd-order normal form is given

by,

(a2f)
0 0

0 1

±y +axA

l±x (a{)
0 0

0 1 f

±y +ax4

l±x2
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(«/)
0 0

0 1 1

±x2+ ay2
l±x (as')

0 0

0 1
»

±x2±y2
1 + axy

The above result is obtained by a direct calculation as in Example 4.14. Finally, let us consider constrained sys

tems whose leading part is equivalent to (iii):

Proposition 4.18

If the leading part of a two-dimensional constrained system (A, v) of corank 1 is equivalent to (iii) in

Proposition 4.8, then its Ist-order normal form is given by one of the following forms:

<*i)

(b4)

0 0

0 1

0 0

0 1

±x

ay

0

±x

Q>2>

(bs)

[o 0
[0 1 »

o]
.°J.

0 0

0 1
»

±y
±x

b o 0

0 1
»

ay

(b3)

(be)

0 0

0 1

0 0

0 1

±y
o

where a is a constant Moreover if the 1-jet of the constrained system is equivalent to (bx), (bi), (b3), (b4), or

(bs)', respectively, then the non-degenerate 2nd-order normal form is given by,

(bx)

(b3f)

(b5')

[o 0
[0 1 *

±x

aym
(b{)

0 0

0 1 t

±y±x2
±x J

[b o
Jo 1 f

±y±x2

. °*2 J.

0 0

0 1

±xz

ay ±xy ±y2Jm

(b4')

(b/)

0 0

0 1

0 0

0 1

±x2+axy ±y2
±x

±x2±y2
±xy + ay2\w

For constrained systems of dimension greater than 3, or those of corank more than 2, we can, in principle,

compute their normal forms as in the 2-dimensional systems of corank 1. However, the computation becomes

increasingly more tedious and involved. See Oka [22] for the results.
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FIGURE CAPTIONS

Fig. 1. Phase portrait of the Van der Pol equation for very small e. The portion of the orbits with double

arrowheads indicate a rapid motion whose velocity tends to infinity as e —» 0.

Fig. 2. Illustration of a bundle endomorphism.

Fig. 3. An illustration of a generalized vector field (A, v).

Fig. 4. (a) Phase portrait of (2.15). (b) Family of solution of (2.15) consisting of parabolas converging to

x = 0 at a finite time t.

Fig. 5. (a) Phase portrait of (2.17). (b) Family of solutions of (2.17) consisting of parallel straight lines with

a slope equal to-1.

Fig. 6. Phase portrait of (2.24) for small ex = ^ > 0. Orbits with a double arrowhead denote rapid

motion.
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Table 4.19.
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