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ABSTRACT

This paper presents several new ideas for solving the macro-cell placement problem by optimization

techniques. An original mathematical formulation using two different descriptions for constraints on nono-

verlap of cells is presented. After describing a deterministic optimization method which results in good

solutions and is insensitive to the starting point, we present a novel method for combining deterministic and

random optimization techniques in search of the global minimum. Results on a test problem with 8 macro-

cells and a more realistic problem with 33 cells are presented.



I. INTRODUCTION

The problem of placement of macro-cells, assuming that they are arbitrarily sized rectangles, has

been addressed by many researchers in recent years. As is well known, placement algorithms decide the

proper position of a set of components with interconnections among them. Among several approaches to

solve this problem, heuristic algorithms have been used most frequently (see, e.g., [1],[2]). These algo

rithms form the basis of most existing software systems. The application of a powerful form of random

optimization, namely, simulated annealing in solving the macro-cell placement problem has also been

reported[3]. A new approach based on a rigorous formulation of the problem, which is suitable for the

application of deterministic optimization algorithms, has been given by Sha and Dutton[4].

In this paper, we propose a part deterministic part random optimization algorithm for solving the

macro-cell placement problem. Our motivation for developing a new algorithm is to take advantage of

some nice features of the existing methods and to add other features along the way. The following five

points summarize the features of our method.

1) Inspired by the work of Sha and Dutton[4], we develop a concise and original mathematical formula

tion for the problem and in particular for the constraintson nonoverlap of the cells. The formulation

transforms an inherently combinatorial problem to a nonlinear programming problem which can be

solved for a local solution using fast deterministic optimization techniques. Based on the framework

of nonlinear programming, it is possible to extend the work in the future to include other constraints

not discussed in the present paper,e.g., constraintsarising from signal delay considerations.

2) In Sha's formulation, nonoverlap of cells at the solution is not guaranteed. This is due to the

simplifications used in modeling of rectangles. By using an ellipse model for rectangles, we first

develop continuously differentiable nonoverlap constraints which are highly desirable as far as

optimization algorithms are concerned and are more robust than the constraints by Sha. However,

these constraints also result in slightly overlapping solutions. We then use the so-called exclusion

constraints which are more difficult to handle with optimization algorithms in order to achieve zero

overlap of the blocks at the solution.



3) Similar to Sha's work, the best orientation (horizontal or vertical) for the cells is determined by the

optimization process in our formulation. However, the freedom in orientation is achieved by using

three variables per cell as opposed to four variables in Sha's work.

4) The shape constraints for L-shaped blocks which have been mentionedin Sha's work are rigorously

formulated in this paper. To the best of our knowledge, this is an originalcontribution with immedi

ate practical use. A simple method for simultaneous compaction or reduction of the chip area (the

bounding box containing all cells), as the total wire length objective function decreases, is also

described.

5) The important issue of selecting the starting point for the deterministic optimization algorithm is

resolved in our method, so that a good local solution is reached from any arbitrary initial placement

However,due to the inherentcombinatorial natureof the problemand the fact that any local optimi

zationmethodis theoretically inadequate in finding thebestpossible solution of a problem withmul

tiple local minima, we describe the consistent addition of a random optimization technique to the

deterministic method. The majordisadvantage of a random optimization technique suchas simulated

annealing is its intensive use of computer timein order to reachquality solutions. This is whysome

fast heuristic algorithms whichdo not solvecomplete optimization problems are preferred by some

researchers. The use of a deterministic optimization algorithm is an effective procedure to obtain

quality solutions in reasonable computational time.

This paper is organized as follows: the mathematical model for the problem including the objective

function and constraints is first described. Next, we describea penalty functionmethod and the determinis

tic optimization partof the algorithm followed by a section on how toadd a random optimization method to

the overall algorithm. Finally, we present some results on an 8 block testproblem and a more realistic 33

block problem.

H. MATHEMATICAL MODEL AND FORMULATION OF THE DETERMINISTIC

OPTIMIZATION PROBLEM

A. Representation of Rectangles and Definition of Cost Function
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The objectives and constraints of the macro-cell placement problem are formulated using a simple

description for a rectangular cell. An L-shapedcell, which consistsof two attached rectangles, will be dis

cussed in more detail after the formulation using simple rectangles has been completed. The important

issue of routability of the final placement is simplifiedby the assumption that the routing area for each cell

is already included within the perimeter of the cell itself. Therefore, the problem to solve is to minimize

the total wire-length and to achieve as small an overall chip area as possible, subject to constraints on the

cell size and orientation and constraints which ensure nonoverlap of cells.

Consider m rectangular cells. For a rectangular cell Bl (i=l,...,m) with two length parameters

w' > 0 and hl > 0 (w' > h') which defineits size, assuming thatit canhave only horizontal or vertical

orientation, the coordinates of the bottom left vertex denoted by (X { y { ) and one coordinate of the top

right vertex, determine both the position and the orientation of the cell (see Fig. 1). Denoting the coordi

nates of the top right vertex by (X ^y £),we have

(xi -*i) + (yi -y\) = wi + hi, (l)
with either horizontal or vertical orientation. Therefore, given x{,y{ and x £, we can calculate y £ as

yil=wi + hi+x[-x!i-{-y\ . (2)

The variables x[,y{ and X^ (i=l,...,m) are used as optimization variables throughout this paper

and the y^'s (i=l,...,m) are evaluated using (2), wherever they appear in the subsequent formulas. For

mally, if z denotes the vector of optimization variables, we have

z=[xiy}xj ••• xf y? xf]T. (3)

It is clear that zmemberreals^m. An implicit assumption about the variables is that x*i > x{ and

yb. > y i. It is redundant to ensure this assumption using explicit constraints, since the shape constraint,

which will be introduced later in this section, ensures the validity of this assumption too.

To calculate the total wire length, we use the star model for each net with the gravity center [4] as the

center of the star and with all the pins positioned at the cell centers. Without changing the remaining sec

tions of this paper, alternative estimates such as the estimate using the half-perimeter of the bounding box

which includes all the pins connected to a net, or a more realistic estimate using the actual pin positions to

calculate the exact wire length could also be considered. The latter estimate makes use of the fact that the
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relative position of pins corresponding to a cell with respect to its center is fixed.

Consider a signal net S/c which connects m* cells and possibly an I/O pad on the periphery of the

chip. The position of center points for cells are calculated as

. x[ +xb i y{ +yi

where i=l,...^n^. For signal netSk , temporarily assuming

(X™k+ ,y™k+ )=(xfityjf) with (Xpjp) denoting the coordinates of the appropriate pad, the gravity center

is calculated as

ink i=l mk i=i

where mi = m^ if the I/O pad isnot connected and mi =mk + 1,if the I/O pad isconnected tothe net

A measure for the wirelengthcorresponding to 5* is calculated as

ukiz)=J* [(*< -xk)2+cyi -n)2]. (6)
It should be emphasized that the above formulation represents a measure for the wire length and strictly

speaking, does not have the same dimensionality as the length. However, as is commonly referred to in the

literature, the term wire length will also be used throughout this paper.

Denoting the total number of signal nets by ms, the total wire length is computed as

£/(z) =J^*. (7)
As suggested by otherresearchers [4], for larger nets, i.e., the ones thatconnect largenumbers of cells, it is

desirable to reduce the contribution of the corresponding u^s, since each individual connection is less

important. It is recommended that M& be multiplied by a weighting coefficient, which is a function of mk

(e.g., inversely proportional to m* )[4].

Minimization of the overall chip area, in general, requires the introduction of a second objective

function and therefore leads to a multi-criterion optimization problem. However, if we have I/O pads on

the four sides of the chip periphery, minimization of area can be achieved via the minimization of wire

length. To do this, chip dimensions Xj and Yj areadded to optimization variables. If (0,0) is chosen as



thebottom left vertex of the chip,Xj and Yj willrepresent the coordinates of the top rightvertex. As the

chipdimensions vary, the I/O pad coordinates change. However, we avoid having the I/O pad coordinates

as independent variables, by assuming thattherelative position of I/Opadsis fixed. Given the initial posi

tion of I/O pads and the initial dimensions of the chip, the coordinates ofa pad(xp ,yp) change in the fol

lowing wayas thechipdimensionsXj andYj vary:

xp=aXT ; yp=fYT, (8)
where

a=&± , p=-^. (9)
Subscript zero is used todenote initial values. Since a and (3 areconstants, adding only Xj and Yj to the

optimization variables is sufficient to accommodate the varying position of all I/O pads. The vector of

optimization variables z, given by (3), is augmented byXj and Yj and consequently, its dimensionality is

increased to 3m+2. Using (8) and the fact that the pad coordinatesaffect the wire length objective func

tion,it can be easilyprovedthat therelationship between Xj, Yj andU(z) is direct, i.e.,as thechip dimen

sions and its area decrease, U(z) decreases.

B. Constraints for Rectangular Cells

There are three types of constraints in the macro-cellplacement problem. The first type of constraint,

referred to as the shape constraint, ensures that each cell has the prescribed dimensions. For rectangular

cells with either horizontal or vertical orientation, we have

//O0 = (*£-*i -h'l)(x'>i-x'\ -w0 = 0, i=l,...,m . (10)

Note that (10) also implies thatJCfc > x\ andy£ >y\ (using (1) for the latter inequality).

The second type of constraint ensures that each cell is located within the chip boundaries. For

i=l,...,m, we have

Sn(z)=*i>0, (Ha)
8i2(z)=y[>0i (lib)

&-3(z)=Xr-*i2>0, (lie)

&4(z) =rr-yj>>0. did)
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The third type of constraint ensures that the cells do not overlap. We have developed two new

approaches to formulate the nonoverlap constraints. The first approach, which involves modeling of the

rectangular cells by ellipses, results in differentiable constraints, however, it has the disadvantage that the

error in modeling leads to solutions with slightly overlappingcells. For rectangles which approach squares,

the error in modeling increases. The mathematicaldescriptionof this method is as follows.

Consider the rectangular cell i modeled by an ellipse centered at (X^yc)- To avoid the overlap of

cell j with this ellipse, the following inequality must hold

G0(z,Xw,X7) =(yi -y'tfix -*J)2 +(*i -xtfiy -yl)2-(x[ -xtfiyK -yj)2>0(i2)
for all x and y such that

X=xi+Xx(xi-X\)1 0^A,X<1 (13a)

and

y=yi+Xy(yi-yi), 0<^<l. (i3b)
To satisfy (12) subject to (13), it is necessary and sufficientthat the followinginequalityholds:

^(z) =minGy(z,Xx,X0,)^O. (14)

Minimization ofG;; with respect to Xx and Xy gives

(x£-jc4)/(x£-jc4).tf*4 <xi<xi,
X* = 10 ,ifxj<*4 , (15)

1 ,if^>jci.
The expression for Xy is obtained by replacing x with yin (15). Using (15) and the similar expression for

Xy, and substituting for Xx and Xy in (13) and then substituting (13) in (12), we can derive explicit formu

las for gfjiz).

Assuming Ai =(y\-yj)2, A2 =(x\ -*i)2, A3 =(x{ -*i)2, A4=(xi-*g")2.

A5 = (y{ -;yc)2andA6=(yi -yj)2,weget
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-A iA 2 , if s i and t \,
Ai(A3-A2) ,if52andri, .
Ai(A4-A2) ,if53andri,
A2(A5-Ai) ,if5iandr2,

z) = -| AiA3+A2(A5-Ai) ,ifs2andr2, (16)
AiA4 + A2(A5-Ai) ,ifs3andr2,
A2(A6-Ai) ,if5iandr3,
A!A3 + A2(A6-Ai) ,if j2andr3,
AiA4 + A2(A6-Ai) ,if.s3andf3,

where conditions £ \,S2£3and t j,r>, f3 are as follows; S\'.x{ <Xc £xi,S2: Xq <x\,sy.Xc > X2\

f l: yi -yc ^yh t2- yc < y{ and f3: yj >yi. When considering all cells, we have i=l,...,m and

j=i+l,...,m in (16).

The second approach in formulating the nonoverlap constraints uses the rectangles directly and

ensures zero overlap of cells at the solution. The disadvantage of this approach is that it results in the so-

called exclusion constraints [5], which are not only nondifferentiable but also of a combinatorial nature.

For two cells i and j, if we have

(x{ Zx2) or (x\ >xi) or (y{ £y2) or (y\ >yi),

then there is no overlap between the cells. Equivalently, satisfying the constraint

max Mx{ -x2), (x\ -x2), (y{ -y2), (y[ -yi) ^ 0, (18)

guarantees (17).

The combinatorial nature of this constraint is evident from the appearance of the "or" expression in

(17) or alternatively from the fact that for the maximum of a number of expressions to be positive, it is

sufficient that any one of them be positive.

A general and exhaustive algorithm for handling exclusion constraints of the form given in (18)

requires that at each stage of the optimization, each one of the active constraints (in the present context, a

constraint is active if it is equal to or less than a small positive number £ below the maximum value of all

constraints) be tried separately in determining a search direction. Among all the search directions calcu

lated, the best one is selected. (For each search direction, the step length is computed, the variables are

updated and active constraints are evaluated. Comparison of the values of active constraints determines the

(17)



best search direction.) General algorithms of the type described have been developed in [5]. The major

disadvantage of a general algorithm is its high computational expense. In this paper, instead of using a gen

eral algorithm which considers all possible search directions, we adopt a simple strategy which uses only

one of the active constraints (and consequently, only one of several possible search directions) at each

stage of the optimization. Our simplification is as follows. For cells i and j, assuming that there is overlap

between the cells (for two nonoverlapping cells, the correspondingnonoverlap constraint is ignored in the

penalty function formulation which will be used for solving the resulting optimization problem), the values

offour terms (x{ -X2), (x[ -*£), (y{ -y2) and (y { —yk) are compared (all four terms are nega

tive when there isoverlap between the cells) and the maximum isselected as the constraint gfj (z). If two,

three or all four values equal the maximum,one is selectedrandomly. Therefore, for each combinationof i

and j (i=l,...,m , j=i+l,...,m) we work with only one of the four terms at a time. The possibilityof finding

the best solution is sacrificedby this simplification. However, the simplification is justifiedsince we are try

ing to finda feasible solutionusing the deterministic part of our algorithm in as small a computational time

as possible. We always have the option of searching for better or globally optimal solution with the ran

dom part of the algorithm.

C. Constraints for L-Shaped Cells

A simpleextension of the formulation described for rectangular cells enablesus to handleL-shaped

cells. An L-shaped cell consists of two rectangular cells with their longersides being eitherperpendicular

(Fig.2a) or parallel (Fig. 2b) to each other.AsFig. 2 illustrates, we have opted to take twooverlapping rec

tangles for an L-shaped block.

Havingan L-shaped blockamongthe macro-cells is similarto havingtwoseparate rectangles in for

mulating the objective function, nonoverlap and chipboundary constraints. Assume that rectangles i and j

form an L-shaped cell. We use previously formulated nonoverlap constraints to ensure that the remaining

rectangles do notoverlap either i or j. A minor difference with having two separate rectangles is thati andj

mayoverlap (and indeed i and j should overlap according to theshapeconstraints which willbe formulated

shortly). The constraints which ensure thatthecellsare within thechipboundaries, operate on an L-shaped

block exactly the same way as on two separate rectangles.
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The major difference between having an L-shaped block and two separate rectangles is in the shape

constraints. For two attached rectangles i and j, only one is free to take either horizontal or vertical orienta

tion and the orientation of the second one is dictated by the orientation of the first one. Assuming that rec

tangle i is free, we have equality constraint (10) forrectangle i and one of the following two constraints for

rectangle j:

[(x2-x{ -h^ + ixi-xi -wJ)2][(x2-x[ -wl)2 + (xi-xi -hJ)2]=0, (19)

or

[(x2-^i-/t02+(^i-^-/i^)2][(^2-^i-wl')2+Ui-^{-w^2] =0. (20)
Equation (19) is used for a case similar to the one shown in Fig. 2a and (20) is used for the case in Fig. 2b.

Note that only one of (19) or (20) can be true for a given L-shaped block. A simple interpretationof (19),

considering that (10) should also hold, is that if rectangle i has a vertical orientation, rectangle j must have

a horizontal orientation and vice versa.

A more important shape constraint for two rectangles i and j which form an L-shape is a constraint

which ensures that the two rectangles are attached at the solution, while allowing rotations and mirror

operations that achieve minimum wire length. Figs. 3a-3d illustrate four possible orientations for an L-

shaped block, with each one obtained by a 90 degree rotation of another one in the set Figs. 3e-3h show

four other orientationswith each one obtainedby mirror-imaging one of the orientations in Figs. 3a-3d. For

instance, Fig. 3e is the mirror image of Fig. 3d. The following equality constraint keeps rectangles i and j

attached in an L-shape, while allowing all 8 possible orientations:

[(xi -*4)(*i -xi)]2+[(y[ -yi)(y2 -yi)]2 =0. (21)
This constraint simply states that we should have eitherx\ =x{ and y [ =y\ (as in Figs. 3a and 3e), or

jci =x{ and y2 =y£ (as in Figs. 3b and 3f), orx2 =*£ and y2 =yb (as in Figs. 3c and 3g), or

x 2 =xi and y [ =y{ (as in Figs. 3d and 3h).

D. Penalty Function Formulation

Among all techniques for solving the resulting nonlinear programming (NLP) problem, which is

characterized by the cost function U(z) givenby (7), the equality constraints / (z ) (given by (10)andone

of (19) or (20) plus (21) for L-shaped cells) andthe inequality constraints g (z) (given by (11) andeither
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one of gfj(z) or gfj(z)), we select the penalty function method, as has also been suggested by Sha and

Dutton[4]. This method does not guarantee a feasible solution for a finite penalty coefficient, but it has

proved to be quite effective in our computational experience. The constraints are always "adequately"

satisfied for large penalty coefficients and, compared to the more sophisticated nondifferentiable "exact"

penalty method (exact in the sense that the solutionof the penalty problem yields the exact solution to the

original NLP with a finite penaltycoefficient), the computational speed is remarkable. Forproblems with a

large number of cells, exact penalty methods, which are generally more robust, become extremely slow

since they usually use linearor quadratic programming techniques in determination of a search directionat

each iteration.

A penalty function P(z,C/) is constructed as

P(z,a) = U(z) + d «£(X; /;2(z) +2*0C/ [mwte(z))f

Thetotal number of inequality constraints denoted bymg isgiven by

m8=4m+ [l+2-h..-Km-l)] =m^+7) . (23)
(Notice the i and j variation for (16) to justify the termin square brackets.) For every L-shaped block, the

number of equality constraints is increased by oneandthenumber of inequality constraints is decreased by

one.In equation (22), OCj is a nonnegative weighting coefficient andC/ is the important penalty coefficient.

{C/}, /=1,2,„. is a sequence tending to infinity such that, C\ ^ 0 and C/+i > C/\ Practically, C/ is gradu

ally increased until the constraints are satisfiedwithin the requiredaccuracy.

Selecting c i=0, i.e., minimization of U(z) without taking the constraints intoaccount gives a solu

tion which, although not feasible, is of great significance. The reason is that it resolves the key issue of

choosing starting values for optimization variables in order to achieve a good local minimum. The

minimum of the quadratic function U(z) given by (7), is its global minimum. Therefore, with c i=0, we

reach identical positions for cell centers, regardless of the starting point This unique solution which is

visually meaningless due to theextreme violation of constraints, provides a good starting point for thecon

strained problem. The unconditional decrease in the wire length objective results in an excellent relative

position for the cells. As the penalty coefficient increases, there is increasing emphasis on satisfying the

(22)
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constraints, while the relative position of the cells remains almost unchanged. Therefore, minimization

with c x=0 before taking the constraints into account strengthens our algorithm so as to avoid bad local

minima. An important note is that the chip dimensions, i.e., variables Xj and Yj, should be fixed with

Ci=0. This is obvious because otherwise, U(z) will be reduced to zero, with all the cell centers taking the

same position.

Minimization of P(z,C/) is performed using a conjugate gradient method. We utilized a standard

available routine in the IMSL library[6], which uses the restarting algorithm suggested by Powell[7]. We

also implemented the more recent three-term algorithm of Nazareth[8] with the guidelines provided by

Dixon[9]. The two algorithms performed equally wellon mostexamples. In the secondalgorithm, the fre

quencyof restarting the procedure using the steepestdescentsearch direction is controlledby the user.

HI. RANDOM OPTIMIZATION STAGE OF THE ALGORITHM

Having addressed the part of our proposed algorithm which uses a deterministic optimization

approach, namely, minimization using the conjugate gradient method, we consider the consistent addition

of random optimization techniques to the existingmethod. In this section,we assume that the cells are rec

tangles, although generalization to L-shaped blocks is possible by considering an L-shaped block as two

attached rectangles.

In the previous section we argued that the optimization without constraints provides a goodstarting

pointfor the constrained optimization in the sense that we are almostguaranteed to reach one of the best

local minima. The use of a random optimization technique as an optional tool to search for better local

minima or ultimately the global minimum is recommended. In the last few years, Simulated Annealing

(SA) [10], which belongs to the moregeneral classof Probabilistic Hill Climbing (PHC) algorithms [11],

has become a powerful tool for solving general combinatorial optimization problems. The application of

SA algorithm in the placement of macro-cells hasbeenreported [3].WhilerobustSA techniques havepro

vided excellentquality solutionsto placement problems, the CPU time required is very high. To speed up

the process, the use of multiprocessor architectures in applying a parallel SA algorithm has been reported

[12].
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In this section, we discuss the use of a random optimization technique inspired by the PHC algo

rithms in conjunction with a deterministic algorithm. Random optimization is used only when it is felt that

a better local minimum, than the one currently reached by the deterministic algorithm, exists. The random

izing process for the macro-cell placement problem corresponds to the random movement of cells. The

key property of all PHC algorithms, namely, allowing an increase in the objective function value, is

preserved. A new acceptance rule, which uses the rate of convergence of the deterministic algorithm, is

devised.

Consider a solution vector z * obtained by minimizing the penalty function of (22) after the gradual

increase of C/, such that the constraints aresatisfied within the required accuracy. We calculatea measure

of the convergence rate for the deterministic algorithm (e.g., the conjugate gradient algorithm) in the fol

lowing way.

For the minimization with the final value of C/, we ignorethe first few and the last few iterations and

assume that theremaining iterations are numbered from 0 to /if. With Pt denoting the penalty function at

iteration i,and P * representing P(z *),Pt - P* is approximated by (Pq-P*)@l (9 to the power i). The

best valueof 6 is obtained by solving a simple data-fitting problem in the least-squares senseas

to9=S»-ln(/',-/',)-ln(P0-/»<)Z>i (24)
S'2

where summation is from 1 to /i;.

t.

The computed 0 is used to define a rule for accepting orrejecting the new variable values after a ran

dom change is performed at z*. Suppose that abetter local minimum z** exists such that

P(z**)<\lP(z*),\L<l. (25)

For sufficiently large C/ in (22), satisfying (25) almost guarantees that at z ** the constraints are satisfied at

least as well as at z *. Now, the procedure is to make random changes in variables until a point is found

from which, based on the value of0, it isprojected that \lP (z*) can be reached inauser-selected number

of iterations. An important sideissuehereis the strategy for random change in variables such thatgenera

tion of many useless points is avoided. The strategy used in TimberWolf[9], a package based on the SA

algorithm, is also appropriate here. It is as follows: (1) A random number between 1 and m (the total
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number of cells) is generated. (2) A second random number between 1 and 10m is generated. (3) If the

second number is between 1 and m and not equal to the first number, the positions of the corresponding

cells are exchanged, otherwise the firstcell is displaced to a random position (without violating chip boun

daries). Clearly, pairwise exchanges are infrequent compared to cell displacements.

Continuing with the main issue, we accept a random point zr if P(zr) < \lP (z*) (which rarely

happens), or if

(/>(zr)-/>(z**))0n-^|lP(z*)-P(z**), (26)

where n maxis the user-selected maximum numberof iterations allowed. \l is also a user-selected parame

ter controlling the acceptance criterion. P (z** ) is guessed as a value below \lP (z*), once \X has been

selected. If inequality (26) is not satisfied aftera certain maximum numberof random changes in variables

(e.g., 100m randommoves), the best set of variables among the sets tried (the one with the lowest value of

P), is selected. The deterministic optimization is then performed starting from this set with the hope thata

different and better local minimum can be reached. Another alternative is to adjust some of the user-

selected parameters and repeat the process.

What has been suggested in this section is a general methodology for combining deterministic and

random optimization techniques. The choice of parameters JI, flmax or the rules for adaptive change in

theseparameters is problem dependent This is analogous to the selection of the rule forreducing tempera

ture parameter or inner loop criterion in simulatedannealing.

IV. RESULTS

Two examples are given to show the performance of the deterministic part of the algorithm dis

cussed. In both examples,an arbitrary starting pointwas used,minimizationwithout taking the constraints

into account (C i=0) was performed and then C\ was gradually increased. As discussed in Section HI, the

random part of our algorithm, which may take considerable amount of CPU time, is reserved for the cases

where it is clearthata bettersolution, than the one reached by the deterministic algorithm, exists. Since the

solutions reached for the two exampleswerereasonably good,no attemptwas made to continuethe process

with the randomoptimization. However, a thirdexample is given to illustrate the effect of randomoptimi-
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zation.

Example 1 is adopted from [13], and has 8 cells, 24 pads and 38 signal nets. Starting from an identi

cal position for all cells (X i=1.6,*2=1.7 andy i=1.0), the solutionreachedwith c \=0 is illustrated in Fig.

4a. As discussed in Section II, thechip dimensions (Xj=33 and77=2.3, in this example) are fixed during

the optimization with c i=0. The computational time for this stage was 0.97 seconds on a VAX Station II

machine. The objective function has the unique value of 16.5, reachable from any startingpoint Next we

increased C/ to 100 and then to 500 and finally at C/=500, we changed the weighting coefficient for the

shape constraints from 1 to 10.The final result, whichwas reached in a total of 145seconds, is illustrated

in Fig. 4b.The wirelength objective function is 8.7atthissolution and thepenalty function is 8.8, indicat

ing how well the constraints are satisfied. The chipdimensions, which were added to theoptimization vari

ables after the first stage, are Xj^lSYl and lr=1.30. In this experimentnonoverlap of thecells has been

ensured using the exclusion constraints. Finally, the building block routing package BBL [13],[14] was

used to obtain a complete layout for thechip. Thechip dimensions for theresult which is illustrated inFig.

4c,areXr=2.38 and Yr=1.53.

To test the shape constraints for L-shaped blocks, we added the requirement that blocks 3 and 7 in

the above problem should be attached in anL-shaped form. Starting from the position of Fig. 4b, the solu

tionillustrated in Fig. 5 was obtained after a gradual increase in theweighting coefficient for thenew shape

constraint from 10 to 5000.

Example 2 is a reasonably complex problem with 33blocks, 38 pads and 121 nets. Using an arbitrary

starting point minimization withc i=0resulted in theconfiguration of Fig. 6. The computational timeon a

VAX Station n was 16seconds withtheobjective function atthesolution having theunique value of 10.9 (

global minimum reachable from any starting point). Starting from this solution, C/ was increased to 100,

500, 1000 and2000,allowing only 100 simulations (i.e., evaluation of functions andgradients associated

with the objective function andconstraints) for each value of C/. As an example for an intermediate situa

tion, in Fig. 7 we have illustrated thesolution reached with C/=100, after 100 simulations. With C/=2000,

theweight on theshape constraints was increased to 10 and after 400 simulations, the final result shown in

Fig. 8 was obtained. The total CPU time(including the first stage) was 30 minutes. The final wire length
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objective function is equal to 12.9 and the penalty function (with C/=2000) has a value of 13.5. The final

chip dimensions are Xt-232 and 77=1.62. Finally, the layout of this chip was completed by BBL

([13],[14]). The result is illustrated in Fig. 9.

In the third example, we consider the 8-block problem of example 1 and demonstrate how the ran

dom optimization stage of the algorithm is used to move from one local minimum to a better one. Starting

from the initial position of cells as illustrated in Fig. 10 (which does not seem to be worse than the starting

position used in example 1), but without performing the unconstrained optimization, we used a penalty

coefficient of 100 and reached a solution with the wire length equal to 10.6 and the penalty function equal

to 12.0 (28 seconds of CPU time). In an attempt to improve on the violation of constraints, the penalty

coefficient was increased to 500 and the solution of Fig. 11 was obtained (wire length equal to 16.4 and the

penalty function equal to 17.0). This solution which is clearly worse than the solution reached in example

1, demonstrates the sensitivity of the deterministic local optimization algorithm to the initial placement and

justifies our previous emphasis on an initial unconstrained optimization stage.

To show that the solution reached by the deterministic optimizer can be improved with the help of a

random optimizer, we performed random changes in variables according to the strategy discussed in Sec

tion in, following the stage in which a solution with the penalty coefficient equal to 100 was reached (an

estimate for 6 was established). A solution with the wire length equal to 11.2 and the penalty function

equal to 10.0 was obtained after only 20 seconds of CPU time. This solution was used as a starting point

for the deterministic optimizer with the penalty coefficient increased to 500. The result is illustrated in Fig.

12 (wire length equal to 14.1 and the penalty function equal to 14.4). This solution, which is still worse

than the one in example 1, can be further improved by repeating the combination of deterministic and ran

dom optimization methods. Slightly overlapping areas in both Figs. 11 and 12 are not significant as far as

the above methodology is concerned. They only indicate that the penalty coefficient of 500 is not large

enough.

Due to different objective function and constraints, we could not directiy compare our results with

the results of simulated annealing algorithm. However, to appreciate the CPU times reported above, we

refer to an example with 30 blocks[12] which takes an average of 210 minutes on a similar machine with
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SA (using a parallelalgorithm with 8 physical processors, time hasbeen reduced to 33.6 minutes).

V. CONCLUSIONS

We have described a new methodology based on the combination of deterministic and random

optimization methods to solve the macro-cell placementproblem. Two new mathematical descriptions for

nonoverlap constraints were developedand solution of the resulting nonlinear programming problem using

penalty function method was discussed. The problem of selecting the starting point for the deterministic

optimization was addressed, so thata bad localminimum is avoidedregardless of the initialplacement

When compared to other optimization-based algorithms such as simulated annealing, our computa

tionalresultsare promisingin terms of the CPUtime required to reacha good solution

Future work will investigate the theoretical properties of combiningdeterministic and random optim

izationmethods. From a more practical pointof view, we will use the current framework to deal with other

aspectsof the placement problem, such as formulation of more realistic objective functions and inclusion

of constraints related to signal delay considerations.
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Fig. 3 Eight possibleorientations for an L-shapedblock



Fig. 4a The solution of the unconstrained optimization problem for the 8-block example.
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Fig. 4b Final solution for the 8-block problem.
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Fig. 4c Final layout of the 8-block example after detailed routing.
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Fig. 5 The solution of the 8-block problem with one L-shaped cell.



Fig. 6 The solution of the unconstrained optimization problem for the 33-block example.
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Fig. 7 An intermediate solution for the 33-block example.



Fig. 8 Final placement for the 33-block example.
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Fig. 9 Final layout ofthe 33-block example after detailed routing.
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