

Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

TWO-DIMENSIONAL ROUTING AND

COMPACTION IN COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS

by

Hyunchul Shin

Memorandum No. UCB/ERL M87/92

25 October 1987

TWO-DIMENSIONAL ROUTING AND

COMPACTION IN COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS

by

Hyunchul Shin

Copyright © 1987

Memorandum No. UCB/ERL M87/92

25 October 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

TWO-DIMENSIONAL ROUTING AND COMPACTION

IN

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS

Ph. D. Hyunchul Shin Department of EECS

fHL^ (ry^ IaX-^62^
Chairman of Committee

ABSTRACT

Routing and compaction are two essential steps in the physical design of VLSI circuits.

Several approaches have been proposed in the recent past for these two tasks. Most of the work in

routing has been performed on channel routing, i.e., on routing rectangular area where the pins to be

connected lie on two parallel edges of the region. For restricted layout methodologies such as stan

dard cell, gate array, and macro-cell arranged in a slicing structure, channel routers can be used to

route the entire chip. However, there are cases where these restricted approaches can not be used

for efficiency reasons. Two-dimensional routers are often necessary for the macro-cell design style

and for routing problems in which the routing regions are irregular. The routing regions that the

technique proposed in this thesis can handle are very general: their boundaries can be descnbed by

any rectilinear set of edges, the pins can be on or inside this boundary, and obstructions can be of

any shape in any layer. The technique is based on an algorithm that routes the nets in the routing

region incrementally using minimum cost paths, and allows modifications by ripping-up nets already

routed when an existing shortest path is "far" from optimal or when there is no room for a needed

path. Some modification steps (called weak modification) relocate segments of nets already routed

to find shorter paths orto make room for a blocked net. The rip-up and reroute steps (called strong

modification) remove segments of nets already routed to make room for a blocked connection; these

steps are invoked only if weak modification fails. The algorithm has been proven to complete in

finite time and its complexity has been analyzed. Many test cases have been run, and on all the

examples known in the literature the router has performed as well as or better than existing algo

rithms. In particular, the Burstein's difficult switchbox example has been routed using one less

column than the original data. In addition, the router has routed difficult channels such as Deutsch's

example in density and has performed better than or as well as YACR-II on all the channels avail

able to us.

Compaction is a critical step in a symbolic layout system. It can be used in module genera

tors as well as in post-processors for placement and routing systems. Most of the compactors in

practical use today rely on one-dimensional compaction techniques, i.e., on methods that compact

the layout by pushing elements in one direction at a time. This method is fast but it can not always

produce compact layouts that can rival those of a human designer. Two-dimensional compaction

allows more complex "moves" of the components of the layout and can produce better results. A

new two-dimensional compaction strategy has been proposed based on zone-refining. The zone-

refining layout compaction technique bears a strong similarity to a technique used in the purification

of crystal ingots. Individual circuit components or small clusters of components are peeled off row

by row from the pre-compacted layout, moved across an open zone, and reassembled at the other

end of this zone in a denser configuration. In this process both coordinates of the moved com

ponents are altered and jogs are introduced in the connecting wires between them to produce the

needed flexibility for placing components into optimal positions. This general approach provides a

flexible framework. Without lateral movements of the components it degenerates to a one-

dimensional compactor. At the other extreme, simulated annealing techniques can also be employed

within the zone-refining process. This permits tradeoffs of run-time and final layout density.

Acknowledgements

I would like to thank my research advisor, Professor Alberto L. Sangiovanni-Vincentelli, for

his continuous patience, guidance, and support. The discussions with him were invaluable. I am

also grateful to Professor Carlo H. Sequin for the useful suggestions and encouragement, to Profes

sor A. Richard Newton for general advice, and to Professor James Sethian for reading this thesis.

Mark Bales developed a compactor, Python, in 1982, which helped me understand compaction

routines at the beginning of Zorro project. Discussions with Wayne Wolf at Bell Laboratories on

critical path shearing are acknowledged. Several references on routing were available from Marek-

Sadowska. Klaus Rone from Siemens, West Germany, patiently used the early version of Mighty

router before it could be extensively debugged to be practical and helped me in finding a few bugs.

I also thank my fellow graduate students in CAD group. While it is impossible to name everyone

who helped me during my years at U.C. Berkeley, I must mention Rick Spickelmier and Tom

Quaiies, who helped me with many computer related problems. Discussions with Jeff Bums, Faye

Marron, Fabio Romeo, Richard Rudell, Young Kim, Hyun J. Shin, Seung Hwang, Hong Park and

many others are acknowledged.

The research for this thesis was supported in part by the Defense Advanced Research Projects

Agency under contract number N00039-83-C-0107, Hughes Aircraft Semiconductor Division, AMI,

Intel, and the MICRO Project of the State of California.

Last} but not least, I thank my parents, brother, and sisters for their trust and encouragement.

I am most indebted to my wife, Meejung, for her continuous love and understanding, and to my

daughter Angela for bringing new happiness to my family.

Table of Contents

1. INTRODUCTION l

1.1 DETAILED ROUTING BASED ON INCREMENTAL WIRING MODIFI-

1.2 TWO - DIMENSIONAL LAYOUT COMPACTION USING 'ZONE RE-

2. DETAILED ROUTING BASED ON INCREMENTAL ROUT

ING MODIFICATIONS 9

2.1 * JvJb>Y IUUIj WUKJv ..«.«.«.»..«•».•....»««♦»••...••♦.•.•••••«•••*••«•.•»♦•.••♦»••.•♦•••••••.••.•.•..•....•.•.» *"

2.2 FORMULATION OF THE PROBLEM AND GENERAL APPROACH 15

2.3 THE ALGORITHM 18

2.3.1 Data Representation ...«..._..._...~..........-..~...~....«..~...~...~...~....~...~...- 18

2.3.2 The Basic Algorithm «~.~~.~...~~......-.~~...........-~.-~.~~.~~~—MM.MM.MM 18

2.3.2.1 Overall algorithm ^.^^.^^.M^.~~.~..^.~^.«~.^~.-~.~-.^^.~~.~-.~~.-~. 25

23.3 Finding a Shortest Path 26

2.3.3.1 Algorithm Find_path .~. 28

2.3.4 Confirmation of a Path ^.^^.^^.M^.^^^...^.««.^«.~^.^.^M«.^^.^«.~~. 29

23.5 Weak Modification ~.-~. ~~.. ~_...-...~.....~..~..... 30

23.6 Strong Modification —.——..—_....—. .—_.._...-...-..—~...~ 35

2.4 COMPLEXITY OF THE ALGORITHM 37

2.5 PARTITIONING OF LARGE PROBLEMS ~. .. 40

2.5.1 Pseudo-Pins~...........~...~..~.~.....~...~~.~.-................................ 40

2.5.1.1 Pseudo-Pin Generation MM...M.MM.MMM...m.MM.MM.MM.MM.MM.MM.MM.~M.MM. 43

2.5.1.2 Setting Parameters in the Cost Matrix M.MM.HM.MM.M.MMM.MMM.MM.MM 44

2.6 OTHER VARIATIONS TO THE BASIC ALGORITHM 45

2.6.1 Pre and Post Processing ...~~.~...„........~..........~...~.«..~......~...~~.~~~.~- 45

2.0.2 cxiurvaient a ins .m.*...mm.mm....m..............m.m»mmm.m......m..m...........mm.m........ 40

2.6.3 Floating Pins ..„~.~.~~~......~............,~..~~~~~~.~*~~.~~.~~~...~.~~.~~.~~» 46

2.6.4 Obstacles and Prerouted Nets „..........„..—.—~~.~~~....~~-......~~.~~~ 47

2*D«5 V^lltlCal jNetS •••••••••••••••••••••..•••..•.••••••..•••••^•••^•.•^•.•^••.•..•••••••••...•••••^•••^•••M *t /

2.6.6 Routing on the Boundaries MM.MM...M.MM.MM.MM.MM.M.MM.MMM.MM......MMM.MM 48

2.7 EXPERIMENTAL RESULTS 48

2.8 SENSITIVITY OF THE ALGORITHM 57

2.9 SUMMARY -. 58

3. TWO-DIMENSIONAL LAYOUT COMPACTION USING

'ZONE-REFINING' 60

3.1 PREVIOUS WORK ON TWO-DIMENSIONAL COMPACTION 63

3.2 COMPACTION BY 'ZONE-REFINING' 65

33 BOX PACKING 69

3.3.1 XY Adjacency Graph 71

33.2 Zone-Refining Algorithm _~-....~...~~~.~.~—.._.._.._.._.._...._.._.». 71

33.2.1 Initialization ~.~ _...«.._..„..._..._ 72

j^i, 2.2 selection «m.«m.««...m..m.«.*.«*««.....m..m...m.......«»m.*«*«.«.m.**....m.«*m..*...m.««m*.«. i*•

Ill

ajaa5.2..5 * laceAlient .. i *>

3.3.2.4 Updating the XY Adjacency Graph ~.....~...~.~~..—...~......~«.~~.~~. 73

33.3 Sample Results of Box-packing Algorithms M.....„...~.~........~~.~~.~...~ 74

33.4 Pitch \latching —.::••»*•••••»•••—»*•*•———••—••*••—»•••••••*——••*»••••••••»'••—*—*' 7o

3.4 CIRCUIT LAYOUT COMPACTION 78

3.4. l uata structures».................................«.«..«..............<...........»..•.»»••'»»*« '^

3.4.1.1 r loor and (telling ••..••••M...M..M...M.....M...M...M Ij

3.4.1.2 Coarse Grid Structure MMM.MM.M...MM......MM.M.MM.MMM.MM...M.M..M.MMMM 80

3.4.13 Permanent and Non-permanent Arcs ..~~....~.....~~.-.~~...~~....~~~. 83

3.4.2 Initialization ~..~.~.~...~..~.~~~~.....~...~~~.~.~..~.~~...~".~~.~~.~..~~.~ 84

3.4.3 Cluster Selection - 84

3.4.4 Cluster Placement~..~...........~..~~~.~~....~~.~~.-...~.....~~.~~. 85

3.4.5 Updating the Constraint Graph ~..........~„.~~.~.~...«.....~...~~....~~.~~.~ 91

3.4.6 Optimizing the Connections ~...~~.~.............~~...~.~...~~...~.~..~~...~.~.. 95

3.4.6.1 Sliding Connections ,.~.~.~..~....„~~~~~....~~.~...~~.~~.~~.~~~~.~~.~ 96

3.4.6.2 Automatic Jog Introduction MMM.MM.MM.MM.MM.MM.MM.MM.MM.MMM.MM.MH 96

3.4.63 Merging Connections of the Same Net .._.._.._.._..„..._—__.._ 100

3.4.6.4 Reducing Wire Length —.. .. ~. .._..._ 101

3.4.7 Use of Simulated Annealing Technique _.._...„.._.._.._.._.._.._.._ 103

3.5 NON-TRIVIAL DESIGN RULES 104

3.6 HIERARCHICAL COMPACTION 105

3.6.1 Hierarchical compaction by routing _.._.._........_........_.._....._.._.... 106

3.6.2 Hierarchical compaction by abutment .._.._.._.._.._.._...„..._.._..._ 107

3.6.3 Combined Hierarchical Compaction Strategy .„..—.~.~—...~..~.~~. 107

IV

3.7 VARIATIONS••••.•••.••^•••^••••••••••.••••.•.^•.•••••••.••# * 12

3.7.1 Back-Tracking —« . H2

3.7.2 Inter-pass Processing^.....i.......^...^..............................—.———••• 112

3.7.3 Zone-Refining "withCritical-Path Shearing ~..~........~.........~-...~~...~. 113

3.8 APPLICATION AND RESULTS 115

3.8.1 Layout Compaction by Zone-Refining~.~-.~~.~.....~..~.~~ 115

3.8.2 Results on Benchmark Examples 120

3.9 SUMMARY ...;,:..:..:.—*—*——*•••—•*•••••—*•••—»•—*—"—••*»—•—•'•••"—"—"••" 120

4. CONCLUSIONS AND FUTURE WORK 128

4.1 EXTENSIONS AND FUTURE WORKS 128

4.1.1 Extensions to Mighty _..„..............«................•«•...—.......~——.........«.... 129

4.1.1.1 Multi-layer Routing ..~.~~*~.. 129

4.1.1.2 Other Extensions to Mighty «....^^^^......«M.« „...~...„........~...~..~. 131

4.13 Extensions to Zorro ..^WMWM^.^w^^.~^.«^.~—~~.^^.~~.~~.—™---—~ 132

4.2 CONCLUSIONS 133

BIBLIOGRAPHY 135

Appendix A: Mighty User's Guide .._.._.._.._...«... ~.-.~..-.——~~.~~ Al

Appendix B: Zorro User's Guide .—...—~~—~.~~. ~.~« ..«...—...-...- Bl

List of Figures

2.1 Routing area with obstacles. 17

2.2 The number of floating segments of several cases. ~................-.......~...~. 20

23 An example to show the routing order and the schedule .«......._.._ 23

2.4 Examples of weak modifications. ~...............................-....~.......~......~-.~.~ 31

2.5 Channel example routed by Mighty.—..........~-......~...~~~ 54

2.6 Burstein's difficult switchbox routed by Mighty. ~.................~...-..-.~.~ 54

2.7 Burstein's difficult switchbox routed by two other routers. _........._.... 55

2.8 Deutsch's difficult channel routed by Mighty.„............~...~~~-~-.~.~ 56

2.9 CMOS gateCNAND (NOR X2 X3 ... X16) (NAND XI X2 ~ X15)) rout

ed by Mighty. „....~....~„~....~..~..~.«.„...~~.~......................—~~~~~.~~ 56

2.10 Sensitivity of the algorithm on cost parameters. .._.._.._..._...._...._.... 57

3.1 Interference that needs to be resolved with a movement perpendicu

lar to the axis of compaction. _.._......._.._.._.._...«.._..._.._....._...._.._ 62

3.2 Zone-refining. MM.MM.MMM.MM....MM.MMM.MM.MM.MM.MM.MM.MM...M.MM.MM.MMM.MMMM 66

3.3 Example of box packing in progress. _.._.._.._............_...«.._...._.._.... 70

3.4 Example of box packing. .«~.~~...„~.~.-~...~~.~~.~.-..~......~.~~.-..~.—...- 75

3.5 Pitch Matching. ~ ~~. 77

3.6 The use of space-partitioning in constraint graph construction. „—..... 81

3.7 An example of placement. ~~-_._..~.~.~..~.-.~~.~.~~.-~.~~--...—.—..—.—. 89

3.8 An example of sub-optimal placement. ~~.~.~—-.—.——.._.._.._.._ 90

3.9 Constraint graphs with and without merging. -—.—.—.._...._.._.... 92

3.10 Sliding connection. -..~....~.....—............~._.._.._...._...«.... 96

VI

3.11 Two cases of automatic jog introduction. „...............................~~...~—. 98

3.12 Jogged wire bundles after zone-refining with automatic jog intro-

3.13 Merging contacts. M.MMM...M.MM...M.MM...M...M.MM...M.MM.M.....M...M.MM.M..M.MM.MM 101

3.14 Clean-up removes an U-shape connection. .«.........—................~..~.~~.~~~ 103

3.15 A single leafcell with compacted core. ~............................~....—~~~.~~.. 109

3.16 Assembly of compacted leafcells. ..MM...M...M........M.M......M..M.MM.M..M.MM.MM 110

3.17 Completed hierarchical compaction of cell assembly. .„.............~.....~.~ 111

3.18 Results of layout compaction using zone-refining.~~~. 118

3.19 Results of zone-refining with a fixed-width constraint.~...~~.~ 119

3.20 Compacted result of mul4x4. ~................~..~.............................~.....~~~.~~ 122

4.1 An example of three layer routing by Angelar. ~........~........~...~.~~~.~.~ 131

Vll

List of Tables

2.1 Types of detailed routers«...«........«.......................«.........._.•.•»•».. 13

2.2 Routing of Burstein's difficult switchbox~..........-..~.~-.~~. 49

23 Routing of switchbox examples M.M.MMM....MM.MM...MM.MM...M.MM.MM.MMM.MM.MM 49

2.4 Dependence on the orientation of the routing area „........~~....~~~....—-. 50

2.5 Routing of Deutsch's difficult channel MM.M...M.....M...MM....M..~.MM.MMM.MM.MM 52

2.6 Routing of channel examples ~.......~.........~..................~—..._..„.........._.... 52

2.7 Routing results of channel examples M..........M...W........«.....~^.«^.~~...^.^~. 53

2.8 Beautification by post-processing—.....—.^.^..^.„M....«..~.~..«.M.MM~ 53

3.1 Run-times on different values of Kg—........_.....»......... 83

3.2 Run-time comparisons between Zorro1 and Zorro2—........................ 94

3.3 Comparison of two zone-refining approaches„............-....-..— 114

3.4 Results of the layout compaction MM.W.MMM.MM...M.M...M.MMM.M.MMM.MMM.MM.MM 116

3.5 Compaction of benchmark examples _...._.._..«..._......._.._..._.._...«.._ 121

3.6 Comparisons on benchmark examples MMM.M.MMMMM.MM.MM.MM.MM.MMM.MM.MM 125

1.

Chapter 1

Introduction

In a layout which defines the components that make up the electrical circuit to be

built, electrical elements are described as one or more polygons - in many cases simply

as rectangles. In MOS technology, the elements that are commonly fabricated are 1)

enhancement and depletion mode transistors, 2) wires to connect other elements, and

3) vias or contacts to make connections between different layers. Translating a circuit

description into a layout is a tedious and error-prone job. To be considered correct,

layouts must satisfy at least two checks. First they must represent the desired electri

cal circuit in the sense that all device sizes must be correct and the wires must form

the desired connections. Second, they must obey the layout rules dictated by the

manufacturing process, e.g. the minimum dimensions of elements and the minimum

spacing between them. The simplest way to produce a design-rule-correct layout is to

place components widely separated, but this increases the manufacturing cost and

degrades the performance of the resulting circuit.

As the number of circuit components on a chip increases, an integrated CAD sys

tem is needed to prevent an exponential increase in the required design time [23].

To reduce design complexity, mask layouts are commonly obtained by a sequence

of steps. The first phase is floor-planning during which the overall structure of a chip

is decided. The second phase is global and detailed routing in which all the intercon

nections are made between the placed blocks. The final step is compaction or spacing

which produces a manufacturable layout in a minimum area. Detailed routing and lay

out compaction are two important parts in automatic cell generation as well as in the

generation of a mask layout for an entire chip from symbolic design. Since each of the

above steps is so complicated that finding the global optimum in any one step is NP-

hard, most approaches are trying to find a good solution rather than a globally optimal

one.

Following a brief introduction of the new routing and compaction algorithms in

this chapter, the detailed routing algorithm and its implementation are described in

detail in Chapter 2. The goal of the routing algorithm is the completion of all the con

nections with a minimum number of vias and minimum wire-length. In Chapter 3, a

new layout compaction algorithm is introduced. The input is a symbolic layout, such

as a sticks representation. The output is a detailed layout in which all components are

placed as densely as possible while still satisfying the geometrical design rules. The

goal of this algorithm is to minimize the overall area of the layout. Finally, conclu

sions and extensions are given in Chapter 4.

1.1. DETAILED ROUTING BASED ON INCREMENTAL WIRING MODIFICA

TIONS

In slicing-structure designs, for example, standard-cell designs, all detailed rout

ing can be performed by channel routers. However, for the macro-cell design style and

for routing problems where the routing regions are irregular, so called "two-

dimensional" routers, rather than channel routers, are necessary. In this section, a new

routing technique that can be applied for general two-layer detailed routing problems

including switch boxes, channels, and partially routed areas, is described. The routing

regions that can be handled are very general; their boundaries can be described by any

rectilinear chain of edges, the terminals can be on the boundaries of the region or inside

it. and this region can contain obstructions of any shape and size.

The input is composed of a routing area and a net-list. The routing area is given

as a rectagon possibly with obstacles through which wires can not pass. A net-list is a

list of all terminals (pins) to be connected and of their locations. The output is a list

of wires and vias to form all the necessary connections within the routing area.

Most of conventional detailed routers do not allow backtracking so that once a

path is implemented as an interconnection then this connection can not be modified

later. These routers try to predict where congested regions are and which nets are

difficult to connect and give priorities based on this estimate. Of course, the estimate is

only approximate, and problems may develop anyway and force the router to use

additional rows and/or columns. In addition, some of the interconnections may be

unnecessarily far from being optimal with respect to their length and number of vias.

Several approaches include backtracking or routing modifications. Since connect

ing a path is not final but the path can be modified later, these routers can concentrate

on performance issues such as wire-length and via minimization, as well as a comple

tion of connections. Only a few detailed routers have been published in this category.

Most of the approaches wait until a completely blocked net appears and use only one

type of modification which is rip-up and re-route. Furthermore, they assume single

layer of interconnection [91], or require human intervention [95].

The proposed technique routes incrementally based on the shortest path and

allows modifications and removal of nets when an exiting path is far from optimal or

when a path can not be found. The modification steps (also called weak modification)

relocate some segments of nets already routed to find a shorter path. The rip-up and

re-route steps (called strong modification) remove segments of nets already routed to

make room for a blocked connection and are invoked only if weak modification fails.

Since all the modification routines are symmetric - they are implemented in four direc-

tions. the routing results do not depend on the orientation of the routing region. The

history of weak modifications made is stored to prevent an infinite loop and to try new

types of modifications when the modification routine is called several times to find a

path of a net. The algorithm has been rigorously proven to terminate in finite time

and its complexity has been analyzed.

Many test cases have been run and on all the examples known in the literature

the router has performed as well as or better than existing algorithms. In particular,

the Burstein's difficult switch box example has been routed using one less column than

the original data. In addition, the router has routed difficult channels such as Deutsch's

example [17] in density and has performed better than or as well as YACR-II in all the

channels available to us.

To route long channels or highly irregular routing regions, global information is

used during the shortest path searching. The idea is to guide the selection of the paths

by placing pseudo-pins inside the routing region for a number of critical nets. A linear

assignment algorithm based on matching of a bipartite graph is used to minimize the

sum of costs in placing the pseudo-pins. This scheme adds some global information

about the routing region to the maze routing phase.

Future work includes the extension of this approach to routing of multi-layer

routing regions of macro-cells and printed circuit boards, and to routing of sea-of-

gates. Extending this algorithm for multi-layer (more than two layers) routing of

various wire-width nets is straight-forward; however, the run-time may be consider

ably increased, since finding a shortest path with various wire-width in multilayer

routing area will take a great deal of time. The main focus will thus be on the

efficiency of the algorithm. The pseudo-pin generation routine must be extended to

handle routing areas that have very irregular shapes or that contain many obstruc

tions.

1.2. TWO - DIMENSIONAL LAYOUT COMPACTION USING 'ZONE REFINING'

Layout compaction plays an important role in the automatic or semi-automatic

generation of integrated circuits. Fully automated layout systems gave discouraging

results when compared to manually packed designs [92]. Still automation is necessary

for its speed, and for getting "correct-the-first-time" designs. Symbolic layout, for

which compactors are very important, has been used for productivity increase and

technology independency. The automatic design of any electrical digital circuit consists

of two major phases. In the first phase, the designer builds the circuit from abstract

blocks such as gates, registers and latches. The result of the first phase is usually

schematic diagram or a description of circuit blocks and their interconnection. The cir

cuit description is logical in nature. In the second phase, the circuit is built from

chosen modules, which are fully determined in size, shape, and internal structure.

When the library cells are stored in symbolic form, it is not necessary to store

several cells for each logic block which have different output power and sizes. Instead,

the user may set the output power by adjusting the size of each device, and then run a

compactor to produce a compact cell in a desired shape.

Layout compaction consists of rearranging the geometries of a design with limited

topological modifications to generate a layout that satisfies all the design rules and is as

compact as possible. This is a very tedious and time consuming task that is preferably

off-loaded to automated procedures. Furthermore, conventional algorithms cannot yet

match the quality of layouts produced by human designers.

The most general form of compaction involves moving the geometries of the

design in the horizontal and vertical coordinates simultaneously. The problem of gen

erating a correct layout of minimum area with this set of moves has been shown to

belong to the class of NP-hard problems. For this reason, most of the compactors pro

posed in the past decompose this 2-dimensional problem into an alternating sequence

of independent one-dimensional compaction steps [4, 37]. However, one-dimensional

algorithms are unable to recognize situations where small movements of a component

in one dimension could significantly affect the amount of compaction possible in the

perpendicular dimension.

Several two-dimensional approaches have been published. One approach starts

from a totally collapsed layout and removes the spacing violations one by one [81].

Another approach transforms the compaction problem to an integer programming

problem [45]. A third method is based on simulated annealing techniques. All these

methods have exponential complexity on the number of components in the layout and

are very expensive in CPU time [13].

A new algorithm for two-dimensional compaction has been developed, which

combines a generalized one-dimensional compaction procedure with sophisticated

lateral movements of the elements to be compacted. These lateral movements will

'shake* the individual components into a more densely packed arrangement. The tech

nique bears a strong similarity to the technique of 'zone-refining' used in the

purification process of crystal ingots [72]. Individual circuit components or small clus

ters of components are peeled off row by row from the precompacted layout, moved

across an open zone, and reassembled at the other end of this zone in a denser

configuration. In this process, both coordinates of the moved components are altered

and jogs may be introduced in the connecting wires between them to produce addi

tional flexibility for placing components into optimal positions. The constraint graphs

in both the x- and y-direction are used and updated concurrently.

The current implementation of compaction by zone-refining can handle NMOS or

CMOS technology. For efficient use of area, it can merge/overlap contacts or wires

belonging to the same electrical node. It can also bend wires automatically, and can

shorten the wire length during compaction.

Since the zone-refining process requires a lot of local movements, the constraint

graph modification takes most of the CPU time. Data structures and mechanisms are

developed to handle several metal layers, and to reduce the computing time. Solving

the longest path problem on constraint graphs takes usually less than 3 percents of the

total run-time, because only a small number of clustered components are moved at

once. An efficient constraint graph generation is possible by an efficient search of pairs

of components to be constrained. The most efficient and natural way of neighbor

search is to access components from their x/y-coordinates. In the latest version of

implementation, all the components are attached on space cells divided by coarse grid.

With this grid approach, searching time is bounded by a constant and sorting time is

linear to the number of components provided components have finite size; whereas in

general, sorting time is 0(n log n) and searching time is 0(log n) where n is the

number of components considered. As a consequence of the new data structure, run

time has been reduced to 1/5 to 1/10 of that of the first implementation.

The pitch-matching of cells is important in standard cell design or when connec

tion by abutment is desirable. If each cell is independently compacted, a large routing

area may be needed between the cells. By adding more constraints during compaction

this routing area can be reduced. The current implementation of zone-refining can gen

erate layouts with desired width or height; however, placing terminals at proper posi

tions to make connections by abutment is a more difficult problem. This problem can

be avoided by compacting all the cells at once. More study is necessary to handle gen

eral cases.

Merging and bending wires are essential for an efficient use of area. Merging of

equi-potential elements may save 20 to 30 percent of area; however, this may generate

partially overlapped components which must be removed before manufacturing.

Bending wires by automatic jog-generation may save 5 to 10 percent of area; however.

this may result in unnecessary "U-shape" wires which must be removed to obtain good

electrical performance.

In the current implementation, all the connections are kept through the zone-

refining process by stretching or shrinking wires. An alternate approach for moving

elements is rip-up and re-routing, in which all the wires connected to the elements to

be moved are removed, and then re-routed after the desired movements. In this

approach, the re-routing must be guaranteed by calculating the exact routing space

before each movement. The exact calculation of the routing space is not a simple

operation [63], and more study is necessary.

Future work includes pitch-matching of separately compacted cells in hierarchical

design environment, clean-up routine to remove "U-shape" wires and partially merged

contacts, exploring other algorithms of placements of elements in the zone, handling

non-trivial design rules, and extensions to handle 45 degree wires.

2.

Chapter 2

Detailed Routing

Based on

Incremental Routing Modifications

Channel routers have been most successful in performing the detailed routing

task for a variety of design styles. However, for the general macro-cell or building-

block design style, the routing regions cannot be defined so that a channel router can

route all of them unless some restrictive assumptions are made on the shape of the

cells and on the placement technique used [35. 43]. In our approach to macro-cell

placement and routing, we have to place and route cells whose bounding boxes are not

rectangles and we do not wish to enforce slicing structures to capitalize on the power

of simulated annealing algorithms. Hence, we are confronted with the problem of

routing regions with irregular boundaries and non convex shapes which are delineated

by polygons. This approach would not be feasible if a powerful two-layer two-

dimensional router were not available. This chapter describes an algorithm and its

implementation that allows a very efficient routing of any two-dimensional region

with pins on or inside the boundaries of the region. Because of the interest of designers

in modifying incrementally their design and in performing part of the routing manu

ally, we have developed the router to take care of partially routed regions.

This chapter is organized as follows. Previous work is described in Section 2.1.

The problem formulation and general approach are described in Section 2.2. Section

2.3 outlines the main ideas of our approach and the description of algorithms. The

10

computational complexity of the algorithm is analyzed in Section 2.4. Section 2.5

describes the partitioning of large problems. Section 2.6 contains other variations of

the basic algorithm used for channel routing and special cases. In Section 2.7, routing

results of switchbox and channel examples are evaluated. In Section 2.8. the sensi

tivity of the algorithm on parameters is discussed. Finally, summary is given in Sec

tion 2.9.

2.1. PREVIOUS WORK

A brief survey of detailed routers published can be described as follows.

The first detailed router reported in CAD of IC is probably the maze router stu

died by Lee in 1961 [55]. The router implements connections net by net. This router

starts a search from a starting terminal and the frontier of the search-region expands

like a wave front until it hits the target terminal. The strongest point of this router is

that it can always find a path if there exists one. The weak points are that it is rather

slow and that the routing results strongly depend on the routing order. This approach

can be extended to a line-search algorithm [29, 30].

The second routers are greedy. The greedy approach is suggested by Rivest and

Fiduccia [75] and modified by other authors [50. 62. 94]. In this approach, connections

are implemented column by column usually from the left-most column to the right

and the routing results may depend on the scan direction.

The third approaches are channel routers using track/row assignments [73,110].

These routers assign each net to a row/track and then implement vertical connections.

Most of the routers in this category assume that routing area is a rectangle and that

terminals are on top and bottom edges of the rectangle. Some routers [73] are extended

11

to handle terminals on three edges of the routing area.

The fourth approach that gives good results is hierarchical routing [ll]. In this

approach, the routing area is divided into several subcells and global paths between the

subcells are determined for all the nets that have terminals in more than one sub-cell,

then each subcell is divided again and routing paths are determined at a more detailed

level. This hierarchical dividing and routing continues until all the interconnections

have been explicitly determined. The major drawback of this approach is that at each

stage the decision is made ignoring the information contained at lower stages.

The fifth approach is rule-based. Several rules can direct the router [65]. A force

directed router can also be seen as a rule-based system [26]. In this case, attracting

and repulsing rules decide the routing path.

The sixth approach is derived from knowledge-based expert systems [40]. In this

approach, hundreds of routing rules carefully chosen determine where the interconnec

tions will be placed. However, trying not to impede complete connections takes so

much run-time that this approach can handle only small routing problems.

The final type is rip-up and rerouting. Since the proposed router belongs to this

class, rerouting methods are described in detail later in this section.

Some of these are switchbox routers [25. 33. 40. 62. 65], but the quality of the

results or the running time needed by the routers have not been fully satisfactory.

The most successful switchbox router. Weaver [40, 41], is based on Knowledge-Based

Expert Systems (KBES). It includes many experts and several hundred rules to guide

the routing. For this reason, running time is very long and the time needed to develop

the program was also very long.

Table 2.1 summarizes well known detailed routers into a few types and compares

them in several respects - routing area, directionality in routing. CPU time, capability

of modifications. Routing area is the type of routing region the corresponding router

12

can handle. A channel is the most restricted form of routing area which has fixed pins

(terminals) on top and bottom edges of the region. A switchbox may have pins on all

four edges of the rectangular routing area. Rectilinear polygonal region is the most

general form of routing region and there may be obstacles in it. Directionality shows

how flexible to use each layer in either direction (horizontal or vertical) to make neces

sary connections. CPU time shows efficiency of the algorithms. Dynamic modification

is the capability to modify existing connections.

13

Router

tvpes

routing
area

directionality
on each layer

CPU

time

dynamic
modifications

Maze

(Lee 61. Higbtower 69. Hsu 82) poly. flex. mod. no

Greedy
(Rivest 82. Hamachi 84. Hsieh 85) box poor-mod. fast no

VCG based

(Yoshimura 82. YACR 85) chan. poor-mod. fast no

Hierarchical

(Burstein 83) box poor-mod. fast no

Rule based-

(Marek-Sadowska 85. Hasan 87) box poor-mod. mod. no

KBES

(Joobbani 85) box flex. slow no

Reroute

(LAMBDA 83. MIGHTY 86) poly. flex. mod. yes

chan. : channel

box : switchbox

poly. : rectilinear polygonal region
flex. : flexible

mod. : moderate

Table 2.1 : Types of detailed routers

In all cases except the last row in the table, the routers tried to predict where cong

ested regions were and which nets were difficult to connect and gave priorities based on

this estimate. Of course, the estimate is only approximate and problems may develop

anyway and force the router to use additional rows and/or columns. In addition, some

of the interconnections may be unnecessarily far from being "optimal" with respect to

their length and the number of vias.

14

Only a few rerouting algorithms have been reported, mostly for the routing of

printed wiring boards. In 1974. F. Rubin [78] suggested an iterative process where all

failed connections are routed allowing crossings with a substantial scoring penalty and

then the connections with the greatest number of crossing are ripped up. Later, this

approach has been extended using penalty functions by R. Linsker [60]. In 1977, P.

Agrawal and M. Breuer [2] suggested a backtracking algorithm which can possibly

enumerate all the alternate connections for each net. However, complete backtracking

to find an optimal routing is so complicated that it can be used only for small-sized

problems. In 1982. W. Dees and P. Karger [16] reviewed rip-up and rerouting tech

niques and suggested two types of modifications - rip-up and shove-aside. Shirakawa

et al. [91] has reported a rerouting scheme for single-layer printed wiring board with

two-pin nets only. Recently Suzuki et al. [95] reported that the Lee algorithm [55] is

most useful and powerful when applied to interactive rip-up and reroute. However,

no published results are available, to the best of our knowledge, on automatic general-

routing-modification and rerouting for two-layer detailed routing with polynomial

worst-case complexity. Most of the previous rerouting approaches have one or more of

the following weaknesses.

1 Rip-up and rerouting is the only modification routine while relocating part of

existing connections can frequently solve the problem [60. 78. 91. 95].

2 Modification is tried only after a completely blocked net appears. But there may

be many "bad" quality connections at this time [16. 95].

3 Modification is interactive, and human intervention is necessary [95].

4 Rip-up techniques can be potentially uncontrollable when considering computa

tional complexity [2.16].

5 The focus is on the routing of two pin nets on a single layer of printed wiring

board [2.16. 91].

15

2.2. FORMULATION OF THE PROBLEM AND GENERAL APPROACH

The new router is based on an incremental routing technique that favors nets

with several pins widely scattered in the routing region. The novel part of the algo

rithm is the modification of connections already made for the nets in the routing region

to allow blocked or "bad" quality connections to find better solutions. These

modifications are of two kinds: a weak modification step pushes aside existing connec

tions without removing them to find a shorter path or to make room for a blocked

connection', and a strong modification step, invoked when weak modification fails,

removes blocking connections. Thus, we have concentrated our attention on develop

ing a router which is an "expert" in modifying and rerouting a partial solution if prob

lems occur. Note that in our opinion, the most distinguished difference between a

human expert and existing routing tools is the ability of rerouting or modifying the

existing connections.

The router described in this chapter implements a general incremental routing

modification strategy for rectilinear polygonal routing regions. This router has

obtained excellent results on a number of test cases, outperforming not only existing

two dimensional routers but even channel routers when applied to "standard" chan

nels. Hence. Mighty can be considered a general purpose two layer router, being able

to route any irregular regions with floating as well as fixed pins on the boundaries of

the region. Mighty works on symbolic grids and is an integral part of MOSAICO [7], a

general macro-cell floor planning, placement, and routing system where it is used to

route L-shaped and staircase-shaped channels.

The terms used throughout this chapter are defined as follows.

channel or routing area: A rectagonal (rectilinear polygonal) region between

circuit blocks that can be used for interconnections (for example, see Fig. 2.1).

16

pin: A terminal of a cell facing the routing area, which is to be connected to a

set of other terminals. All pins are on grid points because the router works on sym

bolic grids.

net: A set of pins to be connected and their associated connections.

component: A set of pins and wire-segments of a net which have been inter

connected. Each unconnected pin is a trivial component.

horizontal (vertical) segment: A piece of wire running horizontally (verti

cally) on a layer described by two end points. Nets are connected by wire segments.

track or row: The symbolic routing area in the horizontal direction.

column: The symbolic routing area in the vertical direction.

contact or via: An interconnection of two segments on two different

layers, placed at the row and column location the segments have in common.

path: A set of vias and segments implementing the interconnection between two

components of a net.

*

*r
Va

<ft

¥:

* X

X ¥:

X

* ¥:

Figure 2.1. Routing areawith obstacles.

17

V/.
tA : obstacle

X : pin

The routing area is a rectilinear polygon with two layers of interconnection as

shown in Fig. 2.1. Pins may be inside or on the boundaries and some of them may be

floating on the boundaries. There may beobstacles of any shape and size in the routing

region.

The problem we have to solve is:

Connect all the components of each net in the routing region such that

each available grid point on each layer is used by at most one net.

The primary objective is to complete the connections using minimum routing area.

The secondary objective is to minimize the number of vias and the wire length of each

net. Other factors such as preference of one layer to the other or consideration of

18

coupling with neighboring nets can be included by appropriately setting cost parame

ters.

23. THE ALGORITHM

The main algorithm is described in Section 2.3.2. The detailed algorithms are

described in the following sections. In the description of the algorithms, all the

parameters begin with a capital letter.

2.3.1. Data Representation

Efficiency was the major concern for the current implementation. To represent

the routable area, a grid-map has been used for each layer. A grid-map contains all

available symbolic grid points on a layer. Pins are also marked in another grid-map

for easy access of their locations during modification of nets. Paths are kept as a

linked list of segments for each net.

23.2. The Basic Algorithm

The overall flow of the main algorithm is presented in this section.

The basic algorithm consists of four main parts: a path finder that searches for a

shortest (minimum cost) path among components, a path confirmer that implements a

particular path proposed by the path finder, a weak modifier that relocates existing

interconnections to find a shorter path when the existing one is "far" from optimal.

19

and a strong modifier that removes some connections from the routing region to allow

the completion of a blocked path.

As a pre-processing step, the algorithm extends all the pins on the boundaries of

the region inside by one unit to avoid possible connections along the boundaries of the

routing region. Then the path-finding phase begins. The nets are processed in the

order they are entered. From each pin of the net we start a maze router search to find

the minimum-cost path that interconnects any two pins of the net. assuming that all

the other nets are not present. The cost used to direct the search is based on the model

in which a layer is mainly used for horizontal interconnections and the other for verti

cal interconnections. For example, extension of a path in the vertical direction on the

horizontal layer, while possible, is penalized. Changing a layer is also penalized to

minimize the number of vias. As soon as a path connecting two pins of the net is

found the search is stopped. The path connecting the two pins is recorded on an

ordered list organized in increasing cost. Note that the path is not finalized yet.

When all the nets have been processed by the path-finder, the path-confirmer

takes over. The paths on the ordered list are popped and examined. If the path is

feasible, i.e. if no other interconnection has occupied the same locations as the present

path, the path is implemented. Otherwise the path finder is invoked again and a feasi

ble minimum-cost path connecting any two unconnected components of the net is

sought. Note that when this path is looked for. the interconnections already laid out

are taken into consideration. Because of the paths that have been implemented before,

the new path of the net under examination may be far from the optimal solution. One

of the main ideas of our algorithm is to make sure that poor intermediate solutions are

not accepted. Hence, if the new path is found to be unacceptable, the modification

phase is entered.

20

It is important to choose a good criterion to classify paths as acceptable or unac

ceptable. The criterion we selected is based on the number of "bends" that the path

has to include. In particular, we use the following definitions.

floating segment: a segment which is not connected to a pin or a pseudo pin

(see Fig. 2.2).

good path: a path which has less than n floating segments, (n = 3 to 5 seems

to be a good range to use.)

bad path: a path which is not a good path.

0 0

(a) (b)

r r r
1

(c)

2

(d)

z

(e)

WMMMHMB

3

(0

_b
c_

4

(g)

Figure 2.2. The number of floating segments of several cases.
With n~3, (a) to (e) are good paths, while if) and (g) arebad paths.

Different criterion for good path can be used. The above is chosen since it is sim

ple and can be checked efficiently.

21

If a path is found and it is a good path, then it is scheduled again. Otherwise, the

modification phase is entered. The weak modifier is first called to push other nets

around to make a good feasible connection possible for the net under consideration. If

no solution is found, then the strong modification phase is entered. Each of these

implies a modification of the existing interconnections - some interconnections have to

be either pushed away or removed. In both phases, a variety of alternative "good"

interconnections for the net under consideration are examined, the cost of each solution

is computed considering the cost of relocating or removing existing nets, and the

minimum-cost solution is selected. If such solution is above a preset limit, then the

router ends its search with a failure. The process is iterated until either a solution is

found or a failure is reported.

To show the schedule and routing order, a simple example is shown in Fig. 2.3.

The cost of a via is assumed to be 30. while the cost of a unit length of wire is 2 (if in

preferred direction) or 50 (if in non-preferred direction). Since the cost of a via is

large, straight connections are made first and paths with two vias are implemented

last. In Fig 2.3.(a). the minimum-cost path of each net is found as shown by the dot

ted lines, and all the three nets are scheduled in the increasing order of their costs.

Note that net 2 and 3 have three components and that shortest paths connecting any

two of the three components are found and scheduled. In (b), net 2 is popped and its

path is implemented. In (c). net 2 has two components, so a shortest path which

interconnects the bottom pin with the partially routed net is found and net 2 is re

scheduled. In (d). a path of net 3 has been implemented. In (e). net 3 is re-scheduled

with a shortest path connecting its two components. In (f). net 2 is completely routed

and three nets are in the queue. In (g). net 3 is completely routed and two nets are in

the queue. In (h). net 1 is completely routed. However, the path of net 4 is com

pletely blocked in the figure. Simple rip-up and reroute does not help in this case as

shown in Fig. 2.3 (i) and (j). In (i). the blocking connection (net 3) has been removed.

22

and net 4 is routed as shown in (j). Now net 3 is blocked and the pin on the right-side

edge can not be connected to other pins of net 3. Since Mighty uses weak

modifications, the via of net 3 is moved by one grid space to the right and a path for

net 4 is found, as shown in (k). In (1). the routing is completed and the queue is

empty.

net 2 3 1 4

cost 8 38 70 72

4

2

r

i

c . --

nR
r*.--. j

2 3 1

(a)

4

1

3

2

net 3 2 1 4

cost 38 50 70 72

4

2

• I

1 • | «fc

1-...V.V-JCZ
i__

nnR-J
2 3 1

(c)

4

1

3

2

net 2 3 1 4

cost 50 66 70 72

net 3 1 4

cost 38 70 72

~~»—
1 i L—

1 •

4

1

3

2

2 3 1

(b)

net 2 1 4

cost 50 70 72

net 3 1 4

cost 66 70 72

J i !c
• |
• : "i

I—i f——
t •

' ' ' 1 *

2 3 1

(f)

4

1

3

2

23

net 1 4

cost 70 72

V

1

r
i

i

-HT5
%

^"ar

^

2 3 1

(g)

net 4

cost 108

4

1

3

net 4

cost 72

Figure 23. An example to show the routing order and the schedule,
with shortest paths and their costs.

23.2.1. Overall algorithm

The precise algorithm is as follows.

xnightyO

/* Mark obstacles and pre-routed nets */
pre-processing:

/* Initially, schedule all nets V
for(i = 1; i ^ num_nets: i ++)

if(net i has more than one component)
{

find a shortest path. path[i]. connecting
any two components of net i;

if(path[i] != <f>)

Schedule net i with pathfi] in increasing
order of the path length;

}
else
/* There exists a net that can not be connected

without changing the routing area */
{

report failure:
exit:

}
}

/* Main routing loop */
while(schedule is not empty)
{

i = the first net in the schedule:

if(path[t] is feasible)
{

/* implement path[i]V
confirm_path(i):

}

if(net i has more than one component)

find a shortest path path[£]connecting
any two components of net i:

if(path[i]= <f> OR (path[i] is a bad path))

25

}

path[i] =weak_modification(i. path[i]):
if(path[i] != <f>)

Schedule net i with path[i] in increasing
order of the path length:

else

«
strong_modification(i):

26

/* All nets have been connected. Vias and wire-length can be reduced further.
and metal maximization can be done if necessary */

post_processing():

Now all the important functions used in the above algorithm will be described.

233. Finding a Shortest Path

The routine that finds a minimum-cost path is a modification of Lee's algorithm

[55]. The major extension is that our algorithm can find a minimum-cost path con

necting any two of the components of each net, i.e. the minimum-cost path that can

reduce the number of components by one. Hence it is not necessary to specify two

points (or two components) before finding a path, but the path-finder makes use of all

the existing pins and connections.

Since the search for the minimum-cost path is started from every component of

the net. component number as well as the cost has to be propagated. In the data struc

ture, every grid point p of the routing area can contain two integers, p.net and

p.component. If p is a point of a confirmed path, p.nel contains the owner net. Oth

erwise, p .net is used to store the negative value of the cost during find_path. All the

27

connected pins and wires of a net belong to the same component.

The algorithm consists of two parts, schedule and search. At the beginning, the

grid points belonging to a pin or implemented connections of the net being processed

are scheduled with cost value 1. Then, the search starts from the first grid point pf in

the schedule, in which the cost value of the point is marked and all available neighbor

grid points pn are scheduled with cost = cost ofpf +distance (pj . pn). where distance

is the incremental cost depending on the direction, the layer, and change of layers. The

frontiers of searched grid points are expanded like a wavefront from all the com

ponents of the net. It should be pointed out that the path found by this approach is

frequently shorter than a minimum-path between two specified points, since the search

is triggered from all the confirmed wire-segments as well as pins of the net. When

cost = c. the algorithm marks all the free grid points reachable at cost c from any

component of a net t. We set all the cost parameters as even numbers, so that we can

get an integer even after dividing the cost by 2 (see the algorithm description). The

desired result comes from the following theorem.

Theorem I. If there exists a path of length less than Max_cost. then the find_path

algorithm finds a minimum-cost path connecting two components of net i.

proof: When cost is equal to c. the algorithm has marked all free grid points reachable

from each component of net i with cost <c and part of the grid points reachable with

cost = c. If two different components (wave fronts) meet at a grid point, then a path

is found and the cost of the path connecting the two components is calculated. Let

touchcost be the half of the cost of the path found. If a path is found at touchcost = c

for the first time, then there does not exist a path with cost < 2 (c - l). (Otherwise

we had to find the path at touchcost = c - 1.) Since all the cost parameters are even

numbers, the minimum possible cost is 2 c. and the path found is an optimal one. If

28

there does not exist a path of length less than Max_cost. then the algorithm can not

find a path until cost is increased to Max_cost/2 and the algorithm returns nil (0).

2.33.1. Algorithm Find_path

This algorithm finds a minimum-cost path connecting any two components of a

net. In the algorithm, the searchq contains all the scheduled grid points in increasing

order of costs, with their cost values and component numbers.

find_path(i)

/* Initialization and schedule */
cost = 1:
schedule all the pins and existing connections of net i in searchq:

/* Search for a path.
Max_cost is a user defined parameter V

while(cost < Max_cost/2)
{

if(searchq has not a point p of cost)
{

cost = cost + 1:

continue:

}
else

{
/* get the first point p from searchq */
pop p with component comp from the searchq:

if(point p is searched already with less cost
by the same component)

}
else if(point p is searched already

by a different component)
/* A minimum-cost path has been found */
{

find the path. path[t]. by backtracing:
return(patl

else

{

continue:

th. patl
ih[i]>.

}

/* Mark the point p as searched */
if(p .net = <f>)

p .net = - cost:
p .component = comp:
/* schedule its neighbors */
for(each neighboring point s of point p)
{

if (s .net = <f>)
{

/* schedule s */
add s in searchq with comp

and cost + distanced j):
}
/* if s is searched by another component.

then a path is found */
else if(s.component 5* p .component

ANDs .component 5* <f>)
{

/* A path is found which may or may not
be a shortest path */

touchcost = (cost of p + distance^ ,s) +
cost of *)/2:

/* schedule 5 V
add s in searchq with comp

and touchcost:

/* Path does not exist */
return(<f>):

29

23.4. Confirmation of a Path

In the basic algorithm, when net i is processed according to the schedule, if all

the points of path[i] are available (they have not been assigned to another net)

• confirmjpath is called. The routine confirm_path(i) implements the path of net i

by assigning the path[i] to net i. and by merging the two components just connected

into a big component.

30

2.33. Weak Modification

As discussed above, during weak modifications, part of the existing paths can be

relocated while maintaining all the existing connections. After a minimum-cost path is

found, the path is evaluated as either a good path or a bad path according to the

number of floating segments (see Fig. 2.2). If the path is good, it is scheduled and pro

cessed. Otherwise, weak modifications are attempted to find a better solution.

We use three types of weak modifications {unit__push. Jump_push and

point_push), as shown in Fig. 2.4. Each of these modifications is in four directions(

down. up. left, and right). For the sake of simplicity, only downward modifications

are shown in the figures.

31

(a) unitpushi down)

(b) jumppushi down)

(c) pointpush{ down)

Figure 2.4. Examplesof weak modifications

32

In the algorithm, described below. weak_modification calls modify. and modify

calls tryunitdown. etc. The routine tryunitdown finds a blockage, and if the blockage is

modifiable, calls unitdown which actually tries to push the blockage a unit grid space

downwards and returns YES if successful.

The routines Jumppush and pointpush are implemented in a similar way. and

their algorithms are not included. Jumppush differs from unitpush in that it can move

segments over the segments of other nets. Pointpush is similar to unitpush , but is

more powerful in that it can change the layer of a segment at the blocked point if it is

necessary. Unitpush and pointpush are recursive so that they can push a stack of nets

(for example, two nets are modified in Fig. 2.4(a)).

One of the difficult issues in rerouting or routing-modification is how to prevent

oscillations. To prevent oscillation in weak modifications(push/jump up and down or

left and right can be repeated forever). we used history. We ordered the twelve types

of weak modifications as shown in modify. If one type of modification did not solve

the problem, then we make sure that the same modification is not called again unless

one of the related nets is rerouted by a strong modification or one more connection is

made. The element on the i-th row and the j-lh column of the history matrix con

tains the type of weak modification to be tried if net i calls weak modification to push

net j. When one more connection is made in confirm_path for net i or when net i is

affected during strongjnodif ication. all the elements on the i-th row or i-th column

are reset so that all types of weak modification can be tried later.

weak_modification(i. path[i])

/* i is a net. path[i] is a shortest path of net i */
/* Save current paths */
for(j = 1: 3 ^ numjnets: j ++)

savedpath[y]= path[y]:

/* find_cost returns the sum of costs of path[l..num_nets] */
totalcost = find_cost():
while((type = modify(i)) 9* <f>)
I

path[i] «= find_path(i):
if(path[t] != <f>)
{

newcost = find_cost():
if(newcost < totalcost)
{

/* better solution is found */
totalcost = newcost:

for(j = 1: y ^num_nets: y++)
savedpath[y] = painty];

}
/* if pathfi] is good then break.

otherwise try more modifications. */
if(path[t] is a good path)

break:

I
}

/* Choose the best path found */
for(y = 1: y" < num_nets: j ++)

path[y] = savedpath[y]:

/* reschedule affected nets */
for(each modified net k)

reschedule(k);

return(path[i]):

modify(i)

find the two closest blocked pins pi and p2 of net i

if(tryunitdown(pi. p2, i))
return(Unitdown = 1):

if(tryunitup(pi. p2. i))
return(Unitup = 2);

if(tryunitleft(pi. p2. i))
return(Unitleft = 3):

if(tryunitright(pi. p2. i))
return(Unitright = 4):

if(tryjumpdown(pi. p2. i))
return(Jumpdown = 5):

if(tryjumpup(pi. p2, i))
return(Jumpup = 6);

if(tryjumpleft(pi. p2. i))

33

return(Jumpleft = 7);
if(tryjumpright(pi, p2. i))

return(Jumpright = 8):
if(trypointdown(pi, p2, i))

return(Pointdown = 9):
if(trypointup(pi, p2, i))

return(Pointup = 10):
if(trypointleft(pi, p2, i))

return(Pointleft = 11):
if(trypointright(pi. p2, t))

return(Pointright = 12):
return(<£);

tryunitdown(pi, p2, i)

/* pi and p2 are blocked pins of net i.
If possible, move a blocking segment one grid space
in the downward direction and update history */

/* find a blockage */
scan the vertical layer of the routing region downward from pi

until a blockage b is found:

/* Let the location of the blockage be (x. y) */
if(b is a modifiable net AND history[i. b] <Unitdown)
{

if(unitdown(i. b. x, y))
/* The downward push was successful */
history[i. b] = Unitdown:

else
/* Same type of push can not be repeated */
history[i. b] « Unitdown + 1:

}
repeat the above for pin p2:

unitdown(i. b. x. y)

/* t is the blocked net.
b is the blocking net.
(x. y) is the grid point on which the blockage is found */

find the intervaK from xl to x2) of net b to be pushed:
if(there is a pin of net b on the interval)

return(NO):

34

find the blockages that prevent the move of the segments of net b
on the interval by one grid space downward:

if(there are no blockages)
{

move the segments of net b on the
interval by one grid space downward:

return(YES):

else if(there is asingle modifiable net n in the new blockage)

/* push the new blockage first */
if(unitdown(b. n . x. y+1))
return(YES):

}
else

return(NO):

35

2.3.6. Strong Modification

When weak modification fails to find a path, then strong modification is called.

If strong modification fails to find a path within the maximum cost limit, the router

reports failure and exits. Since the report includes the locations of failure, more space

can be added at the right position to complete the routing.

During a strong modification, we remove part of existing connections so that the

blocked net can be connected. First a minimum-cost rip-up path is found. Then all

the connections of the nets in the path are removed, and the blocked pins are con

nected. All the nets disconnected during the rip-up process are rescheduled.

The rip-up cost consists of the number of nets affected, the difficulty values of

the nets, the length, and the number of vias in the path. The difficulty values are zero

at the beginning. If connections of a net are removed during strong modification, the

difficulty value of the net is increased by Delta which is auser defined parameter. This

makes the same net unlikely to be removed repeatedly, prevents oscillations, and

allows to try a new path when strong modification is called several times to connect

36

the same pair of blocked pins.

To find an optimal rip-up path between the pins of a blocked net. we evaluate the

rip-up cost of all the straight, L-shaped and Z-shaped paths, and choose the

minimum-cost one.

strong_modification(i)

/* find a pair of blocked pins of net i */
find two closest pins pi and p2 of net i

which are not in the same component:

find a minimum-cost rip-up path connecting pi and p2:
/* Limit_cost is a user defined parameter */
if(rip-up cost ^ Limit_cost)
I

/* rip-up cost is too large */
report_failure():
exitO:

}
else

{
/* remove all the connections in rip-up-path.

reschedule all the affected nets. */
for(each net k in the rip-up path)
I

difficulty^]= difficulty!*]+ Delta:
remove all the connections of net k :

/* reschedule with zero cost and nil path */
reschedule(k):
clear_history(k);

}
while(net i has more than one component)
{

find a shortest path[i]connecting any two
components of net i:

if(path[iJ != <f>)
confirm_path(i):

else

strong_modification(i):
}
/* reset the i -th row and i -th column of history

which is used in weak modification V
clear_history(i):

37

2.4. COMPLEXITY OF THE ALGORITHM

In this section, it is proved that the algorithm given in Section 2.3 terminates and

that its run-time is bounded by a polynomial in the size of the input. Let the number

of pins be p. and let the number of nets be k. Let L be the complexity of finding a

minimum-cost path within the routing area. If there are m rows and n columns, then

clearly L = 0(m n). Furthermore, without loss of generality, we assume that m ^n

so that 0(m + n) = 0(n).

To find the computing complexity when weak modifications are used, a history

of the weak modifications is used. History is a k by k matrix. The element on i-th

row and y-th column of the matrix has a number which represents the type of weak

modification to be tried if net i calls weak modification to relocate net y. The 12

modifications are tried in the order listed in the algorithm in the previous section. If

the current weak modification fails to modify, then the next in the order list is tried.

Keeping the information of strong modification is a little simpler. Each net has a

difficulty value which is increased if the net is ripped-up during a strong modification.

Since this difficulty value monotonically increases whenever a strong modification is

called, the algorithm must terminate after a finite number of operations, since

Limit_cost is finite.

Theorem II (a) and (b) explore cases of successful routing, and Theorem II (c)

holds whether the routing is successful or not.

First we prove four intermediate results, and then state the theorem.

Lemma I. If strong modification is not called. (/> - k) connections complete the rout

ing.

38

proof: There are p unconnected pins initially, hence the total number of connected

components is p. After completion of routing, there will be k connected components.

Since each connection reduces the number of connected components by one. (/> - k)

connections complete the routing.

Lemma II. If no modification is used, each of the connections requires at most k L

operations.

proof: All the nets which have more than one connected component are in the queue.

Among them, those which are scheduled after the last successful connection have

feasible paths because all confirmed paths have been considered when finding the

paths, and others may not be feasible. Since there are k nets, all the scheduled paths

are feasible at most after k -1 failures. Hence, the saved path of the first net in the

queue is also feasible and one connection is possible at most after k find-paths.

Lemma HI. If strong modification is not used, the maximum number of weak

modifications is bounded by 0(& p n).

proof: First we show that at least one element of the history matrix is increased

within 2 n modifications. For any of the weak modifications(unitpush. jumppush.

and pointpush) in the directions of left or right, on each row of the routing area, the

same type of modification in the same direction can be successful at most (n - l)

times. Since we start the modification from the closest two pins of different subnets, 2

(n - 1) modifications are possible in the worst case. Similarly for the up or down

. modifications. 2 (m - 1) modifications are possible.

It is clear that the maximum sum of all the element of the history matrix is (J +

1) k (k - 1). where T is the number of weak modifications to be tried and is 12 in the

current implementation of Mighty. Note that the diagonal elements of history are not

39

used at all. because a net can not block itself. Each element of the matrix grows from

1 to (T + 1). Since clear-history can be called at most (/> - k) times by Lemma I and

each time 2 (k - 1) elements are reset to 1. the maximum number of weak

modifications is given by 2 n (2(k - l) T {p - k) + k (k - l) T). Since k <p. the

number of weak modifications is Oik p n).

Lemma IV. The number of operations necessary for one weak modification is bounded

by 0(* L).

proof: In the worst case, all k nets can be pushed during one weak modification. If a

moved net has more than one connected components, we need to do find-path and

reschedule the net.

Theorem n.

(a) If the algorithm completes the routing without calling any modification rou

tines, the computing complexity is bounded by Oik p L).

(b) If the routing is completed by using weak modification but no strong

modification, the worst case complexity of the algorithm is Oik2 p n L).

(c) If strong modification is used, then the algorithm terminates after at most Oik 3

p n L) operations.

proof:

(a): The proof follows from Lemma I and II. Since we need to make (p - k) connec

tions and each connection takes at most k L operations, ip - k) k L operations are

enough to complete the routing.

(b): From Lemma III. the maximum number of weak modifications is 0(£ p n). From

Lemma IV. one modification takes OU L). Hence the total number of operations

40

required in weak modification in worst case is Oik2 p n L). To complete the routing,

the complexity isOik2 p n L) + Oik p L) - Oik2 p n L).

(c): Let the limit of rip-up cost be C. and let the incremental rip-up cost be D. Then

the maximum number of calls of the strong modification is k p/ D\. Since C and D

are constants, it follows from (a) and (b) that the number of operations either to com

plete the routing or to report failure isOik3 p n L).

The bounds given above are worst case ones. Empirical results show that the

computing time is roughly Oimn) to Oiimn)15).

23. PARTITIONING OF LARGE PROBLEMS

Several other features are added to the routing algorithm based on the incremen

tal routing modifications described in Section 2.3. The most important one is the addi

tion of pseudo-pins to give global information to the maze routing phase in find_path .

Other features are explained in the next section.

23.1. Pseudo-Pins

When we applied the algorithm to long channels of irregular shape, we found

that the algorithm may spend large amount of time and find solutions that are not

satisfactory. For this reason, we developed an additional technique that has made the

application of the algorithm to large routing regions with irregular shape as well as to

long channels with many nets successful. The idea is to guide the selection of the

paths by placing "pseudo-pins" inside the routing region for a number of critical nets.

41

This scheme adds some global information about the routing region to the maze routing

phase.

For long channels such as the Deutsch's difficult example, we place pseudo-pins at

the column of maximum density. For wildly irregular channels, pseudo-pins are

added across the columns where the variation in width occurs. To guide the search

even further, pseudo-pins can be added at regular intervals away from the column of

maximum density or where the irregularity takes place. The placement of the

pseudo-pins is accomplished by examining the vertical constraint graph (see [110] or
[73] for the definitions) of the channel. Pseudo-pins are not real pins in that the net

being routed is not forced to go through them, but if it does not go through them the

path is penalized.

Note that the selection of where to insert pseudo-pins as well as their placement

is totally automatic in Mighty. No user intervention is required.

To describe the algorithm used for pseudo-pin generation, we need the following

definitions.

pseudo-pin: A pin temporarily added to give some global information to the

path finder and to help modification routines.

compensated lateral distance The distance in the horizontal direction in

which pin density is considered. For example, the compensated distance between

columns c1 and c2 is given by le 1- c2l +a ib +2d). where a is aconstant and b is

the number of columns having one pin and d is the number of columns having no pin.

. between c 1 and c 2. This reflects the freedom of routing due to pin density.

vertical constraint: A constraint that exists when two nets each have a pin in

the same column. The net connected to the top pin must have its horizontal segment

above that of the net connected to the bottom pin on the column.

42

horizontal constraint: A constraint that exists when two nets cross the

same column. If pseudo-pins have to be added to guide the routing of nets that havean

horizontal constraints, pseudo-pins should be added on different rows even though

these pins are added on different columns.

Violating vertical or horizontal constraints does not imply that complete routing

can not be achieved. However, satisfying these constraints makes the later routing

easier.

As shown below, pseudo-pins are generated using a linear assignment algorithm

so that the number of VCV (vertical constraint violations) or HCY (horizontal con

straint violations) and wire-length are minimized. Setting the cost parameters in linear

assignment is very important for satisfactory results. The algorithm we use is

described in detail in Section 2.5.1.2. Since the path finder does not use any informa

tion about vertical or horizontal constraints, we can give some hints to the path finder

by generating pseudo-pins such that each vertical or horizontal constraint violation is

penalized. Using the top-most and bottom-most tracks is also penalized. To find the

level_from_top and level_fromJxrttom which are the highest and lowest rows that a

net can be assigned without VCV [73], we need to break all the cycles, if any. in the

vertical constraint graph. We remove cycles by removing edges which are created by a

column farthest from the column 6n which pseudo-pins are being generated. In other

words, we generate the pseudo-pins such that vertical constraints are satisfied near the

column and let the main detailed router(path finder, path confirmer. weak and strong

modifiers) choose the exact path of connections to avoid blockages where vertical con

straint violations are observed.

43

23.1.1. Pseudo-Pin Generation

A linear assignment algorithm generates a matching of crossing nets and available

tracks while minimizing the total cost of the matching. (Linear assignment has

independently been used for global routing by M. Marek-Sadowska and U. Lauther

[51.64].)

Let N ={n!. n2 np }be the set of crossing nets, and let T ={t j. 12 tq} be

the set of available tracks on the column. Note that q should be greater than or equal

to p to assign pseudo-pins for all the crossing nets. A bipartite graph BiX, Y. U) is

constructed by associating nodes in X to the nets in N. nodes in Y to the tracks in T

and adding an arc (nr. tc) €U with cost crc for each 1 <r </> and 1 <c <g. (crc is

the cost of assigning a pseudo-pin of net nr on track tc.) Then a source node s and a

sink node t are added. Finally to make sure that each net is assigned to only one

track, arcs is . nr) and (rc, t) are added with capacity 1. for all 1 <r </> and 1 ^c

< q. Now we can obtain an assignment by solving a maximum flow and minimum-

cost problem on the graph.

The following algorithm shows how pseudo-pins are generated on a selected

column.

pseudo-pin_generation()

select a column:

find available tracks:

find the nets crossing the column:
construct vertical constraint graph on proper interval:
while(there is a cycle)

break the edges that are caused by constraints on farthest columns:
fill cost matrix:

solve linear assignment problem:
add pseudo-pins:

44

23.1.2. Setting Parameters in the Cost Matrix

In the algorithm, each row r of the matrix corresponds to a crossing net netir)

and each column c corresponds to an available track tr (c). Each element cost [r.c] of

the cost matrix is obtained by adding the costs from vertical constraints, horizonul

constraints, and other pin locations of the net (r).

fill cost matrixO

/* VCV_cost: parameter penalizing vertical constraint violation.
HCV_cost: parameterpenalizing horizontal constraint violation.
Hslope (Vslope): parameter penalizing distance to other pins on
horizontal (vertical) preferred layer. */

/* Generate pseudo-pins on a column col of the channel */
for(each row r)
I

/* penalize vertical constraint violation */
for(each column c)

if(assigning net (r) on track tr (c) cause VCV)
cost[r . c] = cost[r . c] + VCV_cost:

/* penalize horizontal constraint violation */
for(each column c)

/* HCV may occur due to other nets or obstacles */
if(assigning r to c causes HCV)

cost[r . c] - cost[r , c] + HCVjcost:

/* look around other pins */
for(each pin p of netir))
{

/* by using large value of Hslope. all the pseudo
pinsof a net can be generated on a track. */

/* Let ix ,y) be the coordinates of the pin p */
if(p is on the horizontal preferred layer)

/* a is a constant

dist returns the compensated distance */
slope = HslopeAa + dist(x. col)):

else
slope - Vslope/(or + dist(x. col));

for(each column c)
cost[r . c] = costfr . c] + slope * Itr ic) - y I;

45

2.6. OTHER VARIATIONS TO THE BASIC ALGORITHM

Several other features have been added to make the router practical. These

beneficial features are equivalent pins, floating pins, prerouted nets, critical nets, and

handling of pins on either layer.

2.6.1. Pre and Post Processing
i

Pre-processing sets up the data structure and marks obstacles in the routing

region so that / ind_path can avoid them when finding a shortest path.

Post-processing is a "clean-up and beautification" step. During post-processing,

all the^ets are rerouted from the net with longest net length to the one with shortest

net length. One net at a time is completely removed and routed again with different

cost parameters. Since all other nets are connected, we can penalize less routing in the

vertical (horizontal) direction on horizontal (vertical) layer. Metal maximization can

be achieved by assigning less cost to one of the two layers (for example, when the two

interconnection layers are poly and metal). Also the total wire-length and the number

of vias can be traded off by setting the cost parameters accordingly.

pre-processingO

move pins on the boundary inside the channel by one grid space:
if(channel is long OR irregular)

generate pseudo-pins:
if(there exist floating pins)

assign positions for them:

/* Mark obstacles as blocked */

if (there exist blocked area)
mark the blocked grids in the routing area:

if(there exist equivalent pins)
merge the pins to form a component:

post-processLngO

/* via and wire-length minimization */
change cost parameters in find_path;
sort the nets by total wire length in decreasing order:
for(each net i in the order given above)
{

remove all segments of net i
while(net i has more than one component)
{

path[i]= find_path(i):
confirm_path(i)'.

}

46

2.6.2. Equivalent Pins

Some pins are electrically equivalent since they are interconnected outside the

routing region already. The algorithm deals with these cases very naturally, since

these pins may be given the same "component name" when the maze router is invoked

and the interconnection will reflect the additional optimization that results from tak

ing advantage of this feature.

2.63. Floating Pins

Floating pins at the boundaries of routing regions are often present. The algo

rithm decides the positions of floating pins during preprocessing, using the same pro

cedures as in the generation of pseudo-pins. As shown in the pre-processing algorithm,

this is done after all the pseudo-pins are generated.

47

2.6.4. Obstacles and Prerouted Nets

If there are obstacles on any of the two layers, then we mark this area and the

path-finder is prevented from using it.

If a net is completely prerouted then we can mark the interconnection as an obs

tacle. (For example, power and ground nets can be prerouted [14.68. 97.108].) If

only part of a net is prerouted. then we can start routing from the existing status. For

example, if we attach temporary pins on all the grid points used by the pre-routed net.

the pre-routing is used as an initial condition and the path-finder will optimize other

necessary connections.

If Mighty is used for automatic cell generation or routing over the cells, we may

find an obstacle covering a large portion of one layer. In this case, if there are several

pins of different nets on the other layer at the same location as the obstacle,

modifications of existing connections are limited. To overcome this problem, a routine

is activated if strong modification fails because of an obstacle, which tries to guide the

blocked pins to the region where both of the layers are available for routing.

2.6.5. Critical Nets

Some nets may be electrically critical. These nets can be routed first using

minimum number of vias and wire-length. If necessary, we can use a different set of

costs. For example, we can route power nets on the metal layer simply by assigning a

very high cost to the poly-silicon layer. We can force the modifiers not to touch these

important nets by assigning high cost to the modification of their interconnections.

4$

2.6.6. Routing on the Boundaries

Another important factor that decides the routing area of real examples is the

ability to handle pins on an arbitrary layer. Most conventional routers [35,73]

assume that pins on vertical boundary segments are on one layer and those on horizon

tal boundary segments are on the other layer. However, real examples frequently do

not satisfy this assumption, and conventional routers need extra tracks and columns to

change layer and make more vias than necessary.

2.7. EXPERIMENTAL RESULTS

All the results described in this section have been obtained by using the same set

of cost values, on a DEC VAX 11/785 running 4.3BSD UNIX.

In the tables. "Mighty" is the name of our router. Table 2.2 shows a comparison

with other well-known routers on the Burstein's difficult switchbox. Mighty uses one

less column than any other routers. Mighty takes 2.7 seconds to complete the connec

tions in this example, and post processing takes 1.3 seconds. Note that WEAVER took

1,390.0 seconds to route the same example on a VAX 11/780. WEAVER is written in

OPS5 and C. Its run-time is long in part because the use of OPS5. A speed-up can cer

tainly be obtained by rewriting the router entirely in C. However, in this case, some

of the most interesting features of expert systems would be lost. We believe that the

complexity of the underlying approach is also responsible for its long run-time. Table

2.3 shows the results of other switchbox examples.

The detailed router described in this chapter is quite symmetric in the vertical or

horizonul directions, as opposed to other algorithms reported in the literature that are

sensitive to this factor [62]. We tried to route some of the switchboxes after rotating

49

the channel by 90 degrees, and in all cases obtained basically the same results. As an

example, two routers are compared on Burstein's switchbox example in Table 2.4.

Router Name #rows #columns #vias total length

Hamachi 15 23 67 564

Luk 16 23 58 577

Mod Detour 15 23 63 567

M-Sadowska 15 23 58 560

WEAVER 15 23 41 531

Mighty 15 22 39 541

Table 2.2 : Routing of Burstein's difficult switchbox

Example Name Router Name #rows #:ols #vias total length

simple
WEAVER

Mighty

7

7

7

7

7

7

11

4

5

60

60

60

term inten Luk

WEAVER

Mighty

16

16

16

23

23

23

68

49

50

632

615

629

dense Luk

Mighty

18

18

16

16

36

32

527

530

mod dense WEAVER

Mighty
17

17

16

16

29

29

510

510

Table 2.3 : Routing of switchbox examples

scan

direction

orientation1

orientation2

orientation3

orientation4

#tracks used

Luk I Mighty

23 x 18 22 x 15

23x20 22 x 15

23 x 16 22 x 15

24 x 16 22 x 15

Table 2.4 : Dependenceon the orientation of the routing area.

50

As pointed out above, our router has been developed to deal with switchboxes

and highly irregular shaped channels as well as rectangular channels. Table 2.5 shows

the comparisons on the Deutsch's difficult channel example [17]. Table 2.6 shows the

results when we applied Mighty to a number of difficult channels as compared with

the results of YACR [73] and Chameleon [6]. In all the examples tried, our router

shows equal or better results as we expect since Mighty has more degrees of freedom.

However, note that in the past the use of switchbox routers in channels has not given

as compact results as the ones which can be obtained with channel routers. Hence, the

above results show how powerful the techniques used in Mighty really are.

Three examples corresponding to cases when the modifiers were not used, when

weak modification was used and when strong modification was employed are shown in

Fig. 2.5. 2.6 and 2.8. Fig. 2.5 is the result of our router when applied to a difficult

channel presented in a hierarchical routing paper [10]. Note that we have not used an

empty column in the middle of the channel. Mighty could complete the routing

without using any modifications by using 4 tracks. To route this example with one

more empty column. Burstein's router used 5 tracks and YACR used 6 tracks. Fig. 2.6

shows the result of Burstein's switchbox. To complete the routing, two weak

modifications and no strong modifications were used. Fig. 2.8 shows the result of

51

Deutsch's channel example routed by Mighty. During routing Deutsch's channel,

twenty-seven weak modifications and sixteen strong modifications were used. The

total CPU time was 178 seconds including 46 seconds of post processing time.

Table 2.7 shows the statistics of the channel examples. The number of weak and

strong modifications required to complete the routing are shown with the number of

vias and total wire-length of the routing results. For some examples such as ex2 and

r3. weak modification was effective. For others such as exl and ex4. weak modification

hardly resolved situation, but strong modification was necessary to make complete

connections. Hence both of the weak and strong modifications are important for satis

factory results. These results are obtained using the same set of parameters. By

adjusting the parameters for each example, better result can be obtained.

Since the electrical properties are different on different layers, one layer may be

preferred to the other. For the examples, we assumed that one layer is polysilicon and

the other layer is metal. The usage of metal layer could be maximized by assigning

larger cost parameters on the polysilicon layer as shown in Table 2.8.

The router has also been used to generate CMOS cells, interfaced with TOPOGEN

which is a synthesis tool that takes a logic description at the gate level and converts it

into a symbolic layout of a static CMOS circuit on virtual grids [84]. TOPOGEN gen

erates the sequence of p and n channel transistors on two rows and Mighty generates

all the necessary interconnections between the transistors to obtain a desired func

tional circuit block. Fig. 2.9 shows a sample result routed by Mighty, during the gen

eration of a 16 input CMOS gate. YACR used 4 more tracks to route the same exam

ple.

Router Name #rows #vias total length

Yoshimura.Kuh 20 308 5075

Hamachi 20 412 5302

Burstein 19 354 5023

YACR 19 287 5020

Mighty 19 301 4812

Table 2.5 : Routing of Deutsch's difficult channel

52

Example Name #nets

channe!

#cols density YACR

#iracks used

Chameleon Mighty

3a 30 45 15 15 15 15

3b 47 62 17 18 18 17

3c 54 103 18 19 19 18

chrisl 158 432 49 50 49 49

cycle.t 65 134 16 19 17 17

exl 235 417 16 17 16 15

ex2 282 421 15 16 16 .15

ex3 291 421 11 12 12 11

ex4 270 421 19 22 22 20

rl 77 139 20 22 22 22

r2 77 117 20 21 20 20

r3 78 123 16 18 18 17

r4 74 150 15 17 17 17

Table 2.6 : Routing of channel examples

53

Example Name # weak mod. # strong mod. #vias total length

3a 10 7 72 991

3b 14 6 107 1617

3c 14 7 163 2392

chrisl 52 33 471 19858

cycle.t 36 27 231 3345

exl 23 19 326 6794

ex2 7 0 341 7346

ex3 12 6 308 5653

ex4 20 19 303 7768

rl 32 19 220 4120

r2 17 12 165 3232

r3 10 .1 189 2950

r4 20 9 248 3458

Table 2.7 : Routing results of channel examples

Example
name #via

before post processing
metal length poly length #via

after post processing
metal length poly length

3a 79 561 430 72 565 426

3b 118 843 810 107 851 766

3c 170 1312 1115 163 1344 1048

chrisl 499 13364 7010 471 13801 6057

cycle.t 257 1686 1687 231 1746 1599

exl 377 3284 3616 326 3448 3346

ex2 390 3148 4266 341 3407 3939

ex3 351 2902 2770 308 2978 2675

ex4 343 2828 5028 303 3410 4358

rl 227 2271 1935 220 2370 1750

r2 *172 1668 1570 165 1712 1520

r3 206 1405 1567 189 1434 1516

r4 279 1925 1606 248 1951 1507

ddr 319 2579 2333 301 2628 2184

Table 2.8 : Beautification by post-processing

54

2 2*59 io f f f 7 3

x + S 9 * " f 7 4 3 * 1

Figure 2.5. Channel example routed by Mighty.

/$ Z * 12 7 6 9 S * A3 i£ I* IS 2i 20 I * '* * '*

| | | I

Figure 2.6. Bursteins difficult switchbox routed by Mighty.

U I I I It) I I I I I) II 14 II 0 tl tO t t HI II 0

I B

i
• 4>«J h*

\
tl t; (I 4 7 I I 9 I 0 0 12 II 24 II 10 tJ 1 0 I M II 0

(a) Luk's solution to Burstein'sdifficult switch-box.

it

i

to

14

•

SO

II

to

II

tl

II

tl

t

It

II

i* • t 4 It 7 I • • • n i<1 14 16 0 tl to 1 t 10 1 11 0

0 1 Ji7. 1 Ll ..,

•

14

•

• • • • .
, .. >.. » • • • • • • • • »..«•«•••••• . • i

IS •• •• • ,.. • •» »« . • • 4 • • a • • i

•

•

•

•

t

1 > • • • • • » 4> • ... •* • •. « * • • •••••••••••4 • •< ... • • •••<
1

»

• • 1

•

t

II
•

•

It

» • •

11
mm <

• • i ...

•

4

10

a

r 1 '1
14 17 II 4 7 • I • I I I tt II 14 II 10 U » t 0 » II 0

(b) WEAVER'S solution loBurstein's difficult switch-box.

Figure 2.7. Burstein's difficult switchbox routed bytwo other routers,
(a) Luk's solution, (b) WEAVER'S solution.

Figure 2.8. Deutsch's difficult channel routed by Mighty.

Figure 2.9. CMOS gateiNAND (NOR X2Xi ...X16) (NAND XI X2 ... X15)) routed by Mighty.

56

57

2.8. SENSITIVITY OF THE ALGORITHM

The described algorithm has many parameters. For all the examples described in

this chapter, the same parameters are used. Since Mighty performed as well as or

better than existing algorithms on both channel and switchbox examples, the algorithm

seems to be robust with respect to parameters.

The cost parameters in finding a shortest path are the most important ones.

Hence, the sensitivity of the algorithm to cost parameters in finding a shortest path is

examined. We fixed the cost per wire-length in the preferred direction to 2 and the

cost of a via to 30: we varied the cost per non-preferred direction (Wnp) from 20 to

70. When applied to Burstein's switchbox example. Mighty gives the same results for

Wnp = 40. 50. 60 (see Fig. 2.10). When applied to Deutsch's channel. Mighty com

pletes the routing with 19 tracks for Wnp - 40. 50. 60. 70; the total wire-length is

minimum at Wnp = 50.

Example
Burstein

switch-box

Wnp

via

length

30

fail

40

39
541

50

39

541

301

4812

60

39
541

299

4830

70

fail

314

4920

\

80

fail

fail

LLL

Figure 2.10. Sensitivity of the algorithm on cost parameters.

58

The basic ideas we followed to select the parameters are also shown in Fig. 2.10.

If changing layers by introducing two vias is not wanted even if the routing is in non-

preferred direction, we may use small values of Wnp (for example. Wnp =30). On

the contrary, if we like to use one layer for horizontal segments only and the other

layer for vertical segments only, then we may use large values of Wnp (for example,

Wnp = 70). Too much restriction on layer usage increases the number of vias unneces

sarily, and too much flexibility can create blockages. Hence, we believe thatWnp =40

to 60 is a good range to use.

Max_cost in find_path and Limit_cost in strongjnodification are not critical as

long as they are large enough. Max_cost should be large enough so that all the avail

able paths can be found. Large values of Limit_cost allow the algorithm to search

more rip-up paths; however CPU time increases as shown in Section 2.4. Currently.

Max_cost » Limit_cost = 500 is used, and further increase of these values could not

reduce the routing area for the examples tried. Note that if routing area is large,

pseudo-pins are added and the length of the shortest paths connecting components of

nets can be bounded.

2.9. SUMMARY

A new general two-dimensional routing algorithm has been presented. For this

algorithm, rather than trying to avoid blocking the paths of unrouted nets, a new

approach is developed in which the minimum-cost path is found and connected incre

mentally, and then the existing connections are modified or rerouted whenever the

incremental interconnections are not satisfactory. This router is very flexible. For

example, it can route on a preferred layer as much as possible or trade off the number

59

of vias and the wire-length. The mechanism used to guide this routing is parameter

setting.

This approach can be extended to multi-layer routing for macro-cells and printed

circuit board routing. A multi-layer router. Angelar. has been developed using the

same algorithm and is described in Section 4.1.1.1.

The program implementing the algorithms described in this chapter consists of

about 11.000 lines of C. This router has been developed as a part of an integrated

automatic synthesis and layout system for VLSI design [7].

3.

Chapter 3

Two-Dimensional Layout Compaction

Using

'Zone-Refining'

60

Layout compaction plays an important role in the automatic or semi-automatic

generation of integrated circuits. Layout compaction consists of rearranging the

geometries of the design with small (if any) topological modifications to generate a

layout that satisfies all the design rules and is as compact as possible.

The availability of good layout compaction programs speeds up the design of cus

tom integrated circuits. The designer can work at the symbolic level, where it is easier

to capture the design intent and to find an optimum topology for a particular circuit

block. The conversion from the symbolic representation to an actual layout that obeys

all technological design rules is a very tedious and time consuming process that is best

off-loaded to automated procedures.

In standard cell layout systems good layout compactors permit a quick adjust

ment of the cells to small changes in the technological specifications.

Even for the development of fully procedural 'silicon compilers', the availability

of good geometrical spacing programs is a big win. The routine that generates a cell

can then produce a description at the symbolic level, rather than the detailed final lay

out, and the proper geometrical spacing of all components is handled by a separate

tool. The detailed knowledge about the design rules and the algorithms needed to

enforce them are thus concentrated in one program and do not have to be dealt with

61

by the individual designer who wants to create a procedural description of a cell or a

chip. This approach speeds up the process of creating procedural cell generators, since

the procedural specification of all the detailed geometric design rules would be the

most time-consuming part of writing such a generator.

The most general form of compaction involves moving the geometries of the

design in the x and y coordinates simultaneously. The problem of generating a correct

layout of minimum area with this set of moves has been shown to belong to the class

of NP-hard problems [79]. For this reason, most of the compactors proposed in the

past. e.g. SLIP [20], STICKS [104]. CABBAGE [37], SPARCS [9], and MACS [61] decom

pose this 2-dimensional problem into an alternating sequence of independent one-

dimensional compaction steps that ignore the information in the direction orthogonal

to the axis of compaction. These one-dimensional' compaction steps can be solved

efficiently with longest path algorithms [37. 58]. (A slightly different approach is vir

tual grid compaction [13, 31, 69].)

However, such algorithms cannot compete with the quality of layouts produced

by human designers. Situations where two circuit blocks cannot be shifted past one

another because they just catch with their corners cannot be handled by one-

dimensional algorithms, whereas a human designer would have no problems to make

the necessary adjustments in the other coordinate (Fig. 3.1).

62

4* v v

t t t

Figure 3.1. Interference that needs to be resolved with a movement perpendicular
to the axis of compaction.

In earlier compactors only lower bound constraints on the position of the

geometries were taken into consideration. Several layout problems such as those

encountered in the design of analog components require for electrical reasons that cer

tain geometries be not separated by more than a prescribed quantity. This requirement

amounts to considering upper bound constraints when compacting the layout.

Recently, compaction algorithms that deal with upper bound constraints have been

developed [4.58].

In this chapter, a new algorithm for two-dimensional compaction with upper

bounds as well as lower bounds on the positions of the components is presented.

After a traditional one-dimensional precompaction step, the size of the layout is

further reduced with a technique that bears a strong similarity to the technique of

'zone-refining* used in the purification crystal ingots. Individual circuit components or

small clusters of components are peeled off row by row from the precompacted layout,

moved across an open zone, and reassembled at the other end of this zone in a denser

63

\
configuration. In this process both coordinates of the moved components are altered

and jogs are introduced in the connecting wires between them to produce the needed

flexibility for placing components into optimal positions.

The change in the position of the geometries is not as free as in the general 2-

dimensional compaction problem, but the restrictions placed by the peeling procedure

have allowed the development of a polynomial algorithm that produces excellent

results when compared to traditional compaction algorithms.

This chapter is organized as follows. In Section 3.1. previous work on two-

dimensional compactions are summarized. In Section 3.2. the main idea of the algo

rithm is informally described. In Section 3.3. the technique applied to the problem of

compacting unconnected boxes in a bin to demonstrate the operation of the algorithm is

described. In Section 3.4. the algorithm for compacting layouts of integrated circuits is

presented. In this section, we also describe the jog generation technique used in our

prototype, and show how simulated annealing can be used with zone-refining. In Sec

tion 3.5, non-trivial design rules are discussed. In Section 3.6. a new hierarchical com

paction method is presented. In Section 3.7. variations of the zone-refining technique

are discussed. In Section 3.8. we discuss our experimental results. Finally, in Section

3.9. summary is presented.

3.1. PREVIOUS WORK ON TWO-DIMENSIONAL COMPACTION

To obtain competitive layouts from automatic compactors, it is necessary to

introduce techniques that have the freedom to move components in both coordinate

axes when the compacted circuit is built up. Several approaches have been proposed.

W. Wolf et al. [105] described a method in which cell pitch is minimized by finding

64

/

the critical path, shearing the component pairs on this critical path, and performing

compaction in the preferred direction. In this method, the compaction itself is still

one-dimensional.

True two-dimensional compaction has been attempted with exponential complex

ity algorithms. One approach [81] is to start with atotally collapsed layout except for

topological constraints (base constraints) and then remove the distance violations one

by one. For this, a branch and bound search technique is used, keeping only the best

layout obtained. G. Kedem and ;H. Watanabe [45.102] translated the compaction

problem into a special form of a mixed-integer programming problem and used a

graph-based optimization to solve the resulting problem. However, formulating a

model which is NP-hard does not seem to be very helpful for solving the problem [13].

J. Weinstein suggested a simple heuristic in selecting between horizontal and vertical

constraints: the preference is given to the constraint in the direction where the original

distance was larger and this algorithm is strongly dependent on the initial topology of

layouts [103]. Recently R. Mosteller et al. [67] used a Monte Carlo simulated anneal

ing technique and conjectured that the average complexity of the algorithm is given in

polynomial form. However, this algorithm still takes large amount of CPU time and

cannot guarantee a globally optimum solution.

With two-dimensional compaction, the user may have difficulty in predicting the

outcome due to the increased degree of freedom during compaction process. However,

this can not be considered a real problem when the physical design procedure becomes

completely automatic.

65

3.2. COMPACTION BY 'ZONE-REFINING'

The natural process of crystallization has proven to be an inspiration to the gen

eration of densely packed layouts. The physical model of a crystal that is cooled

slowly and thereby settles in its minimum energy configuration, has stimulated the

technique of simulated annealing [48], used for global placement and routing of

integrated circuits [83.101]. This process moves blocks in any order and deals with

the circuit as a whole. As a consequence, globally optimal solutions can be achieved

but at the cost of very long run times.'

We have developed a new technique that concentrates on more localized rear

rangements of the circuit components, assuming that a good global ordering of the cir

cuit has already been generated by some other tool. Our technique resembles the pro

cess of zone-refining used for the purification of crystal ingots [72].

Fig. 3.2 shows zone-refining process (a) of a crystal ingot and (b) of a layout.

Fig. 3.2 (c) shows zoom-in view of an intermediate step of zone-refining. The zone-

refining process starts with an already established crystal ingot. This ingot is slowly

pulled through a heating spiral that locally heats the crystal to melting temperature.

At the exit end of that heat zone the material recrystallizes. In this process the newly

formed crystal has a lower concentration of impurities since the impurities are typi

cally built into the lattice at a lower rate than the proper crystal atoms. Thus most

impurity atoms are kept in the molten zone and are eventually swept out of the cry

stal. If higher purity is required, the process can berepeated.

1
"3-

O

c

8

c3

MOLTEN

ZONE

TOP

•. . • > i 1 i

•

Vu
Ceiling

Floor

BOTTOM

Figure 3.2. Zone-refining: (c) intermediate step

67

68

In close analogy with this process, we start our compaction procedure from a

precompacted circuit that corresponds to the original crystal (Fig. 3.2). In our case the

'impurities' are the unnecessary voids between circuit components. Starting from one

side, individual circuit components or small clusters of components are peeled off row

by row from the precompacted layout and are reassembled after they have been moved

across an open zone. In the reassembly step at the other end of the zone, both coordi

nates of the moved components can be altered and jogs can be introduced in the con

necting wires between the circuit components. These additional degrees of freedom

permit a higher packing density in the newly formed part of the layout.

The implementation of this concept is straight-forward for the simple case of rec

tangular blocks that need to be placed in acompact manner into abin of given width

as shown in the next section.

In integrated circuit layouts the interconnections add aconsiderable complication.

They can severely constrain the freedom with which the individual components can be

moved. Thus it is necessary to introduce additional jogs in the wires between them to

permit less restricted lateral movements of each component. We have considered mov

ing the blocks without their attached wires and subsequently rerouting the connec

tions, a technique similar to the one proposed by Maley [63], but we have not pursued

this possibility so far. First, this approach would considerably increase the possible

moves that need to be considered and would thus increase the complexity of the algo

rithm and its run time. Secondly, interconnections play a crucial role in the perfor

mance of the circuit, and the given topology of the circuit has often been chosen based

on considerations at the micro-architecture level. Thus we did not want the compac

tion tool to make profound changes to the topology of the circuit; this is the task of a

different kind of tool that can take properly into account concerns beyond the adher

ence to the geometrical design rules.

69

Thus for the zone-refining process we assume that we start from a good topology

given, for instance, in the form of a symbolic sticks diagram. This basic ordering is

maintained in the compaction process, distinguishing our approach from the more gen

eral problem of block placement and routing.

The advantage of the zone-refining approach is that the number of components

that must be considered at any one time is thus dramatically reduced, and the com

plexity of the algorithm becomes manageable. Just as in the physical zone-refining

process, the compaction process can be repeated if the*'results are not satisfactory after

the first pass.

33. BOX PACKING

To demonstrate the operation of the zone-refining algorithm and the data struc

tures employed, we use a much simpler problem than actual circuit compaction. We

assume that an ordered collection of rectangular boxes are to be packed into a bin of

given width, while minimizing the original height of the packed bin and keeping the

reordering of the topological arrangement of the boxes limited.

The starting configuration, analogous to the original crystal, is placed at the top

part of Fig. 3.3(a). Boxes are removed from the lower end of this top configuration

and reassembled in a new bottom configuration growing upwards. The floor and ceil

ing are the borders of the active "molten" zone towards the bottom and top constella

tions respectively. These structures are referred to when blocks are selected and

moved across the free zone between top and bottom. They can easily be updated using

the information in the adjacency graph. The selected box being transferred across the

zone can move freely between floor and ceiling (see Fig. 3.3(c)).

ceiling

0
I«p1

|»p3

j; §*P2 ,£-
«

: ! «•
A

1

cz i B

w

vert, constr.

borz. constr.

©

70

ceiling

E C »
C r nil

E

c
r

B

C

A B

floor

A | nil B C

Figure 3.3. Example of box packing in progress,
(a) Actual box constellation and floor and ceiling data structures, (b)
Corresponding adjacency graph, (c) Box C has been selected to be
moved. Three candidate places CI, C2, C3 are evaluated, id) Box con
stellation after box C has been placed and new floor and ceiling struc
tures, (e) Updated adjacency graph.

71

3.3.1. XY Adjacency Graph

The positions of all blocks during the compaction process are represented in the

form of two superposed graphs. Gx (VX.EX) and Gy (Vy. Ey). where Vx and Vy are

sets of nodes and Ex and Ey are sets of arcs. Consider the nodes of the graphs. Vx ={

Xi, x2.V } and Vy = { yJt y2. V)• *i and yi are source nodes corresponding to the

left and the bottom edges of the bounding rectangle, respectively. x2 and ?2 are sink

nodes corresponding to the right and the top edges of the bounding rectangle, respec

tively. Each node v € V is in one-to-one correspondence with each box. The arcs in

the graphs are added such that (v,. Vj) € Ex if the box corresponding to v,- is to the

left of the box corresponding to vj. Similarly, (v,. Vj) € Ey if the box corresponding

to Vj is on top of the box corresponding to Vj. These arcs can be labeled with the

minimal allowable horizontal or vertical separations between the centers of the block,

and this adjacency graph can thus be turned into a constraint graph for properly plac

ing the blocks without overlap. For an actual circuit layout, the constraints attached

to these arcs can become more complicated and contain upper as well as lower bounds

(more on that in the next section).

33.2. Zone-Refining Algorithm

The main loop is: while the top is not empty, select individual boxes according to

some selection function, move them from the top to the bottom, and place them on the

floor according to some placement function. In the following subsections, we describe

the individual modules of the box packing algorithm.

72

3.3.2.1. Initialization

A good starting configuration can be achieved with asimple one-dimensional com

paction from bottom to top. At the start of zone-refining, the floor is thus flat while

the ceiling is the profile of the precompacted block constellation.

3.3.2.2. Selection

One of the blocks that currently borders the ceiling is selected for transfer across

the zone. Several rules can be used to choose the block. The rule we implemented is to

choose one of the blocks that defines the lowest point in the ceiling. If there is a tie,

the left-most block is selected (alternatively a random choice could be made) and is

removed from the top.

3.3.2.3. Placement

For the selected block an optimal position must now be found on the floor. For

different x-positions the resulting minimum gap of the free zone is evaluated. The

position that maximizes this gap is chosen. At this point, there are many possibilities

to choose an appropriate cost function. If the original ordering of the blocks should be

modified as little as possible, a hard limit on the maximum lateral displacement can be

set. Alternatively, a cost can be associated with any displacements in x-direction that

is traded off against the gain in zone-gap.

To find the optimal place for box C in Fig. 3.3. for example, it is only necessary

to compare the three candidate places shown in Fig. 3.3(c). The left-most positions are

chosen as representative candidate places for each span of x -positions leading to the

same final zone-gap. Since gap 3 is the largest, box C is placed as shown in Fig. 3.3(d).

When evaluating different placements of a box. there may be more than one location

73

that yield the maximal improvement. In our approach, the left-most position is then

selected.

Once the optimal position has been determined, the block is placed correspond

ingly and the adjacency graph is updated (Fig. 3.3(e)).

33.2.4. Updating the XY Adjacency Graph

As the box is being moved across the zone, the adjacency graph is modified to

correspond to the new situation. For every move of the box in the x -direction, we

need to modify the y -arcs, and vice versa. For the sake of simplicity, we will explain

this updating operation only for movements in the x -direction. Updating the graph for

movements in the y -direction is analogous with the roles of x and y interchanged.

If an instance is moved in the *-direction, then all the y-arcs incident to the

node are removed from the y-graph, and new arcs are generated between its former

predecessors and successors, if necessary. For example in Fig. 3.3(e). a new arc is gen

erated between box B and box F after the placement of box C. Finally arcs are gen

erated from the moved node to the other newly adjacent nodes.. This process is per

formed as follows. The horizontal edges of the boxes are recorded as intervals and

sorted in increasing jc and increasing y. To find which arcs to add to the graph

amounts to finding intersections among the intervals corresponding to the boxes. An

arc is added between the moved node and another node in the upper half of the graph,

if there exists a straight vertical line from the top edge of the moved box to the bottom

• edge of a box in the ceiling: and similarly for the bottom half of the graph.

Since this operation is in one of the innermost loops of the algorithm, an efficient

search algorithm for this adjacencies is crucial. A new tiling approach is explained in

Section 3.4.1.2.

74

333. Sample Results of Box-packing Algorithms

Fig. 3.4 demonstrates the results that can be achieved with zone-refining for the

simple box-packing task.

80

47

El El

1-D pack:

upward

ZR pass:

upward

«n.ZR pass: I I downward

.• . .U) 1-D vrecompaction left to right with
Retire 3.4. Example of box packing •"''"f.j g£,. (b) PrecompactUm is
al^aging of the lateral positions {™**f%\" *£ ZiiJ %I MAfter first'ZJeted with a1-D upward ^^J^^spale-27.2 %IWAfterzonT-refining pass in the downward *££££ yjleen reached (void-spaceone more upward zone-refining pass converge
- 11.1 °h)•

63

53

76

We start with an 8 by 8 array of boxes, sized randomly in both dimensions in the

range of 3 to 10 units. The starting configuration for zone-refining is reached by first

performing a compaction step to the right in which the block positions are averaged

within the given slack (Fig. 3.4 (a)); this is followed with a simple compaction step

upwards (Fig. 3.4 (b)). Fig. 3.4 (c) shows the results after the first zone-refining pass

downwards. The height is reduced to 53 units, that is 84 % of the precompacted con

stellation (63 units in Fig. 3.4 (b)). In the next upward zone-refining pass, the height

of the packed bin settled at 47. as shown in Fig. 3.4(d). The void-space occupies only

11.1 % of the total area. The whole process takes 4 seconds on a DEC VAX 11/785

running 4.3BSD UNIX.

3.3.4. Pitch Matching

When designing a component of a standard cell library or a cell in a full custom

chip where the height or width of a circuit block is required to have a specific value, it

is necessary to compact the layout so that the constraints on the size of the cell are

satisfied, i.e. pitch matching has to be accomplished. To be able to satisfy this kind of

constraints two-dimensional movements are essential. As a part of compaction by

zone-refining, the width of the layout can be changed to a desired value. This is

demonstrated in Fig. 3.5. The width of the bounding bin has been fixed to two

different values. 76 and 50. In both cases, rather compact layouts are obtained after 3

and 5 zone-refining passes, respectively.

Figure 3.5. Pitch Matching : (a) original layout,
(b) width has been increased by 20%. <c) width has been decreased by 20%.

78

3.4. CIRCUIT LAYOUT COMPACTION

Zone-refining of an actual circuit layout follows the same basic algorithm as

box-packing. However, its implementation is much more complicated than in the case

of box-packing for several reasons:

1 There is more than one level of interconnect. Thus we need to consider proper

spacing in all of these levels, while maintaining the proper geometric relationships

between levels for individual components.

2 The presence of complicated components such as transistors and inter-level con

tacts that span several levels and the existence of sophisticated geometrical layout

rules leads to more complicated constraints for the placement of components. For

each arc there are now more complicated expressions than a simple minimum

separation. There can also be upper bounds as in the case when a connection

must touch a circuit block within the extent of a contact area of a certain size.

3 The components in a circuit layout are connected by wires that are neither

infinitely thin nor infinitely flexible. This tends to limit the degree to which indi

vidual components can be moved and thus the degree of topological rearrange

ment possible. For a full exploitation of the possible two-dimensional move

ments, jogs need to be inserted into the wires at appropriate places.

As a consequence of all the points above, components cluster into groups that should

be moved as a whole. There are additional difficulties associated with discovering these

groups, moving them around, finding an optimal place for them, and dealing with the

multitude of wires connected to them.

We will discuss our solutions to these problems as we discuss the individual

phases of the zone-refining algorithm for circuit layouts. All circuit elements such as

transistors, various contacts, and horizontal wires, in the following called components.

are handled by the same data structure. Also an instance is defined asany component

79

that is not a wire.

3.4.1. Data Structures

Because of the increased complexity associated with real circuits, we use data

structures for circuit compaction that are slightly different from the ones used in box-

packing. For example, since wires can stretch or shrink during compaction, horizontal

(vertical) wires are not represented in the horizontal (vertical) constraint graph.

Instead, the length of a wire is implicitly given by the distance of the two instances to

which it is attached.

3.4.1.1. Floor and Ceiling

A circuit layout consists of several layers. The first datastructure used to imple

ment the zone-refining algorithm (Zorrol in table 3.1) maintained separate linked lists

for all the elements forming the floor and the ceiling for each independent set of inter

connection layers for an efficient look-up. However, this approach is cumbersome for

circuit layouts. Many sets of floor and ceiling lists are required and they all must be

updated after every component move. Therefore, in the present version (Zorro2). we

do not keep explicit lists for the floor and the ceiling, but we search the constraint

graph Gy (Vy Ey). whenever necessary. The floor and ceiling components are readily

found from the information in the constraint graph by searching the arcs below and

above the vertices corresponding to the components currently being placed. Since we

do not keep the floor and the ceiling lists explicitly but find them from the constraint

graphs, there does not exist any limitation on the number of independent layers this

algorithm can handle.

80

3.4.1.2. Coarse Grid Structure

The updating of the constraint graphs is one of the most frequent, and overall the

most expensive operation in constraint graph-based algorithms. T. Hedges et al. [27]

and C. Kingsley [47] reported that "intervening" method is faster than commonly used

shadowing method. However, the "intervening" feature loses its efficiency when it is

used for incremental graph modification. Recently, a more sophisticated incremental

constraint generation has been published [12]. This approach is based on shadowing

and corner-stitching [70]. It is faster than sorted every-pair constraint generation, but

is more complicated.

To optimize performance of the zone-refining algorithm, we devised new simple

data structures that permit fast updating of the adjacency graphs. The basic idea is to

sub-divide the layout area into tiles defined by a set of horizontal and vertical grid

lines (see Fig. 3.6). All components are linked to all the tiles they touch and are

dynamically reattached after every move.

81

Figure 3.6. The use of space-partitioning in constraint graph construction.

When a component is moved, only the tiles neighboring the tiles containing the

moved component are checked to update the graphs. The set of tiles that need to be

checked depends on the extent of the move of the component. We limit this extent to

update the graphs efficiently. The extent of asimple move is limited to a *Sa +0*
Rm where a and 0 are parameters (a - 4. 0 - 2 are currently used). Sa is the average

width of the instances if the move is in the horizontal direction. If the move is in the

vertical direction. Sa is the average height of the instances. *m is the maximum

82

spacing rule between any two components.

By adjusting these parameters, the user can trade-off the performance and CPU

time of a pass of zone-refining. Large values of or and 0 allow the components to move

longer distance in the free zone and may produce abetter solution at the expense of

increased run time. The above values are chosen since there is rarely a reduction of the

vertical dimension by more than this limit, for a typical precompacted layout. Even if

the possible reduction of the height of a layout is larger than this limit, one can

achieve'the maximum reduction by repeating the Z-R passes until no further reduction

is possible. Note that the height can be reduced up to this limit at each pass of zone-

refining.

If the size of the tiles is too small, large components intersect with many tiles

and hence moving these components requires updating a large number of tiles. If the

size of the tiles is too large, a tile may contain many components and this degrades

efficiency since all the components touching a tile are stored as a linked list. If we

assume that the components are uniformly distributed throughout the layout, it

appears reasonable to choose the number of grid lines as a function of the number of

instances in the layout. With this choice, the space between grid lines is large when

the layout is sparse (like in sticks diagram or on virtual grids), and it gets reduced as

the layout becomes denser. The size of tiles is evaluated at the beginning of each Z-R

pass and remains fixed during a whole Z-R pass.

The number of horizontal and vertical grid lines are given by the following for

mula.

nxgrid -[sqrtCJT, *nk *Wc /Hc)]

nyzrid -IsqrtOT, *ni*Hc/Wc)\

where nxgrid and nyzrid are the number of grid lines in horizontal and vertical direction

respectively. Kg is a user defined parameter. n* is the number of instances in the lay-

83

out. Wc is the width of the given layout, and Hc is the height of the given layout.

Note that the total number of space tiles is roughly Kg n, and that nxgrui/nygrid =

Wc/Hc.

Table 3.1 shows the dependences of CPU time (in seconds on aVAX 785) on the

parameter Kg for two example circuits. The dependence of CPU time on Kg is not

critical for a moderate range of Kg. In the current implementation. Kg «= 2 has been

chosen.

nt KB = 1 K. =2 K„ =3 Ka =4

exl 89 69 65 71 79

ex2 317 278 276 279 288

Table 3.1 : Run-times on different values of Kg

3.4.1.3. Permanent and Non-permanent Arcs

There are two types of arcs in a constraint graph [4]. Permanent arcs represent

electrical connectivities that must be maintained throughout the compaction. For

example, a wire connected to a terminal area must always remain attached to the ter

minal area and a permanent arc is necessary to constrain the spacing between the wire

and the terminal. The non-permanent arcs represent spacing constraints due to design

rules and are modified when the corresponding components are moved. For example

two different contacts may or may not have a spacing constraint depending on their

relative position and a non-permanent arc is added between the two contacts whenever

84

necessary.

3.4.2. Initialization

As in box-packing, a good starting point is the result of a one dimensional com

paction step. If the layout needs to fit into the fixed bin dimension of a standard cell

system, then we use a constraint-graph based one-dimensional compaction algorithm

and compress the circuit in the y -direction to the desired height, keeping all com

ponents roughly in the middle of their allowable range of y-positions. (If the desired

height can not be achieved by 1-D algorithm, we may apply Z-R compaction in y-

direction first to further reduce the height of the layout.) We then apply a one-

dimensional pre-compaction in the jc -direction to create the starting constellation for

zone-refining compaction in the x -direction.

For the purpose of the following discussion, consider the cell turned on its side,

so that Z-R compaction can proceed from top to bottom as outlined in the previous sec

tions.

3.43. Cluster Selection

As pointed out above, in the case of a circuit layout, components have to be

moved as clusters. Since the movement in each Z-R pass is two-dimensional, there are

two clusters, the x -cluster and the y -cluster; the y - cluster is a subset of x -cluster.

To find the clusters, we first find a seed node (component) that is responsible for the

lowest y-value in the current ceiling profiles. Then, all the nodes that are semi-rigidly

coupled to this seed node in the graph Gy(yyEy) are added to the y-cluster. (A pair

of nodes are "semi-rigidly" coupled if there is an arc between the nodes whose upper

85

and lower bounds differ by less than ybound. i.e. upperbound - lowerbound <

ybound.) All the nodes that are semi-rigidly connected to some node in the y-cluster

are added to the cluster by recursively continuing the search on the newly added

nodes. For this selection, we may do either breadth-first or depth-first search on the

y -constraint graph. The resulting cluster of nodes iscalled they -cluster and is moved

across the zone as a whole.

The x-cluster includes all the nodes in the y -cluster and possibly some addi

tional nodes that are "semi-rigidly" connected to the nodes in the cluster in Gx (Vx Ex).

i.e. upperbound -lowerbound < xbound . The purpose of the x-cluster is to give more

degrees of freedom for the nodes in the y-cluster to move in the x-direction. If these

nodes were not included in the cluster, x -movements of the nodes in the y -cluster

would not be possible without introducing jogs on vertical wires. By changing the

-value of xbound dynamically as a function of zone-gap. we can control the flexibility

of the movements in the lateral direction in the molten zone. In the current imple

mentation of our algorithm, we use a larger value of xbound if the current y -cluster

contains a critical component that defines the minimum gap between floor and ceiling.

During each placement step, the node positions in the y-cluster may change their

positions in the y-direction and the node positions in the x-cluster may change their

positions in the x-direction. The positions of all the other nodes are fixed during the

placement of the cluster.

• 3.4.4. Ouster Placement

If the cluster is not considered a completely rigid object but a collection of com

ponents that can be moved with respect to one another, then the determination of an

optimal place on the given set of floor profiles is by itself a hard problem (probably

86

NP-hard). Thus some heuristic restrictions have been made.

There may be many options for implementing the placement routine of zone-

refining. Here are some of the decisions that can change the performance and complex

ity of the Z-R algorithm.

1. To what extent in the jc-direction should movements in the free zone be con

sidered ?

As explained in Section 3.3. there is a trade-off between the limitation of the

movements and run-time.

2. How much flexibility should be put into the wires ?

Horizontal and vertical wires could be bent by introducing jog-points, and wires

could be straightened by removing unnecessary jogs.

3. . To what extent can the topology of the circuit be changed ?

For example, one may allow changing the orientation of components, permit

merging of contacts and wire-segments, and reroute part of the connections

among circuit components to further optimize the cost function.

The above features have been implemented to various degrees in the present version of

Zorro. We now describe the basic heuristics for placing the clusters and then explain

more sophisticated extensions in the following subsections.

1. First the y -cluster is moved into the "middle" of the zone with a straight y-

move. The middle of the zone is defined as the y -position where the cluster can

be moved freely left and right if it were not for the attached wires. Then the

minimum zone-gap for the current jc -positions is determined and saved together

with the current jc -coordinates of all components as initial values for the optimal

placement of the cluster.

87

2. The next step is to determine the range of x -positions to be evaluated for the jc -

cluster placement. To avoid an exhaustive search of all positions, the current x-

cluster components are first compacted to their right-most position (Fig. 3.7(b))

and then to their left-most position (Fig. 3.7(a)) that are possible without gen

erating new jogs in any wires. These positions are constrained by the vertical

wires attached to the components as well as by other vertical wires crossing the

zone.

3. The cluster is positioned on the profile of the floor in its left-most position and

the minimum zone-gap is recorded together with the critical component in the

cluster, i.e.. the component responsible for the minimum distance from the ceiling

profile.

4 The next candidate place for the critical component considered is the nearest

rightward place where the ceiling profiles go up or the floor profiles go down on

the layers corresponding to the critical component. If no further candidate place

is found, go to 7. else go to 5.

5. An attempt is made to move the critical component to the candidate place. To

make this possible, we may have to move other components in the x -cluster. If

this movement is possible go to 6. else go to 7. (If this move is not possible due

to constraints in the x -direction, it is not necessary to try other candidate places

since they are to the right of the current position, and the current critical com

ponent can not be moved to the right of the current candidate place.)

6 For the current jc -positions of all components in the zone, the minimum gap and

the critical component are determined. If this gap is larger than the previously

stored best value, we update the value and save the current jc-positions as the

best solution found so far. The procedure is continued by going back to step 4.

88

7 We place the components at the optimal jc -positions saved (Fig. 3.7(c)).

The algorithm has a loop (4 ->5 ->6 ->4) and it is legitimate to ask whether the

algorithm terminates in a finite number of steps. It indeed does so because the width

of the layout is finite, the design rules are discrete, and hence the number of candidate

places is finite.

A simplified example of a cluster placement is demonstrated in Fig. 3.7. Fig. 3.7

(a) and (b) show the extreme positions of search-range for the candidate places. The

final settlement is shown in Fig. 3.7(c). This placement is chosen since the ceiling is

highest for the critical block and the minimum zone-gap is maximized. Note that wires

can slide within the terminal area and jogs can be generated after placement.

y- %

AV

r-J™

*^x.

^ 1 1 r

• •: -\ i

L

fed

(a) (b)

Figure 3.7. An Example of Placement, (a) left-most position for the cluster,
(b)right-most position for the cluster, (c) final settlement.

89

90

The algorithm finds a locally optimal placement if each component is placed indi

vidually. However, for the case of component clusters there are situations where the

algorithm produces sub-optimal local solutions. One such case is shown in Fig. 3.8.

Block Y is the critical component, since gap 2 is less than gap 1. We may increase the

gap either by shifting X to the right of x1 or by shifting Y to the right of x2. Our

current implementation can deal only with the latter move and hence it does not find

the locally optimal solution that corresponds to the former move. Note that the

former move could be added in stejte 4 and 5. or that a better placement can be

achieved by introducing a jog in the wire between the components Xand Y (see Section

3.4.6.2).

ceiling

gap!

±

p2

YX

floe

4- 1 1
zl x2

Figure 3.8. AnExample of Sub-Optimal Placement.

In step 6. a more complicated cost function could be used to take into account

additional factors such as a maximal allowed offset in the x-direction or limits on the

91

maximum length of polysilicon wires.

3.4.5. Updating the Constraint Graph

The basic idea for updating the adjacency graphs is essentially the same as for

box-packing. One of the most notable differences is the fact that we are using a coarse

grid structure for efficient generation of the constraint graph. Another major difference

is the possibility of merging terminals belonging to the same net (same electrical node

in the lumped circuit diagram). Merging can be implemented by not generating any

constraint between components that can be merged. However, this makes the genera

tion of the constraint graph substantially more complicated. When merging is not an

option, we can generate the constraint graph easily by checking neighboring com

ponents only, using a scan-line approach, for example (see Fig. 3.9 (a)). However, if

merging components of the same net is considered, then the constraints depend on

net-list information and the search may have to be extended beyond the nearest neigh

boring components. For example, in Fig. 3.9(b). component C is not a neighbor of X.

but the arc between X and C is still needed. This is because X and B can overlap in

Fig. 3.9(b). while B and C can overlap in Fig. 3.9(c). In the figure, net numbers are

shown in parentheses.

•

C

A B

X

Q

(a) Without merging

92

C(2) C(2)

A(i) A (2)B (1) B (2)

X (1) X (1)

Q ©

o

6
0 Q

>b?
(b) With merging

Figure 3.9. Constraint graphs with and without merging.

In our constraint graph, we include arcs between all component pairs that lie

closer than exten and which have some spacing constraints from design rules. With

such a graph we can easily evaluate the legality of a particular component placement

by simply looking at the constraint graph. This approach may generate redundant arcs

in the constraint graph. (Redundant arcs are the arcs which can be deleted without

affecting the correct spacing.) However, we observed experimentally that finding a set

of arcs that is minimal with respect to correct spacing requires more CPU time in gen

erating the constraint graphs when used in incremental modifications. Generating all

arcs between two components within some given distance has at least three advantages:

93

1 The complexity of constraint graph generation is independent of net-list informa

tion. Constraining arcs are generated whenever two components lie within a

given distance and have a spacing constraint.

2 When a cluster of components is moved, we only need to update arcs connected

to the nodes corresponding to the moved components. Otherwise we would have

to search the data structure for places where new arcs might originate. For exam

ple. Fig. 3.3 has a minimum set of arcs, and a new arc from B to F has to be

created after C has been moved in Fig. 3.3 (e\).

3 We can find the exact profiles of the floor and ceiling by scanning the arcs con

nected to the components of the current cluster. A minimum set of arcs would

give only the most critical part of floor and ceiling.

The price for using a non-minimal set of arcs is that graph-solving (finding legal

positions for all nodes) will take more time. However, the graph-solving task usually

takes less than 3 % of the overall CPU time, since only a small number of components

are moved at once and solving a graph for a small set of nodes is very fast.

The two implementations of zone-refining are compared in Table 3.2 for a latch

driver circuit [87]. In the table, profile of run times on a DEC MV8650 under the

Ultrix operating system is shown in seconds. Zorro1 is an older version which uses

data structures very similar to the one described for box-packing and maintains expli

cit lists of floors and ceilings. Zorro2 is a new version with the coarse grid data struc

tures described above. Note that constraint graph generation dominates execution time,

and that most of the reduction in CPU time has been obtained from this part. Other

" routines also have been optimized in Zorro2. and overall the new version is 5 to 10

times faster.

five passes of Z-R with iog-generation

function Zorrol (%) Zorro2 (%)

graph construction
edge/grid updating

1187.5 (60.0)
35.7 (1.8)

121.4

7.0

(58.2)
(3.3)

graph solving 14.5 (0.7) 5.8 (2.8)

mcount 286.9 (14.5) 49.6 (23.8)

others 459.4 (23.2) 24.7 (11.8)

total 1984.0 (100.0) 208.4 (100.0)

Table 3.2 : Run-time comparisons between Zorrol and Zorro2

94

Now we describe the algorithm used to modify the constraint graph. Since the

modification of Gy (Vy Ey) is similar to the modification of Gx (Vx Ex). only the routine

modifyjcgraph is described. It is composed of two subroutines: In the first one. all

the arcs that might be affected due to movements of nodes in the y -cluster are deleted

from the x constraint graph Gx. Note that Gx has to be updated after moving vertices

in the y -cluster in the y -direction. In the second subroutine newjcarcs. all the neces

sary new arcs are generated. The detailed algorithm of newjcarcs is given below. In

the algorithm, the terms predecessor and successor refer to the "from" and "to" nodes

of an arc. respectively.

new_xarcs(exten)
/*

* create new arcs to maintain a legal layout.
V

I
for(each vertex vjc corresponding to a vertical wire connected to a component

whose vy is in the ycluster) {

/* add constraints to successors of vx */
find maxrule which is a maximum possible spacing

from the component vjc ->comp:
find a list Hist of components which touch the space

tiles with distance < exten + maxrule.
in the positive x -direction:

for(each component comp of Hist) {
if(there is a constraint between vx and comp->vx) {

if(an arc has not been added)
add an arc from vjc to comp->vx:

\
i

/* add constraints to predecessors of vx */
find a list Hist of components which touch the space

tiles with distance < exten + maxrule,
in the negative x -direction:

for(each component comp of Hist.) {
if(there is a constraint between vx and comp - >vx) {

if(an arc has not been added)
add an arc from comp->vx to vx:

}
}

}
for(each vertex vy in ycluster) {

vx = vy->comp->vx;
if(vx != <f>) {

add constraints to successors of vx as above;
add constraints to predecessors of vx as above:

}
}

95

3.4.6. Optimizing the Connections

As pointed out above, the presence of wires limits the extent to which com

ponents can move. Collecting more of the nodes that are restricting lateral motion into

the x-cluster increases the number of possible moves at the cost of complicating the

algorithm. To give more degrees of freedom, we have implemented sliding connections,

overlapping contacts, extra jogs, and wire-length reduction, as detailed in the following

subsections.

96

3.4.6.1. Sliding Connections

To obtain more flexibility for 2-D movements, wires connecting to contacts or

ports on other circuit components are allowed to slide freely within the extent of these

connection regions. Thus a wire of width w attached to a port of extent p can move

over a range (p—w), as can be seen in Fig. 3.10.

w

Figure 3.10. Sliding connection.

3.4.6.2. Automatic Jog Introduction

Another mechanism that provides even more flexibility for components to be

moved, is the generation of new jog-points in the constraining wires. Hsueh [37] pro

posed the use of a 'torque' to introduce a jog point. Wolf [104.106] analyzed the effect

of jog introduction to compaction and found that jogs introduced to improve density

along one axis in general increase the dimension in the other direction. F. M. Maley

[63] proposed another interesting approach of jog introduction: all wires are converted

into constraints on the positions of the active devices. However, for two-dimensional

incremental modifications, it is necessary to reroute the wires after each movement.

Therefore, this method may be too expensive for compaction by two-dimensional

97

movements.

General jog insertion is a hard problem and has not yet been implemented. We

have only incorporated two situations in which new jogs are automatically introduced.

Both of them concern horizontal wires (see Fig. 3.11).

After a cluster has been placed as close to the floor as possible, automatic jog

insertion is performed on horizontal wires attached to it. Down-ward compaction of

one of the cluster components may be impeded by the existence of such wires as

shown symbolically in Fig. 3.11(a). If the wire in this figure is jogged, then the

down-ward movement of the component may be continued. Thus we check whether

underneath any of the cluster components there is extra space into which the com

ponent could fit. If this is the case, we try to generate jogs that permit the component

to slide into this space. These additional movements have two effects, one is to

increase the minimum zone-gap if the component under consideration is a critical one

(Fig. 3.11(a)). the second is to make more room for the next row of components to be

placed on the floor.

I—

—1

E i

...

1
. •••' . . •

(a)

0>)

fid

Fr

Figure 3.11. Two cases of automatic jog introduction.

98

A second situation is that of long horizontal wires stretching above an empty

"well" (Fig. 3.11(b)). In this situation the wire is pushed down into the well with the

simultaneous introduction of two jogs in the hope that the extra notch in the floor will

be large enough to accommodate a component from a cluster to be placed subsequently.

99

If there is more than one horizontal wire attached to a component, we begin by

moving the lowest wire first. We jog wire after wire to fit the floor profiles. This

approach overcomes the hard problem of generating "parallel jogs" in wire bundles [13]

and can produce patterns that are similar to the ones generated by a river router (see

Fig. 3.12 which is a portion of Fig 3.19 (c)).

Figure 3.12. Jogged wire bundles after zone-refining with automatic jog introduction.

Note that jogs for vertical wires can be generated by applying zone-refining from

left to right (or from right to left), in a similar approach as above.

100

3.4.6.3. Merging Connections of the Same Net

Reducing the number of actual components is a powerful mechanism to reduce

the area required. Contacts that belong to a same net are allowed to merge into a sin

gle contact. The "mergeability" information for each type of contacts is read from a

technology file. In our implementation, merging is a two-step process. These steps are

illustrated using a simple example in Fig. 3.13. In the starting configuration (Fig 3.13.

(a)), there are two contacts of the same net that can be merged. First the contacts and

wires of the sAme net are allowed to move closer than the minimum separation rule

would allow and can even overlap partially (Fig. 3.13 (b)). In the second phase, the

algorithm checks if full overlap can be achieved between the two contacts. If complete

overlap is possible, then it removes one contact and the unnecessary wire-segments.

and reconnects the wires originally attached to the removed contact (Fig. 3.13 (c)).

Now further compaction can be performed to reduce thearea (Fig. 3.13 (d)).

(a) (b)

(c) (d)

Figure 3.13. Merging contacts, (a) initial layout with spacing viola
tion, (b) partially merged contacts, (c) one contact is removed, id)
further compaction is applied.

101

3.4.6.4. Reducing Wire Length

Long wires use more area and degrade the electrical properties of the circuit. In

Zorro. we do not have a general wire-length reduction algorithm. Instead, several

different simple strategies are used to keep wires short.

102

Before we start the zone-refining process, we minimize the length of horizontal

wires by two special "compaction" steps in the x-direction. First we compact left-ward

all nodes that have no electrical connections with right-side neighbors, then we com

pact right-ward the nodes that have no electrical connections with left-side neighbors.

During zone-refinement, we minimize horizontal wire length with every move of

a cluster of components across the zone. All moves involving the nodes in the current

x -cluster are biased left-ward during placement, and after the optimal cluster position

has been found, the nodes with no left-side connection are compacted right-ward.

Similar steps can be employed in the y -direction between or after Z-R passes.

Another important routine is the clean-up of unnecessary jogs and wire-segments.

After each pass of zone-refining, each wire is checked whether its length can be reduced

to zero by moving a set of components connected to the wire. If this is possible, we

remove the wire whose length is zero and reconnect affected wires and components.

This routine removes all unnecessary U-shape connections since they contain at least

one wire whose length can be reduced to zero (see Fig. 3.14).

103

I

Figure 3.14. Clean-up removes an U-shape connection.

More work would be necessary to keep the wires as flexible as possible during Z-

R. Efficient wire-length minimization is another area which needs further study

[13. 80].

3.4.7. Use of Simulated Annealing Technique

By implementing powerful placement and wire-optimization algorithms, one may

get better result at the cost of longer CPU time per Z-R pass. However, any greedy

algorithm which reduces the area monotonically has a possibility that the solution

may be stuck at a local optimum. One way to overcome this problem is to use simu

lated annealing technique during zone-refining. The cost of this approach is long run

time and loss of monotonicity in area reduction.

104

The simulated annealing technique can easily be accommodated in zone-refining

by using a new "accept" function when candidate places are evaluated in the free zone.

One good feature of our approach is that we can always keep the layout design-rule-

correct without allowing any illegal overlaps. Due to this advantage, the user has

complete freedom to choose the number of Z-R passes with simulated annealing. Typ

ically the compaction by Z-R takes about 5 iterations to converge. Combined with

simulated annealing, the compaction by Z-R frequently reduces the layout area by 2 -

3 %, after 30 to 50 passes of zone-refining.

However, adding simulated annealing techniques results in the loss of two

beneficial properties. The algorithm no longer has polynomial time complexity unless

the user limits the maximum number of Z-R passes. Furthermore, the area (or cost)

reduction may not be monotone: however, the user may store the best layout found

after each pass of Z-R as a backup.

3.5. NON-TRIVIAL DESIGN RULES

Some of the design rules may not be easily represented by lower and upper spac

ing constraints. For example. MOSIS denser contact rule set 'B' involves considerably

more constraints than the simpler rule set 'A*. In addition to this, spacing requirement

may depend on the width of the wires involved or on their connectivity. Furthermore,

there may be rules that require more information than mask name and net-id:

Minimum spacing of an active contact from a poly-Si gate can be less than the spacing

from a poly-Si wire [88].

All these rules can be accommodated with extra tests and constraints and the

introduction of new pseudo-layers. However many more arcs need to be generated

105

between the nodes in the adjacency graph and the constraint generation takes

correspondingly longer. While the introduction of these extra rules was somewhat

tedious, none of them interfered in any way with the zone-refining algorithm, and we

would expect that any constraint graph based compactor would deal with them in a

similar manner.

The basic compaction algorithm is independent of technology, and so most of the

routines need not be changed when zone-refining is applied to a new technology.

Relevant technology information is described in a separate file and thus can be con

veniently updated by the user. In particular it specifies:

1 Minimum spacing between any two layers; this provides the lower bounds in the

constraint graphs.

2 Resistivity for each layer: this will eventually be used for electrical optimizations

of the interconnections.

3 Contacts connecting two different layers: this is used to propagate connectivity

information.

3.6. HIERARCHICAL COMPACTION

A hierarchical approach is a necessity for VLSI circuit design. This requires

corresponding hierarchical computer-aided design and verification tools. Layout com

paction is no exception. First, hierarchical compaction can considerably speed up the

. compaction process. Second, it is normally desirable to maintain the regularity

expressed in the iteration of a single cell type throughout a one- or two-dimensional

array; similar cells may be maintained as one shape during compaction and finalized

after compaction.

106

The difficulty with hierarchical layout compaction is to coordinate the compaction

of adjacent cells, so that they can abut tightly and even share certain features such as

common signal lines, contacts and source/drain regions of transistors.

First, we review two approaches for pitch-matching and then describe a new com

bined method.

3.6.1. Hierarchical Compaction by Routing

This method divides the hierarchical compaction problem into two parts, leaf cell

compaction and higher level cell compaction, and then solves the two compaction steps

separately. EaGh leaf cell is compacted and represented as an instance in a higher level

of hierarchy. The higher level instance can either be abstracted into a polygon for each

mask or contain a more detailed description of the leaf cell. After all leaf cells are

compacted and represented as instances, the terminals of instances may not match

since each leaf cell has been compacted independently. Therefore a routing phase is

necessary to make the required connections between instances.

The advantage of this approach is that its algorithm is simple since compaction

and interconnection are solved as two independent problems. The disadvantages are

that too much area may be used for routing and that the regularity of the chip may get

lost. For example, when an array of a subcell is compacted, corresponding interconnec

tions between different instances may have different shapes.

107

3.6.2. Hierarchical Compaction by Abutment

In this approach, the interconnections between subcells are considered during

compaction and pitch-matching between terminals is made. This can be done by com

pacting all the cells into smallest possible area and by expanding compacted cells to

match terminal locations. Since the combined problem of compaction and pitch-

matching is solved at once, thisapproach iscomplicated and may need several compac

tion passes to obtain interconnection by abutment. In the virtual grid approach,

pilch-matching can be done by expanding''the grid line spacing of some of the instances

[21].

3.6.3. Combined Hierarchical Compaction Strategy

As a combination of the above two methods, we have developed an approach in

which one may pitch-match terminals by using partly flexible subcells first and then

route the remaining connections.

This approach has similarity to the "improved cell model" approach [74] in that a

compacted leafcell is partially rigid and partially flexible. One major difference is that

we are using routing in addition to making the leafcell partly flexible for pitch-

matching and contact/wire sharing.

The zone-refining technique basically offers the flexibility to pitch match cells to a

desired dimension. With suitable additional constraints, it may even be possible to

migrate shared terminals on the boundary between two cells to positions that are suit

able for both partners. However, the implementation of this technique requires to

solve some tricky conceptual problems, such as how to represent shared terminals on

different leafcells in the database. Thus, for the moment, we have taken a less direct

approach.

108

For the special case of an iterative array of identical cells, we compact the

defining cell with suitable cyclic end-around constraints. For example, if a cell is

repeated several times in horizontal direction, one can match the terminal positions in

vertical direction by adding fixed constraints between terminals of the same height

when compacting the leafcell: This will guarantee that the compacted cells can be

abutted tightly.

The more general case where two cells of different type abut is handled in several

steps.

(A) First we compact the core of each leaf cell, maintaining the terminal frame in

unchanged form as given in the symbolic representation that specifies the topol

ogy of the layout. A core is a set of components that are not placed on the boun-

dary of an input layout: a core does not contain any shared terminals. The com

pacted core remains attached to this shared terminal frame by suitable wires (Fig.

3.15).

109

Figure 3.15. A single leafcellwith compacted core.

(B) These core cells with their surrounding frames are then assembled into the

desired configuration. A clean-up routine straightens out the wires as much as

possible and removes unnecessary wire segments and terminal points (Fig. 3.16).

110

Figure 3.16. Assembly of compacted leafcells.

(C) Finally, we apply a second compaction step at the next higher level of the hierar

chy, in which the cores of the cells are considered fixed clusters. This compacts

the terminal frames, the attached wires, and possible routing channels for all par

ticipating cells at this level of the hierarchy (Fig. 3.17).

Ill

Figure 3.17. Completed hierarchical compaction ofcell assembly.

This basic strategy, while not as elegant as direct pitch matching of all terminals

between cells during the compaction process, allows us to handle all cases in the

benchmarks. The strategic control of the necessary sequence of compaction steps is

currently under operator control. For the case of atwo-dimensional array of identical

cells with some one-dimensional arrays of peripheral cells, we first compact the cell of

the two-dimensional array. Then the peripheral cells are compacted to the respective

width or height of the compacted core of this array cell. After execution of the clean

up routine (B). there is a good probability that the remaining cell cores abut gracefully.

The example used in Figures 3.15. 3.16. and 3.17 is circuit 'ccellsl32_r of the

benchmarks used at an international workshop on symbolic layout and compaction

112

[88. 89].

3.7. VARIATIONS

Since compaction by Z-R offers various flexibilities in its implementation, there

are many possibilities to extend our present implementation, for example, by changing

the strategies of selecting clusters of components to be mov£d. of limiting the range of

search, and of placing the components.

3.7.1. Back-Tracking

The approach for cluster placement described in Section 3.4.4 is "greedy" in the

sense that once an "optimal" position has been found for a cluster, the components of

this cluster remain fixed unless they become part of an x -cluster.

Better results could be obtained if the positions of the components in the floor

could still be changed to make room for cluster parts that are moved across the zone

subsequently. Of course, such back-tracking involves a much longer running time

since in the limit, all the components can be moved at all times.

3.7.2. Inter-pass Processing

Additional freedom in the use of zone-refining results from the possibility to do

some processing between subsequent Z-R passes. One option is the possibility to

exploit knowledge about the critical path (see next subsection). The critical path can

113

be determined after each Z-R pass and can then be fragmented using special routines.

Currently Zorro has an optional routine that preferentially moves all components in

the direction away from the critical path; this opens up more space and adds flexibility

in the most "congested" area.

Another possibility for inter-pass processing is to use dynamic strategy for jog

generation. Since jog generation is very expensive in CPU time, we want to limit its

application to cases when we can get good results. A good heuristic on this problem is

to use Z-R compaction without jog-generation until the area reduction per pass falls

below a given limit, i.e.. a few percent of the layout area, and use Z-R compaction with

automatic jog-generation later on.

3.73. Zone-Refining with Critical-Path Shearing

A critical path is a bottleneck which defines the width or height of a layout. W.

Wolf of Bell Laboratories suggested a zone-refining method similar to the critical path

shearing approach in which each critical path is found and broken if possible to reduce

the area of the layout. This speeds up a zone-refining pass since the sophisticated

placement routine is applied only to the components in the critical path and non-

critical components are placed using a simple straight-downward move. However, the

number of passes to obtain a converged solution is larger since fewer critical paths are

broken at each Z-R pass.

Table 3.3 shows the compaction result of five benchmark examples [88] using (a)

plain zone-refining approach (the method described in Section 3.4) and (b) zone-

refining for components on the critical path (the method described in this section).

The same set of design rules [88] has been used for all the examples and the results are

obtained running Zorro on a DEC MV 8650 under the Ultrix V2.0 operating system.

114

Both approaches are implemented using the same modular routines. After optimiza

tion, more speed-up is expected in approach (b) since most of the routines are written

for plain zone-refining, i.e. approach (a). Automatic jog-generation is used: for hor

izontal wires from the second Z-R pass and for vertical wires from the fourth pass.

The performance of the two approaches is quite similar. Among the five exam

ples, approach (a) resulted in smaller layouts in two examples, approach (b) resulted

in smaller layouts in other two examples, and there was a tie in one case. Approach

(a) converges faster if the number of zone-refining passes is used a*s a measure of the

speed of the convergence. When critical paths really restrict the compaction, approach

(b) wins since it concentrates on the components on the critical path. Otherwise, if

several non-critical components should be placed in a compact way to make room for a

critical component, then approach (a) wins, since it tries to pack every component as

densely as possible.

Example

plain zone-refining
#Z-R pass area CPU

Z-R on critical path
#Z-R pass area CPU

afa 6 10092 613 9 10092 744

afakr 5 8181 521 8 8383 754

fal3 10 12084 1293 11 11648 1199

aahal 5 8700 153 6 7900 182

n28 6 8750 482 15 8804 943

(CPU time in seconds and area in lambda square)

Table 3.3 : Comparison of two zone-refining approaches

115

3.8. APPLICATION AND RESULTS

First, we show results of circuit layout compaction, using several different

options of zone-refining. Then we present results of the benchmark examples in the

compaction session of the international conference on computer design [5].

All examples given in this section have been run on a DEC MV8650 under the

Ultrix operating system.

3.8.1. Layout Compaction by Zone-Refining

Fig. 3.18 presents the process of zone-refining for an actual circuit. Fig. 3.18(a)

shows the configuration after one-dimensional compaction steps in the x and y direc

tion. The bottom contour of this pre-compacted layout becomes the initial ceiling. Fig.

3.18(b) shows an intermediate result after compacting 30 clusters in the down-ward

direction; the first Z-R pass finishes after the movement of all 54 clusters. After 5

passes of Z-R. we obtain a converged result shown in Fig. 3.18(c). The area reduc

tions and run-times for this example are summarized in Table 3.4(a); in the table, the

width of the layout is reduced by 1-D compaction in the x-direction between Z-R

passes in the y -direction. By using simulated annealing techniques during the cluster

placement, we obtain a slightly better solution at the expense of significantly longer

CPU times as shown in Fig. 3.18(d) and Table 3.4(b).

For layouts of library cells for a standard-cell environment, it is important to

compact the cells to a specified height. Fig. 3.19 demonstrates the pitch-matching capa

bilities of zone-refining. In Fig. 3.19 (b) and (c). the width of the layout is constrained

to a width of 85 units. The precompacted layout (Fig. 3.19 (a)) has been zone-refined

into a frame of this width. Monotone greedy Z-R generated the result shown in Fig.

3.19 (b). and Z-R with simulated annealing produced the layout in Fig. 3.19 (c). The

116

compaction results and run-times are listed in Table 3.4 (c). Because of the hill climb

ing feature of simulated annealing, more changes in relative positions of components

can be made with simulated annealing than with a greedy approach.

In Table 3.4. "l-D" indicates compaction in the x and then y direction by a one-

dimensional compaction algorithm. "Y+" ("Y-") indicates compaction in the positive

(negative) y- direction by zone-refining. "Yj" indicates compaction by Z-R in the y-

direction with automatic jog-introduction.

(a) Result with 5 passes of Z-R

compaction sequence width height area (normalized) CPU time (sec)

1-D (precompaction) 74 147 10878 (100.0%) 8

1-D.Y- 74 140 10360 (95.2 %) 15

1-D.Y-.YJ+ 74 131 9694 (89.1 %) 28

l-D.Y-.Yj+.Yj- 74 130 9620 (88.4 %) 46

l-D.Y-.Yj+.Yi-.Yj+ 73 128 9344 (85.9 %) 82

l-D.Y-.Yj+.Yi-.Yj+.Yj- 70 127 8890 (81.7 %) 130

(b) Result of Z-R with simulated annealing

compaction sequence width height area (normalized) CPU time (sec)

30 Z-R passes with SA*
(Y-.X+. Y+. X-. ...)

67 128 8576 (78.8 %) 868

117

(c) Result of Z-R with fixed width constraint

compaction sequence

1-D (precompaction)
10 Z-R passes

40 Z-R passes with SA*

width

85

85

85

height

147

119

117

area (normalized)

12495 (100.0%)
10115 (81.0%)

9945 (79.6 %)

CPU time (sec)

424

2046

(SA* : simulated annealing)

Table 3.4 : Results of the layout compaction

For the multiple Z-R passes reported in Table 3.4 (c). all passes were executed in

alternating (Y-. Y+) directions.

(a) Precompacted layout using
l-D algorithm in x and then y
direction.

(b) Intermediate result. 30 clus

ters have been placed among 54
clusters in the first pass.

(c) Result after 5 passes of Z-R.
Jogs are generated from the 2nd
pass.

Figure 3.18. Results oflayout compaction using zone-refining.

(d) Result after 30 passes of Z-R
with simulated annealing.

(a) Precompacted layout with

fixed width (width = 85).
(b) Result after 10 passes of Z-R.

^MiMWMiWiWMMMIMM^^

(c) Result after 40 passes of Z-R

with simulated annealing.

Figure 3.19. Results ofzone-refining with a fixed-width constraint.

120

3.8.2. Results on Benchmark Examples

In this section, results of the benchmark examples used in the 1987 International

Conference on Computer Design (ICCD) [5], are presented and they are compared with

those of other well-known compactors presented at the conference. The benchmark

session is an out-growth of the International Workshop on Symbolic Layout and Com

paction (IWSLC). Some of the benchmarks were collected from the workshop and

several compactors were invited to the ICCD. Four compactors participated in the ses

sion: the MACS [15] constraint graph-based compactor with jog insertion and wire-

length minimization, the graph-based compactor SPARCS [8] with analog design sup

port, the Symbolics virtual grid compactor [99] with contact offsetting, and Zorro [88].

All the other compactors except Zorro decomposed the compaction problem into x and

y one-dimensional problems.

We compacted all the leaf cells with the same basic strategy: Three or five passes

of zone-refining are applied after a one-dimensional precompaction step depending on

the number of components of the leafcell. Jog-generation is performed in all but the

first pass of zone-refining.

Table 3.5 gives a summary of the results. The CPU times quoted refer to total

run-time in seconds including reading the input file and the technology file, writing the

output file, connectivity (net list) generation, and all compaction steps. For CMOS

cells the area quoted (in X2) includes the PWELL area even though the WELL area is

not shown in the layout. For hierarchical examples, the number of zone-refining

passes performed at the leafcell level and at the higher level are shown in that order.

121

Example # Z-R pass area width height CPU memory

N28 5 9072 72 126 378 704k

cl32 3.0 93525 435 215 301 1413k

cl32 3.2 91258 432.5 211 4821 2478k

afa 5 10716 94 114 430 647k

afakr 5 8989 89 101 524 598k

mul2x2 5.0 35448 211 168 838 614k

mul2x2 5.2 34815 211 165 1062 614k

mul4x4 5.0 146304 381 384 1904 741k

mul4x4 5.2 142875 381 375 7364 741k

mul8x8 5.0 607020 755 804 11738 7754k

mul2x2.flat 5 35690 215 166 748 1470k

mul4x4.flat 3 145125 387 375 3388 10240k

cl32.flat 3 90497 433 209 2378 5472k

Table 3.5 : Compaction of benchmark examples

In Table 3.5. we obtained smaller compacted cells (mul2x2 and mul4x4) by using

our hierarchical approach than by compacting a hierarchically flat description. We

believe that the difference in aspect ratio of the resulting layouts is probably responsi

ble for this. In general, we would expect that a powerful hierarchical compactor

would have advantages over flattened-view compaction in CPU time and memory

usage.

Fig 3.20 shows the compacted results of mul4x4. Fig 3.20(a) shows the hierarch

ically compacted result: five zone-refining passes have been applied to compact the

leafcells (afa. aahal. fal3). and two zone-refining passes have been applied for higher

level compaction. Fig. 3.20(b) shows the result of flattened-view compaction.

IT I

-jjnsau pajovdutoo KjpotyouDjaty (v)
pxppnufo jmsau pajovdtuoj •()£*£ wnSij

Figure 3.20. Compacted result of mul4x4.
(b) flattened compaction result.

123

124

Table 3.6 shows comparisons of Zorro with other well-known compactors on the

benchmark examples. Zorro could generate the best results on most of the examples.

No compactor was able to run all 8 examples because of either excessive run-times or

other reasons. Zorro produced the smallest area on 5 examples among the 7 examples

it participated. On the other two examples. MACS [15] gave the smallest area: how

ever, for these examples, the area differences between results of Zorro and those of

MACS are very small (1-2 %). The reasons that MACS could gave slightly better

results on the two examples are partly because Zorro did not care about pwell area

during compaction and added the well area after compaction and partly because MACS

has a wire-length minimization routine. On the other examples. Zorro generated up to

17% better results than the next best ones. In memory space requirement. Zorro is

comparable with other compactors. Zorro used the largest memory space in two exam

ples among 7, while MACS used largest memory space in all four examples it partici

pated. For hierarchical examples. Zorro kept all the detailed geometries of their sub-

cells even during higher level compaction: mul8x8 has 64 subcells and all the details of

them are maintained. By changing the data structure in Zorro to store only abstracted

geometries for compacted leafcells, the required memory space and CPU time of Zorro

will be substantially reduced.

Example Area CPU Memory

compactor (microns) (sec)

afa

MACS
SPARCS
Symbolics
Zorro

143 x 166 = 23738
157 x 180 = 28260
160 x 189 = 30240
140.5 x 171 = 24025.5

9

11

5

430

1450k

356k

164k

647k

afakr

MACS

SPARCS
Symbolics
Zorro

142 x 145 = 20590
157 x 151 = 23707
154 x 154 = 23716
128.5 x 151 » 19403.5

5

8

5

524

1390k

372k

160k

598k

n28

SPARCS
Zorro

123 x 198 = 24354
108 x 187 = 20196

8

378

356k

704k

cl32

MACS

SPARCS
Symbolics
Zorro

627 x 354 = 221958

685 x 339 = 232215
675 x 330 = 222750
660 x 322 = 212520

41

51

57

301

3000k

184k

1040k

1413k

mul2x2

MACS

SPARCS
Symbolics
Zorro

309 x 252 = 77868
343 x 255 = 87465

370 x 270 = 99900
312 x 252 = 78624

16

47

10

838

2050k

215k

512k

614k

mul4x4

SPARCS

Symbolics
Zorro

649 x 601 = 390049
654 x 638 = 417252
577x577.5 = 333217.5

66

54

1904

754k

840k

741k

mul8x8

SPARCS
Symbolics
Zorro

1285 x 1285 = 1651225
1276 x 1352 = 1725152
1138 x 1207.5 = 1374135

89
245

11738

2066k

3200k

7754k

mull6xl6

Symbolics 2524 x 2780 = 7016720 1073 14400k

125

Notes

1 The Symbolics compactor runs on a Symbolics work station. The run times were
divided by 4 to scale them to a DEC VAX 8650.

2 Zorro did not generate the pwell. Proper well area has been added.
3 Netlists of SPARCS result of mul8x8 did not match with others.

4 No two netlists for the cl32 example were the same.

5 The area, design rules, and netlists are checked by D. Boyer [5]

Table 3.6 : Comparisons on benchmark examples

126

In general, the speed of convergence and the final result depend on the sequence

of the compaction steps. Compaction by zone-refining is robust in that it is less depen

dent on the initial topology of a layout or compaction sequences when compared with

one-dimensional algorithms. The optimal sequence for each case depends on the

current and desired aspect ratio and the distribution of the components in the layout.

3.9. SUMMARY

Two-dimensional compaction by zone-refining is an effective option in the wide

range between simple one-dimensional compaction by constraint-graph based methods

and simulated annealing techniques for general placement. This intermediate option is

expected to produce denser layouts than one-dimensional compactors because of the

additional degrees of freedom in moving individual components, but to run consider

ably faster than placement by simulated annealing. The greedy, monotone version of

zone-refining uses a much more limited way to search for a final solution than simu

lated annealing techniques. It can thus not be expected to find a solution guaranteed to

be close to the global optimum in density if achieving the latter would require

dramatic changes in topology. In more sophisticated non-monotone versions, addi

tional CPU time can be traded for slightly improved solutions.

Zone-refining is a novel compaction method, that, while having a preferred direc

tion of compaction at every stage, still moves components in the direction of both

coordinate axes to obtain densest local packing. Our first implementation is a greedy

algorithm that makes use of any local optimization encountered. The decrease in area

is thus strictly monotonic. This method promises to be a good compromise to achieve

layouts of a density good enough for practical applications at a reasonable amount of

127

CPU time.

The compaction results depend on the topology of the circuit since the allowed

rearrangement of the components is severely restricted by the original layout. This

restriction can be reduced by using more elaborate search algorithms for the placement

of circuit clusters at the lower end of the zone or simulated annealing techniques.

Further improvements are expected in Zorro. especially in running time, since the

detailed algorithm and the routines have not been completely optimized yet. Our main

emphasis was to explore the general concept of compacting a layout by repeated local

refinement, to study the different operational modules required for such a compactor,

and to discover good data structures for its implementation.

The zone-refining approach presents a general framework for compaction. A wide

range of trade-offs between the density of the final solution and the required CPU time

can be achieved depending on the sophistication of the algorithms that select, move,

and place components in the free zone. One limiting case when all lateral movements

are suppressed is a simple one-dimensional compactor. In the other extreme when

extensive searching with the use of Monte Carlo hill climbing is employed, the method

approaches placement by simulated annealing. This variety could be made available to

the user through the choice of a few parameters.

4.

Chapter 4

Conclusions and Future Work

128

In this chapter, areas for future work are described. Also conclusions of this

dissertation are presented.

4.1. EXTENSIONS AND FUTURE WORK

The physical design problem has been divided into several steps such as floor-

planning, placement, global and detailed routing, and compaction, because of the com

plexity of the overall problem. It is easier to deal with these sub-problems indepen

dently. However, these steps are closely coupled and can affect one another. There

fore, to produce a good result that satisfies various goals (which are frequently con

tradicting), each step should be solved while considering the effects of this step on

other routines. An alternative is to use feedback loops and recursive refinements. For

example, the placement can be modified according to the result of routing and the rout

ing may be modified to help the compaction step. To guarantee a smooth flow of data

between different design steps, all the layout synthesis tools should be able to com

municate either by using a centralized database [7] or by defining dau formats between

all necessary pairs of design tools. Further developments are expected in integrating

the CAD tools.

129

4.1.1. Extensions to Mighty

Several improvements can be made to the detailed routing algorithm described in

Chapter 2.

4.1.1.1. Multi-layer Routing

Recent advances in process technology allow more than two layers of routing.

Hence, to take full advantage of this advances, multi-layer routing becomes an impor

tant area of research. The speed of many chips today is limited more by the delay

along the connections than by the speed of the basic devices, such as the transistor.

This is especially so for LSI (large scale integration) layouts, where up to 80 % of the

layout area is used for communication between the modules [92]. Using additional

interconnection layers, wires can be shorter and the size of the chip can be reduced

[57].

The basic idea of weak and strong modification can also be used for multi-layer

routing. However the following generalizations of the two-layer routing scheme have

to be made.

1 The pitch, i.e. the center-to-center spacing between two neighboring wire-

segments may have different values on different layers. To accommodate this

feature in a grid based approach, one may need a rather fine grid which implies

longer CPU-times. Therefore, a gridless approach has advantages when the

pitches and/or wire-widths vary.

2 When the routing area is large, giving global information to the maze path-finder

by generating pseudo-pins is helpful or even necessary. For two-layer routing.

VCV (vertical constraint violation) and HCV (horizontal constraint violation)

could easily be checked. However. VCV and HCV are not clearly defined when

130

there are many layers. This problem can be alleviated by partitioning all the nets

and assigning set of layers to each subgroup of nets [6]. But this partitioning

imposes extra constraints on the use of the various layers and may affect the

routing results. We expect that weak and strong modification resolves part of the

difficulties.

A prototype of a multi-layer router, ANGELAR (A N-layer GEneral LAyout

Router) is under development. So far. it can handle small polygonal routing problems

with N-layers of interconnection, where N is a user defined variable. There may be

obstacles of any size and shape in the routing region. The basic algorithm of Angelar is

similar to that of Mighty, and it seems that strategies used in Mighty will readily be

applicable to N-layer routing problems. However, in order to handle various wire-

widths and arbitrary pitch values on different layers, we have switched to a gridless

data structure similar to the one described by Suzuki, et al. [96]. Fig. 4.1 shows a

three-layer routing example routed by Angelar. This is the same example used in Fig.

2.5 and three tracks are used to complete the routing: Mighty used four tracks using

two layers.

131

t 2 24 £ & 10 f t £ 1 3

2. 1 s a i /o f 7 < 3 3 l

pjiijisiiiiyiijijjijiHJiJnijii iayer \

I layer 2

layer 3

Figure 4.1. An example of three layer routing by Angelar.

4.1.1.2. Other Extensions to Mighty

When routing analog circuits, there may be some nets which are very sensitive to

noise. In this case, the router can protect sensitive nets by routing them first and by

penalizing other nets from passing close to the sensitive nets by assigning large cost

parameters near the paths of the sensitive nets.

Due to processing technology, we may want to avoid making vias on some partic

ular area in the routing region even though wiring on the area is allowed on both

layers. For example, wires on metal 1 and metal2 can pass over a transistor active area

while we may not want to make a via on top of the active area. Hence, adding the

132

feature to prohibit making vias on some area will allow the router to handle more gen

eral cases.

When adjustment of placement is allowed and when complete routing is not pos

sible within the given routing area, the detailed router should be able to suggest the

location where it needs more space to complete all the necessary connections. Testing

routability is also important [92]. However. I am not aware of any powerful "exact"

routability checker [22. 44, 71].

4.1.2. Extensions to Zorro

Most of the desired extensions concern the hierarchical part of compaction. First,

the data structure to represent a compacted subcell should be reconsidered. In the

current prototype implementation of the hierarchical part of Zorro, each subcell con

tains all the detailed geometries of its components. This increases the required

memory space and CPU time. Developing a data structure to maintain abstracted but

still partly flexible cells can substantially reduce the memory space and CPU time.

Furthermore, the compactor can be generalized to compact with non-rectangular

bounding polygon. With this feature, when one subcell has been compacted, neighbor

ing cells can be compacted to fit on their boundaries to the ones already compacted.

From our experience, we feel that the total compaction time of a chip can be

reduced by using a spectrum of different specialized methods to compact layouts of

different structure. For example, an array of a single leafcell can be compacted a lot

more efficiently than a layout with many different leafcells. For routing area compac

tion, specialized compactors have been developed already [49,109]. Recently, some

developments are reported [49] on whole-chip compaction methods. Still we need to

improve various strategies to handle different special cases effectively.

133

Wire-length optimization, including wire-length minimization [59, 80,100], resis

tance minimization, slack space allocation, is also an important area where efficient

algorithm is needed. Wire-length optimization improves electrical properties of the

designed circuit and helps compaction by reducing the area occupied by wires.

Another beneficial feature is the ability to modify the topology of the given lay

out. A good floor planner or topology generator is important to obtain satisfactory

results. However, a human designer can often make a few changes to the compacted

layout to get a better result. To build a layout synthesis system of the next genera

tion, compactors should be able to make these changes automatically. An alternative

approach is to solve several steps of the problem at once since each of the steps is

highly dependent on other steps. For example. C.P. Hsu. et al. [34] developed asystem

which considers the problem of defining the layout hierarchy, area estimation, and

aspect ratio assignment simultaneously. Further developments in this direction are

expected.

The basic algorithm of zone-refining can also be used for non-Manhattan design

style. In this case, the algorithm will decide the slope of wires in the zone so that the

minimum zone-gap is maximized, i.e. each connection should be re-implemented by a

combination of horizontal, vertical, and 45 degree wires.

4.2. CONCLUSIONS

A set of new efficient algorithms for layout compaction and routing have been

developed. Since finding the globally optimum solution in either a routing or a com

paction problem is NP-hard. exhaustive search can not usually be applied. Instead,

new heuristic methods that can iteratively improve the solution have been developed.

134

The experimental results show that these incremental techniques produce as good as or

better results when compared with other pulished methods.

135

Bibliography

References

1. S. B. Akers . J. M. Geyer, and D. L. Roberts. "1C Mask Layout with a Single Con

ducting Layer," Proceedings, the 7th Design Automation Workshop, , pp. 7-16

(June 1970).

2. P. Agrawal and M. A. Breuer, "Some Theoretical Aspects of Algorithmic Rout

ing." Proceedings, 14th Design Automation Conference. (1977).

3. B. Baker and R. Pinter. "An Algorithm for the Optimal Placement and Routing of

a Circuit within a Ring of Pads," 24th Annual Symposium on Foundations of Com

puter Science, pp. 360 - 370 (1983).

4. M. W. Bales. "Layout Rule Spacing of Symbolic Integrated Circuit Artwork,"

U.C.Berkeley, UCB/ERL Report M82/72. (1982).

5. D. Boyer, "Symbolic Layout Compaction Benchmarks," International Conference

on Computer Design. (1987).

6. D. Braun. J. Burns, S. Devadas. H. Ma. K. Mayaram. F. Romeo, and A.

Sangiovanni-Vincentelli. "Chameleon: A New Multi-Layer Channel Router."

Proceedings, 23rd Design Automation Conference. (June 1986).

7. J. Burns, A. Casotto. M. Igusa. F. Marron. F. Romeo, A. Sangiovanni-Vincentelli,

C. Sechen, H. Shin, G. Srinath. and H. Yaghutiel. "Mosaico: An Integrated Macro-

Cell Layout System." to be published, VLSI conference. (August 1987).

8. J. Burns and A. Newton, "Efficient Constraint Generation for Hierarchical Com

paction." International Conference on Computer Design. (1987).

136

9. J. Burns and R. Newton, "SPARCS: A New Constraint-Based IC Symbolic Layout

Spacer," Proceedings, IEEE Custom Integrated Circuit Conference. (1986).

10. M. Burstein and R. Pelavin, "Hierarchical Channel Router," Proceedings, 20th

Design Automation Conference, pp. 591 - 597 (June 1983).

11. M. Burstein and R. Pelavin, "Hierarchical wire routing." IEEE Transactions on

Computer-Aided Design, Vol. CAD-2, No. 4. pp. 223 - 234 (1983).

12. C. Carpenter and M. Horowitz, "Generating Incremental VLSI Compaction Spac

ing Constraints." Proceedings, 24th Design Automation Conference, pp. 291 - 297

(1987).

13. Y. E. Cho. "A Subjective Reviewof Compaction." Proceedings, 22nd Design Auto

mation Conference, pp. 396 - 404 (June 1985).

14. S. Chowdhury and M. Breuer. "An 0(n) Algorithm for Width Determination of

power/ground Routes for VLSI Circuits." Integration Letter, pp. 345 - 355

(1986).

15. W. Crocker, R. Varadarajan. and C. Lo. "MACS: a Module Assembly and Com

paction System." International Conference on Computer Design, (1987).

16. W. A. Dees and P. G. Karger. "Automated Rip-Up and Reroute Techniques."

Proceedings, 19th Design Automation Conference, pp. 432 - 439 (1982).

17. D. Deutsch. "A Dogleg Channel Router." Proceedings, 13th Design Automation

Conference, pp. 425 - 433 (June 1976).

18. J. Do and W. Dawson. "Spacerll: A Weil-Behaved IC Layout Compactor."

Proceedings, VLSI Conference .(1985).

19. A. E. Dunlop. "SLIM-The Translation of Symbolic Layouts into Mask Data."

Journal of Digital Systems, Vol V, No 4,. pp. 429 - 451 (1981).

137

20. A. E. Dunlop. "SLIP: Symbolic Layout of Integrated Circuits with Compaction."

Computer Aided Design, pp. 387 - 391 (November 1978).

21. G. Entenman and S. Daniel. "A Fully Automatic Hierarchical Compactor."

Proceedings, 22nd Design Automation Conference, pp. 69 - 75 (June 1985).

22. A. Frank. P. Levai, J. Mozes, P. Scsaurszki. and E. Tardos. "Sufficient Conditions

for Solvability of Channel Routing Problems." ISCAS. (1984).

23. S. Goto, T. Matsuda, K. Takamizawa. T. Fujita. H. Mizumura. H. Nakamura, and

F. Kitajima. "LAMBDA: An Integrated Master-Slice LSI CAD System." Integra

tion, the VLSI journal, pp. 53 - 69 (1983).

24. G. Hamachi. "An Obstacle-Avoiding Router for Custom VLSI." PhJ). Thesis.

University of California, Berkeley. CA.. (April 1986).

25. G. Hamachi and J. Ousterhout. "A Switch-box Router with Obstacle Avoidance,"

Proceedings, 21nd Design Automation Conference, pp. 173 - 179 (June 1984).

26. N. Hasan and C. Liu. "A Force Directed Global Router." Proceedings, the 1987

StanfordConference, pp. 135 - 150 (1987).

27. T. Hedges. W. Dawson, and Y. E. Cho. "Bitmap Graph Build Algorithm for Com

paction." Proceedings, IEEE International Conference on CAD. pp. 340 - 342

(November 1985).

28. W. R. Heller. W. F. Mikhail, and W. E. Donath. "Prediction of Wiring Space

Requirements for LSI." Proceedings, 14th Design Automation Conference, pp. 32 -

42 (1977).

29. D. Hightower. "The Lee Router Revisited." Proceedings, IEEE International

Conference on Computer Design, pp. 136 - 139 (1983).

30. D. Hightower, "A Solution to Line Routing Problems on the Continuous Plane,"

Proceedings, 6th Design Automation Workshop. (1969).

138

31. D. D. Hill. J. P. Fishburn, and M. P. Leland. "Effective Use of Virtual Grid Com

paction in Macro-Module Generators." Proceedings, 22nd Design Automation

Conference, pp. 777 - 780 (1985).

32. D. Hodges and H. Jackson, Analysis and Design of Digital Integrated Circuits,

McGraw Hill (1983).

33. Y. Hsieh and C. Chang. "A Modified Detour Router." Proceedings, IEEE Interna

tional Conference onCAD. pp. 301 - 303 (November 1985).

34. C. Hsu. S. Evans. J. Tang. K. Chow. R. Perry, and J. Liu. "An Efficient Hierarchi

cal Approach to High Complexity Circuit Layout." Proceedings, IEEE Custom

Integrated Circuit Conference, pp. 614-617 (1987).

35. C. Hsu, "A New Two-Dimensional Routing Algorithm." Proceedings, 19th Design

Automation Conference, pp. 46 - 50 (June 1982).

36. C. Hsu. "Theory and Algorithms for Signal Routing in Integrated Circuit Lay

out." PhD. Thesis. University of California. Berkeley. CA.. (1983).

37. M. Y. Hsueh. "Symbolic Layout and Compaction." U.C.Berkeley, UCB/ERL Report

M79/80. (1979).

38. M. Hung and W. 0. Rom. "Solving the Assignment Problem by Relaxation."

Operations Research 28, No. 4 pp. 969 - 982 (August 1980).

39. M. Ishikawa. T. Matsuda. and S. Goto. "Compaction Based Custom LSI Layout

Design Method." Proceedings, IEEE International Conference on CAD, pp. 343 -

345 (November 1985).

. 40. R. Joobbani, "An Application of Knowledge-Based Expert System to Detailed

Routing of VLSI Circuits." PhD. Thesis. Carnegie-Mellon University, (1985).

41. R. Joobbani and D. Siewiorek. "WEAVER: A Knowledge- Based Routing Expert."

Proceedings, 22nd Design Automation Conference, pp. 266 - 272 (June 1985).

139

42. R. L. Joseph. "An Expert Systems Approach to Completing Partially Routed

Printed Circuit Boards," Proceedings, 22nd Design Automation Conference, pp.

523 - 528 (1985).

43. Y. Kajitani. "Order of Channels for Safe Routing and Optimal Compaction of

Routing Area," IEEE Transactions on Computer Aided Design 2 pp. 293 - 300

(October. 1983).

44. R. Karp. F. Leighton. R. Rivest. C. Thompson. U. Vazirani. and V. Vazirani. "Glo

bal Wire Routing in Two-Dimensional Arrays." 24th Annual Symposium on Foun

dations of Computer Science, pp. 453 -459 (1983).

45. G. Kedem and H. Watanabe. "Graph-Optimization Techniques for IC Layout and

Compaction." IEEE Transactions on CAD ofICAS Vol. 3,No. 1. (January 1984).

46. K. H. Keller. "An Electronic Circuit CAD Framework." UCBerkeley, UCB/ERL

Report M84/54. (1984).

47. C. Kingsley. "A Hierarchical. Error-Tolerant Compactor." Proceedings, 21nd

Design Automation Conference, pp. 126-132 (June 1984).

48. S. Kirkpatrick. C. D. Gelatt. and M. P. Vecchi. "Optimization by Simulated

Annealing." Science, Vol. 220. pp. 671 - 680 (May 1983).

49. R. Kossey. "KCOMP: A Full Chip Compaction Strategy." Proceedings, IEEE Cus

tom Integrated Circuit Conference, pp. 610 - 613 (1987).

50. W. Kraft and W. Hein. "A Router for Channels of Nonuniform Width Containing

Preplaced Wiring and Obstacles," Integration, the VLSI journal, pp. 223 - 244

(1985).

51. U. Lauther. private communications. (1986).

52. U. Lauther. "Channel Routing in a General Cell Environment." Proceedings, VLSI

Conference, pp. 389 - 399 (1985).

140

53. U. Lauther. "A Data Structure for Gridless Routing," Proceedings, 17th Design

Automation Conference, pp. 603 -609 (1980).

54. E. Lawler, "Combinatorial Optimization : Networks and Matroids," in Holt,

Rinehart and Winston. (1976).

55. C. Lee. "An Algorithm for Path Connections and its Applications." IRE Transac

tions on Electronic Computers, Vol EC-10. pp. 346 - 365 (September 1961).

56. J. Lee. "Compaction of VLSI Layouts with General Design Rules," International

Workshop on Symbolic Layout and Compaction, Chapel Hill, North Carolina.

(November, 1986).

57. F. T. Leighton and A. L. Rosenberg. "Automatic Generation of Three-Dimensional

Circuit Layouts." ICCD. pp. 633 - 636 (1983).

58. Y. Liao and C. K. Wong. "An Algorithm to Compact a VLSI Symbolic Layout

with Mixed Constraints." IEEE Transactions on CAD of 1CAS, Vol. 2, No. 2. pp.

62 - 69 (April 1983).

59. S. Lin and J. Allen. "Minplex - A Compactor That Minimizes the Bounding Rec

tangle and Individual Rectangles in a Layout." Proceedings, 23rd Design Automa

tion Conference, pp. 123 - 130 (1986).

60. R. Linsker. "An Iterative-Improvement Penalty-Function-Driven Wire Routing

System." IBM J. Res. Develop. Vol. 28 No. 5. pp. 613 - 624 (September 1984).

61. C. Lo. R. Varadarajan. and W. Crocker. "Compaction with Performance Optimiza

tion." IEEE International Symposium on Circuits and Systems, pp. 514 - 517

(1987).

62. W. Luk. "A Greedy Switch-box Router." INTEGRATION, the VLSI journal 3.

pp. 129-149(1985).

141

63. F. M. Maley. "Compaction with Automatic Jog Introduction." Proceedings, Chapel

Hill Conference on VLSI, pp. 261 - 283 (1985).

64. M. Marek-Sadowska. "Route Planner for Custom Chip Design," Proceedings,

IEEE International Conference on CAD. pp. 246 - 249 (November 1986).

65. M. Marek-Sadowska. "Two-dimensional Router for Double Layer Layout."

Proceedings, 22nd Design Automation Conference, pp. 117 - 123 (June 1985).

66. C. Mead and L. Conway. Introduction to VLSI Systems, Addison Wesley (1980).

61. R. C. Mosteller. A. Frey. and R. Suaya. "2-D Compaction - A Monte Carlo

Method." Proceedings, the 1987 Stanford Conference, pp. 173-197 (1987).

68. A. Moulton. "Laying the Power and Ground Wires on a VLSI Chip." Proceedings,

20th Design Automation Conference, pp. 754 - 755 (1983).

69. L. S. Nyland. "Improving Virtual-Grid Compaction Through Grouping." Proceed

ings, 24th Design Automation Conference, pp. 305 - 310 (1987).

70. J. Ousterhout. "Corner Stitching: A Data-Structuring Technique for VLSI Layout

Tools." IEEE Transactions on CAD, Vol.CAD-3, No.l. (January. 1984).

71. A. Patel. C. Yeh, and L. Cote. "Theoretical and Experimental Wirability Analysis

System (TEWAS)." Proceedings, IEEE International Conference on Computer

Aided Design, pp. 69 - 71 (1984).

72. W.H. Pfann. "Principles of Zone-Refining," Trans. AIME194, 747. (1952).

73. J. Reed, A. Sangiovanni-Vincentelli. and M. Santomauro, "A New Symbolic Chan

nel Router : YACR2." IEEE Transactions on Computer-Aided Design, Vol. CAD-4,

No. 3. pp. 208 - 219. (July 1985).

74. M. Reichelt and W. Wolf. "An Improved Cell Model for Hierarchical Constraint-

Graph Compaction." Proceedings, IEEE International Conference on CAD. pp.

482 - 485 (1986).

142

75. R. L. Rivest and Fiduccia. "A Greedy Channel Router," Proceedings, 19th Design

Automation Conference, pp. 418 - 424 (June 1982).

76. C. Rogers, J. Rosenberg, and S. Daniel. "MCNC's Vertically Integrated Symbolic

Design System," Proceedings, 22nd Design Automation Conference, pp. 62 - 68

(June 1985).

77. J. B. Rosenberg, "Geographical Data Structures Compared: A Study of Data Struc

tures Supporting Region Queries." IEEE Transactions on CAD voL 4 no. 1 pp. 53 -

67 (January'l985).

78. F. Rubin. "An Iterative Technique for Printed Wire Routing." Proceedings, 11th

Design Automation Workshop, pp. 308 -313 (1974).

79. S. Sastry and A. Parker, "The Complexity of Two-Dimensional Compaction of

VLSI Layouts." Proceedings, IEEE International Conference on Circuits and Com

puters, pp. 402 -406 (1982).

80. W. L. Schiele. "Improved Compaction by Minimized Length of Wires." Proceed

ings, 20nd Design Automation Conference, pp. 121 - 127 (June 1983).

81. M. Schlag. Y. Z. Liao. and C. K. Wong. "An Algorithm for Optimal Two-

Dimensional Compaction of VLSI Layouts." Integration, the VLSI journal, pp.

179 - 209 (1983).

82. W. Scott, "Compaction and Circuit Extraction in the MAGIC IC Layout System."

Ph.D. Thesis. University of California. Berkeley. CA., (1985).

83. C. Sechen and A. Sangiovanni-Vincentelli. "The TimberWolf Placement and Rout

ing Package." Proc. 1984 Custom Integrated Circuit Conf., Rochester, NY. (May

1984).

84. C. Sequin, "Tools for Macro Module Construction," International Workshop on

Symbolic Layout and Compaction. (November 1986).

143

85. H. Shin and A. Sangiovanni-Vincentelli. "A Detailed Router Based on Routing

Modifications: Mighty," To be published, IEEE Transactions for CAD of IC&S..

(November 1987).

86. H. Shin and A. Sangiovanni-Vincentelli, "MIGHTY: A 'Rip-up and Reroute'

Detailed Router," Proceedings, IEEE International Conference on CAD, pp. 2-5.

(November 1986).

87. H. Shin, A. Sangiovanni-Vincentelli. and C. Sequin. "Two-dimensional Compac

tion by Zone-Refining." Proceedings, 23nd Design Automation Conference, pp.

115 - 122 (June 1986).

88. H. Shin. A. Sangiovanni-Vincentelli. and C. Sequin. "Two-dimensional Module

Compactor Based on Zone-Refining," International Conference on Computer

Design. (1987).

89. H. Shin, A. Sangiovanni-Vincentelli. and C. Sequin. "Zorro: Two-Dimensional

Compaction By 'Zone Refining'." Benchmark Session, International Workshop on

Symbolic Layout and Compaction, Chapel Hill, North Carolina. (November 1986).

90. H. Shin. A. Sangiovanni-Vincentelli. and C. Sequin. "'Zone-Refining' Techniques

for two-dimensional Layout Compaction." In preparation. (1987.).

91. I. Shirakawa and S. Futagami, "A Re-routing Scheme for Single-Layer Printed

Wiring Boards." IEEE Transactions on Computer-Aided Design, Vol. CAD-2, No. 4,

pp. 267 - 271 (October 1983).

92. Soukup. "Circuit Layout." Proceedings of the IEEE vol. 69, no. 10 pp. 1281 -

1304 (October 1981).

93. J. Starzyk. "Decomposition Approach to a VLSI Symbolic Layout with Mixed

Constraints." 1SCAS. pp. 457 - 460 (1984).

144

94. J. Stenstrom and R. Mattheyses. "Switch-box Routing The Greedy Way."

Proceedings, IEEE International Conference on CAD. pp. 307 - 309 (1985).

95. K. Suzuki. Y. Matsunaga. M. Tachibana, and T. Ohtsuki. "A Hardware Maze

Router with Application to Interactive Rip-up and Reroute Support," IEEE Tran

sactions on Computer-Aided Design, Vol. CAD-S, No. 4. pp. 466-476. (1986).

96. K. Suzuki. T. Ohtsuki, and M. Sato. "A Gridless Router: Software and Hardware

Implementations." Proceedings, International Conference on VLSI. (1987).

97. Z. Syed and A. Gamal. "Single Layer Routing of Power and Ground Networks in

Integrated Circuits." Journal of Digital Systems 6 pp. 53 - 63 (1982).

98. T. G. Szymanski. "Dogleg Channel Routing is NP-Complete." IEEE Transactions

.. on CAD vol. 4, no. 1 pp. 31 - 40 (January 1985).

99. D. Tan and N. Weste. "Virtual Grid Symbolic Layout 1987." International

Conference on Computer Design, (1987).

100.

R. Varadarajan and G. Lakhani. "A Wire-Length Minimization Algorithm for Cir

cuit Layout Compaction." International Workshop on Symbolic Layout and Com

paction, Chapel Hill, North Carolina. (November. 1986).

101.

M. Vecchi and S. Kirkpatrick, "Global Wiring by Simulated Annealing." IEEE

Transactions on Computer Aided Design Vol. 2, No. 4. pp. 215-222 (October

1983).

102.

H. Watanabe. "IC Layout Generation and Compaction Using Mathematical

Optimization." PhD. Thesis, Dept. ofComputer Science, The University of Roches

ter. (1984).

145

103.

J. Weinstein, "A New Two-Dimensional Compaction Algorithm for Symbolic

Layout." Proceedings, IEEE Custom Integrated Circuit Conference, pp. 605 - 609

(1987).

104.

J. D. Williams. "STICKS - Graphics Editor for High-Level LSI Design," Proceed

ings, National Computer Conference, pp. 289 - 295 (1978).

105.

W. Wolf. "An Experimental Comparison of 1-D Compaction Algorithms."

Proceedings, Chapel HiU Conference on VLSI. pp. 165 - 179 (1985).

106.

W. Wolf. R. Mathews. J. Newkirk. and R. Dutton, "Two-Dimensional Compac

tion Strategies," Proceedings, IEEE International Conference on CAD. pp. 90 - 91

(1983).

107.

W. Wolf. "Two-Dimensional Compaction Strategies." PhD thesis, Department of

Electrical Engineering, Stanford University. (1984).

108.

X. Xiong and E. Kuh. "The Scan Line Approach to Power and Ground Routing."

Proceedings, IEEE International Conference on CAD. pp. 6 - 9 (1986).

109.

X. Xiong and E. S. Kuh. "Nutcracker: An Efficient and Intelligent Channel

Spacer." Proceedings, 24th Design Automation Conference, pp. 298 - 304 (1987).

110.

T. Yoshimura and E. Kuh, "Efficient Algorithms for Channel Routing," IEEE

Transactions on Computer-Aided Design, Vol. CAD-1, No. 1. pp. 25 - 35 (1982).

Feb 24 17:50 1987 cadman Page 1

A 1

MIGHTY(l) Berkeley CAD Tools User's Manual MIGHTY(l)

NAME

mighty - A Detailed Router Based on Routing Modifications

SYNOPSIS

mighty [options] [filel [file2]]

DESCRIPTION

Mighty is a two-layer symbolic detailed router for any rec-
tagonal routing area. The pins to be connected can be on
the boundaries or inside the rectagon, and the boundaries
are not used for connection. Floating pins can be on either
leftmost or rightmost edge of the routing area.

Filel is the input, file2 is the output. If file2 is omit
ted, the output goes to standard output. If no files are
specified, input is read from standard input, and output
goes to standard output. The formats of input and output
files are as follows:

The input file contains a number of key words and data in
integers. The key words are

1) number_of_nets : Number of nets to be routed.

2) rectagoncorners : Number of corner points of the
rectagonal routing area, followed by coordinates of
the corners. The coordinates of rectagon corners
ar© listed in counterclockwise sequence. MIGHTY
regards the boundary of the routing area as a
directed curve.

3) number_ofjoins : Total number of pins to be con
nected, followed by a list of pins. Each pin is
described by net-number, x and y coordinates and
a layer-number.

4) left_list : number of nets going out through left
edge of the routing area, if any, followed by the
list of such nets.

5) right_list : number of nets going out through right
edge of the routing area, if any, followed by the
list Of SUfth n«at-«list of such nets

6) obstacles : number of horizontal or vertical lines
of obstacles, if any, followed by a list of obsta
cles. Each obstacle is a line segment with begin
ning and ending point coordinates, and its layer-
number .

7) sensitive nets : number of critical nets, if any,
followed by a list of critical nets. These nets are

Printed 2/24/87 2/18/86

Feb 24 17:50 1987 cadman Page 2

A 2

MIGHTY(1) Berkeley CAD Tools User's Manual MIGHTY(1)

routed before other nets with priority.

The origin of the coordinate system of the routing area can
be chosen arbitrarily. For the current version of MIGHTY
the layer numbers are 1 and 2. Layer 1 is mainly used for
vertical connections and layer 2 is mainly used for horizon
tal connections.

The output file begins with a key word 'channelwiring'.
Then the number of vias used in the routing is given, fol
lowed by the list of the vias with their net-number, x and y
coordinates, and two layer numbers they are interconnecting.
After that, the key word 'wires' is followed by the number
of wire segments and a list of wires. Each wire is
described by a net-number, two pairs of coordinates for the
endpoints and a layer number.

The command line options described below can be specified in
any order, but must come before the input and output file
names.

-s Do not generate output of the routing; only print
statistics such as total wire-length, number of
vias, etc.

-m Do not perform metal maximization and clean-up.

-e Give the estimate of incremental channel width to
complete the routing.

AUTHOR

Hyunchul Shin

REFERENCE

H. Shin and A. Sangiovanni-Vincentelli, "MIGHTY: A 'Rip-up
and Reroute' Detailed Router", Proc. IEEE International
Conference on Computer Aided Design, pp 2 - 5, Santa Clara,
CA., Nov. 1986.

Printed 2/24/87 2/18/86

Feb 24 13:48 1987 cadman Page 3

MIGHTY(1) Berkeley CAD T

Example of an input file:
number_of__nets 4
rectagoncorners 6
-2 1
4 1
4 7
0 7
0 5
-2 5
number of pins 10
1112
14 5 2
2-232
2 4 3 2
2-112
3 0 12
3 4 4 2
3 17 1
4-242
4 4 6 2

Example of an output file
channelwiring
vias 4
3 0 2 12
13 2 12
3 2 4 12
13 5 12
wires 24
13 5 4 5

1112
3 2 3 5
12 3 2
-1 1 -1

3 3 4 3
-2 3 -1

-1 2 -1
16 17

-2 4 -1

14 15
-14 14 2
15 2 5 2
2 5 2 6 2
2 6 3 6 2

2
2
1
2

2 :
2

3 :
-13 3 3 2

Printed 2/24/87 2/18/86

A 3

MIGHTY(1)

(0,7) 3 (<

(-2,5)
i

E

4 IftMMMi

2

nnn

d

(-2,1) 2 3 1 (4,1)

^S Layer 1

EE Layer 2

Sep 24 14:50 1987 cadman Page 1 B 1

ZORRO(1) Berkeley CAD Tools User's Manual ZORRO(1)

NAME

zorro - A Two-Dimensional Compactor Based on Zone-Refining

SYNOPSIS

zorro [options] [-1 filel [-0 file2]]

DESCRIPTION

Zorro

is a 2-dimensional layout compactor for integrated circuits.
After a traditional one-dimensional precompaction step, the
size of the layout is further reduced with a technique that
bears a strong similarity to the technique of *zone-
refining' used in the purification of crystal ingots. Indi
vidual circuit components or small clusters of components
are peeled off row by row from the precompacted layout,
moved across an open zone, and reassembled at the other end
of this zone in a denser configuration. In this process
both coordinates of the moved components are altered and
jogs are introduced in the connecting wires between them to
produce the needed flexibility for placing components into
optimal positions. The constraint graphs in both the x- and
y-direction are used and updated concurrently. Simulated
annealing techniques can also be employed within the zone-
refining process.

The formats of input and output files are as follows:

The input file contains a number of key words and data in
integers. The key words are

1) I : An instance such as a transistor, a contact, a
rigid macro-cell.

2) H : A horizontal wire.

3) V : A*vertical wire.

4) P : A formal terminal.

5) BB : Coordinates of the bounding rectangle.

Key word BB is followed by four integers (left, lower,
• right, top) representing the bounding box of the layout.

All the other key words except BB are followed by two
integers representing the reference point of the component,
the components name (on the same line), and a list of rec
tangular protection frames on various layers. Each protec
tion frame has four integers showing the bounding box, layer
name, and optional net-id. There does not exist any hard
limit on the number of protection frames a component can
have.

Sep 24 14:50 1987 cadman Page 2 B 2

ZORRO(1) Berkeley CAD Tools User's Manual ZORRO(1)

The output file will be in the same format as input if file2
is specified. If file2 is omitted, the output goes to OCT
file "SPACED" with physical view.

The command line options described below can be specified in
any order.

-I filel

Set input file name to filel.

-0 file2
Set output file name to file2.

-r file3
Set rule (technology) file name to file3. By
default, the rule file name is ".zorrorule".

-e file4
Change error file name to file4. By default, error
file name is "stderr".

-n # Do compaction by zone-refining # times.

-w # Change desired width of the layout from 0 to #.

-a # Do zone-refining with simulated annealing (hill
climbing). Decrease temperature to # % of the pre
vious temperature after each pass of zone-refining.

-s Rotate the layout 90 degrees after each compaction
pass. By default, the layout is rotated by 180
degrees.

-y Compact in vertical direction first. By default,
the first pre-compaction is in horizontal direction.

-1 Do leafcell compaction.

-b Do compaction at higher level in hierarchy.

-h # Do automatic jog-generation for horizontal wires
from #-th pass of zone-refining.

-v # Do automatic jog-generation for vertical wires from
#-th pass of zone-refining.

-c # Try to push away components from the critical path
which defines the maximum width or height of the
layout, from #-th pass.

Sep 24 14:50 1987 cadman Page 3 B 3

ZORRO(1) Berkeley CAD Tools User's Manual ZORRO(1)

-fh Do not move pins in horizontal direction during
compaction.

-fv Do not move pins in vertical direction during com
paction.

AUTHOR

Hyunchul Shin

REFERENCE
H. Shin, A. Sangiovanni-Vincentelli and C. Sequin, "Two -
Dimensional Compaction By *Zone Refining'," Proceedings
ACM/IEEE 23rd Design Automation Conference, pp 115 - 122,
Las Vegas, June 1986.

	Copyright notice1987
	ERL-87-92 (1 of 2)
	ERL-87-92 (2 of 2)

