Probabilistic Analysis of Network Flow Algorithms

Richard M. Karp t
Rajeev Motwani t
Noam Nisan t

Computer Science Division,
573 Evans Hall, University of California,
Berkeley, CA 94720.

ABSTRACT

This paper is concerned with the design and probabilistic analysis of
certain algorithms for the maximum-flow problem and related capacitated
transportation problems. These algorithms run in linear time and, under
certain assumptions about the probability distribution of edge capacities,
obtain an optimal solution with high probability. The design of our algo-
rithms is based on the foliowing general method, which we call the mimick-
ing method, for solving problems in which some of the input data is deter-

ministic and some is random with a known distribution:

(i) Replace each random variable in the problem by its expectation;
this gives a deterministic problem instance that has a special form,
making it particularly easy to solve;

(i1) Solve the resulting deterministic problem instance;

(iii) Taking into account the actual values of the random variables,
mimic the solution of the deterministic instance to obtain a near-
optimal solution to the original problem;

(iv) Fine-tune this suboptimal solution to obtain an optimal solution.

We present linear time algorithms to compute a feasible flow in
directed and undirected capacitated transportation problem instances. The
algorithms are shown to be successful with high probability when the pro-
bability distribution of the input data satisfies certain assumptions. We
also consider the maximum flow problem with multiple sources and sinks.
Under probabilistic assumptions about the input, we show that with high
probability the minimum cut isolates either the sources or the sinks, and
we give a linear-time algorithm that produces a maximum flow with high

probability.

+ Supported by NSF Grant DCR-8411854

1. Introduction

Probabilistic analysis of combinatorial problems has been the subject of many recent
investigations [19]. The starting point for such analysis is the assumption that the prob-
lem instances are drawn from a certain probability distribution. Under this assumption
one studies the behaviour of the solution to the combinatorial problem or the performance
of certain algorithms. The analysis often establishes that certain quick-and-dirty algo-
rithms produce optimal or near-optimal solutions with high probability. In this paper we
will be concerned with devising quick-and-dirty algorithms of this type for certain com-

binatorial problems.

The problems considered here are all closely related to the maximum flow problem.
In particular, we present fast (linear time) algorithms for the maximum flow problem and
certain versions of the transportation problem; these algorithms are guaranteed to succeed |
with high probability if the probability distribution of inputs satisfies certain assumptions.
The main contribution of this work is the formulation and application of a new technique
for solving problems with probabilistic inputs. We call this technique the probabilistic

mimicking of deterministic solutions. The mimicking paradigm works as follows:

STAGE 1 {DETERMINISTIC RELAXATION} Suppose we are given a problem
instance P(X,Y) with parameters (or input) X and ¥. The vector X represents the
random values and the vector ¥ represents the deterministic values. Construct a
deterministic relaxation of P by replacing each random variable by its ezpected
value. We now have a deterministic problem instance PEX)Y).

STAGE 2 {SOLUTION OF DETERMINISTIC RELAXATION} Construct a solu-
tion to the new problem instance P(E[X),Y). This instance is typically of a special
form, for which a highly efficient algorithm is available.

STAGE 3 {MIMICKING PROCESS} Construct a solution to the original problem
instance P()—{!,)_") by mimicking the solution constructed in the previous step. The
exact form of the mimicking process will depend on the problem under consideration.
The idea is to use the solution of the deterministic relaxation as a guide in solving
the original problem instance.

STAGE 4 {FINE TUNING} In this stage we fine-tune the solution obtained in the
previous stage to come up with an optimal solution to the original problem instance.
The fine-tuning process is highly efficient because, with high probability, the solution

resulting from the mimicking process is already close to the optimal.

The paper is organized as follows. In section 2 we define the problems under con-
sideration and briefly discuss the previous work in this area. We also present an algorithm
which will be used for the fine-tuning stage of our algorithms. In section 3 we present
algorithms for the undirected transportation problem and the max-flow problem. In sec-
tion 4 we present an algorithm for the directed transportation problem. Finally, in sec-

tion 5, we discuss further work along these lines.

2. Preliminaries

2.1. Problem Definition

In this section we define the three problems under consideration. These are the Maz-

smum Flow Problem, the Supply Demand Problem and the Capacitated Transportation
Problem. We also present the classic Min—Maz theorems associated with each of these
problems (see [20] for more details). The problems are defined for the case of directed
graphs only. These definitions apply to undirected cases also if we look upon each
undirected edge (u,v) as representing the two directed edges (u,v) and (v,u).
Maximum Flow Problem: Let D be a digraph with vertices V(D)=S| JI{JT, where §
represents the source vertices, T represents the stnk vertices and I represents the tnter-
mediate vertices. Let E(D) represent the set of directed arcs in the digraph D. The
capacity function, ¢:E(D)—RT, assigns a non-negative real number ¢(u,v) to every arc
(u,v) in E(D). Let C={c(u,v)} denote the set of all capacities. An instance of the max-
flow problem consists of the digraph D and the set of capacities C.

Given an instance of a max-flow problem a function, f:E(D J—=R?, is called a flow

function if it satisfies the following constraints,

Y flow)= 3 flwy) VY€l

0<f(u,v)<c(uv) VY (sv)EE
Y" f(a,b) where A,BC V. The value of a flow function, val(f), is

L

ea€EALERB
defined as follows,

val(f) = f(S,V=-S)-f(V-§,5) = f(V=T,T)-f(T,V-T)

Let f(A,B)=

The max-flow problem is to find a maximum-value fow function on a given instance of a

flow problem.

This problem has been studied quite extensively [20] and can be solved in polynomial
time. The fastest known algorithm is due to Goldberg & Tarjan [14]. It runs in
O(nmlog(n®/m)) time, where n=1V| and m=|E]. In the case of dense graphs the
best max-flow algorithm known requires O(n?) time. We assume that the reader is fami-
liar with the basic theory of network flows. This includes the notion of a cut (and the
capacity of a cut) as well as the following theorem.

MAX~FLOW MIN—-CUT THEOREM : The maximum value of an (S,T)-flow is equal
to the minimum capacity of an (S,T)-cut.

Supply-Demand Problem: Let D be a digraph with vertex set V=S| JIJT, where S
represents the source vertices, T represents the stnk vertices and I represents the snter-

mediate vertices. Let E represent the set of edges in D. Associated with every source

vertex 8 €S is a non-negative number a, called the supply at s. Similarly, associated with

-3.

every sink vertex t€T is a non-negative number b, called the demand at t. Each edge
(u,v)EE has a capacity ¢(u,v) associated with it. The supply-demand problem is to find
a flow which meets the demands at T from the supplies available at S. More formally, we
are looking for a flow f:E—R* which satisfies the following conditions,

0< fluw)<cluyv) VYurveV
f(a,V—{s}) = f(V—{s}s) <6, V6ES
floV—{v}) = f(V={v}v)=0 Vvel
FV—{t}t) - feV{t}) 26 VEET

A flow which satisfies all of the above conditions is called a feastble flow. Let

a(X)= Y a, when XCS5, similarly define b(X) for X C T. Let ¢(X,X) denote the
veX
capacity of the (X,X) cut in G. The following theorem [20] gives necessary and sufficient

conditions for a feasible flow to exist in an instance of the supply-demand problem.

SUPPLY-DEMAND THEOREM: A feasible flow exists in the supply-demand problem
if and only if the following inequality holds for every subset X C V.

b(TAX) - a(SOX) < (X X)

This theorem requires that for every X C V the excess of demands over supplies in X
must be less than the total capacity of the edges leading out of X. There is an easy
transformation from an instance of a supply-demand problem to an instance of a max-flow
problem and vice versa.
Capacitated Transportation Problem: The capacitated transportation problem
(hereafter called the transportation problem) is a special case of the supply-demand prob-
lem. In this problem we have no intermediate vertices, i.e. =0, and the graph is bipar-
tite between S and T, i.e. all edges join a vertex in S to a vertex in T. We will only con-
sider the cases where the sum of all the supplies is equal to the sum of all the demands.
The Supply-Demand Theorem when applied to the transportation problem yields the fol-
lowing,
TRANSPORTATION THEOREM : A feasible flow exists in an instance of the tran-
sportation problem if and only if the following condition holds for every subset X C S,
2 7 S Zmin(bhc(Xr{t }))
z€X teT

Probabilistic Formulation: For each of these problems we will make two probabilistic
assumptions:

(a) each edge is present in the graph with probability p(n), independent of the other

edges.

(b) the capacities of the edges are i.i.d. random variables which have bounded sup-

port.

-4-

In certain cases the probabilistic assumptions may omnly apply to some subset of the edges
in the complete graph. For example, we may assume that a certain subset of the edges is
always present (or absent) while the rest obey the first probabilistic assumption. We may
also consider the case where certain edges have fixed (or deterministic) capacities while the

rest obey the second probabilistic assumption.

2.2. Previous Work and Main Results

The study of random graphs was initiated by Erdds and Rényi in 1959 [5]. Subse-
quently, it has attracted a lot of attention and a rather elegant body of results has been
built up [2]. The theory of random graphs is concerned with graphs drawn from certain
probability spaces. A commonly used probability space is called G, ,, where n is a posi-
tive integer and 0<p <1. This probability space comnsists of all graphs on the vertex set
V={(1,2, - n}. In a graph drawn from G, ;, the probability that an edge is present is p
independently for each edge. In other words, the probability of any graph with e edges is
n
9 |- Similarly, we define the probability space B, , which con-
sists of all bipartite graphs on the vertex set V=S| JT, where | S|=1T|=n. Indepen-

pt(1—p)V—¢, where N=

dently for each edge, the probability that a graph drawn from B, , contains that edge is
p.

We shall require methods for finding perfect matchings in random graphs. A perfect
matching in an undirected graph G=(V,E) is a subgraph in which each vertex in V" has
degree one. Consider an instance of the transportation problem in which the underlying
bipartite graph has all its edges directed from the sources to the sinks. The problem of
finding a perfect matching in a bipartite graph is the special case of this directed transpor-
tation problem where all the supplies, demands and capacities are set to one. The problem
of finding a perfect matching in a random bipartite graph drawn from B, , 1s a special

case of the probabilistic transportation problem.

Erdss and Rényi [6,7] proved the following theorem about the existence of perfect

matchings in random bipartite graphs.

THEOREM (Erdss & Rényi): Let p(n)=(lnn+c)/n, where ¢ is a positive constant, then
for BEB, ,

2e~

lim Prob[B has a perfect matching] = e~

n—00
Angluin and Valiant [1] gave a fast algorithm, called the Proposal Algorithm, to construct
a bipartite matching. This algorithm works in O(nlogn) time and, with high probability,
constructs a perfect matching in a random bipartite graph, provided that p(n) is large
enough. It builds up the matching progressively by having the source vertices propose to
(or pair up with) the sink vertices in stages. At each stage, the lowest-numbered free (or
unpaired) source vertex pairs up with a sink vertex randomly chosen from among its

neighbours. This sink vertex is then removed from the list of neighbours of the source

-5-

vertex. The sink vertex breaks off any previous pairing with a source vertex.

THEOREM (Angluin & Valiant) : For all a>0 there exists A>0 such that if
p(n)>(Blogn)/n then for BEB, p,

Prob[Proposal Algorithm fails on B] = O(n™)

Consider now the Max-Flow problem where | S|=1T|=1 and the edge capacities
are i.i.d. random variables. This problem was considered earlier by Frank & Hakimi [10]
and Frank & Frisch {11]. They studied the random variable val(f) under the above
assumptions and obtained results about its probability distribution. Karp [18], Grimmett
& Welsh [15] and Grimmett & Suen [18] obtained strong asymptotic results for complete
graphs with i.i.d. edge capacities. In particular, they showed that the minimum cut is
almost surely the set of edges incident on the source or those incident on the sink. These
results are all existential and do not yield any fast algorithms to construct the maximum
flow.

Doulliez & Jamoulle [4] proposed a decomposition method to determine the existence
of a feasible flow in an instance of the transportation problem when the edge capacities
are i.i.d. random variables. There are many results concerning bounds on the probability
of existence of a feasible flow in probabilistic transportation problems [22]. Hassin &
Zemel [17] studied the probabilistic version of the transportation problem where the
underlying graph is complete and the edge capacities are random variables. A collection
of random variables {c;:k € K} is said to be proper with constant a iff for each y >0 and
each k€K, Problc, <y | S]<ay. Here S represents any conditioning event concerning
the variables {c;: /€K, ! 5 k}. Hassin & Zemel considered the case where the edge
capacities form a proper collection and the supplies/demands are bounded from above.
Under these assumptions, they presented an algorithm which, with high probability, com-

putes a feasible flow in linear time.

Our main results are as follows. We first consider the undirected transportation
problem where the edge capacities are random variables and there is a bound on the size
of the supplies/demands. We also consider the directed transportation problem where the
edge capacities are random variables and the supplies/demands satisfy a realizability con-
dition (see section 2.3). For both kinds of transportation problems we present linear time
algorithms which compute a feasible flow with high probability. We look at the max-flow
problem where the edge capacities are i.i.d. random variables. Here we show that the
minimum cut is almost surely the cut isolating the sources or the sinks. Again, we present

a linear time algorithm that solves such max-flow problem instances, with high probabil-

ity.

2.3. Realization of 0-1 Matrices

The following notion of realizability of 0-1 matrices will prove useful in the descrip-
tion of our algorithms. Let R=(ry,ry, - rp) and C=(c,c3 ~ - ¢,) denote two vec-
tors with non-negative integral entries. The pair (R,C) is said to be realizable if and only
if there exists a 0—1 m Xn matrix M=M(R,C) with R and C as its row- and column-
sum vectors, respectively. The mairix M(R,C) is called a realization of the pair (R,C).
The realizability problem is to compate the realization of a pair of row- and column-sum

vectors.

The realizability problem is closely related to the capacitated transportation prob-
lem. Consider instances of the tramsportation problem where the underlying bipartite
graph is complete with all edges directed from S to T and of capacity one. It is easily
seen that finding a feasible flow in such transportation problem instances with the integral
supply-demand vectors (A,B) is equivalent to finding the realization of the pair (A,B).
Ryser (23] and Gale [13]- gave necessary and sufficient conditions for a pair (R,C) to be
realizable. There is a simple greedy algorithm [9,12,13] to construct the realization matrix

provided it is feasible. This algorithm works in linear time.
Another notion of realizability will also be used in our algorithms. Let R and C' be

as before. Also, let R==R—D.1 and C=C—-D.1, where D is a positive integer and T

represents the “‘all ones’ vector of the appropriate dimension. The pair (R,C) is said to
be D —realizable if the pair (R,C) is realizable. The D—realization of the pair (R,C) will
be denoted by Mp(R,C)=M(RC).

2.4. A Fine-Tuning Algorithm

The final stage of our mimicking paradigm involves the fine tuning of the solution
obtained by the mimicking process. The algorithm described below will be used for this
purpose. Consider an instance of the transportation problem with the underlying
undirected bipartite graph G (S| T ,E) satisfying the following conditions.

(a) | SI=ITl=n
(b) 0<L(n)<a;b;<U(n)<(nL(n)/logn)0:s
(c) Ya;=1'b;

i€s jer
(d) for all i €S, FET the supplies and demands a;, b; are positive integers
(e) each edge independently is present with probability p(n)

(f) the capacity of every edge which is present is 1
The algorithm described below uses the Proposal Algorithm (1] (see section 2.2) as a

subroutine. It first decomposes the transportation problem instance into U(n) instances of
the matching problem for random bipartite graphs. The algorithm constructs U(n) bipar-
tite graphs ensuring that each vertex occurs in exactly as many of these graphs as its
supply/demand. The edges from the graph G are equiprobably distributed among the
U(n) subgraphs. It is shown that, with high probability, the Proposal Algorithm will find

-7-

a perfect matching in each of these subgraphs. The algorithm sends one unit of flow along
each edge which is in the union of the perfect matchings found by the Proposal Algorithm.
This is the required flow.

i j
Let A;= Ya, and B;= }b,, where Ay=B¢=0.

r==1 r=1

The Fine Tuning Algorithm
STEP (1) Construct U bipartite‘ graphs G(0), - -+ G(U-1) with vertex sets
5(0), - -+ S(U-1) and T(0), - - - T(U-1) as follows. Place each vertex 8; €S in the
vertex sets S((A;_;+1) mod U), -+ S(A; mod U). Similarly, place each vertex

t;ET in the vertex sets T((B;—y+1) mod U), - -+ T(B; mod U).

STEP (2) Colour each edge (s;,t;)€ E independently and equiprobably with one of
U colours.

STEP (3) For each edge (s;,t;)EE, place it in E(G(k)) if and only if it has colour k
and s; €S(k), t;€T(k).

STEP (4) Using the Proposal Algorithm [1] find a perfect matching in each of the U
subgraphs generated in the previous steps. Let F'C E denote the union of the U

perfect matchings.
STEP (5) Saturate (in the forward direction) all the edges in F'. This flow will be a

feasible solution to the transportation problem instance under consideration.

The following theorem results,

FINE TUNING THEOREM : For all a >0, there exists >0 such that p(n)> ﬂUZlogn
n
implies that the Fine-Tuning Algorithm finds a feasible flow in the transportation problem

o
7

instance in O(n?) time with probability 1-O|U I
n

PROOF : The following obvious facts will constitute the proof of this theorem.
Fact 1:|Ln/U)<n,= 1S | =T | <n, ¥ kefo,U-1].

Fact 2: lim ny—c0.
n—00

Fact 8 : Each s;(t;) occurs once each in exactly a;(b;) of the U subgraphs constructed
in step (1).

It is clear that in each of the U subgraphs the edges are present independently of
other edges in the same subgraph (although there is dependence between two such sub-
graphs). Let p, be the probability that an edge is present in the graph G(k).

Fact 4 : py=p(n)/U(n) 2 (Blogny)/ny.

The Proposal Algorithm will succeed in finding a perfect matching in G (k) in

Blogn,
n,

between a and A is the same as for the Proposal Algorithm. The probability that the

O(nlogn) time with probability 1-O((U/(Ln))*), when p,> The relation

-8-

Proposal Algorithm does not succeed on all G(k) is bounded from above by the sum of
the probabilities of failure on each of the U matching problems. This completes the proof.

We make two remarks about the generality of this algorithm. First, note that the
algorithm uses each edge in the forward direction only. The algorithm would work
equally well in the case where the edges are directed, though it would not send any flow
along edges which are directed from T to S. Also, the algorithm does not actually require
that | S| =1T|=n. A careful examination of the proof shows that it would be sufficient
to have (U%logn)/(Lp(n))< | S1,1TI <n, where n now is a measure of the size of the
problem. We need to impose these bounds on the sizes of § and T to ensure that n, (in

Fact 1) cannot be too small or too large.

3. The Undirected Transportation Problem

We now present an algorithm to solve certain instances of the transportation prob-
lem where the underlying graph is undirected. Let D(m) be such that
D(m)<m[2(logm)*®. Consider an instance of the transportation problem which satisfies

the following conditions (Y).
(Y.1) the underlying graph G(SUT,E) is undirected and | S|1=1T|=m
(Y.2) Y u€S,a,<p-D(m)and YveET, b,<p D(m)

(Y.3) Y a,= }'b,, and all supplies and demands are non-negative integers
u€ES veT

(Y.4) the probability that an edge from § X T is present is p (a constant)

(Y.5) if an edge (u,v) is present then its capacity c(u,v)=l1

We will show that the transportation problem instances satisfying conditions (Y) are
feasible with high probability. This will be done constructively by specifying a linear time
algorithm which succeeds in finding the feasible flow with high probability. The following

theorem results.

UNDIRECTED TRANSPORTATION THEOREM : The Undirected Transportation
Algorithm finds a feasible flow for transportation problem instances satisfying (Y) in linear

time with probability 1—O(n™"), where >0 is a constant which depends on p.

The expected value of the capacity of any edge is p. Consider the deterministic
relaxation of the above problem. It would correspond to finding a feasible flow for the sup-
plies a; and b; in the case where the underlying undirected graph is complete with all
edges having capacity p. It is not very hard to show that the deterministic problem has a
feasible solution. However, we will need to find a feasible flow using the edges in the for-
ward direction only. In this directed case, the problem need pot have a feasible solution at
all, e.g. consider the case where a;==b;=2 and al]l other supplies and demands are 0. To
get around this problem we will add a large number E(m) to each supply and demand. .
Now we will be able to find a feasible flow for the deterministic relaxation using edges in

the forward direction only. It has been observed [17] that a transportation problem

-9-

instance is feasible provided the values of the supplies and demands are sufficiently uni-
form. Uniformity of the supplies and demands requires that the supply (demand) at a
source (sink) is in proportion to the net capacity of the edges incident at that source
(sink). In a sense, adding E(m) to each supply and demand corresponds to making their
values more uniform, since the expected total capacity of the edges incident at each vertex
is equal.

The Undirected Transportation Algorithm is based on the mimicking paradigm. The
first stage of this algorithm constructs a solution to the deterministic relaxation of the ori-
ginal problem. To simplify the algorithm, we will scale up the deterministic relaxation by
a factor of ¢=1/p. This corresponds to multiplying all capacities, supplies and demands
by a factor of c¢. Let us choose E(m)=m [2logm. Define a,=ca,+E(m) for all u€S,
and 8,=cb,+E(m) for all vET. Also, let & be the s-dimensional vector (d,) and 6 the t-

dimensional vector (8,). The deterministic problem is an undirected transportation prob-

lem with (&,6) as the supply-demand vectors and all edges of capacity c-p=1. We will use
all edges in the forward direction only and so the deterministic problem is exactly that of

finding a realization of (a,6).

The first stage of the algorithm constructs a realization of the pair (&,6), viz. the

m Xm 0—1 matrix M{&5). This corresponds to the deterministic solution of the transpor-
tation problem instance with all random variables (in this case, the edge capacities)
replaced by their expected values. In the second step we mimic the solution of the deter-
ministic relaxation by saturating the edges (if present) which correspond to the non-zero
entries in M(&38). The flow is sent in the forward direction, i.e. from S to T. Finally,
using the edges in the backward direction we fine-tune the solution to obtain a feasible

flow for the transportation problem instance under consideration.

The Undirected Transportation Algorithm
STEP (1) (Deterministic Relazation and Solution) Construct the s Xt 0—1 matrix
M(@5). The pair (45) must have only integral entries for the realization to be feasi-
ble. This can be ensured by rounding (up or down) each &,, 6, while still satisfying

the condition Y &,= Y '6,.
v €S vET

STEP (2) (Mimicking Process) Saturate (in the forward direction) all existing
edges which correspond to the 1's in M(a,5). This yields a s Xt 0—1 flow matrix V.
Let the row- and column-sum vectors of this matrix be @ and b, respectively.

STEP (3) (Fine Tuning) At this point each u €5 has sent an excess of d, —a, units
of flow, while each v €T has received an excess of b,—b, units of flow. Using the
Fine-Tuning algorithm and all edges in the backward direction, send out b,—b,, units
of flow from each v €T. Ensure that each u €S receives exactly @, —a, units of flow.
STEP (4) Combine the flows constructed in the two previous steps to obtain the

desired feasible flow.

- 10 -

3.1. Analysis of the Undirected Transportation Algorithm

We will prove the Undirected Transportation Theorem with the help of the lemmata
presented below. Lemma 1 establishes that the first step of the algorithm will succeed by

showing that the pair (48) is realizable. The realization algorithm will construct the

matrix M(4,6) in linear time given its feasibility.

LEMMA 1 : The pair (a,6) is realizable. -

PROOF : Consider a transportation problem instance I with | S|=1T|=m. Assume
that all edges from S X T are present. Let each edge have capacity 1 and be directed from

S to T. Let 4, be the supply at u€S, and b, the demand at vE€T. The Integrality
Theorem for flow problems can also be applied to this transportation problem instance. It
implies that, in a feasible tra-sportation problem instance, if all supplies, demands and
capacities are integral then t'ere is an integral feasible flow. The rounding process in

STEP (1) ensures that the sup»lies and demands are integral, while all capacities are 1 in

I. Thus, we have that I is feasible if and only if the pair (8,6) is realizable. We invoke
the Transportation Theorem to establish the feasibility of I.

By the Transportation Theorem, I is feasible if and only if Y X C S

Yo, < Eminb,c(X,(v)) (3.1)
u€EX veT
In this case, ¢(X,{v})=z for all v€T, where z=|X|. Note that the following bounds

hold for & and b,
E(m)<a,<E(m)+D(m), VY u€S
E(m)<8,<E(m)+D(m), VY v€T
We now perform a case analysis on the value of z to establish the validity of (3.1).
Case 1 [z <E(m)]:

In this case (1) is equivalent to the following,

Ya,<zm

v€EX
Since m > E(m)+D(m) (for large m) the above inequality, and hence (3.1), is valid.
Case 2 [z >E(m)]:
In this case the inequality (3.1) is implied by the following,

Y&, <yt +z(m—y) YYCT y=IYI (3.2)
vuEX vEY

Using the bounds on &, § and the fact that Y'd,= ¥78,, it is clear that (3.2) is valid if
v€S veT

the following inequality holds.
(m—z)E(m)+(m—y)z—E(m)-D(m))20, Yy<m (3.3)

- 11 -

Again, using the bounds on @ and §, we see that (3.2) holds if y<m—E(m)—D(m). More-
over, (3.3) is valid if z>E(m)+D(m). The only case left is where y >m—FE(m)—D(m)
and E(m)<z <E(m)+D(m). But for this range of values of z and y we see that (3.3) is
valid provided m >D(m)+E(m) and D(m)*<E(m)m—E(m)). Given our choice of
E(m) and the bound on D(m) this is clearly true. ®

We now turn to STEP (2) of the algorithm. The next lemma bounds the values of
the excess flow sent by the sources and the excess flow received by the sinks. Let
F(m)=D(m)+E(m).
LEMMA 2 : In the Undirected Transportation Algorithm

V 4>0 3 (>0 st. Prob[F u€S: | @—p-ay | > I(F(m)logF(m))*%|=0(m™)
Y 4>0 3 1 >0 st. Prob{F veT: | 6,—pB, | > I(F(m)logF(m))*%|=0(m™)

PROOF : Let X be the sum of r Bernoulli trials, where each trial assumes the value 1
with probability p and value 0 with probability 1—p. The Chernoff bound (3] as applied
to the tail of binomial distribution states that for any g, 0<A<1,

Prob|X, >(1+8)rp)<exp(—f#%rp /2)

The number of non-zero entries in each row/column of the matrix M(a9) is large, at least
E(m). An application of the Chernoff bound for the tail of the binomial distribution com-

pletes the proof of the two lemma. @
At this stage the following bounds hold (with high probability).

E(m)=l(F(m)logF(m))**<d,—a, <E(m)+l(F(m)logF(m))*®, Y ueS (3.4)
E(m)—I(F(m)logF(m))o'sgb:,—bv SE(m)+l(F(m)logF(m))°‘5, VveT (3.5)

STEP (3) of the algorithm uses the edges (in the backward direction) to route the

excess flow back from sinks to sources. It is clear that a,, 4, b, and 6, are all integral as
required for the application of the Fine-Tuning Algorithm. The bounds on the excess,
(3.4) and (3.5), together with the Fine-Tuning Theorem yields the following lemma.

LEMMA 3 : The Fine-Tuning Algorithm succeeds in Step (3) with probability 1-0(m™°),

where a>0 is a constant which depends on p.

The probability of failure of each stage of the algorithm is now suitably bounded
from above. We now observe that the probability of failure of the entire algorithm is
bounded from above by the sum of the probabilities of failure of the various steps in the
algorithm (even though they may not be independent). This completes the proof of the
Undirected Transportation Theorem. Note that we cannot choose E(m) to be larger than
m [logm if we wish to employ the Fine-Tuning Theorem as above. The proof of Lemma 1
requires that E(m) should not be much smaller than D(m). This imposes an upper
bound of m /(logm)®° on D{(m).

-12-

We observe that the Undirected Transportation Algorithm can also be applied to
certain cases where | S| % | T1. The proof of the Undirected Transportation Theorem
is easily seen to extend to the case where S| 5% | T| provided |81, |T| are large
enough. More precisely, we require that | S|, | T| should be substantially larger than
D(m) and E(m). Note that to be able to apply the Fine-Tuning Algorithm in the case
where | S| £ | T|, we again need that | S| and | T| should be substantially larger
than E(m). .

3.2. The Undirected Max-Flow Problem

We now make use of the Undirected Transportation Theorem to devise an algorithm
to solve a probabilistic version of the undirected max-flow problem. Consider an instance

of the max-flow problem satisfying the conditions (Z).

(Z.1) the underlying graph is undirected

(Z.2) 1 S|=|Tl=r and | I|=n, where r<n

(Z.3) each edge is present with a probability p (a constant)

(Z.4) if an edge (u,v) is present then its capacity ¢(u,v)=1

We assume, without loss of generality, that the (§,V—S) cut has a smaller capacity
than the (V—T,T) cut. If this is not the case then we can interchange the roles of the
source and sink vertices and reverse the direction of each edge. We present the following

theorem,

MIN-CUT THEOREM : In instances of the probabilistic max-flow problem satisfying
conditions (Z),

Prob|[The (S,V—S) cut is the minimum cutj=1-—0(n~°)

where a>0 is a constant which depends on p.

This theorem is proved by presenting a linear time algorithm which constructs a flow
saturating the (S,V’—S) cut. Clearly, the value of the max-flow is less than or equal to the

capacity of this cut. This establishes the validity of the above theorem.

The Max-Flow Algorithm works in two stages. In the first stage an instance of the
probabilistic transportation problem is created, such that a feasible solution to that
instance will yield a flow saturating the (§,V=S) cut in the original problem. In the
second stage it uses the Undirected Transportation Algorithm to solve the transportation

problem instance generated in the first stage.

3.3. The Max-Flow Algorithm

Our aim is to find a flow which will saturate the (S,V—S) cut. Clearly, we can ignore
edges drawn from S XS and TXT. Moreover, all edges from SXT can be saturated (in
the forward direction) without affecting the flow through the remaining edges. We now
consider only the edges from S XI, IXI and IXT. The algorithm will find a flow which

will saturate all edges from S XI in the forward direction.

- 13-

For each v €I define A,=c(S,v)—c(v,T), this is the excess of the capacity of incom-
ing edges over the capacity of the outgoing edges.. Let I*={v€Il:A,>0} and

I"={v€I:A,<0}. Further define At=)] A, and similarly A™. We now describe the
velt

first stage of the Max-Flow Algorithm.

STEP (1) Saturate all edges from S XI by sending flow from sources to intermedi-
ate nodes.

STEP (2) Saturate all edges from IXT by sending flow from intermediate nodes to
the sinks.

STEP (3) Since ¢(S,I)<c(I,T) we have A+t+A~<0. At this point, for each v €17,
the excess of in-flow over out-flow is exactly A,. Arbitrarily reduce flow along edges
drawn from I~ XT until the net flow across the (S,I) cut equals the net flow across
the (I,T) cut. Ensure that, for each v €I, the new excess flow, say é,, remains non-

positive. Let §™= }'6,, then we have At+6=0 and A, <6,<0, for each v €1,
vel™
STEP (4) Let G' be the bipartite subgraph of the original underlying graph G

which is induced by the vertex set S'=I* and T'=I". Construct an instance of the

CTP with G! as the underlying graph, supply 4, for v€S! and demand -6, for

vET.

It is easy to see that the first stage works in linear time. In the second stage of the
Max-Flow Algorithm we find a feasible flow for this transportation problem instance using
the linear-time Undirected Transportation Algorithm described earlier. The final flow is
the sum of the two flows constructed in the two stages of the max-flow algorithm. The fol-

lowing theorem results.

MAX-FLOW THEOREM : The Max-Flow Algorithm finds a maximum flow (for
instances satisfying conditions (Z)) in linear time with probability 1-0(n~?), where a>0

is a constant which depends on p.

Observe that the above algorithm will find a flow saturating the (§,V=S5) cut if the
second stage succeeds. This flow will be a maximum flow. To complete the proof of this
theorem we need to show that the transportation problem instance generated by this. algo-
rithm satisfies the conditions of the Undirected Transportation Theorem. We first prove
the following bound on the size of the excess at each intermediate node. This bound also
applies to the size of the supplies and demands of the transportation problem instance
generated in the first stage. We also show that | I*| and | I~ | are both fairly close to
n/2.

LEMMA 4 : In the Max-Flow Algorithm

¥V v>0 3 k>0 s.t. Prob[T vEL: 14, > k(nlogn)*%|=0(n"").

PROOF : The result holds for the case where r <n%5 since the maximum value of A, is

then bounded by n%®. We now consider the case where r >n0S,

- 14 -

Consider some v €I. Let X, denote the number of edges from SX{v} which are
actually present in the underlying graph G. Similarly, let Y, denote the number of edges
from {v}XT. Clearly, both X, and Y, are the sum of r independent Bernoulli trials
where each trial assumes value 1 with probability p and value 0 with probability 1—p.
We make use of the Chernoff bound [3] as applied to the tails of binomial distributions.
For any 4, 0<8<1, we have,

Prob[X, >(1—A)rp] <exp(—8°rp/2)

Choosing A=((blogr)/r)%3, for some positive constant b, and applying the bound to both
X, and Y, we have,

Prob[| A, | = | X, =Y, | >28rp]<4r~tv/2
Summing over all v €I and choosing b=2(1+27)/p and k=(8p(1+27))*° we have,
Prob[I vEI: |4, | > k(rlogr)®S]=0(r=27)

Since n%*<r <n we have the desired result. ®

LEMMA 5 : In the Max-Flow Algorithm

¥ 4>0 I f>0 s.t. Prob[| | [*]=n/21>f(nlogn)03]=0(n"").

PROOF : In our definition of It and I~ we ignored the vertices v €I for which A,=0.
Since these vertices can be assigned to either set, they can be used to balance the sizes of
I* and I~. To simplify the following description we will assume that such vertices will be

assigned to either I* or I~ equiprobably.

By symmetry, Prob[v €I is assigned to I*] = 1/2. Independence follows from the
observation that all edge capacities are independently distributed. An application of the

Chernoff bound yields the desired result. ®

It is clear that the transportation problem instances generated in the first stage
satisfies all requirements of the Undirected Transportation Theorem, with one exception.
The number of sources (/*) and sinks (I7) in the transportation problem instance will not
be equal. However, as we remarked earlier, the Undirected Transportation Algorithm can
be still be used provided the number of source and sinks is large enough. The bound from
Lemma 5 shows that this is indeed the case.

4. A Directed Transportation Algorithm

We now present an algorithm to solve certain instances of the transportation prob-
lem where the underlying graph is directed. In particular, we consider instances of the
transportation problem satisfying the following conditions (X).

(X.1) the underlying graph G(S{T,E) is complete and every edge is directed from

StoT
X.2) ISt=I1T|=n

-15-

(X.3) the edge capacities are i.i.d. random variables drawn from the set
{0,1, - -+ K}, where K >1 is some constant

(X.4) the expected value of the edge capacities s at least 1+¢, where ¢ is a positive
constant

(X.5) the pair (a,b) is (D +1)-realizable, for some constant D >0

We present an algorithm, the Directed Transportation Algorithm, which will solve
such instances of the transportation problem with high probability. This leads to the fol-

lowing theorem,

DIRECTED TRANSPORTATION THEOREM : The Directed Transportation Algo-
rithm finds a feasible flow for tramsportation problem instances satisfying (X) in linear
time with probability 1~O(n™7), v>0.

Before we describe the algorithm and prove the Directed Transportation Theorem we
present two combinatorial theorems which are useful in the analysis of the Directed Tran-

sportation Algorithm.

4.1. A Combinatorial Process

Consider the following combinatorial process. The state of the process is an arbi-
trary placement of n particles, call them P={1,2,3...n}, on integer points of the real line.
There may be more than one particle at a given position. The tnitial state has all n par-
ticles at the origin. A state transition is divided into two distinct steps. Let S be a subset
of P such that | S|=2k. The first step in a transition moves every particle in S, for
some arbitrary S, one position in the negative direction (say to the left). In the second
step, the k leftmost particles are each moved two positions to the right (or in the positive
direction). It can be shown that no particle will ever move out of the interval [—Alogn 2],

where A Is some positive constant.

Let K be a positive integer and # a positive real number. Consider now the follow-
ing generalization of the combinatorial process. The definition of the state (as well as the
initial state) of the process is as before. The first step of a transition, as before, moves all
particles in S, for some arbitrary S, one step each to the left. The second step of the
transition involves the choice of n arbitrary integers, {d,ds - d,}, such that

n

Jd;j=1S1 and 0<d;<K for each {. We will refer to the requirement that
i=1

n t

Y'd;=18| as the balance constraint. It is also required that J 'd;>(1+0)t for all
i=1 i=1

t <t, where ty is the index of the rightmost non-zero d;. This last condition will be
referred to as the prefiz constraint. The second step of a transition now moves the t*-

leftmost particle d; positions to the right, for t=1,2, - - * ,to.

The conditions imposed on the second step of a transition ensure that the net right-
ward movement of a group of t leftmost particles is larger than t. This constraint

prevents any particle from straying too far away to the left. The following theorem can

- 16 -

be proved about the generalized process.

INTERVAL THEOREM : All particles remain in the interval [~Clogn ,D] of the real
line, where C=C(K ,§) and D=D(K,0) are positive constants.

The following notation and lemma will be required for the proof of this theorem. Let
p;(r) denote the location of the itk particle after r transitions have taken place. The state
of the process at time step r will be given by the set of locations, p;(), occupied by the
particles §, 1<i{ <n. The main tool for the analysis of this combinatorial process will be

the following notion of the moment at an integer point on the real line.

DEFINITION : Let p be any integer point on the real line. The left moment at p at any
time is the sum of the distances from p of all particles to the left of p on the real line.
LM(p vT)=/___J max(p —p,'(T),O)
1
In the following lemma, we will show that the moment satisfies an invariant inequal-
ity at each time step. Using this invariant, we will be able to establish that no particle

can move too far away from the origin.
LEMMA 6 : There exists A and p depending only on # and K such that,

(a) A>0and 0<p<1, and
(b) at each time step 7 and for each integer /, LM(l,7)<nAp~".

PROOF : The proof will be by induction on the time step r. We will assume that the
lemma holds for all [at the time step r—1, and prove it for all [at time step 7. We will
start by proving the induction step, and later show the base case (i.e. at time step 0). The

value of the constants p and A will also be specified later.

Assume that the left moment at every integer position satisfies the required inequal-
ity at time step r—1. We now show that it must satisfy the required inequality after the
completion of the 7 transition (henceforth referred to as the current tramsition). Observe
that it suffices to prove the invariant for a particular position ! on the real line, without
any loss of generality. Therefore, we are only required to show that LM(l,r)_<_nAp"'l.
The main idea of the proof is to bound the new moment at ! by a positive linear combina-
tion of the moments at the previous time step. To simplify our notation we will consider

everything relative to this location I. We will use the following notation.
NOTATION :

e Let cell i denote the location {—¢ on the real line, where t <K -1.

e Let cell K denote all locations to the left of {—(K—1).

e Let A; denote the number of particles in cell ¢, before the current transition.

e Let a; denote the number of particles which were moved one unit to the left from
cell ¢ in the first stage of the current transition.

o Let 4; denote the sum of the distances that particles from cell ¢+ were moved to the

right in the second stage of the current transition. (Thus, B;= Y d;, where S; is the
jeSi

=17 -

set of particles that resided in cell ¢ after the first stage of the current transition.)

o Let M(h) denote the moment at cell A before the current transition and M'(h)

denote the moment at cell h after the current transition. (By definition,

M(h)=LM(l—h,r—1) and we have to prove that M'(0)<nAp~'.)

In general, we will only be interested in particles which lie at cell 0 or to its left.
Whenever we refer to a particle at cell ¢ it will be assumed that 0<: <K, unless other-

wise stated.

The moment at cell A, —1<h <K, before the current transition is given by the fol-

lowing equation.

K
Mh)=M(EK)}+ 5 (i-h)A4 < nAp~'* (4.1)
i=h+1
Let L denote the moment gained at cell O during the first stage of the current transition.
Also, let R denote the moment lost at cell 0 during the second stage of the current transi-

tion. Thus, we have that,

M(0)=M(0)+L-R (4.2)

Observe that each particle to the left of the cell 0 which was moved a unit to the left
(in the first stage of the current transition) will contribute to the increase in the moment

at cell 0. It is now easy to see that L is given by the following equation.

K
L=Eai (43)
1=0

Consider now a particle which was moved ¢ positions to the right in the second stage
of the current transition. It is possible that this particle ended up at a position to the
right of cell 0. In that case, its contribution to the decrease in the moment at cell 0 would
be less than ¢. This complicates the computation of the value of R. However, we do know
that a particle which was moved from cell ¢ to a position to the right of cell 0 will cause a
decrease of { in the moment at cell 0. Further, it is known that a particle can move at
most K positions to the right in a single transition. This implies that the particles in cell

i (before the second stage of the current transition) must cause a decrease of at least

-;{—;9,- in the moment at cell 0. Thus, we have the following lower bound on the value of

R.

1 K
R>— Yif; (4.4)

Ki=1
It will be convenient to express the above lower bound on R in terms of A; and a;.
This can be done as follows. Consider the rightmost particle which was moved to the
right in the second stage of the current transition. Let t denote the cell to which this par-
ticle belonged at the end of the first stage of the current transition. If cell ¢ was to the
right of cell 1 then set t=1. It is clear that if t>1 then f,=f,= " =f;_,=0. The

.18 -

balance constraint on this combinatorial process requires that the net leftward movement
in the first stage of any transition be exactly equal to the net rightward movement in the

second stage of that transition. Therefore, we have the following inequality.
K K
2782), (4.5)
(=t =0

Note that this inequality need not be tight since there may be particles to the right of cell
0 which were moved to the left in the first stage of the current tramsition. It is not very
hard to see that the inequality also holds in the case where particles to the right of cell 0

were moved rightwards in the second stage.
K
The number of particles at cell ¢ and to its left after the first stage is a;_;+ ZA

J'_'l
We invoke the prefiz constraint on the transitions to derive the following inequality for
t+1<i<K.
mg >(1460)(a;_y+)_jA (4.8)
]—l

We now use equations (4.4), (4.5) and (4.6) to derive the following lower bound on R, after

some algebraic manipulation.

K K
R > ——2 +1+0 Z +-1—+—0- 37 (i-t)A; (4.7)
K!=0 K t=t+1

We are now in a position to give an upper bound on the value of M'(0). Substituting
equations (4.1), (4.3) and (4.7) into (4.2) we obtain the following inequality.

K K K-1 K
MO <M+ i+ |1- 42| Ta- 2 To— T (i) (4.8)
1=1 K 1=0 K 1=t K t-t+l

In order to show that this is bounded by nA p~" we have to consider three different cases.

Case I [t=K] : In this case the RHS of inequality (4.8) turns out to be exactly M(0) and,
thus, by the induction hypothesis, M(O)SM(O)SnAp_l.
Case II [t=K—1]: In this case inequality (4.8) can be seen to imply the following, using
the fact that 0<a; <A;.

1 K-2

M'(0) < M(K +E¢A1+ EA{——AK

1==1

At this point we invoke equation (4.1) and make use of the induction hypothesis to obtain

the following bound.

1 1-4 0
M0} < nAp~t|1— =4 K K+1 —l—1

-19-

The last inequality completes the analysis of Case II provided f(p)<p. It can be
shown that this is indeed the case provided p is sufficiently close to 1. To see this, it is

enough to verify that the function 9(p),

1

1-4
a(p)=f(p)—p=[1—7{— —

0
K ; K+1
K

+ [KP —-P

is negative when p <1, for p close enough to 1. This can be verified by observing that g is
continuous at 1, g(1)=0, and ¢'(1) is positive.

Case I [I<t<K-—2] : In this case inequality (4.8) can be seen to imply the following,
using the fact that a; <A;.

M(0) < |1- + %—%[K—t] [M(K)+AK]+—I%[K—t]M(K)

At this point we invoke equation (4.1) and make use of the induction hypothesis to obtain

K
M(K)+‘_§o[i+1]A,-

the following bound.

1

i 1 4 6 - -
M'(0) < nAp™? ‘1——1? + -I—(——Y[K_t] pK+?-[K—t]pK'H <nAp~tlp=nAp !

The last inequality also holds when p<1, for p close enough to 1. This can be

verified in the same manner as in case II.

This concludes the proof of the induction step. Note that p is chosen to lie close
enough to 1, so as to satisfy all the inequalities derived above. Similarly, A will be chosen
such that the base case is satisfied.

Base Case : In the initial state all particles were at the origin. This implies that, at
time step 0, the left moment at all integer points p <0 were 0, thus trivially satisfying the
invariant. The left moment at location p, for p >0, is simply pn in the initial state. We
choose A such that, for all p >0, it is the case that np <nAp~". Clearly, it must be the

case that A>ppP. Such an A exists since the function h{(p)==pp® is bounded for p >0. ®
We are now ready to prove the Interval Theorem.

PROOF (Interval Theorem) : We first show that no particle can move too far to the left.
This may be verified by considering the leftmost point on the real line which has a non-
zero moment. Let p; <O be the leftmost point on the real line at which a particle may be
placed in this combinatorial process. A particle in location p; contributes 1 to the left
moment at p;+1. Thus, we have the following inequalities.

1<LM(p+1)<nAp™™™"
Therefore, it must be the case that p;>—Clogn where C(K ,f) is a positive constant.

Now we show that a particle cannot move too far to the right. Let p, >0 be the

rightmost position occupied by a particle during this combinatorial process. Consider the

-920-

first time a particle is moved onto the position p,. Clearly, this particle must have previ-

ously occupied a position at or to the right of p.—K. The prefiz condition requires that

there be at most n
1+6

particles to the left of a particle which is moved to the right. This

implies that there must be at least #n /148 particles at or to the right of the position
p,—K. Therefore, there must be a right moment of at least (p,—K)fn /(1+6) about the
origin. It is easy to see that, due to the balance constraint, the right moment must be
equal to the left moment at the origin at all times. The left moment at the origin 1s
always less than nA. Thus, we get the following inequality.

on
-K <
2)1+0 SnA

This means that p, <D, where D(K ,6) is an appropriately chosen constant. ®

4.2. A Generalization of the Mendelsohn-Dulmage Theorem

Mendelsohn and Dulmage [21] proved the following theorem about bipartite graphs.
MENDELSOHN-DULMAGE THEOREM : Let G(S UT,E) be a bipartite graph and
let M, and M, be two matchings in G. Then there exists a matching M;C M, JM.,
such that M, covers all the nodes of S covered by M, and all the nodes of T covered by
M,.

The proof of this theorem is constructive and leads to an algorithm which runs in
time O(| S|+ 1T1). We generalize this theorem as follows. Let K be a fixed positive
integer. By a K-matrix we mean a m Xn matrix whose entries are drawn from the set
{01, --- K}.

GENERALIZED MENDELSOHN-DULMAGE THEOREM : Let M' be a K-
matrix whose row sums, a;!, and column sums, bjl, satisfy the following condition,

I! <a} and b} < u}

Similarly, let M? be a K-matrix whose row sums, a?, and column sums, bf, satisfy the
following condition,
a? < u! and l;- < bf
Then there exists a K -matrix M* such that
(a) the row and column sums of M? satisfy the following conditions
I} <al<uf
G <bi<u
(b) for each ¢, j we have M3 <max(M},M7)
Moreover, a matrix M? satisfying the above conditions can be constructed in O(Kmn)

time.

- 921 -

PROOF : First, observe that the only case we need to consider is where for each 1, j we
have min(M,{,-,M,-zj)=0. If this is not the case then let D be the K-matrix where
Vi, D,~j=min(M,~§-,M,-2j). Subtract D from both M! and MZ. Also, modify the upper
and lower bounds on the rows (and columns) of M?, M? by subtracting the row-sums (and
column-sums) of the matrix D. Clearly, a solution to the new problem, when added to D,

gives a solution to the original problem involving M! and M2

We now restrict our attention to the case where Y 1,5 min(M,-f,-,M,%)=0. Let
o;=max(a},a?) and b;=max(b},b?), for all i,j. Define a vertex set S such that for each
row i there are a; vertices 8(i,1), 8(i,2) - - - 8(i,a;). Similarly, define the vertex set T
such that for each column j there are b; vertices t(5.1), t(5,2) - t(7,b;). We will con-
struct matchings X' and X? on the bipartite vertex set sUT corresponding to the two
matrices M! and M?, respectively. We describe the constructicn of the matching X'

only. The other matching, X7, can be constructed analogously.
y

For each mom-zero entry M.,., introduce Af}j edges into X' connecting vertices

ijr
corresponding to row { with vertices corresponding to column 7. It is easy to ensure that
each vertex in S| T has at most one edge incident on it. This process yields a matching of
cardinality 2’a,~1= S_J’bjl.
1=l j=1

We now invoke the Mendelsohn-Dulmage Theorem to construct a third matching,
X3C X1UX2, which covers all the vertices in S covered by X and those in T covered by
X2 To derive the matrix M3 from the matching X?, set the value of Mé to be the
number of edges in M*® which connect vertices corresponding to row i with those

corresponding to column j.

Clearly, the row-sums of M?3 respect the upper bounds since the pumber of vertices
corresponding to each row do so. The row-sums of M3 are seen to respect the lower
bounds since the matching X® covers at least as many vertices of each row as the row-
sums of M!. Similar reasoning shows that the column-sums of M3 respect both the upper
and lower bounds. This establishes condition (a) of the theorem.

To verify the validity of condition (b), recall that min(Mi},]\/I,?j)=0. This implies

that the number of edges in X1UX‘2 connecting vertices corresponding to a row ¢ with
the vertices corresponding to a column j is less than max(M,-f,-,‘M%). Thus, the value of
M,-"} cannot exceed max(M&,-,AI,-"}).

Finally, note that the entire proof is constructive. Moreover, the construction

described above requires only O(Kmn) time. This concludes the proof. ®

4.3. The Directed Transportation Algorithm

The key idea behind the Directed Transportation Algorithm can also be formulated
in terms of the mimicking paradigm. We first set aside a small fraction of the edge capaci-
ties for the purposes of the Fine-Tuning Algorithm. Next, we construct the (D+1)

-992.

realization of the supply/demand vectors. This corresponds to the solution of the deter-
ministic relaxation of the probabilistic transportation problem. The solution to the relaxed
problem is then mimicked to obtain a partial solution to the original problem. The mim-
icking process is considerably more sophisticated then that used for the transportation
problem. Finally, we use the reserved capacity to fine-tune the solution to obtain a feasi-
ble flow.

We now present a brief outline of the mimicking process used by this algorithm.
The mimicking process works in a row-by-row fashion, i.e., the algorithm computes the
flow matrix for the probabilistic instance by mimicking the in order the rows of the flow
matrix for the deterministic instance. It is ensured that the row-sums of the solution

created by this process are exactly equal to the desired values, viz. &; for row t. Consider
the stage where the first i —1 rows have already been mimicked. This means that we have
created a partial flow matrix for which the entries of the first { —1 rows have already been
determined. We now describe how the entries of the it row will be computed. At this
point there may be a discrepancy (P;) in the column-sums (for the first { —1 rows) between
the deterministic and the mimicking solutions. Let P; denote the excess of the s partial
column-sum in the mimicking solution over that in the deterministic solution. While
determining the values for the i row we will consider the columns in increasing order of
discrepancy. The edges corresponding to the entries in row § are saturated until the
desired row-sum is achieved. The behaviour of the column discrepancies is quite analo-
gous to the combinatorial process outlined in section {4.1). To make the analogy complete
it will be pecessary to introduce a certain amount of fictitious capacity, as will be
explained later. Let §=1/N, where N is a fixed positive integer such that 0 <f<e. Also,
let D be the constant D(K ,8) determined by the Interval Theorem (section 4.1).

The Directed Transportation Algorithm
STEP (1) Set aside a small fraction of the edge capacities for use by the Fine-Tuning

Algorithm. For each edge with a non-zero capacity, §¢,J), set aside one unit of capacity
with probability é independent of the other edges, where 0<<6<e—0. Let the expected
value of the new capacities, {¢(¢,7)}, be 1+¢’; then §<¢'.

STEP (2) (Deterministic Relazation) Let a=(a;) and b=(b;) denote the supply and
demand vectors, respectively. In linear time, construct the (D +1)-realization of the pair

(a,b). Let M=M(4}5) be the resulting matrix.

STEP (3) (Mimicking Process) Construct a flow X=(;;), row-by-row, such that
n 1 i

Zz,-j=6,- (for each ¢) and Y z,;~ Y M,; (for each 7). The flow X can be constructed as

j=1 r=1 r=1

i—1 -1
follows. Suppose we are currently processing row t. Let Pj=)} z,;— IM,;, for each
r=1 r=l1

column j. (P;=0 if 1=1).

.93

STEP (3.1) P;—P;—M,;, for each ;.
STEP (3.2) Let ¢;,¢p - - ¢, denote the capacities of edges going from source ¢ to
the sinks in increasing order of P;. Increase these capacities from ¢; to ¢; so as to
t
ensure that Y '¢’,>(1+6)t and that ¢, €[0,K], for each t k. This may be done by
[=1

-1
choosing ¢'; to be max{e;, [(1+8){— Y ¢'s] }. The extra capacity introduced in this
l i
k=1

fashion will called the fictitious capacity. Let U; denote the amount of fictitious

capacity required for row i; i.e., U= c"1—c;)
{

STEP (3.3) Send out &; units of flow out of source s by considering the edges in
increasing order of P;. Send out ¢'; units of flow along the 7* such edge, until a

total of @; units of flow have been shipped out. It may be observed that, due to the
introduction of the fictitious capacities, the flow along an edge may exceed the actual
capacity. Let z;; denote the flow sent along the edge (1,7).
STEP (3.4) P;—P;+z;;, for each j.
STEP 4 Repeat the mimicking process of STEP (3) with the roles of the rows and
columns interchanged. In other words, construct a flow by mimicking the deterministic
solution in a column-by-column fashion, using row discrepancies and introducing fictitious
capacities as in Step (3). Let Y be the flow obtained in this manmner. Also, let V; denote

the total amount of fictitious capacity introduced in column ;.

STEP 5 Construct a flow X' which satisfies all capacity constraints by appropriately
reducing the flow X along edges with fictitious capacities. Similarly, construct a flow Y

from the flow Y.

STEP 8 Consider the two K -matrices X' and Y. Using the Generalized Mendelsohn-
Dulmage algorithm (section 4.2), compute a third K -matrix Z such that the row- and
colump-sums of Z satisfy the bounds satisfied by the row- and column-sums of X' and Y.
The Generalized Mendelsohn-Dulmage algorithm ensures that each entry of Z matrix is no
more than the larger of the corresponding entries in the X' and Y matrices and hence no

more than the corresponding edge’s capacity.
STEP 7 (Fine Tuning) Let @ and b denote the row and column sum vectors for the flow

matrix Z. In STEP (1) the capacity set aside for each edge (t,7) was d1,5)—c(f,7). Using
these capacities and the Fine-Tuning Algorithm, construct a flow Z' with supply and
demand vectors (a—a) and (b—b), respectively. The sum of the two flows, Z and Z', is a

feasible flow for the transportation problem instance under consideration.

4.4. Analysis of the Directed Transportation Algorithm

The proof of the Directed Transportation Theorem will be presented via the follow-
ing lemmata. But, first, observe that the algorithm runs in linear time since each step

requires at most O(n?) operations, and the size of input is Q(n®). We now proceed to

- 94 -

show that each step of the algorithm succeeds with high probability.

LEMMA 7 : At the end of STEP (1), the remaining capacities have expected value at least
1+e'=1+¢—0.

PROOF : Consider an edge (i,5). The original capacity of this edge is ¢(1,7) and the capa-
city at the end of STEP (1) is d¢,7). Let pr=Probledge (i,7) bas c(s,5)=k], for each
k€[0,K].

B0, = D oalih=1) 10K 2 Ele(i -2 1

A generalized random walk analysis yields the following bounds on the amount of

fictitious capacity introduced by the algorithm.

LEMMA 8 : For all v>0 there exists 8 >0 such that m?x U;<slogn with probability
1-0(n™").

PROOF : We make use of the analysis of a generalized one-dimensional random walk 8]
to prove this result. Consider the following random walk process. The particle is initially
at some integral position z>0. The r'* step is given by the random variable X, which
takes only integral values. Let S, denote the position of the particle after r steps. Then,

t
So=z and S,= Y X,+z for t >0. Let u,(a) denote the probability of the particle going

r=1

to a position <0 before it goes to a position >a, for some fixed integer a >=z.
Suppose the following conditions hold,

(a) (X,) are i.i.d. random variables

(b) m=E[X,]|>0

(c) X, €[~v,p], where v, p are positive integers
Feller [8] proves that,

gt H1_g?

w S e

where o is the unique positive root (other than 1) of the characteristic function of the pro-
bability distribution of X,. It can be shown that 0 <o <1 when m >0. Note that o is a
constant which only depends on the distribution of (X,).

Consider now the fictitious capacity introduced for row ¢ in STEP (3.2). Let

t
U;(t)=(1+6)t— S c,, then U;=max Ugt). Recall that f=1/N where N is a positive
r=1 ¢
integer such that 0<1/N <¢'. We want to show that U; cannot be too large.
Let us relate the fictitious capacity to the random walk as follows. Let
X,=Nc,—(N+1). We now have that §,=—NU;(t)+z, here z is the initial position for the

random walk which will be specified later. Since the random variables (c,) are drawn from

-95-

the set {0,1,2, - - - K} and E[c,]=1+¢, we have,

(8) X,E{Nd—(N+1):d€{0,1,2,- - - K} }

(b) E{X,]=€¢N—-1>0

(c) v=—(N+1), p=N(K-1)-1

Suppose we select a=n+z and z=rklogn, for some constant k >0. Now, u,(a) was
defined as being the probability that the yalue of S, falls below 0 before it has ever risen
above a. Equivalently, it is the probability that the value of U; rises above z/N before 1t
has ever fallen below —(a—z)/N. Clearly, the value of U; can never fall below

t

—(a—=z)/N unless }'c,2>n >4;. The processing of row is over if n units of flow have

r=1

been shipped out. This establishes that u,(a) is the probability that U; is greater than

klogn /N. We now have,
. k 0.a+u—l_oz
PrOb[L’i>]—V-logn]=uz(a)s WSUZ
Summing the probability of failure over all n rows and given that 0 <o <1, we have

for some v>0,

Prob{maxU; < —kN—logn]=1-0(n™")

The proof of the next lemma is identical.
LEMMA 9 : For all y>0 there exists 8 >0 such that max V,=0(logn) with probability
1-0(n77). ’

Consider now the flow X constructed in STEP (4). Since we used a certain amount
of fictitious capacity, the actual flow X' is slightly less than X. The next lemma gives

bounds on the amount of actual flow leaving a source as well as the actual flow entering a

sink.

LEMMA 10 : Consider the flow matrix X'. The i** row-sum of X' (the net flow out of
source) is a;—U;—(D+1), while the 7% column sum of X' (the net flow into sink J)is

less than bj—-l.

PROOF : We draw an analogy between the construction of the flow X and the combina-
torial process described in section (4.2). The value of P, after the processing of row s —1,
corresponds to the position of particle j after 1 —1 state transitions. The set {5 | M;;=1}
corresponds to the set S arbitrarily chosen for the i** state transition. The flow z,; routed

to the column j with the t*% smallest P; corresponds to the distance d, moved by the ¢tk

t
leftmost particle. The use of fictitious capacities ensures that, for each ¢, Y ¢',2>(1+0)t
k=1

as required by the combinatorial process.

- 926 -

It follows that the net actual flow out of source i is exactly &—U;=a;—U;—(D+1).

We kpow that the net flow sent into sink j is 8j+PJ~. Invoking the Interval Theorem (sec-
tion 4.1) we have that P;<D. It follows that the net actual flow into sink j is no more

than 5j+D =b,~1. ®

LEMMA 10 : Consider the flow matrix Y. The i* row-sum of Y’ (the net flow out of
source f) is at most a;—1, while the 7 column sum of Y’ (the net flow into sink j) is

exactly §;—V;=b;~V,—~(D+1).

PROOF : Similar to the proof for Lemma 10. ®
LEMMA 12 : Consider the flow matrix Z(&,b) constructed in STEP (8). It satisfies the

following conditions,

b;=V;~(D+1)<b;<b;=1, Y g

PROOF : The proof follows from Lemma 10, Lemma 11 and the application of the GMD
theorem. ®

To complete the proof of the Directed Transportation Theorem we need to show that
STEP (7) succeeds with high probability.
LEMMA 13 : The Fine-Tuning Algorithm succeeds in STEP (7) with probability
1-0(n™7), v>0.

PROOF : From Lemma 8, Lemma 9 and Lemma 12 we have,
1<a;—3;=0(logn), Vi
1561_6]=O(10gﬂ), v j

In STEP (1) we set aside a certain fraction of the edge capacities. The reserved
capacity for an edge (f,7) is 1 with probability at least 6/K, it is 0 with probability at
most 1—(6/K). Moreover, the algorithm sets aside the capacities independently for each
edge. The Fine-Tuning Theorem is now applicable to the supplies a—d and the demands

b—&. This completes the proof. ®

4.5. Application to the Directed Max-Flow Problem

We now apply the Directed Transportation Theorem to the solution of a probabilis-
tic version of the directed max-flow problem. Consider the instances of the max-flow prob-
lem where the underlying graph is directed and the following conditions (M) are satisfied.

(M.1) S={s}, T={t} and I={1,2, - - - n}

(M.2) \ t €1, c(s,i)=a; and c(i,t)=b;

(M.3) Y i,jE€I where i 5% j, the capacities c(,s) are i.i.d. random variables drawn

from the set {0,1,2, - - - K} with expectation at least 1+¢, where ¢ >0

- 927 -

(M.4) The pair (a,b) is (D +1)realizable for some constant D >0

We will exhibit a linear time reduction from such instances of the max-flow problem
to instances of the directed transportation problem satisfying the conditions for the
Directed Transportation Theorem. This leads to a linear time algorithm for the max-flow

problem and proves the following,

COROLLARY 1: Let I be an instance of the directed max-flow problem satisfying condi-
tions (M). With high probability, the cut consisting of all edges leading out of the source
(or into the sink) is a minimum cut. Moreover, there exists a linear time algorithm to find

a maximum flow in I, with high probability of success.

We now specify the linear time reduction which will prove the above corollary. Let I
be an instance of the max-flow problem satisfying conditions (M). We will reduce I to an
instance C of the directed transportation problem. Comnstruct a directed bipartite graph B
as follows. Let S'={s,8s, - - - 8,} and T'={t,8,, - * * 8,} denote the bipartite vertex set
for B. Associate with each source vertex s; the supply @; and with each sink vertex ¢;
associate the demand b;. Every edge (s;,t;) is present and all edges are directed from S'
to T". Let c(s;,t;)=c(i,7) for ¢ 7 j.

Suppose we choose ¢(s;,t;)=00, for each 1. It is then easy to see that a feasible flow
for C can always be transformed (in linear time) to a feasible flow for I which saturates
all edges leading out of s. Clearly, this would be a maximum flow for I. However, we will
choose ¢(s;,t;) to be i.i.d. random variables like the remaining capacities. This is done to

ensure that the Directed Transportation Algorithm can be used to solve the instance C.

The Directed Transportation Theorem, when applied to C, implies that C is almost
surely feasible. Also, the Directed Transportation Algorithm will almost surely find a feasi-
ble flow for C. We can now derive, in linear time, a feasible flow for I which will also be a
maximum flow. This completes the proof of the corollary. Note that our reduction may
seem weak since we do mot exploit the fact that ¢(s;t;)=oc, for all 1. As it turns out,
however, we can prove that C is almost surely feasible anyway and, thus, find a maximum

flow for I.

5. Further Work
Generalizations of current results:

The results presented above could be extended in many directions. It would be
interesting to consider different distributions for the edge capacities. We could also look
at the case of sparse graphs, i.e. graphs where the probability of an edge, p(n), is small.
Another possibility is to consider instances of the directed transportation problem where
K=K(n) and e=¢(n), where the former goes to infinity with n while the latter goes to

zero as n approaches infinity.

Large Diameter Graphs:

- 98-

It has been empirically observed that most network flow algorithms tend to have
their worst performance on graphs of large diameter. It would be interesting to consider
flows on random graphs which have large diameters. This could be done by comnsidering
sparse graphs or random layered graphs where the diameter can be increased by increas-
ing the number of layers of vertices.

Mimicking Deterministic Soiutions:

In our algorithms we ‘“‘mimic” deterministic solutions of certain easy problems. We
construct a deterministic problem where all random variables are replaced by their
expected values. This gives rise to very special cases of the deterministic instances. These
can easily be solved in linear time. We then try to mimic these deterministic solutions in
the probabilistic instance, while trying to keep the “error”” within bounds. The error in
this mimicking process can be easily handled since it is shown to be small with high pro-
bability.

It would be extremely interesting to apply this technique to other problems. In par-
ticular, we might consider probabilistic instances of Multi-commodity Flow problems as a
patural extension of the problems considered above. Another possibility is the Mintmum-
Cost Flow problem. Of course, there is no reason why this technique should work only for

flow problems.

References

1. D. Angluin and L. Valiant, “Fast probabilistic algorithms for Hamiltonian circuits
and matchings,” J. Comput. System Sei., vol. 19, pp. 155-193, 1979.

9. B. Bollobas, Random Graphs, Academic Press, 1985.

3. H. Chernoff, “A Measure of Asymptotic Efficiency for Tests Based on the Sum of
Observations,"" Annals of Math. Stat., vol. 23, pp. 493-509, 1952.

4. P. Doulliez and E. Jamoulle, *‘Transportation Networks with Random Arc Capaci-
ties,” Revue Francaise Automat. Informa. Recherche Operationelle, vol. 3, pp. 45-
60, 1972.

P. Erdss and A. Rényi, “On random graphs,” Publ. Math. Debrecen, vol. 8, pp.
290-297, 1959.

8. P. Erdss and A. Rényi, “On random matrices,” Publ. Math. Inst. Hungar. Acad.
Sci., vol. 8, pp. 455-461, 1964.

7. P.Erdss and A. Rényi, “On random matrices II,” Studia Sct. Math. Hungar., vol. 3,
pp. 459-464, 1968.

8. W. Feller, An Introduction to Probability Theory and Its Applications, Volume I,
pp. 363-366, John Wiley & Soms, 1950.

9. L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton University Press,
1962.

(4

‘10.
11.
12.
13.
14.
15.
16.

17.

18.

19.

20.
21.

22.

23.

-99-

H. Frank and S. L. Hakimi, ‘“Probabilistic Flows Through a Communication Net-
work,” IEEE Trans. Circuit Theory, vol. CT-12, pp. 413-414, 1965.

H. Frank and L. T. Frisch, Communication, Transmission and Transportation Net-
works, Addison-Wesley, 1971.

D. R. Fulkerson and H. J. Ryser, “Widths and Heights of (0,1}-Matrices,” Canad. J.
Math., vol. 13, pp. 239-255, 1961.

D. Gale, “A Theorem on Flows in Networks,” Pactfic J. Math., vol. 7, pp. 1073-
1082, 1957.

A. V. Goldberg and R. E. Tarjan, “A New Approach to the Maximum Flow Prob-
lem,” Eighteenth STOC, pp. 136-146, 1986.

G. R. Grimmett and D. R. A. Welsh, “Flow in Networks with Random Capacities,”
Stochastics, vol. 7, pp. 205-229, 1982.

.G. R. Grimmett and H. S. Suen, “The Maximal Flow Through a Directed Graph

with Random Capacities,”” Stochastics, vol. 8, pp. 153-159, 1982.

R. Hassin and E. Zemel, “Probabilistic analysis of the capacitated transportation
problem,” Discussion Paper No. 660, Center for Mathematical Studies in Economics
and Management Science, Evanston, Illinois, 1985.

R. M. Karp, “The Probabilistic Analysis of Combinatorial Optimization Algo-
rithms,"” Tenth International Symp. on Math. Prog., 1979.

R. M. Karp, J. K. Lenstra, C. J. H. McDiarmid, and A. H. G. Rinnooy Kan, Proba-
bilistic Analysis of Combinatorial Algorithms: An Annotated Bibliography, pp.
52-88, John Wiley & Sons, 1985.

E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart
and Winston, 1976.

N. S. Mendelsohn and A. L. Dulmage, “‘Some Generalizations of the Problem of Dis-
tinct Representatives,” Canad. J. Math., vol. 10, pp. 230-241, 1958.

A. Prékopa and E. Boros, *‘On the probability of the existence of a feasible flow in a
transportation network,”” RUTCOR Research Report No. 20-86, The State Univer-
sity of New Jersey, Rutgers, 1986.

H. J. Ryser, “Combinatorial Properties of Matrices of Zeros and Ones,” Canad. J.
Math., vol. 9, pp. 371-377, 1957.

