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Abstract

Koenderink and van Doorn introduced aspect graphs as a way of represent-
ing 3-D shape for object recognition. The set of viewpoints on the gaussian
sphere is partitioned into regions such that in each region, the qualitative
structure of the line drawing remains the same. The viewing data of an
object is the partition of the gaussian sphere together with a representative
line drawings for each region of the partition. In this paper we present an
algorithm to compute the viewing data of polyhedral objects. In the course
of presenting the algorithm, we provide a full catalog of the visual events
that occur for this type of objects.

*This research was supported by the Semiconductor Research Corporation grant num-
ber 82-11-008.
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1 Introduction

Three-dimensional object recognition is one of the main research areas in
computer vision. Surveys of current approaches for solving the three dimen-
sional object recognition problem may be found in Besl and Jain [BJ86] and
Dyer and Chin [CD86]. One of the approaches that have been suggested is
to compute a finite set of two dimensional views of the object from different
viewpoints and match the image against this set.

Koenderink and van Doorn [KvD79] introduced the idea of using the
aspect graph of topologically distinct views of an object to represent its
shape. Informally, at each vertex of the aspect graph there is a view—
an aspect—that is representative of the projections of the object from a
connected set of viewpoints from which the object appears qualitatively
similar. Two aspects are adjacent in the graph if the corresponding sets
of viewpoints are adjacent. A visual event is said to occur when the view
changes as the observer moves between adjacent sets.

In this paper we present an algorithm for constructing the aspect graph
for polyhedral objects under orthographic projection where an aspect is
defined by the qualitative structure of the line drawing. In the course of
presenting the algorithm we provide a full catalog of the visual events that
occur for polyhedral objects.

2 The Labelled Image Structure Graph

We describe how to generate aspect graphs for polyhedral objects under
orthographic projection. Objects can either be opaque or transparent; in
the latter case, the objects are assumed to be made of tinted air—they
do not refract light passing through them. We assume that lines in the
line drawing of an object correspond only to depth and surface normal
discontinuities.

In the projection of a polyhedral object, every line in the image is the
projection of an edge of the object. Every edge is classified as convex or
concave according to the dihedral angle, inside the object, between the faces
meeting at the edge. In addition, a convex edge may be classified as an
occluding edge: from the given viewpoint, both faces that meet along the
edge are on the same side of the edge.
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A labelled line drawing is a line drawing where each line has been labelled
according to the classification of the corresponding edge. In the figures that
follow, we use ”+” and ” =" to label convex and concave edges, respectively.
An occluding edge is labelled by ”—”; when one moves in the direction of
the arrow, both faces meeting at the edge are on the right side. Figure 1 is
an example of a labelled line drawing.
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Figure 1: A Labelled Line Drawing. j, and j, are vertex-junctions, j3 and
j4 are T-junctions.

In the line drawing of an object, we refer to every point where the
projections of edges meet or intersect as a junction. The junctions are
either the projection of vertices of the object—uwertez-junctions, or points
where the projections of non-adjacent edges meet. For transparent objects,
we get junctions for vertices of the object and also for points where the
projections of non-adjacent edges intersect. For opaque objects, we get
a junction for every visible vertex—uvertez-junctions, and for every point
where the projection of a partially occluded edge meets the projection of
the occluding edge. The latter junctions are classified as T-junctions.

From a labelled line drawing we construct the labelled image structure
graph (LISG). It is an undirected graph augmented by labels on its nodes
and arcs. For each image junction there is a node in the graph, and for each
line segment in the image there is an arc between the nodes corresponding
to its endpoints. The arcs and the nodes are labelled by the labels of the
corresponding line segments and junctions in the line drawing.
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Definition. The eztended LISG is an LISG that includes explicit visible
surface information by having each arc point to the faces of the object
whose projections are adjacent to the corresponding line segment in the
image.

Definition. A viewpoint is general if there exists an open neighborhood of
the viewpoint such that the LISGs that correspond to the line drawings of
the scene, as viewed from points in this neighborhood, are all isomorphic to
each other. Intuitively, this means that from all points in the neighborhood
of a general viewpoint the scene looks very similar; the lengths of lines and
the angles between them may change but the basic interaction between
features in the scene remains the same.

Definition. A viewpoint that is not general is accidental.

3 The Viewing Data of An Object

The viewing space of the orthographic projection is the space of viewing
directions, and it can be represented by the gaussian sphere—a unit sphere
where a point p on the surface of the sphere corresponds to the direction
vector with the same coordinates. We refer to this sphere as the viewing
sphere. Assume that an infinitely small, scaled down, version of the ob-
ject is placed at the origin of the gaussian sphere. Then the orthographic
projection with viewing direction p corresponds to viewing the object from
point p on the sphere. It is in this sense that we refer to a viewpoint of an
orthographic projection.

The viewing sphere is partitioned into connected sets of points such
that all the points in a set have isomorphic LISGs, but the LISGs for
points in adjacent sets are not isomorphic. We use the term view to refer
to the representative LISG for a given set. Under this partition, the general
viewpoints are grouped into open regions bounded by curves of accidental
viewpoints. All accidental viewpoints on a curve segment between adjacent
regions have the same view. Where several regions share a boundary point,
two or more curves meet resulting in a vertex. The view at the vertex is
different from that of any of the viewpoints in its neighborhood. In other
words, this partition has the structure of a planar graph embedded on the
sphere, where the vertices, arcs and faces of the graph are the vertices,
curve segments and regions, respectively.
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As a viewer moves between a region and its boundary, or between a
boundary curve and one of its endpoint vertices, the view changes—a visual
event occurs.

Note that if we assume that the viewpoint moves from region to region
across boundary curves but does not move along the boundary or cross
vertices, then the aspect graph is the dual of the graph defined by the
partition.

Following Callahan and Weiss [CW85], we define the viewing data of
an object as the partition of the viewing sphere together with the view at
each region, curve segment and vertex of the partition. Figure 2 shows the
viewing data of an L-shaped object.

Figure 2: The viewing data and the aspect graph of an L-shaped object.
The views are shown only in one hemisphere, the views on the other hemi-
sphere are similar. In addition to the viewing data, the aspect graph is
indicated by the broken lines.



4 Related Work

In an object representation scheme that uses the multiple view approach,
the viewing space is partitioned into a finite number of regions, and a
representative view is computed for each region. The parts of the image
are then matched against this set of representative views. There are two
approaches to the partitioning of the viewing space: (1) uniform, object
independent partitioning, and (2) partitioning of the viewing space into
maximal regions of general viewpoints—the aspect graph approach.

4.1 The Uniform Partitioning Approach

In this approach the viewing space is partitioned in a uniform manner by
projecting a tessellated regular polyhedron onto the sphere (see Figure 3).
The tessellation of the polyhedron and the positioning of the regions on the
surface of the sphere is predetermined and independent of the structure of
the objects. Examples of this approach are found in Goad [Goa83], Fekete
and Davis [FD84].

Figure 3: The projection of a tessellated dodecahedron onto the viewing
sphere.

The advantage of this method is that the partition is easy to compute
and it is fixed for all objects. However, the fact that the structure of the
partition is independent of the geometric structure of the object is also
the drawback of this approach. Under a fine partition, the views in many
neighboring regions will be qualitatively similar and provide no additional
information for the matching process. On the other hand, under a coarse
partition some important views might be missed. We illustrate this problem
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by examing the viewing data of an L-shaped objects presented in Figure 2.
Here, under a fine uniform partition the large areas of the viewing data
would be partitioned into many regions with similar views, while a coarse
partition may miss the views in the narrow regions.

4.2 The Aspect Graph Approach

The aspect graph approach, which has been introduced by Koenderink and
van Doorn, is free from the drawbacks of the uniform partition approach.
The main idea of this approach is to partition the viewing space according
to the qualitative structure of the view—the aspect. The definition of the
aspect is dependent on the particular application. For example, it may be
defined by the topology of the image structure graph, by the set of visible
faces, by the set of occluding edges, or by other non-metric properties of
the view. The partition is defined by an equivalence relation on the set of
viewpoints in which two viewpoints are equivalent if (1) the aspect from
both viewpoints is the same, and (2) the two viewpoints are connect by a
path of viewpoints along which the aspect does not change. The relation
defines a partition of the viewing space into regions that correspond to
equivalence classes of viewpoints. The advantage of this approach is that
the partitioning is directly related to the structure and the visual complex-
ity of the object. However, computing the partition is not a straightforward
process. In fact, until recently there has been no published algorithms for
computing the exact partition of the viewing space.

For smooth objects the relation between the geometry of the object
and location of the accidental viewpoints (the boundaries of the partition)
is well understood. Some of the visual events and the location of the
corresponding accidental viewpoints were first described by Koenderink
and van Doorn [KvD76]. A complete catalog of the visual events and
the location of the corresponding viewpoints is provided in related pa-
pers [Arn79,Arn83,Ker81]. Callahan and Weiss [CW85] suggested the view-
ing data representation and used this catalog to give examples of the view-
ing data of a few simple smooth objects. However, they did not provide a
general algorithm for carrying out this computation.

Chakravarty and Freeman [CF82] use the aspect graph approach in
the characteristic views representation of objects. In this representation
Leuristic constraints on the orientation of the objects with respect to the
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camera are used for selecting a subset of the aspects as the representation of
the object. The aspects and the partition of the viewing space are computed
manually.

Ikeuchi [Ike87] uses the aspect graph approach for representing objects
in a system that uses photometric stereo. In this case, the aspects are
defined by the faces that are detectable by photometric stereo. Kanade and
Hebert [HK85] use the aspect graph approach for recognition of polyhedral
objects in range images. They define an aspect by the set of occluding
edges in the image. In both cases the exact partition of the viewing space
is approximated by computing the set of views of a uniform partition, and
then merging neighboring regions that have the same aspect. The initial
partition has to be fine enough so as to avoid missing any of the aspects
(Hebert and Kanade use about 2000 regions). As a result, many of the
computed views belong to the same aspect and therefore incur unnecessary
computational cost. An additional cost 1s incurred by the comparison of
views in adjacent regions of the uniform partition. For applications where
an aspect is defined by the set of visible features of the object this is a
relatively cheap operation. However, for applications where the aspect is
defined by topology of the image structure graph this operation is more
expansive.

Plantinga and Dyer [PD86] presented an algorithm for computing the
aspect graph of polyhedral objects, where an aspect is defined by the visible
faces of the object. This definition of an aspect may be appropriate for
recognition of objects in range images, but it is not appropriate when line
drawings are used. This is due to the fact that under this definition, line
drawings that are topologically different may correspond to viewpoints that
share a common aspect. For example, the two line drawings in Figure 4
are qualitatively very different, but the corresponding viewpoints share the
same aspect.

5 The Locus of Accidental Viewpoints

In this section we describe how the structure of a polyhedral object is
reflected in the location of the accidental viewpoints.

The LISG of an opaque object is a subgraph of the LISG of the cor-
responding transparent object, obtained by removing arcs and nodes that
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Figure ¢ Two line drawings that are qualitatively different, but the same
faces are visible in both views.

correspond to hidden parts of the object. At accidental viewpoints, spe-
cial alignment of edges and vertices of the object results in a change in
the structure of the LISG. It follows that the accidental viewpoints of an
opaque object are a subset of those of the transparent object. Those acci-
dental viewpoints that correspond to visual events of hidden parts of the
object are not relevant in the opaque case. In this section we describe the
accidental viewpoints in the transparent case. In section 8 we describe how
to decide which of the accidental viewpoints of the transparent case are
relevant to the opaque case.

As a viewer moves along a path of general viewpoints, the structure of
the LISG does not change, but the distances between junctions and line
segments in the image do change. A change in the structure of the LISG
occurs when some of these distances go down to zero, resulting either in
distinct junctions merging to a single point, or a junction moving onto a
line segment. The LISG has three types of features: (1) vertex junctions,
(2) T-junctions, and (3) line segments that are the projections of parts of
edges. The visual events correspond to interactions between these features,
providing the following cases:

1. Two vertices project onto the same point.
2. A vertex and a T-junction project onto the same point.
3. A vertex projects onto the projection of a non-adjacent edge.

4. A T-junction projects onto of another edge. The projections of three
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edges intersect at a point and therefore this is also the case in which
three T-junctions share the same point in the image. (We assume
that the three edges are skew to one another; the cases where either
two or all three of the edges are coplanar reduce to one of the previous
cases. )

Parts of two line segments overlap. In this case at least one of the
endpoints of one segment projects onto the endpoint of the other
segment, and therefore this case is subsumed by cases 1 and 3.

¥4

6. A combination of the above.

As every vertex has at least two non-collinear edges adjacent to it, cases
1 and 2 can be considered as limiting cases of cases 3 and 4, respectively.
Case 6 is the intersection of the loci of viewpoints that corresponds to the
other cases. Therefore, we need only study the locus of viewpoints where a
given vertex projects onto the projection of a given edge, and the locus of
viewpoints where the projection of three given edges intersect at a point.

5.1 The Interaction of a Vertex and an Edge

Let the vertex and the edge be v and e = (a, b) respectively, then v projects
onto the projection of e only when the viewing direction is a convex linear
combination of the vectors a — v and b — v, or a convex linear combination
of v — a and v — b. On the viewing sphere, these directions are on two
diametrically opposite arcs of a great circle. We define the arc from a — v
to b — v to be the front arc and the other arc to be the back arc. See
Figure 3.
Two observations will be of use later:

e When the edge and the vertex are shared by a face, the corresponding
arcs are part of the great circle of viewing directions that are paral-
lel to the plane of the face. This circle divides the sphere into two
hemispheres: the northern hemisphere of viewpoints where the face
is visible, and the southern hemisphere where it is invisible. In the
southern hemisphere, convex edges of the face are either occluding or
invisible and concave edges are invisible. The collection of arcs that
correspond to all edges and vertices of the same face spans the whole
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Figure 5: The arcs of accidental viewpoints for the interaction between a
vertex and an edge.

circle. Therefore, for each face induces a complete great circle—a
boundary circle.

e Given two edges, (a;,b:),(az,b2), the viewpoints from which the pro-
jections of these edges intersect are in two antipodal convex quadri-
laterals whose boundaries are the arcs of accidental viewpoints where
a vertex of one of the edges projects onto the projection of the other
edge. This is illustrated in Figure 6.

Figure 6: The quadrilaterals of viewpoints from which the projections of e,
and e intersect.
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5.2 The Interaction of a T-junction and an Edge

A T-junction is the location where the projections of two non-adjacent
edges intersect. Therefore, the case where a T-junction projects onto an
edge is actually the case where the projection of three non-adjacent edges
intersect at a point. Assume, for a moment, that we are using perspective
projection. Under this assumption, the projections of three edges intersect
at a point when a line of sight goes through all three edges. Therefore,
the viewpoint must lie on the ruled surface defined by the family of lines
that go through three given lines. In the appendix we show that this is a
ruled quadric surface. As the edges are of finite extent, only the parts of
the surface from which the line of sight intersects all three edges contain
viewpoints that are accidental with respect to these three edges.

In orthographic projection, the accidental viewpoints lie on a curve that
is defined by the direction vectors of the family of lines that pass through
the three given edges. In the appendix we show that, in the general case,
this curve is quartic which can be computed analytically. Each pair of edges
defines two quadrilaterals of viewpoints from which the projections of these
edges intersect. Therefore, the regions where the projections of all three
edges intersect are the intersection of three quadrilaterals corresponding to
the three pairs of edges. Similar to the case of perspective projection, only
the points that lie on the part of the curve that is contained in these regions
are accidental points with respect to these three edges.

The line of sight that intersects all three edges defines a depth order-
ing of the edges with respect to the accidental viewpoint. In each of the
quadrilaterals where the projections of a pair of edges intersect, the depth
ordering of that pair with respect to the viewpoint along the line of sight
through both edges is fixed. Therefore, in each region where the projections
of all three edges intersect, the depth ordering of the edges at the accidental
viewpoints is fixed.

In the rest of the paper the term front/back EV-boundary to refer to
the locus of viewpoints from which a vertex projects on top of an edge,
and the term EEE-boundary to refer to the locus of viewpoints from which
the projections of three edges intersect at a point. Boundary segment is a
general term that refers to a boundary between adjacent regions of general
viewpoints—a boundary segment is any part of the boundary connecting
two vertices of the partition.

11
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6 Overview of the Algorithm

In the discussion that follows we assume that along each boundary segment
only a single visual event occurs. This restriction does not apply in general
and it is made only to simplify the presentation of the algorithm. At the
end of this section we describe how to change the algorithm to remove this
restriction.

For each boundary segment of the partition for the transparent object
(henceforth T-partition) there is a corresponding edge and a vertex (for an
EV-boundary) or three corresponding edges (for an EEE-boundary) that
participate in the event occurring at the boundary. A boundary segment of
the T-partition is part of the partition for the same opaque object (hence-
forth O-partition), if and only if the object features that participate in the
event corresponding to that boundary are visible from one of the regions
adjacent to this boundary. Suppose that we are given a boundary segment
of the T-partition and the eztended view of an opaque object on one side of
this segment. We can use the visible surface information provided by the
extended LISG, together with knowledge of the event that should occur at
the segment, to decide whether this segment is part of the O-partition. If
the segment is found to be part of the O-partition, we can compute the
extended view in the adjacent region by updating the LISG according to
the visual event that occurs along the boundary segment.

These observations lead to the following algorithm for computing the
viewing data of an opaque object:

1. Compute the T-partition.

o

Pick an arbitrary region of the partition and compute the extended
view of the opaque object, as seen from viewpoints within this region.
For this step we can use any suitable hidden line removal algorithm.

3. Traverse the partition in order of adjacent regions. At each boundary
segment, use the extended view in the current region to test whether
the boundary is part of the O-partition. If the answer is positive,
update the extended view according to the visual event that occurs
at the boundary, otherwise remove the boundary and merge the two
regions. Upon moving to the new region store the view that cor-
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responds to that region. Continue this process until all regions are
visited.

So far, we have assumed that each boundary segment corresponds to
a single event. To account for multiple events, each boundary segment
points to a list of events associated with that boundary. We consider each
event in the list separately, and remove events that are found to be invis-
ible. When the list becomes empty the segment is removed, otherwise we
update the extended view according to the events that are left in the list.
We can examine each event at a boundary segment independently, because
accidental viewpoints where more than two features of the LISG inter-
act simultaneously—several visual events combine into a single event—are
confined to isolated viewing direction (e.g. the direction from which two or
more vertices project onto single point), that is, these points are vertices
in the partition.

In the next two sections we provide a more detailed description of the
first and last steps of the algorithm.

7 Computing the T-Partition

The T-partition is computed as follows:

1. For each face of the object compute the corresponding boundary circle
and make the circle point to the corresponding face.

S

Compute the EV-boundaries for all edges and vertices that are not
part of the same face. With each EV-boundary store the triplet <
e,v,f-or-b >, where e and v are pointers to the corresponding edge
and vertex, and f-or-b is a flag that indicates where it is a front or a

back EV-boundary.

3. Compute the EEE boundaries. For each triplet of edges (e1,€2,€3)
that are skew to each other, compute the regions of intersection of
the rectangles that correspond to edge pairs, and then compute the
curve segments that intersect each of these regions. With each EEE-
boundary segment store the triplet < ei.ejex > of pointers to the
corresponding edges ordered by depth, as seen from viewpoints along
the segment.

13




4. Compute the intersection of each boundary segment with all other
boundary segments and sort these intersections along each boundary,
merging intersections that correspond to the same point. As the
intersections are computed, construct the graph structure of the T-
partition incrementally, and merge boundary segments that coincide.

8 The Visual Events of An Opaque Object

This section describes how to decide whether a boundary segment of the T-
partition is part of the O-partition, given the extended view in the current
region and the information about the visual event that is supposed to occur
at the segment. We also describe how to update the extended view to reflect
the visual event that occurs when we move to the new region.

The following data structures are maintained:

e Static information about the object is kept in standard boundary
representation data structure in which each face, edge and vertex is
represented. Every face points to the list of contours used by that
face, and every contour points to the edges used by that contour.
Every edge points to its two end-vertices and to the two faces sharing
this edge. In addition, every edge is marked as convex or concave.
Every vertex points to a doubly-linked, circular list of edges that use
it. The list is ordered such that, in the forward direction, adjacent
edges are in clockwise order around the vertex. With each vertex
we also store the coordinates of the vertex in the canonical reference
frame.

¢ In addition to the static information described above, at every step
of the traversal process, we maintain current visibility information of
each feature of the object (this is in addition to the extended view).
Every vertex is marked as visible or invisible. Every edge is marked
as visible, partially visible or invisible. An edge that is partially
visible points to the list of T-junctions on that edge. The order of the
list corresponds to the order of the T-junctions along the edge going
from one vertex to the other. We also use this list to keep visibility
information about the segments of the edge between the T-junctions
along the edge. A T-junction in the current extended view points
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back to its locations in the lists of the two edges whose projections
form the T-junction.

This information is updated whenever the current view changes.

e We remind the reader that in the extended view, every segment points
to the two faces whose projections are adjacent to the corresponding
line segment in the image. If there is only one face of the object
whose projection is adjacent to the segment (as is the case for some
segments of occluding edge), the other face that the segment points
to is the background “face”, which is always at infinity with respect
to the current viewpoint.

8.1 Visual Events at EV-boundaries

An EV-boundary, which corresponds to a visual event where a vertex v and
an edge e interact, is part of a great circle that divides the viewing sphere
into two hemispheres. Upon crossing the boundary the viewpoint moves
from the current hemisphere to the nezt hemisphere. We classify the edges
that are adjacent to v according to the vector pointing from v to the other
vertex of the edge:

C-edges: Edges whose vector is in the current hemisphere.
N-edges: Edges whose vector is in the next hemisphere.

B-edges: Edges whose vector is on the great circle.

8.1.1 Visual Events at a Front EV-boundary

At a segment of a front EV-boundary, if e is not an occluding edge, v is and
remains invisible and this boundary segment is not part of the O-partition,
otherwise an event that changes v’s visibility may occur. According to
whetler is visible or invisible in the current view there are two possible
cases:

V becomes invisible. The changes in the visibility of the edges adjacent
to v are (see Figure 7a):

e Any visible N-edge becomes invisible.
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¢ C-edge segments adjacent to v create T-junctions with e.

e B-edges become partially or fully occluded by the visible face adjacent
to e. We check for changes in the visibility of all the visible segments
of the B-edge, even those that are not adjacent to v in the LISG.
Segments whose visibility changes are:

— Segments that become fully invisible. One end of such a segment
is a T-junction with an edge that has a T-junction with e, and
the other end is either v (e.g. ;) or a T-junction with another
edge that has a T-junction with e (e.g. s2).

— Segments that become partially occluded by the occluding face
at e. Such a segment has only one end that is v (e.g. s3) or
is a T-junction with another edge that has a T-junction with e
(e.g. 84). The segment forms a T-junction with an edge that is
adjacent to e in the occluding face at e.

Figure 7: Visual events at a front EV-boundary.
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V becomes visible . There are two possible cases:

o Some N-edges have T-junctions with e (Figure 7b). Partially visible
N-edges become completely visible at v, B-edges become visible at
v. C-edges that are adjacent to a face whose normal points in the
direction of the current EV-boundary become partially visible at e
and create T-junctions with e.

The junctions are inserted according to the ordering of the edges as
seen from a point on the current boundary segment. If one of the
N-edges is an occluding edge, then the first C-edge or B-edge that is
counterclockwise from this edge and becomes visible is marked as an
occluding edge.

B-edges have to be checked for partial occlusions by any face that is
adjacent to the projection of e, and is not the occluding face at e.

No edge adjacent to v is visible ate (Figure 7c). We have to determine
whether v becomes visible in the next view. In the next view, v 1s not
occluded by the occluding face at e, but might be occluded by faces
that partially occlude e, or are occluded faces at e. The extend view
determines whether v is visible in the next view. We test The list
of segments of the view that correspond to e, to find which segment
coincides with the projection of v when viewed from a point on the
current EV-boundary segment. If there is no such segment then v 1s
not visible in the next view and the event is invisible. Otherwise, we
compare v with the occluded face at the given segment e; of e. The
event is visible only when v is in front of that face with respect to the
viewpoint. If v becomes visible, then the C-edges become partially
visible and each creates a T-junction with e;. See Figure 7c.

8.1.2 Visual Events at a Back EV-boundary

At a segment of a back EV-boundary v projects on top of e only when e is
in front of one of the faces whose projection is adjacent to the projection
of v in the current view. Otherwise, the event is invisible at this segment.
When e is visible we have one of the following cases:
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Both N-set and C-set are not empty. There are several subcases:

e There is an occluding B-edge (Figure 8a). If the other occluding edge
is a C-edge then e becomes invisible at v. All the segments of the
view that correspond to e and are adjacent to segments of edges that
form T-junctions with the B-edge has to be removed from the view.

If the other occluding edge is an N-edge, then e becomes visible at v.
We check e against all the faces whose projection is adjacent to the
B-edge, but are not the occluding face at the edge, and add a segment
to the view for each part of e that is visible.

I

p—
—

Figure 8: The visual events at a back EV-boundary.

e There is no occluding B-edge. The T-junction of e with an occluding
C-edge moves to the occluding N-edge. See Figure 8b.

Either the C-set or the N-set is empty .See Figure 8c.

o The C-set is not empty—e is partially occluded by the faces at v. T-
junctions of e with the edges at v disappear. If there are B-edges
then parts of e that were occluded by the faces adjacent to these
edges become visible.




e The N-set is not empty. E gets T-junctions with the occluding N-set
edges. If there are B-edges then the segments of e, both ends of which
are T-junctions with edges that have T-junctions with the B-edges,
are removed.

8.2 Visual events at a Boundary Circle

At a segment of a boundary circle that corresponds to a face f, a visual
event occurs if and only if there is at least one edge of f that has visible
parts in the current view. When the event occurs, f becomes either visible
or invisible, depending on whether the viewpoint moves from the southern
hemisphere to the northern hemisphere or vice versa.

8.2.1 Crossing the Circle from North to South

The current view is in the northern hemisphere and parts of edges of f are
visible. Figure 9 illustrates the changes that occur in the view:
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Figure 9: The changes in the view when the visibility of a face changes.

1. Every visible part of a concave or an occluding edge of f becomes
invisible. Examples are edges e; and ez. -
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1

Every visible part of an inner contour of f becomes invisible.

. For visible edge segments that are not part of f but are adjacent to

vertices of the inner contours there are two possible cases:

(a) A segment that is on the southern side of f—part of a ‘hole’—
becomes invisible. Edge e3 is an example of this case.

(b) A segment that is on the northern side of f (e4, for example)
forms a T-junction with an edge of f. (In a later part of this sec-
tion, we describe how to decide where to insert this T-junction).

For visible segments of convex edges of the outer contour there are
two possible cases:

(a) The segment does not change its visibility, and becomes an oc-
cluding segment. An example is es.

(b) The segment becomes partially or fully occluded by visible faces
that are adjacent to f along convex edges of the outer contour.
The part of the segment that remains visible becomes an oc-
cluding segment. This segment forms a T-junction with an edge
of the occluding face (this is in addition to T-junctions it may
form as an occluding segment). In the figure, eg becomes pai-
tially visible and occluding, while e; becomes invisible.

Visible segments that are not part of f and are adjacent to vertices
of the outer contour of f that become invisible form T-junctions with
edges of f. Edge eg is an example for this case. (In a later part of this
section, we describe how we decide where to insert the T-junction).

For edges that currently have T-junctions with edges of f and are not
adjacent to f there are two cases:

(a) Edges that are occluded by an edge of f (eg, for example) remain
occluded, but the T-junction moves from a current occluding
edge of f to an edge of f that is currently convex. Eg is an
example of this case. ‘

(b) Edges that are occluding f (ej0 for example) lose the T-junction
with a segment of an edge of f that becomes invisible.
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The visibility of convex edge segments is determined as follows. Let e,
be a visible convex edge that becomes fully or partially occluded, let fi
be a face that is adjacent to f and in the next view is a visible face that
occludes e,, and let e; be the edge that is shared by f and f, (for example,
in Figure 9 es and en correspond to e, and e respectively). Then, from
a viewpoint on the current segment of the boundary circle, e is visible
and it is in front of e,, or equivalently e, is hidden (or partially hidden)
behind e,. It follows that the depth ordering of the edges, as seen from a
viewpoint along the boundary segment, reflects the visibility of edges in the
next view. As any change in the visibility of an edge is a visual event, the
depth ordering of the edges of f from all viewpoints along a given boundary
segment must be the same.

Therefore, we can determine the visibility of segments of convex edges of
the outer contour of f by solving a problem of 2D hidden line removal. The
lines are in the plane of f, and the image line is orthogonal to the viewing
direction from an arbitrary point on the current boundary segment. As the
lines are part of a simple polygon (the outer contour of f), this problem
can be solved in a time that is linear in the number of edges. See Figure 10.

In solving the above problem, we also order the visible segments along
the image line. From the current extended view we form an ordered list
of the of edges that form new T-junctions with the edges of f (cases 3b
and 5). Using the same viewpoint the coordinates of the intersections of
the projections of these edges with “image line” are computed. As the list
of the edges is already ordered, the T-junctions can be inserted into the
segments of f in time that is linear time in the number of segments and
T-junctions.

To complete the update of the extended view in the next region, we
remove all segments and junctions that become invisible.

8.2.2 Crossing the Circle from South To North

The face becomes visible. The changes detailed in the previous section are
reversed and the update of the extended view is done in a similar way.

21




The imaEe line

Figure 10: The visibility of edges of the outer contour of a face as a hidden
line removal problem. a. The view of the face before and after crossing the
boundary. b. The situation in the plane of the face.

8.3 Visual Events at an EEE-Boundary

At each segment of an EEE-boundary the three edges involved are classified
as front, middle, or back according to their depth ordering from viewpoints -
on the boundary segment. A visual event occurs at the segment if and only
if in the current view:

e The front and middle edges are occluding edges, and their projections
meet in a T-junction.

e Given the face that is the occluded face at the T-junction, the back
edge is either shared by this face, or is in front of it with respect to
viewpoints on the current segment.

If both these conditions are satisfied, there are the following cases:

The back edge has a T-junction with each of the other edges
(Figure 11a to b). The back edge becomes invisible. The segment between
the T-junctions, and the junctions are deleted.
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Figure 11: The visual events at a EEE-boundary.

The back edge is invisible (Figure 11b to a). This is the inverse of the
previous case.

Only one of the other edges has a T-junction with the back edge
(Figure 11c). The T-junction moves to the other edge.

9 Computing The Views at the Boundary of
the Partition

The views along the boundary segments of the partition are computed
as intermediate views between the current and the next view during the
traversal of the partition, whenever a boundary is found to be part of the
O-partition.

To compute the view at a vertex of the partition, we pick a view along an
incident boundary and modify it according to the changes that correspond
to moving onto each of the other boundaries that are incident upon the
vertex.
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10 Complexity Analysis

In this section we give a worst case upper bound on the complexity of the
algorithm.

Let the number of vertices of the object be n. Then the object has
O(n) edges and O(n) faces. Therefore, in constructing the T-partition,
O(n?) EV-boundaries are computed in O(n?) time. In computing the EEE-
boundaries every triplet of edges is considered, resulting in O(n?) total
time. In the worst case O(n®) EEE-boundaries are produced. There are
O(n) boundary circles which are computed in O(n) time.

In step 4 of computing the T-partition, every boundary is intersected
with all other boundaries. As there are O(n?®) boundaries and computing
the intersection of two boundaries takes constant time, the number of in-
tersections and the time to compute them is bounded by O(n®); the time
for sorting the intersections is bounded by O(n®logn). Therefore, the up-
per bounds on the time for computing the T-partition and the size of the
T-partition are O(n®logn) and O(n®), respectively.

In an edge-vertex event, T-junctions between the edge that corresponds
to the boundary and edges adjacent to the vertex are created or deleted.
Thus, O(n) is the bound on the time for updating the extended view for
this event. As the number of EV-boundaries is bounded by O(n?), their
intersection with other boundaries may result in O(n®) EV-boundary seg-
ments. Therefore, the total time for updates of the view for events at
EV-boundaries is bounded by O(n®). As the number of EEE-boundary
segments is bounded by O(n®) and updating the view at an EEE-boundary
takes constant time, the total time spent in update for EEE events is
bounded by O(n®). A partially visible face can have at most O(n?) T-
junctions associated with it. As there are O(n) boundary circles, the num-
ber of segments of boundary circles is bounded by O(n*). Therefore, the
total time spent in updating for events at segments of boundary circles is
bounded by O(n®).

Summing up, the upper bound on time complexity of the algorithm is
O(n®logn). In the worst case, almost every edge creates a T-junction with
every other edge, and therefore the worst case upper bound on the size of
the LISG for a single view is O(n?). As the size of the partition is bounded

by O(n®) the size of the complete viewing data of an object is bounded by
O(n?®).




11 Conclusions

We have presented a complete catalog of the visual events that occur for
polyhedral objects under orthographic projection. We have also described
how the structure of the object is reflected in the locus of accidental view-
points. Given the catalog of visual events and knowledge about the locus
of accidental viewpoints, we have presented an algorithm for computing
the viewing data of polyhedral object, which is an extension to the aspect
graph.

A worst case complexity analysis indicates that the time complexity of
the algorithm is bounded by O(n®logn), and that the size of this data
structure (and of the aspect graph) is bounded by O(n®). We believe that
for common objects in an industrial environment the actual size of the
viewing data will be much smaller. We plan to implement the algorithm to
get a better estimate of the size of the data structure and the complexity
of algorithm in the average case.

The visual events for polyhedral objects and for objects bounded by
single smooth surfaces has been fully cataloged. The algorithms for con-
structing the viewing data or the aspect graph for these classes of objects
are also well understood. However, most objects in actual applications
are actually piecewise smooth objects. Further research is needed to find
algorithms for constructing aspect graphs for this class of objects.
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Appendix
The Locus of Viewpoints of the EEE Event

Let the three edges that participate in the event be e;, e, and e3. Let a;
and d; be an endpoint and the direction vector of e;, respectively. Assume
that we are using perspective projection with viewpoint p. The normal to
the plane P; through e; and pis (p—ai) X ci, P., P,, and P3 has a common
intersection line which is the line of sight that goes through e;,e; and e3
(see Figure 12). As the normals of all the planes are perpendicular to the
intersection line, they are coplanar, and therefore:

[(p—a1) xdy (p—as)xd; (p—as)xds] =0. (1)

This is a quadric equation in the coordinates of p, which defines a quadric
ruled surface. It can be shown that when the edges are skew to each other,
this is a hyperboloid of one sheet, and when all the edges are parallel to
one plane, the surface is a hyperbolic paraboloid[Sal74]. When two of the
edges are coplanar the surface degenerates into a plane.

G——
AQ{

Figure 12: The line of sight that goes through the three edges as the com-
mon intersection of three planes.

\)

For an orthographic projection with viewing direction [z,y, z], the view-
point is of the form afz,y, 2], with « going to infinity. Substituting the
viewpoint into Equation 1 we get:

O}Lr{.lo(a2(c1z2 +eayt+eszt eyt eszztesyz)talcrz+esy+eoz)+ci0) =0,

and therefore:

c12? 4 coy® + c32? + cazy + sz + cyz =0, (2)
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is the condition on the viewing direction of the EEE event in the ortho-
graphic projection. This is the equation of an elliptical cone, which in
the case where Equation 1 describes a hyperbolic paraboloid, degenerates
into two intersecting planes. To get the curve of viewing directions on the
viewing sphere we intersect the surface described by Equation 2 with the
sphere

24+ + 22 =1.

The resulting curves are either two antipodal “bent” ellipses, or, in the
case where Equation 2 describes a degenerate cone, the curves are two
great circles.
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