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Abstract

A major challenge for the immediate future in the field of distributed com-
puting systems is to realize their potential benefits without incurring intolerable
penalties in performance, complexity, and cost. There is therefore a substantial
interest in establishing sound theoretical foundations for the modeling, design,
construction, and reliable maintenance of these systems. Analytic modeling for
performance evaluation of distributed systems typically requires the solution of
large multichain queueing network models. The size of these large models pre-
cludes any use of exact solution techniques. Thus, it is important to develop
accurate and cost effective algorithms for the approximate solution of large mul-
tichain queueing networks. To meet the challenges of future complex distributed
computing systems, approximation techniques will have to be employed.

The work presented in this dissertation was motivated by our interest in
analyzing and solving queueing network models of large distributed systems.
This dissertation focuses on the development of accurate and cost effective algo-
rithms for the approximate solution of large multichain product form queueing
networks, and in particular those that represent the models of large distributed
computing systems. The results obtained in this dissertation are applied to a
variety of configuration design issues and other distributed systems problems.
The work presented here can be used as a platform upon which future queueing
networks modeling tools can be constructed.
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Chapter 1

Introduction

1.1 Motivation

The widespread use and popularity of distributed systems is fundamentally due to the price-
performance evolution in the area of microelectronics and the development of fast and cost effective
communication networks. The continual improvement in computing price/performance ratios has
reduced the need to adopt large centralized systems in order to realize economies of scale. In recent
years we have witnessed a proliferation of local area network-based distributed systems. Very large
distributed systems (VLDS) based on fast wide-arca networks are already in the design stages in some
research organizations. In these systems , resources such as processing power, databases, and a multi-
tude of software services and products are shared among the users and jobs located at different sites. A
good example of a VLDS operating system project is the DASH Project currently under way at Berke-
ley [And87].

Extensibility and reliability are among the most important potential advantages of distributed sys-
tems. Extensibility is the ability to adapt easily to both short and long term changes without significant
disruption of service on the part of the system. Distributed computing systems are potentially reliable,
because the redundancy and autonomy present in them permit partial failures to be masked or localized,
thereby allowing the rest of the system to continuc functioning. Additionally, services and software
resources in a distributed environment are able to migrate to other machines in the case of a failure of
the host on which they reside.

A major challenge in distributed computing systems research is to realize these potential benefits
without incurring intolerable penalties in complexity, cost, and performance. Consequently, there is
currently a substantial interest in establishing sound theoretical foundations for modeling, design, con-
struction, and reliable maintcnance of VLDS. We will not achieve the full potential of distributed com-
puting systems until effcctive solutions to these fundamental problems are found. The growing com-
plexity of distributed systems and the rapidly incrcasing number and diversity of the tasks that they are
being uscd to perform have made it increasingly important that quantitative tools be devised to aid in
the modeling, configuration, planning, design, and performance evaluation of these systems. The intui-
tion of even the very best system designers is no longer sufficient to predict reliably how changes in the
workload or configuration of a distributed system can affect the overall system performance. Among
the most effective tools for modeling and performance evaluation of computing systems are discrete



event simulations and analytical modeling. Simulations are popular since they have the capability of
representing more details of the systems; however they are costly and difficult to construct and imple-
ment (particularly for large distributed systems). Analytical modeling, on the other hand, is several
orders of magnitude cheaper than simulation. Analytical modeling for performance evaluation of large
distributed systems typically requires the solution of large queucing networks with large populations
and large numbers of classes for which any exact solution is practically impossible.

The growth in the size of the workload can be exemplified by large transaction-oriented business
systems such as banking systems, airline reservation systems, sales and inventory systems, telecom-
munications networks, and other large distributed systems that are currently being designed. In each of
these cases hundreds or thousands of terminals might be active at any given time. Each active terminal
in these systems is represented by a customer in the queueing network model. Therefore, the queueing
network models representing these systems may contain large populations. As a result of this increase
in the populations and the growing complexity of the services provided by these systems, we naturally
expect that the number of customer classes required to represent them accurately in the queueing net-
work model will also increase. Users in different geographical locations use different sets of resources
(processors, printers, services, and communication lines) in different ways. Hence, if one is interested
in accurately modeling the load on the system, customer classes should be used to reflect these different
patterns of usage.

Thus, it is important to develop accurate and cost effective approximate algorithms for the solu-
tion of large multichain queueing networks. The successful application of queueing network models to
the analysis of computer systems has been demonstrated by a number of case studies (examples can be
found in [Bar78], [Gra78], [Den78], and {Kie79]). All the studies have proven the utility of these
models to predict accurately the performance of the corresponding computing systems. Most of these
studies, however, have been applicd to centralized systems. These systems generally require models
with only a few service centers, customers, and job classes. The recent proliferation of distributed sys-
tems has created a growing interest in the application of multiple-class queueing network models to
these systems. For example, Goldberg et al. [Gol83] constructed and validated a model of the LOCUS
distributed system and reported to be working on some tools for the design of distributed system
configurations. de Souza e Silva and Gerla [Sil84] recenty applied multichain queueing network
models to the problem of optimal load sharing in a LOCUS distributed system environment comprised
of a set of heterogencous processors. Bester et al. {Bes84] studied supporting replicated file systems
and scalability aspects of this important problem using a dual priority multichain approximate MVA
(mean value analysis) model. They applied and validated their models to different configurations of a
17 site LOCUS distributed system, and reported to be working on models of the buffer contention prob-
lems in LOCUS.

These examples are clear evidence that the process of modeling and performance evaluation is
becoming one of the principal elements that must be taken into consideration in the design,
configuration, development, and tuning of computer systems. In this respect, queueing networks have
become an indispensable part of this process. The kcy challenge in computer performance evaluation is
the development of new quantitative methods and tools, which can keep pace with the emerging new
generations of systems brought on by the advances in technology.

The work presented in this dissertation was motivated by our interest in analyzing and solving
quecueing network models of large distributed systems. This disscrtation focuses on the development of
accurate and cost effective algorithms for the approximate solution of large multichain product form
queueing network models, and in particular those that represent the models of large distributed comput-
ing systems. All the algorithms proposed in this dissertation have been implemented and used
throughout the course of this research. These algorithms can be easily integrated as interactive perfor-
mance modeling tools for very large distributed systems.



1.2 Organization of the Thesis

This thesis is organized as follows. In chapter 2, we study the general properties of closed
multiple-class product form queueing networks. Exact solution techniques for these networks and their
computational complexities are discussed first. These results are then extended to the class of mixed
multichain networks. The MVA equations for mixed multichain networks and the steady state proba-
bility distribution for open multichain networks are obtained. The computational complexities of solv-
ing these networks, using the corresponding solution techniques, are then derived.

In chapter 3 we give a comprehensive overview of the existing approximate algorithms for the
solution of product form queueing networks. The advantages and shortcomings of these algorithms are
discussed and compared.

In chapter 4 we propose a new approximate technique, based on the MV A equation for the solu-
tion of large multichain queueing network modcls with fixed rate single server and infinite server ser-
vice centers. Such properties of this approximate algorithm as existence, uniqueness, convergence, and
computational complexities are studied in detail. The accuracy of the algorithm is empirically studied,
and its possible extensions to a multilevel approximate algorithm are also discussed. The accuracy and
the performance of this approximation are then compared with those of some existing algorithms.

In chapter 5 we propose a hierarchical network transformation based approximate technique for
the solution of large multichain queueing network models with fixed rate single server and infinite
server service centers. This technique is based on a hierarchy of network transformations. The result-
ing iterative algorithm for this technique is analyzed. The computational complexities of the algorithm
are derived in detail. The algorithm is asymptotically correct and tends to the exact solution as the
population increases. Experimental results concerning the accuracy of the approximation are presented.

We have identified several applications of the results obtained in chapters 2, 4, and 5. In chapter
6 we investigate some of these applications. A decoupling algorithm for the modeling and
configuration design of large distributed systems is proposed. This algorithm has also applications in
the hybrid simulation of models of large distributed systems. Experimental results show the algorithm
to be efficient and cost effective. Another potential application, that to bottleneck detection in large
queueing network models, is then studied. We introduce a general algorithm to identify the bottlenecks
in multiple-class queueing network models using the approximate MV A-based algorithms developed in
chapter 4.

In the final chapter, chapter 7, the main points of this dissertation are summarized and future
rescarch directions are suggested.

The notation we have adopted and the definitions of the parameters used in this dissertation can
be found in Appendix A, where the reader can find the meanings of the symbols that are not defined in
the text.



Chapter 2

Product Form Queueing Networks

and Their Properties

2. Introduction

In this chapter we will look at the steady state solution of a subset of the class of queueing network
models. The queueing networks in this subset are referred to as multiple-class product form queueing
networks (alternatively, multiple-class scparable queueing networks). In the first section, we describe
the characteristics of these networks and their steady state solution using the convolution algorithm. In
the second section, we outline the mean value analysis algorithm for solving such networks. In section
2.3, the computational complexities of exact solution techniques for closed product form queueing net-
works are studied. We then turn to the properties of mixed multichain queueing networks in sections
2.4 and 2.5. The mean value equations for mixed multichain networks consisting only of fixed rate (a
fixed rate service center is one with a mean service rate W, (i )=c independent of the number of jobs in
the service center) single server and infinite server (IS) service centers are derived, and the computa-
tional complexities of the MV A-based solution of mixed networks are evaluated. Finally, in sections
2.6 and 2.7, the solution of multichain open networks is reviewed, and the computational complexity of
that solution is derived.

2.1 The Convolution Algorithm

Consider a closed multichain queueing network containing an arbitrary but finite number M of
service centers, and an arbitrary but finite number R of different classes of customers (jobs). Customers
move through the network and change classes according to transition probabilities. Therefore a custo-
mer of class i, after completing service at service center j, will move to service center s while becoming
a customer of type r with probability pij . The transition matrix P = [p;; ,s] defines a Markov chain
whose states are labeled by the pairs (r.5), r=1.2,...,R, s=1,2,..M. The Markov chain is assumed to
be decomposable into m crgodic subchains. Two job states belong to the same subchain if there is a
non-zero probability that a job will be in both job states during its life in the network.



The service centers can have one the following service disciplines.

(1) FCFS: customers are served in the order they arrive; multiple servers are allowed. The ser-
vice time distribution for all customers is the same, and of exponential type. The service rates of the
servers can be dependent on the number of customers at the center.

(2) PS: there is a single server at the station, and the discipline is processor sharing. The service
times of different job classes can have any distribution with a rational Laplace transform. The service
rates of the servers can depend on the number of jobs at the center.

(3) LCFSPR: the discipline is last-come-first-served with preemptive resume. The service
center can include multiple servers. The service time of different job classes can have any distribution
with a rational Laplace transform. The service rate of the servers can depend on the number of jobs at
the center.

(4) IS: there arc as many servers as there are customers. The service times of different job
classes can have any distribution with a rational Laplace transform.

We will use K as an argument of the quantities related to the given queueing network with the
population vector K = (K1,K>,...,Kz). We also denote that queueing network by Q (K). The balance
equations for Q (K) are given by:

R M
9,, =Pors + ,;IZ—;GUPU'H s r= 1,2,...,R R 5= 1,2,...,M . (2.1.1)

where 0,5 is the relative frequency of visits of a class 7 job to service center s.

Suppose that the queueing network is a non class-hopping closed network (i.e., a network in
which jobs do not change class when moving from a service center to the next), and that the routing
matrix P, is irreducible over S (r). Then, from standard Markov chain analysis, we can write:

6)‘ = —érPr ’ r= 1’2:~"7R * (2'1'2)

where ©, =(0,1,9,2, . ..,9u). To solve equation (2.1.2), we first note that ﬁe,,- =1 . Let E,
/=
represent an M xM matrix such that:
E =[e;], ej=lforallij, r=12,..R. (2.1.3)

Thus, we can write:

©,xE =1, r=12,..R, (2.1.4)

where 1 is the M -dimensional row vector with all elements equal to 1. By adding equations (2.1.2) and
(2.1.4) and simplifying the results we can write:

9, = I[P, +E, -1M] 1 r=12..R, 2.1.5)

where [y is the M xM identity matrix. The values of the visit ratios are obtained by solving equation
(2.1.5) for each job class.

We also define k= (k. ,kz, ..., ky) to be the state vector of the network Q(K), where
ks = (k1s.k2s, . .., kgs) s the state vector of service center s. & is the population of class 7 jobs at ser-
vice center 5. If k; represents the total number of jobs of all classes at service center s, then:

R
ko=, s=12,.M (2.1.6)
J=



from these definitions we can also write:

ki+k2+ - +ky =K. 2.1.7)

Theorem 2.1.1 [Bas75,Rei75]:

The equilibrium probability of the state k = (ky k2, . . . ,ky) is given by:

p®=puks.. .. k)= gy L1+ ko). @.18)
where:
f.r ks) = T‘k—s'—'—li'k'};'(ej: Sj.v)k' » (2.1.9)

ng')’

for the service centers of types 1 (FCFS), 2 (LCFS), or 3 (PS). Observe that in equation (2.1.9) for the
type 1 service centers, s;; = s; for all jJeR (s).

We also have:

Folke) = gﬁ(e,:s,s)"r . s=12..M , (2.1.10)

k
for the service centers of the type 4 (IS). For IS service center s, (i) =i. Thus, JJH;(@) =k!, and

(2.1.9) reduces to (2.1.10). )
G(K1,K2, ...,Kg)in (2.1.8) is the normalizing constant chosen so that:

m%M)p kK=1. (2.1.11)

From equation (2.1.8), and using the relationships in equations (2.1.9) and (2.1.10), a direct rela-
tionship between the normalizing constant and the parameters of the network can be obtained:

M
GK)= m@J{)Hf, (Ks) . (2.1.12)

There are recursive algorithms to calculate the normalizing constant [Bru78]. Once the normaliz-
ing constant is known, the following relationship [Cha80] can be uscd to calculate the mean throughput
rates and then the other performance indiccs.

G(K\Ky... K-, 0, Kr)

Ars =05 TR Ko KD , r=12,.R, s=12,.M (2.1.13)
From the relationship given in (2.1.13), the following important relationship is easily deduced.
%%= g” , r=12,..R, ss5=12,..M. (2.1.14)

The method for evaluating the normalizing constant and the equilibrium state probability distri-
bution is referred to as the convolution algorithm. The convolution algorithm differs from the mean
value analysis (MVA) method summarized in section 2.2 in that the convolution algorithm provides the
steady state probability distribution, while the MVA provides only the first moment of the performance
measures.



2.2 The Mean Value Analysis (MVA) Algorithm

Reiser and Lavenberg [Rei80] have provided another approach to the solution of product form
networks. They derived recursive relationships for the calculation of the mean value of the desired per-
formance indices. The MVA algorithm was first developed for product form closed QNs that include
fixed rate and queue length dependent rate servers. However, the algorithm has been extended to
include a broader range of QNs, including state dependent routing and more general forms of state
dependent service rates [Rei81], [Sau83]. Higher moment recursive formulae for a class of multichain
product form queueing networks can be found in [Hef82].

The following is the main result of the mean value analysis (MVA) approach due to Reiser and
Lavenberg. The steady state mean waiting times W, (K) at the service centers of Q (K), which are all
single server (i.e., M,=1 for all s), are related to other quantities of Q (K—e, ) by:

Wi (K) = 5,5 | 1+ N, (K—e,) + 2;‘(”—167 - 1)ps (i~1,K~¢,)| . 2.2.1)

If service center s is a type 1, 2, or 3 with unit service rate (i4; (7 )=1), then:

Wre (K) = 5y (1 + izv,-, K -e)), 222)
1=

and, if the service center is a type 4 (IS service center), then Wy = 5,5. It can be shown that if the mean

service rate of service center s is a constant, i.e., 4, (i) =c, then (2.2.2) still applies, but with s
Srs
-

replaced by

We now derive the set of recursive relations that are used for the computation of the mean values
of the performance indices. We first rewrite the mean value equations (2.2.2) as:
R
Srs(1+ :Nj: (K—-e,)) fortype 1,2,0r 3 centers , M,=1, |, (i)=1
J:
Wrs (K) = Srs type 4 (IS) centers , 2.2.3)

From Little’s law [Lit61]
N (K)=As (KW, (K), r=12,..R, s=12..M. 2.24)

Let D,, be the class r job cycle time at service center s (the cycle time is the average time
between successive arrivals of the same class 7 job at service center 5). A class 7 job visits queue s* an
average of 8,y /0,, times for each visit to service center s. The average time spent in service center s’
for each visit to s by the same class r job is therefore W, (K)8,y/8,,. Thus:

Dy (K)= 3 Wy KOy /0ps, r=12,.R, s=12,.M. 22.5)

Little’s law applied to a closed chain r results in':
K, = A (K)Drs (K). (2.2.6)

From equations (2.2.4) - (2.2.6) we can write:
N:(K)=K, O Wrs (K) , r=12..R, s=12,..M. 2.2.7)
E_E er.\’ Wn’ (K)

5

1 Note that the right hand side of (2.2.6) is independent of s.



The utilization of service center s (non IS service centers) for class r jobs can be determined by:
Prs(K)=A (K)Spe, r=12,.R, s=12,.M. 2.2.8)

Recursive applications of equations (2.2.3) - (2.2.8) provide the mean values for the performance
indices of all job classes at all the service centers.

2.3 Computational Complexities of Exact Solution Techniques

The existence of computational algorithms is the strong point of closed product form queueing
network solutions. All the exact solution techniques for these networks are based on the two major
approaches summarized in sections 2.1 and 2.2. These two approaches are alternative ways to exploit
the recursive structure of the product form solution. Variations of the two methods are found in
[Cha80,Lam83]. The convolution algorithm for product-form queueing networks was first proposed by
Buzen [Buz73] for single-class networks, and extended by Reiser and Kobayashi [Rei75] to muitiple-
class networks. When the class population sizes become large, the normalizing constant
G (K1.K3, ..., ,Kp) may exceed the floating point range of the processor being used, thereby causing an
overflow or underflow condition. A dynamic scaling technique has been introduced that partially
alleviates these problems [Lam82].

The MVA algorithm is conceptually simpler than the convolution algorithm, since it avoids the
evaluation of the normalizing constant. Although overflow problems are not present in this algorithm,
underflow may still occur when solving load dependent networks. For large populations, due to the
recursive nature of the MVA algorithm, non-negligible round-off errors can also occur. The critical
problem with these two algorithms, however, is their space/time complexity. The computation of visit
ratios is an essential requirement for both the MVA and the convolution algorithm.

The evaluation of visit ratios is solely dependent on the queueing network topology and the
branching probability matrix. The time complexity involved in the computation of equation (2.1.5) can
be derived by first computing the time complexity for each class and multiplying the result by the total
number of classes R. We need M (M —1) additions to perform the matrix operations P, + E, — Iy (we
disregard the additions of zeros resulting from the fact that the diagonal elements of the matrix E, —{j
are all zero). We need M3 multiplications/divisions and M3 -2M2 +M additons and subtractions to
compute the inverse of P, + E, ~Iy [Bur85]. Finally, to compute the visit ratios, we need M2 addi-
tions; since we are evaluating the product of the vector 1 by | P, + E, ~ Iy ~! and all the elements of 1

are unity, we only need M additions per element of the resulting 1xM vector, for a total of M2 addi-
tions.

Hence, the total time complexity of the visit ratio evaluation for each class is 2M3. The time
complexity for all classes is therefore V =2RM3. In the derivation of this complexity, all the chains in
the network were assumed to be closed. We will show later that the time complexity for evaluating the
visit ratios for the open chains of a QN is slightly higher than that for the closed chains. We then need
RM multiplications to cvaluate the utilizations for all classes. The derivation of the time complexity to
compute the normalizing constant, the mean waiting times, the mean queue lengths, and the mean
throughput rates can similarly be carried out, and is discussed in [Bal77,Zah80].

We restrict the storage space required to compute the visit ratios to that needed to retain the final
values of the visit ratios. The actual space needed for the matrix additions and inversions is not
included in the calculations. Indeed, solving a QN consists of two steps. In the first step the visit ratios
are evaluated, in the second the performance measures are computed using one of the solution algo-
rithms. The space nceded to solve a multichain QN with large chain populations is many orders of
magnitude larger than that needed to compute the visit ratios. Additionally, the visit ratios have to be
evaluated before any QN solution can be obtained. Hence, once a solution of a QN is practically possi-
ble and the total storage for its solution has been allotted, we can always use (part or all of) this storage
in the first step to solve for the visit ratios. When the visit ratios are known, this storage can then be
reused for solving the QN. There are trivial cases (not applying to the types of nctworks considered



here) such as single-class networks and certain special case multiple-class open networks in which the
storage space needed to evaluate the visit ratios may be larger than that needed to solve the network. In
these cases the maximum space needed should be separately assigned. We will discuss some of these
cases in section 2.7. The total space needed to retain the visit ratios is RM . The additional space
required to store the utilization values is RM . The storage needed to compute the normalizing constant,
the mean waiting times, the mean queue length, and the mean throughput rates can similarly be derived
{Bal77,Zah80]. Table 1 shows the space/time complexity of the two approaches for the load indepen-
dent case. The time complexities for the evaluation of the throughput rates, the mean queue lengths,
and the normalizing constant are taken from [Bal77,Zah80].

Table 1. Space/Time Complexity (Load Independent Servers)

Complexity | Mean Value Analysis Convolution
Time RM(4X+31+V (4RM-2R)X+R(6M-2)+V
Space R+M+RM)Y+4RM 2X+5RM

X=ﬁ(1<,+1) Y=TIK; +1)  V =2RM3

=
$

Note that, in Table 1, R is the number of classes, M is the number of service centers,
K,, r =12,.,R, is the total number of class r customers in the network, and / is the chain visiting the
largest number of service centers. Table 2 shows the computational complexities for load dependent
product form networks [Bal77,Zah80].

Table 2. Space/Time Complexity ( Load Dependent Servers )

Complexity Mecan Value Analysis Convolution
Time IRMXK+2X+4/3)/2+2MK+V | MQX+2RX+2R+4Z)+4(X-Z)+RM+V
Space MK(Y+1D+RY(M+1)+4RM 4X+5RM

X=[TK,+1), Z= —%—ﬂ(Kﬁl) K,+2), K=3%K, V=2RM?3.

A network is referred to here as load dependent if the service rates at all the service centers are
load dependent. Therefore, for networks with some load dependent and some load independent service
rates, the computational complexities given in Table 2 serve as upper bounds, and those given in Table
1 as lower bounds. Clearly, the time and space complexitics of the load dependent networks for both
algorithms are substantially higher than those for the load independent ones. The space complexities
for mean value analysis in both the load dependent and the load independent cases are upper bounds.

A closer look at Table 1 and Table 2 reveals the enormous space and time complexities that make
the use of exact solution techniques virtually impossible even for relatively small numbers of classes
and service centers. For instance, to evaluate the mean values of the performance measures for all
chains for a load independent queucing network with R=10, K,=40, r=1,2...,10, and M =10 about
3.274x10'2 Mbytes of memory and 5.369x10!® {loating point operations are needed. It would take a
Cray X-MP/48 processor running at maximum spced 3868.3 years to solve exactly this network
(assuming the required memory is available).
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2.4 Mixed Multichain Networks

Mixed networks are networks that consist of both open and closed chains. In this section we
assume that O represents the set of open chains (classes), and C the set of closed chains. Furthermore,
we assume that the sets O and C have respective cardinaliies R° and R¢
Re =101, Re=I1C|,andR =R° +R¢). Let us further assume, W{'Ahout loss of gengrality, that the

chains in the network are so indexed that C =4 1,2,....R¢,and O =1 R+1,R+2,..,Rr. We will use

the superscripts o and ¢ to distinguish between the open and the closed chains of a mixed network. The
speed of the servers is assumed to be fixed and independent of the service center states, and the total
external arrival rate A to be independent of the network state. A3 is the throughput rate of open chain r
at service center 5. K. =(Kp,,;.Kzeip - .., Kg) is the population vector of the closed chains, and
Ao =Qo1ho2 ... A, g.) is the external arrival rate vector. A, s is the external arrival rate of open
chain r at service center 5. The following relationship holds for the external arrival rate vector com-
ponents (note that external arrivals are assumed to be Poisson processes):

hos = ﬁ,r)}“”‘ ., re0. (2.4.1)

Let p, ,s be the probability of an external class  job arrival at service center s. Then for the open
chains, the following balance equations hold:

R‘
08 =pors + 3, Iﬁegp,-,,, . re0,  s=12,..M. 2.42)

In equation (2.4.2) it is assumed that e; )po » = 1. It can be shown that the set of equations

(2.4.2) always have a unique solution. If we assume that open chains constitute a non class-hopping
cluster (i.e., that none of the jobs in any of the open chains change class), then this set of equations
becomes a set of R? matrix equations of the form:

©°=P,, +©2P,, re0, (24.3)
where P, , is given by:
Pos =Wor1Por2 - Posm), reo. (2.4.4)

The set of equations given in (2.4.3) can be solved by solving the following equivalent set of
equations:

©2=P,, [IM —P,] 1. reo, (2.4.5)

where Iy is the M xM identity matrix. A close inspection of equations (2.1.5) and (2.4.5) reveals that,
for any given r, both scts require the same space and time complexities to solve.

The rates A, »s and the total external arrival rate A are related by: A = ERZE A, .is. The parame-
ieR,(s)s

ters p, »s and A, . are related in the following way:

Pors = Ao L —, reR,(s), s= 1,2,...M. (2.4.6)
0 .is
ek, (s)s

The mean throughput rates for the open chains can then be found using the following set of equa-
tions (for a proof of this relationship see [Gel801):

k’?\' = ero )\'0 IS > "ERo £ S = 1,2,.-' [- 2.4.7
s_d%).s s ) A ( )

3



-11-

The mean value theorem for multichain mixed networks consists of two distinct sets of equations,
one for the open chains and a second for the closed chains. In what follows we give a proof of the
mean value theorem for the open chains of a mixed networks, based on the normalizing constant. The
arrival instant theorem is then used to prove the mean value theorem for the closed chain jobs in a
mixed QN.

Theorem 2.4.1:

Consider a mixed multichain separable queueing network consisting of only fixed rate sin-
gle server service centers, with closed chain population vector K. and open chain external
arrival rate vector A, . Let N3(A, . K.) be the mean number of open chain 7 jobs at service
center s of such a network. Then, the following equation holds:

2(1 + N&(A, K.
P ( jc%,s) fi( )]

(1 - ia@:)pg)

N&(A K) = , TER,(s), s=1,2,.. .M . (24.8)

Proof:

We start with the normalizing constant of mixed networks as given in [Rei75], [Lav80].

o k;c“'k_\?)! (9 _\-S 3) ”
G K)= % ﬁ gy (KEHKD! A\/L VA 24.
( ) keS (KK, Ms= ('E.Es)p ) k2! jJ?—,L) kfs! @249

We prove in Appendix B that the normalizing constant given by (2.4.9) is the same as that given
by:
u O30  (ketk)! 1 (p8)
G(Ao K) = kgl . 2 . 4.
( C) kE:.S'(i\,z.(_.l'H).\'= jﬂs) k/s' k? kf' iﬂ:) k3! (2 4 10)

The normalizing constant of a mixed network can also be written as the product of ] [I? and of

$=

M

the normalizing constant of a closed nctwork with population vector K., where Hl;’ depends only on
the open chains parameters, and the service demands s& of the closed chain jobs are scaled by [¢ (see
Appendix B for a proof). ¢ is given by:

12 = , s=12,.M . (2.4.11)

R

Therefore, the following also holds:

G (Ao K.) = Ij'ﬁ:ﬁ_b? G.(K.), 2.4.12)

o)

where the value of G.(K.) is given by

[
5

[
A —
1_ o
ia;(x)pu

M
G (K.) k&t - v . 2.4.13
( K<eS n /ﬂs) kjc-v! ( )

2 Weuse S as 2 shorthand notation for § (A, K, ,M).
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We first take the derivative of equation (2.4.12) with respect to the open chain r utilization at ser-
vice center s. This gives us:

dG (A, K.) G.(K.) 1
= NEEDN =)+
d 3 1- 5 5 / 5= 1- Los)
P ic@s)p jugt ) ( idz,‘?s)p

1 2 ﬁ 1
Ge(Ko) (2.4.14)
1- Z| | T 3
e | 121 oy

where the first term on the right hand side of the above equation is due to the fact that:

9¢ slc-\'
BTTS pE
G, (Kc) iR (s)

¢ it c 05 sf
T opx éuk'a@s”ﬂ” AR ) (1";:@;"5)2’ (2.4.15)

which is the same as:

oG (Ko) _ _ G:(K.) e 's). s=
T = a?:z = a&)m,s(xc), reR,(s), s=1.2,..M. (2.4.16)

k=1

Equation (2.4.14) is then simplified to:
dG (A LK) _ | G.(Ko) G (Ao Ke)

1
apﬂs B 1_;$s)pg }'UZ.‘IS)NJ%(KC) = (1 —x'ﬂ;%:)p@) 1— F;(S) ’

reR,(s), s=1.2,...M,

which in tumn is reduced to:

aG (aAo ,Kc) G(Ao J\C) {14— F; N/.r(Ao ,Kc)} reRa (S), S=1,2,"_’M_ (2'4.17)
ba1- 3 o

On the other hand, the derivative of equation (2.4.10) with respect to the chain r utilization of ser-
vice center s produces the following:
G (A, Ke) _ G (A, Ke)
dphk P

Na&(A Ke), reR,(s), s=12,.M. (2.4.18)

By equating (2.4.17) to (2.4.18) we obtain:
%1+ N&s(A, K
pi( j}"m &( )

1- m;zs)P&) ’

N%(Ao ,Kc) =

reR,(s), s=12..M. (2.4.19)

We next prove the mean value theorem for the closed chains of mixed networks.
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Theorem 2.4.2:

Consider a mixed multichain separable queucing network containing fixed rate single
servers. The following relationship holds for the mean number of closed chain r jobs at
service center s:

Mss(1+ 3 NE(Ao K. —e)
N&(A, K.) = et
1- Z
( ‘_J;ts)p)

, reR.(s), s=12,..M. (2.4.20)

Proof:

We can prove this relationship either by using the normalizing constant or by applying the steady
state arrival instant distribution thcorem [Sev81,Zah81]. A proof based on the arrival instant theorem
and given in [Zah81] is presented here. The arrival instant theorem states that a closed chain r custo-
mer arriving at server s in steady state sees the service center in equilibrium with itself removed.
Hence, we can write:

N5 Aa,Kc =)\,fo 1+ NN K ~e,) + N§& ,Kc’ r
i ( )= A5sh i%s) 4( ) j}‘:m (Ao er)
EE Pf.’:(l“' f; Nﬁv(Ao :Kc —er))
=Agsg| 1+ LT + 3 N K. —e)
JeR,(s)

(1 —m&)p@)
F

=AEsS | 1+ Ne(Ao K —e) (1 + —e——-
|1+ 3 NaC )| ( =)
PeR, (s)

s

ASsaE( + N&(A, K. —e;
) 555 ( ch':ts) (Ao )

(1- mf\?mpf‘) ’

where we substituted Ng(A, K. ~ e,) with its expression from equation (2.4.8).

o
It is easy to show that, for IS service centers, equation (2.4.8) becomes:
Ng(K)=A5%s5%, reR,(s), s=12,..M. (24.21)
On the other hand, cquation (2.4.20) for closed chain jobs at infinite servers reduces to:
NE(K ) =A5s55, reR.(s), s=12,.M. (2.4.22)

The mean value of the customer waiting times for differcnt chains can be computed by applying
Little’s theorem to equations (2.4.8) and (2.4.20). The result for open chain customers is:

sA(1+ NS(K)
ugm /

‘VI%(K) = (1 — U; pg) N rdeo (S), S=1,2,.‘-,M, (2.4.23)
LER, (5)
and that for closed chain jobs:
SC
WeK) = | —E——| (1 + Ni(K-e)), reR.(s), s=12,.M. 2.4.24
K) 1__”;:\;)‘)3 ( jcg(x)l( er)) (s) o ( )



-14 -

The following relationship holds for the mean number of jobs of all classes at service center s.
Sss(1+ Ns(K-e, S+ N5&(K
555 ( j}m 5 ( ) pi( ju&) 5 (K))

N;(K) = ,eﬁ:ts) (1- i'%s)pg) JF’UZ'(S) a- ifE:)pg) ’

s=12,..M. (24.25)

Equation (2.4.26) can be further simplified to:
ASsE(l + Ns(K-¢g)
¢ jf-g(-v) 4

N;(K)=r%n a- rj}_‘mpg)

1

+—PY 14 NeKY)
l_p:o S5 ]

s=1,2,..M, (2.4.26)

where p? = u;t P2 is the utilization of service center s due to the open chain jobs.
iel,(s)

2.4.1 Properties of Mixed Multichain Networks

An inspection of equations (2.4.8) and (2.4.20) reveals several interesting properties of mixed
multichain networks. The mean value equation for open chains, unlike that for closed chains, does not
have any recursive property with respect to the open chains themselves. More interestingly, equation
(2.4.20) reveals that the performance measures of the closed chain jobs in a mixed network are exactly
the same as those in a closed network consisting of only the closed chain jobs where all the service

demands at all the centers are scaled down by the factor Tl—_—i——aa—)— This term is the only contribu-

tion of the open chain jobs to the performance metrics of the closed chain jobs. In a forthcoming paper,
we will describe the use of mixed networks and their properties to characterize workloads in distributed
systems. We will apply those results to the theoretical study of load sharing in distributed systems and
validate the conclusions through experimentation.

Stability in a mixed network is defined in the same way as for an open network. A network is
said to be stable if its serving capacity can handle the arriving traffic and all the queue lengths in the
network remain finite. This is the same as requiring that the balance equations have a nonzero solution.
Ifweletp?= &2_‘1 )p,f’,, then p¢ is the utilization of service center s due to the open chain jobs. Hence,

LER, (s

a mixed network remains stable as long as p#<1 for all s.

2.5 The Computational Complexities of the MVA Solution of Mixed Multichain Networks

We can determine the computational complexities of the solution of a mixed multichain network
by deriving the complexity of the open and closed chain equations and combining the results. The
complexity of the closed chain solution can casily be studicd by observing that the effect of the open
chain jobs on the closed chain performance metrics is limited to a scaling factor. Suppose we have a
load independent QN with M fixed rate service centers. Let us assume that there are R< closed chains,
R° open chains, with R = R¢+R°. We use the following notation:

T,(R° R M), T, (R° R M) = time complexity of the open (o) or closed (c) chain MVA solution of
the QN.
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S, (R® R¢.M), S.(R° R¢ M) = space complexity of the open (o) or closed (c) chain MVA solution of
the QN.

T(R° ,R¢ M) = total time complexity of the MVA solution of the network.

S(R°,R¢ M)= total space complexity of the MV A solution of the network.
Observe that the following relationships hold:

TR° R M)=T,(R° R° M)+ T.(R° R° M),

SRR M)=5,(R° R M)+ Sc(R° R M).

The time/space complexities for evaluating the visit ratios of the open chains can be derived by
inspecting equation (2.4.5). To evaluate the open chain time complexity for computing the visit ratios,
observe that we need M subtractions to compute /Iy — P,. 2M3 -2M2+M operations are needed to
evaluate the inverse of A[IIM — P,|. Additional M2 multiplications and M2 additions are needed to com-

-1 . . .. . .
pute P, , [IM - P,] . Therefore, the total time complexity to evaluate the visit ratios for each class is

V =2M3 +2M. The total time complexity for all classes is V° =2R°M3 +2R°M. We have already
reported the space/time complexity involved in evaluating the visit ratios for the closed chain jobs in
Table 1 and 2. The time complexity of the evaluation of visit ratios for the closed chain jobs is smaller,
and V° -V¢ =2RM (for networks of the same size, i.e., R=R¢=R?).

2.5.1 Open Chains Space/Time Complexity

An inspection of the mean value equation (2.4.8) for the open chains of a mixed network reveals
that we need R¢M additions to calculate N¢(A, K. ) = ; N5&(A, K.). Another 5SR°M operations are
P

needed to calculate N5 (A, K. ) for all the open chains at all the servers. This total corresponds to the
sum of R° M additions, R° M multiplications in the numerator, 2R°M addition in the denominator, and
RoM divisions. The computation of the mean throughput rates and the mean waiting times of all open
chains at all the servers requires 2R°M additional operations. We further need R°M multiplications to
evaluate the utilization values for all the classes. The open chain space complexity is
S,(R° R M)=5R°M, one R°M for each of the following indices: utilization, mean throughput rate,
mean queue length, and mean waiting time, plus R?M units of space to store the visit ratios for all the
classes.

It is important to notice that in all of our discussions we have assumed a non class-hopping net-
work. If the original queueing network is a class-hopping one, we have to transform it to a non class-
hopping network. This transformation allows us to compute the visit ratios of the QN for all classes
independently and simultancously. Obviously, this transformation and concurrent solution are achieved
at the cost of higher space/time requirements. We should point out here that, when dealing with non
class-hopping queueing networks, to solve for the visit ratios we need an amount of storage of at least
R° M2 if the visit ratios of all classes are to be determined simultaneously, or one of at least M? if the
visit ratios arc computed scquentially.

The reason we do not include the storage space required for the transition matrix values, as we
discussed in section 2.3, is due to the fact that this space is needed for the first stage of the solution pro-
cedure. Since in most cases the total storage nceded for the solution of the QN in the second step far
exceeds that of the first step, we do not include the storage needed to solve for the visit ratios. We point
out, however, that for open networks or certain single class closed networks the storage space needed to
evaluate the visit ratios might be larger than that needed to solve the QN in the second stage. We shall
discuss these cases in section 2.7.

Therefore, the open chain time and space complexitics are given by:
T,(RORM)Y=8R°M +R°M +V°, (2.5.1)
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So(R°R¢M)=5R°M. 25.2)

2.5.2 Closed Chains Space/Time Complexity

The complexity of the closed chain equations in a mixed network is the same as that in a closed
network discussed in section 2.3. The only additional term involved is the scaling factor due to the
presence of open chains. Taking into account the scaling factor, the time and space complexities for the
closed chains become:

T.(RORMY=R-M@AX+3)+ (R° +2RIM + V¢, (25.3)

Sc(RORM)=R+M +RM)Y +4R°M. 254

Table 3 shows the total space and time complexity for the MV A solution of mixed networks. [ is
the closed chain visiting the largest number of service centers. Similar results for the space and time
complexities of a mixed QN’s solution using the convolution algorithm can be obtained but will not be
reported here.

Table 3 Space/Time Complexity ( Load Independent Servers )

Complexity Mean Value Analysis
SRR M) (RE+M+RM)Y + 5SR°M +4R°M
TR R M) ReM (X +3)+ (9R°® + 3RIM + Ve + Vo

Re Re
X = I:[(K,-f-l) Y= u([{‘- +1) Vo=2RoM3+2R°M Ve=2REM3
B e

2.6. The Exact Solution of Multichain Open Networks

In this section we discuss the solution of multichain product form open networks. The results
presented here can be derived from those obtained for mixed networks in section 2.4, We shall there-
fore provide only the results. The proofs can be easily deduced from those given for multichain mixed
networks.

Consider a multichain product form network containing fixed rate single server and infinite server
service centers, and not containing any closed subchains. The total external arrival rate, A, is assumed
to be Poisson and independent of the network state. The balance equations are the same as those given
in (2.4.2) and (2.4.3).

The equilibrium state probability distribution of (k1.ka, . . ., ku ), now factorizes completely into
a product of steady state distributions for individual service centers:
M
P(klkz,..-.kM)=11ps(k,), (2.6.1)
where:
ps(ke) = (1- t; P& 3_‘{ pg)k' if the server is of type 1,2,0r 3, 2.6.2)
ieX(s) LEX(s)

_iz;(: )pg 0%
4 k(‘_ %x )pn:)

ps(ks) = if the server is of type 4. (2.6.3)
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It should be pointed out here that equations (2.6.2) and (2.6.3) hold only if the network is stable.
This means that we should have p?<1 for all servers of type 1,2, or 3.

The mean queue length of chain r jobs at server s of type 1,2, or 3 is then given by:

Ng(Ao) = 1=FPo—0, reR(s), s=12,.M . (2.64)
ifEs) ¥
The mean waiting time of chain  jobs at server s is given by the following equation:
57

1= “ES)P& ’

The generating function of the stationary queue length distribution for each server of type 1,2, or 3 is
derived directly from the distribution given by equation (2.6.2):

Wa(A) = reR(s), s=12,.M. (2.6.5)

- 5
= (€K (s)
00 = TS5z - (2.6.6)
i $)

The mean and the higher moments of the steady state queue lengths at server s can be obtained
from equations (2.6.2) and (2.6.3), or from the moment generating function given by equation (2.6.6).
The mean queue length of all job classes at any service center of type 1,2, or 3 is given by:

ph ps
Ng= = , s=12,.M . 2.6.7
rcﬁ) 1- m;mpfc 1-p? M (2.6.7)

2.7 The Computational Complexities of Open Network Solutions

Since in mixed networks the open and closed chains interact, the complexities of solving open
networks are best determined by direct examination of the relationships derived for open networks.
The computational complexity of the MVA solution of an open network can be determined by inspect-
ing equations (2.4.5), (2.6.4), and (2.6.5). The storage space needed for the determination of visit ratios
is the same as that derived in section 2.5.1. We need an amount of storage space equal to RM 2 to deter-
mine the visit ratios of all classes simultaneously and an amount equal to M2 if the visit ratios are
evaluated sequentially. However, the second phase of the solution of open networks does not have the
large exponential storage space requirements of the same phase for the closed chains. Thus, the space
complexity, §, (R?,M), is given by:

S,(Ro M) =max(SR°M ,R°M?) or max(5R°M M?2), (2.7.1)

and the time complexity by:
T,(R°M)=8R°M +V° (2.7.2)

To compare the space and time complexities of the solutions of closed, mixed, and open net-
works, several cases are presenied in Table 4. The first column shows a vector with elements
representing the total number of chains, the total number of open chains, the population of each chain
(assumed to be the same for all classes), and the number of scrvice centers in the network. The drastic
reduction in space and time complexitics as the number of open chains increases (while the total
number of chains is kept fixed) is evident.
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Table 4. Space/Time Complexities for Closed,

Mixed, and Open Networks
o Space Complexity | Time Complexity
R R K, M) (Mbytes) (Mflops)
(10,0,10,10) 2.83x10° 1.03x107
(10,2,10,10) 1.91x103 6.85x10%
(10,5,10,10) 0.952 32.2
(10,10,0,10) 5.0x10~¢ 2.10x102

2.8 Conclusions

Exact solution techniques for closed product form queueing networks are very efficient. How-
ever, the computational cost of solving closed networks is extremely high and in most cases practically
impossible. In mixed multichain networks the dominant factor in the computational complexity of
solving them is still contributed by the closed chains.
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Chapter 3

An Overview of Approximate Solution
Techniques for Multichain Product
Form Queueing Networks

3.1 Introduction

We observed in chapter 2 that efficicnt exact solution techniques for product form queueing networks
are available. However, their computational costs become prohibitively expensive, and in many cases
practically impossible, for sufficiently large networks. Typical modeling, performance evaluation, and
configuration design of present day systems necessitate the solution of large multichain QN models.
This necd has created an intense interest among scholars in recent years to search for accurate, cost
effective, and efficient approximate algorithms and methodologies for the solution of large multiclass
QNs. This fervent attention stems from the need to analyze more complex systems, and can be deduced
from the wealth of the litcrature on the subject. In this chapter we present an overview of algorithms
for the approximate solution of multichain product form queueing networks.

Most of the techniques proposcd for the approximate solution of product form queueing networks
fall into one of the following categorics:

® MVA-based approximation techniques
e Bounding algorithms

® Asymptotic algorithms

e Other approximate algorithms

3.2 MVA-Based Approximation Algorithms

Most of the attempts in the MV A-based approximate algorithms have been made to accomplish
some or all of the following objcctives:
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(1) To reduce the computational cost drastically.
(2) To achieve a high level of accuracy.

(3) To develop approximate algorithms for which existence, uniqueness, and fast convergence of the
solutions can be established.

The first objective has been the driving point for most of the algorithms. This goal is usually
realized by finding ways to eliminate the recursive structure of the MV A equations, thereby drastically
reducing the computational cost of the solution. The second objective is usually reached through
heuristics. There are a few well known MV A-based approximations:

¢ The Bard-Schweitzer approximation
e The Linearizer approximation
e Other MV A-based algorithms

The characteristics of these methods vary greatly. Below we review the main properties of these
algorithms in detail.

3.2.1 The Bard-Schweitzer Approximation

Schweitzer [Sch79] proposed an MV A-based approximate algorithm that applies to product form
networks with fixed rate single server and IS service centers. Reports on real-world applications of this
algorithm can be found in [Bar80] and [Cha82]. The algorithm is usually referred to as the Bard-
Schweitzer algorithm. The objective is to estimate the queue lengths N, (K—e;) from the values of
Ny (K), thereby avoiding the recursion for obtaining the values of N (K—e;) in the MVA equation.
This objective is achieved by the following approximation:

Ny (K) J#r
N,S(K—e,')= Kr -1 (321)

TNrs K) j=r

The resulting iterative algorithm is the following:

Initially set NO(K) = 57, =128, s=12.M.

Do

. NED(K) j#Er
NOK-ej)=d g 1 _
7 NADK) j=r

WOK) = s, (1 + :R N(K-¢,))
]=
N K
(YK = r
M) = 5 WIK)8,,

AT B

NG = APEKWHK)

Until [INS(K) - NE-D(K)I<E.
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Bard-Schweitzer’s approximation is computationally cheap. The space complexity for the Bard-
Schweitzer algorithm is O (RM) for each iteration (under the assumption that the visit ratio values are
known). The time complexity depends on the stopping rule bound and on the size and other charac-
teristics of the queueing network. We should point out a major oversimplification made in the literature
concerning the time complexity of the Bard-Schweitzer algorithm. In many publications the time com-
plexity is reported to be O (RM ). However, the actual time complexity is dependent on the parameters
stated above, and indeed networks can be constructed for which the time complexity far exceeds this
value. If the algorithm is implemented iteratively as it was described here, then very slowly converging
networks can be found whosc solution time complexity is larger than O (RM). An approach that
removes this problem is to transform the iterative algorithm to a set of nonlinear equations. It is shown
in [de-83] that the set of nonlinear equations resulting from the Bard-Schweitzer algorithm always has a
solution in the feasible region; however, the uniqueness of the solution is by no means guaranteed.
Large errors have been observed in the solution of certain stress networks by [Cha82].

3.2.2 The Linearizer Approximation

Chandy and Neuse have proposed a heuristic [Cha82] called Linearizer, which can be considered
as a generalization of the Bard-Schweitzer algorithm. The Linearizer algorithm can solve product form
networks consisting of only fixed rate single server and IS service centers. This approximation yields
more accurate results than the Bard-Schweitzer algorithm at higher computational costs. The objective
is to estimate iteratively the mcan queue length with population vectors K, K—e; and K—e;—e; in order
to eliminate the recursion. The estimator is defined by:

N (K
NesKeej) = (K~ e (X5 1 D i), (322)
where D, and (K — ¢;), are given by:
Drjs = ‘Kl—[Nrs(K_ej)-Nrs(K)] , (32.3)
K,-1j=r
(K-e¢j)r =1k, j#r (3.24)

The Linearizer algorithm assumes that D,j, is a constant, and then tries (o estimate its value using
an iterative algorithm similar to the Bard-Schweitzer approximation. Observe that, when D, =0,
Linearizer reduces to the Bard-Schweitzer algorithm. Using the Linearizer algorithm, the exact MVA
is reduced to the equivalent of a set of 7 + R (/ — 1) simultaneous nonlinear equations, where [ is the
number of iterations. Since the computational cost of solving a set of R nonlinear equations is (assum-
ing reasonable error bounds for stopping rules ) O (MR ?), the computational cost of the Linearizer can
become large if therc are a large number of classcs. The space complexity of Linearizer is O (MR 2)
compared with O (RM ) for the Bard-Schweitzer algorithm.

One major drawback for the Lincarizer algorithm is the absence of any known uniqueness,
existence, or convergence proof. Necuse and Chandy {Ncu81] extended Linearizer by proposing an
algorithm called SCAT to solve load dependent networks. SCAT, however, cannot solve mixed net-
works and there is no theoretical support for the extension. There is yet another approximation pro-
posed by Zahorjan et al. [Zah86] which is simpler in form than Linearizer, and for which, there is no
existence, uniqueness, or convergence proof either. The authors report that the algorithm’s accuracy is
similar to that provided by Linearizer. This algorithm has time and space complexities of O (MR 2y and
O (MR), respectively. However, as we said earlier for Linearizer, the time complexity is a rough esti-
mate. Krzesinski and Greyling [Krz84] have found load dependent networks that when solved by
Linearizer, produce large errors; they have proposed an algorithm (with additional heuristics) for solv-
ing those load dcpendent networks.
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3.2.3 Other MVA-Based Approximations

As we pointed out, a major drawback of Linearizer and of its improved versions as well is the
lack of existence, convergence, and uniqueness proofs. To eliminate these shortcomings, Chow
[Cho83] defined a differcntial error term denoted by:

_ Ne(K-e,)=N; (K)
8 = ot (3.2.5)

and then proceeded to replace N, (K—e,) in the exact MV A equations by its equivalence from (3.2.5) to
produce a set of R nonlinear equations in terms of the unknown throughput rates for each class at some
service center. To solve this set of nonlinear equations, the error terms &, have to be estimated. Asa
first approximation, he assumed §,,=0 (i.e., N; (K-e,) = N;(K)), and proved that the resulting set of
nonlinear equations always has a unique solution in the feasible region. The first approximation is very
similar and closely related to the Bard-Schweitzer algorithm. This point becomes clear by assuming
that the first relationship in Bard-Schweitzer approximation in (3.2.1) holds for all classes and then
summing both sides over all classes:

R
SNaEK-e)=N(K=¢)) j=12..R, s=12..M,

ﬁ‘N,s (K)=N,(K), s=12..M, (.2.6)

To improve the approximation, Chow tried to estimate the §,, terms by the first approximate
algorithm. This was done by solving the network approximately at population vectors K and K ~¢;,
using §;;=0. He then estimated §;; by the following approximation:

Ny (K -e,) - N;(K)
Ny (K) '

Ors = 3.2.7

where * superscripts denote the estimated values of the corresponding parameters.

This step produced noticeable improvement only if the estimates obtained using the first approxi-
mation were accurate. The error results for both cases were reported to be comparable to those of
Linearizer. One major advantage of the first approximation (8,,=0) is that the existence and uniqueness
of the solution in the feasible region is always guaranteed. For the second approximation, only the
existence of a solution in the feasible region can be proven. Both algorithms apply to QNs with fixed
rate single and IS service centers. We will extend and improve this algorithm in chapter 4.

At least two other MV A-based approximations have been proposed. E de Souza et al. in [Sil84]
transformed the Bard-Schweitzer approximation defined by (3.2.1) into a set of nonlinear equations in a
similar way as that by Chow, and for which they proved the existence of a solution in the feasible
region. Another approach can be found in [Lav83].

3.3 Bounding Algorithms
There are two different approaches in this category:

e Simple single value bounds
® Performance bound hicrarchics (PBH)

Simple and single valued upper and lower bounds for performance measures were initially
derived for single-class closed queueing networks. These bounds were later extended to include
multiple-class nctworks. In many practical cases, particularly in multichain networks, these bounds are
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often so far away from the exact values that their usefulness diminish. The evaluation of the single
valued bounds in all cases is computationally cheap and can be carried out using the parameters of the
QN and the values of the visit ratios. Thus, computing single value bounds does not demand the solu-
tion of the queueing network itself. There are several different categories of single valued bounds.

(1) Asymptotic Bound Analysis Bounds (ABA bounds) [Mun74].
(2) Balanced Job Bounds (BIB) [Zah82].
(3) Composite Bound Method (CBM) [Ker86], [Ker84].

All these single value bounds are on throughput rates. We shall first define the notation used, and
then introduce these bounds.

Let:
L, =0,:5,s =the loading factor for service center s and class r jobs.
The maximum loading, Ly, , is given by:

Ly = ,%) L, r=12,..R; (3.3.1)
the average loading for chain r jobs, L,,, is defined by:
L,
- /'Egr) — .
Lo = Ny v et r=12,...R; (3..3.2)
the minimum loading for class r jobs, L, , is denoted by:
Lp = /rg)gl(g)L,j , r=12,..R; (3.3.3)

and the minimum response time for class r jobs at some designated center [, R,;, is given by:

R, = L., r=12,..R. 334
l jt;(r) / ( )

The system throughput rate for class r jobs (at some designated service center /), A, and the
throughput rate of class r jobs at service center s, A, are related by 0, = -)%’:— (we assume here 0,,=1,
T

i.e., that the 8,, are normalized). The corresponding values of these parameters for the single-class
queueing networks are denoted by 85, 55, Ly, La, Lm, Ri, M(K'), A:(K). The upper and lower bounds
for each class of performance measure bounds are denoted by + and - superscripts respectively.

3.3.1 The ABA Bounds

The ABA bounds are linear asymptotic upper bounds (for single-class and multiple-class net-
works) of the form:

)\.["(K) = min (K/R[, I/Lb] .
A4(K) = min [K,/R,,, I/L;,,} , r=1,2,.R. (3.3.5)

Clearly the ABA upper bounds for multiple-class QNs are loose bound, since they do not take
into consideration the effect of other chains.

3.3.2 The BJB Bounds
The BIB bounds for multiple-class QNs are given by [Zah82]:

AH(K) = “(KWIT(—TTE,,‘ r=12...R,

KJ(K) = U?WKE—IBZ;‘, r=1,2,...,R. (3.36)
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A tighter set of bounds for single-class networks, also proposed by Zahorjan et al., is of the fol-
lowing form [Zah82].

K K -
m:{;z;— < )\.[ (K) < m, r-l,2,...,R. (3.3.7)

The lower bound in equation (3.3.7) has a multiclass counterpart given by:

A(K) = ﬂmlfr_—rm— <A(K), r=12..R. 3.338)

3.3.3 The CBM Upper Bounds
The CBM bound was introduced by Kerola [Ker86], [Ker84], and is given by:

A (K) < A4(K) = min {1 - ZX,’{‘(K)L;,] Ly, r=12,.R, (339)

=

where AJ~ denotes the lower bound given by (3.3.8). The utilization of service center s due to class r
jobs can be determined by Prs = ArsSys -

The CBM upper bounds give better estimates when the QN is saturated and has at least one ser-
vice center (the bottleneck) that is fully utilized. However, if the QN is lightly loaded, good estimates
may not be found. For a more in depth analysis and comparisons of CBM bounds with the ABA and
the BJB bounds see [Ker85]. All the multiple-class bounds given above have a common limit given by
VLpr as K, — oo,

We emphasize that these bounds are simple, not accurate, and can readily be found without solv-
ing the QNs involved at a minimal computational cost. The only parameters needed for their evaluation
are the values of the visit ratios and of the network’s parameters. As a result, these bounds could pro-
duce gross errors for the throughput rates. Several other bounds for single-class QNs have been pro-
posed. Noteworthy among them are the generalized quick bounds studied by Suri [Sur83].

3.3.4 Performance Bound Hierarchies

A different, hierarchical bounding technique which is based on MVA is the Performance Bound
Hierarchies (PBH) algorithm developed_in [Eag83] for single-class networks, and in [Eag86] for
multiple-class networks. Assuming that A{ and A/ denote the upper and lower level i bounds for the
mean throughput rates of a single-class network with population X, the PBH algorithm produces a
hierarchy of upper and lower bounds for the throughput rates in the following sense:

UK ) <M (K) SMK) SN (K) S NTUK), (3.3.10)

where A(K') is the exact mean throughput rate at service center s. The level { bounds are generated by
evaluating the upper and lower bounds on performance measures of a network with population of X —i.
For the initial conditions at population K~i, any of the simple bounds discussed in sections 3.3.1-3.3.3
would suffice. Using these bounds, similar bounds for other performance measures can subsequently
be found. The exact solutions are obtaincd by the level K bounds. The PBH algorithm has been
extended to multiple-class nctworks, and to a special class of load dependent multiple-class QNs
[Eag86]. The PBH bounds tend to loosen and become slack as the congestion in the network increases.
The time complexity of the PBH algorithm for multichain QNs is given by:

6M IR l[lRin] , (33.11)
and the space complexity is given by:

MIR |[|Rii+z] _ (3.3.12)
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The computational complexity of the PBH algorithm increases combinatorically as a function of
the number of classes, and becomes prohibitive for QNs with many classes of jobs. The class of net-
works solved using the PBH algorithm is more general than that dealt with by most other approxima-
tions. However, as in the case of exact solution techniques, it is expensive and impractical for large QN
models. The PBH algorithm, as reported in [Eag86], can be implemented easily. One important obser-
vation to be made here is that the bounding algorithms (both the simple and the PBH bounds) for
single-class networks are a theoretical curiosity only, since in most practical cases the computational
cost of solving single-class networks exactly is not high.

3.4 Asymptotic Algorithms

Asymptotic algorithms provide asymptotic values of performance measures for the queueing net-
work being considered. In these techniques the approximate values of the performance measures, as
some parameters of the network becomes large, approach the exact values. A recently proposed
asymptotic algorithm, based on a multiple integral representation of the normalizing constant G (K), is
the Asymptotic Expansion Algorithm [McKS81], [McK82], [McK84], [Ram82]. The Asymptotic
Expansion method replaces the factorial terms in equation (2.1.9) in chapter 2 by their Euler’s integral
representation using:

k= le"t"dt (3.3.13)

The multinomial theorem is then applied to simplify the summation over all possible states with
the following identity:

oo

ki)t = ie “TTG%dy j=1.2,..M. (3.3.14)

The multiple integral given in (3.3.14) is then expressed as a function of a ‘‘large parameter” N, ie.,
G (K) =1(N). The asymptotic expansion of { (N) is then derived and expressed in the following form:

1wmy=$ 2k (33.15)
wherc:
Aiﬂ}_[(N,m)=1(N), (3.3.16)

The coefficients A, are related to the normalizing constant of certain product form networks,
called pseudo networks, with much smaller populations. The bounds on the difference between /(N)
and its m-term estimates /(N ,m) arc then evaluated. As the value of m increases, these bounds
become tighter, and in the limit converge to the cxact values. Obviously the larger the value of m, the
more expensive the algorithm becomes. It is reported in [Ram82] that, to obtain satisfactory estimates,
no more than four terms arc necded to be evaluated in the expansion. The Asymptotic Expansion Algo-
rithm applies to multichain product form queueing networks with single server fixed rate and IS service
centers which contain at lcast one IS scrvice center visited by all the chains. Additionally, for the algo-
rithm to produce accurate estimates of the performance measures, all the service centers in the queueing
network model should operate at ‘‘normal usage’’, i.c., should have a utilization not larger than .85
[Ram82]. The Asymptotic Expansion Algorithm yiclds upper and lower error bounds for the perfor-
mance measures. The complexity of the underlying algorithm for the asymptotic expansion suggests
that the implementation of the algorithm is not trivial. In fact version 1.1 of Panacea, the implementa-
tion of the algorithm by the devclopers, is about 6000 lines of C-code long [Ram82]

Another approach that investigates the asymptotic properties of the same kind of queueing net-
work considered by the Asymptotic Expansion Algorithm has been proposed by Lavenberg {Lav80].
Assume that the throughput rates of class r jobs at the IS service center M visited by all the chains are



denoted by A, , r=1,2,...,R. Furthermore, suppose that I}ul K, 1 exists and is finite. Here, X, is

the population of chain r jobs and » K; = K. Lavenberg showed that, as the population of the network

increases, the equilibrium state probability distribution of the network approaches that of an open net-
work with Poisson arrival rates given by A,». For more details about this approach see section 5.7.

A closely related technique was proposed by Whitt [Whi84]. He suggested a transformation of
the same type of queueing network into an open network, and devised an algorithm for finding the
arrival rates of the open network by a hicrarchy of upper and lower bounds using an iterative algorithm.
We will extend Whitt’s algorithm to the case of mixed networks in chapter 5. Lavenberg’s approxima-
tion will become the asymptotic limit in our algorithm.

3.5 Other Approximate Algorithms

There are two approximate algorithms that have attracted considerable attention in the literature.
These are:

e The hierarchical decomposition technique or Norton’s theorem
o The diffusion approximation

These techniques have been applied to single-class queucing networks with some degree of suc-
cess. However, the extension of these two technique to multiple-class queueing networks has not been
very successful.

3.5.1 Hierarchical Decomposition and Norton’s Theorem

In some queucing network models certain subnetworks can be identified for which the average
rate of interactions among the service centers in the subnetwork is orders of magnitude higher than the
rate of interaction between the subnetwork and the rest of the network. Such subnetworks are said to be
“‘weakly coupled’” to the rest of the network. This term describes the fact that the behavior of the ser-
vice centers in the subnetwork is much more influenced by that of the other service centers in the sub-
network than by that of the rest of the network. If weakly coupled subnetworks in a queueing network
can be identified, then we can obtain separate solutions of these subnetworks and then aggregate the
results to obtain a solution for the original network. This technique is based on a methodology pro-
posed by Courtois [Cou75], [Cou77].

Most of the decomposition techniques are based on the Chandy-Herzog-Woo theorem [Cha75],
which is also referred to as Norton’s thecorem. The basic result of this theorem states that in a queuing
network a subnetwork may be replaced by a ‘‘flow equivalent’’ load dependent service center. This
method is proven to be cxact for product form queueing networks. Norton’s theorem has been applied
to nonproduct form nectworks, cspecially for modcling simultancous resource possession, with some
degree of success.

A typical example is shown in figure 3.1. The network given in figure 3.1 can be solved by
decomposition in the following manncr. First, the subnetwork containing service centers 1 and 2 is
solved by “‘shorting’’ it from the rest of the system. The shorted subnetwork is then solved for all pos-
sible populations K of jobs in the corresponding subnetwork of the original network. The values of
throughput rates A(K) for all possible values of K are found. Finally the subnetwork is replaced by a
single flow equivalent load dependent service center which has a service rate of uW(K)=AK). This
method has severe limitations in its application to multiple-class networks. There is in general no
rcduction in computational complexity when going from a direct exact solution to one based on decom-
position. Decomposition has been applicd to simultaneous resource possession problems and to
parametric analysis of single-class networks.
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3.5.2 Diffusion Approximations

The idea of the diffusion approximation in queueing systems was originally proposed by Newell
[New71] and Gaver and Shedler {Gav71]. The method was applied to a single G/G/1 queue. It consists
of substituting the integer-valued queue length with a continuous random variable that has as probabil-
ity density function the solution to a diffusion equation, subject to appropriate boundary condition. The
continuous random variable, by the central limit theorem, has a normal distribution under heavy traffic.
Gelenbe and Mitrani {Gel80], in the most general case, apply the diffusion approximation to multiple-
class open networks with FCFS service centers. Efforts to apply the diffusion approximation to closed
single or multiple-class QNs have generally not been very successful [Rei74].

3.6 Conclusions

Most of the methods discussed in this chapter apply to load independent product form networks
with fixed rate single server service centers and IS service centers. The main drawback in the iterative
algorithms such as Linearizer and Bard-Schweitzer is the lack of any formal proof of the convergence,
existence, or uniqueness of the solution. Extensions and improvements to the MV A-based approximate
algorithms should consider these requirements. Hierarchical approximation techniques seem to be one
of the most promising approaches, since they allow for a smooth tradeoff between accuracy and cost.
Future work in this area should look for algorithms that are asymptotically correct. There is no gen-
erally accepted approximation technique for solving multiple server and/or load dependent QNs satis-
factorily. Except for the Asymptotic Expansion Algorithm, no other algorithm discussed provides error
bound for the approximate performance measures. Therefore, the accuracy of all the approximations
has to be verified experimentally, but there are no generally accepted standard for testing the accuracy
of these approximations. Consistent and comprchensive frameworks and standards must be developed
to facilitate the validation process of these approximations. In conclusion, there is much urgent demand
for improvements, extensions, and formalizations of the algorithms for the approximate solution of pro-
duct form queueing networks. In light of the cxpanding roles of distributed computing systems, these
algorithms will play a crucial role in the design and evaluation of such systems.
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Chapter 4

An MVA-Based Approximation
For Product Form Queueing Networks

4.1 Introduction

The existence of efficient computational algorithms is the strong point of product form queueing net-
works. The convolution algorithm for single-class product form queueing networks was first proposed
by Buzen [Buz73], and then extended by Reiser and Kobayashi [Rei75] to multiple-class networks. A
problem associated with this algorithm is that, when the population vector gets too large, the value of
the normalizing constant G (K) may exceed the floating point range of the processor being used,
thereby causing overflow and/or underflow conditions [Cha80]. A dynamic scaling technique has been
introduced that partially alleviates these problems [Lam83]. The exact MV A algorithm, proposed by
Reiser and Lavenberg [Rei80], does not suffer from overflow problems, but underflow may still occur
when solving load dependent networks [Rei81].

It was demonstrated in chapter 2 that both the exact MVA and the convolution algorithms have
computational complexities so large that their applications to the solution of large product form queue-
ing network models are severely limited. The need to solve increasingly larger models has motivated
substantial research efforts in recent years to search for approximate algorithms. The MVA-based
approximations have been among the most popular approaches considered. A basic motivation behind
this popularity is the simplicity of the MVA equations. Most of the MV A-based approximate algo-
rithms have been introduced to accomplish some or all of the following objectives:

o To reduce the computational cost drastically.

e To achieve a high level of accuracy.

e To develop approximate algorithms for which existence,
uniqueness, and fast convergence of the solutions can be
established.

The first objective has been the driving point for most of the algorithms. This objective is usually
realized by searching for ways to eliminate the recursive structure of the MVA equations, thereby
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reducing the computational cost of solving product form queueing networks drastically. The second
objective is mostly achieved through heuristics and verified by means of experimentation. The third
goal, though much desirable, is only attained by few existing approximate algorithms. The Bard-
Schweitzer iterative algorithm, as discussed in section 3.2.1, and the Linearizer algorithm, reviewed in
section 3.2.2, are heuristics for which no proofs of existence, uniqueness, or convergence of the algo-
rithms are known. A more rigorous and analytically sound approach is the one that reduces the compu-
tational complexities to levels similar to those of the Bard-Schweitzer and the Linearizer algorithms,
and at the same time transforms the exact MVA equations into a set of nonlinear equations for which
the desirable properties of existence, uniqueness, and convergence of the solution in the feasible region
can be established. The algorithms proposed by Chow [Cho83] and Lavenberg [Lav83] are among
those following this approach.

Two prime motivations are behind the approaches taken in this chapter:

(1) There is much room remaining for improving, generalizing, and extending the MV A-based
approximate algorithms. This motivation is justified in the discussion of an existing approximation in
section 4.2.

(2) A substantial amount of information provided by the parameters of a given model is dis-
carded when most of the currently existing approximate MVA techniques are employed to solve the
model. The body of information that is available can be utilized to build multilevel approximate algo-
rithms, which can achieve a much higher degree of accuracy with a marginal increment in the computa-
tional cost with respect to the existing approximate algorithms. We demonstrate the validity of this
argument by introducing a multilevel algorithm in section 4.7. This approach has the added advantage
of yielding solutions that can achieve all three objectives mentioned earlier.

In this chapter, with no loss of generality (as discussed in section 2.1), we consider non class-
hopping product form queueing networks consisting of only fixed rate single server and IS service
centers. Most of the parameters used in this chapter are defined in Appendix A. Those parameters that
appear exclusively in some sections of this chapter are defined in the course of our discussion.

4.2 An MVA-Based Approximate Algorithm

Before presenting the derivation of our first proposed approximation, we attempt to justify
motivation (1) discussed in the previous section by examining an existing approximate algorithm.

Let the population vector K= (K{,K3,...,Kz) be such that K=Ky, where the vector y is
defined as y=(,Y2, ..., ¥r),and K = f‘lK.- is the total population of all classes. The following rela-

tionships hold:

K =%k v.~=%: 27‘:1, 4.2.1)

1=

v is the population mix vector of a multiple-class queueing network. Assume, with no loss of general-
ity, that the network consists of M service centers and that the first M, service centers (with M; < M)
are of type 1, 2, or 3 (using the notation introduced in chapter 2). Service centers M+ 1 to M are
assumed to be of type 4 (IS) service centers.

We now examine an approximate algorithm proposed by Chow [Cho83]. This algorithm is also
closely related to the Bard-Schweitzer algorithm. A general algorithm is then proposed which greatly
improves the accuracy over this algorithm and other similar techniques. In the study of MVA-based
approximations in section 3.2.3, we stated that Chow [Cho83] dcfined a differcntial error term
5 = N;(K-e;)-N,;(K)

N (K) . He then proceeded to replace the N;(K—e;) term in the exact MVA equa-
J
tions with its approximate value assuming §;;=0, to produce a set of R nonlinear equations in terms of
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the unknown mean throughput rates for each class at some service center m. The resulting set of non-
linear equations always produces a unique solution in the feasible region. The first approximation is
very similar and closely related to that used in the Bard-Schweitzer algorithm (see section 3.2.3 for
more details).

To improve the accuracy, Chow tried to estimate the §;; terms by using the first approximation.
This was done by solving the network approximately at population vectors K and K —e;, with §;;=0.
He then estimated §;; by the following approximation:

N; (K~ e) = N;(K)

N , (422)

8,‘7 =

where * superscripts denote the estimated values of the corresponding parameters.

This step produced a noticeable improvement only if the estimates obtained using the first
approximation were accurate. The error results for the approximation and the improvement were
reported to be similar to those of the Linearizer algorithm.

The approximation obtained by assuming ;=0 can be improved substantially if we observe that
in fact the one chain i customer removed from the population vector K (i.e., K — ¢;) in a perfectly bal-

anced network would reduce the mean number of customers at service center s by TS%?TT (e.,
1 .
N,~(K)—N,~(K—e,—)= -I-S—(ZTI_) Let:
A;j =N;(K)-N;(K-¢); 4.23)

then, assuming that A;; = 0 can cause large errors when the population vector K has small components
(A;j =0 is equivalent to §; = 0). In addition, in any network, the following identity always holds:

]gl:Nj(K)—N,‘(K—e;)} =ng,-j =1. @.2.4)

Furthermore, the value of A;; could in fact be as large as 1. We will discuss and analyze in detail
in chapter 6 the networks that produce such large values for the A;; terms. It should be pointed out here
that, in multichain queueing networks, there are cases where specific population mix vectors, at values
of K ranging from small to very large, do indeed induce values close to 1 for A;;. These cases do not
cause large errors for networks with large population vectors (large Ky; for all i). However, large
errors can occur if one or more service centers can become saturated due to some (or all) chains with
small populations visiting those service centers. More interestingly, in some queueing networks, if the
number of service centers M is larger than the number of classes R, up to R service centers may
become saturated [Bal87]. Similar arguments hold true for the Bard-Schweitzer algorithm. These pro-
perties motivated us to define a general correction term to the difference between the N;(K) and
N;(K - e;). This correction term is:

Aij =N;(K)-N;(K-¢;)= Wf/(R’?l’K) (4.2.5)

A simple version of this correction term will be used in our first attempt. We will, however, use
equation (4.2.5) in the remaining of this section to derive a set of nonlinear cquations replacing the
exact MVA equations.

R
Realizing that Z;N;,- (K-¢)=N,;(K-e¢), and applying Little’s faw to (2.2.3), we can rewrite
the exact MV A equations given by (2.2.3) in the following form:

Aij (K)sij [ 1+N;(K-¢ )] J=12,..M, (4.2.6)
N;(K) = Aij (K)sij j=M i+, M, 4.2.7)
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substituting for N; (K — ¢;) from (4.2.3) yields the following relationship:

N,‘j (K) = 7\,-,~ (K)S,‘/' [1 + Nj (K) - %’Al!fr‘ﬂ N j=1,2,...,M1 ; (428)

summing (4.2.8) over all possible values of i we get the following:

N;(K) =gl;,~ K)sij| 1+ N;(K) - %‘Q , J=12,.My; 4.2.9)
solving for N;(K) in equation (4.2.9) we get:
R i RMK
N;(K)= ‘ZFU(K)SU{} - Jy )] , J=12,.My. 4.2.10)
(1- $hK)sy)
In the denominator of equation (4.2.8), we have
$4i®s = $p5 0 =p;@0) . j=12.01 @2.11)

where p;(K), j=1,2,..M is the utilization of service center j. To make the analysis simpler,
assume that iL(‘—RS—’(AZl)—r!\—) has the same value for all i. Replacing the values of N;(K) in equation (4.2.8)
by their equivalent from equation (4.2.10) yields:

(R M K)
X;'(K)S['{l had f ( 1
Nij (K) = o SO | | im120.R, j=12..M0; 4.2.12)
(1- l‘g)\kj (K)sg;)
knowing that:
M
gN,-,- = SN0+ ﬂ%fv" K)=K:, i=12..R, (4.2.13)

we can write:

(R M K)
. ,MK)s.--[l——Lmr—f( . 1
%‘1 g ‘ + ¥ s =K, =128 (4.2.14)
A - S ®sy) T

The remaining final step is to transform the set of equations in (4.2.14) into a set of R nonlinear
cquations and R unknowns. Assume that we are interested in obtaining the mean throughput rates of
| classes at some, designated service center m. The sct of unknowns is then denoted by

Aim(K) 1 i=12,...R}. Let A,(K)=A1m(K)Am(K). ..., Azn(K)). The following relationships
hold for the ratios of the mean throughput rates (see chapter 2):

i (K 0; . .
im!( ) ='§-_/-' i=12,..,R, j=12,.M; (4.2.15)

m

letting ¢;; be denoted by:
oy = eij'Sig , i=12,.R, j=12,..M, 4.2.16)
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and substituting for A;; (K) using (4.2.15) and (4.2.16), we get the following set of R nonlinear equa-
tions and R unknowns A, (K), i=1.2,...R:

£,(R M K)
M q)i')‘-im(K){l——LmT'ﬂ_]
F(Am(K).i) =K; = hin (K) ﬁ % - 3, ! :

M A (1= 305k ()

=0,

i=12,.R. (4.2.17)

For the set of nonlinear equations, any feasible solutions must be such that 0 < p,(K) <1, i.e.,
the utilization of service center m, m=12,..,M, cannot exceed unity. Hence, the feasible solution
should always be contained in the region defined by:

B ={Am K) 1 0€pn(K) <1, Ain(K)20 for all i} (4.2.18)

To summarize, so far we have proposed a new approximation derived by substituting for
N;(K - ¢;) using the relationship given in (4.2.5) into the exact MVA equations. The approximation
has been used to transform the exact MVA equation into a set of nonlinear equations in terms of the
mean throughput rates at some arbitrary service center m given by (4.2.14). The feasible region for the
solution of equations in (4.2.17) is defined by the set B given in (4.2.18). Throughout the rest of this

chapter, we assume that 0< IL%(%-’IQ< 1.

In the next two sections it is proven that the set of equations defined by (4.2.17) always possesses
a unique solution in the feasible region B defined by (4.2.18).

4.3 Existence of a Solution

In this section we prove that the set of nonlinear equations given by (4.2.17) always has a solu-
tion in the feasible region defined by the set B given in (4.12.18). We first introduce the following
notations to simplify (4.2.17) and (4.2.18). Let:

X =An(K), i=12,.R,
b= ¥ 0. i=l2.R
j=M +1
g; = 1- p;j = 1- ﬁ(bijk R j=1,2,...M1 R

and x=(x1,X2, . ..,xg). Using the notations defined above, the set of nonlincar equations given in
{4.2.17) can be written as follows!:

M, ) -1
P =Ks =xibi = 301 = - Sowx =0,
i=12,...R, (4.3.1)

and the feasible region given by (4.2.18) becomes:

B ={X | Oﬁﬁ(bijk <1, x=20, forall j}. 4.3.2)

1 To simplify the notations, we have replaced f; (R M K) by f;
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We next use Brouwer’s fixed point theorem [Ort70] in a similar but not identical way as Chow
[Cho83] did to prove that (4.3.1) has a solution in the feasible region defined by (4.3.2). Obviously
x=0=(0,0,...,0) cannot be a solution of (4.3.1), since this requires K;=0 for all i.

Brouwer’s fixed point theorem states that, if H: D < R*—R* is a continuous mapping on a com-
pact, convex set D such that H(x) € D for every x € D, then H(x) = x has a solution in D. We will
construct such an H and D. Let G{x) = (G 1(x),G2(X),...,Gr (X)), where:

-1

i 1-
Gi(x)=K; ¢’( 'SU' bl . i=12,..R. (4.3.3)

j= 1- f_‘iq)k/xk

We define the function H(x) = (H 1(x),H 2(X),....Hr (x)) on the set C by:

G. x) xeC .
H;(x)= x&C | i=12,...R, “4.34)
where the set C is defined by:
C ={x | 0<x:<G: 0), os‘ﬁq)k,-x,, <1, } . 43.5)
Let us also define a set D as:

D ={x ! OSXSG(O)} . 4.3.6)

It is easy to show that G; (x) is a decreasing function of x. This is true since:
K:o(G: (x))_ - 2*1% o i (1 - —‘—S'%Tr)c,-‘z >0, k=12,.R, k#i; 43.7)

clearly, for all x; >0, the above relation implies that the G;(x) are decreasing functions of x. For the
case k=i, we can write:

Ki B(G (x))' 2‘1(¢,0', 1+ o2or2)(1 - TS'(’}T) >0, i=12,....R. 4.3.8)
Therefore, we have

Gi(x)<G;(0) <o forall i andx=0. 4.3.9)

Thus, G; (x) is continuous on D (note that, if p;=1, H;(x) = G;(x) = 0). The set B is closed, and

bounded by linear constraints. Therefore B is a compact and convex set. If xe D, then 0<H; (x)<H;(0)

for all i. Therefore H(x)eD. This by Brouwer’s theorem requires H(x)=x to have a solution in D.
Next we show that any solution in D is also in C. Suppose that there is a solution x in D that is not in

C, and that ‘icbk,-xk > 1. Then this assumption implies that x is also a solution of (4.3.1), and requires

thato; = 1- kﬁ(bijk <0.

This implies that:
(ﬁ%(l —Wf’ Y+bi)x 2K . (4.3.10)
j= t

But we also know that 0<x; <H;(0). Thus, evaluating /;(0) from (4.3.3) and substituting in the
inequality x; </; (0) requires the following rclationship to hold:
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M f
(0 (1~ gyr) + bx: S Ki (4.3.11)

this is a contradiction to the inequality obtained in (4.3.10). Hence, every solution of H(x) =x in D
must also be in C. Since C < B, any solution of (4.3.1) in C must be confined to B. Therefore, the set
of nonlinear equations defined by (4.3.1) has a solution in the feasible region B .

4.4 Uniqueness of the Solution

In this section we prove that the set of equations given by (4.3.1) always has a unique solution in
the feasible region defined by B. We give a proof by contradiction similar to that in [Cho83]. First
assume R > 1.

Suppose that (4.3.1) does not have a unique solution, and that there are at least two nonzero solu-
tions x and x. Then, assuming z = x’ — x#0, we can write:

M ; ’ i - ’_
a7 (o) = F (=3, 05 (1~ T E + S oy o) + =0,
(4.4.1)

, . R PR, , .
where ¢;=1-p; = 1’2{""/”"" Since x; >0, b;20, 6;>0, 5;>0, and ¢x;20 for all j=1,2,...,.M}, the

above equation implies that:

Loy fj & 1’1 () -
,g_zf(l ERMNOL )’;mj 70,7071 <0 442)
multiplying the inequality by z;? and summing over all i, we get
%{; dijzi(1- ij )ki(pk-zkc-“‘c'-'l <0 (4.4.3)
jEL= J 1 & ] 7 7] 1
which is equivalent to:
g(fitb 2 )20-,—10-’_—1(1_ Jiy<0 (4.4.4)
PV kjck) Of "Oj TSOT - 4.

Since the left hand side of (4.4.4) is strictly positive, the only way the inequality may be satisfied
is to have z;=0 for all i. Thus, z=0 — x = x/, and the solution of (4.3.1) is unique.

For the case R =1, it is easy to show, using the fact that the functions G;(x) are decreasing, that:
oF (x,i) oF (x,i) . 0 (x
{xi) <o, XL <o, /m,‘aéz—l <0.
Therefore, F (x,i) is a monotonically decreasing and convex function, and since F (0,i) =K;>0,
and F (mlinq)l'}) = —oo, the sct of equations (4.3.1) has a unique solution in the feasible region.

4.5 Computational Algorithm

There are two distinct steps to be taken for the implementation of the algorithm we proposed in
section 4.2. First, the set of nonlinear equations (4.2.17)-(4.2.18) has to be solved. By solving these
equations, we obtain the mean throughput rates at some designated center m. Second, using the values
of the mean throughput rates obtained in the first step, all other remaining performance measures can be
evaluated. These performance measures include: the remaining per class mean throughput rates at ser-
vice centers other than m, the per class mean queue lengths, the per class mean waiting times, and the
per class utilization at each of the service centers. Any other performance measures (such as cycle
times) can be obtained from these metrics.
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Assume that the probability transition matrix for each class of jobs, the mean service time
demand matrix, and the service center disciplines for a network are given. To solve the network using
the approximation given by (4.2.17) in the feasible region denoted by (4.2.18), we perform the follow-
ing steps:

(1) Evaluate the visit ratios using equation (2.1.5).
(2) Evaluate the parameters ¢;; using (4.2.16).
(3) Choose the proper values of the correction terms f; (R M K) ,i=12,...R, j=12,.,M;.

(4) Solve the set of nonlinear equations given by (4.2.17). The unique solution for
An(K) = Qim K)Aom (K), . . ., Agm (K)) must lie in the feasible region defined by (4.2.18).

(5) Evaluate the throughput rates A;; (K), i=12,...,R, j=1.2,..M, j#m,using(4.2.14).
(6) Evaluate the per class utilizations p;; (K), i=12,..,R, j=12,.M, using (4.2.11).

(7) Evaluate the per class mean queue length and the mean queue length at each service center using
(4.2.12) and (4.2.10) respectively.

(8) The per class mean waiting times W;; (K), i=1.2,...R, j=1,2,..,M can be computed using Little’s
law.

A program (o solve the set of nonlinear equations in (4.2.17) and another one to evaluate the per-
formance measures were implemented on an IBM 3090/200 in a CMS operating system environment.
The solution program makes use of the nonlinear equation solution package Minpack-1 [Mor80].

The subroutine used for the solution of (4.2.17), Hybridl, is a modified Minpack-1 version of
Powell’s hybrid method [Pow70]. The method chooses a correction term as a convex combination of
the Newton and scaled gradient directions, and updates the Jacobian of the nonlinear equations by the
rank-1 method of Broyden [Bro65]. The choice of the correction term, under reasonable conditions,
guarantees a very fast rate of convergence for starting points (initial seeds) far from the solution. The
Jacobians are approximated by forward difference at the starting points, and they are not used again
unless the rank-1 method fails to produce satisfactory progress toward the solution. As we shall see,
the execution times for the solution of the set of nonlinear equations for the networks we used in our
experiments were very small, suggesting a very fast convergence. Minpack-1’s Hybrid1 subroutine has
a built-in flag that invokes a warning whenever the number of iterations exceeds 200x(N +1), where N
is the number of unknowns (in our case N=R). This flag was never invoked in our experiments. This
was partially due to the fact that we investigated the proper choice of the initial seeds (starting points).
As a first guess we used an upper bound defined by:

Ao (K) < EK-’—  i=12,.R. 45.1)

The proof of the above relation is easy to obtain if we observe that, in the MV A equations given
by (4.2.6) and (4.2.7), the maximum value for the N;;(K) values at each service center is K;, and the
minimum value on the right hand side of these equations is A;;(K) for all i, j. But these bounds, as
well as the single value bounds introduced in chapter 3, are loose and sometimes fall outside the feasi-
ble region defined by (4.2.18). We will use the bounds given by (4.5.1) as the initial conditions for an
iterative algorithm we will define in section 5.5. The best initial seeds were found to be small non-
negative values. All the operations in Minpack-1 subroutines as well as the computation of the perfor-
mance measures were carried out using double precision. The error tolerance bound for the stopping
rule is automatically set equal to the machine precision by the Minpack-1 function DPMPAR(1). The
implementation of the approximate algorithm proposed and used to obtain the numerical results of this
chapter consists of approximately 850 lines of code. This include the subroutines for evaluating the
visit ratios from the transition probability matrix and the driver subroutine for Minpack-1.
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4.5.1 Computational Complexities of the Algorithm

The derivation of space and time complexities of our algorithm can be divided into two parts.
The first part is related to the computational complexities of the solution of the set of nonlinear equa-
tions. This part is determined by Minpack-1 and by the set of equations defined by (4.2.17). The
second part is associated with the evaluation of the visit ratios and of the performance measures of the
queueing network. The first part corresponds to steps (2), (3), and (4) of the computational algorithm
described in section 4.5, while the second part corresponds to the remaining steps.

Each call to the Hybridl subroutine of Minpack-1 requires about —223—R2 {Mor80] operations to

solve the set of R nonlinear equations and R unknowns, where R is the number of chains in the net-
work. As with any solution technique for nonlinear equations, the time complexity reported in [Mor80]

for Minpack-1 depends on the stopping rule criterion. Therefore, 2‘2:-)"R2 is a rough estimate of the time

complexity. To evaluate the set of equations in (4.2.17) for all classes, we need
RM (R +5) + 3R (M + 1) operations (M, as defined earlier, is the number of non IS service centers).
This total includes the 2RM operations needed to evaluate the parameters ¢;;, i=1,2,..,R, j=12,..M.
The second part of the computation involves the evaluation of the visit ratios 8;;, and the per class per-
formance measures p;;, Aij, Nij, and W;;. We have already derived the computational complexity of
the evaluation of visit ratios in chapter 2 and found it to be 2RM3. We need 2R (M — 1) operations to
compute the mean throughput rates A; for all i,j, j#m. The evaluation of the p;;’s requires RM
operations. To compute the per class mean queue lengths N;; (K), we use (4.2.12) for the first M, ser-
vice centers, and (4.2.7) for service centers M +1 through M (IS service centers). The resulting com-
plexity is 7RM operations for the non IS service centers and (M — MR for the IS service centers.
Finally, the evaluation of the per class mean waiting times requires RM operations. Adding all the
operations needed, the time complexity T (R ,M ,M ) of the algorithm is found to be:

TRMM)=RYM,+232) +RM(2M2+T)+ R(12M  + 1) . 45.2)

The evaluation of the space complexity of the algorithm consists of the storage space required to
solve the set of nonlinear equations defined by (4.2.14), using Minpack-1 and the storage space needed
to store the per class values of 8;;, ¢;;, Aij (K), f; (R .M K), § (@), Ni;(K), p;;(K), Ki, and W;;(K). The
storage space required for these parameters amounts to SRM +2R +M +RM, double precision

2
storage locations. Hybridl requires 3RZ+ 17R double precision storage locations (this is in addition

to the storage required by the subroutine itself). Therefore the space complexity S (R ,M M) of the
algorithm is:

SRMM)=R(EM + M, +2172+15R)+ M . 4.5.3)

Clearly, the space and time complexities of our algorithm are smaller than those of Linearizer,
and of the same order as those of the Bard-Schweitzer algorithm.

4.6 Experimental Results

To evaluate the accuracy of the approximate algorithm defined by (4.2.17) and to gain more
insight, a number of experiments were performed. The exact and approximate solutions were obtained
for the sample networks under considerations. The approximation is intended for large networks with
large numbers of classes, service centers, and customers. Naturally, we were interested in investigating
the accuracy of the algorithm for these kinds of networks. However, due to limitations in time and
space complexities associated with the exact solution techniques, we chose networks for which the
exact solution techniques could be obtained up to a reasonably large population vector and number of
classes R. To solve exactly the set of networks in the experiments, RESQ2 [Sau82] was used. Using
RESQ2, networks with thrce classes or less can practically be solved with population vectors up to
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K = (30,30,30). (RESQ2 requires about 12 Mbytes to solve a network with M =4, R=3, and a popula-
tion vector of K = (30,30,30)).

Error Criteria

To compare the accuracy of the approximate algorithm, we use three different criteria. A “‘queue
length error tolerance’” and a ‘‘maximum queue length error tolerance’’, first introduced by Chandy et
al. [Cha75], has traditionally been used for the MVA-based approximations. The queue length error
tolerance E,;(V;;) is denoted by:

EWy =gl inip R, 120 @6.1)

the matrix representing the E, (NV;;) elements will be denoted by:
ERM)=[EWN;)] i=12,.R, j=12,. .M. 4.6.2)

The maximum queue length error tolerance is defined by:
Eope (V) = max i YL 4.63)

A third error criterion which we will refer to as the absolute error criterion is defined by:

Ea(N;,)=ﬂ1v‘$’ﬂi, i=12,..R, j=12...M. (4.6.4)

The matrix with elements E, (N;;), is given by:
E.RM)=[E.(N;p)], i=12,..R, j=12,.M; 4.6.5)

similarly, the maximum absolute error criterion is denoted by:
IN;; —Njj |

if

Eamax(Nij) = max (4.6.6)
In the above equations, N;; and N;; represent the exact and the estimated mean queue lengths of
chain i jobs at service center j. The K arguments are omitted from the mean queue length parameters.
The elements of the matrices £,(R ,M) and E,(R ,M) are given in percentage form. To compare the
relative magnitudes of the maximum queue length error tolerance Emax (Vi;) and the maximum absolute
error criterion Eqmax (V;j) at the same population vector K, we define their ratio as:
_ E.(N;)
R.(K)= m‘?x 'E_NJT( mIk “4.6.7)
We also define a parameter which is an indication of the stretch in the loading factor is denoted
by:
mlz}x L,‘ 3

Vi =
1

(4.6.8)

The VL:, factor is an indication of the variability of the loadings at different service centers in a
queueing network.
Let:

OR M)=1[6;1, i=12,..R, j=12,.M. 4.69)

O(R M) is referred to as the visit ratios matrix. Similarly, assume that the mean service time
matrix is denoted by:
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SRM)=[s;], i=12,..R, j=12,..M. (4.6.10)

We now turn our attention to several examples. The purpose of these examples is to introduce
the characteristics of our algorithm, to compare it with similar algorithms, and to gain insight into the
problems of extending and improving the algorithm. The networks in these examples are defined and
characterized by the visit ratios matrix ©(R ,M), the mean service demand matrix S (R .M ), the popula-
tion mix vector ¥, the total population K, and the service disciplines of the service centers in the QN.
The queue length is the most sensitive performance measure with respect to variations in queueing net-
work parameters. Therefore, the queue length is generally the preferred performance measure for test-
ing the accuracy of approximate algorithms for the solution of queueing networks. Other performance
measures (namely the mean waiting times, the mean throughput rates, and the utilizations) are more
robust, producing smaller values of error tolerances and absolute error criteria. We therefore chose to
examine the accuracy of our algorithms using the mean queue length as the parameter for testing the
accuracy of the algorithms. In each of these examples, the queue length error tolerance and the abso-
lute error criterion matrices will be evaluated and compared. For the remainder of this chapter, we
refer to our approximation defined by (4.2.17) as the initial approximation (or algorithm I). We used

fiRMK)= 71? in all the examples. However, during the course of our experimentation, we realized

that f;(R M K)= W}R' produced smaller absolute errors for more balanced networks. This was

expected, since in more balanced networks A;’s are more balanced and small in value. On the other
hand, in an imbalanced network A;; could be close to 1 for bottleneck centers.

As a first example, consider a network with M =4, R=3, K =(2,3,2). Let the visit ratio matrix be
given by:

1.502 .502 .502 1.00
OR M)=|1262 457 432 1.00| , 4.6.11)
1.468 .899 .665 1.00

and assume that the mean service demand matrix is given by:

666 1.992 1.992 1.00
SRM)=|.792 2.188 2.315 1.00| . (4.6.12)
681 1.112 1.504 1.00

The queue length error tolerance and the absolute error criterion matrices for this queueing net-
work and using our approximate algorithm are given by:

2.27 2.26 241 93 7.63 7.58 8.13 8.58
ERM)=12312.14 249 91 , E;RM)=|7.77 7.17 843 8.64| , (4.6.13)

2.33 2.32 2.34 .89 7.87 7.43 7.88 8.26

and fora population vector of K = (26,21,29) we get the following E,(R ,M ) and E, (R ,M ) matrices:

2.19 1.62 2.78 017 6.68 4.86 2.78 1.35
ERM)={223 149 287 018 , E,(RM)=|6.81 447 6.85 1.41] . (4.6.14)

291 2.20 341 017 6.95 4.76 7.20 0.96

The accuracy of the algorithm is affected by the choice of the stopping rule for the solution of the
set of nonlinear equations. The stopping rule is automatically set to the processor’s precision by
Minpack-1. We therefore did not try to test the effects of different stopping rule criteria on the accu-
racy and speed of convergence of the algorithm. However, none of the models solved using our
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algorithm ever exceeded the limit on the number of iterations reported in section 4.5, and the internal
convergence parameter limit of Minpack-1 was never violated.

The network of the first example is a case of a balanced system in the sense that the loading fac-
tors are deliberately set equal, i.e., all L;; = 0;;s;; are the same. Clearly, the absolute errors are all less
than 9%. From (4.6.14), it is clear that there is a general decrease in absolute errors for larger popula-
tions. However, this decrease is not evident from the queue length error tolerance values. Obviously,
the queue length error tolerance values point to a much more optimistic error performance. Most of the
accuracy tests on MV A-based approximations have been carried out using the queue length error toler-
ance. Examples are found in [Cha82] [Zah86]. It is interesting that, while from (4.6.13), we have
Emax (N;;) = 2.49 for class 2 jobs at service center 3, Eqamax (V;;) = 8.64 for the same class of jobs but at
the IS service center (service center 4). It seems that the absolute error criterion provides a more realis-
tic indication of the accuracy of approximate algorithms. The network in the first example was highly
utilized with the population vector K =(26,21,29). The utilizations of the first three service centers
were larger than .973.

As a second example, consider a network with the same dimensions for M and R, and the same
visit ratio matrix, but with a mean service time matrix such that the network is lightly loaded. Let the
mean service demand matrix be given by:

033289 .099602 .099602 10.00
S(R.M)=|.039620 .109409 .115741 100 ; (4.6.15)
034060 .055617 075188 10.0

then the E,(R M) and E, (R M) matrices, using our approximate algorithm, and for a population vector
of K = (27,30,25), are given by:

0142 .0156 .01697 .106
ERM)=| 0162 .0123 .02011 .1043| , (4.6.16)
01393 .01105 .01189 .1154

1.77 196 2.13 .108
E;(RM)=|2.03 153 2.53 .1069] . 4.6.17)
1.74 1.45 1.88 .1152

In this case, very small queue length error tolerance and absolute error criterion values are
observed. These small values are evident from (4.6.16) and (4.6.17).

Stress networks for our algorithm as well as for most other MV A-based algorithms, as was noted
in section 4.2, are network with single or multiple bottlenecks. We especially expect the largest errors
to occur in networks where some service centers are saturated but the chain populations causing the
saturation are small. From the MVA equations in (4.2.6), and knowing that p;; (K) = A;; (K)s;;, it is
easy to see that, if p;; = 1, then we have A;; = 1.

As a last example, we consider one such stress network. In section 4.7, we will propose an algo-
rithm that removes this drawback and improves the initial algorithm (algorithm I) drastically. Consider
a network with the same visit ratios matrix given by (4.6.11), and assume the same dimensions for M
and R as in previous examples, and a population vector of K = (5,5,5). The mean service time matrix is
given by:

599 1.594 2.191 1.00

SR M)y=| .872 2.845 4861 25| . (4.6.18)
2.044 2.225 5263 3.1



-41-

Solving the network using our algorithm produces the following error matrices:

2.46 1.65 10.82 .39 14.12 13.54 16.78 6.74
ERM)=261 194 1144 734| ,E,(R.M)=|1699 16.97 1691 8.90| . (4.6.19)
2.48 1.64 1041 .393 1348 16.25 8.90 6.78

The error matrices using Chow’s algorithm (8:;j=0.) are given by:

2.78 1.86 5.06 .44 16.10 15.01 7.84 7.47
ERM)=1279 2.17 562 .768| , E,(R M)=|21.99 18.11 831 9.32| , (4.6.20)

2.81 1.78 5.02 430 1525 17.61 9.32 7.44

Comparing the two algorithm, it is clear that the error due to algorithm I is lower for all entries
except at the bottleneck service center ( service center 3). The larger error for service center 3 is
clearly due to the nature of our approximation that estimates the correction terms for A;; values at ser-
vice center 3 to be much smaller than they really are. A second significant observation is that there is
no apparent correlation between the magnitude of the queue length error tolerance and that of the abso-
lute error criterion values. This observation means that small values for queue length error tolerance do
not necessarily imply that the corresponding absolute error criteria are also proportionally small. The
same conclusion holds true for the for the maximum queue length error tolerance and the maximum
absolute error criterion values. In section 4.7, we describe a multilevel algorithm that improves even
further the estimates of the performance measures at the bottleneck centers as well as at all other ser-
vice centers.

As we indicated earlier, the time complexity of our algorithm is very small compared with exact
solution techniques. To verify the validity of our claim, we compared the time complexities of the
respective approaches to the solution of a network with M =4, and R =3 as a function of the total popu-
lation K. The results are shown in Figure 4.1. These results show that, as the population increases, the
difference between the costs of the exact solution and of algorithm I increases rapidly.

4.7 Possible Extensions

We observed in the previous section that stress networks for our algorithm are networks with sin-
gle or multiple bottlenecks where the saturation occurs at relatively small values of the chain popula-
tions that cause the saturation. Obviously, if the saturation occurs for very large chain populations, the
error will be very smaller (for both the absolute error criterion and the queue length error tolerance
values). We realized in the last example of section 4.7 that our algorithm introduced larger errors at the
bottleneck center than that of Chow [Cho83]. An immediate remedy for this problem is to combine the
two algorithms, i.e., to use §;;=0 for the bottleneck centers and our algorithm for all other service
centers. This can be done by keeping track of the per class utilizations p;;. Once a service center is
saturated with respect to a chain (or chains), both algorithms are invoked, and the two approximations
are then employed to evaluate the performance measures. The additional computational cost of solving
the network approximately twice is marginal, considering that in most cases the exact solution is
impractical. It is important to note that, in multichain networks, as we shall see in chapter 6, there
could be multiple bottlenecks for different population vector mixes. However, if a certain ordering (to
be discussed in chapter 6) exists among loading factors, then there are cases where there is only one
bottleneck in the network. There are asymptotic values for the performance measures of networks with
only one bottleneck, but none is known for networks with multiple bottlenecks. A more effective
approach is to use a second level of approximation. The improvement in accuracy is in most cases sub-
stantial. As was noted in section 4.2, Chow used his first approximation (8;; = 0) to evaluate an esti-
mate &;; of the parameters §;; using (4.2.2). He then used the §;j estimates to solve the network for a
second time, and concluded that the improvement in accuracy was substantial only if the estimates
evaluated using the first approximation were accurate.
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To achieve more accurate solutions, we propose a multilevel iterative algorithm with the follow-
ing steps.

(1) Use the above described combination of algorithm I and Chow’s algorithm to solve the given
network with populations K and K ~ ¢;. Evaluate the estimates of N;j(K) and Nj;(K - ¢;) using our
algorithm for non-bottleneck service centers and Chow’s for the saturated centers.

(2) Use (4.2.3) to evaluate the estimates of the A;; parameters. Let us denote the estimates by
Ajj. Then:
A =N5(K) ~Nj(K - e:) . 4.7.1)
(3) Substitute the Ajj estimates in (4.2.17), and solve the set of equations in (4.2.17) to evaluate
the new estimates of the performance measures.
(4) Continue the iterations until a specific stopping rule criterion is satisfied.

This algorithm was applied to the last example of section 4.6, and the error matrices were found
to be the following:

2.12 141 465 .32 12.15 1221 7.21 6.20
ERM)=|224 1.82 455 711] , E,(RM)=|15.34 1526 8.11 8.14} . 4.7.2)
2.10 1.52 4.68 313 13.01 15.71 8.76 6.10

Substantial improvements resulted from a single iteration of the algorithm. This algorithm has to
be studied in more detail to investigate its accuracy. Indications are that the algorithm can drastically
improve the accuracy over the algorithm 1. Although there are additional computational costs involved,
the time complexity of algorithm I is very small and does not impose unreasonable computational costs.
The execution time for the solution of any of the models using the initial approximation on an IBM
3090/200 was at most .19 seconds.

4.8 Conclusions

In this chapter we have generalized an existing approximate algorithm by proposing a new algo-
rithm that applies to product form queueing networks with fixed rate single server and IS service
centers. The algorithm’s accuracy is similar to that achieved by Linearizer, but is obtained less expen-
sively in terms of time and space complexities. We have further extended that approximation by pro-
posing a multilevel approximate technique. One significant advantage of algorithm I is that the
existence and uniqueness of the network’s solution in the feasible region is guaranteed. The sclution of
the set of nonlinear equations to which algorithm I leads seems to have a very rapid rate of conver-
gence. We then introduced a multilevel algorithm that improves the accuracy of the solution over algo-
rithm I. We have studied the accuracy and the computational cost of the algorithms experimentally.
Our initial approximate algorithm’s accuracy was examined using two different error criteria. We
observed that small values for queue length error tolerance do not necessarily imply that the
corresponding absolute error criteria are also proportionally small. Future work include further investi-
gation of the choices of the values for the functions f;(R ,M K) for different types of networks and at
different service centers.
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Chapter 5

A Hierarchical Network Transformation
Based Approximation for Large
Queueing Networks

5.1 Introduction

Hierarchical approximate algorithms are one of the most promising approaches for the approximate
solution of large product form queueing networks. The most important advantage of these techniques is
the gradual introduction of approximation up to the point where computational costs become accept-
able. Most other approximate solution techniques cannot be introduced only partially, hence they do
not allow a variable degree of approximation to be used.

In this chapter we propose a hierarchical approximation technique for multiclass separable
queueing networks. This technique, which relies on a hierarchy of network transformations, provides
us with a smooth tradeoff between cost and accuracy. The key elements of the approach entail
transforming in the first step queueing networks containing multiple infinite servers into ones contain-
ing a single infinite server model!. In the next stage, at least some of the closed chains are transformed
into open chains, resulting in a mixed network; this is done on the basis of the desired accuracy and
computational cost. If necessary, a completely open network may be obtained. Furthermore, upper and
lower bounds of the performance measures can be computed. These bounds are asymptotically correct.
Numerical results are presented at the end of this chapter which compare this method with those yield-
ing exact values and with other approximate algorithms. Additionally some of the chains need not
visist any of the IS service centers.

Our approach gracefully introduces approximations commensurate with the increasing complex-
ity of the model. A typical example is shown in Figure 5.1, where the nodes of a distributed system are
connected by an internetwork. Each of the nodes may in turn consist of several sites connected by a
local area network. The typical node and site configurations are shown in Figure 5.2. Assuming that
the system can be modeled by a closed multiclass product form network, we then proceed to transform
the queueing network (QN) into smaller mixed networks by decoupling the individual building blocks

1 This requirement, as we shall discuss, can further be relaxed to networks with fixed rate single server service centers and
multiple IS service centers with at least one IS visited by the chains that are opened.
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from the whole network.

We start with a basic description of the structure and type of queueing network models that our
methodology can be applied to. We consider closed multichain product form queueing networks con-
sisting of only fixed rate single server and infinite server service centers. The model is assumed to con-
tain at least one infinite server service center, and each chain to visit at least one of the infinite servers.
As it was pointed out, some of the chains may visit none of the IS service centers in the network. The
approximation, however, does not apply to these chains. When modeling distributed systems, each
infinite server typically represents a set of terminals. This technique can be extended to include models
where some of the chains do not visit any of the IS service centers. Note that the assumption that the
original network is closed makes our treatment easier, but is by no means essential. In general, the ori-
ginal QN may be a mixed network.

Our methodology consists of the following steps:

(1) The original model N1 is transformed into an equivalent network N2 containing a single infinite
server service center. An outline of this transformation is presented in section 5.2. NI and N2 are
equivalent in the sense that the equilibrium state probability distribution of NI can be obtained from
that of N2.

(2) Some of the closed chains of the network N2 at the infinite service center (visited by all chains) are
replaced by a hierarchy of constant rate Poisson sources whose rates are dependent on the parameters
of the remainder of the QN in a way to be explicitly defined later. The resulting mixed product form
QN is referred to as N3. This transformation is discussed in sections 5.3 - 5.7. The number of chains to
be opened is determined by the desirable accuracy and computational costs of solving the mixed net-
work.

(3) N3 is then solved using exact solution algorithms.

The choice of bound hierarchies and the number of iterations for the open chains depend on the
desired accuracy and the acceptable computational complexity (both space and time) costs. Stopping
rules and error criteria are discussed in section 5.8. Computational complexities and experimental
results are presented in sections 5.9 and 5.10, respectively.

Without any loss of generality, throughout this study it is assumed that the product form networks
we are studying are all of the nonclass-hopping type. It has been shown by Reiser and Kobayashi
[Rei75] that any class-hopping network model can be mapped into a multichain model with non class-
hopping and with the same steady state solution.

5.2 Transformation into a Network with One Infinite Server

Theorem 5.2.1:

Consider a multichain product form queueing network consisting of only fixed rate single
server and infinite server service centers so that every chain visits at least one infinite
server. Then an equivalent queueing network can be constructed with only one aggregate
infinite server such that all chains visit this infinite server.

The newly constructed QN is said to be equivalent to the original network if the equilibrium state
probability distribution of the original network can be obtained from the steady state distribution of the
constructed QN.

A brief outline of the proof is given here. There are two cases to consider:
(1) When each of the chains in the original network visits only one of the infinite servers.
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(2) When some or all the chains visit more than one infinite service center in the original network.

Case 1:

Let service centers 1,2,....] be the IS service centers in the original network QN1, and R (i) be the set of
chains visiting the infinite server i. Construct a network QN2 by aggregating all the infinite servers
into an infinite server T such that R(T)=R{IW Ry -\ UR{). Note that the sets
R(1),R(2),....R (I) are mutually exclusive sets, i.e., R(()R ()= & for all i#j. It is a matter of alge-
braic manipulation to establish that the steady state probability distribution of the original network QN1
can be derived from that of the constructed network QN2.

Case 2:

This is the case where the sets R (1),R(2),...R({I) are no longer mutually exclusive. The task of
transformation in this case is performed in two steps. In the first step, we introduce a new class for the
chains visiting each additional infinite server. Therefore, if a chain visits m infinite server service
centers, we add m—1 additional new classes at the aggregate infinite server. The probability of reach-
ing each of the new classes at the aggregate infinite server is the same as the probability of reaching
each of the infinite servers in the original network. The result is a class-hopping product form network
with a single infinite server.

Once again, that the steady state probability distribution of the original network can be obtained
from that of the constructed one can be proved by directly manipulating the distribution of the multiple
infinite server QN and arriving at the solution for the QN with only one infinite server service center.
Although this step is not necessary, as we mentioned earlier, the new equivalent class-hopping single
infinite server QN can further be transformed into a non class-hopping QN using the Reiser and
Kobayashi algorithm [Rei75]. Henceforth, without any loss of generality, we assume that we have a
product form queueing network consisting of only fixed rate single server and IS service centers with at
least one infinite server visited by all the chains. This assumption is a more relaxed version of the
results of theorem 5.2.1. since it implies that the network can have multiple IS service centers. It is
only required that at least one IS service centers be visited by all chains.

5.3 Closed-to-Mixed Network Transformation

In this section we present an algorithm that generates a hierarchical approximation for multichain
product form QNs consisting of only fixed rate single server and IS service centers with at least one
infinite server that is visited by all the chains. Starting with a closed network, we replace some closed
chains with constant independent external Poisson sources. Clearly, as each closed chain is replaced by
an open chain, the computational complexity of the solution of the resulting mixed network decreases.
At the same time, each replacement of a closed chain introduces an increase in the error affecting the
performance measures computed from the resulting mixed network. This process of transformation can
continue until an acceptable balance between error and complexity is achieved. In practice, one major
limitation is the fecasibility of solving the mixed network. This is because, as we discussed, the com-
plexity of solving mixed networks is dominated by the complexity of the closed chains. By considering
the allowable space and time complexities, one can keep as many closed chains as is possible to minim-
ize the error. The error is maximum when all the closed chains are transformed into open chains. This
limiting case has been studied in different ways. Pittel [Pit79] investigated the asymptotic behavior of
multichain separable QNs with capacity constraints. Another approach that investigates the asymptotic
properties of the same kind of queueing network has been proposed by Lavenberg [Lav80]. Assume
that the throughput rates of class ~ jobs at the IS service center M visited by all the chains are denoted
by Ame, r=12,....R. Furthermore, suppose that I}l_n,l K U exists and is finite. Here, K, is the
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population of chain 7 jobs and Y K; =K. Lavenberg showed that, as the population of the network

increases, the equilibrium state probability distribution of the network approaches that of an open net-
work with Poisson arrival rates given by A,» . For more details about this approach see section 5.7.

A closely related technique was proposed by Whitt [Whi84]. He suggested a transformation of
the same type of queueing network into an open network, and devised an algorithm for finding the
arrival rates of the open network by a hierarchy of upper and lower bounds using an iterative algorithm.
We will extend Whitt’s algorithm to the case of mixed networks in in this chapter. Lavenberg’s
approximation will become the asymptotic limit in our algorithm.

5.3.1 Open Chains Arrival Rates Estimation

Assume that the original closed network has been transformed into an equivalent closed network
containing at least an infinite server service center, T, visited by all the chains. Suppose that there are
M other service centers (besides T;). The remaining M service centers are fixed rate single server or
IS service centers. We assume that we have ordered the set R of the chains into two groups. The
chains in the first set, O, are to be transformed into open chains. The chains in the second set, C, are to
remain closed.

Assume that we can obtain an equivalent mixed network such that the equilibrium state probabil-
ity of the original network can be derived from that of the constructed mixed network. The equivalent
network has R° open chains and R< closed chains replacing the original R closed chains. Suppose the
constant arrival vector for the open chains is denoted by A, = (Ao,1,h02, - .., A, g.). Let [, be the
service rate of chain r jobs ( 7€0 ) at the infinite server service center T'. Little’s law should apply to
both the original and the equivalent networks. In addition, the arrival and departure rates at the IS ser-
vice center T should be equal (under asymptotic conditions we discuss in section 5.7). Hence, apply-
ing these two laws to the mixed network, and using equations (2.4.8) and (2.4.20), we can write:

Pa A1+ 52‘7 Ni(Ao Ke))
}\‘O_J_SO,’=[<’_F;:t JER ()
se3,(r) (l—ia@:)PS(Ao»

, re0, 631

and, substituting for N (A, K. ) from equation (2.4.20), we get:
K PA(A(1 = p2(A,)) + ,'f,ts)l’c‘sf‘(l + “Z_‘zs)Né(Ao Ke =€)
ssor == - %P7 '
ieR,(s)

re0. (53.2)

Observing that s, , = (1L, »)~! and simplifying equation (5.3.2), we obtain:

)\vor=Kr r u-o,rpr%(Ao) + xﬁysﬁtm, 1+ Nfr AoaKC— il)s
P = BT 5 0a ) Bkt U= 3 pa P ekt )

ik, (s) ieX,(s)
re0. (5.3.3)

Equations (5.3.1) and (5.3.2) are also valid for the closed network under certain conditions. In
other words, the arrival rates that are obtained by solving the sct of nonlinear equations in (5.3.1) will
also apply to the original closed network (where the arrival rates become the throughput rates at the IS
service center visited by all chains) if certain asymptotic conditions (section 5.7) are satisfied. A
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discussion of the asymptotic properties of equations (5.3.1) - (5.3.3) will be presented in section 5.7.
We recall that the constraint of stability for the mixed network should always be satisfied. This, as we
discussed earlier, requires that p2<1 forall s.

5.4 Basic Definitions and Theorems

In this section we review some basic definitions and theorems relating to the contraction mapping
which we will use to solve the set of equations represented by (5.3.1) - (5.3.3) (see Ortega [Ort70]).

Definition 5.4.1:

AmapF: D, cR* — R* is said to be nonexpansive on a set D, = D if:
HFX)-F(y)l Il Ix~yltil, forall x,yeD,. (54.1)
The map is said to be strictly nonexpansive on D, if strict inequality holds in (5.4.1) whenever
x#y. Any nonexpansive map on D, is Lipschitz continuous on D,. Any solution x¢*) in the domain of

F that satisfies the relationship x*) = F(x(")) is called a fixed point of map F. It is easy to show that
strictly nonexpansive maps have at most one fixed point.

Definition 5.4.2:

A map F:D;c R*—R" is a contraction mapping on a set D, D if there is a ve(0,1) such that
FIF(x) - F(y)l 1<yl Ix -yl | for all x,yeD,. Obviously, any contraction mapping is strictly nonexpan-
sive.

Theorem 5.4.1 (The Contraction-Mapping Theorem):

Let F:D, c R*—R™ be a contraction mapping on a closed set D, < D, and assume that F(D,) < D;.
Then F has a unique fixed point.

Corollary 5.4.1:
\
If we form the sequence x¢+1) =F(x®), I=12,...., then the sequence ¢ x(I), /=1,2,..; is a Cauchy

sequence and has a limit x*) in D,. In addition, by the continuity of F, we can” conclude that
}1_12 F(x¥) = F(x™)). Hence, x*) is a fixed point of F (see Ortega [Ort70]).

Theorem 5.4.2 (The Monotone Bounded Sequence Theorem):

Assume that D, < D is a convex set. Let F:D; <« R*—R" be a nonexpansive map on D,. Then F has
a fixed point in D, if and only if the sequence x/*D =F(x?), I =1,2,..., is bounded for at least one
x@WeD, for someiel.

For a complete proof of this and the other theorems see [Ort70].
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5.5 Approximate Arrival Rates Estimation

We now define two sets of iterative equations similar to those in [Whi84] to be solved for the
approximate arrival rates of the chains at the infinite server visited by all the chains.

Let us denote by A{) =AM, ... .Xg’}.) the I* upper-bound recursive estimate of the
arrival rate vector of the open chain, and by A = QLAL, ... A¢)}.) theI* lower-bound recursive
estimate of the arrival rate vector of the open chains.

We estimate the upper-bound mean arrival rates for the mixed network obtained by removing R? of the
chains at the infinite server and replacing them with the independent external Poisson sources defined
by the following recursive relationship:

) Ho PRI+ 3 NE(APKC)
A=K, 1, , - s;:t — 4 TN )
se3,(r) (l ‘_EEJ)Pu(Aé ))

, re0, I=123,., 5.5.1)

while the lower-bound estimates for the mean arrival rates are given by:
Ho PR+ 3 NA(ADK.2))
JEK (s}
1- (AP
( m};_‘ts)P (A7)

MY =Ko = T , re0, I=123,.. (55.2)

Using equation (2.4.20) for the mean number of closed chain jobs in the mixed network and sub-
stituting for N (AP K. ), we get the following contraction mapping for the upper bounds:

Ko P53 AN - p2(AS)) + }t AGsEl, (1 + JV"? NE(AD K, ~¢;)))
JER {s) ieK (s)
a- }L)pf}(&”))z ’

—Xé’“) =K, -
s Ho ”Er)

re0, I=123,.., (553

and the equation given below provides the lower-bound estimates:
APEAA - p2ASN + T Masillo ,(1+ T Ns(AP K, —e;
HorP P ,-J,:ts) foSfito ‘_u@s) 7))

7 = -
A =K1, si;,‘zr) - 'U;mpg(l\gl)))z ,
re0, I=123,... (5.54)

Finally, equations (4.3.3) and (4.3.4) can be reduced to:

3 +1) = (Kr(l - Pf(&l))) " pi%(_lly)))u'o.f ;\'f\'s%‘ua.f c T —_p.
MU= S p? GI) + ,_gg(,; T pr g e L g, VE A Ke —e))
JERK (S

re0, I=123,., (5.5.5)

and:

0 v K (1= p2A) - s A, , AESEto NEQADR, —e;
M= & (T=pr (A3 ® ) = AR ¥ sty VA e )

0
JER (s)
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re0, I=123,.. (5.5.6)

Though equations (5.5.3) and (5.5.4) can be used to solve for the approximate mean throughput
rate, equations (5.5.5) and (5.5.6) suggest alternative ways of doing so to reduce the round off and other
computational errors. In the special case where there are no closed chains remaining and the closed
network is transformed into an open network, the equations in (5.5.5) and (5.5.6) are reduced to those
in [Whi84]. The last two equations also show their sensitivity to p¢.

5.5.1 Initial Conditions for Open Chains Arrival Rates

The initial conditions for the iterative relationships given by equations (5.5.5) and (5.5.6) is given
by:

lél} = aK"p‘oJ' ] TSO 2 ag (071] ’ (5.5.7)
where o is to be chosen to satisfy:
PRANL+ 3 NE(ASK,))
JEK (s)

K, >
- 1- 2 (AL ’
( iu&)o A7)

re0 . (5.5.8)

In most cases the choice a=1 is sufficient. However, there are cases where o= 1 does not
satisfy (5.5.8), and a different value of it must be chosen. The initial conditions in (5.5.7) is the same as
those derived in (4.5.1).

5.6 Convergence of the Iterative Algorithm

In this section, we prove that the solutions of the iterative mappings given by equations (5.5.1)
and (5.5.2) for the upper and lower bounds of the arrival rates converge to a single fixed point.

Theorem 5.6.1

Consider a mixed multichain separable queueing network consisting of only fixed rate sin-
gle server and IS service centers. Then, the mean queue lengths given by the relationship
in equation (2.4.8) are strictly increasing functions of the open chain external arrival rates.

Proof:

Combining equations (2.4.1) and (2.4.5), we obtain the following equation:
AL = 6;’3‘%?»“ . (5.6.1)

If chain r does not visit service center s, then (83 = 0)—(A% = 0). We also know that:

ps = A5ssh =5505% 2;)10 - (5.6.2)
L1E

Therefore the following relationship also holds:

oP? T e 0558%0.; - (5.6.3)
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Substituting for the p3’s in equation (2.4.8), and using equation (5.6.3), we obtain:
85%5% %lo 1+ u@ N5 (Ao Kc))

(l—i,‘&s» 0554 o,/) '

Taking the partial derivative of the function given in equation (5.6.4), we have:

Ni(Ao Ke) =

reR,(s), s=12,..M. (5.6.4)

oN% (A, K 055
a(}w ) - o T .)2(1+'a§s)Nfs(Ao,Kc))+
ier, 60 Y /5%
P
N5 (A Ko)| 56.5
T=p7 Ty | et "“} 63

Using equation (2.4.20) we can write:

Ansh(1+ E; NEN K —¢)))
a k
NCA’ AO’KC
aJCr jE;,(.\') j( )

= 0. (5.6.6)
N ~ T 2 , TE€
ekt o - 550
Equation (5.6.6) is a recursive relationship. Under the assumption of a stable mixed network, the
first term in equation (5.6.5) is always strictly positive {except for the trivial case where there are no
open chains and as a result that term reduces to zero). These derivatives involve terms of the form:

moOsss
axo, a- 3_‘1 9.‘}5 oJ)’" (1— e)fv‘l 0558A, j)m*"

]60

for all meZ+. 5.6.7

Observing that for a stable mixed network these derivatives are always positive for all positive
integers m, we conclude that N5 (A, K.) is a strictly increasing and continuous function of the open
chain external arrival rates. For the IS service centers, the proof that the mean queue lengths are strictly
increasing function of the open chain external arrival rates, is trivial. This is due to the fact that for IS
service centers, N = 055y 287‘0 i

LE

Theorem 5.6.2

Consider a closed multiclass product form queueing network consisting of only? fixed rate
single servers. Suppose an iterative relationship defined by (5.5.1) and a corresponding ini-
tial condi{'on denoted by (5.5.7) ang (5.5.8) is defined on this network. Then, the sequence

given by X(ﬁ’ 3: re0, I=1,2,.. ¢ isa strictly decreasing sequence.

Proof:

We prove the theorem for o=1. The extension of the proof to the case where o1 is trivial. For
I=1, equation (5.5.2) can be written in the following form:

o PS5 (AD)(1 + j_z NE(ASDKL))

D=3
AR =28 2_‘1) = [E 52T , re0. (5.6.8)

2 This assumption is to simplify the proof, otherwise, the network may also contain multiple IS service centers.
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Since the second term on the right hand side is always strictly positive, the following inequality
holds:

A < M , forall re0 . (5.6.9)
From equation (5.5.1) and for =1, it follows that:
Ho P (AP + E; NE(ASDK)
B =2~
' R )

re0, (5.6.10)

Observing that the second term on the right hand side of equation (5.6.10) is positive, we have:

A2 <A, forall re0 . (5.6.11)
We can also write:
M) - AP =
Mo, PR(ADYA + g NE(APXK.)) Mo, PEAS(1+ o VA (ADK.))

(5.6.12)

% A= % pehP » =% pzal")

By (5.6.11) we know that A2} <A§Y) for all reO. The two terms on the right hand side of equa-
tion (5.6.12), by theorem 5.6.1, are increasing functions of external arrival rates. Thus, we conclude
that A8 <A$Y) for all 70 . From this result we can similarly deduce that:

A2 <A, forall re0 .

By a similar argument, we can conclude that:
M) <A< o <A@ <A forall re0 . (5.6.13)

Observe that, by the initial condition assumption assumption we also have:

2D = oK, o, , 70, and for some ce(0,1].

O
Corollary 5.6.1
The following relation holds for the lower bound sequence:
AOSALD S AN > -2 > A forall re0. (5.6.14)
The proof of the corollary follows directly from the proof of theorem 5.6.2.
m]

The iterative algorithm, by the contraction mapping theorem and the monotone bounded
sequence theorem given in section 5.4, converges. The sequence of lower and upper bound estimates
as computed by equations (5.5.1) and (5.5.2) always converges to a unique fixed point as the number of
iterations approaches infinity.

Jim A = im A=A, re0 . (5.6.15)
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Hence, the solution of the set of nonlinear equations (5.3.1) and (5.3.2) are asymptotically correct
(that is, they are exact in the limit as K becomes large).

5.7 Asymptotic Properties

Assume that N is a closed multichain product form network that consists of M +1 fixed rate single
server service centers and IS service centers. Suppose that the (M +1)* service center is the (M +1)*
center visited by all the chains. Then let:

K, = [p,KJ , reR(M+1), (5.7.1)
where K¢Z*, and the p;’s are chosen so that:
Zd‘spg =1. (5.7.2)
Furthermore, assume that:
1!1_",3. K, W, , exists and is finite for all re R(M+1). (5.7.3)

Suppose, using the notation in equations (2.1.2) and (2.1.3), that N1 is the subnetwork of the ori-
ginal closed network N obtained by excluding the (M +1)* service center from the state vector of the
original network. The state of subnetwork NI is denoted by k™ = (ki.ka, . . . , k). Let us also define:
R (s) = set of chains visiting server s ;

m, = 3 k,; = population of chain r jobs in subnetwork N1;

S*(K) ={k‘ :m,<K,, reC} = set of states of subnetwork NI;
p1(k* K) : equilibrium state probability distribution of subnetwork N1.
Furthermore let:
A =K,ums1, TreRM+1). (5.7.4)
and

Prs = SrsOrs %; Ai, reR(s), s=12,.M, (5.7.5)
iER(M+1)

where p; = JY( pis Tepresents the utilization of server s. Suppose the following holds:
ieK(s)

ps<1 forall s=M+1. (5.7.6)
Then it can be shown that {Lav80]:
. . k! (0;s)
K) = . . A
Al__rgnpl(k K) -ﬁ(l—~€§ ) jﬂs) ij! 5.71.7
i )
Moreover, for each ps <1, s#M +1, we have:
l}im Ars =6y R@ A, reR(s), s=12,..M; (5.7.8)
nad it +1)

if, for some s #M +1, it is p, 21, then for all k™20 (O is the zero vector):
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Jim p1(k* K)=0. (5.7.9)

Thus, for the closed multichain network defined above, if p, <1 for all s#1,2,...,M, the steady
state probability distribution of closed subnetwork NI converges to that of an open network N2 consist-
ing of service centers 1,2,...,M and obtained from N by replacing the IS service center visited by all
chains with constant external Poisson arrival rates as defined by (5.7.4).

Furthermore, let X(K) be the random vector with probability distribution given by
1k K) k* £S*(K)p; i.e., X(K) is the equilibrium state vector of subnetwork NI. Suppose the ran-

om vector X° represents the steady state vector for the stable open subnetwork N2. Performance
metrics sach as queue length distributions, moments of queue size, and utilizations can be defined as
functions of the state vectors for networks NI and N2. A stronger asymptotic relation exists between
the two queueing subnetworks. Using the Lebesgue Monotone Bounded Convergence Theorem
[Bil86], it can be shown that for any continuous function f:

yimE[ r x| =E[roxe)] (57.10

This implies that the mean and higher moments of all the performance metrics of the closed sub-
network NI converge, as K —eo, to those of the open network defined by N2. The results discussed
here can be generalized for the mixed networks. The result in (5.7.10) can further be extended to
include networks containing service centers with load dependent service rates. For a more detailed dis-
cussion of the topics in this section see [Lav80]. All these conclusions hold true as long as the open
network remains stable. If p#>1 for any of the servers in subnetwork NI, then the open subnetwork
becomes unstable as K increases.

This result implies that the contraction mappings defined for the upper and lower bound arrival
rates converge to the exact solution under the conditions discussed in this section. Therefore,
l}iin“)»,' =\, for all reR (M +1).

5.8 Stopping Rules and Error Criteria

We introduce several error criteria for the analysis of our approximate algorithm. The accuracy
and the cost of any iterative algorithm are greatly affected by the choice of the stopping criterion used.
Two error criteria will be defined as the bases of stopping rules for the iterative contraction mappings.
We also define upper and lower bound error criteria to evaluate the accuracy of the approximate upper
and lower bounds. Finally, we define yet another error measure for the purpose of comparing approxi-
mate and exact results.

A queue length based error criterion that can be used as a stopping rule is defined by:

(N = N

N (58.1)

Es(I) = E; (NSO ND) = max
The corresponding stopping rule states that the iterations should be halted when E;(I') < e,, for some
given e;.
It is clear that the number of iterations is a function of the bound chosen for E;(I). A different
error criterion used as a stopping rule and based on mean throughput rates is given by:

A=A
Gogsled)

£, (L) A9 = max 222

(5.8.2)

»

To compare the accuracy of the approximation with the exact solution, we define the following upper
bound absolute error criterion:
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— —N (A
E,;(I)=max W &) Ni’aéf" Kl | (583)

In equation (5.8.3) N, (K) is the exact value of the mean queue length. The corresponding lower
bound absolute error criterion is similarly defined as:

- K
E +(1) = max INys (K) Nr’:’&()éo Kot (5.8.4)

Similar aggregate lower and upper bound absolute error criteria for individual service centers are
defined by:

— T)
E. (1) = max LN, (K) Nf’(‘%é Kol (5.8.5)

and

_ A
I N (K) NI:I(s éf)\o Kol (5.8.6)

E,(I)=msax

For simplicity of notation and ease of comparison, we have assumed that the original network is a
closed network with population vector K.. The upper and lower bound absolute error criteria are
defined with respect to the mean queue length tolerance, but can similarly be defined for other perfor-
mance metrics by simply replacing the queue length with those of other metrics. The error magnitude
is clearly related to the number of iterations. A rapidly converging and strictly decreasing error func-
tion is a good indication of the performance of an iterative algorithm. Another error criterion (also dis-
cussed in chapter 4) which is also based on queue lengths is [Cha75]:

E (/)= max INrs (K)[; N (K| i (5.8.7)

In equation (5.8.7 ) N (K) is the estimate of the queue length. The errors evaluated by using
(5.8.7) are usually much smaller than those given by equations (5.8.3) and (5.8.4) for a large population
vector. This is due to the fact that the denominator of equation (5.8.7) increases more rapidly than
those in equations (5.8.3) and (5.8.4). We believe that the error criteria given by equations (5.8.3) and
(5.8.4) are more realistic since they are not scaled down by a large number as the one defined in (5.8.7).

The choice of the stopping rule is extremely important for any iterative algorithm. In most stu-
dies the effects of the stopping rules and their impact on the ensuing time/space cost are ignored. The
accuracy and cost of the iterative algorithm is directly affected by the choice of the stopping rule. The
stopping rule we have used in our experiments is the one defined by the error criterion given in (5.8.1).
The queue length based stopping rules, while being costly, are best suited for testing the accuracy of
approximate QN solution algorithms. The reason for this lies in the fact that queue length values are
most sensitive to variations in the parameters of the networks. Therefore, the experimental results are
put to extreme tests by using queue length based stopping rules.

In practice, we found a value of e,=.001 in E,(I)<e, to be sufficient. This value was usually
achieved with an unexpectedly small number of iterations. It is clear that the time complexity (CPU
execution time) increases as the value of e, decreases. The smaller the value of e, the larger the
number of iterations required. The stopping rule based on (5.8.2) is not as accurate (for the same error
bound) as the queue length based rule, but it results in lower computational cost.

5.9 Computational Complexities

To evaluate the time/space complexity of our algorithm, we first compare the time/space com-
plexity of the solution of the mixed network obtained by applying the approximate algorithm to the
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original closed network. Suppose the original closed network is composed of R closed chains and M
service centers. We further assume that the original network is transformed into a mixed network con-
taining R¢ closed chains and R° =R~R°¢ open chains.

If the MVA algorithm is used to solve the original network and the approximate mixed network,
then the results of sections 2.3 and 2.5 can be used to compare the time/space complexity of the solu-
tion to these two networks. We denote the time and space complexities of the approximate mixed net-
work by T(R°,R¢, M) and S(R° R¢ M), respectively. The time and space complexities of the original
network are represented by T (R ,M) and S (R ,M ) respectively. The iterative algorithm requires that we
solve the mixed network I times. This requires a time complexity roughly equal to I multiplied by the
time complexity of the mixed network. We define the space and time complexity of our approximate
algorithm by S(R°,R<,M J) and T (R° ,R¢ M I) respectively, where / represents the number of itera-

tions. Obviously, in the intermediate iterations the network need not be solved completely, as we need
only to determine whether the stopping rule is satisfied or not. Furthermore, the visit ratios are deter-
mined only once at the beginning. Thus, for the E;(I) < e, or the E (/) < e, stopping rules, the mean
queue length values have to be evaluated at each intermediate iteration (iterations 1 through (7-1)).
The space complexity S (R°,R<,M J) remains the same except for an additional term equal to 2M if
stopping rule given by (5.8.1) is used, and equal to 2R° if the stopping rule in (5.8.2) is used. There-
fore, the space complexities of the solution of the original network, of a single iteration over the
approximate network, and of / iterations over the approximate network are as follows:

SR ,M)=(R+M+RM)ﬁ(K,~ +1)+4RM , 59.1)
S(RORM)=(R°+M +R°M) ': Ki+1)+5R°M +4R°M , (59.2)
S(R° R MJY=SR°R* M)+ max(2M 2R?) (59.3)

Clearly, the space complexity of the original network as given by equation (5.9.1) is much larger
than those for the mixed network given by equations (5.9.2) and (5.9.3).

Therefore, as the number of closed chains is reduced, the storage space required to solve the
resulting approximate mixed queueing network is sharply reduced. This drastic reduction in the space
requirements is depicted in Figure 5.3, which shows some semilogarithmic plots for the space complex-
ity of the original and the approximate mixed network as a function of the number of open chains. In
each plot it is assumed R=15 and M=15. The population vector for the plot designated as K;=5
assumes K = (5,5....,5), and for the plot designated as K; = 10 assumes K = (10,10,...,10). It is evident
that the storage space is substantially reduced as the number of closed chains which are opened
increases.

We can further investigate the amount of storage space reduction by looking at the difference
between the original and approximate networks’ storage space requirement. To simplify the analysis,
assume that K; = K for all . If we denote by A, and A; the following differences:

Ay=S(RM)-SR>R M),
Ar=SRM)-SR* R M),
we can write:
A;= AR R M) =Re(1+M (K (+1)R+R=1 4
(R°+M+RCM)(K1+1)R"1[(K1+1)R' - 1} -R°M , (5.9.4)
=AR° R M I)=A(R° R M)-R°M. (5.9.5)

It is immediately clear that A;>0 for all nontrivial population vectors (K;>0 for all ;). One
important property to notice here is that the reduction in storage space sharply increases as the
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population of those closed chains that are transformed into open chains increases.

The derivation of the time complexity for the approximate mixed network and for the case where
there are I iterations is more involved. We notice that the time complexity of the MV A solution of the
original closed network, derived in section 2.3, is:

TRM)= 4RM1ﬁ(K, +1)+3RM + 2RM?. (59.6)

The solution of the approximate mixed network in the first iteration has a time complexity that
was discussed and derived in section 2.5. Hence, we can write:

T(R",RC,M)=4R‘Mﬁ(K,+1)+6R‘M+llR“M +2RM?3, 59.7

where equation (5.9.7) has been directly taken from Table 3, and the values of X, V°, and V¢ have
been replaced by their expressions. Additionally, we have used the fact that:

Vo +Ve=2(R° +R)M3+2R°M =2RM*+ +2R°M. (59.8)

To evaluate the time complexity of the solution of the approximate mixed network up to and
including the /th iteration, we assume that, for each iteration step, the mixed QN has to be solved
entirely. In addition, for each iteration (except the last), the upper and lower bounds of the external
arrival rates to be used in the next iteration have to be evaluated using equations (5.5.1) and (5.5.2).
We need M additions per open chain for the first summation in equation (5.5.1). It should be pointed
out here that the summation is over the set S, (r), and correspondingly we need only M additions®. We
also need one multiplication and one subtraction per open chain. Hence, we need a total of R°(M + 2)
operations to evaluate the upper or lower bounds of the external arrival rates for all open chains in each
iteration, and therefore [R°(M + 2) for I iterations. The stopping rule (5.8.1) or (5.8.2) must then be
tested. To do so, we need to find the largest of the upper bound values, i.e., msast(’ ) or mraxlo({ J, and

the smallest of the lower bound values, i.e., m,inly_,(’ Jor mrinZ&_g{ ). This is because:

— — N ()
_ ND-NDY N maxNg
E,(I) = max M(,)—‘ = msaxM(,) -1= RN~ 1. (5.9.9)
A similar relationship holds for the E, (A{2,A§")) error criterion:
_ maxAS?)
E,- (lé’}'M’}) = -I—T\m -1. (5.9.10)

r

The search for the upper or lower bound values in equation (5.9.9) requires (M —1) comparisons
per search. Therefore, we need a total of 2(M~1) operations per iterations, hence 2/ (M ~1) for all /
iterations. Similarly, we need a total of 2/ (R°—1) operations for all / iterations of equation (5.9.10).
Thus, the time complexity of the approximation for / iterations can be expressed as:

TR R MI)=ITR° R M)+IR°M + 2/ (max(R° M) -2). (5.9.11)

Figure 5.4 shows plots of the time complexity for the original closed network and the first itera-
tion of the approximate mixed network’s solution as a function of the number of open chains in the
mixed network. For each plot in Figure 5.4, as in Figure 5.3, we have assumed R=15, M=15. The
sharp reduction in time complexity is evident in this plot (note that the vertical axis has a logarithmic
scale).

3 In reality in all cases we replace 1S,(r)| with M. We therefore are deriving the upper bound for the time and space com-
plexities, since M <15, (r)| forall re0 .
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Similarly, the differential reductions in the time complexity required to solve the approximate
mixed network for the first and the Ith iterations are defined by:

I‘1=I“l(R",RC,M)=4M(K1+1)R‘[(R°+R°)(K1+1)R‘ —RC] —8R°M -3RM, (5.9.12)
and
O =T/R° R MI)=TRM)-IT(R° R M)—-IR°M —2I (max(R° , M) -2). (5.9.13)

In equation (5.9.12), as in the case of the space complexity, we can show that, for all nontrivial
cases, I';>0. However, in equation (5.9.13) the sign and the magnitude of the reduction depends on yet
another parameter, which is the number of iterations. It can be shown that substantial reduction in time
complexity is achieved for very large networks®. For smaller networks, equation (5.9.13) is not very
revealing. We found in all the cases considered (in which a small number of iterations actually
required to satisfy the stopping rule), that there was always a very substantial reduction. It should be
pointed out here that the dependency on the chain population vector is completely removed in the case
of open networks. As we shall see in the discussion of the examples in the next section, the time com-
plexity of the iterative algorithm is almost always many orders of magnitude smaller than that of the
exact soluation.

5.10 Experimental Results

In this section we examine the performance of our algorithm by applying it to the sample model
shown in Figure 5.5. In order to evaluate the efficiency and the accuracy of our approximation, we
have chosen as example a model that is small enough to be exactly solved. The system modeled in Fig-
ure 5.5 consists of a CPU, two disk I/O subsystems, and terminals. The workload is represented by
three chains (three classes of jobs). This is a model of a typical site in an aggregation of sites connected
by an Ethernet-based distributed system as shown in Figure 5.2. Here it is assumed that all three chains
of the model are initially closed chains. The parameters of the model are given in Figure 5.6. Exact
and approximate solutions are obtained using RESQ2 [Sau82], and compared with each other. We
compare the exact solution with the approximate solution for one open chain, two open chains, and
finally a completely open network. The computational complexities of the approximation and of the
exact solution are compared. For each case, the errors in the performance measures obtained by solv-
ing the approximate network are evaluated. The convergence rate of the iterative estimates will also be
examined.

Observe that the original network consists of three closed chains. In the first case we will con-
sider, the network is transformed into a mixed network with one open chain and two closed chains. If
error minimization is the objective, then the open chain to be chosen is the one that loads the CPU the
least. If we solve the balance equations for an equivalent completely open network, we see that chain 1
should be the first chain to be opened. If the populations were not equal as we have assumed here, and
the space and time complexities were the primary concern, then to reduce the complexities one would
have to choose the closed chain with the largest population.

We used RESQ2 [Sau82] to solve and compare the approximate and exact solutions. Figure 5.7
shows the CPU utilization versus the number of users (that is, K1+K »+K1). Since the CPU is the most
utilized server in this model, the maximum error will occur at the CPU. We have chosen K1=K»=K3
throughout. Utilization is a robust metric in approximate or exact algorithms for queueing network
models. Thus, we expect the error for this performance measure to be the lowest. Figure 5.8 shows the
error for the first iteration and for the case where the stopping rule bound, e;, is chosen to be quite small

4 Networks with large chain populations.
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(ie., es=.001). The error in both cases is very small. Figure 5.9 and 5.10 show the mean queue length
versus the number of users. The plots for the exact and approximate values coincide in these figures.
Figure 5.11 shows the error curves for the first iteration and the case of small stopping rule bound. We
should point out here that RESQ2 requires more than 12 Mbytes of memory to solve the model exactly
for a population vector larger than (30,30,30), while it solves the approximate model (IOl=1, ICl1=2) up
10 (90,90,90) with only .96 Mbytes. Panacea [Ram82] on the other hand would stop being usable at a
utilization of .85 for the CPU. This corresponds to a population vector of (35,35,35). To compare time
complexities, we use the processor execution time required to solve the exact and the approximate
models. RESQ2 in our environment is running on an IBM 3090/200. Clearly, the time complexity of
the approximation is maximum for only one open chain. Figure 12 shows the execution times for the
exact and approximate solution to compute utilization, throughput, mean queue length, and mean wait-
ing time for all the chains at all the servers. The curve designated as Approximate (LI), is the execution
time of the last iteration. The inclusion of the execution times in the last iterations is for comparison
with the total execution times, which include the accumulative execution times over all iterations and is
designated as Approximate (AI). It should be pointed out here that this curve should actually be lower
(slower slope) since in the intermediate iterations we do not need to solve for all the metrics. Even
without eliminating these unnecessary computations, the execution time improvement with respect to
that required for an exact solution is clearly evident.

Figures 5.13 - 5.22 compare the exact solution and the approximate solution with two open
chains and one closed chain (I01=2, ICl=1). In this case, while the error slightly increases for all perfor-
mance metrics, the error is indeed very satisfactorily low.

Figures 5.17 and 5.18 compare the exact and the approximate solution with two open chains and
one closed chain. The purpose for including these two plots is to compare two different error criterion.
We observed earlier that the error criterion we have chosen is given by (4.6.6). The more widely used
criterion is given by (4.6.7). The difference between the two criteria is clearly depicted in figures 5.17
and 5.18. Figure 5.9 is based on the error criterion given in (4.6.6) and Figure 5.10 is based on (4.6.7).
Clearly, errors are much smaller for the criterion given by (4.6.7). For this reason, we prefer (4.6.6)
over the widely used criterion defined by (4.6.7). In both cases the error is slightly higher than that of
one open chain. The error performance for the approximate network with two open chains is indeed
very satisfactory.

Figure 5.22, which displays the errors in the mean waiting time and the mean queue length as a
function of the number of users, shows clearly how fast and drastic an improvement can be achieved
even with a small increase in the number of iterations. This figure also shows that the iterative algo-
rithm converges very rapidly without incurring unacceptable errors.

Figures 5.23 - 5.30 show the curves for the case of 3 open chains and compare them to those
given by the exact solution. This is the case of maximum error for the approximation. Again, the itera-
tion converges very rapidly. This is also the situation where the approximation algorithm’s time and
space complexities become independent of the population vector. While the time complexity of each
iteration as a function of the total chain population remains constant, the total time complexity depends
(nonlinearly) on the stopping rule bound and the resulting number of iterations. Figure 5.30 compares
the CPU execution times for the exact and approximate solutions using RESQ2 for both cases.

To summarize, our algorithm allows a flexible and hierarchical approximate solution of QNs in
the following sense. For a stated constraint on accuracy, the number of closed chain->open chain
transformations can be chosen to minimize the computational costs. The resulting approximate net-
work can then be solved for a hierarchy of bounds. In this stage the number of iterations can be chosen
accordingly, subject to the desirable accuracy. This flexibility is in contrast to the asymptotic expansion
in Panacea where the undelying approximation is set at the beginning. As we have scen in section 5.7.,
the approximation is asymptotically correct as the population becomes very large. However, the condi-
tion given by (4.5.3) requires that l}l_n)l K, U, , exist and be finite for the chains that are opened. There-

fore, if the values of L, , are kept fixed as the population increases, the error will also increase. The
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overall effect of chain population, service rate, and service demand of each chain at each of the service
centers is better understood by looking at the utilization of each service center due to the jobs belonging
to each open chain. From equations (5.5.5) and (5.5.6), it is clear that, for very high values of p4, the
values of the external arrival rate estimates become very sensitive to variations in p,,. On the other
hand, the computational complexities of the algorithm are very sensitive to the sizes of closed chain
populations. Thus, if a reduction in computational complexity is the objective, one has to choose those
chains with the largest population. If the minimization of error is the main objective, then the chains
least loading the most utilized service center should be picked. When in the QN model some service
centers are under heavy load conditions, known asymptotic expressions can easily be used for the
evaluation of performance measures. Once the parameters of a QN model are given, the equations
derived in section 5.9 may be used to estimate the space and time complexities of the model’s solution.
This step allows one to choose the number of chains to be opened initially, so that the maximum allow-
able limits for time and space complexities are not exceeded. The structure of equations given by
(5.5.5) and (5.5.6) suggests that some round-off error might occur for extreme values of open chain
utilizations. A scaling algorithm might be needed to avoid this problem.

5.11 Conclusions

In this chapter, we have presented a hierarchical network transformation based approximate tech-
nique for solving multichain QNs with large numbers of chains, service centers, and populations. The
technique applies to product form QNs consisting of only single server fixed rate and IS service centers.
Extensions to certain load dependent QNs are possible. The method provides for a flexible hierarchy of
approximations that allows a smooth tradeoff between feasibility, accuracy, and computational cost of
the solution. The performance metrics evaluated using this algorithm are many orders of magnitude
less expensive than those obtained by exact methods. The approximate solutions are asymptotically
correct. The iterative part of the algorithm converges rapidly, and provides upper and lower bounds for
the performance metrics. The accuracy, speed, and convergence behavior of the algorithm have been
experimentally verified for a number of queueing networks. We have suggested several error criteria
that we believe are more realistic and permit a fair comparison between exact and accurate techniques.
Finally, the algorithm can be easily implemented with minimal effort.

We can apply our algorithm to the modeling and performance evaluation of large internetwork-
based distributed systems. This can be done using a decoupling algorithm (see chapter 6) that
transforms the QN models of configurations such as those shown in Figure 5.1 into approximate mixed
QN submodels that can be solved independently.
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Figure 5.1 Internetwork-Based Distributed System Con figuration
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MODEL:CLOSE

METHOD:numerical, NUMERIC PARAMETERS:K1 K2K3
NUMERIC IDENTIFIERS:s1s2s311 1213 g

s1:1,52:1.5, s3:2, 11:450, 2:150, 13:200, q:1.

QUEUE:terminal, TYPE:1S, CLASS LIST:ul u2 u3
SERVICE TIMES:11 2 3

QUEUE:cpu, TYPE:PS, CLASS LIST:iclc2¢3
SERVICE TIMES:s1s2s3

QUEUE:disk1, TYPE:FCFS, CLASS LIST:d1 d2
SERVICE TIMES:Q

QUEUE:disk2 TYPE:FCFS CLASS LIST:d3
SERVICE TIMES:q

CHAIN:m1, TYPE:closed, POPULATION:K1
ul->¢l, c1->d1 ul; 1/54/5, d1->cl

CHAIN:m2, TYPE:closcd, POPULATION: K2
u2->c2, c2->d2 u2; 1/8 7/8, d2->¢2

CHAIN:m3, TYPE:closed, POPULATION:K3
u3->c3, c3->d3 u3;.1.9, d3->c3

Figure 5.6 The Parameters of the Network in Figure 5.3.
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Chapter 6

Applications

6.1 Introduction

In this chapter we present two applications of the algorithms developed in chapters 4 and 5. In Sections
6.2 and 6.3 we present a decoupling algorithm for performance modeling of very large distributed sys-
tems. This algorithm is based on the network transformation based approximation proposed in chapter
5. Section 6.4 is devoted to bottleneck detection. In section 6.4.2, we propose an algorithm for
bottleneck detection in multiple-class queueing networks. The algorithm uses the MV A-based approxi-
mations developed in chapter 4.

It has long been recognized that, when performance modeling of some subsystem in a larger sys-
tem is carried out, an efficient and cost effective approach is to represent the rest of the system by its
interactions with the particular subsystem under study. In this regard, a detailed analysis of the rest of
the system is, in most cases, unnecessary. Examples of this approach are decomposition and hybrid
simulation techniques. Decomposition, which is an exact technique for product form networks
[Cha75], {Lav83], was briefly discussed in chapter 3. The objective in a hybrid simulation is to com-
bine discrete event simulation and analytic models to construct efficient yet accurate system models
[Mac87], [Sch78], [Mac70]. This technique has mostly been applied to single-class networks. In sec-
tion 6.2 we outline an algorithm that uses the network transformation based approximate solution
developed in chapter 5 and the decomposition technique to decouple submodels of a network in an
accurate, efficient, and cost effective manner. This technique allows for the submodels to be analyzed
or simulated independently, while taking into consideration the effects of the rest of the model on the
particular submodel under study. Note that the decoupling algorithm, without the approximation intro-
duced in chapter S, would be practically impossible.

Another significant task in performance evaluation is that of bottleneck detection. Bottleneck
detection in multiple-class network models is a difficult and in general unresolved problem. The area
of bottleneck detection has many applications in practical distributed system analyses. Examples are
distributed banking systems and airline reservation systems {Goo83], [Gra84], where at any moment
hundreds of active users are processing thousands of transactions. In these systems, one main objective
is to serve large numbers of users with the shortest possible mean response time. Hence, the
identification of the bottlenecks in these systems are of critical significance to their designers. In sec-
tion 6.4, using some known results and combining them with the approximate algorithms we described
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in chapter 4, we propose a general algorithm for detecting bottlenecks in multichain network models.
To provide further insight, we also discuss some examples.

6.2 A Decoupling Algorithm for Modeling Large Distributed Systems

Autonomy is one of the most desirable characteristics in a distributed system. In an autonomous
distributed system an aggregate of sites (or a single independent site) might offer a service to the rest of
the system. The owners of these sites might be interested in determining the effects of the outside
requests for the particular service they are offering on the performance of their subsystem. Several
sites, for example, might participate in a load sharing scheme among themselves and with other sites.
Let us assume that the main objective of a set of sites S7 is to achieve minimum response time in a load
sharing scheme. Furthermore, assume that S7 is also accepting jobs from other sites not in SI. As far
as S/ is concerned, the important parameters for characterizing the outside world are the rates of the
requests reaching SI. In this case a detailed model of the outside world is not essential. Hence, in a
modeling approach, the outside requests may be represented by open sources. This was the motivation
behind a queueing network model that de-Souza-e-Silva and Gerla [Sil84] proposed recently for the
study of an optimal load balancing algorithm in the LOCUS distributed system. They considered a QN
model of a multiple site LOCUS distributed system (with a single processor at each site) connected by a
local area network. The local users in each site were represented by closed chains, whereas the jobs
arriving from other sites were represented by open sources. The objective was to minimize the overall
average delay for all the jobs (with respect to the arrival rates for the open chains). The decision to
represent the outside load at each site by open sources made the solution of the problem manageable.

However, when modeling large distributed systems, an interactive user is usually represented by
a job in a closed chain. The overall model is therefore a large queuing model where users at each ter-
minal originate jobs to the local or remote sites. It is natural, when studying the performance of a clus-
ter of sites, to represent the effect of other sites by sources, thereby eliminating the need to solve or
optimize the models of the whole system, which may be very large. This was also the fundamental
motivation behind decomposition techniques, where, as we discussed in chapter 3, a subnetwork is
represented by a single load dependent service center whose interaction with the rest of the system is
considered. However, the successful application of decomposition requires that the closed subnetwork
be solved for all possible population vectors in the subnetwork for a given population vector of the ori-
ginal network. '

The exact solution of this subnetwork is often impractical or impossible, since it may easily
exceed the available resources, when we have multichain networks. A second problem is that the
number of possible population vectors in the subnetwork for a given total population (the number of
times the subnetwork is to solved) may be very large. These two obstacles severely limit the applica-
tion of decomposition to multichain product form networks. To remove them, we shall outline a decou-
pling algorithm that allows for the replacement of the rest of the network by open sources. This
replacement would be exact by the decomposition (Norton’s) theorem if we had the exact values of the
arrival rates for the open chains. To make this methodology clear, we introduce the algorithm and an
example in the next section.

6.3 The Decoupling Algorithm

We describe the algorithm by applying it to the example model shown in Figure 6.2. Figure 6.2
is a two site model of the LAN-based distributed system shown in Figure 2.1. We have chosen as
example model one that is small enough to be solved exactly. Each site in the system modeled in Fig-
ure 6.2 consists of a CPU, two disk I/O subsystems, and a number of user terminals. The workload is
represented by four chains, i.e., two chains per site (chains 1 and 2 for sitel, and chains 3 and 4 for
site2). In each site, one chain is local, that is, none of the jobs in that chain ever leave their site. The
jobs in the second chain at each site are remote; they come from the other sites and use not only the
local resources, but also the resources of their original site as well as the network. In each chain that
interacts with another site, different classes are defined to distinguish the jobs going to the remote site
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and the responses returning (this level of detail is usually introduced for the study of routing [Rei79]).
In our example, this requires the introduction of four different classes of jobs at each site. Here, it is
assumed that all four chains of the model are initially closed chains. The parameters of the model are
given in Figure 6.4. The local area network is so modeled that the product form property of the overall
model is preserved. Our objective now is to decouple each site from the model and to form two
approximate submodels that can be independently solved (analytically) or simulated. We achieve this
objective in the following way.

(1) The chains that involve two or more sites are identified.
(2) These chains are replaced by open chains using the iterative algorithm discussed in section 5.5.

(3) The balance equations for the resulting mixed network are solved to determine the throughput rates
for the open chains (see (6.3.3)-(6.3.8)).

(4) Each class of jobs in the open chains that are arriving at each site from another site is replaced by
an external Poisson source.

(5) The resulting approximate network is solved analytically or simulated.

The accuracy of the algorithm depends on that of the approximation carried out in the second
step above. To evaluate the accuracy of the algorithm, exact and approximate solutions were obtained
using RESQ [Sau82], and compared with each other. For each performance measure, the maximum
errors in that performance measure obtained by solving the approximate network were evaluated. The
convergence rate of the iterative algorithm in (2) was also examined. Note that this example is a com-
plement to the examples considered in chapter 5.

Figure 6.5 shows the mean queue length of CPU1 versus the total number of users (that is,
K +K K 3+K4). Since CPUI1 is the most utilized server in this model, the maximum errors affecting
performance measures will be at CPU1. Note that we have chosen K 1=K =K 3=K4 throughout. The
queue length based error used as a stopping rule is defined by:

(1\75 @ — N DY

N 6.3.1)

E,(I) = E/(N" NP) = max

The stopping rule bound is E,(/)<.001. Figure 6.6 shows the upper-bound error curves for the
first iteration and the case of small stopping rule bound. The upper-bound error is defined by:
IN, (K) - N, AP K

N: (K) ’

E, ()= max (6.3.2)

The maximum number of iterations for the case of small stopping rule bound was 6 (for popula-
tion vector (12,12,12,12)). We should point out here that RESQ2 requires more than 4 Mbytes of
memory to solve the model exactly for a population vector larger than (12,12,12,12), while it solves the
approximate model up to (20,20,20,20) with only .96 Mbytes. We use the CPU execution time required
by RESQ to compare the time complexities of solving the exact and the approximate models. The pro-
cessor used to solve the networks in all cases was an IBM 3090/200. Figure 6.7 shows the execution
times needed for the exact and approximate solutions to compute utilization, throughput, mean queue
length, and mean waiting time for all the chains at all the servers. The curve designated as Approx.
represent the execution time of the last iteration. The curve of execution times for all iterations is
designated as Approximate (AI). It must be pointed out here that this curve should actually be lower
(slower slope), since in the intermediate iterations we do not need to solve for all the performance
measures. Even without eliminating these unnecessary computations, the improvement in execution
times with respect to those required for an exact solution is evident.

Figure 6.8 shows the errors in the CPU1 mean queue length and the CPU1 mean waiting time as
functions of the number of iterations. This figure shows clearly how fast and drastic an improvement
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can be realized even with a small increase in the number of iterations. This figure also shows that the
iterative algorithm converges very rapidly even when the error bounds are quite acceptably small.

We describe below the decoupling step for the first site. Observe that, of the five classes of jobs at
CPUI1 (see Figure 6.4 for a description of the model and a definition of the different classes and their
routings in the network), class C11 jobs belong to the local closed chain of site 1, and the jobs of
classes C14C and C14G originate from site2. Class C12G jobs leave sitel for site2 and class C12C
jobs arrive from site2 to sitel. We start by evaluating the arrival rates of the external sources for the
jobs of classes C14C, C14G, and C12C. Let A, 5 be the external arrival rate of open chain r at service
center s. The following relationship holds for the external Poisson arrival rate vector components:

hoy= T doms 70, (6.3.3)

where p;; s is the probability that a class i customer, after completing service at service center j, will
move 1o service center s while becoming a customer of type r.

For the open chains, the following balance equation holds:
0% =Pors + iﬁ&)’je,gp;j,, , ire0, js=12,.M. 6.3.4)

In equation (6.3.4) we assume that:

s;r)po s =1 (6.3.5)

It can be shown that the set of equations (6.3.4) always has a unique solution.
The rates A, - and the total external arrival rate A are related by:

A= Ao is - (6.3.6)

ieR, (s)s

If we let p, » be the probability of an external class r job arrival at service center s, then p, 5 is
related to A, ,; in the following way:

Dors = Ao s —, reR,(s), s=12,.M. 6.3.7)
iy

ieR, (s)s

The mean throughput rates for the open chains can then be found using the following set of equa-
tions (for a proof of this relationship see [Gel80]):

%= Gﬁ,idg(‘s);ko” , reR,(s), s=12,..M. (6.3.8)

Using (6.3.4) and the model of Figure 6.3, we can evaluate the visit ratios in sitel. Throughput
rates are computed by solving the approximate two site network model. We can then use equation
(6.3.6) to determine the total external rate, and equation (6.3.8) to evaluate the external rates for all
classes of jobs in the sitel model. To evaluate these values for our model, let us denote by 1,2, and 3
the jobs of classes C14C, C14G, and C12C, respectively. Assume that in sitel CPUI, Disk1, Disk2 are
service centers denoted by 1, 2, and 3, respectively. Then solving (6.3.4) results in the following set of
linear equations:

0f, = 1+.2200 + .226f,,
0f,=.5011,

049 = .56f + 78061,

03 = .561;.
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Once the values of the visit ratios are known, we can use equation (6.3.8) to evaluate the external
arrival rates at sitel. The end result of this algorithm is the decoupling of each site. The analytic solu-
tion or the simulation of the submodels can now be carried out independently with great efficiency.
Since the step in which the open source rates are evaluated is exact, this is in fact an exact decomposi-
tion. The only error is due to the approximate solution of the original network, i.e., the replacement of
the closed chains by open chains. However, by the same argument made in chapter 5, since the approx-
imate solution is asymptotically correct, the whole algorithm also produces an asymptotically correct
solution. We should recall that one of the applications of decomposition has been in the area of simul-
taneous resource possession (such as memory partitioning) in small system models. Therefore, the
decoupling algorithm can be used for the same purpose and for large networks where the decomposi-
tion alone is often impractical. The decoupling algorithm can be applied to models of multinode
internetwork-based distributed systems (such as those in Figure 5.1) where each node may be a LAN-
based distributed system (Figure 5.2).

6.4 Bottleneck Detection

One of the most important objectives for the application of performance analysis is the detection
and elimination of bottlenecks, or at the least the reduction of their effects. A bottleneck may cause
severe degradation in a system’s performance. Unlike what happens in open queueing networks
models, the bottlenecks of a closed multiclass network model cannot be found by inspection of the
parameters. In certain classes of networks, once the bottlenecks are identified, the asymptotic
throughput rates can be estimated from the knowledge of the bottlenecks. The detection of bottlenecks
in queueing network models allows the system analyst to compare different configurations and choose
the optimum, or to see how the enhancement of different elements of the system can alleviate its satura-
tion, and how sensitive this improvement is to increases in the speeds of these elements. In this section,
we apply algorithm I introduced in chapter 4 as an efficient and cost effective tool for detecting
bottlenecks in multichain QN models of distributed systems. The core of the detection algorithm, using
this approach, consists of the solution of a set of nonlinear equations.

6.4.1 Bottleneck Detection in Single-Class Networks
In a single class closed QN consisting of fixed rate and IS service centers with population vector
K and K = Y'K;, a service center m is referred to as a bottleneck! if

1=

Jimpn(K)=1. (6.4.1)

Once the bottleneck center is identified, asymptotic values of the mean throughput rate, service
center utilizations, and mean queue lengths are easily computed. The relationships that can be used to
compute the asymptotic values of these performance measures are given below. In these relationships,
using the definitions and the notation presented in chapter 3, L; = 6;s; ,i=1.2,...,.M , is the loading fac-
tor of service center i, and service center m is the bottleneck center. The derivations of these equations
can be found in {Kle76], [Kob78].

Jim A(K) = rl: (64.2)
Jim p(K)=F, i=12,.M, (6.4.3)
Jim Ni(K) = LML—iL; , i=12,..M. (6.4.4)

1 There may be more than one service center with this property.
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Clearly, the service center with the largest value of the loading factor L; ,i=1,2,..,M, is the
bottleneck center. Therefore, a simple technique for the detection of a bottleneck in a single class
closed queueing network is to search for the service center with the largest loading factor. This tech-
nique does not require the actual solution of the queueing network, but only the evaluation of the visit
ratios. An ordering of the loading factors will reveal the most utilized service center when the popula-
tion of the network grows large. Obviously, the ordering among the loading factors is the same as those
of the the utilizations. The computational complexity of finding the maximum loading factor is low,
since this operation requires M —1 comparisons.

6.4.2 Bottleneck Detection in Multichain Queueing Networks

In contrast to the case of single-class queueing networks, the problem of bottleneck detection in
multiple-class queueing network models is a difficult one, with many as yet unresolved questions.
Before discussing the problem, let us define some notation. In multichain networks, the concept of
population growth is not as clearly defined as in the case of single-class networks. Consider a mul-
tichain network with fixed rate single server and IS service centers. Let the population vector
K=K, ...,Kg)be such that K=K, where Y= (71,¥2, . . . , Yz ) is the population mix vector for the
multichain network. The following relationships hold:

K=5$K: y,:%; ﬁ;y,-=1. (6.4.5)

In multichain queueing network models, different population mix vectors v induce different
bottlenecks. Formally, a service center m in a multichain queueing network is considered to be a
bottleneck if Jim pn (K) = 1. If the number M of service centers is larger than the number R of classes,

there may be cases where up to R service centers become bottlenecks (for a fixed ¥ and as K —oo)
[Bal87]. Thus, in general, there are no known asymptotic values for the performance measures of mul-
tichain networks at the bottleneck centers, unlike what happens in the case of single-class networks.
There is an exception to this statement that we shall discuss later. Thus, a search for bottlenecks in
multichain networks can only be done by solving the network for a given population mix vector ¥ and
for sufficiently large values of K (i.e., as K—e0). The problem, however, is that solving the network
exactly for a large value of K and for a given population mix vector v, as we have seen, is likely to be
impractical and in most cases technically impossible. The approximate MVA-based algorithms we
introduced in chapter 4 are essential for solving networks with large X' and detecting the bottleneck
centers. More importantly, the computational complexities of algorithm I and algorithm II for very
large K, unlike those of the exact MV A solution, are independent of K. To clarify the discussion so
far, we consider two examples. Let:

OR M)=16;], i=12,.R, j=12,.M; (64.6)

O(R M) is referred to as the visit ratio matrix. Similarly, assume that the mean service time matrix is
denoted by:

SRM)=1[s;], i=12,..R, j=12, .M 64.7)

Consider the following visit ratio matrix:

445 .188 .188 .219
OR M)=| 400 .145 .137 317
364 223 165 .248

This visit ratio matrix represents a general multichain network (the routing probabilities can be
chosen arbitrarily as long as they satisfy the flow balance equations) with four service centers and three
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classes of jobs. Let us also assume that the service demand matrix is given by:

8.989 10.638 10.638 9.132
S(R.M)=|10.000 13.793 14.599 6.309
10.989 8.969 12.121 8.065

Solving the network by algorithm I given in chapter 4, and assuming a population mix vector
with y; =Yy, = - -- =7g, reveals that service center 1 is indeed the only bottleneck in this network
model. It was not possible to detect the bottleneck using exact solution techniques for this example,
since the storage requirement for an exact solution exceeds the available memory of the processor used
to solve the model. As a second example, consider the same visit ratio matrix, but a different mean ser-
vice demand matrix:

15.730 10.630 10.638 9.132
SRM)=| 5000 13.793 19.197 6.309
8.969 22.422 12.121 8.065

In this example, all the first three service centers become bottlenecks for the same population mix
considered in the first example.

The first example is a special case in which asymptotic values of the performance measures can
be computed. Balbo and Serazzi [Bal87] have shown that, if an ordering exists among the loading fac-
tors in a multichain queueing network containing fixed rate single server and IS service centers such
that, for some service center m,

Lm >L,j forall r=12,.,R, j=12,..,M,and j#m, (6.4.8)

then center m is the bottleneck center. Furthermore, the most heavily loaded center remains the
bottleneck no matter what the population mix vector v is. The following relationships for the asymp-
totic values of utilizations, mean throughput rates, and mean queue lengths hold in this case [Bal871:

. Ly '
p§ = Jim oy ()= [, r=12,.R, j=12..M, 64.9)
pfaﬂl = él—r)n“ prm (K) = ‘Yr, r=1>27-"7R ’ (6.4.10)
M’ = [}1—[)11: xr(K) =Y Il_’ r=1’2,'--,R ) (641 1)
Wl r212,.R, j=12,.M (64.12)

Ng = JimN,; (K) = -
Ly (1 - ‘;pu (K))

It is interesting to observe that the existence of an ordering among the loading factors of a service
center in a multichain queueing network implies the existence of the same ordering among the per class
utilizations and mean queue lengths as well. This can easily be shown using mean value analysis.
From the MV A equations given in (2.2.3) for non IS service centers, we can write:

gzv,,- (K) = gx,,- si(l+N;(K-e,) =K, , r=12, R (64.13)

We also know that:

gi. = %"7(%- r=12,..R, ij=12,..M. (6.4.14)
r; T/
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Substituting (6.4.14) into (6.4.13) will produce:

K. L,
PriK)= o .
Z;Ln' 3 (1+N;(K-e,)

, r=12..R, j=12,.M, (6.4.15)

which clearly shows that the same ordering exists for the per chain utilization values, i.e., the existence
of relationship (6.4.8) implies that the following relationship also holds:

Prm>pyj forall r=12,..R, j=12,..M, and j#m . 6.4.16)

Similarly, we can substitute the values given in equation (6.4.15) for p,; into the MVA equations

to get the following relationship for the per class mean queue length values:
N, (K)= Kby QA NE =) 15 R, j=12,.M (6.4.17)
S Lasa(1+Ni(K = e,))

Equation (6.4.16) and the ordering assumption on loading factors imply that:
Nm(K) > N,;(K) Sforall r=12,.,R, j=12,..M. 6.4.18)

The asymptotic values of the performance measures in a load independent network with only two
classes and two bottleneck centers has been derived in [Bal87]. But, as was noted earlier, no exact
technique for multiple bottleneck detection and the evaluation of the asymptotic values of the perfor-
mance measures in multichain networks is available.

We now introduce a general algorithm for bottleneck detection in multiple-class queueing net-
works. The most important step in this algorithm is the application of the MV A-based approximations
described in chapter 4.

(1) Evaluate the visit ratios for the given network.
(2) Check if an ordering such as that defined in (6.4.8) exists among the service centers.

(3) If an ordering exists among the loading factors of the queueing network, then the asymptotic values
of the performance measures can be obtained using equations (6.4.9) - (6.4.12).

(4) If no ordering exists, use algorithm I (or algorithm II) introduced in chapter 4 to solve the network
for a very large value of K, and determine the bottleneck centers.

(5) Evaluate the asymptotic values of the performance measures using algorithm I or algorithm II.

Note that the most crucial steps in the above algorithm are steps (4) and (5). Without the approx-
imate MV A-based algorithms, bottleneck detection is not possible in general.

6.5 Conclusions

In this chapter a decoupling algorithm for analytic modeling and simulation of large queueing
network models was proposed. The algorithm applies to muiticlass queueing networks with fixed rate
single server and IS service centers. It has potential applications in the modeling of nonproduct form
networks, such as those in which there is simultaneous resource possession. This algorithm is many
orders of magnitude less expensive than exact methods. The solutions it produces are asymptotically
correct.

Furthermore, bottleneck detection in single and multiple-class closed networks consisting of only
single server and IS service centers was investigated. A general algorithm for bottleneck detection in
these networks was introduced. This algorithm combines known results with algorithm I which we
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introduced in chapter 4. The algorithm may be used as a cost effective and computationally efficient
tool for bottleneck detection in queueing network models of very large distributed systems. Networks
with load dependent or multiple server service centers were not discussed in the section on bottleneck
detection. This is due to the fact that there are no universally accepted approximate solution techniques
for those networks.
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MODEL:IASCLOSE

NUMERIC PARAMETERS:K1 K2 K3 K4

NUMERIC IDENTIFIERS:¢1¢2¢3cdtl 121314 d1 42

c1:2.0, c2:1.2,¢3:1.0, ¢4:2.5,11:150.0,

12:250.0,13:450.0, 14:200.0, d1:1.0, d2:.1

QUEUE:cpulq TYPE:ps CLASS LIST:C11 C14G C14C C12G Ci12C
SERVICE TIMES:C1C4C4C2C2

QUEUE:cpu2q TYPE:ps CLASS LIST:C23 C24G C24C C22G C22C
SERVICE TIMES:C3C4C4C2C2

QUEUE:disk1q TYPE:fcfs CLASS LIST:D11 D14 SERVICE TIMES:d1
QUEUE:disk2q TYPE:fcfs CLASS LIST:D21 D24 SERVICE TIMES:d1
QUEUE:comq TYPE:fcfs CLASS LIST:COM2C COM2G COMA4C COMA4AG
SERVICE TIMES:d2

QUEUE:disk3q TYPE:fcfs CLASS LIST:d32 d33 SERVICE TIMES:d1
QUEUE:disk4q TYPE:fcfs CLASS LIST:d42 d43 SERVICE TIMES:d1
QUEUE:term1q TYPE:is CLASS LIST:tm1 tm2 SERVICE TIMES:1l 2
QUEUE:term2q TYPE:is CLASS LIST:tm3 tm4 SERVICE TIMES:t3 14

CHAIN:chainl TYPE:closed POPULATION:K1
tml->¢11,¢11->d11d21 tml;.1.1.8d11->cll, d21->cll

CHAIN:chain2 TYPE:closed POPULATION:k2 TM2->C12G,
C22C->D32 D42; 45 .55, D42->C22C C22G; .25.75
D32->C22C C22G; .25 .75, C22G->COM2C->C12C->TM2
C12G->COM2G->C22C

CHAIN:CHAIN3, YPE:CLOSED, POPULATION:K3
TM3->C23, C23->D33 D43 TM3;.12.12 .76
D33->C23:D43->C23

CHAIN:CHAIN4, TYPE:CLOSED, POPULATION:K4
TM4->C24G->COM4G->C14C, C14C->D14 D24; .5 .5
D14->C14C C14G; .22 .78, D24->C14C C14G; 22.78
C14G->COMAC->C24C->TM4

Figure 6.4 Parameters of the QN Model Shown in Figure 62.



- 104 -

~CQu0

S~ xal axmaxrld X

CPU1 Q-Length vs. Number of Users

309
ERESQ requirfes > 12: Mbytes for 48
1= 2 ICI= 2
2.5 4 ' ¢ ’
App:roxinzzate
E,(1s.00
20 : :
15
7S T —
Exact(RESQ)
0.5 4=
0.0 T T T T T T T T 1 i
o 6 12 18 24 30 36 4 48 54 6

Number of Users (K1+K2+K3+K4)
Figure 6.5




- 105 -

CPU1 Q-Length Error vs. Number of Users

~ O vy wn

2807~
24.0 4 0Q1=2,1C=2 i z _5,1:;11,“_____
20.0 -
16.0 ¢
12.0 4
%
8.0+
D e
i L E0NEDs00) ] 5
0.0 T Y T T T |
0 8 16 24 32 40 48

Number of Users (K1 +K2+K3+K4)
Figure 6.6




- 106 -

LA anly &~ CTwO

Time Complexity vs. Number of Users

14 T : ‘ . .
Al=All Jierations Exact (RESQ)
5 4....L=LastTieration ‘ : 3 ;
Ol= 2, ICl= 2
104 :
8 -
3 : $
4
o Approximate (Al)_.
o
A;iproxinga:te (LI) :
0 — T v T — "
0 10 20 30 40 50 60

Number of Users (K1+K2+K3+K4)
Figure 6.7




- 107 -

~O0 xw=xln

Error vs. Number of Iterations

28.0 9
? I0I=2,IC=2 |
K1+K24K3+K4= 48
2404 ¢ ; ;
E, )
20.0 4 4
16.0 4 H ‘
1204
8.0 4 '\ , : i
iCPUI Mean Waiting Time Error
‘ CPUI Mean Q-Jength Error
4.0 T 1 T T T T T
0 1 2 3 4 s 6 7

Number of Iterations

Figure 6.8




- 108 -

Chapter 7

Concluding Remarks

7.1 Summary

Performance modeling is one of the principle techniques available for the design, development, and
tuning of computer systems. Queueing networks have become an indispensable part of these processes.
A key challenge in computer performance modeling is the development of new approximate methods
and tools that keep the pace with the emerging new generations of systems brought on by the advances
in technology. In light of the growing complexity of these systems, approximate analytic modeling
techniques are becoming increasingly important. Approximation will play a vital role in meeting the
challenges of future complex distributed processing systems.

The main points and contributions of this dissertation are summarized below:

¢ In chapter 2 we started with a brief study of exact solution techniques for multichain QNs. By
examining the computational complexities of these techniques, we established the need for approximate
algorithms for solution of large multichain queueing networks. The MV A equations and the computa-
tional complexities for the solution of mixed and open multichain networks were then derived.

® Realizing the need for the development of approximate techniques for the solution of large
queueing networks, we carried out a comprehensive overview of the existing approximate techniques.
We observed that most of the existing MV A-based approximate algorithms lacked all the three main
objectives outlined in section 3.2. Computationally efficient and accurate hierarchical techniques are
almost nonexistent. We concluded that there is much urgent need for improving, extending, and
refining the existing algorithms as well as for introducing new ones. This was the fundamental motiva-
tion behind the work undertaken in this dissertation.

e In chapter 4, we proposed a new MV A-based approximation that applies to multichain product
form queueing networks consisting only of fixed rate single server and IS service centers. The algo-
rithm was shown to have a satisfactory accuracy, and to have the property that a unique solution in the
feasible region is always guaranteed. This much desirable feature is absent from several other MVA-
based approximate techniques. The accuracy and the computational complexities of the algorithm were
extensively studied. The approximations we have proposed realizes the three objectives outlined in
section 3.2 very adequately.
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e Hierarchical approximations are among the most promising approaches to the approximate
solution of queueing network models. Their most prominent feature is the gradual introduction of
approximation that commensurates with the cost and desirable accuracy. This aspect is in contrast to
most other approximate algorithms (MV A-based as well as asymptotic expansion) where the underly-
ing approximation is introduced right at the beginning. In chapter 5, we introduced a hierarchical
approximation based on transforming closed networks containing fixed rate single server and IS service
centers into mixed network. The computational complexities of the algorithm were derived and stu-
died. Experimental analyses were carried out to investigate the accuracy, stability, and computational
costs of the algorithm. The algorithm provides solutions that are asymptotically correct. One distinct
feature is its simplicity of implementation.

e Two applications of the results obtained in previous chapters were discussed in chapter 6. We
used the network transformation based approximation developed in chapter 5 as a basis for an efficient
and cost effective algorithm for decoupling submodels of certain queueing network models from the
rest of the model. An important step in studying and improving the performance of large distributed
systems consists of detecting their bottlenecks. Short of building expensive simulation models or of the
actual construction of different altemnative designs, modeling is a cheap first step to be taken. In chapter
6 we applied algorithm I, proposed in chapter 4, as an efficient and cost effective tool for detecting
bottlenecks in multichain queueing networks. The detection algorithm, using this approach, requires
the solution of a set of nonlinear equations.

It is hoped that the work presented here can be used as a platform upon which new and more
powerful queueing network modeling tools can be constructed.

7.2 Directions for Future Work

o The approximate algorithm we proposed in chapter 5 applies to the chains visiting an IS service
center in the network. However, as we noted in chapter 5, in the most general case some of the closed
chains may not visit any of the IS service centers in the network. The transformation based approxima-
tion does not apply to these chains. Hence, the computational complexities of the solution algorithm
can still exceed the available resources. The MV A-based approximations we introduced in chapter 4
(algorithm I and II) can be combined with the network transformation based approximation to solve the
resulting mixed network.

e Hierarchical approximation techniques provide for a smooth tradeoff of cost and accuracy.
Thus, hierarchical modeling and simulation techniques should be further exploited, refined, and
extended to include more general types of product form networks; for example, those with load depen-
dent or multiple server service centers or both.

e It is increasingly desirable that tight error bounds for approximate solution algorithms be
found. Except for the asymptotic expansion algorithm, no other approximate algorithm discussed in
this dissertation provides any error bound for the approximate performance measures.

¢ In the absence of any error bound, the accuracy of an approximation has to be verified experi-
mentally. This requires that consistent and comprehensive frameworks and standards be developed to
facilitate the validation process of approximate techniques, to identify when these approximations fail
and when they are successful. The process of validation should include stress networks.

* Most of the existing approximate algorithms we have discussed in this dissertation, including
those we have proposed, apply exclusively to product form queueing networks consisting only of fixed
rate single server service centers and infinite server service centers. Presently, there is no generally
accepted approximate methodology for product form networks with load dependent or multiple server
service centers. Attempts should be made to extend these algorithms to networks including multiple
server and load dependent service centers.

e Distributed computing systems modeling is in its infancy. A new gencration of tools for simu-
lation and analytic modeling of distributed systems ought to be designed and built. These tools must
include a multitude of approximate techniques to facilitate the performance analysis of these systems.
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Appendix A

We adopt the following notation throughout:

So(r), Sc(r)
R, (s5),Rc(s)
Prs
Ps

P,

2z

S

b

k)

S(K, M)

PR

S (Ao K M)

(K1,K2, ...,Kr) = population vector.
population of chain r (class r jobs).

total population of the closed network, K = f;K ’y
j=

set of service centers visited by chain r with property p (if no property,
p is omitted).
set of chains with property p that visit service center s.
number of open (o) or closed (c¢) chains.
mean service time demand of a customer of type r at service center s.
service rate of server s as a function of the number of customers, &, at
the center.
relative frequency of visits of a class r job to center s.
sr: 0,¢ = loading factor of class r jobs at service center s
(6,1,8,2, . . ., 8,5) = the vector of relative frequencies of visits for class
r jobs.
throughput rate of class 7 jobs at service center s.
throughput rate at service center s, A; = }‘z )7»,-:.

&

J
set of service centers visited by open (o) or closed (¢) chain r.
set of open (o) or closed (¢) chains visiting service center s.
utilization of service center (single server) s due to class r customers.
utilization of the single server center s, p;s = % )p s -
J 5

routing matrix of chain 7 (for non-hopping class networks).

mean number of jobs of class r at service center s.

mean number of jobs of all classes at service center s, Ny = E; Nijs.
JEK(s)

mean waiting time (including service time) of a chain r customer at
server s.

mean service time of all job classes at server s.

number of servers at service center s.

equilibrium marginal queue size probability of service center s.

r dimensional unit vector in the direction of r.

set of all feasible states of a closed network with M servers and popu-
lation vector K.

set of all feasible states of a mixed network with external arrival rate
vector A, , population vector K., and M service centers.

external arrival rate of chain » customers.

(Xo.1.X0 .2, . - - 1 A, z.) = external arrival rate vector.

probability of an external job of class r arriving at service center s.

Do 100 r2s - - - » Do rm ) = €xternal arrival probability vector of chain r.
the set of all positive integers.

(k15 k25 ,....krs ) = steady state vector of service center s.

(ki,kz, . . ., kyr) = equilibrium state vector of the network. Subscripts
indicate the service center.
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Appendix B

In this appendix we prove that the altenative forms for the normalizing constant of mixed networks
given in (2.4.9), (2.4.10), and (2.4.12) are the same.

Observe that:
( ~\‘)pu-) ¥ = %[kﬁ-,k&- ,kRg.:] iﬂs)(Pfr)kg = (B.1)
=% ut (p8)¥ =
el kslkgst - k2,,! ;ﬂ
_ (P2)*
& ik kel

where the second equality holds by the multinomial theorem. Substituting for (}‘z p{;)k’a in equation
ieK, (s)
(2.4.9) results in (2.4.10).
To show that equation (2.4.12) can be derived from (2.4.9), we rewrite (2.4.9) in the following form:

kg (kE+k)! (0558)% (1-p2)
G K= 5 TN S on Rt 1T SRk dofie 32)

(1 —Ps")
[ [ (1 pO)
observing that ﬂ (1-p¢ Wi = 1- p;’)k’, we can write:
JER(s)

where we have multiplied (2.4.9) by a term equal to =1. After simplifying the result, and

, (b oM 0F+57) &
G ko= s fentu-pn g 1T ﬁcfﬁ - ®3)
We multiply the right hand side of equation (B.3) by a term equal to :c, =1. This results in:
ke ks (KEHRD)! O 1350)”
G K= 5 Tlena-en okt [T —pr— (B4)

The state vector of a mixed network keS (A, K., M) is of the form k = (k¢ k°). Each element of
vector ke varies from zero to infinity. We can write (B.4) in the following form:

o e ( )k"( )k (k +k ) Msths ) (ejs 1sj; )” (B 5)
Y (1-ps e ks! —_— .
kfku;-() kg,z=o»f= P P keke ﬂs) kjs!
(eﬁ\‘ T{E__) ).r
For all values of s, the terms &¢! ﬂ —TC-C—F,zi— are independent of open chain states. From the
J A
binomial theorem we know that:

kE+ks ko+kE

Son e Glr <[+ aopn) F =1, ®6)

Therefore, except for the case when ££=0, all the summations over the open chain state vector add up
to 1. When the k¢ terms are zero for each s, the summation in (B.6) is the same as Z(p;’) (assum-
kg

P
ing that p¢<1 for all ). Using these results, equation (2.4.12) can easily be obtained.






