A Multiple-Representation Paradigm
for Document Development

Pehong Chen

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California

Berkeley, CA 94720

July 1988

A dissertation
submitted in partial satisfaction of
the requirements for the degree of
Doctor of Philosophy in Computer Science in
the Graduate Division of

the University of California, Berkeley.

Copyright ©1988 by Pehong Chen

A Multiple-Representation Paradigm

for Document Development

Pehong Chen

Computer Science Division
University of California
Berkeley, CA 94720

July 5, 1988

Abstract

Powerful personal workstations with high-resolution displays, pointing devices,
and windowing environments have created many new possibilities in presenting information,
accessing data, and efficient computing in general. In the context of document preparation,
this workstation-based technology has made it possible for the user to directly manipulate a
document in its final form. The central idea is that a document is immediately reprocessed
as it is edited; no syntactic constructs are explicitly used to express the desired operations.
This so-called direct manipulation approach differs substantially from the traditional source
language model, in which document semantics (structures and appearances) are specified
with interspersed markup commands. In the source language model, a document is first
prepared with a text editor, its formatting and other related processors are then executed,
usually in batch mode, and the result is obtained.

A complete document development process involves a number of subtasks rang-
ing from authoring, reading, filing, to printing. There are certain aspects of document
development that are best-suited to a source-language approach while others are easier to
deal with using direct-manipulation techniques. A hybrid paradigm combining the best of
both approaches seems most desirable. In such a hybrid system, a document has at least
two representations: a source representation with embedded commands that yields flexible
high-level abstractions, and a target representation displaying an object’s final appearance

that gives precise placement and orientation in response to direct manipulation.

Simultaneously maintaining more than one user-manipulable representation of the
same document is not an easy task. In particular, the historically batch-oriented processors
that correspond to source-to-target transformations would have to be made incremental.
Furthermore, there must be a systematic way of mapping changes from the target represen-
tation back to the source representation. Finally, an effective intermediate representation
needs to be derived in order to make transformations in both directions possible.

Another interesting issue concerns the integration of system components. Because
a complete ‘document-development environment involves many tools and processors, it is
important to make the system “seamless”. A coherentset of user interfaces is also imperative
so that context switches between different subtasks can be reduced to a minimum.

In this dissertation, the concept of multiple representations is first examined. A
complete document development environment’s task domain is then identified and sev-
eral aspects of such an environment under both source-language and direct-manipulation
paradigms are compared and analyzed. A simple but robust framework is introduced to
model multiple-representation systems in general. Based upon this framework, a top-down
design methodology is derived. As a case study of this methodology, the design of VORIEX
(Visually-ORiented TgX), a multiple-representation environment for document develop-
ment, is described. Focuses are on design options and decisions to solving the problems
mentioned above.

Specifically, the design and implementation of VORTEX’s underlying representation
transformation mechanisms in both the forward and backward directions (i.e., the incre-
mental formatter in the forward direction and the reverse mapping engine in the backward
direction) and the integration techniques used are discussed in detail. A prototype of the
VORTEX system has been implemented and it works. Finally, this multiple representation
paradigm for document development is evaluated and the underlying principles with impli-
cations to other application domains are discussed. Some research directions are pointed

out at the end.

L’?}Quw &’ /715(/\/'2‘,{/)61/\
5 W] 198%

To my wife Adele,
my sons Albert and Nelson,

who went through all this with me.

Acknowledgements

I am most indebted to my research advisor, Michael A. Harrison, for being a source
of guidance, advice, support, and encouragement. To me, Mike is a teacher and a friend.
I would like to thank Richard Fateman and Michael D. Cooper for serving on my
- qualifying and thesis committees, and Susan L. Graham and Paul N. Hilfinger for serving
on my qualifying committee. Many discussions with them have generated enlightening ideas
and have kept my work on track.

I gratefully acknowledge crucial contributions to this project from my colleagues in
the VORTEX group. They are: John L. Coker, Jeffrey W. McCarrell, Ikuo Minakata, Ethan
V. Munson, Steven J. Procter, and Peter Vukovich. Without their ideas, experience, and
diligent work, the project would not have progressed so smootlily. Special thanks must go to
Tkuo, who worked closely with me in the past several months to implement the incremental
formatter. I would also like to thank Pat Monardo for devoting his time to CommonTEgX, a
faithful translation of TEX from Pascal to C, upon which the VORTEX incremental formatter

"is based. '

My wife Adele deserves my warmest thanks and gratitude for her love, patience,
and support during the years of my graduate study.

I would like to express my gratitude to the various institutions that have supported
my research through generous graduate fellowship grants. From 1983 to 1984, I was sup-
ported, in part, by a grant from the Chinese American Education Foundation in Chicago.
From 1985 to 1986, I was supported by the state of California MICRO (Microelectronics
Innovation and Computer Research Opportun}ties) Fellowship. During the academic years
1986 to 1988, I was supported by an IBM Graduate Fellowship. The VORTEX research has
been sponsored by the Defense Advanced Research Projects Agency (DoD), ARPA Order
No. 4871, monitored by Space and Naval Warfare Systems Command, under Contract No.

N00039-84-C-0089.

Contents

Table of Contents i
List of Figures iv
List of Tables vi
1 Introduction 1
1.1 MOIVAtION .+ & v v v e 1
1.2 Research Goals . . . v v v v v it i e e e e e e
13 RoadMap e e e e e e e e e e 5
2 Basic Concepts 8
2.1 Multiple Representation Systems oo oo e 8
2.2 Procedurality versus Declarativenesso 9
23 TheChoiceof TEX . . . v v vt v v v v it e e P 10
2.3.1 Strengths of TEX o o v vt v v e 11
2.3.2 Weaknesses of TEX . . . o v v o vt o v v v v e e 12
2.4 Interactive Editing o o o v ot e 13
2.5 Incremental Compilation« v v v vt 15
2.6 Document Development versus Program Development 16
3 Document Development 19
31 TaskDOMAIN - o v v v v v v e v v e e e e e e e e e 19
32 Prosand Cons — A COmMPATiSON . . « v« « v v v v oo oo oo e 21
3.2.1 TextEditing oo v vt v i i 22
3.2.2 Graphics Specification e 22
3.2.3 Formattingand Layout 28
3.9.4 Pre- and Post-Processing« « oo e e .. 31
3.2.5 Imaging, Filing, and Interchange oev v 32
3.2.6 Annotations/Narrations and Dynamic Reading- 34
4 Design Methodology 36

i

5 Functional Specification 44
5.1 TextEAiting . . . v v v v v v v v vt i e 44
5.2 Graphics Specification Lo 45
5.3 Formattingand Layout ioe s 45
5.4 Reverse Mapping . .« « v v oo v v v vt et it e 47
55 Pre- and Post-Processing o oo oo e s 50
56 Imagingand Filing oo oot 50
5.7 Dynamic Reading« ot v vi vttt e 50
58 Imtegration 51

8 A VORIgX Prototype 53
6.1 System Structureo e 54
6.2 The Principal Trio v v v v it 56
6.3 Communication Protocols v i e 58
6.4 Synchromization« 63
6.5 Internal Representation oo i 64
6.6 Accessing Internal Representationo 72
6.7 Realizing Reverse Mappingo oo v ie e 74

7 Incremental Formatting 82
7.1 Principles of Incremental Processing oo 84

7.1.1 Dependence e e e e e e e e e e e 85
T1.2 PertiDeNCe . . « v o v v v e e e e e e e e e e e e e e e 88
7.1.3 Quiescence and Convergenceo 89
7.1.4 Checkpointing v vt i 90
7.1.5 AnExample e 93
7.1.6 Augmentationo e et e .. 94
7.1.7 SUMINATY .+« « v o v o v v v e v oo oo e et e e e 94
79 GeneliC ISSUEE . « v v v v v e v e e e e e e e e e e e 95
721 EditorEvents v it o it e e e 95
799 Incremental Formatter« v o v v e e e 96
7.2.3 Tracking Convergence — The Multipass Problem 98
7.3 A Practical Application: VORITEX « - - -« « v v v v v oo m i e e 102
731 TopLevel . . . oo vt e e 104
73.2 Displaying. o o e 105
7.3.3 Simple Formatting« .. . oo e 106
7.3.4 Quiescence Considerations oo oo 109
735 Cost Analysis o o oo 112
736 Refimements« v« v v v v v e e e e e e 113

8 System Integration : 115

8.1 Integration Mechanisms oo v ve oo 117
8.1.1 Strong versus Weak Integration e e e e e 117
8.1.2 Integration Under Broader Scopes« 118

8.1.3 Integration under VORTEX - . + « « « « v o v v v v oo e e e 120

iii

8.2 Compound Objects . . . o« v v v v v v 121
8.3 Document Structure ¢« v v oo ot i e e e 122
8.4 Interactive Activities v« o oo e 123
8.4.1 Bibliography Makingo oo 124

8.4.2 Index Preparation ov oo 129

84.3 Job Control . . v . i e e e e e e e 130

84.4 Generalization v o v v v o v e e e 130

9 Evaluation : 132
9.1 Evaluating the VORTEX Prototype« v ovvvvoeoe e e 132
9.1.1 Satisfying Design Decisions oo 133

9.1.2 TgX Compatibilityo oo v v 138

9.1.3 Heap Consumption« « oo v v vt 139

992 Related Work v o v v v e e e e 141
0.2.1 JANUS « « o e o e et e e e e e e e e e e e e e e e e 141

922 QUIll .+t e 142

923 EZ o o e e e e e 142

094 Tweedle . . . v v v v v it e e e e e e e e e 143

025 LiaC & v v v v o et e e e e e e e e e e e e e e 143

926 INFRR. . .. oot vt 144

9.3 A Comparative Anmalysis« oo it 145
9.3.1 Multiple Representationso 146

9.3.2 Inter-Representation Tra.nsformatmns 147

9.3.3 Incremental Processingo oo e o 149

9.3.4 Integration Mechanisms oo oo e 150

10 Conclusions and Future Work 153
10.1 Possible Enhancements v v v v v v e it e 154
10.2 Future Directions « ¢ v v v o v o e e e e e e e e 156

A F o SE Protocol Specification 158
B F « TE Protocol Specification 162
C Internal Representation Specification 165

Bibliography 170

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1
- 4.2
4.3
4.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

SIOOPY « « « v v e e e e e e e e e e e e e e e 22
Layout of windowed text o . oo 23
Rotated circles v v v i i i e e e e e e e e e e 24
Recursive SMOODY « « « v v v v v v v e e e e e e e e e e e 26
Producing windowed text in TEXo oo 30
Fundamental structure of multiple representation systems 37
Task and representation domainso oo 39
Graphical representation instantiation of Emacs 42
Representation instantiation of Tweedle’s graphics specification 43
Representation instantiation of VO{IEX’s formatting and layout. 46
Reverse mapping of pagelayout oo 47
VORIEX system structureo v 54
Interconnection and functional responsibilities of the VORTpX trio. 57
VORTEX s internal source representation (IRs)o« v oot 65
VORLEX s internal source and object representation (IRsu Tl Ro) 67
VORTEX’s internal target representation (I Rr) . i 68
Changing font foraregiono v i 7

Removing all font information from a region ST
Rearranging group structure in a region e 78
Full treatment of region font change (case 1) 79
Full treatment of region font change (case 2) 80
Caller/callee name dependence 85
Cross-referencing attribute dependenceo 87
Incremental processing and checkpointingo 91
Dynamic shifting of quiescence checkpoints 92
A generic incremental formatter top levelo 95
A generic incremental formatting algorithm e e e e e 97
Top-level control loop of VORTEX’s incremental formatter 105
Displaying a Page . - « « v v v oo e e e e e e e 106

VORIEX's foreground formatting routine, the simplified version 107

iv

7.10 VORIEX’s background formatting routine, the simplified version 109
7.11 VORIEX’s foreground formatting routine, the enhanced version 110
7.12 VORIEX’s background formatting routine, the enhanced version 111
8.1 A skeleton bibliography entry of type INBOOK.« v v v v oo e v 125
9.1 A snapshot of the current VORIgX prototype 133
9.2 Target-level font change operation in action (before) 135
9.3 Target-level font change operation in action (after) 136
9.4 A running headline defined in TEX oo v 144

9.5 A running headline defined in INFgRo 145

List of Tables

6.1 Packet header of VORIEX's inter-process communication protocols 58
6.2 Protocol for “source editor — formatter” communication 59
6.3 Protocol for “formatter — source editor”™ communication 60
6.4 Protocol for “target editor — formatter” communication 61
6.5 Protocol for “formatter — target editor” communication 62
6.6 Classes and types of nodesinthe IRpo v v v en e 66
6.7 Bit allocation for the TR box identifiers. oo v oo 69
6.8 Classes and types of boxesinthe IR v oo 71
6.9 Primitives for accessing VORTEX’s internal representation 72
6.10 Return packages of bounded searcho e 73
9.1 Internal representation occurrence distribution 139
9.2 Internal representation overall heap consumption 139

vi

Chapter 1

Intro duction

1.1 Motivation

The history of applying computers to document preparation and processing can
be traced back to thé 1950’s. Most of the early systems were simple-minded compared
to today’s standard. At that time, processor cycles were expensive, memory was a scarce
resource, and monofont line printers were the onl.y.commonly available output devices. As
technology advanced, there has been a significant amount of work done in text process-
ing and document preparation systems in the past 10 to 15 years. A landmark in this
development was the 1981 ACM symposium on text manipulation, which summarized the
state-of-the-art research of the late 1970’. A later survey done by Richard K. Furuta et
al. [56] provided detailed classifications on document formatting systems known at approx-
imately the same time frame. This dissertation research has been inspired by a number of
these systems plus several newer ones.

Two different trends can be observed in the development of document prepa-
ration and processing systems. In one, which can be called the source-language model,
documents are prepared with interspersed formatting commands. The system is then run,
usually in batch mode, and the results observed. Typical processors of this type include
nroff /troff [106] and the associated UNIX subsystems and preprocessors {85]. The high
point of this model in terms of output quality has been Donald E. Knuth’s TgX [87] and
affiliated processors. The basic versions of troff and TEX are procedural, in which the user
possesses fine control over how the formatting ought to take place. In contrast to this ap-

proach, another important scheme in the source-language model is typified by Scribe [112],

1

which allows documents to be specified declaratively as logical entities. The declarative
approach also includes the set of so-called generic markup languages like GML [60], which
was first developed at IBM, and has evolved to SGML [61] as an international standard en-
dorsed by the American National Standard Institute (ANSI) and the International Standard
Organization (ISO).

With the advent of powerful personal workstations featuring high-resolution dis-
plays, pointing devices, and windowing environments, new possibilities were created in
information presentation and manipulation, data accessing, and efficient computing in gen-
eral. In the context of document preparation, this workstation-based technology has made
it possible for the user to directly manipulate a document in its final form. The central idea
behind this so-called direct manipulation model (75,123], which is the second trend of devel-
opment being considered here, is that the user manipulates a document’s final appearance
directly by invoking built-in operators available in the form of menus, palettes, buttons, and
so on; no syntactic constructs are explicitly used to express the desired operations. These
systems are highly interactive; the result of invoking an operation is instantaneously ob-
served, thereby creating an illusion that the user is “directly” manipulating the underlying
object. ' V

Derived from the Bravo editor [92] at XEROX Palo Alto Research Center (PARC),
subsequent systems such as Etude [69,76], Pen [5], Mint [71], Tioga (in Cedar) [130], An-
dra/Lara [67,66], etc. have been developed at various research institutions. Also, with
personal computers and workstations becoming commonplace, a number of commercial
products like Star [140], MacWrite [10], MicroSoft Word [99], PageMaker [4], Ventura Pub-
lisher [135], Interleaf Publishing System [78], FrameMaker [52] and more have already pen-
etrated many homes and offices.

One common feature of direct-manipulation document preparation systems is that
editing and formatting are strongly integrated. Furthermore, document semantics, such
as page layout attributes, are specified by a declarative language, which can be usually
encapsulated as form-based property sheets. These property sheets correspond to certain
textual markup tags, which may be imported to or exported from the direct-manipulation
system for document interchange purposes. While a source representation is maintained
explicitly in the source-language model, the notion of a document semantics specification
language is somewhat implicit in direct-manipulation systems.

Each of these trains of development has important advantages and disadvantages.

By and large, the output quality produced by source-language based systems is higher than
that by direct-manipulation editors. This is because most source-language based systems
are rooted upon a batch-oriented document compiler. Being batch-oriented gives them
the unique advantage of exercising global considerations in formatting strategies, which, in
terms of output quality, yields a better optimized end result. Direct-manipulation systems
are limited in this respect, by certain performance requirements in terms of response time.
Quality is frequently compromised as a result.

Another important advantage of the source-language model is the “expressiveness”
provided by symbolic languages. Suppose a document processing system is a set of oper-
ations defined on a collection of objects. With respect to simple operations there may be
little difference between the two models. The major difference becomes noticeable in cases
where higher level abstractions such as macros, mathematics, and conditional structures,
are required. These are normally available as first-class citizens in a document formatting
language. In most direct-manipulation editors, handling complicated cases like these are
either impossible or very cumbersome.

On the other hand, the most common criticisms against source-based systems are
(1) the unnecessary overhead they always pay in reprocessing a document with minimal
changes, and (2) the low degree of interaction and poor interface they have with the user.
It is in these areas that the direct-manipulation approach seems preferable. As highly in-
teractive systems, direct-manipulation editors are incremental in nature; they only perform
the minimal work required to reprocess a document. They must also provide a good user
interface so that the user can directly and efficiently manipulate different objects.

Superficially, the differences between the source-language model and the direct-
manipulation model seem to stem from the degree of interactiveness and the level of in-

tegration. The former is the canonical interpreter versus compiler issue; there is nothing
prohibiting a document composition language from being incremental or interpreted to gain
better interactive behavior. Integration is not the dominating issue either; with proper ed-
itor support, it has been shown that an effective integrated environment based on batch
processors can be created [42].

A major distinguishing factor, therefore, is the explicit user manipulation of the
document target appearance versus the manipulation of a programmable language represen-
tation. Advocates of the direct-manipulation model claim that such systems bridge the gap

between the user’s perception and the actual task domain, and that such systems relieve

the user from any concern with detail and are very easy to use. On the other hand, critics
argue that the friendly user interface comes at the expense of generality and flexibility, or

in another word, “power”. If none of the two models is perfect, is there another alternative?

1.2 Research Goals

The analysis above strongly suggests a different direction, which calls for a hybrid
paradigm that employs multiple representations. A multiple-representation system can take
advantage of the strengths of each model and complement individual weaknesses. There
are certain aspects of document development that are best suited to a source-language
representation, while others are easier to deal with using direct-manipulation techniques.
Direct-manipulation user interfaces can be viewed as simply another class of specification
languages. By blending a variety of languages, including that of direct manipulation (encap-
sulated as palettes, menus, etc.) in an integrated environment, the user interface becomes
a matter of choice, dictated by convenience or preference. In such a hybrid system, a doc-
ument has at least two representations: a source representation with embedded commands
that yields flexible high-level abstractions, and a target representation displaying an ob-
ject’s final appearance that gives precise placement and orientation in response to direct
manipulation.

Simultaneously maintaining more than one user-manipulable representation of the
same document is not an easy task. In particular, the historically batch-oriented processors
that correspond to source-to-target transformations would have to be made incremental.
Furthermore, there must be a systematic way of mapping changes from the target represen-
tation back to the source representation. Finally, an effective intermediate representation
needs to be derived in order to make transformations in both directions possible. Further-
more, document development is not confined to editing and formatting per se. A complete
document development process involves a number of subtasks that range from authoring,
reading, filing, to printing. An ideal paradigm should be able to create an extensible envi-
ronment that would allow the bulk of these subtasks to be handled coherently.

It was with these principles in mind that the the VORIEX (Visually-ORiented
TgX) project was begun. The mission is to study the multiple-representation approach to
document development. Its research goals were stimulated by the observation of a number of

conflicts. As if they were inherent in the tasks involved, polarized approaches to document

development can be found along four orthogonal dimensions:

1. Document specification: source language versus direct manipulation, which translates
into maintaining program constructs and high-level abstractions versus possessing
precise object placement and orientation. As pointed out above, the source language

approach is more expressive, while the direct manipulation approach is more reactive.

2. Document evaluation: quality or immediate response? The former focuses on global
considerations and optimal results, which often turns out to be slow in response time.
The latter emphasizes immediate evaluation and quick response, and, unfortunately,

may have to settle for local considerations and mediocre quality.

3. Degree of detail: how versus what, or procedurality versus declarativeness, which is
related to the issues of flexibility and fine control on the one hand, and those of logical

entities and document styles on the other hand.

4. The glue: strong integration versus weak integration, which combines everything into
a monolithic system in one extreme, while exploiting divide-and-conquer with some

simple sharing in the other.

A fundamental question concerns whether a polarized situation is absolutely inevitable.
The most desirable paradigm may be a compromise, which takes advantage of the strengths

of the rival approaches. The primary objective of the VORTEX research is to investigate this
fundamental question, to resolve these inherent conflicts, and to come up with compromises

that reflect sensible solutions to the problems posed above.

1.3 Road Map

The next chapter introduces some basic concepts that underly document develop-
ment. It defines the notion of multiple representations, compares procedural and declarative
approaches, and explains why TgX is chosen as the base language. Chapter 2 also covers
a few important issues encountered in program development environments that are related
to document development. In Chapter 3, a complete document development environment’s
task domain is identified, and several aspects of such an environment under both source-
language and direct-manipulation paradigms are compared and analyzed. It indicates which

aspects of document preparation are more conveniently handled under which model, and

discusses several approaches to the hybrid paradigm that exploits multiple representations.
A simple but robust framework is presented in Chapter 4 to model multiple representation
systems in general. Based upon this framework, a top-down design methodology is derived.

As a case study of this methodology, Chapter 5 describes the functional specifica-
tion of VORTEX, a multiple-representation document development environment. Chapter 6
describes the design and implementation of a VORTEX prototype system; the focuses are on
internal structure and reverse mapping. Chapter 7 covers the principles of incremental pro-
cessing, and specifically, the strategies and their tradeoffs used in VORI'EX. Next, integration
mechanisms and the techniques employed by VORIEX are analyzed in Chapter 8.

The VORTEX project is not the first to recognize the importance of maintaining
multiple representations in a system. Earlier work on multiple-representation systems spans
a wide spectrum, among which Janus [30] is a document composition system, Sam {134]
is a VLSI layout editor, and Juno [104] is an interactive graphics editor. As others have
come to realize this new trend [23,26), systems like Tweedle [11}, Lilac [27], and Quill {32]
have been developed independently and concurrently with the VORTEX project. There are
very interesting commonalities and differences in the approaches taken by these systems in
tackling thé multiple representation and other document development problems. References
to these systems can be found throughout this dissertation.

Chapter 9 comprises three parts: in the first part, VORTEX’s multiple represen-
tation paradigm and the prototype is evaluated in terms of design and implementation
tradeoffs, as well as what may be improved. In the second part, a number of related sys-
tems are briefly described in terms of their design and functionality. The the last part, an
analysis is given that compares VORTEX with a number of systems, including those men-
tioned above. In conclusion, Chapter 10 highlights the contributions of this research and
points out some underlying principles that may be of interest to other application domains.
It also indicates possible extensions to the system and raises potential research issues that
can be pursued further. ’

VORIEX is a rather complex system. Its implementation involved extensive group
efforts. This dissertation describes the work for which I have been responsib’e including
the underlying multiple-representation paradigm, the conceptualization of the system and
its overall design, and a prototype implementation of the incremental formatter and the
pre- and post-processing facilities. Several other people have also contributed to VORTEX.
John Cok.er is responsible for the VORTEX source editor and its Lisp interpreter. Steve

Procter is the primary person behind the VORTEX target editor, to which Peter Vukovich
did some extensions. Jeff McCarrell worked on an early version of the target editor. Ikuo
Minakata helped in the implementation of the incremental formatter. Ethan Munson has
been extending one aspect of the pre- and post-processing facilities, namely bibliography
processing.

Several papers and technical reports have been published during the course of
this dissertation research. Materials presented in Chapter 3 through Chapter 5 have been
published in Reference [41], which deal with the multiple-representation paradigm. An
carlier design specification of VORTEX appears in Reference [38]. The design of the pre-
and post-processing facilities is described in Reference [42] and a more complete report is
published as Reference [39]. References [35,36] are user manuals of the facilities. As part
of these pre- and post-processing facilities, the design of an indexing system is reported in

Reference [40].

Chapter 2

Basic Concepts

2.1 Multiple Representation Systems

Many large-scale software systems are multiple representation systems in the sense

that they often deal with different representations of the same ob jects. Each representation

~ usually corresponds to a different level of abstraction in terms of the computation it de-

scribes. For instance, the purpose of a compiler is to translate a computation described by

a high-level language to a sequence of machine instructions. As a special case, a document
compiler transforms an object (the document) from its original source form to a formatted
target form, with the printer description language being the set of machine instructions.
The multiple representation problem [109] has to do with how to systematically
carry out the mappings among the different representations of the same object. Depending
on the nature of a system, some of the mappings are easier than others. A good example
is the traditional asymmetric translation of programming languages. Here, information
incorporated in a high-level language program is decomposed into low-level machine code.
Although the computation represented by the program itself is preserved algorithmically,
the syntax and semantics of its high-level construct are often difficult to recover. Besides,
the target representation in this case is generally not human-readable; manipulating it
requires a great deal of wizardry. On the other hand, there are cases where the mappings
are more symmetric. Document formatting, for one, is a transformation that deals largely
with text and appearance specification commands. Modifying the target appearance has a
natural correspondence with the source commands used to describe the same effects.

Aside from the issue of symmetry, in early days we were confined by the lack of

an effective scheme for manipulating more than one representation at once. However, new
technologies have emerged to balance the situation. In the world of document development,
for example, it has become possible to preview or even modify a formatted document on
the screen the same time its unformatted source is being edited. The ability to maintain
and present both representations at the same time opens many doors to new research in
text editing, document processing, and user interfaces.

This research derives a model of document preparation, in which both source
and target representations of a document are explicitly presented to the user via a set
of cooperating editors. An incremental formatter provides the necessary transformation
from source to target. A reverse mapping facility propagates changes made to the target
appearance back to the source. Moreover, the editing of non-textual objects such as tables,

graphics, and raster images is an integral part of the environment.

2.2 Procedurality versus Declarativeness

Document processing systems can also be classified according to their “degree of
procedurality”, which refers to the granularity of control the user is allowed to possess over
a specific task. Equivalently, one can think of this as the amount of information a system
must know a priori in terms of the document’s style and structure. Consider formatting as
an example. At one end of the spectrum, there is what may be called the pure procedural
scheme, which requires the user to specify exactly how the formatting ought to be carried
out at the physical layout level. At the other end is the pure declarative scheme, in which
the user specifies just what a document should be at the logical level; formatting details
associated with various document styles are hidden from the user.

There are pros and cons for both schemes. The first consideration is the issue
of device independence. Descriptive systems like SGML [61] achieve device independence
by associating different formatting functions for different devices to the same document
style. Device independence here means the same source document, when processed with
the right formatting procedure, can be printed on a wide range of devices from line printers
to high resolution typesetters. Rather than maintaining it explicitly at the source level, a
procedural system realizes device independence by generating its output in some generic
format (e.g., the DVI format [53] in TEX or the ditroff [84] format in troff), which can

then be translated to a variety of device (printer or screen) languages. The premise here is

10

that the capabilities of these devices are comparable and the fonts used by the formatter are
available on these devices. Device independence, in this respect, guarantees thrixt exactly
the same output can be produced on comparable devices with resolution being the only
difference.

The merits of the declarative scheme are that it provides a logical structure for
complex documents and it relieves the user from dealing with details of formatting. The
system is normally more compact and thus easier to implement. The major limitation,
however, is with its rigidness. To manipulate document styles the user must master a set
of functions different from what is used for document composition. Hence, it is generally
difficult for a casual user to perform fine tuning if the formatted result is unsatisfactory. A
direct manipulation approach is more appealing in this respect. Instead of programmingin a
meta-language for defining the style, all declarative attributes can be encapsulated in prop-
erty sheets with an obvious form-filling user interface. Then the question becomes whether
or not every bit of detail in controlling the formatting information can be parameterized
declaratively.

In contrast, it is in the issue of fine control that a procedural system demonstrates
its strengths. Another unique advantage of a procedural system like TEX is its extensibility:
macros can be used to define high-level structures or even emulate declarative properties
(e.g., ITEX [91]). On the other hand, emulating procedural properties in a declarative
system like SGML is very difficult. The tradeoff here is “power” versus “ease of use”. The
two schemes seem to complement each other in many respects. In any event, the degree of
procedurality serves as a basis for evaluating different approaches of the hybrid model in

document processing.

2.3 The Choice of TEX

TEX is chosen to be the base language of VORTEX for a number of reasons, which
center around its unique strengths!. Unfortunately, TEX has weaknesses as well, primarily
because it is based on a batch-oriented software technology. This section highlights some

of the important advantages and disadvantages of TEX that underline the motivation for
VORITEX-

1 Besides the practical reasons that TEX is in the public domain and is in wide-spread use.

11

2.3.1 Strengths of TEX

TgX has outstanding algorithms for dealing with the basic problems of comput-
erized typesetting. In particular, the line breaking algorithm [90] is excellent and the hy-
phenation algorithm [93] gives impressive results for relatively small table sizes.

An important contribution of TEX is its simple and effective model of text for-
matting. Traditional typesetting technology has the notions of slug, boz, gap, galley, and
page. A slug is the piece of text that forms a single line. A boxis a collection of slugs that
represents a textual unit such as a paragraph, a heading, or a caption. Gaps are inserted
between slugs to adjust the inter-line spacing. Finally a galley is a long tray of boxes, which
represents the formatted document before it is broken into pages. This model is generalized
by TgX so that it is better suited for computerized document production. TEX makes up
pages by pasting together bozes with glue. A page box is composed of paragraph boxes,
each of which comprises boxes of lines, each of which is made of word boxes, each of which is
a collection of individual character boxes. All these bozes are pasted together using pieces
of glue. By cleverly parameterizing these two types of abstract objects,? TEX makes it
possible for its formatting algorithms to yield outstanding results. This model has clearly
influenced some later systems like Etude, Pen, Quill, and Lilac. VORTEX is committed to
getting the highest possible quality and is 100% compatible with TEX.

TEX’s greatest strength is its handling of mathematics. It is in processing math-
ematics that the advantages of a source-language based system like TEX become very no-
ticeable. In the early stage of this project, an experiment was conducted to compare the
work involved to typeset a page of complicated mathematics from a textbook. It was not
difficult to accomplish the job using TEX. On the other hand, with XEROX Dandelions avail-
able, the same page was typeset using its Star [140] text processing facilities. It took much
longer, and the results were very disappointing in terms of appearance. Direct-manipulation
equation editing has improved significantly since Star. Systems like the Expressionist on
the Apple Macintosh allows mathematical equations to be entered by plagiarizing (i.e., by

copying template formulas from what is available in system database). It also supports

2A box is a rectangular object with three parameters: height, width, and depth. These are referenced
with respect to a base line and a reféerence point at the left of the base line. Glue has three attributes:
natural space, stretchability, and shrinkability. When making large boxes out of smaller ones, TEX will
stretch or shrink each piece of glue involved in proportion to its associated stretchability or shrinkability.
See Reference [87] for detailed definitions and explanations.

12

some internal structure for editing purposes (not necessarily for manipulation purposes).
For instance, when the upper bound of an integration is expanded, the integral sign en-
larges automatically. In an environment like the Macintosh where inter-application data
exchange is done via a global clipboard, the output of an equation editor is normally copied
into a document editor as an opaque box. The user is normally not allowed to touch this
equation as a text image in the document editor, although rescaling may be permitted.
Such arms-length interrelations make it hard to keep equations, equation-numbering, and
text integrated. This is not a problem in TEX because equations and document text are
processed by the same processor. VORIEX inherits the full equation handling capability
from TgX in the source representation, although under the current prototype an equation
is also treated as an opaque box in the target representation.

Some additional features of TEX are worth mentioning, one of which is the concept
of the device independent (DVI) file format (53] that gives the same results on different
output devices, and the only limitation is the resolution of the device. VORIEX maintains
an internal representation that incorporates more information than a DVI file does. For
example, a physical document structure in terms of page, paragraph, word, and character is
supported by the VORTEX internal target representation, but not by the DVI representation.
Each node in the VORTEX internal representation is typed for prompt interactive processing.
Again, this information is missing in the DVI representation. However, a DVI generator
can be supported in VORTEX to transforms the complete or partial internal representation
into DVI files3. Another important feature of TEX is its macro facility, which, among other
things, allows one to simulate declarative properties discussed in Section 2.2. A major

portion of VORTEX’s semantic routines is devoted to handling macro expansions.

2.3.2 Weaknesses of TEX

TgX is oriented toward a batch environment. It integrates only loosely with text
editors and does not integrate at all with a number of supporting programs such as bibliog-
raphy preprocessors, the spelling checkers, and various device drivers including any screen
previewers. In a preliminary study {42}, it has been demonstrated that the TEX document

preparation environment can be greatly improved in terms of its throughput by integrating

3The current version of VOEIEX formatter is incremental on a per-page basis. A DVI file is generated
{for each page automatically.

13

the formatters (i.e., tex, latex, slitex and any TgX dialects) and auxiliary processors
with the display editor GNU Emacs [126]. The improved environment has delivered an im-
portant message to VORIEX in that “integration” makes life easier. VORIEX entails several
editors all integrated coherently with a central incremental formatting module.

The human interface to TEX’s macro system is poor; it requires a high degree
of expertise to use it. While source-based systems are superior in the quality of their
output for difficult typesetting jobs like mathematics, the situation in the user interface is
reversed with the WYSIWYG editors. In addition to a regular text editor, in which source
files can be manipulated, VORTEX supports an_other editor with a WYSIWYG-style human
interface tailored specifically to the manipulation of the document’s formatted appearance.
A number of action routines are embedded in this editor, which automatically transforms
editing operations done to the target representation back to the source in terms of their
corresponding TpX commands. These action routines, based on heuristics derived from
expert TEX users’ experience, can provide effective assistance to inexperienced users.

TgX is weak in handling non-textual objects. It has primitive facilities for setting
tables. Constructing tables in TEX is an enormously difficult and time-consuming chore.
The situation is somewhat ameliorated with IATEX, which makes producing tables almost as
easy as using tbl and troff. VORTEX can provide a direct manipulation editor to make table
constructions even easier. Another major criticism against TEX is that it has no graphics
facility whatsoever, although a “hook” is available (\spécial) and many proposals have
been made over the years in public forums such as the computer bulletin board called
tex-hax, to standardize its use. Although the first version of VORTEX does not support
graphics rendering explicitly, it does take this hook into account and has \special as a

built-in data type.

2.4 Interactive Editing

Interactive editing is an essential part of the VORTEX system, therefore prior de-
velopments on interactive editors deserve some attention. An in-depth survey and clas-
sifications of interactive editors can be found in Reference [98]. For our purposes, it is
sufficient to divide modern display-oriented text editors into two groups: stream-based and
syntaz-directed. The stream-based model is the traditional way of manipulating documents

and programs, in which text is handled on an individual character basis; no information on

14

either the document or the program’s structure or syntax is assumed a priori. The most
advanced system of this type is probably Emacs [125], which supports multiple buffers,
multiple windows, and a customizable user interface.

A syntax-directed editor recognizes a pre-defined language syntax and supports
structure-oriented input and browsing capabilities. One input mechanism in syntax-directed
editing is through templates. A template is a syntactic structure that can be displayed upon
request. In addition to syntactic keywords, a structure also includes certain place holders
into which the user can enter text. Templates can be nested; each place holder may, in turn,
contain other templates depending on the syntactic validity. Most syntax-directed editors
also support stream-based editing for text manipulations in the place holders. Syntax-
directed editors are often used as the front-end to the incremental compiler of program
development environments such as Aloe (in Gandalf) [97], the Cornell Program Synthe-
sizer [129], Pan [15], etc.

To contrast the stream-based model and the syntax-directed model, it is neces-
sary to understand the role of underlying source representation. There are three levels of

abstractions to consider:
I the actual images displayed on the screen in terms of characters, words, lines, etc.,
II. the structural representation of the source based on predefined language syntax, and
IIL the internal representation of the source which is maintained by tl;e editor.

A designer must decide which abstractions should be made explicit to the user.

Most stream-based editors support abstraction I explicitly. Mappings between I
and III are inevitable, although in most cases they are straightforward (e.g., text on the
screen to/from the text array internally). Some customizable text editors can be extended
to support some functionalities belonging to abstraction II. Emacs, for example, has been
extended to work with document preparation or programming environments such as the
Document Editor [136], the Lisp Machine [65], Ease [46], etc. The advantage of the stream-
based approach is that there is a natural correspondence between the screen image and the
internal representation of the text, which makes editing commands more appealing to the
user’s intuition and the necessary supporting routines easier to implement.

Ideally, a template-based editor should provide abstraction II, instead of III, ex-

plicitly because manipulating internal structures may be counterintuitive. This is true for

15

Pan and the current version of Aloe, both of which require extensive user interface support
for the mappings between I and IIT and between II and IIL There are systems that do the
opposite. For instance, the early Aloe [50] bypasses II and requires users to work directly
with Gandalf’s internal syntax tree. Editing commands are implemented in terms of tree
traversals, and simple expressions such as a + b must be entered in prefix notation (i.e.,
+ab). This is unnatural from the user’s standpoint for what is displayed on the screen is in
fact an infix expression. '

A syntax—dirécted system must maintain an abstract syntax tree for the underlying
source representation, which is significantly more complex than its counterpart in a stream-
based editor. To keep the size of the syntax tree under control, the normal approach is to
eliminate all redundant information (syntactic sugar) from being represented in the tree, and
have a set of functions that maps the tree representation to the actual screen images. These
functions are often referred to as formatting, pretty-printing, or display routines in most
systems, or as unparse schemes in Gandalf. The advantage of this relatively declarative
approach is that a number of elision filters can be implemented to provide different views
of the same source under different constraints. Furthermore, maintaining the syntax tree
allows the parser and the expression evaluator to function incrementally. This is another

major advantage of syntax-directed editing.

2.5 Incremental Compilation

The key elements of an incremental compiler in program development environ-
ments are the incremental parser and the static and dynamic semantic analyzers. These
are always closely coupled with some sort of structure-oriented editors in programming en-
vironments. The job of the incremental parser is to isolate and reparse only the portion
of the abstract syntax tree that has been modified. Static semantics refer to the type of
semantics that can be checked by examining the program’s lexical context, such as type
checking, scope rule checking, etc. Finally the dynamic semantics analyzer provides the
necessary run-time semantic support for program execution.

Most programming environments support parsing and static semantics incremen-
tally. A number of incremental parsing algorithms have been proposed by researchers Ghezzi
and Mandrioli [58,57), Wegman and Alberga [137,138], Morris and Schwartz [101,121],

Kaiser and Kant [82], etc. These algorithms require either augmenting traditional LR

16

or LL parsing algorithms or just syntax-tree transformations. It must be pointed out that
these algorithms are concerned with the recognition of arithmetic or logical expressions and
assume the support of structure-oriented editors such as the ones described earlier.

There are a variety of strategies to arrive at incremental static semantics checking.
Exemplified by the early Aloe system, one approach associates an action routine with
each production in the grammar requiring semantics. The routine is invoked whenever its
corresponding production is used by changes to the abstract syntax tree. Typical operations
performed by an action routine include tree modifications, symbol-table updates, user action
aborts, etc. A more involved approach uses attribute grammars [86], which attach a set of
semantic equations to each production in the original context-free grammars. Each semantic
equation defines an attribute as the value of a function applied to other attributes in the
production. The result is an attribute tree closely-coupled with the abstract syntax tree. As
the syntax tree is modified, incremental analysis is performed by updating attribute values
throughout the attribute tree in response to modifications. This idea has been realized in
systems like the Cornell Program Synthesizer and a detailed algorithm is given in [114].
Yet a third alternative is Pan’s logic-programming model [14]. During a Pan editing session
facts are incrementally updated in a system database and semantic analysis is performed
by evaluating clauses associated with productions against database contents. The power of
this approach is that general logic programming-style queries are supported, which enable
the system to gather more information than can be managed by the first two schemes. Once
again, all these approaches rely on incremental parsing in the first place, which assumes the

existence of a structure-oriented editor.

2.6 Document Development versus Program Development

From VORIEX’s point of view, neither pure stream-based editing nor pure syntax-
directed editing is adequate. Supporting incremental processing is one of the primary goals
of VORTEX; pure stream-based model without any knowledge of document structure would
not suffice. The notion of elision is very desirable in the case of browsing large documents,
which is simply impossible to achieve without knowing the structure of the source document.
On the other hand, documents in VORIEX are not pure “programs”. Most syntax-directed
editors work on programs that are fragments of statements and ezpressions. The template-

. based input mechanism is impractical in systems like VORTEX for two reasons. First, the

17

bulk of a document is continuous text instead of discrete statements or expressions in the
programming language sense. Second, the premise for syntax-directed editing is that the
language syntax be predefined. This is difficult in cases like TgX, in which the syntactic
extension facility allows macros to be defined anywhere in the document. The user interface
must be flexible enough to accommodate potentially unlimited new macros with variable
syntax for their argument lists.

The VORIEX approach to text editing is a hybrid of the two models. It is closer
to the Cornell Program Synthesizer and Pan than to some other syntax-directed editors
in that the text stream and the underlying hierarchical structure are integrated. Unlike
the Synthesizer and Pan, which attempt to be multilingual, VORIEX is a system specifi-
cally designed to processing TEX documents. In VORTEX, the influence of Emacs can be
found in its abstractions on files, buffers, windows, regions, etc., the modeless straight text
input mechanism, and most importantly, its Lisp programming subsystem. At the same
time, VORIEX provides some syntax-directed capabilities as well, which are restricted to
operations involving modifications, such as delete, replace, cut, paste, etc.

A document specification language like TEX, which is based solely on syntactic
extensions for abstractions, poses very interesting problems‘with fespect to incremental
processing. Maintaining the correspondence between a document’s source representation
on the screen and its internal syntax representation is difficult for macro-oriented languages.
A macro may go through recursive expansions before reaching the primitive form that even-
tually appears in the internal syntactic structure. Changing the definition of a macro means
all instances of its invocation must be reevaluated. Under such circumstances, structure-
oriented operations and incremental parsing are more involved. One of the major research
issues of VORTEX is to perform efficient incremental processing without béing penalized
by TEX’s macro-oriented abstraction mechanism. Chapters 6 and 7 describe the VORTEX
system structure and incremental strategies that are designed to solve these problems.

Source-language based document processing is often described in terms of program
compilation. The analogy is that a system (e.g., TEX, troff, or Scribe) takes a source-level
representation as input, and “compiles” object code (e.g., the DVI file in TEX, the .mss
file in Scribe, and the ditroff file in troff), which is then “executed” by a device driver.
If this analogy were correct, one might expect the techniques of incremental compiling to
be helpful. In fact, the analogy is rather superficial. In document-processing systems,

parsing is much less involved than in program compilation while code generation is the

18

most time-consuming task.

In particular, VORTEX is concerned with incremental code generation because the
execution of a document’s target code is effectively the process of rendering its output im-
age. In other words, the sensation of directness is dictated by efficient redisplay (execution)
of a document’s target view, which, under a multiple-representation paradigm, depends on
how efficiently the target representation can be derived from the source representation. It
is interesting to observe the differences between a document’s target representation and
program’s object code. In document processing, code generation involves extensive compu-
tation for such tasks as hyphenation, line breaking, pagination, and so on. Also, because
a document is a sequential list of pages, a local modification may cause ripple effect on
the target representation in both its pre- and post-contexts. Code generation in program
development is somewhat different. A program is usually modularized and its object code is
relocatable; local changes do not cause as much chaos as they would in document processing.

Chapter 7 discusses incremental code generation strategies applied under VORTEX.

Chapter 3

Document Development

3.1 Task Domain

There are quite a few tasks that an effective document development environment
must be able to accomplish. Understanding them is important because evaluating the
souirce-language model and the direct-manipulation model relies on the underlying task
being clearly identified. These tasks éan be divided into two major cétegories: writing and
reading. The following is a list of several classes of tasks that are considered essential:
classes 1 through 7 belong to the writing category, class 8 covers both, and the last one

concerns primarily issues in reading. It is by no means an exhaustive list, however. -

1. Editing. Tasks here include the editing of text and graphics in general and various
classes of special objects like tables, mathematical or chemical formulas, data-driven
statistical charts, fonts, raster images, musical scores, animation scenes, digitized au-
dio signals, and so forth. Many of these objects can be intermixed, yielding what may
be called a compound document. One important consideration in handling compound
documents is whether the editing tasks are integrated or disjoint. In the integrated
case, objects are displayed on a single “view port” and a context-sensitive set of menus
is presented — depending on the type of objects being manipulated. In the disjoint
case, selecting an object of a particular type invokes its corresponding editor in a
separate window. The various editing tasks, therefore, proceed in distinct contexts
until the user explicitly requests that modified objects be reconciled with the system’s

top-level.

19

20

. Formatting. The primary issue in formatting is document appearance, or equivalently,
the layout of specific pages. Ata global perspective, certain types of documents must
obey certain styles. Consequently, some default styles must be provided to cover a
wide range of commonly used documents. On the other hand, it is also desirable to
support customization so that uncommon styles can be defined by the user. Ata finer
granularity, either the system or the user must be able to control the placement of
objects within a page. This control may be as trivial as setting a piece of text in a

certain font, or as complicated as floating text around an arbitrarily shaped object.

. Style Specification. The set of “style definitions” map a document from its logical
structure to physical layout. In some systems the creation and editing of style defini-
tions may be a separate task. The most common approach to style specification is to
represent document attributes in a declarative language, which can be manipulated

using a form-based user interface.

. Preprocessing. This class of tasks refers to operations that must be performed prior
to formatting. Typical examples include spelling checking, writing style verification,
bibliographical citations, etc. It may also include graphics, table, mathematics, or

any other processing filters not integrated with their main formatting engine.

. Postprocessing. These are tasks that cannot be carried out until the main document
body has been formatted. Cross references and indexes depend on certain object
permutations (e.g., page, section, or figure numberings); they cannot take place unless

such numbering has been resolved by the formatting process.

. Imaging. Another important class of tasks is imaging the formatted result onto either
the display or the printer. These tasks typically involve interpreting the document’s
certain intermediate representation (its internal data structure or output file format)
and rendering the bits onto the workstation 'display or translating it into a specific

printer language.

. Filing/Document Interchange. This class concerns the filing of documents. There are
two important issues. The first has to do with how to effectively save the internal
state so that future invocations can be carried out incrementally. The second issue

focuses on information interchange and system dependence, namely whether or not a

21

filed document can be transmitted across different machines and be recognized and

processed by heterogeneous document preparation systems.

8. Annotations/Narrations. Annotations and narrations can be embedded in a docu-
ment to convey more information than what is available in the main document body.
This additional information can be represented in the form of text, graphics, voice,
etc. in an electronic environment. More than one author can be involved in creating
such information and the reader can be granted appropriate access. For instance, in
an instructional environment, a different set of narrations can be presented according
to the level of a particular student. In a publication process, an author can be work-
ing with a paper annotated with comments from different referees while annotations
intended for the editor are hidden from him or her. Providing these features involves

protection and general distributed systems issues.

9. Dynamic Reading. From the reader’s point of view, a hard-copy document generated
by a print medium is fixed and static. Electronic media such as workstation-based
environments provide an alternative that does not have to be reminiscent of its static
counterpart. A good deal of “dynamics” can be exploited in an integrated document
development system. For example, instead of thumbing through the pages for a refer-
ence as one would do when reading a printed document, in an integrated environment
it is possible to display and examine the targét of a reference in a separate window
when the source of the reference is being read. This kind of context-sensitive brows-
ing, along with a number of other features not available in the print medium, require

complex system support and deserve further investigation.

39 Pros and Cons — A Comparison

Most of the tasks listed in the preceding section can be carried out under the
source-language model or using direct-manipulation techniques. In some cases, one ap-
proach may be more appropriate than the other, while in other cases a combined approach
may make more sense. An analysis based on each task in the domain is given in the re-

mainder of this section.

22

Figure 3.1: Snoopy. The picture of Snoopy created using a direct-manipulation graphics
editor.

3.2.1 Text Editing

Display-oriented editors can be regarded as direct-manipulation systems when the
underlying task is restricted to text editing, such as vi [81] and GNU Emacs [126]. They
are superior to the old-fashioned line-oriented text editors because a full screenful of text
can be directly manipulated.

Emacs also supports a source representation; a Lisp programming subsystem 1is
embedded underneath direct manipulation. Each simple operation corresponds to a Lisp
primitive, upon which more complex operations can be coded, which can then be bound to
user level commands in terms of a few keystrokes or mouse clicks. This Lisp programming
subsystem makes Emacs customizable and extensible and thus a very powerful text editing

tool [125].

3.2.2 Graphics Specification

The repertoire of techniques for specifying and generating graphics is very rich.
Some of the techniques are source language oriented, others exploit direct-manipulation
user interfaces, while a few have employed a hybrid model. There are relative strengths and

weaknesses for each approach, as described below.

23

C 3 1]
C B |]
— B ,]
C -]
C B B

Figure 3.2: Layout of windowed tezt. A technical diagram created by a direct-manipulation
graphics editor. This diagram is intended for explaining an exotic page layout, or windowed
text, in document formatting. The window in the center is a piece of graphics. The twolarge
boxes on top and bottom contain a paragraph’s lintel (leading text) and its sill (trailing
text), which may each contain multiple lines. Each narrow box in the two sides holds a
single line of text. Finally, the dotted arrows represent the flow of text. '

Direct Manipulation Graphics Editing

In general, it is easler to specify freehand drawings such as the Snoopy shown
in Figure 3.1 using a direct-manipulation graphics editor like MacPaint [9] for the Apple
Macintosh than directly programming it with a graphics language like pic [83] or ideal [139].
Also, it is more convenient to create technical drawings such as the one shown in Figure 3.2
with a direct-manipulation editor like MacDraw (8] than with a noninteractive graphics
programming language when visual feedback concerning operations such as object placement

and orientation is essential.

MacPaint is a typical example of graphics editors specifically designed for creating
artistic drawings. Once specified, the notion of object disappears in these editors; what
remains is just a raster image. Drawings of this kind are obviously confined by the device
resolution, with which they are created. By contrast, MacDraw represents another class
of editors more suitable for creating technical diagrams. In MacDraw, objects and their

structure are maintained throughout the editing session. When the drawing is done, it is

24

36 { 60 0 45 0 360 arc stroke 10 rotate } repeat

Figure 3.3: Rotated circles. A set of rotated circles and the corresponding POSTSCRIPT
code used to generate it. POSTSCRIPT has a postfix syntax, so the one line code here means
iterate a procedure 36 times. In each iteration first a circle centered at (60, 0) with a radius
of 45 is drawn (in points), then the coordinate system is rotated by 10 degrees. '

the description of the objects and their structure, rather than the image, that gets saved.
The advantage is that the image can be reproduced on a variety of devices with different

resolutions.

A significant intermediate system is the Adobe Illustrator [2], which accepts a
raster image, but allows the user to recover the underlying mathematical description by
tracing the image. From that point on, the drawing can be manipulated in terms of its
component geometric objects, thereby making it possible for the user to fine tune images
of any kind.

There is no question, however, that drawings created by direct-manipulation edi-
tors can also be described by graphics programming languages or some meaningful textual
representations. In fact, drawings created with most of these editors are eventually trans-
lated into a source language representation or some textual format for filing and document
interchange purposes. The issue here is that in order to create such pictures efficiently,
direct responses from the drawing apparatus in terms of its underlying objects’ placement
and orientation are crucial. direct-manipulation interfaces, in this respect, act as an inter-
active agent between the user and the task domain and are more effective than attempting

to do the programming at the source level.

25

Graphics Programming

Direct-manipulation editing breaks down when a great deal of regularity, a finer
degree of control, any sort of abstraction, or other basic building blocks of programming
languages are required. Figure 3.3 demonstrates the superiority of a graphics programming
language in expressing a highly regular design. This picture is a circle repeated many times
while rotating the axis. The POSTSCRIPT source code needed to describe it is a “one liner”
shown at the bottom of the figure. One can imagine how cumbersome it would be to create

this picture by direct manipulation.

Another good example, which shows the advantage of working with programs, is
the pico picture editor [73]. It is an interactive editor for digitized graphic images. Instead
of directly manipulating the pixels involved as many bitmap editors do, pico treats a raster
image as a two-dimensional array of pixels. Typical operations such as changing contrast,
masking or enhancing pixels, and merging, fading, or transforming the image are defined
in terms of a C-style expression language. The user edits images by entering programs
expressed in this language with references to the pixel array. This programming approach is
able to produce startling effects on images very difficult to arrive at with direct-manipulation

bitmap editors.

As another example, suppose the job is to create a page that contains Snoopy
and recursively the same page nested within itself like Figure 3.4. No direct-ma,nii)ulation
graphics editor known to us is able to realize such an illustration by any obvious means.
With a programming language like POSTSCRIPT, hoﬁrever, such a page can be defined as a
procedure that recursively invokes itself to a specified depth. As was argued previously, it is
easier to create pictures like Snoopy with a direct-manipulation editor and that generating
a textual representation for the drawings is not difficult. The ideal approach here is to draw
Snoopy by direct manipulation first, generate the corresponding code next, and finally
perform some adjustments to realize the recursive invocations. '

This approach is one flavor of the hybrid model that utilizes direct manipulation as
the frontend interface and a meaningful textual representation for off-line filing. This rep-
resentation has the advantages of being more compact and device independent over directly
filing bitmap images. CricketDraw [45], for example, can generate a filing representation
either in PICT, Macintosh’s standard graphics description format, or in POSTSCRIPT. Some

adjustments may be done on this textual representation before the drawing is filed or sent

26

RECURSIVE SNOOPY

AECUREIVE BvOCPY

Snoopy within Snoopy

Figure 3.4: Recursive Snoopy. The picture of Snoopy recursively appears within itself. This
picture is created by drawing Snoopy first with a graphics editor that generates POSTSCRIPT
output and then adjusting the resulting POSTSCRIPT code. The idea is borrowed from an
example given in reference [113].

off to a printer.

Achieving Accuracy

An important issue arises in graphics specification when certain geometric prop-
erties of graphical objects must be satisfied or when their precise placement is required.
In direct-manipulation editors, the most naive solution to precise placement is to echo the
current cursor coordinates on demand. A more commonly used technique is to provide the
user with a rectangular grid. Sometimes a gravity facility that automatically attracts the
cursor to fixed positions in the grid may be useful. Yet a more powerful paradigm based on
the ruler and compass metaphor [21], as what is available in Gargoyle [110], also increases
the desirable accuracy.

Another possibility is to apply a class of techniques known as the constraint-based

27

approach [25], which requires the user to specify a set of parameters that satisfies certain
algebraic or logical equations. Given the constraints, the system tries to solve the equations
simultaneously and returns the corresponding graphical objects. There may be more than
one solution to the same set of constraints, hence a mechanism for selecting the desired
solution must be provided.

This approach is often counter-intuitive, which makes it difficult for inexperienced
users to add new kinds of constraints to the system. This situation is actually due to
the multiple representation issue inherent in this type of system; no matter what the user
interface appears on the surface, there is an underlying source program that realizes the
constraints. Switching back and forth from a highly-encapsulated graphical interface to
a more primitive textual one is difficult for casual users. Some recent developments have
focused on graphical specification of constraints with the goal of closing the gap between
the task domains [24].

The constraint-based approach has been incorporated in graphics programming
languages like ideal as well as in graphics editors like Juno [104]. Juno, in particular,
is interesting because in addition to a direct-manipulation user interface, the underlying
constraint definition language is also made explicit to the user — both representations are
editable, and changes will propagate automatically — although the language capability is

somewhat restricted from the programming language point of view.

The Hybrid Approach

Clearly the ideal approach is one that exploits the prompt visual feedback avail-
able in direct manipulation as well as the programming capability provided by the source
language model. This approach is exemplified by the Tweedle graphics editor [11]. In Twee-
dle, the user is allowed to edit objects in the direct manipulation manner; also supported
is a text editor for editing the underlying procedural language description. Each object in
the graphical representation corresponds to a piece of code in the textual reprgsentation.
Changes made to either representation will be mapped to the other automatically.

This approach differs from the off-line hybrid model mentioned earlier in that the
textual representation (program) is manipulated interactively. Any modification to the
source program is immediately re-evaluated, which then updates the graphical represen-

tation, and vice versa. A great number of language design and user interface issues are

28

involved in creating such a system. Typical problems include variable naming and binding,
object sharing and linking, and most importantly, the internal state to be maintained in
order to incrementally reevaluate the objects.

The programming side of the hybrid approach can be realized using a visual in-
terface, in which program constructs like variables, conditionals, procedures or macros,
iterations, recursions, etc. are encapsulated as menu items in the standard direct manipu-
lation fashion. The user is still required to switch back and forth between editing programs
(graphical rather than textual in this case) and editing the actual drawings (results of pro-
gram evaluation), which is the essential the difference between visual programming and
program visualization [103]. These graphical programs are equivalent to the textual ones in
every respect. A multiple representation system’s emphasis is not so much on having some-
thing textual per se, but on explicitly maintaining a representation that is programmable.

This is a very important point and will be reiterated throughout this discussion.

3.2.3 Formatting and Layout

Traditional document development systems like the troff family of processors [85]
under UNIX, Scribe [112], TEX [87], and SGML [61] are largely noninteractive language
compilers. A document described in such a language has a textual source representation
that contains its content as well as formatting commands. A target representation can be
created by passing the source through the formatter. Normally, the task of editing (or
simply browsing) either representation is separate from the task of formatting.

By contrast, in direct-manipulation systems like MicroSoft Word [99] or Inter-
leaf Publishing System [78], formatting is an integral part of document editing. Here, the
document is reformatted as it is edited. The distinction between source and target represen-
tations is blurry or even nonexistent. No textual commands or fags would explicitly appear
in the document during an editing/formatting session. Rather, information like document
structure and page layout is known a priori; their attributes can be modified by the user
via built-in menus or property sheets. ' |

A special class of direct-manipulation systems is the layout-driven type, which
includes desktop publishing programs like PageMaker (4] and Ready-Set-Go! [95] for the
Apple Macintosh and Ventura Publisher [135] for the IBM PC. These systems usually have

a strong “import facility” that accepts a variety of file formats generated by ordinary text

29

processors, which have no or limited formatting capabilities. Thus, most layout-driven pub-
lishing systems import raw documents and perform detailed formatting as a postprocessing
task. What is special about these systems is that they allow page layout to be specified
under direct manipulation. Normally, one specifies the layout of a text block or graphics
region by “rubber-banding” a box on the screen with a pointing device. The order of these
blocks or regions can.also be determined by the user. Once the layout is set, text and
graphics are then filled in according to the specified flow..

Each of these trains of development has important advantages and disadvantages.
By and large, the output quality produced by source language oriented systems is higher
than that by direct-manipulation editors. This is because most such source language com-
pilers are batch-oriented, which means their formatting strategies can be better optimized.
direct-manipulation systems are limited, in this respect, by certain performance require-
ments in response time. In order to achieve better quality, some direct-manipulation sys-
tems like Cedar’s Tioga editor {128], Andrew’s [100] base editor EZ [107], and the BBN
Diamond editor [47] provide an option that performs some off-line formatting optimizations
before the final hard-copy is generated. This formatted version can be previewed on the
screen, but not edited.. Thus, these systems are essentially direct-manipulation galley edi-
tors. They assure only “what you see is an approximation to what you get” when higher
quality formatting is taken into account.

An important advantage of the source language model is the “expressiveness” oOf
“programmability” provided by symbolic languages. Suppose a document processing system
is a set of operations defined on a collection of objects. With respect to simple operations,
there may be little difference between the two models. The major difference becomes
noticeable when higher level abstractions such as macros and conditionals are desired. These
are normally available as first-class citizens in a document formatting language. But in most
direct-manipulation systems, manipulating complicated cases like these are either impossible
or very cumbersome.

On the other hand, the most common criticisms against source language oriented
systems center around (1) the unnecessary overhead they always pay in reprocessing the
whole document with only few changes, and (2) the low degree of interaction and poor
interface they present to the user. In these areas, the direct-manipulation model seems to
prevail. As highly interactive systems, direct-manipulation editors are incremental in na-

ture; they only perform the minimal work required to reformat a document and display the

30

\beginwindow\lintel 2\lines \side 2.5in \window 6\lines
Creating an exotic page layout like this is quite
difficult, if not impossible, in some rigid source
language oriented systems like ..

Figure 3.5: Producing windowed tezt in TEX . This piece of text shows how one could create
a windowed paragraph with a lintel (text above the window) of 2 lines tall, a 2.5-inch wide
block at each side, and a window of 6 lines tall (whose width is the width of the paragraph
minus 2 times the width of the side block). Naturally, the remaining text forms the sill.
The principal macros involved are \beginwindow, which takes these settings as parameters,
and \endwindow, which outputs the formatted text. The actual code corresponding to these
two macros is much more complex and is very difficult for an average TEX user to generate.
The example here is based on the work of Alan Hoenig [72].

new image immediately. This immediate response is crucial to certain operations requiring
visual feedback.

For instance, consider the task of laying out a page of windowed text. In a layout-
driven direct-manipulation system one would do this simply by drégging the mouse, speci-
fying the text blocks involved, and defining their links for the flow of text, as illustrated in

Figure 3.2. The interface to the task domain is direct and straightforward.

Creating an exotic layout like this is quite difficult, if not impossible, in some rigid

source language oriented systems like Scribe and SGML. In more flexible systems such as

troff and TgX, however, such things are possible, but nontrivial. Defining
macros that handle general windowed text requires a high degree of wizardry.
In TgX, for instance, output routines can be redefined to layout pages dif-
ferently, but the code required to pro- duce general windowéd text is quite
involved. But once it has been figured out, generating a paragraph such as

the present one is relatively straight- forward. Based on the macros defined

in Reference [72], producing the present paragraph is reduced to calling a pair of window

opening and closing macros at the beginning and end of the paragraph (see Figure 3.5).
The standard direct-manipulation approach to this kind of irregular page layout

and the way it is handled in TEX are somewhat different. In the direct-manipulation

approach, the abstractions of text blocks and their links are general enough to cover a

31

variety of situations. For example, creating a circular window would be based on the same
interface used to create a rectangular one as shown in Figure 3.2. A layout whose text
first fills up every line on the left side and then the right, instead of running across the
window for each line would be done similarly. In TEX, producing a circular window requires
modifying \beginwindow to accept a much more complicated parameter passing scheme.
As for the other case, a new set of macros must be defined for that purpose specifically.
The real issue, however, is a visual approximation to the ultimate page layout. It is clear
that direct manipulation is more appealing in this respect.

Finally, it is important to consider the concept of WYSIWYG (what-you-see-1s-
what-you-get) systems, which has been one of the primary features of many electronic
publishing systems. The term WYSIWYG should not be considered a synonym of direct
manipulation, however. WYSIWYG refers to the correspondence between what is presented
on the display and what can be generated in some other devices. In the context of electronic
publishing, WYSIWYG means that there is a very close relationship in terms of document
appearance between the screen representation and the final hard-copy. Direct manipulation
is a more general concept that models user interfaces. A direct-manipulation document
preparation system may not have a WYSIWYG relationship between its display represen- .
tation and the final hard-copy. Galley-oriented document editors like Tioga, Andrew’s text
editor, and Diamond belong to this type. Conversely, a batch-oriented, source language

based formatter may be coupled with a previewer that is W YSIWYG.

3.2.4 Pre- and Post-Processing

There are a number of tasks that must be performed either before or after format-
ting, which are collectively called pre- and post-processing facilities. A common nature of
these facilities is that they often require a stand-alone processor to accomplish the intended
task. For instance, a spelling checker, a bibliography processor, and an index processor are
needed for checking spelling, resolving citations, and permuting index entries, respectively.
The traditional approach is, of course, source language based and batch-oriented: an inter-
mediate file is generated as a derivative of the main document; this file is then passed to
a designated processor, and the result is incorporated back into the main document. This
approach applies not only to standard noninteractive document compilers like troff and

TgX, but to a number of direct manipulation environments as well. For example, index

32

processing in FrameMaker, MicroSoft Word, and Ventura Publisher are all handled t;y a
noninteractive off-line program.

Direct manipulation, from the processing point of view, requires too much overhead
for a relatively minimal payoff. For instance, in compliance with the direct-manipulation
paradigm, an index entry, whenever entered into the document body, must immediately
appear in the index section (with its page number) in alphabetical order with respect to
other entries already there. This capability requires extensive support in the internal data
structure, but does not contribute toward any significant improvement in generating the final
index. The same criticism applies to the processing of similar objects such as bibliography,
glossary, table of contents, cross references, etc.

In spite of the need for stand-alone processors, which seem inevitably batch-
oriented, there are other aspects of these pre- and post-processing facilities that require
more interactive support. These inélude, among others, correcting misspelled words in
the manuscript, browsing the bibliography database to make citations, and placing index
commands into the document body in a systematic fashion. All of them require a close
integration with the document editor. If these objects are not maintained in the mterna.l
representation, a good manuscript level pattern matching mechanism (e q. regular expres-
sion search, query replace, query insert, etc.) is imperative.

Notice that in a direct-manipulation system, the tags for marking citations, cross
references, and index entries cannot appear directly in the document under manipulation
because their original forms may not correspond to any physical appearance. A common
solution is to put them in “shadow pages” instead of the direct-manipulation representation.
Thus, a shadow document is the original document plus these tags whose markers can be
displayed upon request for editing purposes. As a result, users operating under this extended
direct manipulation model are actually dealing with dual representations of the document,
although the variation between the “source” and “target” is not as significant as that in a

true source language oriented system.

3.2.5 Imaging, Filing, and Interchange

The on-line imaging mechanism of most direct-manipulation systems is based on
immediate interpretation of their internal representation. Their off-line filing representa-

tion is some textual description of the internal structure, but not necessarily in any real

33

programming language. This textual description can in turn be passed to a device-specific
printer driver for a hard-copy. Similarly, most source language oriented systems generate
their output in some generic representation; device drivers are needed for either screen pre-
viewing or hard-copies. Typical examples include TEX’s DVI format and the ditroff format.
A common feature of this type of device independent “virtual machine” is that its imaging
model is extremely simple-minded; its basic construct resembles low-level assembly code
more than a high-level programming language.

Recently, a new breed of programming languages known as page description lan-
guages (PDLs) has emerged as the preferred representation for imaging as well as filing.
There are currently three major players in the arena: Interpress [20], PosTScripT, and
DDL [77]. Advantages of PDLs include high-level program constructs, arbitrary trans-
formations at the imaging level, uniform treatment of graphics and text (fonts), device
independence, etc.

Many systems use PDLs as the off-line filing representation because PDLs are
supported by an increasing number of printers. The on-line imaging mechanism in most
direct-manipulation systems, nevertheless, is still based on lower-level descriptions. The
result is a discrepancy between the on-line imaging and the potentially more versatile one
given by the off-line PDL representation. This problem can be resolved by providing a PDL
server on-line and representing the internal structure as the PDL. In reality, a PDL server
(interpreter) can be realized as, in ascending degree of generality, a client level application
for graphics specification (e.g., PosTScrIPT in VORIEX, see Section 6.1), the underlying
imager of a window system (e.g., Interpress in Cedar), or even the window system server
itself (e.g., PoSTSCRIPT in the NeWS window system).

Another aspect of off-line filing concerns saving a snapshot of the internal state
so that future invocations can take place incrementally. This aspect is analogous to saving
object files for a source program. It can also be viewed as a checkpointing mechanism
that provides backups as well as a means to support undo operations. The issue here is
the standard space/time tradeoff. The simplest approach is to save the entire “state” and
reload it when a rollback or reinvocation is requested. The penality, of course, is tremendous
storage overhead. A more “source-based” approach would take inore time abstracting only
the essential parts and saving them structurally in a textual format. Again, it takes time
to recover the state when a rollback or reinvocation happens, but the filing representation

would be much more compact.

34

An area of emerging importance in document development concerns interchange
formats. The goal is to exchange documents electronically among geographically distributed
sites that are heterogeneous in hardware and software. To avoid developing n? translators
among n different types of systems, the idea is to devise a common intermediate format
so that only 2n translators are needed. Three possible exchange formats have been pro-
posed: office document architecture (ODA) [6,74], standard generalized markup language
(SGML) [61], and Interscript [12]. A comparison of the three can be found in Reference [80].

3.2.6 Annotations/Narrations and Dynamic Reading

So far the focus has been on document composition, or the writing side of docu-
ment preparation as a whole. The other half of the story, which has too often been ignored,
concerns effective reading of a document. Reading is a rather “direct” process; when ref-
erences are involved a reader relies on a somewhat indirect approach. For instance, when
a bibliographical reference is of interest, the reader needs to go to the bibliography section
and look up the cross reference information available there.

This static notion of documents still dominates our way of reading even in the
era of electronic media. On one’s favorite document preparation systems, users are still
artificially creating bibliographies and indexes for their papers, manuals, books, etc. Part
of the reason is being able to generate hard-copies consistent with the tradition. But if
hard-copy compatibility as an issue is relaxed, then one should think seriously about what
exactly are the purposes of references like the bibliography and index. Their foremost
function is to allow the reader to access relevant information efficiently. Creating separate
bibliography and index sections is the best one can do with the static print medium.

In an integrated electronic document environment, much of this linking information
can be stored internally. Therefore, instead of requiring the reader to actually “read” the
section that contains the references (indirect accessing), it is possible to access references
in a direct and context-sensitive way. For instance, when a citation is of interest, a menu
of options would allow the reader to (1) inspect the content of the bibliography entry in a
separate window so that the reading of the main document is not hindered, or (2) visit the
actual document referenced by the citation (this can occur recursively). If an object of a
different nature is selected, its context gets reflected in the menu immediately.

Operations like these can go beyond “what you see is what you get”. With the

35

“shadow document” approach mentioned earlier, for example, annotations can be associ-
ated with key concepts and embedded in the document invisibly. Thus the information a
document is able to convey is much more than meets the eye. A system that supports this
type of non-linear reading is referred to as a hypertezt system [44]. The key here is the
ability to create links among objects within the same document and, in many cases, across
different documents. More elaborate hypertext operations are possible [141]. Some candi-
dates include local features like filtering (restricted reading) and fisheye viewing (focused
reading) [54], or more global issues like document navigation and dissemination, and so on.

Another important property of an electronic document is that its presentation need
not be confined to a single, static medium. It can comprise dynamic pictures (animation)
with voice narrations, for example. Such hypermedia documents require extensive internal
support, and its user interface must be based on a clever blending of the two models. Apple’s

HyperCard [63] is an excellent example that blends the two approaches successfully.

Chapter 4

Désign Methodology

We have raised a number of requirements in Chapter 3; some of the issues are
orthogonal, while others are somewhat contradictory. The most essenﬁal questions con-
cern the relationships among the two models, the task domain, the various representa-
tions, their transformations, and the notion of procedurality. This section tries to answer
these questions and establishes a general framework for analyzing and designing multiple-
representation systems. The framework differs from some formal models like Sandewall’s
Theory of IMS [118] or Goguen and Meseguer’s order-sorted algebra approach [59] in that
this framework (1) is less complex and therefore much easier to follow, and (2) addresses
more properly the multiple-representation aspect of document preparation, with possible
extensions to similar software environments.

The basic structure of multiple representation document development systems, or
the representation domain, is illustrated in Figure 4.1. As shown in the figure, it includes

four generic representations:

1. S: a source representation supporting high-level programming constructs such as
abstraction mechanisms (e.g., macros, procedures, or variables), control structures
(e.g., conditionals, iterations, or recursions), etc. A document in TEX or troff is a

representation of this type.

2. O: a structural view of the basic objects involved in the system. This representation
may be one with built-in declarative logical components such as a document in SGML,
or one with object-based input/output such as a drawing under MacDraw, or one with

a hierarchical structure like the internal representation of VORTEX.

36

37

S: Programmable Source Represantation

0: Logical (Structural)
Object Representation

U: User
Intertace

T: Physical
Target Representation

D: Device-Spectfic image Representation

Figure 4.1: Fundamental structure of multiple representation systems. The legend is the
following: the four solid bozes are the various representations in question, solid lines con-
necting these boxes each refers to a transformation between the two representations, the
dashed boz on the right stands for the user interface abstraction, and finally, the dashed
lines each indicates a link between the various representations and the user interface. The
figure shows that all four are connected among themselves; they are also connected with
the user interface. The real situation, however, is that the connections are directional and
for certain systems some of the nodes and edges in the graph may be absent.

3. T: a representation corresponding to the objects’ physical structure after processing.

This representation is usually device-independent.
4. D: the actual device-dependent image representation.

This basic structure may be augmented to include derivatives of the four generic represen-
tations as required by a particular task. It must be pointed out that S is not the exclu-
sive representation of the source-language model mentioned earlier. For instance, SGML, a
source-language oriented system, is classified as having a primary representation of O rather
than S. The distinction here stems from the availability of program constructs.

The basic structure also has an abstraction for various types of user interfaces (U);

38

possible distinctions are keyboard/command-based versus mouse/menu-driven versus their
combination, textual versus graphical, etc. Figure 4.1 shows U as a single entity, but it
may be refined to reflect these distinctions or be specified according to more sophisticated

guidelines.

There are several important aspects of this structure that underscore and unify all

the issues in question:
e Whether or not a representation (solid box) exists.

e Whether or not an existing representation is made explicit to the user (i.e. if there is
a dashed line connecting the solid box and the dashed box); if so, whether or not the

relation is bidirectional.

e Whether or not a transformation (solid line) exists between two existing representa-

tions; if so, whether or not such a transformation is bidirectional.

More precisely, an instance of the fundamental structure (call it Q), or the repre-

sentation instantiation, is described by a quadtuple

Q= (11,0,T,A)

where
Il = Igullp UIl7 U Ilp, set of one or more representations,
© = {Uy,Us, -}, set of user interface abstractions,
P={m —m | m,m €I}, setof interrepresentational transformations,
A={r—8orf - |mell 0 €0}, setof user interface relations.
and

IIs = { 1,52, }, one or more programmable source representations,
Ilp = { 01,03, -}, one or more structural object representations,
It = {T1,T2, -}, one or more physical target representations,

Ip = { D1, Dy,-- -}, one or more device image representations,

Intuitively, 1y — w2 (71,72 € II) means representation 7 can be directly trans-
formed to representation 7;. This transformation can be illustrated graphically by an
arrowhead at the end of the solid line connecting 71 and m,. Similarly, 7 — 6 means rep-

resentation 7 € II can be explicitly viewed by the user with interface § € O, and 8 — 7

39

Task Domain Representation Domain
Text Editing & S: Prog o Source Rep
Graphics ;%
Specification 3§
Formatting/
Layout 0: Logical (Structural)
Objact Represantation
Preprocessing U: Es‘" %
interface
Postprocessing
T: Physical
Target Representation
imaging
Filing %
Dynmjmc §E D: Device-Specific image Rep
Reading ;‘:3

Figure 4.2: Task and representation domains. The gray vertical bar represents the boundary
between the task domain on the left and the representation domain on the right. A multiple
representation system is a mapping from the task domain to the representation domain.

means representation 7 € II can be accessed or manipulated by the user through interface
§ € ©. For convenience, 1} — Tg, T — 7 can be abbreviated as m; « 7, and m; — w9,
Ty — T3 as T} — Ty — 3.1

The design of a multiple representation system, therefore, is to derive a representa-
tion instantiation () for each member of the task domain as shown in Figure 4.2. Defining
an Q requires identifying (1) the representations to be maintained (IT), (2) the specifica-
tion of a user interface abstraction (©), (3) the set of inter-representational transformations
among members of I, and finally (4) the set of user interface relations from II to © and
vice versa.

Given this framework, it becomes natural to analyze systems belonging to either

source-language or direct-manipulation camp, or to discriminate procedural systems from

1These are solely for the convenience of notational abbreviations. No transitivity is implied in m —
72 — 13 (i.e. it does not imply T — 73).

40

declarative ones. For instance, a source-language based batch system implies the existence
of a representation S or O and some unidirectional relations from this representation to
T or D.2 A direct-manipulation system, on the other hand, will be based on an instance
of Q having T «» in T (x € Il and 4 € O), with the added criterion that feedback from
the system be immediate in order to create the sensation of directness. Furthermore, the
property of procedurality usually means that either S = T, S — D,or T — Disin T, and
that either U — S or U — T is in A (i.e. either S or T is user manipulable). Finally in a
declarative system, I s will normally be empty and IIo will be the only set of manipulable
representations.

Based upon these observations, it is interesting to compare direct-manipulation
graphics editors, such as.MacPaint, MacDraw, and Illustrator. MacPaint can be described
by

O-D,U-0,DaU

because the user creates drawings with some object-level menus (U — O). But once speci-
fied, objects are transformed into a device-dependent image (O — D), which can be viewed

and manipulated by the user (D & U). By contrast, MacDraw corresponds to
O~«T, T D, 0eU.

There are two major differences here: (1) in MacDraw the user views and manipulates
drawings at the object level, and (2) drawings in MacDraw are device-independent due to

the presence of a target representation. Finally, Illustrator is close to
O«T,T+D,D—-0,0-U,U—D.

The crucial difference between Hlustrator and MacDraw is U — D — O, which underscores
Tlustrator’s capability for the user to unravel geometric objects from bitmaps by tracing
the image.

More importantly, this framework facilitates the analysis of existing multiple rep-
resentation systems and the design of new ones. The basic criterion here is that at least

two members of II must be manipulable. Emacs, for example, can be viewed as a system

2The notational conventions are obvious here; it is assumed that Sells, Oellp, T € I, D e llp,
U € ©, and similarly with subscripted ones used later.

41

having QEmacs for text editing, with the ma jority of remaining members in the task domain

mapped to the empty set, where Qgmacs is defined as follows:

HEmaes = s Ulo Ul UTIp = {S}u {0} U {T1, T2} U {D},
©Emacs = {U }
I‘Emac,={5—+5,0—+S,SHT1,T1HTg,TgHD,},
ABmacs ={U = 8, U—-0,U—-T,U & Ty}

To interpret this specification, one can think of S as the Lisp code under which
Emacs operates, O as the collection of user-level objects such as characters, words, lines,
regions, etc., Ty as the one-dimensional text stream (where linefeed is just an ordinary
ASCII character), and T as the corresponding two-dimensional text array (where linefeed \
causes a line break). The combination of T} and T; forms the overall target representation
T.

Thus 2 Emacs 52y that the user can view both source and two-dimensional target
representations (§ — U and T, — U) and manipulate either the one-dimensional text
stream (U — T), the two-dimensional text array (U — T3), the objects (U — O), or the
program (U — S). Operations on objects get transformed into code (O — S) which is then
evaluated and represented in the one-dimensional text stream (S — T31). Both O are T} are
implicit since they are not explicitly exposed to the user (ie. 00 - Uor Ty - U).

T is split into T} and T, because the user operates on the one-dimensional text
stream as well as the two-dimensional text array, although the actual screen appearance
is two-dimensional. Normally, next-line, previous-line, and a host of common op-
erations are two-dimensional. But things like forward-char and backward-char are one-
dimensional; at the boundary of current line they move to the adjacent boundary of the next
or previous line linearly. Furthermore, the actual internal representation is one-dimensional
because a character is addressed by an offset relative to the beginning of buffer instead of
by a two-dimensional coordinate.

One interesting point is that a recursion can be observed in QEgmees — although
its is not explicitly shown — the editing of S is essentially an instance of Q Emacs- In other
words, S can be expanded to a secondary Ilgmacs, S — S is equivalent to the composite of

the rest of ' Emacs, and S & U is, in effect, the composite of the rest of A Emacs-

An Q may be specified graphically. Figure 4.3 shows Emacs S_corresponding

graphical specification. Figure 4.4 is an instance of a design reflecting some major features

Task Domain Representation Domain

Text Eding

O: Logical (Stuctural)
Object Representation

TI1: Physical 1-D
Target Representation

i
beeorevessacnnesnmed

D: Device-Specific Image Representation

Figure 4.3: Graphical representation instantiation of Emacs. The task of text editing has
been singled out by the darkened box on the left. The shaded boxes represent other tasks
involved in the overall system that are not the focus of current instantiation. Empty boxes
are those tasks that play no roles in the system.

of Tweedle mentioned earlier in Section 3.2.2. Because Tweedle supports both a textual
form of procedural language as well as an object level graphical representation, the task
domain includes primarily text editing and graphics specification. The text editing side
of the story is identical to that of Emacs discussed above. Figure 4.4 illustrates an §2

corresponding to its graphics specification task only.

The representations and transformations involved are self-explanatory except that
there is no transformation from O to T because no object level evaluation is available in
Tweedle — graphical objects always get transformed into code, which is then evaluated.
One can normally expect low level primitives in terms of registering cursor positions or
mouse clicks be provided by the underlying window manager. Note that the editing of S is
another instance of Q@ gmacs- This example shows, as an integration mechanism, how one

may be plugged in as a component of another €.

43

Task Domain Representation Domain

I— S: Programmable Source Representation

Graphics
Specitication

O: Logical (Structural)
Object Representation

U: User
Interface

A

T: Physical
Target Representation

A

Y

D: Device-Specific Image Representation

Figure 4.4: Representation instantiation of Tweedle’s graphics specification.

This framework is by no means complete or precise, but it does establishes a good
approximation of what is to be accomplished by a multiple representation system. We
envision a top-down methodology based on this framework can be of use to designers. The
design process starts with identifying the task domain. For each element in the task domain,
the representation domain is instantiated with the specification of an Q. Within each €,
finer issues are then sorted out, and that may go down as deep as stepwise refinement

requires.

Chapter 5
Functional Specification

This chapter discusses the principal properties of VORTEX as a case study of the
methodology introduced previously. An implementation of a prototype system is given
in Chapter 6. Some key ideas in VORTEX are compared to systems like the tnt edi-
tor/formatter [55] and Quill [32], which focus on the same set of issues as VORTEX does.
This chapter concentrates on properties insofar as specifying Q is concerned; issues of finer
granularity are postponed until later. o

Based on a top-down methodology described in Chapter 4, it is appropriate to start
identifying the task domain as containing everything listed previously plus a few derivatives
(to be described later). We then have to define an 2 for each member of the task domain.
Since graphics in TEX is virtually undefined, PosTSCRIPT has been chosen as the graphics
specification language for its rich graphics capability and powerful imaging model. Both of

these tasks are maintained in multiple representations.

5.1 Text Editing

Text editing in VORTEX is Emacs-based. Despite some differences in the fine points,
QEmacs given in the last section would suffice in describing VORIEX’s multiple representa-
tional view of text editing. As in Emacs, language-specific modes are available for editing
code in TEX or PostScripT. The underlying Lisp subsystem is not confined to the the task
of editing; it also serves as the basis for system integration and a host of computational

jobs, as it will become clear later.

44

45

5.2 Graphics Specification

As in Tweedle [11], a program representation as well as a graphical view of the
objects are implicitly maintained by the system and explicitly manipulated by the user.
Therefore, the Q defined in Figure 4.4 also describes VORTEX's graphics subsystem. In detail,
however, the actual representations are distinct due to the differences between POSTSCRIPT
~and Tweedle’s underlying procedural language.

A PosTSCRIPT interpreter has been implemented by the VORTEX group! as d stand-
alone PosTSCRIPT language previewer. The same program can also be used as a server that
interacts with VORTEX’s main document display module. Under the current design, when a
picture is encountered in the target representation, the corresponding code is transmitted
to the PosTSCRIPT server. It, in turn, hands back the graphics as a raster image, which is
then incorporated into the document’s device representation. As described in Chapter 6,
although the current VORIEX cannot render POSTSCRIPT graphics, support for interacting

with the PosTSCRIPT server is already in place.

5.3 Formatting and Layout

For the task of specifying a document’s textual content in general and its format-
ting and layout information in particular, VORTEX provides a source level program (in TEX)
as well as a target level view to the user. Operations performed on one representation are
propagated to the other automatically. The idea is to take advantage of the “expressive-
ness” of a source programming language and also the immediate visual response given by a

direct manipulation user interface to the target representation.

Figure 5.1 shows the representation instantiation () of VORTEX's formatting and
layout. It says that the document’s source representation (S) is transformed into an in-
ternal object structure (O), which then becomes the physical layout (T) of the document
after formatting. This target representation can be interpreted by a displayer on-line, or
translated off-line into a file format such as DVI or a program in certain printer language
like PosTSCRIPT. Both S and T may be manipulated by the user. The bidirectional trans-

formation between S and U is an extended version of Q Emacs- Changes to S are reflected

! Primarily due to John Coker and Steve Procter.

46

Task Domain Representation Domain
S: Prog Source Rep -t
A
Formatting/ A 4
Layaut 0: Logical (Structural)
Object Representation .
U: User %
T: Physical |
Target Representation e
A
\ 4
D: D Specific image Repr

Figure 5.1: Representation instantiation of VORIEX’s formatting and layout

in itself directly and are propagated to T through O. Changes to T, however, are first
propagated to S and finally go through the S —» O — T cycle to be reflected back to itself.

Propagating changes from source to target is straightforward in concept because
that is exactly what TgX does. The subtlety here is that instead of a batch-oriented imple-
mentation, VORTEX needs to be incremental, which generates a number of interesting issues
not encountered in the batch version. The fact that TEX is macro-based complicates this

problem even more.

In VORTEX, a close relationship is maintained between the source representation
(S) and the two internal representations (O and T). Incremental formatting is based on

marking and sweeping dirty nodes in S and O and on comparing newly generated code with

what is stored in T.

47

/////:;efun create-windowed-par (begin end lh sw wh)

(goto-char (target-to-source begin))
(insert "\\beginwindow"

*\\lintel " 1h "\\lines "

*\\side " sw "in"

"\\window " wh "\\lines\n")
(goto-char (target-to-char end))
(insert "\\endwindow\n"))

R ORI N0RNaCRaC IR0 R RRRRRRRERR R RN

Figure 5.2: Reverse mapping of page layout. Above is the Lisp function to be triggered
when a paragraph like Figure 3.2 is laid out in the target editor. This function operates
in the source representation. The first two arguments, given in target positions, must be
translated into source positions via internal representation accessing before used. The next
three arguments represent, respectively, lintel height, side block width, and window height,
as required by the windowed text environment shown in Figure 3.5.

5.4 Reverse Mapping

The ‘next major issue concerns identifying the set of direct manipulation operations
that must be encapsulated in T and realizing the reverse mapping mechanism that prop-
agates side effects back to §. We believe page layout, object placement, attribute update,
and similar operations would benefit most from prompt visual feedback and are therefore
reasonable candidates to be incorporated in the direct manipulation interface to T. For
instance, a page layout specified at the target level in direct manipulation like Figure 3.2
would correspond to the TEX source code of Figure 3.5 by the reverse mapping facility.

The question is how to carry out reverse mappings systematically. In VORIEX the
reverse mapping mechanism is realized by associating each target level operation having
any side effects with a Lisp function at the source editor. Whenever such an operation is
executed in the target editor, the corresponding Lisp function gets invoked and evaluated
by the source editor. The user interface is quite flexible in that it can be either command-
driven (with the standard Emacs keyboard binding scheme), menu-driven (with mouse as
the primary input mechanism), or a combination. It is.also extensible; new instances of
reverse mapping can be added to the system by the user, which will be consistent with the
overall interface structure.

All of these are made possible with the support of a Lisp programming subsystem

48

within the environment. Reverse mapping is programmed on top of the system’s editing
primitives for source level pattern matching and some extended functionality for internal
representation accessing. Thus, to lay out something as exotic as Figure 3.2 in the middle
of a page, the corresponding Lisp function may look like what is shown in Figure 5.2.
In the code, begin and end represent the beginning and end, in target positions, of the
paragraph to which a window is to be opened. The function goto-char positions the cursor
to the point given as argument in the source editor, where the positions are translated by
target-to-source from target to source via internal data structure accessing. Finally,
inserting the text for opening and closing the windowed paragraph is straightforward.

The reverse mapping of page layout is relatively trivial compared to things related
to macro unraveling. A macro and its arguments in the source representation (S) may not
have a one-to-one correspondence with the expanded text that ultimately appears in the

target representation (T). Typically there are three cases in a macro expansion:

1. text as arguments of a macro in S gets copied over to T,
2. text in S is consumed. by the expansion and therefore is deleted in T,

3. new text originally not in S is inserted in T by the expansion.

When the expanded text is selected in T', what are the semantics of target-level operations
using the selected text as an operand?

As a premise, the selection mechanism must be able to tell if the text is part of an
expanded macro. Since internal representation accessing primitives are available to the Lisp
subsystem and since the object and target representations (O and T) are tightly coupled,
one can easily identify if any selected text is in the proper scope of a macro. To handle the
semantics, case 2 can be eliminated to begin with, because deleted text cannot be selected

in T. Depending on the user’s intention, there are three possibilities:

1. The interest is in plain text only regardless of how the macro is expanded. Thus,
including the text introduced by a macro, all “characters” seen by the user can be used
as the operand, but no other attributes (e.g:, typeface, size, etc.) will be associated
with it. Operations of this type must be non-destructive with respect to the selected

text itself. A plausible operation belonging to this group is copy.

2. If the selected text is copied over from S, destructive operations such as insert, delete,

move, and so on are legitimate. Side effects are first reflected in § (the cursor will be

49

“warped” to the source editor window) and eventually get reflected in T through the
S — 0 — T cycle.

3. If the text is inserted, destructive operations will be disabled with some warning mes-
sages. Omne step beyond this approach is a query asking the user if the intention is to
modify the definition of the macro in question. If so, the macro-unraveling Lisp code
can scroll to the most recent spot in context where the macro is defined and let the
user do the modification at the source level. A more elaborate approach incorporates
certain rules that correlate encapsulated operators and operands in T with the under-
lying TEX code to be inserted to the macro definition in 5. Multiple levels of macros
may be involved in a macro expansion. An effective selection mechanism must be
able to distinguish macros of different levels. For example, a first-order selection (e.g.,
single mouse click) always highlights and selects the inner-most macro enclosing the
pointed text. A second-order selection (e.g., two consecutive mouse clicks) highlights

and selects the enclosing macro of a level higher, and so on.

Reverse mapping on the basis of per-target-level operation is somewhat special
to VORTEX. By contrast, in Quill, the underlying source langué.ge is the fully declarative
SGML. There are two levels of internal representations (O and T') maintained in Quill as in
VORTEX. Unlike VORTEX, however, Quill’s external source representation is hidden during
editing (i.e. no connections between S and U). The only role SGML plays is off-line filing
and document interchange. In other words, reverse mapping becomes unnecessary in Quill.
Its logical iject representation (O) is a mirror of an SGML document; each node in O
corresponds to an SGML markup tag. Thus, when the document is to be filed, all that is
needed is to traverse O and the corresponding file in SGML can be generated.

As was argued in Section 2.2, the tradeoff boils down to complexity versus flexi-
bility. Compared to Quill, VORTEX’s overall architecture is more complex due to TEX’s low
degree of declarativeness and its macro-based abstraction mechanism. On the other hand,
VORTEX is more flexible; to create a direct manipulation type page layout like Figure 3.2
and be able to map it back to the source is simply beyond Quill’s model. Imposing logical
document structure is also possible in VORTEX. Although O does not carry any logical mean-
ing in VORTEX, document structure and style like those defined in IATEX can be realized by
the reverse mapping facility, which operates at the source level. Since the user interface is

customizable, one can effectively hide the procedural aspects of TEX in VORTEX-

50

5.5 Pre- and Post-Processing

The pre- and post-processing facilities largely follow‘three steps of (1) placing
task-specific markup tags (commands) in the document body, (2) processing an auxiliary
file containing information related to these tags, and (3) incorporating the results back to
the main document. In many cases, these tags do not appear in the target representation;
instead, they create links between different objects. These links frequently destroy the strict
top-down hierarchy of the document’s internal logical structure (O).

In VORTEX, all three steps are again built on top of the Lisp programming sub-
system. Since a source representation is explicitly maintained, there is no need to hide
these tags in the “shadow”. The advantage of operating at the source level is that the
internal representation does not have to increase its structural complexity. Tags such as
citations retrieved from a bibliography database are directly inserted into the document
source. The programming layer also has control over external processors. Thus, when the
off-line processing is finished, the result can be interactively incorporated back in the source

representation by the top-level of a Lisp program that initiated the processing.

5.6 Imaging and Filing

VORTEX s on-line imaging mechanism is based on direct interpretation of the target
representation. Both its source in TEX and a translation of T (e.g., in DVI or POSTSCRIPT)
can be filed as the off-line representation. It is also possible to base the on-line displayer
complétely on a PDL like PosTSCRIPT because such a server is already available for rendering
graphics. The Q’ for on-line imaging has been covered above; the one for off-line filing and

imaging is a straightforward batch approach.

5.7 Dynamic Reading

Given a complete PDL as the graphics image server (PosTSCRIPT in this case),
VORIEX is able to present pictures dynamically. This dynamic behavior may happen in
one of two modes: playback and synthetic. In playback mode, the document displayer
constantly gets notifications from the POSTSCRIPT server with new raster images of the

same picture. In processing each notification, the old picture is erased and replaced by a

51

new image. If this redisplay happens frequently enough, it becomes, in effect, animation.
In synthetic mode, the displayer simply executes a POSTSCRIPT program that takes care
of itself in terms of any dynamics involved. The premise, however, is that the document
displayer be the PosTScRrIPT server itself. From the multiple representation’s viewpoint,
the playback mode is closer to direct manipulation because scenes as raster images are the
basic manipulable objects, while the synthetic mode is more like source language based due
to its programming aspects.

Furthermore, given the Lisp programming subsystem, the ability to access internal
document structure through some lower level primitives, and an extensible user interface,
VORI'EX is capable of providing the user with some dynamic viewing functionality. The Lisp
subsystem is also tightly coupled with the pre- and post-processing facilities mentioned
earlier. For instance, one can select a reference and have the content of the reference
displayed in a separate window. This type of context-sensitive browsing applies to objects
like citations, cross references, indexes, and the like. What is special here is that no hard
links are built into the internal representations for browsing purposes. Each operation is
realized as a user-level function that performs primarily pattern matching in the source

manuscript with the aid of internal representation accessing primitives.

5.8 Integration

The complete VORTEX system is integrated by means of sharing certain represen-
tations (IIU ©) or transformations (I'U A). For instance, Q Emacs is essentially S — S « U
in the Q) of both graphics specification and formatting/layout; the Q corresponding to dy-
namic reading just mentioned constitutes part of T — U in formatting/layout. Also, the
internal representations of formatting/layout are shared by tasks such as reverse mapping,
pre- and post-processing, and so on.

In particular, text and graphics integration in VORTEX employs a “cut-and-paste”
model. The manipulation of text and graphics each operates under a distinct context. The
integration is based on the PosTSCRIPT imaging server. From the document formatter and
displayer’s point of view, graphics is just a piece of raster image. Therefore, text within
graphics will not be formatted the way regular text is; it all depends on how the graphics
imager treats text and fonts.

Quill represents a fundamentally different model in which arbitrary nesting of text

52

and graphics is permitted and their processing is uniform. The uniformity is achieved by
sharing a common ob ject representation (O) between graphics specification and formatting.
Like text, graphics nodes in O will eventually be mapped to their SGML counterparts [31].
These nodes can be arbitrarily nested, a context-sensitive menu will be displayed when a
node of a particular type is selected. The integration mechanism here is based on represen-
tation sharing rather than a series of transformations as is in VORTEX.

VORIEX’s Lisp programming subsystem provides the essential glue for integrating -
the bulk of tasks together in a coherent manner. These tasks include reverse mapping, the
many phases of pre- and post-processing, dynamic reading, and so forth. Most importantly,
it also serves as the backbone behind job control and user interface customization. For a
complex environment like VORTEX, a user-level programmable source representation like the
Lisp substrate reduces the complexity of the system’s internal representations as well as its

overall integration mechanism, which may otherwise be ubiquitous and difficult to manage.

Chapter 6

A VORTgX Prototype

A document in VORTEX is represented and presented in both source and target
forms; mappings between the representations must be carried out efficiently and systemat-
ically. The task domain covers a vast diversity of jobs; an integrated environment must be
provided so that their corresponding vertical tasks can be handled coherently. It must also
support compound objects horizontally, so that documents are not restricted to the textual
form.

This chapter discusses a prototype implementation of VORTEX. In this version,
the system supports documents in multiple representations. An incremental formatter is
in place that transforms a document from the source repreééntation to the target repre-
sentation. A reverse mapping facility is responsible for the transformation in the opposite
direction. Vertical tasks are integrated by the system’s gluing mechanism, yielding an envi-
ronment that allows the user to access dictionaries, databases, and any external processors
conveniently for non-formatting jobs. Finally, hooks are built into the system to incorporate
graphics and other non-textual objects. Although the prototype does not support the full
functionality specified in the previous chapter, it does demonstrate that the design is viable
and the system is extensible. The remainder of this chapter explains how the prototype has
been realized.

The prototype system is implemented in C and Lisp. Its kernel, which includes a
source editor, a target editor, and an incremental formaftter, are all written in C. Higher-level
facilities for such tasks as reverse mapping and pre- and postprocessing are programmed in
Lisp, which is supported by the source editor. C was chosen partly because it interfaces well

with VORTEX’s underlying distributed UNIX environment and partly because the VORTEX

53

54

Post-

Pre-
Processing Processing
Facilities Facilities

. -

Source

.
~eo

{ Graphics " Editor -
LoEditor ;0 Nl S S~ e

g s

§ Formatter i

.-"i"~. {
{Graphics %, T~ = = =7 \
i Imaging m. /o 0\ 7 Formatter
, Server fooTeg SESL) (for ancther document)

Figure6.1: VORTEX system structure. The circles represent ma jor system components, while
arrows denote their inter-relationships. Dotted circles and arrows are not implemented in
the current prototype, but hooks are available for them to be plugged in when necessary.

incremental formatter was adaptéd from a C version of TEX (i.e., Common TgX). Lisp was
chosen as the higher-level gluing language because it is interpreted. It interacts well with
the source editor, and is extensible. It would be awkward to deal with the highly interactive
activities associated with pre- and post-processing tasks in C. Conversely, using Lisp alone

would mean rewriting TEX from scratch, which we deliberately tried to avoid.

6.1 System Structure

The principal components of VORIEX are the incremental formatter and the pair
of source and target editors with which the user interacts. Additional external programs
used in pre- and post-processing are integrated with the overall system through the Lisp-
based gluing mechanism. To the formatter, any special object (e.g., a figure) is treated
as a box whose dimension is used to reserve the necessary space. It is the target editor’s

responsibility to render these special objects. Special-purpose editors can be brought in to

55

manipulate these objects.

Figure 6.1 illustrates the basic system structure of VORTEX. The principal trio,
formatter, source editor, and target editor, are tightly coupled during the processing session.
Preprocessing tasks which may access external dictionaries and databases are built on top
of the source editor. Postprocessing tasks are integrated by the same mechanism. Each
instance of the incremental formatter maintains a single document whose component files
originate from the source editor. If another document is to be processed, another instance
of the formatter is connected with the two base editors. The formatter produces the target
representation of the document it maintains and sends it to the target editor for display.
For the purpose of synchronization, the two base editors are interconnected as well. They
communicate with each other so that changes can be mapped back and forth between source

and target representations.

Presumably a graphics editor can be connected with the source editor to exchange
graphical objects in a source language like PosTScripT. The graphics editor is supported
by an imaging server, which evaluates each graphical object (as a POSTSCRIPT program,
if PosTSCRIPT is used as the source representation) and returns the corresponding screen
image to the client editor. The target editor may also take advantage of this imaging server.
Whenever a graphical object is identified in the target representation, its corresponding
procedural description (e.g., the PosTScrIpPT code) is transmitted to the server, and in
return a screen image can be rendered in the user’s viewport. Other special objects can be

handled in a similar fashion.

A typical VORTEX session starts by invoking the source editor, in which component
TEX files of a document can be visited and edited. The source editor is the driver of the
entire system that spawns the formatter, the target editor, and any special editors. Multiple
documents are simultaneously maintained in the source editor. Whenever a new document
needs formatting, an instance of the incremental formatter is initiated which remains con-
nected with the two base editors for incremental reformatting until it is explicitly exited.
A formatter can conceivably handle more than one document at a time, but supporting a

single document makes the structure logically cleaner.

56

6.2 The Principal Trio

One possible way of realizing the system is to implement it as a monolithic program
in which the source editor serves as system top level, while other components are invoked
as subroutines under a single thread of control. Since all components share the same
address space, only one copy of the internal representation is needed to support multiple
representations and their mappings: Systems like Diamond [47] and Quill [32] are good
examples of the monolithic approach.

This approach has a number of practical limitations. First, the internal represen-
tation is a huge data structure. When it is coupled with the buffers and state information
claimed by the two base editors, the required run-time heap memory may be quite significant
and thereby limit the system capacity. Second, single-threaded control reduces the chance
of exploiting fast computation resources available in a networked environment. Although it
is possible for a monolithic system to prioritize events so that some computation-intensive
tasks like formatting can take place in the background, it is not possible to take advantage

of the computation power of some remote machines under single-threaded control.

An alternative approach distributes the system into multiple processes across dis-
joint address spaces. Under this model, the principal trio, as well as various special-purpose
editors, all operate under their own address space,! so the constraint of dynamic mem-
ory usage is less of an issue. Parallelism can be exploited under distributed circumstances
where multi-thread control is supported. While the user is browsing the document, back-
ground formatting can continue without intervention or delay. Another unique advantage ‘
that the distributed approach has over the monolithic one is that it is possible to off-load
the back-end incremental formatter to a fast remote machine for increased performance. A
network-based window system like Andrew [100], X [119], or NeWS [127] would even allow
the two front-end base editors to be off-loaded to remote machines for similar reasons. As
a practical consideration, delegating the system into three separate programs that are inte-
grated via simple communication protocols makes it possible for our implementation team
to work independently. During the course of the prototype implementation, each group was

able to proceed without depending on the other groups until the final phase of integration.

1Systems with multiple processes running under disjoint address spaces are typified by certain versions of
UNIX, such as 4.3 BSD, where shared memory is not supported. Under some single language environments,
such as Cedar [128], multiple processes share the same address space.

57

Source Editor

Lisp
Subsystem Target Editor
User Object
Interface Sglection
Text Editing gz&"?:g/
Comm. f Comm.
Comm.
internal Rep.
Management
Incremental
Formatting
Formatter

Figure 6.2: Interconnection and functional responsibilities of the VORTEX trio. The figure
shows how the three principal components of VORTEX, the formatter and the two base
editors (source and target), are connected and what their respective responsibilities are.

The VORTEX prototype discussed here is based on a distributed framework. Fig-
ure 6.2 shows the principal trio being connected by a socket between each pair of compo-
nents. Figure 6.2 also depicts each component’s primary responsibilities. All three compo-
nents have a small subsystem that handles its communication protocols. The source editor
supports a Lisp subsystem that is the basis of integration and reverse mapping mechanisms.
Since it drives the entire system, the source editor also manages the user interface of the
target editor as well as its own interface. The source editor also takes care of text editing,

which is intertwined with its Lisp subsystem to some extent.

The target editor is responsible for rendering the formatted document. It also
handles scrolling, selection, and menu-driven command invocations. The formatter is in
charge of incremental formatting. It maintains the internal representation for a document
and provides low-level primitives for accessing the internal representation in response to

queries from the two base editors. These queries may be directly requested by the user

58

command op-code
primary operand
length of additional arguments (below)

Table 6.1: Packet header of VORTEX’s inter-process communication protocols. Packets in
the VORTEX inter-process communication protocols are variable-length datagrams with a
fixed-length header as shown here.

through the target editor, or as commands decomposed from higher-level operations invoked

in either of the two based editors.

6.3 Communication Protocols

The structure of the prototype is one that employs multiple processes under a
distributed environment, so it is necessary to devise protocols for inter-process communi-
cation (IPC) among participating parties. There is one protocol for each pair of system
components. Packets are variable-length datagrams with a fixed-length header. As shown
in Table 6.1, the packet header has three fields: command op-code, primary operand, and
an integer marking the length of additional arguments, if any, which comprise the remainder
of the packet. The primary operand is the identifier of a low-level internal representation
accessing primitive in some cases. It can also be a file identifier, a physical page number,
or a window identifier under different circumstances. ‘

The protocols defined among the principal trio are not too complicated. Tables 6.2
and 6.3 are each one half of the IPC protocol between the source editor and the formatter.
Detailed protocol specification can be found in Appendix A. The prefix indicates the di-
rection the command is going: SF_XXX goes from the source editor to the formatter; FS_XXX
goes the other way around. The source editor uses SF _Format to start the initial format-
ting or any incremental run of reformatting. Since only one document is handled by the
formatter, specifying document identifier is unnecessary In TgX, a document may contain
multiple files, but the name of the root file is considered the document name. Therefore,
in the initial run, SF_Format passes to the formatter the document root file name. For any
incremental run, this information can be omitted.

Because the system is distributed and originates from the source editor’s file space,

59

command op-code | primary operand additional arguments
SF_Format — document (root file) name
SF.OpenFile file identifier file

SF_CloseFile file identifier —_

SF_Insert file identifier offset, data to be inserted
SF.Delete file identifier offset, number of chars to be deleted
SF_Execute routine identifier | actual parameters

SF_Abort — —

Table 6.2: Protocol for “source editor — formatter” communication.

whenever a file is needed by the formatter, it must be obtained from the source editor. The
formatter makes a request by sending a FS_InputFile packet containing the file name in
question. The source editor responds to such a request using SF.OpenFile, which transmits
the file to the formatter. The formatter would replace the old copy of the same file if it
already exists. In the case of a missing or unreadable file, the source editor may include
a bad file identifier in the header of SF_OpenFile so that the formatter can abandon the
pending file reading. Conversely, SF_CloseFile asks the formatter to remove a file from its
work space. This may happen when a file is explicitly killed in the source editor. The next

time this file is encountered in the document, it will be read from the file system (disk).

When a source editor is tightly-coupled with a formatter under a distributed frame-
work, a file must be replicated one way or another using either the source editor’s file space
or the formatter’s file space as a basis (no shared network file system is assumed). If a dis-
tributed document-processing system is based on its formatter’s file space, the replication
process can be somewhat optimized; only those files or portions of them that the user ex-
plicitly visits must be replicated in its source editor. The current VORTEX prototype takes
the opposite approach and thus cannot take advantage of the optimization opportunity.
This is because every file included in a document must be replicated in the formatter’s end
for processing when files exist in the source editor’s file space. The primary reason behind
this design decision is that a system centered around its source editor’s file space supports
sharing of files among documents. Under the current design, VORTEX requires each docu-
ment to be processed by an instance of the formatter as a separate process with its own
file space. If the formatter’s file space were to be used as the base file system, different

documents sharing the same set of files under a single editor control would not be possible.

60

command op-code | primary operand additional arguments
FS_InputFile — file name

FS_OutputFile — file name, file

FS_Message — actual message

FS_Error file identifier line number, error message
FS_Return routine identifier | return code/value

Table 6.3: Protocol for “formatter — source editor” communication.

There are a number of instances where the formatter feeds information back to the
source editor. For example, when formatter output is generated in a file (e.g., the log file
or the final off-line representation of the formatted document), it must be returned to the
source editor’s file space, because, after all, all files originate from that file system. Sending
a file back is done by an FS_OutputFile packet. During a processing session, the formatter
may also generate progress messages or error messages. In either case, the messages must be
reported back to the source editor. The commands FS Message and FS_Error are intended
for reporting progress and error messages, respectively. An FS_Error packet includes the file
identifier and line number where the error occurs. The source editor uses this information
to pop to the context in question, allowing the user to make immediate corrections.

" Once a file is replicated in the formatter’s work space, changes made in the source
editor are spontaneously propagated to the formatter piece by piece. SF Insert tells the
formatter to insert some number of characters in a designated file. SF_Delete is the opposite;
it asks the formatter to delete some number of characters from a designated file. Given these
two primitive operations, it is sufficient to keep the replicated file up-to-date. The most
fine-grain opération is one character per insert/delete packet. This would cause potential
degradation in network bandwidth. A number of optimizations can be exploited by the
source editor to propagate changes in larger packets. For instance, updates to a region of
consecutive text can be bundled in a batch. Changes that are immediately undone need
not be propagated at all. Furthermore, positioning the action marker, which designates
where insert/delete should take place, must be efficient to reduce search overhead. The
offset shown in Table 6.2 as an argument to SF_Insert/SF Delete can be thought of as
the relative traveling distance of the moving marker between two successive update events
in the same file.

The source editor assigns a unique identifier to each character which must, among

61

command op-code | primary operand | additional arguments
TF _SendPage page number —
TF _Execute routine identifier —

Table 6.4: Protocol for “target editor — formatter” communication.

other things, encapsulate the identifier of the file it belongs to. Because maultiple files may
be included in a document, this information is essential for the source editor itself to know
where a character is once it is specified by the formatter.

The integration mechanism built on top of the source editor’s Lisp programming
layer may need access to the formatter-maintained internal representation. Each low-level
internal representation accessing primitive can be uniquely identified, and its formal pa-
rameters and return code/value are known a priori. High-level functions provided by the
integration mechanism, which are evaluated in the source editor, decompose into these low-
level primitives, which are resident in the formatter. The bridge between them is the pair of
SF_Execute and FS_Return commands. SF_Execute identifies a specific low-level primitive -
and passes it the required parameters. The formatter, upon receiving this request, invokes
the corresponding routine and responds with FS_Return, including the function’s return
code and value.

Routine invocations can be folded into the protocol dire.ctly, instead of indirectly
addressed through SF_Execute. However, the indirect addressing scheme yields a more
stable protocol; new primitives can be registered without modifying protocol definition. This
basic protocol does not support composite function invocations. There is no easy way to
specify executing several primitives, each taking arguments from the preceding function, in
one packet. Composite invocations reduce IPC round-trip overhead, but are more complex

in semantics. Finally, the command SF_Abort terminates the formatter explicitly.

The communication between formatter and target editor is not as complex. Ta-
bles 6.4 and 6.5 show a simple protocol currently in use. Its formal specification is detailed
in Appendix B. Whenever the target editor is asked to perform an operation, it issues
a TF_SendPage command. The formatter replies with either (1) FT.PageNotFound, which
means the document does not contain such a page, (2) FT_PageOkay, in which case the page
is already in the target editor’s work space and is still valid, or (3) FT_PageInfo, which

transmits the target representation of the designated page as a sequential byte stream to

62

command op-code | primary operand | additional arguments
FT_PageNotFound | page number —

FT.PageOkay page number —
FT.Pagelnfo page number flattened page stream
FT Return routine identifier | return code/value

Table 6.5: Protocol for “formatter — target editor” communication.

the target editor (see Section 6.5). In case 3, either the target editor has not requested that

particular page before, or the page in its work space is no longer valid.

FT_PageOkay is intended to reduce unnecessary network transmission of a page
that is still valid. Although not implemented in the current version, simple heuristics can
be embedded in the target editor that makes the TF SendPage query redundant in some
cases. For instance, after one FT_PageOkay is received, the target editor can disable such
queries for any continuous, non-destructive target-lével operations on the same page. Here,
“continuous” means the command sequence does not contain source-level operations, which

conceivably may invalidate the current target page.

The way the TF Execute/FT Return command pair works is identical to the se-
quence of SF_Execute and FS_Return commands discussed above. The target editor relies
on a host of internal representation accessing primitives to perform effective selections. For
instance, the selection mechanism must know whether or not a selected text region contains
any macro expansion, thereby prompting appropriate messages to clarify the user’s intention

(see Section 5.4). The formatter is fully capable of providing such vital information.

The communication between the two base editors deals largely with windowing
(create/destroy a window), scrolling (goto a certain page), and positioning (goto a certain
point in a page). Another important aspect of the protocol is to support reverse mapping.
As mentioned in Section 5.4, each target-level operation corresponds to a source-level Lisp
function that implements its semantics. When a target-level operation is invoked, the corre-
sponding Lisp function is executed in the source editor, whose side effect gets propagated to

the formatter automatically. The document is then reevaluated, and the result redisplayed.

63

6.4 Synchronization

The protocols defined above comprise a mix of asynchronous and synchronous
activities. Inter-process communication in the VORTEX prototype is not remote procedure
call (RPC) [22] per se, but it does support some flavors of RPC, in cases like execute/return.
The major difference between RPC and the general form of message passing is that in RPC
a call is guaranteed to return synchronously with a value, much as in the case of a local
procedural call. General message passing guarantees arrival of a call, but does not need
to block on the return event. RPC and message passing are functionally equivalent, but
application-specific tradeoffs often dictate which gets applied [37]. In VORTEX, both types
of semantics are supported. There are a few critical cases where a call must block on return,

while most other IPC operations are asynchronous.

Asynchrony is essential for parallelism considerations. For instance, when the
source editor is down-loading a file to the formatter, the formatter may be down-loading
a target page to the target editor. Synchrony is important in some critical situations. A
good example is requesting a file in the formatter, and subsequently processing it when it
has been down-loaded by the soﬁrce editor. If this were asynchronous, the re-entry point to
the file processing routine may be lost in the first place. Moreover, before the SF_OpenFile
arrives, other events may have taken place, which could prevent the continuation of the
pending file reading. An elaborate scheduling techniques like an event priority queue can
solve this semantic nightmare. In the VORTEX prototype, this undesirable phenomenon is
avoided by supportiﬁg simple RPC semantics.

Whatever the case, protocol-level synchronization is transparent to the user. Ata
higher level, however, synchronization between source and target representations becomes
fully exposed. In the VORTEX prototype, these dual representations are kept synchronized
under both asynchronous and synchronous modes. Changes made in the source editor are
propagated to thé formatter automatically, but reformatting must be explicitly triggered by
the user. In other words, the one-way transformation § — O — T is asynchronous. On the
other hand, changes made in the target editor are first propagated to the source representa-
tion by the reverse mapping device, but in this case, those changes are immediately mapped
back to the target representation. In short, the transformation loopT - S —-0—Tis
synchronous.

These design decisions are dictated by reformatting granularity as well as user

64

interface considerations. The prototype employs a page-based incremental strategy (see
Chapter 7), in which word hyphenation and line breaking involve examining every letter
in a paragraph. Keeping the target synchronized with the source for every source-level
keystroke is not only expensive but unnecessary. Unlike pure direct-manipulation systems
where immediate ezecution of every single keystroke is crucial to the user’s next move, the
presence of both source and target representations supports delayed ezecution, in which the
target is brought up to date only when the user explicitly requests so. More discussion on
the differences between the two execution modes can be found in Chapter 7.

On the other hand, as in pure direct-manipulation systems, changes made in the
target editor must be immediately evaluated. Otherwise it is difficult, after one change
in the target representation, to continue the next target-level operation. Therefore, in
VORIEX, fine grain changes, such as character insert and delete, only happen in the source
representation. By design, the system does not preclude direct insert/delete on the target
representation. Since the immediate evaluation is unable to keep up with the normal typing
pace, a decision was made to “warp” any such operations to the source editor, making the
re-evaluation user-driven. Target-level operations are oriented toward the manipulation of

document appearance, such as attribute queries and object placements.

6.5 Internal Representation

The preceding discussion has made it clear that the two base editors are each
responsible for the presentation and manipulation of one document representation. The
two representations meet in the formatter, which derives target from source and is able
to keep them correlated. In order to maintain an effective correlation, an intermediate
object representation is used as the go-between. The complete picture of VORTEX s internal
representation, the IR, is that the formatter maintains a copy of the source representation
IRg, on top of which sits the intermediate object representation JRo, and tightly coupled
to the TRg U IRp is the target representation IRT. A detailed specification of the IR is
given in Appendix C.

The IR is essentially a replica of the source document in the formatter’s work
space. Each node in the IRs contains one character that appears in the original document.
Each character has a unique identifier, which is used by the source editor and the formatter

in exchanging information. Events such as SF Insert and SF_Delete from the source editor

65

foo.tex goo.tex hoo.tex noo.tex

\input goo

goo.tex

foo.tex

Figure 6.3: VORI'pX’s internal source representation (IRs). The figure shows a document
rooted at the file foo . tex, which includes files goo.tex and hoo. tex, which in turn includes
the file noo.tex. The IRg representation is a doubly-linked list. The spine is the sequence
of character nodes from foo.tex, with branches corresponding to various external files.

update the IRs asynchronously. If efficient update is the foremost concern, the IRg can be
organized as a doubly-linked list of character nodes. Figure 6.3 is an illustration of the IR g
in the current VORTEX prototype. Each node in the IRg contains a character and pointers
to its left and right siblings, its parent in the IR0, and its corresponding target box, if any,
in the IR7. A document may comprise multiple files. Whenever the control sequence for

file inclusion (\input) is identified, a new list of nodes is attached to the main IR s spine.

The IR is intended as a hierarchy superifnposed on top of the IRg. This hierarchy
reflects the structural view of the underlying document in terms of its syntactic objects. It
does not support such logical entities as chapters, sections, figures, etc. According to the
design outlined in the Chapter 5, those entities are emulated at a higher level. The IRy
nodes are generated as the JRs is scanned and processed. It captures as much semantic

information as possible for any syntactic token identified in the IRgs.

66

class type
IRs Char
plain IRo Ligature
IRo_Word
IRo_Paragraph
IRo DefFont
IRo DefMacro
control IRo_Font
sequence IRo Rule
IRo_Symbol
IRo Special
TRo Macro
math IRo Math
IRo DisplayMath
file IRo_Input
miscellaneous | IRo_Group
IRo Space

Table 6.6: Classes and types of nodes in the IR g. The table lists the types of nodes currently
supported in VORTEX’s internal intermediate object representation (IRo). Classes here are
artificial; they are introduced for the purpose of classifying these types, and nothing more.

The most important piece of information for any IR ¢ node is its type, which indi-
cates the nature of its children nodes in the IRg. Table 6.6 lists possible node types in the
IRs U IRp by classes. There are five basic classes, each containing certain types of nodes.
Classes have no special meaning here, other than to classify the types of nodes that are sim-
ilar in nature. An IRs_Char node appears exclusively in the IRg, while all IRo_xxx nodes
appear only in the TRo. In the control sequence class, the definition of a font (IRo DefFont)
is separated from the definition of a macro other than a font (IRo_DefMacro). Similarly,
invoking a font (IRo_Font) is distinguished from invoking something other than a font. In
particular, the invocation of a rule (IRo.Rule), a mathematical symbol (IRo_Symbol), or
special object (IRo.Special), such as a piece of graphics, is separated from the invocation

of a ordinary macro (IRoMacro). Other types of nodes are self-explanatory.

The IR nodes can be nested, but the nesting is typically shallow. In most cases,
going up from an IRs node, it only takes a handful of links to the root, which is normally
a IRo_Paragraph node. Figure 6.4 is a snapshot of a typical internal representation of
the IRs U IRp. The way the IRp is constructed is to follow the sequential flow of the

67

AN

plh{\ |/ {}{- fnln

ajr|aid

lRS D character node
@ spacenode macro node
word node font nade
group node paragraph node

Figure 6.4: VoRIEX’s internal source and object representation (IRs U IRp). The figure
is a snapshot of a sample IRs U IRp. An arrow indicates the direction of a link. All short
arrows point to their parent. Most nodes in the IR U IR, have links to the TRr, but
they are not shown in the figure.

document. Most IRo nodes are created during the parsing phase of the IRs. Their types,

in some cases, are not filled in until a later stage of the processing.

In the vertical direction, an IRo node always points to its leftmost child, while
every node except the root in the IRs U IRp has a upward link to its parent in the IRo.
This is designed to support efficient dependence tracking, Recall that changes made in the
source editor are spontaneously propagated to the formatter via SF_Insert or SF Delete
events. In response to these events, the formatter no only updates the content of the
designated node in the IRg, but also marks the node as dirty. When an IRg node is
dirty, it only takes a few links to mark its enclosing object as dirty. In Figure 6.4, to mark
the paragraph as dirty, it take just 2 or 3 steps upward from an JRg node. Traversing
the IRo horizontally yields the syntactic structure of a document. This can be done at

several levels. For instance, in Figure 6.4, the node following the three leftmost IRo _Word

68

Pioo A,(onoo) asess

(P) page box
lRT @ paragraph box
@ word box

terminal box
(character, rule, graphics, etc.)

Figure 6.5: VORI'EX’s internal target repf'esentation (IRT). The figure is a partial page of
a sample JR7. These boxes have cross reference links to the IRs U IRp, which are not
shown in the figure. The subscript in each box is its identifier, which consists of four digits.

nodes (“Here is a”)is a IRo.Group node, under which a IRo_Font, two IRo_Word, and a
IRo_Macro are found to be horizontally linked. A similar structural relationship exists at

the IRo_Paragraph level.

Certain nodes in the IRs U IRo have cross reference links to related nodes (not
shown in Figure 6.4). For instance, most non-space, non-delimiter nodes in the IR s have
a link to a counterpart in the JRr, and vice versa. The more interesting case happens
in font/macro déﬁnition and invocation. A node marking the invocation of a user-defined
font (IRoFont) or macro (IRoMacro) has a link to the node where the font or macro is
defined (ie., the corresponding IRo_DefFont or IRoDefMacro node). This cross reference
information provides the necessary low-level support for the macro unraveling facility (see
Section 5.4). System-defined fonts and macros, which are preloaded into the system symbol
table, do not have corresponding nodes in the IRo. Therefore, an IRo node marking the

invocation of a system font or macro has no cross reference link to its definition. Under this

69

level/digit | bit allocation | bit count effective yield
1 31 — 22 10 1,024 pages per document
2 21 — 16 6 64 paragraphs per page
3 15 — 6 10 1,024 words per paragraph
4 5 — 0 6 64 letters per word

Table 6.7: Bit allocation for the IRT boz identifiers. Under the current VORTEX prototype,
boxes in the IRy have an identifier of 32 bits. This table shows how these bits are used.
Under this scheme, the maximum number of pages for a document is 1,024. If this is
considered too restrictive, a slight variation to this scheme could allocate 11 bits to the per-
document page count (2,048 pages per document), leaving 5 bits to the per-page paragraph
count (32 paragraphs per page).

principle, modifying preloaded fonts and macros is not allowed.

During code generation, the internal target representation (IR7) is produced. As
shown in Figure 6.5, the IRt is a hierarchy with a fixed depth of four, consisting of three
levels of non-terminal boxes (page, paragraph, and word), and one level of terminal boxes.
In referring to the IR, the term boz is deliberately used to distinguish it from a node in
the IRs U IRo. Each non-terminal box is connected with its subordinate structure by a
link to the leftmost child (down arrows). All except page boxes are linked to their parent
(dashed up arrows). Every box, non-terminal or terminal, has links to its siblings (left-right
arrows).

The IRt hierarchy enables very simple encoding and decomposition schemes for
the communication between formatter and target editor. The encoding scheme assigns an
identifier to each box. The idea is, given an identifier, that the corresponding box can be
located in the IRt as quickly as possible. The current VORIEX prototype uses a 4-digit
number to encode an identifier. From left to right, each digit encodes one hierarchy level
in the top-down JRr. The value of a digit reflects a box’s absolute position in its sibling

chain. For an arbitrary box at level i, 1 < i < 4, the digit code is D ;1 D;2Di3Dis, where
0 ifj>1
D=4 7p ifj=1
Di_qy; ifj<z
where p is the absolute position of the box in its sibling chain and 1 £ j < 4,
A 4-digit identifier like this can easily be packed into a 32-bit word whose bit

70

allocation is shown in Table 6.7. Based on this simple encoding scheme, finding an arbitrary
box is quite efficient. On the average, the number of links that must be followed in locating

a terminal box is
Dy + Dyp+ Dys+ Dyg
2

which, in the extreme case, is around 1,000. Practically, this number is an order of magni-
tude smaller, because both the number of pages per document and the number of words per
paragraph are around 100, instead of 1,000, in the normal case. Since the identifier encodes
explicitly the position of a box in the IR, no comparison is needed in following the path
to the wanted box. Furthermore, if the locality of references is properly exploited (most
references happen in the same page, or even the same paragraph), the search overhead can
be reduced even further. Also, the way target box identifiers are encoded enables the target
editor to perform effective selections. Simple comparisons on two identifiers can determine
the ordering of their underlying boxes; the smaller identifier always correspond to a box in
the precontext of the other box.

_ The role of the decomposition scheme is to ﬁatfcen the IR into a sequential stream
which is necessary when a page is to be transmitted from the formatter to the target editor
over the network. The current scheme represents a page as the in-order traversal (root-
down-right) of the TR. The sequential byte stream contains not only the information for
every box in a page, but also commands like DOWN, RIGHT, and UP, which are used to mark

the links among the boxes.

Table 6.8 shows various types of the ITRT boxes currently supported in the pro-
totype. The host of terminal boxes provides necessary support for target-level object se-
lections. The bottom line is that certain types certain operations are only allowed to be
performed on certain types of terminal boxes. This “type” information facilitates the tar-
get editor making appropriate decisions. An IRt Char box is just an ordinary character
with a matching node in the IRs. An IRt.Ligature box has a cross reference link to
an IRo Ligature node in the IRo. An IRt Hyphen box, with a cross reference link to a
IRo_Word node in the IRo, marks a hyphen generated by automatic word hyphenation.
Massaging a character like this is illegal in the target editor. The next three types of boxes,
IRt_Rule, IRt_Symbol, and IRt _Special, are similar to their the IR o counterparts.

The last two typeé of terminal boxes, IRt Explicit and IRt Implicit,are crucial

to the reverse mapping device. Both types of boxes contain a character that does not exist

71

class type

IRt Char

IRt Ligature
IRt _Hyphen
terminal IRt Rule

IRt _Symbol
IRt Special
IRt _Explicit
IRt.Implicit
IRt Word
non-terminal | IRt _Paragraph
IRt Page

Table 6.8: Classes and types of bozes in the IR . The table lists the types of boxes currently
supported in VORIEX’s internal target representation (IR7).

in the Corresponding context of the IRg, but instead is introduced by a macro expansion.
The important difference is, in the case of IRt _Explicit, that the character comes from a
macro invocation that explicitly appears in the source representation. In the other case, the
character in a IR Implicit box is produced by some implicit macro expansion, such as the
header or footer of a page. Normally these implicit macros are part of the page construction

routine, and are not explicitly invoked in the user document.

The correspondence between nodes in the IRs U IRp and boxes in the TRt is a
relation, not a function. In particular, delimiter and space nodes in the IRs U IRo have
no counterparts in the IRr. Conversely, text introduced by macro expansions in the IRt
cannot find exact matches in the IRg U TRo. For instance, all members of a ligature in the
IR are associated with a single box in the IR7. The most interesting problem arises when
one object in the IRp is split into two in the IR 7, as exemplified by a hyphenated word or
a paragraph which extends accross a page boundary. If a one-to-one correspondence were
appropriate, one approach would be to split the node in the IRo into two. However, that
would cause a rather significant ripple effect all the way to the root in the IR o. The current
prototype allows a one-to-many correspondence between an object in the TRp and all its

derivatives in the IR7.

72

class routine (arguments) ‘ return value
position irs_to_irt (IRs.id) IRt.id/nil
transformation | irt_to_irs (IRt.id) , IRs.id/nil
type irs_type (IRs.id, &n) IRo.type/nil
checking irt_type (IRt.id) IRt.type/nil
irs_find _font (&IRs.bor, &IRs.eor, &name) IRs_FontPackage/nil
bounded irs_find_macro (&IRs.bor, &IRs.eor, &name) | IRs MacroPackage/nil
search irsfind_math (&IRs.bor, &IRs.eor) IRs _MathPackage/nil
irs_find_group (%&IRs.bor, &IRs.eor) IRs_GroupPackage/nil

Table 6.9: Primitives for accessing VORI EX’s internal representation. The table classifies
the currently-supported primitives for accessing VORIEX’s internal representation (IR).
The prefixes IRs, IRo, and IRt represent a node/box in the IR, IRs, IRop, and IRT,
respectively. IRs.bor and IRs.eor represent the beginning and end of a region in the IRs.
An argument with the ampersand (&) prefix is optional.

6.6 Accessing Internal Representationh

The formatter supports a number of low-level primitives that provide access to the
IR. These primitives are used not only by the formatter itself in maintaining the IR, but
more importantly, by the two base editors for a wide range of operations including selec-
tion, synchronization, and reverse mapping. Table 6.9 lists three classes of TR-accessing
primitives currently supported in the prototype. The first class includes two position trans-
formation primitives, which deal with transformations from source to target, and vice versa.
Given the identifier of an IR node, irs_to_irt () returns the identifier of its corresponding
box in the IR7, if any. The routine irt_tors () does the 6pposite. These two primitives
form the basis of VORTEX's synchronized inter-representation serolling (intra-representation
scrolling is carried out independently by each editor). In the class of type checking, primi-
tives return the type of a node. In particular, irs_type () takes an additional argument n,

which specifies that the node to be checked is n levels above the given IRs node.

Each primitive in the bounded search class takes a region specified by the identifiers
of its two bounding IR nodes, sweeps from left to right searching for the corresponding
node on the IRo above the region, and returns all matches in a package, a list of one or more
lists, each of which contains the scope information of a node found in a designated region.
If a region is unspecified, the entire IRs is assumed. There is a small variation in finding

fonts or macros: both irs_find_font () and irs_find_macro () take an optional argument of

73

package - content

[IRs.bon, IRs.eon,

{ IRs.def.bon, IRs.def.eon, IRs.def.bob, IRs.def.eob }]
IRs.FontPackage [IRs.bon, IRs.eon,

{ IRs.def.bon, IRs.def.eon, IRs.def.bobd, IRs.def.eocb }]

[IRs.bon, IRs.eon, { IRs.bob, IRs.eob },
{ IRs.def.bon, IRs.def.eon, IRs.def.bob, IRs.def.eob }]
[IRs.bon, IRs.eon, { IRs.bob, IRs.eob },
{ IRs.def.bon, IRs.def.eon, IRs.def.bob, IRs.def.eob }]

IRs.MacroPackage

IRs.MathPackage [[IRs.bom, IRs.eom] [IRs.bom, IRs.eom 1 ---1]

IRs.GroupPackage | [[IRs.bog, IRs.eog] [IRs.bog, IRs.eog] -3

Table 6.10: Return packages of bounded search. The table specifies each package returned
by bounded search. A package is a list of one or more lists, each of which contains the scope
information of a node found in a designated region. Items enclosed in {...} are optional;
they may be present in some cases, but absent in others. In the first two rows, IRs.bon and
IRs.eon denote, respectively, the beginning and end of a font or macro’s name. IRs.bob
and IRs.eob denote the beginning and end of a macro’s body or argument list. Similarly,
IRs.def.bon denotes the beginning of the definition of a font or macro’s name. The other
mnemonic symbols follow the same convention. In particular, bom and eom stand for the
beginning and end of a math mode (including display math mode); bog and eog represent
the beginning and end of a group.

name, which, when bound to a string, returns only those instances that match such a name;

if the name is unspecified, all instances of any font and macro, respectively, are returned.

Table 6.10 specifies each return package. Basically, a return package is a list of one
or more lists, each of which contains the matched node’s (in the IR o) scope information (in
terms of one or more I Rg node pairs). The reason for returning all matches in one package
is to reduce network transmission overhead. In IRs.FontPackage and IRs.MacroPackage,
not only the context of a font or macro is returned, but also its definition, if available, is
included. These simple primitives are the backbone of a surprisingly powerful mechanism

that realizes VORTEX's reverse mapping device.

74

6.7 Realizing Reverse Mapping

Instead of being a monolithic, stand-alone processor, VORIEX’s reverse mapping
facility is a layered device based on low-level support provided by the principal trio. Each
class of target-level operations corresponds to a Lisp function in the source editor, which
is executed with the necessary parameters supplied by the target editor when the target
operation is invoked by the user. Under this model, the primary responsibilities of the

principal trio are as follows.

o The target editor is responsible for determining the actual parameters and subse-
quently passing them to the source editor while triggering the corresponding mapping

routines.

¢ The source editor’s Lisp programming subsystem supports a full collection of editing
functions as well as a host of IR-accessing primitives, which mirror what is available

in the formatter.

o The formatter has two responsibilities. It responds to RPCs from the source editor
in accessing the JR. Also, it reformats the document to reflect any side effect caused

by a target-level operation. This provides the user with the sensation of directness.

Most target-level operations involve the current selection, which is normally a
text region identified by its beginning and end characters and highlighted on the screen.
Additional arguments are specified by invoking menu items or by typing at the editor prompt
(dialogue box). The operator/operand relationship is realized by a mixture of prefix and
postfix commands.

Consider the case of changing a text region to a new font. First the region is
selected (two prefix operands, beginning and end of the region). Next a menu of all available
target-level commands is invoked, from which the item font change (operator) is selected.
A pull-aside menu immediately appears, which shows a number of options to which the font
can be changed. Upon selection of a font (a postfix operand), the target-level operation is
complete, and the corresponding source-level Lisp code is triggered.

Selecting a text region is non-trivial due to the macro unraveling problem. In
principle, every character in the selected region must be examined before a decision can be

made regarding the feasibility of the intended operation. At such a fine level of granularity,

75

querying the formatter for this information is bound to be slow. The replicated the IRt
in the target editor actually has all the necessary information to make the judgement. It
is for this reason that terminal boxes in the IR must include so many different types (see
Table 6.8).

The premise of performing any target-level operation is that the target represen-
tation must be up-to-date before starting. When the target editor becomes active (mouse
focus is moved into one of its windows), the target editor automatically issues a TF_SendPage
command to bring the page being displayed up-to-date before anything takes place. If a
page must be transmitted for that purpose, user operations are disabled before the transmis-
sion is completed. From the target editor’s stand point, triggering the corresponding Lisp
function for reverse mapping is an RPC. Upon return, another TF_SendPage is sent to the
formatter so that any side effect of the operation can be shown synchronously. Additional
RPCs occur in the source editor, where each Lisp-level IR-accessing primitive performs an
RPC (with respect to the formatter) to obtain the result. Here, repetitive information for
a region is iteratively obtained in the formatter side and is returned as a bundled package
to reduce network communication overhead.

To get a flavor of VORTEX’s reverse mapping capability, some basic mappings are

described below:

1. Synchronized scrolling. The user selects a point in the target editor and demands that
the source editor scroll to the corresponding position, and vice versa. Alternatively,
a flag can be turned on so that the two representations would automatically scroll in
synchrony. When the target editor is the driver, the identifier of a.terminal box is sent
to its corresponding mapping routine in the source editor, which invokes irt-to-irs,
which decomposes into an RPC to formatter’s irt_to_irs (). Upon return, the source

editor simply moves its cursor to the character using goto-id.

2. Object placement: cut-and-paste. The user selects a region (two target boxes) and
a destination point (a third box). The corresponding mapping function takes these
arguments, translates them into source positions, kills the region, and yanks it at the

destination point.

3. Test copy: copy-and-paste. Two possibilities. The first is similar to cut-and-paste

above, with region being copied as opposed to being killed. The other is related

76

(defun font-change (bor eor fnt)
(let ((bor (irt-to-irs bor))
(eor (irt-to-irs eor))
(fat (font-name fnt)))
(message "Changing region font to %s..." fnt)
(if (and bor eor)
(let ((open (concat "{" fnt " "})
(close (if (italic-correction-p fnt) "\\/}" “}'}))
(font-remove bor eor)
(group-rearrange bor eor open close)
{goto-id bor)
(insert open)
(goto-id eor)
(inset close)
(message "Changing region font to %s...done" fnt))
(error "Changing region font to %s...failed (bad regiom)" fnt))))/

Figure 6.6: Changing font for a region. This routine takes a region and a font of choice, in
target representations, embraces the corresponding source region with an invocation to the
font. The predicate italic-correction-p checks if a particular font requires some extra
space at the end. The routine goto-id moves the insertion point in front of a specified
source identifier, which may involve go to a file different from the one currently visited.

to macro unraveling, in that the selected region contains explicit or implicit text
introduced by a macro expansion and that the user’s interest is only to make a copy
of the-text, instead of the associate attributes. In this case, the target editor passes
every single character in this region to the corresponding mapping routine which

positions itself to the destination point, and inserts the string as plain text.

4. Macro update. If the user’s intention is to modify the macro in the case where explicit
macro-expanded text is selected, the target editor passes an arbitrary box in the region
to its mapping routine, which calls upon irs-find-macro to find the position of its

definition and thus scrolls there for the user to make any modifications.

As a more advanced example, Figure 6.6 is the Lisp-based reverse mapping function
bound to the target-level font change operation described above. This function takes three

arguments, bor, eor, and fnt, which represent, respectively, the beginning and end of a

77

////’;defun font-remove (bor eor)
(let ((pack (irs-find-font bor eor))
info bor* eorx*)
(while pack
(setq info (car pack))
(setq bor* (car info))
(setq eor* (cadr info))
(setq pack (cdr pack))
(kill-id-region bor* eorx))))

R O R R AR AR R ERR AR

Figure 6.7: Removing all font information from a region. This routine strips off all font
invocations in a source region. It finds out where every font invocation is by calling
irs-find-font. It removes the string using kill-id-region, which takes two identi-
fiers and puts everything in between into the kill buffer. A region specified by two source
character identifiers may cross over file boundaries.

region, and the font to change to. Both bor and eor are identifiers of IR 7 boxes, so the
first step is to convert them to their corresponding source positions by calliﬁg irt-to-irs,
which decomposes into a remote procedure call to irt_to_irs () in the formatter. The font
information fnt is also specified in the target editor’s representation, as a number, so it is
also necessary for font-change to convert the font into a string. These are realized as the
three local bindings in the outer let clause. If any of the converted positions is nil, an error
is raised; otherwise the inner let clause is evaluated, which removes all font information
from the region, rearranges the group structure within the region, and encloses the region

as group, with the font string attached in front of it.

Stripping off any font information already placed in the region is an essential part
of the semantics, because the new font string prepended to the region will be overridden by
any font invocation inside. Removing every font invocation in the region guarantees effective
influence would be exercised by the new font. The function font-remove shown in Figure 6.7
calls upon irs-find-font to identify every character included in font invocations. Recall
that font information is returned as a package of one or more lists, each of which containing
at least one pair of IR s identifiers that point to the beginning and end of the font invocation

string. Each iteration of remove-font’s main loop deletes one instance of the font string.

78

(defun group-rearrange (bor eor open close)
(let ((pack (irs-find-group bor eor))
’ info bor* eor*)
(while pack
(setq info (car pack))
(setq bor* (car info))
(setq eor* (cadr info))
(setq pack (cdr pack))
(it (or (left-p bor* eor) (left-p eor* bor))
(error "This shouldn’t happen, something wrong in IR.")
(if (and (right-p bor* bor) (left-p eor* eor))
nil ;; group within bounds, which is okay
(goto-id eor*)
(insert close)
(next-char 1)
(insert open))))))

Figure 6.8: Rearranging group structure in @ region. This routine looks up all group nodes
in a source region and rearranges them by inserting the intended opening and closing de-
limiters. It receives information about group nodes by calling irs-find-group. Since all
nodes are specified by unique identifiers, their relative positioning cannot be determined by
simple comparison like < or >. Rather, the predicates left-p and right-p are used to
make the comparison.

In a trivial case where no group delimiters are found in the region, font-change is
complete after font removal and the subsequent group and font attachment. The situation

becomes more complicated when group delimiters exist within the scope of the region. The

-attachment work must take these groups into consideration so that proper scoping is not

violated. As demonstrated by Figure 6.8, the routine group-rearrange utilizes the IR-
accessing function irs-find-group to obtain every instance of grouping in the region. If
both the beginning and end of a group fall inside the region, nothing special is necessary; if
both are outside, an error is raised. Otherwise, an outer group’s left or right branch must
overlap with the region. In either case, some extra work is needed.

‘To illustrate the operational semantics of font-change, let “jtalic” be the font of
choice, the opening and closing delimiters for enforcing font change on a region are “{\it”

and “\/}", respectively. Figure 6.9 shows the stepwise development of enforcing italic font

79

beginning of an outer group *

.- { beginning of an outer group

(b)

- { beginning of an outer group -

beginning of an outer group -+

(@)

Figure 6.9: Full treatment of region font change (case 1). The figure shows the stepwise
development of region font change. The shaded area denotes the region, in which unshaded
areas are text to be deleted or just inserted. Lines connecting matching opening and closing
delimiters of a group illustrates its scope. (a) An outer group’s right branch overlaps with
the region; an inner group inside the region contains a font invocation (\bf). (b) After
font-remove, \bf is stripped off. (c) Extra delimiters are inserted by group-rearrange.
(d) Finally, following font-change, the new font \it is embedded in the region under two
separate groups.

on a region, which overlaps with the right branch of an outer group. The region also has
a proper inner group, in which the boldface font \bf is explicitly invoked (Stage (a)). As
indicated earlier, all instances of font invocations inside the region must first be stripped
off to ensure the effectness of the font of choice (Stage (b)). Another complication stems
from group overlapping, which is resolved by group-rearrange (Stage (c)). In this example
where there is only one instance of group overlapping, the region is split into two subregions,
each of which enclosed in {\it --- \/} (Stage (d)).

Similarly, as shown in Figure 6.10, there is another case where the left branch of an
outer group intersects with the region. An interesting aspect here is that the same routine
in group-rearrange handles both cases uniformly. -

The semantics of font-change may be extended even further. For instance, as-

sume an outer group’s left branch overlaps with a region. Suppose their intersection contains

a font invocation, the current version of font-remove would simply strip it off. A more

80

. end of an outer group } .

- end of an outer group } -

- end of an outer group } -

) ,
mnnergoup} end.of an outer group } -

(d)

Figure 6.10: Full treatment of region font change (case 2). Similar to the previous figure, this
figure shows the stepwise development of region font change. The shaded area denotes the
region, in which unshaded areas are text to be deleted or just inserted. Lines connecting
matching opening and closing delimiters of a group illustrates its scope. (a) An outer
“group’s left branch overlaps with the region; an inner group inside the region contains a
font invocation (\bf). (b) After font-remove, \bf is stripped off. (c) Extra delimiters
are inserted by group-rearrange. (d) Finally, following font-change, the new font \it is
embedded in the region under two separate groups.

elaborate approach may propagate this information out of the region so that its effect is
preserved for the remainder of the group outside the region. There are certainly more cases
along this line that may be taken into consideration. All that is needed is to extend or

rewrite the functions involved.

What is special about VORTEX's reverse mapping facility is that routines respon-
sible for carrying out the work are user-level functions. A certain group of routines in
the source editor essentially defines the operational semantics of its corresponding class of
target-level operations. As a consequence, the mechanism is flexible and extensible. For
example, if preserving font attribute outside a region should be part of the semantics for
font change, font-remove can be enhanced to handle relevant cases. Even better, more
than one version of font-change can be supported simultaneously: one as what is given
in Figures 6.6 through 6.8, a second as the elaborate scheme that preserves font attribute

outside a region, and some more for other options.

81

Another advantage of building the reverse mapping device on top of source edi-
tor’s programming subsystem is that undo operations need not be explicitly implemented
for VORTEX's reverse mapping facility. Whatever the source editor supports in tefms of re-
covering recent side effects is readily available to the reverse mapping facility. This, in effect,
ensures a certain degree of reliability for reverse mapping. If the semantics of a target-level
operation do not match the user’s expectation, undoing any damage in the source editor
is quite straightforward. If a mapping function stumbles upon odd cases, thereby intro-
duces syntactic or semantic inconsistencies, the formatter, which is invoked synchronously
to reevaluate recent updates, can easily pin-point the error. At this point, the user can
either correct the error or undo the mapping. Since mapping routines are fully exposed

user-level functions, the problem can also be located and repaired.

Chapter 7

Incremental Formatting

Traditional document formatting algorithms such as those for hyphenation {93],
line breaking [1,90,117], and pagination [111] are non-incremental. They are designed for
batch-oriented systems and do not take into account issues that are essential to interactive
environments, such as response time, reprocessing granularity, etc. Since the user expects
to wait for the result, a batch-oriented document processing system can use global opti-
mization téchniques‘ to generate high quality output. Direct-manipulation systems depart
from these non-incremental algorithms and focus on prompt visual response and fine grain
reprocessing. Their goal is to achieve the sensation of directness as changes are being made
to the document.

Shifting from a batch-oriented approach to an interactive paradigm has a num-
‘ber of technical ramifications. Most noticeable, quality usually deteriorates. For instance,
hyphenation presents some difficulties because an attempt to hyphenate a word under con-
struction or modification may produce nonsensical results, not to mention the semantic
confusion of user-entered hyphens versus those introduced by automatic word hyphenation.
Pagination is sometimes avoided or delayed due to similar concerns or to the need to achieve
seamless scrolling. Line breaking is usually based on some obvious “first-fit algorithms”,
which do not perform as well as algorithms with look-ahead, such as TEX’s line break-
ing algorithm [90]. As mentioned in Section 3.2.3, it is misleading to call these systems
WYSIWYG because they are simply producing an approximation of the final hard-copy. A
non-incremental formatter is often used as the postprocessor of the underlying documents
if better quality is desired.

Quality and directness are not necessarily in conflict. Quality is a property of the

82

83

formatted document, while directness is a sensation involved in the process of manipulating
a document. One way to design incremental formatting strategies with increased directness
without sacrificing quality is to focus on higher-level issues that are unique to the interactive
situation. Some of the known non-incremental algorithms can be embedded in the inner-
most layer as subroutines. Many of the low-level document formatting problems have been
formulated generically. Except for a few exceptions, some non-incremental solutions are

still applicable in the incremental case.

This high-level approach is ideal for augmenting existing non-incremental pro-
grams. Compared to reinventing low-level incremental algorithms from scratch, this aug-
mentation approach is also more flexible because a number of parameters can be adjusted
to achieve the best solution for a particular situation. This chapter describes an instance
of this augmentation approach — our experience of converting the non-incremental TEX
to become the VORTEX incremental formatter. This methodology is the principal result
reported here and appears to generalize beyond the VORTEX case.

There are quite a few systems that address incremental document processing issues.
Examples include various approaches taken by systems like Etude [69], Pen [5], Janus [30],
Lara [66], the tnt editor/formatter [55], Diamond [47], Quill [94], and so on. Work on
program development environments is also related and research on incremental language
processing strategies is even more extensive. References [49] and [115] give overviews and
bibliographies on programming environments and incremental language processing strate-

gies.

Despite the rich literature, treatment of incremental document formatting strate-
gies has been somewhat ad hoc. This chapter attempts to give a more systematic analysis
of the problem by introducing some basic principles of incremental processing under an
interactive environment, in which editors are integrated with document-processing engines.
These principles are not document processing specific; they can be applied to the design of
most incremental strategies. The’type of systems suitable for the high-level augmentation
approach is identified. The algorithms applicable to the VORTEX paradigm are discussed in
detail.

84

7.1 Principles of Incremental Processing

A typical integrated software environment can be identified by (1) provisions for
the user to manipulate the underlying objects interactively, (2) the system’s ability to
reflect these modifications efficiently, and (3) the large amount of internal state that must
be maintained throughout the session to facilitate the reevaluation of modified objects.
These ingredients can be found in most integrated environments, whether the application
area is program development, document preparation, CAD /CAM, or anything else.

One of the premises of an integrated software environment is to have the task of
editing integrated with its main processing. Normally the main processor maintains the
bulk of a system’s internal state. A closely-coupled editor is used to register changes at a
fine granularity. In the context of program development, for instance, this means editing
must be closely linked to program evaluation and debugging. Similarly, in the context of
document development, a document editor is intimately connected with the formatter and
other processing engines. The strong integration of document editor and formatter can be
found in most modern document processing systems, such as Tioga, EZ, Diamond, the tnt
system [55], Quill {32}, Lilac [27], VORTEX, etc. |

A major distinction between an integrated environment and the traditional uninte-
grated approach is in the granularity of reprocessing. The unintegrated case often implies a
batch-oriented strategy, in which processing always begins with a “cold start”. The internal
state is reconstructed in every pass and is discarded when the task is finished. Conversely, an
integrated environment enables “warm start”, or incremental processing, which reprocesses
the system at a much finer granularity. Instead of starting from the very beginning, an
incremental strateg.y detects the unchanged state and processes only the minimal necessary

part, reducing computation overhead while yielding a higher degree of directness.

In designing an incremental strategy, one must consider the following important
concepts: dependence, pertinence, quieséence, and convergence. Before defining these con-
cepts, the underlying ezecution model must be clarified first. Two models are of interest
here: under the immediate-ezecution model, the system is automatically re-evaluated wken-
ever an update is registered; under the delayed-ezecution model, the system accumulates all
the updates and is re-evaluated only when the user requests it. The two execution models
differ in the number of update events registered. Under the immediate-execution model,

there is only one update event to process; under the delayed-execution model, there are sev-

85

Page N Page N+1 Page N+2

\foo

\foo

antecedent ‘ references

Figure 7.1: Caller/callee name dependence. This example shows the definition of a macro
on page N and two separate invocations in the remaining context of the document. When
the definition of the macro is changed, the references (invocations) become invalid and
consequently their enclosing objects (e.g., pages N + 1 and N + 2) must be reprocessed.

eral. Clearly, the immediate-execution model is a simplified case of the delayed-execution
model. The two models also differ in whether the user controls re-evaluation. Regardless
of the execution model, however, the premise is that interactive editing is integrated with

the main processing engine.

7.1.1 Dependence

When a system is modified, some data may be independent of the changes and
hence need not be reprocessed. Detecting data dependence, therefore, establishes a con-
dition for starting incremental processing and for skipping independent data during the
processing. For example, if we assume that no global attribute management, such as cross
references or table of contents, is involved, a change to page N normally has no effect on
data between pages 1 and N — 1. Hence reformatting can start from the state associated
with page N, leaving those associated with previous pages intact. A finer grain algorithm

can even detect data dependence at the paragraph level, resulting in even less reprocessing.

86

Objects directly affected by update events (i.e., those containing inserted or deleted
data) are referred to as directly-dependent data with respect to changes made by the user.
Those correlated with directly-dependent data are called indirectly-dependent data; there
are two cases for the latter. In the first case they can be regarded as ripples originated by
processing dependent data; the need to reprocess these indirectly-dependent data is a side
effect of propagating changes. For instance, pluralizing a word changes some characters in
that word. These characters are directly-dependent data. Since the word length changes,
its enclosing line length changes accordingly, which potentially may change the height of
its enclosing paragraph, which, in turn, may change the position of every paragraph in the
rest of the document. We regard all these other changes as ripples.

In the second case, these indirectly-dependent data are essentially references to
some antecedents, which are directly-dependent data or their ripples. Thereis a logical link
between a reference and its antecedent. The enclosing object of a reference must always be
reevaluated even if the ripples of reevaluating its antecedent do not go far enough to reach
the reference.

There are two types of relationship between references and antecedents. The first is
the caller/callee relationship based on name dependence, which is typified by the invocation
and definition of a macro or procedure. Normally a reference (caller) here only appears in
the post-context of an antecedent (callee) — backward referencing (see Figure 7.1). When
the content of an antecedent is modified, all its references become invalid due to their
dependence to it and their enclosing objects (e.g., the pages they appear on) must be
reprocessed. The collection of all caller/callee dependencies forms a call graph, which has a
similar counterpart in program compiiation. In program development, a call graph is used
for code optimization at compile time and the functions involved in such a call graph are not
invoked until program run time. In document formatting, code generation requires these
references be resolved dynamically and the call graph is actually used in the invocation of
callers.

The second type of reference/antecedent relationship is attribute dependence. Here,
it is the attributes associated with the antecedents involved, rather than the contents of
these objects, that are correlated. A good example generally referred to as cross referencing
can be found in document preparation, in which labeling an antecedent (e.g., a section or
a figure) in a document and referencing it elsewhere is a common practice. References may

occur either in the pre-context (forward referencing) or post-context (backward referencing)

87

Page N Page N+1 Page N+2

\ref{foo}

\

\begin{figure}

\ref{foo}

\label{foo}
\end{figure}

(

/

references antecedent

Figure 7.2: Cross-referencing attribute dependence. This is an example of cross referencing
in a document. An antecedent is labeled somewhere and references can appear anywhere
else. Usually it is not the content of an antecedent like this that matters. What matters
is their ordering with respect to similar objects. When an antecedent changes its relative
position in the document, multiple passes are needed to bring the references up to date.

of the antecedent (see Figure 7.2). When an object is added to or removed from a correlated
group, the overall attribute relationship must be re-evaluated.

In the cross referencing example, the attribute dependence is built upon the an-
tecedents’ relative order of appearance in a document and sometimes the page numbers
on which they appear. When the ordering changes, multiple processing passes are needed
to resolve the references. This is because recomputing object ordering requires some pro-
cessing and getting the antecedents’ page numbers right also requires an additional pass
of formatting (in fact, these can be merged into one pass). Substituting actual references
for symbolic references must be done in a separate pass. Yet another pass of formatting is
needed to generate the final result. The processing in each pass may be done incrementally
in an integrated environment, but the passes can only take place sequentially. If nothing is
changed after the last pass, a document is said to have converged (see Section 7.1.3 below).

If page numbers are involved in cross referencing, there may be pathological cases

in which the last pass of formatting would alter some antecedents’ relative positions (page

88

numbers) produced by the previous formatting pass. In this case, this multipass effort to
resolve cross references must start all over again, which goes on forever and never converges.
Reference [29], which describes an algorithm for detecting document convergence, gives an
interesting pathological scenario of an oscillating document.

There are specific techniques developed in artificial intelligence to solve data de-
pendence problems [34]. Here, data dependence deals with logic assertions, which are used
in reasoning. Normally no procedures are attached to these assertions. The structure of
these logjic assertions revolves around “if P then Q” predicates and are oriented toward con-
sistency checking and truth maintenance rather than automatic updating and processing
propagation. In other words, artificial intelligence techniques for solving data dependence
problems, such as discriminate nets, are not directly applicable to this particular application

domain.

7.1.2 Pertinence

An incremental system is able to do partial evaluation by processing only pertinent
data. Noﬁ-pertinent data can be processed in the background or simply‘be delayed until the
next processing cycle. The central issue here is to determine what information is pertinent
and what is not. Suppose the processing in question is a sequence of events and there is a
focal point, a place to which the user’s attention is focused, then everything from the start
of processing till the focal point is reached is pertinent.

In the document formatting example, data up to the page the user wants to exam-
ine are pertinent and everything beyond that page is non-pertinent!. Based on this simple
heuristic, an incremental formatter can suspend its foreground processing when a desired
page is encountered. The remainder of the document can be left unprocessed (dirty) until
the next cycle. A more elaborate strategy would pass the processing into background for
efficiency considerations.

A focal point is not fixed; it shifts back and forth throughout the whole session.
There may even be multiple focal points active simultaneously in a windowing environment.
The scope of a focal point may also enlarge or shrink as its viewing window resizes. For

instance, different pages of a document can be displayed in different windows at the same

1 This is not the whole story when attribute dependencies, such as table of contents or cross references, are
involved. In such cases it may require additional passes before the document converges. See Section 7.1.3.

89

time. A window may reduces its size so that only a portion of a page is visible. For
instance, systems like VORTEX allows different pages of a document to be displayed in
different windows at the same time. Alternatively, an interleaf mode may be available that
displays adjacent pages side by side in the same window. A good incremental strategy would
take all these issues into account and intelligently decide what to process in foreground or

background.

7.1.3 Quiescence and Convergence

The rippling process may ultimately subside when certain conditions are met. An
incremental processing strategy may also reach guiescence, in which the system state is
identical to that of the previous processing cycle. Subsequently, all independent data can
_ be ignored and “real” processing does not have to resume until any dependent information
is encountered again. If there are no dependent data in the remaining context and no
cross reference resolution pending when quiescence is detected, the system is said to have
reached convergence. At this point, no more processing, either in foreground or background,
is necessary.

Under the immediate-execution model, the only piece of directly-dependent data
is the most recent update made by the user. When there are no indirectly-dependent data
other than ripples involved in a processing cycle, quiescence is synonymous with conver-
gence. This is often the case for document editors like MacWrite and MicroSoft Word,
which are direct-manipulation systems working under immediate-execution model. When-
ever there is a change, formatting takes place immediately. There are no abstraction mech-
anisms available, thereby no caller/callee name dependence to maintain. They have no
provisions for cross referencing, hence multipass reprocessing is not an issue either. It
becomes more complicated when either of the two data dependencies is available. The
immediate-execution model does not work properly when attribute dependence is involved.

‘ Under the delayed-execution model, multiple update events may be registered
before reprocessing. Quiescence and convergence are correlated but not necessarily synony-
mous. When multiple instances of dependent data are exist, many may have only local
ripple effects. It is possible that multiple instances of quiescence may be exploited during
the course of processing before final convergence is reached. The processing may be able to

suspend itself, skip independent data, and resume upon encountering dependent data.

90

Incremental processing may reach the state of quiescence /convergence before cross-
ing the boundary of pertinence/non-pertinence data and vice versa. In the document for-
matting example, a simple change to a paragraph may cause only local effects to the para-
graph (e.g., inserting a word to a paragraph that does not increase the total number of lines
in it). The remainder of the document should reach quiescence right after that particular
paragraph is reformatted. In this case, pending pertinent pages are ignored and the focal
point may advance to the designated page directly. On the other hand, if modifications
are registered globally, it is very likely that procéssing would reach a focal point before

quiescence is detected.

7.1.4 Checkpointing

How often should an interactive system checks for quiescence? In other words,
when does it compare the newly generated data with that produced previously? Since
quiescence checkpointing is a potentially expensive operation, the idea is to set checkpoints
at appropriate locations so that the overhead of quiescence detection at a checkpoint is less
than that of regular processing between checkpoints.

A related issue is internal state checkpointing, which saves a snapshot of the system
state at each checkpoint. This is necessary for systems whose internal state is repeatedly de-
stroyed by reprocessing. The checkpointed state information can be loaded in during some
later cycle if the system, after suspending itself upon detecting quiescence, resumes process-
ing from that point. Brute force checkpointing always saves the complete state, whereas
incremental checkpointing only records the-differences between previous checkpoints (called
deltas). Some familiar space versus time tradeoffs are involved in the decision.

State checkpointing is absolutely mandatory in some cases and unnecessary in
others. It all depends on how the internal state information is preserved during reprocessing.
Document formatting or program code generation usually involves looking up global symbol
" tables. State checkpointing is necessary in these cases to ensure that the correct context
can be inherited during incremental reprocessing. For example, in TEX (and in VORTEX)
the same name can be used to define different macros in a document. To guarantee that
reformatting starts with the correct context of name/body dictionary, it is necessary to
periodically checkpoint the dictionary. Conversely, checkpointing is not required in the

conventional attribute grammar approach for incremental program analysis [114], because

91

intemmal state internal state internal state
checkpointing checkpointing checkpointing
4 4 4

internal \ incremental Internal \ incremental Internal

processing processing State

quiescence quiescence
checkpointing checkpointing

Figure 7.3: Incremental processing and checkpointing. This diagram illustrates the differ-
ence between quiescence checkpointing and internal state checkpointing. There are three
checkpoints in the diagram. Quiescence checkpointing compares the newly generated data
(target representation) with that produced previously. Internal state checkpointing saves a
snapshot of the system state at each checkpoint.

attribute values are local to each production of the underlying context-free grammar; no

global symbol tables are used in tracking dependencies.

Figure 7.3 illustrates the difference between the two types of checkpointing. Quies-
cence checkpointing involves comparing target representations produced by the present and
previous computation cycles. Internal state checkpointing involves only the intermediate
representation of the present cycle. In general, after every a state checkpoints, there is a

quiescence checkpoint. Figure 7.3 shows an example of a = 1.

Due to the nature of the processing, there may be constraints that prevent qui-
escence checkpoints from coinciding with state checkpoints (i.e.,’@ > 1). For instance, in
a page-based incremental formatting strategy, the most sensible place to checkpoint the
internal state is when the new target representation of a page is generated. Suppose the

cost of quiescence checkpointing at this point is Cg and that of processing a page and

92

quiscence checkpoints
dynamicaly shift forward [’ o /‘ ° [’ o

original quiescence
checkpoints o o o
-0—»
I @ quiescence checkpoint

direct dependent data
state checkpoint

Figure 7.4: Dynamic shifting of quiescence checkpoints. This diagram shows a relationship
between state and quiescence checkpoints when a = 3. State checkpoints are statically set.
Quiescence checkpoints can be more dynamic. The original quiescence checkpoints are set
at every fourth state checkpoints. When one such point is omitted, they all shift forward
one place.

checkpointing the internal state are Cp and Cs, respectively. If
Cq > (Cp+C s),

then a per-page checkpoint is inappropriate for quiescence detection. The idea is to choose

o, such that
CQ < a(C'p + Cs).

On the other hand, if
CQ < (Cp + Cs)

to begin with, then the granularity of reprocessing may be refined.

Unlike state checkpoints, which are statically set, quiescence checkpoints may shift
dynamically. There are simple heuristics to disable quiescence checkpointing at a potentially
appropriate point. For example, there is no need to check for quiescence if there are any
directly-dependent data between the current and preceding state checkpoints, in which case
the current and succeeding potential quiescence checkpoints all shift forward one unit in
the timeline of state checkpoints. This idea is illustrated in Figure 7.4.

Another overhead associated with incremental processing is the cost of loading
the checkpointed state information. Evaluating this cost against that of regular processing

determines whether or not suspending processing upon quiescence is worthwhile. Let Cpr,

93

be the cost of loading checkpointed state information, the requirement is
CL < (Cp+Cs+ Cqla).

If this is not possible, then the necessary condition to suspend regular processing is that

the next directly-dependent data is 3 units (state checkpoints) away, such that

Cr<pB(Cp+Cs+ CQ/a).

7.1.5 An Example

To further illustrate these ideas, consider a document processing scenario under
a page-based incremental formatting strategy. Suppose this strategy operates under the
delayed-execution model. For a six page document, assume the user first wants to view
page 2 (initial focal point). Pertinent data include contents of pages 1 and 2. Initially,
foreground formatting processes the first two pages, saving internal state at each page
break. It reaches the focal point of page 2, displays it, and suspends itself. Background
formatting, meanwhile, continues if there are no higher priority operations pending (in fact,
background formatting is often the lowest priority operation). Suppose the focal point later
shifts to page 5. If the page has already been processed by background formatting, all that
is needed is to display the page; otherwise foreground formatting takes over and the cycle
repeats itself. -

Suppose later a global replacement happens that changes a word on page 2 and
similarly on page 5 and that in both cases the total number of lines in their respective
enclosing paragraphs is preserved. Data dependence checking shows that page 1 is indepen-
dent of the replacements so formatting begins at page 2 by loading in the state information
of page 1. Quiescence is detected after page 3 is produced due to the preservation of the
paragraph’s size integrity on page 2 and the absence of directly-dependent data on page
3. Processing resumes for page 5, which reaches the focal point and the page is redis-
played. Finally background formatting concludes convergence after page 6 (the last page)
is generated.

Clearly this is a naive example. Real-world situations can be much more compli-
cated. Detecting dependencies and quiescence are non-trivial tasks. There are also com-
plications such as multiple focal points mentioned earlier or error handling and recovery
problems that are not implicated in the examples above. The way VORTEX handles these

problems is discussed in Section 7.3.

94

7.1.6 Augmentation

Incremental strategies can be exploited at many different levels. The so-called
“processing” typically comprises several subtasks, each of which may be handled incremen-
tally. Naturally, the ideal situation is one that fully exploits incremental strategies at all
levels without being penalized by the extra overhead introduced from performing incremen-
tal processing. In practice, depending on the ultimate goal, the overall strategy is often a
blending of incremental approaches at some levels and non-incremental ones at others.

For example, document formatting consists of parsing the source representation
— if such a representation is present, establishing the semantic structure, and finally gen-
erating the target representation for display. Each of the three subtasks can be processed
in an incremental fashion. An incremental formatting algorithm based on the high-level
augmentation approach mentioned in the beginning of this chapter is incremental with re-
spect to target representation generation (code generation). Between two adjacent state
checkpoints, parsing and semantic analysis are non-incremental.

An augmentation approach like this devises incremental strategies based on non-
' incremental algorithms. The incremental behavior is achieved by putting high-level con-
structs on top of existing batch-oriented programs. An advantage of this work is that it
injects the sensation of directness into the environment without having to create a totally a
new system. The processing granularity of the underlying non-incremental strategy dictates
that of the augmented incremental system. Since TEX generates code at every page break,

a page-based incremental TEX formatter can exploit the technique of augmentation.

7.1.7 Summary

With the support of fine grain update events and persistent internal state infor-
mation, an incremental strategy is one that exploits the ideas of dependence, pertinence,
quiescence, and convergence under a specified execution model and carefully selected check-
points. The short-term goal is always to reach focal points as efficiently as possible, while
the ultimate goal is to arrive at convergence

Unfortunately, exploiting these ideas may sometimes introduce more overhead than
simply performing regular processing. Compromise strategies would relinquish certain cri-
teria and focus on the most cost-effective aspects. A more elaborate approach is to design

adaptive algorithms that evaluate various costs in response to dynamic situations. The

95

top-level () {
loop forever {
get next event;
process event;

Figure 7.5: A generic incremental formatter top level.

dynamically shifting checkpoints discussed previously is just one of many possibilities.

In addition to devising incremental strategies from scratch, it is also possible to
arrive at incremental behavior by augmenting existing non-incremental programs. This
approach injects more directness into the system while retaining lower-level, high-quality

algorithms. The remainder of this chapter is devoted to using this augmentation strategy

on TEX.

7.2 Generic Issues

This section outlines some generic incremental formatting issues that are com-
mon to most integrated document development systems. Specifics of converting a.non-
incremental document formatter (TEX) to an incremental formatter — the VORTEX expe-
rience — are described in detail in the next section. A pidgin-C syntax is used to describe

the algorithms.

7.2.1 Editor Events

The first problem an incremental document formatter must confront is interacting
with editors. The separation of editors from the formatter is conceptual because, as men-
tioned before, in many direct-manipulation document preparation systems the two tasks are
strongly integrated. For simplicity, assume update events from various editors are colored
and automaticall.y prioritized: colored because the formatter needs to know whether an
event comes from the source editor or the target editor. Events must be prioritized because
some are more urgent than others. A generic top level of an incremental formatter would

be similar to Figure 7.5.

96

Events include update (insert/delete), format (or reformat), display (or redisplay),
and miscellaneous requests such as communication protocol handling, internal state queries,
and so on. In the immediate-execution mode, a pair of format and display events automati-
cally follows each update event. In the delayed-execution mode, format and display requests
are asynchronously generated by the user.

A preemption issue arises in the immediate-execution mode. Because the user is
not in control of when to format, a newly arrived update event must be able to preemﬁt
current formatting. This makes sense from a user interface standpoint: when the user
modifies the document, it is expected that the result will be immediately displayed. If
current formatting cannot be preempted while processing the previous update event, the
sensation of directness with respect to the new update is lost. An implication is that the
granularity of reprocessing under the immediate-execution model should be relatively low,
so that at the end of each unit, formatting can be preempted by a higher priority event.

Preemption is less of a problem in the delayed-execution mode because the user is
in charge of initiating format requests. A user-driven asynchronous behavior like this has
the advantage of having more tolerance for delay. Directness is not the paramount concern.
Generally there will not be a second format request before the result of the current one is
observed.

In add_ition to modifying directly-dependent data, it is also necessary for an up-
date event to mark their enclosing objects as dirty. The scope of the enclosing object is
determined by the granularity of reprocessing (i.e., state checkpoints). It is desirable to
pack changes in consecutive contexts in one update event so that the marking overhead can
be reduced.

If an update happens in the body of a macro/procedure, then the enclosing objects
of all its callers must be marked dirty. If a macro/procedure definition is removed, the
system symbol table must reflect that accordingly. If an update inserts or deletes a cross-
referenced antecedent, a flag must be turned on notifying possible multipass processing.
Whenever a reference is inserted or deleted, its antecedent’s reference list must be updated

correspondingly.

7.2.2 Incremental Formatter

The marking process facilitates dependence checking, which establishes a pre-

/format 04
do {

if (suspend and current unit clean) {
skip independent data;
continue;
} else {
if (suspend) {
suspend = false;
load preceding context;

}

process current unit;
mark current unit clean;
state checkpointing;

}

if (quiescence checking needed) {
check for quiescence;
if (quiescence detected)
suspend = true;

} (focal point reached);

display focal point;

quiescence. Its initial value is true.

condition of the general incremental formatting algorithm. Another pre-condition is that
there is at least one user viewport with a designated focal point. Figure 7.6 -describes a
generic incremental formatting algorithm. With default value true, the global variable
suspend is a flag that marks quiescence status during the processing. The same algorithm
works under both cold and warm starts. In the case of cold start, every object is considered
dirty. Objects already processed are marked clean by the formattet. As the editing session
progresses, some objects are marked dirty again by update events, until they are cleared by
the next cycle of formatting.

The main loop terminates when the focal point is reached, at which time the visible
part of the document covered by the focal point is displayed on the user’s viewport. It is

simplified because only one focal point is assumed. The focal point is implicitly set at infinity

98

in the case of background formatting. Thus the same algorithm applies to both foreground
and background formatting. The granularity of reprocessing is unspecified, which means it

can be page-based, paragraph-based, or based on some finer unit.

7.2.3 Tracking Convergence — The Multipass Problem

To keep track of document convergence, the dependence marking routine must take
special care of any changes to an antecedent. One simple way of managing the caller/callee
name dependence is to maintain a hash table for all the names of the callees, in which each
entry points to a linked list of pointers to its references. Since a reference can only appear
after the antecedent in this case, when a caller is identified as having been inserted or
deleted, its callee should already exist in the symbol table. Therefore, when the antecedent
is modified, it is straightforward to mark all its references dirty.

Managing attribute dependencies is more involved because multiple processing
passes are usually required to resolve them. In the general case, as many as four passes ap-
pear to be needed to complete the job. Normally the first pass collects all the antecedents,
which are specified symbolically in the document source, and puts them in some auxiliary
file. The second pass processes these terms and establishes the actual attribute relationship.
The third pass resolves the dependencies by substituting actual references for the original
symbolic ones. Finally, the last pass reformats the entire document, in which actual refer-
ences as well as any new material introduced by various processing tasks are incorporated.
Sometimes the first and third passes can be accomplished as byproducts of formatting. The
second pass, however, may be too complex to be embedded in the formatter and thus may

- be handled by some external stand-alone processors.

Attribute Dependencies

There are three common attribute dependencies in a document: citations, cross
references, and indezes. Bibliographical citations are references to a certain combination
of bibliographical entries listed in a special section of a document. The first pass collects
all the citation terms specified symbolically in the document source. The second pass,
which relies explicitly on a bibliography processor, extracts the corresponding entries of
these terms from bibliography databases and sorts them according to a specific ordering.

The third pass substitutes actual references for the symbolic ones. Finally, the last pass

99

reformats the entire document that by now includes the newly placed actual references and
the bibliography itself. Ideally, antecedents are generated by the bibliography processor
and are placed in a special section (bibliography) appended at the end of a document.
References (citations) in this case appear only in the pre-context of antecedents, which do
not exist in the original document.

As mentioned above, the first and third passes of bibliography processing may be
embedded as subtasks of formatting. In systems like Scribe and IATgX, those two passes are
handled precisely by the formatting engine. Establishing the desired attribute relationship,
which in this case is arranging bibliography entries according to some predefined convention,
does not depend on formatting per se. When an editor is tightly-coupled with a document
processing environment, an alternative is to let the editor do much of the work. VORIEX
has a preprocessing subsystem that takes this approach. The advantage of doing so is that
bibliography processing becomes strictly a preprocessing task relative to formatting. The
extra overhead of invoking the formatter in the first and third passes can then be avoided.

The second type of attribute dependence is cross referencing. Unlike citations,
antecedents in this category are explicitly specified in the document source; references may
appear in either the pre- or post-context of an antecedent. The attribute relationship to be
established is the antecedents’ physical order of appearance in a document. There may be
several classes of antecedents of intergst: for instance, one for all the figures, a second for
all the tables, and a third for the main text in terms of chapters, sections, subsections, etc.
Lists of figures/tables and the table of contents, which normally appear in the beginning of
a document, may be regarded as artifacts of maintaining all those cross references (altﬁough
they can still be produced without the presence of cross references).

Establishing the attribute relationship in cross referencing is rather straightforward
(only simple counting is involved) so that an external stand-alone processor for pass 2 is
usually unnecessary. Furthermore, as long as there are no page numbers involved in the
actual reference string, the work can easily be accomplished by a programmable text editor
like Emacs. What is needed is only sequential retrieval and counting of all antecedents.
Resolving cross references, therefore, can also be realized as a pure preprocessing task if no
page numbers are involved. When page numbers do get involved, however, cross references
cannot be resolved without having the first pass being a formatting pass that computes the
necessary page numbers.

Indexing is another common type of attribute dependence. An index is a collection.

100

of keywords that point to certain important concepts in a document. The links between
a keyword and the concepts it points to are some numbers (usually page numbers), which
inform the reader that related material can be found in the contexts those numbers desig-
nate (usually certain pages). Like bibliographical citations, index terms are placed in the
document by the user, and like the bibliography, the index section is usually generated by
some automatic processor. Placing index commands in a document is an important but
tedious task. Reference [40] discusses a systematic approach that greatly facilitates this
effort. Unlike a bibliography, which is a list of antecedents, an index is a list of references.
The relationship between the set of references and that of antecedents is many-to-one in
citationing and cross referencing, but is one-to-many in indexing.

To produce and format an index, the first pass must be handled by the formatter
that collects each index term, together with a number. The object designated by the
number, which is typically a page, contains the indexed concept. The second pass sorts and
merges these raw index terms and produces an output index according to a specific style.
The issues involved in such an index processor are quite complex, two different approaches
can be found in References [18,40]. The next pass of actual/symbolic transformation is
unnecessary because index commands simply disappear in the final formatted document.
Finally, an additional pass of formatting is used to process the newly generated index

section.

Inherent Conflicts

There are some inherent conflicts between resolving attribute dependencies and
the incremental processing model. Resolving attribute dependencies requires multipass
processing. The first issue is that updating antecedents, especially when page numbers are
involved in the reference, may cause global consequences. For instance, whenever the same
object appears on a different page, every reference pointing to this object must be updated
accordingly. The ripple effect of this is quite significant because when an object appears on
a different page every other object in its post-context may potentially get shifted. So every
reference to any antecedent in those places must be updated unless quiescence is reached
at -some point. This is why it is a good idea to put off attribute dependence resolution,

especially when indexes are involved, until the main document body is near completion.

The second issue concerns external stand-alone processors often required to handle

101

the second pass of processing. It is possible to mush these special-purpose processors with
the main formatting engine. One approach is to incorporate them on top of the formatter.
Most systems avoid doing so because the tasks involved may be so complex that it is incon-
venient to have them programmed in the formatting language. Blending them at a lower
level does not make sense either, because not every document has attribute dependencies
to resolve. Simple documents like memos, letters, short articles, etc., which people prepare
most of the time, usually do not contain bibliographical citations and cross references, and
definitely need no indexes. Asking all users to pay a price for something rarely used is a bad
practice. This leads to the question of whether these external processors are themselves in-
cremental, and if so, how does the formatter exchange state information with them. Making

cooperating processes mutually incremental is nontrivial and deserves further research.

Another conflict is a user interface issue coupled with the semantics of these ref-
erences. Suppose attribute dependencies have been resolved, what happens when the user
attempts to massage the actual references. For instance, after resolving bibliographical ci-
tations, what end up in the final document are some actual reference strings in place of
the original symbolic ones. If the use were allowed to modify these data, as some direct-
manipulation systems would, the semantic correctness of this reference can be violated.
This underscores the importance of the multiple representation paradigm for document de-
velopment. In a system like VORTEX, symbolic references exist in the source representation
while actual references appear only in the target representation. Massaging actual reference
strings is forbidden to avoid the semantic confusions it may cause. Modifying the original

symbolic references is still allowed, which triggers reformatting through normal channels.

Reaching Convergence

Since the multipass nature of resolving attribute dependencies does not promote
a fine-grain incremental strategy, the best solution seems to be to still rely on external
stand-alone processors for the tasks required in the second pass. These external processors
should be integrated with the environment so that the input they need and the output
they produce can be exchanged easily with the editor and the main document formatter.
A tightly-coupled document editor can be used to share much of the preprocessing work if
certain programmability is supported. It is also important to keep track of changes to any

antecedents so that either the system knows additional passes of processing are needed and

102

therefore automatically spawns the jobs, or the user is informed of the situation and jobs

can be spawned asynchronously.

7.3 A Practical Application: VORTEX

This section describes various incremental strategies under the VORTEX model of
document processing. Here, a page-based approach is assumed; issues on generalizing this
scheme to finer granularity are discussed later. The algorithms discussed below do not cover
convergence detection. A convergence detection algorithm can be found in Reference [29],
which can be implemented as an extension to VORTEX in the future. The algorithm deter-
mines when to trigger additional passes of processing. Within each pass, the incremental
algorithms described below are still applicable.

The VORIEX incremental formatter maintains full compatibility with TgX. Its
implementation was derived from the original TEX source code [89). We did not find it
necessary to delete code from the non-incremental version of TEX, except that some TEX
routines had to be split into a few smaller subroutines to comply with the VQRIEX model of
processing. Routines to maintain the VORTEX-specific internal representation (IRs, IRo,
and TR7) and those for realizing various incremental strategies are embedded as conditional

statements. In the current C implementation of the incremental formatter, it looks like

#ifdef VORTEX

#endif

The sole purpose of doing so is to ensure TEX compatibility. In particular, the code respon-
sible for maintaining the internal representation is buried literally everywhere in the innards
of TEX. Incremental processing routines, on the other hand, are not so tightly knitted with
the original TEX code. Nonetheless, some key TEX routines described in Reference {89]
are invoked inside the incremental processing engine. Two TEX modules are of particular

importance to the incremental strategies:

e main_control (): TEX’s chief executive that brings all the pieces together, including,
among other things, reading tokens from source files (or IR s in this case), expanding

them, building the corresponding semantic structure, and generating the target code.

103

e shipout (): TEX’s code generator, which is invoked by main_control () when the

number of lines reaches a certain threshold.

Furthermore, the following global flags and counters must be identified in order to explain

the incremental strategies:

o last_page (default 00): a non-negative integer indicator that is always oo unless the
end of document has been processed, in which case it is assigned the last physical

page number of the document.

e total pages (default 0): a non-negative integer counter that always reflects the current

physical count of formatted pages; it also indicates the most recently processed page.

o starting_page (default co0): a non-negative integer indicator that always points to the

page to be formatted.

o viewing_page (default 1): a non-negative integer indicator that indicates the current
focal point designated through the target editor by the user to determine the fore-

ground/background processing boundary.

o formatsuspended (default true): a binary flag reflecting whether formatting is in

quiescence; if sb, independent data can be ignored.

o page_shipped (default false): a binary flag that is set true whenever the target rep-
resentation of a page is generated; it is set false at the beginning of processing the

following page.

o page.done (default false): a binary flag that is set true when the remaining context
of a page in its source representation has been consumed after its code generation; it

is set false at the beginning of processing the following page.

The flag total pages is borrowed from TEX itself, whereas all other flags and counters are
introduced to support incremental processing.

The TEX routine main_control () is a long loop in which a master switch statement
controls execution. In the batch version, this loop does not terminate until the end of
document. The way TEX generates code makes it possible to escape gracefully from this

long loop at the end of each page, which sets the stage for incremental formatting.

104

At the end of ship.out (), which generates the target representation for each page,
the counter total_pages is incremented by 1 and the flag pageshipped is turned on. This
notifies main_control (), which may still need to clean up some remaining syntactic tokens
in that same page before it can really call it “a page”, that the code for that page has been
generated. Once the cleanup is finished, the flag page.done will be set, which releases the
exit guard of the long loop and control returns to the top level of the incremental processing
engine.

The following are some key routines that constitute VORIEX’s incremental format-

ting engine.

o toplevel (): main event dispatcher; it is an infinite loop with a switch that delegates

requests from both source and target editors to the corresponding routines.

e send_page (): the routine that transmits page information to the target editor for

display.

e fg_format (): -foreground formatting routine, which keeps on processing pertinent

" dependent data until viewing_page is encountered.
e bg_format (): background formatting routine, which processes one page at a time.

e savestate (): internal state checkpointing routine, which is invoked after a page is

generated.
o load_tate (): the routine that restores a page’s internal state before processing.

e compare_page (): quiescence checkpointing routine, which returns true if the newly

generated target page is identical to its predecessor.

7.3.1 Top Level

Figure 7.7 illustrates the top level of VORI'EX’s incremental formatting engine. Its
body is an infinite loop that receives events from either the source or target editors. If
no events have arrived before the receiver is timed out, the background formatting routine
bgformat () is invoked to process more data while waiting for an event. This assumes that

foreground formatting has taken place already, in which case starting_page should have been

105

toplevel (©) {
while (true) {

select socket;

if (timed out and (starting_page # o))
bg_format ();

else {
process event;
if (event = O) b

return;

Figure 7.7: Top—level control loop of Vo}{l"EX s zncremental formatter.

assigned some value other than co. Otherwise the event is dispatched and the corresponding
event handling routine is invoked. This top level serves dual purposes. On the one hand
it drives the whole system, in which case the actual parameter for © is nil and the while
loop goes on forever unless the event is an abort.

On the other hand, it can be used as a synchronous event processor that breaks
out of the loop upon receiving the designated event ©. This option is especially useful under
VORTEX’s processing model when certain synchronization between the formatter and either
of the two editors is required (by default their communication is asynchronous). A good
example is handling TgX’s file inclusion. In VORTEX, the formatter and the two editors
operate on disjoint address spaces and potentially distinct file spaces (due to its distributed
nature). When the formatter realizes that an external file is included in the document being
processed, top_level () can be invoked immediately after the request FS_InpﬁtFile is sent
to the source editor, which owns the external file. This second-order top level is identical
to the “official” top level, except when the incoming event is SF_OpenFile, which is what
O is bound to in this case, it returns to the point where the included file is supposed to be

processed. Other synchronous operations may take advantage of this alternative as well.

7.3.2 Displaying

The target editor constantly sends TF _SendPage to the formatter requesting a cer-

106

send_page (N) {
viewing.page = N;

if (fgformat () returns an error) {
if (the error indicates page not found)
send (FT_PageNotFound);
return (error);

}

if (viewing_page already sent)
send (FT_PageCkay);
else {
flatten_page (N);
send (FT_Pagelnfo, flattened page info);

Figure 7.8: Displaying a page. This routine finds a designated page and sends it to the
target editor for display. '

tain page to be displayed. Figure 7.8 shows the formatter routine send_page (N) that takes
a page number NV supplied by the target editor and binds viewing_page to it. Foreground
formatter fg_format () (see below) is always invoked first to bring the viewing page up to
date. If fg_format () returns an error, which indicates that the focal page cannot be found,
the target editor is notified by FT_PageNotFound. When the viewing page is clean, it may
follow one of two cases. In one, the same page has already been sent to the target edi-
tor, which is notified by FT_PageOkay that the page it has is still good, saving significant
transmission bandwidth. In the second case, either the target editor has not asked for this
particular page before, or the target representation of the page has changed, hence the
complete page information is flattened by flatten_page (N) (from a tree représentation toa
stream representation) and the target editor is notified by FT_PageInfo, together with the

actual data.

7.3.3 Simple Formatting

The next key routine is the foreground formatter fgformat (), as shown in Fig-

107

fgformat () {

if (starting_page = o0) {
/* cold start */
pre_format ();
starting_page = 1;
save_state (0);

} else if ((starting.page < viewing_page) and

(starting_page # total_pages + 1)) {

/* warm start */
load_state (starting.page —1);
last_page = oo;

} else if (starting.page > viewing_page)
return (no need to format);

else if (last_page # o0)
return (nothing to format);

while ((total_pages < viewing_page) and (last_page = o0)) {
if (catch (error raised))
return (error code);
main_control ();
save_state (total_pages);
starting_page+-+;

}

if (total pages = viewiﬁg.page)
return{success);
else

return (nothing to format);

B RO D R RERR AT R R R OTR NSRS

RResta0c

Figure 7.9: VORIEX’s foreground formatting routine, the simplified version. This version
does not support for quiescence checkpointing, so everything following the leftmost depen-
dent data is presumed dirty.

‘108

ure 7.9. For the purpose of illustrating the ideas, this routine is simplified in that it does
not support quiescence checkpointing. A more complete version that supports quiescence
checkpointing is shown in Figure 7.11 and described in Section 7.3.4. The simplified algo-
rithm of Figure 7.9 bypasses only the initial independent data and starts formatting from
starting_page. Once formatting has started, there will be no suspension until the focal point
(viewing_page) is reached.

Recall that starting_page is set spontaneously by every update event so that it
always points to the first dirty page. Initially, it has the default value of co and is im-
mediately reset to 1 after a cold start. The routine pre_format () performs the necessary
initializations. For any incremental run, the pre-cdntext of starting_page is loaded prior
to the actual processing and last_page is reset to oo if the first dirty page is not located
beyond the focal point (starting_page < viewing_page) and the page to be processed is not
the immediate successor of the most recently processed page (starting_page # total_pages
+ 1), in which case the context in memory is the one to inherit. If the first dirty page is
indeed located beyond the focal point (starting_page > viewing_page), there is no need to
format the document in the foreground (i.e., the viewing page is clean). There may also be
nothing left to format, in which case last_page is assigned some value other than co.

The main loop invokes the TEX chief executive main_control () to (1) format one
page at a time, (2) perform state checkpointing afterwards by calling savestate (), and (3)
advance starting_page, until either the viewing page is reached (total_pages = viewing_page)
or the end of document is encountered first (last_page is assigned some value other than
oo). There is a routine catch that handles errors and exceptions. It sets an environment
pointer to which an error situation can return. In UNIX /C, the system call setjmp can be
used to catch the error; longjmp can be used to throw the error. In Lisp, a pair of catch
and throw is the obvious choice.

Background formatting is almost identical to foreground formatting, but the logic
is less complex. Figure 7.10 shows a simplified version of bgformat (), which, like its
counterpart in the foreground, does not support quiescence checkpointing. Background
formatting is precluded from happening when the document has reached its end while every
page in the document is clean (last_page is assigned some value other than o0). There is no
such notion as the current focal point in background formatting; the system always formats
the rest of the document in the background. Again, the pre-context of starting_page is

loaded prior to the actual processing, provided the page to be processed is not the immediate

109

bg_format () {
if (last_page # oo
return (nothing to format);
if (starting_page # total_pages + 1)
load_state (starting-page —1);
last_page = oc;

if (catch (error raised))
return (error code);
main_control ();
save_state (total_pages);
starting_page+-+;

is similar to foreground formatting, except that only one page is processed at a time and
that reaching the focal point (viewing.page) is not a terminating condition here.

successor of the most fecently processed page (starting.page # total_pages + 1), otherwise
the necessary context can simply be inherited from the most recently processed page.
This simplified suite of foreground and background formatting routines has an
important implication in that dependence marking and detection are rather straightforward.
 Since the granularity here is a page, whenever something is touched on page N, all pages
from N to the end of document are presumed dirty. In fact, since there is'no quiescence
checkpointing, it is immaterial which pages are clean or dirty once the page containing the
first directly-dependent data is determined. Tracking indirectly-dependent data is not an

issue either due to the same simplicity. More elaborate approaches are discussed below.

7.3.4 Quiescence Considerations

An obvious problem with the simplified version of fg_format () is the absence of
quiescence checkpointing. For instance, suppose the focal point is on page N. A simple
change to page M (M < N), which preserves its paragraph dimension integrity, would
still make it necessary to process everything between pages A/ and N. When the N — M
gap is large, the overhead is tremendous. The enhanced version of the routine shown in

Figure 7.11 is intended to remedy this.

110

fg_format () {

if (starting_page = o) {
/* cold start */
pre_format ();
starting_page = 1;
save_state (0);

} else if ((starting-page < viewing_page) and

(starting.page # total_pages + 1)) {

/* warm start */
load_state (starting-page —1);
last_page = oo;

} else if (starting_page > viewing_page)
return (no need to format);

else if (last.page # o)
return (nothing to format);

while (true) {
if (catch (error raised))
return (error code);
main_control ();
save_state (total_pages);
starting_page++;
if (totalpages = viewing_page)
return (success);
if (last.page # o)
return (error: no such page);

format_suspended = compare_page ();
if (format_suspended) {
while (starting_page < viewing_page and starting.page is clean)
starting_page-++;
if (starting_page is clean)
return (success);
if (starting.page # total pages + 1) {
load_state (starting_page —1);
format_suspended = false;

Figure 7.11: VORIEX’s foreground formatting
checks for quiescence, skips independent data upon reaching quiescence, and resumes pro-

cessing upon encountering dependent data.

111

ﬁ_format 01

if (format_suspended)

while (starting_page is clean)
starting_page++;

if (starting_page = last_page + 1)
return (nothing to format);

if (starting.page # total_pages + 1) {
load_state (starting_page —1);

}

if (catch (error raised))
return (error code);

main_control ();

savestate (total_pages);

starting_page+-;

format_suspended = compare_page ();

is in suspension or not.

Figure 7.11 is essentially a merge of Figures 7.6 and 7.9. The logic to establish the
initial condition for reformatting is identical in both versions. The infinite while loop in
Figure 7.11 is a variant of the generic incremental formatter of Figure 7.6. Here, quiescence
is reached when compare_page () returns true, at which point formatting is suspended
(format suspended is true) and all independent data (clean péges) are ignored. Formatting

resumes upon encountering the first instance of dependent data (dirty page).

The routine compare_page () compares the newly generated target page with what

exists in TR7. It returns true if the two are identical, otherwise the old page is replaced

" by the new one and false is returned. It is relatively easy to determine non-quiescence;
starting from the largest box in the page, the moment any property of a new box, which
may be its content, attribute, dimension, etc., does not match its counterpart in the old
page, compare_page () can immediately return false. As in the simplified case, foreground
formatting terminates when either the focal point (viewing_page) has been reached or the

whole document has been processed (last.page is assigned some value other than co).

112

By the same token, background formatting can be enhanced to exploit quiescence
checkpointing. One possible enhancement is illustrated in Figure 7.12. Basically, if for-
matting is suspended (format_suspended is true), all clean pages are ignored until either a
dirty page is found, or the chain of target pages in IRt has come to an end. Recall that
a value other than oo is assigned to last_page only if the end of document has been pro-
cessed. If the page to be processed (starting.page) is the immediate successor of last_page,
no further processing is necessary. The rest of this enhanced bgformat () is similar to that
of the simplified version (see Figure 7.10), éxcept at the end the enhanced version invokes

compare_page () to check for quiescence.

7.3.5 Cost Analysis

There is no dynamic analysis performed by the enhanced pair of foreground and
background formatting routines discussed above, which means both strategies are non-
adéptive. However, supporting dynamically shifting quiescence checkpoints like the example
shown in Figure 7.4 is not difficult. What is needed, before the checkpointing routine
compare_page () is invoked, is to ensure that the page just processed is clean prior to
processing (i.e., it contains no dependent data but ripples). Of course, more elaborate
adaptive approaches can be considered.

In the strategies discussed above, the following inequalities hold:

CQ < (CP+C$)a.
Cp < (CP+C5+CQ),

where Cp, Cqg, Cs, and Cy, are the costs of processing a page, quiescence checkpointing,
state checkpointing, and state loading, respectively. Both C's and C take constant time
using crude state checkpointing, because the number of state variables that must be saved
and restored is a constant. The current VORIEX implementation even optimizes it by putting
all state variables in consecutive memory locations so that a save or restore operation can
be accomplished in one memory write or read.

The cost of quiescence checkpointing, Cq, is proportional to the number of char-
acter boxes on a page, which is roughly the same as the number of characters in the original
document, plus an extra 30% of overhead for word, paragraph, and page boxes. In any

case, its time complexity is a constant. The bottleneck in processing a page is in breaking

113

paragraphs into lines, or the line breaking algorithm. The complexity is approximately
proportional to the number of words in a paragraph (p) times the average number of words
in a line (1), which is an O(n?) strategy, where n is the number of characters on a page [90].

The number of words in a paragraph is a fraction of the number of characters on
a page, roughly p = n/Cword, Where Cuord is 5, the average English word length. This would
be the worst case when there is only one paragraph on a page. In the best case, cyord 18
5 times the maximum number of paragraphs on a page. Similarly, the average number of
words in a line is a fraction of the number of words in a paragraph, | = p/cline, Where Ciine
is the average number of lines in a paragraph and may vary slightly depending on the font
size used in a document. For instance, in this thesis where the font size is 11-point, Cjine
is 10. For convenience, both o and § (introduced in Section 7.1.4) are fixed at 1 in the

algorithms discussed above, which means further refinements are possible.

7.3.6 Refinements

3

The algorithms of Figures 7.11 and 7.12 are oriented toward incremental code .
generation. It is natural that the granﬁla.rity be a page because TEX generates code on a
per-page basis. There are a number possible refinements to this page-based scheme.

The first refinement is to lower the granularity to a paragraph. Anything finer than
a paragraph would be difficult if the original TEX algorithms are used, because line breaking
involves every word in a paragraph (the reason is to achieve more even interword spacing
within a paragraph). A péragraph-based strategy implies that code must be generated
on a per-paragraph basis, which is rather straightforward even under our approach (see
Section 7.1.6). In fact, the strategies illustrated in Figures 7.11 and 7.12 still apply; the
only modification needed is to replace page considerations by paragraph considerations.
The extra overhead introduced is in the storage required for state checkpointing if the brute
force approach is used.

The next refinement is to perform incremental state checkpointing. This is not
restricted to paragraph-based incremental formatting per se; the original page-based ap-
proach can also take advantage of this if external storage is a scarce resource. The idea is
to save only the deltas. Both save and restore would take longer: savestate () must know
which state variables are touched and which are intact, thereby saving only the touched

ones; load_state () would have to traverse the delta tree to recover the complete state in-

114

formation before restoring it. Source code control systems like SCCS [116] and RCS [132]
have devised important delta checkpointing techniques that can be applied here.

In the prototype VORIEX implementation where a brute force approach is used, the
checkpointed state information for each page is approximately an order of magnitude larger
than the page’s off-line target representation (i.e., TEX’s device independent representation,
or DVI [53]). A compressed format cuts it down substantially to only a factor of 2, instead
of the original 10. For a target page of size n, the checkpointed state information would
occupy 2n storage. These files are temporary because when the VORTEX session is over,
they are automatically removed from the file system. The longest target page size for
an 11-point document is about 6,000 bytes. For a 100-page document, it would require
about 6 megabytes of temporary storage for state information. A brute force approach is
perhaps acceptable for a prototype implementation. For production software, however, an

incremental checkpointing scheme is vital.

Chapter 8

System Integration

A number of issues regarding integration must be considered in a complex sys-
tem like VORTEX. For example, because the system embodies multiple representations, the
processors responsible for manipulating these representations are integrated by means of
sharing a common intermediate representation or maintaining certain inter-representation
‘mappings, or both (see Section 5.8). Within each representation, multiple objects must be
integrated. Here, the notion of compound document and the concept of document style are
especially important. Objects in a document are instantiations of some generic document
data types, such as text, tables, figures, mathematical formulas, etc. The issue here is
to arrive at a coherent treatment of different objects in terms of their manipulation and
presentation. A document style defines a set of rules wherein objects are structured in a
logically sensible way [79]. The question: how to support a document’s logical structure for
systems like VORTEX, in which no such notion is assumed a priori.

At a higher level, a complete document development system must be able to cover
the multi-dimensional task domain mentioned in Section 3.1, or at least a substantial sub-
set of it. Many direct-manipulation document preparation systems concentrate their efforts
in integrating object editing with object evaluation (e.g. formatting and imaging), while
pre- and post-processing tasks are treated as second-class citizens. Providing an integrated
support for these tasks is crucial, because, for example, an effective mechanism for citations
and cross references, from the standpoints of both link censtruction (writing) and link navi-
gation (reading), is necessary for extension to more elaborate systems, such as hypertext or
active documents. Relying on unintegrated off-line processors to do the job is unacceptable

under interactive environments.

115

116

At a lower level, integration concerns the engineering aspects of a system, and, in
particular, the underlying platform upon which the system runs. It touchs issues revolving
operating systems, window systems, and programming languages. For instance, control
flow being single-threaded or multi-threaded (i.e., based on local procedure calls under a
single address space, or as separate processes in disjoint address spaces) is dictated by the
process management paradigm of the underlying operating system. Similarly, whether the
internal representations are shared in the real sense, or simply replicated across processes
is influenced by the operating system’s memory management facility. The choice of a
window system is related. If a window system is network-based, it is possible to create an
interactive environment based on a distributed framework, which introduces a whole range
of problems not encountered in appljcatioﬁs involving only a single site. Last, but not least,
the gluing mechanism that ties all the pieces together is driven by the source languages used
in carrying out such tasks as editing, formatting, graphics specification, etc. Programming
language features, such as the abstraction mechanism (macro-based versus procedure—based)
or the evaluation scheme (compiled versus interpreted), are directly correlated to a system’s
extensibility and versatility.

To summarize, at least four layers of integration must be realized by an interactive

document development system:
1. system organization,
2. multiple representations and inter-representation transformations,
3. compound objects and document .styles,

4. multi-dimensional task domain involving external processors and associated interac-

tive activities.

VORTEX’s system organization is based on the principal triobthat runs under a distributed
framework as multiple corporating processes. Integration of layer 1 has been covered in
Section 6.2. In layer 2, multiple representations in VORIEX are tightly coupled through a
shared internal representation (Section 6.5). Inter-representation transformations in both
backward and forward directions (Sections 6.7v and 7.3) tightens the integration even more

effectively. This chapter focuses on the principles behind the other two layers of integration

in VORTEX.

117

8.1 Integration Mechanisms

Document-processing systems employ a wide spectrum of integration mechanisms
— strong integration at one end and weak integration at the other. In a typical strongly in-
tegrated system, a single thread of control is employed, logical document structure is known
a priori, compound objects are edited and presented on a single viewing surface, and there
is a uniform, well-defined data transfer format for various processors to exchange informa-
tion. In the extreme case of weak integration, the overall system consists of independent
processors, each of which handles a specific class of objects. As a result, the editing and
presentation of objects occur on multiple viewing surfaces. There may be multiple data
transfer formats, or a single format known as a “vanilla” character stream whose semantics

are subject to interpretation by individual processors.

8.1.1 Strong versus Weak Integration

Strong integration can be found in most “multimedia” document editors, exem-
plified by Andrew’s [100] base editor EZ [107], the BBN Diamond editor [131], and the
IBM Quill editor [32]. A system of this typeis generally designed to incorporate compound
objects in a single editing and viewing surface. It is usually a monolithic program with a
‘top-level shell that dispatches events to subordinate routines in charge of a particular class
of objects and coordinates image rendering requested by the subordinate routines on the
display surface. Because the system is so tightly knitted, a user-level glue language is some-
times considered unnecessary. However, the absence of this extra level of programmability
implies that every class of objects and every compc;nent in the task domain must be built
into the system. This is rather restrictive and may undermine a system’s extensibility.

The most famous weak integration mechanism is the pipelining model, a la UNIX.
Standard UNIX document processing programs like troff, tbl, eqn, pic, et al collectively

process a document foo by passing component data files from one to another through pipes,

e.g.,
pic foo | eqn | tbl | troff -ms

where]’ establishes a pipe and -ms invokes a high-level macro package. Each program
handles only the data it understands, passing any alien data through. The gluing mechanism

consists of a host of tools, such as sh and csh scripts as the command language, awk [3]

118

for pattern matching, sed [96] for non-interactive stream editing, make [51] for dependency
control, and so on.

This model is ideal for rapid prototyping because it is very easy for a new pro-
cessor to be integrated with existing ones. Over the years, the suite of standard UNIX
document processing programs has grown substantially. New tools developed at AT&T
Bell Laboratories and elsewhere, such as chem (chemical structure diagram processor) [17],
make.index (index processor) [18], vtbl (interactive WYSIWYG table editor) [102], grap
(graph typesetting program) [19], gremlin (interactive graphics editor) [105], pico (bitmap
picture editor) [73), drag (graph drawing system) [133], and more, have been added to work
coherently with the original establishment (troff, tbl, eqn, pic, etc.) Backward compatibility
is guaranteed because supporting a new class of ob jects requires no or minimal modification
to existing processors. The absolute adaptation is to make the newly generated code and
its desired action known to the device driver!. A problem with this model is that the avail-
able glue languages are largely non-interactive processors. They are not event-driven, and

therefore do not react to interactive activities that require complex conversational support.

8.1.2 Integration Under Broader Scopes

Many intermediate integration paradigms are possible. For example, document
processing tools (or desktop publishing facilities, as they are often called) on the Apple
Macintosh are integrated in a totally different manner. The bulk of Macintosh software
conforms to a highly consistent user interface, because guidelines as to how applications
should be presented are followed religiously by developers. This is no coincidence due to the
way the current version of Macintosh’s operating system and window system are structured.
Like a large happy family, the Macintosh system and all its applications reside in the same
address space under a single thread of control. Its window system is tightly coupled with
the system. Basic window management and graphics primitives are grouped into the ROM-
based QuickDraw package [7], which is highly optimized. There is a standard data transfer
format called PICT [7] that is used by most applications in exchanging information. A
centralized clipboard is used to import or export data across applications.

A highly consistent system like the Macintosh is a dream come true for naive users,

but it is often a nightmare for programmers. In a sense, the Macintosh’s friendly user in-

1Depending on the device’s imaging capability, sometimes this can be a non-trivial undertaking.

119

terface is realized at the expense of reliability and extensibility. As a common problem of
systems based on a single address space, any fatal error in one application would crash the
entire system, including other law-abiding citizens (e.g., running into a system panic mode
on the Macintosh when an application violates certain rules). The result of unexpected sud-
den termination like this may be frustrating, and sometimes devastating. Single-language
systems like Smalltalk and Cedar prevent this from happening by enforcing some hygiene
in their language constructs. The Macintosh is not a single-language system; it supports
multiple languages for software development, hence it is not as easy to ensure reliability.

With a glue language, the coupling of applications can be expressed as programs
and thereby becomes extensible. Unfortunately, this feature is not found in the Macintosh
top level. The story is different for HyperCard [63], which is a Macintosh application pro-
gram, but can be used as an alternative top level to drive other applications. In HyperCard,
a glue language called HyperTalk [122] can be used to tie all the pieces together. In ad-
dition, every operation corresponds to an underlying HyperTalk routine. Objects created
within HyperCard can be conveniently manipulated based on these HyperTalk routines.

Another familiar technique is the Emacs approach to integration. In Emacs, edit-
ing is expressed as Lisp routines which may also access external shell-level processors, in-
cluding pipelines. Objects, such as text regions and Lisp lists, can be easily interchanged
and can be interfaced with any external processors involved. Therefore, the Emacs ap-
proach is more powerful than the pipelining model. A significant advantage here is that
as interpreted programs, a very high degree of extensibility is achieved in this integration
mechanism. The Lisp-based user interface is able to react to events driven by the user or

~other programs. Furthermore, having Lisp as the glue language, the boundary between
system libraries and user-defined software is blurred. Except for very low-level primitives,
every single piece of the integration mechanism may be redefined, which yields an extremely
flexible system that can be customized toward specific needs.

As the Emacs approach to integration revolves around an editor, the X window
system [119] approach to integration centers around windowing services on a distributed
platform. In the X paradigm, which exemplifies the server/client model of integration, a
server resides in a local machine, while clients (applications) can be connected to it across
the network. The server multiplexes client requests to the display and demultiplexes input
events from various devices (e.g., keyboard, mouse, etc.) to clients. Information exchange is

based on a predefined protocol, rather than the simple byte stream in the pipelining model.

120

No full-fledged programming language is explicitly used as the glue language.

Falling into the same vein of distributed server/client model is the NeWS window
system {127]. Unlike X, in which a client-server protocol similar to an assembly language
is devised, NeWS chooses PosTSCRIPT (a high-level programming language) as the com-
munication medium between clients and their server. The NeWS server is essentially a
PoSTSCRIPT interpreter extended with the functionality of process and window manage-
ment. Corresponding to each client, a light-weight PosTSCRIPT process is down-loaded to
the server to handle client-specific operations. Once again, the issue is extensibility. Each
client can craft its-server-resident process to take advantage of the POSTSCRIPT interpreter,
which is Turing equivalent in computation power and rich in windowing and imaging capa-
bilities.

A system like VORTEX interacts heavily with the underlying window system. Can
the VORTEX target editor take advantage of the POSTSCRIPT server under NeWS? The
answer is both yes and no. PoSTSCRIPT isa programming language with a rich set of graphics
capabilities and a powerful imaging model. The VORIEX target editor can take advantage of
the PosTSCRIPT server supported by NeWS for its graphics rendering. However, a physical -
document structure like VORTgX’s IRr is necessary for effective selection on the target
editor. A page completely described in PosTScrIPT without such a structure will not suffice.
An ideal approach is to retain the IR structure, while replacing some low-level information
by routines written in POSTSCRIPT. Under this situation, exploiting PosTScripT’s powerful

imaging model becomes a challenge to the formatter’s code generator.

8.1.3 Integration under VORTEX

The integration mechanisms and their representative systems discussed above are
not targeted toward document processing per se. However, a certain mixture of those
techniques can be crafted to suit a particular document development system. VORIEX'S
integration mechanism typifies this hybrid approach. At the lowest layer, components of the
VORTEX’s principle trio are integrated by a mechanism similar to the distributed, protocol-

_based communication of X, with a replicated internal representation as the medium of data
interchange (the structure is linearized during network transmission). By design, special
objects at higher levels such as graphics, are presented on the same viewing surface as the

main document body, but are edited by a special editor on a separate viewing surface.

121

Other issues, such as document structure and the control over external processors, are
closely related to document editing, so the Emacs approach to integration is an obvious

choice. The remainder of this chapter details some of these problems.

8.2 Compound Objects

A premise in supporting compound documents is being able to identify an object’s
type when one is selected. Under the VORTEX paradigm, textual objects, such as plain
text and mathematical formulas, are readily identifiable on its internal representation (see
Table 6.6). Another class of textual objects, tables, can be identified with the joint support
of pattern matching in the source editor and internal representation accessing within the
formatter. In other words, when a better front-end to mathematical or tabular objects
becomes available (e.g., a WYSIWYG mathematical formula editor or table editor), the
facility to locate the desired object is already in place. The new tool can be integrated with
the source editor based on a protocol to the one described in Section 6.3 so that the selected

object can be passed back and forth between the source editor and the special editor.

The weakest point of TEX is in handling non-textual objects. The only primitives
having to do graphics in TEX are horizontal and vertical rules. The situation is improved
somewhat in ITEX, but its capability is still limited and rather restrictive. Fortunately,
there is a hook, the primitive of \special, built into TEX as a remedy. The way \special
works is that it takes two arguments, in which the first argument specifies the vertical di-
mension of the object, which is used by TEX to reserve the necessary space. The second
argument describes the object, but is uninterpreted by TEX. Since VORTEX is compati-
ble with TEX/IATEX in source form, alien non-textual objects and are encapsulated under
\special, whose scope and content are clearly marked in the internal representation. As
mentioned previously, although the current VORTEX prototype has no graphics rendering
capability, the design supports graphics specified in PosTSCRIPT to be iﬁcorporated with
TpX documents. The integration of a graphics editor and the PosTSCRIPT imaging server
with the principal trio can be found in Section 6.1. The same mechanism can be applied to

other media types, such as voice and video.

8.3 Document Structure

Several levels of document structure are relevant in VORTEX. As described in Sec-
tion 6.5, the incremental formatter maintains the internal representation, in which a hi-
erarchy of the document’s syntactic structure (IRs U IRo) is constructed for the source
representation, and a shallow tree of the corresponding physical layout (IR) is built for
the target representation. The other levels of document structure, the document/file cor-
respondence, the document type, and the style-specific logical document structure, are not
part of the kernel. Instead, they are realized in the source editor through the Lisp gluing
mechanism. '

VORIEX makes the distinction between a document and a file by acknowledging
that multiple files may be included in a TEX-based document, and that potentially multiple
documents may be maintained by the source editor simultaneously. In the source editor,
a document is viewed as a tree of files, with branches being the file inclusion commands
\input. This document tree has a root called the master file (level 0), which may include
external files (level 1), each of which may in turn include more files (level 2), and so forth.
Operations involving the entire document, such as SF_Format, must be identified by the
master file. An index table is maintained by the source editor to record each individual
file’s master files. When any document-wide operation is invoked in a component file, the
user is queried to determine the master file for which the operation is intended. This is
necessary because the file may be shared by more than one document.

VORLEX’s source editor also maintains the notion of document type, which identi-
fies a specific TEX dialect the document belongs to. Currently, four document types TEX,
LTEX, SUTEX [91, Appendix A}, and ApmS-TEX [124], the four most popular TEX dialects,
are supported. The type information is needed when the user invokes any type-specific op-
erations, such as format/reformat a document, in which case an instance of the incremental
formatter preloaded as tex, latex, slitex, or amstex is used. Another application of the
type information is to identify a document filter, which preprocesses a TEX-based document
by stripping off irrelevant information for the main task, such as spelling checking.

From the user’s perspective, a document’s type information is implicit, except
perhaps for the first time an operation depending on document type is invoked before such
information is available, in which case the user is asked to make a decision as to what type

the document is. Once the document type is specified, it is converted to a line of comment

123

in the document header, which can be accessed automatically by future invocations. The
user can also specify a default document type in the VORTEX startup file, so that even the
one time inquiry becomes unnecessary. From the user’s perspective, operations in VORTEX
are generic. For instance, an operation is known as format at all times instead of as tex,
latex, slitex, or amstex under different situations. VQRTEX uses operator overloading
implicitly by consulting the type information.

A next level of structure concerns the logical view of a document, given a specific
style. LTEX supports a very comprehensive set of styles. A TgX document style defines a
group of logical entities, which encapsulate the low-level formatting details. For instance, in
the article style, a section is a logical entity. Many useful operations can be implemented,
if a logical entity like a section can be identified. Although the generic VORTEX internal
representation does not support any logical entity of this kind, the hooks are actually in
place to do so. For example, passing section as the name argument to irsfind_macro ()
(see Table 6.9) will identify every section in a region. Given this primitive, logical oper-
ations, such as go to a particular section, can be implemented in Lisp. Such a high-level
operation can be unqualified in that it scrolls forward or backward (e.g., next-section and
previous-section), or it can be qualified by either section number or section title (e.g.,
goto-section-number or goto-section-title).

One can program arbitrary logical operaLtions in a similar fashion. One can even
envision a set of meta-functions to be developed in such a way that, when associated with
certain keywords found in a certain document style, would generate the corresponding
high-level logical functions like goto-section-number and goto-section-title described
above. This is a surprisingly powerful approach to emulating a declarative system on top of

a procedural platform. This also allows systems like SGML to be built on top of VORIEX.

8.4 Interactive Activities

In addition to direct editing, a document editor with programming power equiv-
alent to Emacs can support a framework that would automate the placement of certain
objects and their corresponding processing tasks. These activities and their corresponding

processors include, among others:

e spelling correction, a document filter, and a spelling checker,

e citation making/browsing and a bibliography processor,
e index placement/browsing and an index processor,
e cross reference labeling/linking/browsing and the document formatter itself.

In an extreme case, these activities degenerates into ordinary editing tasks un-
der an unintegrated environment, in which an editor level programming subsystem is not
available. Their corresponding processors are invoked by the user at operating system
top-level. The result of such off-line processing is incorporated back to the document man-
ually. For instance, in an unintegrated case, spelling correction is performed manually by
passing the document through an external spelling checker, gathering the spelling errors,
returning to the editor, searching for every occurrence of the errors — sometimes across
several component files of a document, and finally, correcting them on the spots located.
In an integrated environment, such as VORITEX, every step of these can be programmed in
an editor-supported programming language (e.g., VORIEX Lisp in our case) and the whole
process can be automated. |

Under the VORI'EX paradigm, the same integration technique is also applied to the
creation of citations, indexes, and cross references as well. An extensive authoring environ-
ment based on TEX and GNU Emacs has been developed [39]. The facilities consist of two
major editing modes: TEX-mode [36] and BIBTpX-mode [35], for manipulating TEX-based
documents and the associated BisTgX [108] bibliography database files. Although these
facilities are currently impiemented in Emacs Lisp, porting them to VORIEX is straightfor-
ward. To get a flavor of this approach, the facilities for citation making and indexing are

described below (refer to References [35,42,39,36] for more details).

8.4.1 Bibliography Making

This is an area where the two major editing modes TEX-mode and BIBTEX-mode
work hand in hand to provide a friendly on-line bibliography/citation facility. The user
uses BIBTpX-mode to prepare BieTgX database files, TgX-mode to make citations and to
generate actual bibliography files, and the combined system to detect and correct any errors
in the database or the citations. The same system not only works with IATEX, for which

BisTgX was originally created, but with plain TEX and ApS-TEX documents as well.

i

125

QINBOOK{,
==========z===z=====z====s=z=z==== REQUIRED FIELDS ====ss=z=ss==s==s==s=s=s=====
-------------- Exclusive OR fields: specify exactly one =-=-==-===-=-=<
AUTHOR = {},
EDITOR = {},
-------------- Inclusive OR fields: specify one or both -------====-=-
CHAPTER = {},
PAGES = {},
------------- Rest of required fields: specify every omne -=-==---===---<
TITLE = {},
PUBLISHER = {},
YEAR = {},
s==s=z=szz=z==z=====s======z=s==z===z== QPTIONAL FIELDS =======s=====sss=s=====s====
VOLUME = {3,
SERIES = {},
ADDRESS = {3},
EDITION = {3},
MONTH = ,
NOTE = {}
}

Figure 8.1: A skeleton bibliography entry of type INBOOK.

Bibliography Database Manipulation

A BisTgX database file is one that has a file name extension of .bib and contains
one or more BIBTEX entries. BiBTgX-mode uses a template-based user interface for the
preparation of these entries. It supports all standard BIBTEX bibliography entry types as
built-in functions so that to insert a new entry the user only has to specify a type which in
this case corresponds to an Lisp function. A skeleton instance of the specified type will be
generated automatically with the various predefined fields left empty for the user to fill in.
A host of supporting functions such as scrolling, field copying, entry duplicating, ..., etc. is
provided to facilitate this content-filling process.

Figure 8.1 is an instance of the entry type INBOOK. The user invokes an entry like

this by typing
M-x Q@inbook RET

where M-x is the command to call on source editor’s Meta-X prompt (i.e. holding down the

meta or escape key and type x) and RET means carriage return. Function name completion

126

is supported at this prompt; hence only the shortest distinguishable prefix needs to be
typed before RET. In the skeleton entry, banner lines are displayed to give hints regarding
the nature of specific fields. These banners, along with all unfilled optional fields, will be
removed when a cleanup command is issued in the mode. The cleanup operation will also
catch any mandatory but unfilled fields so that correcting errors of this kind does not have
to wait till bibtex is executed.

The user can debug, preview, or create a hard-copy draft of any BisTEX data file.
This is done by executing the BisBTEX processor on a temporary file which contains citations
to every entry of the target .bib file. If there are any errors, a correction mechanism will
position the cursor to the spot, prompting for fixes. At the end of a successful session, a

draft is created in the formatted form, which can then be previewed or printed.

Symbolic Citations

Each entry in the bibliograbhy database must be named symbolically, such as
knuth:tex. In the document source, this entry would be referenced by the command
\cite{knuth:tex}. The user can certainly enter this command manually, but that requires
him either to remember what actually appears in the database entry or to manually visit
the data file, locate the entry, and look up the name. With the TgX-mode lookup facility,
neither is necessary. All that is needed is to specify a data file name and a keyword related
to the entry such as Knuth, TeX, the publisher’s name, or any regular expression. A list of
matching entries will be returned. The user can confirm an entry, in which case the \cite
command plus the-entry name is inserted at current cursor position. Alternatively, a request
can be made to show the content of an entry, or to scroll and inspect the next/previéus
match, to create a new entry, or even to change the search key. A search path may be

specified so that when a wildcard file name is given, every data file in the path is looked up.

Bibliography Processing

In the LTEX/B1sTEX combination, the input to the bibliography processor bibtex
is a file generated by latex which contains all citations made in the document. Note that
collecting citation entries has nothing to do with formatting per se. In TgX-mode, these
entries are collected prior to formatting. The bibliography processor bibtex is then spawned

to process these entries. Finally symbolic-to-actual substitutions are done by the editor at

127

the source level. Tt also interpolates the actual bibliography file generated by bibtex at the
appropriate place (usually before the end of document). Hidden from the user is a file of
cross references to be used to recover symbolic references from actual numbers when new

citations are added to the document and a new bibliography/reference file is needed.

There are two important issues with respect to this source-level bibliography mak-
ing scheme. The first is related to the incremental growth of citations in a document. Recall
that all citations are done initially in a symbolic form. A TgX-mode bibliography making
session will replace all of them by their actual counterparts in the document source. As
new citations are entered, the document will have mixed symbolic and actual references.
VORTEX’s approach is to keep the most recent symbolic/actual cross reference information
in a file. Whenever a new bibliography is called for, the cross reference information is first
consulted to recover symbolic citations from actual numbers. The cycle continues by col-
lecting citation keys, spawning bibtex, performing symbolic-to-actual substitutions, and so

forth.

The second problem has to do with the efficiency of the symbolic-to-actual sub-
stitution mechanism. In a text editor, replacing a target string by a source string requires
a series of operations composed of (1) locating the target pattern, (2) erasing the target
string, and (3) inserting the source string. Locating the target pattern is normally based
on string matching. Since the same entry can be cited at multiple places, the search has
to cover each and every file included in the document. This is an extremely expensive

operation.

The pattern matching overhead is completely avoided in TgX-mode’s symbolic-to-
actual substitution mechanism. The trick is that in the first citation collecting sweep, each
entry’s position? is recorded. Moving the cursor to a designated position is very fast. The
substitution mechanism processes entries in each component file in reverse order so that
current replacement will not destroy the recorded position of the next entry. That is, the
last instance of a symbolic citation is visited and replaced by an actual reference first, then

the previous entry, and so on.

2In the source editor, each character is assigned an offset relative to the beginning of buffer. This offset
is what is meant by the position here.

128

Advantages

The integrated bibliography handling facility is superior to what is available in the

unintegrated situation. Some noticeable advantages are the following:

o BIBTgX-mode relieves the user from any concerns regarding the format of bibliography
entries. The template-based user interface makes the preparation of bibliography

database files an easy task.

¢ Based on the two cooperating modes, errors in both the database and document
citations can be corrected interactively. The system will position the cursor to the
spot in question and the user will have a menu of options to correct the mistake.

When all errors have been corrected, the processing resumes incrementally.

e Due to the lookup facility, the user does not have to memorize or type in the exact
entry names in order to make citations. The system prompts the user, in sequence,
the matching entries found in the specified bibliography database. The selected entry

_will be interpolated into the source automatically.

e Multipass processing is normally required for bibliography/citation resolution. Due
to the automatic invocation of bibtex, the error correcting facility, and the automatic
substitution mechanism, only one or two passes of formatting are needed to produce

the final output — depending on the presence of cross references.

o Once the bibliography/reference file has been created, there is an inspection facility
which allows the user to examine the content of a citation entry interactively, yielding
an effective link between a citation’s context and its content. This is available for

citation entries in both symbolic and actual forms.-

o The same mechanism not only works for IsTEX documents for which BiBTEX was

originally designed, but for any TgX dialect as well.

More extensions to this bibliography/citation facility are being carried out by my
colleague Ethan Munson. The new system [43] will provide a more elaborate lookup mech-
anism that supports queries specified by qualifying certain fields in a bibliography entry, in
addition to the regular expression search of the original version. Currently, browsing cita-

tions and linking them to their actual content in the bibliography section works only for the

129

document source representation. The new facility will also extend the browsing mechanism
to the target view as well. This extension is straightforward under the VORTEX architecture.
Since the source representation is tightly coupled with the target representation, extending
a mechanism such as bibliography/citation browsing from source representation to target

representation becomes a simple matter of synchronized scrolling (see Section 6.7.

8.4.2 Index Preparation

Two major subsystems for indexing have been developed for TEX-based documents.
One subsystem provides a systematic approach to placing index commands in the document
source; the other deals with transforming the index from raw entries (generated by the
formatter) to the final result (sorted form). Some of the key features of the two subsystems
below. Both subsystems are rather elaborate by design and very easy to use. Detailed

information can be found in Reference [40].

Index Placing Subsystem

TeX-mode’s index-placing facility is based on a very simple framework. All the
author needs is to specify a pattern and a key. The editor then finds the pattern, issues a
menu of options and inserts the index command, along with the key as its argument, upon
the user’s request. As a special case, when the pattern and key are identical, neighboring
words of the current cursor position or the text in the current region can be inserted as the

index argument in one TEX-mode command.

There are two query-insert modes to operate with: one based on single key-pattern
pair and the other on multiple key-pattern pairs. In the former mode, the user specifies
a pattern and a key, and for every instance of the pattern found, he decides whether to
insert the index command with the specified key, or a variant of it. In the latter mode, each

key-pattern pair in a global list is processed in a way identical to that of the former mode.

Placing index commands is a task that has been performed traditionally in an ad
hoc fashion. It is often tedious and time-consuming. Our facility offers a systematic and
efficient approach to this effort. It has been used in producing indexes for a book and a

number of manuals and has proved very useful and effective.

130

Index Processor

The index processor Makelndex transforms raw index entries generated by the
formatter into the final index file. The tasks performed in this transformation include
permutation (entries are sorted alphabetically), page number merging, multi-level indexing
(three levels of subindexes are recognized), style handling (customizable input and output
formats), and various special effects such as cross referencing (see and see also), setting
page numbers in different fonts, etc. Due to the style handling facility, Makelndex is largely
independent of the typesetting system and independent of the format being used. There is

an interface in TgX-mode to Makelndex much the same as the one to BisTEX.

8.4.3 Job Control

Under the VORTEX paradigm, every external processor needed in the entire course
of document preparation is controlled by programs implemented in the source editor’s Lisp
subsystem. In TgX-mode, most generic operators take the current document, file (buﬁ"erv),
or region as an operand, but some apply to words. In BIBTpX-mode, objects include the
current bibliography file, an entry, and fields in an entry. From the user’s point of view, not
only the typing overhead is greatly reduced, but the need to swap context both mentally

and physically between the editor and operating system top-level is eliminated.

8.4.4 Generalization

Exploiting the rich programming capability and its interactive language inter-
preter of a text editor like Emacs is not a new concept. Under the VORTEX architecture,
this extension mechanism is ideal for the integration of external programs with document
processing. It also makes it possible for the various activities associated with these pro-
cessors to be performed interactively. These activities include placing task-specific objects
in the document source, retrieving them for processing, and incorporating the processed
results back to the document. An integrated facility allows the user to interact with these
activities, as demonstrated by the above examples of bibliography citation/correction and
index placement.

Under the VORTEX paradigm, this level of integration interfaces nicely with the
undeﬂying system structure. As shown in Sections 6.6 and 6.7, the programming interface

between the high-level integration routines and the low-level state accessing routines is

131

seamless. Although what has been shown is a TEX-based environment, it seems to generalize

to systems based on other document formatting languages as well.

Chapter 9

Evaluation

As pointed out in Sgction 1.2, a principal objective of the VORTEX research is to
resolve the inherent conflicts found in various approaches to document development, and to
arrive at some compromises that represent the best of each alternative. Having discussed
an abstract paradigm (Chapters 3 and 4), as well as a concrete realization of the paradigm
(Chapters 5, 6, 7, and 8), it is appropriate to put this alternative approach in perspective.
Have the design goals been satisfied? How well does the prototype system work? How could
it be improved? How does it compare with related work? This chapter consists of three
parts: the first part is an evaluation of the VORTEX prototype, the second part discusses
briefly several systems that are related to VORTEX, and the last part gives a comparison of

VORTEX and these related systems.

9.1 Evaluating the VORTEX Prototype

The current VORTEX prototype has nearly 100,000 lines of high-level code in C
and Lisp. The principal trio is implemented in C: the source editor is about 50,000 lines,
the target editor is roughly 6,000 lines, and the incremental formatter has about 35,000
lines. About two thirds (23,000 lines) of the incremental formatter code comes from the
original non-incremental version of TEX (CommonTgX). In addition to the principal trio,
there are about 10,000 lines of Lisp code for the system’s editing, reverse mapping, and pre-
and post-processing facilities.

Figure 9.1 is a screen dump of the current VORTEX prototype running under the X

window system. Three separate windows are present: the top window displaying the source

132

133

VorTeX BuFfer 't.tex="/ysw2/vortex/formatier/t.tex***10:Ffundamentall top el -
Gowerful personal workstations with high-resolution displays, pointing
, Jevices, and windouing envirorments have created many neu
‘possibilities in presenting information, accessing data, and efftcient
computing in general. In the context of document preparation., this
workstation-based technology has made it possible for the user to
idirectly manipulate a document in its final form, The central ides is
>that & document is immediately reprocessed as it ls edited: no
syntactic constructs are explicitly used to express the desired
operations. This so-called {\it direct manipulation\/} approach
differs substantially from the traditional {\it scurce language

rmodel /3. in which document semantics (structures and sppearances) are
specified with interspersed markup commands. In the source language
model, @ document is first prepered with a text editor. its Formatting
" and other related processors are then executed, usually in batch mode,
-and the result is obtained,

The complete document develapment process involves a number of
ubtasks ranging from suthoring, reading, filing, to printing, There
re certain aspects of document development that are best-suited to @
 source-language spproach while others are easier to deal with using
idirect-manipulation techniques, R hubrid paradigm combining the best
“of both approaches seems most desirable. In such a hgbrid system, a
Jocument has at least two representations: a {\it source\/}

epresentation with embedded commands that uields flexible high-level
bstractions. and & €\it target\/} representation displaying an

bject’s final appearance that gives precise placement and crientation
n resoonse to direct manioulation.

VorTeX Input “f1:minibuffer] top

VorTeX Proof proofs- ~ {2:proof] 0x0

Powerful personal workstations with high-resolution displays, pointing devites, and windowing environ-
rents have created many new possibilities in presenting information, accessing data, and efficient tomputing
in general. In the context of document prepatation, this worksiation.based technology has made it possible
for the nser to directly manipulate a document in its final form. The central ides is that a document is
immediately reprocessed as it is edited; no syntactic constructs are explicitly used to express the desired
operations. This so-talled direct munspxiction approach differs substantially from the traditional seurce
fiaguage mole!, in whith docurment semantics (struciures and sppearances) are specified with interspersed
matkup commands. In the sourte language model, a document is first prepared with a text editor, its
foomatting and other related processors are then executed, usually in batch mode, and the result is obtained.

The complete document development process involves a number of subtasks ranging from suthosng,
reading, filing, 10 printing. There are certain sspects of document development that are best-suited to
a source-language approach while others are easier to deal with using dircct-manipulation tethniques. A
hybrid paradigm tombining the best of both approaches seems most desizable. In such a hybrd sysiem, a
document has at least two representations: a sousce representation with embedded cormmands that yields
flexible high-level abstrattions, and a terget representation displaying an object’s final appearance that gives
precise platement and orientation in response to direct manipulation.

Figure 9.1: A snapshot of the current VoRTEX prototype.

editor, the middle window displaying an input/message mini buffer, and the bottom window
displaying the target editor. The input/message window is shared by the two base editors.
The incremental formatter is invoked as an background process and does not occupy any

window explicitly.

9.1.1 Satisfying Design Decisions

Section 1.2 identified four independent areas as potential conflicting spots in doc-
ument development. The design decisions made in VQRIEX have created an alternative
that, to some extent, resolves these conflicts. A prototype implementation has proved that

such an alternative is feasible. The remainder of this section reviews how these conflicting

134

properties are resolved in VORTEX-

Document Specification: Source Language versus Direct Manipulation

VORTEX resolves the conflict between the source-language model and the direct-
manipulation model by maintaining a document in two complementary views, source and
target; both views can be manipulated by the user. The two document views are correlated
by sharing a common internal representation. The transformation from source to target is
carried out by an incremental formatter. Mapping in the reverse direction is realized by
the source editor’s Lisp programming subsystem, which implements the semantics of each
target-level operation by embedding its corresponding source-level commands in a program
that gets executed when the target operation is triggered. The resulting hybrid paradigm
allows document development tasks to be delegated to either the source editor or the target
editor based on convenience considerations. In VORTEX, depending on the user operation,
the two document views can be synchronized in either the delayed mode or the immediate
mode. '

| For instance, the user can perform Emacs-style text editing in the source editor.
In particular, fine-grain insert and delete operations are performed on the source view. Di-
rect modifications to the document’s source view are evaluated under the delayed-execution
model; they are mapped to the target view when the user explicitly invokes the format com-
mand in the source editor. In practice, this rarely happens. Instead, what happens most
often is that the user can invoke any command in the target editor, and the reformatting
will be triggered automatically. The target editor is used to incorporate direct manipu-
lation operations. Two special steps are taken to ensure that each target-level operation
is legitimate: (1) before a target-level operation can be invoked, reformatting is triggered
automatically so that the target view is guaranteed to be valid, (2) when a target-level
operation is actually invoked, the corresponding source-level Lisp program is executed im-
mediately and the re-evaluation takes place automatically so that the sensation of directness
can be achieved.

Figures 9.2 and 9.3 demonstrate a target-level font change operation in action. In
Figure 9.2, a word is selected in the target editor (shown in the highlighted area) and the
font change operation is invoked. Possible fonts are displayed in a menu. Suppose the italic

font is selected, its corresponding source-level Lisp program (see Figure 6.6) is executed

135

~{0: fundaventall top

Bl vorTeX Buffer t.tex- =/yew2/min/vortex/t.tex"
{Powerful personal workstations with high-resolution displays, pointing
idevices, and windowing environments have created many new
“{possibilities in presenting information, accessing data. and efficient
Veomputing in general, In the context of document preparation, this
*Jworkstation-based technology has made it possible for the user to
{directly manipulate a document in its Ffinal form, The central idea is
that & document i3 immediately reprocessed ss it is edited: no
syntactic constructs sre explicitly used to express the desired
operations, This so-called O\it di tation\/} approach
differs substantially from the trad 2 - source language
=:{modelN/), in which document semanti -m es and appearances) are
specified with interspersed markup in the source language
model, @ document is first prepared 1 k editor, its formatting
and other related prucessors sre th BEe | usually in batch mode.
and the result is obtained,

=l
The completsfldocument development p lves a number of
“Jsubtasks ranging from autharing. re c ¢. to printing, There
“Jare certain sspects of document deveISPment Thet are best-suited to a
source-language approach while others are easier to deal with using
Jdirect-manipulation techniques, A hybrid paradigm cambining the best
of both approaches seems most desirable. In such a hybrid system, a
document has at least two representations: # O\t source}
representation with embedded commands that ylelds Flexible high-level
abstractions, and & Q\it target’\/] representation displaying en
object’s Final appearance that gives precise placement and orientation
- 1in response ts direct manipulation,

et Al O ¢ e e

;Translatlng proof selection through formatter,.,

Powerful personal workstations with high-tesolution displays, pointing devices, and windowing envmon.
ments have created many new possibilities in presenting information, actessing data, and effitient computing
in gemeral. In the context of document preparation, this workstation-based technology has made i possible
for the user to direetly manipulate a document in its final form. The tentral idea is that a document is
immedistely reprocessed as it is edited; mo syntadic constructs arc explicitly used 10 express the desired
operations. This so-called firect menizaistion approach differs substantially from the traditional sexree
N2 guage model, in which document semantits (structures and appearances) are specified with intecspersed
matkup commands. In the sourte language model, a document is first prepared with a text editor, its
formatting and other related processors are then exetuted, usnally in batch mode, and the result is obtained.

The FTN 8 locument development process involves a number of subtasks ranging from authoring,.
reading, filing, 1o printing. There are certain aspects of document development that are best-wited to
a source.language approach while others are easier to deal with using direct.manipulation techniques. A
hybrid paradigm combining the best of both approaclies seems most desirable. In such a hybnd system, &
document has at least two representations: a senrce representation with embedded commands that yields
flexible high-level absiractions, and a target representation displaying an objeet’s final appearance that gives
pretise placement and orientation in response fo direct manipulation.

L D T e S T R s

Figure 9.2: Target-level font change operation in action (before).

immediately. Afterwards, as shown in Figure 9.3, the corresponding TEX code is inserted
in the source representation ({\it --- \/}). Reformatting takes place automatically, and

the italicized word is displayed and highlighted in the target representation.

The two document views and the dual execution models have created a flexible and
extensible environment. Primitive target-level operations, such as scrolling and selection,
are in place. The reverse mapping facility is fully exposed to the user; new operations can

be extended rather easily.

136

Powerful personal workstations with high-resolution displays, pointing
devices. and windowing environments have created many new
possibilities in presenting Lnformation. accessing data, and efficient
computing in general, In the context of document preparation, this
workstation-based technology has made it possible for the user to
directly manipulate a document in Lts final form, The central idea is
that » document iz immedistely reprocessed #s It is edited; no
syntactic constructs are explicitly used to express the desired
operations, This so-called (\lt direct manipulation\/} approach
duffers substantislly from the traditional {\it source language

model N/}, in which document semantics (structures and appearances} are
specifled with interspersed markup commands. In the source language
model, & document is first prepared with a text editor, its formatting
and other related processors are Lhen executed. usually in batch mode,
and the result is obtained, .

The D\it complete\/Hldocument development process involves a number of
subtasks ranging from suthoring, reading, filing, to printing. There
re certain aspects of document development that are best-suited to a
S source-language approach while others are easier Lo deal with using
irect-manipulation techniques, A hybrid paradign cambining the best
f both approaches seems most desirable. In such & hybrid system, »
ocument has at least two representations: a {\it source\}
epresentation wuith embedded commands tnat yields flexible high-level
1abstractions, and 8 0\it target\/} representation displaying an
Zobject’s final appearance that glves precise placement and orientation
’_ln respanse to direct mantipulation,

e e e

VrrTeX Proof sproofe= " {2:proof] Ox0 - 1 o & i T =

Powerful personal workstations with high.resolution displays, pointing devites, and windowing environ-
ments have treated many new possibilities in presenting information, accessing data, and efficient computing
in general. In the contexi of document preparation, this workstation-based technology has made it possible
for the user to directly manipulate a document in its final form. The central idea is that a document is
immediately reprocessed as it is edited; no syntaclic constructs are explicitly ased to express the desired
operations. This so-called Zirect manigalitios approach differs substantially from the traditional sevree
laguage melel, in which document semanties (structures and appearances) are specified with interspersed
matkup commands. In the sourte language model a document is first prepared with a text editor, its =
formaiting and other related processors are then excruted, wsually in batch mode, and the result is obtained.

The BTTMIBlocumeni development proeess involves a number of subtasks ranging fromrauthoning,
reading, filing, 1o grinting. There are certain aspects of docurment development that are best-suited fo
o source.language approach while others are casier to deal with using direct-manipulation techniques. A
hybrid paradigm combining the best of both approathes scems most desirable. In such & hybnd system, a 3
document has at least two representations: a sewrce representation with embedded commands that yields
flexible high-level abstractions, and a target represcniation displaying an object’s final appearance that gives
precise placernent and orientation in response to dirett manipulaiion.

% ,“i‘fw:“&kf“w'."‘n'c’mﬁq:ﬂ‘cﬁ‘t:ﬁ}‘:dMﬁw‘mmmwm%%wiﬁﬁ-‘ ol

Figure 9.3: Target-level font change operation in action (after).

Document Evaluation: Quality versus Immediate Response

Quality and directness are not necessarily conflicting concepts. Quality is a prop-
erty of the formatted document, while directness is a sensation involved in the process of
manipulating a document. Document quality is the primary concern of VORIEX, which is
achieved by the 100% TgX compatibility. At the same time, directness in VORIEX is signif-
icantly improved over the batch version of TEX, as the new formatter works incrementally
on a page granularity. The same strategy, which is based on augmenting a non-incremental
system, can be extended to a per-paragraph approach, while remaining compatible with
TgX’s criteria of generating high quality output. Under the VORTEX paradigm, quality is

not compromised by enhancing the sensation of directness through incremental processing.

137

In other words, directness is achieved without sacrificing quality.

Moreover, VORIEX represents a true WYSIWYG system, in which the target rep-
resentation is an exact replica of what will eventually appear on the hard-copy. By contrast,
galley-based direct-manipulation document editors are not exact WYSIWYG systems. For
either convenience or performance reasons, they are unable to support pagination on the fly
and sometimes must settle for more straightforward line breaking strategies, and thereby
must rely on an off-line batch postprocessor to produce the final high—quaﬁty output. There
is no approximation involved in VORIEX’s formatting engine. In many occasions, this pre-
cise correspondence between an editable screen representation and the final hard-copy is

the most critical and desirable feature in document development.

Degree of Detail: Procedurality versus Declarativeness

VORTEX is so tightly woven with TEX’s low-level processing engine that its becom-
ing a procedural-based system is inevitable. Declarative properties, such as logical entities
and document structure, are emulated in TEX by abstractions (e.g., IsTgX), and can be
encapsulated in VORTEX through the Lisp programming subsystem. Because VORTEX’s pro-
cessing engine is equivalent to that of TEX’s, and because the way LTgX works is through
the expansion of macros that are defined on top of TEX’s low-level primitives, the VORTEX
kernel can support a declarative system like IATEX at no extra overhead. Operations more
intimately linked to these declarative or logical properties can be programmed in Lisp, with

support through access to the internal representation.

The Glue: Strong Integration versus Weak Integration

VORTEXs integration mechanism is one that is strong enough to handle different
aspects of document processing in a coherent manner — both from the system’s and the
user’s standpoints, and yet weak enough to be extensible. In the system organization layer,
the protocol-based distributed framework allows parallelism and extra computation cycles
to be exploited, while at the same time, reduces memory overhead that might otherwise be
unacceptable. The protocols among the principal trio are very simple and can be extended
easily. Compound objects and their respective editors can be integrated with the main sys-
tem through protocol extensions. In the representation and transformation layer, VORIEX

achieves the capability of mapping an object from its source view to the corresponding

138

target view, and vice versa, through tightly-coupled internal representation, an incremental
formatter in the forward direction, and a systematic and extensible transformation facility
in the reverse direction.

In addition to supporting reverse mapping and emulating declarative properties,
VORTEX’s Lisp substrate also serves in the capacity of integrating pre- and post-processing
tasks with document editing and formatting. Traditionally, these pre- and post-processing
tasks have been regarded as second-class citizens in interactive document processing sys-
tems, which is largely due to the absence of a programmable glue language, and conse-
quently the inability to access external data and processors coherently. Under the VORTEX
paradigm, manipulating and processing these objects are all part of the integrated system

which makes it an environment specially suited to technical and scholarly work.

9.1.2 TEX Compatibility

Achieving TEX compatibility does not imply a system similar to VORIEX cannot
be built from scratch. In fact, algorithms developed by TEX have become the de facto
standard. Variaﬁts of them can be found in a number of more recent document formatting
systems, such as Quill, Lilac, INFgR [120], etc. However, with investigating new research
problems instead of rehashing known issues in mind, a software engineering decision was
made in the beginning of the project to utilize these superior algorithms. Adapting from an
existing program that is known for its quality seemed very sensible. The VORTEX approach
has turned out to be an interesting and challenging experience.

In retrospect, VORTEX's alliance with TEX is both good and badl. It is good
because, by design, VORTEX inherits all the expressiveness and quality of TEX, and hence
every TgX document can be processed by VORTEX with exactly the same result. The
VORTEX incremental formatter has passed the “trip test”, a validation suite designed by
Knuth to ensure TEX compatibility [88]. Creating an incremental formatter by augmenting
a non-incremental processor like TEX has some advantages. Most noticeably, it relieved the
project from the necessity of creating algorithms for low-level formatting like hyphenation,
line breaking, and pagination, while allowing us to concentrate on issues specific to the the

interactive situation.

1Obviously, if it had been decided not to build the prototype on TEX, the resulting system would not be
named VORIEX

139

document space word par group cseq math- others
macro package 5% 5% 2% 2% 8% 1% €
regular 14% 14% 3% 1% 2% 3% €
math-intensive | 16% 16% .3% 5% 4% 2% €
average 15% 1% 3% 1% 3% 1% €

Table 9.1: Internal representation occurrence distribution. This table indicates the dis-
tribution of nodes in the internal representation maintained by the VORTEX incremental
formatter. The percentage is measured against the total size of a document in terms of
number of characters. An € means the distribution is less than .1%.

IR IRg IRo IRT
node/boz | char | space word par group cseq math | t_boz n_boz | extra | total
share 1 .15 .15 .003 .01 .03 .01 1 15 .05 -
size 22 22 22 22 20 38 22 32 42 27 -
subtotal | 22 3.3 3.3 .07 2 1.14 .22 32 6.3 1.35 | 69.88

Table 9.2: Internal representation overall heap consumption. This table lists the overall run-
time memory consumed by VORIEX incremental formatter’s internal representation. Again,
the fractions are relative to the total size of a document in terms of number of characters.

" The size is in bytes.

Augmenting a complex program like TEX, from an implementation standpoint, is
not a programmer’s most desirable and memorable experience. It would be much easier, in
many cases, to develop code from scratch than to understand the original program first, find
the right spot next, and finally insert the extension for the new functionality. Sometimes
the extensions involve getting around some constraints imposed By the original constructs
which otherwise might not occur if the code were fresh. On the other hand, without the
well-documented program listing of TEX [89], the work would have taken much longer. The

various indexes available in TgX: The Program increased our productivity significantly.

9.1.3 Heap Consumption

By design, VORTEX’s internal representation requires a large amount of memory.
Also, in the prototype implementation, little attention was given to optimizing heap us-
age, which contributes nontrivial overhead to the overall memory consumption. Table 9.1

indicates the distribution of IRo nodes for three types of TEX documents: macro pack-

140

age, regular, and mathematics-intensive. The average is biased toward the regular and
math-intensive situations, because most macro packages are pre-loaded, and thereby do not
contribute anything to the internal representation. What Table 9.1 illustrates is that, for a
document of size N, the number of IRo nodes of types IRo_Space and IRo_Word are, on
the average, both .15N, .003N for IRo_Par nodes, .01 N for IRo_Group nodes, and so on.

A Table 9.2 details IR’s overall memory consumption under the current prototype,
which is broken down into IR’s natural components: IRg, IRo, and IRr. Since IRg and
IRr each maintains a copy of the document, the two 1’s on the share row under columns
char and t_boz are the two biggest contributors to memory overhead. Since syntactic sugar
found in space, group, and control sequence nodes is stripped off in IR, the number of
non-terminal boxes is roughly equivalent to the number of word nodes in IR o. The size row
indicates the size of each node in bytes. Actual specification can be found in Appendix C.
Multiplying the distribution and size rows yields the row of subtotal, which, when summed
up, gives the total memory overhead as a factor of the document size. Presently this ratio
is somewhere between 60 and 70, which is, of course, a staggering number. This means,
with 16 megabytes of memory, the maximum capacity VORIEX can handle is roughly 210
kilobytes (the formatter itself takes up 1 megabytes of memory), which is a document of 40
to 50 pages long. This is acceptable for a prototype whose purpose is to demonstrate the
underlyiﬁg ideas, but certainly needs optimization to be of production quality.

There are several ways to restrain this ratio. One solution is to perform mem-
ory management within the formatter. When the memory consumption exceeds a certain
threshold, a portion of the IR is swapped out, which can be brought in later when it is
referenced agai_n. This is reminiscent of virtual memory in operating systems and, because
of its complexity, is not recommended except as a last resort.” A somewhat easier solution
converts IRg nodes and IRr terminal boxes from their current structure of doubly-linked
lists into arrays. This would save as much as 25% of the total memory overhead, simply by
eliminating left and right pointers. A more elaborate scheme is needed in this case to man-
age insertion and deletion of nodes. If further cutback is called for, terminal character boxes
on IRr may be eliminated at the expense of a poorer selection mechanism in which the
finest-grain object is a-word, rather than the individual character. The tradeoff here is heap
consumption versus functionality, which can be tuned according to actual requirements.

As a matter of déja vu, TEX’s taking over of heap management from a program-

ming language’s run-time environment can be recreated in VORIEX, which may improve

141

the overall memory utilization, such as reducing the pointer size from 4 bytes to 3 bytes
(yielding an effective heap size of 16 megabytes, which is quite enough). There is a limi-
tation, however. Even if the heap consumption were reduced considerably, say to only a
factor of 10 to 20 times the size of a document — a drastic reduction of 70 percent from
the current implementation, the memory overhead is still rather substantial. A memory
overhead an order of magnitude larger than the document size can be expected. From an
implementation standpoint, this is a price to be paid for creating a multiple-representation

system.

9.2 Related Work

A number of document-processing systems are directly related to the VORIEX
research. These are either systems that explicitly focus on multiple representation issues,
or ones that support features similar to some other aspects of VORTEX. A brief description
of the systems of interest follows. All except INFgR have been introduced earlier in this

dissertation.

9,2.1 Janus

Janus [30] is a two-view document editor developed in the early 1980’s by scien-
tists at IBM San Jose Research Center. A Janus source document is specified in GML, a
precursor of SGML. The Janus workstation consists of an IBM 3277 display terminal for the
editing of the source representation, a Tektronix 618 W illiams tube display for rendering the
document’s target view, and a joystick as the pointing device. Like VORTEX, Janus expects
its users to do most of the editing in the markup (source) view. Editing in the formatted
(target) view is limited to the cut-and-paste of figures. Formatting must be triggered by
the user by invoking a “SHOW” command. The formatting strategy in Janus is based on
extensive two-level state checkpointing and uses coroutines. The primary coroutines are the
formatter (galley maker) and the packer (page breaker) both of which save their internal
state information periodically. No quiescence checkpointing is performed. Janus did not
take off because the display technology was a few years behind its ideas. Powerful personal
workstations were not available at its time, so it had to rely on the IBM 3081 mainframe

as its back-end machine, which limited its usability.

9.2.2 Quill

Quill [32], a descendant of Janus, is a new WYSIWYG document editor based on
standard workstation technology. At IBM Almaden Research Center, a Quill prototype is
being implemented on top of a server/client-based window system called WHIM [62], which
runs under the QuickSilver operating system [28,70] on the IBM RT/PC workstation. Quill
consists of two editors: a document editor and a style editor [33]. The document editor
is a monolithic program that logically decomposes into individual editors, each responsible
for a particular class of objects in a compound document. Editing and formatting are
strongly integrated under a spontaneous mode that demonstrates a direct-manipulation
user interface. The editor’s underlying document structure is represented in SGML, so is
its off-line data representation. A structural view, which illustrates the type and scope of
SGML tags that mark up the document under manipulation, is displayed on a pane along
the side of its main editing surface. The style editor allows one to customize document
styles by simple clicking and typing on a form-based interactive tool. The document editor

accepts output from this tool and performs formatting accordingly.

9.2.3 EZ

EZ is the base editor of the Andrew environment. From another perspective, EZ
can be viewed as the top-level object of the Andrew toolkit {107}, which evolved from an
earlier version described by Gosling [64]. EZ is a galley-based document editor that must
call upoh a postprocessor for pagination. The most unique aspect of tlﬁs system is its ability
to integrate arbitrarily nested objects into a compound document, which is achieved as a
result of its object-oriented, dynamically-linked class mechanism, and the conversational
event processing facility. There is a top-level interaction manager in the Andrew toolkit
environment. Input events are passed down the object hierarchy for processing, while
drawing events are handed up, so that a parent can coordinate conflicting requests from
its children. Through this up-down calling convention, objects can exchange their size
information and negotiate the necessary real estate. Support from a toolkit environment
like this gives a great deal of flexibility to a document editor. EZ is a galley-based, direct-
manipulation document editor. Although in the Andrew toolkit the class of data objects is
separated from the class of view objects and a data object can be associated with multiple

views, the EZ document editor is not a multiple-representation system by our standard

143

because a document is presented only in a single target view.

9.2.4 Tweedle

Tweedle [11] is a graphics editor that tries to bridge the gap between source-
language and direct-manipulation based approaches to graphics specification by using a
program as its internal representation for a picture. During an editing session the user
can modify either the picture itself or the program representation; the editor modifies the
other to keep the two consistent. The language used by the editor contains features that
allow the editor to incrementally execute parts of a program in response to a change so
that the picture can be regenerated without completely re-executing the program. Its use
of a procedural representation allows the user to create pictures with repetition, recursion,
and calculated point values. It further allows users to define parts of a drawing as variants
of other parts; these variants can differ from their original objects in quite arbitrary ways
but still respond to changes made to the original. Tweedle is a rather symmetric multiple-
representation system that allows editing to take place in either the source or the target

- representation.

9.2.5 Lilac

Lilac [27] is a two-view document editor that employs the boxes-and-glue model
of typesetting, a la TgX. It incorporates a more constrained source language to simplify
the task of document specification. Lilac’s document specification language is procedure-
oriented rather than macro-oriented, and it is purely functional with no side effects. There
are some exceptions to deal with such things as figure numbers and footnotes. It emphasizes
tight coordination between the two views. A selection or insertion point in the target view
is reflected immediately in the source view, as is every keystroke of inserted text. The user
may accomplish this kind of coupling in the other direction, if a structural editor is available
for the source view. Currently a plain text editor like Emacs is used for the source view,
so a “reparse” command is required to get source edits reflected in the target. The user is
encouraged to use the target view to manipulate a document.

- Lilac can keep up with a natural typing pace in ordinary paragraphed text, but
not in equations and other intricate structures. The keys to this performance include:

(1) an incremental interpreter, which uses a hash table to keep track of previous operations

144

\headline={
\ifnum\pageno=1i \hfill

\else
\ifodd\pageno \hfill\bf\folio
\else \bf\folio\hfill
\fi

Figure 9.4: A running headline defined in TEX. TgX has its own abstraction mechanism to
define a conditional running headline like what is shown here.

performed on a certain object, (2) some carefully tuned incremental primitives, including the
paragrapher and the semantics processor that turn character strings into lists of boxes and
glue, and (3) an incremental screen redrawing algorithm that re-uses previously displayed
bits, and renders only what is new.

Of all the document preparation systems, Lilac is probably is closest to VORIEX
in appearance. By design, however, the two have subtle differences, as is discussed in the

Section 9.3.

9.2.6 INFgR

INFgR [120] is a Lisp-based WYSIWYG document editor, in which both editing
and formatting are realized exclusively in Lisp. In appearance, it looks like an Emacs front-
end to TgX, because its editing is fully compatible with Emacs and its formatting resembles
TEX so much that the only noticeable difference is their syntactic sugar. Consider an
example of defining a headline conditionally: it is bound to nothing (a bloc of glue) on page
1, the current page number in boldface flushed right on odd pages, and the current number
in boldface flushed left on even pages. In TgX, one would define this headline as what
is shown in Figure 9.4, where \hfill emits some amount of glue that is stretchable, and
\folio is TEX’s internal register that contains the current page number. This \headline
macro will be expanded recursively whenever a page is constructed.

In INFpR, a Lisp function called headline can be defined as in Figure 9.5, where

format is a function that returns a string when invoked with the first argument bound

145

(defun headline ()
(format nil
(cond ((eql 1 *folio*) *!hfill")
((oddp *folio*) "!hfill!bf ~d")
(t "ipf "d!'hfill"))
. xfolio*)

Figure 9.5: A running headline defined in INFpR. INFgR supports a set of low-level format-
ting primitives and registers that is largely compatible with TEX. However, its abstraction
mechanism is based on Lisp.

to nil. The second argument is the format string (like those that appear in the standard
Common Lisp format control or the C printf statements),in which “d (for a numeric value)
is replaced by the third argument *folio* when format returns. The escape symbol ! is the
counterpart of TEX’s backslash, and *foliox here is identical to \folio in TeX. INFgR'’s
output routine would invoke headl ine and place the returned string in the right position on
a page. In other words, low-level formatting primitives are, by and large, identical in INFgR
and in TgX. Program abstractions, however, are built into TEX, but are accomplished by
Lisp in INFgR.

INFgR also provides a host of special key bindings for the purposes of entering
mathematical formulas, creating tables, adjusting layout attributes like penality and glue,
initiating formatting, and so on. Each operation can be invoked with just a few keystrokes,
which greatly facilitates most of the complex activities. INFgR is rather close to VORTEX
in spirit. However, INFgR does not provide explicit multiple representations and is not

fully-compatible with TEX.

9.3 A Comparative Analysis

This section compares some key aspects of VORTEX with those of the systems
mentioned above. In-depth analysis of commercially available systems is not possible due

to the lack of technical information. This is not surprising because very few vendors publish

key technical information on their products. Nevertheless, based on the experience of a user,

some commercial systems are included in the comparison below for the sake of completeness.

146

9.3.1 Multiple Representations

The combination of scripts and actions, namely a hybrid of source-language and
direct-manipulation approaches to document specification, is a powerful paradigm. A source
language provides high-level constructs and abstractions, while direct manipulation yields
prompt visual feedback regarding placement, measurement, and orientation. The advan-
tages of multiple representations have been recognized by many, which is evidenced by the
increasing number of systems supporting multiple representations either explicitly or im-
plicitly. Systems like VORTEX, Tweedle, and Lilac present both source and target views
of a document, allowing both representations to be manipulated by the user. Janus typi-
fies an alternative in that both views are presented, but one of the views (target) is only
commissioned with very limited capability. Systems like Quill present essentially one and
a half views of a document — a target and its internal structure. A source representation
in SGML, which serves as its off-line representation, is implicit in a Quill session. INFpR
exemplifies yet another approach that a source representation (in Lisp) is implicit but ac-

cessible.

The Andrew toolkit separates the notion of view from the actual data object, so
that multiple views can be associated with the same data object. This effectively relieves
individual applications from worrying about the coherence among multiple representations.
The facility provided by the toolkit acts as a server that triggers the necessary transforma-
tions automatically. However, since EZ is a galley-based, direct-manipulation editor, which
does not incorporate extensive multiple representations as supported by VORTEX, it remains

to be determined experimentally how well this high-level approach works for complex tasks.

The trend of migrating into a world of multiple representations is not confined to re-
search projects. A recent version of MicroSoft Word offers a simple scripting mechanism that
apparently goes 'beyond its predecessors which were based solely on the direct-manipulation
approach. HyperCard is a commercial application that demonstrates the power of merging
direct manipulation with a scripting mechanism like HyperTalk. As personal computers are

becoming more and more powerful, this trend will continue to grow.

From both the user’s perspective and the system’s design and implementation
standpoint, a wide diversity can be found in these multiple-representation systems. For
instance, there is no consensus as to the relative importance of the two document views. In

Janus and VORIEX, the user is expected to do most of the editing in the source view, the

147

opposite is expected in Lilac. In Tweedle, where the task is somewhat restricted (graphics
only), the source and target views are more symmetric. The nature of the source languages
involved also differ in many respects. VORTEX is based on the macro-oriented TgX, which
introduces a number of problems in reverse mapping that are not encountered in declarative

languages like SGML or the nicely crafted macro-free languages in Tweedle and Lilac.

9.3.2 Inter-Representation Transformations

Interesting commonalities exist in the underlying execution model of multiple rep-
resentation systems. For instance, in systems with two explicit views, the transformation
from source to target, i.e., the “execution” of the source representation as a “program”, is al-
most always triggered by the user under the delayed-execution model (see also Section 7.1).
By.contrast, it is mandatory for the target view under direct manipulation that its exe-
cution (re-evaluation) be immediate and spontaneous. Generally speaking, transforming a
source representation to its corresponding target representation is more involved than sim-
ply updating the target representation itself. In the source-to-target transformation, which
is similar to program c_ompilation, it is necessary to reparse the source representation’s
syntactic structure, and subsequently regenerate new target code.

Reflecting changes in the target view spontaneously as the source view is modified
is the key to directness. The bottom line is that the spontaneous evaluation must be able to
keep up with the user’s typing pace on the source editor. Unfortunately, this is infeasible for
several practical reasons, all having to do with processing efﬁcignk:y. First, efficient reparsing
of the source document is critical, which can be facilitated if a syntax-directed editor is used.
Lilac does not incorporate a syntax-directed editor. Although its reparsing is incremental,
it could be improved even more under syntax-directed editing. It is due to the lack of
syntax-directed editing capability that Lilac requires its source-to-target transformation to
be triggered asynchronously. VORTEX’s source editor is able to support some notion of
language structure, but the internal representation is intended for efficient code generation.
The parsing of a source document under the current VORTEX prototype is non-incremental.
In direct-manipulation systems that maintain only the target view, efficient reparsing is not
an issue because no syntactic constructs are present.

Another important issue concerns efficient code generation. Keeping up with the

user’s typing pace cannot be accomplished by a speedup in reparsing alone. Code generation

148

in document processing involves extensive computation, especially when high quality output
is desired. As indicated previously, many direct-manipulation systems trade quality for
directness simply because hyphenation and pagination require too much computation for
a document to be formatted on the fly. Hence these direct-manipulation systems become
galley-based and rely on some off-line processors to produce the final result. In Lilac, which
expects the user to do most of the editing in the target view, hyphenation is avoided to
save computation time. VORTEX does not suffer from this immediate-execution syndrome.
Users of VORTEX are expected to do most of the fine-grain editing in the source view. A
delayed-execution model is employed so that formatting quality does not need to deteriorate.

As mentioned above, immediate execution is mandatory under direct manipula-
tion. For systems maintaining only the target view, what is involved is ‘only the target
representation itself and some internal representation. Since the two representations must
have a close correspondence for the system to function well, both representations can be
updated coherently. The situation is more complex in multiple-representation systems. In
addition to the target and the internal representations, a source representation must be

taken into account in the transformation. There are two possibilities:

1. The internal representation is updated and the target representation is recreated by
evaluating the new internal representation. The corresponding source representation
is generated according to some declarative specification. Using the notation developed

in Chapter 4, this transformation scheme can be abbreviated as T «& O — S.

2. The updates first propagate to the source representation according to some procedu-
ral specification. The new source representatioh is re-evaluated, which creates new
internal representation, and the new target representation corresponding to the ma-

nipulation is reflected. Under our notation, this transformationis 7 — S — O = T.

The subtle difference here is the explicit re-evaluation of the source representation. In the
declarative case, such explicit re-evaluation is not required; in the procedural case, the
source representation is the basis of reproducing the target image.

In pure constraint-based systems, transformations in both the forward and back-
ward directions are fully symmetric. The natural choice is the declarative approach. Inter-
estingly, Tweedle, Lilac, and VORIEX all follow the procedural approach. The complexity of
their underlying tasks prevent the mappings from being specified as declarative constraints.

Although the three multiple-representation systems have varying emphases, in terms of

149

functionality, on the role of their dual representations (VORTEX emphasizes on the source
view, Lilac emphasizes on the target view, while Tweedle’s two views are more balanced),

they all follow T — § — O — T as their underlying model of immediate execution.

Another point of comparison is the use of Lisp under INFpR versus its use under
VOrTeX. INFpR is a document-processing system based exclusively on Lisp in that editing
abstractions as well as formatting abstractions are programmed in Lisp. In VORIEX, Lisp
is used to encapsulate editing abstractions, including those introduced by reverse mapping,
while formatting abstractions are programmed in TEX. Here, expressing formatting in Lisp
or TgX has little substantive differences because INFgR was designed to use TEX’s format-
ting model. As indicated above, INFpR’s formatting primitives were named after those
available in TEX. One noticeable variation is their syntax: the reverse-Polish syntax (with

a number of parentheses) of Lisp versus the infix syntax of TEX.

INFgR also works under the delayed-execution model. However, INFgR and
VORTEX differ in some fine points of their respective delayed-execution model. In VORTEX,
updates to the formatting information are registered automatically. In INFpR, changes
to the formatting information, which is enéapsulated in Lisp, requires the user to explic-
itly force the registration. This introduces another level of indirection to the user-driven

delayed-execution model.

9.3.3 Incremental Processing

The current VORIEX prototype supports incremental formhatting on a per page
basis. The primary focus is incremental code generation. Extensive state checkpointing
is exercised to ensure that formatting can be carried out from any page in the document.
Between checkpoints, a page is parsed in a non-incremental fashion. Unlike Lilac, which
performs parsing/unparsing incrementally, TEX’s macro-oriented language construct makes
incremental processing at this level unrealistic. Incremental redisplay is not supported in
the target editor under the current VORIEX prototype. This is tolerable because in most
cases the redisplay is driven as a result of delayed execution from the source editor. In
the future, as more functionality is extended in the target editor, a more efficient redisplay

algorithm would be necessary.

150

9.3.4 Integration Mechanisms

Chapter 8 identified four layers of integration that must be considered in a doc-
ument development system. The lowest layer of integration concerns system organization.
Here, VORIEX is rather unique because it is based on a distributed framework. As such,
VORIEX exploits parallelism among the principal trio, while their simple protocols based
on both asynchronous message passing and synchronous RPC alleviate complex schedul-
ing problems. A distributed system like VORTEX also allows remote computation power
to be utilized, which is an important advantage under a typical networked workstation
environment. None of the other document processing systems are distributed.

The next layer of integration is related to multiple representations and inter-
representation transformations, which has been covered in Sections 9.3.1 and 9.3.2. One
layer up is the integration of composite objects. Support for compound documents in in-
cluded in the VORTEX design (see Chapter 5) but is not implemented in the current VORIEX
prototype. For instance, although the rendering of PosTScRrIPT graphics is not available in
the current VORTEX prototype, the hooks are in place to support it.

By design, VORTEXs integration of text and graphics is based on single-level cut-
and-paste. To the text formatter, a piece of graphics, or any non-textual object, encap-
sulated by \special is simply a blob of glue specified by its vertical dimension. All the
formatter does in response to this is to skip that much space in its galley. It is the rendering
program’s responsibility to display the actual image. More attributes can be incorporated
in \special so that the placement and size of a picture can be adjusted by the rendering
program. A good example of an extension to \special can be found in the Psfig pack-
age [16,48]. To the graphics imaging server, text included in a picture is not subject to TEX
formatting.

The strengths of this one-level cut-and-paste model are its simplicity and exten-
sibility. Because it is simple, all classes of non-textual objects can be handled in a similar
fashion: the target editor sends the code encapsulated in \special to its corresponding
server and renders the returned raster image. It can be extended to support a new class of
objects without any modification to the formatter or the source editor.

A shortcoming of this simple model is that objects cannot be arbitrarily nested.
Furthermore, the processing of text is non-uniform because text in graphics is processed

by the graphics imaging server, instead of by the main formatter. Since text appearing

151

in graphics is largely used as annotations, complex formatting is not absolutely necessary.
Font inconsistency is a related problem, which can be solved by requiring TEX to use
PosTScRIPT fonts, or vice versa. The real problem of processing inconsistency emerges
when mathematical formulas are needed as annotations. The graphics imaging server is
generally incapable of handling such delicate text formatting details.

By contrast, processing inconsistency does not appear to be a problem under the
pipelining model of troff and assorted preprocessors. Under the pipelining model, each
preprocessor handles its own data, which may reside anywhere in a document. However,
this approach also has the limitation that arbitrary nestingis not allowed. The troff pipeline
is a one pass effort. Arbitrary object nesting requires more intricate exchange of information
among the processors involved, which is not possible under a single non-interactive pipeline.

Several monolithic document processing systems, such as EZ, Quill, and Diamond,
have been designed to solve the arbitrary object nesting problem. In EZ, the interaction
is built-in as parf of the Andrew toolkit object class structure. Initiated from the top-
level interaction manager, input events are passed down the object hierarchy for processing,
~while drawing events are handed up, so that a parent can coordinate conflicting requests
from its children. Through this calling convention, objects can exchange their attributes
in allocating the necessary space on the viewing surface, which enables their arbitrary
nesting. Quill also supports a top-level shell that serves as the event manager. Each class
of objects corresponds to an “editor” which implements a set of elements. Each editor must
implement a special frame elements whose purpose is to specify a rectangular region that
contains elements belonging to a foreign editor. Hence a frame element in Quill marks a
transition of context. The top-level shell, together with the transitional frame element,
enables Quill to handle arbitrarily nested objects. In Diamond, a top-level routine called
the framework is responsible for dispatching input events to various “media editors” and
for coordinating painting requests queued for display. Each object occupies a rectangular
region, and a layout algorithm is used to gather objects into frames, and ultimately into
composites, which are then pdinted on a window pane. In addition to supporting arbitrary
object nesting, EZ, Quill, and Diamond all claim to be extensible in that to support a new
class of objects would only cause minimal perturbation in the existing routines.

The last layer of integration is the interface to external processors that constitute
the multi-dimensional task domain. In VORTEX, this level of integration is built on top of

the source editor’s Lisp programming subsystem. One unique feature about the use of Lisp
prog g q

152

is its role as a gluing mechanism for the integration of not only external processors, but their
associated interactive activities and job controlas well. These pre- and post-processing tasks
are often ignored by most interactive document processing systems. However, if a system
were to be considered for complete document development, it must incorporate these tasks
in an integrated and coherent environment. The VORTEX approach has achieved this level

of integration successfully.

Chapter 10

Conclusions and Future Work

Document development is a complex undertaking that includes a wide spectrum
of tasks. A software environment supporting complete document development must take
all of them into account. The VORTEX project is rather ambitious in that it not only tries
to create an environment to support these tasks, but to present a document in multiple
representations so that the user can take advantage of the high-level abstractions and ex-.
tensibility of a source language as well as the prompt visual response provided by direct
manipulation. VORTEX is not the only system that recognizes the importance of multiple
representations, but its underlying source language being the macro-oriented TEX makes it
a special and intéfesting system.

This dissertation research has made a number of contributions. The separation
of task domain from representation domain creates an effective framework for modeling
multiple-representation systems. The design methodology derived from this framework for
multiple-representation document processing systems, as described in Chapter 4, is useful
in the conceptualization of a system’s functionality in terms of the representations and their
transformations.

A VORTEX prototype has been implemented as a distributed application. It has
proved that a hybrid approach to document development based on the combination of a
source language and direct manipulation is feasible. The performance of the system is rea-
sonable for editing and display, while the sensation of directness is achieved by incremental
formatting. Although its target-level functionality is somewhat limited and PosSTSCRIPT
graphics is not incorporated yet, all the necessary support for these extensions are in place.

VORTEX’s incremental formatting strategies concentrate on efficient code genera-

153

154

tion. These strategies have been presented in a generic way and can be applied to other
document formatting situations. The implementation is based on augmenting an existing
non-incremental program. This technique may have some implications to software engineer-
ing, as existing non-incremental programs comprise the bulk of the world’s software and the

VORIEX experience is helpful in converting them to work under an interactive environment.

10.1 Possible Enhancements

The current VORIEX prototype can still benefit from the following enhancements:

Heap Consumption

A multiple-representation system is built at the expense of extensive dynamic
memory consumption. Section 9.1.3 indicated several schemes to improve the VORIEX
incremental formatter’s heap utilization, all of which would improve VORIEX’s capacity

and performance.

Permanent Checkpointing

Presently, the VORI'EX incremental formatter’s state checkpointing is only used for
warm start situations. All the state checkpoints are removed when a VORTEX session closes.
It would be desirable to checkpoint the state at the end of the session so that the world can

be restored when the system begins from a cold start again.

Incorporating Graphics

As mentioned above, the necessary support for rendering and selecting graphics
is in place. A POSTSCRIPT interpreter has also been built by the VORTEX group. A logical
extension to the target editor is to be able to establish a connection with the PoSTSCRIPT
server and display graphics. A step further, which has been proved feasible in an earlier
experiment, is to develop a more elaborate rendering protocol between the target editor and
the PoSTSCRIPT imaging server so that dynamic animated pictures can also be displayed on

the same viewing surface.

155

Porting the Integration Software

This involves porting the extensive Lisp-based task integration software from
Emacs to VORITEX's resident Lisp subsystem which is likely to be based on Common Lisp
[68] as part of the future plan. The integration software allows pre- and post-processing fa-
cilities and their associated interactive activities to be integrated coherently with V. ORIEX’s
principal trio. These programs have been in use for a few years and have proved to be quite

reliable.

Target-Level Functionality

The customization mechanism is in place for the repertoire of target-level opera-
tions and associated reverse mapping routines to be expanded. One would need to write
programs in Lisp that encapsulates the TEX commands_corresponding to the semantics of

a target-level operation.

Layout Editor

Related to target-level functionality, a layout editor can be built that would allow
the user to specify a document’s layout by direct manipulation. The corresponding TEX

code can be generated through the same reverse mapping facility.

Hiding Procedurality |

Still related to target-level functionality, one can create encapsulated style pack-
ages, based on those supported by I{TgX, for instance, and effectively make TEX’s notion
of procedurality transparent under VORTEX.

Exploiting Procedurality

As the opposite of the previous enhancement, one can create an interface that
would allow the user to control the fine placement of objects. It is often desirable that the
white space (glue) inserted between text be measurable on the target editor and that the
user has a handle on controlling it. With minor enhancements to the current protocols, this

can be made possible in VORTEX.

156

Empirical Study

In essence, the current VQRIEX prototype is a test-bed upon which a number of
experiments can be conducted. A most interesting study is to derive test cases that would
show, from a user’s standpoint, whether a two view document editor is better than a single

view system.

10.2 Future Directions

A number of plans have been made to carry VORTEX into the next stage. These

include

Integration with Pan

It involves replacing VORTEX s source editor with Pan [13], a multilingual structure-
oriented editor based on Common Lisp [68]. The component technolbgy will be investigated

here to understand how separately developed software can be integrated.

Integration with Symbolic Manipulation Systems

The idea here is that a symbolic manipulation system can utilize VORTEX as the
front-end display, while VORTEX can utilize it as the back-end manipﬁlator for mathematical
formulas. With these connections, a VORTEX document will become active; its mathematical
equations are not only correctly formatted, but may be evaluated and validated. Although
the current VORIEX prototype cannot be connected with a symbolic manipulator directly
due to their differences in representing mathematical terms, this problem is interesting

enough to pursue further.

Redesigning A Source Language

The macro-oriented nature of TEX has contributed a number of challenging re-
search problems in the design of VORTEX. The technique developed has corrected TEX's
lack of interactive support while retaining the output quality of its algorithms. An inter-
esting extension of this work would be to design a new source language and an associated
multiple-representation environment that incorporates both TEX’s superb text (including

mathematics) processing capability with the powerful graphics capability of POSTSCRIPT.

157

Lilac appears to be a reasonable first step, but its source language is rather restrictive by
our standard. It is purely functional, so the support for pre- and post-processing tasks is
problematic. Furthermore, there is no provisions for graphics whatsoever. In other words,

there are still a number of research problems to be tackled along this direction.

Compound Documents and Hypertext

It would be interesting to study the implications a multiple-representation system
like VORTEX would have on a multimedia and/or hypertext system. HyperCard offers
some clues that the hybrid paradigm is rather powerful. How does it generalize to a more
elaborate authoring environment? The VORIEX experience provides a good starting point

for research along this line.

Appendix A

Formatter — Source Editor
Protocol Specification

#ifndef _FSCOMM_
#define _FSCOMM_

/*
* Formatter and source editor communications.
*
* Packet format:
o
* u_short request request code as defined below
* u_short datalen length of rest of packet
* u_long id file ID
* <datalen bytes> rest of packet; zeroc or more bytes
*
* In the request definitions below, long is four bytes, short
* is two bytes, char is one byte and an array is zero or more
* of those objects as specified by the datalen field in the
* packet header in bytes.
*
* FSC_VERSION should be bumped each and every time this file is
* changed. This is to insure that the programs will not try to
* communicate with different protocol specifications.
*/
#define FSC_VERSION 14
/*
* FSC_FORMAT
* string filename root TeX file name
*x
* S ~>F
* Format document rooted at master file fid.
*/
#define FSC_FORMAT (GLC_LASTREQ + 1)
/*

I58 -

* FSC_CLOSEDOC

*

* S <-> F: close a document.

*# Invalidate the document and free all its resources.

*/
#define FSC_CLOSEDOC (FSC_FORMAT + 1)
/*

* FSC_OPENFILE

* u_long datal] contents of TeX file

*

*« S ->F: open a source file (fid given in packet header) with
* contents in data array. The same file, if already exists, gets trashed.
*

* Fach entry in the data array is a u.long:

*

* 18 7 7

* — - — ——

* | ID per letter | fid | ascii |

*

*/
#define FSC_OPENFILE (FSC_CLOSEDQC + 1)
/*

* FSC_CLOSEFILE

*

* S <-> F: close a file (fid given in packet header).

* Invalidate the file ID specified and free all resources
* used by the specified file.

*/

#define FSC_CLOSEFILE (FSC_OPENFILE + 1)

/*

+ These constants define insertion/deletion points for the commands
* below so that they may be more flexible (and perhaps easier for the
+ formatter/proof editor to generate).

*/

#detine IRS_CUR 0

#define IRS_BOF 1

#define IRS_EOF 2

/*

* FSC_INSERT

* u_long flag IRS_CUR, current point as reference
* IRS_BOF, BOF as reference
* IRS_EOF, EOF as reference
* long offset offset to reference point,
* +forward, -backward

* u_long count number of chars to insert
* u_long datal]

159

160

*
* S -> F: insert data in front of insertion point in file
* (fid given in packet header).
* The insertion point is determined by stepping offset nodes relative
* to the reference point, which is determined by flag.
*
*/
#define FSC_INSERT (FSC_CLOSEFILE + 1)
/*
* FSC_DELETE
* u_long fla IRS_CUR, current point as reference
* IRS_BOF, BOF as reference
* IRS_EQF, EOF as reference
* u_long offset nonnegative offset to reference point
* u.long count number of chars to delete
*
* S -> F: delete count characters starting from deletion point in file
* (fid given in packet header).
*+ The deletion point is determined by steping offset nodes relative
* to the reference point, which is determined by flag.
*
*/
#define FSC_DELETE (FSC_INSERT + 1)
/*
* FSC_TEXINPUT
* string filename file name as known to \input
*
* F ->S: ask for a file.
* Sent when the file is not found in the formatter’s IR.
*/
#define FSC_TEXINPUT (FSC_DELETE + 1)
/*
* FSC_TEXOUTPUT
* u_long filelen length of file name
* string filename output filename string
* string content file’s contents
*
* F ->S: write for a file to the source editor’s disk space.
*/ '
#define FSC_TEXOUTPUT (FSC_TEXINPUT + 1)
/*
* FSC_TEXMESSAGE
* string msg the message
*
* F -> S: report message from the formatter.
* Sent when TeX is verbose.

161

*/

#define FSC_TEXMESSAGE (FSC_TEXOUTPUT + 1)

/*

* FSC_TEXERROR

* u_long lineno line number of error

*

* F ->S: report an TeX error in LINENO of FID.

* An error message precedes this by TEXMESSAGE.

*/

#define FSC_TEXERROR (FSC_TEXMESSAGE + 1)
#define FS_TGT2SRC 0 /* given target id, return source id */
#define FS_SRC2TGT 1 /% given source id, return target id */
/*

*

FSC_EXECUTE
<args> arguments to the primitive

* *

* S -> F: execute primitive id (given in header)

*/
#define FSC_EXECUTE (FSC_TEXERROR + 1)
/*

* FSC_RETURN

*

* F ->S: return result of executing primitive id (given in header)
* long code return code

* <more data> depending on each primitive.
*/ '

#define FSC_RETURN (FSC_EXECUTE + 1)

#define FSC_LASTREQ FSC_RETURN

#endif ! _FSCOMM_

Appendix B

Formatter — Target Editor
Protocol Specification

#ifndef _FTCOMM_
#define _FTCOMM_

/*

* Formatter and target editor editor communications.

*

* Packet format:

* :
* u_short request request code as defined below
* u_short datalen length of rest of packet

* u.long pageno page number (physical)

* <datalen bytes> rest of packet; zero or more bytes
* .

* In the request definitions below, long is four bytes, short

* is two bytes, char is one byte and an array is zero or more

* of those objects as specified by the datalen field in the

* packet header in bytes. ‘

*

+ Note the two constants below. FTC_VERSION should be bumped

+ each and every time this file is changed. This is to insure

+ that the programs will not try to communicate with different

* protocol specifications.

*/

#define FTC_VERSION 15
/*

* FTC_SENDPAGE

*

* F <~ T for page information

* Send page information to the target editor to preview that page.
*/ ’

#define FTC_SENDPAGE

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

x/

FTC_PAGEINFO
long
long
short
_Font
char
_Font
char

globalmag
count[10]
fc

hdr

name [hdr->1nl

hdr

name [hdr->1n]

<data stream>

(GLC_LASTREQ + 1)

global mag (same for every page)
ten count registers

number of fonts used

actual font header |
actual font name |

actual font header |
actual font name e
flattened page tree

T -> P send page information

This starts a stream of page information, which consists of a header,
a stream of positioning commands plus structure and char boxes.
Positioning commands define where the next box in the stream

is to be placed relative to the current box, and is a u_short.

There may not be a right child to the PageBox, nor may there be
children to the CharBoxes.

The data stream (flattened page tree) looks like the following:

<box_type>
- [BOX]
<box_type>
[B0X]
<box_type>
[80x]
<EOP>

(1
(5
1
(s

(1
(s
1

#define FTC_PAGEINFO

FTC_PAGEOKAY

byte)
words)
byte)
words)

byte)

words)
byte)

(FTC_SENDPAGE + 1)

F -> T inform the target editor that the page requested is still valid
in its work space.

#define FTC_PAGEOKAY

‘/*

*
*

FTC_PAGENOTFOUND

(FTC_PAGEINFO + 1)

163

F -> T inform the target editor that the page requested does not exist.

*

*/

#define FTC_PAGENOTFOUND

/*
* Structure for font specification.
*/
typedef struct _font {
long
short
short

} _Font;

#define FT_PAGE
#define FT_PAR
#define FT_WORD
#define FT_CHAR
#define FT_RULE
#define FT_SPECIAL
#define FT_EOP

typedef struct _tbox {
long
long
long
long
long
} _Tbox;

typedef struct _nbox {
long
long
long
long
long
} _Nbox;

#define FTC_LASTREQ

#tendif !_FTCOMM_

size;
fid;
1n;

80
81
87
67
82
83
69

id;
ch;
ft;
xb;
yb;

id;
xc;
ye;
wd;
ht;

/*
/*
/*

/*
/*
/*
/*
/%
/*
/*

/*
/*
/*
/*
/%
/*

/*
/*
/*
/*
/*
/*

(FTC_PAGEOKAY + 1)

font at size */
font identifier. */
font name length. */

'P’: begnning of a page box */

’Q’: a paragraph box */

'W’: a word box */

’C’: a character box */

’R’: a character box */

’$7: a special box */

"E’: begnning of a page box */
terminal char box in trnasmission */
box id */

char in ascii */

font number */

baseline x coordinate */
baseline y coordinate */

nonterminal box in trnasmission*/

box id */

upperleft cornor x coordinate */
upperleft cornmor x coordinate */

horizontal width */
vertical height */

FTC_PAGENOTFOUND

164

Appendix C

Internal Representation
Specification

#ifndef _ALLIR_
#tdefine _ALLIR_

/*
*

IRf is organized as an ordinary binary tree.

IRs is organized as a doubly-linked list.
An empty file is one that has a single node

* of struct _char containing EOF.

*/

typedef struct _file {
char .
unsigned long
struct _file
struct _file
struct _char
struct _char

} _File;
/*

*

*

*

*

* particular node.
%/

#define NODE_NONE

#define NODE_CHAR

#define NODE_LIG

*fn;
*1t;
*rt;

*hd;
*pt;

10

20

/*
/*
/*
/*
/*
/*

/*
/*

/*

165

filename */

unique file identifier */

left sibling */

right sibling */

head of IRs */

current update point within IRs */

Node types, these all have their own structures above, among
the interior nodes of the IRi or the text nodes for character
leaves. These numbers must all be distinct, of course, as they
are the only way of telling what (size) structure makes up a

unknown node */
a character leaf */

a ligature node */

#define NODE_WORD
#define NODE_PAR

#define NODE_DEF
#define NODE_FDEF
#define NODE_CSEQ
#define NODE_FONT
#define NODE_RULE
#define NODE_SYMBOL
#define NODE_SPECIAL

#define NODE_MATH
#define NODE_DISPLAY

#define NODE_GROUP
#define NODE_INPUT

#define NODE_SPACE

~
#*

are not leaf nodes.

list of children is
this scheme. Nodes

have interior nodes
pointers to the IRs

appears later on.

PR S I T R T T O R N

any sibling quickly.

21
22

30
31
32
33
34
35
36

40
41

50

60

70

/*
/*

/*
/*
/*
/*
/*
/*
/*

/*
/*

/*

/*

/%

166

an word delimiting node */
an paragraph, as with \par */

a macro def node */
a font def node */
a macro invocation */
a font invocation */
a rule node */

a TeX symbol */
\special node */

a math shift node (group) */
a display math node */

group node, as with {} */
an \input node */

a space/comment node */

One of these structure is used for all nodes in the IRi that

Leaf nodes (letters) are really text

by examining the first byte.

structures in the IRs (not the same as the interior nodes).
All these structures have a first byte which tells their
type so that one may guarantee being able to tell the type
Note that each different node
type has a different (sized!) structure, but all references
are through the (pointer) type, so this is somewhat less

of a problem than it might otherwise be.

The tree is stored as a sort of directed graph. Since
nodes may have arbitrary numbers of children, a pointer

is maintained to the linked list of children, although each
child has a direct ‘‘up’’ pointer to the parent. The

doubly-linked so that one may reach
Some nodes, however, don’t use

that sit directly on the IRs (don’t

for children) have begin and end

An example of this is the

directly.

(struct _word) for the word node type.

The (struct _node) is the basis for all interior tree
nodes, they are all the same in the fields that appear
in the (struct _node); type dependent information

All the other node types contain a
(struct _node) so that changes will be less likely to
mess something up, but to avoid extra work, all the
fields are defined so as to make them appear to be

in the top level structure.

*/
typedef struct
char
char
struct
struct
struct
} _Node;
#define _ty
#define _ch
#define _up
#define _1t -
#define _rt
#define _lc
#define _pb
#define _qb
#define _wb

#define _rb

typedef struct
struct
struct

_node {

_node
_node
_node

_char {
_node
_node

unsigned long

} _Char;

typedef struct
struct
struct
struct
} _Unode;

typedef struct
struct
struct
short
} _Group;

typedef struct
struct
struct
struct
struct
struct
struct
struct

} _Cseq;

typedef struct

_unode {
_node
_node
_node

_group {
_node
node

_cseq {
_nhode
_node
_node
_node
_node
_node
_node

_math {

nd_type; /* type of node in tree */
nd_char; /* char in ACII */

nd_up; / parent of this node */
nd_1t; / left (prevous) child */
nd_rt; / right (next) child */
-com.nd_type

-com.nd_char

-com.nd_up

-com.nd_1t

-com.nd_rt

-com.nd_up

nd_up->nd_up->nd_up
nd_up->nd_up

nd_up

nd_rt

_com; /* common node info. */
_re; / box reference in IRt */
_id; /* unique identifier */

_com; /* common node info. */
_Te; / box reference in IRt */

_dn; / beginning in IRs */

_com; /* common node info. */
_dn; / list of children */
_level; /* nesting level #*/

_com; /* common node info. */
_re; / crodd reference to IRt */
_bon; / beginning of cs name */
_eon; / end of cs name */

_boc; / beginning of char params */
_eoc; / end of char params */
_def; / defined IRi */

167

} _Math;

typedetf

struct _node
struct _node
struct _node

struct _input {
struct _node
struct _node
struct _node
struct _file

} _Input;

typedef

struct _space {
struct _node
struct _node
struct _node

} _Space;

/*
* Box s

*/

#define
#define
#define
#define
#define

#tdefine
#define
#tdefine
#define
#define
#define

typedef

} _Cbox;

typedetf

tructure

BOX_NONE
BOX_CHAR
BOX_LIG
BOX_HYPH
BOX_Explicit

BOX_Implicit

BOX_RULE
BOX_SPECIAL
BOX_WORD
BOX_PAR
BOX_PAGE

struct _cbox {
struct _node
struct _node
unsigned long
long

long

unsigned short

struct _sbox {
struct _node
struct _node
unsigned long

_com;
*_re;
*_dn;

-com;
*_dn;
*_bon;
*_fp;

_com;
*_boc;
*_eocC,;

67
76
72
69

73

82

83

87
81
80

_com;
*_re;
_id;
—_xb;
_yb;
-It;

_com;
*_re;
id;

/*
/*
/*

/*

S

/*
/*

/*
/*
/*

/%
/*
/*
/*
/*
/*
/%
/*
/*
/*

J*

/*
/*

/ *
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*

common node info. */
box reference in IRt */
list of children */

common node info. */

list of children */

name of file input from */
pointer to IRf */

common node info. */
beginning in IRs */
end in IRs */

NULL */

C: char box */

L: ligature box */

H: hyphen box */

E: text introduced by an */
explicit macro invocation x/

I: text introduced by an */
implicit macro invocation */

R: box
S: box
W: box
Q: box
P: box

of
of
of
of
of

rule */

special */

single word in IRt */
a paragraph in IRt */
whole page in IRt */

terminal char box */
common node info */
pointer to IRs+IRi */
box id */
baseline x coordinate of box */
baseline y coordinate of box */
current font number */

terminal special box */
common node info */
pointer to IRs+IRi */

box id

*/

168

long
long .
unsigned short
char

} _Sbox;

typedef struct _rbox {
struct _node
struct _node
unsigned long
long
long
long
long

} _Rbox;

typedef struct _ubox {
struct _node
struct _node
struct _node
unsigned long
long
long
long
long

} _Ubox;

#define FT_MAX 64

typedef struct _pbox {
struct _node
struct _node
struct _node
unsigned long
long
long
long
long
long
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
long
unsigned short
} _Pbox;

#endif !_ALLIR_

-Xb;
-yb;
-ta;
#_ap;

_com;
*_re;
*_dn;
-id;
-XC;
AN

_com;
*_ec,;
*_dn; -
-id;
-Xc;
-Yc,
-wd;
-ht;
-ok;
-no;
-tb;
-tf;
~tn;
-ts;
_ta;
_ctl10];

/*
/*
/*
/*

/*
/*
/*
/%
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

_ft[FT_MAX];/*

baseline x coordinate of box */
baseline y coordinate of box */
total no of chars in arg */
point to argument list */

terminal rule box */

common node info */

pointer to IRs+IRi */

box id */

upper-left cornor x coordinate */
upper-left cornor y coordinate */
horizontal width of box */
vertical height+depth of box */

nonterminal paragraph/word box */
common node info */

pointer to IRs+IRi */

down pointer */

box id */

upper-left cornor x coordinate */
upper-left cornor y coordinate */
horizontal width of box */
vertical height+depth of box */

nonterminal page box */

common node info */

pointer to extended context */
down pointer */

context id */

upper-left cornor x coordinate */
upper-left cornor y coordinate */
horizontal width of box */
vertical height+depth of box */
TRUE if already sent */

physical page number */

number of boxes */

number of fonts used */

number of chars in font names#*/
number of \special’s*/

number of chars in \special arg */
TeX's 10 count registers */
used fonts */

169

Bibliography

[1] James O. Achugbue. On the line breaking problem in text formatting. In Proc. of
ACM SIGPLAN/SIGOA Symposium on Text Manipulation, pages 117-122, Portland,
Oregan, June 8-10 1981. Available as SIGPLAN Notices 16(6) or SIGOA Newsletter
2(1-2).

[2] Adobe Systems Incorporated, Palo Alto, California. Adobe Illustrator User’s Manual,
1987.

[3] Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK Program-
ming Language. Addison-Wesley Publishing Company, Reading, Massachusetts, 1988.

[4] Aldus Corporation, Seattle, Washington. PageMaker User Manual and Reference
Manual, Version 2.0, March 1987.

[5] Todd Allen, Robert Nix, and Alan Perlis. PEN: A hierarchical document editor. In
Proc. of ACM SIGPLAN/SIGOA Symposium on Tezt Manipulation, pages 74-81,
Portland, Oregan, June 8-10 1981. Available as SIGPLAN Notices 16(6) or SIGOA
Neuwsletter 2(1-2). '

[6] W. Appelt and G. Ritcher. The formal specification of the structures of the oda
standard. In Proc. of EP88 - Internal Conference on Electronic Publishing, Document
Manipulation, and Typography, Nice, France, April 1988.

—
-1
—

Apple Computers, Inc. Inside the Macintosh, Volume I - III. Addison-Wesley Pub-
lishing Company, Reading, Massachusetts, 1984.

(8 Apple; Computers, Inc., Cupertino, California. MacDraw Manual, 1984.

]
[9] Apple Computers, Inc., Cupertino, California. MacPaint Manual, 1984.
[10] Apple Computers, Inc., Cupertino, California. MacWrite Manual, 1984.

]

[11] PaulJ. Asente. Editing graphical objects using procedural representations. Research
Report 87/6, DECWRL, Palo Alto, California, November 1987. Also available as
Ph.D. thesis, Computer Science Department, Stanford University, 1987.

[12] Robert M. Ayers, J. T. Horning, Butler W. Lampson, and J. G. Mitchell. Interscript:
A proposal for a standard for the interachange of editable documents. Technical
report, Xerox Palo Alto Research Center, Plao Alto, California, 1984.

170

171

[13] Robert A. Ballance. Design of the Pan language-based editor. Computer Science
Division, University of California, November 1985. Unpublished manuscript.

[14] Robert A. Ballance. Higher-Level Language- Based Editors. PLD thesis, UC, Berkeley,
California, 1988. To appear.

[15] Robert A. Ballance, Michael L. Van De Vanter, and Susan L. Graham. The architec-
ture of Pan 1. Technical Report 88/409, UC, Berkeley, California, September 1987.

[16] Ned Batchelder and Trevor Darrell. Psfig - a Ditroff preprocessor for PostScript fig-
ures. In Proc. of 1987 USENIX Summer Conference, pages 31-42, Phoenix, Arizona,
June 8-12 1987.

[17) Jon J. Bentley, L. W. Jelinski, and Brian W. Kernighan. CHEM: A program for
phototypesetting chemical structure diagrams. Computer Sciecne Technical Report
No. 122, AT&T Bell Laboratories, Murray Hill, New Jersey, 1986.

[18] Jon J. Bentley and Brian W. Kernighan. Tools for printing indexes. Electronic
qulishing, 1(1), June 1988. Also available as Computer Science Technical Report
No. 128, AT&T Bell LaboratoriesMurray Hill, New Jersey, October 1986.

[19] Jon L. Bentley and Brian W. Kernighan. GRAP — a language for typesetting graphs.
Communications of the ACM, 29(8):782-792, August 1986.

[20] Abhay Bhushan and Michael Plass. The Interpress page and document description
language. IEEE Computer, 19(6):72-77, June 1986.

[21] Eric Bier and Maureen Stone. Snapping dragging. ACM Computer Graphics,
1 20(3):233-240, August 1986.

[22] A. D. Birrel and B. J. Nelson. Implementing remote procedure calls. ACM Transac-
tions on Computer Systems, 2(1):39-59, February 1984.

[23] Lawrence Bohn and David Weinberger. Why not have it all. UNIX Review, 5(7):29-
34, July 1987.

[24] Alan H. Borning. Defining constraints graphically. In Proc. of ACM SIGCHI’86
Conference, pages 137-143, Boston, Massachusetts, April 1986.

[25] Alan H. Borning and Robert A. Duisberg. Constraint-based tools for building user
interfaces. ACM Transactions on Graphics, 5(4):345-374, October 1986.

[26] David F. Brailsford. Interaction vs. abstraction in the preparation of high-quality
text and graphics. In J. J. H. Miller, editor, Proc. of 1st International Conference on
Tezt Processing Systems, pages 94-97, Dublin, Ireland, Oct. 24-26 1984.

[27] Kenneth P. Brooks. A Two View Document Editor with User-Definable Document
Structure. PhD thesis, Computer Science Department, Stanford University, Stanford,
California, in preparation. -

(28]

[29]

[30]

172

Luis Felipe Cabrera and Jim Wyllie. QuickSilver distributed file services: An ar-
chitecture for horizontal growth. In Proc. of 2nd IEEE Conference on Computer
Workstations, pages 2337, Santa Clara, California, March 1988.

Donald D. Chamberlin. Document convergence in an interactive formatting system.
IBM Journal of Research and Development, 31(1):58-72, January 1987.

Donald D. Chamberlin, O. P. Bertrand, Michael J. Goodfellow, James C. King, Don-
ald R. Sultz, Stephen J. P. Todd, and Bradford W. Wade. JANTUS: An interactive
document formatter based on declarative tags. IBM Systems Journal, 21(3):250-271,
1982.

Donald D. Chamberlin and Charles F. Goldfarb. Graphic applications of the standard
generalized markup language (sgml). Computers and Graphics, 11(4), 1987. Also
avialable as Techincal Report RJ 5440 (55569), IBM Almaden Research Center, San
Jose, California.

Donald D. Chamberlin, Helmut F. Hasselmeier, Allen W. Luniewski, Dieter P. Paris,
Bradford W. Wade, and Mitch L. Zolliker. Quill: An extensible system for editing
documents of mixed type. In Proc. of the 21st Hawaii International Conference on
System Sciences, pages 317-326, Kailua-Kona, Hawaii, Jan 5-8 1988. Also available
as Technical Report RJ 5775 (58114), IBM Almaden Research Center, San Jose,

~ California, Aug. 1987.

[33]

(34]

[35]

(36]

[37]

[38]

Donald D. Chamberlin, Helmut F. Hasselmeier, and Dieter P. Paris. Defining docu-
ment styles for WYSIWYG processing. In Proc. of EP88 - Internal Conference on
Electronic Publishing, Document Manipulation, and Typography, Nice, France, April
1988. Also available as Technical Report RJ 5812 (58542), IBM -Almaden Research
Center, San Jose, California, Aug. 1987.

Eugene Charniak, Christopher K. Riesbeck, Drew V. McDermott, and James R. Mee-
han. Aritficail Intelligence Programming. Lawrence Erlbaum Associates, Publishers,
Hillsdale, New Jersey, 2nd edition, 1987.

Pehong Chen. GNU Emacs BIBTEX-mode. Technical Report 87/317, Computer Sci-
ence Division, University of California, Berkeley, California, October 1986.

Pehong Chen. GNU Emacs TEX-mode. Technical Report 87/316, Computer Science
Division, University of California, Berkeley, California, October 1986.

Pehong Chen, Yih-Farn Chen, and Wen-Mei Hwu. On the duality of distributed
interprocess communication. In Proc. of the 1984 International Computer Symposium,
Taipei, Taiwan, December 1984.

Pehong Chen, John L. Coker, Michael A. Harrison, Jeffrey W. McCarrell, and
Steven J. Procter. The VORIEX document preparation environment. In Proc. of the
2nd European Conference on TEX for Scientific Documentation, pages 32-24, Stras-
bourg, France, June 19-21 1986. Published as Lecture Notes in Computer Science
No. 236 by Springer-Verlag, 1986.

173

[39] Pehong Chen and Michael A. Harrison. Integrating noninteractive document proces-

[40]
[41]

[42]

[43]

[44]
[45]
[40]
[47]
[48]

[49]
(50]

[51]

sors into an interactive environment. Technical Report 87/349, Computer Science
Division, University of California, Berkeley, California, April 1987. Submitted for
publication.

Pehong Chen and Michael A. Harrison. Index preparation and processing. Software—
Practice & Ezperience, 1988. To appear.

Pehong Chen and Michael A. Harrison. Multiple representation document develop-
ment. IEEE Computer, 21(1):15-31, January 1988.

Pehong Chen, Michael A. Harrison, John L. Coker, Jeffrey W. McCarrell, and
Steven J. Procter. An improved user environment for TEX. In Proc. of the 2nd
European Conference on TgX for Scientific Documentation, pages 45-54, Strasbourg,
France, June 19-21 1986. Published as Lecture Notes in Computer Science No. 236
by Springer-Verlag, 1986.

Pehong Chen, Michael A. Harrison, and Ethan V. Munson. Enhancements to inte-
grated bibliography management. Submitted for publication.

E. Jeffrey Conklin. Hypertext: An introduction and survey. IEEE Computer,
20(9):17-41, September 1987. A more detailed version is available as Technical Report
STP-356-86,Microelectronics and Computer Technology: CorporationAustin, Texas-
Dec. 1986.

Cricket Software Incorporated, Philadelphia, Pennsylvania. CricketDraw: Advanced
Graphics with PostScript, 1987. : ’

Malcolm Crowe, Clark Nicol, Michael Hughes, and David Mackay. On converting
a compiler into an incremental compiler. ACM SIGPLAN Notices, 20(10):14-22,
October 1985.

Terrence R. Crowley, Harry C. Forsdick, Matt Landau, and Virginia M. Travers. The
Diamond multimedia editor. In Proc. of 1987 USENIX Summer Conference. naces
1-18, Phoenix, Arizona, June 8-12 1987.

Trevor Darrell. Psfig/TEX Users Guide. Department of Computer and Information
Science, University of Pennsylvania, Philadelphia, Pennsylvania, July 1987. Available
in the Psfig release.

Susan A. Dart, Robert J. Ellison, Peter H. Feiler, and A. Nico Habermann. Software
development environments. IEEE Computer, 20(11):18-28, November 1987.

Robert J. Ellison and Barbara J. Staudt. The evolution of the GANDALF system.
The Journal of Systems and Software, 5(2):107-119, May 1985.
Stuart I. Feldman. Make — a program for maintaining computer programs.

Software— Practice & Erperience, 9(7):255-265, July 1979.

174

[52] Frame Technology Corporation, San Jose, California. Frame Maker Reference Man-
ual, Version 1.0, February 1987.

[53] David Fuchs. Device independent file format. TUGboat, 3(2):14-19, October 1982.

[54] George W. Furnas. Generalized fisheye views. In Proc. of ACM SIGCHI’86 Confer-
ence, pages 16-23, Boston, Massachusetts, April 1986.

[55] Richard K. Furuta. An Integrated, but not Ezact-Representation, Editor /Formatter.
PhD thesis, Computer Science Department, University of Washington, Seattle, Wash-
ington, September 1986. Published as Technical Report No. 86-09-08.

[56] Richard K. Furuta, Jeffrey Scofield, and Alan Shaw. Document formatting systems:
Survey, concepts, and issues. ACM Computing Surveys, 14(3):417-472, September
1982,

[57) Carlo Ghezzi and Dino Mandrioli. Incremental parsing. ACM Transactions on Pro-
gramming Languages and Systems, 1(1):58-70, January 1979.

[58} Carlo Ghezzi and Dino Mandrioli. Augmenting parsers to support incrementalilty.
Journal of the ACM, 27(3):564-579, March 1980.

[59] Joseph A. Goguen and José Meseguer. Order-sorted algebra solves the contructor-
selector, multiple representation and coercion problems. In Proc. 1987 IIT Symposium
on Logic in Computer Science, 1987.

[60] Charles F. Goldfarb. A generalized approach to document markup. In Proc. of ACM
SIGPLAN/SIGOA Symposium on Tezt Manipulation, pages 68-73, Portland, Oregan,
June 8-10 1981. Available as SIGPLAN Notices 16(6) or SIGOA Newsletter 2(1-2).

[61] Charles F. Goldfarb, editor. Information Processing — Text and Office Systems —
Standard Generalized Markup Language (SGML). International Organization for
Standardization, Geneva, Switzerland, 1986. International Standard ISO 8879.

[62] Michael J. Goodfellow. WHIM, the window handler and input manager. IEEE Soft-
ware, 6(5):46-52, May 1986.

[63] Danny Goodman. The Complete HyperCard Handbook. Bantom Books, New York,
New York, 1987.

[64] James Gosling. An editor-based user interface toolkit. In J. J. H. Miller, editor, Proc.
of 1st International Conference on Text Processing Systems, pages 126—132, Dublin,
Ireland, Oct. 24-26 1984.

[65] Richard D. Greenblatt, Jr. Thomas F. Knight, John Holloway, David A. Moon, and
Daniel L. Weinreb. The LISP machine. In David R. Barstow et al., editor, Interactive
Programming Environments, pages 326-352, New York, New York, 1984. McGraw-Hill
Book Company.

175

[66] J. Gutknecht. Concepts of the text editor Lara. Communications of the ACM,

[67]

(68]

[69]

[70]

[71]

(73]

[74]

[75]

[76]

(77]

[78]

28(9):942-960, September 1985.

J. Gutknecht and W. Winiger. Andra: The document preparation system for the
personal workstation Lilith. Software—Practice & Ezperience, 14(1):73-100, January
1984.

Guy L. Steele Jr. Common Lisp, The Language. Digital Press, Billerica, Mas-
sachusetts, 1984.

Michael Hammer, Richard Ilson, Tim Anderson, Edward J. Gilbert, Michael D. Good,
Bahram Niamir, Larry Rosentein, and Sandor Schoichet. The implementation of
Etude, an integrated and interactive document production system. In Proc. of ACM
SIGPLAN/SIGOA Symposium on Text Manipulation, pages 137-146, Portland, Ore-
gan, June 8-10 1981. Available as SIGPLAN Notices 16(6) or SIGOA Neuwsletter
2(1-2).

Roger Haskin, Yoni Malachi, Wayne Sawdon, and Gregdry Chan. Recovery man-
agement in QuickSilver. In Proc. of 11th ACM Symposium on Operating System
Principles, Austin, Texas, September 1987.

Peter Hibbard. User Manual for MINT: The Spice Document Preparation System,
Version 2a(21). Spice Project, Computer Science Department, Carnegie-Mellon Uni-

" versity, Pittsburgh, Pennsylvania, April 1983.

Alan Hoenig. TgX does windows — the conclusion. TUGboat, 8(2):211-215, July
1987.

Gerard H. Holzman. Pico — a picture editor. AT&T Bell Laboratories Technical
Journal, 66(2):2-13, March/April 1987.

Wolfgang Horak. Office document architecture and office document interchange for-
mats: Current status of international standardization. IEEE Computer, 18(10):50-60,
October 1985.

Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct manipulation
interfaces. In D. A. Norman and S. W. Draper, editors, User-Centered System Design,
pages 87-124 (Chapter 5), Hillsdale, New Jersey, 1986. Lawrence Erlbaum Associates,
Inc.

Richard Dlson. An integrated approach to formatted document production. Mas-
ter’s thesis, Massachusetts Institute of Technology, Laboratory for Computer Science,
Cambridge, Massachusetts, 1980. Available as technical report MIT/CSL/TR-253.

Imagen Corporation, Santa Clara, California. Document Description Language (Re-
vision 1.1): Reference Manual and Tutorial, November 1986.

Interleaf, Inc., Cambridge, Massachusetts. Interleaf Publishing Systems Reference
Manual, Release 2.0, Vol. 1: Editing and Vol. 2: Management, June 1985.

176

[79] Jeff Johnson and Richard J. Beach. Styles in document editing systems. IEEE Com-
puter, 21(1):32-43, January 1987.

[80] Vania Joloboff. Trends and standards in document representation. In J. C. van
Vliet, editor, Proc. of the International Conference on Text Processing and Document
Manipulation, pages 107-124, University of Nottingham, April 14-16 1986. Published
by the Cambridge University Press.

[81] William Joy. An Introduction to Display Editing with Vi, 1980. Appears in UNIX
User’s Manual.

[82] Gail E. Kaiser and Elaine Kant. Incremental parsing without a parser. The Journal
of Systems and Software, 5(2):121-144, May 1985.

[83] Brian W. Kernighan. PIC — a language for typesetting graphics. In Proc. of ACM
SIGPLAN/SIGOA Symposium on Tezt Manipulation, pages 92-98, Portland, Ore-
gan, June 8-10 1981. A similar version under the same title appears in Software:
Ezperience and Practice, 12(1), pp. 1-20, January 1982.

[84] Brian W. Kernighan. A typesetter:independent TROFF. Computer Science Technical
Report No. 97, AT&T Bell Laboratories, Murray Hill, New Jersey, March 1982.

[85] Brian W. Kernighan. The UNIX document preparation tools — a retrospective.
In Proc. of 1st International Conference on Text Processing Systems, pages 12-25,
Dublin, Ireland, Oct. 24-26 1984.

[86] Donald E. Knuth. Semantics of context-free languages. Mathematical Systems The-
ory, 2(2):127-145, 1968. A correction appeared in Mathematical Systems Theory,
5(1): 95-96.

[87] Donald E. Knuth. The TEX Book. Addison-Wesley Publishing Company, Reading,
Massachusetts, 1984. Reprinted as Vol. A of Computers & Typesetting, 1986.

(88] Donald E. Knuth. A torture test for TEX, version 1.3. Technical Report STAN-CS--
84-1027, Computer Science Department, Stanford University, Stanford, California,
November 1984.

[89] Donald E. Knuth. TgX: The Program, volume B of Computers & Typesetting.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[90] Donald E. Knuth and Michael F. Plass. Breaking paragraphs into lines. Software—
Practice & Ezperience, 11(11):1119-1184, November 1982.

[91] Leslie Lamport. L eTgX: A Document Preparation System. User’s Guide and Refer-
ence Manual. Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[92] Butler W. Lampson. Bravo Manual. Xerox Palo Alto Research Center, Palo Alto,
California, 1978. Appears in Alto User’s Handbook, Butler W. Lampson and Edward
A. Taft (eds.).

177

[93] Frank Mark Liang. Word Hyphenation by Computer. PhD thesis, Computer Sci-
ence Department, Stanford University, Stanford, California, June 1983. Available as
technical report STAN-CS-83-977.

[94] Allen W. Luniewski. Intent-based page modeling using blocks in the Quill document
editor. In Proc. of EP88 - Internal Conference on Electronic Publishing, Document
Manipulation, and Typography, Nice, France, April 1988. Also available as Technical
Report RJ 5811 (58541), IBM Almaden Research Center, San Jose, California, Aug.
1987. :

[95] Manhattan Graphics Corporation, Valhalla, New York. Ready,Set,Go! User Manual,
November 1986.

[96] Lee E. McMahon. Sed - a non-interactive text editor. Computer Science Technical
Report No. 77, AT&T Bell Laboratories, Murray Hill, New Jersey, August 1978. Also
available in UNIX User’s Manual.

[97] Raul Medina-Mora. Syntaz-Directed Editing: Towards Integrated Programming En-
vironments. PhD thesis, Computer Science Department, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, March 1982.

[98] Norman Meyrowitz and Andries van Dam. Interactive editing systems: Parts I and
II. ACM Computing Surveys, 14(3):321-415, September 1982.

[99] Microsoft Corporation, Seattle, Washington. Reference to Microsoft Word, Word
Processing Program for the Apple Macintosh, Version 3.0, January 1987.

[100] James H. Morris, Mahadev Satyanarayanan, Michael H. Corner, John H. Howard,
David S. H. Rosenthal, and F. Donelson Smith. ANDREW: a distributed personal
computing environment. Communications of the ACM, 29(3):184-201, March 1986.

[101] Joseph M. Morris and Mayer D. Schwartz. Design of a language-oriented editor for
block-structured languages. In Proc. of ACM SIGPLAN/SIGOA Symposium on Text
Manipulation, Portland, Oregan, June 8-10 1981. Available as SIGPLAN Notices
16(6) or SIGOA Newsletter 2(1-2). '

[102] S. L. Murrel and D. DeBaer. An interactive WYSIWYG table editor. In Proc. of
1987 USENIX Summer Conference, pages 19-29, Phoenix, Arizona, June 8-12 1987.

[103] Brad A. Myers. Visual programming, programming by example, and program visual-
ization: A taxonomy. In Proc. of ACM SIGCHI’86 Conference, pages 59—66, Boston,
Massachusetts, April 1986.

[104) Greg Nelson. Juno, a constraint-based graphics system. ACM Computer Graphics,
17(3):235-243, July 1983. :

[105] Mark Opperman, James Thomson, and Yih-Farn Chen. A GREMLIN tutorial. Tech-
nical Report 87/322, Computer Science Division, University of California, Berkeley,
California, December 1986.

178

[106] Joseph F. Ossanna. Nroff/troff user’s manual. Computer Science Technical Report
No. 54, AT&T Bell Laboratories, Murray Hill, New Jersey, October 1976. Also avail-
able in UNIX User’s Manual.

[107] Andrew J. Palay, Wilfred J. Hansen, Mark Sherman, Maria G. Wadlow, Thomas P.
Neuendorffer, Zalman Stern, Miles Bader, and Thom Peters. The Andrew toolkit —an
overview. In Proc. of 1988 USENIX Winter Conference, pages 9-21, Dallas, Texas,
January 1988.

[108] Oren Patashnik. BibTgXing. Computer Science Department, Stanford University,
Stanford, California, January 1988. Available in the BT X release.

[109] Charles L. Perkins. The multiple representation problen. Master’s thesis, Computer
Science Division, University of California, Berkeley, California, December 1984.

[110] Kenneith Pier, Eric Bier, and Maureen Stone. Gargoyle: An interactive illustration
tool. In Proc. of EP88 - Internal Conference on Electronic Publishing, Document
Manipulation, and Typography, Nice, France, April 1988.

[111] Micahel F. Plass. Optimal Pagination Techniques for Automatic Typesetting Systems.
PhD thesis, Computer Science Department, Stanford University, Palo Alto, California,
June 1981.

[112] Brian K. Reid. Scribe: A document speciﬁcation language and its compilér. PLD
thesis, Computer Science Department, Carnegie-Mellon University, Pittsburgh, Penn-
sylvania, October 1980. Available as technical report CMU-CS-81-100.

[113] Brian K. Reid. Procedural page description languages. In Proc. of the Interna-
tional Conference on Text Processing and Document Manipulation, pages 214-223,
University of Nottingham, England, April 14-16 1986. Published by the Cambridge
University Press.

_[114] Thomas Reps, Tim Teitelbaum, and Alan Demers. Incremental context-dependent
analysis for language-based editors. ACM Transactions on Programming Languages
and Systems, 5(3):449-477, July 1983.

[115] Thomas W. Reps and Tim Teitelbaum. Language processing in program editors.
IEEE Computer, 20(11):29—40, November 1987.

(116] Marc J. Rockind. The source code control system. IEEE Transactions on Software
Engineering, SE-1(4):364-370, April 1975.

{117] Hanan Samet. Heuristics for the line division problem in computer justified text.
Commaunications of the ACM, 25(8):564-571, August 1982.

[118] Erik Sandewall. Theory of information management systems. Technical Report LITH-
IDA-R-83-03, Department of Computer and Information Science, Linkdping Univer-
sity, Linkoping, Sweden, September 1983.

179

[119] Robert W. Scheifler and Jim Gettys. The X window system. ACM Transactions on
Graphics, 5(2):79-109, April 1986.

[120] William F. Schelter. Sample INFgR display. Unpublished manuscript, 1987.

[121] Mayer D. Schwartz, Norman M. Delisle, and Vimal S. Begwani. Incremental compi-
lation in Magpie. In Proc. of ACM SIGPLAN Symposium on Compiler Construction,
June 1984.

[122] Dan Shafer. HyperTalk Programming. Sams Books, 1988.

[123] Ben Shneiderman. Direct manipulation: A step beyond programming languages.
IEEE Computer, 16(8):57-69, August 1983.

[124] Michael D. Spivak. The Joy of TEX. American Mathematical Society, 1985.

[125] Richard M. Stallman. EMACS: The extensible, customizable self-documenting display
editor. In Proc. of ACM SIGPLAN/SIGOA Symposium on Tezt Manipulation, pages
147-156, Portland, Oregan, June 8-10 1981. A somewhat extended version appears
in Interactive Programming Environments, Barstow et al. (eds.), McGraw-Hill Book
Company, 1984, pp. 300-325.

[126] Richard M. Stallman. GNU Emacs Manual, Fifth Edition, Version 18. Free Software
Foundation, Cambridge, Massachusetts, December 1986.

[127] Sun Microsystems, Mountain View, California. NeWS Manual, March 1987.

[128] Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach, and Robert B. Hagmann.
A structural view of the Cedar programming environment. ACM Transactions on
Programming Languages and Systems, 8(4):419-490, October 1986.

[129] Tim Teitelbaum and Thomas W. Reps. The Cornell Program Synthesizer: A syntax-
directed programming environment. Communications of the ACM, 24(9):563-573,
September 1981.

[130] Warren Teitelman. A tour through Cedar. IEEE Software, 1(2):44-73, April 1984.

[131] Robert H. Thomas, Harry C. Forsdick, Terrence R. Crowley, Richard W. Schaaf,
Raymond S. Tomlinson, Virginia M. Travers, and George G. Robertson. Diamond:
A multimedia message system built on a distributed architecture. IEEE Computer,
18(12):65-78, December 1985.

[132] Walter F. Tichy. RCS — a system for version control. Software— Practice & Ezperi-
ence, 15(7):637-654, July 1985.

[133] Howard Trickey. Drag: A graph drawing system. In Proc. of EP88 - Internal
Conference on Electronic Publishing, Document Manipulation, and Typography, Nice,
France, April 1988.

180

[134] Stephen Trimberger. Combining graphics and a layout language in a single interactive
system. In Proc. of the 18th Design Automation Conference, pages 234-239, Nashville,
Tennessee, June 1981.

[135] Ventura Software, Inc., Salinas, California. Ventura Publisher — Professional Pub-
lishing Program, Reference Guide, version 1.1, July 1987.

[136] Janet H. Walker. The Document Editor: A support environment for preparing tech-
nical documents. In Proc. of ACM SIGPLAN/SIGOA Symposium on Tezrt Manipula-
tion, pages 44-50, Portland, Oregan, June 8-10 1981. Available as SIGPLAN Notices
16(6) or SIGOA Neuwsletter 2(1-2).

[137] Mark N. Wegman. Parsing for structural editors (extended abstract). In Proc. of 21st
Annual IEEE Symposium on the Foundations of Computer Science, pages 320-327,
Long Beach, California, 1980.

[138] Mark N. Wegman and Cyril N. Alberga. Parsing for a structural editor (part ii).
Technical Report RC 9197, IBM Watson Research Center, January 1982.

[139] Christopher J. Van Wyk. A graphics typesetting language. In Proc. of ACM SIG-
PLAN/SIGOA Symposium on Tezt Manipulation, pages 99-107, Portland, Oregan,
June 8-10 1981. Available as SIGPLAN Notices 16(6) or SIGOA Newsletter 2(1-2).

[140] Xerox Office Systems, El Segundo, California. 8010 STAR Information System Ref-
erence Library, Release 4.2, 1984.

[141] Nicole Yankelovich, Morman Meyrowitz, and Andries van Dam. Reading and writing
the electronic book. IEEE Computer, 18(10):15-30, October 1985.

