Evaluation of "Performance Enhancements"
in Algebraic Manipulation Systems

By

Carl Glen Ponder

B.S. (University of California, Irvine) 1981
M.S. (University of California) 1984

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY

in
COMPUTER SCIENCE
in the

GRADUATE DIVISION
OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

oo

s

Evaluation of “Performance Enhancements” in

Algebraic Manipulation Systems
Carl G. Ponder

Computer Science Division

University of California
Berkeley, CA. 94720

Abstract

This thesis examines several proposed ways to speed up symbolic algebraic com-
putation: hashing techniques, parallel processing, application of the FFT, and alternative
representations of polynomial expressions. .

Polynomials, and variants like rational functions, truncated power series, and Pois-
son series, represent an important class of expressions in algebraic manipulation. Parallel
algorithms are analyzed for multiplying and powefing sparse and dense polynomials, in-
cluding parallel forms of the FFT. Alternative polynomial representations are compared
and it is suggested that an efficient algebraic manipulation system might use a family of
polynomial representations rather than one general form.

Grobner-basis reduction is an inherently hard problem, yet can be used as a pow-
erful tool in computational mathematics. Contrary to recent claims, empirical studies show
that it is difficult to exploit parallelism in Grobner-basis computation.

A variety of hashing mechanisms have been proposed for performing operations in
symbolic computation, including memo functions for recognizing and eliminating redundant
computations. The proposed mechanisms are presented in summary; empirical study shows
that memo functions, except in certain circumstances, may not be an advantage.

Additional summary of relevant results in parallel algorithm design and parallel

processing machines and languages is presented.

Evaluation of “Performance Enhancements”

in Algebraic Manipulation Systems

Copyright ©1988

Carl Glen Ponder

i

» * B

Contents

Table of Contents

1 Motivation and Preview

1.1 Acknowledgments. P

2 Parallelism and Algorithms for Algebraic Manipulation: Current Work

2.1 Imtroduction.
2.2 Parallel Algorithms for Algebraic Manipulation
2.2.1 Arithmetic
2.2.2 Operations on Polynomials
2.23 Operations on Matrices
224 Integration
2.2.5 Reduction and Simplification
2.2.6 Evaluation of Expressions
2.2.7 Miscellaneous Operations

3 Parallel Processors and Systems for Algebraic Manipulation:

Work
3.1 Introduction.,
3.2 Types of Parallelism and Algebraic Manipulation
3.3 Architectures Supporting Parallel Lisp
3.3.1 Connection Machine “*Lisp”
3.3.2 Concert “Multilisp”
3.3.3 BBN “Butterfly MultiScheme”
3.3.4 Alliant “Qlisp”
33.5 SPURULisp
3.3.6 Intel Hypercube “Concurrent Common Lisp”
3.3.7 Ultracomputer “Zlisp”
3.3.8 Bath Concurrent Lisp Machine
34 Related Work
3.5 Reported Experiments
3.6 Experiences in Retrospect

iit

ii

[

W -1 O O W

Current

iv
Polynomial Forms and Representations for Algebraic Manipulation 24
4.1 Imntroduction. 24
4.2 Forms of Polynomial Expressions 25
4.3 Concrete Representations of Polynomials. 28
4.4 Practical Considerations 28
45 Costof Operations 30
46 A Hybrid Approach 33
4.7 Conclusions 36
Parallel Multiplication and Powering of Sparse Polynomials 38
51 Imtroduction. 38
5.2 Sparse Polynomials 39
5.3 Complexities of Multiplication and Powering 41
5.4 The Simp Algorithm for Multiplication 44
5.5 The NOMC Algorithm for Powering 45
5.6 Some Other Algorithms C e e e 47
5.7 Empirical Results 48
58 PoissonSeries 49
59 Conclusions 50
Parallel Multiplication of Dense Polynomials 52
6.1 Introduction. 52
6.2 DensePolynomials 53
6.3 The Basic FFT Algorithm e 54
6.4 The Multivariate FFT it 537
6.5 Sparse Polynomials 57
6.6 Parallel Implementation of the FFT 58
6.7 Representational Issues 39
6.8 Conclusions e 59
Parallel Algorithms for Grobner-Basis Reduction 60
7.1 Introduction. 60
7.2 Grobner-Basis Reduction 61
7.3 Complexity 63
7.4 Parallel Variations of Buchberger’s algorithm 65
7.5 Comparison with the Zacharias Implementation 69
7.6 Empirical Results 7
7.7 Reducing Under Alternative Orderings 73
7.8 Conclusions 76
Applications of Hashing in Algebraic Manipulation (an Annotated Bibli-
ography) 78
8.1 Introduction. 78
8.2 Hash TablesforSearch 80

A

8.4 Hash Signatures as a Tool for Matching 82
85 AreastoExplore 83

9 Augmenting Expensive Functions in Macsyma with Lookup Tables 85
9.1 Introduction. 85
9.2 Overview 86
9.2.1 Re-UseFrequencies. 86

9.2.2 Lookup Table Efficiency 89

9.2.3 Data Representation and Matching 89

9.3 General Tabulation vs. Dynamic Programming 90
9.4 Issuesin Macsyma 92
9.5 Experiments. 93
9.5.1 Instrumentation 94

95.2 Benchmarks. 96

9.5.3 The Measurements 96

9.6 Conclusionsand Caveats 98
Bibliography 101
10 Appendices 108
10.1 Appendix for Chapter 5 108
10.2 Appendix for Chapter 6: Lisp FFT Program 122
10.3 Appendix for Chapter 7: Test Cases 1-12 128

10.4 Appendix for Chapter 9: The Test Cases 130

Chapter 1

Motivation and Preview

Algorithms in symbolic algebra systems range from polynomial-time (matrix inver-
sion) to superexponential-space (Grobner-basis reduction). A number of programs attempt
to solve problems that are in general undecidable (equivalence of expressions). In practice,
solution to useful problems can easily take hours or days to produce. The irony is that some
of these problems can be expressed quite simply. In problems like factoring of polynomials
or Grobner-basis reduction, it is not unusual for small expressions to produce huge inter-
mediate expressions even when the final result is small. The practical expense of operations
is quite apparent to interactive users of systems like Macsyma. Even as processors become
faster and memory less expensive, investigations continue to pose more time-consuming
problems. Additional speedups due to parallel execution as well as better algorithms or
representations provide real benefits.

In this thesis we look at some possible methods for speeding up algebraic compu-
tations. These involve parallel algorithms, alternative representations, and various hashing
mechanisms. A combination of formal and empirical analyses are used in evaluating these
ideas. Some summaries of relevant work in various fields are presented both to identify the
state of the art (which seems rather primitive, from a practical standpoint) and to suggest
areas where future work should progress.

Chapters 2 and 3 survey current results in parallel algorithm design and the im-
plementation of parallel languages and systems relevant to algebraic manipulation. In sum-
mary, few efficient parallel algorithms have been formulated or analyzed for significant prob-
lems, which is hardly reproachable since the serial complexity of many significant problems

is poorly understood. Grobner-basis reduction [18] is one such poorly understood problem,

3]

which happens to be important since it can be used to solve a wide variety of problems in
algebraic geometry. Several “obvious” parallel algorithms for Gréobner-basis reduction are
tested in chapter 7, none appearing to be particularly useful.

Numerous parallel languages and architectures have been proposed up to now;
some rather poor experiences with the “state of the art” (Alliant Qlisp and Intel Hypercube
Concurrent Common Lisp) are reported in chapters 3 and 5. The dream of constructing an
efficient parallel system for algebraic manipulation is still out of reach; in the meantime it is
difficult to realistically test any parallel algorithms, much less produce any useful software.

Chapters 4, 5, and 6 deal with the general topic of polynomial manipulation. Chap-
ter 4 discusses the issues involved with specific polynomial representations, and suggests an
efficient combination of representations. Chapters 5 and 6 analyze parallel algorithms for
multiplying and powering sparse and dense polynomials, using such algorithms as the FFT.
Formal analysis suggests a linear speedup for a fixed number of processors and large inputs.
Algorithms for multiplying sparse polynomials are evaluated empirically with positive re-
sults, ignoring the poor quality of the Alliant Qlisp testbed. An efficient parallel system
for algebraic manipulation may well include parallel routines for multiplying and powering
polynomials, to be used automatically or by user choice given sufficiently large polynomials.

Chapters 8 and 9 deal with hashing mechanisms for more efficient symbolic ma-
nipulation. Chapter 8 surveys proposed techniques, including the possibility of efficient
pattern-matching for nonrandom data. Chapter 9 analyzes the “memo function” mech-
anism of the Maple system [23], which tabulates the input and output of a given set of
functions to eliminate recomputation. Empirical analysis inside the Macsyma system does
not favor the use of memo functions, although some of the Maple design decisions may
make memo functions useful. Unfortunately the performance of Maple has not been ana-
lyzed sufficiently to resolve this question.

This thesis is rather loosely organized, treating each topic in a distinct chapter.
The chapters have been submitted to various publications (under the same titles) as disjoint
papers. Chapters 2 and 3 have been submitted to SIGSAM Bulletin; chapter 8 has appeared
in the November 1987 issue (21,4) of SIGSAM Bulletin. Chapter 7 has been submitted to
Transactions on Mathematical Software, and chapters 5, 6, and 9 have been submitted to
the Journal of Symbolic Computation. An abbreviated version of the thesis will appear in
the Proceedings of the First International Workshop on Computer Algebra and Parallelism.

We believe the text of this thesis will be relatively consistent with whatever versions that

might appear.

1.1 Acknowledgments

Prof. Richard J. Fateman supervised this work, and is co-author of Chapter 9.
He guided revisions of each chapter, which, among other things, eased my phobias about
writing. Prof. John Canny made a number of comments, substantially improving the thesis
in a number of places. John Canny, Eric Bach, and Erich Kaltofen provided some of the
references in Chapter 2. Hervé J. Touati pointed out some necessary facts for the analysis
of the NOMC algorithm in Chapter 5. Manuel Bronstein provided the test cases used in
Chapter 7. Manuel Bronstein, Eric Kaltofen, and John Canny lent some insight into the
behavior of Buchberger’s algorithm. Michael B. Monagan contributed the Maple timings,
facts about the Maple organization, and detailed comments on Chapter 9.

This work was supported in part by the Army Research Office, grant DAAG29-853-
K-0070, through the Center for Pure and Applied Mathematics, University of California at
Berkeley, and the Defense Advanced Research Projects Agency (DoD) ARPA order #4871,
monitored by Space & Naval Warfare Systems Command under contract N00039-84-C-0089,
through the Electronics Research Laboratory, University of California at Berkeley.

Chapter 2

Parallelism and Algorithms for
Algebraic Manipulation: Current

Work

We outline recent results relating to the use of parallelism for solving problems in

algebraic manipulation. Practical issues are discussed.

2.1 Introduction

Numeric computation has had a strong impact on science and engineeribng: in the
form of simulation, optimization, etc. This has allowed us to solve problems and analyze
systems that could not be understood before. Symbolic computations take us a leap further,
to produce analytic rather than numeric results. These can be used predictively to study
systems with symbolic parameters, or gain insight into the relationship between variables.

Well-known algebraic manipulation algorithms address problems of all degrees of
“hardness:” linear-time (differentiating a polynomial), superexponential-time (sparse sym-
bolic determinants), etc. Furthermore, some problems are in general undecidable (equiva-
lence of algebraic expressions). Advances in fast parallel hardware create possibilities for
improving performance on all types of problems if we can devise appropriate algorithms or
heuristics.

In this paper we describe theoretical results dealing with the intersection of par-

allelism and algebraic manipulation. We must note, however, that practical use of parallel

algorithms in an algebraic-manipulation system is complicated by several factors:

¢ Many analyses ignore constant factors which can dominate performance for realistic
cases. The overheads involved with multiprocessors can sometimes erase algorithmic

gains.

e Inadequate characterization of inputs and their relationship to running time compli-
cate analysis of symbolic problems such as Grobner-basis reduction. Superior algo-

rithms may not readily parallelize.

o Special-purpose hardware may solve specific but unlikely problems very efficiently.
For example, FFT circuits can be used for multiplying dense polynomials quickly, but
they require that coeflicients be bounded in magnitude. Furthermore, the FFT is

inefficient for sparse polynomials, which are more frequent in practice.

Choosing the best algorithm for practical use may require examination of empirical data.
New theoretical results should be considered as potentially providing more efficient solutions:
the gap between theory and reality seems somewhat larger for symbolic computations than
algorithms working over data of fixed size and complexity (floating-point arrays, sorting of

fixed-length records, algorithms on trees or strings).

2.2 Parallel Algorithms for Algebraic Manipulation

Most of the algorithms we discuss are over the domain D of multivariate polyno-
mials with integer coefficients or coefficients in a finite-field. Operations on matrices over D
are also important for solving problems such as systems of linear equations. Typical prob-
lems over D include arithmetic (multiplication is most interesting), factoring, and sorting,
which are necessary for manipulating expressions and maintaining canonical forms.

Occasionally an algorithm designed for a floating point problem can be useful in
solving a symbolic problem, or the “structure” of a numeric algorithm can be adapted to the
symbolic domain. Occasionally a parallel solution to the numeric problem can be carried
over to the symbolic domain as well. The analogy fails to carry over in instances where
the structure of the problem is distorted by the differences in unit cost between multiplying

(say) two floating point numbers and multiplying (say) two polynomials of unspecified size.

The results we describe fall into four different categories:

1. Efficient algorithms, achieving optimal (or as good as is known) processor-time prod-
ucts. For example, one parallel mergesort algorithm operates in time O(logn) using

O(n) processors [25].

2. Parallel algorithms which reduce time but inflate the processor count disproportion-
ately. Most AN'C algorithms [27] in the literature fall into this category, N'C' being
the class of problems solvable in time O(log'n) with p(n) processors for some poly-
nomial p(n); A'C is the union of A’C* for all i. These algorithms tend to require too
many processors to be practical. For example, a polynomial can be evaluated in time
O(log(C) -log(d)) using O(C*log(d)) processors, where d is the degree of the polyno-
mial, C is the minimum number of serial steps required to evaluate the polynomial,

and two n X n matrices can multiplied in time n* (i.e. a < 2.496) [77].

3. Other parallel algorithms which utilize multiple processors. These can often be for-
mulated directly from serial divide-and-conquer algorithms. For example, an integer

factorization algorithm performing simultaneous trial divisions [81].

4. Nonuniform methods, such as circuits or sorting networks. These can be used to
design specialized hardware; if uniformity can be established, they can be used to
design algorithms as well. For example, a sorting network requiring O(log n) steps to

sort n elements using O(n) components [3].

Unfortunately, very few results are of type 1. Circuits can be used in a pipelined fashion, so
they need not be as inefficient in their use of resources as they appear. For example, each
stage of an FFT processor [61] can compute simultaneously, so lgn n-point FFT's can be
computed in O(lgn) steps. A parallel program can compute one n-point FFT in log-time
using n processors; the O(nlgn) components of the FFT processor are likewise efficiently

utilized.

2.2.1 Arithmetic

Beame et al. [7] shows that integer multiplication, division, and powering can
be performed by P-uniform log-depth circuits. It is not known if these circuits can be

made logspace-uniform, in which case the problems would be known to be computable in

-1

deterministic logspace. The traditional circuits for arithmetic [50] are, so far, more efficient
in their use of resources.

Kannan et al. (58] show that the GCD of two integers can be computed in time
O(n -loglog(n)/ log(n)) with n? log?(n) processors on a PRAM, assuming concurrent writes
are allowed if they write the same value. This is probably not worth the effort, since the
best known serial algorithm is O(n - log?(n) - loglog(n)).

Integer factorization methods often involve trial-and-error computations. Watt
[81] concludes that any given factorization trial would not be able to use parallelism effec-
tively, but running trials simultaneously would be satisfactory. The method he chooses is
SQUFOF, which is based on finding a square denominator in the continued-fraction expan-
sion of \/z. For four-thousand 8-digit (decimal) integers, the average parallel speedup is

0.76n for n processors. It is not clear that this algorithm is asymptotically efficient.

2.2.2 Operations on Polynomials

Ponder (chapters 5 and 6) shows asymptotically-optimal ways of performing multi-
plication and exponentiation of sparse and dense polynomials in parallel. The complexities
of sparse multiplication and exponentiation are @(n?) and ©(n*/k!), where 7 is the number
of nonzero terms of the polynomial and & is the exponent. The best known algorithms for
dense multiplication and exponentiatioﬁ have complexities O(d -log(d)) and O(dk -log(dk)),
where d is the degree. The sparse algorithms can be parallelized to use O(n) processors
and respective times O(n) and O(n*~1/k!). The dense algorithms can be parallelized to
use O(d) and O(dk) processors and O(log(d)) and O(log(dk)) time, respectively. The dense
algorithms are based on the FFT algorithm. Kung [60] gives the design of an FFT pro-
cessor taking log time and a linear amount of circuitry. Eberly [32] shows that polynomial
multiplication and interpolation, as well as polynomial division with remainder, are in A'C!
using P-uniform circuits.

Von Zur Gathen [79] gives N'C€ algorithms for polynomial GCD, LCM, squarefree
decomposition over fields of characteristic zero, and computing the extended Euclidean
scheme of two polynomials over an arbitrary field. Squarefree decomposition over finite fields
can be done in time O(log?(n)+(d—1)log(p)) with a polynomial number of processors, where
the finite field has p? elements. Polynomial factoring takes time O(log?(n)log?(d+ 1) log(p))

with a polynomial number of processors.

[1 |

The polynomial GCD calculation is useful in simplifying rational expression forms.
Watt [81] parallelizes the Sparse Modular GCD algorithm [85], which seems sensible for a
practical implementation. It is probabilistic, generating a candidate polynomial in time
O((T +t*)dvt -log?(dv?te~')) where v is the number of variables, d is the maximal degree in
each variable, O(T) bounds the time to evaluate the polynomial, ¢ is the number of terms,
(all in the candidate polynomial) and € is the probability that the candidate polynomial is
not the GCD. Parallelizing the independent subcomputations can achieve up to a linear
speedup.

Ben-Or et al. [8] show that determining (within bounded error) the real roots
of a univariate polynomial (provided all roots are real) with integer coefficients is in NC.
A reasonably efficient algorithm using time O(n - log(n)) and n processors processors was
given by Pan [70]. If the polynomial also has complex roots, the roots can be found in
O(n?log(n)) parallel steps with O(n - log(n)) processors.

Kaltofen shows that testing the absolute irreducibility of a multivariate integral
polynomial over the complex numbers is in A'C [56]. For finite fields the problem is in A'C

for dense polynomials, and randomized-A/C otherwise.

2.2.3 Operations on Matrices

Algorithms for manipuia.ting numeric matrices extend to symbolic matrices pro-
vided the arithmetic operations performed on the numeric elements have analogs in the
domain of the symbolic entries. Thus the (serial or parallel) algorithms for matrix multipli-
cation, inversion, conversion to some canonical forms, and computing the determinant all
extend to symbolic matrices so long as only rational arithmetic on the entries is required.
Performance will vary depending upon the cost of operating on the symbolic entries. For
example, matrix inversion via minor-expansion is less efficient than Gaussian elimination
for matrices of numbers or dense polynomials, but minor-expansion is more efficient for
matrices of sparse polynomials [40]. Such algorithms are often difficult to analyze because
the size of the intermediate expressions varies, making any analysis based on constant cost
“base” operations (often grossly) incorrect.

Sasaki & Kanada [75] present a linear-time parallel algorithm for taking the de-
terminant of a symbolic matrix via minor expansion, which takes a factorial processor-time

product in the worst case. The Gaussian elimination algorithm can take quadratic time

(times the cost of multiplying/dividing the matrix elements) for a linear number of proces-
sors. For sparse polynomial entries, the parallelized minor-expansion is more efficient [40].

The results are identical for the equivalent problem of inverting a matrix.

We provide some pointers to (possibly) felevant numerical matrix results. Czanky
[28] and Borodin et al. [15] show that computing the determinant and characteristic poly-
nomial are in A'C2. Mulmuley shows that finding the rank of a matrix is in AC? [69].
Kaltofen et al. show that similarity is in (Las Vegas) randomized-AC?, for an arbitrary

field [57].

Parallel algorithms achieving linear-speedup for numeric matrix-multiplication and
inversion are well-known. Czanky [28] shows that matrix inversion and solution to systems
.of linear equations are in A’C2. Pan [71] shows that for a class of integer matrices (subject
tolog||A]| < n®M) the problems of computing the determinant, adjoint, and inverse as well
as the coefficients of the characteristic polynomial are in A/’C2. The number of processors

required is o(n2%). Multiplication of n X n matrices is in A'C?, requiring o(n?3) processors.

Some simple consequences of this are parallel algorithms for computing the matrix
exponential (using a truncated Taylor series), and inverting a matrix of functions in = by
expanding into a Taylor-series with matrix coefficients and computing the series form of the
inverse by a recurrence [33]. The general problem of evaluating matrix polynomials is in

NC?, using O(n*4%) processors (for dense cases) [70].

There are numerous results for special matrix forms. Many of these are applicable
to other problems, such as polynomial interpolation and division. Eberly [32] shows that
computing the inverse and determinant of a band matrix (over infinite fields) are in ACL.
For finite fields the parallel complexity is O(log(n)loglog(n)) using a polynomial number of
processors. Kaltofen et al. show that computing the Jordan normal form is in randomized-
NC for an arbitrary field [57]. For polynomial matrices over finite-fields or the rational
numbers, finding the Hermite normal form is in A'C and the Smith normal form is in (Las
Vegas) randomized-A'C. Bini [12] shows that the solution to a linear system in Toeplitz
form can be approximated in parallel time O(log(n)) with 2n processors. The exact solution

can be provided in time O(log(n)) with O(n?) processors.

10

2.2.4 Integration

The “Parallel” Risch algorithm [30] is not a parallel algorithm per se, but contains
subproblems of substitution, solving nonlinear systems, and integrating subexpressions.
Parallelism might be applied to these subtasks.

Braverman [16] implemented a prototype system for searching integral tables,
which may integrate expressions faster than algorithmic approaches. Searching can be
performed in parallel for a potentially large speedup in the worst case, although a success-
ful system will most likely be able to single out a relatively small set of pattern candidates

which can be tested quickly in serial.

2.2.5 Reduction and Simplification

Ponder (chapter 7) examines several proposals for performing Grobner-basis re-
duction in parallel, such as simultaneously computing and reducing S-polynomials or si-
multaneously reducing the basis under different orderings. None of these were found to be
particularly useful.

In the Macsyma system [34], simplification of expressions often requires recursive
simplification of subexpressions. This divide-and-conquer approach can in principle be
parallelized. However, communication between subproblems can be significant, such as

when one subexpression evaluating to zero eliminates the other subexpressions as well.

2.2.6 Evaluation of Expressions

Valiant et al. [77] shows that any polynomial p(z) can be represented by an
expression which can be evaluated in time O(log(C) - log(d)) with O(C? log(d)) processors,
where C is the minimum number of serialsteps to evaluate the polynomial, d is the degree of
the polynomial, and two n X n matrices can be multiplied in n® operations (i.e. a < 2.496).
This is accomplished by balancing the operator-tree which computes the polynomial.

Lakshmivarahan and Dhall [62] show that linear and 2-way recurrence-relations
can be evaluated in logarithmic time using a linear number of processors. This works by
evaluating the equivalent closed-form expression in parallel.

Kung [61] shows that, in general, nonlinear recurrences cannot be evaluated in
parallel any faster than a constant factor. He also shows some interesting tradeoffs be-

tween addition, multiplication, and division for reducing the overhead of exponentiation

11
and polynomial evaluation, in the domain of scalars, matrices, or polynomials.

2.2.7 Miscellaneous Operations

Galil [39] presented asymptotically optimal parallel algorithms for string-matching
using up to n/log?(n) processors (up to n/log(n) if simultaneous writes are allowed). It
looks reasonably efficient as a serial algorithm, but operates too intensively on shared mem-
ory in parallel. Given a longinput text, a short pattern, and few processors it would be more
reasonable to break the input text into equal-sized chunks and search each independently.
The related problem of unification has been shown P-complete. Auger and Krishnamoorthy
[6] show the restricted monadic form is in A'C?, while Vitter and Simons [78] maintain that
limited parallelism can still be applied in a practical way to most cases, given the structures
are large and fairly richly interconnected.

Parallel sorting has been studied on a variety of models [13]. Networks have been
designed requiring O(log(n)) time for O(n) components [3]. These networks are (so far)
horrendously complicated, and do not lend to general sorting programs due to their non-
uniformity. A parallel mergesort by Cole [25] appears to be nearly practical, combining
parallel merges. It operates in O(logn) steps using n processors. Parallelism is applied on
the level of single comparisons. For small numbers of processors and machines with signifi-
cant process dispatch overheads. straightforward parallelizations of quicksort or mergesort
may be most practical, though the processor-time product grows to n? for large numbers

of processors.

Chapter 3

Parallel Processors and Systems
for Algebraic Manipulation:
Current Work

What efforts are needed to produce a parallel system (computer architecture and
interconnection network) for fast algebraic manipulation? This paper outlines current steps
toward such a system, including work in related areas of parallel symbolic processing lan-

guages and general- and special-purpose multiprocessor systems.

3.1 Introduction

Parallel processing has been effective in speeding up many numeric scientific com-
putations. Symbolic algebraic manipulation is becoming the target of work in parallel
processing because it represents a significant, distinct paradigm of computation midway
between numeric processing and the rather vague area of artificial intelligence and Lisp
programming. With the exception of certain types of search and low-level vision, applica-
tions of symbolic parallel processing are rare.

Our goal is to produce a faster system for algebraic manipulation, as well as to
utilize parallel processors efficiently. We will examine work that has been performed in the
following areas: the design and implementation of parallel Lisp, architectures for parallel

symbolic processing, and integrated systems for algebraic manipulation. The issues of

12

13

parallel algorithms and specialized hardware for specific problems in algebraic manipulation

are discussed in chapter 2.

3.2 Types of Parallelism and Algebraic Manipulation

There are dozens of proposed variations of parallel architectures. We will focus on

four different types.

e Vector processors. A number of high-speed parallel vector processors are being mar-
keted, most notably the Cray 1, Cray XMP, and Cray 2. Vector operations are of
greatest benefit when operations and data maintain a high degree of regularity, and

the exact same operations are performed on each element of a vector.

e Grid configurations. A grid of processing elements, each connected to nearest-neighbors
in some topology is probably the simplest parallel processing concept. Each processor
can write data into a specified register or memory location in its immediate neighbors;
it is up to the program to take the necessary steps to transfer data more generally
from one processing element to another. A systolic array is a special case of a grid
multiprocessor. Each processing element is synchronized with a global clock and only
computes a limited range of functions. Data generally travels in a specific direction
across a systolic array. Systolic arrays are intended to be implemented in VLSI on

the scale of a single chip or wafer.

o Message passing. A variation on the grid is to separate the job of computation from
the job of communication, using special switching circuitry for communication. This
allows data to be transmitted across the grid at a faster rate than that determined by
the computation speed of the processors. Message passing usually involves assigning
a number to each processing element, and the switching network creates a path along
‘which the message passes. As with grid configurations, the network topology affects

the speed at which a collection of point-to-point transactions can be performed.

o Shared memory. A collection of processing elements sharing a common memory is a
simple abstraction. Programs or hardware must resolve the problem of simultaneous
updates to the same memory location. The processor/memory interconnection must

be organized to give the appearance of fast memory access.

14

A few algorithms in algebraic manipulation have the kind of regularity necessary
for vector or systolic array computation. One example is the FFT which can be used for
multiplying dense polynomials with coefficients in an appropriate domain. Most algorithms
are not presented with such regular data. Most systems concentrate on algorithms for
manipulating (the more common) sparse polynomials.

Grid and message passing architectures require programs to be organized in spe-
cific and unusual ways. A convenient program abstraction is to use a collection of processes
passing streams of data. When only nearest-neighbor communication is allowed, the process
interconnection must embed into the grid. The stream abstraction can be difficult to use,
since it provides no globally shared memory. The message passing overhead must be rea-
sonably small. Many divide-and conquer algorithms appear suitable for such architectures,
each processor farming out subcomputations to idle neighbors. _

Shared memory processors would seem to have the most potential because the
program organization is less restricted. The availability of global data is an advantage over
grid and message passing architectures. Shared memory tends, however, to be slower than
would otherwise be possible. Special efforts in organization (and, usually, higher prices) can

compensate, to some extent.

3.3 Architectures Supporting Parallel Lisp

Of particular interest to us are architectures to support Lisp, since much of the

work in sytmbolic math has been programmed in Lisp.

3.3.1 Connection Machine “*Lisp”

The Connection Machine [53] is composed of a large number (on the order of
65,000) of 1-bit processing elements coupled with small local memories (on the order of
4Kbits) on a hypercube with an overlaid grid. A master processor broadcasts instructions
which are executed by all of the grid processors simultaneously (SIMD execution). Vector
operations are used to process data in parallel. *Lisp [76] is Lisp extended to include the
pvar data type, which is a vector upon which the vector operations are performed. Each
element of the pvar vector is stored in the same location in the local memory of a different
processor. The vector operations are deﬁx;ed on the machine-level. Either arithmetic,

logical, or vector-permutation operations may be performed. If the vector is larger than

15

the number of available processors, additional processors are simulated. Since most of
the conventional Lisp is executed on the serial processor host, rather than the Connection
Machine, it is perhaps a misnomer to call this Lisp, rather than an embedded parallel

language accessible from Lisp.

3.3.2 Concert “Multilisp”

Concert [49] consists of 8 clusters of 4 processors connected in a ring. Each proces-
sor is coupled with a memory module. The memory modules and processors in each cluster
are connected to a common bus. The levels of connection allow global memory references
which vary in speed depending on the connection between the processor and the memory
unit. Multilisp [48] is compiled into bytecodes. Bytecode-interpreters are run on each of
the processors on the Concert machine.

Multilisp parallelizes function calls two different ways. The first is the PCALL,
which evaluates all the arguments to a function in parallel before calling the function.
The second is the FUTURE, which begins evaluating its argument if there is an available
processor. If the value produced by the future is required before it is ready, the evaluation

of the argument is forced.

3.3.3 BBN “Butterfly MultiScheme”

The Butterfly [21] consists of from 128 to 256 processing elements connected by
a “butterfly” network. Each processing element is a 32-bit microprocessor, floating-point
unit, and from 1 to 4 Mbytes of memory. Memory is treated as a global space, with reference
time varying depending on whether the access is to the local memory or memory on another
node.

MultiScheme [20] on the Butterfly is essentially the same as Concert Multilisp,
using the same language design and bytecode-interpreter implementation. A native-code

compiler is in progress.

3.3.4 Alliant “Qlisp”

The Alliant [5] consists of up to eight processors connected by a crossbar-switch

to four caches. Each cache stores data from a different quadrant of memory. The caches

EAR

16

are connected to main memory by a bus. Each processor has floating-point and vector-
processing umnits.

Qlisp [38] has two primitives QLET and QLAMBDA. QLET binds a set of vari-
ables to a set of corresponding expressions. The expressions are evaluated in parallel by
spawning a process for each one. QLAMBDA spawns a process to evaluate the closure of
the expression; when the closure is applyed, the parameters are passed to the process which

then evaluates and returns the result.

3.3.5 SPUR Lisp

The Berkeley SPUR processor [52] consists of from 6 to 12 processing elements
connected to a common bus. Each processing element consists of a cache, a microprocessor
CPU, and a floating-point coprocessor. The bus is connected to a shared global memory of
32 Mbytes. A cache-consistency protocol is used; shared memory is cached so long as only
one process writes into it. Thus shared memory is accessed at relatively high speeds so long
as processes do not update the same regions of the same data structures simultaneously.
SPUR is still in the development stage; significant portions of the hardware and software
are currently in the debug stage.

SPUR Lisp (86] is a parallel extension of Common Lisp. Primitives for forking
processes and writing into and reading from process mailbozes as well as the Multilisp
FUTURE construct are included. It appears that mailboxes can be implemented efficiently
using atomic test-and-set type operations, yet provide a good abstraction of parallel process

interaction.

3.3.6 Intel Hypercube “Concurrent Common Lisp”

The Intel Hypercube [35] consists of 2" processing elements connected as an n-
dimensional hypercube. The parameter n currently ranges from 0 to 6. Each processing
element consists of a 32-bit microprocessor, an optional floating-point coprocessor, and up to
4.5 Mbytes of local memory. A cube manager [22] processor is used to control computations
on the Hypercube. Library routines are available for initiating, terminating, and sending
and receiving messages to and from processes running on different nodes. There is no shared
memory. Programs are loaded on each node and started remotely from the cube manager.

Information is passed between nodes by message-passing. Concurrent Common Lisp [22]

B2E

17
consists of 2" separate Lisp systems communicating with input/output streams.

3.3.7 Ultracomputer “Zlisp”

The Ultracomputer [44] consists of 8 processing elements and 8 global memory
units separated by an “Omega” network. Each processing element consists of a processor
and a local memory unit. References to global memory are mediated by the network, which
combines simultaneous operations to the same memory cell. Working prototypes have been
constructed using a bus to simulate the network.

Zlisp [31] includes primitives for forking processes and locking data; more abstract
parallel constructs are built from these. Data is held in the global memory units, which

creates a uniform memory space but is slower to access.

3.3.8 Bath Concurrent Lisp Machine

The Bath Concurrent Lisp Machine {63] consists of four processing elements con-
nected in a square. Each processing element consists of a 32-bit processor and 256Kbytes
of local memory. Communication is performed through memory shared between adjacent
processors on the network.

Programs must be designed to start processes in the various processing elements.
and data must be passed explicitly between adjacent processing elements by writing to or
reading from the appropriate location in the appropriate shared memory. More abstract
constructs are provided by the Lisp implementation to simulate fork/join operations and
messages passed between processes. The compiler is designed to detect subtasks which
can proceed in parallel, and generate the necessary process-manipulation and data-transfer
operations.

The Bath Concurrent Lisp Machine is not under active development [66].

3.4 Related Work

The only demonstration we have seen reported of a parallel algebraic manipulation
system is a distributed Maple system [81] running on a local-area (Ethernet) network of
VAX-11/780%s. A master process transmits subproblems to and receives results from subor-

dinate Maple processes executing on other machines. No performance measurements have

18

been published, although the system is reported to be slow [24]. Ethernet communication
can easily dominate execution time, so such a system should only outperform a uniprocessor
implementation for problems which are overall expensive to compute, easily decomposed,
and do not involve a significant amount of data traffic. This may be useful as a prototype

for a more efficient implementation, such as a shared-bus multiprocessor.

Gupta [46] presents a parallel interpreter for the OPS-5 language which was used to
execute a variety of production systems. Parallel search was not used; rather, the stages of
rule matching and firing were parallelized in the interpreter. Not surprisingly, considering
the nature of the interpretation process, the amount of parallelism measured was quite

limited.

The L-machine presented by Buchberger [19] was intended as a multiprocessor
targeted for saymbolic computation. The L-machine consisted of a series of processors and
a series of memories connected to each other by a crossbar switch. The process/stream
abstraction is used for programming this configuration. Current research is concentrating on
the L-language for parallel algebraic operations, and possible implementations on currently

available multiprocessors.

Several parallel architectures for executing Prolog have been proposed; these are
based on performing searches in parallel. The lack of mechanisms for controlling search in
Prolog and its parallel variants coupled with problems with simultaneous structure updates
(analogous to side-effects) will probably make Prolog unsuitable for parallel evaluation [73],

although languages similar in some respects to Prolog can be implemented.

3.5 Reported Experiments

The Concert Multilisp paper [48] reports some experiments running a Quicksort
program on 1 to 8 processors. The inputs were of length 128 and 256. A sequential sort
is compared to two parallel quicksort programs. The slowdown of the sequential sort as

processors are added gives some notion of the overhead involved. The graphs are reproduced

19

as follows:
50 + length=256 length=128
m -
i 101
time20 time
(seconds) (seconds)
10+ 5T
A N\
) S ——— 2+ . —t——
1 2 4 6 8 1 2 4 6 8
number of processors, N number of processors, N
Key: “parallel” Quicksort: Algorithm 1 unmodified

x
<]
o

"unfolded” Quicksort: Algorithm 1 with unfolded partition
"sequential" Quicksort: Algorithm 1 without futures

Some additional statistics are reported, such as the sample standard deviation of the per-

formance for 10 randomly-generated lists of each length. More interesting is the number of

FUTUREs generated and waited for in the execution:

number of
futures

5000 T 2000 +
——tr——e—6—0 *——e——Hb—b—0
2000 + 1000 T
1000 T number of
futures
500 T 200 +
200 T 100 T
length=2 4 length=128
100 +— : ——t 0T } —t—t
1 2 4 6 8 1 2 4 6 8
number of processors, N number of processors, N

Key: * = futures created by "parallel” Quicksort
0 = futures created by "unfolded” Quicksort
& = futures waited for in "parallel” Quicksort
¢ = futures waited for in "unfolded” Quicksort

Coupled with the cost of generating and activating FUTUREs, this should give some idea

20

of the parallel overhead.

Concurrent Common Lisp has been tested on several of the Gabriel Lisp bench-
marks; the results for the Triangle and Browse benchmarks are reported in [11]. The Pu::le
benchmark is reported as not parallelizing. The single-node performance tended to be

between 15 percent to 15 times slower than the Symbolics 3600.

Browse
Triangle Gabriel
Gabriel Benchmark
Benchmark
iPSC iPSC iPSC Sym-
iPSC iPSC | iPSC Sym- Single 16 32 bolics
Single 16 32 bolics node nodes | nodes 3600
node ncdes | nodes 3600 T (seconds) 2014 15.0 15.0 308
Tseconds)| 1.023.2| 69.8 | 375 | 15170 | Speedup 268 | 268
Speedup 148 | 27.6 Pre-load T| 338.5 9.4 5.2
' Speedup 42.4 76.6

A slight superlinear speedup is observed in the Browse benchmark, reportedly due to re-
duced load from garbage collection and other overheads with more processors. The pre-load
time assumes that the program is already loaded, lowering the execution time and demon-

strating more dramatic speedup.

The original Qlisp paper includes some simulation results [38]. The simulator is
written in Lisp; the reported results are in the form of raw time or factors of speedup. The
benchmarks are computing the Fibonacci function, summing the elements of a full binary
tree and a linear list (using recursion in figure 2, and message-passing in figure 3), solving a

traveling salesman problem using exhaustive search, and executing the Browse benchmark.

Time

21

Fibonaced (Fib 10)
5 processors
PCT is Process Creation Time

Traveling Salesman

Linear

13 5 Cities
PCT = 100
E Linear
&
F)
-]
PCT = 40 $ E
[-3
w
PCT = 20
PCT= O
E

Speddup .
RARZD 20 20 20 20 2h 2o 2n e on 2n Jn n se ot in o in b o o o o de ond

Processors
Figure &4

CUTOFF
Figure 1

-

Browse

Simple Add-
ple i PCT is Process Creation Time

v
Full Binary Tree ;_'-
PCT = 30
Linear
PCT = 10 —
Processors Processors
Figure 2 Figure 5

Partially Sequential Add-up

Linear

Full Binary Tree

Processors
Figure 3

22

A compiled version of Qlisp has been implemented on the Alliant, with 4 processors. Ex-
periments were run using two different algorithms for powering a polynomial (chapter 5).
each which decomposes the input into a fixed number of processes which are then run on

the available processors:

[Table 1 - Time to expand (z1° + 72 +--- + z + 1) with 4 processors. |

processes Simp Karatsuba
1 3537 7589
2 1864 —
3 e 2375
4 1067 _—
8 1100 —
9 —_— 1875

A near-linear speedup is observed in the Simp algorithm, which seems to strictly outperform

Karatsuba.

3.6 Experiences in Retrospect

I have found the state-of-the-art generally disappointing. The Hypercube Con-
current Common Lisp tended to deadlock when running compiled code because the rate of
message traffic increased as the between-message computation time was reduced. Alliant
Qlisp would fail for unknown reasons even for serial code. Many empirical results could not
be obtained.

The most annoying factor was the failure of implementors to go beyond the stage
of a limping prototype. Language-level simulators and distributed interpreters are easier
to construct than a full parallel Lisp system running compiled code. Such prototypes can
produce deceptively positive results, as the real machine overheads of multiprocessing are
disguised by the simulator. Qlisp, for example, ran approximately 3 times slower than Franz
Lisp on a VAX 11/785, even though the Alliant is generally 4 times faster. For that reason
we did not consider using the Concert bytecode-interpreters or the Butterfly distributed in-
terpreters for realistic performance estimation (Concert Multilisp is reported to run roughly

as fast as interpreted Franz Lisp on the same uniprocessor [48]. In other words, a factor of 10

KR

23

or more of parallelism would be necessary to even compete with a mediocre compiled Lisp). -

Simulators can be of some use for tuning the parameters of an efficient implementation by
providing some information about process interaction and memory usage, but without an
efficient implementation all such improvements are hypothetical.

We are still several steps away from achieving our goal of an efficient parallel system
for algebraic manipulation. A fast, robust parallel Lisp (or other suitable symbolic language)
remains to be implemented. Some algebraic manipulation system must be rewritten enough
to port, or a new one constructed. Finally, some program sections must be identified as
worth parallelizing, and then parallelized. We have concentrated on this final task, assuming
the first steps were being done by others (in parallel). We look forward to resolution of

these difficulties over the next several years.

I x'd |

Chapter 4

Polynomial Forms and
Representations for Algebraic

Manipulation

The choice of representation affects the efficiency of algorithms operating on poly-
nomials, as well as the structure and space efficiency of an algebraic manipulation system. A
number of representations are compared for both theoretical and practical efficiency. Issues

specific to parallel algorithms are also considered.

4.1 Introduction

Polynomials, series, and rational functions represent important classes of expres-
sions in algebraic manipulation. Efficient operations on polynomials are requisite for an
efficient algebraic manipulation system. In designing a faster algebraic manipulation sys-
tem using parallelism, we must consider possible representations for polynomials to enhance
both the serial and parallel efficiency of polynomial operations.

Several polynomial representations are used in existing algebraic manipulation sys-
tems, have been proposed, are used in the operation of certain algorithms, or may seem
acceptable for other reasons in the literature. Clearly we cannot exhaustively analyze the
range of possible representations. Nor can we fully characterize the relationship between

a given representation and a particular polynomial operation, since an algorithm for per-

24

25

forming the operation is free to convert representations or maintain additional information.
We will restrict ourselves to discussing the “best known” polynomial representations and
algorithms for operating on them, with the understanding that superior methods may be
developed in the future.

The efficiency issues we will consider are the size of the representation and the
cost of performing particular operations using it, under certain assumptions about the
frequencies of various operations and the characteristics of the polynomial data. We assume

each operation on a coefficient takes constant time!.

4.2 Forms of Polynomial Expressions

A polynomial is a function formed by a finite number of additions and multiplica-
tions over a set of variables and coefficients (usually integers). Polynomials are closed under
addition, subtraction, multiplication, powering, differentiation, integration, and a variety of

other operations such as substitution. Hence a “general expression”? such as

' d .
p(z,y) = (E(t‘*' 1)3) lt=aty—1 .

denotes a polynomial in z and y. Canonical forms of polynomial expressions are more

interesting, since each polynomial can be uniquely represented. Two good examples are

factored form (product-of-sums)
3z +y)°

and fully expanded form (sum-of-products)
3y2 + 6zy + 322

The representation is unique so long as the terms are ordered. One useful ordering is
lezicographic, where the degree of the dominant variable is used to pairwise order terms,
and ties are broken recursively by ordering in the remaining variables. Another is total
degree ordering, where sum of the degrees of the variables in each term are compared and
ties are broken lexicographically [18].

A wide range of forms arise from the.grouping of the sum and product operations;

factored and expanded forms being special cases. A form arising from lexicographic ordering

LThis is false in general, but in the absence of specific information is a “neutral” assumption.
2This term is used in Macsyma[34], for example, for a form containing a wide variety of operations — the
underlying data structure of an operator/operand tree is quite general.

ELE

26

is principle variable form, where the polynomial is written as a univariate polynomial in

the dominant variable. with polynomial coefficients in the remaining variables:
y*(3) + y'(62) + y°(32?)

In fact the groupings can be made considerably more complicated. Expanded form can be
regarded as the Taylor expansion of the polynomial around the zero vector: were we to take

the expansion around z = 1 we would get the series
(3y% + 6y + 3)(z — 1)%+ (6y + 6)(z — 1)! +3(z — 1)%.

A polynomial is a linear combination of generators. The generators are the power-
products of the variables. Alternatively, a set of orthogonal polynomials could be chosen as
the basis (the power-products of (z — 1) and y in the example above). Important examples
of alternative groupings are Chebyshev series, where the generating polynomials are of the
form

To(z)=1, Ti(z)=2z, Tay1(z)=22T(z) - Tn-1(z)

and Legendre series. These series are useful in derivihg polynomial approximations and
solving differential equations.

Two other unique forms in common use are vectors of coefficients and vectors of
interpolation points. For both of these representations the vector must be of length at least
d;+1 in the ith dimension, where d; is the maximum degree to which the ith variable occurs.
Letting the value at the (¢,7) coordinate be the coefficient of r*y? eives us the coefficient

matrix (for the same polynomial)

0 0 3
0 6 0
3 00

Letting the value at the (¢, j) coordinate be p(%, j) gives us the matrix of interpolation points

0 3 12
3 12 27
12 27 48

The Fast Fourier Transform (FFT) can be used to compute a particular form of interpo-

lation point vector over a finite field. Once in this form, simple algorithms can be used to

[N
i |

perform multiplication and powering operations with high efficiency (chapter 6). Since the
FFT can be computed in O(nlogn) where 7 is the number of elements in the vector, this
leads to some useful algorithms. An operand vector must be as large as the vector required

to unambiguously represent the result of the operation.

The “general expression” form is poor for a number of reasons, so it will be dis-

cussed only briefly:

e It is obviously non-unique. A given polynomial (0, for example) can be expressed as

arbitrarily complicated forms.

e It can be expensive to store and operate on expressions in this form, since it is not
likely to be as compact as a canonical form. Operations such as determining whether
the expression is zero may be as expensive as converting into one of the canonical
forms. (For certain general forms of polynomials, such as expressions composed of ‘+’
and ‘x’ operations, very fast tests can be performed with probability of correctness
increasing in the length of the test {42]. An example is a zero-test which evaluates the
polynomial at random points; if the polynomial evaluates nonzero at any point, the
polynomial is definitely not zero. Derivative and integral operators cannot be dealt

with so easily).

On the other hand, if we are committed to retaining canonical forms it requires some effort
to preserve the form under operations like addition or multiplication. Preserving a factored
form under addition is not known in general to be easier than expanding both polynomials,
adding, and factoring again (which is an expensive operation). Preserving expanded form
under multiplication will be discussed later on.

Vector forms are wasteful when the polynomial is sparse (i.e. many lower-order
terms are zero, such as z!% + 1). Sparse polynomials represented in expanded form tend
to be more compact, taking space proportional to the number of nonzero terms. For dense
polynomials (i.e. most terms are nonzero, such as z° + z* + z% + 22 + = + 1) vector
representations are very efficient since less information is used to represent each term. The
principle variable form is particularly interesting since the polynomial may be sparse in one
variable and dense in another; a hierarchy of different concrete representations might be
most efficient in such cases. In the next section we will look at concrete representations of

polynomials based on the forms of polynomial expressions.

>N

4.3 Concrete Representations of Polynomials

An algebraic manipulation system must have a concrete representation of any
expression it operates on. There are a number of classes of data structures which uniquely

or non-uniquely represent an expression in a particular form. Some examples are as follows:

1. A character string. Any of the forms of expressions in the previous section corresponds

to a string of characters, which is literally the written form of the expression.

2. An ordered or unordered set of subexpressions. For example, expanded and factored
forms are equivalent to sets of monomials or factors, respectively. The subexpressions
are then represented by another data structure. The set may be maintained by such
data structures as a linked-list, array, tree, or hashtable[43]. Linked-lists are easiest to
manage for small sets, but cannot be efficiently accessed in parallel; nor can they be
used efficiently by algorithms which access terms in non-sequential order. Since arrays
are directly addressable, they can be superior for parallel algorithms simultaneously

operating on different portions of the polynomial.

3. An array of numbers. The indices of the array can be used to implicitly represent
information, such as making the ith element the coefficient of z'. Thus arrays are

useful for representing vectors of coefficients or interpolation points succinctly.

4.4 Practical Considerations

To speed up polynomial operations through algorithmic approaches, we need to
consider the nature of the polynomial data and the frequency of particular operations. It
is unfortunately difficult to characterize “average” use of a system like Macsyma, but we

believe the following to be the case for typical algebraic manipulation systems’ usage:

1. Polynomial operations are performed with high frequency mainly on small polynomi-
als. 3 Degrees and sizes over 100 are considered rare (note: a polynomial of degree 100
considered as an analytic function is generally very poorly behaved, and is unlikely to
be an accurate model of a physical system. Large dense polynomials may well arise

in contexts other than analytic approximation, such as computational geometry).

3Note that this may be conditioned by the fact that large polynomials can take a long time to operate
on....

=il

2. Most polynomials are very sparse, i.e. have mostly zero coefficients.

3. Additions and multiplications tend to be performed on polynomials of differing degree

and coefficient size.

4. The ordering of operations by frequency is roughly: Addition, Multiplication, Power-

ing, Division with remainder, GCD.

5. The result of one operation tends to be used subsequently in a different type of oper-

ation, i.e. the product of two polynomials is then added to a third polynomial.
We also make some assumptions about our host environment:

6. Space-extravagant representations may degrade performance by overloading memory.
Practically speaking, storage recovery and/or paging overhead can erase algorithmic

time improvements.

7. Parallel processing has a significant overhead in process dispatch and message passing

or references to shared memory.
8. Converting an expression to printable form takes less time than printing it.

Considerations 2 and 6 make vectors of coefficients desirable only for dense poly-
nomials, since the space and time overheads would otherwise be lower under expanded or
principle-variable form. In addition, consideration 3 makes vectors of interpolation points
undesirable as a general representation since one operand vector will tend to be larger than
the other; either the larger vector contains redundant points, or the smaller one will have
to be expanded. The cost of generating new points is as much as having used coefficient
form to begin with. However, for large dense polynomials in coefficient form, multiplication
and powering are performed fastest by converting to FFT form, operating, and (usually)
converting back.

Considerations 4 and 5 suggest that factored form would be hard to use, since
the cost of expanding the polynomials for additions would be a large factor, regardless of
whether the form is to be preserved. Factoring results to maintain a canonical form is
expensive, and would dominate virtually any possible benefits from the ability to multiply
and power more easily. Algorithms based on extracting easily (or previously) computed

factors were first described in Altran [47].

30

Consideration 8 suggests that character strings would be a poor representation;

algorithms for performing the algebraic operations would be forced to waste time analyzing

the string to determine the values of coefficients and exponents, while the possible savings

due to maintaining a readily printable representation would not be significant compared to

the cost of the I/O operation involved.

4.5 Cost of Operations

4.

In light of the previous discussion, we will consider the following 4 representations:

. Linked-lists of monomials in descending order, for polynomials of few terms. Each

monomial is represented as a tuple of the coefficient and exponents.

Arrays of monomials in descending order, for large sparse polynomials. The monomials

are represented by tuples as before.

. Arrays of coefficients of the appropriate dimension, for large dense polynomials.

Arrays of interpolation points of the appropriate dimension (i.e. FFT).

The nature and representation of a polynomial will affect the cost of operating on it. Here

we will list some operations which are frequently performed, and sketch the best known algo-

rithms for performing them in serial or in parallel. The operations are addition/subtraction,

multiplication, powering, division, GCD, and differentiation/integration.

1.

Addition/subtraction. Under ordered monomial forms, addition and subtraction are
performed by matching terms with the same degree. This amounts to an end-to-end
scan of each polynomial, taking time proportional to the number of terms. This is
fast enough that parallelism may not be interesting, especially if fast memory access
is inhibited by a linked-list representation. Parallel divide-and-conquer approaches
can be used with arrays, trees, or hashtables of monomials, though these are at a dis-
advantage because it cannot be decided easily how many terms will be in the result;
either there can be empty cells in the result, or the computation risks being serialized
by parallel insertion or merging operations. For coefficient or FFT vectors, corre-
sponding elements are added or subtracted directly, in serial or in parallel. Leading

terms may cancel, so the result vector may be unnecessarily large.

31

. Multiplication. For monomial forms, multiplication can be performed by taking the
cross product of monomials and combining like terms, in time quadratic in the number
of terms (algorithms which explicitly sort the results require an additional log factor).
This cross-product can be computed in parallel. There is no convenient way known to
combine terms in parallel, though for small numbers of processors and large polyno-
mials the merging cost is dominated by the multiplication (chaptér 5). The FFT form
can be multiplied in serial or in parallel by multiplying corresponding terms. The
FFT can be computed in parallel to and from a coefficient array form. The size and

précision of the FFT values must be large enough to uniquely represent the result.

. Powering. The FFT form is powered by powering each point in the vector, in serial
or in parallel. The relationship between FFT and coefficient form is as with multipli-
cation. Sparse polynomials in monomial form are more easily powered by generating
the multinomial expansion in serial or in parallel using dynamic programming. As
with multiplication, for large polynomials and small numbers of processors the serial

cost of combining terms is dominated by the parallel operations (chapter 5).

. Division with remainder. Division is accomplished by multiplying the divisor by a
monomial such that the leading terms become equal (terminate if this cannot be
done) subtracting, and repeating until the dividend is of smaller degree than the
c‘livisor[26]. This is convenient in any but the FFT form (which appears to provide no
easy way to divide). For sparse polynomials the size of the intermediate results may
grow with each step, so using arrays of monomials to hold intermediate results would
involve frequent reallocation of arrays. Linked-lists are easier to manage. At best
the polynomial subtraction and monomial multiplication steps can be parallelized, as

discussed before.

. GCD. The fastest known polynomial GCD algorithm can be (crudely) characterized
as evaluating the two polynomials at corresponding points in a finite field, computing
the corresponding GCD'’s, and interpolating the resulting polynomial through these
points. Multi-point evaluation and interpolation are best performed on arrays using
algorithms similar to the FFT, taking time polynomial in the degrees of the two
polynomials. The evaluation/interpolation can be performed in parallel on arrays,

and the individual finite-field GCD’s can be computed in parallel. Zippel’s Sparse

W] |

32

Modular GCD[85] uses Hensel lifting rather than interpolation; this appears amenable

to parallel implementation.

6. Differentiation/integration. For sum-of-products form these operations amount to
termwise changes of the exponent and coefficient. Parallelism can be used on an
array of monomials or coefficient. There is no way known to differentiate/integrate
interpolation point vectors than to convert to coefficient form, operate, and convert

back.

Some additional common operations are used to determine attributes of a polyno-

mial, for example:

1. What is the degree of the polynomial in variable z ?
2. How many distinct variables occur in p?
3. What variable occurs to highest degree?

. What coefficient is attached to 1" -+ -z, ?

.

w

. Is the polynomial equal to zero?

If any of these trivial operations becomes very expensive, we must seriously question the
representation. In some abstract sense, an algorithm for operating on a polynomial works
by systematically extracting attributes of the polynomial. The cost for the whole polyno-
" mial operation is generally cheaper than the cumulative cost of repeating these operations,
since the algorithm will generally maintain “fingers” into the structure which will make

subsequent attribute operations cheaper. These questions can be decided as follows:

e Questions 1-4 can be decided in time linear in the size of the representation in the
monomial forms (representations #1 and 2, this section), by scanning the elements of

the polynomial.

o If the coefficient array form (representation #3) contains no unnecessary zeros, ques-
tions 1-3 can be decided in constant time by looking at the dimensions of the array.

Question 4 can be decided by indexing into the array.

¢ For the FFT (representation #4), questions 1-3 seem to require as much time as
computing the transform. Question 4 takes as much time as to evaluate the polynomial

(linear in the size of the transformed representation).

1 |

33

e Question 5 requires a zero test of each element of the polynomial. If representations
1-3 are compact (no unnecessary zeros) this requires constant time. The FFT form
uses at least d + 1 evaluation points for a degree d polynomial, so the size of the
transform is at least d + 1, and the time to perform a zero test will be proportional

to this.

These questions can be decided for general expressions describing polynomials, by
evaluating them at a sequence of points and applying the sparse multivariate interpolation
algorithm [9], which recasts the polynomial into a set of nonzero monomials. The inter-
polation requires O(t*(log?(t) + log(nd))) operations for a polynomial containing ¢ nonzero
monomials, n variables, and d is the maximum degree to which any variable appears. 2¢
evaluations of the expression are required. This conversion cost is more expensive than
using representations 1-4 in any operation except GCD; this is further complicated by the
need for a sequence of 2t prime numbers to evaluate the expression over.

. An additional problem is printing the polynomial in one of the expanded or fac-
tored forms. Factoring is expensive, so converting between the given forms is not costly
enough to be an issue. An array of coefficients may contain unnecessary zeroes to be elim-
inated. The coefficient array form can be traversed different ways to print the polynomial
under various orderings; the monomial representations would have to be reordered to be

printed in any but the existing ordering.

4.6 A Hybrid Approach

An algebraic manipulation system could be constructed to use a mixture of poly-
nomial representations, tuned to the nature of the given polynomial and the operations
being performed on it. Further, if the same polynomial is to be used in different opera-
tions, it may be useful to keep one representation suitable to each operation. The following

attributes would be accounted for, but not generated unless needed:
1. The variables the polynomial depends on, and the degree in each variable.
2. The size of the polynomial, i.e. the number of nonzero terms in the expansion.

3. The printable representation of the polynomial.

34

4. One of the following “base” representations mentioned in the previous section, depend-
ing upon the size and density of the polynomial: a linked-list of monomials (for small
polynomials), a vector of monomials (for large sparse polynomials), or either or both

of a vector of coefficients and its FFT of some length (for large dense polynomials).

The degree, size, and form of operand polynomials can be used to estimate the degree and

size of the result polynomial:

1. Addition/subtraction: the (estimated) degree of the result is the maximum degree of

the operands; the (estimated) size of the result is the sum of the sizes of the operands.

2. Multiplication: the (exact) degree of the product is the sum of the degrees of the
operands. The (estimated) size of the product is the product of the sizes of the
operands, unless this exceeds the maximum possible for the given degree in which

case the maximum is used.

3. Powering: the (exact) degree of the result is the degree of the operand times the power

s+k-1
k it is raised to. The (estimated) size of the result is where s is the

size of the operand; if this exceeds the maximum possible for the degree of the result

then this maximum is used.

4. Division: the (exact) degree of the quotient is the difference of the degrees of the
dividend and divisor. The degree of the remainder is (at most) that of the divisor.

The (estimated) size is the maximum for that degree.

5. Differentiation/integration: the (exact) degree is the degree of the operand in the
given variable, minus 1 or plus 1 depending upon the operation. The (estimated) size
is the same, unless it exceeds the maximum possible for the degree, in which case this

maximum is used.

In each case the estimates can be overestimates since term-cancellation can occur, or the
constant term can drop out under differentiation. For GCD the result will be assumed to be
most likely 1, which can be an underestimate since the operands may have many common
factors.

The size and degree estimates can then be used to decide a priori a good represen-

tation for the result; if the result is small, then a linked-list of monomials will be generated.

35

If the ratio of the estimated size to the maximum possible under the degree constraints
exceeds a certain value, then the polynomial will be treated as dense, and sparse otherwise.
For each operation there would be a number of specific algorithms, depending upon the
form of the operands and the intended form of the result. Specifically, if two large dense
polynomials are to be multiplied, use the FFT form. If the transforms have not been com-
puted, or are too small, compute larger ones (note that if it is too large by a factor of 2 or
more, skip intermediate points). Produce the result as an FFT. For other operations, use
whatever form is available and cast the result into the intended form.

The drawbacks of this “object-oriented” approach are as follows:

e The estimated size and degree characteristics of a result polynomial may be too large,
in which case time and space would be wasted filling in for zero monomials. Under

considerations 1 and 2 in section 2, this may be quite frequent.

o Estimating the characteristics of the result and checking the available representations
of the operands adds an overhead to the computation. This would not be significant

for sufficiently large polynomials.

e Maintaining additional information would add a space overhead. The printable form is
almost inevitably more easily reconstructed on a need basis. Forlarge dense polynomi-
als, maintaining the largest FFT yet used may be a large expense; a small polynomial
may have been multiplied by a much larger polynomial, requiring a very large FFT
to have been computed. For sufficiently small polynomials the degree and size at-
tributes would represent a significant overhead. Under consideration 1 in section 2,

this overhead may add up over a large number of small polynomials.

This “object-oriented” approach can be taken a level further by building graphs
of polynomials linked with operators, where results are only computed on a “need” basis
(usually when a result must be printed, or if the polynomial must be evaluated); the evalu-
ation algorithm can then choose the representation of each intermediate polynomial based
on the form the final result must take, and the intermediate representations which are al-
ready available. Idle processing time or parallel processors can be utilized to “eagerly” fill
in intermediate polynomials or perform subcomputations on a demand basis. The potential

drawbacks with this approach are as follows:

o “Eager” work will be wasted if the results are not nsed.

36

e Work which could have been performed after each user command may be deferred

until the final answer is requested, resulting in a conspicuous delay.

e Space may be saved by using destructive operations on the polynomials themselves,

rather than constructing new objects for each operation.

o The results of most operations may be needed immediately, so this framework becomes

a needless complication.

On the other hand, under the proper circumstances such a system might efficiently uti-
lize idle time and processors. An approximation to this approach is available in Macsyma
by turning the simplification routine off, constructing an expression, and then (if needed)
simplifying; the simplifier performs the operations in one sweep to produce the result (de-

pending on flags and the nature of the expression) in simplified or canonical form.

4.7 Conclusions

An efficient algebraic manipulation system may benefit from using a rich vafiety
of data representations, including arrays and lists. In some cases representations “left over”
from computations may be useful for subsequent operations; for example, a polynomial
which has been previously converted to FFT form could be multiplied more easily using the
old FFT.

This richness and redundancy can be taken to the extreme by designing an alge-
braic manipulation system which maintains mixed representations of each polynomial and
uses algorithms tuned for the best available combination of operand representations. Such
an algebraic manipulation system would be somewhat more complicated since the different
possibilities must be accounted for in the algorithm.

The Macsyma system currently tags expressions with type information, which is
used to direct computation. The set of tags is extensible, for the purpose of introducing
new expression types and manipulation algorithms. Type-checking is often performed on
subexpressions within inner loops; this overhead might be reduced by quantifying the range
of useful expression types and selecting type-specific algorithms on the top level. Alterna-
tively, a few useful types such as “large dense univariate polynomials with floating-point

coefficients” could be isolated for treatment with specialized representations and algorithms.

37

Such an adjustment would probably be a significant improvement in performance in selected

domains.

Chapter 5

Parallel Multiplication and

Powering of Sparse Polynomials

This paper examines two asymptotically efficient parallel algorithms Simp and
NOMC for multiplying and powering sparse polynomials. Simp is a simple divide and
conquer approach to multiplication. NOMC uses a multinomial expansion for computing ’

powers. The Simp algorithm carries over to the multiplication of Poisson series.

5.1 Introduction

Sparse polynomials represent an important class of expressions in algebraic manip-
ulation. Efficient serial algorithms exist for multiplying and powering sparse polynomials;
it is the purpose of this paper to explore the potential of these algorithms for parallel ex-
ecution. We assume a model of parallel execution based on low overhead shared-memory
multiprocessing. Some simple empirical studies for up to 4 processors suggest these methods

work.
The data structures used to represent polynomials have some effect on the effi-

ciency of the algorithms.

The organization of this paper is as follows:
1. The nature of sparse polynomials is discussed.

2. Lower bounds on the complexities of polynomial multiplication and powering are

derived.

38

39

3. The Simp and NOMC algorithms are described and analyzed.
4. Some alternative algorithms are discussed.
5. Empirical measurements on a parallelized Simp algorithm are presented.

6. The Simp algorithm is extended to Poisson series multiplication.

5.2 Sparse Polynomials

We will refer to the number of nonzero monomial terms in a polynomial p as
size(p). We compute degree(p) (the total degree of p) by summing the exponents in each
monomial, and taking the maximum of these sums. This definition of total degree is used
in papers on Grobner-basis reduction [18].

Alagar & Probst [4] define the term uniformly dense to describe multivariate poly-
nomials whose size is nearly maximal for the given total degree. A polynomial is uniformly
sparse if it has few terms relative to the maximum possible for the given total degree. Ob-
viously, dense and sparse are qualitative terms. Some algorithms are very efficient for dense
polynomials but highly inefficient for sparse polynomials.

The following relations show how degree and size are bounded:

degree(p; p;) = degree(p;) + degree(pz) (5.1)
size(pr1p2) < size(pr) - size(p2) (5.2)
degree(p*) = k - degree(p) (5.3)
size(p*) < (size(p):— k-1) (5.4)

Letting v be the number of variables,

size(p) < Z (°) (degrée(p)) (5.5)
i=0 3

1

which reduces to

size(p) < degree(p) + 1 (5.6)

forv = 1.

Over a domain with zero-divisors. relation (1) is adjusted to

40

degree(p1p2) < degree(p;) + degree(p,) (1a)

Relation (4) is derived as follows [35]: let p= A + B, where B is a monomial and

A contains all remaining terms. Then

L .
pk=(‘4+B)k=Z(')._PBk—z

=0 i

If no collapsing occurs, as happens for suitably sparse p, each A'B¥*-# pair will contribute
exactly size(A’) = size(p) — 1 terms. If A is a monomial this degenerates to one term per

pair, or k + 1 terms. Otherwise we have a total number of terms

11

=Z"°—A (size(p) + ¢ — 2) _ vk (size(p) + 1 — 2)
= 2 =0 size(p) — 2

_ | size(p)+ k-1
B k
k T+ r+k+1
5(7)-()
1=0 r

The size for sparse polynomials will grow at most quadratically as multiplications

size((A + B)Y) = T¥ size(4) = Ll ((size(p) —'1) +i-1)

using the identity

are performed. The degree will grow at most linearly under both multiplication and pow-
ering. Since size is ultimately bounded by degree, quadratic growth cannot be sustained
under repeated multiplications as polynomials “fill in”. As the “density” of the results in-
creases, relatively fewer distinct terms will be generated by multiplication. The fastest the

size of p* can grow is approximated by

size(p)F—1
5k — 2)1

+ O(

(size(p) + k — 1) _ size(p)*)

k k!

for large k and increasing size(p).

41

5.3 Complexities of Multiplication and Powering

The complexity measures we concern ourselves with are the number of coefficient
additions and multiplications, and the number of exponent comparison steps required to
order the result. We will consider any of these to be “scalar” although coefficient operations
may be floating point or arbitrary precision, and hence are potentially more expensive than
exponent comparisons. We are also concerned with the maximum number of processors
that can be kept busy with useful work in parallel algorithms. The parallel complexity is
the maximum number of scalar operations used by any parallel branch of the computation.
The algorithms we present are “balanced” in the sense that we attempt to “farm out” all
parallel computations to processors in equal “chunks”. The maximum and average number
of scalar operations required per processor are close. For an ideal algorithm, the processor-
time product, a good measure of parallel efficiency, is the same as the serial complexity.

Coefficient multiplication is probably the most expensive of the scalar operations
as used in the Macsyma rational function package [34]. The parallelized algorithms we
look at tend to parallelize efficiently the multiplication operations, but require serialized
exponent addition or comparison to combine separate subresults. The exponent operation
count does not dominate serial computation for reasonable-size input, and we conjecture
that exponent operations will become only slightly more important in parallel.

We begin by showing that the number of scalar multiplications required for poly-
nomial multiplication or powering depends strongly upon the size of the result.

Lemma 1:

At least size(p; p2) — size(py) — size(p,) multiplications are required in the worst
case to compute pp2.

Proof:

Let A, B, and C be the sets of coefficients in p;, p2, and pp;, respectively.
If the elements of 4 and B are algebraically independent, the elements of C
will be (at least) linearly independent. Given that we have generated C with h
multiplications, let E = {e1,...,e5} be the set of products of the multiplications.
C must be formed by linear combinations of 4, B, and E:

C— h no, LT
C; = i Tije+ Zi:l Yi,jai + Zi:l zi ;b

1< j < size(pipa)
Since the elements of C are linearly independent, it must be the case that
size(p1p2) < h + size(p1) + size(p2), or h > size(p1p2) — size(p1) — size(py). O

X |

42

As a simple corollary, for p; and p, “sufficiently sparse”, size(pip2) = size(p1) -
size(p;), so roughly size(p,)-size(p2) multiplies are required. The Simp algorithm operates in
exactly this bound. For “sufficiently dense” polynomials, size(pyp2) = size(p1) + size(pz) so
the lower bound on multiplications is linear. The best known algorithm in this range (FFT
[14]) uses ©((degree(p:) + degree(p;)) - log(degree(p;) + degree(p;))) scalar multiplications.
For powering, we have the similar result [35]:

Lemma 2:
At least size(pF) — size(p) scalar multiplications are required to compute pF.
Proof:

As before, the coefficient set C is linearly independent so the number h of
intermediate products must satisfy the inequality size(p¥) < h + size(p), or
h > size(px) - size(p).

We know from relation (4) how the size of p*¥ can grow for sparse polynomials.
The algorithm NOMC operates asymptotically with this. For dense univariate polynomials
the growth is bounded more strictly by relations (3) and (5), giving a bound of k - size(p).
The best known algorithm for this case is the FFT using ©(k - size(p) - log(k - size(p))).

Comparison operations are required to order the results. The problem of ordering
the monomials of the product p; - p2 is equivalent to the “Sorting X4 Y” problem (discussed
by Harper et. al[51}) of ordering all pairwise sums of the (ordered) elements of two vectors.
For size(p,) = size(p;) = n, the lower bound on the number of comparisons is Q(nlgn).
A solution by Jean Vuillemin [80] uses O(n?) comparisons, i.e. proportional to the largest
possible size of the result. Ordering the monomials of p* is equivalent to sorting all distinct
k-wise sums of elements of the vector X. Vuillemin’s result is extended by recursively sorting
the sets of | £|- and [£7- wise sums and sorting the pairwise sums of these two sets as before.
The work to sort the final set will dominate the lower-order sets (see the analysis of NOMC

in section (5)), so the total number of comparisons used is proportional to the largest

size(p)+ k-1
L .

Terms are combined by the addition operations, once comparisons have established

possible size of the result

that they are additive. Thus a lower bound on the number of coefficient additions required
is

size(p) - size(p2) — size(p1p2)

43

or

(size(P):‘ k-1) — size(p¥),

which is the number of terms possible under relations (2) or (4), minus the actual size of
the result. In the worst case p = p; = p; and are completely dense. Under relations (1),

(3), and (6) the number of coefficient additions required are
size(p)? — 2 - size(p)

or

i k-1 ize(p)*
(SIZe(p)I:-) — k- size(p) ~ % + k- SiZe(p)

for multiplication and powering, respectively. Assuming that the results are ordered, the
coefficient additions amortize into the exponent comparisons. The addition operations
involved in generating new exponents amortize into the coefficient multiplications.

It is not obvious how to parallelize the addition or comparison operations in either
the Stmp or NOMC algorithms. In each case terms generated by different processes may add
together (or even cancel). In both the Simp and NOMC algorithms we will use a parallel

mergesort [2] (just parallelize the recursive calls), which requires
T, oz
Oz + —log —
Y y)

comparisons to sort r items with y processors, y ranging from 1 to z. For fixed y and
increasing z it approaches a speedup linear in y, though this is not a linear speedup over
Vuillemin’s result. A reasonably efficient parallel mergesort has been developed by Cole [25],
which takes O(log z) operations to sort z items with z processors. Parallelism is applied to
operations on individual elements, a very fine level of granularity. This process still appears
inefficient and unnecessarily complicated for (small) fixed numbers of processors and large
inputs, particularly if there is a significant overhead to interprocessor communication or
shared memory access.

A hash table of monomials can be used as an unordered representation of polyno-
mials [43]. A hash table can be updated in parallel, or used in serial to reduce the number
of comparisons required to combine terms. The integrity of a hash table is difficult to
maintain under parallel updates. If this were not an issue, the operations involved with

combining terms would parallelize perfectly. The details involved with locking the hash

44

buckets are complicated enough to possibly negate any advantages. Additional overheads

such as computing the hash function are also significant.

5.4 The Simp AlgoritAhm for Multiplication

A simple way to multiply polynomials p; and p; is as follows {36]:

Given polynomials p,, p2, return p; - p2.

[1] If p; is a monomial. multiply each term of p; by p; and return

result. Otherwise,

[2] Split py into A and B. and recursively form the

products 4 - p; and B - p,.

[3] Merge the two partial products {(ordered by exponent), adding

coefficients with the same exponent. Return result.

This effectively decomposes polynomial p; into size(p;) monomials, forms the product of
each monomial with p;, and successively merges the results. The parallelized form is to
perform the recursive calls in step 2 in parallel.

The number of coefficient multiplications required is size(p;)size(p2). The merge
step amounts to a recursive balanced merge, requiring O(size(p)size(p)-log(size(p;)size(p2)))
comparisons. Ther are size(p;)size(p;) — size(p, p2) additions.

In parallel, k¥ < size(p,) processors can be used. The recursive step 2 is better
replaced by splitting py k& ways and having each processor perform the multiplication as
before. Step 3 reduces to performing a parallel mergesort (section 3) on the partial prod-
ucts. The number of parallel multiplications is i:size(pl)size(pg), since multiplications are
performed on the bottom level of the decomposition.

The parallel mergesort uses a parallel measure of comparisons O(size(pip2) +

Size(,’:‘p’) log Size(zlp’)), which is asymptotically O(size(p;p;)) as k approaches size(p;). Re-

[e—

15

placing the parallel merges with a (serial) k-way balanced merge gives a parallel measure

of comparisons O(size(pyp2) - log(k) + Si"(z‘p’) log Si"(,’:‘m)). For message-passing multipro-

cessors with a high communication cost, this decomposition is probably superior.

Thus, given sufficient processors, the best time for the multiplications is O(size(p;))
and for additions and comparisons is O(size(p1p2)). For size(p1) = size(p;) = n, this
amounts to a reduction by ©(n) in the time to perform multiplications and O(lg(n)) in the
time to perform comparisons. In the worst case the number of additions is reduced at most

by a constant factor, since ©(n?) terms can combine in the final merge.

5.5 The NOMC Algorithm for Powering

The NOMC algorithm (full multinomial ezpansion with dynamic programming) is
one of many asymptotically efficient algorithms for powering sparse polynomials. Several

alternatives are mentioned in section (6). The algorithm is expressed as follows:

Given a polynomial p = (a; + ... + a¢) and a power k to be computed.

return p*.

[1] If p is a monomial, power it and return the result
(eg. p= c:r]il ---1‘,,‘", where ¢ is a coefficient,

return p = cFz itk . p intk,

(2] Tabulate products of powers of each @, of total degree LEKTJ [ZL]
for i = 0,...,log(k) using the relation
altal?-- aft = (af'af - al) - (aftaf? - af), L= Ji+ KL

L+ +L=m, Ji+---+J=|F]. Ii+---+L=[F]

k
[3] Return 211+-~~+I¢=k (Il I)a{lag?...at[fq Il +---+I; = k.
I Iy

16

For k a power of 2. the number of monomials tabulated is

logz(:k) (size(p) + 5’%—1) < (size(p)+ k-1) +Z%: (size(p)+ i -1)
=1 size(p) — 1 size(p) - 1 i=1 size(p) -1
_ (size(p)+ k-1) N (size(p)+§) N (size(p)+ k-1)
size(p) - 1 size(p) — 1 size(p) — 1
Since each monomial is formed by multiplying two monomials from the table (using one
coefficient multiply and v exponent additions), the number of coefficient multiplications is
asymptotically the same as the number of monomials in the result. The higher-order term
continues to dominate for k£ not a power of 2. Each successive multinomial coefficient is
generated from a previous one using one integer multiply and up to one integer divide.
For a parallel implementation, the result monomials are broken into groups. Each

processor fills in what is needed in the monomial table to compute its group of monomials.

The coefficient multiplications are parallelized perfectly for up to

size(p)+ k-1]
size(p) — 1
size(p) + %
size(p) — 1

processors, since the overhead of constructing the lower-order monomials is dominated by

the cost of generating the k-order monomials. Forlarge & and increasing size(p), this bound

approaches
size(p)

processors. Beyond this, the second-order term

size(p) + %
size(p) — 1

becomes significant and restricts the asymptotic speedup. Therefore the best time for the

size(p) + %
size(p) — 1 .

multiplications is

47

For K processors the parallel mergesort requires a number of comparisons asymp-

totically proportional to

(size(p)+ k-1) N size(p)k
k!

size(p) — 1
for large k and increasing size(p). Therefore the best time for the additions and comparisons
is
size(p)*

O

).

5.6 Some Other Algorithms

As mentioned earlier, the FFT algorithm is the most efficient way known to mul-
tiply and power dense polynomials in serial. Several other algorithms were developed prior
to the FFT, including Karatsuba [36] [4], which works by divide-and-conquer: splitting the
two polynomials into equal-sized parts, and adding their partial products. Careful arrange-
ment of additions and subtractions eliminates the need to compute one partial product
for half-splitting, so O(n'°823) multiplies are performed (in the dense case). Partitioning
into quarters gives an algorithm requiring O(n'°8®) multiplies, etc. Another is the Eval
algorithm [36] [59], a conceptual predecessor of the FFT. Karatsuba appears reasonable for
sparse polynomials, in serial or in parallel, though it will degenerate to performing the same
operations as Simp for sufficiently sparse cases.

So far we have made no distinction between univariate and multivariate polyno-
mials. The Simp and NOMC algorithms depend on the input being uniformly sparsé: a
multivariate polynomial may be separated into sparse and dense components, and operated
on more efficiently by a combination of algorithms favoring sparsity and density. A poly-
nomial is nonuniformly dense in variable z if z appears raised to (almost) every degree up

to a maximum; for example, the polynomial
xnyO + In—lyl + .+ zOyn

is nonuniformly dense in both z and y, but is not uniformly dense since all terms of cumula-
tive degree < n are absent. If a polynomial nonuniformly dense in z is written as univariate
in £ with polynomial coefficients, a density-favoring algorithm can be used on the “back-
bone” of the polynomial, while a sparsity-favoring algorithm can be used to operate on the

polvnomial coefficients.

48

A recent paper by Alagar & Probst [4] used a combination of Simp, Karatsuba.
and FFT for multiplying multivariate polynomials. They found that Simp tended to out-
perform Karatsuba by about 40% for univariate cases. It is reasonable to believe that Simp
should perform even better for sparse polynomials. Alagar & Probst’s polyalgorithm should
be quite efficient for multiplying polynomials of arbitrary densities, since Simp, Karatsuba,
and FFT are each most efficient for different cases. Such a polyalgorithm should adapt well
to parallelism since the Simp. Karatsuba, and FFT can be parallelized individually. Alter-
nately, a general library for polynomial manipulation might include a parallel subroutine
for each algorithm so the user can decide based on information about the nature of the
polynomial data. The presence of parallelism will probably shift the “cutoff” points which
determine which algorithm will be most efficient, depending upon how well the multiplica-
tion, addition, and comparison operations parallelize with respect to each other.

For powering, several algorithms are presented in [35] [36] [74]. NOMC is an effi-
cient variation of the NOMB algorithm in [35]. The references focus on the asymptotically-
efficient BINB, for binomial ecpansion with half-splitting. This is a divide-and-conquer
algorithm partitioning the polynomial into the sum of two polynomials, and using the bi-
nomial expansion to form the result. Computing A" by multiplying A2 4™/2 is more
expensive than by computing A"~! - 4. Performing polynomial multiplications simultane-
ously will not balance the workload among the processors, since the binomial expansion
contains power-products where the exponents are balanced all different ways. Parallelism
can be used in performing each particular polynomial multiplication, but this would be ap-
plying parallelism to large numbers of small subproblems, accumulating process-spawning
overhead. NOMC was formulated as an alternative, spawning processes at the top-level to

divide the problem into equal-sized subproblems. one per processor.

5.7 Empirical Results

An experiment was run to compare parallelized versions of the Simp and Karatsuba
algorithms, on a 4-processor Alliant running Qlisp. These were implemented as recursive
algorithms with the Simp algorithm generating 2 processes per level of recursion and the
Karatsuba algorithm generating 3. Each program we tested uses the parallelized algorithm
up to a fixed number of processes. and the serial algorithm afterward. Table 1 shows the

result in milliseconds, garbage-collection time excluded. The codes are presented in the

49

appendices.

0

l Table 1 — Time to expand (z'° 4+ z'% +---+ z + 1)’ with 4 processors.]

processes Simp Karatsuba
1 3537 7589
2 1864 —_
3 —_ 2375
4 1067 E—
8 - 1100
9 — 1875

The Karatsuba algorithm achieved almost perfect linear speedup up to the number
of actual processors available. The Simp algorithm didn’t quite, but still ran strictly faster
as processors were added, for this input. The cutoff point for Karatsuba to outrun Simp
was between (z° + 2%+ ...+ z+ 1) and (30 + 2%+ -+ + 1) (a well-coded FFT
should outrun both for as low as (z% + 24+ .-+ + z + 1)3); unfortunately the Qlisp system
broke for problems that large.

A serial version of the powering problem ran in 1283 ms. on a VAX 11/785 with
(Franz Inc.) Common Lisp and 3537 ms. on the Alliant with one-processor Qlisp; the fact
that the Alliant is in other respects generally faster than the VAX suggests that Qlisp is

poorly implemented.

5.8 Poisson Series

A Poisson series is an expression of the form
Z Rp(z1, ey Ik)f(il,myl + . + {n.m¥n)
m

where f is the sine or cosine function, the ¢ terms are integers multiplying the indeter-
minates yi,....Yn. and the R terms are typically rational functions in the indeterminates
z1,...,Tk, over the integers. The product of Poisson series can always be represented in the

same form, by use of the identities

—

cos(x) cos(y) = =(cos(x — v) + cos(x + ¥))

(3]

sin(x) sin(y) = %(cos(x —y) = cos(x+¥))

Rt |

sin(x) cos(y) = %(sin(x - y)+sin(x+¥)).

Addition, differentiation, and various other operations are also closed under this system.
Because no indeterminate occurs both in R, (zy,...,zx) and in f(iymy1 + ... + tn.m¥n), the
system is closed under integration.

Multiplication of Poisson series is a significant component of celestial mechanics
computations [37]. Poisson series multiplication is similar to multiplication of sparse mul-
tivariate polynomials, though the product of two terms is two terms (rather than one) and
collapsing terms is trickier. Ordering terms on the f(iymy1 + ...+ in,mYn) component allows
similar terms to be combined since the Ry(z1,...,z) forms are additive.

The Simp algorithm extends directly to Poisson series, with the same serial and
parallel complexities. The FFT and Karatsuba algorithms hinge upon assumptions that no
longer apply. Since we are adding and multiplying rational functions for coefficients and
comparing small vectors of small integers for the arguments. the cost of coefficient operations
dominates, in practice, the argument computations. The Simp algorithm decomposes in
parallel as before using a number of processors proportional to the input length n, giving

a parallel complexity of n, multiplies and n;n, comparisons.

5.9 Conclusions

The parallel Simp and NOMC algorithms are efficient with regard to the coefficient
multiplication operations, vielding a reduction in parallel multiplications which is linear in
the number of processors. Since coefficient multiplication is by far the most expensive of the
scalar operations, for sparse polynomials of reasonable size we expect a near linear speedup
corresponding to the reduction in parallel multiplies. Provided “large” polynomials contain
“large” coefficients, the time spent performing scalar multiplications should continue to
dominate the cost of the remaining operations.

The parallel mergesorts used to combine terms are not asymptotically optimal
with regard to the total number of comparisons performed, nor is the reduction in parallel
comparisons linear with the number of added processors. For large numbers of processors,
the number of coefficient multiplications required to multiply polynomials of size n is re-
duced by a factor of roughly n, while the comparisons are reduced by a factor of only log(n).

For sufficiently “large” polynomials containing “small” coefficients and for large numbers

51

of processors, the comparisons and additions begin to dominate the cost, since they are not
so completely parallelized.

For a fixed number of processors and “sufficiently large” inputs, Simp and NOMC
approach a linear reduction in all operations. Since parallelism is useful only for relatively
large inputs - only then is the overhead of process subdivision and scheduling dominated by
the parallel components of the computation - it appears that these two algorithms should be
of practical value and attain a nearly linear speedup as processors are increased in number.

up to a threshold increasing in the size of the input.

Chapter 6

Parallel Multiplication of Dense

Polynomials

Of the various techniques for multiplication of dense multivariate polynomials.
one approach, based on the FFT, emerges as the best. Variations on the FFT can be
parallelized efficiently on both general-purpose multiprocessors and special-purpose circuits.

Some practical issues of applving the FFT are discussed.

6.1 Introduction

Polynomials repre'sent an important class of expressions in algebraic manipulation.
Efficient operations on polynomials are requisite for an efficient algebraic manipulation
system.

The FFT algorithm for multiplying and powering dense polynomials is the most
efficient known, demonstrating superiority to other algorithms (such as Ewal [36] [59] and
Karatsuba [4] [36] [59]) both in asymptotic analysis and (except for very small cases) em-
pirical evaluation. It has been conjectured to be optimal.

In designing a parallel system for algebraic manipulation, using parallelism in
performing polynomial operations is one of the more attractive techniques to keep processors
computing productively during substantial amounts of computation. The FFT algorithm

shows great promise as a parallel algorithm running on shared-memory or message-passing

multiprocessors.

(&1}
[§)

6.2 Dense Polynomials

We will refer to the number of nonzero monomial terms in a polynomial p as
size(p). We compute degree(p) (the total degree of p) by summing the exponents in each
monomial, and taking the maximum of these sums. This definition of total degree is used
in papers on Grobner-basis reduction [18].

Alagar & Probst [4] define the term uniformly dense to describe multivariate poly-
nomials whose size is nearly maximal for the given total degree. The maximum size of a

polynomial for a given total degree is given by the relation

T B d o
size(p) < Z (L) (ecre.ee(p)) (6.1)
i=0 1 1

where v is the number of variables. For univariate polynomials this reduces to
size(p) < degree(p) + 1. (6.2)
For v variables where exponents run from 0 to n in each variable.
size(p) = (n + 1)". (6.3)
Under multiplication and powering the degree grows with the relations
degree(p1p;) = degree(p;) + degree(p;) (6.4)

degree(pX) = k - degree(p). (6.3)

For completely dense univariate polynomials, the size and degree grow linearly under mul-
tiplication and powering.

The complementary term nonuniformly dense is used to describe a polvnomial
such that each variable appears raised to nearly every degree, but the number of terms it

not maximal. An example is the convolution

280+ 24yl 4y 20

where only terms of total degree d are present, though the degrees of z and y range fro 0

tod.

6.3 The Basic FFT Algorithm

The FFT algorithm {2][14] [65] [83] is useful for multiplying dense polynomials with
coefficients from the field of complex numbers or a finite computation structure (typically the
integers modulo a prime). The precision or size of the modulus must be decided a priors,
to be at least as large the precision of the result. This is an inconvenience in algebraic
manipulation systems where arbitrary integer coefficients are commonly used.

The FFT works by computing the discrete Fourier-Transform of the univariate
polynomial p(z), which is the vector [p(w?),..., p(w*~1)] where d is the degree of p(z), the
size of the transform s > d + 1, and w is some principal sth root of unity. The inverse of
the transform is computed in a nearly identical way; effectively the transform vector can be
regarded as the coefficients of the polynomial p'(y) = ¥ p(w')y* and the vector of coefficients
of p(z) is [p'(‘.r,'-O) et pl(“’:“)

corresponding values together. and converting the result back, the product polynomial is

]. By evaluating two polynomials at w0...w*" 1, multiplying the

produced. Likewise, powering is performed by evaluating the polynomial, powering each
resulting value, and converting back to get the powered polynomial.
The (Cooley-Tukey) Fast Fourier Transform (FFT) is the basic algorithm for

computing the discrete Fourier transform in time O(dlogd). It works as follows:

Let s bea powerof 2, s >d+1

Let A = [ao,...,as—1] be the coefficients of p(z) (padded with zeros if

necessary) in some computation structure C.

Let A’ = [ay, ...,a,_,] be the coefficients in the transformed polynomial
P'ly).

Let w be a primitive sth root of unity in C.

A"'= FFT(A,s,w).

Recursive FFT(A.s,w):
[1] if s = 1, return a;.
[2] split coefficients by index into even-indexed sequence B and
odd-indexed sequence C.
3] B' — FFT(B.s/2..%). C' «— FFT(C,s/2.?).

O
(&1}

(4] for: —0tos/2-1do
Al — Bl +u'Cl
ALy = Bl wIeC,
[5] return A"

Some multiplication and addition operations are hidden in the powering and the manipula-
tion of the indices. Asymptotically, ©(dlog d) additions and multiplications are performed
since each step of the recursion performs work proportional to the subproblem size, and the
recursion works on subproblems of exactly half the size. d must be rounded up to a power
of two. Numerous tricks can be used to trim the number of operations [2] by a constant
factor, specifically by “unravelling“-the recursion and using bit-operations to permute the

coefficients as necessary. An iterative form of the FFT can be stated as follows:

Iterative FFT(A,s,w):
[1] for I « 0 to lg(s) do
(2] fori—0tos—1dot; — 4;11.
[3] forie—0tos-1do
ri— tiA(—2Us"J—l) + w‘a—i—l-bitrevene(l) .t
(4] for I « 0 until s — 1 do 4,

bitreverse(l

iv(2lisil=t)

)<—Tl.

[5] return A4'.

where |lgr] is the greatest integer no larger than the log base-2 of z, bitreverse(z) is the
reversal of the bits in « (within the fixed word length), and A and Vv are bitwise and and
or, respectively.

The Good-Winograd algorithm [14] [83] provides another decomposition for cases
where s is not a power of 2, but is a product of two relatively prime integers of roughly
equal size. The Good-Winograd algorithm factors the degree into two relatively-prime

numbers and treating the polynomial as if it were bivariate (the multidimensional algorithm

(@]
D

is described in section (4)). Powers of z are implicitly replaced by power-products of the
two new variables. Either the Good-Winograd or the Cooley-Tukey algorithms can be
applied to the subproblems, depending upon their size. The complexity is the same as the
Cooley-Tukey algorithm.

If we consider the finite-field FFT in terms of bit operations, rather than integer
operations [2], the complexity reads somewhat higher. Letting b be the number of bits
required to hold the final answer (i.e. b < [2lg(z)lg(s)] for multiplication. where z is the
number of bits required to hold the largest of the coefficients of the operands, orb < klgzlgs
for raising the polynomial to power k), and s be a power of 2, we can operate in the ring
of integers modulo m = w*2 + 1 > b, where the principle sth root of unity w is a power
of 2. Fixing w as 28187 satisfies this formula (for multiplication); then the modulus m
gives us a bit field of length.b’ € O(slgz). The c;::st of b'-bit addition, then, is O(b'); b’-bit
multiplication by w (a power of 2) can also be performed in O(b’) bit operations. Thus the
bit-complexity of the FFT and inverse FFT is O(s?lg(s)1g(z)).

Since the DFT is a linear transformation of coefficient vectors to “value” vectors.
addition can be performed in either domain. Compound expressions of addition. multipli-
cation, and powering operations on polynomials can be performed efficiently by transform-
ing the initial polynomials into their corresponding DFTs and using pointwise addition.
multiplication, and powering operations. The necessary number of evaluation points and
precision must be computed ahead of time, as there is no known way to increase the size of
the transform that is better than converting to coefficient form and computing the larger
size transform. In fact, increasing the number of evaluation points cannot be significantly
easier than computing the DFT, since we could otherwise derive a faster DFT algorithm
by evaluating the polynomial at one point and “filling in” points until the s-point DFT is
formed.

Differentiation and integration of polynomials in DFT form are apparently most
easily done by conversion back to coeflicient form, performing the operation, and converting
to DFT form again. In fact, a few inexpensive “standard” operations appear to be harder
in the DFT form, such as identifying a zero polynomial. and computing the value of the
leading coefficient. Identifying a zero polynomial takes time linear in s, since each evaluation
point must be zero. Finding the sign of the leading coefficient requires finding the non-zero
coefficient of highest degree, which requires looking at (and generating) all the coefficients

in the worst case.

(61}
~1

6.4 The Multivariate FFT

The multivariate DFT of a v-variate polynomial p(zi,...,Z,) is the v-dimensional
vector [p(wy', ...,wy")], where i ranges from 0 to di. di is the highest degree to which the
kth variable occurs in p (padded out as necessary). wy is a principal dith root of unity in
the computation structure.

The multivariate DFT is computed by repeatedly applying the FFT to each vari-
able is turn. Initially pis a v-dimensional coefficient vector [pi;..i, J: in the kth iteration the

partially transformed vector

d)_ dk—l

. i1J ST TR Y
Z Z iy iyl AR L PR

Nn=0 jk-1=0

is mapped into
dy

di
Z “ae Z puz u.«'liljl . .wkikjk
n=0 Jk=0
The kth mapping amounts to [],; d; FFTs of size dx + 1. adding up to a total amount of

work proportional to

zu: dk 1ogdkH d,’,
k=1

itk

which for uniform d; = d reduces to ©(d*logd").

6.5 Sparse Polynomials

When a polynomial is not uniformly dense, i.e. contains few nonzero terms rela-
tive to the maximum for the given total degree, there are other algorithms which may be
more efficient for multiplication and powering than the FFT. For polynomials which are
nonuniformly dense, some combination of sparsity- and density-favoring algorithms may be
used (chapter 5).

A recent paper by Ben-Or and Tiwari [9] describes an algorithm for sparse inter-
polation taking O(t?log?(t) + log(nd)) operations, where ¢ is the number of nonzero terms
in the result, n is the number of variables, and d is the maximum degree to which any vari-
able occurs. A sparse analog to FFT multiplication or powering can be constructed which
takes operations dependent on the number of nonzero terms. However, algorithms based of

taking a direct cross-product (for multiplication) or multinomial expansion (for powering)

oA |

38

of terms are more efficient, taking a number of operations proportional to the number of
terms in the result (chapter 5). (Furthermore, the sparse interpolation algorithm requires

the use of sequences of prime numbers, which are not particularly cheap to compute).

6.6 Parallel Implementation of the FFT

Both the Cooley-Tukey and the Good-Winograd algorithms parallelize effectively.
Step 3 of the recursive algorithm can be parallelized to give a parallel running time of
O(d + %log %) for k processors, adding up to time ©(d) for k¥ € ©(d) processors. This de-
composition is suitable for message-passing multiprocessors, where each process subdivides
the problem and initiates a new process for each subproblem. The more intelligent approach
would be to have one process divide the coefficient array k ways in séep 2 and apply the
serial iterative algorithm to the subprocesses. The combining step 4 can be performed re-
cursively in parallel as before. The asymptotic complexity remains the same but data traffic
between processes is reduced, resulting in a lower constant overhead. For a fixed number
of processors and “sufficiently large” input. the %log% term dominates so the speedup is
asvmptotically linear in %.

On a shared-memory multiprocessor, the more efficient iterative algorithm can be
parallelized in (looping) steps 2, 3, and 4. giving a running time ©(logd) for ©(d) processors.
The appendix gives a Lisp program implementing this version of the parallel FFT .

Shared memory is not absolutely necessary for an efficient parallel FFT. The it-
erative algorithm only requires certain combinations of values at each step; specific permu-
tation networks with nearest-neighbor shared memory are sufficient. An example of such a
processor is the BBN Butterfly [21].

Kung [60] suggested using special-purpose VLSI hardware for computing the FFT
and other functions. Such circuits [14] can be very fast, but are only good for fixed-sized
input and finite computation structures with bounded modulus. Such hardware would be
useful for raising the bottom level of the FFT recursion from size 1 to the size s handled by
the FFT hardware, with a resulting time complexity of @(nlog 2 + Zlogs) for O(slogs)
hardware. The speedup is less than linear in s for increasingly large inputs. It is unlikely
that special hardware would be cost-effective, and would certainly be used only with great

inconvenience.

78 |

6.7 Representational Issues

Using linked lists of monomials to represent input polynomials (as is done in the
Macsyma general representation [34]) would restrict parallelism the same as the lack of
shared memory, since the list must be traversed in serial to separate the even- and odd-
indexed coefficients on each level of the recursion.

Converting from linked list form to array form takes linear time and cannot be
parallelized in any reasonable way. Conversion from array form to linked lists can be done
in parallel by forming sublists from contiguous sections of the array and splicing them
together.

For dense polynomials, linked list representations not only waste time and inter-

fere with parallelism, but waste space as well. Since most systems assume sparseness by

default, a conversion to and from the dense representation should be fast, and a suite of
operations entirely using dense DFT representations and dense coefficient operations should

be considered.

6.8 Conclusions

The FFT is asymptotically the most efficient algorithm known for multiplication
and powering of dense polynomials, in serial and in parallel. Its serial effectiveness has been
tested in [36] [14] [4], and has been used in conjunction with other algorithms for “sparse”
polynomials [4] for a general polynomial multiplication algorithm. A simple modification
of the serial approach is suitable for parallelism.

An algebraic manipulation system for solving large problems should include FFT-
based routines for multiplying and powering large dense polynomials. Likewise, an algebraic

manipulation system using multiple processors should utilize the parallel FFT as well.

Chapter 7

Parallel Algorithms for

Grobner-Basis Reduction

We present a variety of ways to parallelize Grobner-basis reduction, ranging from
incorrect to ineffectual. We demonstrate the superiority of the method used by Zacharias
[84], which is not readily parallelizable. We discuss the efficiency issues of generating reduced

Grobner-bases.

7.1 Introduction

Grobner-basis reduction would be a powerful tool for solving problems in con-
nection with systems of multivariate polynomials [18] [17] [82] if it weren’t so costly. Two
important uses are for solving systems of nonlinear equations with arbitrarily-many variables
and arbitrary degree, and for simplification of polynomial expressions subject to polynomial
equality side-relations. A number of important problems can be reduced to Grobner-basis
computations, although this is not necessarily an efficient reduction [18]. It can be used in
conjunction with other (more specialized) techniques as part of a general equation solver
[42].

Informally, given a field K and set of variables {z1,...,z,}, a set of polynomials
B over the ring K[zy,...,2,) defines an ideal within the ring. The ideal is the closure of B
under addition and multiplication by elements of the ring. Geometrically, the ideal is the
intersection of the solution sets of the polynomials in B. The dimension of the ideal is the

dimension of this intersection in n-space; the dimension is bounded from below by n-|B| for

60

61

any basis B (and, of coutse. zero), and from above by n.

Given a well-founded ordering relation between the products of the variables, the
Grobner-basis reduction maps each (finite) basis B into a canonical (finite) set of polyno-
mials B’ over the ring which generates the same ideal.

Buchberger presents a simple algorithm for producing the reduced basis. As we
shall see, the algorithm cost can be quite large. The (at least) exponential time complexity
[64] holds up in practice. As a result, any opportunity to speed up this potentially highly-
useful process is welcome.

We programmed some plausible ways to run the algorithm in parallel, including a
method suggested by Watt [81]. Experiments suggest that an efficient serial method such as
used in the Macsyma package [84] is difficult to beat, in practice, with any modest amount

of parallelism. These disappointing results are explained in this paper.

7.2 Grobner-Basis Reduction

Formally, we describe the Grobner-basis reduction process as follows: Given a field
K let R = K[z,,...,z,] be the ring of polynomials in n indeterminates or variables over K.
Often we take K as the rationals. A monomial term has the form a = kz{'..2% .k € K.
The degree of a monomial is the sum of its exponents e; +...+e,. The degree of a polynomial
is the maximum degree over all its monomials. Let “<” be a total order on the monomial
terms that is preserved under multiplication by a variable. Each polynomial can then be
thought of as a lead term (the dominant monomial) plus the remaining monomials. Two
possible orders < are lezicographic and total degree.

In lexicographic ordering, we order the variables z;...2 50 Z5, < T, < ... < Z1,
for some permutation 7. For two monomials a # 3, we say o < 3 if a is of lower degree
than 3 in the most dominant variable in which the exponents of a and 3 differ. In total-
degree ordering, & < 3 if the (cumulative) degree of a is less than that of 3; ties are broken
lexicographically.

The ordering generalizes to polynomials by internally placing the monomials terms
in decreasing order. A polynomial « is < a polynomial 3 if the leading term of a is < the
leading term of 3. Ties are broken by comparing the next terms in sequence.

The Grobner-basis reduction consists of two steps: generation of S-polynomials,

and reduction to normal form. Given polynomials p and ¢, the S-polynomial of p and ¢

62

is ap — bg where a and b are chosen so that ap and bg have the same leading monomial.
which is the least common multiple of the leading monomials of p and ¢. Thus we make
the leading terms cancel.

A polynomial p can be reduced (with respect to a basis B) to a polynomial ¢ if
g < pand there is a monomial ¢ and a polynomial r € B such that p—c¢r = ¢. A polynomial
p is in normal form if it cannot be reduced with respect to B.

The Grobner-basis reduction algorithm begins with an initial basis B, and proceeds
by generating pairwise S-polynomials of the elements of B, entering them into B, and
reducing each element of B with respect to the remaining elements of B. It completes when
all the basis elements in B are reduced with respect to each other and the S-polynomial of
each pair in B reduces to zero.

The (Buchberger) algorithm is shown here in figure 1. In section 4 we will show
some ways of parallelizing this algorithm. Although there may be better approaches, we
have not found substantially better algorithms to achieve the same result. We discuss the

complexity of the Grobner-basis reduction problem in the next section.

Input: A set of polynomials F over R, an ordering <
Output: G, a set of polynomials representing the reduced basis of the

ideal generated by F.

G:=F;
B:= {(fi- o)1, f2 € G, L # fa}
While B # ¢ do
let (f1. f2) := a pair in B;
B:=B-{(fi.f2)}x
h := SPolynomial(f.f2,<);
k' := NormalForm(G.h);
if A" # 0 then
B := Bu{(g,h")|lg € G}
G := Gu{h'};

Figure 1 — Buchberger’s algorithm for performing Grobner-basis reduction

63

7.3 Complexity

Tight upper and lower bounds on the complexity of Grobner-basis reduction are
not known. The algorithm in figure 1 may not be the most efficient. Bounds on the size of
the reduced basis are presented in [67] and [54]. Given a basis B, the cardinality m is the
number of polynomials in B, and s is the dimeénsion of the generated ideal. The degree d
is the maximum degree over all the polynomials in B. The alphabet is the set of variables,
and has size n. Let B’ be the reduced Grobner-basis of B. An upper bound on the degree

of B’ [67] is
O(((n+1)(d +1) + 1)+
One worst-case lower bound on the degree of B’ [67] is
d"1(d? + 1)

and another worst-case lower bound on both the degree and cardinality of B’ [54] is

22"

These bounds consider only the nature of the basis produced. The problem of ideal member-
ship, and hence the problem of generating a reduced Grobner-basis, is hard in exponential
space [64]. This yields an exponential lower bound on the time required to produce the
reduced Grobner-basis, but there is no reason to believe any algorithm can achieve any
such efficiency.

In practice, finding the reduced Grobmner-basis of a small set of polynomials can
take a huge amount of time. For example, in test case #6 we had three polynomials in
five variables, where the maximum total degree of any monomial is two. Computing the
reduced basis took over 6 minutes on a VAX 8600, not including garbage-collection time.

Predicting how long the reduction will take is rather difficult. Between test cases
#5 and #86, the difference in computing time was a factor of over fourteen, caused by the

introduction of a single variable:

x2+y2+32—t
y-y+z-z2-z-1
r?y? -1

k4N

64

(The basis is taken over K(t)[z,y, z] in the first example and K(s,?)[z,y, z] in the second).
The cost of the reduction is highly sensitive to the form of the initial (input) basis. Two
sequences of reductions to the same final basis may take yvildly different amounts of time if
they produce two distinct intermediate bases at any stage.

In most cases the length of time required to reach the final basis will depend upon
the order in which the S-polynomials are generated and reduced [18]. The ordering of the
terms of the polynomial will diréct the order in which reductions are performed. The choice
of total degree or (which) lexicographic order will make a significant difference in the time
taken (see section 7). For example, in a set of polynomials with a dependent variable, taking
that variable as dominant in a le;ticographic ‘order will cause it to be eliminated entirely,
producing a simpler basis. This should take longer in any other ordering, since that variable
will only be eliminated as a secondary priority.

Buchberger’s algorithm amounts to a search for the reduced basis by testing at
each stage whether new S-polynomials reduce to 0 or not. Each step of producing and
entering a reduced S-polynomial causes the intermediate basis to converge toward the final
basis, although the process is very slow. The Buchberger algorithm doesn’t specify which
choice of two polynomials are to be operated on. We will see later how two algorithms
that order the S-polynomial operations and reductions differently will differ in the number
of such operations they perform. Under different test cases each can generate fewer S-
polynomials or require fewer reductions than the other. A fruitful direction may be to find
some good heuristics that can be used to steer the derivation in a more efficient direction.
In some ways it is reminiscent of the Simplex algorithm, which repeatedly selects a pivot
equation and runs until an optimal state is found. The discovery of efficient alternatives to
Simplex coupled with our poor understanding of the complexity of Grobner-basis reduction
leaves the nagging suspicion that there may be methods superior to Buchberger’s, at least
for cases of practical interest. Intuition can sometimes be helpful in suggesting subdivisions

of problems which save enormous amounts of computation.

7.4 Parallel Variations of Buchberger’s algorithm

We have seen that the Grobner-basis reduction in general has been shown to be
inherently hard. The algorithm stated by Buchberger is quite simple. The structure of
the inner loop suggests that it might be made to run in parallel; further, regarding the
algorithm as a search allows us to suppose much of the work is divided between unrelated
activities, such as generating pairwise S-polynomials and reducing various basis elements
against each other. For example, confirming that a basis is in reduced Grobner form can be
parallelized quite effectively. The S-polynomials can all be generated and reduced against
the basis elements simultaneously, while the basis elements are reduced against each other.
The basis is in reduced Grobner form if and only if all the S-polynomials reduce to zero
and no basis element is reducible. This leads us to propose these three ways to parallelize

Grobner-basis reduction:

[a] Compute the S-polynomials in parallel, and reduce the basis in serial.

[b] Generate the S-polynomials one at a time, and use the result to reduce

each basis element simultaneously.

[c] Divide the process into alternating stages of S-polynomial generation

and reduction, and use parallelism in each stage.
We can add two other unrelated ways of using parallelism:

[d] Repeatedly find the reduced Grobner-bases of different subsets of the

basis and merge them, until the basis converges.

[e] Simultaneously reduce the basis under different orderings.

On first examination method [c] appears to be the most promising. In fact, this
was proposed by Watt [81] in his Ph.D. dissertation. Methods [a] and [b] look quite a bit

weaker. We will see the faults of method [c] and discuss [a] and [b] as alternatives. In

66

section 6 we will show some empirical results. [e] is deferred to section 7.

Consider [d]. An important fact about the Buchberger algorithm is that key
polynomials are formed which cause the basis elements to reduce drastically. For example,
once a variable is isolated so it appears only in the head term of a polynomial it will cause
all other instances of the variable to be eliminated. This elimination property suggests that
the basis should be kept as far reduced as possible so reductions can take effect as soon
as possible. Splitting the basis will deprive some polynomials of the chance to get reduced
until a later stage. It is likely that such a technique would take much longer to converge
because of this. Alternately, the separate bases can be merged and the result fully reduced,

but this converts the algorithm to one more like [a).

G"= ¢;

G = F;

while G # G’ do
G = G;
B:={(fi,)i, 2 €G, fL # f2}
H = G;

forall (f1, f2) € B do
h := SPolynomial(f{,f2);
h' := NormalForm(G,h);
if h' #0 then H := HU {h'};
G:=¢;
forall h € H do
h' := NormalForm(H — {h}.h);
if ¥ # 0 then G := GU {h'};

return G;

Figure 2 — Watt’s parallel algorithm

The method [c] proposed by Watt was expressed as the algorithm shown in figure

(S

Unfortunately it doesn’t work. The logic seems fairly straightforward: simultaneously

-

67

generate each S-polynomial and reduce it with respect to the previous basis. Add these
new elements to the basis, and fully reduce the basis by simultaneously reducing each basis
element with respect to the other basis elements until nothing reduces any further. The
problem is that reducing basis elements with respect to each other produces the wrong

results. A crude example is to start with the same element twice:

r+y
T+y

The reduced Grobner-basis is the set {z+y}. But reducing the two polynomials with respect
to each other causes both to vanish, giving an empty basis. This is wrong. The essential
detail is that each polynomial must be deleted as it is reduced; Buchberger’s algorithm enters
the reduced version back into the basis immediately, to help reduce the remaining elements.
Alternatively, the newly reduced element may be held outside the basis to be added later.
Such an approach resembles suggestion [d], and would probably delay convergence.

Suggestions [a] and [b] are attempts to salvage the ideas from [c]. Tests of these
ideas are presented in section 6. It is essential that they keep the basis fully reduced after
the S-polynomial(s) stage; otherwise convergence is delayed. It was found that on most of
the test cases either space was exhausted or the computation took too much time if the
basis was not kept reduced.

The insistence on keeping the basis fully reduced limits our ability to parallelize.
We cannot simultaneously reduce all the elements with respect to each other. Thus we have
some implicit serialization going on; we need to treat each basis element with respect to a
set that is changed by our treatment of the previous basis element. Let us look at the other
methods in detail.

Suggestion [a] computes the S-polynomials in parallel:

G’ = ¢;
Repeat until G = G’
G' = G;
Simultaneously generate all S-polynomials from basis G,
and reduce the result w.r.t. G;

Insert each S-polynomial into G;
Fully reduce G;

68

Return G;

There are two problems with this. First, each new S-polynomial might reduce the basis
enough that the other S-polynomial operations are redundant. This will again delay the
convergence. Second, reducing the basis in serial will add a serial step to the process,
limiting the effect of parallelization. As we shall see, the performance of this algorithm was
generally poor.

Suggestion [b] computes each S-polynomial one at a time, assuming that the basis
is changing significantly each time a S-polynomial is produced and used to reduce the other
basis elements. It is reduced against the basis, and used to reduce each of the remaining
basis elements in parallel. This may produce new reduced elements, which are then put

through the same process:

Repeat‘ until G no longer can change
Choose two polynomials f & ¢ from G;
Take their S-polynomial h;
Reduce h w.r.t. G;
Simultaneously reduce each element of G w.r.t. h;
Insert h into G
Reduce G w.r.t. itself;
Return G

The problem with this is that in the later stages of the procéss, most S-polynomials will
reduce to zero, so the parallel step will not be used. In the earlier stages of the process,
‘most S-polynomials will have degrees too large to be used for reduction, even after they are
reduced. The only time the parallelism pays off is when the “magic” S-polynomials appear
which cause the basis to begin collapsing. As we will see later on, the performance is again

quite unimpressive.

E; N

69
7.5 Comparison with the Zacharias Implementation

Gail Zacharias [84] wrote a Macsyma package for performing Grobner-basis reduc-
tion. It employs some interesting tricks which give it better performance than the serial
or parallel versions of the algorithms presented previously. These “hacks” interfere with
parallelism, so cannot be used in the other algorithms.

The basis is not kept in fully reduced form. Newly formed S-polynomials are fully
reduced by the old basis, but the old basis is not immediately reduced by the result. This
is done as part of the later stages. If one element’s head is reducible by the other, the S-
polynomial will be the reduction of the first with respect to the second. Thus full reduction
is accomplished over several iterations. The Zacharias algorithm eliminates the step where
the new S-polynomial is used to reduce the basis elements. This is the pivotal step in our
second parallel algorithm, which turns out to be a liability.

When the S-polynomial operation reduces one of the elements, we do this destruc-
tively so subsequent S-polynomial operations simply pick up the reduced version. This is
incompatible with our algorithm for producing all S-polynomials in one parallel sweep, since
all these destructive operations would interfere with each other. The basis must be held in
a reduced form between S-polynomial sweeps in our first parallel algorithm. When we do
not do so, the process often does not converge within a reasonable amount of time. In some
sense we are reducing the basis and generating S-polynomials “at different rates”. If we
do not do enough reduction, the S-polynomial operations will expand the basis indefinitely.
If we do all the S-polynomial operations in parallel, we slow the rate of reduction since
reductions are not performed immediately. We must make up for this by taking extra effort
to reduce the basis between S-polynomial sweeps.

The S-polynomial of two basis elements z and y is not formed if there is a third
basis element z such that the leading term of z is < the LCM of the leading terms of
z&y, and the S-polynomials of z,2 and y, 2 have been formed. This criterion is defined
by Buchberger [18] (and is (favorably) put to the test in Czapor and Geddes [29]), along
with the restriction that the S-polynomial of &y is not formed if the two have no common
factor. The Zacharias package only partially implements the second restriction. Czapor
and Geddes report a fairly consistent factor of two speedup due to these restrictions. If
anything, these restrictions should reduce the amount of parallelism by reducing the number

of S-polynomials generated at each step.

k28

7.6 Empirical Results

We show the performance aspects of three algorithms. These are referred to as
Zacharias, Parallel Reduction, and Parallel S-polys, respectively. The first is the program
written by Gail Zacharias, using the techniques described in the previous section. The
second is method [b] which uses each new S-polynomial to reduce the remaining basis ele-
ments in parallel. The third is method [a] which produces all S-polynomials in simultaneous
sweeps. Both the Parallel Reduction and Parallel S-Poly methods keep the basis fully re-
duced.

The programs were tested by coding them in Franz Lisp and loading them into
Zacharias’ Macsyma package for Grobner-basis reduction. These were loaded into Vaxima
version 2.11 running under Franz Lisp Opus 42 and Unix 4.3 BSD, on the Vax 8600 “Van-
gogh” at UC Berkeley. The test cases used are labeled 1-12, and are shown in the appendix.
Strict lexicographic ordering was used, following alphabetical order.

Table 1 shows the running time of the three algorithms, in seconds. The serial
time is shown for all three, which is the total time (minus garbage-collection time) to reduce
each basis. The “parallel” time is computed by timing each iteration of the parallelizable
loops, and only counting the slowest iteration. The Zacharias algorithm generally ran much
faster than the other two, as much as 36 times faster in case #9. It only ran slower in case
#4. Case #12 exhausted memory space in the parallel algorithms.

The “parallel” algorithms exhibited very little parallelism. The speedups in table
1 are generally insignificant. Table 2 shows the maximum and average parallelism for their
executions. The “maximum” parallelism is the number of iterations performed by the par-
allel loop in a given activation. In the Parallel Reduction algorithm a low parallelism meant
that there were few polynomials in the basis with degree higher than the new S-polynomial.
In the Parallel S-Polys algorithm a low parallelism meant that the basis consisted of few
elements at any given time. The “average” parallelism is the serial time divided by the
‘ parallel time. It tended to be very small.

Table 3 shows the nun;ber of S-polynomials generated and reductions performed
by the algorithms, as well as the total number of terms in the result. The speed does not
correlate well with either the number of S-polynomials or the number of reductions; the
amount of time each of these operations takes, however, depends on their sizes. The total

number of terms in the final basis is a strong hint of the time taken, although there may be

very large intermediate polynomials which collapse down by the end.

The number of S-polynomial operations gives an idea about the size of the basis.
In no case did it get very large. This is a disturbing observation about the problems; the
algorithm can take a long time even though the basis is always small and remarkably few S-
polynomial operations occur. Since these “sparse” problems are so expensive in practice, the
“bad” cases will probably be even worse. As the number of polynomials, their degrees, and
the number of variables increases, it is likely that the number of terms in the intermediate

polynomials will grow much more quickly.

There seems to be very little easy parallelism in the light of our studies. Most
of the time is probably spent scanning the terms of a polynomial to find monomials that
reduce. This operation changes the lower-order monomials, so subsequent reductions may
be possible. This cannot be done to-each monomial simultaneously since new monomials
get introduced with each reduction. The process will still be serialized by the introduction

of new, possibly reducible, monomials with each step.

An interesting fact to note is that the relative number of S-polynomial and reduc-
tion operations changes from case to case. As we stressed before, simultaneously taking
all S-polynomials of the basis will probably slow convergence since we lose the benefit of
reducing the basis immediately each time an S-polynomial is generated. But cases #4 and
#10 violate this intuition; fewer S-polynomials get generated under the Parallel S-polys
algorithm than under the other two. Furthermore, in case #4 it even uses fewer reduction
operations. It goes to show that choosing an optimal order for forming S-polynomials and

reducing is not an easy thing to do.

Table 1 -~ Comparative running times (in seconds)

Test | Zacharias Parallel Reduction Parallel S-Polys
case time serial time | parallel time | serial time parallel time
1 0.316 0.600 0.600 0.416 0.316
2 0.416 1.083 1.066 1.250 0.933
3 0.216 0.383 0.366 0.383 0.333
4 1.716 1.316 1.233 0.833 0.766
5 27.266 125.533 119.616 171.750 108.250
6 381.950 1102.650 1040.467 1376.117 1001.434
7 11.350 34.850 32.817 36.867 36.867
8 31.416 569.983 569.033 541.300 523.050
9 9.416 416.450 277.817 342.516 337.033
10 69.417 727.817 714.700 147.550 133.717
11 173.234 641.867 641.334 547.917 386.267
12 | 3473.466 * * * *

Garbage-collection time has been deducted from the execution.
In case 12 the two parallel schemes exhausted memory space before finishing.

Table 2 ~ Estimated parallelism in Parallel S-poly
and Reduction algorithms
Test | Parallel Reduction Parallel S-Polys
case | maximum | average | maximum | average
1 3 1.00 6 1.32
2 4 1.02 3 1.34
3 4 1.05 3 1.15
4 3 1.07 6 1.09
5 4 1.05 3 1.59
6 4 1.06 3 1.37
7 3 1.06 1 1.00
8 3 1.00 1 1.03
9 4 1.50 3 1.02
10 5 1.02 3 1.10
11 6 1.00 15 1.42

-]

0o

[Table 3 — Other execution statistics

Test Zacharias Parallel Reduction Parallel S-Polys # of terms
case | S-Polys | Reductions | S-Polys | Reductions | S-Polys | Reductions | in result
1 3 10 10 35 9 33 . 12
2 1 24 4 65 6 110 23
3 1 25 5 50 6 54 12
4 14 225 12 92 9 82 13
5 2 188 4 187 6 362 210
6 2 189 4 189 6 365 918
7 2 108 1 43 1 43 7
8 1 14 2 23 2 23 130
9 10 330 5 215 6 286 26
10 9 100 8 90 6 92 131
11 14 159 25 251 28 303 110
12 10 250 ? ? ? ? *

* Case #12 generated too many terms to deal with, well in the thousands.

7.7 Reducing Under Alternative Orderings

An alternative way to introduce parallelism is to simultaneously reduce a basis
under different orderings, using whichever result comes first. This approach is referred to
as collusion in [81]. Table 4 compares the time to reduce for several of the test cases (the

table is incomplete because some cases took an excessive amount of time).

| Table 4 — Times (in Seconds) to Reduce Under Different Lexicographic Orderings]

Test | Time | (Max Time)/(Min Time) Ordering
1 0.316 126 lz>y>z2>t> s
0.233 T>z>YyY>t>s
0.300 y>r>z>t>s
0.250 y>z2z>r>t>s
0.250 z>T>y>t>s
0.250 z>y>c>t>s
2 0.416 409 [z>y> 2
0.416 T>z>y
1.700 y>zc>z
0.583 y>z>z
0.849 2>z >y
0.499 z>y>z
3 0.216 486 |z>y> =2
0.182 T>2>y
0.550 y>zrz>z
0.866 y>z>rz
0.482 z>zT >y
1.049 z>yY>z
4 1.716 102 |z>y
1.749 y>z
5| 27.266 1600 jz>y> =2
29.033 T>z2>y
27.900 y>zT >z
27.399 y>z>z
436.250 z2>zT >y
424.983 z>yY>z
7 11.350 841 iz >y
1.349 y>z
81 31.416 105 1z>y
33.049 y>r
9 9.416 13jz>y>z
9.817 T>z>y
10.450 y>zr>z
10.617 y>z>rzr
10.133 2>z >y
10.183 z>y>z
11 } 173.234 6622 |z >y >z
18.450 zT>z>yY
72.434 y>z>z
7.967 y>z>z
2.616 2>z >y
25.434 z>y>z

-

Ut

Cases 2, 3, 5, 7, and 11 were very sensitive to the ordering used. Case 11 is
interesting in that no “intuitive” pairwise ordering between the variables seems to explain
the results. Cases 5 and 7 appear to be strongly sensitive to the dominant variable. In the
remaining cases 1, 4, 8 and 9 the ordering was of little consequence. There may be useful
heuristics for selecting a reasonably efficient ordering given the form of the expressions in
the initial basis.

Using one processor for reduction under each ordering would generate a solution
in as much time as the fastest of the orderings. This would yield a reasonable speedup for
cases 2, 3, 5, 7, and 11 compared to using the wrong ordering. If the number of processors
is considered, cases 2 and 3 would gain at most a speedup of 4 for 6 processors, which is
hardly worth the effort. Comparing the minimum time to the average time in cases 3, 7,
and 11 shows that the “average” order would still take at least as long as the fastest time
times the number of processes.

This technique is only useful if any reduced Grébner basis is sufficient. For exam-
ple, if we want to know if two sets of polynomials generate the same ideal, we reduce both
and check to see if the reduced forms are identical. If we reduced each under a different
ordering, it is unlikely that the reduced forms would come out identical. This leaves two

possibilities:

[a] Reduce both bases under various orderings, take whichever results

complete first, and convert them to bases under a common ordering, or

[b] Simultaneously reduce both bases under each ordering, and terminate

when both have been reduced under the same ordering.

Consider [a]. It is not known whether or not it is “easy” to convert a reduced
Grobner-basis under one ordering into a reduced Gridbner-basis under another. The number
of expressions can change, and the degree can jump from d to d®~!, where n is the number
of variables [67]. Table 5 shows the time it took to reduce directly under a “slow” order,

vs. reducing under a “fast” order and re-reducing under the “slow” one.

I %1 |

(Table 5 — Time (in Seconds) to Reduce Directly vs. Indirectly]

Case 7 Case 11

Direct Reduction

Ordering: >y |[z>y>:z

Time: 11.350 | 173.234
Indirect Reduction

First Ordering: y>z |lz>zr>y

Second Ordering: |z>y |z>y> 2

Time: 1.283 2668.434

Table 5 shows that the indirect route can be 9 times faster or 15 times slower.
The potential speedup might make this collusive approach seem plausible, but the number
of alternative combinations of first and second orderings grows too quickly.

Alternative [b] is viable under the conditions that seem to be present: the times
to reduce a basis can vary dramatically with the ordering used, and converting a reduced
basis to a different ordering can be as hard as the initial basis reduction. How well it works
would depend on the nature of the input: whether some ordering is suitable for quickly

reducing both.

7.8 Conclusions

We can draw the following conclusions at this point:

e “Obvious” ways of parallelizing Grobner-basis reduction, such as generating S-polynomials

or performing reductions in parallel sweeps are ineffective. Reducing under different

orderings has some limited potential.

¢ Algorithmic “hacks” are effective in speeding up the process to a small degree; these
give better performance than parallelism does, and seem to be themselves difficult to

parallelize.

There is still room for exploring other ways to parallelize Grébner-basis reduction;
we have explored the obvious ways and they are not obviously effective.

Gonnet and Monagan [42] describe a general equation-solver which uses Grobner-
basis reduction (to solve the algebraic cases) in conjunction with other methods. Parallelism
could be used to simultaneously try Grobner-basis reduction in conjunction with resultant

or other approaches. Parallelism may also be applied to other portions of the general

equation-solver, such as searching for inconsistent subsets of a system of equations. These

higher-level heuristic approaches seem more likely to provide payoffs in general problem

solving.

Chapter 8

Applications of Hashing in
Algebraic Manipulation (an
Annotated Bibliography)

There are several ways of applying hashing techniques in symbolic manipulation
systems. Hashing can be used to reduce the time and space requirements of programs, as
well as provide powerful techniques of pattern matching. Descriptions and references are

given for innovative applications of hashing.

8.1 Introduction

Hash tables are traditionally used to represent unordered sets. The operations
of insertion, deletion, and membership tests are quite efficient on hash tables. Listing the
contents in order or finding elements common to two sets are less efficient than with trees.

A description of set operations and alternative implementations is treated in

Aho, A.V., Hopcroft, J.E., Ullman, J.D. The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

Virtually any text on data structures or introductory algorithms will give a treatment of
hash tables.
A hash function is a surjective mapping h from input domain Dy to output domain

Dgo. Do =1,...,N for hash tables, the output domain being the set of indices of an array.

78

The term “hash” implies a disorderliness or scrambling of information in the arrangement
of items in the array. Intuitively this is an advantage, since extra effort should be required
in keeping the contents of the array ordered or contiguous as insertions and deletions are
performed.

Ideally a set of elements should be evenly spread in a hash table. This would
minimize the average time for operations. For finite input domains, a hash function can be

contrived which does exactly this; it is discussed as “Optimal Preloading” in

Standish, T.A. Data Structure Techniques, Addison-Wesley, Reading, Mass.,
1980.

which also provides a good descriptive treatment of hash tables. However, if elements of
Dy are chosen independently with uniform probability, the number of buckets of a given
size will be distributed hypergeometrically. As the size of the input domain gets large with
respect to the number of elements loaded into the table, the distribution of bucket sizes
will approach a binomial distribution, as is the case for infinite input domains. If the hash
function does not map subsets of equal measure to each element of Do, the expected search
time will degrade. .

This assumes, of course, that the elements of the table are drawn at random.
Information about the likelihood of subsets of Dy could be used to adjust the scattering of
the hash function. To alleviate worries of worst cases, functions can be constructed which

appear random to all polynomial-time tests (assuming that factoring is not in P):

Goldreich, O., Goldwasser, S., Micali, S. How to Construct Random Functions.
In Proceeding of the 25th Annual IEEE Symp. on Foundations of Computer
Science. IEEE, New York, 1984, pp. 464-479.

In particular, a program which feeds input into the table and examines the bucket distri-
bution will be unable to distinguish the distribution from a random scattering.

In the Optimal Preloading and Random Function approaches, the hash functions
are reasonably complex to construct and evaluate. Quick-and-dirty functions appear to be
sufficient in most cases, and are discussed in Standish.

A looser notion of hashing is to extend the output domain Do to something other
than 1,..., N; the hash function A is then a way of compressing domain Dy into Dgp. Ar-

guments based on domain compression are occasionally used in complexity theory. The

80

mapping h essentially produces a signature of its parameter; various properties of two el-
ements of D; may be compared indirectly by comparing their signatures. Several clever

applications of this approach are discussed later.

8.2 Hash Tables for Search

There are several ways that fast table search can be used in algebraic manipulation.
One application is augmenting functions with lookup tables. This approach is mentioned
in
Bentley, J.L. Writing Efficient Code. Prentice-Hall, Englewood Cliffs, N.J.,
1982.

If a function is often called with the same parameters, and much of the total computation
time is spent in that function, it may be advantageous to tabulate the inputs and outputs of
the function. When the function is invoked, first search the table for a precomputed value.
Obviously, this only works if the function has no side-effects. This approach has been taken
in the Maple system, for the differentiation, simplification, evaluation, and Taylor expansion
functions. A “remember” option allows a user-defined function to be tabulated. This is
discussed in

Char, B.W. et al. On the Design and Performance of the Maple System. In

Golden, V.E. (ed) Proceedings of the 1984 Macsyma User’s Conference. General

Electric, Scenectady, New York, 1984, pp 199-219. Dept. of Computer Science
Research Report CS-84-13, University of Waterloo, June 1984.

A performance gain of up to 30% for some user-defined functions was reported.
Private communication reports that speedups can be tremendous for certain user functions,
and the feeling is that the overhead is small for bad cases. This was tried in Macsyma in

Ponder, C.G. Augmenting Expensive Functions in Macsyma with Lookup Ta-
bles. UC Berkeley Computer Science Division (in preparation).

with somewhat negative results. Some of the issues of representation and table efficiency
are discussed.

This approach to trimming redundant computation is related to dvnamic program-
ming, although the dynamic programming tableaux is more tightly organized. Table lookup

amounts to an indexing operation and the algorithm only probes the table when it knows

81

the value has been computed. When computing the determinant of a sparse matrix by mi-
nor expansion, most of the dynamic-programming tableaux will be empty. Minor expansion
is as efficient as elimination methods when the matrix contains symbolic elements and the
result is produced in expanded form. A hash table may be used to compress the tableaux

by storing only the submatrix determinants that get computed. This approach is taken in

Griss, M.L. The Algebraic Solution of Sparse Linear Systems via Minor Ex-
pansion. ACM Transactions on Mathematical Software 2, 1, (March 1976), pp.
31-49.

with positive results. Analogous methods are used for evaluating recurrence formulas in

Maple and Scratchpad.

8..3 Hash Tables as Unordered Sets

Two applications here use the hash table less for fast search than a structure for
storing objects. In the first case, the important operation is to merge tables by merging

buckets:

Goto, E., Kanada, Y. Hashing Lemmas on Time Complexities with Applications
to Formula Manipulation. Proceedings of the 1976 ACM Symposium on Symbolic
and Algebraic Computation. ACM, New York, 1976, pp. 154-158.

which addresses the problem of polynomial multiplication and addition. Sp'arse polynomi-
als (i.e. many zero terms) are generally represented as sets of monomials. If an ordered
representation is used, the asymptotic cost of polynomial multiplication is dominated by
the number of comparison operations. Using a hash table to store the monomials gives a
reasonably fast way to multiply polynomials. Monomial products with the same exponent
hash to the same bucket, so the hash function can merge terms with fewer comparisons.
The Maple system (see the previous reference) saves references to all active objects
in a hash table. The output of the simplifier is matched against the contents of the table,
discarding the new copy if an old one exists. This insures that there is only one object
representing each expression. The table is periodically garbage-collected to delete unrefer-
enced objects. A side-benefit of this is that expressions can be converted into Fortran code

with common subexpressions already factored out, for more efficient execution.

[e—

8.4 Hash Signatures as a Tool for Matching

Another way to regard a function is as a “signature” of its argument. This sig-
nature can be used to tell whether two arguments are not the same. A carefully contrived
function can be made to reflect only interesting information about its parameter.

One hash signature is the value of an expression at random points. If two expres-
sions produce different values at the same point, they are not equivalent. If two expressions
match at all points tested, they can be considered equivalent with very high probability.
This was introduced in

Martin, W.A. Determining the Equivalence of Algebraic Expressions by Hash
Coding. J. ACM, 18, 4 (1971), pp. 549-538.

There are problems with roundoff error using real numbers. Using finite-field arithmetic
gives exact results, but some equivalences depend upon relationships that do not exist in
finite fields. This work is extended in

Gonnet, G.H. New Results for Random Determination of Equivalence of Expres-

sions. In Proceedings of the 1986 ACM Symposium on Symbolic and Algebraic
Computation. ACM, New York, 1986, 127-131.

which uses finite fields to decide equivalence and linear or polynomial dependency in random
polynomial time for a wide class of expressions.

A related kind of hash signature characterizes features of patterns and strings.
Two examples are

Cowan, R.M., Griss, M.L. Hashing - the Key to Rapid Pattern Matching. In
Proceedings of EUROSAM ’79. Springer-Verlag, New York, 1979, pp. 266-278.

and

Braverman, M.S. ATHEIfT: A Table-based HEuristically Indexed INTEGRA-
TION Technique, CS 283 project spring 1986, UC Berkeley Computer Science
Division. (Unpublished)
The first describes techniques for matching rules to expressions in a rule-based simplifier.
Expressions are in a prefix form, and the hash code consists of fields describing the operator
and the nature of the operands. Unifying the hash codes gives a quick test for determining
whether the expression will unify with the pattern. The second reference uses similar

techniques to find matches in integral tables, by encoding the nature of the expressions to

83

be integrated. The faster table lookup allowed the system to solve some integrals more
quickly than Macsyma, which uses an algorithmic approach. A simplified signature for
matching the literal parts of expressions is used in the SMP system, described in

Greif, J.M. The SMP Pattern Matcher. Proceedings of EUROCAL ’85. Springer-
Verlag, New York, 1985.

8.5 Areas to Explore

Hash functions mapping integers to integers are unsuitable for the representations
of objects used in algebraic manipulation systems. Many Lisp systems offer built-in hash
functions mapping objects to integers. The specific nature of algebraic expressions may
allow hash functions to produce better-then-random scatterings. Some easier to compute
hash functions or representation of objects for faster hashing (such as implicitly or explicitly
carrying their own hash codes) would be useful.

The success of augmenting functions with lookup tables depends upon the rep-
resentation of expressions. If expressions are stored in some canonical form (simplified or
factored, for example), many equivalent expressions will map to the same object. Expres-
sions may be equivalent under variable renaming or substitution. So long as an operation
preserves the equivalence, the lookup table need orly contain canonical entries. This should
improve the hit rate, at the cost of maintaining the canonical representation.

Expressions in Macsyma are represented by an operator followed by a number of
tags providing type information, and a list of operands. This is described in

Fateman, R.J. Macsyma’s General Simplifier: Philosophy and Operation. In

Lewis, V.E. (ed) Proceedings of the 1979 Macsyma Users Conference. Washing-
ton D.C., June 20-22, 1979, pp. 363-382.

A disadvantage of this is that operations (such as simplification) are keyed to the operator,
and must take the tags into consideration. Fateman suggests a scheme where the tags are
combined into a bit vector, and hashing be used to select functions specific to that operator
and tags. This would make newly-defined types faster to operate on.

Gonnet suggests extending his equivalence/dependency tests to wider classes of
expressions.

Lastly, some form of hashing might be used to compactly store and access tables

of integrals or other forms of rules. The Macsyma integration algorithm misses some of the

| e |

34

clever techniques that were used to construct integral tables. The system would be more

powerful if this information could be included in a compact way.

e T

Chapter 9

Augmenting Expensive Functions

in Macsyma with Lookup Tables

Tabulating the corresponding inputs and outputs to a computer function reduces
recomputation to a simple table lookup. This idea has been used by the symbolic algebra
systems Maple and SMP, but to a much lesser degree in Macsyma. We report on some
experiments which test this idea for certain critical functions in Macsyma. Although the
idea holds some promise, some alleged performance improvements may merely represent
redistribution of accounting costs. In many cases performance was degraded. We explain

why.

9.1 Introduction

One way to improve program performance is to associate a lookup table with a
computer function f, to hold pairs <x,f(x)> of inputs and outputs to the function. If the
same input is given to the function again, the output is found by searching in the lookup
table and returning the precomputed result. This requires that £ always computes the same
output for a given input and that £ has no side-effects.

Maintaining such a table adds an overhead to all computations of £. A lookup
must be performed prior to actually computing £, and if no entry is found one must be made
afterward. The table must also occupy some space. The only benefits to performance occur
when inputs are repeated. The tradeoff of eliminated computation and table overhead will

determine if a net speedup is accomplished.

85

36

The tabular approach, sometimes called “memo-ization” is discussed by Bentley
[10] and Abelson/Sussman [1], and has been used by the Maple [23] and SMP [45] systems.
Although the methodology has been described and is widely believed to save time, no
published evaluations of this feature have appeared. While in isolated examples the benefit
is easy to demonstrate, it is also easy to demonstrate cases where it is wasteful of time and
space.

In Maple, six main functions callable from the top level are tabulated (floating-
point evaluation, Taylor expansion, differentiation, expression expansion, rational factor-
ization, and rational simplification). In addition, an option Remember is provided for user-
defined functions. Specifying this option attaches a lookup table to the specified function.
Maple 4.0 provides various options for table management, such as whether or not to empty
the table upon garbage-collection. Maple also precomputes tables of values such as the
Bernoulli and Euler numbers.

In this paper we will examine the issues of using such a feature in Macsyma
and algebraic manipulation systems in general. For sufficiently contrived test cases, the
results are positive. If the programmer or user is aware of the tabular approach, certain
naturally expressive recurrence-based definitions have an efficient implementation. While
the recurrences can be unrolled or tabulated explicitly, providing an automatic tabulation
feature may be more convenient. For most of the tests we tried a slight slowdown occurs. In
sections 2 and 3 we analyze the requirements of memo functions. In section 4 we describe

special issues of interest in Macsyma. In section™d we describe some experiments.

9.2 Overview

The two critical parameters affecting the usefulness of the tabulation feature are
the frequency of occurrence of repeated inputs to tabulated functions, and the overhead of

maintaining the tables.

9.2.1 Re-Use Frequencies

The first of these parameters is obviously dependent on the nature of the test cases
and the ability of the system to map new requests into previously solved cases. Care in the

choice of representation and algorithms contribute to this.

87

The general view of the tabulated version of a function f is to replace the form

(using Scheme syntax [1]):

(define f (lambda(x) <computation>))

with

(define f (make-tabular (lambda(x)<computation>)))

;; We have omitted hashtable functions:

; ; make-table, lookup, and insert!

(define (make-tabular f)
; ; make-tabular takes one argument:
;3 a function f, of one argument
;; returns a new function which is a tabular form of £
(let ((table (make-table))) ;; set up an empty hashtable
;; this table will be local to f
(lambda(x) ;; this is the body of the new function
(let ((previously-computed-pair (lookup x table)))
(cond ((null? previously-computed-pair)
;; call original if needed
(let ((result (f x))) ;; compute result
(insert! x result table)
;3 insert value in table
result)) ;; return result
(else
(get-value-from-pair

previously-computed-pair)))))))

As the function is called on different inputs, the lookup table will grow. This tends

to slow down subsequent lookups. Well-managed hash tables keep this cost from growing

88

too fast; alternative search structures such as trees do not seem to have any particular
advantage here.
Strategies may be used to trim the size of the lookup table, both for storage

economy and speed. For example

e The Maple system can partially or totally empty each table whenever a garbage

collection of its heap space is performed.

¢ Some sort of “locality” based scheme might be employed, such as recording the time
of last reference or frequency of reference to each entry, and deleting the ones that do

not get as much use.

o Discrimination based on the size of the input or the time required to process it might

be plausible. That is, we don’t enter inexpensive cases in the table at all.

How well these ideas work depends on patterns of system behavior. An ideal
oracle might insert into the table only those entries which will be re-utilized, and would
delete the entry after last use. Various heuristics can be applied instead: for example,
only tabulating a function for special values such as e, m, 0 or 1 but not for arbitrary
floating-point operands, which would intuitively be recomputed “less often.”

Strategies for deletion of entries will not be explored any further in this paper.
We will also not address the long-term storage of tables except to observe that some com-
putations may be continued over the course of several “runs” of a program. In such cases,
preserving the tables between runs — as part of the saved “image” of a program, or ex-
plicitly in some persistent data base, could be worthwhile. Similarly, several processors
simultaneously (and perhaps at distributed locations) solving the same suite of problems in
a coordinated fashion should probably be able to share valuable tabulated information.

The test cases used will strongly affect the performance of the tabulation scheme.

For example, taking successive derivatives of

log(log(log(log(log(z)))))

(the Logs benchmark) causes a large number of common subexpressions to be generated

and re-differentiated.

BB

89

An early experiment of finding the reduced Grobner basis [18] of a set of multivari-
ate polynomials has little apparent redundant computation. One could argue that we have
failed to tabulate the appropriate functions for the Grobner calculation, but in our view it
is likely that it is typical of a large class of computation-intensive largely non-redundant cal-
culations that can be specified in Macsyma. Tabulation just won’t help. We have dropped
this benchmark from our data, but our view is that there is a large body of code for which

tabulation cannot provide any benefit.

9.2.2 Lookup Table Efficiency

Clearly an expensive lookup and insertion mechanism would tend to defeat any
success of tabulated functions. We use a relatively fast hash-coding scheme, but we must
compute hash codes of rather large expressions (mapping “equal” Lisp S-expressions to the
same hash number). Since one may claim that our hashing mechanism could be made faster,
the performance projections in section 5.3 provide upper bounds on performance which are
independent of the form of the lookup table mechanism. We can predict performance with

zero-time hashing and lookup.

9.2.3 Data Representation and Matching

The number of recomputations detected in a run of a program may be sensitive

to the data representations and algorithms used. !

For example, consider factoring two
polynomials identical up to renaming of indeterminates. The results of factoring will likewise
be identical up to the renaming. Another example is in performing integration; the variable
of integration can be canonicalized, so the expressions ze® and ye¥ would be represented
generically by XeX. Using literal equivalence to search in the lookup table will not identify
such matches. One possibility is to somehow canonicalize the internal form of expressions so
they are immune to change of variable names. The possibilities for finding matches are open-
ended: it would be feasible for transformations helping matching to be arbitrarily costly.
On the other hand, we should not tolerate any lookup more expensive than computing £
itself.

We will take some pains to observe a relevant upper bound to global improvement

by tabulation. If we choose to tabulate a function f, we should predict the percentage of

'In fact, differences in results between Macsyma and Maple are reported in section 6, probably at-
tributable to differences in the internal structures.

90

time consumed by f; if £ takes only 5% of the time, even if f could be computed free we
would get only 5% speedup. Thus profiling [72] is important in the global evaluation of this
technique.

The nature of the table generated for a given function will depend on the algorithms
used as well as the particular test cases. For example, an integration algorithm that calls
itself repeatedly on sub-parts of a problem may build up a table rapidly. Whether the
stored data will be reused or not may also depend on the algorithm. For example, one
which generates new Lisp “gensym” variables for each subproblem may never have any
duplicates in its table. Some integration programs make extensive use of (perhaps repetitive)
differentiation, which builds up a table associated with that function, and so might benefit

by tabulation.

9.3 General Tabulation vs. Dynamic Programming

The tabulation of inputs and outputs to a given function is essentially a gener-
alization of dynamic programming, which uses an array to hold the values of intermediate
computations. Examples are computing the Fibonacci numbers, where the value of f(7) is
stored in the ¢th cell of the array, and cofactor expansion in determinant calculation, where
the determinants of submatrices are tabulated.

Dynamic programming algorithms can be orders> faster than “naive” algorithms
which perform recomputations. For example, the recursive algorithm for computing fi-

bonacci numbers

fO=1 f(1)=1 f(n)=fln-1)+ f(rn-2)

takes exponential time in n, while the dynamic programming algorithm (which stores each
f(2)) takes linear time with an array of size n.

Dynamic programming algorithms tabulate the values of a function over consec-
utive integers. This is very efficient, involving only array-indexing operations. The more
general lookups analyzed in this paper involve any form of input data; table lookup is done
by hashing, and the table space is managed by expanding the table as necessary. This is
more expensive in time and space than dynamic programming,.

For some classes of input the dynamic programming table may not be completely

filled (computing the determinant of a sparse matrix via cofactor expansion — the deter-

oA |

91

minants of many submatrices will not have to be computed) or its size cannot be readily
bounded in terms of the size of the input. Using a “sparse array” of unbounded size may
be more space-efficient than a directly indexed array; the sparse array can be impiemented
as a hash table or any other lookup structure. There may also be opportunities to flush
useless data out of the table as part of the management scheme; in the Fibonacci example
this corresponds to keeping only the two largest values of f yet computed. Thus we can
see cases where a general tabulation scheme is more efficient than dynamic programming.
Since running out of memory space is normally one contributor to failures of symbolic

computations, such ideas warrant serious consideration.

The Fibonacci example is drawn from the Maple report 23], as an example of
using the remember option. Of course the storage and computation of Fibonacci numbers
is a contrived case, more complex computations might implicitly follow a similar, but more

subtle pattern. The Maple report goes on to state that (page 8)

... Although the effect is not as spectacular for most functions, it is not unusual
for typical programs to be made roughly 30% faster by the judicious use of option
remember.

If option remember succeeds only because the functions are well-adapted to dy-
namic programming, then this only reflects the speedup that can be obtained by re-thinking
the algorithm and not re-computing already known partial results. It does, however, save

in three respects:

o The programmer is saved the linguistic effort needed to reorganize a computation to

tabulate appropriate expressions as they are computed.

¢ The programmer can, without much effort, take advantage of recognized redundancy
and “advise” programs — without delving into the interior of their algorithms — to

save previously computed results.

e If the dynamic programming tableau would be mostly empty, the hash table would

be a more space-efficient form.

9.4 Issues in Macsyma

The Macsyma system does not currently use any general tabulation feature for
system programs. There is a specific table for factorization that is enabled by setting the
savefactors variable to true, which serves as a “memo” feature for the factor command.
Dynamic programming can be used in user-defined functions by using indez or array func-
tions. Using the form £[x]:= ... rather than £(x):= ... causes the function f to be
defined as an array; the elements of the array are computed only on demand and are saved
explicitly in the array after they are first computed. Thus only the “necessary” elements of
the array are ever entered, and they are only computed once apiece. This corresponds to the
properties of the remember option for a range of integers. The SMP projection construction
is similar, but uses a more elaborate pattern match to determine whether a computation or
special case applies. [45]

Few Macsyma system programs of any complexity are true functions which com-
pute their values based solely on their input arguments. There are several hundred global
flags controlling such issues as whether to attempt numerical evaluation or how to simplify
expressions. The settings of variables of all sorts can also affect results. To properly handle
flags, the tables must be sensitive to which flag settings are relevant. Three possibilities

emerge:
1. Include flags with each table entry and also use them to compute hash codes.
2. Switch to a different table each time a flag is modified or a variable’s value is changed.
3. Clear out the tables when a relevant flag is changed.

It is possible to consider writing the program for the function f so that when the
computation is actually done, we would have a record of each flag and its setting, as the
flag was tested. This could then be used to implement the first of the above three ideas.

The second and third possibilities are similar; what we in fact have implemented
is version (3), except that since we never change flags in our experiments, we need never
clear any tables.

The Maple system includes the flag with the table entry in certain cases, such as
the floating-point evaluator evalf which notes the precision of floating-point operations [68].

Further complications occur when the tabulated function also produces side effects

| %A |

93

such as setting global variables or performing input or output. For example, “remembering”

the result of the last read is not an adequate substitute for executing another read.

9.5 Experiments

Several experiments were run using hash tables to tabulate the main functions in
the simplifier and differentiator in Macsyma.

Comparing this modified Macsyma to SMP and Maple can be confusing. The
algorithms and representations used inside Maple benefit from an early design commitment
to storing unique versions of expressions. This reduces testing for structural equivalence to
a test for pointer equality. The penalty that Maple pays is that creating new expressions
is more elaborate than in Macsyma; Maple must see if the expression or part of it already
exists. Adding such hash tables to Macsyma would require extensive restructuring. We
hope to explain how our evidence supports the conclusion that hashing may not be so good

as an add-on feature.

In this section we will discuss the rationale, the benchmarks, and the significance
of our measurements.

The performance of Vax Macsyma (“V axima”) was measured, running under Franz
Lisp Opus 42 on a Vax 8600. The Franz Lisp built-in hash tables were used to tabulate two
system functions. Structural equivalence was used to test for identical expressions. The
tables were used to tabulate the simplifier simplifya [34] and the symbolic differentiation
program sdiff. These were chosen because they were intuitively likely candidates, even
though they both examine global flags. (The Maple system tabulates the floating-point
evaluator and Taylor-series expander as well. The Taylor-series expander went virtually
unused in our benchmarks, and side-effects in the evaluator caused the tabulated version to
return incorrect results. Thus we did not use tabulated versions of meval and $taylor in
our tests.) Amnother experiment was done with the Macsyma great function, which is used
to compare, lexically, internal expressions. A major portion of the time in simplifya in
Macsyma is used to group and rearrange expressions in sums and products. Unfortunately,
the great function is called so many times on trivial comparisons that tabulating it is not
worthwhile. Cutting the computation at the higher level seems more productive.

In the long run we found nominal speedups for three rather specific test cases

94

and slowdowns for all the rest. The sped-up benchmarks were a priori thought to be
good candidates; they each involved recursive operations that kept regenerating common
subexpressions. Since we could not rule out the possibility that the slowdowns on the other
benchmarks were due to a poor implementation of hashing, we extended our measurements

to get concrete upper bounds on possible performance improvement.

9.5.1 Instrumentation

We tried to identify the maximum speed-up available by measuring the total time
used by each procedure in the benchmark computations. By subtracting the time spent in
simplifya and sdiff we could see the net reduction in time possible if the time spent in
the two procedures could be reduced to zero (by miraculous speedup). These measurements
were obtained as follows: Each procedure has a clock. The difference between entry and exit
times for top-level calls was added to the clock. A counter was used to determine whether
or not invocations of a procedure were top-level or not, by incrementing the counter on call
and decrementing it on return. The time spent by non-top-level calls was charged to the
procedure implicitly since the clock keeps running as long as the top-level call is active. The
presence of the timing macros added a small overhead to the execution. The monitoring
overhead amounted to roughly one frocedure call/return, one add, one subtract, one com-
pare, and a few stores per invocation of the procedure. The total instrumentation overhead
was between 2.6% and 15.6% of the execution time excluding garbage-collection; much of
this was not charged to the calls since the majority of the instrumentation computation
occurred before and after the top-level calls.

Second, the “redundant time” spent in each procedure was measured. This was
the cumulative time spent processing inputs that had already been processed. This was
done by running the system twice: once to get timing information, and the second time to
use the timing information and the call pattern to estimate the redundancy. This took a
large amount of computation. The first run collected the times with as little interference as
possible to the program execution; this way the results are more accurate than they would
be if the more complex instrumentation were allowed to affect the results.

In the first run, the entry and exit times were recorded for each of the two pro-
cedures simplifya and sdiff. These were concatenated onto a list. This amounts to an

overhead of two cons operations and two calls to ptime per invocation. The list of times

I X1

95

consumed some space; garbage-collection times were driven up dramatically. Using this in-
formation, we looked at the calls within the system along with their inputs, and figured out
which ones were redundant and how much time they took. The instrumentation overhead
added between 11.9% and 31.4% to the execution time excluding garbage-collection. Much
of this overhead was charged to the calls, but it cancelled out to some degree because the
time for redundant calls was being deducted from the total time.

In the second run, we took the list of times from the first run and used them to
produce an estimated time. A list of inputs was maintained for each of the two functions,
along with a flag indicating whether the function was active or not up the call chain. The
time for each top-level redundant call was then eliminated from the hypothetical best-case
time. The time for a redundant call within a non-redundant call was deducted from the
time for the non-redundant one. The result was the estimated non-redundant time for
each function. Subtracting this from the total time for the function gives the estimated
redundant time, the time spent reprocessing old inputs. This provided an upper bound on
speedups possible from eliminating recomputations on the same inputs.

Thirdly, the “hashed time” was derived. This was done by using the hash tables
to save the inputs and outputs, and measuring the amount of time taken by the modified

system. This was the prototype hashed Macsyma.

Presumably, for a given procedure we should demonstrate

(total time without hashing) > (total time using hashing) - (hashtable overhead) =

(essential nonredundant calculation time)

The nonredundant time assumes an ideal lookup scheme with zero overhead. The
“total time without hashing” includes the entire computation, including redundant compu-

tations. The “Total time using hashing” is what we must analyze. Either
(total time without hashing) > (total time using hashing)
or
(total time using hashing) > (total time without hashing)

depending upon the level of redundancy and hash table overhead.
Additional notes: The instrumentation is rather crude. The clock used has a

resolution of 1/60 second, so some fast calls may not appear to take any time at all. although

rey

96

this was statistically unlikely over many calls. The monitoring macros themselves add an
overhead to the execution. We tried to minimize this as much as possible, but the balance

of time between the different procedures may have shifted slightly because of this.

9.5.2 Benchmarks

The benchmarks used for testing are called FG, Logs, SlowTaylor, and Begin.
Listings of these appear in the appendix. Each consists of a sequence of commands. We
counted only the cumulative times for all commands. The Macsyma display was turned off
in some since printing large expressions dominated some of the computation. In most cases
the time for the benchmark is dominated by one large test. We feel this is reasonable because

the larger test case is probably the most realistic one. The benchmarks are described as

follows:

FG Generates polynomials in 3 variables (F & G series of celestial mechanics).
Logs Takes successive derivatives of log(log(log(log(log(x)))))-

SlowTaylor Computes a Taylor-series expansion in an inefficient way.

Begin Performs a variety of operations.

The Begin benchmark (beginning demonstrations) which does no obvious redun-
dant calculation shows the least benefit from hashing, and is typical of a number of other
benchmarks initially considered. The other 3 benchmarks are “artificially positive” in some
sense, since they clearly require frequent recomputations. Dynamic programming is used in
evaluating the FG recurrence. As Michael Monagan pointed out, we could inflate the level
of redundancy exponentially by requiring the subcomputations to be repeated, but the pro-
grammer would be unlikely to specify such an “outside-in” computation (like the “dumb”
Fibonacci), and would certainly reconsider it after trying to run it. We felt that using
such an example would merely show how one could deliberately slow down computation.
Slow Taylor, in a slightly more plausible scheme, is designed to generate redundant work by

computing derivatives of successively higher order without remembering earlier work.

9.5.3 The Measurements

Table 1 shows the percentage times spent in each of the critical procedures for

each of the benchmarks. There is considerable overlap in the numbers, since if sdiff calls

97

simplifya, the time will be charged to both. By timing each separately, we obtained an
upper bound on the speedup if either were individually sped up so as to take no time at all.

Also in Table 1 is the estimate of nonredundant time as defined in the previous

subsection. This projects how much of the time could be eliminated by a perfect (i.e. “free”)

lookup scheme. This is only 2 projection, however, since the time overlapped between the
two functions can be removed only once. In reality the hashing overhead will take a big
slice of this. For example, the FG benchmark spent 90% of its time in simplifya. About
19% of its time (90%-70.9%) was spent recomputing known results.

The measured times are indicated in table 2.

Table 1 — Percentage of Time Consumed in Critical Procedures

Time Nonredundant Time

Case simplifya sdiff | simplifya sdiff

FG 90.0 86.1 70.9 65.7
Logs 89.2 100.0 36.6 57.4
SlowTaylor 94.9 100.0 15.6 24.5
Begin 29.3 0.0 26.8 0.0
ignoring garbage-collection time

Table 2 — Timing Comparison: Unhashed vs. Hashed

Unhashed Hashed
Case CPU | GC CPU GC
FG 15.3 3.0 20.6 5.9
Logs 34.4 9.2 15.0 0.0
SlowTaylor 18.1 4.3 6.8 0.0
Begin 2.6 1.5 3.2 1.6
“cpu” is total time excluding garbage-collection time.
all time in seconds on a VAX 8600

Table 3 — Percentages of Possible Speedup

Case Potential Actual
FG 28.9 -34.6
Logs 161.3 129.3
SlowTaylor 481.2 166.2
Begin 5.3 -23.1
ignoring garbage-collection time

Table 3 presents the final results. The “Potential Speedup” is the percentage
speedup if all redundant time could have been eliminated. The “Actual Speedup” is the

percentage speedup (or slowdown) using the hash tables as we implemented them.

s

98

9.6 Conclusions and Caveats

The results from Table 3 are mildly discouraging. At best, a zero-time hashing
scheme would produce a speedup factor of 5 for the SlowTaylor benchmark, which was
designed for the sole purpose of generating an opportunity to remove redundant work. The
Logs benchmark followed with a factor of 2.6, and the other two benchmarks had little
potential speedup. The overhead of maintaining real hash tables reduced these potential
performance wins down to a factor of 2.7 for SlowTaylor and even less impressive results
for everything else. Unless we look at somewhat contrived examples which are comparable

to the Fibonacci exponential-vs-linear cost, how much can we expect to win?

How likely is it that one will re-simplify an expression? By monitoring the traffic
of expressions through the simplifier in the FG test case, we observed that some 5000
expressions are simplified only once. Some 100 expressions are simplified 3 times. Fewer
than 10 expressions are simplified 7 times or more. (The initial hash table size was 20,000
buckets — presumably enough that search time was dominated by the cost of computing the
hash codes). Nevertheless, if these expressions were tough ones to simplify, we might win.

Comparing the number of times an expression was simplified to the size of the
expression, we found that virtually all objects simplified more than 10 times were atoms.
The average size of an object decreased dramatically with the number of times it was
resimplified.

Similar results were found by monitoring the differentiator. 480 expressions were
differentiated only once; 23 distinct expressions were differentiated 3 or more times. Every
expression which was differentiated 3 or more times (the count went as high as 252) was
either a single variable or a single variable raised to a power.

These facts suggest that the tables will tend to fill with a large number of small
expressions. This will slow down the table management. It is very likely that the table
management time is often too expensive for the time saved by tabulating small expressions.
The redundancy was much lower for the large expressions, which probably took more com-
putation time. Although the table overhead would be decreased if only large expressions
were considered, fewer hits would occur.

The potential speedups from Table 3 do suggest that we could try harder. The

time spent in the hash tables was very significant. A faster management scheme (especially

99

using a faster hash function) may help. No effort was made to leave “bad” elements out of
the table or order the hash bucket contents for faster search. Some change-in the internal
structure or representations used within Macsyma might improve things as well; the upper
bounds we have drawn yield no information about this.

According to data supplied by Michael Monagan, the Maple system “remember-
ing” gave the FG series a 58.9% improvement. Not only did the Macsyma system show a
46.4% degradation, but the potential improvement under our assumptions was only 28.9%.
Since floating-point evaluation, Taylor expansion, and rational factorization and simplifica-
tion are not a part of this benchmark, we have to assume that the difference has to do with
the internal structure and representations of Macsyma and Maple.

The Maple system uses an additional hash table to maintain unique copies of every
expression, requiring a lookup for each new expression generated. This is done primarily
to conserve space (at the possible expense of time). The side benefit is that every subex-
pression is uniquely identified by its address in the table. The equality of two expressions
is determined simply by comparing their addresses: if they refer to the same (unique) copy,
they are equal. This address also can be used as a hash code, thereby removing the hashing
computation from the cost of searching lookup tables. The cost of generating the hash code
is effectively amortized over the construction of new expressions. The drawback, however,
is that if the hash tables are not used, the hash codes are (in effect) still being computed.
As a result, enabling the hash tables appears to have a more dramatic effect in Maple since

most of the hashing penalty is not removed along with the hashing benefits.

We thought it would be worthwhile to test the unique-copies idea in Macsyma.
By counting the number of expressions simplifying to a given expression, and comparing
this number to the size of the expression, we found that the average size of an expression
tended to decrease quickly with the number of different expressions simplifying to it, or
alternately, that a factor of about 2 in space would be saved if all expressions equivalent
under simplification were represented by the same object. It would probably be worth the
effort if this were sustained, but this benchmark (FG) would seem to be a likely beneficiary:
it wasn’t.

The most frequent output of the simplifier was zero. The second most frequent
was a product of an integer and 2 variables. We suspect that atoms (or small expressions)

will generally be, by far, the most likely recurring expressions. The Lisp underlying the

' ¥.] |

100

Macsyma system already works to maintain unique copies of each atom. We conclude that

the following are true:

e Maintaining unique copies of all Maple expressions is probably not much more ex-
pensive than maintaining unique copies of atoms, since atoms are the most frequent

expressions.

e Using hash tables and structural equivalence to equate objects in Macsyma adds a

higher overhead, since underlying Lisp system effort is already spent to make atoms

unique but this property is unused. Building the unique-copy cons mechanism into

Lisp (e.g. HLISP [43]) would perhaps put Macsyma on an even footing.

e Hashing is useful only for exceptionally redundant computations. The overhead in
Maple is not very significant, so little is lost. The overhead in Lisp systems is higher
because the unique-copy computations are being done twice for the most common

case (i.e. atoms).

rxu

Bibliography

[1] Abelson, H., Sussman, G.J. Structure and Interpretation of Computer Programs. MIT
Press/ McGraw-Hill Book Co., New York, N.Y. (1985).

[2] Aho, A.V., Hopcroft, J.E., Ullman, J.D. The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, Reading, Ma. (1974).

[3] Ajtai, M., Komlos, J., Szemeredi, E. An O(nlogn) Sorting Network. STOC 83, 1-19.

[4] Alagar, V.S., Probst, D.K. A Fast, Low-Space Algorithm for Multiplying Dense Mul-
tivariate Polynomials. ACM TOMS 13/1 (1987), 35-57.

[5] Alliant FX /series Product Summary. Alliant Computer Systems (1985).

[6] Auger, LE., Krishnamoorthy, M.S. A Parallel Algorithm for the Monadic Unification
Problem. Bit 25 (1985), 302-306.

[7] Beame, P.W., Cook, S.A., Hoover, H.J. Log Depth Circuits for Division and Related
Problems. FOCS ’84, 1-6.

[8] Ben-Or, M., Feig, E., Kozen, D., Tiwari, P. A Fast Parallel Algorithm for Determining
All Roots of a Polynomial with Real Roots. STOC ’86, 340-349.

[9] Ben-Or, M., Tiwari, P. A Deterministic Algorithm for Sparse Multivariate Polynomial
Interpolation. STOC ’88, 301-309.

[10] Bentley, J.L. Writing Efficient Code. Prentice-Hall. Englewood Cliffs. N.J. (1982).

(11] Billstrom, D., Brandenburg, J., Teeter, 3. CCLISP on the iPSC Concurrent Com-
puter. Intel Scientific Computers, Beaverton, OR. 97006.

101

[12]

[13]

(14]

[15]

[16]

18]

(19]

[20]

24]

102

Bini, D. Parallel Solution of Certain Toeplitz Linear Systems. SIAM J. Comput. 13.
2 (May 1984), 268-276.

Bitton, D., DeWitt, D.J., Hsio, D.K., Menon, J. A Taxonomy of Parallel Sorting.
Computing Surveys 16, 3 (Sept. 1984), 287-318.

Bonneau, R.J. Polynomial Operations using the Fast Fourier Transform. Ph.D. thesis,

Dept. of Mathematics, Mass. Inst. of Tech., Cambridge, Mass. (1974).

Borodin, A., Von Zur Gathen, J., Hopcroft, J. Fast Parallel Matrix and GCD Com-
putations. Information and Control 52 (1982), 241-256.

Braverman, M.S. ATHEI[T: A Table-based HEuristically Indezed INTEGRATION
Technique. CS 283 project spring 1986, UC Berkeley Computer Science Division (Un-
published).

Bronstein, M. Gsolve: a Faster Algorithm for Solving Systems of Algebraic Equations.
In Proceedings of the 1986 ACM Symposium on Symbolic and Algebraic Computation
(SYMSAC ’86) (Waterloo, Ontario, July 1986), B.W. Char, Ed. ACM, New York,
1986, pp. 247-249.

Buchberger, B. Grobner Bases: An Algorithmic Method in Polynomial Ideal Theory.
In Progress, Directions and Open Problems in Multidimensional Systems Theory. N.K.
Bose, Ed. D. Reidel Publishing Co. (1985), 184-232.

Buchberger, B. The Parallel L-Machine for Symbolic Computation. In Proc. EURO-
CAL ’85, Linz, Austria (April 1985).

The Butterfly Lisp Reference Manual. BBN Labs, Cambridge, Mass. (Spring 1986).
Butterfly Parallel Processing Computer. BBN Labs, Cambridge, Mass.
CCLISP V1.0 Technical Summary, Gold Hill Computers, Inc., Cambridge, Mass.

Char, B.W. et al. On the Design and Performance of the Maple System. Dept. of Com-
puter Science, University of Waterloo, Waterloo, Ontario, Canada, CS-84-13 (June

1984).

Char, B.W. Private communication (July 1987).

103

[25] Cole, R. Parallel Merge Sort. FOCS '86, IEEE, 511-516.

[26] Collins, G.E. Computer Algebra of Polynomials and Rational Functions. The Ameri-
can Mathematical Monthly (Sept. 1973), 725-755.

[27] Cook, S. A Taxonomy of Problems with Fast Parallel Algorithms. Information and
Control 64 (1985), 2-22.

[28] Czanky, L. Fast Parallel Matrix Inversion Algorithms. SIAM J. Comput. 3, 4 (Dec.
1976), 618-623.

[29] Czapor, S.R. and Geddes, K.O. On Implementing Buchberger’s Algorithm for Grobner
Bases. In Proceedings of the 1986 ACM Symposium on Symbolic and Algebraic Com-
putation (SYMSAC ’86) (Waterloo, Ontario, July 1986), B.W. Char, Ed. ACM. New
York, 1986, pp. 247-249.

[30] Davenport, J.H. and B.M. Trager. On the Parallel Risch Algorithm (II). ACM TOMS
11, 4 (Dec. 1985), 356-362.

[31] Dimitrovsky, I. ZLISP Reference Manual. NYU Dept. of Computer Science. In prepa-

ration.

[32] Eberly, Wayne. Very Fast Paralle] Matrix and Polynomial Arithmetic. FOCS 84.
21-30.

[33] Farhat, Charbel. A Parallel Algorithr;z for Symbolic Matriz Inversion. UC Berkeley
CS 282 term project (Fall 1986).

[34] Fateman, R.J. Macsyma’s General Simplifier: Philosophy and Operation. In Lewis.
V.E. (ed) Proceedings of the 1979 Macsyma Users Conference. Washington D.C..
(June 20-22, 1979), 563-582.

[35] Fateman, R.J. On the Computation of Powers of Sparse Polynomials. Studies in Ap-
plied Mathematics LIII/2 (1974), 145-155.

[36] Fateman, R.J. Polynomial Multiplication, Powers and Asymptotic Analysis: Some
Comments. SIAM J. Comput. 3/3 (1974), 196-213.

[37] Fateman, R.J. On the Multiplication of Poisson Series. Celestial Mechanics 10 (1974).
243-247.

104

[38] Gabriel, R.P., McCarthy, J. Queue-based Multi-processing Lisp. In Proc. 1984 Symp.

on Lisp and Functional Programming, Austin, Texas (1984).
[39] Galil, Z. Optimal Parallel Algorithms for String Matching. STOC ’84, 240-248.

[40] Gentleman, W.M., Johnson, S.C. Analysis of Algorithms, A Case Study: Determi-
nants of Matrices with Polynomial Entries. Trans. Math. Software 2, 3 (Sept. 1976).
232-241.

[41] Gonnet, G.H. New Results for Random Determination of Equivalence of Expressions.
SYMSAC ’86, ACM, New York, 1986, 127-131.

[42] Gonnet, G:H., Monagan, M.B. Solving Systems of Algebraic Equations, or the
Interface between Software and Mathematics. In J. Davenport, Ed. Proc. 1986
(AAAI/SIGSAM) Conf. on Computers and Mathematics, Stanford (July 30 - Aug.

1).

[43] Goto, E., Kanada, Y. Hashing Lemmas on Time Complexities with Applications to
Formula Manipulation. Proc. SYMSAC ’76. ACM, New York (1976), 154-158.

[44] Gottlieb, A., Grishman, R., Kruskal, C.P., McAuliffe, K.P., Rudolph, L., Snir, M.
The NYU Ultracomputer — Designing a MIMD, Shared-Memory Parallel Computer.
IEEFE Trans. Comp. C-32, 2 (Feb. 1983).

[45] Greif, J. The SMP Pattern Matcher. In B.F. Caviness (ed), Proc. Eurocal ’85, vol. 2.
Lecture Notes in Computer Science 204, Springer-Verlag, (1985), 303-314.

[46] Gupta, A. Parallelism in Production Systems. Carnegie-Mellon Dept. of Computer
Science Report CMU-CS-86-122 (March 1986).

[47] Hall, A.D. Factored Rational Expressions in ALTRAN. EUROSAM ’74. Washington
D.C. (June 20-22, 1974), 563-582.

[48] Halstead, R.H. Jr. Multilisp: A Language for Concurrent Symbolic Computation.
ACM TOPLAS 7, 4 (Oct. 1985).

[49] Halstead, R.H. Jr., Anderson, T.L., Osborne, R.B., Sterling, T.L. Concert: Design
of a Multiprocessor Development System. In 13th Annual Int. Symp. on Computer

Architecture, Tokyo, Japan (June 1986).

105

[50] Hamacher, V. Carl, Zvonko G. Vranesic, and Safwat G. Zaky. Computer Organization.
McGraw-Hill, New York (1978).

[51] Harper, L.H., Payne, T.H., Savage, J.E., Strauss, E. (1975). Sorting X+Y. CACM
18/6, 347-349.

[52] Hill, M. et al. Design Decisions in SPUR. JEEE Computer 19, 11 (Nov. 1986), 8-22.
[53] Hillis, W.D. The Connection Machine. Scientific American 256, 6 (June 1987).

[54] Huynh,D.T. A Superexponential Lower Bound for Grobner Bases and Church-Rosser
Commutative Thue Systems. Journal of Information and Control, 68:1-3, pp. 196-206
(1986).

[55] iPSC System Product Summary, Intel Corporation, Beaverton, Oregon.

[56] Kaltofen, E. Fast Parallel Absolute Irreducibility Testing. J. Symbolic Computation I
(1985), 57-67.

[57] Kaltofen, E., Krishnamoorthy, M.S., Saunders. B.D. Fast Parallel Algorithms for
Similarity of Matrices (Extended Abstract). SYMSAC ’86, 65-70.

[58] Kannan, R., Miller, G., Rudolph, L. Sublinear Parallel Algorithm for Computing the
Greatest Common Divisor of Two Integers. FOCS 84, 7-11.

[59] Knuth, D.E. T he Art of Computer Programming. Vol. 2: Semi-Numerical Algorithms
(1st ed.). Addison-Wesley, Reading, Mass. (1969). '

[60] Kung, H.T. Use of VLSI in Algebraic Computation: Some Suggestions. SYMSAC '81.

218-222.

[61] Kung, H.T. New Algorithms and Lower Bounds for the Parallel Evaluation of Certain
Rational Expressions and Recurrences. JACM 23, 2 (April 1976), 252-261.

[62] Lakshmivarahan, S., Dhal, S.K. Parallel Algorithms for Solving Certain Classes of Lin-
ear Recurrences. In Maheshwari, S.N. (ed.) Proc. 5th Conf. Foundations of Software
Technology and Theoretical Computer Science (New Delhi. India, Dec. 16-18 1985),
Lecture Notes in Computer Science, vol. 206, Springer-Verlag, New York (1985), 457-
476.

106

[63] Marti, J., Fitch, J. The Bath Concurrent Lisp Machine. In Proc. EUROCAL '83.
London, England (March 1983). '

[64] Mayr, E., Meyer, A. The Complexity of the Word Problem for Commutative Semi-
groups and Polynomial Ideals. In Advances in Math. 46, pp. 305-329 (1982).

[65] Moenck, R.T. Practical Fast Polynomial Multiplication. SYMSAC ’76, 136-148.
[66] Marti, J. Private communication (Feb. 1988).

[67] Moller, H.M., Mora, F. Upper and Lower Bounds on the Degree of Grobner Bases. In
Proceedings of Symbolic and Algebraic Computation (EUROSAM °84), (Cambridge.
July 1984). J.P. Fitch, Ed. Lecture Notes in Computer Science, G. Goos and J. Hart-
manis, Ed. Springer-Verlag, New York, 1984. pp. 172-183.

[68] Michael B. Monagan, private communication.

[69] Mulmuley, K. A Fast Parallel Algorithm to Compute the Rank of a Matrix Over an
Arbitrary Field. STOC ’86. 338-339.

[70] Pan, V. Fast and Efficient Algorithms for Sequential and Parallel Evaluation of Poly-
nomial Zeros and of Matrix Polynomials. FOCS 85, 522-531.

[71] Pan, V. Fast and Efficient Parallel Algorithms for the Exact Inversion of Integer Ma-
trices. In Maheshwari, S.N. (ed.) Proc. 5th Conf. Foundations of Software Technology
and Theoretical Computer Science (New Delhi, India, Dec. 16-18 1985), Lecture Notes
in Computer Science, vol. 206, Springer-Verlag, New York (1985), 504-521.

[72] Ponder, C., Fateman, R. Inaccuracies in Program Profilers. Software - Practice and

Ezperience 18 (1988), 459-467.

[73] Ponder, C., Patt, Y. Alternative Proposals for Implementing Prolog Concurrently and
Implications Regarding their Respective Microarchitectures. Proc. of the 17th Annual

Microprogramming Workshop (Oct. 1984).

[74] Probst, D.K., Alagar, V.S. A Family of Algorithms for Powering Sparse Polynomials.
SIAM J. of Computing 8/4 (1979), 626-644.

[75] Sasaki, Tateaki and Yasumatsa Kanadam. Parallelism in Algebraic Computation and

Parallel Algorithms for Symbolic Linear Systems. SYMSAC ’81, 160-167.

107
(76] The Essential *LISP Manual, Thinking Machines Corporation, Cambridge Mass.
(July 1986).

[77] Valiant, L.G,, Skyum, S., Berkowitz, S., Rackoff, C. Fast Parallel Computation of
Polynomials Using Few Processors. SIAM J. Comp. 12, 4 (1983), 641-644.

[78] Vitter, J.S., Simons, R.A. Parallel Algorithms for Unification and Other Complete
Problems in P (Extended Abstract). Proc. ACM 784, 75-84.

[79] Von Zur Gathen, J. Parallel Algorithms for Algebraic Problems. SIAM J. Comput.
13, 4 (Nov. 1984), 802-824.

[80] Vuillemin, J. private communication 7/31/87.

[81] Watt, S.M. Bounded Parallelism in Computer Algebra. Univ. of Waterloo Faculty of
Mathematics research report CS-86-12 (May 1986).

[82] Winkler, F., Buchberger, B., Lichtenberger, F. Algorithm 628: An Algorithm for Con-
structing Canonical Bases of Polynomial Ideals. ACM Transactions on Mathematical
Software 11, 1 (March 1985), 66-78.

(83] Winograd, S. On Computing the Fast Fourier Transform. Math. Comput. 32/141
(1978), 175-199.

[84] Zacharias, G. Generalized Grébner Bases in Commutative Polynomial Rings. Bachelor

thesis, Lab. for Computer Science, MIT, Cambridge (1978).

[85] Zippel, Richard E. Probabilistic Algorithms for Sparse Polynomials, Ph.D. thesis,

Massachusetts Institute of Technology (1979).

[86] Zorm, B., Hilfinger, P., Ho, K., Larus, J., Semenzato, L. Features for Multiprocessing -

in SPUR Lisp. In preparation.

Chapter 10

Appendices

10.1 Appendix for Chapter 5

The Simp Algorithm in Lisp

¥ Brute-force multiplication. To be loaded into "frpoly"
- benchmark. Written in "Qlisp" parallel extension
R to Common Lisp.

1 (C) 1988 Carl Ponder, UC Berkeley

(defvar cutoff -1) i3 2" (cutoff+l) processes spawned.
;; Default is one process.
;3 4 processors currently available
0 on Alliant.
;; Global variable is used so parameter
A does not have to be passed through

- levels of recursion.

108

109

(defun pcetimesl (e ¢ X) ;3 multiply c*vTe*x
(if (null x)
nil
(pcoefadd (+ e (car x))
(ptimes ¢ (cadr x)) ;; coefficient multiply in serial.

(pcetimesl e c (cddr x)))))

(defun halfsplit (p) ;; divide polynomial into upper
(do ((a) ;; and lower halves, returned
(p p (cddr p)) ;; CONSed together.

(d p (cddddr d)))
((null d) (cons (nreverse a) p))
(setq a (cons (cadr p) (cons (car p) a)))))

(defun ptimesi (y x) (ptimes2a y x 0)) ;; Initially a top-level call.

;; Recursive brute-force

(defun ptimes2a (y x depth) ;3 multiply.
(cond ((< (length y) 4)
(pcetimesl (car y) (cadr y) x)) ;7 ¥ is a monomial
((> depth cutoff) ;; All processors busy,
(ptimestia y x)) HH do in serial.

(t (let ((a (halfsplit y)))
(qlet t ;; Do mult’s in parallel.
((b (ptimes2a (car a) x (i+ depth)))
(c (ptimes2a (cdr a) x (1+ depth))))
(pplusi b ¢))))))

(defun ptimesia (y x) ;; iterative version.
(do ((I nil (pplusi I (pcetimesi (car J) (cadr J) x)))
(J y (cddr 1N

((null J) D))

(defun testsimp ()
(setitup)
(setq cutoff -1)
(test)
(setq cutoff 0)
(test)
(setq cutoff 1)
(test)
(setq cutoff 2)
(test)

;; spawn 1 process

»

.
’

2 processes

110

111

The Karatsuba Algorithm in Lisp

:: n*+(1.585) Karatsuba multiplication scheme. Load into “frpoly"
;; Benchmark. It should be used only when both inputs are multivariate,
3 dense, and of nearly the same size. or absolutely tremendous.

;; (C) 1988 Carl Ponder, UC Berkeley

(defvar cutoff -1) ;; Spawns 3" (cutoff+l) processes.

;; Currently 4 processors available.

(defun ptimesi (f g)
(ptimes2 f g 0))

(defun ptimes2 (f g depth)

(cond ((> depth cutoff) (ptimes3 f g)) ;; use serial if too deep
(t (ptimes3a f g (1+ depth))))) ;; otherwise use parallel.
(defun ptimes3a (f g depth) ;; parallel multiply using Karatsuba split.

(prog (a b c d)
(cond ((or (null f£) (null g)) (return nil))
((null (cddr £))
(return (1sft (pctimesi (cadr £) g) (car £))))
((null (cddr g))
(return (1sft (pctimesi (cadr g) f) (car g)))))
(setq d (floor (1+ (max (car £) (car g))) 2))
(setq f (halfsplit f d) g (halfsplit g d))

(qlet t ;; spawn off 3 processes.

Py |

((x (ptimes2 (car f) (car g) depth))
(y (ptimes2 (pplust (car f) (cdr £))
(pplusi (car g) (cdr g))
depth))
(z (ptimes2 (cdr f) (cdr g) depth)))
(setqa x b yc 2))
(setq b (pdiffert (pdifferi b a) c))
(return (pplusi (1sft a (* d 2)) (pplusi (1sft D d) ¢)))))

(defun ptimes3 (f g) ;; serial version of same thing.
(prog (a b c d)
(cond ({or (null f) (null g)) (return nil))
((null (cddr £))
(return (1sft (pctimesi (cadr £) g) (car £))))
((null (cddr g))
(return (1sft (pctimesl (cadr g) £) (car g)))))
(setq d (floor (1+ (max (car f) (car g))) 2))
(setq f (halfsplit £ d) g (halfsplit g d))
(setq a (ptimes3 (car f) (car g)))
(setq b (ptimes3 (pplusi (car f) (cdr f))
(pplusi (car g) (cdr g))))
(setq ¢ (ptimes3 (cdr f) (cdr g)))
(setq b (pdifferl (pdifferi b a) c))
(return (pplusi (1sft a (* d 2)) (pplusi (1sft b d) NN

(defun halfsplit (p d) ;; Split polynomial into upper &
(do ((a) (p p (eddr p))) ;; lower halves.
(Cor (null p) (< (car p) d)) (cons (nreverse a) p))
(setq a (cons (cadr p) (cons (- (car p) d) a)))))

(defun 1sft (p n) ;; Multiply p by x"n.

.

113

(do ((a)
(q p (cddr 9)))
((null q) (nreverse a))
(setq a (cons (cadr q) (cons (+ (car @) n) a)))))

(defun splittest ()
(setitup)
(setq cutoff -1) ;; Spawn 1 process
(test)
(setq cutoff 0) HH 3 processes
(test)
(setq cutoff 1) HH 9
(test)

114

The Frpoly Benchmark Driver

::; FRPOLY -- Benchmark from Berkeley based on polynomial arithmetic.
M Originally from Maclisp by William A. Martin, suggested by Richard
N Fateman. Common Lisp version by Dick Gabriel.

;:; PDIFFER1 is included, and a bug is fixed.

.« ..
1 1

(eval-when (compile)

(proclaim ’(optimize (speed 0) (safety 3)))) ;; was 3/0

(defvar ans)
(defvar coef)
(defvar inc)
(defvar i)
(defvar qq)
(defvar ss)
(defvar *alpha*)
(defvar *ax*)
(defvar *bx)
(defvar #*chk)
(defvar *1)
(defvar *p)
(defvar q*)
(defvar *var)
(defvar *yx*)
(defvar r)
(defvar r2)
(defvar r3)

(defvar start)

(defvar resli)
(defvar res?2)

(defvar res3)

(defmacro pointergp (x y) ‘(> (get ,x ’order)(get ,¥y ‘order)))

(defmacro pcoefp (e) ‘(atom ,e))

(defmacro pzerop (x)
¢(if (numberp ,x). ; no signp in CL
(zerop ,x)))
(defmacro pzero () 0)
(defmacro cplus (x y) ‘(+ ,x ,y))

(defmacro ctimes (x y) ‘(* ,x ,y))

(defun pcoefadd (e c x)
(if (pzerop c)
x

(cons e (cons ¢ x))))

(defun pcplus (c p)
(cond ((null p) c)
((pcoefp p) (cplus p ¢))
(t (psimp (car p) (pcplusi ¢ (cdr p))))))

(defun pcplusl (c x)
(cond ((null x)
(if (pzerop c)
nil
(cons O (cons ¢ nil))))
((pzerop (car x))
(pcoefadd 0 (pplus ¢ (cadr x)) nil))
(t

(cons (car x) (cons (cadr x) (pcplusi c (cddr x)))))))

(defun pctimes (c p)
(cond ((null p) nil)
((pcoefp p) (ctimes c p))
(t (psimp (car p) (pctimesi ¢ (cdr p))))))

(defun pctimesi (c x)
(if (null x)
nil .
(pcoefadd (car x)
(ptimes ¢ (cadr x))

(pctimes1 ¢ (cddr x)))))

(defun pplus (x y)
(cond ((pcoefp x)
(peplus x y))
((pcoefp y)
(pcplus y x))
((eq (car x) (car y))
(psimp (car x) (pplusl (cdr y) (cdr x))))
((pointergp (car x) (car y))
(psimp (car x) (pcplusl y (cdr x))))
(t
(psimp (car y) (pcplusi x (cdr y))))))

(defun pplusi (x y)
(cond ((null x) y)
((null y) x)
((= (car x) (car y))
(pcoefadd (car x) .
(pplus (cadr x) (cadr y)) ;; could be parallelized,

116

(pplusi (cddr x) (ecddr y)))) ;; for polynomial coeff’s.

((> (car x) (car y))

117

(cons (car x) (cons (cadr x) (pplusl (cddr x) y))))
(t (cons (car y) (cons (cadr y) (pplusl x (cddr y)))))))

(defun pdiffer (x y)
(cond ((pcoefp x)
(pcplus x (pctimes -1 y)))
((pcoefp y)
(pecplus (- y) x))
((eq (car x) (car y))
(psimp (car x) (pdifferl (cdr x) (cdr y))))
((pointergp (car x) (car y))
(psimp (car x) (pcplusi (pctimes -1 y) (cdr x))))
(t '
(psimp (car y) (pcplusi x (pctimesi -1 (edr y)))))))

(defun pdiffert (x y)
(cond ((null y) x)
((null x) (pctimesl -1 y))
((= (car x) (car y))
(pcoefadd (car x)
(pdiffer (cadr x) (cadr y)) ;; could be parallelized,
(pdifferi (cddr x) (cddr y)))) ;; for polynomial coeff’s.
((> (car x) (car y))
(cons (car x) (cons (cadr x) (pdifferl (cddr x) y))))
(t (cons (car y) (cons (pctimes -1 (cadr y))

(pdiffer1l x (cddr y)))))))

(defun psimp (var x)
(cond ((null x) 0)
((atom x) Xx)
((zerop (car x))
(cadr x))
(t

(cons var x))))

(defun ptimes (x y)
(cond ((or (pzerop x) (pzerop y))

(pzero))
((pcoefp x)

(pctimes x y))
((pcoefp y)

(pctimes y X))

((eq (car x) (car y))

(psimp (car x) (ptimesi (cdr x) (cdr y))))
((pointergp (car x) (car y))

(psimp (car x) (pctimesi y (¢dr x))))
(t

(psimp (car y) (pctimest x (cdr y))))))

(defun ptimesi (*x* y)
(declare (special *x*))
(prog (ux v)
(declare (special u* v))

(setq v (setq u* (ptimes2 y)))

(setq *x* (cddr *x*))

(if (null *x%)
(return u*))

(ptimes3 y)

(go 2)))

(defun ptimes2 (y)
(declare (special *x*))
(if (aull y)

nil

(pcoefadd (+ (car *xx) (car y))

118

119

(ptimes (cadr *xx) (cadr y))
(ptimes2 (cddr y)))))

(defun ptimes3 (y) ;; This is a messy version of
(declare (special ux v *xx%)) ;; Simp, to reduce the amount
(prog (e u c) ;; of CONSing in forming

al (if (null y) ;; partial results.

(return nil))
(setq e (+ (car *x*) (car y))
¢ (ptimes (cadr y) (cadr *x*)))
(cond ((pzerop c)
(setq y (cddr y))
(go al))
((or (null v) (> e (car v)))
(setq u* (setq v (pplusl u* (list e ¢))))
(setq y (cddr y))
(go al1))
((= e (car v))
(setq ¢ (pplus c (cadr v)))
(if (pzerop c)
(setq u* (setq v (pdifferi ux (list (car v)
(cadr v)))))
(rplaca (cdr v) c))
(setq y (cddr y))
(go a1)))
a (cond ((and (cddr v) (> (caddr v) e))
(setq v (cddr v))
(go a))) .
(setq u (cdr v))

b {(cond ((or (null (cdr u)) (< (cadr u) e)) ;; corrected from
(rplacd u (cons e (cons ¢ (cdr w)))) ;; gabriel version
(go e)))

(setq ¢ (pplus (caddr uw) c))

(cond ((pzerop c)
(rplacd u (cdddr u))
(go d))
(t
(rplaca (cddr u) c)))
e (setq u (cddr u))
d (setq y (cddr y))
(if (null y)
(return nil))
(setq e (+ (car *xx) (car y))
¢ (ptimes (cadr y) (cadr *xx)))
¢ (cond ((and (edr w) (> (cadr u) e))
(setq u (cddr u))
(go ¢)))
(go D))

(defun pexptsq (p n) ;; polynomial powering by repeated squaring.
(do ((n (floor n 2) (floor n 2))
(s (if (oddp n) p 1))
((zerop n) s)
(setq p (ptimes p p))
(and (oddp n) (setq s (ptimes s p)))))

(eval-when (load eval)
(setf (get ’x ’order) 1)
(setf (get 'y ’order) 2)
(setf (get ’z ’order) 3)
(setq r (pplus ’(x 1 1 0 1) (pplus ’(y 1 1) (z 1 1))) ; r= x+y+z+l
r2 (ptimes r 100000) ; r2 = 100000*r

r3 (ptimes r 1.0))) ; 3 = r with floating point coefficients

(defun testfrpoly ()
(dotest ’small § r)

121

(dotest ’small 10 1)
(dotest ’small 15 r)
(dotest ’small 20 r)
(dotest ’big 5 r2)
(dotest ’big 10 r2)
(dotest ’big 15 r2)
(dotest ’big 20 r2)
(dotest ’float 5 r3)
(dotest ’'float 10 13)
(dotest ’float 15 r3)
(dotest ’float 20 r3))

A;(testfrpoly)

(defun setitup ()
(setq T ’(x 131121111101 91817161514131211101)))

..

.. ..
s LR

R Parallel program to compute FFT, using iterative algorithm i
s s
i3 Written in Franz Lisp, with ‘‘doall’’ parallel iterator. i
3 (doall i ab) performs ‘....... > in 5
N parallel for each value of i from a to b. 4
1 ’ M
s (C) 1988 Carl Ponder, UC Berkeley -
I S I N N R R R E R R R R R R R R R R I I I I I
53

MM Boolean utilities. These operate on (k+1)-bit words.

r

(setq intrev (*array nil ’fixnum 1000)) ;; Array of bit-reversed integers,

;3 for generating permutations.

(defun crev (x) ;; returns an integer that is the
(do ((i 0 (1+ 1)) ;; bitwise transpose of x in the
(temp 0)) ;3 (k+1)-bit field.

((eq i k) (rot temp -1)) ;; ‘x’ is a fixnum.
(setq temp (boole 7 temp (boole 1 1 x)))

(setq temp (rot temp 1))

(setq x (rot x -1))))

(defun minor (x 1) ;; inserts a 0 into bit-position k-1

(boole 4 x (texpt 2 (tminus (tminus k 1) 1))))

123

(defun major (x 1) :; inserts a 1 into bit-position k-1

(boole 7 x (texpt 2 (tminus (tminus k 1) 1))))
(defun twist (x 1) ;; permute the bits of x.

(progt
(1sh (mod (intrev x) (texpt 2 (1+ 1))) (tminus (tminus k 1) 1))))

Definition of ring modulo 27k, as the computation structure

N for the FFT.

(setq omega 2) ;; Principle nth root of unity
;; Computed later:

(setq omegarecip 0) ;3 Reciprocal of omega

(setq k 0) ;; # of bits for ring elements

(setq n 0) ;; maximum vector length

(setq nrecip 0) ;; Treciprocal of n

(setq modulus 0) ;3 modulus of the ring

(defun define-ring (exponent) ;; sets up the parameters of the ring
(prog O
(setq k exponent)
(cond ((greaterp k 10) (return "ring too big")))
(setq n (expt 2 exponent))
(setq modulus (addl (expt omega (/ n 2))))
(setq omegarecip (cbexpt omega (subl n)))
(setq nrecip (cbexpt omega (- n k)))
(do ((i 0 (1+ 1))
((eq i n))

(store (intrev i) (crev 1i)))))

124

(define-ring 4) ;; useful ring for now. always define
;; at least 3 for roots and reciprocals

:; to be well-defined.

= The FFT functions for convolving two lists of coefficients.

(setq X (*array nil ’fixnum 1000)) ;; Vector for X coefficients
(setq Y (*array nil ’fixnum 1000)) ;3 Vector for Y coefficients
(setq Z (*array nil ’fixnum 1000)) ;3 Product of X & Y

(setq Xtransform (*array nil ’fixnum 1000)) ;3 Transform of X

(setq Ytransform (*array nil ’fixnum 1000)) ;; Transform of Y

(setq Ztransform (*array nil ’fixnum 1000)) ;; Transform of Z

(setq S (*array nil ’fixnum 1000)) ;; Scratch array.

(defun fft (Q R) :; Computes DFT in this ring.

(transform Q R omega))

(defun invfft(Q R) :; Computes inverse DFT.
(prog O
(setq R (transform Q R omegarecip))
(doall i 0 (1- n)
(store (R i) (ctimes nrecip (R 1))))

(return R)))

(defun transform (Q R x) ;; Computes transform of vector Q
(prog O HE into vector R.
(doall i 0 (1- n)
(store (S i) (Q 1))
(do ((1 0 (1+ 1))
((eq 1 k))
(doall i 0 (1- n)
(store (R i) (S 1)))
(doall i 0 (1- n)
(store (S i) (cplus (R (minor i 1))
| (ctimes (R (major i 1))
(cbexpt x (twist i 1)))))))
(doall i 0 (1- n)
(store (R (intrev 1)) (S i)))
(return R)))

;; Compute the convolution of the two
(defun Vproduct () ;; vectors X & Y, returning Z and
(prog O ;; using the remainder as scratch.
(let ((t1 (fft X Xtransform))
(t1 (fft Y Ytransform)))
(doall i 0 (1- n)
(store (Ztransform i) (ctimes (Xtransform i)
(Ytransform 1i))))
(setq Z (invfft Ztransform Z)))
(return 2)))

H Polynomial Multiplication Subroutines, adapted from

- page 15 of Macsyma source "rat3a.l".

126

[Cannot be used recursively, since the (global) arrays will
get modified. When the coefficients are expressions

the result is equivalent to the correct reduced form.

(defun ptimes (x y)
(cond ((pcoefp x) (if (pzerop x) (pzero) (pctimes x y)))
((pcoefp y) (if (pzerop y) (pzerc) (pctimes y x)))
((eq (p-var x) (p-var y))
(palgsimp (p-var x) (ptimesl (p-terms x) (p-terms y))
(alg x)))
((pointergp (p-var x) (p-var y))
(psimp (p-var x) (pctimesi y (p-terms x))))
(t (psimp (p-var y) (pctimesi x (p-terms y))))))

;; Product. Converts to a dense vector

(defun ptimesi (y x) ;; Trepresentation & computes product
(prog (size head tail) ;; via fft. Assume exponents are
(doall i 0 (i- n) ;; nonnegative integers.
(store (X 1) 0) ;; Empty out X & Y vectors

(store (Y 1) 0))
(setq size (+ (pt-le x) (pt-le y))) ;; Exponent of product.
(let ((t1 (do ((finger x (pt-red finger))) ;; Vectorize.
((ptzerop finger))
(store (X (pt-le finger)) (pt-lc finger))))
(t2 (do ((finger y (pt-red finger)))
((ptzerop finger))
(store (Y (pt-le finger)) (pt-lc finger))))))
(cond ((greaterp size n) ;; increase ring size if needed
(define-ring (1+ (fix (quotient (log size)
(log 2)0)0)
(do ((i size (1+ i)))

((eq i n)) ;; Pad vectors out to

—

(store (X 1) 0) ;; necessary length.
(store (Y i) O))))
(Vproduct) ;; multiply the polynomials
(setq head (1list nil))
(setq tail head)
(do ((i size (1- 1))) ;; Convert back into a list.
((lessp i 0))
(cond ((neq (Z i) 0) (rplacd tail (list i (2 1)))
(setq tail (cddr tail)))))
(return (cdr head))))

(defun pctimes (c p)
(if (pcoefp p) (ctimes c p)
(psimp (p-var p) (pctimesi c (p-terms p)))))

(defun pctimesi (c terms)
(loop for (exp coef) on terms by ’pt-red
unless (pzerop (setq coef (ptimes c coef)))

nconc (list exp coef)))

10.3 Appendix for Chapter 7: Test Cases 1-12

Case 1:

Case 2:

Case 3:

Case 4:

Case 5:

Case 6:

T — ats
y? — a?t?(1 - §?) w.r.t. {X,y.z.t.s}
22 — b2 (1 - t?)

4z +ry* —z+1/4
2¢ + y2z 4+ 1/2 w.r.t. {x,v.z}
—z?z 4+ 1)2 +y?

22 —y?/2-2%/2
rz4+zy—22 w.r.t. {x.y,z}

zz—y

2y + o — 22yt — 2%y? + 28—yt + 22797 — 2
23yt — zyt/2 - 23y? + 325 /2 + ry? — 23
ziy® +3/2y° - 2%y® — oy/2 - ¥ + 2%y
w.r.t. {x,y}

2 + y2 +22 -1t
y-y+z-2t-z-1 w.r.t. {x,y.z}

r?y? -1

a2 +yt+ 2t -t
yPoy+z-zi-z-35 w.r.t. {x,v.z}

z2y2 -1

128

-1

Case

Case 8:

Case 10:

Case 11:

Case 12:

2y2(y? + %) + (b7 - 3a?)y? — 2by?(y + 7) + 2%y + 7) - a®z? + a*(a* - b

4y3 + ay(y? + r2) = 2by? —4by(y + =) + 2(b? — 3a?)y + 2a%b

ary? - 2by? — 2a%z + 2a?b

ar? +bzy+cr+dy* ey + f
b12+4dry+261‘+gy2+hy+k

|

w.r.t. {x,¥}

w.r.t. {x.v}

v812—21:y—6:t:+3r+3y2—7y:+10y+10:2—8:—-4

10z7—2xy+ﬁrz—61+9y2—y2-4y—2~’2+5:“9

512+81y+4rz+81+9y2—6y:+2y—22—72+5

:r2+ayz+g
y?+bzz+h
2 4czy+k

z? 4 ayz +dr
y? +bzz + ay
224 czy+ f2

r?4+yz+dr+1
y? +zr+ay+l
S24zy+fr+1

w.r.t. {x,v.z}

w.r.t. {x,v.z}

w.r.t. {x.y.z}

w.r.t. {x.y.z}

129

a9
-

3

I

130

10.4 Appendix for Chapter 9: The Test Cases

The FG Benchmark

showtime:all$
/* f&g general representation */

gradef(mu,t,-B*mu*sigma)$

gradef (sigma,t,eps-2*sigma**2)$
gradef(eps,t,-sigma*(mu+2*eps))$
£[0]:1$ -

glol:0$

£{il:
glil:

-muxg[i-1]+diff(£[i-1],t)$
fli-1]+diff(gli-1],0)$

expop:1$
£[10]$ /* computes and stores f[1]...£[10] and gl1]...gls] =/
g[10]$

£[15]$ /* computes and stores £[1])...£015] and gl1]...gl14] */
gl15]$

expop:0$

kill(f,g);

the logs benchmark

showtime:all$

£[0]:x$
f[n):=log(f[n-11)$
diff(£[5],x)$
diff(%,x)$
diff(%,x)$
diff(%,x)$
diff(%,x)$
diff(%,x)$

kill(f);

131

the slowtaylor benchmark

slowtaylor(expr,var,point,hipower):=
block([result],
result:at(expr,var=point),
for i:1 thru hipower

do (result:result+(var-point)~i* at(diff(expr,var,i)/i!, var=point)),

result)$

showtime:all$

slowtaylor(tan(sin(x))-sin(tan(x)),x,0, 7);

133

the begin benchmark

showtime:all;
1/(x"342);
daiff(%,x);
ratsimp();
_ taylor(sqrt(i+x),x,0,5);
RTE
- (x+3)7°20;
- rat(l);
a1t (h,x);
- =~factor(h); '
jﬁ%%?étor(x‘3+x‘2*y‘2-x*z‘2-y‘2*z‘2);
~_ solve(x"6-1);
7 st matrix((a,b,c], [d,e, 1], [g,h,iD);
e

“:fae(n):=if n=0 then 1 else n*fac(n-1);
fac(5);
g(n) :=sum(i*x~i,1i,0,n);

g(10);

B

