The DASH Local Kernel Structure

David P. Anderson
Shin-Yuan Tzou

November 7, 1988

ABSTRACT

The DASH project has designed the network communication architecture for a large,
high-performance distributed system, and is now building a portable operating system
kernel to run on the nodes of this system. The DASH kemel supports the communication
architecture by providing efficient local communication, support for user-level services,
naming support, and transparent remote service access. It is designed to provide
increased performance through parallelism on shared-memory multiprocessors.

This report describes some of the basic components of the DASH kernel: process
scheduling, synchronization mechanisms, timers and message-passing. It also describes
the ways in which these facilities are made available to user processes. The other com-
ponents of the kernel, such as the virtual memory and network communication systems,
are described in separate documents.

Sponsored by the California MICRO program, AT&T Bell Laboratories, Digital Equipment Corpora-
tion, IBM Corporation, Olivetti S.p.A, and the Defense Advanced Research Projects Agency (DoD) Arpa
Order No. 4871. Monitored by Naval Electronic Systems Command under Contract No. N0O0039-84-C-
0089.

1. INTRODUCTION

The DASH project [2] is designing 1) an experimental distributed system architecture
[14], and 2) a portable operating system kernel that implements the architecture. This
report describes the design of the central part of the DASH kernel. The parts of the ker-
nel dealing with virtual memory and network communication are described in separate
documents ([14, 15]).

The report is organized as follows: Section 2 discusses the goals of the kernel design, and
the technological projections on which it is based. Section 3 is an overview of the kernel
design. Section 4 describes process mechanisms and scheduling. Section 5 discusses
synchronization using spin-locks. Section 6 describes the timer mechanism, and Sections
7 through 11 describe the local message-passing system. Sections 12 and 13 discuss sys-
tem calls and exceptions. Section 14 gives some examples of message-passing applica-
tions.

2. GOALS AND ASSUMPTIONS

The DASH kernel is designed for a class of shared memory multiprocessor (SMMP)
machines with uniform shared memory access speed, large main memory, and paged vir-
tual memory hardware. Due to the system bus bottleneck, machines of this class typi-
cally are limited to 10 to 20 processors [6]. We anticipate that this type of architecture
will be common in both workstations and server machines in the future.

The DASH kemel provides processes, virtual memory, local and remote interprocess
communication, and I/O device access. Its design has the following goals:

e Kernel parallelism. We want to generate “‘fine-grained”’ kernel parallelism !, i.e.,
parallelism within single kemel operations as well as between concurrent opera-
tions. At the same time, we seek to avoid problems due to 1) increased software
complexity, and 2) the performance overhead of process creation, scheduling, syn-
chronization, and IPC.

e Real-time capabilities. The scheduler and message-passing system support real-
time processing and communication requirements.

e Portability. The DASH kernel encapsulates its machine-dependent part in a *‘vir-
tual machine’’ interface. This interface has been designed to encompass features
that are unique to SMMP’s, so that the upper levels of the kernel can exploit these
features.

e Support for user-level services. We intend that services such as file services, win-
dow services, and transaction managers be run at the user level (i.e., in protected
virtual address spaces). This has several advantages, including flexibility and relia-
bility. The kernel design attempts to minimize the performance impact of user-level
services by providing fast local IPC and support for user-level caching in the
management of physical memory.

! In typical UNIX systems, about half of the total CPU time is spent in the kernel [3]. In future distri-
buted systems this figure may be different: services such as file systems may be moved into user virtual
spaces, while time spent in communication protocols will increase. However, it is likely that kernel paral-
lelism will be as important as user-level parallelism in determining overall system performance.

3. THE DASH LOCAL STRUCTURE: OVERVIEW

This section gives a brief overview of the DASH kernel design. The structure of the ker-
nel can be discussed in terms of both its information structure (the organization of data
and instructions) and its execution structure (the organization of process and exception
handler execution).

3.1. Information Structure

The DASH VM system [15] supports multiple virtual address spaces (VAS’s). Thereis a
single kernel VAS, and multiple user VAS’s. Within the kernel VAS, code and data are
organized according to the principles of object-oriented programming 2. The kernel’s
data structures are organized as objects that can be accessed only through abstract pro-
cedural interfaces. With few exceptions, kernel code consists of member functions that
define operations on objects.

The object-oriented structure of the kernel is reflected in the user-level facilities provided
by the kernel. User processes can hold capability-like user object references to kernel
objects, and can perform operations on these objects using ‘‘system calls’’.

3.2. Execution Structure

A DASH process is the abstraction of the sequential execution of a program. ‘‘Process’
and ‘‘virtual address space’” (VAS) are separate constructs; a VAS may contain any
number of concurrent processes, and a process may move between VAS’s during its exe-

cution. Processes are created and scheduled by the kernel.>

At any point, a process executes under the mapping of a particular VAS. While it exe-
cutes in the kernel VAS the processor is placed in kernel mode, in which it can execute
privileged instructions such as changing the processor interrupt priority. While a process
executes in a user VAS the processor is placed in user mode, in which these instructions
are illegal.

Kernel processes execute permanently in kernel mode. They perform ahead of time, or
in parallel, tasks that in other systems are done in sequence with user processes or with
interrupt handlers. Examples include the following.

e The VM system uses a static set of kernel processes for page replacement and zero-
filling [15].

e Network drivers use processes to replenish the supply of receive buffers and to free
completed transmit buffers.

e The network communication system [14] can uses parallel processes for concurrent
execution of protocols. This can be done either verrically (a process is assigned to
each incoming packet and ‘‘sheperds’’ it through protocol layers [5, 8]) or horizon-
tally (a protocol layer is implemented as a set of processes).

2 The DASH kernel is being implemented in C++ [11], an object-oriented programming language.
C++ terminology (object, class, base class, derived class, member function, virtual function, constructor,
destructor, this, and private data) is used throughout this report.

3 It would be possible to also use a user-level multi-tasking system ([7,9]) in which multi-tasking is
handled by user-level functions. However, it is our intent that the potential concurrency of DASH
processes will outweigh their higher scheduling overhead.

In addition to process-level execution, the kernel contains hardware and software inter-
rupt routines. Threads of kernel-mode execution (processes and exception handlers)
interact in two ways: 1) via synchronized access to shared objects; 2) via a local
message-passing system (see below).

User processes normally execute in user mode. They communicate with other processes
by performing message-passing operations. During these operations, the process traps
into the kernel, and executes in kernel mode for a period. Some message-passing opera-
tions are requests for kernel services, or system calls. Multiple processes in a user VAS
can execute concurrent message-passing operations, including system calls.

3.3. Real Time Capabilities

DASH is a “‘real-time system’’. The DASH kemel has traditional real-time features such
as preemptive deadline-based processing of input events. In addition it supports Real-
Time Message Streams (RMS), which are network communication channels with real-
time performance parameters [14].

Part of the DASH philosophy is that real-time deadlines should replace other forms of
prioritization in all parts of the system, both local and remote. This will allow activities
with strict real-time limitations (e.g., digitized video and audio communication) to coex-
ist with activities that have less stringent limits (e.g., conventional user interface traffic)
or no limits.

The class ABS TIME represents an absolute real time in a high-resolution
(microsecond-level) coordinate system. Overloaded arithmetic operators allow
ABS_TIMES to be conveniently manipulated [13]. The number of bits used to represent
an absolute time must be large enough to accommodate the maximum anticipated time
between crashes without rollover. In addition, a range of the ABS TIME space is
reserved for transfinite values that are greater than any attainable real time. In the
current implementation, an ABS TIME is a 64-bit quantity storing the number of
microseconds since the system was booted.

The class REL_TIME represents a difference between absolute times. Its interface and
implementation are analogous to those of ABS_TIME.

3.4. The Local Message-Passing System

The dynamic structure of the DASH kemel is centered around a local message-passing
(MP) system. The MP system consists of two major parts:

e Message representation. A message (an object of class MESSAGE) is a logical
array of bytes, implemented by a data structure consisting of a header and a set of
non-contiguous data areas. The class provides a set of operations for creating,
manipulating, and accessing messages.

e MP operations. Instead of providing a single IPC paradigm such as Remote Pro-
cedure Call (RPC), the DASH MP facility provides both stream and request-reply
style IPC. Furthermore, the system uses the inheritance facility of C++ to provide
an extensible MP system. Several different types of MP objects, with different
semantics, can be accessed through a uniform MP interface.

The message-passing system is available to user processes; it is their sole means of com-
municating with other user processes and with the kernel. The DASH VM system

provides a mechanism for efficient movement of bulk data between VAS’s [15].

4. PROCESSES AND SCHEDULING

This section describes the DASH kernel mechanisms for process creation and scheduling.
The goals of these mechanisms are:

e Efficiency: we are interested in kernel structuring based on multiple concurrent pro-
cess. The time needed for process creation and scheduling should be sufficiently
small that the process model is competitive with coroutine or procedural models. In
particular, a context switch should take no longer than several procedure calls.

e Real time support: the scheduler must let processes express their real-time require-
ments, and must attempt to satisfy these requirements.

The DASH process scheduler accommodates both uniprocessors and shared-memory

multiprocessors. All process scheduling is done on the basis of per-process real-time

deadlines. The scheduling policy approximates preemptive multiprocessor deadline
scheduling: on a machine with n CPU’s, the processes with the n earliest deadlines

should execute. 4
Deadlines are represented as ABS_TIME objects (see Section 3.3). Transfinite dead-
lines are used for ‘‘background’ processes. These deadlines are greater than all finite

deadlines, ensuring that background processes will execute only when no *‘foreground’’
processes (i.e., those with finite deadlines) are runnable.

4.1. Process Facility Interface

The process facility is represented by two classes, PROCESS and SCHEDULER.
Processes are represented by objects of the PROCESS class. At any given time, the
state of a process is one of the following:

RUNNING: the process is currently executing.
RUNNABLE: the process is ready to execute, but is not currently executing.
SLEEP ING: the process is neither ready to execute nor currently executing.

Kernel processes are created by

PROCESS: :PROCESS (
void* entry_point (),
int arg_count,

)
Entry point is the address (in the kernel VAS) of the initial procedure of the pro-
cess. Arg_ count specifies the number of arguments to this procedure; they are addi-
tional arguments to the constructor. The initial state of the process is SLEEPING,; it
will not execute until awakened using PROCESS: :wakeup ().

Each process has a kernel stack for its kernel-mode execution. This stack is allocated
from the resident subregion of the kernel space [15] when the process is created, and is

4 Cache footprint effects are ignored for kernel processes. We expect that, in the steady state, fre-
quently used kemnel code exists in the cache of all processors, and it makes little difference whether a ker-
nel process runs on one processor or migrates randomly. This is probably not true for user processes; we

deallocated when the process is deleted.

User processes are created by
PROCESS : : PROCESS (

VAS* vas,
VIRT_ADDR stack_top,
voidx* entry_point (),
int arg_count,

)
The new process will be associated with the user VAS specified by wvas. The kernel
stack is allocated as above. The user-mode stack grows downwards from (and not
including) stack_top. Space for this stack must have already been allocated in the
user VAS.

Entry point is the address (in the user VAS) of the initial procedure of the process.
The initial state is SLEEPING. Arg_count specifies the number of arguments to
this procedure; they are additional arguments to the constructor. Because they are passed
in registers to the new process (see below) the number of arguments is limited; on the
Sun 3 implementation the limit is four.

When the new process is awakened, it continues executing the PROCESS constructor in
kernel mode. The arguments to its initial procedure are moved into hardware registers.
The constructor then arranges for the process to switch to user mode, and to execute a
user process startup stub, a piece of code mapped into all user VAS’s. The stub moves
the arguments from the registers onto the process’ user stack. The process then begins
executing its initial procedure.

The other member functions of PROCESS are:
PRCCESS: :new_deadline (

ABS_TIME deadline
)i
void
PROCESS: :wakeup (

ABS_TIME deadline

)y

PROCESS: :new_deadline () should be called when a running or runnable process
needs to be given a new deadline. PROCESS: :wakeup () is used to make a sleeping
process runnable.

Process scheduling is done by the SCHEDULER module. It has the following opera-
tions:

are considering other schemes for scheduling them.

SCHEDULER: :sleep () ;
SCHEDULER: :exit () ;

SCHEDULER: :timed sleep(
REL_TIME delay
)i

SCHEDULER: :set_own_deadline (
ABS TIME deadline

)
SCHEDULER: :sleep () changes the caller’s state to SLEEPING and switches to
another process. A process terminates by calling SCHEDULER::exit ().
SCHEDULER: :timed sleep () puts the caller to sleep for the indicated amount of
time. @ SCHEDULER: :set_own_deadline () changes the caller’s scheduling
deadline; it is a special case of PROCESS: :new_deadline ().

4.2. Process Scheduling Implementation

4.2.1. Context Switches on Software Interrupt

The scheduler invokes context switches by triggering software interrupts. A software
interrupt mechanism (supported by most modern architectures) provides an interrupt type
that 1) can be requested by software, 2) has lower priority than any hardware interrupt,
and 3) is always handled on the requesting processor. If the software interrupt is
requested more than once before it is handled, the handler is executed only once.

Since all context switches are done from the software interrupt level, preemption from
within nested hardware interrupts does not cause ‘‘orphaned’’ exception frames. If mul-
tiple processes are enabled by nested hardware interrupt handlers, only one context
switch is done.

4.2.2. Data Structures

The SCHEDULER object uses the following data structures:

e A single runnable queue, consisting of a list of PROCESS objects sorted in order of
increasing deadline. All RUNNABLE processes are in this queue. >

e A single running processes queue, also represented as a list of PROCESS objects,
sorted in order of increasing deadline. It contains all processes currently executing
(i.e., all RUNNING processes).

e One idle process per processor. This process has a far deadline. The code executed

by the idle process is an infinite loop.6 The existence of idle processes ensures that
there is always a runnable process for each processor.

5 The decision to use a single runnable queue was made in the interests of simplicity. If this queue
proves to be a bottleneck in the system, the decision will be reevaluated.

6 Ideally this loop should generate no bus traffic, so that DMA operations (and other processors, on an
SMMP) are not affected. If there is no per-processor cache large enough for a tight loop, a WAIT instruc-
tion can be used.

4.2.3. Scheduling Algorithms

This section describes the algorithm used by the scheduler. The following machine-
dependent constants are used:

SWITCH_COST: the approximate time (in REL_TIME units) needed for a context
switch.

SOFTINT_COST: the approximate time for a software interrupt and context switch.

IPI_COST: the approximate time for an interprocessor interrupt and context
switch.

The scheduler is divided into two parts. The ‘‘top half’’ consists of the member func-
tions of the PROCESS and SCHEDULER classes. The ‘‘bottom half’’ consists of the
software interrupt handler and the interprocessor interrupt handler; these are assumed to
be mutually non-interrupting. Both halves are machine-independent.

The following variables are used:
earliest_runnable: the deadline of the earliest runnable process.

current _deadline: (per-processor) the deadline of the process currently exe-
cuting on this CPU.

latest running: the deadline of the latest running process.
latest_CPU: the CPU on which the latest running process is running.
The top half logic is as follows:

e Suppose a process is made runnable (PROCESS: : wakeup ()) or the deadline of a
runnable process is decreased (PROCESS: :new_deadline()). Let X denote
the new deadline. Suppose that

X < earliest_runnable
If, in addition,
X < current_deadline - SOFTINT COST
then a software interrupt is requested. Otherwise, if
X < latest_running - IPI_COST
an interprocessor interrupt is sent to latest CPU.
e When a process sleeps or exits, a software interrupt is requested.

e When a process increases its deadline (using SCHEDULER: :new_deadline ())
so that

current_deadline > earliest_runnable + SOFTINT COST
a software interrupt is requested.
The bottom half logic is as follows:
e On an interprocessor interrupt, if
current_deadline > earliest_runnable + SWITCH_COST

a context switch is done to the earliest runnable process. If in addition (after remov-
ing that process from the runnable queue)

earliest_runnable < latest_running - IPI_COST
an interprocessor interrupt is sentto latest CPU.
e On a software interrupt, a context switch is done to the earliest runnable process. If
in addition (after removing that process from the runnable queue)
latest_running > earliest_runnable + IPI_COST
then an interprocessor interrupt is sentto latest CPU.

5. SPIN LOCKS

The DASH kernel uses both sleep locks and spin locks to serialize concurrent accesses to
shared objects. When a sleep lock is busy, the requesting process blocks and another
process is executed on that CPU. When a spin lock is busy, the requesting process (and
CPU) loops until the lock is available. 7 The choice of lock type is determined as follows:
e If the object is accessed from an interrupt routine, a spin lock must be used.

e The object is part of the process scheduling mechanism (e.g., a process queue), a
spin lock must be used.

e If the expected CPU time of an object access (averaged over all the operations on
the object, not just the one being performed) is longer than four context switch
times, a sleep lock should be used.

This section discusses spin locks. Different types of sleep locks can be implemented
either using the message-passing system (Section 13) or directly on top of the
SCHEDULER class.

5.1. Execution States

On a shared-memory multiprocessor, spin locks must protect against concurrent access
both from the caller’s CPU and from other CPU’s. While protection from other CPU’s
can be achieved using a test-and-set bit in shared memory, protection from the caller’s
CPU requires a mechanism such as interrupt masking. To minimize the duration and
severity of interrupt masking, we categorize spin locks according to the sources of their

lock requests. 8

To formalize this situation, we divide kernel-mode execution (i.e., periods during which
spin-lock requests may occur) into the following execution states (see Figure 5.1).

e Process states. The normal execution of kernel processes, user processes during
MP operations (including system calls), and user processes during exception traps
and page faults, takes place in this state. Each process defines a separate execution
state.

7 1t is possible that other lock types (such as a spin/sleep lock that spins for a fixed period, then sleeps)
will be used in later versions of DASH.

¥ Interrupt-handling latency, and missed interrupts in particular, is of great concern on uniprocessors,
and suggests minimizing the duration of interrupt handlers and of process-level interrupt masking. On
SMMP architectures that ‘‘load-balance’’ interrupt handling (e.g., the Sequent Symmetry [10]), the prob-
lem is less severe. If there are more CPU’s than interrupt sources, interrupt handlers may safely take about
as long as the average time between successive interrupts. However, it may still be necessary to minimize
interrupt masking from the process level.

3 3 hardware interrupt states
kernel
exception
state f——1 | software
interrupt
state
< D process states

Figure 5.1: Execution states (arrows denote possible preemption).

e Hardware interrupt states. Each interrupt source defines a separate execution
state.

e Software interrupt state. The software interrupt mechanism is used for schedul-
ing, and optionally used for timer event and network packet handling.

e Kernel exception state. This state is entered by page faults in kernel mode and by
kernel error traps.

A state may interrupt another state (this includes preemption of one process by another).
Each processor has a logical state transition mask that limits interruptions between exe-
cution states. The implementation of the state transition mask might be the interrupt
priority level of the processor, or an interrupt-masking bit array. It might also include a
software flag that disables context switching.

A given shared object may be accessed from several execution states (for example, a
message-passing port may be sent to from a hardware interrupt state and received from in
a process state). Therefore requests to acquire the spin lock protecting that object are
made only from this set of execution states. To prevent deadlock, the spin-lock imple-
mentation must use the state transition mask mechanism to enforce the following condi-
tion:
Suppose a particular spin lock is requested at execution states X and Y, and
state Y can interrupt state X. Then, whenever the lock is held in state X, the
transition mask must be such that interrupt transitions from X to Y are dis-
abled.

10

Handlers for kemnel-generated exceptions (e.g., page faults on pageable kemnel data struc-
tures) present a potential problem, since these handlers cannot be masked. If the handler
were to request a lock held by the faulting process, that process would be deadlocked.
This situation can be avoided by imposing the following restrictions: 1) the page fault
handler cannot access pageable data, and 2) pageable data structures cannot be accessed
while holding locks that may be requested by the page fault handler.

5.2. Specification of State Sets
To allow the spin lock implementation to enforce the above rule while reducing the limi-
tations on transitions between states, the programmer must specify the set of execution
states that can request each spin lock. A set of execution states is specified using the
machine-dependent macro:

ADD_SET (set, state) // add a state to a set

The possible values of state are machine-dependent; they include at least the follow-
ing:

NO_STATE // represents the empty set of states

PROCESS_STATE

SOFT_INT_STATE

CLOCK_STATE

ALL_STATES // represents the set of all possible states
Other (machine-dependent) symbols correspond to different hardware interrupt sources.
Depending on the architecture and implementation, ADD_SET () might take the max-
imum of its arguments (for priority-based masking) or the logical or of its arguments (for
selective masking).

5.3. Spin Lock Interface
The SPIN_ LOCK class has the following interface:

SPIN_LOCK::SPIN_LOCK (// constructor for a spin lock
STATE_SET state_set // accessed from these states

)i

SPIN_LOCK::acquire() ; // acquire the lock

SPIN_LOCK::release(); // release the lock

Spin lock usage is subject to the following rules:

e Spin locks must be released in the reverse order from that in which they were
acquired. Failure to do so may leave the processor in a state in which interrupts
and/or preemption are impossible.

e Spin locks must be requested in increasing order of execution state set. In other
words, if lock X is requested while lock Y is held, the execution state set of X must
be a subset of the state set of Y.

e There is a static partial order < on the spin locks with a particular execution state
set. Processes that acquire multiple locks must do so in strictly increasing order
with respect to <.

e A process may not sleep while it holds a spin lock (this can result in poor perfor-
mance or deadlock).

11

The last rule prohibits sleeping while a lock is held. However, in some cases releasing a
lock before sleeping can lead to race conditions (i.e., if the lock is for the sleep queue).
This potentially creates a problem: how to release one or more locks and sleep, in a way
that is ‘‘atomic’’ with respect to the locks.

This problem has a simple solution in DASH, stemming from the use of software inter-
rupts to invoke the scheduler. Software interrupts (and hence process scheduling) are
disabled on a processor while a spin lock is held. Therefore if a process holding spin
locks deschedules itself (by calling SCHEDULER: :sleep () or
SCHEDULER: :set_own_deadline ()), it will immediately return from the call,
since these functions merely schedule a software interrupt. It will not actually be
descheduled until it releases all of its spin locks, which it can do at its leisure. For exam-
ple:

lockl->acquire () ; // acquire some locks

lock2->acquire() ;

// operate under protection of locks

SCHEDULER;: :sleep () ; // schedules software interrupt and returns
lock2->release () ;
lock2->release() ; // context switch takes place here

5.4. Spin Lock Implementation

The implementation of spin locks is machine-dependent. Typically a spin lock object
contains three pieces of data: a flag, a new mask, and the previous mask. The flag can be
one of the following: (1) null for uniprocessors; (2) a test-and-set bit; (3) N words such
that the lock and the data it protects are not in a same cache line; (4) a pointer to a test-
and-set bit (the purpose of this indirection is to separate the lock and the data it protects);
(5) a pointer to a word in a memory region with hardware locking support [4].

The new mask describes the transition mask to use when the lock is acquired. Usually it
is an interrupt bitmask or an interrupt priority level. The previous mask stores the the
transition mask to be used when the lock is released.

The optimal use of the execution state set by the spin lock implementation may depend
on the machine architecture. One extreme is to make a process holding a spin lock non-
interruptible (i.e., mask all interrupts while a lock is held). On a machine with a single
CPU this policy could cause missed interrupts. On a machine with many processors and
symmetric interrupt handling, this policy might reduce lock contention without causing
missed interrupts.

6. THE TIMER MECHANISM

This section describes the DASH kemel’s timer mechanism. This mechanism allows
processes to read the current time, and to schedule tasks (short, non-blocking operations)
to be performed at specified times. The goal of the mechanism is to provide a high-
resolution (1-10 microseconds) readable clock, and low-resolution (1-10 milliseconds)
task scheduling. The reasons for this distinction are as follows:

e The readable clock is used for scheduling resources (processor and network inter-
faces) for units of time that may be very small. Typically, a process or network

12

packet is given a deadline that is computed as the current real time plus a delay.
For this to be meaningful, an accurate and high-resolution current real time must be
obtainable.

e The task-scheduling facility is used for network protocol retransmission and time-
slicing, neither of which has stringent timing requirements. For simplicity, the
facility uses a periodic clock interrupt, and to minimize interrupt-handling overhead
the clock period must be fairly long.

Tasks are performed asynchronously in the context of whatever process is running at that
time. Task execution has priority over process execution, so tasks should be short. If a
piece of work is time-consuming, it should be done by a process that is awakened by a
timer task, not by the timer task itself.

Each task is represented by a timer request object. Timer request objects are of classes
(such as PROCESS and MESSAGE) derived from the base class TIMER REQUEST,
which has the following public data:

ABS_TIME deadline;

void handler_ function():

void* handler_ this

BOOLEAN pending;
Deadline 1is the real time at which the task is to be performed.
Handler_ function is a pointer to the function to be called at the due time, with a
pointer to the TIMER_REQUEST object as an argument. This procedure is responsible
for freeing the TIMER_REQUEST object, if necessary. Handler this is a pointer
to the object on which the handler function is to be invoked. Pending is true iff the
request is currently pending (requested but not yet performed).

TIMER_REQUEST objects provide the following interface:
TIMER REQUEST: :request () ;

BOOLEAN
TIMER REQUEST::cancel();

TIMER_REQUEST: :request () issues a timer request; the due time is contained
within the TIMER REQUEST object. The object may already be pending; i.e., the
operation can be used to change the due time of an existing request.
TIMER_REQUEST::cancel () cancels a previous request. It returns the pending flag
prior to the cancel (i.e., whether the task was done or not).

6.1. Timer Mechanism Implementation

The timer mechanism is implemented using a timer request queue (TRQ) object, which
stores the set of pending timer requests. The TRQ object is implemented as an array of
lists of TIMER REQUEST objects. The array is indexed by a group of bits in the due
time. This structure is similar to the ‘‘extended timing wheel’’ structure described in
[12].

TIMER REQUEST::request () is implemented as follows:

13

1) Lock the TRQ object, then the TIMER_REQUEST object.

2) If the TIMER REQUEST object is pending, unlink it from the TRQ.
3) 1Insert the TIMER_REQUEST object in the TRQ.

4) Unlock the TIMER REQUEST and TRQ objects.

TIMER REQUEST: :cancel () is implemented as follows:

1) Lock the TRQ object, then the TIMER_REQUEST object.
2) If the TIMER REQUEST is pending, remove it from the TRQ.
3) Unlock the TIMER REQUEST and TRQ objects.

The clock interrupt handler does the following:

1) Lock the TRQ.
2) Increment the ‘‘current time’’ index.
3) 1If the table entry for the current time is empty, return.
4) Scan the list at the current time index,
performing those requests scheduled for the current time.
5) Perform each due request as follows:
a) Lock the TIMER REQUEST object.
b) If it is still pending, call the handler function
with the ‘‘this’’ pointer and TIMER_REQUEST object address as arguments
¢c) Clear the pending flag and unlock the TIMER_REQUEST object.
6) unlock the TRQ.

6.2. Uses of the Timer Mechanism

We now describe some classes derived from TIMER REQUEST, and their uses in the
DASH kernel.

DELAYED CALL

These objects provide delayed procedure calls. Their handler function
points to the procedure to be executed, and additional arguments are stored in the
object. Delayed procedure calls are used by the scheduler to implement time-
slicing. Each processor has a delayed procedure call request object. When a time-
sliced process is switched to, a request is made. When a context switch (preemptive
or not) is done from a time-sliced process, the request is canceled. The handler
function calls SCHEDULER: :set_own_deadline () to preempt the process.

MESSAGE

A delayed message-passing operation is done by using the MESSAGE object as a
TIMER REQUEST object. The handler this field of the message points to a
message-passing object (see Section 7) and the handler_function field points
to a member function of that object.
PROCESS

This is used for SCHEDULER: :timed_sleep (), which is implemented as fol-
lows: the state of «caller is changed to TIMED_SLEEPING, and
TIMER REQUEST::request () is performed on the caller’'s PROCESS object.
Handler this is the SCHEDULER object, and handler_ function is a
private member function that awakens the process.

14

7. MESSAGE-PASSING OBJECTS AND OPERATIONS
The DASH kemnel’s message-passing (MP) system plays several roles:

(1) It provides interprocess communication (IPC) between different processes, and
between interrupt routines and processes, on a single host.

(2) It provides an interface for control and data transfer for a single process as it moves
between address spaces. For example, system calls, during which a process
switches from user to kernel mode and back, use MP (see Section 11).

(3) It provides allocation and queueing of data buffers. This is used by network inter-
face drivers and the virtual memory system [15] to manage buffer pools.

(4) It is used to implement other synchronization mechanisms such as multiple wait,
semaphores, sleep locks, and read-write locks (see Section 13).

The MP system is not used directly for network communication. However, it provides
the interface between the various entities (network interface drivers, subtransport layer,
transport protocol processes, and user processes) that together support network communi-
cation on a host.

MP operations are implemented as member functions of MP objects (MPO’s). These
functions can be called directly only by kernel-mode processes. The same general inter-
face is available for user process MP, but the mechanisms for referring to MPO’s and
performing operations on them is different; see Section 10.

7.1. Degrees of Freedom in Message-Passing Operations

There are several MPO types, and together they provide a variety of MP semantics. MP
operations have the following four binary degrees of freedom:

e Isthe operation in “stream’’ or ‘‘request/reply’’ mode?

In stream mode, message flow is unidirectional. The sender may block because of
flow control, but does not wait for a receiver to arrive or to deliver a reply. In
request/reply mode, message exchanges occur in synchronized pairs. The request-
ing process delivers a request message, and proceeds only when a reply message has
been obtained.

e Isthe “‘receiver’ a continuation of the sending process, or is it a different pro-
cess?
The processing of a stream-mode message, or of the request message in a
request/reply operation, may be done by either the sending process or by a second
process. MP operations are called uniprocess and dual-process accordingly.

e Isthe sending process executing in user or kernel mode?

Kernel processes invoke MP operations by making procedure calls. MP operations
can also be invoked from user-level processes. The semantics are essentially the
same as for kernel processes, but MP operations are initiated via a trap instruction;
the kernel trap handler completes the operation (see Section 10).

e Isthe receiving process executing in user or kernel mode?

For both uniprocess and dual-process MP operations, the receive processing may be
done in a different mode than that of the sending process. For example, system

15

calls are implemented as uniprocess MP operations that are initiated in user mode
and processed in kernel mode.
These four degrees of freedom yield 16 logical combinations. All 16 combinations are
possible and potentially useful, but only a subset are realized by currently implemented
MPO’s (see Table 7.1).

7.2. Message-Passing Classes and Objects

An MPO supports either stream mode or request/reply mode operations. Each mode is
represented by a base class (STREAM MPO and REQ REPLY MPO respectively) whose
virtual functions define the operations on MPQO’s of that mode. Derived classes realize
these virtual functions. The base classes have no private data or constructors.

MPOQ’s exist in the kernel address space, and may be dynamically allocated. All MPO’s
may be accessed from within the kernel (by processes or interrupt routines) by calling
their member functions.

MPO’s may be pseudo-permanent ([15]). Such an MPO may be deleted (and its memory
freed) while pointers to it still exist; the invalidity of these pointers is detected when they
are next used.

There is no fixed correspondence between processes and MPO’s. For example, multiple
instances of a server may receive request messages from a single MPO, or a server

mode sender | receiver | # processes | examples

stream kernel kernel 1 outgoing RMS endpoint (Section 7.3.6)

stream kernel kernel 2 stream port (Section 7.3.5)

stream kernel user 1

stream kernel user 2 stream port

stream user kernel 1 outgoing RMS endpoint

stream user kernel 2 stream port

stream user user 1

stream user user 2 stream port
req/reply | kernel kernel 1 kernel service port (Section 7.4.2)
reg/reply | kernel kernel 2 request/reply port (Section 7.4.2)
req/reply | kernel user 1
reg/reply | kernel user 2 user-level service port (Section 7.4.2)
reg/reply user kernel 1 system call object (Section 7.4.3)
req/reply user kernel 2 kernel service port
reg/reply user user 1
reg/reply user user 2 user-level service port

Table 7.1: Varieties of Message-Passing Objects.

16

process may receive messages from multiple MPO’s to get requests from different

sources.

The representation of a message, to be described in detail in Section 8, includes space in
the header for optional arguments to MP operations. MESSAGE objects contain the fol-
lowing fields used for this purpose (not all options are used for all operations):

int flags;

ABS_TIME deadline;

UlDb uid;

STREAM MPO* signal_ object:
MESSAGE* signal message;
int client_id;

// selects options (see below)

// scheduling deadline for receiver

// UID if MPO is pseudo-permanent

// 1f ASYNCHRONOUS, where to send signal message
// if ASYNCHRONOUS, the signal message to send
// identifies the client in request/reply messag

The meaning of these fields is explained in subsequent sections. The bitfields in flags
include the following (these are explained in more detail below).

URGENT 7/
CHECK_ID //
DEADLINE //
ASYNCHRONOUS //
CONDITICNAL //
IGNORE_FLOW_CONTROL
ALWAYS SIGNAL //
//

INTER_SPACE //

SENDER_TRUSTED //
IMMEDIATE USE //
REPLACE_PAGES /7

queue this message LIFO

MPO is pseudo-permanent

this message carries a deadline for the receiver
if operation would block, do it asynchronously
if operation would block, don’t do it

with ASYNCHRONOUS, send signal message
even if the operation is done immediately

this message is passed between virtual addr spaces
whether the receiver trusts the sender
whether the receiver plans to access the data soon
allocate new IPC pages? (user MP only)

MP operation return codes include the following:

SUCCESS //
PENDING //
WOULD_BLOCK //
MPO_DELETED /1

operation completed

ASYNCHRONQUS operation is queued and pending
a CONDITIONAL operation would block
pseudo-permanent MPO has been deleted

The following structure is use to pass arguments to some MP operations (this is done to

reduce parameter-passing overhead):
struct MP_BUFFER {

int flags;

MESSAGE* outgoing_msg;
MESSAGE* incoming msg;
MESSAGE* user header;

)}

7.3. Stream Mode Message-Passing
The STREAM_MPO base class includes the following virtual functions:

17

int
STREAM MPO::send(
MESSAGE* msg // the message to be sent
);
int

STREAM MPO: :receive(
MP_BUFFER* args
)

int
STREAM MPO: :control(
int opcode, // the operation to be performed
void* argptr // additional data (may be input or output)

)

All operations return a status code. STREAM MPO::receive () is provided only by
dual-process stream MPO’s.

Dual-process MPO’s may have to enqueue waiting receiver processes or messages wait-
ing to be delivered. The MPO determines the ordering; for example, STREAM PORT
objects use FIFO order by default. The URGENT flag, used in a
STREAM MPO: :send () operation, indicates that the message is to be given priority;
STREAM_PORT objects queue such messages LIFO.

7.3.1. Flow Control

Dual-process stream MPO’s (such as STREAM PORT objects) may act as buffers
between producer and consumer processes. Operations on such objects can be subjected
to flow control. The flow control mechanism is as follows. Flow-controlled MPQO’s
include some or all of the following data in their internal state:

Flow control mode: a flag indicating whether flow control is based on number of queued
messages (message mode) or on the number of data bytes in the queue (byre mode).

Current queue length: the ‘‘logical’’ length of the message queue. The units of length
are either messages or bytes, depending on the mode. When a message is queued on the
MPO, the field is incremented by one or by the size of the message.

Maximum queue length: an upper bound on the queue length. A send operation blocks
if it would cause this limit to be exceeded.

Sender restart queue length: all blocked senders are unblocked when the queue length
falls below this value.

Receiver restart queue length: a read operation blocks if the queue is empty, and is
unblocked when its length rises above this number.

Queue size adjustment flag: if true, the queue length is decremented by a
STREAM MPO::receive () operation. Otherwise it must be decremented explicitly
by a STREAM MPO::control () operation with the REDUCE_QUEUE_LENGTH
opcode.

This mechanism provides hysteresis for both the sender and the receiver. Hysteresis can
reduce the number of context switches, since a process can handle a batch of messages in
one context switch. If this hysteresis is undesirable, the restart lengths can be set to the

18

maximum length and to zero, respectively. When no more messages are to be written to
an MPO, reader hysteresis must be turned off using the STREAM MPO::control ()
operation.

This flow control mechanism is intended to allow transport protocols to control the flow
of data from client user processes. Since interrupt handlers can never block, a stream
MPOQO written to by an interrupt handler should not use flow control.

The mechanism for initializing the above parameters depends on the MP class; it may use
the class constructor or a class-specific control operation. See, for example, the
STREAM PORT class (Section 7.3.5). Flow-controlled stream MPO’s may supply a
STREAM MPO::control () operation with opcode REDUCE_QUEUE_LENGTH,
which reduces the queue length by the value of argptr (which is an integer in this
case). Flow control is bypassed if the IGNORE_FLOW_CONTROL flag is set in
STREAM MPO::send() and STREAM MPO::receive () operations.

7.3.2. Synchronization

Dual-process stream mode MP is asynchronous in the sense that a
STREAM MPO: :send () operation doesn’t wait for a reply to arrive, or for a matching
STREAM MPO::receive () operation to be performed. However, stream mode MP
operations may cause the process to block, either because the queue is full
(STREAM_MPO::send{)) or because no message is available
(STREAM MPO::receive ()). Stream mode MP operations that can block have
several synchronization alternatives. The following flags are used:

CONDIT IONAL: if the request cannot be performed without blocking, the operation
returns immediately with the WOULD_BLOCK code.

ASYNCHRONOUS: this allows operations to be performed asynchronously. The
requester supplies a signal object (a stream MPO) and a message to be sent to the
signal object when the original request finishes. An error code is included in the
header of the signal message. If the signal message cannot be sent immediately
(e.g., because the signal object was deleted, or because of flow control on the signal
object) at the point when the main request succeeds or fails, then the main operation
will be canceled.
ALWAYS SIGNAL (ASYNCHRONOUS mode only): send the signal message even if
the main operation can be done immediately (i.e., without blocking). If the flag is
absent and the main operation can be done immediately, the call returns SUCCESS
and does not send the signal message.

The default synchronization is ‘‘blocking’’ mode: if the request cannot be performed

immediately, the process blocks, and is awakened when the request succeeds or fails.

This mode is indicated by the absence of the CONDITIONAL and ASYNCHRONOUS

flags.

7.3.3. MPO Deletion

The following STREAM MPO::control () operations may be done on dual-process
stream MPQO’s:

DELETE: atomically frees the MPO and returns (via argptr) a list of messages
queued on it. If any operations are pending on the MPO, an error code is returned

19

to the blocked processes.

DELAYED_ DELETE: if at least one message is enqueued at the MPQ, it is deleted
as above. If no messages are queued, the MPO is put into a delete pending state.
Exactly one more message can be sent to the MPO, and the MPO is deleted atomi-
cally when that message is received. This operation makes it possible to atomically
do a blocking read from a stream MPO and delete it. This can be used to implement
an ‘‘atomic select’’ operation; see Section 13.

7.3.4. Assignment of Deadlines

A stream MP operation may associate a deadline with the message being sent. This is
used as a scheduling deadline in the processing of the message. Call the message dead-
line X. In uniprocess operations, the caller’s deadline is changed to the minimum of its
current deadline and X; it is restored on completion of the operation. In dual-process
operations, the receiver’s deadline is changed to X.

The deadline X may be assigned in the following ways. If, in the
STREAM MPO: :send () operation, the DEADLINE flag is set in the flags field of
the message header, then the deadline field of the message header is the explicit
deadline. Alternatively, a stream MPO can be assigned a deadline offset by a
STREAM MPO: :control () operation. When a message is sent to such an MPO, the
deadline is computed as the current real time plus this offset.

7.3.5. Stream Ports

Stream ports (objects of class STREAM PORT) are dual-process stream MPO’s. In
terms of implementation, they provide queues for messages, for waiting receivers, and
perhaps for waiting senders. The constructor is

STREAM PORT: : STREAM_PORT (

STATE_SET state_set

) :
where state set specifies the set of execution states (see Section 35) that may access
the port. A stream port initially has no flow control. Flow control is enabled, and its
parameters are set, by STREAM PORT::control () operations.

7.3.6. Outgoing RMS Endpoints

Classes OUT_ST _RMS or OUT_NET_RMS are derived from STREAM MPO. An
object of one of these classes is called an outgoing RMS endpoint object. Such an object
represents an endpoint of a Real-Time Message Stream (RMS) [14]. When
STREAM MPO::send() is performed on an RMS endpoint object, the message is
eventually sent via a network to a remote host. In the current implementation, RMS end-
point objects are uniprocess; whatever work is necessary to send the message (fragmenta-
tion, checksumming, queueing and so forth) is done in the caller’s process.

Clients of an RMS must obey a bound on outstanding data on the RMS. This suggests
variants of RMS objects that supply this flow control automatically. One way to do this
is with reverse acknowledgements; another is with rate-based flow control. Both
approaches can be implemented as MPO’s (rather than as full-fledged protocols) since
they only have to perform actions on send requests.

20

7.4. Request/Reply Mode Message-Passing

The REQ REPLY MPO base class has the following virtual functions:
int
REQ_REPLY MPO::request_reply(
MP_BUFFER* args
)i

int

REQ _REPLY MPO::get_request (
Mp_BUFFER* args

)

int

REQ REPLY MPO::send reply({
MESSAGE *msg

)

int

REQ REPLY MPO::control(
int opcode,
void* argptr

)i

A client calls REQ_REPLY MPO::request_reply (), supplying a request message
and receiving a reply message in return. If the MPO is uniprocess, the operation is done
by the client process itself. If the MPO is dual-process, a server process obtains the
request message using REQ REPLY MPO::get_request (), performs the opera-
tion, and delivers a reply message using REQ_REPLY MPO::send_reply ().

Because multiple concurrent operations on a request/reply MPO can potentially take
place, it is necessary for REQ REPLY_ MPO::send_reply () to identify the client to
whom the reply is being sent. This is done as follows:
REQ REPLY MPO::request_reply () stores a value in the client_id field of
the request message. The server must copy this field to the reply message.
REQ _REPLY MPO::send _reply () uses it to determine which client to wake up.

If the server is a kernel process, the client ID is a pointer to the PROCESS object of the
client. If the server is a user process, the ID is a temporary ‘‘user object reference’’ (see
Section 9) to the PROCESS object of the client.

Because of the synchrony of request/reply operations, there is no need for flow control on
request/reply MPO’s. Nor is there a need for additional synchronization options such as
CONDITIONAL or ASYNCHRONOUS.

7.4.1. Assignment of Deadlines

A request/reply MP operation may provide a deadline, i.e., the time by which the opera-
tion should be completed. This is used as a process scheduling deadline. Call the mes-
sage deadline X. In uniprocess operations, the client’s deadline is changed to the
minimum of its current deadline and X; it is restored on completion of the operation. In
dual-process operations, the server’s deadline is changed to X.

The deadline X may be assigned in several ways. If, 1in the
REQ REPLY MPO::request_reply () operation, the DEADLINE flag is set in the

21

flags field of the message header, then the deadline field of the message header is
the explicit deadline. Alternatively, some request/reply MPO’s can be assigned a dead-
line offset by a REQ REPLY MPO::control () operation. When a message is sent
to such an MPOQ, the deadline is computed as the current real time plus this offset.

7.4.2. Request/Reply Port

The class REQ REPLY_PORT defines the basic dual-process request/reply MPO. The
object queues clients when there are no available servers, and queues servers when there
are no requests. Clients and servers may be either user or kemnel processes. This type of
MPO might be used for a kernel-resident server.

7.4.3. System Call Object

The SYSTEM CALL object is a uniprocess request/reply MPO used to make system
calls from user processes (see Section 11). There is one such object per kernel; it has no
internal state and therefore requires no synchronization.

8. MESSAGE REPRESENTATION, ALLOCATION AND MANIPULATION

This section describes the message representation part of the MP system. A message is
an object of class MESSAGE. This class provides the abstraction of an untyped byte
array. The design of the message representation is targeted at two cases: (1) moving
large messages between VAS'’s; (2) protocol handling, such as header insertion/deletion,
copying for retransmission, and fragmentation.

Message data cannot, in general, be randomly accessed by array indexing. It is accessi-
ble only through the set of operations described below. The implementation of message
objects does not necessarily store the data contiguously in memory; indeed, the data may
not even be mapped in the VAS of the message owner.

This encapsulation of message structure gives the MP system considerable freedom in
representing and transporting messages. The MP system uses this freedom to avoid
unnecessary memory copying when moving data between VAS’s; this is done by using
virtual memory remapping [15].

A MESSAGE object is implemented as a variable-size header block and a set of IPC
pages. The header block contains an array of descriptors pointing to the IPC pages.
Each descriptor contains the following information: 1) a pointer to the IPC page; 2) a
read/write flag; 3) the offset and size of data in the page.

The header block also contains other bookkeeping information (such as the total message
size) and space for parameters to MP operations (see Section 7.2). Figure 8.1 shows the
structure of a message object.

8.1. Operations on Message Objects
There are three constructors for MESSAGE objects:

22

message header

< descriptors >

bookkeeping

information CP P Q

header data area

IPC Page IPC page

Figure 8.1: Message Representation.

MESSAGE: :MESSAGE (

int head_size,
int body_size,
int tail size,

VIRT ADDR* data
)i

MESSAGE: :MESSAGE (
int head_size,
int tail size
)i

MESSAGE : :MESSAGE () ;
In the first form, body_size is the initial size (number of data bytes) of the message.
Head size and tail_size are the maximum size of protocol headers and trailers
to be added to the message. These values must be obtained from the protocol layers
through which the message will pass. A pointer to the initial data part of the message is
returned in data.

In the second form, there is no initial data in the message. This is used when the message
is to be formed from IPC pages.

In the third form, the message will never be used to contain data. This is used for signal
messages, which may use the data fields in the message header.

23

VIRT_ADDR
MESSAGE: :access (

BOOLEAN w,

int offset,

int *contiguous_size
)
VIRT_ ADDR
MESSAGE: :access

BOOLEAN rw,

int offset,

int length

)
Both forms return a pointer to the message data starting at the given offset. If rwis
true, the data can be read or written; otherwise it can only be read. In the first form, the
amount of contiguous data is returned in contiguous_size. In the second form, the
message will be reorganized, if necessary, to make the requested amount of data contigu-
ous.

The following functions add data to a message:
MESSAGE: :append message (
MESSAGE* mnsg
) ;
MESSAGE: :append_ipc_page (
VIRT_ADDR data,

int size
)

MESSAGE: :prepend_ipc_page (
VIRT_ADDR data,
int size

)

MESSAGE: :append_space (
int length,
VIRT_ADDR data

) ;

MESSAGE: :prepend_space (
int length,
VIRT ADDR data
) :
MESSAGE: :append message () appends another message to this one.
MESSAGE: :prepend_ipc_page() and MESSAGE::append_ ipc_ page ()
add an IPC page to the start or end of this message, respectively. Data points to the
start of the data (which is not necessarily at the start of the IPC page).
MESSAGE: :prepend_space () and MESSAGE::append space () add unini-
tialized data to the start or end of this message. This space must have been previously
reserved by the head and tail arguments to the message constructor.

The following functions remove data from a message:

24

MESSAGE: :remove_start (
int length
) ;

MESSAGE: : remove_end (
int length
);
These remove the given amount of data from the start or end of this message. There is
no provision for inserting or deleting data in the middle of a message.
MESSAGE*
MESSAGE: :duplicate ()
This produces a separate ‘‘logical copy’’ of this message; (e.g., for protocol retransmis-
sion). This is done by 1) copying the header and 2) incrementing the reference count of
the message’s IPC pages, and making the references read-only (see Section 8.3). Each
copy can be independently deallocated or sent to other VAS’s. Writing to one copy
(after using MESSAGE: :access ()) will not affect the other copy.
MESSAGE*
MESSAGE: :split(
int offset,
);
This separates the message into two parts around the given offset (e.g., to fragment a
large message into network packets). As with MESSAGE: :duplicate (), copying of
IPC pages is avoided.

The MESSAGE class also provides member functions
MESSAGE: :start _transfer() and MESSAGE::finish transfer () that
transfer messages between VAS’s (see Section 10.5).

8.2. Synchronization of Message Operations

Message access operations are not synchronized (e.g., there is no per-message spin lock).
It is the responsibility of the clients to avoid concurrent operations. Typically, a single
process is responsible for a message at any point. This responsibility is transferred by the
MP operations: the sender loses responsibility, and the receiver acquires it.

8.3. Data Sharing Between Messages

Messages can share IPC pages. However, there is always a separate header for each mes-
sage. There is no lock to synchronize access to the header; this is the responsibility of
clients, as indicated above. On the other hand, an IPC page may be shared by two mes-
sages and pointed to by multiple descriptors. The VM system ([15]) maintains reference
counts for the IPC pages. Operations on these reference counts are serialized by the VM
system.

A descriptor contains a flag indicating the access mode (read/write or read-only) of the
IPC page. A IPC page is shared only in read-only mode. Since there is at most one
writer, it is not necessary to synchronize the access to the data part of a message.

An IPC page may be shared by multiple messages as a result of
MESSAGE: :duplicate () or MESSAGE::split (). In the second case, the two
resulting message headers have descriptors pointing to the same IPC page, but with

25

different offsets. The read/write flag of a shared IPC page is always read only.

Sharing reduces the overhead of MESSAGE: :duplicate () and
MESSAGE: :split (). Only a new header block need be allocated; the existing IPC
pages can be used without copying.

A message containing shared IPC pages may be modified without affecting other mes-
sages sharing the IPC pages. This is possible because modifying a message is allowed
only after calling MESSAGE: :access (), which makes a private copy of the IPC page
if the flag is read only. This is essentially a copy-on-write mechanism [1] with a
fine granularity and without page faults. MESSAGE: :duplicate() and
MESSAGE: :split () are used mostly by protocols for purposes of retransmission, and
subsequent message modification is therefore infrequent.

8.4. An Example

The following example describes the work involved in sending a large message from a
user VAS, through the kernel, and out onto a network. Observe that IPC page data is
never copied.

(1) The user process allocates IPC pages and creates a message consisting of a header
and several IPC pages. It reserves space for protocol headers and trailers in the
message header (the amount of space may depend on the protocols being used; if
necessary, the protocols can be queried).

(2) The user sends a message to the kernel. The message header is copied into the ker-
nel VAS and ownership of the IPC pages is transferred to the kernel VAS.

(3) Protocol headers and/or trailers are added to the message. Because of (1), they fit
within the message header.

(4) The message is duplicated for retransmission. A new message header is allocated,
and the reference counts of the IPC pages are adjusted.

(5) The message is split into several small message of network packet size. New mes-
sage headers are allocated, but IPC pages are not copied.

(6) The packet-size messages are mapped into the I/O space if necessary, If the network
interface supports chaining-mode DMA, the packets can be sent without copying
the IPC page data.

9. USER OBJECT REFERENCES

The user object reference (UOR) mechanism allows user processes to obtain *‘capabili-
ties’’ to kernel-level objects. UOR’s are issued (by the kernel) to a particular user virtual
address space (VAS), and can be used by any process in that VAS. They exist only for
the life of the VAS.

For each user VAS, the kernel maintains a table describing the UOR’s allocated to that
VAS. A UOR is an (index, UID) pair. The index is an index into the table for that VAS.
The UID is used to identify a pseudo-permanent object ([15]), and is used only for such
objects.

Each entry in a UOR table includes:

26

e The address (in the kernel VAS) of the object.
e The type of the object, encoded as an integer.

e A bitmask representing a set of access rights to the object (i.e., operations that can
be performed on it). The meaning of these bits is class-specific. Some classes may
not use them at all.

e A UID (pseudo-permanent objects only).

User processes pass UOR’s to the kernel during MP operations, both to refer to the MPO,
and (for system calls) to refer to other objects. Whenever a UOR is resolved to an object
address, the following validity check is done:

If the UID in the table is nonzero, it must match that in the UOR. This check is for
security purposes; it does not detect dangling references.

In addition, the kernel routines that directly handle user requests (MP processing and sys-
tem call interface routines) may perform the following checks:

e The type field in the UOR entry is checked for correctness.
e Individual object operations may check the access-rights bitmask.

e The object UID is compared with the UOR’s UID. This detects dangling references
to deleted objects.

Some UOR’s are allocated on VAS creation, while others are allocated via system calls.
The initial (and permanent) entries in the table include references to

the system-call object (see Section 7.4.3);
the exception port for this VAS (see Section 12).;
the VAS object for this VAS (see [15])

the NAMED_ENTITY object representing the root of the global name space (see
[14]).

The implementation of the UOR’s uses the class UOR_TABLE, which implements a
UOR table. It provides the following interface:

struct UOR_ENTRY {
OBJECT_TYPE type;

U3z access_rights;
UID uid;
voidx* object;

}i

U32
UOR_TABLE: :add entry
OBJECT TYPE type,
U32 access_rights,
void* object, // object address
UIiD uid

27

UOR_ENTRY*

UOR_TABLE: :get_entry (
U32 index,
UIDp uid

)

UOR_TABLE: :delete entry (
U32 index
) :
UOR_TABLE::add_entry () creates a UOR for the given object, returning the table
index. UOR _TABLE::get_entry () returns a pointer to the UOR table entry
referred to by the given UOR. It returns NULL if the index is unassigned or if the UID’s
do not match. UOR_TABLE: :delete_entry () frees a UOR table entry.

10. MESSAGE PASSING BETWEEN VIRTUAL ADDRESS SPACES

The MP operations described in Section 7 are available to user-level processes, using the
mechanism described in this section. This mechanism is used for (1) user-to-kernel, (2)
user-to-user in different VAS’s, and (3) user-to-user in a single VAS. The operations are
invoked by trapping into the kernel, even when the sender and receiver are in the same

VAS®. Input and output parameters of the operations are passed in hardware registers.

10.1. Message Representation and Allocation

The message representation described in Section 8 applies to user-level message-passing
as well. A message consists of a variable-size header, which must be contained in a sin-
gle IPC page, and possibly some IPC pages containing data. These constraints guarantee
that 1) the message header is accessible (for copying) in the kernel VAS, and 2) the data
pages can be remapped efficiently.

Operations on message objects (e.g., MESSAGE::access ()) are implemented as
user-level library routines. In some cases these routines must make system calls to allo-
cate or free IPC pages. The potential circularity is avoided by having an IPC page that is
permanently owned by the VAS, for the purpose of making system calls.

To receive a message, a user process must supply space for a message header in an IPC
page, to be filled in by the MP operation. The message data is stored either in IPC pages
or in the available space in the message header.

10.2. Message Ownership

The semantics of message-passing are based on the notion of IPC page ownership
described in [15]. They can be summarized as follows:

e “‘Ownership’’ of a message implies ownership of the message’s IPC data pages, and
of the IPC page containing the header.

e When a message is sent, ownership of the IPC data pages is transferred from the
VAS of the sender to that of the receiver. The sender VAS retains ownership of the

® It would also possible to implement MP between processes in the same VAS as user-level library
routines, plus system calls for process control operations. This approach would save a trap into the kernel
in simple cases, but would require more traps when an MP operation involves several process operations
(e.g., when multiple processes are awakened because of flow control).

28

IPC page containing the header.

e A user process can access an IPC page only if its VAS owns the page. It can write
to the page only if the ownership is exclusive.

10.3. Binding of MP Objects to VAS’s

A message-passing object to be used for message-passing between VAS’s is always
bound to a particular VAS. This allows the MP system to transfer a message on the
send operation, even when no process is waiting to receive it. A VAS is bound to an
MPO using STREAM_MPO:control () or REQ REPLY MPO::control () with
BIND SPACE as the opcode. Only processes in the bound VAS can perform
STREAM MPO::receive () or REQ REPLY MPO::get_request () operations
on the MPO.

10.4. Arguments to the MP Operations
Each MP operation requires that certain information be passed in hardware registers:

e All operations require a code identifying the operation, a UOR to the MP object,
and the UID of the MP object.

e Operations that send a message (STREAM _MPO::send(),
REQ REPLY MPO::request_reply(), and
REQ_REPLY MPO::send_reply()) require a pointer to the message to be
sent. The message header contains flags, including a REPLACE PAGES flag indi-
cating that new IPC pages are to be allocated to replace those sent out in the mes-
sage. Pointers to the new pages are returned in the message header descriptors.

° Operations that receive a message (STREAM MPO::receive(),
REQ REPLY MPO::request_reply(), and
REQ REPLY MPO::get_request ()) require a pointer to a message header,
and the flags for the receive operation.

e STREAM MPO::control() and REQ REPLY::control () require the
opcode of the particular control operation, and possibly a word of additional infor-
mation.

10.5. Message Transfer Operations

Moving a message from one VAS to another is done by member functions of the MES-
SAGE class. A message contains a header and possibly IPC pages. The header is moved
by software copying, whereas IPC pages are moved by VM remapping [15]. The VM
system remaps an IPC page from one VAS to another in two steps: one initiates the
operation, and one ensures that the operation is completed. Moving a message is also
divided into two functions to reflect the remapping facility provided by the VM system.
This section describes these functions; the next section describes the scenario of using
these functions. The first function is called by the sender.

29

MESSAGE: :start_transfer (

VAS* sender, // source VAS

VAS* receiver, // destination VAS
MESSAGE** new_header,

BOOLEAN sender trusted

) :

This transfers a message from one VAS to another. New_header points to a message
pointer. If on input the latter pointer is NULL, then there is no waiting receiver. In this
case, a temporary buffer is allocated in the kernel VAS, the message header is copied
there, and the pointer is returned via new_header. If the pointer is not NULL, it
points to the header supplied by a waiting receiver, and the header is directly copied
there. In addition, this function checks the validity of the message (i.e. that all the IPC
pages are owned by the VAS). For every IPC page in the message, it calls
IPC_REGION _MGR::start_transfer () of the VM system to transfer the owner-
ship of the page from the sender VAS to the receiver VAS, passing the
sender trusted flag directly.

The second function is called by the receiving process to ensure that the transfer is com-

plete.
MESSAGE::finish_transfer (
VAS* receiver, // destination VAS
MESSAGE* receiver_header, // receiver’s header
BOOLEAN sender_trusted, // whether to purify
BOOLEAN immediate_map // whether to hardware-map

):
It does the following:

e If the message header is in a temporary kernel buffer (this occurs, for example,
when STREAM MPO: :send () iscalled before STREAM MPO: :receive ()),
it copies the message header into the receiver’s header, and deallocates the buffer.

e For every IPC page in the message, it calls
IPC_REGION_MGR::finish transfer of the VM system to ensure that the
IPC page has been transferred properly The two boolean flags are passed directly.

10.6. Stream Mode MP Scenarios

This section describes the steps taken in sending a message between VAS’s using a pair
of STREAM MPO::send() and STREAM MPO::receive() operations. The
details differ somewhat according whether:

(1) the STREAM MPO::receive () precedes the STREAM MPO::send(), and
the receiving process sleeps;

(2) the STREAM MPO::send() precedes the STREAM MPO::receive (), and
the message is enqueued.

The ordering of the two operations (which may be concurrent) is determined by the order
in which they acquire the spin lock on the MPO.

10.6.1. Receiver First
The steps executed by the receiver process are:

30

(1) It stores the MP operation arguments in machine registers and executes a TRAP
instruction.

(2) The machine-language trap handler routine pushes the values in the registers onto
the stack and calls the C++ trap handler.

(3) The C++ trap handler switches to the kernel VAS. It checks the UOR to the MP
object, including the rights to perform the MP operation.

(4) The trap handler then calls STREAM MPO::receive on the MPO. This
acquires the spin lock that is used to serialize operations on the MPO. Since there is
no message queued, the receiver sleeps and releases the spin lock. Before doing this
it stores the receive flags, and a pointer to the receiver header, in its context block.

(5) After the process is awakened by the sender (see below) it returns from
STREAM MPO::receive () to the trap handler.
STREAM MPO::receive () returns a pointer to the message received by the
MPO. The trap handler calls MESSAGE: :finish_transfer () to ensure the
message has been transferred to the receiver VAS properly.

(6) The trap handler switches back to the user VAS and does a ‘‘return from trap”’
instruction.

The sender executes steps (1) to (3) as above. Then the trap hander calls
STREAM_MPO: :send() on the MPO. Since the comresponding
STREAM MPO::receive () has been called, the message-passing system knows at
this point the VAS of the receiver, the address of the receive header, and the receive flags
(.e., SENDER_TRUSTED, and IMMEDIATE___USE). The STREAM MPO: :send ()
operation does the following:

(1) Itcalls MESSAGE::start_transfer () to move the message to the receive
VAS.

(2) It wakes up the receiver, which resumes at step (5) above.
(3) Itreturns to the trap handler, which in turn returns to the user VAS.

10.6.2. Sender First

In this case, when STREAM MPO::send() is called, the message-passing system
does not know the receiver header and the receive flags. However, it does know the
receive VAS because the VAS has been bound to the MPO. It uses the receive VAS, a
NULL receive header and the flags of the sender to call
MESSAGE: :start_transfer (). This copies the message header to a temporary
kernel buffer, and remaps IPC pages in the message to the receiver VAS. Then the mes-
sage stored in the kernel buffer is enqueued, and STREAM MPO::send() returns to
the trap handler.

At some later point a receiver invokes STREAM MPO: :receive () and finds a mes-
sage in the MPO queue. It calls MESSAGE::finish transfer () to copy the
header from the temporary kernel buffer, and complete the remapping of the IPC pages.

10.7. Request-Reply Mode MP Operations

A request/reply MP operation is basically a pair of stream-mode MP operations; the
request message is sent from the client to the server, and the reply message is sent from

31

the server to the client. The implementation parallels that described above for stream-
mode operations. The following simplifications, however, are made: Since the client is
always blocked waiting for the reply message, the transfer of the reply message always
follows the ‘‘receiver first’’ scenario.

11. SYSTEM CALLS

This section describes the DASH system call mechanism, which is based on user-to-
kernel request/reply message passing. System calls are done by executing a
request reply () operation on a uniprocess request/reply MPO called the system
call object. Every address space has a well-known UOR to the system call object.

A system call request message consists of an operation code followed by data. The sys-
tem call object includes a table (indexed by operation code) of pointers to interface rou-
tines. Each interface routine is logically part of a kemel class; it is responsible for con-
verting a request/reply operation into a call to a member function of the class. The sys-
tem call object decodes the request message and forwards it (as a conventional object
operation) to the appropriate interface routine.

11.1. System Call Scenario
The steps in executing a system call are as follows:

(1) A user process performs a REQ REPLY MPO::request_reply () operation
on the system call object, resulting in a trap to the kernel.

(2) The system call object checks the validity of the operation code, and branches to the
relevant interface routine.

(3) The interface routine checks the validity of the arguments contained in the request
message. If the arguments include UOR’s, the interface routine converts them to
kernel object pointers and verifies type correctness and access rights. The routine
then calls a standard member function of the kernel object.

(4) When the member function returns, the interface routine packages the return values
into a message. If needed, pointers to kernel objects are translated to UOR’s.

(5) The interface routine returns to the system call object, which returns to the user
VAS via the trap handler.

11.2. Defining a System Call

Each system call defines a structure for the request and reply messages. The message
specification language DML (see [14]) is used for defining these structures. A typical
definition is:

msg_typedef struct {

U32 request_code;

BYTES owner_name; // owner name whose public key is requested
} GET PUBLIC_KEY REQ;

msg_typedef struct ({
U32 return code; // return code
BYTES key; // the key

} GET_PUBLIC_KEY REP;

32

The following facilities could be provided to user-level programmers to facilitate system
calls:

e An include file defining the operation codes and predefined UOR’s (for the system
call object, the current address space, and others) used in making system calls.

e A library of routines for creating and accessing system call messages.

e A library of routines that give a procedural interface to system calls.

For kernel implementors, defining a system call consists of the following steps:
(1) Register a system call operation code.

(2) Define the structures of the request and the reply messages.

(3) Write an interface routine that performs the tasks described above.

(4) Add an entry to the interface routine table of the system call object.

12. EXCEPTIONS

Each user VAS has an associated exception MPO (a STREAM MPO object) which has a
well-known UOR. Exception sources include illegal instructions, floating-point errors
(e.g., divide by zero), writes to read-only pages, references to unallocated pages, refer-
ences to unassociated pages, user-requested VM exceptions, etc. When a user process
incurs an exception, a message with the following format is written to the exception
MPO:

typedef struct {

USER_OBJ_REF process; // reference to offending process
VIRT_ADDR instr; // address of offending instruction
EXC_TYPE type; // type of exception

U32 datal[8]; // data specific to a type of exception,

// e.g., the reference addr for VM errors
} EXCEPTION_MSG;

When a process generates an exception, it enters the SLEEP ING state, and does not exe-
cute until explicitly resumed. Each VAS is responsible for processing its exception mes-
sages. This is normally done by having a exception handler process that executes an
infinite loop reading and processing messages from the exception MPO. If a message
remains unread in the exception MPO for more than some fixed period, the VAS and its
processes are assumed to have crashed, and are deleted.

The exception handler may resume the faulting process after eliminating the reason for
the exception, kill the faulting process gracefully, or kill the whole space gracefully. The
following two functions are available to the exception handler through system calls.

CONTEXT
PROCESS: :read context();

void

PROCESS :write_context (CONTEXT*) ;
The structure of CONTEXT is machine-specific. It stores the state, e.g., registers, of a
process. By manipulating the context block as well as the VAS of a process, the excep-
tion handler can repeat an instruction, skip an instruction, simulate an instruction, unwind
the stack of a process, perform a long jump across stack frames, etc.

33

13. MESSAGE-PASSING: EXAMPLES

Many high level synchronization mechanisms can be implemented using the MP facility.
Some examples of high level synchronization are presented in this section; they are not
intended to be complete nor rigorous, but to point out possibilities and ideas.

13.1. Multiple Wait and Timeout
This example allows a process to wait on multiple events and return when the first one is
done. It guarantees that exactly one event is done. 10

(1) Create a STREAM PORT object (call it sigport) to receive a signal message
that indicates an event has happened.

(2) sigport->control (DELAYED DELETE) (This port will accept only one
message).

(3) Issue as many STREAM MPO::send() and STREAM MPO::receive ()
operations as necessary. Each operation includes the ASYNCHRONOUS and
ALWAYS_ SIGNAL flags, and specifies sigport as the port to which the signal
message is to be sent.

(4) Receive a signal message from sigport in BLOCKING mode. When done,
examine the signal message to determine the source of the event.

Step 2 ensures that only one operation issued in Step 3 will successfully deliver the signal
message; therefore, it ensures that only one operation will succeed. The pseudo-
permanence of the signal port takes care of the case when the signal port has already
been deleted.

Timeout on multiple wait can be done by arranging a message to be delivered to the sig-
nal port after some delay time. The process, if still blocked in Step 4, will be awakened
when the timeout message arrives.

In many situations it is not necessary to guarantee that exactly one event occurs, e.g., a
server waiting on multiple sources of requests. The STREAM MPO::control ()
operation in Step 2 can be removed:

(1) Createa STREAM_PORT object, call it sigport.

(2) Issue initial STREAM MPO::send() and STREAM MPO::receive ()
operations. Each operation includes the ASYNCHRONOUS and
ALWAYS_ SIGNAL flags, and specifies sigport.

(3) Receive a signal message from sigport in BLOCKING mode. Examine the sig-
nal message to determine the source of event.

(4) Process the event, and issue a new request on the port where the previous operation
succeeded. Loop back to Step 3.

10 Multiple wait is achieved by the select () system call in UNIX. However, there is no guaran-
tee that an I/O system call on a “‘ready’’ descriptor immediately after the retun from select () will
succeed without blocking, since other processes may read from or write to the descriptor between the
select () and the 1/O system call.

34

13.2. Sleep Locks (Binary Semaphores)

At most one process can hold the lock at any time. If the lock is not available the
requesting process is put to sleep. Such a lock can be implemented as a port and a
‘‘token message’’. The token message is written to the port when the lock is created.
The lock is acquired by receiving from the port, and released by writing to the port.
Whoever owns the token message holds the lock. The various synchronization modes of
the STREAM MPO: :receive () operation (conditional, blocking and asynchronous)
are automatically available when acquiring the lock. Other forms of sleep locks, such as
single-writer multiple-reader locks, can be implemented similarly.

13.3. Producer/Consumer Synchronization

Producer/consumer synchronization can be implemented using a flow-controlled stream

port:

(1) Create a STREAM PORT with flow control enabled, and with a data limit of n
bytes.

(2) The producer simply sends to the port at the rate it can generate data. There is no
explicit synchronization; the producer blocks due to the flow control on the port.

(3) The consumer simply receives at the rate it can consume data from the port. It
blocks when the port is empty, or by the flow control mechanism of
STREAM MPO::receive().

Variations of producer/consumer synchronization can be implemented using the hys-
teresis property of the flow control mechanism.

14. ACKNOWLEDGEMENTS

Raj Vaswani implemented a major part of the DASH kernel, was involved in its design,
and contributed to this report. Robert Wahbe, and Giuseppe Facchetti also were involved
in the design and implementation. G. Scott Graham provided feedback on the report.

10.
11.
12.

13.
14.

15.

35

REFERENCES

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian and M.
Young, ‘“‘Mach: A New Kemel Foundation for UNIX Development’’, Proceedings
of the 1986 Summer USENIX Conference, Atlanta, Georgia, June 9-13, 1986, 81-
92.

D. P. Anderson and D. Ferrari, ‘“The DASH Project: An Overview’’, Technical
Report No. UCB/Computer Science Dpt. 88/405, Computer Science Division,
EECS, UCB, Berkeley, CA, Feb. 1988.

M. J. Bach and S. J. Buroff, ‘‘Multiprocessor UNIX Systems’’, AT&T Bell Labs
Technical Journal 63, 8 (Oct. 1984), 1733-1750.

B. Beck and B. Kasten, ‘“VLSI Assist in Building a Maultiprocessor UNIX
system’’, Proceedings of the 1985 Summer USENIX Conference, Portland, Oregon,
June 11-14, 1985, 255-275.

D. D. Clark, ‘‘The Structuring of Systems Using Upcalls’’, Proc. of the 10th ACM
Symp. on Operating System Prin., Orcas Island, Eastsound, Washington, Dec. 1-4,
1985, 171-180.

D. D. Gajski and J. Peir, ‘‘Essential Issues in Multiprocessor Systems’’, JEEE
Computer, June, 1985, 9-28.

N. H. Gehani and W. D. Roome, ‘‘Concurrent C’’, Software—Practice &
Experience 16(9) (Sep. 1986), 821-844.

N. Hutchinson and L. Peterson, ‘‘Design of the x kernel’’, ACM SIGCOMM 88,
June 1988.

J. Kepecs, ‘‘Lightweight Processes for UNIX Implementation and Applications’’,
Proceedings of the 1985 Summer USENIX Conference, Portland, Oregon, June
11-14, 1985, 299-308.

Symmetry Technical Summary, Sequent Computer Systems, Inc., 1987.
B. Stroustrup, ‘‘“The C++ Programming Language’’, Addison-Wesley, 1986.

G. Varghese and T. Lauck, ‘‘Hashed and Hierarchical Timing Wheels: Data
Structures for the Efficient Implementation of a Timer Facility’’, Proc. of the 11th
ACM Symp. on Operating System Prin., Austin, Texas, Nov. 8-11, 1987, 25-38.

‘“The DASH Programmer’s Manual’’, Internal document, August 1988.

*“The DASH Network Communication Architecture’’, UCB/Computer Science
Dpt. Technical Report, in preparation, August 1988.

““The DASH Virtual Memory System’’, UCB/Computer Science Dpt. Technical
Report, in preparation, August 1988.

