Coprocessor Architectures for VLSI

By
Paul Mark Hansen
B.S. (Utah State University) 1972
M.S. (Utah State University) 1974
DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in

COMPUTER SCIENCE

in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA at BERKELEY

ooo

#*****#****#****t*#t#t****##*t#tt*

Coprocessor Architectures for VLSI
Copyright © 1988
by
Paul Mark Hansen

All rights reserved.

COPROCESSOR ARCHITECTURES FOR VLSI

Ph.D. Paul Mark Hansen Electrical Engineering
Computer Science and Computer Sciences

Abstract

The hardware resources available on a single chip to implement VLSI CPU remain scarce,
despite rapid technological advances. Reduced Instruction Set Computers (RISCs) reduce com-
plexity and use the chip hardware resources {0 make the most frequently occurring operations
fast. In this dissertation, the RISC philosophy is extended to specialized devices called copro-
cessors. Coprocessors increase system performance by reducing the number of instructions per

program and the number of effective cycles per instruction.

A method for evaluating coprocessor performance is developed, including a model that
accounts for system, software, and hardware effects. Coprocessor implementations are charac-
terized in terms of effectiveness and utilization by considering operation and overhead time for

typical computations.

Performance and interface characteristics of the SPUR floating-point coprocessor imple-
mentation of the JEEE Standard are presented and compared to two popular commercial ver-
sions by Intel and Motorola. The SPUR FPU is a factor of three to 50 times faster than the
commercial versions for comparable technology and clock rates. For each architecture, the
influence on performance of each of the following is identified: the bus width between the
floating-point unit and operand storage, the operand transfer protocols implemented in
hardware, the concurrent execution model, the speed of the function units, the floating-point
instruction semantics, and the data cache service time. Execution time spent in overhead is

shown to increase to more than 90% for some architectures if equipped with faster floating-

point units. This suggests that coprocessor interface architectures must change dramatically to

keep pace with the rapid advance in CPU execution rates to be effective.

The combinatorial optimization problem of finding the shortest path between two vertices
in a directed graph is presented. Algorithms for scan-based relaxation techniques and Dijkstra’s
shortest-path algorithm are considered in detail. A path optimization COprocessor based on the
SPUR model is proposed that achieves nearly three orders of magnitude improvement in perfor-
mance over software implementations, and two t0 three orders of magnitude improvement in
cost with performance comparable 10 dedicated hardware devices or specialized and multi-

computer architectures.

Finally, the SPUR coprocessor architecture is evaluated for three other applications: digi-

tal signal processing, vector floating-point arithmetic, and support for the Prolog language.

David A. Patterson
Chaiman of Committee

Dedicated with love to Kathleen, Angela, Michael, Brian, and Carolyn

i

iii

Acknowledgments

I am grateful to many individuals for valuable contributions that made this dissertation
possible. First and foremost are my wife, Kathleen, and children, Angela, Michael, Brian, and
Carolyn. Without their cheerful support and love through the years at Berkeley, this work sim-
ply could not have been completed. As well, I am grateful to my parents, the late Vernon L.

Hansen and Loretta J. Hansen, and other family members for their love and concemn.

1 thank Dave Patterson, my advisor and committee chairman, for support, encouragement,
and guidance on many matters. Dave has amazing capacity and strength of purpose, and

succeeds in making work fun — characteristics worth emulating.

I thank the other members of my committee, Carlo Séquin and Ronald Wolff, for the
timely help in reading and approving this dissertation. I am particularly indebted to Carlo for

providing invaluable suggestions and insights concerning Chapter 5.

Others at Berkeley have had an interest in and influence .on what is reported here, and 1
would like to thank them as well: Velvel Kahan for several thought-provoking discussions,
some of which were about floating-point arithmetic; Paul Hilfinger for sharing some ideas on
path optimization algorithms; Shing Kong for details of the coprocessor interface with the
SPUR CPU; and BK Bose and George Taylor for insights about floating-point, the implementa-

tion of the SPUR FPU, and some late-night philosophizing.

I relied on the help and friendship of many individuals in industry to support my studies.
In particular, I thank Ken Shoemaker at Intel and Jim Peek and Ralph Campbell at Cimlinc for
letting me consume their equipment to gather some of the data for Chapter 4; John Hansen and
Doug Helmuth at FMC for many helpful discussions about autonomous vehicles; and Mark Ell-

son, Jim Caratozollo, and Frank Cirimele at Lockheed for machine time to complete the first

iv

SPUR cache analyses, as well as other work over a period of several years.

I am grateful for many friends that have made our stay in Berkeley memorable. Among
them are Ricki Blau, Scott Baden, and Erling Wold — long-time and in some cases past
residents of 508-2 Evans. Also, Mike and Carol Carey deserve a special thanks. Lastly, many
others, both family and friends too numerous to mention, should be thanked for never tiring of

asking when I would finish.

I gratefully acknowledge the financial support provided by a Tektronix Foundation Scho-
larship and a research assistantship with the SPUR project. Principal funding for SPUR was
provided by the Defense Advanced Research Projects Agency under contract NO0039-85-C-

0269.

Table of Contents

CHAPTER 1. Introduction and Problem Statementccccoovinnnninnccnnncnnnienenscncns 1
1.1. The Context of Our Research — SPURoocrierveeniiecinnirciire e ceene e sersceeenneee 3
1.2, OVerview Of RESUILScccoioiiririecnre ettt e cecerremse oo sstessavesaasessees st s sasssssss s s 4
1.3. Dissertation OTZaNIZALIONcccccerreeerererenernressnnssesssarsensessessaaasssotsasasesseessaseesnessaasecaneen 4
CHAPTER 2. Motivation, Background, and Related Workccovvvvvcnncrveninniccnnenne 6
2.1. Introduction and OVEIVIEWccveeimveereinsmnussenssonsesesssestesssnsissessosetesasssssssssssssssassecnns 6
2.2, MOULVALION c.veieveeseecrirsaeaseerresssesseesesnssssessesstossasssesassssssssssassessesssssssseesssssasansassessnssasesssen 6
2.3. Technology — History and ImpliCationsccccceeeevccermmreereessunerervunsanrrnrserrassseessesssees 7
2.3.1. Architecture — The IMPLCALIONScccocerreerveerecrnesrererensirerestiesrssssnessnsessnesrsessassns 7
2.3.2. Cost — The IMPLICALONSc.ccceeverreererrrrsnerreserereererssessrsssanesssssssesnsesessssserssassases 9
2.3.3. Putting It All Together — The VLSI COPrOCESSOTccovrceeerercreereeerveceeernessnemneens 10
2.4, Previous Work — NOD-VLSI COPIOCESSOIS ..cccccvvvermerrsersvesssnressresessssasssssesssssssssessens 12
2.4.1. AUACHEA PTOCESSOIS ..ccviveirueierenientirurseessssussessuestossssesssonssessaessssesssessssssenesssassssaesens 12
2,42, Floating-point ACCEIETALOTSccccevreriuerrerssaersrressneessersenssssessssessssesssssssssssssesssseses 14
2.4.3. Channels and Direct Memory Access DEVICESceccvviveecirceeienneieceveceecreesnnenennnns 15
2.5, VLSI CODIOCESSOTSooeevureeeuetrersensiestssesessiesestesssesessessesessessestsessnsesesaesssscsassnsess 16
2.5.1. Floating-point ArthImMetiCccooveererrrrrererrceneseeeeerese e e rees e sse e sesra s e saesseenns 16
2.5.2. Memory Managementcccccocceeceeseeneeneereceieereeontesusentasasessessarssssssesssessesssens eereeeas 17
2.5.3. Other VLSI COPIOCESSOIScccverreerrieesrensieesseeessesserantemssasssessssassssssssassssssssessssssssans 17

2.6. Chapter SUIMIMATY ...ccccecverreereesceesserseseeesroeessesssrsssssssssnessensrsasesssrssasssssssesssssnessssasasses 17

Table of Contents vi

CHAPTER 3. Coprocessor Classifications and Performance Analysisc.cooccoeeennce. 19
3.1. Introduction and OVETVIEWccerveerieriirccninniiiniiiinesnaeessnssassssssssesssassessssssssssassas 19
3.2, SOMWATE ISSUES ..oovevreevemeenerrseesenssesnsesscesssissisesssessssssassnessississsrsrasssssssssssaassessssnsssssesans 19
3.2.1. Software INEIfACEccccvrrerenrercimirmesiisriistis st s e sssessasstnesnsesses s saessan s nnessuaeasens 20
3.2.2. COMPILET ISSUEScvvureeenirsicsuisuesneiiiieneesiseesinsiesesnsssessssessassansansssssssstosesssssesnen 20
3.2.3. Operating System ISSUESccccveriiinieriientiiniesestst ettt 21
3.3, Hardware ISSUEScccccoveerveerereiieseceniesessesssessesssessnsssisssessessnnossasssasssnsseasssssassassssses 21
3.3.1. Instruction and Control ISSUESccccccerviiiiiiiniinriinneniirniiccsanerenessssessnsesnssssnsennes 22
3.3.2. Data Transfer and Memory INTEractionccoveviieneeiinensmsnesneecesesiesiesanesenens 23
3.4. Coprocessor Performance Analysis MOdelcoieeeriimemmoenmeien e 24
3.4.1. Factors Affecting Coprocessor PErfOrmarnceceiiiiievemenerneesnseseseessnnsennes 25
3.4.2. Some Implications of the Concurrent Execution Modelcccoeeveviieeiienecnnnenns 28
3.5. Chapter SUIMMATYccccooirienmsrinriniiriiinnriesiisessesssssssesnsssesssssessessassssssestasesss sasesesnsssnens 29

CHAPTER 4. Floating-point Arithmetic Coprocessorsccocveiveerenrvnenesieninennne. 30
4.1. Introduction and OVEIVIEWccccccecerrrrmecniecerecremersnneestonssssssssssassssassssssssssossanssssesans 30
4.2. Intel, Motorola, and SPUR Floating-point Coprocessor Parameterscccccoveeereene 31
4.2, 1. The INEL FPUocoiirirircrecrnssneseeeieenesesseessessissssesstostasssstssssessssntossasnsosssessnesses 31
4.2.2. The Motorola FPUccoiiinceiiiciiniinsnnsrsisesesessstinssesissesisssesssssass snssssossssnessans 32
4.2.3. The SPUR FPU ...ttt sssssessessessessessessesssssssssssissssssesssssenes 34
4.2.4. FPU SUMIMATY ..ccceierrievrnrrnsensttecsesseessemaoessseesaetasssessssssssessessssasessassssssosssssssssssssssssess 34
4.3. Determining Floating-point Coprocessor Performanceccvueeneeciemneinsensrennn. 36
4.3.1. Characteristics of Floating-point COMPULatiOnc.cc.ccovvinieeninienenninenseiseonen 37
4.3.2. Microbenchmarks — The Floating-point Arithmetic Claimcccccenevnvvrrcnne. 38
4.3.3. The Floating-point EXPErimentcccccecmviimiinnneinnniinseiie e 39
4.4. Analysis of Floating-point Coprocessor Performancecceevvvvivenennee. eeeeeeeeeeeas 41
4.4.1. Relative Performance MEtriCccccoovrverinieminiinniinicinninisnsintcestsssesssossesssonsanns 41
4.4.2. Floating-point vs. Non-Floating-point Instruction Metricc.cocevvvnevirevcnccnae 43
4.4.3. Floating-point Instruction COMPONENLSccceccecvirrieeriisinieiniieninsesneiseoseissessisssense 44
4.4.4. Concurrent EXECULIONccccceevverrrevirrenssraseesseiereesneeseetenneessteessrsesessnsronsesssesssesse 48
4.4.5. Performance Degradation Due to Concurrent Execution ..., 52
4.5. Implementation Effects on FPU Performancecccverceersmreceneseennseccronninnnecnenne 52
4.5.1. Modeling the Systems and COMPULALIONc.eeiveeereerieeeereerreierersssreesrorsneeseseecseeesee 53
4.5.2. The Influence of Data Bus Widthccccieiiiiieniireereneeeeceneece e e e 56

4.5.2.1. The INTEl SYSIEIMeovviiiiiieiirieitrrreesiressteeseeeeseeestasernssresssnsssnesmasasnteseseeseessmecesnes 56

Table of Contents vii

4.5.2.2. The MOtOrola SYSIEMcccoociiersinsmssniinssenssrssecsssesnisnessasisessessasssssassassesssesssesses 57
4.5.2.3. The SPUR SYSIEIM ...cceveeiereeciriersessssersesssssmssessessissessessrssssssesssssesssssssssssssssessassssss 60
4.5.2.4. Summary — Data Bus Widthccccovmimrreiimnienitennenie st 61
4.5.3. The Influence of Cache Service Timeccccvcevirnnrimiinniiiinrnninen s 62
4.5.3.1. Summary — Cache Service TiIME ...c.ccccvmirinirinirrireinrenieriene s sssccse e esaenees 66
4.5.4. The Influence of Floating-point Operation TiMec.cceevviciriecrneriereneernsanenenace. 67
4.5.4.1. Summary — Operation TiMEc.ccoicrrercnsmirmnstinsiininnrnisrinrissesssesssesscessesinsns 67
4.6. Chapter SUMMATYcccoocerrncrenisisrisesissisisisessrssssssesssssessssesesserssssssassssasssssssssassessns 69
CHAPTER 5. Path Optimization Coprocessor Architecturescccooovveeeneevinenennnnens 71
5.1. Introduction and OVEIVIEWccceerreeccrcenreercerrscentessnemssmssssissesssssessssssssesssassssesssassnss 71
5.2. Optimization MEthOASccceveeirirciiiinnininceininieeniesnie s escneessssaessasssessassessesens 72
5.3. Path Planning OVEIVIEWccceeeecmecinnircientsssnssnssstssoassssnessnssrassssassssssssssessanessanesens 72
5.3.1. General Path Planning FUNCHONSeeiceeieecceniimcrccsiinnninnic i ssssssssssesanessne 73
5.3.2. General Performance REQUITEINENLScccccerirmriceniimnniinieniniinsienssesssnscssessessseosens 74
5.4, Path OpUMIZALOIcceeeeerciriiinsirsniisinseisniinisesssnississeesssssissssssnsssessnesssssssssanssssssassanas 76
5.4.1. Dijkstra’s AIZOTIhINcccceveeriveeceireinininnneneiee sttt et s srasbnesnasassssonen 77
5.42. Scan AIZOTITIIMScocriieerraeercneiniccessnisrissssstsestessssssresssesssssssssssasssssessnsesssnsnses 78
5.4.3. Data SITUCIUTES ..ccccrrveeieereenccrecersessnssiiosiissssssesssessessessansssesssssnsssssssssssessssssessassssssassnns 81
5,44, OPEIALONS ..cccerereenrereencrereesamssussssssssssssssssessnssarssssmsssss s ssssnsssssessssssasasssesesssassanssnss 82
5.5. Simulating the AIOTAMScccviiviiiiiiniiinirrs it eseesnesns 83
5.5.1. Hypotheses Before SImulationccccceciviviiiiiniinnininnnninninnienenesseeneesniesees 85
5.5.2. Simulation RESUILSccccevveeirrmesercccerieesoeceericnes e seroacssnessssssssssesessssssssanssasssones 85
5.5.2.1. Random Data versus Terrain Datac..cccvmeiininniininninninmncnenes s 87
5.5.2.2. Terrain Data Coherence and Simplified Neighbor Testscccvvomiivniiinnnncns 88
5.5.2.3. Intelligent versus Brute-force AIgOrthmscccviiiiriinnnnvnnecnennniee e 91
5.5.2.4. OPErand SiZe ...ccccceccreireecmerrreirerme s csiets st ettt er e s sa s st e nan s 93
5.5.2.5. Algorithm COMPIEXILYoccrveriiinrmrsiiniiiiriniieisniriniese e sssesassnsssessnes 94
5.6. Other Software and Hardware Implementationsc..ccccceeoiieeseracerescreserecccrennrenenas 94
5.6.1. Multi-Processor Path Optimization ArchiteCturesccccccecccerveereensireneicscesnnns 96
S5.6.1.1. SIMD ..oiiciiieveeseeeeeee e reeret e s ee st et et st sre s e e e be b e b st s e sb b b sa b erasne s hne 97
5.6.1.2. MIMDeeeeentnrceenensieseessssssssstssassesssssaesasssessssssssssssasesssntnsssssussnssnsssns 98
5.6.1.3. MISD ...t eesrecvae st e st eese e e et et e e sse s e s s e e e st e sa e e bas et e s sabe b sabe b b e asenes 99
5.6.2. Hardware Architectures and Implementationsccoeeeveeereeenneresrenserserrecercnenns 99
5.6.2.1. Dedicated Special Purpose DevICEScocvuviirerseeriininsiinsiinensinniininnniessneseenee 99

5.6.2.2. Kemel Function COPIOCESSOIScecceerverrraeeiseeraeerserestrssacesreeeesensesesneererssssseses 100

Table of Contents viii

5.6.2.2.1. Dijkstra-based Path Optimization COPIOCESSOTcceverererecseruesisisncscencniones 100
5.6.2.2.2. Scan-based Path Optimization COPIOCESSOTccevveeerressineennsnnssessassessensenne 102
5.7. Chapter SUMMATYcccovrrmerimsiniinieimesessensnisnseseesssasssssesseosssnaeasesssstsssenssssesasssnane 108

CHAPTER 6. Signal Processing, Vector Floating-point,

and Language COProCeSSOISc.ccoemvervinuisresriesmsnsseeisessssersnessssrassesssssasees 111
6.1. Introduction and OVEIVIEWcccccercceiivenncenitiiiieniniiirs s ssssseis e seassrasessessssssnns 111
6.2. A Signal Processing Coprocessor for SPUR ..ot 112
6.2.1. Signal Processing AIGOMtNMScccceiivirueierentnrninesenessessss et seseeteacssseenceess 112
6.2.2. Signal Processing ApPlICALIONScocvimereeriecimeiinrrtese et seeseesnneresssstssensscvenes 113
6.2.2.1. A Speech Recognition SYSIEMccccvvviriirenineneniieiineescnsssressnssesss st ssessasnnancs 114
6.2.3. Signal Processing Benchmarks and Evaluationcceoeiinieiiincnnceneneencees 114
6.2.3.1. SPECITAL ANALYSIS wrrreerssereserssrees e esrsesessesesessesssseseseesssres e ssesssmre e 115
6.2.3.2. Speech SYNNESISccccvniiiirieriiiniiiiinsseee st sne e e e sn e 116
6.2.3.3. Spectrum SHAPINEcccevmrrriininiiiiiiiiniinniesnetesesie et se s ss s bessssses e snnanas 116
6.2.4. A SPUR DSP CODPIOCESSOT ..ccvrervrrracesocrectrrssssssssssissssssssssssisssmssssssssasassossasssnnssnes 117
6.2.5. Signal Processing COpProcessor SUMMATYccceveereeseesnesisseessesasssesssesssssrssseenes 119
6.3. A Vector Floating-point Coprocessor for SPUR ccvrvviiivnnvceneieeererienninene 119
6.3.1. Memory System Design for Vector PrOCESSOISc.covivevcriiniinneneinieinniinnniennnns 120
6.3.1.1. Multiple Memory Modulescccocievnsiiinninriinssnnrossnnsiiniessissnnnnscnnssessesssnens 120
6.3.1.2. Fast Intermediate MEMOTIEScccvrirvrrmnrinnsinsnnsecsiniestesse e sssessnessnesnssnsensenas 120
6.3.2. Memory System Performance Characteristics for Vector Processors 121
6.3.3. Vector Program and Workload CharacteristiCscceccniivcnsnsrescnseiensersrennes 122
6.3.4. A SPUR Vector Processing ATChifECIUIEcccceeveeicrrcrcnteeniinniiniinnerinsescne e 122
6.3.4.1. MeEMOTIY SYSIEIM .cccccciiirvrreeerenrercrssssenreseccesssssssssesssneesssessssnsessstsssssnsessssasensansneans 122
6.3.4.2. INSITUCHOMS ..eevvuernsreerrmrneceeienaeeeeeseeestieneesstesntssstsssssssssesasssssnesssnssesssssssssassrnsass 123
6.3.4.3. PIOZTAIMNS ..ccceerieeciieceeiiencerieseersesneasresscesessesssussessesssstssssssessnsssessnssannosees erveennrens 124
6.3.4.4. EXecution EICMENLScoveeeveerremmeesseenteesieesrreteeecnnieentssetsssessssssssssssssnosssnns 124
6.3.4.5. CONIIOLooiviieceirereeeseerserresressreesteseseeestrenereseesaresneessssssstsssseasssesssssssssossessssnossassas 125
6.3.4.6. PErfOIMNANCEoocereereieeeeerteeree e rrrermeieente st esaerseee st sasese s e s assss ssssabasrssubesunesnsen 125
6.3.4.7. Faster EXecution UNILSccceeeverceercreriencncesiicisniensssssessssssssssssnsssessssnsonees 125
6.3.4.8. Software and Hardware Pipeliningcccconiiniininncnnninneneinenieineenns 125
6.3.4.9. Vector Control and Execution EIEMENtScccecieirniiccrmnnncrennnernienisnesnnnne 127
6.3.5. Vector Processing COproCessOr SUMMATYeececerrrerseencrsensessemssssssecseasssssesssssnseins 128
6.4. A Language Coprocessor for SPUR coccivoiivniievruimriecrneerreneseeecon e s serseseseserecnsens 129

6.5. Chapter SUIMIMATY ...ccciecieeeiirenieenenreesriesstisssssseesnsessasessesssassessessesasesassesesessseessaseans 130

Table of Contents ix

CHAPTER 7. Discussion, Conclusions, and Future Workiniiniinennnn 132
7.1. Introduction and OVEIVIEWcccccerecrcrmrcresiemnriniiiiesnstensecssnesssessssassnsssnssssesesens 132
7.2, PHILOSOPRY ..cceoeerrinvicirieiinnissnstieiseiteeseiesse s sssesne e ssaesesstssnestsanssss st smessasestssssessensan 132
7.3. ReSearch RESULLS ...ccccvivreicreecinirsnrcaerarcssscssiaessssesersossassssesssesssssssnnssssesansssssnesssessaees 133
7.4. Summary and Future WOtkcoiiiniineinineiieniniesie st ssesssssesesesonesssesss 135

APPENDIX A. The SPUR Floating-point Coprocessor Interface Description 138
AL, TIUTOQUCHOI ...veeeeeeirireereereeenteesnssseenseessaasenseessessssssanssssssssassnssssssesssesssssessssassaneraasss 138
A.2. Floating-point Coprocessor Interface OVEIVIEWcccceieeeiiinieneesnennseinccnnnnseneas 139
A2 1. IDNSITUCHOMS ..oeceeeecriesreescreameemsacsssesssssssississssansonssssnsstsssesssosnasssnensassssassessassasasasssass 139
A22. CONIOLFIOW ...oovrviieiirserreieesssnssneerreescsssssssssessssossosssnssssssssssassosessessssassrnssssassasann 140
A2.3. DAtAFIOW riciicicrrcnrnreeree ettt cssasssansesssssss s s sestsssssassasssnssssnseseraesasanssnsons 140
A2.4. PeIfOIMIANCEcoceieiceeeieeienreercinstssessttestssatsatsisesssessaessnssassnsessessnssananssasasanssnnnes 141
A.2.5. Programming INIETFACEc.ccevimirinviiismmneiniensninicnniiniinrniieeiese e e 141
A.2.6. Hardware INEITACEcoeececeereereresseeenraneseeseacserssesenssstsuesessasscscssssensasssamssssnsssens ... 141
A.2.6.1. CPU t0 FPU SiZNAlS ..cccevercreerrcreesenrecsiiresessecssosesseessssissessmssssssesssssasssssssnsessass 142
A.2.6.2. FPU t0 CPU SiZNALS ...cccervvrrirrenmrscnrursirsrinisicstissesesssesessnesssssesasssessesssssnassssassasses 142
A.2.6.3. CPU UPSW and FPU PC REZISIETS ...cccciiviiiimrinircnmnciinsesssicssessisniacssesses 144
A.2.7. Floating-point Unit MiCro-ATCHItECTUIEccccvvvvverimismieiiemerenrnnersesaresnsanassnansens 145
A.3. Overview of Coprocessor Interface Detailsccovvvvveniniinicvniiieerienesreesannnnn 145

APPENDIX B. FPU Simulation Results, Benchmark Listings, and Commercial

Floating-point Arithmetic Coprocessor Instruction Timings 148
B.1. High-level Language Code Listings of Floating-point Microbenchmarks 149
B.1.1. Gaussian ElIMINALON .c..ccccervicicrnneinicnieniinneiciinssisisiseseessaesssssnssasssnsssanasnassans 149
B.1.2. DOLPIOQUCE .vveeceeeeieieseeirteieeceesiesicssecaessesstsssesssssstssssss s ssnsassssssesssnssasessnsenns 150
B.1.3. Polynomial EVAlUtIONccccecieiceerrciritiicinerece ittt s e stessstesssessseserensnns 151
B.2. SPUR Assembly Language Code Listings of Floating-point Microbenchmarks .. 151
B.2.1. Gaussian ElMINALON ...ccocceeiceeimrieiieieenertisnin s sssts s s sesse s sessssesssessbesnns 151
B.2.2. DOLPIOQUCE ...ooeieieiciecteceeieetee e steer e e sanstesscaaestssse st sasesnesssssssasssesanensesneasenes 153
B.2.3. Polynomial EValuationcccccccieviiiniimiinninnnneinisieieeneissnesssssanessesssesssnsssssnnns 154

B.3. Floating-point Performance for Intel, Motorola, and SPUR on Microbenchmarks 156
B.3.1. Intel Floating-point PErfOrmarnce ... essneseesissennans 157

Table of Contents X

B.3.2. Motorola Floating-point PErfOrmancecceeeenveiiimrerinemsneeciseieseienesee e 160
B.3.3. SPUR Floating-point PerfOrmancec...c.ccuiininnieniiinneiiniiinnecnennessinneesnenns 163
B.3.4. Intel Floating-point Performance — Non-Concurrent Modelcccoveerennnen. 165
B.4. Floating-point Performance HiStOZrams.ccccooevevmiieennviinmnisieniesesnnecteienens 166
B.4.1. Intel Floating-point Performance HiStOgramscoccovvieeevmnierivrniirensnneeeenn. 167
B.4.2. Motorola Floating-point Performance HiStogramsc.ccviviiivnnnennicnennnns 170
B.4.3. SPUR Floating-point Performance HiStOZramsccccevveneensvnniniennsiiininnes 173
B.5. Floating-point Instruction Times for Commercial COProcessorscceevueruennnns 176
B.6. Intel i8087 or 80287 Floating-point Instruction TIMESccecevvrvseervisininciicnnnns 176
B.7. Motorola MC68881 Floating-point Instruction TIMESceccmernierircrniseccinninens 177
APPENDIX C. Path Optimization Simulation Resultsccoccocevervivinancnrinnciinininnne, 178
C.1. Scan-based Algorithm Simulation ReSultsccccecceeroiirvniiininniiiiinsiecieeias e 178
C.1.1. Four-way Cell Check with Goal at TCM[1,3]ccovvivrnmrnnnrrrncinsenenensrenenns 179
C.1.2. Four-way Cell Check with Goal at TCM[C,C]ccccvrmirninsiinucsinnircressnesensaens 180
C.1.3. Eight-way Cell Check with Goal at TCM[1,3] ...ccccevcvvviriviininiiinecenreecnnee 181
C.1.4. Eight-way Cell Check with Goal at TCM[C,C]cccecvviimnrinrinnncennnsecsrincnennes 182
C.2. Scan-based Path Optimization Simulator Manual Pagecccccccomirecccucicnnennee. 183
C.3. Dijkstra’s Algorithm Path Optimization Simulator Manual Pagecceecveeenenes 185
APPENDIX D. Digital Signal Processing Chips with Floating-point Arithmetic 187
D.1. Commercial DSP Chips with Floating-point Afthmeticccccecveecrecrccecccrrencnene 188
D.2. The AT&T DSP32 Digital Signal Processing Chip ArchiteCtureceeovevveeennee 188

REFERENCES ottt s ssas s sa s cs e ssesenssassnsanessasen 190

1-1.

2-1.
2-2.
2-4.
2-3.
3-1.
4-1.

Xi

List of Figures

Performance VEISUS PrICEcccvicerverirerinccenccrniticssaesmsnesstissseesinnsressssssssanessnsssesssassassassnsons 2
SPUR WOTKSIAUON SYSIEM ...ccoviivueuieceeiecsncestnesiessisstssstssesssnessessesssssssssssnsssessnsssesssnssnsrsssaes 3
Transistors per Chip —— 197010 1988 ...ttt eae e 8
Chip Area — Microprocessors 197010 1988 ...t 9
Computer System Cost Performarncecocveeeeciierenininesiesnesnsnstsssnninse s e sssssssnessenns 11
Computer System Performance in MIPS ...ttt ssseens 10
Topological Levels of Coprocessor INtErCOMMNECIONuceeveireerrereniennerressnsnnsesesninessennnns 22
Block Diagram of Intel CPU-FPU-Memory SYSIEIMccceeveimrierenierienienssesssneiesssnens 32
Block Diagram of Motorola CPU-FPU-Memory SYStEM ...covevrieiverernrrirsnsenisinssnisserenenans 33
SPUR Workstation Processor NOAEccccocoirirircinicinninnniinniineisaesessasissssossessssesneeseen s 35
Absolute Performance Comparison of Three CPU-FPU Pairscooccvveineniiicnininenncnne 40
Relative Performance Comparison of Three CPU-FPU Pairsccccevvnivvnnnecinvcniennennn, 42
Relative Floating-point vs. Non-Floating-point Instruction Execution Time 43
Floating-point Operation Time vs. Overhead TiMecccmeviminniniiiimninseeiecsnrrenieeinnes 48
Concurrent Execution Between CPU and FPU ...t 49
Concurrent Execution and Relative FPU Busy Timecccecvnincinnnninncincnneniennecsnnnes 50
Speedup Resulting From Concurrent EXECULION coccvveecinieisecnneneerninenncnnncsssnssssaeenns 51
Operation and Overhead Components of Execution TIMEc.covevvieiincnniinincninnncne. 55
Intel FP Overhead and Performance vs. Bus Width ..o 58
Motorola FP Overhead and Performance vs. Bus Width ... 59
SPUR FP Overhead and Performance vs. Bus Widthoconiviniviiniininiinninncnnnncn 61
Performance as a Function of Bus Width ..ot 62
Intel FP Overhead and Performance vs. Cache Service Timeccccovveevncincecievneneennen. 64
Motorola FP Overhead and Performance vs. Cache Service Time e 65
SPUR FP Overhead and Performance vs. Cache Service Timecccoovvcveveecvcennnnennnen. 66
Intel FP Performance vs. FP Operation TiMEccccceecrircirrrecrecensssnneenessseasssssseessenass 69
Motorola FP Performance vs. FP Operation TIMEcccceecverveerernsererseesmessseeesenseeesseeen 69
SPUR FP Performance vs. FP Operation TIMecccvvinviniminnencnnnnnininiisnone 69
Directed Graph Representation of a Two-Dimensional Areac...ccccovccenvecrecincenncneae 73
DCM Data Sets and Resulting Portion of a Fully-solved TCM ccoovveieevereireneineeeeeee 74
Bellman’s Shortest Path TTEE cccoieeeriirii et ettt sreesme e e e e ene e ssesnne e 76
Dijkstra’s Shortest-path AIGOTHRMccccevviveceiireiieicriererineesrersseeesaesessssestesossesssssssesssnsssnss 78

Scan-based Shortest-path AIOMINM ooviriiiieerer et et s ee e sn e 79

List of Figures xii

5-6.
5-7.
5-8.
5-9.

5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
5-17.
5-18.
5-19.
5-20.
5-21.
5-22.
5-23.
5-24.
5-25.
5-26.
5-27.

6-1.
6-2.
6-3.
6-4.
6-5.
A-1.
A-2,
A-3.
A-4,
B-1.
B-2.
B-3.

Scan-based and Other Sweeping Techniques for Path Optimization cccoeevevenineconnnnne 80
Rectilinear Array-structured Graph Minimization Operationscececeeevenncnnecnnnences 82
TCM Cell Minimization OPETationsccccociveneemnreiriniseirrerresesissessisssassessressssssessssssenns 82
Data Sets used for Shortest Path Simulationsccccceeveeriisninmnnnsuessnnsesinee e sinnes 84
Number of Cell Checks fOr COMVETZEICEccceoieriiirvreeisressirssesssnssnmssensssassasssassssssnassanans 86
Shortest Paths for Four-way versus Eight-way COmPparisoncccoeceeeierinieninnnessennnes 89
Normalized Average Cell Checks for Random DCM Dataccoeoveiniecniiieninicnennnn 91
Average Updates per Sweep for Algorithm Nos. 8 and 9 ... 92
Average Updates per Sweep for All AIOMthMSccvmeeeieeicneiese st 93
Maximum TCM Value for Various TCM Array Sizes and DCM Maximaccceeeeunee. 95
Scan-based Algorithm COMPIEXILYcccvceverimriermernirininniennnrrse sttt see st sssscsessess s eenns 95
Average Updates per Sweep for Connection-array AIZOMthmccccevveereneneeesenencneccns 98
Convergence Performance for SIMD and MIMD AICRIiteCIUIEScoveiinrecrcreseninneccnnenes 99
Parallel Dynamic Programming ArChitECIUIEcoveeerieenterniienenessnssesncsnsiceest e enes 100
Pipelined Dynamic PrOgramming AICHIECIUTE ocvervrsussversssssersssssssessssesssssessenes 101
Data Structure for Path Optimization COPIOCESSOTcccevereirereruvesnerinassssinsssnsereesesssens 103
Coprocessor Pipeline SLAGEScccevvvuererumnneresisesresnetnnsssnesesteissessnse s sissssssssesesansns 105
Modified Scan-based Algorithm Sweeping Techniquesccoccovvvveeenveriiecinniecnnnennee. 105
Average Updates per Sweep for Algorithm Nos. 10and 11 ... 107
Block Diagram of Path Optimization COPIOCESSOTcceeeviivmrrisiessuesseseessessassnesasennens 108
Performance of Various Implementations for Path Optimizationceecevvevenvieene. 109
Cost-Speed Comparison of Path Optimization Implementationsc.cceeveveeveereenns 110
Vector Program Execution Time versus Vector Length ... 121
Nominal SPUR System PerfOrmance ... 126
Execution Unit Utilization vs Time for Pipeline Operationcccceecivecccnicniinnnicinacnnns 127
Performance of SPUR Architecture for Several FPU Architecturesc.ccevvvmevenenene. 128
Peak LIPS for Several Prolog ArChiteCIUIEScccerciiciriiiicucnrinnniiinniseniiseeossensennnees 130
The UC Berkeley SPUR Multiprocessor SYSIEINcocviveinreriiniriisinirnirinisesssesenssienesnesneans 143
The SPUR Floating-point Coprocessor Interfaceccvevevviccininnecnnen. Vererreeesaetnenesine 144
CPU and FPU Pipeline SAZES ..ccoccrviceermneiterinsicneiiecnisissnisstssessaessnssssesessnsesesssessaens 145
Trap Timing for FPU Page or Bus Faull ...t 147
Intel System Performance for GE PTOZIamsceeoieiiiinniienieenninneninesnissessiesiennaeas 167
Intel System Performance for DP Programsccviviiiiiniienenincnenesesiesnesesienes 168
Intel System Performance for PE Programs ... 169
Motorola System Performance for GE Programscccccmvvineniciennicninicnienneneneen. 170
Motorola System Performance for DP Programs ... sionnesnn 171
Motorola System Performance for PE Programsccoeucivnninnineinininree e 172

SPUR System Performance for GE Programscccccniininnciinii oo, 173

List of Figures xiii

B-8. SPUR System Performance for DP Programscceovieenneninieninnnincenniienneccnee 174
B-9. SPUR System Performance for PE Programsc.coeeeneeieeieneiennnienisnncnnnnesecceene 175
D-1. Block Diagram of the AT&T DSP32 ArChiteCtureovceeevveieniniemstnnnnresesneenecsienne 189

2-1.
2-2.
2-3.

4-2.
4-3.
4-4.
4-5.
4-6.
4-7.

4-9.

4-10.
4-11.
4-12.
4-13.
4-14.
4-15.
4-16.
4-17.
4-18.
4-19.
4-20.
4-21.
4-22.
4-23.

Xiv

List of Tables
Commercial Attached PrOCESSOISicecirrrerromeecirretrsirisiinssisssrsssssssresstnssssesasnsesnnsssnssssseas 13
Execution Time — VAX 8600 Microcode vs. Floating-point Acceleratorc..ceeevinnenn. 15
Commercial VLSI Floating-point COPIOCESSOIScceeeiisresnisemsssmrrussnssssenssosssssssessssssssesssss 16
Intel, Motorola, and SPUR Coprocessor Parametersccoeoeeeiermsueeriessineinesisssesssssensssaennns 36
Intel, Motorola, and SPUR Coprocessor Execution Rate Ratiosccecveeenieiennnincnnnns 36
Operation Frequency for Benchmarks and Programscoceeeenecsennenncscnnnscenennans 37
Frequency-delay Product for Intel, Motorola, and SPUR c.oniinennnieienencnne 37
Kemel Benchmark Floating-point CharacCteriStiCsccvvermrsircrrmrersrnrssesesrncianaesisasenessananes 39
Absolute Execution Time Normalized by Intel Speedc.covvvvinesiviniiniinrvcienciecrennnn. 40
Execution Time Relative to Intel for All Versions and Programsccccceeciiniinninennnen. 41
Fraction of Execution Time Consumed by FP and Non-FP Instructionscceevceveeeene 43
Floating-point Unit Hardware Protocol Events for Double-precision FMUL 46
Fraction of Execution FPU Busy vs. Overheadcccccoocviveiiniiniiniinnnnsiennccnnenn 48
CPU Busy, FPU Busy, and Overlap of CPU and FPU Operationscccvceveiveneeennnnnene 49
Intel Performance Degradation Due to Concurrent Execution Mechanisms 52
Parameters Varied in Simulation Modelscccccniiivinniiniinnnnincirceenne e snesens 53
Relative Components of Execution Time for Nominal System Implementations 55
Intel System Performance vs. FPU-Memory Bus Widthccviiinniniinniincnnnnnnnneennn, 57
Motorola System Performance versus FPU-Memory Bus Width ..., 58
SPUR System Performance versus FPU-Memory Bus Widthoovvviviiiiininnnnnnnn 60
Inte] System Performance versus Cache-miss Service Timeccccviviiviiniinncineencninnnn 64
Motorola System Performance versus Cache-miss Service Timecccvvvnivinininnene. 65
SPUR System Performance versus Cache-miss Service Timeooevivivinivirnneniinnnnnnn 66
Intel System Performance vs. FP Operation Timecccccccccenivevcvenennnnne oo 68
Motorola System Performance vs. FP Operation Timecccocceeveirnieecnenccnencnneceeennne 68
SPUR System Performance vs. FP Operation TiMecceevvevniiinninnesnncincnininenies 68
Path Optimization PerfOrmancCecceccevvrrecnreesenncereernnaeeseteceeeeseeesoessseessesserreenseeseeesnees 75
Simulation Performance for Dijkstra’s AIZOrithmccccoreecceernemeieecenitnre e cereeeene 85
Simulation Performance for Scan-based Algorithm NO. 7 ..ccccvvrerriiiiiieeirnnrcrereeneeeceee e 86
Simulation Performance for AIl AIGOTItRMS ooieiiriecieeecenreeeceretecerreeeee et 87
Scan-based Algorithm Performance for Random Data versus Terrain Datac..c....... 88
Normalized Average Cell Checks — 4-Way TESL ..cceeiiervierererienieeresneeessreesessaeeraseessesseeanas 90

Normalized Average Cell Checks — §-Way TESE ...cocevveereverrereeenicenreenrreesecrsesneesesensreneenes 90

List of Tables XV

5-8.
5-9.

5-10.
5-11.
5-12.
5-13.

6-1.
6-2.
6-3.

B-10.
B-11.
B-12.
B-13.
B-14.
B-15.
B-16.
B-17.
B-18.
B-19.
B-21.

Maximum TCM Values From Simulation Using Random DCM Datacccoeeeeiennnnns 94
Cell Checks per CPU S€CONA c.ccuiiiinimiiniiiiniisieentin e e stsstesesesnessesss st e st ennesananens 95
Random versus Terrain Data Performance for Connection-array Algorithm 97
Effective Address Calculation for Coprocessor Data Structureocceveeeeereireesenennnne 104
Scan-based Algorithm Nos. 10 and 11 vs. Dijkstra’s Algorithmccoveeenicnnnniennnnne. 106
Performance for Algorithm Nos. 10 and 11 on Random and Terrain Data 106
Performance Comparison for 1024-Point FFT Algorithmcccoeciinininnnincinnccnnne 115
Performance Comparison for 1024-Point LPC AlZOrithmccceeeviieevienenicinnieennennns 116
Performance Comparison for FIR Filter AIgOMthmcccviiieimieneenninn e 117
Comparison of Features of DSP32 and SPUR SySIEMcoierievnereererenicrceseninsnnsssnnees 117
Instruction Capabilities of DSP32 and Conventional ArChiteCturesccoceervveereevesenne 118
Performance Comparison for SPUR DSP COPIOCESSOTcccevvesrmrneienunsrnssessescnsnessesnens 119
Vector Floating-point INSIIUCHONScccvirriiiniinimsiniiiessnseessessiesesssssssssssnsesssssesssssssssssanns 123
Parameters for Pipelined and Vector FP Execution EIementscococcvvvvienienieinneenns 124
Software Pipeline for Dot Product on SPUR Architecturecocoeevvieenrenieniieneesincnenne. 126
SPUR Floating-point Unit INSMUCHONScocceruiniiimiiniiiesiieiiesnntineesesiesesssesssssasssseses 140
SPUR FPU Execution Cycles for Arithmetic Operationscc.ccuevvnsenninserssenenieesnees 141
SPUR coprocessor Interface Signals — Interface Timingcccevveeieieniniieinncieinnenenn, 146
Intel Performance — COMP Version of Gaussian Eliminationcccccecevvcnniiinnne 157
Intel Performance — ASSM Version of Gaussian Elimination ... 157
Intel Performance — COMP Version of DOt Productc.ccoeevicciniiinenncinnnnnnnnnnnen 158
Intel Performance — ASSM Version of Dot Productcococvevvcinniiniiinneenincnsnennens 158
Intel Performance — COMP Version of Polynomial Evaluationccccecceconericecieneneee 159
Intel Performance — ASSM Version of Polynomial Evaluationccccvvivvceevesinnnnen. 159
Motorola Performance — COMP Version of Gaussian Elimination ..., 160
Motorola Performance — ASSM Version of Gaussian Elimination ..., 160
Motorola Performance — COMP Version of DOt Productcccccoveeiceciniviniiinniennn, 161
Motorola Performance — ASSM Version of Dot Productcc.cecccevveeriniciniiinnenns 161
Motorola Performance — COMP Version of Polynomial Evaluation rererennnenns 162
Motorola Performance — ASSM Version of Polynomial Evaluationc.cccceeeeeneee. 162
SPUR Performance — COMP Version of Gaussian Eliminationc.cccevvviniinnen 163
SPUR Performance — ASSM Version of Gaussian Eliminationc..ccccvvevveinenees 163
SPUR Performance — COMP Version of Dot Productcccevievrvcivnininnninninnn 164
SPUR Performance — ASSM Version of Dot Productcccevverveeeseccncnnennnevecenees 164
SPUR Performance — COMP Version of Polynomial Evaluationcccceevveveennnnee. 165
SPUR Performance — ASSM Version of Polynomial Evaluationccccccevevvveervenenn 165
Intel Performance — COMP Version of Dot Productoceeeevinvrevennecinsnccenennee. 166

Intel 18087 and 182087 INSIIUCHION TIMES ...uevvriiiiieeereiiriereneeeereessessessssnsemseneesessessesesesann 176

List of Tables xvi

C-1.
C-2.
C-3.
C-4.

B-22. Intel i8087 and i82087 INStruction TiMeScccceecimeincrniniienninviisiniensesecseinsansnees 177
Simulation Results for Scan-based Algorithms, 4-way Test, Goal at [1,3]ccoueeeeeee 179
Simulation Results for Scan-based Algorithms, 4-way Test, Goal at [C,C]ccccuuueee. 180
Simulation Results for Scan-based Algorithms, 8-way Test, Goal at [1,3]cc.cccceveueeen. 181
Simulation Results for Scan-based Algorithms, 8-way Test, Goal at [C,C]ccoueueeee. 182
Commercial Digital Signal Processing Chips ... 188

D-1.

<This page is intentionally blank.>

Introduction and

Problem Statement

Rapid advances in the underlying technologies have enabled the computer industry to offer
tremendous improvements in system performance over the past two decades. As a result, problems that
a short time ago were considered intractable or computationally too expensive to solve are being han-
dled easily by today’s systems.

With this increased capability comes increased expectation. As systems provide faster solutions
for todays problems, new applications are considered that demand even faster and more capable sys-
tems. The expansion of current problems in precision and magnitude continues to demand more and
more power and speed. It seems a never ending battle, much like the predicament of the sorcerer’s
apprentice, where the most recently defeated foe spawns two in its place [Ewer27]. Likewise, the so-
called wheel of reincarnation [Siew82] suggests that this trend is not likely to end soon.

While capacity and raw performance have been increasing at an exponential rate, the price paid
for it has decreased, but not at the same pace. Often an increase in system performance is accompanied
by a proportional increase in price, maintaining a constant price/performance ratio over time. For
example, Figure 1-1 illustrates the price versus performance over the past decade for a popular family of
minicomputers [Digi87, Dong87]. It would be nice to improve the price/performance ratio by either
reducing the effective cost per quantum of calculation, or improving the performance while maintaining
the same price.

One possible solution to the problem is to continue to make faster general purpose computers by
riding the ‘‘technology wave’’ — reimplement thé same architecture with faster components. How-
ever, that is not as simple as it might seem, and is likely to be a costly and time consuming process. A
modem day minicomputer or advanced microprocessor system, without any consideration for the
software needed, can consume man-centuries in design and implementation time [Clar86] including
*‘CPU-centuries’’ in simulation time [Latt82]. As a consequence, price often tracks the increase in
speed.

Chapter 1 2

10 —
P g
E]
R .
F 1
o : DECVAXE8X
R asen 7
A 1 DEC VAX 11/780 .~
N v" (1978)‘-‘-"'
C
Bk -
100 1000 10000

COST (1000's of DOLLARS)

Figure 1-1. Performance versus Price.

This figure illustrates how performance per dollar has remained constant over time for the DEC
family of VAX minicomputers. The diagonal lines represent constant performance per second per
dollar, The shaded regions reflect the variation between the speed of floating-point arithmetic (to-
ward the bottom of the oval) and non-floating-point computation (toward the top of the oval).

Improvements in software performance could help the situation. Much is being done to increase
software productivity (i.e., the process of creating programs using CASE techniques — computer aided
software engineering), but only relatively small performance improvements in execution time can be
achieved with even the most sophisticated compiler and code generation techniques [(Corb88]. More
efficient algorithms are continually being researched and discovered, which would also help. Neverthe-
less, the flexibility afforded by software implementations of many functions is obtained at the price of
minimum performance when compared to hardware implementations.

So, what else can be done? In the past, to leap frog the status quo and make substantial improve-
ments in the performance of traditional von Neumann architectures, optional special-purpose hardware
devices have been added. Such devices perform specific tasks previously done by software. We call
these optional devices coprocessors, and include such things as attached processors, array processors,
floating-point accelerators, data channels, graphics display processors, string scanner/sorters,
input/output controllers, and so on. (Many of these are termed Special Algorithm Processors in
[Siew82].) Coprocessors are becoming increasingly popular in solving the problems of expanding
expectation in a cost effective and timely manner.

It is our thesis that for traditional computer architectures, optional coprocessors offer maximum
performance improvement potential with minimum cost and manageable complexity and design time.
Also, that coprocessors can effectively provide incremental performance improvement applicable to sin-
gle instructions, important kernel functions, or entire programs. They also offer a simple programming
model, often being completely transparent to the programmer or user at the application level.

This dissertation examines the role of coprocessors in traditional computer systems and discusses
several aspects of coprocessor architectures and their performance implications. We show that cost
effective coprocessor architectures are those that perform frequent and essential aspects of their problem
domain quickly and efficiently, leaving other less frequent operations to software. This philosophy fol-
lows the reduced instruction set computer (RISC) research being pursued at the University of California
at Berkeley and elsewhere. Simplifications achieved with this approach allow for rapid specification
and design and reduced complexity in the implementation phase, yielding a more cost effective solution
to the problems considered.

We evaluate single-chip integrated circuit coprocessor implementations designed to work with
single-chip CPU microprocessors, and focus on how the interface between the coprocessor and its host
influences its performance and effectiveness. Careful consideration must be given to how the coproces-
sor interfaces with the rest of the system (both physical interconnection and the software model). Oth-
erwise, many inherent advantages of having a second execution element can be lost to various overhead

Chapter 1 3

factors. The coprocessor is an effective means of providing tremendous computing power in conven-
tional systems with minimum cost and difficulty.

Contemporary designs are capitalizing on the rapid advances being made in computer-aided
design of complex integrated circuits. The recently announced 164,000-transistor Motorola 83100 CPU
chip was designed using silicon compiler technology in 20 calendar months and the 750,000-transistor
cache/memory-management unit in 11 calendar months. Experienced designers reported a 5- to 10-fold
increase in productivity using such CAD tools [Goer88]. Such advances make it possible and afford-
able to use silicon technology to replace particular software functions.

Sometimes highly specialized and dedicated hardware devices can exceed the performance of a
general purpose RISC computer coupled with a coprocessor. The added performance typically comes
with the disadvantages of higher cost and longer design time. We consider such devices only as a point
of comparison to our work.

1.1. The Context of Our Research — SPUR

SPUR (Symbeolic Processing Using RISCs) is a multiprocessor workstation developed at Berkeley
as a research vehicle for studying symbolic and scientific computation using parallel processors
[Hill86]. The project involves research in IC technology, computer architecture, operating systems, and
programming languages. Figure 1-2 is a simplified block diagram of a SPUR system.* Besides the
CPU and cache controller (CC), the architecture supports a floating-point unit coprocessor (FPU) which
implements in hardware the basic functions of the ANSI/IEEE Standard P754-1985 for binary floating-
point arithmetic. The FPU serves as a test case coprocessor for the analyses reported in this disserta-
tion. Extensions to that model supporting other functions are also reported here.

CPU FPU CPU FPU
...6w12...

CACHE CACHE

< SPUR BUS >

1/0
SHARED MEMORY A
DEVICES

Figure 1-2. SPUR Workstation System.

This figure shows a SPUR workstation system. Up to 12 processor nodes share a common bus,
memory, and I/O devices. Each node contains a central processing unit (CPU), a 128 K-byte
direct-mapped mixed I&D cache controiled by a dedicated chip (CC), and a floating-point unit
coprocessor (FPU). The FPU supports the ANSI/IEEE Standard P754-1985 for binary floating-
point arithmetic. The SPUR BUS is a modified NuBUS supporting standard I/O and memory dev-
ices and special protocols for a cache coherency scheme impleruented in hardware. The system is
targeted to support research in parallel processing and Lisp environments, but the architectural
features added for that support do not impede the execution of other standard languages, such as C.
A network operating system, Sprite, is also under development by rescarchers at Berkeley [Oust88].

* A more detailed diagram of the SPUR processor node is included in Chapter 4.

Chapter 1 4

1.2. Overview of Results

We have investigated the implementation of the SPUR FPU in conjunction with the SPUR CPU
to determine if the combination can provide good performance for IEEE floating-point arithmetic. We
have compared our approach with other contemporary implementations and have identified several fac-
tors that contribute to or detract from good performance. For fundamental floating-point computations
— dot product, Gaussian elimination, and others — we report that the speed of our CPU-FPU pair
exceeds the performance of software implementations by two orders of magnitude, and some commer-
cial implementations by factors of three to 50. Researchers at Berkeley have implemented the three
VLSI chips, with the CPU and cache controller running successfully in the lab. The FPU has been
fabricated and is waiting its turn for further testing in the system.

We have also investigated whether a coprocessor optimized for dynamic programming functions
can yield a cost effective solution to computation and memory intensive problems, such as path optimi-
zation. Since no hardware coprocessor implementations of this function are known, we have made
comparisons with general purpose and special purpose machines running software implementations.
Highly specialized architectures designed specifically for path optimization and CPU architectures with
structure amenable to the systolic-like operations useful for path optimization were also considered. A
path optimization coprocessor has been proposed and evaluated as an alternative to both software and
specialized hardware. Our results show nearly three orders of magnitude improvement in performance
over software implementations, and two to three orders of magnitude improvement in cost at compar-
able performance when compared to dedicated hardware or specialized CPU architectures.

Features of our coprocessor interface architecture that contribute to good performance include:
parallel instruction decoding between the CPU and coprocessor, a direct connection between the copro-
cessor and cache memory, a wide data path to the coprocessor to facilitate efficient transfer of all types
of operands, concurrent operand loads and stores during coprocessor execution, parallel operation
between the CPU and coprocessor (i.e., the CPU can continue executing instructions while the copro-
cessor is busy), and synchronization mechanisms between the CPU and coprocessor that either are
implicit or program controlled. The FPU microarchitecture uses several algorithmic and circuit design
techniques that lead to good performance.

1.3. Dissertation Organization

Chapter 2 considers some of the advances in technology that have caused the explosive growth in
computer performance over the past two decades, and the implications for the future of coprocessors
and application-specific architectures. We outline our motivations for the study, look at previous copro-
cessor implementations, and consider contemporary work in coprocessor research.

In Chapter 3, we develop coprocessor classifications based on their interaction with the system,
from both a software and hardware perspective. Our method for performance evaluation used in subse-
quent chapters is explained.

Chapter 4 examines floating-point arithmetic coprocessors and describes in detail the work carried
out in the evaluation of the SPUR FPU implementation at Berkcley.

Chapter 5 considers in depth the algorithmic needs of a path optimization coprocessor. Various
alternatives in the fundamental algorithms are simulated extensively to detcrmine the best algorithms,
implementation techniques, and data structures for coprocessors designed to perform the most essential
and time critical functions of shortest-path optimization.

Chapter 6 briefly considers three other applications — digital signal processing, vector floating-
point processing, and support for the Prolog language — to determine if they are suitable for coproces-
sor implementations using the SPUR model.

Chapter 7 summarizes this work, identifies the contributions, and suggests futurc work in the arca
of coprocessor research.

The appendices include data from some of the analyses completed during research reported in this
dissertation. Appendix A is a condensed specification of the coprocessor interface for the SPUR FPU

Chapter 1 5

implementation. A more complete version is found in [Hans86]. Appendix B includes the C-language
and SPUR assembly language versions of benchmarks used in Chapter 4. The simulated performance
of commercial floating-point coprocessors and the SPUR FPU is tabulated. The instruction times for
commercial floating-point coprocessors investigated in this dissertation are summarized. Appendix C
includes path optimization simulation results showing the performance of various algorithms investi-
gated in Chapter 5, and a brief overview of the programs used to generate the data for this dissertation.
Appendix D includes information about digital signal processor technology supporting the research
reported in Chapter 6.

<This page is intentionally blank.>

Motivation, Background,
and Related Work

2.1. Introduction and Overview

This chapter considers factors that support the notion of using coprocessors in general purpose
computer systems. We illustrate the evolution of ideas with several examples, specifically in VLSI sys-
tems — the focus of our research. Section 2.2 discusses the motivation to balance system performance.
Section 2.3 describes how technological advances, architectural innovations, and component cost reduc-
tions will influence future coprocessor development. Section 2.4 describes some successful non-VLSI
coprocessor applications used in past and current systems. Section 2.5 focuses on VLSI coprocessors,
particularly floating-point and memory-management units, and broadly surveys other commercial dev-
ices. Section 2.6 summarizes the ideas covered in this chapter to set the stage for the analysis presented
in Chapter 3.

2.2. Motivation

Many tasks performed on traditional von Neumann architecture computers are resource-bound.
For example, an intensive floating-point computation may cause the system to become processor
bound. Alternatively, the system may become //O bound with a compiler that reads and writes many
temporary disk files during its work. The net result is that some system resources are not being used
effectively, since they stand idle while waiting for other resources.

Kuck {Kuck78] illustrates the interplay between processor bandwidth, memory bandwidth, and
1/O bandwidth in determining the system capacity surface, a 3-dimensional representation of the limits
to performance imposed by the system components. His discussion suggests that computer systems
have been tuned to provide a balance between the capabilities of different components of the system.
For example, an I/O bottleneck to the swap disk can be removed by the addition of more main memory.
In other cases, performance can be improved simply by employing additional execution units to allow
tasks to execute in parallel, instead of in serial. Such a system might be made even more cost effective
if the additional execution units are tailored to the task, i.e., coprocessors. The identification of which

Chapter 2 7

tasks should be implemented in a coprocessor is a critical step. Migrating an arbitrary selection of
software into hardware can result in reduced overall performance or simply replacing software releases
by costly engineering redesigns [Ditz81, Hans83]. If wisely used, however, the coprocessor can be an
extremely effective means to achieve computer system balance. In the next section, we see how tech-
nology may influence the use of coprocessors in future computer systems.

2.3. Technology — History and Implications

Implementation technology is directly related to cost/performance effectiveness of computer sys-
tems. Advances in the speed and capacity of hardware components used to build computers have
largely been responsible for the astounding growth in computer system performance over the past two
decades. The electronic integrated circuit (IC) is the essential hardware building block of these sys-
tems. Since the 1960’s when IC’s were first used in digital computers, their complexity has evolved
from fewer than 10 gates per chip (small scale integration — SSI), through several 10’s of gates per
chip (medium scale integration — MSI) to several hundred gates per chip (large scale integration —
LSI). Today, 1000’s of gates are integrated on a single chip, giving rise to the term very large scale
integration, or VLSI [Texa76]. Since IC manufacturers are able to put more and more functions on each
chip, computer manufacturers are able to offer more and more capability per system [Burg84].

The exponential growth in IC’s was first observed by Gordon E. Moore in 1964 [Siew82]. He
predicted that the number of components per chip would double every year, which held true from 1959
when the planar transistor was invented until the early 1970’s. It is primarily this swift progress in IC
technologies that has fostered the fast-paced computer evolution. During the past 17 years, the number
of transistors per chip for memories have increased by more than a factor of 1000 (from approximately
four thousand to four million devices per chip). This growth can be expressed as (adapted from
[Fagg77] and Figure 5 in [Myer86]):

[loga(4M / 4K)
7
5 1

Growth factor for IC memories =] = 1.5 per year

which represents a doubling every 20 months. During the same period of time, microprocessors have
increased in transistor count by a factor of 250:

log,(.5SM/2K)

17

Growth factor for IC microprocessors = 2 [} = 1.4 per year.

Figure 2-1 plots this pattern of growth by noting when some specific memory and microprocessor com-
ponents became available during those years.

Two fundamental reasons account for these gains: first, advances made in photolithography and
etching technology have accounted for about a hundred-fold reduction in the minimum feature size that
can be fabricated economically. Second, the fabrication techniques and computer aided design and
manufacturing tools that have been developed allow about a 10-fold increase in the maximum die size
that can be economically fabricated. This is illustrated in Figure 2-2. The invention of new structures
and circuit cleverness has contributed to this advance, as well.

Despite fundamental density limits (about 0.25 micron minimum feature size [Bacc84]), we can still
look forward to achieving about two orders of magnitude increase in density and slightly less than one
order of magnitude increase in speed for silicon semiconductors [Asai86]. Naturally, other technologies
are being explored to allow the rapid progress in digital electronics to continue {V1ah88]. In the next
section, we consider how innovations in architecture have coupled with this technology to achieve
better performance.

2.3.1. Architecture — The Implications

As one result of the changing technology, computer system performance, as gauged by the
number of instructions executed per second, has also been increasing at an exponential rate. However,
during the early 1980’s, several rescarchers published studies showing that the increased capacity of sil-
icon technology had provided an easy means to increase the complexity of systems. But, as more and

Chapter 2 8

T 10M -
R ——&-— MEMORY M g
N —+— MICROPROCESSOR M 4.~
S . .
1 M
s
T
0
R 1ok
s
P
E
R 10K
o
H
I .
P 1K 14004
70 72 74 76 78 80 82 84 86 88 90

YEAR INTRODUCED

Figure 2-1. Transistors per Chip — 1970 to 1988.

This figure shows how memory and microprocessor technology have improved to provide rapid and
continuous growth in the number of transistors per chip for nearly two decades. DRAM technology
currently provides 4-Mbit parts in the laboratory [Mash87], with 256-Kbit static and 1-Mbit dynam-
ic parts in common use. State-of-the-art microprocessors use more than a half-million transistors
for single-chip CPU’s [Boss87]. While microprocessors have increased in the number of transistors
per chip by a factor of 250 during the past 17 years, memories have increased by more than a factor
of 1000 [Fagg77, Myer86].

more transistors became available, they were being used less and less effectively
[Ditz80, Henn82, Patt80, Radi82). In view of the emerging VLSI technology at the time, the number of
transistors, even though large and increasing, was still a limited resource, and needed to be used for the
most important functions [Kate83]. Likewise, the interface to the outside world was constrained by the
number of pins on VLSI chip carriers. It was very important that the internal micro-architecture reuse
operands a frequently as possible to reduce off-chip interactions with memory.

To maximize the utility of these limited resources, a design style employing simplified instruction
sets and pipelined single-cycle execution units emerged. The reduced instruction set computer (RISC),
based on this notion of reduced complexity, resulted in fewer clock cycles per effective instruction exe-
cuted. Figure 2-3 illustrates the past and projected future trends for uniprocessor system performance.
For the decade since 1978, the number of standard MIPS* (millions of instructions per second) has
been doubling about every two years. For the next eight to 10 years, that growth is projected to increase
at a more rapid pace due to advances in technology coupled with architecture innovations. According
to Bill Joy [Joy85], the rate of growth in performance for single chip computers during the next decade
is expected to follow the trend shown in Equation (2-1):

MIPS =2Year—1984 (2_1)

This far exceeds the growth rate for the decade prior to 1984, when minicomputers improved at a rate of
20% per year and microcomputers at about 40% per year [Bell84]. In the next section, we examine how
the advances in technology and architecture combine to affect the costs of computing.

*A DEC VAX 11/780 has been defined as being a 1-MIP machine. Hence the term ‘‘standard MIP"’ usually
refers to a performance comparison relative to VAX 11/780 execution. For example, a machine that runs a
program in half the time used by a VAX 11/780 is a 2-MIP machine.

Chapter 2 9

C 400K
H
I
p
200K + SPUR
Q + {80386
5 80286 + MC68020
A 100K M(‘EROOO}
i 80K
n 60K /
s / 18086
L0 2 . A0 Z80
o 40K
A
R + 8080
E 20K 4004
M -/
1
L
S 10K v v v v v v v v v
70 7 74 76 78 80 82 84 86 88 90

YEAR INTRODUCED

Figure 2-2. Chip Area — Microprocessors 1970 to 1988.

This figure shows how the size of integrated circuits has increased from less than 20,000 sq-mils to
more than 200,000 sq-mils over the past two decades. Early microprocessors, as exemplified by the
Intel 4004, i8080, and Zilog Z80 were limited to 4- or 8-bit architectures. During the mid 1970’s,
16-bit-architectures were developed to take advantage of the increased capacity. Finally, 32-bit ar-
chitectures were introduced with the Motorola MC68000 in 1981. With an increasing number of
transistors per chip, rather than scale to wider word-width architectures, additional functions such as
instruction caches and memory management units have been integrated directly on the CPU chip
lately. (Adapted from Figure 5 in [Myer86].)

2.3.2. Cost — The Implications

The technological advances mentioned earlier have had a considerable impact on the cost of com-
ponents used to build computers. The average selling price of random-access memory storage has
decreased from slightly less than $.015 per bit in 1970 to roughly $.00001 per bit in 1988 (a reduction
of about 40% per year, or three orders of magnitude overall) while speed has increased by a factor of
10. The per-transistor cost of microprocessors has experienced a similar, albeit slightly less dramatic,
reduction in cost of about 25% per year during the same time period {[Myer86]. Nevertheless, Figure 1-
1 illustrated how cost/performance has remained relatively constant over the past decade for at least one
computer family. Figure 2-4 shows how a broad spectrum of machines compare, from low-end per-
sonal computers to the most expensive super-computers. The diagonal lines indicate planes of equal
cost/performance [Dong87, Dong88]. It is interesting to note that most systems lie within a narrow
range of price/performance (between one and eight floating-point operations per second per dollar),
from the least expensive to the most expensive machines. The general systems that are the best are
microprocessor-based systems equipped with floating-point coprocessors. Nevertheless, special-
purpose hardwired devices, such as array processors and especially DSP chips are orders of magnitude
better. When the amount of time consumed for a computation becomes prohibitive, the cost of high end
machines can be justified. However, we are interested in the region of the design space that provides
the best of both worlds — large performance improvement at lower cost. We believe the best way to
achieve that is with coprocessors.

In the next section, we summarize the motivations for having coprocessors in contemporary and
future computer systems

Chapter 2 10

1000
> JOY'S LAW
T 100 9
A)
N
D
A HISTORY
R 104
D
M
1 19
P
S

78 80 82 84 86 88 90 92 94

YEAR

Figure 2-3. Computer System Performance in MIPS.

This figure shows how the performance of conventional minicomputer systems has progressed over
the past decade. In the late 1970’s and early 1980’s, implementations were typically discrete
MSI/LSI and multiple board CPU’s. In the mid-1980’s, with single-chip VLSI microprocessors
becoming the computing engines, the exponential trend has continued, approximately doubling per-
formance every two years. Architecture innovations coupled with advances in technology are pro-
jected to offer even steeper growth in CPU power over the next decade by doubling every year —
twice the rate of earlier generations.

2.3.3. Putting It All Together — The VLSI Coprocessor

Performance increases brought about by technology and architecture are impressive. The reduc-
tion in effective cost per component per chip is also encouraging. With the advent of the Mead-Conway
style of VLSI design [Mead80], simple abstractions of fundamental design rules and circuit design can
be employed to realize successful silicon by more and more people. VLSI presents a mature medium
for the realization of additional execution elements. As VLSI design gets easier, many special purpose
chips will be invented, designed, and fabricated. And, as VLSI design capabilities are enhanced
through more sophisticated processing techniques, smaller geometries, and so on as shown above, func-
tions that previously were too costly to build will become affordable. Some examples of this include
speech processing chips [Kava86], image processing enhancements [Clar82,Ruet86], and a host of
floating-point coprocessor units [Cass84, Digi85, Inte81a, Nati84, Rowe88, Zilo83]. These and others
will be discussed in more detail in later chapters.

The advantages of using VLSI to implement new systems are readily apparent: small physical
size, low system power consumption, customizable design (the designer is not limited to what is avail-
able in a data book), fewer chips per system, and so forth. Nevertheless, the advantages that VLSI
represents for computer designers must be viewed in perspective. It is important to be aware of the
problems and pitfalls that are inherent in the process. Interestingly, though, some of the disadvantages
actually work in favor of coprocessors being added to the system.

First, history has taught us that we will very likely always have more ideas than transistors on a
single chip to accommodate those ideas. In other words, the number of transistor per chip is still a finite
resource, and must be used judiciously. A coprocessor becomes a way to realize an idea without
sacrificing other essential features.

Second, the design and testing of a VLSI device is still an involved and painstaking process. Con-
tributing to that complexity is the fact that the engineering tools needed to design and produce ‘‘mon-
ster chips’’ are the most difficult challenge for CAD. By maintaining some physical as well as

Chapter 2 11

100.00 $100/MF .+ $1000/MF .+ S10K/MF -~ SI00KMF - SIM/MF
CRAYXMP4, A
NECsx1® NECSX2
eoepspd0 S c%g;\;ggww *CRAYXMP2
’,," ,"/ "." [] Y2
+ -0 ZR36010 IBM3090VEC "CRAY:?A
1000y SCS40 p .~ $1OM/MF
& -*DsP32 - o ALLIANTFXS

- ®FPS264 d IBMSOQO

) CDC375. 'AMDAHL5860
“ ®CONVEX

M : .
E pd CUII.:I)ﬁR Epsiea !IBMSOSI
L - ALLIANT ELSXI’
1.004 CSP16430 <bE 3;?00 .~ $100M/MF
o ~'DEC8500 ‘DEcssso
» . ,
~Bwmo370° *
s .~ #SUN3_260 DF‘CS“O
scmmo 'APOLLODNSSO
VAXSTATION,
0.104 SUN3_soe" *DEC8200
SIBMET/PC
0,014~ e . '
1 10 100 1000 10000 100000
COST (1000's of DOLLARS)

Figure 2-4. Computer System Cost Performance.

This figure shows how the cost-performance of conventional systems compares to special purpose
coprocessors and specialized architectures for floating-point computation. As illustrated, high-
performance general purpose systems are also high-cost. However, architectures specialized for a
particular task or type of processing generally achieve the same or comparable high performance
but with orders of magnitude less cost. The upper-left comer of the diagram is the region con-
sidered by our research — maximum performance but at minimum cost. (Adapted from
[Dong87, Dong88].)
functional partitioning, those limitations can be avoided.

Third, at any time it is possible to find important problems that seem to require an order of magni-
tude more speed than provided by the state of the art [Fuss84]. But once technology has reached the
limits of uniprocessor performance, significant improvements in speed can come only from exploiting
parallelism in the processing tasks. Coprocessors offer a natural means of achieving concurrent execu-
tion through either pipelined or parallel architectures.

Fourth, designers will simply not anticipate many of the applications that our processors will be
used for during their product lifetimes. In the past, new problems could only be accommodated by
adding software routines. However, if our systems are designed with coprocessors in mind, it will be
possible to readily add them to systems to realize those unanticipated functions without making the sys-
tems obsolete.

Fifth, even with an expanding technology, large chip sizes and smaller gcometries often result in
low fabrication yields, increasing the per-unit cost. In an early study, Murphy [Murp64] rclatcs yield to
the susceptible area of a device (@) and the mean defect density of spot defects per unit arca (D):

1 —eP0?

D od
Integrating as many functions as possible on one chip is desirable to simplify interconnection problems.
Since yield declines with increased chip size, it can be more cost effective to partition functions

yield =

Chapter 2 12

between multiple chips to achieve reasonable fabrication yields and rely on maturing technologies
(solder-bump [Elec87] or flip-chip bonding [Brad85)) to overcome packaging and interconnection prob-
lems. This holds especially true for newer technologies, where chip size and capacity are relative small.

Sixth, power dissipation becomes a problem with larger and larger chips [Sze85]. By distributing
functions across multiple chips, this problem is lessened.

Seventh, additional execution elements may provide a degree of fault tolerance. A system that is
able to continue operating with a failed coprocessor, even if in a degraded mode, is usually better than
outright failure.

Lastly, as VLSI design and fabrication become easier through improvements in CAD systems
(such as circuit synthesis using silicon compilation), these special functions will be built in much less
time with much less effort.

For these reasons and many others, we believe there are strong incentives to use coprocessors in
future computer systems. To place our work in perspective, we next review some non-VLSI implemen-
tations of coprocessors currently in use.

2.4. Previous Work — Non-VLSI Coprocessors

As an interesting point of history, we tried to determine when the earliest reference to the term
“‘coprocessor’’ was made, both in the literature and from those who were involved in the early days as
computer designers. Although it seemed unlikely, our investigation suggests that coprocessor was first
applied to the Numeric Data Processor floating-point chip developed by Intel Corporation in the late
1970’s [Nave80]. This early math chip was billed as a coprocessor to the 16-bit Intel i8086 single-chip
CPU introduced in 1978.

The concept of coprocessor, if not the term, has been around for a long time. Gordon Bell recalls
that Digital Equipment Corporation (DEC) had a history of providing optional arithmetic units, starting
with the 18-bit PDP 1 (circa 1960) which included multiply-step and divide-step circuitry to implement
those arithmetic functions [Bell86]. He thought the term might have been used during the early stages
of development of the PDP 11/45 (circa 1972) and eventually the PDP 11/70 with its floating-point
arithmetic processor. Bell currently refers to such devices, however, as co-execution units, and dislikes
the term coprocessor applied to anything that does not fetch its own instructions.

Another early computer designer, Wesley Clark, suggested to DEC in the 1960’s that a PDP-8 be
used as a coprocessor to the LINC-8 system [Clar86b]. LINC was an early 12-bit machine designed to
accept analog as well as digital inputs directly from experiments — hence the name Laboratory INstru-
ment Computer [Bell78]. The PDP-8 ran some of the higher-level parts of the LINC tape logic. Both
processors operated concurrently, executing their own respective instruction sets.

One of the earliest implementations of a peripheral processor concept was in the CDC 6600,
begun in 1960 [Thor77]. The 10 peripheral and control processors (PPUs) shared one high-speed cen-
tral processor. Each PPU received one 100-nanosecond minor cycle slot each 1000-nanosecond major
cycle of the central processor. The idea of using concurrency to bury housekeeping operations during
other computation was exploited with this architecture.

Next, we will consider three examples of early coprocessors that have made substantial improve-
ments in computer performance: the attached processor, floating-point accelerator, and channel or direct
memory access devices.

2.4.1. Attached Processors

In the world of scientific computing, a variety of devices have been introduced to overcome limi-
tations of the von Neumann architecture. Attached Processors (AP) are generally considered a cost
effective means of speeding up a compute bound task. An AP is a single processor attached to a general
host computer as a peripheral (it uses standard bus cycles for communication with the host) for the pur-
pose of speeding up a certain class of computations. It typically has a large autonomous main storage,
performs floating-point at the rate of a supercomputer, and may or may not be capable of vector

Chapter 2 13

operations. Examples of attached processors are the Floating Point Systems FPS 164/264
[Char81, Char86] and the Computer Signal Processing Inc. MAP 200 [Cohl81]. Certain classes of prob-
lems require such long production run times that they fall outside the realm of these devices and require
the speed and efficiency of vector supercomputers, such as the Cray or CDC Cyber 205 [Thei83]. Such
systems will not be considered here. Table 2-1 summarizes many characteristics of some commercially
available attached processors.

Table 2-1. Commercial Attached Processors
Manu- Model Price Host Instr Word Number of Micro | 1024 Point
facturer Range Cycle Size Instr FFT Time
Name Number | [nrar | CPUs | qoecy | its) | Add | Mul | (its) | (msec)

Analogic AP500 L Many 160 32 1 1 N/A 4.7
CSPI CP-232 M Many 200 32 2 2 N/A 4.5
Data General | AP/130 M DG Eclipse 200 64 1 1 132 8.8
FPS 164 M Many 167 64 1 1 64 4.7
FPS 264 H Many 53 64 1 1 64 1.6
IBM 3838 H IBM-370 100 32 4 4 68 3.0
Numerix 432 M DEC Only 100 32 2 1 128 1.6
Numerix 332 M DEC Only 125 32 2 1 128 2.0
Numerix 464 M DEC Only 125 32 or 64 2 1 128 4.0
Alliant* FX80 H Integrated 85 64 8 8 56 1.5

This table lists several commercial attached processors. Some are special purpose accelerators
compatible only with a certain machine or manufacturers family of machines. Others are general
purpose, accepting many different hosts. All are microcoded, supporting either single- or double-
precision operands. Clock rates vary by a factor of 3.8, processing rates vary by a factor of 5.8.
The cost designations L, M, and H are roughly: L < $20K; L < M < $200K; H > $200K. (Adapted
from [Karp81] and recent product literature.) *The Alliant is an example of an integrated system
with microprocessor-based interactive front-end and back-end processors for vector floating-point
computation.

It is difficult to state a general conclusion about the speedup effectiveness of attached processors,
since it is always application dependent. Some university researchers [Chab85] investigated the use of
the MAP 200 array processor [Cohl81] attached to an HP21MXE for speech analysis. They found the
communication overhead for using the attached processor was 100 times greater than the floating-point
computation time within the attached processor. However, this was still 10 times faster than using the
HP21MXE without the attached processor.

On the other hand, computations that take hours in execution may be affected little by data
transfer and control overhead. Researchers at Comell University report that attached processor time for
different simulations in theoretical astrophysics and general relativity can range between 15 minutes
and more than 20 hours using an FPS 190L attached processor [Faro83]. The data transfer overhead is
negligible in comparison: between 0.1% and 0.001% of the total time. .

Cole applied the FPS 164 attached processor to the problem of circuit simulation using SPICE and
a variety of input benchmarks [Cole83, Cole85]. Compared to computation on a VAX 11/780 with
floating-point accelerator hardware running 4.1 BSD UNIX, speedups ranged between three (for stan-
dard software and compiler implementations) and 10 (tuned, vectorized and optimized code). He indi-
cated that communication overhead can account for as much as one-third ot the total processing time.
Careful attention to the coding of certain inner loop modules on the attached processor was found to be
the most effective way to improve the execution time.

Besides the numerical processing power of the attached processor (AP), it is important to consider
the control flow of the CPU-AP configuration. Two possibilities exist: (1) run the application on the
host with calls to the AP for service, or (2) run the application on the AP by itself. The second alterna-
tive assumes an AP that is really a complete computer. This is not usually the case, and will not be dis-
cussed here. (Table 2-1 includes one such system, the Alliant, for comparison.) The first case presumes

Chapter 2 14

a software development system for the host that at a minimum allows procedure call specification in the
application program. Low level device driver software must deal with the issue of providing the AP
with the data (or address of where to get it, if the AP has its own disk control) as well as other control
information. It then must perform a system call. The operating system must suspend the user job, ver-
ify all addresses for validity, page-in any missing pages (for a virtual system) from disk, mark the space
as 1/0 active, initiate the channel program (described later), receive a completion/error interrupt at the
end of processing, release the user program as I/0 complete, so it can be run, swapped, and so on. Thus,
the complexity of the CPU-AP interaction can result in many overhead cycles during a computation.
Such interactions typically consume 50 to 100 milliseconds. The AP could easily have completed
200,000 to 500,000 operations during that time.

In summary, attached processors are used in a variety of computationally intensive applications.
Processing speed improvement is highly dependent on application, data sizes, and algorithm implemen-
tation. Sometimes CPU-AP overhead dominates computation time and in other cases it is completely
irrelevant. System support software must be finely tuned to provide the most efficient data transfer and
AP control for many applications.

2.4.2. Floating-point Accelerators

Another type of coprocessor is the floating-point accelerator (FPA), available as an option on most
mini- and super-minicomputers and many workstations. An FPA is typically one or more boards that .
plug into a standard minicomputer backplane bus. Usually no memory is provided other than for
operand and result storage, and the device is very closely coupled with the host CPU during operation;
that is, it functions on a single-operation-per-interaction basis with the CPU. For example, see
[Digi76, Digi81, Tayl83]. It also provides a speedup for floating-point arithmetic, but is not intended to
support the same types of computation addressed by the AP. An FPA deals on an item-by-item basis
with the CPU, does not support vector operations, and requires no low-level device drivers or special
system calls. In fact, the operation of the FPA presumes no special software or compilers. A floating-
point instruction is either executed in software (resulting from a trap, if an FPA is not present), or in the
FPA. From a programmers point of view, nothing changes but performance. Typically, the FPA imple-
ments addition, subtraction, multiplication, and division directly. Other functions may include square-
root, sine, cosine, and so forth.

In terms of control, if the CPU is equipped with an FPA, the initiation of an operation is
automatic. Either the FPA monitors the instruction bus and recognizes instructions it is to execute
when they are fetched, or it is sent a starr signal from the CPU to initiate its operation. The first model
is often referred to as an instruction tracker. The CPU knows it has an FPA to use either by explicit
interface signals or an internal state bit. If the FPA is not present, the CPU will automatically jump to
numeric microcode or call a runtime software routine.

During instruction execution, if the FPA shadows the CPU registers (as does the VAX 11/780
FPA [Digi81, Patt85]), the operands are already in the registers specified by the instruction or will be
placed there after the effective address is calculated, and the computation proceeds. . If shadowing is not
provided, the operands must be explicitly transferred to the FPA registers from memory or from CPU
registers. Since the CPU and FPA deal on an item-by-item basis, the CPU normally pauses until the
FPA finishes an operation, allowing no concurrent execution. Traditionally, an FPA is designed to
reside in a specific host CPU and is not interchangeable with other manufacturer’s FPA’s. The price of
an FPA ranges between $8,500 and $14,000 for VAX 11 computers and represents about 10% of the
cost of the rest of the system. Table 2-2 lists the execution times for various instructions for the VAX
8600, showing performance in comparison to the same instructions implemented in microcode.

In summary, the FPA requires minimal explicit control from the CPU. The FPA typically appears
as a set of registers in the host CPU memory map. The existence of the FPA is transparent to the com-
piler and simplifies the software development problem since there is no distinction at the instruction set
level between software execution and hardware execution. Although the FPA may provide an impor-
tant performance improvement over run-time library implementations or microcoded routines, there is

Table 2-2. Execution Time - VAX 8860 Microcode vs. Floating-point Accelerator
Floating I.’oint Ope}'a.nd Migrocode Exec lf'PA Exec Speedup
Instruction Precision Time Cycles Time Cycles
ADDF2 Single 21 4 5.3
SUBD3 Double 44 7 6.3
MULD3 Double 60 17 3.5
DIVD3 Double 161 67 24

This table illustrates the speed up possible with a floating-point accelerator for various CPU’s and
FPA implementations. On DEC VAX 11/780, floating-point operations are 2.4 t0 6.3 times faster in
the FPA than microcode. Data was supplied by [Foss88, Melv88].

still a significant amount of time spent in various overhead, data transfer, and waiting functions. Also,
unless the compiler allocates registers for floating-point variables, large amounts of time will be spent
in transferring operands, reducing the FPA’s effectiveness.

2.4.3. Channels and Direct Memory Access Devices

Besides floating-point computation, devices have been added to computer systems to improve
input/output performance. If required to service a high speed peripheral, the CPU can become bogged
down with nothing but I/O. For example, a disk memory can easily transfer many million bytes per
second requiring a large part of the resources of a typical mini-computer or workstation. A data chan-
nel is a single processor attached to a general host computer as a front or back end to offload specific
1/O applications from the host. Terminal interaction, print spooling, auxiliary storage transfers, and
device communication are examples. Data channels can be implemented in microcode in the main
CPU, but normally they are physically separate, have a limited amount of storage, a limited instruction
set, and usually compete with the main processor for bus cycles and memory access. Examples include
the IBM selector and block multiplexer channels [Brow72, Kuck78]. A channel is essentially a limited
function programmable computer. In specific instances, these are also referred to as direct memory
access (DMA) devices. Instead of a general purpose I/O controller, a DMA device can simply be a
hardwired implementation of a single function, often referred to as a DMA device controller. The
DMA control logic and device controller are typically located on the same board.

The main characteristic of a DMA I/O device is conveyed by its name: virtually all interaction
between the device and the computer system is done through the host’s memory directly, without inter-
vention by the CPU. DMA channels are also used when there are many slow speed devices such as ter-
minals or printers, since the collective interference to the CPU can be substantial.

To initiate a disk data transfer, a DMA device controller is given a starting address in memory, the
length of the transfer, the direction (read or write), and a start signal. Once initiated, both the CPU and
DMA device operate concurrently. Transferring disk data requires immediate attention, and the device
signals the CPU when it needs the memory bus. This does not cause the CPU to save its state but only
relinquish control of the bus. Logically, the DMA controller looks like a set of registers in the memory
map of the host. Programmed 1/O transfers to those registers are used to initialize, start, and check
status of the device.

DMA channels are slightly different. For example, the IBM channel is implemented as a limited
function, free standing computer. Its programs, data, and control reside in the main CPU mcmory.
Channel control programs are initiated by the CPU when it encounters an I/O instruction, and from that
point on, the channel competes with the main processor for bus cycles for its instructions and data
transfers. A successful initiation of a channel request results in the channel reading a channel control
word (CCW) from main memory at a fixed location. This word provides the storage protection key for
the transaction, first command address, device status bits, and the next CCW address. 1/O completion is
signaled by an interrupt to the CPU by the channel [Blaa64, Siew82].

Chapter 2 16

In summary, the use of specialized DMA and channel computers presumes that all the overhead
associated with their use is amortized over the period of action. Only a few instructions by the CPU are
needed to effect the transfer of vast amounts of data that would otherwise swamp the CPU if it had to
deal with it directly. Independent execution allows the CPU and DMA devices to operate concurrently,
although memory bus contention will occur.

To summarize this section, we note that despite the obvious parallelism inherent in having two
independent execution elements, coprocessor applications are often still characterized by serial process-
ing. In many cases, communication between the devices diminishes much of the potential performance
advantage gained by having the special hardware assistance.

2.5. VLSI Coprocessors

Besides the central processor, many VLSI components have augmented microprocessor-based
systems. In this section, we briefly survey what has been done to improve computer systems by the use
of additional VLSI components tailored to specific tasks: floating-point arithmetic, memory manage-
ment, graphics, text processing, and so forth. Some of these will be considered in much greater detail in
later chapters.

2.5.1. Floating-point Arithmetic

A floating-point coprocessing unit is one of the many applications made possible by advances in
VLSI. Some of the commercial floating-point coprocessors designed for use with microprocessor-based
systems are shown in Table 2-3.

Table 2-3. Commercial VLSI Floating-point Coprocessors

Pan | Mamfac- | ABPROX | qepiiooo ey | Speed | #Pins Arithmetic FADD | FMUL
Number turer # Xstrs (Mhz) | forData Basic Other (usec) (psec)
78132 DEC 200,000 | 3.0p ZMOS 5 32 +-X= | intx,+poly 3.8 3.0
18087 Intel 65,000 304 HMOS 10 16 X ¥ rig 14.0-20.0 | 18.0-29.0
180287 Intel 65,000 300 HMOS 16 16 X V" rig 8.8-12.6 | 11.3-18.1
i80387 Intel 75000 | 1.25p CHMOS 16 32 +eXh= v irig 2.9-39 3.6-7.1
MC68881 | Motorola | 155000 | 20n CMOS 167 32 +m XK= v irig 3.1 43
MC68882 | Motorola | 165000 | 1.5u CMOS 16.7 32 +oXohE Vg 3.4 4.6
NS32081 | National | 55,000 304 XMOS 10 16 He o= none 7.4 6.2
R3010 MIPS 75,000 1.6p CMOS 25 32 +oXohE none 08 16-2

This table provides a brief summary of the capabilities of some commercial floating-point coproces-
sors. An extensive summary of performance, interface characteristics, operations supported, and so
forth is in [Fand85)]. These implementations support from two to cight differcnt data types. All
coprocessors maintain eight 80-bit user-accessible data registers on chip except the microVAX
78132, which has no user-accessible registers, and the R3010 which has 16. The FADD and FMUL
columns show typical execution times for double precision (64-bit) register-register operations for
the cycle-time given. Most coprocessors are available in a variety of clock speeds between 6 MHz
and 25 MHz. The R3010 is the most recent addition and reflects the latest technology and
simplified architecture, providing quick fundamental operations [Digi85, Inte81a, Inte85a, Inte85b,
Moto85, Nati84, Pren87, kowe88].

The floating-point chips listed in Table 2-3 span nearly a decade in time from the introduction of
the Intel 8087 numeric data processor to the MIPS Computer Systems R3010 floating-point coproces-
sor. Conscquently, a wide range of performance is seen. Nevertheless, there are some fundamental

design ideas and interface strategies that generally affect performance and effectiveness. Chapter 4 con-
siders this in more detail.

Chapter 2 17

2.5.2. Memory Management

For both cost and performance reasons, VLSI microprocessors are well established as the central
building blocks in most contemporary general-purpose and workstation computer designs. Recently
introduced high-performance personal super computers rely on off-the-shelf CPU chips (for example,
see [Mola88] for discussions of the Stellar and Ardent systems.). These hardware configurations are
required to run general-purpose time-shared operating systems. Performance in dealing with the
register-cache-main-memory hierarchy and efficiently implementing demand paging for the virtual
memory system go beyond the capabilities of most one-chip CPU’s. Consequently, a memory manage-
ment unit (MMU) is an absolute necessity in contemporary systems. Without the MMU, the CPU is
severly constrained in either memory (i.e., small memory size, directly addressable and non-cached), or
performance (i.e., the CPU attempts to handle memory management functions).

Most microprocessor manufacturers provide MMU’s compatible with their CPU’s. The Motorola
MMU for the MC68000 family of microprocessors is one of two predefined tightly-coupled coproces-
sors supported by the generalized coprocessor interface. The cache controller for the Titan system, a
research multiprocessor developed by DEC [Joup88], is also viewed by the CPU as a tightly-coupled
coprocessor. The interested reader is referred to [Wils88a] which lists MMU's and other support chips
and functional blocks to augment most miCroprocessor systems.

2.5.3. Other VLSI Coprocessors

As a means of improving the performance of other computer system functions, specialized devices
have been added from time to time. Depending on speed, functionality, and a number of other factors,
these are realized as either multiple-chip building block components or monolithic single-chip imple-
mentations.

There are also several groups pursuing research in the area of coprocessor architectures, including
an effort to develop a ‘‘design frame’’ [Borr85] approach for the Motorola 68000 family [Chat87].
Many commercial devices are cataloged in trade publications (see [Hear88]). Some of these, and on-
going research, include:

e serial and parallel I/O controllers,

e device controllers (Winchester or SCSI disks, terminals, and so forth),

e digital signal processors (single chip microprogrammable devices or building blocks),

e graphics processors (monolithic coprocessors or chip-sets to do bitblt, raster control, data shift-

ing, clock generation, video D/A conversion, and so forth),

e communications adapters,

e performance monitor coprocessor [Fauc86],

e text and language coprocessors [Kung81],

e string manipulation coprocessor [Curr83],

e persistent object coprocessor [Geor87],

e database coprocessor [Anon85],

e network controller coprocessors (conflict resolution/arbitration),

e sorters [Care85, Mira83],
and many others.

2.6. Chapter Summary

This chapter ha. surveyed past and present developments in the area of coprocessor functionality.
The prime motivations for developing specialized hardware are performance improvement and system
balance. From a control point of view, coprocessors span the spectrum of highly visible peripheral-like
devices — attached processors to digital signal processor chips — to unscen yet performance-critical
devices — from memory-management units to bitblt chips. In between arc devices that the high-level
language programmer becomes aware of only in terms of performance — from the floating-point
accelerator board to the floating-point coprocessor chip.

Chapter 2 18

From an interface point of view, coprocessors again accommodate a range of styles — from
closely coupled synchronous devices to loosely-coupled asynchronous peripheral devices. The close-
ness of the interface is usually proportional to how time-critical the coprocessor function is to overall
system performance. As the ratio of the number of CPU cycles needed to interact with the device (set-
ting it up, providing data, interrogating results) compared to the number of cycles expended by the
coprocessor in doing its function (multiply two floating-point numbers) get closer to 1.0, the more
closely the coprocessor must interact with the CPU to guarantee its usefulness.

In Chapter 3, we identify categories, types, and styles of coprocessors and develop a performance
model that accounts for features of the complete computer system that influence coprocessor effective-
ness and utilization.

<This page is intentionally blank.>

19

Coprocessor Classifications

and Performance Analysis

3.1. Introduction and Overview

In Chapter 2, we reviewed some past and contemporary coprocessor implementations. Coproces-
sors can be as varied as the applications they serve, and consequently, there are many ways to classify
them. The first and possibly most logical is along functional lines; i.e., math coprocessors, graphics
coprocessors, string or text coprocessors, and so on. Within a function it is possible to separate them
into general-purpose versus special-purpose implementations. At a lower level, hardware protocols
may categorize an implementation as closely-coupled or loosely-coupled.

Nevertheless, this chapter identifies some common characteristics of coprocessors and seeks to
categorize them and identify types or styles of coprocessor architectures. Once classes are identified,
common performance parameters are established to help analyze and evaluate coprocessor effective-
ness. The goal of this study is to discover what things contribute to making a coprocessor effective, and
let that knowledge guide the design of future coprocessor architectures. Sections 3.2 and 3.3 briefly
consider software and hardware issues related to the incorporation of a coprocessor into a computing
environment. Section 3.4 presents a model for evaluating coprocessor effectiveness in the context of its
system, and identifies the essential parameters influencing the overall system performance related to the
coprocessor. Subsequent chapters show the application of this model in the evaluation of some VLSI
COProcessors.

3.2. Software Issues

Since we have defined the coprocessor as a device that replaces software routines, one of the pri-
mary considerations would be the integration of the coprdcessor with the rest of the software. In what
form does the coprocessor make its presence known in the software? Is the coprocessor seen in the
instruction opcode, or at the function level, or at all? Is the coprocessor invoked through 1/O instruc-
tions, or is it independent of the user program and receive direction from the operating system through
supervisor calls or hardwired signals? These are all determined by the nature of the various

Chapter 3 20

computational forms and depend on whether the coprocessor assists at the instruction level, the function
level (e.g., a subroutine), or the entire algorithm level (e.g., a program).

To determine that a coprocessor is necessary to accomplish the performance goal of a system
involves a thoughtful investigation. It is very important to realize that the potential benefit must be well
considered in light of the cost. This would seem like a foregone conclusion, but there are many
instances where coprocessor accelerators for specific tasks have become function decelerators for a pro-
gram in general. For example, the redisplay of the mask geometries using an interactive graphics editor
for VLSI can be a very time consuming process (i.e., consumes many ten’s of seconds up to minutes).
This is frustrating to the designer and a waste of his time. An early version of a graphics accelerator for
a workstation environment used for VLSI design was shown to actually slow down the redisplay func-
tion [Mayo86]. Consequently, it was not used. In another case, a coprocessor designed to assist in the
BitBlt* operations of a monochrome workstation display was found to interact poorly with the rest of
the system (i.e., conflict with the CPU made it ineffective), added nothing in terms of performance, and
yet was a major problem for system reliability {Bizj86]. Again, the coprocessor was not useful and was
designed out of later versions.

There is no magic formula for determining the proper split between special purpose software and
special purpose hardware. If it is possible to identify a particular computation and the companion data
structure upon which the computation will be performed, then a specific analysis can be undertaken to
determine the benefit. Section 3.4 considers this and related topics in more detail.

3.2.1. Software Interface

As an example of a coprocessor that assists at the instruction level, consider floating-point arith-
metic. Floating-point instructions normally require two unique operands, generating a change to one
operand or possibly producing a third unique result. Since instructions in many machines consume only
a single clock cycle, the interaction with a coprocessor to assist the floating-point computation must be
quick and efficient.

As an example of a coprocessor at a function or subroutine call level, consider image processing.
Often it is necessary to compute the convolution of an image with some filter. For each pixel, its value
designated as V(x,y), the Gaussian convolution of radius 7 is given in equation 3-1

r

r
Vix,y)=3% X Ci;V(x+i,y+j) 3-D
{=—r u=-r
This computes V', a new value for V. It is essentially a blurring step to eliminate visual noise of fre-
quency less than distance r. Given the values for x, y, i, j, and r, the coprocessor could compute the
pixel value V’ without any other interaction or direction from the host.

As an example of a coprocessor that implements a complete program, consider a complete image
processing system. In addition to the filtering function mentioned above, a complete image processing
system must include functions for contrast enhancement, noise rejection, edge extraction, edge enhance-
ment, and various transformations [Ruet86]. The full system might have coprocessors for each of these
functions.

3.2.2. Compiler Issues

For coprocessors that are seen at the instruction level, compiler issues become significant. First,
the compiler needs to understand and recognize the execution model of the coprocessor. If the copro-
cessor consumes several cycles for its basic operations, a compiler optimization to intersperse instances
of coprocessor commands with other non data-dependent and non-related code allows the CPU to exe-
cute concurrently. Without optimization, significant performance improvements may be lost. As a

*BitBlt is a contraction for bit block transfer, and is the process of moving and modifying regions of bits in
bit-mapped graphics displays from visible portions of the screen to ‘‘invisible’” regions (in memory), and
vice-versa. The technique was developed at Xerox PARC. It is also called ‘‘RasterOp'’.

Chapter 3 21

means of accommodating a first-order level of concurrency, the hardware protocol may allow the CPU
to proceed with other instructions after the issuance and before the completion of coprocessor instruc-
tions. To the extent that sequential instructions are independent or do not require the coprocessor
resources, parallel execution can occur.

For simplicity, the best of all possible worlds would allow the inclusion of a coprocessor in a
software system and yet not require the compiler be modified at all to accommodate it. That is unlikely
if performance is a consideration. The simplicity of the programming model of the coprocessor can
simplify that task, however. This may portend compiler generators if new compilers are needed. Fora
generalized coprocessor, the design frame approach [Borr85] provides general coprocessor instructions
at the instruction set level and it is up to the individual coprocessor along with certain restrictions based
on address or other identifiers to interpret the commands appropriately. The Motorola 68000 family
provides a general coprocessor interface supporting up to eight different coprocessors, although only
two coprocessors — the memory management unit and floating-point unit — are directly supported in
the instruction set at this time [Cass84, Moto87].

Coprocessor operations can be controlled either at compile time or run-time. Even for systems
equipped with a hardware coprocessor, it is often a user-controlled feature of compilation to include
explicit coprocessor instructions in the code generated. Without the instructions, library routines are
linked and parameters are passed to the coprocessor through memory, the user-process stack. With
explicit coprocessor instructions, transfers and operations are defined functions of the hardware and
operands may be transferred from registers, memory, or reused in the coprocessor. For some systems, if
the coprocessor is absent or disabled, executing the instruction will result in a trap to routines that
implement the function.

3.2.3. Operating System Issues

Many of the complex issues that arise in computer systems software come from the various abnor-
mal events that can occur during the course of execution. These are called faults or exceptions, and are
often accompanied by interruption of the normal flow of control. A coprocessor that can generate or
cause any type of exceptional condition implies the need of the operating system to handle that excep-
tional condition. If a coprocessor is seen as a device to the operating system, a device driver is needed
that contains exception handling routines. If the coprocessor is transparent to the operating system,
errors may go undetected. Whether that causes a problem depends on each situation.

In the case of memory management, the amount of data either required or produced by the copro-
cessor must be known to the operating system. An interrupt per datum is fine for quick-response to a
terminal keystroke, but completely inappropriate for data-block transfers to a graphics device. The data
requirements based on both volume and rate and statistics on page size, block size, and operand size
determine the best fit of the coprocessor within the software environment.

3.3. Hardware Issues

As with software, there are many hardware characteristics that differentiate coprocessors. Broadly
speaking, there are six classifications, depending on various control and data-related factors. These
include:

e the instruction or command paradigm,

e the data transfer protocol,

e the data types supported,

e the memory hierarchy interaction,

e the interconnection topology, and

e performance and speed.

There is a correlation between the physical placement of the coprocessor within the computer system
hierarchy and these hardware issues. To guide our discussion in sections that follow, Figure 3-1 illus-
trates three levels of coprocessor hierarchy within a computer system.

Chapter 3 22

CPU
1

| INSTR CONTROL PRE-CACHE

| CACHE COPROCESSOR
() I T INSTRUCTIONS and DATA DATA T
a

SPECIAL
FUNCTION UNIT
CACHE
T MEMORY BUS
(b) R I I—zz
-LEVEL
MEM-LEVE MAIN MEMORY
COPROCESSOR
1/0 BUS
R — R
(©) I It
I/O-LEVEL 0 DEVICE
COPROCESSOR

Figure 3-1. Topological Levels of Coprocessor Interconnection.

This figure shows various points in a computer systems hierarchy where coprocessors could be at-
tached. Such things as instruction-fetch paradigm and data transfer requirements need to be con-
sidered to determine the most effective configuration for a specific function. Part (a) illustrates
CPU-level coprocessors; Part (b), Memory-level coprocessors; and Part (c), Input/Output-level
COProcessors.

On the basis of the interconnection topology, coprocessors are grouped in three levels:
e CPU-level coprocessors, including special function units and pre-cache coprocessors,
e Memory-level coprocessors, and
e Input/OQutput-level coprocessors

At each of the three levels, there are two main things to consider:
e instruction sequencing and/or control, and
e data/operand manipulation.

In the following sections, we consider inter-level differences and similarities and intra-level pro-
perties for control and data for each of the three levels and relate them to the six classifications above.

3.3.1. Instruction and Control Issues

According to Gordon Bell, the term coprocessor should be used only with those devices that can
fetch and execute their own instructions [Bell86]. He calls a device that simply rececives commands
from the CPU a ‘‘co-execution element.”’ Both of these are examples of CPU-level coprocessors. Some
devices have built-in or hardwired instruction sequences and allow no generalization as provided by an
instruction stream. Such coprocessors can exist at any level.

Chapter 3 23

For coprocessors that do operate off the instruction stream, there are several ways of providing
control. The instruction could be:

o fetched by the CPU and seen simultaneously by the coprocessor, or

e fetched by the CPU and sent to the coprocessor, either in encoded or decode form, or

e fetched by the coprocessor itself.

We call the first of these an instruction tracker coprocessor. As the name implies, the coprocessor
tracks or follows the instruction stream as it comes out of storage and decodes and executes those
instructions intended for it. The CPU execution unit essentially treats coprocessor instructions as ‘‘no-
ops.”” These are either CPU-level coprocessors or memory-level coprocessors and interact directly with
CPU instruction buffers, off-chip instruction caches, and main memory. If the CPU maintains an on-
chip instruction cache, the instruction stream must be observed via a special control path from the CPU,
as shown in Figure 3-la. Some floating-point coprocessors, such as the Intel i8087, and high-
performance graphics engines are examples of this type of device [Harr85, Nave80]. 1/O-level copro-
cessors do not use instruction-tracking protocols.

We refer to the second instruction-issue method as a master/slave protocol. The CPU is the mas-
ter and the coprocessor is the slave, and receives direction and begins operation only on command by
the CPU. These are usually memory-level coprocessors, but in some cases are found at the CPU-level
and I/0-level. This method is less tightly-coupled than instruction-trackers and is used for general pur-
pose coprocessors that may operate asynchronously with the CPU and do not interact as closely with the
CPU pipeline, for example. The distinction between CPU-level and memory-level coprocessors is not
very clear when the system does not have a cache memory. The Intel 80287 and Motorola MC68881
floating-point coprocessors are examples of this instruction issue style. Many 1/O level coprocessors
receive some portion of their control in a master/slave manner. A digital signal processor chip is
another example of a master/slave coprocessor [Wils88a, Wils88b].

The third instruction issue paradigm we refer to as autonomous, since the coprocessor has the abil-
ity to control its own instruction stream or continue execution under its own control. These types of
coprocessors are nearly always found at the I/O-level of the interconnection hierarchy. The peripheral
processing units of the CDC 6600 were autonomous coprocessors to the high-speed central arithmetic
unit. A DMA controller is also an example of an autonomous coprocessor. In a multiprocessor system,
a second CPU is used to implement certain aspects of an algorithm may be considered an autonomous
coprocessor, but that has more to do with software execution than hardware issues and will not be con-
sidered further.

In many cases, coprocessor control units are combinations of all three methods. One part of the
CPU-to-coprocessor protocol may be master/slave followed by autonomous action by the coprocessor
as it continues to fetch and execute its own instructions until finished. We next consider aspects of data
transfer and manipulation in coprocessors.

3.3.2. Data Transfer and Memory Interaction

Besides the flow of instructions to the coprocessor control unit, operands must also be provided.
There are at least five ways that coprocessors send or receive data:

e the coprocessor has ‘‘built-in’* hardwired constant values,

e the CPU executes load/store instructions, but the data are received/sent by the coprocessor,

¢ the CPU transfers data to its intemal registers, then writes to the coprocessor,

e the coprocessor executes its own load/store and transfer operauons,

e the coprocessor has registers that shadow the CPU registers (that is, data that are used by the

coprocessor appear in both CPU and coprocessor registers due to a special connection with the
CPU).

At the CPU-level, special function units extend the CPU datapath and operate on the same data
types. Consequently, they are synchronous with CPU operations. They may have their own registers or
use CPU registers for high-speed accesses. On- and off-chip caches provide fast access to operands
involved in such specialized functions as fixed-point binary arithmetic, array index manipulations,

Chapter 3 24

emulation functions, encryption tasks, and so forth [Bim85, Ples86]. Although implementations can be
pipelined to minimize the penalty for chip-crossings, off-chip memory is usually slower than registers.
Special function units that interact directly with CPU registers need to be carefully designed to avoid
slowing the entire cycle-time of the system. The data manipulated are usually scalar-like, rarely involv-
ing large blocks.

Pre-cache or memory-level coprocessors often manipulate data types that are different from those
used by the CPU or special function units. Consequently, they may maintain separate register files.
They receive/send data by monitoring the data bus or respond to move operations between it and CPU
registers. The data involved are typically individual words instead of large blocks. Since the data types
may be different than those used by the CPU, the bandwidth between pre-cache or memory-level copro-
cessors and storage may be quite different from the CPU. For example, double-precision floating-point
operands may pass directly between floating-point coprocessor registers and the data cache in a single
cycle, while CPU accesses may require multiple-cycles to transfer the same data.

1/O-level coprocessors typically transfer large blocks of data between devices and main memory
with little or no interaction with the CPU. The interaction with main memory can either be cycle-
stealing or uninterruptible burst transfers. The model for data manipulation matches that of control —
very little interaction with the system once initiated.

Having considered many of the issues that distinguish and separate different types of coprocessors
at the interface level, and ways in which coprocessors interact with the rest of the system to send,
receive, and manipulate data, we next develop a performance model for coprocessors that is a function
of both instruction issue and data manipulation paradigms.

3.4. Coprocessor Performance Analysis Model

Since the coprocessor is intended to be a means of speeding up certain software functions with
special purpose hardware, there should a one-to-one correspondence between the software algorithms
and the hardware devices that replace them. To justify the inclusion of special purpose hardware in a
computer system, it is important to determine the potential speedup that comes from adding the copro-
Cessor.

If the time to perform some computation using algorithm A with only software routines on a
uniprocessor is designated Ty (A), then the time to do the same task using a coprocessor to replace
some parts of A can be designated Tqy,yw(A). The speedup achieved is simply the ratio of the two
execution times:

Tewo(A)

Speedup A)= m (3-2)

Many factors must be considered to determine if the speedup justifies the inclusion of the coprocessor in
the specific computer system using it for application A. Of interest to us is the term Tgy,yw(A) and
what it implies for the use of coprocessors in computer systems in general and the implied cost effec-
tiveness of coprocessors in specific cases.)

If the fundamental structure of task A does not change substantially with the use of a coprocessor,
then those sections of A that must be run on the general purpose host can be identificd and scparated
from those using the coprocessor. In this case we can designate the portion of the algorithm that must
be run on the host as Agy and the part that can be assisted hy the coprocessor as Ayw . Thus, the time to
run the application using only software is Ty (A) = Tqy (Asw) + Tsw (Aw), and a first order approxi-
mation of the time to complete A using both host software and coprocessor hardware (assuming a
serial-execution model) becomes This is analogous to Amdahl’s law [Amda67],* which suggests that
there are fundamental limits to the application of parallelism (in this case, a host CPU plus coprocessor)
in achieving performance improvement.

*Amdahl’s law, as expressed in [Gust88], for an N processor multiprocessor system: If s represents the time
spent by a serial processor on the serial parts of a program, and p represents the time spent by a serial proces-

Chapter 3 25

Tswnw (A) = Tsw(Asw) + Trhw (Agw) (3-3)
With this assumption, the speedup possible due to the addition of a coprocessor is
Tswo(A)
Speedup (A) = (3-9)
P = Ty (Asw) + Trw)
Tewo(A)
Speedup(A) lim € =2 (3-42)

Tow (A)0 Tow (Asw)

This analysis is based on the model that the execution of application A is strictly sequential. That
holds true for the software-only implementation, where the computation begins at ¢ and ends at some
later time, ¢,, with Tqwo(A) =1, —to. In the second instance, the same application A with a host and
coprocessor, the computation begins at ¢o and ends at ¢,, such that Ty, gw(A) =1¢, —to. The results
should be identical with the only change evident to the programmer being the difference in time, hope-
fully z, <r,. However, besides the fact that Tyw (Agw) < Tsw(Asw) + Tuw (Apw) < Tswo(A), is the
fact that both Agy and Apwy can be computed simultaneously, in which case
Tow+aw (A) < Tsw(Asw) + Tyw (Agw). In other words, the time to execute A on a coprocessor can be
less than the sum of the times to execute the separate pieces in SW and HW respectively. In this case,
the time Tyw (Agw) does not have to be zero to achieve maximum theoretical speedup.

A second effect to consider is pointed out in recent research suggesting that the assumptions
underlying Amdahl’s 1967 argument may not hold, due to the fact that the structure of A can change
when using multiple execution elements [Gust88]. Gustafson cites examples of massive parallelism
where actual speed up is several factors greater than predicted by Amdahl’s law. How does this relate
to coprocessor applications? Besides the fact that Tyw (Agw) < Tswo (Agw), requiring less execution
time than software, and that Ty (Agw) can execute concurrently with Tgw (Asw), the structure of A
often changes (to, say, (A”)) with the inclusion of additional execution elements. For example, with
more processor power to address the problem, the problem domain is likely to expand so the time spent
in computation remains constant, rather than reduced. In other words, the problem size scales with the
number of processors, and p and N are linearly related, rather than being independent as assumed by
Amdahl’s law. In this case, a multiplicative effect results with an improvement in performance:

Towitw @A) ST (Asw) + Tyw (A 5w) S Tswanw (A) < Tsw(Agw) + Tyw (Apw) (3-5)
It is this effect along with others that coprocessor architectures seek to exploit.

In the next section, we identify factors associated with the various computation times discussed
here and provide a model of coprocessor performance which helps predict the overall effectiveness of
coprocessor based applications.

3.4.1. Factors Affecting Coprocessor Performance

For the commercial VLSI coprocessors highlighted in Chapter 2, execution time is likely to be
influenced by several things, but has traditionally been separated into two categories:

e the time necessary to perform operations directly on-chip in the hardware, and

e the time to perform the same operations, but with an intermediate interaction with the memory

system, either before or after the operation.

For example, with a floating-point coprocessor, it is not unusual to find performance data specified
for both register-to-register operations and memory-to-register operations. The difference in execution
time is likely to stem from the effective address calculation and memory bus cycles needed to transfer

sor on parts of a program that may be computed in parallel, and letting s + p = 1, then speedup is:
speedup = (s +p)/(s +pIN)
=1/(s +p/N)

Chapter 3 26

operands. Similarly, other coprocessor functions often require an initial set-up before beginning, and
normal housekeeping operations during the course of the computation. We believe that those influences
on performance must be kept well in mind when designing coprocessors. Conversely, coprocessor per-
formance can be well below the design expectation if the effects of those factors are ignored to any
extent.

We would like to understand the operation of the coprocessor in the system, to be able to analyze
and predict its effectiveness. It is important to establish criteria to evaluate that effectiveness and be
able to model the operation easily, and to verify the models with actual measurements on real coproces-
sors to validate the assumptions made. The best possible result would be an accurate analytical model
that could be applied to coprocessor uses. We will base our model and analyses on consideration of
how the various cycles in a computation using a Coprocessor are spent.

We consider all cycles either operation cycles or overhead cycles in accomplishing a result. For
example, cycles spent by a floating-point unit to compute a result (i.e, the floating-point unit ALU is
busy) are computation cycles, while the calculation of an array address, incrementing of a counter vari-
able, testing a value against a loop index for termination, or transferring an operand are all consider
overhead cycles. By careful examination of the hardware on which the programs run as well as the
instruction sequences themselves, it is possible to categorize all cycles in the course of a computation as
either operation or overhead cycles.

Some of the factors to consider in this analysis of overhead include:

e the number of actual coprocessor execution cycles to perform the operation,

e the number of cycles associated with operand transfers to the coprocessor,

o the number of cycles associated with instructions exclusive of coprocessor instructions,

e the CPU cycle time,

¢ the coprocessor cycle time,

e the cache cycle time in terms of both hit and miss servicing,

e the width of the data path between the coprocessor and other elements in the system,

e the use of various addressing modes allowed or provided by the host CPU,

e the general CPU architecture (i.e., load/store or memory-to-memory).

e the general coprocessor architecture, including the various data manipulation mechanisms, con-
trol features, and synchronization protocols,

e the software specification of operand addresses and how they are computed, loop index calcula-
tions, loop condition test and branch, and

e the storage of temporary results.

All these factors will influence the effectiveness and ease of use of the coprocessor.

Using the timing nomenclature of the previous section, we can reformulate 7(A”) in terms of
operation and overhead cycles:

Tsw+uw (A") = TcomputaTiON _ (3-6)

= ToperatioNn + ToveERHEAD

and if Topgration = (coprocessor ALU not idle), and Toyerypap = (coprocessor ALU idle), then we can
refine overhead somewhat:

Toverueap = Toreration overHEAD + TPRoGRAM ovERHEAD + TMEMORY OVERHEAD (3-6a)

Chapter 3 27

And, each of these factors can be defined as:

ToperatioN ovErHEAD = TINsTR FETCH + TDATA LD /ST (3-6b)
TproGram ovERHEAD = Troop INDEX ariTHMETIC *+ TTEST/BRANCH + (3-6¢)
Tsppress catc + Ino-ops
TyEMORY OVERHEAD = TCOPROCESSOR STALL ON UNALIGNED ACCESS + (3-6d)
TCOPROCESSOR STALL ON LOAD CACHE Miss +

TCOPROCESSOR STALL ON STORE CACHE MISS

In our investigations, we have attempted to identify and quantify the various factors that affect the
performance of each system, as explained above. In our subsequent analysis of real systems, we present
the execution times and overhead factors in terms of clock ticks.* Using the number of clock ticks pro-
vides an unbiased comparison between architectures if percentage of operation for each contributing
factor is computed and accounted for. It also allows previous or future generations of the same archi-
tecture using different technology to be considered since it is a simple matter to compute the real execu-
tion time for a specified technology given the clock frequency. Often, when technology provides a fas-
ter cycle time, the number of clock ticks per operation remains the same.

From the above categories of overhead and from observations we have made of the steady-state
performance of some commercial systems, we believe the time consumed to execute critical portions of
programs can be expressed deterministicly, with the variables mentioned above inctuded in the Copro-
cessor Performance Model Equation (3-7)

n_cp_ops
Total Cycles < 3 (Tpen () + Tep op () + (Top op (i) — Interval(i))) + (3-7)
i=1
n_cp ld n_cp_st n_cp_data_interlock
Z Tcp_ldU) + Z Tcp_st (k) + Z Tcp_dala_interlock (1) +
Jj=1 k=1 I=1
n_cp_ld u n_cp st u
Y Temuwm)*EMR + 3 T.p,(n)* EMR +
m=1 n=1
n_non_cp
where Zl Taon_cp(0)
o=

Total Cycles = time in cycles to execute a program,
n_cp_cps = number of coprocessor operations in the program,

Tfen = time in cycles to fetch an instruction,

*We use the manufacturers’ specified clock input frequency, N, to define the basic clock cycle, one clock
“tick’’. Some data books use the term *‘‘clock count,” which may be more than one clock tick, and refer to
the coprocessor as an N/2 MHz part. This creates confusion, and is avoided here.

Chapter 3 28

T., 5, = time incycles to complete a coprocessor operation,
Interval = distance between cp_op (k) and instruction (k") causing execution unit interlock,
n_cp_ld = number of coprocessor loads in the program,

Toait stare » = time for read-memory wait-states,

T,

wait_state_w = time for write-memory wait-states,

Tep 1d = Twait state r + (Tiyansfer * operand size/bus width),

n_cp_st = number of coprocessor stores in the program,

Tep st = Toait state w + (Tyansfer * operand sizelbus width),
n_cp_data_interlock = number of coprocessor data interlocks in the program,

Tep data_interiock = time in cycles spent waiting for loaded operands to become valid (i.e., written
to the coprocessor register file),

w

n_cp_ld_u = number of unique coprocessor loads in the program,

n_cp_st_u = number of unique coprocessor stores in the program,

EMR = the expected miss ratio for the computation,

T.. 1z and T, ., vary with bus contention, arbitration time, bus bandwidth, and so on, and

EMR < operand_size / transfer block size.

It is important to realize that the right hand side of Equation (3-7) represents an upper bound on
system performance. As discussed previously, one of the enticements to using coprocessors is the con-
current execution mode! provided by having them in the system. With our definition of operation time,
we can eliminate time-wasting overhead cycles by managing to keep the coprocessor continuously
busy. If we define the time spent in application A on operation cycles as T¢p gysy and the time that the
coprocessor is idle as Tcp yor Busy» @ Simple metric of how well the coprocessor is being used is
defined as:

Tcp pusy

Utilizationcoprocessor (A) = (3-8
Tcp susy + Tcp Not BUSY

If Tep gysy + Tep not Busy = 1.0, then the utilization is simply the percentage of time the coprocessor
is busy during the computation. As overhead is reduced to zero (i.e., Tcp yot pusy — 0) and the copro-
cessor execution unit is kept continually busy, the Utilizationcoprocessor approaches 100%. In a mul-
tiprocessor system where the coprocessor could be used by more than one CPU, U can be used to deter-
mine whether additional coprocessors are needed.

3.4.2. Some Implications of the Concurrent Execution Model

Besides the obvious speed advantage of allowing concurrency, the coprocessor provides a certain
amount of redundancy to the system. This redundancy can serve to increasc system fault tolerance and
availability. Also, by having multiple execution units (for example, more than one FPU per CPU), the
ccucurrent execution model allows partitioning of algorithms and functions to take advantage of the
non-multiplexed execution elements. The advantages of this may be obviated by the speed of the
coprocessor, if fundamental operations are relatively fast (i.e., on the order of normal CPU instructions).

Along with the advantages come certain disadvantages of the concurrent execution model. First
and foremost is perhaps the indeterminate interrupt or exception, called the imprecise interrupt in
[Ande67]. If the host CPU and coprocessor are allowed to execute in parallel, it is clear that the host
will have initiated a coprocessor instruction and then gone on to other unrelated operations. At the
point where certain exceptions or interrupts due to exceptions occur, the CPU will no longer be in the

Chapter 3 29

same context (i.e., strict instruction sequence) of the instruction stream when the coprocessor operation
was initiated. This can present a number of problems in terms of backing out instructions, suspending
operations, or identifying the operation that caused the error.

Another problem occurs with context switching for a coprocessor that maintains its own state. If
that state is very extensive, the amount of time necessary to save and restore it can be significant.
Depending on the application and frequency of context switching, an extremely fast means of context
switch may not be necessary. The possible hardware and software complications implied with a fast
context switch must be evaluated in terms of overall system performance. The ability of software to
perform a simple sequence of regular load/store operations may be just as effective as special context
save and restore operations built into the coprocessor hardware.

The third problem, related to the first, comes from the necessity to resynchronize the operation of
the host CPU and that of the coprocessor. Certain types of operations will be self-synchronizing, in the
sense that one will not begin until the previous one finished. On the other hand, operations that can be
initiated by the CPU but are dependent upon results produced by the coprocessor have inherent hazards
or race conditions. These problems must be considered both at the hardware interface protocol level
and the software level (compiler, operating system, and so forth).

Last, coprocessors that require explicit control from the host CPU often necessitate special
resources, such as special pins or interconnection points with the CPU that would not normally be
necessary. All of these impact the general performance of the host and must be considered to determine
overall cost and effectiveness of adding a coprocessor (o a system.

3.5. Chapter Summary

In this chapter we have reviewed some of the hardware and software issues related to the incor-
poration of coprocessors in computer systems. The primary consideration in selecting software applica-
tions that should use or be embodied in special purpose coprocessor hardware is based on an evaluation
of the potential performance improvement produced. We have identified several factors that must be
taken into consideration when making that evaluation and presented a model of the many variables
affecting the outcome. The speedup is referred to as coprocessor effectiveness. Specific instances will
call for refinement of the model to be useful. The efficiency of a coprocessor can be determined by the
relative amount of time it spends performing useful work versus the time it is idle. Under-utilized
hardware allows for the possibility of multiplexing in multiprocessor systems.

In the next two chapters, we will examine two applications that use coprocessor hardware dedi-
cated to specific functions — floating-point arithmetic and dynamic programming optimization — and
use aspects of the performance model developed here as a means of evaluating and comparing different
implementations of each.

<This page is intentionally blank.>

30

Floating-point Arithmetic
Coprocessors

4.1. Introduction and Overview

There are many problems in science and engineering that require the numeric range and precision
afforded by floating-point arithmetic. Large mainframe computers are often designed expressly for
numeric computation, or at least with the anticipation that it will be an important and integral part of the
system. In many instances, the capability for floating-point arithmetic is likely to be standard equip-
ment, rather than optional.

In Chapter 2, we saw how array processors and floating-point accelerators were added to computer
systems to substantially improve performance. Such devices are still relatively expensive, being as
much as 50% of the total cost of the host CPU. For some problems, the speed or capacity requirements
simply can not be met by general-purpose CPU’s, even with floating-point enhancements. In such
cases, a super computer is the only answer. Nevertheless, there are a large number of floating-point
intensive applications being run on microprocessor-based workstations. These include many aspects of
computer aided design, circuit simulation, image synthesis and rendering, and signal processing. Such
applications can be intolerably slow without good floating-point performance in the system. And yet
one of the driving forces for the widespread use of workstations is the low relative cost. To meet both
needs of performance and economy, a popular coprocessor — the floating-point unit (FPU) — is avail-
able on most microprocessor-based workstation systems.

This chapter considers VLSI floating-point arithmetic coprocessors and examines the interface
styles of past and current implementations. We are interested in determining how effectively the
floating-point coprocessor is exploited in each of the architectures and in contrasting that with the
SPUR system.

Section 4.2 describes operational characteristics of the Intel i80286/i80287 and Motorola
MC68020/MC68881 products listed in Table 2-3, and of the UC Berkeley SPUR FPU. The two com-
mercial coprocessors are chosen because they represent two contrasting styles of interface, are the most

Chapter 4 31

widely used, and both claim to allow concurrent execution of the CPU and floating-point coprocessor.
They are also available in laboratory settings for the measurements needed to verify our analyses and
results. Section 4.3 briefly outlines the approach we use in comparing and determining performance of
the three systems and Section 4.4 considers several metrics for the evaluation. Section 4.5, by way of
architecture models and run-time traces, isolates the effects of the details of each implementation from
the architecture to allow a more meaningful comparison. Lastly, Section 4.6 summarizes this chapter
and briefly considers interface requirements for future high-performance workstation systems equipped
with floating-point coprocessors.

4.2. Intel, Motorola, and SPUR Floating-point Coprocessor Parameters

In this section we give a brief overview of the functionality of each of the systems. Specific
details are provided in Section 4.4.3 relating to the analysis of our experimental results. The floating-
point coprocessors described here are all capable of handling single-, double-, and extended-precision
operands.

4.2.1. The Intel FPU

The Intel Numeric Data Processor (NDP) i8087 was the first commercially available device to
implement a version of the ANSI/IEEE Standard P754-1985 for Binary Floating-point Arithmetic
[Cody84, Inte81b, Inte85b, Nave80, Paim80] and Intel is likely to have coined the term coprocessor for
this device. The newer Numeric Processor Extension (NPX) — 80287 or 180387 — are mostly object
code compatible with the i8087. The inner cores of the 18087 and 180287 chips are identical, but the
i80387 has been reengineered, uses a different interface protocol, is faster for many operations, and pro-
duces slightly different results in some cases. The chips provide add, subtract, multiply, divide, square
root, and several transcendental functions (sine, cosine, tangent, log,, and others).

The 18087 is a synchronous instruction tracker to the i8086 [Inte85a], while the 180287 and 180387
appear as special I/O devices in a reserved address space, controlled by programmed I/O instructions
[Inte87). Figure 4-1 is a simplified block diagram of the Intel i80286/i80287 configuration.* In the first
generation i8086/i8087 system, when a non-memory reference arithmetic instruction is encountered in
the instruction stream (ESC opcode), both the 18086 and 18087 decode it, but the i8087 begins execution
of the instruction immediately, while the i8086 continues to the next instruction. If the floating-point
instruction includes a memory reference, the i8086 calculates the effective address for the first word of
the operand, performs a dummy read, and transfers control to the i8087, which then completes the
transfer with multiple memory bus cycles for each 16-bits of operand.

The second-generation math coprocessor from Intel, the i80287 is not an instruction tracker.
Instead, the host 180286 decodes the ESC instruction and explicitly initiates an arithmetic operation in
the i80287. No parallel decoding of instructions is possible since the 180286 maintains an on-chip
instruction prefetch buffer and three-deep instruction queue. All diadic operations are between an
operand in memory or an arbitrary register in the NPX register stack and the top element in the stack.
All data transfers from memory are requested by the i80287 and satisfied by the 180286 CPU acting like
a direct memory access channel to the i80287. This allows the memory management and protection
mechanisms to be handled in a uniform manner in the i80286. Since the 180286 can proceed with
integer instructions after a floating-point instruction has been dispatched, the architecture requires that
the segment address and offset address of both the instruction and the operands for each floating-point
instruction must be transferred to the i80287 before execution can begin. This is needed in ordc. to to
service any floating-point exceptions that occur, and always necessitates several bus cycles over the 16-
bit data bus to the 180287.

*The Intel i80387 floating-point coprocessor became available for limited use following the completion of
the work reported here. During our study, there was no opportunity to use one directly, and consequently, the
results we present here are based on the systems available to us at the time.

Chapter 4 32

50s - ADDR(4)
ADDRESS INTERFACE G 1 DATA (1 6)_>
UNIT AND x i 11 CONTROL
PREFETCHER >
PREFETCH
ALU AND QUEUE
REGISTERS BUS CONTROL & [FPU ENABLE
ADDR DECODE *
: DECODER
{ MICROPROGRA INSTRUCTION
CONTROL [QUEUE
INTEL 80286 CPU
SIGN AND EXPONENT BUS
—=n| OPERAND |a
QL & &]}
FRACTION £ XPONENT & REGFILE
SHIFTER FRAC CONST] 8-by-82 STACK|
ROM
ADDR (15-0) 7S
i DATA(16) MICROCODE
E ROM FRACTION BUS T‘
P < ACEG— @
\=(> INSTR LN MICROPROG
QUEUE EXECUTION
CNTL & CONTROL SUM SHIFTER
STATUS UNIT UP TO 63 BITS
i ADDR SUM INSPECT
i {¢——"o——]ADDRFILE IROUND LOGIC
CONTROL

INTEL i80287 NPX

Figure 4-1. Block Diagram of Intel CPU-FPU-Memory System.

This is a simplified representation of the topology for the Intel system with numeric processor ex-
tension (NPX) floating-point coprocessor. The CPU acts as a DMA controller to pass operands
between memory and the FPU.

To summarize, the i8087 and i80287 differ in both instruction fetching and data load/store
mechanisms, although the arithmetic execution unit is identical for both. I/O and all communication
between the 180286 and 180287 happen through special dedicated ports in the I/O address space. Intel
compilers typically insert a WAIT instruction before every NPX coprocessor instruction to assure
proper synchronization. However, every NPX instruction initiates a WAIT sequence in the microcode,
suggesting that some inserted WAIT instructions are redundant. Nevertheless, WAIT's are necessary
before any memory accesses by the CPU, and can not be eliminated. More details about the interface
and function of the NPX can be found in [Inte85a].

* 4.2.2. The Motorola FPU

In March 1985, Motorola offered samples of the MC68881 floating-point coprocessor (FPCP)
[Elec85] and went into production during the following summer.* The FPCP is designed to exploit the

*The second-generation Motorola MC68882 floating-point coprocessor became available following the com-
pletion of the work reported here. During our study, there was no opportunity to use one directly, and conse-
quently, the results we present here are based on the systems available to us at the time.

Chapter 4 33

coprocessor interface of the 32-bit CPU, which uses special control signals to implement the hardware
interface protocols. The MC68881 implements floating-point add, subtract, multiply, divide, exponen-
tiation, various logarithms, square root, and several transcendental functions (sine, cosine, tangent,
hyperbolic functions, and others) [Cass84]. Figure 4-2 is a simplified block diagram of a Motorola
CPU-FPU configuration.

SEQUENCER INSTRUCTION
MICROPROG PREFETCH
CONTROL AND
DECODE DATA (32) N
BUS CONTROL N
CONTROLLER s
EXECUTION INSTRUCTION BUS CONTROL & |[FPU ENABLE
ot = cacie [| ADDRDECODE *
il 9P ADDRG2) o
MOTOROLA MC68020 CPU 5
CONTROL =
ADDR (5)
=———= CONTROL
&
DECODE MICROPROGRAM
COPROC PLAS CONTROL UNIT
INTERFACE ____~[INSTRUCT l l ROUND
REGISTER LOGIC
REGISTERS T T
EXP)
REsrorsd|] rmac R
BAR'L] |CONS TEMH}
DATA (32) ARITH &
= ————4REGISTER| rsmFr LOGIC
SHIFT ROM REG UNIT

FILE ——L P

MOTOROLA MC68881 FPCP

Figure 4-2. Block Diagram of Motorola CPU-FPU-Memory System.

This figure illustrates a simplified representation of the Motorola system with a floating-point copro-
cessor. All data transfers between memory and the coprocessor pass through special CPU registers
requiring several bus cycles.

All communication between the CPU and FPCP uses standard bus cycles. Any other
manufacturer’s CPU can serve as a host processor, although without taking advantage of the coproces-
sor interface implemented in hardware. The MC68881 operates asynchronously to the main processor
and does not track instructions. (Instructions are cached on the MC68020 CPU, making instruction
tracking impossible since the instruction bus is not available at the CPU pins.) The FPCP is viewed as a
special I/O device much like a memory-mapped peripheral. Logically, it appears as a set of locations in
the memory map of the CPU. Future Motorola products are planned that will allow coprocessors to
gain control and become local bus master [Cass84]. However, the FPCP requires all data transfers
between memory and the coprocessor to pass through special 32-bit CPU registers. The FPCP and CPU
operate in a virtual-memory, virtual-machine environment, with the host providing effective address
calculation. The MC68881 supports all addressing modes of the MC68020. All exception handling is
done by the main processor, with the coprocessor providing a floating-point exception vector.

If the FPCP requests and stores the CPU program counter for the current floating-point instruction
(needed for possible exception processing), it can operate concurrently with CPU. To resynchronize

Chapter 4 34

during concurrent operation, the CPU checks to see if the coprocessor is busy at the beginning of every
coprocessor instruction, and suspends its operation until the FPCP is no longer busy, if needed. More
details about the coprocessor interface and function of the Motorola floating-point unit can be found in
[Moto85].

4.2.3. The SPUR FPU

The SPUR FPU is one of three custom VLSI chips in each node of a SPUR multiprocessor works-
tation. It performs add, subtract, multiply and divide for single, double, and extended precision
operands. Other operations (sine, cosine, log, and so forth) are runtime library routines. Operations are
done in extended format with conversions to other formats made implicitly on loads or explicitly before
stores to memory.

The FPU is a load/store architecture with all operations between registers (two source and one
destination specifiers). The address of floating-point instructions is saved in the FPPC register in the
CPU for exception processing when needed. The SPUR architecture has no memory reference
floating-point instructions. Thus, there is no need to save operand addresses for exception processing.
Double-precision operands are transferred between the FPU and cache memory in a single bus cycle.
The FPU monitors the 32-bit CPU instruction bus. Both the CPU and FPU decode instructions issued
from the CPU instruction buffer simultaneously, so the FPU requires no explicit control from the CPU
to begin operation.

The FPU is designed to operate concurrently with the CPU. Operand loads, stores, and CPU
integer instructions can proceed while the FPU is busy. The CPU and FPU are completely synchro-
nous; a busy/done signal provides status of the FPU execution unit for synchronization. Explicit syn-
chronization can be programmed with the SYNCH instruction. More details about the SPUR floating-
point coprocessor interface are included in [Hans86], summarized in Appendix A. Bose describes the
microarchitecture and implementation of the FPU [Bose88b] and Lee outlines the implementation con-
siderations of the IEEE arithmetic standard [Lee86]. Figure 4-3 shows a block diagram of a SPUR pro-
cessor node with an FPU coprocessor. ‘

4.2.4. FPU Summary

In summary, some of the characteristics and instruction execution times for the floating-point
coprocessors discussed in this section are included in Table 4-1. A more complete list of the timings is
found in Appendix B.

There are many differences between the three floating-point coprocessor implementations. The
arithmetic execution rates are particularly interesting. Table 4-2 compares each of the implementations
to the SPUR execution rate, based on the assumed clock rates shown in Table 4-1. From Table 4-2, we
see that the speed ratios vary from 37-to-1 for floating-point add, 19-to-1 for floating-point multiply, to
11-to-1 for floating-point divide. The difference in performance stems from the complexity of opera-
tions provided and implementation strategy. As shown in Figures 4-1 and 4-2, the commercial copro-
cessors use microcoded control units and multiple-cycle iterative algorithms to implement the floating-
point operations. SPUR uses direct, hardwired control. Also, the floating-point unit data path is reused
for both fraction and exponent calculations in the commercial systems, whereas SPUR provides a
separate exponent data path. Where the commercial implementations have used silicon to implement
transcendental and other sophisticated functions in microcode, the SPUR FPU has generally used the
technology to speed up fundamental operations. The tradeoffs involve a comparison of the frequency of
certain operations in typical codes with the amount of time consumed to implement those operations.

As shown in the bottom half of Table 4-2, whether the operation is between a memory operand
and a register, or simply between registers, the commercial FPU’s are essentially identical. Floating-
point add is roughly 1.1 to 1.4 times faster than floating-point multiply, and floating-point multiply is
from 1.5 to 2.5 times faster than floating-point divide. For SPUR, the ratios are slightly different.
Since there are only register-register operations, all execution delays are deterministic. Floating-point
add is 2.5 times faster than floating-point multiply and floating-point multiply is 2.5 times faster than

Chapter 4
WINDOW| |TRAP, CALL PIPELINE
PFET| [TAGS PTR’s PC’s PC's i
INSTRUCTION BUS - g
INSTR :
CACHE MASTER CONTROL UNIT
¥+ <+ ¥ 3
—(TAG, BR, TRAP LOGICJ
SRC BYTE
REGISTER=—
DST INS SHIFT
FILE ==y
REGS EXT
SPUR CPU
INSTRUCTIONS
DECODE
{r ” R
LOAD/STORE ARITH
PIPELINE PLA
) ¥ 1 —
EXPON EXPON 1 A-B
PACK/ REGISTER ?OR b
UNPACK FILE M= B-A
1[) 2J_L—-—
DATA = % ;
FRACTION KL o crion o
PACK ROUND| JO LEFT DIVIDE
AND REGISTER : LOGIC
UNPACK INC S SHIFT AND H
LOGIC FILE REGISTERS |!

SPUR FPU

This figure shows the major blocks of a SPUR CPU and FPU. The FPU coprocessor pipeline
scheme is similar to that used by the SPUR CPU (see [Chen85]1) and allows overlap between
operand LD/ST, instruction fetch, execute cycles, and register result writes. The CPU maintains an

Figure 4-3. SPUR Workstation Processor Node.

on-chip FPU program counter to enable exception handling.

floating-point divide.

35

It is generally believed that if the product of execution time and operation frequency for basic
operations is about equal, algorithm designers will not be tempted to use contorted code to either take
advantage of a fast operation or avoid a particularly slow one. In the next section, we analyze some of
the characteristics of floating-point programs to determine the frequency of operation occurrence to help
us select some representative codes for subsequent analyses.

Chapter 4

36

Table 4-1. Intel, Motorola, and SPUR FPU Parameters
Floating-point Unit Intel 180287 Motorola MC68881 SPUR FPU
Clock Frequency 16 MHz 16.7 MHz 6.7 MHz
. , Cycles Microsec Cycles Microsec Cycles | Microsec
Execution Time RR MR RR MR |RR|MR|RR|MR| RR RR
FADD 140-200 | 190-250 | 8.8-12.5 11.9-15.6 | 47 77 2.8 4.6 3 0.42
FMUL 180-290 | 224-336 | 11.3-18.1 14-21 67 97 4.0 5.8 8 1.1
FDIV 386-406 | 440-460 | 24.1-254 | 27.5-288 | 99 109 5.9 7.4 19 2.7
FLD/FMOV 34-44 80-120 2.1-2.8 5-1.5 33 58 2.0 3.5 1+ .14
FST/FMOV 30-44 192-208 1.9-2.8 12-13 33 86 2.0 52 2+ 28
FCVT na incl na incl na incl na incl 3 42
Enable FPU Address; 12 Cntl lines § Addr, 7 Cntl lines 1 Cndl line
Clocking Asynchronous Asynchronous Synchronous
Bus Protocol Master Slave Concurrent
Data Transfer DMA Prog 1/0 Prog I/O
Path Width to Mem 16-bit 32-bit 64-bit
No. Operand Specs 1+ TOS 2 3
No. GP Registers 8 8 16*
No. Address Modes All (8) All (18) All) LD/ST
No. H/W Excepts 6 8 7
Exception Detected Next FPU OP Next FPU OP Immediately

This table lists typical execution times for double precision (64-bit) register-register and memory-
register operations in cycles and microseconds. All FPU’s support extended precision operands
internally, with conversions from/to other formats either explicitly or implicitly on LD/ST opera-
tions. The Intel and Motorola devices maintain eight user-accessible registers, while the SPUR
FPU provides 16 (one register is defined as zero, 14 are 87-bit general purpose operand registers,
and one is the floating-point status register). [Bose88b, Inte85b, Pren87].

Table 4-2. Comparison of Intel, Motorola, and SPUR FPU Execution Rates
Floating-point Unit Intel i80287 Motorola MC68881 SPUR FPU
Clock Frequency 16 MHz 16.7 MHz 6.7 MHz
Operation Time vs SPUR R-R M-R R-R M-R R-R
FADD 21.0-29.8 28.3-37.1 6.7 11.0 1.0 (0.42 psec)
FMUL 10.3 - 16.5 12.7-19.1 3.6 5.3 1.0 (1.1 usec)
FDIV 89-94 10.2 - 10.7 22 2.7 1.0 (2.7 usec)
Operation Time vs FMUL
FADD 0.7-08 0.7-09 7 .8 4
FMUL 1.0-1.0 1.0-1.0 1.0 1.0 1.0
FDIV 14-2.1 19-23 1.5 1.3 2.5

4.3. Determining Floating-point Coprocessor Performance

Floating-point coprocessors clearly enhance the performance potential of a computer system.
Often it is possible to achieve one to two orders of magnitude improvement in performance over
software by using one [Inte81a, Patt84, Sipp82]. However, unless careful attention is given to other fac-
tors at the level of overall system design, much of the advantage of having the coprocessor can be lost
to overhead required in initializing and using the device, as was the case for one instance of using an
array processor described in Chapter 2. In this section we focus on interface issues, and illustrate some
of the inherent weaknesses of the coprocessor architectures described above and propose solutions to
those problems. We start by briefly considering the characteristics of floating-point arithmetic pro-
grams. Then we present a simple set of benchmarks based on some common floating-point routines,
measure the performance of the three systems, evaluate the factors determining the performance, and

Chapter 4 37

compare the effectiveness of each implementation through the use of architecture models and simula-
tion.

4.3.1. Characteristics of Floating-point Computation

Dongarra et. al. describe the process of measuring the power of computer system as “‘an art at
best”’ [Dong87]. They suggest that effective benchmarking should include three elements: accurate
characterization of the workload, initial tests using simple programs, and further tests with programs
that approximate ever more closely the jobs that are part of the workday. To briefly characterize the
nature of floating-point workloads, we summarize an analysis of the Livermore Loops by [Hans85], a
report by [Leun86] analyzing the SPICE circuit simulator and Lattice filter simulator at Berkeley, work
by [Bose88b] and the open literature [Cum76, Gibs70, Knut71]. Table 4-3 lists the frequency of various
floating-point operations normalized to the occurrence of floating-point multiply.

Table 4-3. Operation Frequency for Various Benchmarks and Programs
Program or Benchmark
Function Livermore Lgttice SPICE SPICE Knuth Gib;on Whet- Ave
Loops Filter | + Trans | Decomp | FORTRAN Mix stone
Add/Sub/Cmp 1.86 0.75 1.68 1.47 2.3 1.8 1.8 1.7
Multiply 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Divide 0.10 0.083 0.34 0.38 0.38 0.39 0.50 4
Square root 0.03 - 0.04 - - - - nil
Transcendentals* - - 0.034 - - - - nil

This table summarizes the frequency of operation of floating-point arithmetic for some well known
benchmarks and programs. The column head by **SPICE Decomp’’ is the result of decomposing
the transcendental functions into basic operations. All entries are normalized by the frequency of
floating-point multiply. *Transcendentals include sine, cosine, arctangent, exponentiation, log,,
log; o, and so forth.

From Table 4-3, we note that add/sub/compare operations occur about 1.7 times as often as multi-
ply, and that multiply is usually between two and three times as frequent as divide. Although it would
appear that transcendentals account for a vanishingly small fraction of all operations, it was determined
in [Leun86] that when decomposed into fundamental operations (i.e., add/sub, multiply, and divide), the
number of occurrences for the fundamental add/sub/compare operations increased by a factor of 1.87,
multiply increased by 2.14 times, and divide increased by 2.28 times for the SPICE program.

By combining the information from Table 4-2 and Table 4-3, we produce Table 4-4, which shows
frequency-delay product for the three CPU-FPU pairs and the basic arithmetic operations.

Table 4-4. Frequency-delay Product for Intel, Motorola, and SPUR
Frequency-delay Product (double-precision operands)
Operation 180287 MC68881 SPUR
R-R M-R R-R M-R R-R
FADD 12-14 12-1.5 1.2 14 7
FMUL 10-1.0 1.0-1.0 1.0 1.0 1.0
FDIV .56 - .84 76 - 92 .60 42 1.0

From this we observe that floating-point add is 20% to 50% slower than the optimum frequency-
delay product for the commercial systems. On the other hand, floating-point divide is between 1.1 and
2.4 times faster than it needs to be relative to floating-point multiply. This suggests that if resources

Chapter 4 38

expended in making floating-point divide execute efficiently could have been used to increase the speed
of floating-point add, overall the system would be more cost effective, yielding a better average perfor-
mance.

For SPUR, the frequency-delay products are in balance, with floating-point add being 30% faster
than the predicted optimum. Again, if resources can be traded, a slightly slower floating-point add with
correspondingly faster floating-point multiply and floating-point divide operations would make SPUR
more closely fit the frequency-delay statistics. In the next section, we consider some typical floating-
point routines to use as benchmarks in our comparative analysis.

4.3.2. Microbenchmarks — The Floating-point Arithmetic Claim

To identify some simple programs that could serve for initial tests, we conferred with Professor
W. Kahan of the University of California, Berkeley, an authority on floating-point arithmetic and one of
the originators of the IEEE floating-point standard. He suggested that floating-point applications can
largely be represented by simple equations inside loops [Kaha85]. These represent the kernels from
Gaussian elimination or LU decomposition used in matrix inversion, linear algebra, and so on; scalar or
dot product and partial fraction expansion; polynomial evaluation using Horner’s Rule or continued
fraction equations. These are identified as GE, DP, and PE* and can be expressed in simple forms
where X, Y, C, and D are vectors of floating-point numbers, X is a floating-point constant, P represents
intermediate partial results from a floating-point computation, and » ranges from tens to thousands.

Gaussian Elimination (GE) fori=1tondo @-1)
Y[il=Y[] + (K *X[i])

Dot Product (DP1) fori=1tondo (4-2a)
P=P+ (X[i] * Y[i])

Partial Fraction (DP2) fori=1tondo (4-2b)
P=P+ (X[il/(Y[]-K))

Polynomial Evaluation (PE1) fori=1tondo (4-3a)
P=(P*K)+ CJi]

Polynomial Evaluation (PE2) fori=1tondo (4-3b)
P=P* (K- X[i]) + C[i]

Continued Fraction (PE3) fori=1tondo (4-3¢)
P=(K/P)+Cl[i]

Continued Fraction (PE4) fori=1tondo 4 (4-3d)
P=(D(i]/P)+Cl[i]+K

Kahan’s assumptions correlate with [Robi76] and [Koba84] who show that statically between
60% and 70% of all floating-point arithmetic involving arrays of operands is computed inside loop
nests. Further, dynamic measurements indicate that virtually alt computation is performed in loops

*The LINPACK Users Guide [Dong79] contains extensive listings of programs for the solution of linear sys-
terns and related problems. DAXPY is one of the Basic Linear Algebra Subprograms (BLAS [Dong79]) used
by LINPACK routines, and is essentially the same as GE above. In [Dong88], the amount of time needed to
execute one iteration of DAXPY is referred to as the Unit. The BLAS also contain DDOT, which is used in
the forward- and back-substitution steps of LU decomposition, and is essentially the same as DP above.
Knuth {Knut75] gives credit to Sir Isaac Newton for the first formulation of PE.

Chapter 4 39

[Knut71] and the majority of all loops in FORTRAN programs are small, being two statements or less
[Knut71, McMa86, Robi76]. Indeed, Knuth concluded that, ‘‘A small number of basic patterns account
for most of the programming constructions in use.’”

To see how these compare with the analyzes reported in Table 4-3, Table 4-5 summarizes the fre-
quency of operations for the set of kenel benchmarks in (4-1) through (4-3). Here, we have grouped
similar algorithms into three categories: GE, DP, and PE.

Table 4-5. Kernel Benchmark Floating-point Characteristics
Loop Name | Add/Sub | Multiply | Divide | Read Mem | Write Mem | FP Ops per Mem Ref
GE 1 1 0 2 1 0.67
DP 1.5 S .5 2 0 1.25
PE 1.5 25 a5 1.5 0 1.67
Average 1.33 0.58 0.42 1.67 33 1.12
Relative to
Multiply 23 1.0 0.72 - - -

This table summarizes the frequency of operation of floating-point arithmetic for some small kernel
benchmarks. The composite characteristics for the three groups are shown, with the averages corre-
lating with the results in Table 4-3.

From this, a simple yet representative suite of benchmark programs would be (4-1), (4-2a), and (4-3c),
where the ratios of add/sub/cmp to multiply to divide is 4 to 2 to 1. However, to illustrate a wider vari-
ation in performance, and highlight some of the architecture features studied in this dissertations, we
replaced (4-3c) with (4-3a). It is a simple matter to extrapolate our final results to the other cases. The
following section describes the performance tests of the Intel, Motorola, and SPUR CPU-FPU pairs run-
ning simple codes that implement these microbenchmarks.

4.3.3. The Floating-point Experiment

First, small programs were written in a high-level language for each of GE, DP, and PE. These
programs were then translated to assembly language code with the best compilers available on real
machines, always employing the optimization phase if available. Each assembly language listing was
examined and modified to make maximum use of registers for all architectures. The code was then
assembled and run to guarantee correctmess. This code is referred to as the FORT version.

Second, each of the programs was rewritten using pointer variables, then translated and hand
optimized for register use as before. Using pointers often reduces the amount of redundant address
arithmetic found in the FORT version, and is typical of C programs. This code is referred to as the
CPTR version.

Third, each program was hand optimized in assembly language to eliminate redundant jumps, no-
ops, and other unnecessary calculations found in previous versions. Each program was tuned to take
advantage of the architecture of the machine it was running on, allowing for instruction prefetch, over-
lap, and other forms of parallelism whenever possible. Simple code-motion optimizations and loop
unrolling were used to increase performance in some cases. This version is called ASSM. (The high-
level language and some of the assembly versions of the code are listed in Appendix B for the interested
reader.)

The programs (27 in all) were run on native architectures or simulated for timing. Simulation
models account for all architecture features and reflect accurately the timing associated with running
programs. The value for n can vary from 10 to several thousand. A key observation is that the loops
achieve a first-order steady state behavior (ignoring page faults) that makes it possible to examine just a
few iterations and accurately extrapolate to larger n. This is based on a worst-case cache behavior (i.e.,
a linear walk through memory for data references) and represents a lower bound on performance.

Chapter 4 40

The running time for each of the programs and systems is given in Table 4-6.* To facilitate com-
parison, the results are normalized to the slowest execution time for all programs and versions. Since
these numbers represent execution times, those less than 1.0 indicate better performance. Figure 4-4 is
a simple bar chart of the data shown in Table 4-6. The Y-axis indicates the fraction of the Intel CPU-
FPU performance for dot product (FORT version) that each of the CPU-FPU pairs achieves.

Table 4-6. Absolute Execution Time Normalized by Intel FORT Version of DP

Program Intel 180287 Motorola MC68881 SPUR FPU
Version GE DP PE GE DP PE GE DP PE
FORT | 0966 | 1.000 | 0.937 | 0.311 | 0.308 | 0.161 | 0.034 | 0.031 | 0.020
CPTR 0951 | 0.994 | 0.967 | 0289 | 0.264 | 0.157 | 0.031 | 0.028 | 0.020
ASSM | 0.855 | 0.684 | 0.650 | 0.279 | 0.170 | 0.151 | 0.029 | 0.020 | 0.020

g 10 - oo
X i FORT CPTR ASSM
E >

C _ | % il

r 05 -1 B

I

M

E

|1 I

GE DP PE GE DP GE DP PE
INTEL MOTOROLA SPUR
Figure 4-4. Absolute Performance Comparison of Three CPU-FPU Pairs.

This table and figure show the absolute execution time for the three microbenchmarks: Gaussian el-
imination (GE), dot product (DP), and polynomial evaluation (PE), for three workstation computer
systems using VLSI floating-point coprocessors. Execution times are divided by the Intel FORT
execution time for DP (74.6 microseconds per loop iteration with a 16 MHz system clock). Typi-
cally, the CPTR version was slightly better than the FORT version. For Intel PE, however, the code
generated by the C compiler was slightly less efficient, resulting in a small performance degrada-
tion. Numbers less than 1.0 indicate relatively faster execution.

It is interesting to note the differences between the FORT or CPTR versions and the ASSM ver-
sion of each of the programs for each of the system. Intel shows an 11% to 13% reduction in execution
time for assembly code compared to compiled code. Motorola’s assembly version execution time is
11% to 45% less for GE and DP. SPUR hand-assembled versions are between 0% and 36% less execu-

tion time compared to compiler-generated code. The biggest gain comes from efficiencies achieved by
unrolling loops.

The hand-assembled version of DP for Motorola takes advantage of two features of the architec-
ture to achieve the improvement. First, rather than holding the partial sum P (see Equation 4-2) in
memory, as the compiler-generated code specifies, an on-chip register is used to accumulate it. Second,
the Motorola architecture allows general register specifications of floating-point operations, enabling
the floating-point register to be used as an accumulator. The Intel architecture also profits from the

*As shown in Table 4-1, the clock rate for both the Intel 180286/i80287 and Motorola MC68020/MC68881
was assumed to be 16.7 Mhz, and the SPUR clock rate was assumed to be 6.7 Mhz. Recent versions of some
of these run at clock rates 30% to 40% faster. Nevertheless, the ratios shown in Table 4-6 would remain
roughly the same.

Chapter 4 41

stack-like register file, leaving the partial sum in the top-of-stack register and pushing the array vari-
ables to be multiplied before the accumulating addition. More will be said about this in Section 4.3,

In some cases, there is very little difference between the compiled and assembled versions. This
might suggest that either the compilers are very good, the hand-optimized code is not very good, or that
the simplicity of the program leaves little room for optimization. In fact, several things contribute to
this difference. First, the so-called compiled versions have been modified to the *‘best common denom-
inator’’ to remove obvious inefficiencies, such as the elimination of redundant or repeated instruction
sequences. This tends to make the compiled versions more efficient that would normally be the case for
some of the systems.

Second, the amount of time spent with floating-point instructions far and away dominates the time
spent on other instructions. Eliminating integer instructions has little overall effect in some cases.
Also, it is difficult to influence the performance by substituting alternative floating-point codes. For
example, the only possible modification to a floating-point multiply instruction with a memory refer-
ence is to exchange it for two instructions: an explicit floating-point load followed by the register-
register floating-point multiply. In practice, no improvement in execution time is seen as a result for
either Intel or Motorola.

Third, as mentioned earlier, with the small number of instructions usually found in tight inner
loops, the possibilities for improving performance through any optimizations are limited. For the rest
of our analyses, we will refer to two versions of code — compiled (designated COMP) and hand-
assembled (designated ASSM) — to simplify and yet preserve the ability to contrast the two. COMP
represents a combination of FORT and CPTR results.

4.4. Analysis of Floating-point Coprocessor Performance

In the previous section, we found that there is a large difference in absolute performance between
the three systems. There are some obvious reasons: 16-bit versus 32-bit versus 64-bit data paths, for
example. In the following sections, we analyze each of the systems in some detail to determine what is
provided by each of the architectures, how each has been implemented, and the interaction of the archi-
tectures with their implementations.

4.4.1. Relative Performance Metric

Figure 4-4 plots speed of all programs on an absolute scale, normalized to make the comparison
more convenient. A more relevant comparison is a one-for-one match of code versions; i.e., compare
the COMP version of GE on Intel to the COMP version on Motorola and SPUR. Likewise for the other
programs and versions. Table 4-7 summarizes this comparison, which is illustrated in Figure 4-5.
Since all measurements are reported relative to Intel, it’s results should be shown as unity (1.0) for all
versions of all programs. But, to visualize the change that is brought about by hand optimization, the
Intel ASSM version is shown relative to its COMP version.

Table 4-7. Execution Time Relative to Intel for All Versions and Programs

Intel 180287 Motorola MC68881 SPUR FPU
GE DP PE GE DP PE GE DP PE
COMP 1.000 1.000 1.000 0.322 | 0.308 | 0.172 | 0.035 | 0.031 | 0.021
ASSM 0.885* | 0.684* | 0.694* | 0289 | 0.170 | 0.161 | 0.030 | 0.029 | 0.021

Program

Chapter 4 42

g 10

7Ff] COMP ASSM
C sl B | [

T 05 | -

I

M

E

C A C A C A C A C A C A C A C A C A

GE DP PE GE DP PE GE DP PE
INTEL MOTOROLA SPUR
Figure 4-5. Relative Performance Comparison of Three CPU-FPU Pairs.

From the data in Table 4-7, this figure shows relative performance for the same three programs il-
lustrated in Figure 4-4. COMP represents a combination of the FORT and CPTR results shown in
Table 4-6. Here, the execution times for all versions of all programs are divided by the Intel execu-
tion times. For example, the COMP version of GE for all systems is divided by execution time for
the Intel COMP version of GE. Similarly, the ratios are calculated for the ASSM versions of GE, as
well as for all versions of all other programs. However, the ASSM versions of Intel are shown rela-
tive to the COMP version of Intel, whereas the ASSM versions of Motorola and SPUR are relative
to Intel ASSM.

From the data summarized in Table 4-7, we note that the SPUR-FPU system is approximately
seven to 10 times faster than the Motorola MC68020/MC68881 system, and between 30 and 50 times
faster when compared to the Intel i80286/i80287 system.* These results are not surprising. The wide
performance variation for the three systems can be attributed to a several factors. First and foremost, it
is important to recognize that the Intel FPU is essentially a first-generation implementation, while the
Motorola and SPUR FPU designs represent second generation architectures and implementations. As
discussed earlier, the arithmetic execution unit of the 180287 is identical to the i8087, a late 1970’s
design. As a consequence, operation times are relatively slow in comparison to the other FPU’s (see
Appendix B).

Second, the physical characteristics of the system can have a considerable influence on the
observed performance. For example, the bandwidth to memory determines the number of bus cycles
necessary to transfer floating-point operands. Since a bus cycle is a multiple clock-tick event in most
systems, this will result in reduced performance for any system with a relatively narrow bus and rela-
tively wide data (e.g., double-precision floating-point).

Although comparing absolute execution time is interesting and informative, it is important to find
ways to make meaningful comparisons that shed light on architecture issues, avoiding the coloring
effects of the particular implementation. Also, there are limitations as to what can be concluded from
comparison of small abstract models, and one must be careful when making generalizations based on
such comparisons — particularly in our case where the comparison is based on three small programs.

We would like to find a means of identifying, quantifying, and if possible normalizi..g the effects
of the various factors to be able to make a more meaningful comparison. We belicve that an analysis of
performance based on identifying those parts of the program that are directly related to floating-point
execution versus all other parts provides insight into the effectiveness of a particular floating-point
coprocessor architecture and its interface to the rest of the system. This is the topic of consideration in

*Section 4.4 discusses many of the architecture- and implementation-related reasons for the large difference
in execution rate for the various floating-point units.

Chapter 4 43

the following sections.

4.4.2. Floating-point vs. Non-Floating-point Instruction Metric

For floating-point arithmetic, performance measures are often based on instruction times, for
example, how fast a double-precision multiply can be executed. But, real applications require interac-
tions with memory and instructions other than the FPU instructions to implement algorithms. The per-
formance numbers associated with floating-point execution given in data books may include the over-
head associated with the operation and memory access, but obviously do not account for stalls due to
data cache misses or the integer portion of the program associated with the floating-point operations.
They also do not separate or identify the floating-point operation time and floating-point operation
overhead relative to the entirety of the function being computed.

As a first step in our analysis of the comparative execution time data in Table 4-7, to help us
understand why nearly two orders of magnitude difference in performance exist, we show the relative
amounts of time spent in either floating-point or non floating-point instruction execution for the three
systems for both the COMP and ASSM versions in Table 4-8 and Figure 4-6. For now, we ignore the
influence of cache misses (i.e., assume a 0% data miss ratio).*

Table 4-8. Fraction of Execution Time Consumed by FP and Non-FP Instructions

Program Param- Intel Motorola SPUR
Version eter GE DP PE GE DP PE GE DP PE
COMP FP Instrs 0951 | 0941 | 0976 | 0.895 | 0.882 | 0.885 | 0.868 | 0.853 | 1.000

Non-FP Instrs | 0.049 | 0.059 | 0.024 | 0.105 | 0.118 | 0.115 | 0.132 | 0.147 0:000
FP Instrs 0983 | 0969 |{ 0978 | 0937 | 0.963 | 0928 | 0.938 | 1.000 | 1.000

ASSM | Non-FPInstrs | 0017 | 0.031 | 0.022 | 0.063 | 0.037 | 0.072 | 0.062 | 0.000 | 0.000
g 10 [-~z
E 8
c f
T 05
I
M
E e
. ; £ 1

C A C A CA C A C A C A C A CA CA

GE DP PE GE DP PE GE DP PE

INTEL MOTOROLA SPUR
[| Floating-point Instructions Non-Floating-point Instructions

Figure 4-6. Relative Floating-point vs. Non-Floating-point Instruction Execution Time.

This figure shows the dynamic ratio of floating-point to non-floating-point inswruction execution
time. The left bar of each pair represents the COMP version, and the right bar represents the ASSM
version of each program, as designated below each bar with ““C** or “*A’".

*We will see in Section 4.5.3 that this is an unrealistic assumption. Modern systems with large virtual ad-
dress spaces nearly always relay on a memory hierarchy, which often involve at least one level of caching.
Also, Section 4.5 looks at implementation effects in general on system performance.

Chapter 4 44

Figure 4-6 suggests that the time spent for floating-point instructions exceeds that spent on non-
floating-point instructions by one to two orders of magnitude in some cases. A high ratio of floating-
point to non-floating-point time would seem to be a desirable, since one would suppose that with the
relatively large amount of time being spent on floating-point instructions, the system is performing
well, keeping the hardware utilized effectively. However, this may be misleading. If the floating-point
operations are relatively slow, the fraction of time spent on floating-point computation can be large, but
overall the system performance might be comparatively poor. This is an undersirable effect. On the
other hand, the amount of overlap between the CPU and FPU execution can reduce the effective non-
floating-point execution time to a small amount, giving rise to a high floating-point to non-floating-
point ratio. This is a useful and desirable effect. In order to understand and identify the factors that
determine overall performance and account for effective as well as ineffective cycles, we will examine
the execution of floating-point instructions in each of the architectures in the following sections.

4.4.3. Floating-point Instruction Components

Floating-point instructions, unlike most integer instructions, typically consume many clock-ticks
during execution. Microcoded FPU’s employ the typical time-space tradeoff by re-using portions of the
data path and hardware to perform different portions of the operation, and in the process consume more
cycles. Such an approach provides a means to ‘‘easily’’ implement more complicated functions, such
as transcendentals, logs, square root, and others through microcoded algorithms. On the other hand,
hard-wired FPU’s achieve faster execution by dedicating more silicon to the fundamental operations
and not providing direct implementation of the more complicated yet less frequent operations. Instead,
software routines using the fundamental add, subtract, multiply and divide primitives are used.
Although the microcoded design style provides hardware support for more arithmetic functions, the fun-
damental operations are typically slower in comparison to a four-function FPU. The overall effect on
system performance is application dependent.

Besides the intrinsic operation specified by the instruction, several other events between the CPU
and FPU must take place before an operation can begin. Each of the three systems has its own seman-
tics for floating-point instructions. We will considered as an example a double-precision floating-point
multiply instruction involving a memory reference operand and a floating-point coprocessor register.

In the Intel architecture, floating-point instructions operate on the top-of-stack (TOS) element of a
stack-like register file. The operation is specified between the TOS and another floating-point register
or memory operand. The FMUL MEM _ADDR instruction causes an operand in memory to be
transferred to the FPU, where it is multiplied by the value in the TOS register, with the result left in the
TOS. For Motorola, the FMUL MEM_ADDR, FPg,, instruction is slightly more general. The register
file is general purpose and any one of the eight FPU registers can be designated as an operand in a
dyadic instruction with either another FPU register or a memory referenced operand. The result is
stored in the source operand register. For SPUR, the operand is first transferred from memory to the
FPU with the LD DBL FPg,.1;, MEM_ADDR instruction. Then the floating-point multiply between it
and any other register-based operand is completed with FMUL FPpue, FPree1, FPrerc2. SPUR provides
full generality in terms of which registers provide operands or accept results.

None of the architectures provides pipelined use of the floating-point execution unit. Thus, only
one floating-point instruction is being performed at any time, and any new floating-point instructions
can not begin until the previous one is finished. Also, Intel and Motorola allow full generality of
addressing modes with floating-point instructions. Specifically, they provide for memory reference
floating-point operations in the instruction set. These two facts combine to enforce a strict serialization
of operand references and the operations on them, resulting in delaying any memory activity until the
floating-point execution unit is no longer busy. We will consider the effects of this on overall perfor-
mance in Section 4.4.4.

SPUR is a load/store architecture and references to floating-point data are decoupled from the
operations on the data. The SPUR memory interface architecture allows floating-point operand loads
and stores to proceed while the arithmetic execution unit is busy. More specifically, the SPUR FPU

Chapter 4 45

LD DBL and ST DBL instructions are not included in the floating-point instruction set in the sense of
the busy-test and synchronization. They are treated like any other integer instruction by the FPU and
proceed in parallel with floating-point execution, even when the floating-point unit is busy. As a conse-
quence, the operand accesses needed to support floating-point operations are completely decoupled
from the instructions which operate on them. This concurrent execution model does not restrict the
SPUR architecture to serialize its loads or stores, as is the case with the Intel and Motorola architec-
tures.

During the process of transferring an operand from memory and performing the multiply, each
hardware implementation imposes certain protocols regarding handshake signals, delays, busses, and
registers used. Table 4-9 identifies these and quantifies their cost in terms of clock ticks for the
FMUL memory reference instruction for each architecture. This list is a combination of all architectures,
so each individual FPU will require only a subset of the items listed. The following paragraphs define
the terms used in Table 4-9

IF(i), IF(fp) — instruction fetch

For many CPU architectures, by either prefetching and/or instruction-caching, the cycles normally
associated with fetching an instruction can be ‘‘buried’” during the execution phase of the previ-
ous instruction. Thus, the cycle cost can be *‘zero,’” assuming that the ALU execution time of the
instruction accounts for it. The SPUR CPU microarchitecture uses a four-stage pipeline with an
on-chip instruction buffer cache. Consequently, during any clock tick, four actions are completed.
In this sense, an instruction fetch accounts for one-fourth clock tick, or at the end of the four clock
ticks, a full fetch cycle has been accounted for.

WS(m) — memory wait state

Commercial computer systems must often accommodate different speed memories. As well, a
particular VLSI CPU may be available at different clock rates. Accordingly, synchronization at
the CPU-memory interface is necessary, with some form of handshake to determine when data are
valid. In contrast, the SPUR system operates synchronously with its cache memory and requires
no handshake synchronization cycles.

SYNC(fp) — synchronization busy/wait on FPU

Only one operation can be in progress at a time in the FPU’s studied here. Each of the FPU’s pro-
vides a signal or register value that can be interrogated by the CPU to determine status and
prevent initiating another FPU instruction while the FPU is still busy.

IW(fp) — instruction/command write to FPU
In non instruction-tracker systems, the FPU command must be explicitly written to the FPU.

WS(fp) — coprocessor wait state

In non instruction-tracking systems, the process of writing the FPU command, instruction or data
addresses, or operands to the FPU may require some local-bus arbitration and/or wait-states to
synchronize the transfer. Also, commercial architectures allow the CPU and FPU to operate at dif-
ferent clock rates. This necessitates some form of synchronization for proper data, command, and
status transfers.

Chapter 4

Table 4-9. Floating-point Unit Hardware Protocol Events for Double-precision FMUL
Event Clock Ticks Consumed
Event Description and/or Comment
Symbol Intel Motorola SPUR
IF(1) instruction fetch - integer operation 0-4 0-2 1*
WS(m) memory wait state 0-8 0-3
IF(fp) floating - point command fetch 0-4 0-2 1*
WS(m) memory wait state 0-8 0-3
SYNC(fp) | synchronization busy/wait on FPU 12-30 3-5
IW(fp) instruction/command write to FPU 4-8 3-5
WS(fp) COProcessor wait state 0-4 0-3
RR(fp) interrogate FPU for status 18 -24 3-5
TAWI1(fp) instruction address (offset) write to FPU 4-8 5
WS(fp) coprocessor wait state 0-4 0-3
TAW?2(fp) instruction address (segment) write to FPU 4-8
WS(fp) COProcessor wait state 0-4
OR1(fp) operand 1 read (LSB) 4 4-6 (D*
WS(m) memory wait state 0-8 0-3
OW1(fp) operand 1 write (LSB) to FPU part 1 4 4-6 (1)*
WS(fp) COprocessor wait state 0-4
OR2(fp) operand 2 read 4 4-6
WS(m) memory wait state 0-8 0-3
OW2(fp) operand 2 write to FPU part 2 4 4-6
WS(fp) COprocessor wait state 0-4
OR3(fp) operand 3 read 4
WS(m) memory wait state 0-8
OW3(fp) operand 3 write to FPU part 3 4
WS(fp) coprocessor wait state 0-4
OR3(fp) operand 4 read (MSB) 4
WS(m) memory wait state 0-8
OW4(fp) operand 4 write (MSB) to FPU part 4 4
WS(fp) COprocessor wait state 0-4
OAWI1(fp) | operand address 1 write to FPU 4-8
WS(fp) coprocessor wait state 0-4
OAW?2(fp) | operand address 2 write to FPU 4-8
WS(fp) coprocessor wait state 0-4
SYNC(fp) | synchronization busy/wait on FPU 0 3-5
10C(fp) input operand conversion to internal format incl below 16 - 46 incl below
AC(fp) arithmetic calculation in FPU E - unit 35-2200 2-700 3-19
0O0C(fp) output operand conversion incl above 38 - 80 3
ORE(fp) output operand rounding & exception incl above 6 - 60

46

The architecture is pipelined, so the cycles shown as “‘(1)”” for SPUR are already accounted for in
the fetch cycles. If an entry in the table is blank, that means it is not applicable to that particular im-
plementation. Otherwise, some number or range of cycles is given to indicate the duration of the
event. The floating-point execution is the last four events in this table. *SPUR requires two in-
structions to implement a floating-point multiply with one operand in memory: a floating-point load
followed by the FMUL. Thus, there are two instructions fetches for this sequence.

RR(fp) — interrogate FPU for staius

In the commercial systems, the FPU decodes the command or instruction it receives and then sig-
nals the CPU what to do next — operand transfers and so forth. The CPU must find out what it
can do next from the FPU, by way of some response: either testing a signal or rcading a register.
In SPUR, only register-register operations are allowed, and no other interaction with the CPU is
needed before the FPU begins an operation.

Chapter 4 47

IAWx(fp), OAWx(fp) — instruction address (segment or offset) write to FPU

“The Intel CPU does not save the operand address or the program counter of the current floating-
point instruction. Consequently, both must be transferred to the FPU to allow exception process-
ing. These require two bus cycles each, since addresses are 24 bits and the data path between the
FPU and memory is 16 bits wide. Motorola transfers the program counter of the current floating-
point instruction only on those instructions that can result in an exceptional condition that might
need subsequent service. Since it has a 32-bit path to the FPU, only one bus cycle is needed to
transfer it. Motorola does not transfer the operand address. The SPUR architecture automatically
saves the PC for all floating-point operations. This obviates the need to transfer the instruction
address to the FPU and actually provides for more efficient exception processing, since it need not
be read at a later time if necessary, as with Intel and Motorola. Also, since only register-register
operations can cause floating-point exceptions, there is no operand address to save, eliminating a
series of transfers between the CPU and FPU as is the case with Intel and Motorola.

ORx(fp), OWx(fp) — operand read

On operand transfers, the Intel CPU acts like a DMA controller between memory and the FPU.
Double-precision data transfers requite four bus cycles per operand over the 16-bit bus. In con-
trast, Motorola uses regular bus cycles for all memory transfers and actually reads the operands
(32-bits at a time) into CPU registers, and then writes the same data to the FPU, requiring two bus
cycles for each half of a 64-bit value, for a total of four bus cycles. The SPUR architecture decou-
ples the operand loads from the arithmetic instructions. The LD_DBL instruction is a single-cycle
instruction, but due to the latency of the memory system and the absence of forwarding logic
[Chen85] on the FPU, the FPU execution unit can not begin the FMUL operation until the third
cycle after the load is fetched. Since the fetch of FMUL consumes one of those cycles, only one
cycle is potentially lost due to the stall.

[I0C(fp), OOC(fp) — operand conversion to/from intemal format

All FPU’s in this study operate on extended format data (more than 64 bits for exponent and data
— see Appendix A for a discussion). Single-precision and double-precision operands transferred
from memory must first be converted to/from this internal format before being stored in the FPU
register file or memory. The SPUR FPU does this automatically in a single cycle on loads and
explicitly with either the CVTS or CVTD instruction before stores. The microcoded Intel and
Motorola FPU'’s use several cycles to make the conversion both on input and output.

AC(fp) — arithmetic calculation in FPU E-unit

Finally, the operation time, or number of cycles consumed by the FPU execuuon unit in perform-
ing the arithmetic is accounted for.

ORE(fp) — operand rounding and exception handling as specified

Since internal operations are done in extended format, transfers to memory require that the
operand be rounded to the specified precision before transfer. The SPUR FPU hardware does this
automatically in the final phase of calculation. The microcoded Intel and Motorola FPU’s use
several cycles tc .ound to the extended format (the default), and many times more for rounding to
single and double precision formats.

From our previous definition of overhead (any time the coprocessor execution unit is idle) and this
discussion about the hardware protocols of each of the FPU’s, we can identify the operation and over-
head portions of the execution time illustrated in Figure 4-5. It is possible to identify groups of the fac-
tors in Table 4-9 and show how implementation details affect these groups, and hence, the system per-
formance. Table 4-10 and Figure 4-7 show the relative fraction of time spent in operation versus time

Chapter 4 48

spent in overhead for each of the three systems and programs.

Table 4-10. Fraction of Execution FPU Busy versus Overhead

Program Param- Intel Motorola SPUR
Version eter GE DP PE GE’ DP PE GE DP PE
COMP FPU Busy | 0.478 | 0.481 | 0.485 | 0.510 | 0.456 | 0.625 | 0.737 | 0.647 | 1.000

Overhead | 0.522 | 0.519 | 0.515 | 0490 | 0.544 | 0.375 | 0.263 | 0.353 | 0.000
FPU Busy | 0.540 | 0.559 | 0.542 | 0.568 | 0.593 | 0.667 | 0.875 | 1.000 | 1.000

ASSM | erhead | 0.460 | 0.441 | 0458 | 0432 | 0407 | 0333 | 0.125 | 0.000 | 0.000
E 10 2171707 777777707 B |
a2 04 O A vd O dd d B
c N ke
T 05 4 é é ___________ a B

C A C A C A C A C A C A C A C A C A

GE DP PE GE DP PE GE DP PE

INTEL MOTOROLA SPUR
[| Floating-point Unit Busy Floating-point Unit Not Busy: Overhead

Figure 4-7. Floating-point Operation Time vs. Overhead Time.

This figure plots the data in Table 4-10 showing how much of the total execution time the FPU is
actually busy in computation. The rest of the time, with respect to the FPU, is overhead.

Several things are evident from Figure 4-7. First, in contrast to Figure 4-6 which differentiated
between floating-point and non-floating-point execution time, Figure 4-7 shows that the commercial
FPU'’s are busy only about half the total time when considering the overhead factors more closely. This
represents a significantly different picture in terms of hardware utilization and effectiveness. Second,
from this data, one could conclude that the operation time and overhead time are relatively balanced for
Intel and Motorola. But, since each of the CPU-FPU pairs is designed to allow concurrent execution,
the goal would be to keep both execution elements as busy as possible, not just balanced. In the ideal
case, this should be possible since the CPU and FPU each operate on different data types and each has
its own set of registers. In the following section, we examine the value and effectiveness of concurrent
execution.

4.4.4. Concurrent Execution

Most commercial coprocessor architectures claim to allow the processor to proceed while the
coprocessor continues to execute in parallel. However, in many cases, floating-point instructions have
built-in serialization with respect to the main CPU operation. Both the Intel and Motorola processors
have control associated with either allowing or not allowing parallelism. The Intel compilers follow
most floating-point instructions with an explicit WAIT instruction, stopping the CPU from further exe-
cution (including integer instructions) until the coprocessor BUSY signal is unasserted [Kane85]. Like-
wise, the Motorola coprocessor can prevent parallel execution by explicitly encoding a CPU busy-wait
request in the floating-point instruction [Moto85, Sarr85].

Chapter 4 49

The SPUR architecture allows full parailelism between the CPU and FPU. The CPU may issue
any number of non-floating-point instructions after initiating an FPU instruction. The interface is fully
synchronous, avoiding the inefficiencies of asynchronous interaction between the CPU and FPU. The
FPU BUSY signal is continuously monitored by the CPU and indicates during the register-write cycle
that the FPU is ready to begin another instruction. The interface provides an effective one-instruction
queue, such that no execution cycles are lost between back-to-back FPU instructions.

In order to better observe the contribution of concurrent execution to system performance, Table
4-11 shows the percentage of execution time that both the CPU and FPU are busy, as well as the
amount of time there is concurrent execution for all programs. To better illustrate the value of con-
current execution, Figure 4-8 illustrates the overlap not shown in Figure 4-7, where the overhead cycles
that occurred during FPU-busy time were masked out.

Table 4-11. CPU Busy, FPU Busy, and Overlap of CPU and FPU Operations
Program Param- Intel Motorola SPUR
Version eter GE DP PE GE DP PE GE DP PE
CPUBusy | 0.522 | 0.519 | 0.515 | 0.679 | 0.719 | 0.678 | 0.684 | 0.588 | 0.636
COMP | FPUBusy | 0.478 | 0.481 | 0485 | 0.510 | 0.456 | 0.625 | 0.737 | 0.647 | 1.000
Overlap 0.000 | 0.000 | 0.000 | 0.189 | 0.175 | 0.303 | 0421 | 0.235 | 0.636
CPUBusy | 0.589 | 0.623 | 0.597 | 0.643 | 0.759 | 0.656 | 0.625 | 0.591 | 0.455
ASSM FPU Busy | 0.540 | 0.559 | 0.542 | 0.568 | 0.593 | 0.667 | 0.875 | 1.000 | 1.000
Overlap 0.130 | 0.183 | 0.139 | 0.211 | 0.352 | 0.323 | 0.500 | 0.591 | 0.455
E 1.0 1 vred P I A T T T T
X
E
C 2
T 05 - B 1 I U e
I ¥
M
E
C A C A C A C A C A C A C A C A C A

GE DP PE GE DP PE GE DP PE

INTEL MOTOROLA SPUR
B FPUBusy CPU Busy

Figure 4-8. Concurrent Execution Between CPU and FPU.

This figure shows the CPU busy time (cross-hatched bars) and the FPU busy time (solid bars) dur-
ing the total program execution time. The gap between the x-axis and the bottom of the cross-
hatched bars represents the aggregate amount of time the CPU is idle waiting for the FPU to com-
plete an operation. Likewise, the gap between the top of the FPU busy bars and the line represent-
ing execution time of 1.0 represents the amount of time the PFU is idle during program execution.
The region of overlap between CPU busy and FPU busy bars represents the net amount of time that
both execution elements are working concurrently, as shown in Table 4-11.

From Figure 4-8, we note that concurrent execution is of benefit to all systems, but in substantially
different degrees. For Intel, floating-point operations are relatively slow, and any amount of concurrent
execution is small in comparison — as little as none for compiler output and always less than 14% of

Chapter 4 50

total execution time even for hand-coded versions. On the other end of the spectrum is SPUR, where
the floating-point operations are much faster. In this case, the loss of performance that would come
from non-concurrent execution ranges between 24% and 64%. Motorola is in between the other two —
the duration of the floating-point operations is relatively long and the time spent by the CPU in produc-
tive effort during concurrent execution is significant. Yet, the operations are not so long that the CPU
finishes what it is doing only to have to wait a long time, as is the case with Intel. Consequently, paral-
lel operation allows the system to operate between 18% and 35% faster than non-concurrent operation
would allow.

The amount of overlap represents the amount of time saved for program execution in concurrent
mode. If we consider speedup to be the ratio of execution time for non-concurrent operation to that for
concurrent operation, and plot that against the percentage of time the FPU is busy, we observe a meas-
ure of the relative value of concurrent operation for each architecture. As illustrated in Figure 4-9, the
maximum amount of relative speedup for two execution elements is a factor of two. The execution
time as a function of parallelism and resultant speedup are both shown for maximum and minimum
overlap.

MZ - OQmXm
i O 3 o © O

10% 20% 30% 40% S50% 60% 70% 80% 90% 100%
FPU Busy (Relative Percentage of Total Execution Time)
(a)

2.0 1
1.8 1
1.6 1
1.4 1
1.2 -

MOZ>Z PO MA MY
HNZmMZ W <O R Y Z —

1.0

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

FPU Busy (Relative Percentage of Total Execution Time)
(b)
Figure 4-9. Concurrent Execution and Relative FPU Busy Time.

This figure shows how execution time and the relative amount of concurrent operation interact to
yield effective speedup for the three CPU-FPU pairs. The lightly shaded region indicates the possi-
ble execution times and speedup values as a function of the percentage of time the FPU is busy dur-
ing the total execution time. The cross-hatched regions indicate the actual execution times and
speedup values for individual programs for each of the three systems.

Chapter 4 51

As shown in Figure 4-9, the Intel architecture affords only a small amount of improvement in per-
formance through parallelism. The mechanism for transferring operands is rather sophisticated (similar
to a DMA controller) and yet as will be shown in Section 4.4.5 actually results in reduced overall per-
formance. Also, since any instructions that have anything to do with floating-point operations or
operands are part of the floating-point instruction set, the CPU stalls while any of them are in execution,
and some functions which could normally proceed in parallel are locked out. Also, the improvements
brought about by hand-optimizing the code yield only a modest increase in performance, once again
pointing to restrictions in the architecture and implementation to achieving more concurrency.

Motorola is slightly better than Intel. Again, the value of the concurrent execution model is
reduced due to inherent serialization of most events associated with floating-point operations or
operands. The method of transferring operands in not as complicated as Intel, essentially like pro-
grammed I/O, but with the protocol invoked automatically by the hardware, and many of the same res-
trictions on concurrency. As illustrated by DP ASSM, hand optimization provides more useful FPU
cycles as compared to compiled code. This stems from using register-register operations, leaving the
partial product in a register on the FPU chip rather than incurring the cost of a memory transfer.

SPUR benefits substantially from concurrent execution. Since the number of cycles spent in
either operation or overhead is relatively small, even seemingly small decreases in the number of total
execution cycles results in useful increases in performance. By unrolling the loop once, DP illustrates
how the concurrent execution model for hand-optimized code can yield a rather impressive speedup of
60%. For PE, SPUR compiled code is hurt more by a sequential model for the hand-optimized code.
This comes from the fact that the compiled code loop is longer with more instructions. Consequently,
the serialization results in much more loop overhead, that is effectively masked out in concurrent opera-
tion. Thus, the hand-optimized code is helped relatively less from the concurrent mode.

To summarize, parallel execution involves a complex set of interactions between the components
of the system and the software running on the system. Nevertheless, valuable improvements in perfor-
mance can be attained if (1) the time consumed in floating-point operations is relatively close to the
time spent on other operations in the program loop, and (2) the amount of overlap provided by the
architecture is significant. Figure 4-10 shows the relative performance improvement in each of the sys-
tems as a result of concurrent execution.

100%

COMP ASSM
| %

50%

woYmmuw

a0 7 @%%

GE DP PE
INTEL MOTOROLA

Figure 4-10. Speedup Resulting From Concurrent Execution.

This figure illustrates the improvement in performance afforded by concurrent execution model for
the Intel, Motorola, and SPUR CPU-FPU architectures. As illustrated, compiled code for Intel res-
tricts parallelism, while hand-optimized versions run 10% to 14% faster. Motorola speedup ranges
between 18% and 35% over sequential execution. SPUR performance improves by nearly 65% in
some cases and by at least 24% in others.

The concurrent execution model described in this section would seem to be the obvious choice
when considering maximizing system performance. However, there are circumstances when the costs
of providing that capability outweigh the benefits. In the following section, we explore the Intel system

Chapter 4 52

to determine cases in which a simpler model would be better.

4.4.5. Performance Degradation Due to Concurrent Execution

As noted in Section 4.2.1, the Intel implementation requires that addresses of floating-point
instructions and floating-point operands be transferred to the FPU. This typically requires several bus
cycles. If, on the other hand, an execution model were adopted where the CPU would simply stop and
wait for the FPU to finish an operation before proceeding (as is done by the DEC MicroVAX
78032/78132 chip-set), how would that affect overall performance? The potential time-saving advan-
tage of this non-concurrent execution paradigm would be that the addresses need not be transferred to
the FPU, with the commensurate savings in bus cycles expended during the instruction. Table 4-12
shows how performance is actually decreased by an average of 15% for the current implementation of
the Intel CPU-FPU architecture, due to the amount of overhead incurred in setting up for parallel execu-
tion.

Table 4-12. Intel Performance Degradation
Due to Concurrent Execution Mechanisms

Program Version Program
GE DP PE
COMP -15.4% -11.5% -15.9%
ASSM -17.7% -12.7% -17.5%

This table shows that system performance is adversely affected by the implementation and mechan-
isms for achieving concurrent operation in the Intel system — an average of more than 15%.

Obviously, this is application dependent. In a situation where more integer instructions could be
hidden during floating-point execution, the value of concurrency would be increased. The crossover
point is where the cost of setting up concurrent execution is equal to the amount of time to execute
other necessary operations in the loop; i.e., integer instructions or cache-miss service. For Intel, the
setup for parallel execution is equivalent to approximately 10 to 15 integer instructions. Considering
that this is the result of only one floating-point instruction necessitating address transfers, a ratio of 10
to 15 integer instructions per floating-point instruction could be tolerated and still achieve at least the
same and possibly better performance, not to mention the advantages of the simpler interface protocol.

From our studies and those of others mentioned earlier, we found that most floating-point applica-
tions have tight inner loops, with small numbers of instructions. Consequently, the ability to “*hide’’
integer operations during time-consuming floating-point operations is limited. In reality, although
parallel operation can and does improve performance, the most effective means is through more
efficient and faster floating-point execution rates, which will be considered in Section 4.5.4. The
time/space/technology tradeoffs that were considered in that regard with respect to the SPUR system are
discussed in [Bose88b]. In the following section, we will examine how the implementation of each sys-
tem affects various components of overhead and, as a result, the system performance.

4.5. Implementation Effects on FPU Performance

In Section 4.4.3, we showed that execution time is influenced by many factors. We determined
that a large fraction of time is spent in overhead — necessary but largely ineffective cycles. We would
like to eliminate them if we can, or at least eliminate their effecz. On the basis of absolute execution
time or comparison of overhead, one might argue that one style of interface is superior to another.
However, certain issues incidental to the style of the interface may be more significant in terms of per-
formance than the interface protocols and mechanisms themselves. For example, Intel uses a 16-bit
wide data path between memory and the FPU, while Motorola uses 32 bits, and SPUR uses 64 bits.
How has that single difference colored our results so far? There are other factors to consider as well,
such as memory wait states, implementation mechanisms for synchronization, operation time, and

Chapter 4 53

memory hierarchy latency. We need a fair basis for comparison to better explore floating-point copro-
cessor efficiency.

In the following sections, we isolate the effects of several features of each implementation to
determine the overall effect on the system and provide a better basis for comparison.

4.5.1. Modeling the Systems and Computation

To consider implementation effects on system performance, we developed models of the CPU-
FPU architecture for each of the systems. For SPUR, an instruction set simulator [Tayl86] and a func-
tional simulation model using the ENDOT N.2 system and the ISP’ hardware description language
[Ordy83] were developed. The models yield the number of cycles to perform the various functions, and
allow us to control the effects of data bus width between the FPU and memory, operation time, con-
current execution between the CPU and FPU, and cache access time for each of the systems. Table 4-
13 indicates the range of the parameters that were varied for each of the models.

Table 4-13. Parameters Varied in Simulation Models
Parameter Values

Width of the data path for operands | From 8 to 64 bits, by multiples of 2.

transferred between memory (cache)

and the FPU:

Cache miss service time: From .3 to 9.6 microseconds, by mul-
tiples of 2.

Floating-point instruction operation | Factors of .125x, .25x, .5x, 1x, 2x, 4x,

time: and 8x the nominal rates determined
by experiment or from data books.

Level of concurrency: From none (strict sequentiality
between the CPU and FPU) to over-
lapped as much as possible.

This table indicates how the model parameters were varied for our experiment. The data path width
represents implementations available in commercial and research machines. Cache service time is
largely a function of memory speeds. Also, for multiprocessor systems where contention for shared
memory can result wavefront requests [Gibs87] a cache-miss can result in a rather long delay be-
fore it receives service — hence, the upper end value. Although scalar FPU’s will likely never
achieve single-cycle performance for FPU execution for algorithmic reasons, vector architectures
currently exist that already provide such. The amount of concurrency was discussed in Section
444,

To further facilitate our analysis, we make the following groupings of the components of program
execution time (referring to Table 4-9):

(1) floating-point operation overhead: All cycles associated with the floating-pdint instruction
fetch and data movement between the CPU or memory and the FPU coprocessor are considered
floating-point operation overhead cycles. Also included are cycles associated with special func-
tions, such as sending instruction or data addresses to the floating-point coprocessor, testing
BUSY, and initiating or transferring the floating-point command. This is designated ““FP Ov’’ in
subsequent figures and tables.

(2) loop overhead: All cycles associated with incrementing loop counters, performing loop index
test and branch, calculating data array addresses, executing integer instructions in general, and
performing any no-ops are counted as loop overhead. This is designated ‘‘Loop Ov’’ in subse-
quent figures and tables.

(3) memory access overhead: All cycles associated with the CPU or coprocessor waiting for data
to be retrieved from the memory system, including a cache, are considered part of the memory

Chapter 4 54

access overhead. This is designated ‘‘Cache Ov’’ in subsequent figures and tables.

As well as these groupings, we make other assumptions regarding each of the architectures. With
respect to fetching instructions, the Motorola CPU has a 2048 bit on-chip instruction cache (64 long
words), large enough to accommodate all instructions in small loops. The Intel processor provides an
instruction queue of three decoded instructions and a 6-byte deep prefetch buffer. For sequences of
integer instructions, often neither Intel nor Motorola expend any cycles fetching instructions. However,
branch, jump, call, and return instructions cause the instruction queue of the Intel CPU to be flushed,
resulting in instruction fetch cycles until the prefetch buffer and cracked-instruction queue fill again.
The SPUR CPU provides a 512-byte on-chip instruction cache (128 instructions). Our simulations indi-
cate an instruction miss rate of 0.0% for the microbenchmarks in our study, once execution has reached
steady state.

With respect to operand transfers, each processor is assumed to require no wait-states for memory
access. This can only be achieved if an external cache exists. Thus, for this and all subsequent ana-
lyses, each system is assumed to have a 128 Kbyte, 32-byte block, direct mapped, mixed instruction and
data cache external to the processor. Memory operands are assumed to be double precision floating-
point values — eight bytes each — which will cause a worst-case 25% miss ratio on floating-point data
accesses based on the assumed linear walk through the arrays held in memory. Data are also assumed
10 be properly aligned to achieve minimum access time.*

With the models developed and these assumptions, it is possible to analyze the instruction
sequences of our microbenchmarks as well as other programs and predict the performance for each sys-
tem. To validate the projected performance of each of the models, and gain insight into constraints
imposed by a particular implementation, the programs were run on workstations using the CPU-FPU
pairs in this study. With a logic analyzer [Tekt83, Tekt86], the entirety of each of the loops was cap-
tured, recording the operation code, memory references (address and data), floating-point coprocessor
status, the user/system modes and control signals. Execution times were measured by timing the bench-
marks, and also calculated by counting cycles and multipling by the actual or assumed processor and
coprocessor cycle times.

By separating the execution time into its components of overhead and operation, and further, the
various components of overhead into memory access overhead, loop overhead, and floating-point opera-
tion overhead, it is easier to identify the factors that influence performance the most. Table 4-14 and
Figure 4-11 show our baseline comparison and how the normalized and relative execution times shown
in Figure 4-5 are separated into floating-point operation and the overhead components. A cache service
time of 1.2 microseconds has been chosen for this and following examples. These results represent the
commercial implementations, with the bus widths and protocols as described in previous sections.

From Figure 4-11, the dominant overhead factor for the commercial systems and our optimized
benchmarks with a 1.2 microsecond cache-miss service time is floating-point operation overhead.
SPUR has succeeded in reducing its floating-point operation overhead to between 2% and 17%, while
the commercial systems can expect it to be between 25% and 49% of the total execution time, and
account far as much as 96% of all the overhead cycles. The main contribution to floating-point opera-
tion overhead is the memory traffic, which actually excludes the effects of cache-miss overhead. The
SPUR architecture allows parallel loads and stores with floating-point computation which reduces the
effect of this component of overhead significantly. Some SPUR CPU-FPU sequences resulted in as lit-
tle as 2% floating-point operation overhead.

Loop overhead can account for as much as 12.5% of execution time. This represents a relatively
small effect, and has been eliminated in certain optimized cases. Normal compiler output would likely
result in a higher figure. Some SPUR ASSM language versions of programs arc able to reduce loop
overhead to zero.

*Alignment on Intel and Motorola architectures is very important. Even with no wait-state memory, non-
aligned access on the Intel system can result in 20 extra clock ticks per access, and on Motorola, three times
as many bus cycles — 12 clock ticks— as an aligned longword (32-bit) operand access.

Chapter 4 55

Table 4-14. Relative Components of Execution Time for the Nominal Implementation of Each System
(1.2 microsecond cache-miss service time assumed)
Program Param- Intel Motorola SPUR
Version eter GE DpP PE GE DP PE GE DP PE
Cache Ov 0.005 0.005 0.003 0.024 0.024 0.024 0.128 0.206 0.088
COMP Loop Ov 0.048 0.05% 0.024 0.102 0.115 0.113 0.125 0.116 0.015
FP Ov 0.471 0.458 0.490 0.377 0.416 0.254 0.125 0.166 0.034
FP Oper 0.476 0.478 0.483 0.498 0.445 0.610 0.622 0.512 0.863
Cache Ov 0.006 0.007 0.004 0.027 0.044 0.025 0.128 0.234 0.052
ASSM Loop Ov 0.017 0.030 0.022 0.062 0.035 0.070 0.074 0.000 0.010
FP Ov 0.440 0.407 0.435 0.359 0.354 0.255 0.080 0.056 0.021
FP Oper 0.537 0.556 0.540 0.553 0.567 0.650 0.718 0.710 0.917
e W TTEREE P EE ER =
T 05 |~ Zit. . é - — “ SR - 8|
0 : : :
M
E

GE DP PE GE DP PE GE DP PE

INTEL MOTOROLA SPUR
B Operation & Loop Overhead
FP Overhead] Miss Overhead

Figure 4-11. Operation and Overhead Components of Execution Time.

This figure shows the fraction of execution time that can be attributed to the various overhead and
operation components for each system in its standard implementation as listed in Table 4-14. For
this comparison, a cache-service time of 1.2 microseconds has been assumed. See Appendix B for
the entire simulation and trace results.

Lastly, the time spent waiting for cache-miss accesses to be resolved is shown as the topmost
piece of the bars in Figure 4-11. For commercial architectures, cache access overhead does not amount
to more than about 3% of the total execution time. This is simply because the amount of time spent in
the floating-point operations and the overhead associated with those operations is so much larger than
the cache delay, it is a relatively small figure, at least with the assumed cache service time modeled.

However, for the SPUR architecture, since the floating-point operations are fast and loop and
floating-point overhead factors can be ‘‘buried’’ during the floating-point execution time, the cache
access overhead becomes a significant factor in terms of the amount of time wasted per loop iteration —
between 9% and 21% of total execution time. Usually, a cache-miss can result in several lost computa-
tion cycles. In small loops that consist of just a few operaticas and associated memory references, the
cache can easily become a dominant factor in terms of the time spent in overhead. This is especially
true as the cycle time and number of execution cycles per floating-point operation get smaller, as illus-
trated by the data for SPUR. This all suggests that for newer, high-speed CPU-FPU pairs, one of the
more interesting systems issues is the influence of the cache design and implementation on overall per-
formance.

When the number of cycles spent in execution per loop iteration is relatively small, considerable
speedup can be obtained by allowing cache access to be overlapped with computation cycles.

Chapter 4 56

Prefetching cache elements during long computation times appears to be a way of saving about 30% of
the cost associated with a typical cache-miss for SPUR. Although it is easy to do this with hand-coded
sequences, we will have to rely on optimizing compilers if we expect code generated from high-level
languages to do this.* From an algorithmic point of view, some loop unrolling and pre-staging of cache
accesses can help. This is a topic beyond the scope of this dissertation and will not be considered
further.

In summary, reducing the time associated with transferring floating-point operands would have
the most beneficial effect on overall performance for the commercial architectures. For SPUR, reducing
the miss ratio or discovering ways to hide the cache-miss service time would yield the best improve-
ment in performance. In the following sections, we analyze what happens when each of the architecture
models is varied, allowing us to see how changes to the data bus width, cache service time, and opera-
tion time affect overall performance.

4.5.2. The Influence of Data Bus Width

In Section 4.4.3 we observed that floating-point operation overhead was the largest overhead com-
ponent for commercial CPU-FPU systems. Most of the cycles accounted for came as a result of
transferring operands between memory and the FPU. The bus bandwidth, which is determined largely
by the bus width between the memory and the FPU, will have a large influence on this overhead factor.

To quantify this influence on overall performance, we modeled each of the systems with four data
bus widths: 8*,16, 32, and 64 bits. We left the operation times for add, subtract, multiply, and divide as
defined by the nominal values for each implementation. The influence of cache-miss service time is
independent of the effects seen by changing the data bus width, and consequently was considered zero
(it is a separate category and will be covered in Section 4.5.3). '

4.5.2.1. The Intel System

In this section, we consider how changes to the bus bandwidth between the CPU and FPU affect
the Intel system performance. Table 4-15 is a summary of the results of this experiment, which has
been extracted Tables B-1 through B-6 in Appendix B.

The effect of the different size busses on the performance of the system can be observed in two
ways. First, in considering the amount of time spent in floating-point operation overhead, increasing
the data bus width results in a decrease in the amount of overhead. Conversely, a narrower bus results
in more overhead. The percentage change relative to the nominal value is reported in Table 4-135.
Second, a side effect of changing bus width and the consequent change in the amount of time spent in
floating-point overhead is an increase or decrease in overall performance.

From the tables in Appendix B, nominal floating-point overhead for Intel varies between 41% and
499% of total execution time. This overhead increases dramatically for narrower bus width. By reduc-
ing the bus width 50%, overhead increases more than 50% — as much as 60% — with an overall
increase in execution time of up to 30%. Conversely, doubling the bus width to 32 bits (which is what
has been done with the newer i80386/i80387) results in roughly 28% to 35% less overhead and a
speedup of at most 18%. Doubling the bus width again to 64 bits only provides an additional 4% to 6%
improvement in performance. Careful assembly language programming was only able to reduce
floating-point overhead by 1% to 7% compared to COMP versions. Figure 4-12 illustrates both the
changes in floating-point overhead and the relative execution time for the Intel system as a function of
bus width for the data in Table 4-15.

*Although some experts feel that the quality of code from contemporary compilers is no better, and in many
cases is significantly worse, than what was available a decade ago [Corb88, Henr88), others are convinced
that compiler technology is able to meet the challenge of high-speed, pipelined execution models
[Henn8S5, Wulf88].

*Some versions of the IBM PC use an 8-bit bus system with the Intel FPU.

Chapter 4 57

Table 4-15. Intel System Performance as a Function of FPU-Memory Bus Width
Program Version: COMP ASSM

Bus Width (bits): 8 32 64 8 32 64

% Exec Time for FPOv || 584% | 392% | 363% | 572% | 344% | 30.7%
GE Change in FP Ov Cycles || 56.4% | -28.2% | -36.6% | 68.0% | -34.0% | -44.3%
Speedup (+ by Nominal) 0.79 1.15 1.21 0.77 1.18 1.24
% Exec Time for FPOv || 57.0% | 38.0% | 35.1% | 540% | 313% | 29.3%
DP Change in FP Ov Cycles || 55.8% | -28.0% | -36.5% | 68.9% | -34.4% | -40.3%
Speedup (+ by Nominal) 0.80 1.15 1.20 0.78 1.16 1.20
% Exec Time for FPOv || 60.1% | 41.0% | 38.1% | 56.5% | 33.8% | 31.8%
PE Change in FP Ov Cycles || 56.1% | -28.0% | -36.3% | 68.1% | -34.0% | -39.7%
Speedup (+ by Nominal) 0.78 1.16 1.22 0.77 1.17 1.21

Program

This table shows how changing the bus width between the floating-point coprocessor and the
memory system affects system performance. As bus width changes, there are three effects to con-
sider: (1) the floating-point overhead as a percentage of execution time, (2) the net change in
floating-point overhead, and (3) the resultant change in overall execution time expressed as speedup
relative to nominal execution time. The nominal values for floating-point overhead as a percentage
of execution time for all programs and versions is given in Appendix B and Table 4-10, and is not
included here to make this table slightly simpler.

As an example, let’s examine DP COMP. From Table B-1, we find that 2388 of the total of 4968
execution cycles are floating-point overhead in the nominal case. By changing to an 8-bit bus, over-
head cycles increase to 3561, representing 57.0% of the total execution time (6248 cycles) and an
increase of 55.8% more floating-point overhead than the nominal case. The net result is that the
performance decreased 20% since execution time increased nearly 26%. Appendix B contains the
simulation results.

By increasing the bus width to 64 bits, slightly more than a 21% improvement in performance is
achieved for the Intel system. Although such an improvement is useful, it is important to determine the
cost of providing it. If we assume that the on-chip multiplexing necessary to fan-out the 16-bit bus for
the double-precision operands is roughly equivalent to what would be necessary for a 32-bit data path,
the only effective change would be the number of pads, since the intemal data path is 68 bits wide. The
nominal i80287 IC has 40 pads in a standard dual in-line package (DIP). Increasing the data bus to 32
bits would increase that to a minimum of 56 pads, but more than likely, a 68-pin standard PGA (pin grid
array). The silicon area consumed by the pads and associated drivers is roughly 10% of the chip
[Nave80]. Thus, the overall chip area would increase between 3.5% and 7% if all pads were bonded
out, and correspondingly, the chip yield would decrease slightly. Nevertheless, the improvement in per-
formance seems justified, if component package type and size are not significantly different. Also, the
non-concurrent mode of operation could provide another 10% to 15% improvement, with some small
savings in die size due to the elimination of some portions of the control logic needed to support paral-
lel operation. Many other factors would need to be considered in determining if such a change is
worthwhile.)

In Section 4.5.3.1 and Section 4.5.4.1 we consider the effects of cache service time and floating-
point operation time on the Intel system performance. Before doing that, however, we next consider the
effects of bus width on the Motorola and SPUR systems.

4.5.2.2. The Motorola System

Analogous to the discussion in Section 4.5.2.1, we present the effects observed by varying the data
bus width between the FPU and memory for the Motorola system here. To begin with, Table 4-16 sum-
marizes the experimental results shown in Table B-7 through Table B-12 in Appendix B.

For Motorola, the floating-point overhead varies between 26% and 43% of total execution time
when considering all versions of all programs and the nominal bus width (see Tables B-7 through B-12
in Appendix B). Reducing the bus width by 50% to 16 bits, the size of the Intel system, increases the

Chapter 4 58

COMP ASSM
Py GE Eom{ e GE
o 60%: o 60%1
\E, 50% 1 \EI 50% 1
R 40% N 40%
B 3091 E 309
D 20% L] L]) LS D 20% L] L L] v
8 16 32 64 8 16 32 64
BUS WIDTH BUS WIDTH
COMP ASSM
% 1.44 lé 1.4+
L 134 IF: 131
E
X 1.2 X 1.2
E 11 E 11
T 1.0 T 101
I
M 09 M 094
RN YD — . v . E s
8 16 32 64
BUS WIDTH BUS WIDTH

Figure 4-12. Intel FP Overhead and Performance vs. Bus Width.

For each version of each program on the Intel System, these figures illustrate (a) the absolute per-
centage of execution time that is spent on floating-point operation overhead, and (b) the relative ex-
ecution time compared to the nominal case. The vertical bar intersects each set of curves at the
nominal value for floating-point operation overhead and nominal execution time. As is evident
from the closeness of the curves, there is little difference between the different programs.

Table 4-16. Motorola System Performance as a Function of FPU-Memory Bus Width
Program Version: COMP ASSM

Bus Width (bits): 8 16 64 8 16 64

% Exec Time for FP Ov 61.9% | 46.2% | 33.0% 60.8% | 44.1% | 31.8%
GE Change in FP Ov Cycles || 209.6% | 46.0% | -213% | 214.0% | 433% | -20.3%
Speedup (+ by Nominal) 0.52 0.82 1.09 0.52 0.83 1.08

% Exec Time for FP Ov 649% | 50.2% | 36.9% 61.4% | 44.1% 32.1%
DP Change in FP Ov Cycles || 201.3% | 453% | -21.2% | 216.8% | 41.9% | -19.6%

Program

Speedup (+ by Nominal) 0.51 0.81 1.10 0.52 0.84 1.08

% Exec Time for FP Ov 51.8% | 31.0% | 23.0% 529% | 31.4% | 23.0%
PE Change in FP Ov Cycles || 229.5% | 31.3% | -149% | 244.0% | 33.3% | -15.5%

Speedup (+ by Nominal) 0.60 0.91 1.04 0.59 0.90 1.04

(Please refer to the caption on Table 4-15 for an explanation of the table entries.)

floating-point overhead by 31% to 46%, or between 31% and 50% of total execution time. This reduces
performance and increases execution time by 10% to 19%, depending on the program and version.

On the otherhand, increasing the bus to 64 bits like SPUR results in a performance increase
between 4% to 10% and a net decrease in floating-point overhead to about 23% to 37% of overall exe-
cution time. Figure 4-13 shows the influence of bus width on floating-point overhead and resulting per-
formance changes. It is apparent that fewer memory references (as is the case with PE) result in

Chapter 4 59

substantially less overhead associated with floating-point operations. In such cases, the width of the
path between the FPU and memory has less influence on performance — both positively and negatively.
A narrower bus does not degrade performance as much and a any improvements gained by a wider bus
width are lessened.

COMP ASSM
E 70%1 Pawnd e GE
o 60%1 o 60%1
Y 50%1 0%
N 40%1 R 40%
i 30% 1 i’ 309%
D om D 209
BUS WIDTH
ASSM
R 20 R 20
IE" 1.8 IF: 1.8
)Ff 1.64)é 1.61
C 141 C 141
T 124 T 129
E 107 M 10
BUS WIDTH BUS WIDTH

Figure 4-13. Motorola FP Overhead and Performance vs. Bus Width.

As with Figure 4-12, this shows how data bus width between the FPU and memory, floating-point
operation overhead, and relative execution time are interrelated for the Motorola system. By dou-
bling the bus width, less than 10% improvement in overall performance results. The vertical bar in-
tersects each set of curves at the nominal value for floating-point operation overhead and nominal
execution time.

The MC68881 is packaged in a standard 68-pin PGA. The intemnal data path is wide — 67 bits —
and is multiplexed for the fraction and exponent calculations. Increasing the bus width between the
FPCP and memory to 64 bits would increase that to 96 pins. Again, since the area consumed by the
pads and associated drivers is 7% of the current chip, overall chip area would increase by 3% to 5%.
On the other hand, to multiplex a 32-bit path on-chip would require the wide interconnection between
input pins and the holding register, which would consume a large portion of chip area. The net result
would be an increase on the order of 3% in chip area. Thus, the 4% to 10% improvement in perfor-
mance may well justify it. Naturally, the chip yield would decrease slightly with the larger chip. As
with the Intel system, whether that would be a wise decision depends on many factors and the influence
on the overall system.

Floating-point overhead varies over a much wider range of values for Motorola than Intel. As can
be seen from Figure 4-13, this comes mainly from the PE programs, where far fewer execution cycles
have been spent on floating-point overhead as noted earlier. This stems from the fact that PE causes
fewer memory references per loop iteration. In the next section, we consider the effects of varying the
data bus width on the SPUR system.

Chapter 4 60

4.5.2.3. The SPUR System

As with the Intel and Motorola systems, the influence of bus width on the performance of the
SPUR system is summarized in Table 4-17 based on the experimental results shown in Table B-13
through Table B-18 in Appendix B.

Table 4-17. SPUR System Performance as a Function of FPU-Memory Bus Width

Program Version: COMP ASSM
Program
Bus Width (bits): 8 32 64 8 32 64
% Exec Time for FP Ov 50.7% 340% | 214% 49.2% 29.5% 15.3%
GE Change in FP Ov Cycles || 633.3% | 241.5% | 80.6% | 1510.7% | 543.8% | 173.2%
Speedup (+ by Nominal) 0.53 0.76 0.90 0.48 0.73 0.89
% Exec Time for FP Ov 56.4% 413% | 28.9% 57.9% 35.2% 17.6%
DP Change in FP Ov Cycles || 3993% | 171.2% | 56.8% na na na
Speedup (+ by Nominal) 0.55 0.74 0.89 0.39 0.59 0.81
% Exec Time for FP Ov 26.6% 6.3% 0.0% 11.5% 0.0% 0.0%
PE Change in FP Ov Cycles na na na na na na
Speedup (+ by Nominal) 0.69 092 1.00 0.85 1.00 1.00

(Please refer to the caption on Table 4-15 for an explanation of the table entries.) Entries marked
“‘na’’ indicate where the nominal floating-point overhead was zero.

The SPUR system in its nominal form results in floating-point operation overhead of between 0% and
6% for optimized GE and DP, and is completely eliminated for both versions of PE. This is small com-
pared to both Intel and Motorola. By decreasing the bus width to 32 bits, floating-point operation over-
head can increase by as much as 173%, but it is still only 0% to 29% of total execution time, with a
reduction in performance of 0% to 23%. This shows that the low-cost protocol of transferring operands
between the SPUR FPU and memory, and concurrent loads and stores are only slightly affected by a
narrower bus width.

By reducing the bus width even further to 16 bits, the size of the Intel system, as much as a factor
of 5.5 times more floating-point operation overhead results, but with an average reduction in perfor-
mance of 23% (varying between 0% and 38% for all but DP ASSM). For some versions of some pro-
grams (see PE, for example), the change in bus width even to 16 bits only results in performance reduc-
tion of from 0% to 10%, even when considering the extremes of cache service time, as seen in Appen-
dix B. This is simply because there are fewer operand transfers per floating-point operation in PE and
consequently it is not as susceptible to the associated overhead. Figure 4-14 illustrates the floating-
point overhead and performance changes for SPUR with the various bus widths.

This figure shows how the SPUR system floating-point operation overhead and speedup vary with
different bus width and cache service times. The vertical bar intersects each set of curves at the
nominal value for floating-point operation overhead and 0.0% performance speedup.

It is clear from Figure 4-14 that floating-point operation overhead, which is largely a function of
bus width between the FPU and memory system, has a much wider variation in its contribution to
overall execution time than either Intel or Motorola. There are two reasons for this. First, since the
operations that give rise to floating-point overhead are decoupled from the arithmetic operations in the
SPUR architecture, overhead factors can be more readily ‘‘hidden’’ through the use of compiler optimi-
zations. As a consequence, in some instances nearly zero floating-point operation overhead results.
Second, since the SPUR implementation takes far fewer cycles to implement the programs than do
either Intel or Motorola, small variations in the number of cycles associated with overhead will appear
as significant fractions of the overall execution time giving rise to the large values in Table 4-17.
Related to this is the relarively long cache service time for SPUR. The faster cache speeds tend to
emphasize the effects of the floating-point operation overhead on overall execution, since the cache ser-
vice time overhead is small. This will be explored more fully in Section 4.5.3. On the otherhand, the
performance of the SPUR system holds up comparatively better than the other two architectures over
the span of bus widths considered.

Chapter 4 61
COMP ASSM
F 60% Poon{ . - GE
0 50% o 50% ——- DP
v 40% 1 v 40% 1 N PE
R 30% 1 R 30% 1 .\-.:;\‘\
Ié 20% 1 g 20% RN
-
A 10%1 A 10%1 *
D og P o ' ' B
16 32 64
BUS WIDTH
COMP ASSM
R 26 R 261
L L
E 224 77 GE E 221 GE
X . ——-- DP X \ ——-- DP
c 181 N, c 181 .
S — PE . — PE
T “ T S
I 1.44 N 1 144 Seen N
M ‘k.'.}_t\‘.. M ~~~~~~~~ ~\:~ :
E 10 . "“\'T E 10 r — ;
8 16 32 64 16 32 64
BUS WIDTH BUS WIDTH

Figure 4-14. SPUR FP Overhead and Performance vs. Bus Width.

Another factor to consider that benefits the SPUR system is the dedicated instruction bus between
the CPU and FPU. The commercial architectures rely on passing information in the form of commands
between the two processors, which can consume many bus cycles and add to the floating-point overhead
figure. Since the SPUR FPU decodes the instructions simultaneously with the CPU, cycles associated
with transferring commands or explicit control are eliminated.

The SPUR FPU is packaged in a 208 pin PGA. The useful area of the chip is roughly 11.5 mil-
limeters (452 mils) per side with pad and driver size of 200 by 545 microns. A 32-bit data bus interface
would result in a chip area reduction of less than 3%, and slightly more than 3% for a 16-bit bus. These
are minor changes in chip area that would result in major changes in overall floating-point performance.
When considering double precision floating-point operands and a low-latency interface as with SPUR,
the width of the data path is significant.

4.5.2.4. Summary — Data Bus Width

We have explored the interaction of the three floating-point unit interface architectures and several
alternative implementations of each architecture. In particular, we looked at the influence of data bus
width between the FPU and its memory system for each of the architectures, and the performance
effects of different configurations. Although it is unfair to look at absolute execution speed of each of
the modified systems — we still see a laige difference — if we consider the nominal performance of
each of the systems and observe the change in that performance with changing bus width, (also relative
to the nominal value) we make a simple relative comparison of each of the systems. Figure 4-15 shows
relative performance changes for each of the systems as data bus width is doubled, halved, and so forth.

As illustrated, generally the Intel system is hurt the most by a reduction in bus width. Conversely,
increasing the bus width results in a larger percentage gain in performance for Intel than the other sys-
tems. This stems largely from the many extra bus cycles needed to transfer instruction and operand
addresses to the i80287 FPU to allow concurrent operation, as explained in Section 4.4.5. If that were

Chapter 4 62

L3 CoMP 1.3 ASSM
1.21 129 - INTEL -
--— MOTOROLA &
114 1.1 &
— SPUR e
s 101 s 109
P P
E 091 E 091
E E
D 034 D 0381
U U
P o P 0
0.6 0.6
0.59 0.59
0.41 0.41
0.3 4= v v v v r 0.3 4= v ' v v v
0125 025 0S5 1.0 20 40 0125 025 05 10 20 40
RELATIVE BUS WIDTH RELATIVE BUS WIDTH

Figure 4-15. Performance as a Function of Bus Width.

This figure summarizes the variation in performance for the Intel, Motorola, and SPUR systems as
the relative width of the data bus between the FPU and memory varies.

not the case, relative performance would be more in line with the Motorola system.

Motorola is slightly less affected by changes in the bus width than Intel, but nevertheless, this fac-
tor can account for as much as a 20% reduction or 10% gain for a factor of two change.

SPUR is least affected by bus width changes overall. This stems from the fact that bus transac-
tions are relatively low-cost, no matter what the size of bus is. Even when the bus width is cut in half,
the running time of some SPUR programs is unchanged. The SPUR architecture encourages use of
register variables, allowing the specification of three distinct registers in one instruction. This helps to
minimize the amount of memory traffic needed to support typical computation.

From Table 4-3 and [Hans85], we again note that between 0.7 and 1.7 memory references per
floating-point operation are typical. This reinforces the fact that memory traffic can become a
significant factor in overall performance if the architecture of the system and its interaction with
memory are not critically evaluated and mechanisms designed to make that as efficient as possible. We
believe that the commercial FPU’s suffer as a result of the architecture and implementation constraints
we have identified and evaluated. Having considered the various effects of bus width on performance,
we now turn our attention to the influence of the cache memory on system performance.

4.5.3. The Influence of Cache Service Time

One of the primary considerations of commercial microprocessor-based systems is the basic cycle
time of the memory system. Due to the variability in cost of memory as a function of access time, low-
cost systems can be constructed if one is not particularly interested in attaining the absolute maximum
performance of the system. Such is usually the case for controller and fixed-function applications,
where interaction with low-speed devices may be the norm and only a modicum of processing power is
required. In such cases, it would be foolish to provide high-performance memory. On the other hand,
running simulations, developing algorithms, and general interactive processing always seem to need
more fast cycles than can be provided. In such cases, the cost of the faster-access memory is relatively
small when compared with the wasted time of the professionals using slow systems.

Chapter 4 63

Besides speed, many science and engineering applications demand large amounts of memory.
Computers have provided users with large virtual memories for years, and many workstation-based sys-
tems are no different. As a consequence of the requirements for both fast and large memory, a memory
hierarchy is employed in modem systems. It is desirable to have a memory that appears to be as fast as
the fastest memory components and yet as large as needed for the advanced applications. The cache
memory is at or near the apex of this memory hierarchy.

As a consequence of having multiple levels of memory with varying degrees of performance,
there may be substantially different latencies associated with memory access, depending on which
memory is servicing the request. Obviously, the cache design will influence the latency, depending on
such factors as block size, line size, memory technology, replacement strategy, associativity, and so
forth. Also, contention for memory resources in a multi-processor system can have some rather long
and unpredictable latencies associated with memory access as mentioned in Section 4.5.1. and dis-
cussed in [Gibs87]

In this section, we consider the effects of cache-service time on the performance of the floating-
point benchmarks run on each of the systems. The model used in this section is based simply on the
amount of time that the cache takes to fill a request. Admittedly, this is a somewhat arbitrary means of
making a comparison, for each system will be highly dependent on the processor cycle time, memory
cycle time, and other factors. Nevertheless, this provides an easy means of differentiating the systems
on the basis of this effect and the implementation details need not cloud the analysis.

From the tables in Appendix B, it is readily apparent that the differences in performance as a func-
tion of cache service time are quite small for the commercial systems and rather substantial for SPUR.
Cache service time plays a significant role in defining overall system performance for SPUR. The
cycles spent on servicing the cache are about the same as the number of cycles needed to execute a few
floating-point operations. The SPUR FPU implementation consumes only a small number of cycles to
perform floating-point instructions in comparison to Intel or Motorola. Consequently, the addition of
one or two cycles per loop iteration might easily reduce performance by 10% to 15% for SPUR. Thus,
the memory hierarchy design, including the on-chip and extemnal caches, is a prime consideration for
current and future single-chip microprocessor systems with single-cycle instruction execution rates.
Analogous to the previous discussion about floating-point overhead, Table 4-18 through Table 4-20 and
Figure 4-17 through Figure 4-19 illustrate the variations in overhead associated with the time to service
cache misses and the corresponding effects on overall performance of the three systems.

Chapter 4
Table 4-18. Intel System Performance versus Cache-miss Service Time
Versi Program P ter of Interest Cache-miss Service Time (nanosec.)
arameter o s
ersion | o eter o mnter 0] 300 | 600 | 1200 | 2400 | 4800 | 9600
GE % Exec Time for Cache Ov | 0.0% | 0.1% | 02% | 0.5% | 1.0% | 2.0% | 3.9%
Speedup (+ by Nominal) 1.00 1.00 1.00 1.00 | 0.99 0.98 0.96
COMP DP % Exec Time for Cache Ov | 0.0% | 0.1% | 02% | 0.5% | 1.0% | 1.9% | 3.7%
Speedup (+ by Nominal) 1.00 1.00 1.00 1.00 0.99 0.98 0.96
PE % Exec Time for Cache Ov { 0.0% | 0.1% | 0.1% | 0.3% | 05% | 1.0% | 2.0%
Speedup (+ by Nominal) 1.00 1.00 1.00 1.00 0.99 0.99 0.98
GE % Exec Time for Cache Ov | 0.0% | 0.1% | 03% | 0.6% | 1.1% | 2.2% | 43%
Speedup (+ by Nominal) 1.00 1.00 1.00 | 0.99 0.99 0.98 0.96
ASSM DP % Exec Time for Cache Ov | 0.0% | 02% | 04% | 0.7% | 14% | 2.8% | 54%
) Speedup (+ by Nominal) 1.00 1.00 1.00 | 0.99 099 | 097 0.95
PE %, Exec Time for Cache Ov | 0.0% | 0.1% | 0.2% | 04% | 0.7% | 1.5% | 2.9%
Speedup (+ by Nominal) 1.00 1.00 1.00 1.00 0.99 0.99 0.97
COMP ASSM
10% 1 10% 1
O GE O GE
A A
C 8% 4 c 89 1
——- DP
H H
E 6% 1 PE E 6%+
O 4% h "’,,4 0 4% A
v 4 v
H 2% ‘1// H 2%
D 0% v v L T ™ D 0% e
0 03 06 1.2 24 48 9.6 0 03 06 12 24 48 9.6
CACHE MISS TIME CACHE MISS TIME
COMP ASSM
B L % 1.1
L e GE L GE
X X
g ——- DP E
C
,}. PE // T
y I
P ‘/ M
E 10 — E 1o

0 03 06 12 24 48 9.6
CACHE SERVICE TIME

0 03 06 12 24 48 9.6
CACHE SERVICE TIME

Figure 4-17. Intel FP Overhead and Performance vs. Cache Service Time.

64

Chapter 4
Table 4-19. Motorola System Performance versus Cache-miss Service Time
Versi Pro p er of Interest Cache-miss Service Time (nanosec.)
TeS
ersion | frogram Arameter 0| 300 | 600] 1200 | 2400 | 4800 | 9600
GE % Exec Time for Cache Ov | 0.0% | 0.6% | 1.2% | 24% | 4.7% 9.1% | 16.6%
Speedup (+ by Nominal) 1.00 { 099 | 099 | 098 | 095 0.91 0.83
COMP DP % Exec Time for Cache Ov | 0.0% | 0.6% | 1.2% | 2.4% | 4.8% 9.1% | 16.7%
Speedup (+ by Nominal) 1.00 0.99 0.99 0.98 0.95 0.91 0.83
PE % Exec Time for Cache Ov | 0.0% | 0.6% | 1.2% | 2.4% | 4.6% 8.8% | 16.1%
Speedup (+ by Nominal) 1.00 0.99 0.99 0.98 0.95 0.91 0.84
GE % Exec Time for Cache Ov | 0.0% | 0.7% | 1.4% | 2.7% | 53% | 10.0% | 18.1%
Speedup (+ by Nominal) 1.00 0.99 0.99 0.97 0.95 0.90 0.82
ASSM DP % Exec Time for Cache Ov | 0.0% | 1.1% | 22% | 44% | 83% | 154% | 26.7%
Speedup (+ by Nominal) 1.00 0.99 0.98 0.96 0.92 0.85 0.73
PE % Exec Time for Cache Ov | 0.0% | 0.6% | 1.3% | 2.5% | 49% 9.3% | 17.0%
Speedup (+ by Nominal) 1.00 | 0.99 0.99 0.97 0.95 0.91 0.83
l COMP ASSM
30% 30% 1
c 7l C
A GE A
C C
H 20%q ~——DP H 20%1
E — PE E
O 10%1 O 10%1
v A\
H H
D 0% ¥ T T Y g T D 09, 4
0 03 06 12 24 48 96 0 03 06 12 24 48 96
CACHE MISS TIME CACHE MISS TIME
COMP ASSM
R 14 R 14
L L
E E 1.34
X X
& E 12
T T
I 1 1.14
M M
E E 1.0

0 03 06 12 24 48 9.6
CACHE SERVICE TIME

0 03 06 12 24 48 9.6
CACHE SERVICE TIME

Figure 4-18. Motorola FP Overhead and Performance vs. Cache Service Time.

65

66

Chapter 4
Table 4-20. SPUR System Performance versus Cache-miss Service Time
Versi Pro P rer of Interest Cache-miss Service Time (nanosec.)
ersion gram arameter of Tieres 0 | 300 | 600 | 1200 | 2400 | 4800] 9600
GE % Exec Time for Cache Ov | 0.0% | 3.8% 61% | 128% | 27.3% | 44.7% | 62.6%
Speedup (+ by Nominal) 1.00 | 0.96 0.93 0.84 0.70 0.54 0.36
COMP DP % Exec Time for Cache Ov | 0.0% | 7.8% | 12.5% | 20.6% | 34.4% | 50.5% | 66.9%
Speedup (+ by Nominal) 1.00 | 092 0.87 0.79 0.65 0.49 0.33
PE % Exec Time for Cache Ov | 0.0% | 0.0% 1.6% 8.8% | 22.5% | 39.6% | 58.1%
Speedup (+ by Nominal) 1.00 | 098 0.94 0.86 0.73 0.57 0.40
GE % Exec Time for Cache Ov | 0.0% | 2.2% 50% | 12.8% | 29.2% | 47.7% | 65.7%
Speedup (+ by Nominal) 1.00 | 096 091 0.82 0.67 0.49 0.32
ASSM DP % Exec Time for Cache Ov | 0.0% | 5.5% | 12.0% | 23.4% | 40.6% | 583% | 73.9%
Speedup (+ by Nominal) 1.00 | 0.88 0.81 0.71 0.55 0.39 0.24
PE % Exec Time for Cache Ov | 0.0% | 0.0% 0.0% 52% | 202% | 38.5% | 57.9%
Speedup (+ by Nominal) 1.00 1.00 1.00 0.92 0.77 0.59 0.41
COMP ASSM
C 80% 1 C 80%
A A
C 60%1 C 60%+
H H
B 40%1 E 40
0] 0
V. 20%+1 vV 20%-
H 'H
D om D on
0 03 06 1.2 24 48 9.6 0 03 06 1.2 24 48 9.6
CACHE MISS TIME CACHE MISS TIME
COMP ASSM
: :
AT . E 40 /
X X
- -
E 3.0 E 3.0
C C
T 201 T 01
I I 2
M M
E 1.0 E 1.0 * v v

0 03 06 12 24 48 9.6

CACHE SERVICE TIME

0 03 06 12 24 48 9.6

CACHE SERVICE TIME

Figure 4-19. SPUR FP Overhead and Performance vs. Cache Service Time.

4.5.3.1. Summary — Cache Service Time

For the commercial systems, cache service time is relatively unimportant. Even for the slowest
cache (9.6 microsecond service), the Intel system experiences only a 4% reduction in performance.
This simply stems from the fact that everything else in the system takes so many more cycles in propor-
tion; cycles spent waiting for the cache are completely insignificant. For a nominal value of cache time
between 1.2 and 2.4 microseconds, the degradation is virtually imperceptible.

For Motorola, the situation is about same. Under typical conditions, usually only a 2% to 5%
reduction in performance can be attributed to waiting for the cache. Even with the slowest cache, the
loss usually amounts to only about 15%, although in one instance the relative execution time is 37%

longer.

Chapter 4 67

As mentioned in Section 4.5.1, a low-latency, single cycle per operation system like SPUR will be
affected quite severly by the workings of the cache memory. As listed in Table 4-20 and illustrated in
Figure 4-19, a worst-case cache could reduce system performance by 75% compared to the no-miss
case. For a nominal cache time of 1.2 to 2.4 microseconds, the performance can be cut nearly in half. It
is also generally true that optimized codes are affected more by the cache service time.

The results of this part of our study are based on the most pessimistic assumption — at least one
cache miss for every block of operands (a 25% miss ratio). This provides an upper bound on the perfor-
mance reduction coming from servicing the cache memory. If algorithmic techniques are used to
increase the hit ratio, such as strip-mining or performing local-area calculations in total before moving
on, significant benefit can result. However, this should not be viewed as a recommended practice.
Clearly, keeping the cache service time to a minimum is of the utmost importance to high-speed sys-
tems and very likely presents one of the most formidable challenges to the systems designer. We next
consider the influence of operation time on system performance.

4.5.4. The Influence of Floating-point Operation Time

The final parameter to consider in our investigation is the actual floating-point operation times of
the floating-point instructions themselves. Until now, we have seen how certain features of the archi-
tecture and implementation have contributed to or detracted from good system performance. Certainly,
a key ingredient is the speed at which the fundamental operations are performed by the floating-point
execution unit.

Because there is such a wide variation in the number of cycles used by the FPU’s to implement
the operations (from as few as three cycles for SPUR’s FADD to hundreds of cycles for Intel’s FMUL),
in this analysis we consider changing the operation times by various factors, as we did in the case of bus
width. We vary the time consumed for the fundamental operations between one-eighth and eight times
their nominal rate — roughly two orders of magnitude. Tables 4-21 through 4-23 and Figures 4-20
through 4-22 show the results of this part of our experiment.

4.5.4.1. Summary — Operation Time

The Intel system keeps its floating-point unit busy about half the time. In some sense, this reflects
a balance with the CPU. On the other hand, it can be argued that roughly half the performance potential
is lost. By decreasing the basic operation time by half, the system performance improves by 32% to
37%. This is more than twice the improvement achieved by doubling the bus width to memory. The
same ratio holds true for a reduction in performance due to a half-speed execution unit. Thus, first
priority for use of resources in a newer version would be spent most profitably to improve the speed of
the basic operations. The 180387 does this.

However, as shown in Table 4-21 for a faster FPU, the amount of time that the FPU is busy
becomes a smaller fraction of the overall system time. This reflects the performance degradation
brought about by the overhead of the interface and data transfer protocols. If the i80287 were sped up
by a factor of two, fully 70% of all cycles would be spent in overhead. If it were to run at the speed of
the SPUR FPU, well above 90% of all cycles would be consumed in overhead! Clearly, the importance
of execution unit speed can not be minimized, but the imposition of factors related to the interface and
general architecture of the system can completely eliminate overall cost effectiveness. The system must
be viewed and designed as a whole in that regard.

The Motorola system is able to keep its floating-point coprocessor busy between half and two-
thirds the time for the nominal system. A 30% performance increase is obtained by doubling the speed
of the execution unit. However, the utilization of the FPU drops to 37%. Again, this is an artifact of
the overhead inherent in the style and implementation of the coprocessor interface in the system. If the
MC68881 speed were comparable to that of SPUR, nearly 90% of all cycles in programs like those
tested would be spent with the coprocessor idle. Even though the Motorola system exceeds the absolute
performance of the Intel system by a factor of three, it is equally susceptibility to the performance
bottlenecks of a cumbersome interface implementation. The MC68882 takes some steps to correct that,

Chapter 4 68
Table 4-21. Intel System Performance versus FP Operation Time
. p fIn Relative FP Operation Time
Version | Program arameter of fnterest 3 5s T 0.250 | 0500 | 1.000 | 2000 | 4000 | 8.000
GE %Exec Time for FP Oper 9.9% 185% | 314% | 47.8% | 64.7% | 78.6% | 88.0%
Speedup (+ by Nominal) 1.73 1.56 1.32 1.00 0.68 0.41 0.23
COMP DP %Exec Time for FP Oper | 102% | 18.6% | 31.5% | 48.1% | 64.9% | 78.7% | 88.1%
Speedup (+ by Nominal) 1.73 1.57 1.32 1.00 0.68 041 0.23
PE %Exec Time for FP Oper | 10.2% | 189% | 31.9% | 48.5% | 65.3% | 79.0% | 8383%
Speedup (+ by Nominal) 1.74 1.57 1.32 1.00 0.67 0.41 0.23
GE %Exec Time for FP Oper | 12.4% | 22.5% | 37.0% | 54.0% | 70.2% | 82.5% | 90.4%
Speedup (+ by Nominal) 191 1.69 1.37 1.00 0.65 0.38 0.21
ASSM DP %Exec Time for FP Oper 13.0% | 23.1% | 37.7% | 54.9% | 709% | 83.0% | 90.7%
Speedup (+ by Nominal) 1.93 1.71 1.38 1.00 0.65 0.38 0.21
PE %Exec Time for FP Oper | 122% | 223% | 36.5% | 53.6% | 69.8% | 82.2% | 90.2%
Speedup (+ by Nominal) 1.89 1.68 1.37 1.00 0.65 0.38 0.21
Table 4-22. Motorola System Performance versus FP Operation Time
Versi P P fIn Relative FP Operation Time
ersion | Frogram arameter of Interest [0 T 0.250 | 0.500 | L.000 | 2.000 | 4.000 | 8.000
GE %Exec Time for FP Oper 9.0% | 17.6% | 32.6% | 51.0% | 67.5% | 80.6% | 89.3%
Speedup (+ by Nominal) 1.39 1.39 1.27 1.00 0.66 0.40 0.22
COMP DP %Exec Time for FP Oper 75% | 14.7% | 28.4% | 45.6% | 69.5% | 77.0% | 87.0%
Speedup (+ by Nominal) 1.30 1.30 1.23 1.00 0.69 042 0.24
PE %Exec Time for FP Oper | 113% | 21.9% | 419% | 62.5% | 76.9% | 87.0% | 93.0%
Speedup (+ by Nominal) 1.38 1.38 1.34 1.00 0.62 0.35 0.19
GE %Exec Time for FP Oper | 113% | 162% | 37.5% | 56.8% | 72.4% | 84.0% | 91.3%
Speedup (+ by Nominal) 1.46 1.15 1.31 1.00 0.64 0.37 0.20
ASSM DP %Exec Time for FP Oper 93% | 18.1% | 359% | 59.3% | 78.5% | 89.3% | 90.3%
Speedup (+ by Nominal) 1.21 1.21 1.20 1.00 0.68 0.39 0.20
PE %Exec Time for FP Oper | 12.3% | 23.9% | 458% | 66.7% | 80.0% | 88.9% | 94.1%
Speedup (+ by Nominal) 1.41 141 1.37 1.00 0.60 0.33 0.18
Table 4-23. SPUR System Performance versus FP Operation Time
Version | Program Parameter of Interest Relative FP Operation Time
0.125 | 0.250 | 0.500 1.000 2.000 4.000 8.000
GE %Exec Time for FP Oper | 23.1% | 30.8% | 46.2% 73.7% 93.3% | 100.0% | 100.0%
Speedup (+ by Nominal) 1.46 1.46 1.46 1.00 0.63 0.34 0.17
COMP DP %Exec Time for FP Oper | 20.0% | 27.3% | 38.5% 64.7% 88.0% | 100.0% | 100.0%
Speedup (+ by Nominal) 1.70 1.55 1.31 1.00 0.68 0.39 0.19
PE %Exec Time for FP Oper | 28.6% | 42.9% | 71.4% | 100.0% | 100.0% | 100.0% | 100.0%
Speedup (+ by Nominal) 1.57 1.57 1.57 1.00 0.50 0.25 0.13
GE %Exec Time for FP Oper | 30.0% | 40.0% | 60.0% 87.5% | 100.0% | 100.0% | 100.0%
Speedup (+ by Nominal) 1.60 1.60 1.60 1.00 0.57 0.29 0.14
ASSM DP %Exec Time for FP .Oper 30.8% | 42.9% | 62.5% | 100.0% | 100.0% | 100.0% | 100.0%
Speedup (+ by Nominal) 1.69 1.57 1.38 1.00 0.50 0.25 0.13
PE %Exec Time for FP Oper | 40.0% | 60.0% | 83.3% | 100.0% | 100.0% | 100.0% | 100.0%
Speedup (+ by Nominal) 2.20 2.20 1.83 1.00 0.50 0.25 0.13

as will be mentioned in the chapter summary.

Finally, the SPUR FPU is busy nearly 90% of all available cycles in its nominal corfiguration.
By reducing the speed by one-half, performance would suffer greatly — a 44% reduction. On the other
hand, if basic operation speeds increased by a factor of two, better than a 50% increase in overall perfor-
mance would result, with utilization still at a very high 60%. This illustrates the robustness of the inter-
face design. There is room to accommodate future improvements in technology without unacceptable
side effects in terms of wasting resources. By going to essentially a single cycle per operation speed,
about an order of magnitude increase, the SPUR FPU would achieve about a 70% performance better-
ment with the FPU busy only 29% of the time. At that point, other strategies would need to be

Chapter 4

R R
i i
L
- 4.0
E 40)Fz
X 4 4
E 3.0 I(:‘: 3.0
C
1 2.0
T 2.0 },
I - 4
M 10 m 10
E 0.0 L] v v v L \j E 0.0 v L) L] ¥ v v
J25.25 5 1 2 4 8 2525 5 1 2 4 8
REL FP OPERATION TIME REL FP OPERATION TIME
Figure 4-20. Intel FP Performance vs. FP Operation Time.
R COMP R ASSM
E E
L 5.09 L 507
E - E L
x 40)é 4.0
E 4 4
& 3.0 ¢ 3.0
T 2.0 T 2.01
M 107 M 104
E oo ——ep———— E 0o ——r—r
d2525 5 1 2 4 8 d2525 5 1 2 4 8
REL FP OPERATION TIME REL FP OPERATION TIME
Figure 4-21. Motorola FP Performance vs. FP Operation Time.
R ASSM
lé 8.01 COMP E 8.01
L L
E E
X X
E E
C C
T T
I I
M M L
B E 0t
2525 5 1 2 4 8 A2525 5 1 2 4 8
REL FP OPERATION TIME REL FP OPERATION TIME

Figure 4-22. SPUR FP Performance vs. FP Operation Time.

69

employed to achieve the performance potential in such a fast device. Chapter 6 discusses the ideas

behind pipelined function units and looks briefly at the architecture of a pipelined floating-point unit.

4.6. Chapter Summary

As time passes, it is inevitable that faster floating point coprocessors will be built. For compatibil-
ity reasons, history has shown that current and future products are largely influenced by past ones.
Thus, the Intel i80387 coprocessor, even though it has been re-engineered, is a downward-compatible
device and complies with the constraints imposed by the general architecture of Intel systems and many
of the implementation decisions made in the earlier i8087 and 180287 [Inte87, Stec88]. Although in
some cases, it can perform basic operations two to three times faster than the 180287, it is likely, based

Chapter 4 70

on the analyses reported here, that overall performance will still largely be a function of other system
and interface parameters.

Likewise, the Motorola MC68882 is compatible with the same family of microprocessors and per-
forms the same functions as the earlier MC68881. For software and many other reasons, commercial
systems can not afford to depart from a product once it is established. In the case of the MC68882, the
major improvement is in the interface. Rather than couple floating-point operand transfers with the
floating-point instruction set (which requires that the CPU stall until a previous operation is done, even
if only moving data), there is now a separate part of the interface dedicated to the loading, storing, and
conversion of operands. Nevertheless, all transfers still pass through CPU registers, requiring at least
twice as many cycles as would be necessary otherwise. This is an artifact of the current implementa-
tion, and there is no reason to believe that a future version would not allow direct loads and stores
from/to memory. This would naturally require some mechanism to be able to restart an instruction after
a memory fault.

As we have seen, if the speed of floating-point coprocessors increases and coprocessor interfaces
remain the same, it is possible to achieve minimal overall improvement in performance while letting the
fast coprocessor remain mostly idle. This illustrates that current coprocessor interfaces will be less
effective as technology provides us with faster components. It also shows that some architectures have
a built-in unavoidable overhead that will eventually lead to a substantial limit to performance. This
situation leads us to believe that new coprocessor interface architectures will be necessary for future
generations of VLSI computers.

We believe that the SPUR floating-point coprocessor and its interface is a step in the right direc-
tion. It minimizes interaction with the system and employs efficient algorithms and mechanism to
implement the basic functions. It has predictable performance, adheres to the IEEE standard, capital-
izes on a synchronous interface with the rest of the system, and maximizes parallelism in many ways.
In subsequent chapters, we explore other coprocessor applications to see how well this type and style of
interface scale to other applications and processing functions.

<This page is intentionally blank.>

71

Path Optimization Coprocessor
Architectures

5.1. Introduction and Overview

There are many problems in engineering, physics, chemistry, economics, operations research, and
other fields that deal with optimization. In mathematics, optimization considers the problem of finding
or approximating a point that gives an optimal (minimal or maximal) value to some function — called
the objective function — subject to some additional conditions (called constraints). Typically, optimi-
zation problems fall into one of two broad categories: static optimization (often called mathematical
programming) or dynamic optimization. Static optimization is concemed with all forms of time-
independent optimization. Dynamic optimization is particularly concemed with models that deal with
moving objects where the time variable enters into the optimization. Dynamic Programming is related
to dynamic optimization and is very effective for handling multistage decision processes [Bell65]. This
chapter deals with the application of dynamic programming optimization to path planning and considers
coprocessor architectures as alternatives to time consuming software algorithms or expensive, stand-
alone hardware implementations.

In Section 5.2 we review some common optimization methods and related applications. The gen-
eral notions involved in path planning are discussed in Section 5.3, including some broad performance
requirements. Section 5.4 considers the direct application of optimization to finding the shortest path,
and discusses both brute-force and intelligent algorithms. Section 5.5 outlines the results of our work
simulating various algorithms and characterizing their performance. The effects of random data versus
typical terrain data sets are then considered, along with data coherence, operand size constraints, and
algorithm complexity. Section 5.6 discusses several implementations of the algorithms with emphasis
on kemel-function coprocessors. Finally, Section 5.7 discusses the results of our research on path
optimization showing that a VLSI path optimization coprocessor can achieve roughly two orders of
magnitude improvement in performance over software for a modest cost.

Chapter 5 72

5.2. Optimization Methods

The general problem of solving a system of non-linear equations can often be realized with an
equivalent optimization problem using a least squares solution [Denn83]. The method of steepest des-
cent, also known as gradient method, uses an iterative algorithm to minimize real valued continuously
differentiable functions. Newton’s method for solving a system of equations can be modified to an
optimization method for certain functions; they must be twice continuously differentiable and the
matrix of all second order partial derivatives must be invertible at every iteration point.

Combinatorial analysis is the mathematical study of the arrangement, grouping, ordering, or selec-
tion of discrete objects, usually finite in number [Lawl76]. Combinatorial optimization deals with
finding the best such arrangement. Some methods of optimization used in various aspects of computer
aided design (CAD) work involve the general class of probabilistic hill climbing algorithms [Rome84],
for such things as placement of VLSI modules [Caso86, Mitr85], or routing using simulated annealing
[Kirk83]. Another application is found in automated stereo perception [Amo83]. Using a modified
Viterbi algorithm [Vite79], the maximum similarity path rather than a minimum cost path is deter-
mined.

Many problems involve finding the shortest path possible in a directed, acyclic graph from a
specified origin to a specified destination. They are often considered to be the most fundamental and
important of all combinatorial optimization problems. The application of methods to this problem (path
planning and optimization) will serve as a case study for this chapter.

5.3. Path Planning Overview

The problem of path planning can be stated simply: given an environment represented in some
form, a start specification and a goal specification, determine a route from start to goal within the
bounds of some constraints. For example, given the general environment of the greater Bay Area
represented with a road map, start in San Francisco and go to San Jose. Explicit constraints may
include travel by automobile and travel time less than two hours. Possible routes are certainly a func-
tion of direction (generally, heading south is a good idea), distance (the scenic route may impose a
rather excessive average speed), fuel level and consumption rate, time of day (commute-hour grid-lock
may make the goal completely impossible within the constraints), weather, roads and freeways avail-
able (construction detours need to be avoided), and so forth. Also, other implied constraints may obvi-
ous — avoid obstacles, follow roads, no cross-country excursions, and so forth. Determining an
optimum route is a complex function of all the relevant variables.

The application of computer technology to path planning results from special needs and cir-
cumstances — fast-moving autonomous vehicles, indoor and outdoor intelligent robots, dangerous or
toxic environments, and so forth. Generally, computerized path planning consists of a hierarchy of
tasks. At the highest level, broad goals are specified and general constraints are imposed. Artificial
intelligence approaches then use abstract representations of the area of interest and reason about objects
in that area, determining a sequence of operators to transform an input state space into a goal state.
These use the concepts of scripts, plans, goals, semantic meaning, and so forth [Shan77, Wile83].

A lower level in the task hierarchy is the process of determining the actual cost of the shortest or
optimum path between two points. The area might be conceptually represented as a two-dimensional
grid, with all constraints combined into directional cost differences, represented by arcs between adja-
cent points, that are used to calculate path length. The collection of values representing the cost differ-
ences are essentially digital maps of the area.

This chapter considers the second of these two tasks — computing the shortest path between two
points in an area of interest, given the directional cost differences between points in the area. We call
this rectilinear grid path planning.

Chapter 5 73

5.3.1. General Path Planning Functions

There are many operations involved in calculating the shortest path between two points. These
can be grouped into three main functions:

e cost calculation,

e path optimization, and

e path determination.

The cost calculation is concemed with how all relevant variables are combined to produce the
directional cost differences for the area of interest. Such factors as distance, elevation, energy con-
sumption, travel time, hazards, and so forth may all contribute to the cost of going from one point to
another. Figure 5-1 is a simple directed graph representation of a two-dimensional area with vertices
representing particular points in the area and weighted edges representing the costs to travel between
points in the area.* We refer to this as directed graph G. Each vertex of G has eight outward-directed
edges weighted by the costs to travel to neighboring vertices. These edge weights are the directional
cost data, and the collection of directional cost data for a given direction (i.e., North, South, East, and
so forth) is referred to conceptually as a directional cost map (DCM) for that direction. There are eight
DCM'’s, one for each of the points of the compass and the half-angles in between. DCM values can
either be precomputed, or computed on-the-fly for certain constrained problems.

)’((l ((0

I) (0); (I

Figure 5-1. Directed Graph Representation of a Two-Dimensional Area.

The circles in this figure represent vertices and the arcs represent costs of a directed graph represen-
tation of a two-dimensional area. The vertices have been identified by compass points N, NE, E,
and so forth, relative to the center cell, designated CC. We use the term cell interchangeably with
vertex in reference to rectilinear array-structured graphs.

The second function, path optimization is concerned with finding the minimum cost path from a
particular starting vertex to a goal vertex. The directional cost data provided by the cost calculation
function serve as input, and the path optimization process yields a cost map, containing the cost from
the starting vertex (and probably other vertices) to the goal vertex of G. Some grid path planning algo-
rithms produce a total cost map (TCM)** by computing minimum cost paths from all vertices to the
goal vertex. Each TCM value represents the total cost to travel from that vertex to the goal vertex. Fig-
ure 5-2 shows a small portion of a TCM and the DCM’s used to compute it.

Once path optimization yields the TCM, the third step in path planning is path determination,
which is simply the process of enumerating the minimum cost path from the selected starting vertex to

*We use the term vertex interchangeably with grid point and edge interchangeably with directional cost,
weight, or length.
**We will use the term TCM interchangeably with reference to graph G .

Chapter 5 74

43 66 27 136 S 16 123 36 64 98 93 77

S0 42 260 (13 84 121 (62 8 47! 87 24 T2
157 86 66 i34 95 91 i94 57T 93 i34 20 6l

SE N\ i s l L swy/ W —

45 64 18] 87 25 590 (59 80 7 {27 20 23

52 57 700 is4 36 71 (90 29 17} (98 44 67

35 64 521 187 38 7| i53 79 19 {18 45 74

(2) DCM Data (b) Solved TCM

Figure 5-2. DCM Data Sets and Resulting Portion of a Fully-solved TCM.

This figure shows a small part of a total cost map (TCM). Part (a) shows the eight directional cost
map (DCM) data sets and Part (b) the TCM with the path from each vertex and the edge costs to the
goal vertex shown. Each encircled number represents the total cost to travel from that point in the
area to the goal point. The name of the DCM supplying each edge cost value is shown in
parentheses.

the goal vertex. This can be done either by (1) finding the DCM value that is equal to the difference
between the current TCM value and appropriate TCM value at a neighbor vertex, continuing in a recur-
sive fashion, or (2) retaining the direction of the near-neighbor vertex that is included in the minimum-
cost path of the TCM during initial calculations, obviating any further computation to enumerate the
path itself. In this latter case, simply following the pointer chain is all that is needed to determine the
path. However, extra storage is required to maintain the direction pointers. In any case, the final path
may be represented in a vector or an ordered list of vertices, a linked list, or some other suitable struc-
ture.

Having identified the three basic functions of path planning and before considering the details of
several algorithms involved in implementing path planning functions, we briefly consider overall per-
formance to define the scope of our research.

5.3.2. General Performance Requirements

Let N represent the number of grid points along one dimension of a two-dimensional grid
representation. For N = 512, the 512-by-512 TCM contains 5122 =256K elements, and refer to this as
a 512-point TCM. For a real-time path planning system, each of the three major functions discussed in
Section 5.3.1 must achieve real-time performance. The definition of real-time depends on the resolution
of the data sets, the effective rate at which the data sets or goal points change, or on some system-
defined update rate. For example, given an initial data set, the minimum-cost path can be determined.
Then, if the system is required to continually recompute the minimum-cost path with current position as
the starting point, the rate at which the TCM must be updated depends on how quickly the system
moves to a neighboring point. If the grid represents a collection of contiguous squares with resolution,
say, 10 meters per side, and total cost to the goal is the same everywhere within the square, then a vehi-
cle traveling at the rate of 20 miles per hour must update its TCM once every second. An aircraft may
travel at many hundreds of miles per hour through a grid of much courser resolution, and still have a
once-per-second update rate. Likewise, if the goal point or any directional cost data change, a new path
must be recomputed immediately. For the sake of the work reported here, we assume that solving the
TCM in approximately one second defines real-time. This correlates with other contemporary work
[Paro85].

Chapter 5 75

Cheng reports that the cost calculation in a uniprocessor software implementation typically
requires 15% to 25% of the total path planning time [Chen86], and is repeated each time a constraint
changes or new input data are available (resulting in new DCM values). The second function, path
optimization, requires 60% to 75% of the total path planning time, and is repeated as often as required,
described above. Finally, path determination consumes roughly 1% to 10% of the total path planning
time. The time consumed for the entire process can be several minutes, even for small problems, and is
to a large degree dependent on either the data (that depends on the algorithms used) or the complexity
of the cost-generating function. Thus, uniprocessor software solutions are two to three orders of magni-
tude too slow.

Multiprocessor implementations of just path optimization using commercially available systems
achieve orders of magnitude improvement in performance over sequential computer systems [Lind86].
Nearly linear speedup is reported for various configurations of the Butterfly multiprocessor system, for
example. But even the best of these approaches is still about 100 times slower than the one-second
elapsed time needed for real-time path planning. Also, such implementations are not very cost effec-
tive, considering the large number of processor nodes needed. Table 5-1 reports results of experiments
using uniprocessor and multiprocessor configurations for real-time path optimization and is representa-
tive of the software state of the art for 512-point TCM’s.

Table 5-1. Path Optimization Performance

(512-by-512 TCM, recent software implementations)
CPU System Convergence Time

DEC VAX 11/780 600 sec.

BBN 5-node Butterfly 510 sec.

Pyramid 300 sec.

BBN 10-node Butterfly 255 sec.

BBN 20-node Butterfly 129 sec.

BBN 40-node Butterfly 63 sec.

This table shows results reported by [Lind86] for software implementations of the path optimization
function for a 512-by-512 TCM. These results suggest linear improvement in performance with in-
creasing number of nodes for the Butterfly implementation.

Each of the three path planning functions is a candidate for special-purpose hardware assistance.
However, the cost calculation can be precomputed for the area of interest. This calculation has inherent
parallelism that lends itself to the simple application of multiple processors to improve performance.
The path determination function is rather simple and demands the least processing time (less than 1%
of total time, in many cases). These two functions do not constitute the major portion of the processing
time in path planning and consequently are not considered explicitly for coprocessor implementations
in this dissertation. Instead, we focus on the most time consuming and computationally intensive aspect
of path planning — the path optimization function — and architectural issues related to its implementa-
tion.

Briefly, results of the studies reported in this dissertation show more than an order of magnitude
improvement over the results reported by [Lind86] for software, and substantially more improvement
for coprocessor architectures. The improvements come from (1) the efficiencies afforded by clever
algorithms and (2) the speed of a specialized but simple hardware coprocessor with function units dedi-
cated to the most often occurring and time consuming portions of the algorithms.

In the next sections, we discuss the basic definitions and concepts involved in path optimization.
We describe several algorithms and consider the interaction between the fundamental operations of the
algorithms and the underlying data structures used in their implementation. We consider two funda-
mental techniques used to determine shortest paths — Dijkstra’s Algorithm and scan-based algorithms

Chapter 5 76

5.4. Path Optimization

The edge weights of graph G can be a complicated mathematical function of many variables —
distance, elevation, time, visibility, fuel consumption, and so forth. But, given those weights, it is a
simple matter to determine the length of a path between any two vertices in a directed graph.* For-
mally, for directed graph G, composed of the set of vertices V and the set of edges E between vertices

with weights W, the weight of a path P from vg to v, including vertices vq, vy, . . . , v is the sum of
the weights of the edges of P in the graph between v and v, and is denoted W (P) in Equation (5-1):
k-1
WP)= 3 Wivia) (-1
i=0

As stated earlier, the objective of path optimization is to find the minimum cost to travel from one point
in an area of interest — the source — to another point in the same area — the goal. The path from v to
v is a shortest path from v to v if there is no other path from v to v, with lower weight. Finding
this path is termed the shortest-path problem for directed graphs in the literature [Dijk59].

Lawler [Lawl76] discusses several shortest-path algorithms, including (1) a computational method
due to Floyd and Warshall that computes shortest paths between all pairs of nodes, (2) the Dreyfus
method, used for finding the Mtk shortest path between two specified vertices, (3) the Bellman-Ford
method of successive approximation or relaxation procedures, and (4) Dijkstra’s Algorithm. In general
shortest paths must satisfy Bellman’s equations [Bell58].

If we let

w; ; = the weight (length) of the edge between vertex v; and v; if it exists, +eo otherwise,
l; = the length of the shortest path from the source vertex v to vertex j.

Then, for a collection of n vertices in directed graph G :

= 0 (the length of the path from vertex v to itself is zero),
I, = the length of the shortest path from vertex v to vertex v;, and
 =min{l, +w,;} k#j,andj = 1,2, .., n-1). The solution of Bellman’s equations for the gen-
eral case is illustrated in Figure 5-3.

Figure 5-3. Bellman’s Shortest Path Tree.

Solving Bellman’s equations in general yields an outward directed tree of shortest paths from the
source node (vertex V) to any arbitrary node. By similarity, the shortest paths from each arbitrary
node to a goal node yields an inward directed tree.

In terms of complexity, if all we want to do is determine the sequence of vertices that are con-
tained in a path from the source to the goal, the problem is O (n,), n, being the number of edges in G .
When finding the shortest path, there is no reason to suppose that more than O (n,) time should be

*For this and subsequent discussions, we use the terms cost and length synonymously with edge weight.

Chapter 5 77

required, but no such algorithm is known. It is often the case that finding the shortest path between two
particular vertices is all that is desired. Nevertheless, no known algorithm is more efficient in the worst
case than the best single-source algorithm, Dijkstra’s Algorithm for shortest paths, described in the next
section.

5.4.1. Dijkstra’s Algorithm

Using the nomenclature developed previously, Dijkstra’s Algorithm for directed graphs consisting
of positive weights between vertices finds shortest paths from the source (vertex vg) to other vertices in
order of increasing distance (cost) from v,. It stops when it reaches v,, the goal vertex, or can be
modified slightly to find the set of shortest paths from v to every other vertex in the set.

The process is as follows: the value of every vertex in graph G represents a cost and is initially set
to infinity (or the largest integer value that can be represented in the computer for software implementa-
tions). This represents an infinite cost to travel from the source vertex to any other vertex in the graph.
The source vertex value is set to zero, representing no cost to travel to itself. The source vertex
becomes the initial solution set, S. The algorithm then finds the next vertex of G that is not in S that
forms the next shortest path from the source. This process is repeated and the solution set S grows in
an outward-spreading fashion until the specified goal vertex is reached (or all vertices of graph G are
included in the solution set S, if the entire set of shortest paths is being calculated). This process is data
dependent. If the goal vertex is located next to the source vertex, for example, the first few additions to
the solution set — a maximum of eight tries — finds the goal vertex, and the algorithm terminates. A
formal statement of Dijkstra’s shortest path algorithm follows. The interested reader is referred to
[Aho76] or [Baas78] for the proof.

Given: a directed graph G =(V, E), a source voe V, and a function / for edge weights between
vertices constrained to nonnegative reals. Let /(v;,v;) be +eo if [(v;,v;) is not an edge, v; #v;, and
iv,yv)=0.

Output: For each v € V, the minimum over all paths P from v, to v of the sum of the weights
of the edges of P.

Method: Construct a solution set § with SV such that the shortest path from the source to each
vertex v in S lies wholly in §. An array D [v] contains the cost of the current shortest path from
v passing only through vertices of S. This approach can be expressed in pseudo-code shown in
Figure 5-4.

Although Dijkstra’s Algorithm is referred to as a single source algorithm, if the sense of direction
is reversed, an entirely equivalent algorithm results. In this case, a goal vertex is given rather than the
source vertex. Rather than finding the costs from the source to other vertices in the set, the costs from
all other vertices in the set to the goal vertex are found. This modified algorithm operates in the same
fashion, with the same complexity, but with the sense of direcrion reversed, and thus becomes a single
sink algorithm. This modification is useful for path planning situations where the specification of a goal
point rather than a starting point is often the case. In the remainder of this dissertation, we assume that
paths to a specified goal are to be found.

Dijkstra’s Algorithm provides the theoretical and computational basis for the problem of path
optimization. In practice, sometimes iterative techniques are used with highly-specialized hardware to
do the path optimization function. The following section discusses such scan-based algorithms.

Chapter 5 78

The algorithm:
begin
1 Sevgs
2 D[Vo] «0;
3 foreachv inV - {vg}doD[v] « [(vo,Vv);
4 while S 2V do
begin
5 choose a vertex w in V — S such that D {w] is a minimum ;
6 addw to S ;
7 foreachv inV =S do
8 Dv]=MIND[v},D[w]+I(w,v))
end
end

Figure 5-4. Dijkstra’s Shortest-path Algorithm.

If V contains n vertices, steps 1-3 are O (n). Step 5 as well as stcps 7-8 are O (n). The outer loop,
steps 4-8, is O (n), yielding overall algorithm complexity of O (n 2). Alternative search and sort
methods enable an O (Ig n) minimum selection in step S. This is the key to substantially improved
performance. A linear sort is several orders of magnitude less efficient (see Section 5.5.2).

5.4.2. Scan Algorithms

As illustrated in Figure 5-1 above, each vertex has eight neighbors with associated from- and to-
neighbor costs, for a total of 16 edges incident to each vertex. To determine the minimum cost for any
vertex relative to the goal, eight of these edge-weighted paths and the associated neighbor vertex values
need to be evaluated. If the problem is single sink, the incoming edges are the ones of interest, and
vice-versa for single source.

For scan-based algorithms, each vertex is considered in turn, with no particular regard to where
the source or goal vertices are located. The minimum cost at each vertex is determined by comparing
its current value with the eight values calculated by adding the appropriate edge weight to each near-
neighbor vertex value. The current vertex value is replaced with the minimum (least cost) value calcu-
lated. Then, the next vertex is considered. This continues until the values in all vertices converge to a
final TCM solution (i.e., each vertex has reached its final value and no further changes occur). At this
point, the graph G represents a TCM and contains the entire set of shortest paths from all vertices to the
goal. During the process, minimum cost values are propagated away from the goal to each cell in the
TCM. A sweep is defined as one complete iteration where all vertices of G are visited at least once.

The graph G is very regular and highly interconnected. Overhead associated with a linked list
representation of G or the directional cost maps can be prohibitive in space for large values of N. A
scan-based algorithm for determining shortest paths can capitalize on the regular structure of graph G
and the DCM data sets. Cheng and Linden [Chen86,Lind86] both describe scan-based, brute-force
methods to determine minimum cost paths that employ parallel and pipelined techniques. The basic
approach for these techniques using the nomenclature of Dijkstra’s Algorithm is shown in Figure 5-5.
The eight near-neighbors of vertex v are referred to as vyyg in the pseudo-code.

Chapter 5§ 79

The algorithm:
begin
1 foreachv inG do G [v] & +oo;
2 Gvgel «0;
3 repeat
4 for each vertex v in G do
5 Glvl= M]N(G vl,G [VNNR 1+ DCM [VNNR D
6 until no more changes in G
end

Figure 5-5. Scan-based Shortest-path Algorithm.

If the TCM contains 7 grid elements (vertices), step 1is O (n). Steps 5-6 are O (n) with the outer
loop steps 3-6 being O (n) in the worst case, for a total complexity of O (n) This compares to
Dijkstra’s Algorithm of O n(lg n) for best-case sorting methods.

It is clear that the operations performed at each vertex are the same as those performed in
Dijkstra’s Algorithm. The main difference is the order in which vertices are considered. Scan-based
algorithms simply follow a fixed pattem. For example, by starting with the upper left-hand corner ver-
tex (assuming some rectilinear grid topology), the vertex is minimized with respect to its neighbors.
Then the neighbor vertex one step to the right is considered; and so on, until the row is complete. Then
the second row starts with the left-most vertex directly below the upper left-hand comer vertex. Again,
all vertices in the row are minimized in sequence. Then comes the third row, and so on. The process
continues until the very last vertex (the lower right-hand comer) is reached, completing one sweep.
This is analogous to the simple raster-scan pattern used to move the beam in electronic video display
terminals.

This scanning process leaves several unanswered questions. Is a simple raster scan sufficient?
Are there any advantages to scanning in a reverse direction part of the time? Does it matter where the
scanning begins relative to the specified goal point? From the literature, we find that the rate at which a
solution is achieved is not only data dependent for scan-based algorithms, but also scan-algorithm
dependent. Figure 5-6 illustrates several scan-based algorithms that we explore in our research.

Algorithm No. 1 is the simple raster scan described previously. It is probably the most obvious
scan-based technique to consider. Algorithm No. 2 modifies No. 1 slightly by starting every other
sweep at the bottom of the array instead of the top. This is done to eliminate the potential bias of
sweeping only in one direction. Algorithm No. 3 is like No. 2, but scans each row twice — once for-
ward and once in reverse. This technique is evaluated to determine if immediate feedback has a posi-
tive influence on convergence rate that justifies doubling the amount of work per sweep (twice as many
cell checks per row than the previous algorithms). Algorithm No. 4 is a variation of No. 2, where every
other sweep begins at the bottom but scans in the opposite direction. This method determines if the sin-
gle scan direction causes slower convergence, and yet reduce the amount of work that is needed with
No. 3.

Algorithm No. 5 modifies Algorithm No. 3 slightly by using boustrophedonical scans, alternat-
ingly starting at the top and at the bottom. This results in an equal number of cell checks per sweep as
the other scanning algorithms, but eliminates the potential single scan-direction bias. Algorithm No. 6
is a variation of No. 4, but flipping the starting point comers for each group of two sweeps to determine
if convergence rate is affected. Algorithm No. 7 is the basis of the work discussed in [Lind86] and
scans in all four directions. It uses two starting points, the upper left and lower right corners, to begin
each pair of scans. Scanning top-to-bottom and bottom-to-top completely eliminates any bias that
comes from the strict left-to-right or right-to-left scanning of all previous algorithms and is evaluated to

Chapter 5 80

o~ e e
[U Y W D —0

g No. 2 Alg No. 3 Alg No. 4

“@@"?* I

AlgNo. 8 AlgNo.9
Figure 5-6. Scan-based and Other Sweeping Techniques for Path Optimization.

This figure illustrates the various scanning techniques. The sweep number in sequence is shown in-
side the small circle, with the inner loop scanning direction designated with the darker arrow, and
the outer loop sweep direction with the lighter arrow. For example, Algorithm No. 7 scans four dif-
ferent directions, the first of which is like a video display: raster scanning left-to-right and sweeping
top-to-bottom.

quantify that effect, if observable. Algorithm No. 8 is a combination of No. 4 and No. 7 and uses all
four comers as sweep start points, alternately choosing between top and bottom as well as right and left
comers. Again, we consider this technique to determine if No. 7 is less efficient because it uses only
two starting points. With Algorithm No. 9, strict raster-like scanning is no longer used. In this case, a
spiraling out process around the goal point drifts in an outward direction in concentric circles. This
technique should provide the most efficient means of spreading minimum-cost information quickly,
since the most recently minimized values will be pulled along in the direction of the spiral.*

The process of finding a minimum cost path is also data dependent for scan-based algorithms.
Usually, many sweeps are necessary to converge. However, if the DCM data are the same for all direc-
tions, any scan algorithm would require only a few sweeps to find the solution. Also, different scan-
based techniques may have different convergence rates independent of input data. One would intui-
tively expect to propagate the minimum cost values toward the edges of the graph, away from the goal
vertex, by scanning in the four possible directions: left to right, right to left, top to bottom, and bottom
to top. However, as will be shown in Section 5.5, the direction of the scan is not the primary factor in
determining convergence. Rather, it is the direction that minimum-cost information is pushed or pulled
during the calculation that allows convergence. The scan direction merely facilitates this process.
Also, to converge, some scan-based algorithms require more than one sweep without any changes. This
stems from the fact that the minimum-cost information propagates in a direction influenced by the scan-
ning technique. It is possible that a vertex value that changes on one sweep will not influence some
other vertex to change until a subsequent sweep, and not necessarily the next one. Thus, we define a
macro sweep as the minimum number of sweeps needed to guarantee that the graph G has in fact con-
verged. More will be said about this in Section 5.5.

*It is possible to reduce the number of near-neighbor checks necessary for a complete cell-check. This is an
optimization that can be applied to several of the algorithms and will be discussed in Section 5.6.2.

Chapter 5 81

We next consider the representation of the graph G in memory and how different data structures
influence algorithm efficiency.

5.4.3. Data Structures

Published implementations of shortest path algorithms sometimes presume that the collection of
vertices is small and not necessarily regular. Consequently, linked-list data structures are often sug-
gested for maintenance of the graph G. In this case, vertices are divided into two non-overlapping sets:
those that are members of the solution set, and those that are not. An adjacency list or similar structure
is maintained to describe the near-neighbor relationships between vertices in the solution set S and
those that are candidates for inclusion in the solution set.

For the problems considered here, consisting of large numbers of contiguous interconnected ver-
tices, two dimensional arrays are a more natural and space efficient data structure. The edges between
vertices are implied by the near-neighbors of the array structure. Vertices which are not adjacent in the
array have no edges (thus, infinite cost) between them — hence, are not included in the DCM data sets.
The arrays are fully populated and have a one-to-one correspondence with the two-dimensional area
they represent.

For either Dijkstra’s Algorithm or scan-based techniques, one possible data structure providing
the advantages of arrays and maintaining locality for good cache performance consists of an array of
records. Each record in the data structure contains a TCM current minimum value and the eight associ-
ated DCM values. For scan based algorithms, a minimum_direction pointer to the near-neighbor TCM
value that is contained in the minimum cost path might also be included.* For Dijkstra’s Algorithm, an
index into a sorting array is needed. This sorting array is a priority queue, and is used t0 maintain the
list of cells eligible for comparison to determine the next TCM element to enter into the shortest path
solution set. The queue itself is maintained as a linear array in memory to allow easy random access
based on the index, and uses a heapsort algorithm to maintain the priority order.** Special values (0
and 1) can be used to flag TCM values that are already included in the queue and/or solution set.

For some highly pipelined hardware implementations of scan-based algorithms, separate
memories for each of the DCM data sets is imperative to achieve the high-bandwidth I/O needed to sup-
port their architectures. In these cases, the dedicated memories are not likely to be part of a general pur-
pose computer system and would not suffer from delays associated with page faults, thrashing, access
conflict, or other system related problems. More about the data structures needed for specific imple-
mentations is contained in Section 5.6.2.

For both Dijkstra’s Algorithm and any scan-based technique, the basic operations and how they
relate to an array data structure are illustrated in Figure 5-7. The graph center cell (CC) is minimized
by considering its neighbors and the costs of traveling to or from its neighbor vertices. In this case, the
DCM data relating the travel costs from the CC to its neighbors are represented by the arrows in Figure
5-7.

TCM near-neighbors and DCM maps are given names matching the compass directions. The
neighbor cell indices for both the TCM and DCM’s relative to the center cell, TCM; Jj» are also illus-
trated. DCM information may be maintained in independent, two-dimensional arrays or more complex
data-structures. For example, the graph G might be maintained as a record containing the vertex value,
eight DCM values, and minimum-cost direction pointer. Section 5.6 discusses the implementation con-
siderations in choosing an appropriate data structure. Next, we consider the operations that must be per-
formed on the data.

*As will be shown later, the path enumeration function uses less than 1% of overall processing time and the
increase in storage required for the direction pointer may not be justified, unless it comes for free.

**The priority queue sorting algorithm makes a tremendous difference in the results. A linear sort method
caused the algorithm to run several orders of magnitude slower than when using heapsort.

Chapter 5 82

NORTH-WEST NORTH NORTH-EAST
-1]05-1] 1] i-1]0+1]
? .
WEST __ CENTER - EAST
[G-11 “ Al > [+
e]
o C 2
SOUTH-WEST SOUTH SOUTH-EAST
[i+1](-1] [i+110] [i+1](5+1]

Figure 5-7. Rectilinear Array-structured Graph Minimization Operations.

The value at the center vertex is minimized with respect to each of the neighbor vertices and the cost
associated with traveling to each of the neighbor vertices. If the cost at a neighbor plus the cost to
travel o the neighbor is less than the center vertex value, the center vertex value is replaced with
that cost. The neighbors are identified with the points of a compass, and the indices relative to the
center cell at (i ,j) are shown. Each direction has an associated DCM of the same dimensionality as
the TCM.

5.4.4. Operations

_ By adding the cost at a neighbor TCM cell plus the cost to travel to that cell, and replacing the

current center cell value with the calculated cost if it is less, minimum cost values are propagated to
other TCM cells. An alternate, equivalent way to consider the operation is to replace the cost value of a
neighbor cell if the sum of the current center cell cost plus the cost to travel from the neighbor cell to
the current center cell is less. Then, repeat for all neighbors. Figure 5-8 suggests the general form of
the replacement algorithm used to minimize each TCM cell for scan-based techniques. For Dijkstra’s
Algorithm, the current center cell is the one most recently added to the solution set.

TCM,J =min [TCM,J, (TCM,_IJ +DCM(N),J), (TCM,'_I_]'.H +DCM(NE),J),
(TCM"J_,.I +DCM (E),_j), (TCMi+l.j+l + DCM (SE)i,j)' (TCMi+l,j + DCM(S)i.j)'
(TCM;,, 1 + DCM(SW), ;), (TCM, j_, + DCM (W); ;), (TCM;_y ;4 + DCM (NW)i,j)]

where,
TCM; ; is the current TCM cell,
TCM;4 ;u are the eight TCM neighbor cells, and

DCM(..);; are the DCM values associated with the current center cell.

Figure 5-8. TCM Cell Minimization Operations.

To minimize TCM; ;, near-neighbor TCM values must be accessed along with, TCM; ;. Also, the
corresponding eight DCM values at index (i ,j) must be loaded. Then, the DCM values are added to
near-neighbor TCM values and compared to TCM; ;. Finally, the minimum value must be stored
back in TCM; ;, which completes the test, for a total of 34 fundamental operations per generalized

cell check.

For any special purpose hardware implementation of path optimization, the ability to read and
write the data efficiently during the sweeping and scanning processes is of primary importance. This
may dictate how the data structures are represented in memory. Devices which can control their own
addressing, coupled with multiported or interleaved memories can be used to realize parallel and/or
pipelined architectures.

Chapter 5 83

Although it is not part of the path optimization process, once the TCM has converged, finding the
shortest path is simple: beginning with the starting point, simply pick the nearest-neighbor (NNR) cell
whose TCM value plus the cost to travel from the current TCM is identical to the current TCM value.
This is repeated recursively until the goal point is reached. The list of cells visited along the way
becomes the path. It is not correct to simply pick the NNR TCM value that is the smallest, because the
value at that cell plus the cost to travel there may exceed the TCM value there. Thus, it would not be
one of the cells included in the minimum-cost path. However, there can be more than one path with the
same shortest length; in this case, an arbitrary choice can be made.

5.5. Simulating the Algorithms

To determine the effectiveness of various algorithmic and scanning techniques, two software
simulators were developed: and one for Dijkstra’s Algorithm and one for scan-based algorithms.* The
simulators allow one to specify arbitrary start and goal points, the array size, the number of no-change
scans for scan-based convergence, the DCM values (either read or computed), the range of DCM values
(i.e., minimum and maximum), the set of NNR cells to be used in the computation, the algorithm and/or
scanning technique, and various debugging and map printing facilities.

Four data sets serve as input to the various algorithms under test: random integer values for DCM
data, DCM values derived from elevation data corresponding to six cycles of sin(x)/(x) data, and two
quartiles of the Digital Elevation Model of a one arc-degree section of the earth’s surface centered on
San Francisco (obtained from the United States Geological Survey [McEw85]). These are illustrated in
Figure 5-9.

For random data, ten different sets of DCM values were calculated and used. Two different goal
points (near the center of the array and near the upper left-hand corner) were chosen in order to observe
any goal point dependence for each algorithm. These provide both boundary and nominal situations.
All simulations used the same seed value with the random number generator, enabling a direct one-for-
one comparison of the results.

For the Bay Area sections and sin(x)/x data sets, ten goal points for each data set were selected
(shown in Figure 5-9). To produce DCM values, we use a relatively simple function of one variable,
elevation. As mentioned earlier, the task of creating DCM values for real applications, such as land
exploration, from a diverse collection of parameters is very involved. Useful results are obtained only
when a meaningful function is used to generate DCM values. (For example, a simple linear mapping of
the range of elevation differences to the range of possible DCM values yields questionable results — all
paths are of equal costs, whether going up-hill or down-hill, and the calculated shortest path may lead
straight over the highest peak!) A more detailed examination of the effects the DCM cost computation
has on the various algorithms is important but beyond the scope of this dissertation, and will not be con-
sidered further.

For our purposes, the DCM values are calculated in two steps. First, the differences between
elevations at opposite ends of each arc are computed. Then, all values are scaled to fit between the
bounds [1 .. 255] with the procedure shown in Equation (5-2) below.

255

DCM;; (k) = ((E;; = NNR (k)) + | DIFF i, 1)* * 5-2
1) = (& E)+) (I DIFF gy | + | DIFF g 1) (5-2)

where
E, = eievation of near-neighbor vertex in the k* direction,
DIFF .;, = smallest difference between NNR vertices, and
DIFF _,, = largest difference between NNR vertices.

*The C-language code for both simulators is not included in this dissertation, but is available from the author
upon request.

Chapter 5 84

2 1 2 _}\‘
.E l4 I5
5
6 J 8
, 10 9 10
(a) San Francisco Bay Area (b) North Bay (c) South Bay

1135

1.0

10851

1035

985

0.0- \V/\V/\\/ V/\V/\VL

9354 : . ,
1 100 200 300

(d) Profile of Sin(x)/x (e) Histogram of 8-bit Random Numbers
Figure 5-9. Data Sets used for Shortest Path Simulations.

Parts (a), (b), and (c) show the San Francisco Bay Area, with (b) and (c) being the upper-right
corner and lower-right corner of part (a) respectively. These data were obtained from the U.S. Geo-
logical Survey [McEw85]. The numbers (1 through 10) on (b) and (c) are the goal points used dur-
ing simulation. Part (d) shows the elevation points (z-axis) along the x-axis (y=0) for a 3-
dimensional surface created using a sin(x)/(x) generating function. Part (e) shows the histogram
distribution of 256K data values in the range [1 .. 256] computed from random numbers generated
by the UNIX RANDOM(3) routine. These values were used as elevation data to characterize a
512-by-512 point rectangular area. As expected, the mean number of points per value is roughly
1000. All DCM data that is either created or derived from the data sets is scaled to values between
1 and 255. The representation for the Oakland Bay and San Mateo bridges were added to the USGS
data.

For each scan-based algorithm, measurements were made on convergence rates for the various
sweeping techniques and TCM sizes. The convergence rate is determined by counting the total number
of cell checks (i.e., test a cell against all its neighbors) until no change in the total cost map is produced
for one macro sweep defined for the particular algorithm. This provides a basis for comparison between
algorithms, assuming the other house-keeping aspects of the algorithms are insignificant. (Profiling the
execution of the simulations revealed that usually less than 3% of the total execution time was spent on

Chapter 5 85

routines other than minimize cell). For scan-based techniques, the tests were run on array sizes of 8-
by-8 up to 512-by-512 elements.*

5.5.1. Hypotheses Before Simulation
Before we started simulating the various techniques for path optimization, we identified four
hypotheses we wanted to verify:
e Since results are data dependent, real data (e.g., from actual terrain maps) may converge faster
for scan algorithms than random data due to the potential cell-to-cell coherence or smoothness.
e If typical terrain data does have some smoothness, perhaps a simplied near-neighbor test may be
sufficient to determine minimum cost paths (i.e., just check N, S, E, and W neighbors and ignore

those on the diagonal).

e Intelligent algorithms may show a marked advantage over brute force algorithms if the house-
keeping functions necessary are kept to a minimum or are relatively simple. (If it is possible to
add a node to the solution set with a small number of cell checks — on average two or four — and
even if sorting structures are needed to maintain lists of neighbors, an overall speed advantage
may result). ,

e The operand size may in practice be bounded, allowing a minimum number of bits for
representing DCM and TCM values, resulting in a smaller amount of hardware.

The following section discusses the results of our experiments and focus on these four hypotheses.

5.5.2. Simulation Results

The simulation performance of Dijkstra’s Algorithm for N = 512 is summarized in Table 5-2. The
average number of cell operations is identical for all data sets and the average number of heap opera-
tions is consistent over all data sets. Execution time is data dependent but varies only a small amount
between the data sets.

Table 5-2. Simulation Performance for Dijkstra’s Algorithm, N = 512
Data Set Ave CellOps Ave HeapOps std. dev Ave HeapSize std. dev
North SF Bay 5,041,087 7.1 % 1,128 31.6 %
South SF Bay 259,335 5,264,182 22 % 1,283 16.4 %
Sin(x)/x ’ 5,378,015 29 % 1,375 25.7 %
Random 5,784,096 02 % 1,794 2.0 %

This table summarizes the performance characteristics of Dijkstra’s Algorithm for TCM size 512-
by-512. Each time a TCM cell is added to the solution set, the current-cost of the neighbor cells
that are not in the solution must be updated, based on the current-cost of the most recently added
cell. This is called a cellOp. On average, about four cellOps occur for each solution set entry. To
make this comparable to scan-based techniques, four cellOps will be equivalent to one cellCheck
(see the caption for Table 5-3). The heapOps are the number of comparisons made in establishing
and maintaining an ordered heap (allowing a HeapSort algorithm for reordering after node deletion
or addition). The heapSize indicates the maximum number of nodes in the heap at any time during
the course of determining the total solution set.

The simulation results of the best overall scan-based algorithm for goal points near the border is
Algorithm No. 7, summarized in Table 5-3. Algorithm No. 8 is slightly superior for goals more

*Although 512-by-512 may seem small, path planning systems typically change the resolution of the data
sets, rather than scale to larger arrays. For instance, gross planning may provide data with 100 meters
between points. Finer resolution planning may be 10 meters between points. In both cases, a 512-by-512
grid is used.

Chapter 5 86

centrally located. The values shown are the average of 10 runs. For scan-based algorithms, the
coefficient of variation of the number of cell checks versus the accumulated mean number of cell checks
is less than 1% for seven maps or more. To illustrate this, Figure 5-10 shows two curves. The curve for
random shows the number of cell checks needed for convergence of 10 different data sets. The curve
for typical terrain data shows the number of cell checks for each of 10 different goal points for the
North Bay data set. The number of operations needed to compute the TCM is constant for a given data
set and algorithm, is independent of the host computer running the simulation (the amount of simulation
time is all that changes), is a statistically well behaved function, and will serve as a reliable metric.
Note that random data requires between 15 and 25 times more cell checks for convergence than terrain

data.

Table 5-3. Simulation Performance for Scan-based Algorithm No. 7, N = 512

Data Set Ave CellCks std.dev | Ave Exch std.dev | Ave Sweeps std. dev
North SF Bay 2731050 12.1% 253790 259 % 10.5 12.1 %
South SF Bay 1612620 212 % 291078 134 % 6.2 212 %

Sin(x)/x 2158830 475 % 359087 143 % 8.3 47.6 %

Random 42136200 35% 7621530 4.6 % 162.0 3.5%

This table summarizes the performance characteristics of scan-based algorithm No. 7 for TCM size
512-by-512. Each time a TCM cell is tested against its neighbors (an 8-way test) one cellCk is per-
formed. Eight comparison/update operations occur for each cellCk. The number of comparisons
resulting in updates and the number of sweeps to reach convergence are indicated. Note the large
difference between random and typical terrain data.

RANDOM DCM DATA
45
C .
E P N _. INDIVIDUAL
e - ~ e
L P \.\\ — N = CUMULATIVE
L 40 e =
I~ 1 2 3 4 5 6 7 8 9 10
C DCM DATA SET NUMBER FOR RANDOM DATA
H
E ~ /"\\._ TERRAIN DCM DATA
C 3 7 I I I INDIVIDUAL
K S = CUMULATIVE
S
6 2
(10) 1 2 3 4 5 6 7 8 9 10

GOAL POINT NUMBER FOR NORTH BAY DCM DATA
Figure 5-10. Number of Cell Checks for Convergence.

This figure shows the number of cell checks needed for convergence for 10 different random data
sets and 10 different goal points in the North Bay terrain data set. The label for the X axis of the
figure simply identifies the first, second, third, ..., through tenth random data sets and the first,
second, third, through tenth goal point for the North Bay terrain data set. The dashed line
represents the number of cell checks needed for each of the 10 individual data sets or goal points.
The solid line is the cumulative average number of cell checks needed. This shows that the varia-
tion in number of cell checks to reach convergence for different data sets or goal points is very
small. Also, the cumulative mean of the number of cell checks over 10 different data sets or goal
points is a reliable and well behaved metric that will serve in making a comparison between algo-
rithms. We do this to eliminate the bias that can arise from using a single data set or small number
of data sets for our simulations. The other terrain data sets showed similar results.

Appendix C shows the results of simulation runs for all scan-based techniques. Table 5-4 sum-
marizes results for both Dijkstra’s and scan-based algorithms (goal-point numbers refer to Figure 5-9).

Chapter 5 87

Table 5-4. Simulation Performance for All Algorithms (N = 512)
(selected goal points refer to Figure 5-9)

Data Set & Ratio of CPU Usertime for Each Scan-based Algorithm vs. Dijkstra’s Algorithm
Goal Co-ords | Dijk (sec) #1 #2 #3 #4 #5 #6 #7 #8 #9
;’g’[‘;‘sf)ggg]y 10366) | 633|367 | 180|179 | 169 | 123 | 31| 31| 486
197“[‘;‘ ﬁiﬁg‘{ 10(368) | 1093 | 328 | 154 | 146 | 167 | 111 | 22| 18| 16
, 6S[i(l)18()5(?ﬁl] 10362) | 724 | 433 | 127220 | 111 | 64| 22| 18| 38
#3}2[?)“0‘1‘,’0“(‘)3] 10(392) | 1337 | 668 | 1260 | 756 | 932 | 862 | 54.8 | 59.8 | 1819

This table summarizes the performance characteristics of all algorithms for TCM size 512-by-512
and various goal points (where the upper left-hand corner of the TCM is [0,0], the lower right-hand
corner is [511,511]). These represent the ratio of execution time for each algorithm normalized to
Dijkstra’s Algorithm for the particular data set. (Similar results are found when comparing the
number of cellChecks, a CPU independent factor.) For typical terrain data, Dijkstra’s Algorithm is a
factor of two to 19 times faster than scan-based algorithms. For random data, Dijkstra’s Algorithm
is between 55 and 182 times faster than scan-based algorithms. The cell-to-cell coherence of typi-
cal terrain data significantly affects the performance of scan-based algorithms, while the perfor-
mance of Dijkstra’s Algorithm increases only about 10% for random data over typical terrain data.

In comparing the run-time performance, we determined that Dijkstra’s Algorithms is 55 times fas-
ter than the best scan-based algorithm for random data using a VAX 8850. Besides being significantly
faster than scan-based algorithms, Dijkstra’s Algorithm is essentially deterministic in the number of
operations performed to achieve convergence. More work is done by Dijkstra’s Algorithm for each
TCM cell checked (including the maintenance of the priority queue) than with scan-based algorithms.
But, Dijkstra’s Algorithm allows the solution set to be constructed item-by-item as the algorithm
progresses. This means that any given node is visited fewer times during the process, with commen-
surate savings in processing time.

As seen in Table 5-2, there is a small amount of variation in the number of operations needed to
maintain a priority queue (heapsort algorithm) depending on the DCM data variability. The running
time reflects this variation of about 13%, which is insignificant in comparison to the variability of the
scan-based algorithms, as seen particularly between random and typical terrain data sets. Next, we con-
sider the four hypotheses discussed in Section 5.5.1.

5.5.2.1. Random Data versus Terrain Data

Inidally, all our experiments were carried out using random data. From those results, we deter-
mined that even parallel/pipelined architectures would have trouble achieving real-time performance
with scan-based algorithms. However, the results of the experiment with typical terrain data confirmed
our hypothesis that real data has cell-to-cell coherence, and all scan-based algorithms performed
significantly better with real data, as seen in Table 5-5.

Before discussing data coherence and simplified comparison tests based on coherence, we briefly
consider the performance of each of the algorithms, comparing what we anticipated when inventing
them with the simulation results.

, As shown in Figure 5-6, Algorithm No. 1 is the simplest scan-based method, and as we expected,

this naive approach yielded the worst results. In one case, it was actually worse for terrain data than for
random data — something no other algorithm can claim. We expected Algorithm No. 2 to be a slight
improvement over Algorithm No. 1, and indeed it was, resulting in roughly twice the performance.

Chapter 5 88

Table 5-5. Scan-based Algorithm Performance for Random Data versus Terrain Data (N = 512)

Data Set & Number of Sweeps for Convergence with each Scan-based Algorithm
Goal Co-ords #1 #2 #3 #4 #5 #6 #7 #8 #9
North SF Bay
#3 [150,320] 200 116 28 57 50 38 8 8 129
South SF Bay
#7 [341,300] 340 102 24 46 52 35 5 4 3
Sin(x)/x
46 [085.341] 225 133 19 71 34 19 5 4 9
Random
#3 [001,003] 223 206 202 256 299 272 161 190 264
Ratio of Number of Sweeps to Converge — Random Data vs. Terrain Data
Random vs.
North SF Bay 1.1 1.8 7.2 45 6.0 72 20.1 23.8 2.0
Random vs.
South SF Bay 0.7 2.0 84 5.6 | 5.8 78 322 47.5 88.0
Random vs. 10| 15| w06| 36| 88| 13| 322 4715| 293
Sin(x)/x

This table shows how scan-based algorithms compare for random and terrain data sets. The number
of sweeps to converge is generally much larger for random data than the terrain data for any scan-
based algorithm. The ratio ranges from close to 1.0 with Algorithm No. 1 to nearly two orders of
magnitude with Algorithm No. 9. Note that Algorithm No. 1 is consistently poor in performance
over all data sets, while No. 9 is superior for some and poor for others depending on the goal point.

Algorithm No. 3 appears to be a substantial improvement over either Algorithm No. 1 or 2 in terms of
sweeps to converge. By reversing direction on each row, minimum cost information is propagated
quicker, as we expected, but there is also twice as much work for each scan than with Algorithm No. 2.
Thus, the overall improvement is only about a factor of two better than Algorithm No. 2. Interestingly,
Algorithm No. 3 worked extremely well with the Sin(x)/x data and not well at all with random data.

We expected Algorithm Nos. 4, 5, and 6 to be improvements on the first three algorithms because
they varied the starting point. While Algorithm Nos. 4 and 5 achieve about the same results, Algorithm
No. 6, by flipping the starting point to all four comers of the grid, improved performance between 25%
and 50% over the other two algorithms. This corroborated our intuition that pushing or pulling
minimum cost information in all directions improves performance. Indeed, as shown with Algorithm
Nos. 7 and 8, not only does starting the process in different comers help, but scanning in the top-
bottom directions improved performance by a factor of between four and seven over other scan-based
algorithms for terrain data. The improvement for random data is not as dramatic, but nevertheless sub-
stantial. Finally, Algorithm No. 9, which we expected to be the best, did achieve some good results.
However, it tends to be less consistent over the different data sets and had a wide variability, which we
did not expect.

5.5.2.2. Terrain Data Coherence and Simplified Neighbor Tests

Having established that terrain data converges much faster than random data, we expected that the
cell-to-cell coherence of terrain data might allow a simpler comparison test, including only horizontal
and vertical neighbors (i.e., a 4-way test). This is not the case. As illustrated in Figure 5-11, with the
same start and end points, the path chosen for the 8-way test versus the 4-way test is significantly dif-
ferent. Similar results occurred on all terrain data sets and various start and goal points.

It is nevertheless important to realize that the largest contribution to the longer path length for 4-
way tests may be due to the Manhattan constraint. On a flat plane it would take twice as many steps to

Chapter 5 89

7

)
E

| P

4-WAY TEST

4 WAY TEST

A

8 WAY TEST

8-WAY TEST

Figure 5-11. Shortest Paths for Four-way versus Eight-way Comparison.

For the starting point in the upper right corner of the North Bay data set, the shortest path to the
lower left comer for 4-way NNR comparisons (thin solid line) is completely different from the 8-
way comparison (thick solid line) result. The 4-way test to compute shortest paths yields non-
optimal results. The resulting cost is data dependent, but was consistently observed to be between
two and four times the 8-way cost.

move from one point to another point that is diagonally offset from the first, if arcs between diagonal
points are weighted the same perpendicular points. Thus, the difference between 4-way and 8-way tests
may not be as telling as the data shown in Figure 5-11 might suggest. On the other hand, the DCM data
used here are based solely on elevation. If the actual distance between points enters into the DCM
values, then a counter balancing effect comes from the fact that the euclidean distance between diagonal
points is the square root of two times the distance between either of the perpendicular neighbors, and
the factor of two reduction in the number of steps achieved for the 8-way test would reduce the path
cost by a 30% instead of 50%. A more detailed investigation using a more realistic generating function
for the DCM data sets is required to make a final determination, which goes beyond the scope of this
dissertation.

To make a relative comparison of the different scan-based algorithms, we normalize the number
of cell checks for each algorithm by Algorithm No. 8. Table 5-6 summarizes these results and Figure
5-12 illustrates the differences. Ratios greater than 1.0 represent algorithm-size combinations that per-
form worse than Algorithm No. 8.

From Table 5-6 and corresponding Figure 5-12(a), it is clear that for a goal point at an extreme
comer of the TCM, Algorithm No. 2, No. 4, No. 6, No. 7, and No. 8 are essentially equivalent for all
map sizes and 4-way tests. Moving the goal point to the center worsens the performance for Algorithm
No. 2, No. 4, and No. 7 when N is increased. Nevertheless, Algorithm No. 3 is by far the best and
Algorithm Nos. 5 and 9 are the generally the worst for 4-way tests.

The 8-way tests summarized in Table 5-7 and illustrated in Figure 5-12 (b) and for the goal point
at TCM(1,3] differ considerably with 4-way test results. Here, Algorithm No. 7 is the best with Algo-
rithm No. 8, Algorithm No. 2, and Algorithm No. 9 about equal. Notice that Algorithm No. 3, which
was the best with 4-way tests is now the worst for both [1,3] and [C,C] = [256,256] goal points. During
reverse scan, Algorithm No. 3 makes far fewer useful updates when using an 8-way test. Consequently,

Chapter 5 90
Table 5-6. Normalized Average Cell Checks
(versus Algorithm No. 8 for 4-way test)
Array Size N (for NxXN TCM)
Algorithm 008 016 032 064 128 256 512
n3lce | n3)ecjni | ICaiis | ca | (L3 | I6C | [1L3] [ICC | [13] | [CC
No.2 102 | 124 [093 | 1.62 [088 | 201 | 098 | 255 | 1.09 | 321 | L11 | 374 | 1.21 | 453
No. 3 074 | 093 | 051 | 078 | 028 | 064 | 030 | 049 | 035 | 041 | 033 | 038 [038 | 0.38
No. 4 1.2 | 112 | 095 | 122 { 088 | 148 { 100 | 201 | 111 | 236 | 1.08 | 265 | 1.16 | 2.65
No. 5 085 | 073 | 095 | 095 | 130 | 153 | 160 { 205 | 206 | 290 | 2.24 | 3.52 | 233 | 4.09
No. 6 1.14 | 100 | 105 | 091 | 1.01 | 099 | 1.02 | 1.06 | 1.02 | 1.04 | 1.01 | 099 | 1.01 | 1.00
No. 7 098 | 1.12 | 089 | 138 | 090 | 149 | 101 | 193 | 1.08 | 234 | 1.09 | 276 | 1.18 | 3.23
No. 8 1.00 | 100 | 100 | 1.00 | 1.00 | 100 | 1.00 | 1.00 | 1.00 [1.00 | 1.00 [1.00 | 1.00 | 1.00
No. 9 127 | 109 | 154 | 154 | 166 | 1.96 | 237 | 3.05 | 268 | 3.79 | 2.63 | 413 | 3.45 | 527
This table summarizes the average number of cell checks for each scan-based algorithm relative to
Algorithm No. 8, using a 4-way comparison/update test. Numbers greater than 1.0 indicate where
an algorithm does not perform as well as Algorithm No. 8 for a given TCM array size.
Table 5-7. Normalized Average Cell Checks
(versus Algorithm No. 8 for 8-way test)
Array Size N (for NxN TCM)
Algorithm 008 016 032 064 128 256 512
31jce | w31 | €Q 3 jica | 1131 | I6C | 11,311 icc | (1L3] | I6C | 11,3 | €]
No. 2 092 | 094 | 08 | 1.06 | 093 | 112 | 090 | 124 | 095 | 145 | 1.00 | 158 | 097 | 155
No. 3 136 | 157 | 138 | 151 | 170 | 152 | 171 | 159 | 179 | 174 | 194 | 184 | 189 | 1.69
No. 4 090 | 098 | 093 | 099 | 1.07 | 101 | 110 | 1.14 | 118 | 126 | 119 | 136 | 1.22 | 132
No. § 080 | 090 | 099 | 099 | 126 | 101 | 128 | 1.09 | 134 | 123 | 136 | 130 | 135 | 126
No. 6 088 | 094 | 094 | 091 | 116 | rO1 | 125 | 1.00 [12t | 114 | 127 | 122 | 124 | 114
No. 7 094 | 1.02 | 093 | 1.06 | 093 | 1.06 | 087 | 1.07 | 084 | 1.19 | 082 | 130 | 077 | 128
No. 8 100 | 1.00 | 1.00 | 1.00 | 100 [100 | 100 | 1.00 [1.00 | 1.10 | 1.00 | 110 | 1.00 | 110
No.9 081 | 073 { 079 | 080 | 091 | 074 | 084 | 085 | 093 | 090 | 1.01 | 093 | 099 | 095

This table is identical to Table 5-6, except that an 8-way comparison/update test was performed
with each cell check. Again, numbers greater than 1.0 indicate where an algorithm does not per-
form as well as Algorithm No. 8 for a given TCM array size.

about half of the scan cycles are essentially wasted. Algorithm No. 9 performs well in 8-way tests, but
a special purpose hardware implementation would be difficult since the address sequence is goal depen-
dent, not simply a raster-scan as with other techniques. However, with a general purpose host and
coprocessor, the complexity of the addressing sequence is no more difficult than with the array scan
techniques and offers some performance advantages.

As noted in Figure 5-12, 8-way tests are more consistent in performance across all algorithms.
There are two reasons for this. With 4-way tests, some information (i.e, the diagonal neighbor TCM
cells) is never considered when minimizing each TCM cell. Since there is a feed-back process involved
(the dynamic programming aspect of the algorithms), fewer cells being considered per test limits the
amount of feedback that is provided to minimize the current cell. Because of this, it takes longer for
minimum cost information to propagate. Second, as we have determined, random data requires more
comparison/updates before it converges. This accentuates the absence of feedback.

Chapter 5

60 Goal Point at [1,3] 60 : Goal Point a’l [C,C]
50 50 fNe?
; : // No.2
4.0 4.0 A V No.5
No. 9 // No.7
30 / 3.0 4t LA /N4

= NO. 5
2.0 // = 2.0
J— v No.2
AT L7 No.7
1.0 === 0.4 No.6
: i : 43 No.3 ; : ; ; No.3
0.0 v — v - 0.0 v S A . A g
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8
LOG (TCM SIZE) X LOG (TCM SIZE)
(a) Number of cell checks normalized to Algorithm No. 8 for 4-way comparison/exchange test.
Goal Point at {1,3] Goal Point at [C,C]
20 | —) 20 LI R
/\ No.3 P / ;
~ T—iNo.2
1.5 / 15 v : e '
e No. 5 ool i No. 4
L~ — No.7
i _iNo.6 ~= No.
9—'—'/ No. 4 ~ No-5
[/ | T TiNo6
1.0 No. 9 1.0 ; b Y +]
‘ L= =l .
- No.2 > iNo.9
T~ No.7 A~ :
0.5 0.5
0.0 Yy — 0.0 4ty —
1 2 3 4 5 6 7 8 9 1 2 3 4 S 6 7 8 9
LOG (TCM SIZE) LOG (TCM SIZE)

(a) Number of cell checks normalized to Algorithm No. 8 for 8-way comparison/exchange test.

Figure 5-12. Normalized Average Cell Checks for Random DCM Data.

The average number of cell checks for 10 runs of each algorithm is normalized to Algorithm No. 8
for both 4-way and 8-way tests (see Table 5-6 and Table 5-7). For 4-way tests, there is nearly an
order of magnitude difference between the best and worst algorithms in performance. For 8-way
tests, the largest ratio is 2.5, showing a more consistent performance across all algorithms, as ex-

plained in the latter part of this section.
5.5.2.3. Intelligent versus Brute-force Algorithms

91

From Table 5-4, it is clear that Dijkstra’s Algorithm is superior to all scan-based algorithms. The
difference is less for terrain data than random data, as one would expect. If a special purpose architec-
ture is to be implemented to achieve real-time performance, the advantage of the intelligent algorithm
may be lessened by control complexity. There may be an advantage with a straight forward yet brute
force algorithm due to its simple and regular form. In either case, kernel functions are the best candi-
dates for hardware implementation, leaving the seldom-occurring control and processing functions to

Chapter 5 92

software. These issues will be considered more fully in Section 5.6

To understand the differences between the sweeping techniques, the average number of updates
versus the sweep number for each of the algorithms and array sizes is illustrated in Figure 5-13 and Fig-
ure 5-14. Superimposed on each plot is the cumulative number of updates. The dominant characteris-
tics of updates versus sweep are evident with 64-by-64 TCM arrays. Larger array sizes look essentially
the same and are not included here. Figure 5-13 shows the average updates per sweep for Algorithm
Nos. 8 and No. 9 for 8-way tests and two goal points. A summary of the experimental results are
included in Appendix C, Table C-1 through Table C4.

1= N7
1/ 1 =
i 1/ .
My TN AN

g

m-H»Owa
WmH>O W
mH»OwC
—
™,
-

o 10] 30 “ 0 10 20)) 0 10) 30 s
SWEEP NUMBER SWEEP NUMBER SWEEP NUMBER
(a) Algorithm No. 8, G[1,3] (b) Algorithm No. 9, G{1,3] (c) Algorithm No. 8, G[C,C]

Figure 5-13. Average Updates per Sweep for Algorithm Nos. 8 and 9.

Part (a) shows Algorithm No. 8 with an 8-way test and goal point at TCM[1,31. The number of up-
dates during each sweep depends on the direction of the sweep. Since the goal point was near the
upper left comer of the array, sweeps moving from left to right and top to bottom will cause more
updates than those moving right to left, or bottom to top, since the information can not propagate as
far in those directions. Part (b) illustrates Algorithm No. 9 for the same dataset. For N = 64, Algo-
rithm No. 9 requires about 15% fewer cell checks than Algorithm No. 8, but performs 38% more
updates in the process, which can result in a substantial amount more memory traffic. The number
of updates during each sweep is an exponentially decreasing function, since the goal point informa-
tion is always pulled along with the cell checking process. In this case, it doesn’t matter where the
goal point is. The technique always propagates the goal point information out and away from the
goal. Part (c) illustrates what happens to Algorithm No. 8 when the goal point changes to near the
center. The first sweep does not result in nearly as many updates. Overall, far fewer sweeps and
cellchecks are made to converge, with the accompaning reduction in the number of updates.

Algorithm No. 8 has four different sweep directions. Figure 5-13 (a) illustrates that relatively few
updates are made during the second, third, and fourth sweeps of each four-sweep sequence. The
number of updates is maximum when the goal point information is pulled along in the direction of the
sweep. This occurs best when the goal point is near the beginning of the sweeping process, rather than
at the end. The pulling process occurs even if the goal point is in the last cell checked. In this case, the
minimum values are propagated one cell at a time each sweep, necessitating many sweeps to converge.
Figure 5-13 (a) shows that for N = 64, Algorithm No. 8 requires between 30 and 40 sweeps to converge
with random DCM data and results in over 21,000 updates. For Algorithm No. 9, the updates per sweep
versus sweep number approximates a decaying exponential. This is expected, since the algorithm starts
at an optimum point near the goal, and carries the minimum cost information along as it spirals around
the goal point in an outward direction. Figure 5-14 illustrates the average updates per sweep for all
algorithms.

Chapter 5

LLETS-A 1)

“mArYNC

CUET-RT-]

Algorithm No. 1 Algarithm No. 2 Algorithm No. 3
008 3000 e v
r (4 '
2000 D emq- 2 e +
T T i
1 L] H ‘
/ \ b s H
=1 \\ - N - /V\,\AW\\\ ;
E — = i o :
10 » » 1 » » [) 10 F] b] 3
SWERP NUMBER SWESF NUMBER BWEERPF NUMBER
Algorithm No. 4 Algorithm No. § Algorithm No. 6
T e e
00 (e

LIt -1+

LLEFS-2 1-3

A
Al 4o .
SO Ml ; s
° 1 = » u 2 » ° 10 © 0
SWEEP NUMSSER AWEERPF NUMBER SWEEP NUMBER
Algorithm No. 7 Algorithm No. 8 Algorithm No. 9
4008 \ 3 R me | - /:/_— 21294 1; - H T 1
000 ‘ /E 30004 /
2000 ; 20084 A/ 2000

“HAPORC

10004 -/~~~

Mo

LI LS L 1

e

SWEEF NUMBER

1 » »
SWEEP NUMDPER

10

—
0
SWEEP NUMBER

Figure 5-14. Average Updates per Sweep for All Algorithms.

5.5.2.4. Operand Size

The final TCM solution for a given goal point and given DCM’s will be identical for all algo-
rithms used. At any point in the TCM, the path cost to the goal is indicated by some data-dependent
value. The maximum TCM value (the highest-cost path from a point in the TCM to the goal) depends
on the data as well as the number of cells that represent the area of interest. As the size of the TCM
increases, the minimum cost path from border cells to the goal point will, on average, inevitably be
longer and possibly larger in value. Therefore, the quality of the solution can be adversely affected
unless there is sufficient dynamic range in the representation of the TCM to accommodate large values.

» 0

This figure shows the average number of updates per sweep versus the sweep iteration number for
Algorithm Nos. 1 through 9. The monotonic curve in each plot shows the accumulated number of
updates to that sweep number, with the total number indicated near the end. The goal point was lo-
cated at [001,003] for all simulations. As expected, the amount of useful work accomplished per
sweep is a function of where the goal is located and the scanning/sweeping directions. For exam-
ple, notice that Algorithm No. 4 makes very few updates on reverse-scan sweeps. Had the goal
been located in the lower right-hand corner, the opposite would be true. Likewise, notice that Algo-
rithm No 8 makes many more useful updates on sweeps one and four of each 4-sweep sequence
than on sweeps two and three for the same reason.

93

If DCM values are sufficiently large, the value calculated for a TCM cell replacement could even-
tually overflow the number of bits used to represent a TCM value. This could result in regions of the

Chapter 5 94

TCM with the same apparent value, and would make the path determination process difficult if not
impossible. To guarantee that TCM values do not overflow, and are less than the initialization value,
the maximum TCM value must be determined. But, the largest TCM value is also data dependent. In
the worst case, the shortest path could progress in a serpentine fashion through the TCM including
every cell to reach the goal.

To obtain an estimate of how large the TCM values may get, we did a simulation using random
data for the DCM’s with the range [1 .. 1023] (1 to 10 bits). For TCM array sizes up to 512-by-512 ele-
ments, the maximum TCM values are summarized in Table 5-8 and illustrated in Figure 5-15. These
results suggest that if DCM data are limited to eight bits, 16 bits will be adequate for the TCM values
(for a 512-by-512 TCM) providing roughly a factor of three margin. The arithmetic add in the minimi-
zation step should be implemented with saturating adder circuitry. If overflow is detected, rescaling of
the input data would be necessary.

Table 5-8. Maximum TCM Values From Simulation Using Random DCM Data
Goal point at TCM[1,3]
Max DCM TCM Array Size (for N-by-N) DCM | TCM
Value 8 16 32 64 128 256 512 Bits Bits
1 1 1 1 1 1 1 1 1 1
3 4 8 10 9 9 10 2 4
7 9 22 35 60 110 194 360 3 9
15 29 54 97 168 318 599 1154 4 11
31 59 104 206 380 760 1382 2720 5 12
63 105 238 430 834 1563 2940 5747 6 13
127 243 505 917 1665 3147 6256 12137 7 14
255 492 | 1090 | 1689 3544 6726 | 12719 24860 8 15
511 803 | 1469 | 2979 6057 | 12112 | 25403 49926 9 16
1023 1763 | 3395 | 6714 | 12903 | 24813 | 50996 | 101786 10 17

This table shows the maximum TCM values for different DCM sizes and TCM array sizes using
random data. Ten maps were simulated for each TCM size and DCM bit-width combination. Each
entry represents the largest TCM value for all 10 maps. Terrain data sets resulted in maximum
TCM values at least 33% smaller than these numbers for all array DCM sizes. TCM values are typ-
ically seven bits wider than DCM values.

5.5.2.5. Algorithm Complexity

By forming the ratio of the number of cell checks to the array size (raised to various powers), Fig-
ure 5-16 suggests that for arrays larger than N = 64, all algorithms are essentially O (n'?), somewhat
better than O (n?) as predicted in the discussion in Section 5.4.2. Since this is a ratio of cell checks to
array size, the more cell checks done by a technique in solving a map, the less efficient it is unless pipe-
lining techniques can be used. Algorithms with lower valued ratios should be selected for implementa-
tion. Nevertheless, a factor of four to six in theoretic running time may not be significant, and the algo-
rithmic technique that is simplest to implement may prove to be the best overall. Dijkstra’s Algorithm
is slightly better than scan-based algorithms in complexity, approximating O (n 125y,

The previous sections have considered software implementations of the algorithms. In the follow-
ing sections, several altematives to software are discussed.

5.6. Other Software and Hardware Implementations

The algorithm analyses were completed on conventional computers using the programs described
earlier. The literature also reports a number of implementations that have considered other architec-
tures, both conventional and special purpose. Table 5-9 summarizes some of the results reported here

Chapter 5 95

oK , : <1024
TITTIPIIITL FroTIT eEEEE - == Z<su
2/ | DCMVALUES : <255
10K g e e T
R I e s S
MR e A/;,//A S15
» 4 ' <7
100 ?
: v I
10 ;, = <3
® : ;
g 16 32 64 128 256 512

ARRAY SIZE (N-by-N)
Figure 5-15. Maximum TCM Value for Various TCM Array Sizes and DCM Maxima.

This is plot of the data in Table 5-8. For DCM values greater than seven, TCM values increases for
increasing TCM array size in a log-log correspondence. These results come from using random
DCM data, and exceed the maxima resulting from terrain data TCM'’s, in all cases. The dashed line
represents the maximum value representable by 16 bits.

(Operations/n) {Operations/n”"1.5) (Operations/n“2)
500 0.90 0.060
_ 0.80 /____.,/ No.3 \
i No.3 / 0.050
400 : 07017 \
0.60 / No. 5 0.0404)
300 No.5 SN iNo. 6 :
go. 2 0.50'/ A/ T >.No. 4 :
o. ; i i iNo.8 AW\
No. 8 ; ; N:.9 00301
200 No.9 0401//= (No.2 '
No.2 P TNo.7 AN\
No. 1 0.301 : 0.0201---\
: No. 3
: No. 5
100 il R St S T 1 \\N N g
0.010¢ { No. 8
0.10 A ! iNo.9
. ol I No.2
01 ———— 0.00 ——s 0.000 $=mfrmmfm—gme—geey—3 No. 7
3 4 5 6 7T 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9
LOG OF ARRAY SIZE LOG OF ARRAY SIZE LOG OF ARRAY SIZE

Figure 5-16. Scan-based Algorithm Complexity.

This figure illustrates the complexity of the various algorithms as determined by experiment. For
array sizes of N—-by—N = n eclements, the complexity for scan-based algorithms approximates
O (n'). Dijkstra’s Algorithm is slightly better, with O (n'%).

and elsewhere.

We have identified and simulated various algorithms for path optimization considering perfor-
mance, complexity, dynamic range of the data, and so forth. Next, architectures to implement these
algorithms are considered.

Chapter 5 96

Table 5-9. Cell Checks per CPU Second
(Normalized to VAX 11/780 Cell Checks per CPU Sec)
Manuf or CPU or Clk Rate Mem Size 8-Way Cell Check
System Model (MHz) (Mbytes) Ck/Sec Ratio to 780
Sun2 MC68010 10 4 2280 0.68
VAX 780 5 8 3340 1.00
BBN* S node B-fly na na 3930 1.18
VAX 785 7.5 12 5250 1.57
Pyramid* 98x 10 na 6680 2.00
Sun3 MC68020 16 8 6890 2.06
Sun3 MC68020 25 32 12500 3.74
VAX 8800 22 80 15850 4.75
BBN 40 node B-fly 10 na 31440 9.41
IBM 3090 54 38 59740 17.89
Par/Pipe HW** Sp. Purpose 20 2.5 20M ~5800
Thinkin CM2 64K bits -
Machinegs (64K nodes) 6.7 per node 150-400 M <400000

This table shows the performance resulting for various software implementations and special pur-
pose hardware implementations of scan-based algorithms (in most cases, similar to Algorithm No.
7). The single asterisk indicates extrapolated values, double asterisk indicates simulated values, and
all other values come from measurements.

5.6.1. Multi-Processor Path Optimization Architectures

The path optimization function consists of data movement, integer addition, comparison, and
replacement. For 512-by-512 arrays, the 34 operations necessary for each cell check (worst case for
most scan-based algorithms), approximately nine million operations per sweep must be completed.
Scan-based algorithms require about 200 sweeps to converge for random DCM data, or roughly 1.8 bil-
lion operations. The sequence of assembly language instructions needed to implement those 34 opera-
tions exceed 20 billion. At a 10 MHz clock rate, assuming a single cycle per instruction and/or opera-
tion, 200 sweeps would require about 2000 seconds, or three orders of magnitude slower than needed
for real-time operation. Performance using terrain data is slightly more than an order of magnitude
better. Nevertheless, the performance achieved for software implementations of scan-based algorithms
is completely inadequate. In order to achieve real-time performance, some means of exploiting con-
currency must be found.

Processor architectures are often classified according to how the control unit handles the sequence
of instructions and/or the execution unit handles the data that is manipulated. Flynn in [Flyn72]
discusses four categories of computer architecture based on this notion:

e SISD - single instruction, single data,

e SIMD - single instruction, multiple data,

e MISD - multiple instruction, multiple data, and

e MIMD - multiple instruction, multiple data.

Kuck [Kuck78] modifies this taxonomy somewhat by suggesting that it is easier to make the distinction
between real machines based on the execution stream model (yielding SISE, SIME, MISE, and MIME

categories), rather than the data stream model. He also considers vector operations versus scalar and
how one might describe such architectures. Flynn’s categorization is sufficient for our purposes.

Next, our architectural analysis for a path optimization processor considers a multi-processor
evaluation and a detailed single coprocessor architectural study. The multi-processor evaluation consid-
ers the various types of parallelism that can be used to solve the problem. Significant performance

Chapter 5 97

improvements can be obtained if cell operations can be done in parallel and multiple processors operate
on a single TCM. Multiprocessor architectures and parallel/pipelined organizations are more likely to
provide the needed performance but at increased cost.

5.6.1.1. SIMD

A SIMD approach would use one processor per TCM array cell. With this architecture and near-
neighbor connections, one entire sweep could be completed in the amount of time needed to perform
one cell check, or one logical clock tick. In other words, nine million operations per sweep would be
reduced to 34 sequential operations at most. All processors perform the same operations simultane-
ously, but on different data. For such an architecture, Table 5-10 and Figure 5-17 show the perfor-
mance characteristics of a functional implementation of such a connection-array parallel-flash algo-
rithm, where each node has an associated (possibly virtual) processor.

It appears that more sweeps are required for the connection-array algorithm to reach convergence
than with any other algorithm. The reason is that processors are always using old neighbor TCM values
when making comparisons for updating a current TCM cell. With the other scan-based cell-by-cell
algorithms, an updated TCM cell can enter into the calculation of the next TCM cell in sequence
immediately after it has been calculated. With the connection-array parallel approach, all cells are
updated simultaneously, and therefore will not influence the calculation of a neighbor cell until the next
sweep which is the next functional clock tick. As a consequence, a uniprocessor (SISD architecture)
emulating a parallel algorithm has much poorer performance than almost every other algorithm.

Table 5-10. Random versus Terrain Data Performance for Connection-array Algorithm
(Parallel-flash simulated for N=512)
Number of Sweeps for Convergence
Data Set and Goals Coords Alg No. 8 P Algg No. 12
North SF Bay, #3 [150,320] 8 685
South SF Bay, #7 [341,300] 4 543
Sin(x)/x, #6 [085,341] 4 890
Random, #3 [001,003] 190 1750
Ratio of Number of Sweeps to Converge — Random Data vs. Terrain Data
Random vs. North SF Bay 23.8 2.6
Random vs. South SF Bay 475 32
Random vs. Sin(x)/x 47.5 2.0

This table summarizes the performance characteristics of the connection-array parallel-flash algo-
rithm for TCM size 512-by-512 and various goal points. The algorithm assumes a SIMD parallel
implementation. Although it appears that more sweeps are necessary for convergence than other al-
gorithms, the amount of time per sweep is many orders of magnitude less, due to parallel opera-
tions.

Simulation results for a SIMD architecture indicate between 500 and 1800 logical clock ticks
would be necessary to converge 512-point TCM. With a nominal 100 nanosecond cycle time, the 34
operations would take less than seven milliseconds, worst case. However, this would require 256K pro-
cessors, and would not likely be cost effective, even if implemented on an architecture like the Connec-
tion Machine [Hill85] with virtual processors. Figure 5-18 illustrates the anticipated performance of
SIMD architectures for different numbers of processors, up to a maximum of one processor per cell.
Time-shared virtual processors are assumed when there are fewer processors than the number of TCM
cells. The size of available local memory may limit the lower bound on the number of processors that
can be effectively used.

Chapter 5 98

4000
3000
/_—
232924
2000

(2o Fd vl el

0
0.0 50.0 100.0 150.0 200.0
SWEEP NUMBER

Figure 5-17. Average Updates per Sweep for Connection-array Algorithm.

This figure shows the average number of updates per sweep versus the sweep iteration number for
the connection-array algorithm. The goal point is located at [001,003]. The characteristics of this
algorithm are quite different from all scan-based algorithms. As illustrated, the number of updates
starts off very small for the first sweeps, increases as the goal point information propagates, and
then decreases during the final phases of the algorithm. For this algorithm, information from the
goal point propagates only one cell per sweep. But, each sweep is many times faster than scanning
techniques and is overall one of the fastest possible implementations.

5.6.1.2. MIMD

Approaches using commercially available multi-processors in a loosely-coupled architecture (on
the order of 10-100 CPU’s) achieve linear speedup simply by partitioning the TCM, as illustrated in the
work by [Lind86). The minimization of each cell requires access to its neighbors in the TCM. To
avoid access conflict between independent processors, the TCM can be divided into regions or blocks,
which can be assigned to each processor exclusively. The simplest way to partition the TCM is by
rows. For a 512-by-512 array, two blocks of 256 rows by 512 columns would be needed to support two
independent processors. For four processors, four blocks of 128 rows and 512 columns each would be
formed. In general, the number of rows per block would be the array dimension divided by the number
of independent processors. Each independent processor’s cache would capture and hold its portion of
the data set, making its effective access time essentially that of the cache memory. Each processor
works on one portion of the TCM and boundary values are automatically communicated to other pro-
cessors as needed through cache misses and a cache coherence mechanism. It is possible to loosely
synchronize the processors so they will not reach their common borders simultaneously, and degrade
performance by ping-ponging shared data values between their caches.

The overhead of the cache-miss communication does not become a significant factor as long as
the number of processors is reasonably less than N, the size of the TCM. Although each processor is
performing the same algorithm, they are not strictly synchronous. Such an architecture is termed
MIMD. For a SPUR-based multiprocessor system, our simulations show that the hit ratio in the direct-
mapped 128 Kbyte cache is greater than 99.5% for a uniprocessor running scan-based algorithms. That
would change substantially as the number of processors increased and the data contention and commun-
ication time would become prohibitive. Figure 5-18 illustrates the theoretical performance for such an
MIMD architecture.

Chapter 5 99

T 100000
o 10000
E 1000 R Ve,
T T —_—
o 100 aNIm Mt
\\\\\,&\\\\\&\Q\\\\\\\ =
Ay
10 N &E}k\\x\ﬁ\\‘k\\
C N .&3\\\
(o)
N 1 N
v 1 IR R \§Q\‘m\“ <
G .01 . RN ‘i::\~~~4 :»‘
E 001 Minimum Time 4 MIMD
(sec) f
8 64 512 4096 32K 256K

NUMBER OF PROCESSORS

Figure 5-18. Convergence Performance for SIMD and MIMD Architectures.

This figure illustrates the performance of SIMD and MIMD architectures applied to path optimiza-
tion. Performance is data dependent and the shaded regions indicate the amount of time to process
a typical 512-by-512 data set (either terrain or random data) for different numbers of processors
over a variety of data sets. For example, a 512-processor SIMD configuration would need between
13 and 50 seconds to converge. For a given number of processors, the MIMD architecture shows
better theoretical performance than SIMD, but the overhead associated with communicating data
with the larger number of processors would make it ineffective. It should be noted that the length
of the worst case path would be about the same as the dimension of the TCM array. This sets an ab-
solute minimum processing time of about 1.7 milliseconds as shown by the minimum line.

5.6.1.3. MISD

For tightly coupled multi-processors with a single shared memory and software pipelining, a spe-
cialized sweeping algorithm (e.g. the spiral approach) appears best. In this case, a processor pipeline
would perform the operation, with processors staged one behind the other, each of which would be per-
forming a sweep. To signal completion, two successive processors completing sweeps without change
would cancel the remaining sweeps (still in progress). However, considering the amount of conflict at
the memory, the effectiveness of the processor caches would be nullified. If the processors shared the
cache, the problem of the memory latency time could be avoided for all the cache misses, but the con-
tention at the cache (assuming single port) would make the process at least a factor of two slower than
the MIMD architecture with partitioned TCM arrays. Thus, this architecture proves to be too cumber-
some, and will not be consider further.

5.6.2. Hardware Architectures and Implementations

As an alternative to uniprocessor or multiprocessor configurations relying on standard software,
special purpose coprocessors will be considered in this section.

5.6.2.1. Dedicated Special Purpose Devices

At the extreme end of the performance spectrum are hardware implementations that require little
if any host interaction or support. These are essentially stand-alone devices capable of perfcr.aing the
entire algorithm in hardware. The advantage of such implementations comes from being able to tune
the hardware to the exact needs of the algorithm and associated data structure. Optimum performance
is achieved by providing special purpose dedicated memories to hold each of the DCM and TCM
arrays, thus avoiding access conflict at the memory. The algorithm selected is based on the ease and
regularity of implementation more than the outright best relative performance, as reported in Section
5.5.2 earlier. Regularity can be used to advantage in providing address generation for memory access.
Parallel and pipeline structures that take full advantage of the order of operands flowing out of and into

Chapter 5 100

memory can effectively provide one TCM cell update each clock cycle. In such cases, assuming the
nominal 100 nanoseconds clocking rate, a single sweep of a 512-by-512 TCM would take only slightly
more than 26 milliseconds. For terrain data and a good scan-based algorithm, 10 sweeps for conver-
gence would amount to about 0.25 second, well within the goal of sub-second TCM convergence.

As our simulations have shown, scan-based techniques are data dependent. This imposes a disad-
vantage for architectures implementing such algorithms, because the convergence time is unpredictable.
Nevertheless, it is constrained within certain bounds. In the case of completely random data, our stu-
dies show that the convergence rate for a dedicated parallel or pipelined architecture can be as much as
five seconds. However, this is highly unlikely for typical terrain data, and would certainly represent a
conservative upper bound. Other applications (maze routing, VLSI routing, and so forth) need further
investigation to determine the processing time variability as a function of the input data and processing
requirements. Figure 5-19 illustrates a parallel architecture similar to that reported in [Mars80], and
Figure 5-20 illustrates a pipelined implementation similar to the one in [Hans87].

l

TOTAL COST MAP (TCM)
r MEMORY ADDRESSING AND SELECTION
N NE E SE S sw w NwW
DCM DCM DCM DCM DCM DCM DCM

om0 AmSZm0

DCM
COST COST COST COST COST COST COST COST
CALC CALC CALC CALC CALC CALC CALC CALC
SELECT AND OUTPUT MINIMUM VALUE

Figure 5-19. Parallel Dynamic Programming Architecture.

This figure illustrates the fundamental components in a parallel/pipelined architecture for dynamic
programming applied to path optimization. The architecture requires a 9-way comparison, which is
implemented in a comparison tree [Mars80]. Recently minimized cell values are used in computing
current minimum costs.

5.6.2.2. Kernel Function Coprocessors

The speed advantage of dedicated hardware devices is often difficult to justify because of the rela-
tively large expense and inflexible nature of such one-function implementations. The kemel functions
of the path optimization process are addition and comparison. A path optimization coprocessor
designed to implement these functions quickly is considered in the next sections. Many of the house-
keeping operations, such as address generation, operand load/store, and so forth are left to the host CPU
software.

5.6.2.2.1. Dijkstra-based Path Optimization Coprocessor

Dijkstra’s Algorithm is far superior to scan-based algorithms for software implementations. The
algorithm execution time is nearly constant, whether terrain data, pseudo-real sin(x)/x, or random data

Chapter 5 101

l

TOTAL COST MAP (TCM)

I

MEMORY ADDRESSING, BUFFERS, DELAY, and FEEDBACK

N NE E SE S SwW w NwW
DCM DCM DCM DCM DCM DCM DCM DCM

DELAY DELAY DELAY DELAY DELAY DELAY DELAY DELAY
0 1 2 3 4 5 6 7

Figure 5-20. Pipelined Dynamic Programming Architecture.

This figure illustrates the fundamental components in a pipelined architecture for dynamic program-
ming applied to path optimization. The architecture relies on operands being available in sequential
pipelined fashion. This necessitates buffering several rows of data for use in comparison operations
and for writing results back to the TCM [Hans87].

were used to generate the directional cost maps. By profiling the software execution, it was determined
that 35% of the execution time was spent in the cost update function (e.g., minimize_cell of the scan-
based algorithms), and 65% of the time was spent in maintaining a priority queue for the perimeter list.
If the cost computation function became insignificant through the application of a coprocessor dedicated
to that function, execution time would decrease by only 33%, or roughly 20 seconds of the one minute
run-time on a VAX 8850. This applies to virtually all data sets.

Applying a coprocessor to the task of maintaining a priority queue has been discussed in previous
work [Care85]. However, we determined that the most efficient implementation of Dijkstra’s Algo-
rithm requires that items in the queue be accessed randomly when applying heap-sort to maintain heap
order of the priority queue. Most VLSI priority queues rely on a systolic architecture which allows
access only at queue ends, rather than the needed random access. A content addressable portion of the
sorting queue could be incorporated to solve that problem. With the current state-of-the-art in static
rams, and allowing for a 16-bit key and 18-bit tag, approximately 1K entries could be fabricated on one
chip. Dynamic memory technology would allow approximately an order of magnitude larger array to
be built. Our simulations indicate that the maximum length for such a priority queue is less than 2500
elements. By providing a cascading feature as discussed in [Care85], three static priority queue sorter
and content addressable memory chips could implement the function. Finally, to maintain proper sort
order after changing an entry in the middle of the priority sort queue, a number of compare exchanges
equal to the position of the element in the queue are necessary. Our simulat.ons indicate that approxi-
mately 1024 would be needed.

We have also found that the priority queue is resorted approximately 500,000 times during a typi-
cal 512-by-512 problem. Thus, with a nominal cycle time of 100 nanoseconds, and presuming that
integer and loop overhead instructions to be buried in the iterative compare updates, the time for solv-
ing the TCM for such an architecture would be approximately 50 seconds. Clearly, a priority queue that
allows random access to its elements is essential for the efficient realization of this algorithm with a
coprocessor. Although such a coprocessor is feasible, it would require either its own large, private

Chapter 5 102

memory or direct access to the host’s memory to make it effective, and even then it would be too slow.
Such an architecture is more like the dedicated special purpose hardware devices described previously
and will not be considered further. Nevertheless, when considering a software implementation,
Dijkstra’s Algorithm is superior to scan-based algorithms. The following section considers the architec-
ture of a scan-based coprocessor.

5.6.2.2.2. Scan-based Path Optimization Coprocessor

To facilitate the operation of a coprocessor designed to execute scan-based algorithms, the neces-
sary data structures must be reconsidered. For highly pipelined, dedicated architectures, independent
memories and distinct arrays in contiguous sections of the memories were dedicated to TCM values and
the eight sets of DCM values. Such memory configurations are necessary to allow these architectures to
access memory simultaneously.

On the other hand, a coprocessor coupled with a general purpose CPU must rely on the behavior
of the cache to provide rapid access to operand data. In such a case, a composite data structure pro-
duces better cache performance. If no special purpose memories are used, each node in the host pro-
cesser memory consists of eight bytes of DCM information and two bytes of current minimum-cost
value information for the cell. This amounts to 10 bytes of information for each cell requiring three
accesses for a 32-bit architecture. A 512-by-512 problem would require 2.6 Mbytes of data space. For
practical purposes, this becomes 3.0 Mbytes if 16-bit TCM values are used and the two extra bytes in
the TCM word are either ignored or used for minimum_direction pointers. In the context of the SPUR
CPU, 64-bit wide transfers are possible between the cache memory and the coprocessor. For addressing
simplicity, the memory layout might consider 16 bytes per element, necessitating 4.0 Mbytes of data
space. These and other possible layouts for TCM and DCM data in memory are illustrated in Figure 5-
21.

Using the data structure shown in Figure 5-21b, the address of all data needed to minimize a par-
ticular center cell can be easily derived from the logical [row][col] address in the TCM matrix. Table
5-11 illustrates the address computation needed.

As outlined earlier, a cell check logically consists of nine loads of TCM data, eight loads of DCM
data, eight additions of TCM(CC) and the DCM data, eight comparisons of newly computed interim
center cell values, and one store of the result in the center cell. With the data structure and addressing
scheme explained above, the center cell current minimum value is loaded in the coprocessor. Second,
the DCM values associated with that cell are loaded. Then, as each of the neighbor cells current
minimum information is loaded, the coprocessor performs the addition, comparison, and select
minimum function in pipeline fashion, keeping pace with the load sequence after some delay. After the
eight comparisons are complete, the result it written back to memory. Figure 5-22 (a) illustrates a
straight forward implementation of a scan-based algorithm. With such a scheme, a cell check nomi-
nally consumes 14 cycles with a 32-bit host architecture providing single-cycle instruction times. With
SPUR, this can be reduced by one cycle due to the 64-bit wide interface between the coprocessor and
cache memory. At 100 nanoseconds per cycle, this translates into approximately 0.35 sec per sweep.
For typical terrain data requiring between four and 10 sweeps to converge, this results in a convergence
time of approximately 1.4 to 3.5 seconds, which does not meet the sub-second performance goal, but
nevertheless is significantly better than software implementations.

Chapter §
fe 32 Bits |
CURRENT TCM MINIMUM
Node 0 w NW N NE
----------------- #-+-=-DCM MAP DATArg--=--==-+==-=-==-}
swW s SE° E
CURRENT TCM MI UM |
Node 1 w NW N NE
#--+=DCM MAP DATArj ===
. sW s SE E
. .
L4 w> e
@
e— 64 Bits d
CURRENT TCM MINIMUM ¢
Node 0 ' t ' :
w NW N DCMMAPDATA o $ SE . E
'CURRENT TCM MINIMUM
Node 1 1] i ; ¥ { {
w NW N DCM MAP DATA S SE E
. , . . h . . ,
e > »
. ®)
ke 64 Bits |
CCURRENT TCM MINIMUM. o CURRENT TCM MINIMUM
Nodes 0-1 w NW N DCM MAP DATA s SE
w NW N DCM MAP DATA s SE
. + + + b
. w» »
. ©
- 64 Bits o
CURRENTMIN o | CURRENTMIN | | CURRENTMIN ; | CURRENTMIN 3
W NW N DCMMAPDATA g s SE E
w NW N DCM MAP DATA s SE E
Nodes 0-3 + ‘ ! h ' 4 1
W NW N DCM MAPDATA 5 s SE E .
w NW N DCMMAPDATA3 S SE E
* w») i . Y 3

@

Figure 5-21. Data Structure for Path Optimization Coprocessor.

This figure illustrates four possible data structures for a coprocessor implementation of the path
optimization function. The data related to a particular TCM value are stored near it. Neighbor
items are stored in sequence in row-major order. Part (a) is a straight-forward layout based on a
32-bit word width using 12 bytes per node. The current TCM minimum value could occupy less
than 32 bits, leaving space for a minimum_direction pointer. If addressing simplicity is needed,
space can be wasted as shown in Part (b) as long as caching behavior does not suffer as a result.
Again, the current TCM minimum could be constrained to 16 bits for the hardware, as explained in
Section 5.5.2.4. This consumes 16 bytes per node. Part (c) compacts memory slightly, resulting in
a 25% reduction in the amount needed compared to Part (b), or 12 bytes per node as in Part (a).
Part (d) reduces that further to 10 bytes per node by compacting TCM entries into one long word,
using 16-bit values, and ignoring the minimum_direction pointer for each node.

103

Chapter 5 104
Table 5-11. Effective Address Calculation for Coprocessor Data Structure
TCM Cell Cell Row & Col Cell Base Address in Memory Neighbor Offset
CC [row] [col] (row) * BPR + (col) * BPE KO
w [row] {col-1] (row) * BPR + (col-1)*BPE | KO - BPE
NW [row-11 [col-1] | (row-1)*BPR + (col-1)*BPE | KO - (BPR+BPE)
N frow-11 [col] (row-1)*BPR + (col) * BPE KO - BPR
NE [row-1} [col+1] | (row-1)*BPR + (col+1)*BPE | KO - (BPR-BPE)
E [row] [col+1] | (row)* BPR + (col+1)*BPE | KO + BPE
SE [row+1] [col+1] | (row+1)*BPR + (col+1)*BPE | KO + (BPR+BPE)
S [row+1] [col] (row+1) * BPR + (col) * BPE KO + BPR
SW frow+1] [col-1] (ow+1)*BPR + (col-1)*BPE | KO + (BPR-BPE)

Note: BPR = bytes per row, BPE = bytes per element

This table shows how the row index and column index of the TCM are used in calculating near-
neighbor addresses for data access. The base address of a particular element in the TCM (identified
by its [rowj[col] address) must be calculated, and the offsets to other elements in memory are at
pre-computed fixed offsets from that address. CPU registers can be dedicated to these constants,
providing a simple R(base)+R (offset) load and store addressing. After determining the address for
the first row, other row element base addresses are determined by simply adding the element size as

an offset.

For scan-based algorithms, there is a trade off between how many near-neighbor cells are checked
each sweep and the number of sweeps needed to converge. The only requirement is that all neighbors
be considered before determining that a cell has reached its minimum value. This allows for a
simplification to some algorithms. For example, if we modify an algorithm slightly by only loading and
checking the W, NW, N, and NE neighbor TCM values, only half the work per cell check is done. Fig-
ure 5-23 illustrates two such modified algorithms. Algorithm No. 10 is identical to Algorithm No. 7,
except that only four NNR cells are considered for each cell check, reducing the amount of work done
on each scan by half. Algorithm No. 11 is identical to Algorithm No. 4, but again the number of cells
checked each scan has been reduced to the ones shown. The amount of work per sweep is reduce by
half, at the cost of needing to do a few more sweeps to converge. Table 5-12 and Table 5-13 show
results of running the algorithms, comparing the number of sweeps for convergence and how well they
perform relative to Dijkstra’s Algorithm.

Chapter 5 105

LD |INC{CMP| ST | = ¢ o

CC DR W NW N

Al

CC DR NE

[mllwzlu)s INC|CMP] ST | ¢ * °

Al | A2 | A3 | A4

(€)

Figure 5-22. Coprocessor Pipeline Stages.

This figure illustrates the instruction flow and corresponding pipeline sequence for the SPUR archi-
tecture with a path optimization coprocessor. The CPU performs effective address calculation and
operand load/store, while the coprocessor simultaneously decodes the instruction and either per-
forms a load or store as directed by the instruction. The coprocessor performs the add, comparison,
and select minimum functions in pipeline fashion similar to the SPUR CPU and FPU architectures.

- T3 S |
CERGEIRERETER LAY

Algorithm No. 10 Algorithm No. 11

Figure 5-23. Modified Scan-based Algorithm Sweeping Techniques.

The scanning process for each technique is illustrated with a collection of numbered circles and
light or dark arrows, as was shown earlier in Figure 5-6. The shaded boxes shown indicate which
neighbor cells are considered for the calculation (the unshaded boxes are not involved, reducing the
computation tirse by 50%).

Chapter §

This table summarizes the performance characteristics of Algorithm No. 10 and Algorithm No. 11
for TCM size 512-by-512 and various goal points. We have included Algorithm No. 8 from Table
5-4 for comparison. These represent the ratio of execution time for each algorithm normalized to

Table 5-12. Scan-based Algorithm Nos. 10 and 11 vs. Dijkstra’s Algorithm
(Goal points refer to Figure 5-9, simulated for N=512>)

Data Set and Ratio of Scan-based Algorithm to Dijkstra’s Algorithm

Goal Coords Dijkstra AlgNo.8 | AlgNo.10 | AlgNo. 11
North SF Bay, #3 [150,320] | 1.0 (36.6) 31 22 12.1
South SF Bay, #7 [341,300] | 1.0(36.8) 1.8 2.1 9.8
Sin(x)/x, #6 [085,341] 1.0 (36.2) 1.8 22 15.6
Random, #3 [001,003] 1.0(39.2) 59.8 102.7 94.4

Dijkstra’s Algorithm for the particular data set.

Table 5-13. Performance for Algorithm Nos. 10 and 11 on Random and Terrain Data

(Simulated for N=512)

Data Set and Number of Sweeps for Convergence
Goal Coords Alg No. 8 Alg No. 10 Alg No. 11
North SF Bay, #3 [150,320] 8 8 57
South SF Bay, #7 [341,300] 4 8 46
Sin(x)/x, #6 [085,341] 4 7 71
Random, #3 [001,003] 190 269 256
Ratio of Number of Sweeps to Converge — Random Data vs. Terrain Data
Random vs. North SF Bay 23.8 33.6 4.5
Random vs. South SF Bay 47.5 33.6 5.6
Random vs. Sin(x)/x 47.5 38.4 3.6

This table shows how scan-based Algorithm Nos. 10 and 11 compare for random and real data sets.
Algorithm No. 8 has been included from Table 5-5 for comparison. As with the other scan-based
algorithms, the number of sweeps to converge is generally much larger for random data than the ter-
rain data. Note that for random data, Algorithm No. 10 requires 40% more sweeps than Algorithm
No. 8, its more complicated counter part. Nevertheless, it is superior, since each sweep requires
only half the time. Although Algorithm No. 11 is not as efficient as Algorithm No. 10, it is interest-
ing to note that it takes the same number of sweeps to converge as Algorithm No. 4, which does
twice the work per sweep. On that basis, we can say it improves performance by a factor of two for

Algorithm No. 4 to make a simpler near-neighbor comparison test.

106

Chapter 5 107

Algorithm No. 10 Algorithm No. 11

s | — 1 am
- .] o0 g//

a|
v

U T,
iy gt

H N

[— 0

o 10 20 30 4 [} 10 20 30 40
SWEEP NUMBER SWEEP NUMBER

wm->Uua
wm-» Ve

Figure 5-24. Average Updates per Sweep for Algorithm Nos. 10 and 11.

This figure shows the average number of updates per sweep versus the sweep iteration number for
Algorithm No. 10 and Algorithm No. 11. The goal point was located at [001,003] for all simula-
tions. As explained in Figure 5-14, the amount of useful work accomplished per sweep is a func-
tion of where the goal is located and the scanning/sweeping directions. Here it is important to
recognize that each sweep requires half the amount of work of the sweeps illustrated in Figure 5-14
because only half the near-neighbor cells are being checked each time. The overall convergence
rate is typically faster when compared to the 8-way versions (Algorithm No. 8 and Algorithm No. 4,
respectively).

For Algorithm No. 10 and No. 11, more sweeps will be required to converge than when checking
all eight neighbors, since minimized TCM cells determined on a previous sweep will not be include in
the current sweep. This also necessitates two complete sweeps without change before convergence is
reached. Although more sweeps must be completed for convergence, the amount of work per sweep is
less, and overall, less time will be needed. From Table 5-12 and Table 5-13 it is clear that Algorithm
No. 10 is the most effective using the strategy of trading more sweeps for less work per sweep, decreas-
ing the amount of work overall by nearly a factor of two for random data. For terrain data, the number
of sweeps is between one and two times what it would be if all near-neighbor cells were compared. If
the same number of sweeps is used, the execution time is half what it would otherwise be. If twice as
many sweeps are necessary, it will take the same amount of time to converge. Thus, the amount of time
needed for the TCM to converge can be reduced as much as half when reducing the number of NNR
cells to include in the comparison test.

The architectural simplification resulting from using Algorithm No. 10 (fewer pipeline stages per
cell check) is illustrated in Figure 5-22(b). With such a scheme, a cell check nominally consumes nine
cycles, a reduction of four cycles over the previous case. At 100 nanoseconds per cycle, this translates
into approximately 0.235 sec per sweep, about two-thirds the amount needed for the architecture
designed for an 8-neighbor test as illustrated in Figure 5-22(a).

Finally, after a given cell check, most of the data needed for the next cell check is already resident
in the coprocessor. The new center cell must be loaded, along with its associated DCM values and its
NE neighbor. The most recently minimized center cell value becomes the W neighbor. Hence, only
three loads and a shift are necessary to begin a new calculation, and the shift can occur simultaneously
with the NE neighbor load. Internally, the path planning coprocessor maintains a 4-deep queue for the
TCM current minimum information as it flows through the device. This reduces the software pipeline
to that shown in Figure 5-22 (c). By reducing the kernel function to six cycles, the sweep time
decreased to 0.156 sec. For terrain data, this results in a convergence time of 0.7 to 1.6 seconds, near
the one-second goal. Figure 5-25 shows a simplified hardware block diagram corresponding to the
pipeline sequencing shown in Figure 5-22 ().

Chapter 5 108

DATA BUS
CURRENT MIN DATA
MUX 2:1
J’ NE N NW
CNT CELL
FMUX
2:1
t — W C
DCM DATA 1 (¢]
T M
NE P
A
N IMUX R
E

A

------- z D

NwW 4:1 : D
w

CONTROL LOGIC

Figure 5-25. Block Diagram of Path Optimization Coprocessor.

This figure is a simplified block diagram of an implementation for a path optimization coprocessor.
The timing of load/store and other interactions between the CPU and the coprocessor are based on
the SPUR coprocessor interface protocol described earlier in Chapter 4 and detailed in Appendix A.

5.7. Chapter Summary

This chapter has considered the application of dynamic programming algorithms and techniques
coupled with coprocessor architectures to the problem of path optimization. Specifically, the shortest
path from all points in a grid representing a rectangular region of terrain has been studied.

The range of performance for various algorithms and architectures spanning the spectrum from
strictly sequential software to highly parallel hardware implementations have been simulated and their
performance determined. The performance characteristics of each of the architectures is illustrated in
Figure 5-26.

With cost as one dimension of comparison, a cost-speed plot showing lines of constant perfor-
mance per unit cost provides a means of comparing cost-effectiveness for different configurations. In
Figure 5-27 the various implementations studied are compared. Although there is a broad range of
hardware costs, this figure shows that there are roughly three bands of equal cost performance. At the
low end of the spectrum are purely software implementations, as expected. The VAX family and IBM
mainframe offer a level of cost-performance roughly between $10 and $100 per cell check per second.
SUN and other microprocessor based systems improve on that performance by roughly one order of
magnitude: between $1 and $10 per cell check per second.

Significant performance improvement is obtained only through the use of some form of special
architecture or special purpose hardware. In these cases, as illustrated in Figure 5-27, between two and
three orders of magnitude improvement over the microprocessor based solutions is achievable.

In certain circumstances, this comparison is of little or no importance. When a performance capa-
bility is needed with no particular regard to the price, it is clear that the only way to provide more than
1,000,000 cell checks per second is at great absolute expense. Even so, the cost of special purpose
hardware solutions is considerably less expensive when viewed in the perspective of greatly reduced
performance provided by the alternatives. This reinforces the premiss that the most cost effective sys-
tems are often a combination of specialized hardware elements in conjunction with conventional but

Chapter 5 109

Terrain Data B Random Data

100000 1 . .
P (sz: finear sort) Published results (SW)
1 ‘ SWS

T can
— 1000
E Dijkstra

100{ (SW, heap-sort
; I N YN\ Coprocessor Scan
o
¢ 107 Special-purpose HW Scan
(0]
I\sj 13 CM2 16K Scan
E
g 13 CM2 64K Scan
E

.01 4
(sec.)
.001 1
! 10 100 1000

NUMBER OF SWEEPS TO CONVERGE

Figure 5-26. Performance of Various Implementations for Path Optimization.

This figure illustrates the difference in performance for several realizations of the path optimization
function in software, a kemel-function coprocessor, special dedicated hardware, and a parallel
connection-array architecture. Industrial quality software is roughly three orders of magnitude
slower than special purpose hardware, and between one and two orders of magnitude slower than
the sub-second performance goal. However, the combination of a limited function coprocessor and
optimized software reduces that gap to slightly less than one order of magnitude over a broad spec-
trum of data, and comes very close to meeting the performance goal for the terrain data sets.

streamlined computer architectures that do not get in the way of but rather enhance the capability of the
dedicated processing element.

In conclusion, the path optimization coprocessor fits well in the SPUR coprocessor model. The
ability to load and store operands during coprocessor operations is a key element to achieving the
required performance. The large data cache in a SPUR node provides very high hit ratios for the data
structure used in the proposed implementation. The architecture of the coprocessor follows the pipeline
scheme of the SPUR CPU and FPU and provides the same concurrency benefits.

This coprocessor implementation uses a simple architecture coupled with an efficient data struc-
ture to achieve good run-time performance, orders of magnitude better than pure software implementa-
tions. We have shown that the general notion of a hardware coprocessor for path optimization is an
attractive alternative and that the SPUR coprocessor model adapts well to requirements of the process-
ing function.

A heapsort coprocessor to implement Dijkstra’s Algorithm and/or the application of a path optimi-
zation coprocessor to three-dimensional shortest path algorithms used in robotics may prove to be fruit-
ful areas for further research.

Chapter 5

v LAROEIEO Crmo

-

UZonmw

Mg g
100000K 1
10000K 1 aZapp
100K 5 o—"—acp .~"waCP-SUN"
100K ’
) -—a ;090
“ - aeggso””
10K §" oo——as32
a8 S3_1 '_." o—a ss'
1K+ v v— v v f
1K 1K 10K 100K 1000K 10000K
COST (5K)

Legend:
CM2 - Connection Machine V2
PP - Parallel/Pilelined Hardware
CP - Coprocessor
CP_SUN - Coprocessor and Sun
3090 - IBM 3090
8850 - VAX 8850
785 - VAX 785
780 - VAX 780
S3_2 - Fast Sun3 with disks
S3_1 - Fast Sun3 standalone
S2 - Sun2

Figure 5-27. Cost-Speed Comparison of Path Optimization Implementations.

This figure illustrates the cost-speed characteristics of the path optimization implementations stu-
died in this chapter. The line for each configuration represents the range over which costs can vary.
For example, a Sun3 can cost between $12,000 and $40,000 depending on the amount of memory,
the number of disks in the system, the speed of the CPU, and so forth. The sloped dotted lines indi-
cate regions of constant speed per unit cost. For instance, the line passing through the VAX 780
and IBM 3090 is approximately $20 per cell check per second, whereas the special purpose parallel
hardware is $.001 per cell check per second.

110

111

Signal Processing,

Vector Floating-point, and

Language Coprocessors

6.1. Introduction and Overview

Computer systems are designed to execute well over a wide range of applications. For VLSI
microprocessors, the instruction sets are optimized to yield the best cost-performance over that range,
under the constraint of finite resources — the amount of silicon that can be put to practical use. To
increase the power and efficiency of such systems, execution elements for specialized applications are
often added.

In previous chapters, we examined in detail two widely contrasting applications of coprocessors in
general purpose computer systems. Arithmetic is a natural part of any CPU instruction set, and a copro-
cessor designed for floating-point operations would naturally be closely coupled to the operation of the
CPU. The operands are relatively large in size and the operations can be relatively long in time. The
collection of the data can vary in quantity from incidental scalars to large, vast arrays of numbers.

On the other hand, the functions associated with path optimization are largely data-intensive, and
often find realization in non-closely-coupled implementations. Operands are small in size and opera-
tions are relatively short in time — but there are many of them. The number of operations over time is
large while the quantity of data is relatively large but of fixed size.

In this chapter, we consider other applications that benefit from the inclusion of special purpose
hardware in a general purpose computer system to enhance certain functions. We briefly explore and
develop the central issues of:

e signal processing coprocessors based on the SPUR FPU model,

e extensions to the current SPUR floating-point coprocessor to accommodate vector operations,

e and a language-specific coprocessor for Prolog that uses a modified SPUR CPU and FPU model.

Chapter 6 112

6.2. A Signal Processing Coprocessor for SPUR

Analog systems use the fundamental properties of physical components, such as resistance, capa-
citance, or inductance, to realize mathematical relationships between physical world phenomena in the
form of signals — current, voltage, or pressure. For example, the voltage build up across a capacitor is
the integration over time of the current effectively flowing through the capacitor. Likewise, differentia-
tion, division, addition and summation can be realized. Until faster technology and better architectures
made it possible, digital solutions emulating these physical mathematical relationships were simply too
slow for anything other than non real-time analyses or simulations. Analog-to-digital and digital-to-
analog converters with sufficient resolution, speed, and accuracy were needed to form the bridge
between the two worlds. Once the conversion is made, the mathematical relationships are realized
explicitly on the digitized signals with techniques and algorithms know collectively as digital signal
processing (DSP). The current state of technology now provides us with inexpensive devices that can
operate at the necessary rates.

The mathematical basis for processing of discrete signals using linear filters began in the early
1600’s [Kais67]. Techniques and mathematical investigations dealing with finite differences evolved at
the same time that classical numerical analysis and calculus came into being. Early research dealt with
idealized, noise-free systems. However, techniques have evolved since 1940 that focus consideration
on practical realizations in a non-ideal environment.

Contemporary digital signal processing is coming to rely more and more on floating-point compu-
tation [Andr88], circumventing some of the problems associated with overflow, scaling, gain control,
dynamic range, precision, and so forth. As shown in Chapter 4, some floating-point programs can be
characterized by small kemel operations, which can be optimized for speed and efficiency. Many such
processing functions, like equation solving and simulation, have no particular time constraints, though
it is usually a matter of making the process as fast as possible, or at least no slower than tolerable.

The signal processing world divides itself into two camps: non real-time, or simulation oriented,
and real-time. As will be shown in Section 6.2.2, the data rates of real-time systems generally preclude
the use of general purpose processors to do the main computational loops. In these cases, coprocessors
designed and applied to real-time applications are much more like array processors. DSP applications
are often unique for that reason, since many of them must be performed in real-time. The question then
becomes: Is the SPUR system with its current interface to a floating-point coprocessor sufficient to
implement real-time DSP algorithms? If not, what can be done to improve that performance, either by
way of architectural innovations or other specialized coprocessors? In the following sections, we exam-
ine some of the algorithms and applications of digital signal processing to help determine the answer to
those questions.

6.2.1. Signal Processing Algorithms

The Fourier transform is the basis for many signal and image processing algorithms. A
comprehensive discussion of the fundamentals and examples of its widespread use are contained in
(Brig74, Brig88]. In this section, we present the mathematical basis for signal processing and some of
the basic algorithms used.

The Fourier integral is defined by the expression:
+c0
H(f)= [h(t)e ™" dt (6-1)

where A (t) is a continuous function in time and H (f) is a continuous function in frequency. In order to
process the signal in the discrete time domain, 4 (¢) must be sampled to yield 4A(nT), T being the sam-
ple period. However, aliasing will occur if the frequency spectrum is not constrained such that
H(f)=0 for some f > f,. Practically speaking, this means that the highest frequency component of
the sampled signal must be at most half the sampling rate, according to Nyquist’s theorem, which states

1
that T >
2 2

to theoretically retain all the information present in & (t).

c

Chapter 6 113

A second problem comes from truncation of the original signal into a finite number of N samples
upon which the transform is performed. Sampling in time creates a periodic frequency representation.
Similarly, sampling in frequency creates a periodic time representation. The net result is the discrete
Fourier transform (DFT), an approximation to the continuous Fourier transform, which can be
expressed as: '

n Mo —jannk 'i;""‘
G5)= /Eog (kT)e (6-2)

forn=0,1,...,N-1.

The most important DFT properties are convolution and correlation. Mathematically, discrete
convolution of an input signal x with the system transfer function ~ can be represented as follows:

N-1
y(kT) =TZx(iT)h[(k—i)T] 6-3)
i=0
Discrete convolution requires both x (k') and & (kT') to be sampled and periodic functions with period
N. The scaling is necessary due to sampling. Notationally, this is usually written as

y(T) =x(kT) * h(kT) (6-4)

Discrete correlation can be expressed as:
N-1

z(kT)= ¥ x (iT)h[(k+i)T] (6-5)
i=0
sampled and periodic functions with period N .
The fast-Fourier transform (FFT) is a computationally efficient way of evaluating the DFT. Equa-
tion (6-6) is the same as Equation (6-2), but with kT replaced by £ and % replaced by n:

N-1 —J2Rnk
X(n)= Y xotk)e ¥ (6-6)
k=0)
—in
withn=0,1,...,N-1. If weletW =e¢ N, Equation (6-6) can be expressed as:
X(n)=W™xoK) (6-7)

the compact form for a matrix representation. We note that W™ = W md®) and for N = 4 for exam-
ple, the matrix form of the FFT is:

11 1 1
X x0(0)
x| _vwtwrwell
X "1 w2 w®w?||x02)
X(3) 1 W3 w? wl x0(3)

(6-8)

In the form above, N2 complex multiplies and N (N —1) complex adds are necessary. An easier way to
realize the same thing can be accomplished if the W matrix is factored to yield the FFT butterfly form,
with order Nlog,(N) complex multiplies and adds. This represents the data-flow of the computation.
The key to efficiency is factorization of the butterfly form, which results in many variations for special
cases. Some of these special forms have been implemented in VLSI at Berkeley and will be described
next.

6.2.2. Signal Processing Applications

The ratio of data sampling rate to processing rate provides an indication of how well a computing
system is matched to the processing requirements of the computation. For contemporary standard MOS
processes, 10 to 30 MHz clock rates are feasible. For normal audio band signals, sample rates between

Chapter 6 114

8 KHz and 44 KHz span the spectrum of applications from telephony to digital audio [Ruet86]. As an
F,
_ ranges between 227 and 1250.

example, for circuits clocked at a 10 MHz rate, the ratio R =
sample
Thus, R indicates how much processing can be done between samples.

In the case of special purpose hardware, R indicates how many times each piece of hardware can
be used to do different operations in the algorithm. For a general purpose processor, it indicates the
number of instructions or clock cycles available between samples. Clearly, as R approaches 1, more
parallelism is required to meet real-time processing needs. For video or image processing, the volume
and rate of the data is roughly two to three orders of magnitude greater than audio signals, about one
processing cycle per signal sample. Clearly, massive pipelining and/or parallelism is needed to do
image processing and is far beyond the real-time capability of a general purpose computer system and
the scope of this dissertation, and will not be covered further. (Interested readers are referred to
[Ruet86] which describes work done at Berkeley with special purpose image processing devices.)

6.2.2.1. A Speech Recognition System

A template-based speech recognizer system developed at Berkeley by [Kava86] is an example of a
special purpose signal processor designed to meet real-time constraints. It utilizes custom VLSI com-
ponents embedded in a conventional UNIX workstation. The recognizer is trained for a particular
user’s voice characteristics, and is capable of recognizing about 1000 unique words, with a minimum
response latency of less than 0.5 seconds.

The speech recognizer consists of multiple special purpose chips for both log and linear multiple
channel filtering and pre-emphasis, dynamic programming recursion, gain-normalization, euclidean dis-
tance calculations, summation, and so forth. The processing tasks required to do this in real-time can be
characterized as follows:

1000 templates x 25* £quations)
template _ 2.083.333 equations
300 milliseconds T second

For conventional processors, this much computation amounts to roughly 100 million instructions per
second [Kava86], or about two orders of magnitude slower than needed for real-time. To ‘meet this pro-
cessing rate, industry has provided a wealth of specialized programmable DSP chips with architectures
designed to implement many of the standard signal processing algorithms effectively. Some of these
are listed in Table D-1 in Appendix D. At present, there is only one commercially available DSP chip
that provides floating-point arithmetic, the DSP32 manufactured by AT&T. The performance of this
chip is roughly 8 MFLOPS [Brod85]. More will be said about its architecture and capabilities in Sec-
tion 6.2.4. The complexity of speech recognition algorithms exceeds even the most capable single chip
DSPs coming to market, and is included here only to place the performance requirements needed for
such a complicated processing task in perspective with the current technology.

To determine how well the spur architecture meets DSP applications and compares to the DSP32
implementation, the next sections illustrate the performance of SPUR on three micro-benchmarks.

(6-9)

6.2.3. Signal Processing Benchmarks and Evaluation

To evaluate the effectiveness of the SPUR system applied to signal processing, we selected three
typical signal processing benchmark programs from three application areas: spectral analysis, speech
generation, and spectrum shaping.* Spectral analysis uses DFT and FFT techniques in performing con-
volution and correlation. Speech generation involves the functions of linear predictive coding or
waveform coding. Spectrum shaping is the filtering of discrete signals with both finite impulse
response and infinite impulse response techniques.

*These were recommended by DSP researchers D. Messerschmitt, E. Lee, and E. Wold of UC Berkeley
EECS Department.

Chapter 6 115

The generalized mathematical form for all three applications is given in Equation (6-10)

N M
Y = Zan* Xk—n — me* Yi-m (6'10)
n=0 m=1
For some applications, the coefficients are zero, eliminating certain terms and simplifying the overall
computation for that application. The basic mathematical operations involved are summation
(add/accumulate) and scaling (multiplication), besides the usual house-keeping operations and operands
transfers.
In the next three sections, we present each of these applications and report the performance
characteristics for various combinations of hardware and software.

6.2.3.1. Spectral Analysis

To implement the FFT, we have chosen a simple version of the Cooley-Tukey [Cool65] algorithm
with bit reversal. The set of equations for N = 4 is shown in Equations (6-11a), (6-11b), (6-11c¢)

. 2nq ky
x1(noko) = 3, xolk1,kW (6-11a)
k120
1
xonon)= 3 xi(nokgW @t (6-11b)
ke=0 :
X(npno =x3(neny) (6-11¢c)

We use a constant filter function with no windowing, and coefficients are computed as needed. The
benchmark consists of a 1024-point transform of three sinusoidal signals with frequency ratios 1:3:7,
using 32-bit floating-point arithmetic. The results of the FFT were inverse transformed to verify
correctness and accuracy. Table 6-1 lists the results of running the benchmark for several processor
configurations.

Table 6-1. Performance Comparison of 1024-Point FFT
Host Floating-point Time Slow-down relative

Processor* | Implementation | (CPU Seconds) to real-time
SUN3/160 Software 11.05 475.0
SUN3/160 68881 1.4 60.0
SUN3/160 FPA 0.95 40.0
VAX/8800 FPA 0.6 25.0
SPUR FPU 0.2 9.0
DSP 32 DAU 0.02 “1.0

This table shows how well several architectures perform a 1024-point floating-point FFT. The CPU
time is as reported by the UNIX time(1) command. The real-time requirements come from a sam-
ple window of roughly 20 milliseconds, for the assumed sample rate of 44 KHz. The slow-down
relative to real-time is the ratio of the time consumed to sample window. Only the DSP32 is able to
perform at a real-time rate. SPUR is roughly an order of magnitude too slow.

As can be seen in the table, a conventional workstation or minicomputer using software floating-
point routines is wholly inadequate. By improving performance with various floating-point accelera-
tors, there is still a difference of one or two orders of magnitude between the performance needed and
what is possible. Only with the specialized DSP32 architecture is real-time processing realized.

*The processor clock rates for this and subsequent tables showing performance comparisons are: 60
nanoseconds for the SUN3, 45 nanoseconds for the VAX 8800, 250 nanoseconds for the DSP32, and 140
nanoseconds for the SPUR system.

Chapter 6 116

6.2.3.2. Speech Synthesis

As the second of three benchmarks, we chose to implement an example of linear predictive coding
(LPC). Equation (6-12) represents the computation in the z-transform domain [Honi84].
G
M
1- Za" *z -1

i=1

H(z)= (6-12)

We use an auto-regressive all pole model and spectral estimation of the input. We again chose a
1024-point implementation with 50 coefficients and 32-bit floating-point quantities. The computations
performed include auto-covariance (largely a dot product inner loop) to produce the matrices and Gaus-
sian elimination to solve for the coefficients. Table 6-2 lists the results of running the benchmark.

Table 6-2. Performance Comparison for 1024-Point LPC Algorithm
Host Floating-point Time Slow-down relative
Processor | Implementaton | (CPU Seconds) to real-time
SUN3/160 Software 74 3200
SUN3/160 68881 2.5 107.0
SUN3/160 FPA 1.3 550
VAX/8800 FPA 0.6 28.0
SPUR FPU 02 9.0
DSP 32 DAU 0.02 “1.0

This table shows the performance of various architectures on a 1024-point linear predictive coding
algorithm, assuming a sample rate of 44 KHz, and 32-bit floating-point arithmetic.

We see that most commercial architectures are still unable to meet a real-time requirements of
speech synthesis using the LPC algorithm. The number of coefficients can be reduced by a factor of
two to five without a significant effect on quality [Mess87]. The performance of the DSP32 would then
meet real-time needs, with SPUR still an order of magnitude less than needed.

6.2.3.3. Spectrum Shaping

The process of filtering signals — extracting some frequencies while rejecting others — is known
as spectrum shaping. We chose to implement a low-pass filter, also known as a tapped delay line or
finite impulse response filter, given in Equation (6-13) [Oppe75]. We assumed an ideal low-pass filter
with with 50 taps and comer frequency at 0.1T.

N
H(z)= Y a,*z"! (6-13)
n=0

Table 6-3 lists the results of running the benchmark on the selected architectures.

Again we note that other than the dedicated architecture of the DSP32, all conventional processing
systems are between one and two orders of magnitude too slow for real-time. The SPUR system comes
closest. Using various algorithmic techniques, a multi-processor version of the algorithm could be
implemented to achieve real-time performance.

From these three benchmark results, we observe that none of the conventional general purpose
architectures tested is able to provide a real-time signal processing capability. As time passes, this will
inevitably become possible with faster CPU’s equipped with floating-point accelerators. However, the
proliferation of specialized chips and in some cases coprocessors will make alternatives more attractive
from a cost-performance point of view. In the following sections, we will examine the SPUR architec-
ture in light of these applications to determine how well the current system provides a real-time pro-
cessing capability, and what might need to change to enhance that potential.

Chapter 6 117

Table 6-3. Performance Comparison for FIR Filter Implementation
Host Floating-point Time Slow-down relative

Processor | Implementation | (CPU Seconds) to real-time

SUN3/160 Software 31 136.0

SUN3/160 68881 1.0 440

SUN3/160 FPA 0.30 13.0

VAX/8800 FPA 0.16 7.0

SPUR FPU 0.08 35

DSP 32 DAU 0.013 0.55

This table shows the performance of various architectures on the implementation of a 50-tap FIR di-
gital filter.

6.2.4. A SPUR DSP Coprocessor

When comparing the performance of the SPUR architecture and the DSP32, it is evident that
roughly an order of magnitude in improvement in SPUR is needed to achieve real-time operation. From
Chapter 4, we found that for tight loops, the SPUR architecture is capable of roughly 0.6 to 1.3
MFLOPS with a 140 nanosecond cycle time (0.8 to 1.8 MFLOPS with the 100-nanosecond cycle time
achieved by chips in recent tests). This suggests that floating-point performance of about 10 MFLOPS
is needed to process signals in real-time with a SPUR system. What needs to be done in the SPUR
architecture to achieve that? To answer this question, we will first briefly examine the architecture of
the DSP32. (Please refer to Appendix D for further details.)

The architecture of the DSP32 includes 32-bit data arithmetic (DA) instructions which are highly
pipelined and 16-bit control arithmetic (CA) instructions which are not pipelined, except for loads. The
DA instructions support various forms of multiply/accumulate between registers, memory, I/O buffers,
and so forth. Also, a number of type conversions are included in the instruction set. The CA instruc-
tions allow the normal control flow operations (conditional branch, loop counter test, subroutine call
and return) and integer arithmetic operations (add, subtract, logic and shift, compare). Because of the
decoupled nature of the CA and DA instructions, and the pipelining of the DA operations, test condi-
tions must be established anticipating a typical 3- or 4-cycle latency. This makes programming the
DSP32 rather difficult [Andr88]. Table 6-4 summarizes some of the features of the DSP32 architecture
and briefly compares it to SPUR.

Table 6-4. Architecture Comparison of DSP32 and SPUR System
Parameter DSP32 SPUR CPU/FPU
Control 16-bit special purpose 32-bit general purpose

controller, 4 MIPs CPU, 7-10 MIPs
Data 32-bit FPU DAU signal 32-, 64-, 80-bit
processing format, IEEE P754 Standard format
8 MFLOPS ~1 MFLOPS
Memory 6 KB on-chip, 56 KB off-chip 128KB cache @ 100 nsec,
250 nsec/cycle main memory, disk
Transfers Microproc. DMA @ 1.8 MB/sec. | 10-15 MB/sec.
16 MB/sec DAU to/from cache
User inter- | Assembly, microcode, special HLL compilers, assemblers
face purpose development systems symbolic debuggers

This table contrasts some of the architecture features of the DSP32 and SPUR system. The DSP32
is intended for embedded applications and consequently benefits from the development environ-
ment typically provided in a general purpose system.

[=

Chapter 6 118

The kemel arithmetic functions of the DSP32 provide the mathematical constructs necessary to
implement digital signal processing algorithms efficiently, with little regard for the problems and com-
plexity of programming. The function of the most important instruction implemented in the DSP32 is
given in Equation (6-14) using its assembly language syntax:

*ri++ = ag = ag + (FroH) + (Frath) (6-14)

Functionally, this instruction provides the following operations:
e multiply the contents of memory locations pointed to by registers r; and r,
e add this product to the contents of accumulator register ay,
e store the result in a and the memory location pointed to by register r,
e increment the values in r,, r,, and r; to point to the next source and destination
memory/register addresses.

It is interesting to note that these operations are essentially the same as those implementing the micro-
benchmarks of Chapter 4, as shown in Table 6-5.

Table 6-5. Instruction Capabilities for DSP32 and Conventional Architecture
Instruction/code Dest Src; | Opy Src, Op, Src, Other
DSP32 pointed to by pointed to by . pointed to by Increment
Instruction ry, Ag 4 M &) ra ryprars
GE X; X; + k * V; Increment I
DP p p + X; * Vi Increment {
PE D; C; + k * Di_1 Increment i

The operation of one DSP32 instruction provides all the functionality of several assembly
language instructions for conventional computer architectures. This has two positive side effects. First,
there is considerable savings in code size. In the case of rolled loops, it makes little difference. How-
ever, for unrolled loops, the amount of additional storage required can potentially have a detrimental
effect on caching behavior in a conventional architecture. Second, and perhaps most significantly, all
the operations specified in Equation (6-14) effectively can happen in one logical time unit because the
architecture of the DSP32 is pipelined. The current implementation has a 250 nanosecond cycle time,
with two floating-point operations per clock tick, for a maximum performance of 8 MFLOPS.*

The first step to improving SPUR performance is to provide concurrent operation of both the mul-
tiply and add execution elements.** A floating-point multiply-add (FMAD) instruction is the most
often required arithmetic operation. The current implementation supports a 3-cycle floating-point add
and 8-cycle floating-point multiply {Bose88b]. The SPUR FPU design can easily accommodate one
less cycle per instruction by eliminating register-read and register-write operations for the FMAD
instruction, by providing a forwarding path as is done on the SPUR CPU. With an increase in total chip
size of about 10%, the multiply/divide unit of the current SPUR FPU architecture could double its per-
formance by retiring more bits per iteration. These two changes combine to yield a FMAD instruction
of four cycles. If a full array multiplier is used, a 25% increase in chip area in current technology could
reduce the multiply latency to two cycles.

Finally, if the additional control is added to allow pipelining of the function units and chaining is
incorporated to allow simultaneous operation of the multiply and add units, the FMAD instruction can
effectively be executed in a single cycle. Thus, the performance of a modified SPUR DSP FPU imple-
menting the microbenchmarks discussed earlier is summarized in Table 6-6.

*Rapid advances are being made in the area of monolithic DSP chips that support floating-point arithmetic.
The DSP32C, to become available mid-1989, is intended to provide the same functionality but with a cycle
time of 80 nanoseconds, suggesting a peak performance rate of 25 MFLOPS.
** A recently announced commercial FPU provides this capability [Rowe88].

Chapter 6 119

Table 6-6. Performance Comparison for SPUR DSP Coprocessor
Slow-down relative

Host Floating-point to real-time

Processor | Implementation FFT LPC FIR
(1024 pt) | (1024 pt, SO pole) | (50 tap)

SUN3/160 Software 475 320 136
SUN3/160 68881 60 107 44
SUN3/160 FPA 40 55 13
VAX/8800 FPA 25 28 7
SPUR FPU 9 20 35
SPUR DSp 1-2 2-3 0.7-1.2
DSP 32 DAU 1 2 0.55

This table again shows the performance for various architectures and combinations of software and
hardware to implement floating-point computation on three signal processing algorithms shown in
Table 6-1, Table 6-2, and Table 6-3. The point of interest here is the SPUR DSP FPU. By allowing
pipelining and concurrent multiple function units, at a cost of 30% to 40% increase in chip area, an
order of magnitude performance improvement is achieved, allowing a general purpose workstation
microprocessor based system to perform real-time signal processing applications.

6.2.5. Signal Processing Coprocessor Summary

This section has considered the topic of digital signal processing. We have examined the require-
ments of various algorithms, both in terms of functionality and real-time performance. We have con-
sidered and evaluated several altematives in implementing these algorithms, including general purpose
computers equipped with a range of floating-point capability from software through highly specialized
coprocessors. We have contrasted the general purpose system solutions with specialized hardware in
the form of a monolithic DPS chip.

We conclude that general purpose computers are largely inadequate for real-time signal process-
ing functions, even if equipped with floating-point accelerator hardware. We have proposed an aug-
mented version of the SPUR FPU for DSP which is generally adequate for such tasks. The advantages
of the general purpose SPUR system in terms of the code development cycle, debugging, operating sys-
tem support functions, and general environment suggest this would be a desirable capability for
research in the real-time signal processing field. This is based on the assumption that the current SPUR
FPU can be pipelined and made more functionally parallel with current technology.

To summarize, no changes are required in the current implementation of the SPUR coprocessor
interface to accommodate a DSP-style coprocessor. The CPU would be kept largely busy with transfer-
ring operands, if the SPUR DSP FPU is pipelined. Since the data resolution of signal processing typi-
cally requires no more than 32-bit floating-point operands, different front-end pack/unpack logic could
be used to receive two operands per load with the 64-bit bus. The model of the SPUR DSP FPU relies
on multi-port register files to allow simultaneous transfers and operations. As technology scales, the
cycle times will be reduced, and the processing speed for real-time applications will be more attainable.
We explore the ramifications of achieving a pipelined capability in the next section, which considers
vector floating-point processing in general.

6.3. A Vector Floating-point Coprocessor for SPUR

As discussed in Chapter 1, rapid technological developments are enabling us to roughly double
integer CPU performance every year since 1984. This trend is likely to continue for the next five to
seven years, at least. To match that performance, floating-point computation must take advantage of
lower latency function units and other advanced architecture techniques to keep pace. One technique
uses special hardware to process groups of operands as a unit, called a vector using what has come to be
called vector processing.

Chapter 6 120

The basic notion of vector processing is simple: operate on two vectors, element by element, to
produce a third vector. The function units designed for such operations are usually pipelined, and the
memory system must supply one element from each input vector and store one element of the output
result each time unit. Thus the maximum rate is determined by the throughput of the execution element
or bandwidth of the memory system. That rate is achieved only when neither the memory system nor
execution element causes the other to stall. First, we will consider problems generally associated with
the design of the memory system and then the specific application to the SPUR architecture.

6.3.1. Memory System Design for Vector Processors

Historically, the biggest problem for vector processors is the memory system design. Techniques
to sustain the flow of data or schedule operations to reduce the flow are typically used to make it work
[Ston87]. If the function unit is capable of producing one result every time unit, the memory system
must be capable of two operand reads and one result write each time unit as well*. Consequently,
memory systems have provided either (1) multiple, independent memory modules allowing simultane-
ous access or (2) a memory hierarchy, with a small, high-speed intermediate memory for supplying
operands and accepting results coupled with a main memory with high-bandwidth transfers between
each.

6.3.1.1. Muitiple Memory Modules

Multiple memory modules ideally allow partitioning of data so that no access conflicts occur dur-
ing the sequence of reads and writes — each access in time is to a different module in space and can
occur simultaneously. If d time units elapse between a memory module request and its reply, then d
separate memory modules must be used to maintain one flow of operands for a pipelined vector opera-
tion. If one iteration of the vector instruction requires two operands and supplies one, it will then need
3d independent memory modules to maintain conflict-free operation in time.

Even with multiple memory modules, conflicts occur from accessing patterns and stride, not to
mention linked conflict that occurs when loading operands and storing results [Buch87]. There are
many techniques used to solve this problem, including data skewing, direct storage of diagonals, and so
forth [Ande87]. The bandwidth of such memory systems is nevertheless determined by the access time
of memory modules, since the execution elements are directly connected, which adds to the delay of the
computation. [Ande87].

6.3.1.2. Fast Intermediate Memories

The second method used to support vector operations is fast intermediate memories, which can
overcome some of the disadvantages of multiple memories mentioned in the previous section. The
Cray-1 XMP, for example, uses as many as four levels of memory of varying speeds between the pipe-
lined arithmetic units and main memory. These include the vector registers, scalar S-registers, the T-
registers that serve as a cache for the S-registers, the address A-registers, and B-registers that serve as a
cache to the A-registers [Cray86]. These are all managed by software and visible to the user. The
transfers are faster than caches, however, since each reference is a programmed register access and no
tag-match comparison is needed. A 256-entry instruction buffer is also used. By providing high-speed
buffers with the appropriate bandwidth and main memory with multiple ports, overlapping of vector
operations is also possible. The output of one vector stream can be routed to the input of another vector
operation using chaining, allowing multiple function units to operate simultaneously. Other advantages
of fast intermediate memories include multiple use of operands, more efficient access patterns than
main memory, and data delay buffering [Kogg81, Ston87]

*This ignores the demands of I/O and the instruction stream on the memory system. Since a single vector in-
struction can specify many operations, instruction fetches are usually negligible when compared to vector
operand references.

Chapter 6 121

6.3.2. Memory System Performance Characteristics for Vector Processors

Figure 6-1 illustrates the difference between the Cyber-205, a multiple memory system, and the
Cray-1 XMP using intermediate memories and vector registers. The execution time of a Cyber-class
machine is predicted by Equation (6-15) [Hock81].

N
Vo T
Ny +N

Here, N is the vector length, r, is the theoretical execution rate for infinitely long vectors, N, is the
vector length at which the execution rate is half r... Although this predicts preformance of machines
that rely on multiple memories and memory-to-memory vector operations, it is inaccurate for vector-
register based machines. Bucher and Simmons [Buch87] propose a different model for predicting per-
formance for vector computers, shown in Equation (6-16).

y =

(6-15)

ty + Ntg (6-16)

t=g +| L
L™ RL

The execution time is ¢, N the vector length, RL the vector-register length, ¢, the overhead time con-
sumed in starting the pipelining process, ¢, the overhead associated with processing each strip of the
vector, and ¢z the pipe-stage time (usually the cycle time of the execution element or some small multi-
ple). Equation (6-16) is accurate for vectors of all but small lengths. For small vectors, there is a
minimum amount of time consumed independent of vector length due to the dominance of scalar house
keeping instructions. As shown in Figure 6-1, if the Cray-1 did not incur the overhead per-strip cost £,
it’s average performance would follow the lower of the two dotted-line boundaries of its performance.
In the next section, we consider some of the characteristics of programs and their potential influence on
vector architectures.

10

A
v . i
E 3 o o ,
P L l"‘l' '
R
o)
C
E
s
1 Cyber 305
1 =] y -
N L—
G
T
I
M
E . .
0 50 100 150 200 250 300

VECTOR LENGTH (N)
Figure 6-1. Vector Program Execution Time versus Vector Length.

This figure shows the average execution time in microseconds for a simple vector operation — vec-
tor addition of a vector plus scalar — for the Cyber-205 and Cray-1 super computers. The Cyber is
a memory-to-memory vector architecture, using multiple memory banks to provide the operand ac-
cess bandwidth needed. The Cray-1 uses high-speed vector-to-vector register operations. Note that
for Cray, performance has discontinuities at multiples of the vector register length of 64. This is
due to the overhead associated with starting another vector strip. A strip is simply the size of the
vector registers. (Adapted from [Buch87].)

Chapter 6 122

6.3.3. Vector Program and Workload Characteristics

Vector processing benefits from the characteristics of certain programs. Rather than rely on the
statistical workings of a cache to speed up the computation by providing often-used data near the func-
tion unit, the determinism of the program and data structures used by the program allow the program-
mer to know what will be needed, when it will be needed, and capitalize on that information. In tradi-
tional vector processor designs, caches are not often used and the processor need not concern itself with
coherence between cache and memory, which can cause access interlocks or slow the processor down.

Vector and matrix operations are succinct descriptions of voluminous but highly-regular calcula-
tions. The requirements on the hardware architecture suggest that easy access to rows and columns of a
matrix is important. Besides vector operands, provision for fast access to scalar operands and produc-
tion of scalar results (for example, minimum value, maximum value, sum) is necessary. Also, since
some vectors will necessarily be short in length (as in some phases of LU decomposition or Gaussian
elimination), the effects of overhead associated with filling the pipeline must be kept as small as possi-
ble. The use of multiple memory modules or high-speed buffering can help in vector and matrix opera-
tions.

Sometimes specialization for a particular class of problems is a cost effective solution. For exam-
ple, with dot product (P =P + (X [i]* Y[i1), a function unit with two inputs to a multiplier and one to
the adder, with the output of the multiplier being the second input to the adder could be constructed. A
problem still exists. Since P is used as an operand following its computation, the pipelining of opera-
tions may be long enough for completion of the addition step. This can be overcome by observing that
summation is associative. By using the values of the adder as they become available, an additional d
time units is expended to generate the final summation of d separate sums.

Now that we have identified some of the general notions associated with vector processing and
processors regarding memory and programs, we next explore how compatible the SPUR system is with
the requirements of vector processing.

6.3.4. A SPUR Vector Processing Architecture

Fundamentally, vectorization allows the overhead factors we examined in Chapter 4 to be elim-
inated or amortized over a long sequence of floating-point operations. For example, the process of
determining the address of the next operand is often implicit for vectors, and requires no explicit com-
putation in the native architecture assembly language. Also, mechanisms are used that automatically
step through arrays with constant stride. The SPUR architecture and floating-point coprocessor do not
provide such mechanisms. The question remains: how well will it perform on vector processing?

In the following sections, we briefly consider how the current design of the SPUR memory sys-
tem, instruction set, and floating-point coprocessor adapt to the requirements of vector processing. We
outline changes or additions to the architecture that would be necessary to make it more effective.

6.3.4.1. Memory System

First, with respect to the interaction with memory, the SPUR CPU is in charge of all operand
loads and stores which can proceed independently of the floating-point execution unit. For double pre-
cision floating-point operands, and the 64-bit wide bus between the FPU and memory, each operand
load or store consumes one cycle. For dot product, the operands can be supplied almost continuously if
strip mining of the matrix is used and many CPU registers are used as offsets to a base register that is
incremented each loop iteration. This affords some decoupling of the memory system from the execu-
tion element operation. But, the latency of the execution unit must accommodate this high-speed
operand transfer rate in order to be effective. A SPUR multiprocessor system provides a means of emu-
lating both independent, multiple memory modules and high-speed intermediate memories. Each
SPUR processor maintains its own 128 KB mixed instruction-data cache. The multiprocessor system
capable of assigning processing tasks to several processors and using techniques such as strip mining
can prevent access conflict and emulate multiple-memory systems. At the same time, the caches serve
as high-speed intermediate memories between the floating-point coprocessor registers and main

Chapter 6 123

memory, offering the advantages of high speed buffers.

The disadvantages of the SPUR memory system architecture come from the potential conflict, or
at best inefficiencies, at main memory when emulating multiple memory modules. Although access to
operands held in the cache is fast, there is still the cost of the load or store to/from the register file as
well as the intrinsic amount of processor cycle time for the cache access, including tag comparison, chip
crossings, possible multiplexing, and so forth.

The bandwidth between main memory and the SPUR cache is 14.5 MB per second for the nomi-
nal 22 bus cycles per 8-word transfer of 32-bit words with a 100-nanosecond clock period. A dedicated
vector-data cache with a wider word width to memory might be necessary to support the processing rate
of a pipelined vector unit. Also, conflict between the integer parts of programs and vector operands in
the mixed instruction-data cache of SPUR could be avoided by separate caches for each. Within the
architecture of a vector-cache memory, multiple banks or interleaving may be used to achieved the
needed bandwidth. A balance between the cache-service time and operand use rate must be attained.

6.3.4.2. Instructions

SPUR uses an on-chip instruction buffer for rapid access to frequently used instructions. The
buffer holds 128 instructions and is large enough for most small loops. The SPUR instruction set uses
83 of the available 128 opcodes, and includes the floating-point operations mentioned in Appendix A.
Consideration for typical vector operations as listed in Table 6-7 to support vector processing would be
needed in the instruction set. A more detailed analysis of program characteristics and algorithm issues
is needed to determine an adequate set, but is beyond the scope of this dissertation.

Table 6-7. Vector Floating-point Instructions*
Instruction Meaning
Vector-vector multiply Yl=X[i]*Uli]
Vector-scalar multiply Yil=X[i}*X
Vector-vector addition Y[i]=X[i+Ui]
Vector-scalar addition Yij=X[i}+K
N
Vector inner product Y[l=3YX[U*UIi]
i1
: N
Vector summation Yil=3YXIi]
i1
N]
Vector sum of squares Yil=YX[i*X[i]
i-1
Vector move Y{il=X1[i]
Vector conversion fixed-point to floating-point, and vice-versa

The implementation of the instruction set could benefit from a decoupling of the control unit of
the vector processor from that of the SPUR CPU. Unlike the floating-point coprocessor, the sequence
of operations for a vector coprocessor is much more predictable. Consequently, a vector coprocessor
can profitably manage its own resources, including data array address determination, sequencing, stride
and offset computation, vector-data cache interaction, and so forth. Obviously, provision for handling
multiple exceptions during the course of a vector floating-point computation must be provided. Further
research is need to determine the amount of hardware needed to do that. The interested reader is
referred to [Smit85, Sohi87] who discuss various methods using reservation stations, tag units, and
reorder buffers to preserve the effect of an in-order execution model for out-of-order instruction com-
pletion and pipelined function units and yet allow accurate exception handling.

*Adapted from [Kogg81].

Chapter 6 124

6.3.4.3. Programs

In the normal SPUR environment, the technique of loop unrolling can be used to achieve some of
the advantages of vectorization. For pipelined function units, the depth of loop unrolling is typically
equal to the latency of the pipeline. Operands are furnished fast enough to consume the available
memory bandwidth until results are produced. Then the memory bandwidth is used for storing the
results. In some instances of loop unrolling, it may be advantageous to intersperse arithmetic instruc-
tions with load/store or other integer instructions. This is software vectorization to take advantage of a
particular floating-point hardware implementation.

In a vector unit capable of managing its own resources and responding to vector instructions, the
software optimizations may be at a higher level, such as providing the data storage in 2 manner compa-
tible with the function of a vector floating-point unit and issuing vector instructions to operate on the
data according to the semantics of the computation. Loop unrolling may come into play to vectorize
recurrence equations or outer loops of nested-loop computations. Further study is needed to identify the
proper choices.

6.3.4.4. Execution Elements

The current microarchitecture of the SPUR FPU provides for a three-cycle floating-point addition
and eight-cycle floating-point multiplication. Table 6-8 lists some of the parameters that would possi-
bly change in the current SPUR FPU to accommodate vector execution elements. Section 6.3.1 dis-
cussed the effects of vector length versus number of vector registers for the Cray-1 architecture. For
vectors of length slightly larger than the number of vector registers, a 20% reduction in performance
resulted due to vector-fill time. For this reason, even though it is possible to pipeline the operation to
produce one result per clock tick once the pipe fills, a short pipeline is needed to minimize the
inefficiencies inherent with short vectors. The point at which the extra area necessary to support faster
operations is no significant advantage needs further research beyond the scope of this dissertation. Mul-
tiple function units on the same chip would allow chaining operations and multiple independent opera-
tions in parallel, which would require multiport register files.

Table 6-8. Parameters for Pipelined and Vector FP Execution Elements
Parameter SPUR FPU Vector Unit
Technology 1.6 - 2.0 n CMOS 0.8-1.2u CMOS
Transistors 111K 200 - 500K
Chip pins 208 ~300
Chip area 453 mils x 453 mils ~500 - 600 mils / side
11.5mm x 11.5 mm ~12.5 - 15 mm / side
Registers 16 64 - 128
Add cycles 3 1-2
Multiply cycles 8 1-2
Control 10% - 15% 10 - 20%
Power “1 Watt @ 10 MHz 3-5Watt@ 20 - 40 MHz
Memory bus width 64-bit 64-128-bit

This table lists some of the design changes th.t would be necessary to transform the current SPUR
FPU to a vector FPU using the same VLSI processing. Further study beyond the scope of this
dissertation is needed to identify the optimum choices based on program, algorithm, and implemen-
tation details and tradeoffs.

Chapter 6 125

6.3.4.5. Control

The SPUR CPU is implemented as a four-stage pipeline. The SPUR FPU is pipelined only to the
extent of being able to initiate back-to-back operations to the execution element; i.e., the second
floating-point instruction’s decode phase is overlapped with on-going operations. Since the CPU incor-
porates an on-chip instruction buffer, two possibilities exist for sending instructions to a SPUR Vector
FPU. Either parallel instruction decoding is done similar to the current FPU design, or explicit vector-
unit commands are sent from the CPU, much like load/store instructions with memory.

The second method may result in up to two more cycles latency in initiating a vector operation,
but may be an advantage since it is a more generalized interface and does not require the explicit
specification of the operation in the CPU instruction set, just the class. Provision must be made in the
instruction set to differentiate vector floating-point operation and scalar floating-point operations, and
specify the operation, source operands, destination, addressing or stride information.

Other issues to consider include the generality of a vector unit. If the vector unit is designed to
allow vector-integer operations (sometimes used in graphics), then the vector control unit may in fact
interact with a pipelined floating-point unit of its own much like the CPU does with the scalar FPU. In
this case, a decision as to where the vector registers are and what the format of the data held in them
must be considered. For example, an integer-floating-point vector unit may contain a set of N integer-
wide registers that can be addressed as N/2 double-precision floating-point registers. Again, nominal
vector length, pipeline latency, interface coupling and overhead, the number of execution elements, and
so forth all enter into the decision in determining a suitable implementation.

6.3.4.6. Performance

The SPUR FPU is designed to operate as a non-pipelined scalar function unit. Only one operation
can be completed at a time, and operations can not be overlapped. In Chapter 4, we determined the pro-
cessing rate for GE, DP, and PE to range from less that 1.1 to slightly more than 1.8 MFLOPS (millions
of floating-point operations per second). Through simulation, we are able to predict the performance of
modified versions of the SPUR system for various configurations of software pipelining, hardware pipe-
lining, multiple execution units, separate instruction, data, and vector caches, and so forth. We consider
the following configurations:

e Scalar SPUR CPU and FPU system (nominal design)

e Scalar system with faster FPU operations, non-pipelined function units
e Scalar system with pipelined FPU operations

e Vector system with vector-pipelined FPU

with the programs used in Chapter 4: Gaussian elimination, dot product, and polynomial evaluation.

6.3.4.7. Faster Execution Units

By maintaining the interface and architecture as defined for the base-line SPUR design, we found
in Chapter 4 that the floating-point performance as a function of execution unit time is as illustrated in
Figure 6-2.

Even with substantially faster operation, the non-pipelined scalar FPU makes achieving high per-
formance difficult. In the next section, we consider ways to remove that obstacle.

6.3.4.8. Software and Hardware Pipelining

In Chapter 4, we saw that despite the non-pipelined, scalar design of the FPU, by using the tech-
nique of software pipelining (i.e., unrolling loops), some benefits of pipelined execution could be
attained. Unrolling the dot product loop twice resulted in earlier cache misses, allowing otherwise
wasted time spent waiting for operands to be overlapped with FPU operations. If we go a step further
and consider FPU function units with the same latency as the original design and simply allow
hardware pipelining and independent units, loop unrolling can have a substantial beneficial effect. The
sequence of operations for DP unrolled a depth of four is shown in Table 6-9.

Chapter 6 126

/) MIN MFLOPS I »ax mrLoPs

1 I
Ix

Figure 6-2. Nominal SPUR System Performance.

v v O rmEZk

2x 4x 8x

RELATIVE FPU SPEED

This figure shows the execution time in MFLOPS for the SPUR system using various FPU execu-
tion unit speeds. The speeds are reported as a multiple of the nominal values; i.e., 4X means the in-
trinsic operations of the FPU are four times faster than the nominal case. There is more than a fac-
tor of two variation for a given speed. This stems from the fact that some programs (GE, DP, or
PE) had relatively more or less overhead operations versus the number of floating-point operations
per loop cycle. As can be seen, a significant speed up in execution unit rate makes little difference
in overall performance since it is still non-pipelined scalar execution. It should be noted that these
numbers do not include the influence of cache misses.

Table 6-9. Software Pipeline (Unrolled Loop) for Dot Product on SPUR
Instruction Instruction Operands
Number or Operation or Comment
1 FLD X(n)
2 FLD Y(n)
3 FMUL X(n-1) * Y(n-1)
4 FADD P+ X([0-3) * Y(n-3)
5 FLD X(n+1)
6 FLD Y(n+1)
7 FMUL X(n) * Y(n)
8 FADD P+ X(n-2) * Y(n-2)
9 FLD X(n+2)
10 FLD Y (n+2)
11 FMUL X(n+1) * Y(n+1)
12 FADD P+ X(n-1) * Y(n-1)
13 FLD X(n+3)
14 FLD Y(n+3)
15 FMUL X(n+2) * Y(n+2)
16 FADD P+ X(n) *Y(n)
17 ADD COUNT Increment loop counter
18 CMP_BR COUNT Loop test, delay branch
19 ADD OFFSET Form X, Y base address

Chapter 6 127

The unrolled loop consists of eight floating-point operations and various operand load, store, and
integer house-keeping instructions. For a cycle time of 140 nanoseconds, this represents slightly more
than 3.0 MFLOPS and is between 2.3 and 5.0 times the scalar FPU rate. (This would be 4.2 MFLOPS
at a 100 nanosecond cycle time). The cost in terms of the implementation is 2% to 5% more area for
control and additional latches and about 5% to 8% more area for the function units.

One of the problems with unrolling loops is that a certain amount of time must be spent in filling
and draining the pipeline in software. This also occurs with vector processing in hardware. Figure 6-3
illustrates the three situations that exist over time with pipelined operations: filling the pipe, the steady-
state asymptotic rate, and draining the pipe. With unrolled loops, there are many occasions when odd
groups of vectors are created by the vector length modulo the unrolling depth which must be handled by
a special piece of code, with some resulting inefficiencies.

FUNCTION — SS e
UNIT /e] AN
UTILIZATION | & EREE
— ;gle & Steady state operation —> %{;’en %:—?’
E »

Figure 6-3. Execution Unit Utilization vs Time for Pipeline Operation.

This figure shows utilization of pipelined FPU execution units over time. The start-up costs of
filling the pipeline, whether software or hardware, may be insignificant if the steady-state period is
long. The latency of the pipelined units determines the slope of the curve, representing filling or
draining the pipeline. The shorter the pipeline, the fewer cycles needed to fill the function units to
capacity or drain them at the conclusion of a computation. The dashed line shows the situation for
filling pipelines that have longer latency. The overall increase in execution time is designated by
the latency delay segment.

Once the pipeline is full, the processing rate is identical for both long and short latency function
units. The inefficiencies of the pipeline begin to dominate when short vectors or scalars are computed.
In the next section, we consider a complete vector unit for the SPUR system.

6.3.4.9. Vector Control and Execution Elements

By combining the features of pipelining in hardware with specialized control mechanisms, full
vector processing for the SPUR system can be achieved. Such a system adds the following to the
current architecture:

e a vector control unit (separate from the general purpose CPU),

e mulitiple sets of vector registers,

e multiple pipelined function units,

e chaining control, and

e a vector-data cache.

With the dedicated path between the vector-data cache and vector registers or execution elements,
a wider data path allowing two operands per load (128 bits for double precision) is feasible. With a
separate vector control unit, two instruction streams operate in parallel, with the vector control unit
managing the vector hardware and pipelined floating-point unit. The peak rate, assuming one operation
per clock tick for the nominal clock rate of 100 nanoseconds, is 10 MFLOPS. With chaining or an
accumulating multiplication unit, the peak rate is 20 MFLOPS.

The constraints of VLSI, in terms of the number of registers, the vector register length, whether
the floating-point execution elements reside on the same chip as the registers, the function unit latency,

Chapter 6 128

the interface between the function units, vector-data cache, and the overall control scheme (which
includes maintaining multiple condition codes, state for multiple exception conditions, and so forth) are
all extremely important and interesting issues that must be evaluated precisely. This all deserves exten-
sive further study, but is beyond the scope of this dissertation. The single-point design briefly covered
here is one combination of some factors and represents a significant departure from the current imple-
mentation of the SPUR system. This is considered here as an extension and point of contrast to the
nominal design discussed in this dissertation. Figure 6-4 illustrates the performance of the various
floating-point configurations for SPUR.

20

10

nwvormg
N

w7)

NOMINAL FASTER PIPELINED VECTOR VECTOR FPU,
FPU FPU FPU FPU CHAINING
FPU ARCHITECTURE

Figure 6-4. Performance of SPUR Architecture for Several FPU Architectures.

This figure shows the peak MFLOP rate for various configurations of FPU and vector-FPU
hardware. As can be seen, the nominal SPUR configuration can have its performance improved by
an order of magnitude with a vector floating-point unit. To prevent stalling of any component, con-
current loads, stores, and vector floating-point unit operations are necessary for the aggressive ar-
chitectures. The system is substantially more complex, with pipelined function units, vector data
cache, and the additional control unit architecture.

6.3.5. Vector Processing Coprocessor Summary

The three areas of focus for high-speed processing are instruction issue rate, function unit execu-
tion rate, and memory bandwidth. By trading size for speed, various techniques can be used to enhance
each of these. With vector processing, the instruction issue rate is maximized through the use of spe-
cial, dedicated hardware mechanisms and automatic sequential operand addressing. Function units are
segmented into multi-stage pipelines allowing concurrent operation at each stage of the pipe and con-
tinuous use. Wide paths and synchronized memories using multiple banks and high-speed buffers com-
bine to facilitate operand transfers between storage and execution elements. All of these interact in
many ways. The constraints of the current state of the art in VLSI dictate the temporary boundaries in
the design space.

We have shown how the SPUR FPU coprocessor can be extended to effectively provide an order
of magnitude increase in performance at a cost of roughly 35% to 50% more chip area in current tech-
nology. This will be even more easily realized as technology allows device densities to increase. It is
clear that a vector floating-point coprocessor would enable real-time digital signal processing in a con-
ventional workstation, as well as enhance all applications requiring floating-point computation.

With respect to the current coprocessor interface, some changes would be necessary. First, the
vector coprocessor needs to manipulate addresses. Since the operations are specialized, and the
operands are a specific class, a separate vector data cache is needed to support the type of vector unit
described here. A wide path to allow transfer of multiple operands per cycle is imperative for the data
flow rates needed to support the computation. It is likely that multiple-port memories couple with

Chapter 6 129

cross-bar mechanisms are needed in the implementation. As well, multi-port register files are needed in
the vector unit to allow simultaneous reading for operation and read/load/store for chaining and data
transfers. This makes it possible for the vector unit and the CPU to operate totally in paralle] with no
conflict at the memory.

The instruction issue paradigm from the CPU remains the same, since the vector coprocessor
decodes and initiates operations based on the opcode and specifiers it receives. In this sense, the vector
unit is closer to a true coprocessor, although it still receives its instructions from the CPU. Exception
conditions are handled in a manner similar to the current FPU implementation, with provision for a vec-
tor exception state register.

Having briefly explored the realm of high-speed vector floating-point computation, we next con-
sider coprocessors that support execution of high-level languages.

6.4. A Language Coprocessor for SPUR

Along with the increased use of high-level languages often comes the desire to close the semantic
gap [Myer78), or the difference between the assembly-language level (architecture) of a machine and
the high-level languages (HLLs) supported by compilers on the machine. Some researchers contend
that if the instruction set more closely matches the semantics of the particular high-level language, the
easier it will be for the compiler and ultimately the user to produce efficient code. In some cases, VLSI
implementations [Bata82, Boss87] or special micro-coded machines dedicated to a specific language
[Moong85] have been designed and built or methods proposed for the process of designing directly inter-
pretable languages [Bose85].

Others believe this process of specialization is self-defeating, particularly when considering the
constraints of VLSI implementations and how rapidly the technology is changing. We feel it is better to
provide hardware for execution of the most fundamental and frequent operations, and leave infrequent
specialized functions to software. Nevertheless, there has always been a desire for some form of archi-
tectural support for programming languages.* As was shown in the example of floating-point arith-
metic, software implementations can simply be unacceptable, and specialization is needed in the form
of a hardware floating-point coprocessor. Is there a case to be made for coprocessors supporting HLLs?

One language that has received considerable attention over the past decade is Prolog, the most
popular language for logic programming. Some researchers in artificial intelligence believe that logic
programming provides a better way to express problems in machine language than traditional high-level
languages do. Many implementations of Prolog have came through refinements of the Warren Abstract
Machine (WAM) specification of a Prolog instruction set [Warr83]. Warren's instructions and the Pro-
log tokens have a close correspondence, making translation a simple process. Thus, most compiled ver-
sions of Prolog are based on the WAM definition.

Over the years, several things have been done to improve Prolog run-time performance, including
sophisticated compiler techniques, special microcoded devices, and dedicate VLSI processors [Tick83].
The Berkeley Prolog Machine (PLM) [Dobr87] is a TTL implementation of a loosely-coupled micro-
coded coprocessor in conjunction with a general-purpose host. The PLM machine is capable of execut-
ing a set of 14 standard Prolog benchmarks about 10 times faster than a general purpose host (DEC
2060), and is considered one of the world’s fastest dedicated implementations for the language.

In [Borr87], a comparison between PLM and a SPUR-based implementation is discussed.
Without any special-purpose hardware, a simple macro-expansion of compiled PLM instructions into
SPUR code sequences results in performance between 30% and 60% of the PLM. However, the static
SPUR code size is about 15 times larger than the PLM code. By incorporating a coprocessor dedicated
to implementing the most frequent operations and leaving the rest to standard instructions, along with
some minor modifications to the SPUR CPU architecture and floating-point coprocessor interface*, the

*An interesting retrospective on the subject is contained in [Ditz80] with recent conferences devoted to ex-
ploring such ideas [ASPL82, ASPL87].

Chapter 6 130

SPUR code size ratio is reduced to 3.5 times that of PLM, with execution time 10% better. The perfor-
mance improvement comes from the pipelined architecture of SPUR, which takes advantage of the
parallelism available at the macro-code level, which PLM does not implement.

One of the main points made in [Borr87] is that a general purpose computer with a tightly-coupled
coprocessor for Prolog is particularly useful in mixed-paradigm programming systems, where other
languages must be supported besides logic programming. SPUR executes other high-level languages
very well, whereas the PLM implementation of mixed-language applications would be much less
efficient, and would suffer in performance as a result of the specialization.

In terms of performance, Figure 6-5 illustrates the comparison of several implementations of Pro-
log. A compiled version of Prolog on a VAX 11/780 runs at 15000 LIPS (logical inferences per
second). Using a Symbolics system (a special-purpose computer designed for LISP) an execution rate
of 110,000 LIPS is achieved, or an improvement of 7.3 times faster than the VAX 11/780. The SPUR
macro-expansion runs at 184,000 LIPS, or about 12.3 times faster than the VAX. Aquarius I runs at
305,000 LIPS (20.3 times faster), Tick and Warren VLSI Prolog machine runs at 415,000 LIPS (27.6
times faster), and the TTL Berkeley PLM plus compiler version runs at 425,000 LIPS (28.3 times fas-
ter). Finally, the modified SPUR system with a proposed Prolog coprocessor could run at 465,000
LIPS, about 31 times faster than the VAX implementation.

30

A 7

VAX SYM- SPUR AQUAR- VLSI TTL SPUR

780 BOLICS MACRO Tus PROLOG LM COPROC

0w g -

PROLOG IMPLEMENTATION (CPU and/or SPECIAL PURPOSE)
Figure 6-5. Peak LIPS for Several Prolog Architectures.

This figure shows the logical inferences per second for several architectures running Prolog. Using
the VAX 11/780 speed as unity, the ratios of speeds are 1.0 to 7.3 to 12.3 t0 20.3 t0 27.6 10 28.3 to
31 for the architectures studied.

6.5. Chapter Summary

In this chapter, we have considered three applications which benefit from the inclusion of special-
ized coprocessors to support their functionality. We determined that with a small increase in size and
complexity of the current SPUR floating-point coprocessor, more than an order of magnitude perfor-
mance improvement could easily be achieved with a vector floating-point coprocessor, if a vector data
cache is provided. With provision for a dedicated vector-data cache, this provides the performance
needed to address the application of digital signal processing in a conventional workstation environ-
ment. This general purpose approach provides many advantages, including operating system support,

*To the CPU instruction set is added a read-and-compare-tag instruction. To the coprocessor interface is ad-
ded the cache address bus, cache operation lines, a page fault line, and coprocessor memory access line to ar-
bitrate with the CPU. The Prolog coprocessor is much more general than the SPUR FPU and requires that it
be able to manipulate its own data addresses.

Chapter 6 131

generalized compilers and assemblers, data storage and handling, and so forth.

When considering digital signal processing, the vector floating-point capability offers a viable
alternative to doing research using high-performance single chip DSPs, which require specialized
development environments, program development in low-level assembly languages, and detailed
knowledge of the microarchitecture of the device to be able to achieve maximum performance. As
well, such systems have limited resources in terms of data access and storage capabilities, pre-defined
user interfaces, and debugging tools.

Finally, a coprocessor to support the execution of Prolog was shown to be about equal in perfor-
mance to highly specialized architectures dedicated solely to the language. Slight modifications to the
SPUR instruction set, including a read-and-compare-tag instruction, and the coprocessor interface,
including several signals to allow it to manipulate memory independent of the CPU, were necessary to
do this.

The flexibility provided by the general purpose system coupled with specialized hardware aug-
menting certain kernel functions is an extremely effective means of improving computer system perfor-
mance. It is more cost effective, less prone to obsolescence, and affords a rapid means of evolution for
higher performance for present languages and program constructs, and new capabilities in other untried
areas.

<This page is intentionally blank.>

132

Discussion, Conclusions,
and Future Work

7.1. Introduction and Overview

In this chapter, the basic philosophy that motivated our research is restated. Previous chapters are
reviewed and the overall results of the dissertation are summarized and contrasted with other research in
this area. The implications of our results, as related to other application-specific integrated circuit
implementations or dedicated computational architectures, are presented. To conclude, we suggest
areas of future research in computer architecture using coprocessors and software systems needed to
support them.

7.2. Philosophy

Uniprocessor computer system performance may be characterized by the following relationship
[Henn85]:

Timey,opam = instructions /program * cycles /instruction * time/cycle 7-1

The time to execute a program is equal the total number of instructions executed multiplied
by the average number of machine cycles per instruction multiplied by the time per machine
cycle.

Reduced program execution time results from reducing each of the three terms on the right-hand side of
the relationship. :

Hardware technologists focus on reducing the third term by providing smaller, ever-faster, and
more dense integrated circuits. Software technologists, such as compiler writers and algorithm special-
ists, focus on reducing the first term by reducing the number of instructions executed by using efficient
and clever algorithms.

Computer architects concentrate on the first and middle terms. Even with rapid technological
advances, the resources available on a single silicon chip to implement a VLSI architecture are usually

Chapter 7 133

scarce. Consequently, VLSI reduced instruction set computers try to conserve those resources by reduc-
ing instruction complexity and then use those same resources to implement the most often-occurring
events quickly.

In this dissertation, we explored an extension of the RISC philosophy to components other than
the CPU. We called these specialized devices coprocessors, and used the term to refer to hardware that
is designed to improved performance for any specific task normally done in software. It was our thesis
that RISC coprocessors are an effective means to reducing the number of instructions per program and
the number of effective cycles per instruction. We focused on one aspect of the design — the coproces-
sor interface to the rest of the system — in testing the hypothesis. We also considered the application
of RISC-like coprocessors to other computationally intensive tasks.

7.3. Research Results

In Chapter 3, we developed a method for evaluating coprocessor effectiveness. We identified and
categorized coprocessors according to function, the placement within the system topology, and the fun-
damental models for control flow and data flow. We identified and quantified factors that are often
ignored in terms of their effect on system performance. Based on the premiss that most cycles of many
forms of computation are spent in relatively small loops, we developed an analytical model of coproces-
sor performance that is relevant for a wide range of applications. The model accounts for system
influences (such as cache-service time), software influences (such as the interaction between instruc-
tions), and hardware influences (such as function unit execution time). The model splits execution time
into two components: operation time and overhead time. Instructions executed to perform housekeep-
ing operations, although absolutely necessary, are considered overhead. Coprocessor operations over-
lapping non-coprocessor operations are used to effectively eliminate overhead time. Using the model, a
coprocessor implementation can be characterized in terms of its effectiveness and utilization:

e effectiveness is a measure of how well the coprocessor performs its function relative to the
software it replaces;

e utilization is a figure of merit relating the amount of time a coprocessor is in actual use
compared to the total time it could be in use.

The operation and overhead times determine the effectiveness and utilization of a coprocessor.

In Chapter 4, the SPUR floating-point unit, a single-chip CMOS implementation supporting the
ANSV/IEEE Standard P754-1985 for binary floating-point arithmetic was analyzed. The performance of
this tightly-coupled coprocessor was characterized with respect to its interface to the rest of the SPUR
system. We contrasted the performance of the SPUR FPU implementation with commercial floating-
point units supporting the standard produced by Intel and Motorola. For each system, we evaluated the
effects of:

e bus width between the floating-point unit and operand storage,

e execution time of the fundamental hardware units, and

e influence of cache service time on overall performance.

We observed that commercial implementations tend to balance the amount of time spent in com-
putation with the amount of time spent in overhead. We determined that the commercial systems using
a floating-point coprocessor sacrificed much of the advantage of having a second execution unit to over-
head factors associated with the following:

e the concurrent execution model supported by the architecture,

e the operand transfer protocol implemented in the hardware,

e the limitations of a narrow data path between the coprocessor and storage,

e the inherent serialization of operations forced by the semantics of certain often-used complex

coprocessor instructions, and

e the asynchronous execution model supported by the architecture.

We showed that, in some cases, the mechanisms used to provide CPU/coprocessor concurrency
intended to increase utilization actually reduced effectiveness and resulted in longer execution times.

Chapter 7 134

We determined that overhead associated with the concurrent execution model caused the performance
degradation.

We found that commercial systems provided more functionality at the hardware level, but did so
with multi-cycle, microcoded implementations. We determined that execution times were significantly
longer than for a stream-lined RISC floating-point implementation of the four basic arithmetic opera-
tions, and overall system performance of the microcoded implementations was between three and 50
times slower.

We determined that the coprocessor interface paradigm used by some commercial implementa-
tions did not scale well with increasing floating-point execution unit speed, and that in some cases more
than 90% of all execution cycles would be spent on overhead if such architectures were used with
state-of-the-art floating-point coprocessors. We concluded that coprocessor interface architectures must
change dramatically to keep pace with the rapid advance in CPU execution rates.

In Chapter 5, we analyzed problems associated with path planning to determine if coprocessor
technology would be effective in realizing the path optimization function. We used the ideas and
analysis tools developed in Chapter 3 and the experience with the detailed floating-point coprocessor
implementation of Chapter 4 to guide the research. Shortest-path optimization was selected, since it is
often considered the most fundamental and important of all combinatorial optimization problems.

We found no discussion of commercial hardware or coprocessor implementations of the path
optimization function in the open literature. Publications discussing path optimization referred only to
software implementations using general-purpose computers or special multiprocessor architectures run-
ning parallel versions of scan-based algorithms. We found no discussion of sophisticated path planning
algorithms, such as Dijkstra’s shortest path. In our approach, we developed and analyzed several algo-
rithms to determine those with the best performance characteristics, and then determined which algo-
rithms provided the most suitable model for coprocessor implementation. To do this, we developed two
simulators to model and quantify various performance characteristics of path optimization algorithms.
We determined that:

e scan-based techniques are algorithm dependent and vary more than a factor of five in perfor-

mance for the same data input;

e scan-based techniques are data dependent and vary more than an order of magnitude over vari-

ous data sets;

e scan-based techniques universally converge much faster with coherent data (i.e., from well-

behaved data models or realistic terrain-like maps);

e Dijkstra’s shortest path is deterministic across all data sets and between two and nearly 200

times faster than scan-based techniques for the same data;

e minimization comparisons must include diagonal near-neighbors to produce optimum shortest

paths, even with coherent data; and

e total cost map entries can be limited to 16-bit quantities with provision for overflow, reducing

overall memory requirements.

We determined that our uniprocessor software implementation of path optimization using a simple
version of Dijkstra’s shortest path algorithm was about twice as fast as a 40-node multiprocessor imple-
mentation of a scan-based algorithm and more than an order of magnitude better than previous unipro-
cessor results reported in the literature [Lind86]. From the algorithm analysis, we presented several
architectures for implementing path optimization, including special purpose pipelined and parallel
hardware.

We outlined a RISC architecture for a scan-based path optimization coprocessor based on the
SPUR system model, and discussed various optimizations at the microarchitecture level to achieve
real-time path optimization performance. Our path optimization coprocessor is roughly able to meet
real-time performance requirements at a substantially lower cost and complexity than other architec-
tures capable of the same or better performance. We concluded that path optimization is a problem
suitable for implementation using coprocessor technology and that a RISC coprocessor based on the
SPUR model works reasonably well.

Chapter 7 135

In Chapter 6, we briefly explored extensions to the SPUR coprocessor model in areas of digital
signal processing, vector floating-point arithmetic, and Prolog language implementation.

For signal processing, we determined that a pipelined version of the SPUR FPU could provide
near-real-time performance in a workstation environment. No other changes to the architecture would
be necessary. We showed that the microarchitecture of the FPU could be enhanced with multiple func-
tion units to achieve performance within a factor of two to five of state-of-the-art DSP chips. Although
this performance is slightly inadequate for real-time processing, we determined that such a capability in
a general-purpose workstation would provide a rich and easy-to-use research environment.

For vector floating-point arithmetic, we showed that the SPUR system would have to change
significantly, providing a separate vector data cache, a vector control and address unit, the addition of
vector instructions, and mechanisms to retain state and exception-condition information. Nevertheless,
the fundamental model provided by the SPUR system — decoupled execution, load/store, and so forth
— accommodated the needs of a vector coprocessor and presented an attractive area for further
research.

For Prolog language support, research completed at Berkeley by [Borr87] showed that minor
instruction set changes and the ability to manipulate addresses were needed to efficiently implement a
Prolog coprocessor using the SPUR model. The Prolog coprocessor instruction set included a few of
the most frequently occurring operations in the WAM Prolog definition and left other operations to
SPUR code. The SPUR Prolog coprocessor system would be slightly faster than some highly special-
ized architectures reported in [Dobr87]. We concluded that a RISC approach to supporting the Prolog
language using a coprocessor to speedup the most frequently occurring operations was feasible.

7.4. Summary and Future Work

It was our thesis at the beginning of this research that RISC CPU architectures coupled with
RISC-like coprocessors could provide better performance improvements for many software tasks that
are currently provided by CISC CPU’s and their companion CISC-like coprocessors. Also, that the
decoupling between the CPU and coprocessor afforded by RISC architectures allows maximum utiliza-
tion of special purpose devices in general purpose computer systems. We are encouraged by the results
reported here and believe that the ideas hold true for a broad range of applications.

To generalize the experience gained and reported in this dissertation, we briefly review our
method to determine if a particular application would benefit from a special purpose hardware coproces-
sor:

e Conduct an extensive algorithm analysis to determine the requirements of the processing func-
ton;

e Identify fundamental operations and the corresponding data structures needed for each of the
algorithms;
e Identify operations that can be done in parallel, those that occur most frequently, and those that
require flexibility;)
e Consider alternative implementations for each function or sub-function, from full software to
full hardware;
e Predict or simulate incremental and overall system performance improvement for each alterna-
tive implementation;
e Reiterate the preceding steps until a satisfactory solution is chosen.

Future work in the area of coprocessor architecture could involve:
e extensions to the current SPUR coprocessor interface model,

e use of multiple homogeneous coprocessors on specific applications, or
e development and use of new RISC-like coprocessors.

Extending the current implementation. The coprocessor interface is strongly influenced by the
needs and requirements of the floating-point coprocessor for the SPUR processor node. To make the

Chapter 7 136

interface more general and yet not sacrifice the simplicity of the design, several things might be con-
sidered for inclusion in a second version:

e include general-purpose coprocessor instructions in the instruction set architecture;
The current model for the SPUR instruction set architecture presumes only one coprocessor
exists, and includes explicit instructions for the floating-point unit. This dissertation has dis-
cussed other applications that would benefit from using coprocessors. The load/store archi-
tecture of the SPUR system makes it simple to provide a generalized load or store along
with coprocessor identification bits. As well, a generalized set of instructions to initiate
actions that must stall if the coprocessor is busy and other instructions that can operate con-
currently are needed to facilitate other applications.

e include coprocessor ID bits in the instruction set and coprocessor status bits in the CPU status

word;
Along with the generalized coprocessor instructions, a means to distinguish between homo-
geneous and heterogeneous coprocessors is needed. The current architecture presumes only
one coprocessor exists (the floating-point unit) for simplicity in the prototype design. There
is no fundamental reason to be limited to one.

e include multiple exception-condition, test-condition, and status inputs to the CPU;
A means of signaling exception and normal run-time conditions on the coprocessor is criti-
cal to providing a responsive system. Explicit lines should be dedicated to those functions
that occur frequently (such as condition test), while less frequent events, such as exceptional
conditions, may be encoded if necessary due to pin limitations.

e include the cache address bus and status lines in the interface.
As determined in several of the examples studied in earlier chapters of this dissertation,
some functions must manipulate address and load and store operands independent of the
CPU 1o be effective. The ability to control the address bus imposes some amount of arbitra-
tion and synchronization between the coprocessor and the CPU, but there is no reason to
believe that system performance would suffer as a result.

Use of multiple, homogeneous coprocessors. For many problems, a SPUR CPU equipped with
multiple FPU’s may prove to be an effective way to achieve the advantages of pipelining without hav-
ing pipelined floating-point execution units. The extent to which multiple FPU’s could be useful
depends on the latency of the function units and the series of computations performed. The trade-offs
between these factors should be studied. The use of a multiprocessor path optimization system would
theoretically achieve linear speedup with the coprocessor architecture presented in Chapter 5. However,
the effects of multiple processor access to shared data and the incumbent memory-latency degradation
associated with caching behavior should be determined before projecting the speedup and other advan-
tages of such a system.

In our work reported in [Bose88a, Bose88c], we have considered some of the issues related to the
SPUR multiprocessor workstation running scientific programs and the effects of contention for shared
memory. More research is needed to determine the proper balance between coprocessor speed and the
demands it places on other system resources. :

Developing new coprocessors. First, for distributed and networked computer environments, some
researchers have suggested that certain aspects of low-level communication handling protocols would
benefit greatly from specialized hardware [Ches88].

Second, researchers are typically unable to obtain good performance evaluations of existing or
new hardware. Various techniques including modifications of microcode, retro-fitting existing
machines with special purpose hardware, or simply adding code to applications have been used. We
believe a performance monitor coprocessor based on the SPUR interface model could provide a much
needed yet simple tool for computer architects and performance analysts to evaluate their work.

Third, building on the analysis and evaluation methods reported here and using circuit
specification and synthesis tools, such as reported in [Bori88], rapid evaluation and specification of
coprocessor architectures and interfaces would seem to be a natural adjunct to the logic synthesis and

Chapter 7 137

silicon compiler research being pursued at a number of research institutions. We believe that the SPUR
approach of providing a tightly-coupled coprocessor interface tied to the CPU pipeline and yet decou-
pled in terms of operation and operand transfers provides many advantages and yet is simple enough to
be formalized for ASIC designs using synthesis tools.

Finally, the question of whether increasing density in silicon technology should be used to place
coprocessor functions ‘‘on-chip,”” or whether there are still advantages to having separate devices needs
to be considered. Such things as specialized data and specialized operations on those data must be con-
sidered. The answer to these and many other related questions that arise can only be found in the con-
text of an application, and we look forward to pursuing several of them in the years to come.

138

The SPUR Floating-point
Coprocessor Interface

Description

This appendix is adapted from [Hans86] and briefly describes the SPUR coprocessor inter-
face in the context of the floating-point unit. The interface provides enhanced performance
potential by allowing parallel operations between the SPUR processor and SPUR coprocessors.
A decoupled control and execution architecture allow data transfers to proceed while coproces-
sor functions are performed. Implicit and explicit synchronization mechanisms provide the pro-
grammer complete control and flexibility. On-chip coprocessor register files and a wide data
path between the memory and coprocessor minimize data transfer overhead. An intelligent
interface control unit provides parallel decoding of instructions for maximum performance.
Other coprocessor functions applicable to dynamic programming optimization, signal process-
ing, image processing, performance monitoring, language coprocessors, workstation graphics,
and so forth are being considered, but will not be reported here.

A.l. Introduction

The SPUR CPU is a custom VLSI-32 bit general-purpose host targeted to support Lisp
and other high-level language software environments. The RISC-like architecture provides
high performance for a wide range of applications.

Traditional vor Neumann computer architectures have achieved enhanced performance by
adding optional hardware to perform tasks that are usually executed in software. These devices
are often called coprocessors and include attached processors, array processors, floating-point
accelerators, data channels, graphics display processors, performance monitors, and so forth.
Thus, a coprocessor is an optional piece of hardware that replaces a piece of software for a
higher level of performance.

Appendix A 139

Many peripheral devices as well as more closely coupled coprocessors fall in this general
category. It is nevertheless important to recognize a distinction between standard peripheral
hardware devices and tightly coupled coprocessors: the programming model for the coprocessor
differs from that of peripheral devices. Standard peripheral hardware usually appears to the
programmer as a set of registers in the memory space of the main processor. The programmer
must consider the communication protocol and implement the interface between the peripheral
and the device in software.

In contrast to this, the tightly coupled coprocessor adds special instructions to the CPU
instruction set that allow the programmer to utilize the coprocessor capabilities. It may also
provide additional registers and data types that are not directly supported by the main processor
architecture. However, certain interactions needed between the main processor and the copro-
cessor (i.e., the communications protocol) are implemented in hardware and are transparent to
the programmer. Thus, the coprocessor can extend the functions provided to the user without
appearing as hardware external to the main processor. This provides a more uniform program-
ming model from a user point of view.

The SPUR system employs an optional special purpose device for floating-point arith-
metic. This device will support the IEEE Standard P754 for add, subtract, multiply and divide
in single, double, and extended precisions. (Other functions, such as transcendentals, are han-
dled by runtime routines.) We refer to this as the SPUR Floating-point Unit, or simply FPU.
For documentation purposes, it would seem logical to refer to all signals and mnemonics related
to the coprocessor to be designated ‘*CP’’. Other applications are being considered besides
floating-point arithmetic, but this report will focus on the FPU. Thus, to avoid confusion
between the CPU and CP designations, the coprocessor interface signals, blocks, modules and
functions will be designated with the ‘‘fpu’’ prefix. The first generation SPUR system will sup-
port a floating-point coprocessor (FPU) and a performance monitor (PMC) [Fauc86]. Later
generations will consider other applications.

Section 2 of this report provides a brief overview of the SPUR coprocessor interface and
functions. Section 3 provides a greater degree of detail and timing diagrams for various opera-
tions, instructions, and the interaction between the CPU and FPU.

A 2. Floating-point Coprocessor Interface Overview

From the assembly language programmers point of view, the SPUR FPU has 15
read/write 87-bit operand registers and one read/write control/status register (nominally 64 bits).
The register bits are defined from left to right (with MSB at left-hand side) as follows:

of BITS 1 17 64 2 3
FIELD SIGN EXPONENT FRACTION ROUND TAG DATA TYPE

The FPU is a load/store architecture. Consequently, all arithmetic operations involve three
registers: two source and one destination.

A.2.1. Instructions

Ther~ are 18 operations defined for floating-point arithmetic and general coprocessor
functions (load, store, etc) in the SPUR instruction set. They are listed in Table A-1. It should
be noted that all LOAD instructions have two forms, depending on the cache operation
involved: simple read or read with ownership. For example, the two opcodes for loading single
precision operands are LD_SGL and LD_SGL_RO.

Appendix A 140

Table A-1. SPUR Floating-point Unit Instructions
Arithmetic Operations, Operand Conversion, and Compare

Instruction Syntax Instruction Semantics
FADD Rd,Rs1,Rs2 FPURd < FPURsI +FPURs2
FSUB Rd,Rs1,Rs2 FPURd < FPURsl -FPURs2
FMUL Rd,Rs1,Rs2 FPURd & FPURsl *FPURs2
FDIV Rd,Rs1,Rs2 FPURd < FPURsl/FPURs2
FABS Rd,Rs1,0 FPURd < FPURsl withsign=0
FNEG Rd,Rs1,0 FPURd < FPURsl with inverted sign
FCMP cond Rs1 Rs2 | FPSW(cond) <« result
CVTS Rd,Rs1,0 FPURd < (convert to single) FPU Rsl
CVTD Rd,Rs1,0 FPURd & (convert to double) FPU Rsl

Load FPU Registers and FMOV

Instruction Syntax Instruction Semantics
LD_SGL,RO Rd,Rs1,RC FPURd < MI[Rsl+RC)
LD_DBL.,RO Rd,Rs1,RC FPURd <= M[Rsl+RO0O)
LD_EXT1,RO Rd,Rsl,RC FPURd < MI[[Rsl +RC)
LD_EXT2,RO Rd,Rsl,RC FPURd < MI[Rsl +RCO)
FMOQV Rd,Rs1,0 FPURd < FPURsl

Store FPU Registers

Instruction Syntax Instruction Semantics
ST_SGL Rs2,Rs1,SC FPU Rs2 = MI[[Rsl+SC)
ST_DBL Rs2,Rs1,SC FPU Rs2 = MI[Rsl +SC)
ST_EXT1 Rs2,Rs1,SC FPU Rs2 = MI[Rsl +SC)
ST_EXT2 Rs2,Rs1,SC FPU Rs2 = MI[Rsl +SC)

A.2.2. Control Flow

The FPU coprocessor has two major functional units: the interface control unit (ICU) and
the execution unit (EU). The clocking scheme of the FPU is identical to the CPU: 4 non-
overlapping phases per cycle. (Refer to Section 3 for more details.) In phase 3 (phi3) of every
cycle, the FPU ICU accepts and decodes the INSTRUCTION BUS fragment issued on
fpuOPCODE_CV3 lines, and initiates operation in the subsequent cycle if it is an FPU opera-
tion. This continues until cycle N (N is the number of execution cycles for the particular
instruction being executed). The fpuBusy C4 signal is disasserted in the last execution cycle
(register write) to signal when the FPU EU is done. (See Section 2.6 for complete definitions of
signals.)

Under normal circumstances, CPU and FPU instructions execute in parallel. This paral-
lelism is controlled in two possible ways: (1) explicit: the fpuParallel bit in the Upsw (user pro-
cess status word in the CPU) may be set, which will allow overlap of CPU and FPU operation
instructions, and (2) implicit: the assertion of the fpuBusy_C4 line will prevent the CPU from
issuing FPU operation instructions if the FPU is still in the execution phase of a previously
issued instruction (as signaled by fpuBusy C4). When overlap is prevented, the CPU always
stalls until the fpuBusy_C4 line is not asserted.

Appendix A 141

A.2.3. Data Flow

Data flow between the FPU and the SPUR data cache memory is directly controlled by the
CPU. The data path to the cache is 64 bits wide. Double precision operands are loaded in one
cycle. Loads may proceed in parallel with FPU operation, since the FPU register file is dual
ported. The FPU pipeline is similar to the CPU pipeline: an FPU load requires the instruction
fetch, effective addresses calculation, memory access, and register write cycles. Since there is
no operand forwarding in the FPU, the load target is not ready for use in the FPU until the third
instruction following the load instruction.

A.2.4. Performance

Table A-2 lists the execution cycles needed to complete FPU arithmetic operations.
Loads and stores are considered single-cycle operations, and are discussed in Section 3.2.1.

Table A-2. SPUR FPU Execution Cycles for Arithmetic Operations
Instruction Cycles (operation only)

FADD Rd,Rs1,Rs2 3

FSUB Rd,Rsl,Rs2 3

FMUL Rd,Rs1,Rs2 8

FDIV Rd,Rs1,Rs2 19

FABS Rd,Rsl,0 3

FNEG Rd,Rs1,0 3

FCMP cond,Rs1,Rs2 3

CVTS Rd,Rs1,0 3

CVTD Rd,Rs1,0 3

Studies comparing the SPUR FPU with commercial microprocessor-based systems
employing VLSI floating-point coprocessors indicate that the SPUR-FPU combination can exe-
cute several floating-point intensive benchmarks between 3 and 50 times faster than other sys-
tems [Hans88]. The main performance advantages come from:

e the dual ported register file allowing data loads and stores during FPU operation,
e efficient mechanisms for synchronizing parallel execution of the FPU and CPU,
o the wide data path between the FPU and cache memory, and

e very efficient algorithms and hardware structures for the four operations implemented
on-chip: add, subtract, multiply, and divide.

A.2.5. Programming Interface

The FPU effectively adds new data types, new registers, and new instructions to the CPU.
The coordination of the processor-coprocessor operation is handled mostly by the programming
languages and coprocessor interface automatically. The FPU architecture is Load/Store, with
arithmetic operations between FPU registers. The hardware is invoked directly by program
instructions, and no recompilation: is necessary for systems that are not equipped with an FPU.
Simple link-time command arguments direct the loading of algebraic routines in the absence of
the FPU. One bit in the Upsw causes the CPU to trap to algebraic routines when FPU instruc-
tions are encountered and an FPU is not available in the system.

Appendix A 142

A.2.6. Hardware Interface

Figure A-1 shows how the FPU is connected as a coprocessor in the SPUR system. Figure
A-2 shows the logical interconnections between the CPU and FPU. The CPU and FPU both use
a 4-phase non-overlapped clocking scheme as illustrated in Figure A-3. The coprocessor inter-
face signals fall into three groups:

e instruction: opcode and FPU register specifiers,
e control (to FPU): new instruction valid, suspend FPU operation, and
e status (from FPU): FPU busy, FPU exception, FPU compare result.

A2.6.1. CPU to FPU Signals

Below is a brief description of the signals from the CPU to the FPU.* For a more detailed
discussion, please refer to [Hans86].

fpuOPCODE_CV3: 7 bits. This specifies the opcode of the instruction which the CPU
broadcasts to all coprocessors. The CPU starts driving these lines at the beginning of
phi3.

fpuRS1_CV3: 5 bits. This specifies the first source register of the instruction, which the
CPU broadcasts to all coprocessors. The CPU starts driving these lines at the beginning
of phi3.

fpuRS2_CV3: 5 bits. This specifies the second source register of the instruction, which
the CPU broadcasts to all coprocessors. The CPU starts driving these lines at the begin-
ning of phi3.

fpuRD_CV3: 5 bits. This specifies the Destination register of the instruction which the
CPU broadcasts to all coprocessors. The CPU starts driving these lines at the beginning
of phi3.

fpuNewlInstr_CV3: 1 bit. Asserted by the CPU whenever a valid instruction of any
variety is issued. The CPU starts driving this signal at the beginning of phi3.
fpuSuspend_CV4: 1 bit. Asserted by the CPU during any pipeline suspension, except
when the pipeline is suspended due to fpuBusy C4. (This effectively is a signal to stall
FPU register writes.) The CPU starts driving this signal at the beginning of phi4.

A2.6.2. FPU to CPU Signals

The signals between the FPU and CPU which provide status are described next. Many of
the details of operation are contained in Section 3 of this report: Coprocessor Interface Details.
Note: If the FPU begins driving a signal at the beginning of phiN, it is assumed that the signal
is stable and latchable at the end of phiN on the CPU.

fpuBusy_C4: 1 bit. Asserted by the active coprocessor (the FPU) to indicate that it is
busy. The FPU starts driving this signal at the beginning of phi4. The CPU latches it at
the end of phil.

fpuExcept_C4: 1 bit. Notifies the CPU that an error condition exists in the coprocessor.
The FPU starts driving this signal at the beginning of phi4. The CPU latches it at the end
of phil.

*If either the CPU or the FPU begins driving a signal at the beginning of phiN, it is assumed that the signal is
stable and latchable at the end of phiN at the destination.

Appendix A

143

PROCESSOR 5 \
SNOOPING
E I 1&D
u

UNIT CACHE

R
e | L[!
UNIT G
FPU COPROCESSOR

PROCESSOR B
SNOOPING SHARED
1 1&D ———)|
Uje— GLOBAL
U CACHE
MEMORY
)
R
e | Lem [}
UNIT G
FPU COPROCESSOR
PROCESSOR
SNOOPING
E 1 1&D —>
unT | |u CACHE
R
e | Lem |[R
UNIT G
FPU COPROCESSOR

Figure A-1. The UC Berkeley SPUR Multiprocessor System.

The processor is a single chip with an on-board instruction buffer (IB). The floating-point
unit (FPU) is tightly coupled to the CPU via the local processor bus. The cache controller
is integrated on one chip with off chip tag and data RAMs. The caches work together to
implement a cache consistency protocol, described in [Katz85]. Shared memory and I/O
devices are accessible through the system bus.

Appendix A 144

— procTagMatch_V3
dataMayBeValid_V3
datalsValid_V3

Cache Controller
(CC)

fpuOPCODE_CV3
7
fpuRS1_CV3
dataValid 5 dataValid
fpuRS2_CV3
5
fpuRD_CV3
5
fpuNi ewlx}su'_CV3
UPSW p 1
u fpuSuspend_CV4 J FPSW

fpuPresent 1
fouParalle] fpuExcep_C4

e >

1
Processor e fpuBli§y_C4 Coprocessor

(CPU) 1 (FPU)
fpuBrT_F_C4

1

(o Na-)
x

Figure A-2. The SPUR Floating-point Coprocessor Interface.

This figures shows the interconnections between the SPUR CPU and FPU. Signals
dataMayBeValid V3, tagMatch_V3, and datalsValid_V3 come from the cache controller to
both the CPU and FPU.

fpuBrT F _C4: 1 bit. A signal coming from the FPU Fpsw which indicates the result of
the last FCMP instruction. The FPU starts driving this signal at the begmmng of phi4.
The CPU latches it at the end of phil.

Table A-3 summarizes the signals between the CPU and FPU and indicates the phase in
which the signals change (driven either by the CPU or FPU) and are latched (by either the CPU
or FPU).

A.2.6.3. CPU UPSW and FPU PC Registers

Besides the signals above, the CPU must maintain the following information in the Upsw
1O SUpport COprocessors:

fpuParallel: 1 bit. When asserted, it enables parallel operation of the CPU and the FPU.

If this bit is not set, parallel operation is prohibited (forcing sequential mode). Parallel
operation is described later.

Appendix A 145

phil
10
phi2 — |
phi3
phid

140 X

-
-

@

IFET EXEC MEM WR
l L 1 1 I 1 1 L l i 1 | I ! 1 L I
l T 1 1 l] T I i) 1 I 1 1 I I
IFET EXEC MEM WR
l 1 1 L l 1 1 L l !] L l 1 1 L I
l 1 T T I 1) 1 I 1 1 L] I 1 T 1 l
IFET EXEC MEM WR
I 1 1 1 I L 1 1 I H 1 l | 1 1 [l l
T 1 1 1 1 T 1 1
I |] b o
IFET EXEC
I 1 1 L I 1 L il 1
I T L] 1 r R 1 T l
(b)

Figure A-3. CPU and FPU Pipeline Stages.

As shown in Par(a), clocking is 4-phase, non-overlapping, with 25 nsec high levels, 10
nsec underlap low levels yielding a 140 nsec total cycle time. In Part (b), register opera-
tions do not use the Mem cycle, permitting instruction prefetching or operand access dur-
ing those times. Although it is theoretically possible to issue one instruction per cycle (as
shown above), cache misses and/or a busy coprocessor (cannot begin execution of a second
instruction until the first is done) will increase the number of effective cycles per instruc-
tion completed to more than 1.0. Simulations indicate that between 1.6 and 2.0 clock cy-
cles per instruction are necessary.

fpuEnable: 1 bit. When asserted, it indicates to the CPU that an FPU device is available
in the system. When not asserted, the CPU traps to runtime routines to emulate floating-
point hardware operations.

The parallel execution of CPU and FPU instructions requires that the CPU maintain a
copy of the last FPU instruction’s address which is needed in the event of an exception. Excep-
tion handling routines must determine what action is necessary based on the instruction that
faulted. However, with parallel operation between the CPU and FPU, the program counter
inside the CPU may not be pointing at the FPU instruction that causes the FPU exception. This
implies that the CPU must have a special register that stores the address of the last FPU instruc-
tion the CPU issued. This special register is the FpuPC, which is loaded for all FPU operations.

A.2.7. Floating-point Unit Micro-Architecture

The description of the internal architecture and structure of the floating-point unit is
beyond the scope of this report, and is discussed in [Bose88]. The concluding section of this
appendix briefly describes some of the additional information contained in [Hans86] pertaining
to the SPUR floating-point coprocessor interface.

Appendix A 146

Table A-3. SPUR Floating-point Coprocessor Interface Signals and Timing
CLOCK EDGE of CYCLE
SIGNAL phil:LE phil:TE | phi2:LE phi2:TE | phi3:LE phi3:TE | phi4:LE phi4:TE
fpuOPCODE_CV3 - - - - C(cpu) S - .
- - - . - L(fpu) - -
fpuRS1_CV3 - - - - C(cpu) S - -
" - - - - L(fpu) - -
fouRS2_CV3 - - - - C(cpu) S R -
- - - - - L{fpu) - -
fpuRD CV3 - - - - C(cpu) S - -
- - - . - L{fpu) -
fouNewlnstr CV3 - - - - C(cpu) S - -
- - - - - L{fpw) - -
fpuSuspend CV4 - - - - C(cpu) S
. - . . - - . L{fpw)
fpuBusy C4 - - - - C(fpu) §
- L{cpu) - - - - - -
fouExcept_C4 - - - - - - C(fpw) S
- L(cpu) - - - - . -
fouBrT_F_C4 - - - - - - C(fpu) S
- L{cpu) - - - - - -
dataMayBeValid_V3 - - - - Clce) S - -
(pulse) - - - - - L{cpu) - -
- - - - - L{fpu) - -
datalsValid V3 - - - - C(cc) S
(pulse) - - - - - L{cpu) -
- - - - - L{fpw) - -
procTagMasch_V3 - - - - C(cc) S - e
(pulse) - - - - - L{(cpu) - -
- - - - - L(fpu) - -
interrupts - L{cpu) - - - - .

All signals are levels, except as indicated.
All signals shown ‘‘-’’ are assumed stable or unasserted at those times.

philN clock phase N.

LE leading edge.

TE trailing edge.

_L signal is asserted low. All other signals are asserted high by default.
_CN signal changes only during phi N, where N=1, 2, 3, or 4.

_VN signal is valid only during phi N, where N=1, 2, 3, or4.

_CVN signal changes only during phi N and is valid by the end of phi N, where N = 1, 2, 3, or 4.
N signal has valid and non-zero value only during phi N, where N =1, 2, 3, or 4.

cpu SPUR central processing unit

fpu SPUR floating-point unit

cc SPUR cache control unit

C(xxx) the phase-edge where the sender (CPU or FPU) begins CHANGING the signal.

S the phase-edge where the signal is first assumed STABLE. ‘

L(xxx) the phase-edge where the receiver (CPU or FPU) LATCHES the signal.

Appendix A 147

A.3. Overview of Coprocessor Interface Details

The full technical report [Hans86] describes in detail the interaction between the CPU and
FPU during normal processing, exception and interrupt handling, and parallel operation.
Detailed timing diagrams show the interaction between the CPU and FPU for different instruc-
tion sequences and the mechanisms that allow parallel operation, including suspension of the
CPU pipeline when the FPU is busy.

There are many special-case situations that must be handled by the coprocessor interface.
The report includes in details about:

e the effects of cache misses on the CPU and FPU pipelines,
e CPU or FPU loads followed by CPU or FPU loads with and without cache misses,
e what happens when a cache miss results in a page fault, and

e various exception handling mechanisms, including exceptions during cache misses and
subsequent faults.

For example, Figure A-4 shows the trap timing for the CPU, FPU, and memory when a memory
reference to a floating-point operand results page or bus fault.

fpuLoad(I0) Ifet Exec Mem : (Mem) (Mem) : (Mem) : Trapped
cpu(I0) Ifet Exec Mem ; (Mem) (Mem) : (Mem) : Trapped

fpuAdd(I1) Ifet Ex1 Ex2 (NoWr) : (NoWr) : Killed
cpu(Il) Ifet Exec ; (Exec) (Exec) ! (Exec) : Killed

fpu(l2) Ifet - — —
cpuAdd(12) Ifer (Ifet) (Ifet) (Ifet) ;OvWrite

IntemalTRAP_CALL Ifet Exec

IntemalRead_PC Ifet

fpuNewlInstr
latchNewlInstr P A

cpuSendAddr ' A :
fpuusy il IERENNRREE h

cpulntemSus PiA

fpuSuspend
preventFpuWr

daaValid L :
fpuLatchData(0) {ini i PAL AT EAGEEAGE

updateFpuPc

trapRequest

cancelFpuWr

fpulnstrDecode f"—__.:f___._f" —\

Figure A-4. Trap Timing for FPU Page or Bus Fault.

148

FPU Simulation Results,
Benchmark Listings, and

Commercial Floating-point
Arithmetic Coprocessor
Instruction Timings

This appendix consists of four sections. Section B.1 includes the C-language version of the
microbenchmarks discussed in Chapter 4. Section B.2 includes the SPUR assembly language versions
for the microbenchmarks in the Endot metaMicro generalized microassembler syntax. Section B.3
includes several tables listing the floating-point performance results for the microbenchmarks using the
models of the Intel i80286/i80287, Motorola MC68020/MC68881, and SPUR systems. Section B.4
includes the instruction timings for the Intel i8087 and 180287 Numeric Data Processors and the

Motorola MC68881 Floating-point Coprocessor described in this dissertation.

Appendix B 149

B.1. High-level Language Code Listings of Floating-point Microbenchmarks

The code listings here are in the C programming language, and illustrate different ways that each
program can be coded. These, coupled with the various compilers and optimization options, were used
to guide our selection of what were representative implementations for each of the functions.

B.1.1. Gaussian Elimination

static double x{10] = {.93,.83,.73,.63,.53,.43,.33,.23,.13,.03};
static double y(10] = {.97..87,.77,.67,.57,.47,.37,.27,.17,.07};
main()
{

register int i;

register int count=0;

double k;

k =0.987654321;

do {
for(i=0;i<10;i++)
x[il = x[i} + (k * y[i]%
} while (count++ < 5000) ;
}

,.23,.13,.03};

static double x{10] = {.93,.83,.73,.63,.53,.43,.33,.
37,27,.17,.07};

static double y[10] = {.97,.87,.77,.67,.57,.47,
main()
{

register int i;

register int count=0;

double k;

k =0.987654321;

do {
for(i=0;i<10;i++)
xfil += (k*ylil);
} while (count++ < 5000) ;
}

static double x[{10] = {.93,.83,.73,.63,.53,.43,.33,.23,.13,.03};
static double y[10] = {.97,.87,.77,.67,.57,.47,.37,.27,.17,.07};
main()
{

register int count=0;

register double *px, *py;

double k;

k = 0.987654321;

do {
for(px = x, py = y; py < &(y[10]);)
*pr+ += (K * *py++);
} while (count++ < 5000) ;

Appendix B

B.1.2. Dot Product

static double x[10] = {.93,.83,.73,.63,.53,.43,.33,.23,.13,.03};
static double y[10] = (.97,.87..77,.67,.57,.47,.37,.27,.17,.07};

main()

{
register int i;
register int count=0;
double p=987654321;

do {
for(i=0;i<10;i++)
p=p+ &[] * y[il)
} while (count++ < 5000) ;
}

150

static double x[10] = {.93,.83,.73,.63,.53,.43,.33,.23,.13,.03};
static double y[10] = {.97,.87,.77,.67,.57,.47,.37,

main()

{
register int i=0;
register int count=0;
double p=.987654321;

do {
for(i=0;i<10;i++)
p += (x[i] * y[il%
} while (count++ < 5000);
}

static double x[10] = {.93,.83,.73,.63,.53,.43,.33,.23,.13,.03};
static double y[10] = {.97,.87,.77,.67,.57,.47,.37,.27,.17,.07};

main()

{
register int count=0;
register double *px, *py;
double p=987654321;

do {

for(px = x, py =¥; py < &(y[10]);)
p+= (*px++* *py++);

} while (count++ < 5000);

Appendix B 151

B.1.3. Polynomial Evaluation

static double ¢[10} = {.93,.83,.73,.63,.53,.43,.33,.23,.13,.03};
main()
{

register int i;

register int count=0;

register double k=.987654321;

register double p=.123456789;

do {
for(i=0;i<10;1++)
p=(p*k)+cli];
} while (count++ < 5000) ;

static double c[10] = {.93,.83,.73,.63,.53,.43,.33,.23,.13,.03};
main()
{

register int i;

register double *pc;

register int count=0;

register double k=.987654321;

register double p=.123456789;

do {
for(pe = c; pe < &(c[101);)
p=(*k) +*pc++;
} while (count++ < 5000) ;

B.2. SPUR Assembly Language Code Listings of Floating-point Microbenchmarks

The code listings here are in the Endot metaMicro generalized microassembler syntax [Ordy83],
and include the COMP and ASSM versions discussed in Chapter 4. The listings for Intel and Motorola
are not included here.

B.2.1. Gaussian Elimination
gaussian elimination - for matrix inversion - (fortran version)
x[i} = x{i] + (k * y[i})

note: assume word addressed machine; ie, dbl precision operands

!
!
!
!
!
! reqire index to be shifted by 1 to make offset
!

include spurarch.def §
begin
.=08$
START: sub(r0,r0,r0) Iclear r0 index
sll(r3,r0,1) !make offset for ¢ array

add(r10,r0,8) !set loopcount

Appendix B 152

LOOP: 1d_dbl_r(f2:3,YARRAY) !load f2 with y data

sll(r2,r0,1) !make offset for x array (fpunoop)
fpunoop !wait for load y data to complete on fpu
fmul(f3,f4.£2) !multiply k (in f4) * y (in f2) leave res in {3
1d_dbl_r(f1,r2,XARRAY) !load f1 with x data

sil(r2,r0,1) !make offset for x array (fpunoop)
add(r4,r12, XARRAY) !make store address for x inr4
fadd(f1,£1,£3) Ix + k*y =>x

cvtd(f1,£1,0) lconvert x to dbl prec

add(r0,10,1) lincrement index

sll(r3,10,1) make offset for y array

st_dbl(f1.r4,0) 1x ==> memory([rd]

cmp_br_delayed(cc_ne,r0,r10,LOOP) !test index against loopcount

HALT: sub(r31,r31,r31) !use ref to r31 to stop simulation
jump_reg(r0,HALT) !infinite loop

.=2008
XARRAY: constant(100)
constant(200)
.=4008
YARRAY: constant(300)
constant(400)
end
! gaussian elimination - for matrix inversion - (hand version)
!
oo x[il = xb]+ k* yliD
!
! note#l: assume word addressed machine; ie, dbl precision operands
! reqire index to be shifted by 1 to make offset
!
! note#2: assume the constant k is on the fpu to start with
!
include spurarch.def $
begin
=08
START: sub(r0,r0,r0) Iclear r0 index
add(r1,r0,r0) !make offset for x and y arrays
add(r10,r0,8) Iset loopcount
1d_dbl_r(f2,r1, YARRAY) !load f2 with initial y data
LOOP: fmul(f4,£3,£2) !multiply k (in f3) * y (in £2) leave res in f4

1d_dbl_r(f1,r1, XARRAY) !load f1 with x data
add(r4,r1, XARRAY !make store address for x in r4

add(rl,rl,2) !make new offset for x and y array
fadd(f1,f1,f4) Ix + k*y =>x

cvid(f5,1,0) lconvert x to dbl prec
1d_dbl_r(f2,r1,YARRAY) !load f2 with next y data
add(r0,10,1) lincrement index/counter
st_dbl(f5,r4,0) !x ==> memory(r4]

cmp_br_delayed(cc_ne,r0,r10,LOOP) !test index against loopcount

Appendix B 153

HALT: sub(r31,r31,r31) luse ref to r31 to stop simulation
jump_reg(r0,HALT) !infinite loop

.=2008

XARRAY: constant(100)
constant(200)

.=4008
YARRAY: constant(300)

constant(400)
end

B.2.2. Dot Product

dot product (fortran version)
p=p+x[i] *y[iD)

note: assume word addressed machine; ie, dbl precision operands

!
!
!
!
!
! reqgire index to be shifted by 1 to make offset
!

include spurarch.def $

begin
.=08$

START: sub(r0,r0,:0) !clear r0 index
add(r10,10,8) !initialize loopcount
sli(r2,r0,1) Imake offset for x array

LOOP: 1d_dbl_r(f1,2,XARRAY) !load f1 with x data
sli(r3,10,1) Imake offset for y array (fpunoop)
fpunoop lwait for load x data to complete on fpu
1d_dbl_r(f2,r3,YARRAY) !load f2 with y data
add(r0,10,1) lincrement index
fpunoop !wait for load y data to complete on fpu
fmul(f3,£1,£2) !multiply x *y
fadd(f4,£3,f4) !accumulate partial product
sll(r2,10,1) Imake offset for x array
cmp_br_delayed(cc_ne,r0,r10,LOOP) !test index against loopcount

HALT: sub(r31,r31,r31) luse ref to r31 to stop simulation
jump_reg(rO,HALT) !infinite loop

.=200%

XARRAY: constant(100)
constant(220)

.=4008

YARRAY: constant(300)
constant(400)
end

Appendix B

dot product (hand version)

p=p+(x[i] *y[i})

note#1: assume word addressed machine; ie, dbl precision operands

note#2: unroll loop once (ie, two computations each time through
loop to make cache miss start earlier

include spurarch.def $
begin
.=08$
START: sub(r0,r0,10) Iclear 10 index
add(r10,r0,4) !initialize loopcount
add(r2,r10,XARRAY) !make x array base address
add(r3,10,YARRAY) !make y array base address
1d_dbl_r(f1,r2,0) !get first x operand
1d_dbl_r(f2,r3,0) !get first y operand
LOOP: fmul(f3,f1,£2) !multiply x0*y0
1d_dbl_r(f4,12,2) oad fx1 with x data
1d_dbl_r(£5,r3,2) lload fyl with y data
add(r2,r2,4) !make new x array address
add(r3,r3,4) !make new y array address
1d_dbl_r(f14r2,4) !start early to get block in and bury miss time
1d_dbi_r(f4,12,2) !load fx1 with x data
1d_dbl_r(f5,13,2) load fyl with y data
fadd(f7,£3,f7) !form new partial product
add(r0,10,1) lincrement loop counter
fmul(£6,f4,£5) Imultiply x1*y1
fadd(f7,£6,f7) !form new partial product
cmp_br_delayed(cc_ne,r0,r10,LOOP) !test index against loopcount
HALT: sub(r31,r31,r31) luse ref to r31 to stop simulation
jump_reg(rO,HALT) !infinite loop
.=2008
XARRAY: constant(100)
constant(200)
.=400%

YARRAY: constant(300)

end

constant(400)

!
!
!
1
!
! regire index to be shifted by 1 to make offset
!
t
]
!

154

B.2.3. Polynomial Evaluation
polynomial evaluation (fortran version)

f(x) = a0*x"0 + al*x"1 +a2*x"2 +a3*x"3

!
!
! p=p*k +cli]
1
I f(x)=2a0 +[al + {a2 + (a3*x)}*x]*x
|

Appendix B 155

include spurarch.def $

begin
.=08%

START: sub(r0,r0,r0) Iclear r0 index
add(r10,r0,8) linitialize loopcount

LOOP: sll(r3.10,1) Imake offset for ¢ array
1d_dbl_r(f1,13,CARRAY) !load f1 with c data
add(r0,10,1) lincrement index
fpuncop !wait for 1d of c data to finish
fadd(£2,£1,13) Ic + previous partial ==> temp (in 2)
fmul(f3,f4,£2) Ix * temp ==> partial

cmp_br_delayed(cc_ne,r0,r10,LOOP) !test loop variable

HALT: sub(r31,r31,r31) tuse ref to r31 to stop simulation
jump_reg(r0,HALT) !infinite loop

.=2008
CARRAY: constant(300)

constant(400)
end ’

polynomial evaluation (hand version)

" p=p*k +cli]
f(x) = a0*x"0 + al*x"1 +a2*x"2 +a3*x"3
f(x) = a0 + [al + {a2 + (a3*x)}*x]*x

include spurarch.def $

begin
.=08

START: sub(r0,r0,10) Iclear r0 index
add(r10,r0,16) Yinitialize loopcount
sli(r3,10,1) {make offset for ¢ array

LOOP: fmul(f3,f4,£2) Ix * temp ==> partial
1d_dbl_r(f1,r3,CARRAY) !load fl with c data
add(r3,r3,2) {increment index
fadd(£2,f1,£3) Ic + previous partial ==> temp (in f2)

cmp_br_delayed(cc_ne,r3,r10,LOOP) !test loop variable

HALT: sub(r31,r31,r31) luse ref to 131 to stop simulation
jump_reg(rO,HALT) !infinite loop

.=200%
CARRAY: constant(300)

constant(400)
end

Appendix B 156
B.3. Floating-point Performance for Intel, Motorola, and SPUR on Microbenchmarks

The tables below list the performance results from running the microbenchmarks on the models of
the Intel 180286/i80287, Motorola MC68020/MC68881, and SPUR systems. Each of the tables indicate

(both for sequential and parallel operation) the following;:

e the bus width between the FPU and memory system,

o the cache-miss service time in nanoseconds,

e the total number of execution cycles expended by the FPU running this program,

e the total number of cycles for the entire program (typically 4 iterations of the loop — enough to
cause one cache miss and amortize it over the rest of the loop iteration),

e the ratio of total cycles for this version of the program program to the version of the program
that consumed the most cycles (both sequential and parallel),

e the percentage of total execution tiine that is accounted for as cache overhead (as defined in
Chapter 4),

e the percentage of total execution time that is accounted for as loop overhead,

e the percentage of total execution time that is accounted for as floating-point overhead, and

e the percentage of total execution time that is accounted for as floating-point operation.

Appendix B 157
B.3.1. Intel Floating-point Performance
Table B-1. Simulation Results for Intel Running GE COMP
Bus Width | Cache Time | TotFPU Sequential Exccution Parallel Execution

To FPU per Miss Cycles | TotProg | %Cache | %Loop | %FP | %FP | TotProg | % Cache | %loop | %FP | %FP
(bits) (nsec) Cydles OvHd | OvHd | OvHd | Op Cycles OvHd | OvHd { OvHd | Op
8 0 2296 | 6080 (0.97) 0.0 38 58.4 | 37.8 | 6080(0.97) 0.0 38 584 | 378

8 300 296 | 6086(0.97) 0.1 3.8 584 | 317 | 6086097 0.1 3.8 584 | 377

8 600 296 | 6092(0.97) 02 38 583 | 377 | 6092097 02 38 583 | 377

8 1200 296 | 6104 0.97) 04 38 s82 | 37.6 | 6104097 04 38 582 | 376

8 2400 2296 | 6128 (0.98) 08 38 580 | 375 | 6128(0.98) 0.8 18 580 | 375

8 4800 296 | 6176 (0.98) 1.6 38 515 | 372 | 6176 (0.98) 1.6 18 515 | 372

8 9600 206 | 6272(1.00) 31 37 566 | 366 | 6272(1.00) 3.1 37 566 | 36.6
16 0 2206 | 4800 (0.77) 0.0 48 473 | 418 | 4800(0.77) 0.0 48 413 | 478
16 300 296 | 4806 (0.77) 01 48 473 | 47.8 | 4806 (0.7 0.1 43 413 | 478
16 600 296 | 4812(0.77) 02 43 472 | 477 | 48120077 02 48 472 | 477
16 1200 296 | 4824 (0.77) 05 48 471 | 47.6 | 4824 (0.1 05 48 471 | 416
16 2400 296 | 4848 0.77) 1.0 43 469 | 474 | 4848 07T 1.0 48 469 | 474
16 4800 296 | 4896 (0.78) 20 47 464 | 469 | 4896 (0.78) 20 47 464 | 469
16 9600 2296 | 4992 (0.80) 39 47 45.5 | 460 | 4992 (0.80) 39 47 455 | 460
2 0 296 | 4160 (0.66) 0.0 56 392 | 55.2 | 4160 (0.66) 0.0 56 9.2 | 552
32 300 2206 | 4166 (0.66) o1 56 192 | 55.1 | 4166 (0.66) 0.1 56 192 | 551
2 600 2296 | 4172(0.67) 03 56 39.1 | 55.0 | 4172(0.67) 03 56 391 | 550
2 1200 296 | 4184 (0.67) 06 55 9.0 | 549 | 4184 (0.67) 0.6 55 9.0 | 549
2 2400 296 | 4208 (0.67) 11 55 388 | 546 | 4208 (0.67) 11 55 388 | 546
2 4300 2296 | 4256 {0.68) 23 55 383 | 539 | 4256(0.68) 23 55 383 | 539
2 9600 2296 | 4352(0.69) 44 53 375 | 528 | 4352(0.69) 44 53 375 | 5238
7} 0 2296 | 3968 (0.63) 0.0 59 363 | 579 | 3968 (0.63) 0.0 59 363 | 579
64 300 2296 | 3974 (0.63) 02 5.8 362 | 57.8 | 3974 (0.63) 02 5.8 %62 | 578
64 600 296 | 3980 (0.63) 03 5.8 362 | 577 | 2980 (0.63) 03 5.8 362 | 517
64 1200 296 | 3992 (0.64) 0.6 5.8 361 | 575 | 3992 (0.64) 06 5.8 %1 | 575
64 2400 296 | 4016 (0.64) 12 5.8 359 | 572 | 4016 (0.64) 12 5.8 359 | 572
64 4800 2296 | 4064 (0.65) 24 5.7 354 | 565 | 4064 (0.65) 24 57 354 | 565
64 9600 2296 | 4160 (0.66) 46 56 34.6 | 552 | 4160(0.66) 46 56 346 | 552

Table B-2. Simulation Results for Intel Running GE ASSM
Bus Width | Cache Time | Tot FPU Sequential Execution Parallel Execution

To FPU pexr Miss Cycles Tot Prog % Cache | %Lloop | %FP | % FP Tot Prog % Cache | %Lloop | % FP | %FP
(bits) (nsec) Cydles OvHd | OvHd | OvHd | Op Cycles OvHd | OvHd | OvHd | Op
8 0 2296 | 5688 (0.97) 0.0 4.1 $5.6 | 404 | 5528 (0.94) 0.0 13 572 | 415

8 300 2296 | 5694 (0.97) 01 41 555 | 403 | 5534 (0.94) o1 1.3 S71 | 415

8 600 2296 | 5700 (0.97) 02 41 554 | 403 | 5540 (0.94) 02 13 570 | 414

8 1200 296 | 5712(0.97) 04 41 553 | 402 | 5552(0.94) 04 13 569 | 414

8 2400 2296 | 5736 (0.98) 038 40 s5.1 | 400 | 5576 (0.95) 09 1.3 567 | 412

8 4800 2296 | 5784 (0.98) 17 40 546 | 39.7 | 5624 (0.96) 17 13 562 | 4038

8 9600 2206 | 5880(1.00) 33 4.0 537 | 39.0 | 5720097 34 1.3 552 | 401
16 [} 2296 | 4408 (0.75) 0.0 53 426 | 521 | 4248(0.72) 0.0 1.7 443 | 540
16 300 296 | 4414 (0.75) 01 53 426 | 520 | 4254(0.72) 0.1 1.7 442 | 540
16 600 296 | 4420(0.75) 03 53 425 | 519 | 4260(0.72) 03 17 441 | 539
16 1200 296 | 4432(0.75) 05 52 424 | 518 | 42120.7%) 0.6 17 440 | 537
16 2400 296 | 4456 (0.76) 11 52 422 | 515 | 4296 (0.73) 1.1 17 438 | 534
16 4800 2296 | 4504 (0.77) 21 52 417 | 51.0 | 4344(0.79) 22 17 433 | 529
16 9600 2296 | 4600 (0.78) 42 50 409 | 49.9 | 4440(0.76) 43 1.6 423 | 517
2 0 2296 | 3768 (0.64) 0.0 62 32.9 | 60.9 | 3608 (0.61) 0.0 20 344 | 636
2 300 296 | 3774 (0.64) 02 62 329 | 60.8 | 3614 (0.61) 02 2.0 1.3 | 633
32 600 296 | 3780 (0.64) 03 6.1 328 | 60.7 | 3620 (0.62) 03 20 43 | 634
2 1200 296 | 3792(0.69) 0.6 6.1 327 | 605 | 3632(0.62) 07 20 M1 | 632
2 2400 296 | 3816 (0.65) 1.3 6.1 325 | 602 | 3656 (0.62) 13 20 339 | 6238
2 4800 296 | 3864 (0.66) 2.5 6.0 321 | 594 | 3704 (0.63) 26 19 335 | 620
2 9600 296 | 3960067y | 49 59 313 | 58.0 | 3800(0.65) 5.1 1.9 2.6 | 604
64 0 2296 | 3576 (0.61) 0.0 6.5 293 | 642 | 3416(0.58) 0.0 21 307 | 672
64 300 296 | 3582 (0.61) 02 6.5 29.3 | 64.1 | 3422(0.58) 02 2.1 306 | 671
64 600 296 | 3588 (0.61) 03 65 292 | 64.0 | 3428 (0.59) 04 2.1 306 | 670
64 1200 296 | 3600(0.61) 0.7 6.4 29.1 | 638 | 3440(0.59) 07 2.1 305 | 667
64 2400 296 | 3624 (0.62) 13 64 289 | 634 | 3464(0.59) 14 21 303 | 663
64 4800 296 | 3672(0.62) 26 6.3 285 | 625 | 3512(0.60) 27 2.1 298 | 654
64 9600 2296 | 3768 (0.64) 5.1 6.2 278 | 60.9 | 3608 (0.61) 5.3 2.0 2.0 | 636

Appendix B 158
Table B-3. Simulation Results for Intel Running DP COMP
Bus Width | Cache Time | Tot FPU Sequential Execution Parallel Execution

To FPU per Miss Cycles Tot Prog % Cache | %Loop | %FP | % FP Tot Prog % Cache | % Loop | %FP | %FP
(bits) (nsec) Cycles OvHd | OvHd | OvHd | Op Cycles OvHd OvHd | OVHd | Op
) 0 2388 | 6248 (0.97) 0.0 47 ST.0 | 382 | 6248 (0.97) 0.0 47 570 | 382

8 300 2388 | 6254 (0.97) 0.1 47 57.0 | 382 | 6254 (097 0.1 47 570 | 382

8 600 2388 | 6260(0.97) 02 47 569 | 38.1 | 6260(0.97 02 47 569 | 381

8 1200 2388 | 6272(0.97) 04 41 568 | 38.1 | 6272(0.97) 04 47 568 | 381

8 2400 2388 | 6296 (0.98) 0.8 47 566 | 37.9 | 6296 (0.98) 03 47 566 | 3719

8 4800 2388 | 6344 (0.99) 15 47 562 | 37.6 | 6344(0.99) 15 47 562 | 316

8 9600 2388 | 6440 (1.00) 3.0 46 553 | 37.1 | 6440(1.00) 30 4.6 553 | 371
16 0 2388 | 4968 (0.77) 0.0 6.0 460 | 48.1 | 4968 (0.7T) 0.0 6.0 460 | 48.1
16 300 2388 | 4974 (0.77) 0.1 6.0 459 | 48.0 | 4974 (0.1 0.1 6.0 459 | 480
16 600 2388 | 4980 (0.77) 02 59 459 | 480 | 4980(0.77) 02 59 459 | 480
16 1200 2388 | 4992 (0.78) 05 59 458 | 47.8 | 4992(0.78) 05 59 458 | 418
16 2400 2388 | 5016 (0.78) 1.0 59 455 | 476 | 5016(0.78) 1.0 59 455 | 476
16 4800 2388 | 5064(0.79) 19 59 451 | 472 | 5064 (0.79) 1.9 59 451 | 472
16 9600 2388 | 5160 (0.80) 37 5.7 443 | 463 | 5160(0.80) 37 57 43 | 463
2 0 2388 | 4328 (0.67) 0.0 6.8 380 | 552 | 4328(0.6M 00 6.8 380 | 552
32 300 2388 | 4334(0.67) 01 6.8 379 | 551 | 4334067 0.1 6.8 379 | 551
2 600 2388 | 4340(0.67) 03 6.8 379 | 55.0 | 4340067 03 6.8 379 | 550
2 1200 2388 | 4352(0.68) 06 6.8 378 | 549 | 4352(0.69) 0.6 6.8 378 | 549
32 2400 2388 | 4376 (0.68) 11 6.8 376 | 546 | 4376 (0.68) 11 6.8 376 | 546
32 4800 2388 | 4424 (0.69) 22 6.7 372 | 54.0 | 4424 (0.69) 22 67 372 | 540
32 9600 2388 | 4520(0.70) 43 6.6 364 | 52.8 | 4520(0.70) 43 6.6 364 | 5238
64 0 2388 | 4136(0.64) 0.0 72 351 | 577 | 4136 (0.69) 0.0 12 351 | 577
64 300 2388 | 4142 (0.64) 01 12 351 | 527 | 4142(0.69) 0.1 12 35.1 | 577
64 600 2388 | 4148 (0.64) 03 7.1 350 | 57.6 | 4148 (0.64) 03 71 350 | 57.6
64 1200 2388 | 4160 (0.65) 06 71 349 | 57.4 | 4160 (0.65) 06 71 349 | 574
64 2400 2388 | 4184 (0.65) 12 7.1 347 | 571 | 4184 (0.65) 12 7.1 347 | 571
64 4800 2388 | 4232(0.66) 23 7.0 343 | 564 | 4232(0.66) 23 1.0 343 | 564
64 9600 2388 | 4328 (0.67) 44 6.8 335 | 552 | 4328(0.67) 44 6.8 335 | 552

Table B-4. Simulation Results for Intel Running DP ASSM
Bus Width | Cache Time | Tot FPU Sequential Execution Parallel Execution

To FPU per Miss Cycles Tot Prog % Cache | %Loop | %FP | % FP Tot Prog % Cache | %loop | %FP | %FP
(bits) (nsec) Cycles OvHd OvHd | OvHd | Op Cycles OvHd OvHd | OvHd | ©Op
8 0 1900 | 4548 (0.96) 0.0 6.5 517 | 41.8 | 4356 (0.92) 0.0 24 540 | 436

8 300 1900 | 4554 (0.96) o1 65 516 | 417 | 4362(0.92) 0.1 24 539 | 436

8 600 1900 | 4560 (0.96) 03 65 516 | 417 | 4368 (0.92) 03 24 538 | 435

8 1200 1900 | 4572(0.96) 05 6.5 514 | 416 | 4380(0.92 05 24 537 | 434

8 2400 1900 | 4596 (0.97 1.0 64 512 | 413 | 4404 (0.93) 11 24 534 | 431

8 4800 1900 | 4644 (0.98) 21 64 50.6 | 409 | 4452(0.94) 22 23 528 | 427

8 9600 1900 | 4740 (1.00) 41 6.2 49.6 | 40.1 | 4548 (0.96) 42 2.3 517 | 418
16 0 1900 | 3588 (0.76) 0.0 83 388 | 53.0 | 3396 (0.72) 0.0 3.1 410 | 559
16 300 1900 | 3594 (0.76) 02 82 387 | 529 | 3402(0.72) 02 31 409 | 558
16 600 1900 | 3600 (0.76) 03 82 387 | 528 | 3408(0.72) 04 3.1 408 | 558
16 1200 1900 | 3612(0.76) 07 82 385 | 526 | 3420072 0.7 30 407 | 556
16 2400 1900 | 3636 (0.77) 13 8.1 383 | 523 | 3444 (0.73) 1.4 3.0 404 | 552
16 4800 1900 | 3684 (0.78) 26 8.0 378 | 516 | 3492(0.74) 28 3.0 399 | 544
16 9600 1900 | 3780 (0.80) 5.1 78 368 | 503 | 3588 (0.76) 54 2.9 388 | 530
32 0 1900 | 3108 (0.66) 0.0 9.5 293 | 611 | 2916(0.62) 0.0 36 313 | 652
32 300 1900 | 3114 (0.66) 02 9.5 293 | 610 | 2922(0.62) 0.2 36 312 | 650
2 600 1900 | 3120(0.66) 0.4 9.5 292 | 609 | 2928 (0.62) 04 36 311 | 649
32 1200 1900 | 3132(0.66) 08 9.5 29.1 | 607 | 2940 (0.62) 0.8 35 310 | 646
32 2400 1900 | 3156 (0.67) 15 94 289 | 602 | 2964 (0.63) 1.6 35 308 | 641
32 4800 1900 | 3204 (0.68) 30 9.2 285 | 593 | 3012(0.69) 32 35 303 | 631
32 9600 1900 | 3300 (0.70) 5.8 9.0 276 | 576 | 3108 (0.66) 6.2 3.4 293 | 6L1
64 0 1900 | 3028 (0.64) 0.0 9.8 275 | 627 | 2836 (0.60) 0.0 37 293 | 670
64 300 1900 | 3034 (0.64) 02 9.8 274 | 626 | 2842 (0.60) 0.2 37 293 | 669
64 600 1900 | 3040 (0.64) 04 9.7 274 | 625 | 2848 (0.60) 04 37 292 | 667
64 1200 1900 | 3052(0.64) 08 9.7 273 | 623 | 2860 (0.60) 08 3.6 2.1 | 664
64 2400 1900 | 3076 (0.65) 16 9.6 270 | 61.8 | 2884 (0.61) 17 36 288 | 659
64 4800 1900 | 3124 (0.66) 31 9.5 266 | 608 | 2932(0.62) 33 36 284 | 6438
64 9600 1900 | 3220 (0.68) 6.0 9.2 258 | 59.0 | 3028(0.64) 6.3 34 275 | 627

Appendix B 159
Table B-5. Simulation Results for Intel Running PE COMP
Bus Width | Cache Time | TotFPU Sequential Execution Parallel Exccution

To FPU per Miss Cycles Tot Prog % Cache | % Loop | %#FP | % FP Tot Prog % Cache | % Lloop | %FP | %FP
(bits) (nsec) Cycics OvHd | OvHd | OvHd | Op Cycles OvHd | OvHd | OvHd | Op
8 0 2256 | 5936 (0.98) 0.0 1.9 60.1 | 38.0 | 5936 (0.98) 0.0 19 60.1 | 380

8 300 2256 | 5939 (0.98) 01 1.9 60.1 | 38.0 | 5939 (0.98) 0.1 1.9 60.1 | 380

8 600 2256 | 5942 (0.99) 0.1 1.9 60.0 | 38.0 | 5942(0.99) 0.1 1.9 60.0 | 380

8 1200 256 | 5948 (0.99) 02 1.9 60.0 | 379 | 5948 (0.99) 0.2 1.9 600 | 379

H] 2400 256 | 5960 (0.99) 04 1.9 59.9 | 379 | 5960(0.99) 04 1.9 599 | 379

8 4300 256 | 5984 (0.99) 038 1.9 59.6 | 37.7 | 5984 (0.99) 0.8 1.9 596 | 377

8 9600 2256 | 6032(1.00) 1.6 1.9 59.2 | 374 | 6032(1.00) 1.6 1.9 592 | 374
16 0 256 | 4656 (0.77) 0.0 24 49.1 | 485 | 4656(0.77) 0.0 24 49.1 | 485
16 300 256 | 4659 (0.77) 01 24 49.1 | 484 | 4659 (07D 0.1 24 9.1 | 484
16 600 256 | 4662(0.77) 0.1 24 49.1 | 484 | 4662(0.7T) 0.1 24 49.1 | 484
16 1200 256 | 4668 (0.77) 03 24 49.0 | 48.3 | 4668 (0.77) 03 24 49.0 | 483
16 2400 256 | 4680 (0.78) 05 24 48.9 | 482 | 4680(0.78) 05 24 489 | 482
16 4800 256 | 4704 (0.78) 1.0 24 48.6 | 48.0 | 4704 (0.78) 1.0 24 486 | 480
16 9600 256 | 4752(0.79) 2.0 24 48.1 | 475 | 4752(0.79) 20 24 481 | 475
32 0 256 | 4016 (0.67) 0.0 2.8 410 | 562 | 4016 (0.67) 0.0 23 410 | 562
32 300 2256 | 4019 (0.67) 01 28 410 | s61 | 4019 (067 0.1 2.8 410 | s6.1
32 600 2256 | 4022 (0.67) o1 28 410 | 561 | 4022(0.67) 0.1 238 410 | 561
32 1200 2256 | 4028 (0.67) 0.3 2.8 409 | 560 | 4028(0.67) 03 2.8 409 | 560
2 2400 256 | 4040 (0.67) 06 2.8 40.8 | 55.8 | 4040 (0.67) 0.6 28 408 | 558
32 4800 256 | 4064 (0.67) 12 28 40.6 | 555 | 4064 (0.67) 12 28 406 | 555
2 9600 256 | 4112 (0.68) 23 27 40.1 | 549 | 4112(0.68) 23 27 40.1 | 549
) 0 256 | 3824 (0.63) 0.0 29 381 | 59.0 | 3824 (0.63) 0.0 2.9 381 | 59.0
64 300 256 | 3827(0.63) 01 29 380 | 589 | 3827(0.63) 0.1 29 380 | 589
64 600 256 | 3830(0.63) 02 29 380 | 589 | 3830(0.63) 0.2 2.9 380 | 589
64 1200 256 | 3836 (0.64) 03 29 380 | 58.8 | 3836(0.64) 03 29 380 | 588
64 2400 256 | 3848 (0.64) 0.6 29 378 | 58.6 | 3848 (0.64) 0.6 29 378 | 586
64 4800 256 | 3872(0.64) 12 29 376 | $8.3 | 3872(0.64) 12 29 37.6 | 583
64 9600 2256 | 3920 (0.65) 25 29 37.1 | 57.6 | 3920(0.65) 25 2.9 371 | 576

Table B-6. Simulation Resuits for Intel Running PE ASSM
Bus Width | Cache Time | Tot FPU Sequential Execution Parallel Execution

To FPU per Miss Cycles Tot Prog 9% Cache | % Loop | %FP | % FP Tot Prog % Cache | %loop | %FP | %FP
(bits) (nsec) Cycles OvHd | OvHd | OvHd | Op Cycles OvHd | OvHd | OVHd | Op
8 0 1748 | 4228 (0.98) 0.0 27 560 | 413 | 4188(0.97 0.0 17 565 | 417

8 300 1748 | 4231(0.98) 01 27 560 | 413 | 4191 (097 0.1 17 565 | 417

8 600 1748 | 4234 (0.98) 0.1 27 559 | 413 | 4194097 0.1 1.7 565 | 417

8 1200 1748 | 4240 (0.98) 03 26 558 | 412 | 4200097 03 17 564 | 416

8 2400 1748 | 4252(0.98) 06 26 $5.7 | 411 | 4212097 0.6 1.7 562 | 415

8 4800 1748 | 4276 (0.99) 11 26 554 | 409 | 4236 (0.98) 11 1.7 559 | 413

8 9600 1748 | 4324(1.00) 22 26 548 | 404 | 4284 (0.99) 22 17 553 | 408
16 0 1748 | 3268 (0.76) 0.0 34 431 | 535 | 328075 0.0 22 436 | 542
16 300 1748 | 3271(0.76) 0.1 34 430 | 534 | 3231075 0.1 22 436 | 541
16 600 1748 | 3274 (0.76) 02 34 430 | 534 | 3234075 02 22 435 | s41
16 1200 1748 | 3280(0.76) 04 34 429 | 533 | 3240075 04 22 435 | 540
16 2400 1748 | 3292(0.76) 0.7 34 428 | 531 | 3252(0.75) 0.7 22 433 | 538
16 4800 1748 | 3316 (0.7 15 34 425 | 527 | 3276 (0.76) 15 22 430 | 534
16 9600 1748 | 3364 (0.78) 29 33 419 | 520 | 3324 (0.77) 29 22 424 | 526
32 0 1748 | 2788 (0.64) 0.0 4.0 333 | 627 | 2748 (0.64) 0.0 26 338 | 636
32 300 1748 | 2791 (0.65) 0.1 40 332 | 626 | 2751 (0.64) 0.1 26 337 | 635
32 600 1748 | 2794 (0.65) 02 40 332 | 626 | 2754 (0.64) 0.2 26 17 | 635
32 1200 1748 | 2800 (0.65) 04 40 331 | 624 | 2760 (0.64) 04 26 336 | 633
32 2400 1748 | 2812(0.65) 0.9 4.0 330 | 622 | 2772(0.64) 0.9 26 335 | 631
32 4800 1748 | 2836 (0.66) 17 4.0 327 | 6L6 | 2796 (0.65) 17 26 332 | 625
32 9600 1748 | 2884 (0.67) 33 3.9 322 | 60.6 | 2844 (0.66) 34 2.5 326 | 615
64 0 1748 | 2708 (0.63) 0.0 4.1 313 | 645 | 2668 (0.62) 0.0 27 318 | 655
64 300 1748 | 2711 (0.63) 0.1 4.1 313 | 645 | 2671(0.62) 0.1 27 317 | 654
64 600 1748 | 2714 (0.63) 02 4.1 312 | 644 | 2674(0.62) 02 27 317 | 654
64 1200 1748 | 2720(0.63) 04 4.1 312 | 643 | 2680(0.62) 04 27 316 | 652
64 2400 1748 | 2732(0.63) 09 41 310 | 640 | 2692(0.62) 09 27 315 | 649
64 4800 1748 | 2756 (0.64) 17 41 308 | 634 | 2716(0.63) 1.8 27 312 | 644
64 9600 1748 | 2804(0.65) | 34 4.0 302 | 623 | 2764 (0.64) 35 26 307 | 632

Appendix B

B.3.2. Motorola Floating-point Performance

160

Table B-7. Simulation Resuits for Motorola Running GE COMP
Bus Width | Cache Time | Tot FPU Sequential Execution Parallel Execution
To FPU per Miss Cycles Tot Prog % Cache | %loop | %FP | % FP Tot Prog % Cache { %loop | %FP | %FP
(bits) (nsec) Cycles OvHd OvHd OvHd Op Cycles OvHd OvHd OvHd Op
8 0 820 3916 (0.92) 0.0 9.2 69.9 20.9 | 3096 (0.73) 0.0 11.6 61.9 265
8 300 820 3926 (0.93) 0.3 9.2 69.6 20.9 | 3106 (0.73) 03 11.6 61.7 264
8 600 820 3936 (0.93) 0.5 92 69.5 20.8 3116 (0.74) 0.6 11.6 61.5 26.3
8 1200 820 3956 (0.93) 1.0 9.1 69.1 20.7 3136 (0.74) 1.3 11.5 61.1 26.1
8 2400 820 3996 (0.94) 20 9.0 68.5 205 | 3176 (0.79) 25 11.3 60.4 25.8
8 4800 820 4076 (0.96) 39 8.8 67.2 20.1 3256 (0.77) 49 111 58.8 252
8 9600 820 4236 (1.00) 1.6 8.5 64.6 19.4 | 3416 (0.81) 9.4 10.5 56.1 24.0
16 0 820 2776 (0.66) 0.0 34 621 | 29.5 | 1956 (0.46) 0.0 11.9 462 | 419
16 300 320 2786 (0.66) 0.4 83 61.9 | 29.4 | 1966(0.46) 05 11.8 460 | 417
16 600 820 2796 (0.66) 0.7 83 617 | 293 | 1976 (0.47) 1.0 117 458 | 415
16 1200 820 | 2816 (0.66) 1.4 8.2 61.2 | 29.1 | 1996 0.47) 20 116 | 453 | 411
16 2400 820 | 2856 (0.67) 28 8.1 604 | 287 | 2036(0.48) 39 114 444 | 403
16 4800 820 2936 (0.69) 5.5 19 58.7 279 | 2116 (0.50) 7.6 11.0 4.7 38.8
16 9600 820 3096 (0.73) 10.3 75 55.7 26.5 | 2276 (0.54) 14.1 10.2 39.8 36.0
kr 0 820 2428 (0.57) 0.0 6.9 59.4 338 1608 (0.38) 0.0 104 385 51.0
32 300 820 2438 (0.58) 0.4 6.9 59.1 33.6 1618 (0.38) 0.6 104 38.3 50.7
32 600 820 2448 (0.58) 0.8 6.9 58.8 335 1628 (0.38) 1.2 10.3 38.0 504
32 1200 820 2468 (0.58) 1.6 6.8 58.3 332 1648 (0.39) 24 102 373 49.8
32 2400 820 2508 (0.59) 32 6.7 57.4 327 1688 (0.40) 4.7 10.0 36.7 48.6
32 4800 820 2588 (0.61) 6.2 6.5 55.6 31.7 1768 (0.42) 9.1 9.5 35.1 46.4
32 9600 820 2748 (0.65) 11.6 6.1 524 29.8 1928 (0.46) 16.6 8.7 322 425
64 0 820 2296 (0.54) 0.0 73 S7.0 | 357 | 1476(0.35) 0.0 11.4 330 | 55.6
64 300 820 2306 (0.54) 0.4 73 56.7 35.6 1486 (0.35) 0.7 11.3 329 55.2
64 600 820 2316 (0.55) 0.9 73 56.5 354 1496 (0.35) 1.3 1.2 326 548
64 1200 820 2336 (0.55) 1.7 72 56.0 351 1516 (0.36) 2.6 1.1 322 54.1
64 2400 820 2376 (0.56) 34 7.1 55.0 345 1556 (0.37) 5.1 10.8 313 527
64 4800 820 2456 (0.58) 6.5 6.8 53.2 334 1636 (0.39) 9.8 10.3 29.8 50.1
4 9600 820 2616 (0.62) 12.2 64 50.0 31.3 1796 (0.42) 17.8 94 212 45.7
Table B-8. Simulation Resuits for Motorola Running GE ASSM
Bus Width | Cache Time | Tot FPU Sequential Execution Paraliel Execution

To FPU per Miss Cycles Tot Prog % Cache | %Loop | %FP | % FP Tot Prog % Cache | %loop | %FP | %FP

(bits) (nsec) Cycles OvHd OvHd OvHd Op Cycles OvHd OvHd OvHd Op
8 0 820 3572 (0.92) 0.0 13 69.7 23.0 | 2752(0.71) 0.0 9.5 60.8 29.8
8 300 820 3582 (0.92) 0.3 73 69.6 229 | 2762(0.71) 04 94 60.5 29.7
] 600 820 3592 (0.92) 0.6 72 69.4 228 | 2772(0.71) 0.7 9.4 60.3 29.6
8 1200 820 3612 (0.93) L1 72 69.0 22.7 | 2792(0.72) 14 9.3 599 29.4
8 2400 820 3652 (0.94) 22 7.1 68.2 22.5 | 2832(0.73) 28 9.2 59.0 29.0
8 4800 820 3732 (0.96) 43 7.0 66.7 220 | 2912(0.75) 55 8.9 574 282
8 9600 820 3892 (1.00) 8.2 6.7 64.1 21.1 3072 (0.79) 104 8.5 544 26.7
16 0 820 2552 (0.66) 0.0 58 62.0 321 1732 (0.45) 0.0 8.6 4.1 413
16 300 820 2562 (0.66) 04 58 61.8 320 1742 (0.45) 0.6 8.5 439 47.1
16 600 820 2572 (0.66) 08 58 61.6 319 1752 (0.45) 1.1 8.5 43.6 46.8
16 1200 820 2592 (0.67) 15 57 61.1 31.6 1772 (0.46) 23 84 43.1 46.3
16 2400 820 2632 (0.68) 3.0 5.6 60.2 31.2 | 1812 (047) 44 8.2 422 453
16 4800 820 2712 (0.70) 5.9 5.5 58.4 30.2 1892 (0.49) 8.5 18 404 433
16 9600 820 2872 (0.74) 11.1 5.2 55.2 28.6 | 2052(0.53) 15.6 12 37.3 40.0
32 0 820 2264 (0.58) 0.0 4.1 59.7 36.2 1444 (0.37) 0.0 6.4 369 56.8
32 300 820 2274 (0.58) 0.4 4.1 59.5 36.1 1454 (0.37) 0.7 6.3 36.6 564
32 600 820 2284 (0.59) 0.9 4.0 59.2 359 1464 (0.38) 14 6.3 36.4 56.0
32 1200 820 2304 (0.59) 1.7 4.0 58.7 35.6 1484 (0.38) 2.7 6.2 359 553
32 2400 820 2344 (0.60) 34 3.9 51.7 35.0 1524 (0.39) 53 6.0 4.9 538
32 4800 820 2424 (0.62) 6.6 38 55.8 33.8 1604 (0.41) 10.0 5.7 331 51.1
2 9600 820 2584 (0.66) | 124 36 524 | 317 | 1764 (0.45) 18.1 52 301 | 465
64 0 820 2156 (0.55) 0.0 43 57.7 38.0 | 1336(0.39) 0.0 6.9 318 614
64 300 820 2166 (0.56) 0.5 43 574 37.9 1346 (0.35) 0.7 6.8 315 60.9
64 600 820 2176 (0.56) 0.9 4.2 572 37.7 1356 (0.35) 1.5 6.8 31.3 60.5
64 1200 820 2196 (0.56) 1.8 42 56.7 37.3 1376 (0.35) 29 6.7 309 59.6
64 2400 820 2236 (0.57) 3.6 4.1 55.7 36.7 1416 (0.36) 57 6.5 29.9 579
64 4300 820 2316 (0.60) 6.9 4.0 53.7 354 1496 (0.38) 10.7 62 28.3 54.8
64 9600 820 2476 (0.64) 12.9 3.7 50.2 33.1 1656 (0.43) 19.3 5.6 25.6 49.5

Appendix B 161
Table B-9. Simulation Results for Motorola Running DP COMP
Bus Width | Cache Time | Tot FPU Sequential Execution Parallel Execution

To FPU perMiss | Cycles | TotProg | %Cache | %Loop | %FP | %FP | TotProg | % Cache | %Loop | %FP | %FP
(bits) (nsec) Cydes OvHd | OvHd | OvHd | Op Cycles OvHd | OvHd | OvHd | Op
§ 0 728 | 3884 (0.92) 0.0 9.8 714 | 18.7 | 3156(0.75) 0.0 120 | 649 | 231

8 300 728 | 3894 (0.93) 03 9.8 7.3 | 187 | 3166(0.75) 03 120 | 646 | 230

8 600 728 | 3904 (0.93) 05 9.7 711 | 186 | 3176 (0.76) 0.6 120 | 645 | 229

8 1200 728 | 3924 (0.93) 1.0 9.7 707 | 186 | 3196 (0.76) 1.3 119 | 60 | 228

8 2400 728 | 3964 (0.94) 20 9.6 700 | 184 | 3236(0.TD 25 1.7 | 633 | 225

8 4800 728 | 4044 (0.96) 4.0 9.4 68.7 | 18.0 | 3316079 48 1.5 617 | 220

8 9600 728 | 4204 (1.00) 7.6 9.0 661 | 17.3 | 3476 (0.83) 9.2 109 | s89 | 209
16 0 728 | 2696 (0.64) 0.0 9.4 63.6 | 27.0 | 1968 (0.47) 0.0 123 502 | 370
16 300 728 | 2706 (0.64) 0.4 9.3 635 | 269 | 1978 (047 0S5 127 | 500 | 368
16 600 728 | 2716 (0.65) 0.7 9.3 632 | 268 | 1988 (0.47) 1.0 127 | 497 | 366
16 1200 728 | 2736(0.65) L5 92 627 | 26.6 | 2008 (0.48) 20 125 | 492 | 363
16 2400 128 | 2776(0.66) 29 9.1 61.8 | 262 | 2048 (0.49) 39 123 | 483 | 355
16 4800 728 | 2856 (0.68) 5.6 8.8 60.1 | 25.5 | 2128 (0.51) 75 118 | 464 | 342
16 9600 728 | 3016(0.72) | 106 8.4 569 | 241 | 2288(0.54) | 140 10 | 432 | 3138
2 0 728 | 2324 (0.55) 0.0 8.1 60.6 | 313 | 1596(0.38) 0.0 118 | 426 | 456
32 300 728 | 2334(0.56) 0.4 8.1 603 | 312 | 1606(0.38) 0.6 1.7 | 423 | 453
32 600 728 | 2344(0.56) 0.9 8.0 60.1 | 311 | 1616(0.38) 1.2 116 | 421 | 450
2 1200 728 | 2364 (0.56) 1.7 8.0 59.6 | 308 | 1636(0.39) 24 115 | 416 | 445
32 2400 728 | 2404 (0.57) 33 7.8 585 | 303 | 1676(0.40) 48 112 | 406 | 434
2 4800 728 | 2484 (0.59) 6.4 16 566 | 29.3 | 1756 (0.42) 9.1 107 87 | 415
32 9600 728 | 2644(0.63) | 121 7.1 532 | 275 | 1916(046) | 167 9.8 355 | 380
64 0 728 | 2180(0.52) 0.0 8.6 58.0 | 334 | 1452(0.35) 0.0 129 369 | so.l
64 300 728 | 2190(0.52) 0.5 8.6 57.8 | 332 | 1462(035) 07 129 366 | 49.8
64 600 728 | 2200(0.52) 09- 8.6 575 | 331 | 1472(035) 14 12.8 364 | 495
64 1200 728 | 2220(0.53) 18 8.5 570 | 328 | 1492(0.35) 2.7 126 | 360 | 4838
64 2400 728 | 2260 (0.54) 35 8.3 559 | 322 | 1532(0.36) 52 123 350 | 475
64 4800 728 | 2340 (0.56) 6.8 8.0 540 | 311 | 1612(0.38) 99 117 333 | 452
64 9600 728 | 2500(0.59) | 128 75 505 | 291 | 1772(042) | 18.1 106 | 303 | 411

Table B-10. Simulation Results for Motorola Running DP ASSM
Bus Width | Cache Time | Tot FPU Sequential Exccution Parallel Execution

To FPU perMiss | Cycles | TotProg | %Cache | % Loop | %FP | %FP | TotProg | % Cache | %loop | %FP | %FP
(bits) (nsec) Cycles OvHd | OvHd | OvHd | Op Cycles OvHd | OvHd | OvHd | Op
8 0 522 | 2202 (08D 0.0 102 | 661 | 23.7 | 1680(0.67) 0.0 76 614 | 3Ll

8 300 52 | 2212(0.88) 05 10.1 658 | 23.6 | 1690(0.67) 0.6 76 61.0 | 309

8 600 52 | 2222(0.88) 09 10.1 655 | 235 | 1700 0.67 1.2 75 60.6 | 307

8 1200 522 | 2242(0.89) 1.8 100 | 650 | 233 | 1720 (0.68) 2.3 74 599 | 303

8 2400 522 | 2282(0.90) 3s 9.8 | 638 | 229 | 1760(0.70) 46 73 586 | 297

8 4800 522 | 2362(0.94) 6.8 95 | 617 | 221 | 1840(0.73) 8.7 70 560 | 284

8 9600 522 | 2522(1.00) | 127 89 | 577 | 207 | 20000.79) | 160 64 515 | 261
16 0 52 | 1570(0.62) 0.0 102 | 566 | 33.2 | 1048 (042 0.0 6.1 441 | 498
16 300 52 | 1580(0.63) 0.6 10.1 562 | 33.0 | 1058 (0.42) 09 6.1 436 | 493
16 600 52 | 1590(0.63) 13 101 | 558 | 328 | 1068(042) 19 6.0 433 | 489
16 1200 52 | 1610(0.64) 25 99 | 552 | 324 | 1088 (043) 37 59 425 | 480
16 2400 522 | 1650 (0.65) 49 9.7 | 538 | 316 | 1128(0.45) 71 5.7 409 | 463
16 4800 52 | 1730(0.69) 9.3 93 | 514 | 302 | 1208¢048) | 132 53 82 | 432
16 9600 522 | 1890(0.75) | 169 85 | 470 | 276 | 1368(0.54) | 234 47 338 | 382
2 0 S22 | 1402(0.56) 0.0 9.1 536 | 372 | 880(0.35) 0.0 16 370 | 593
2 300 52 | 1412(0.56) 0.7 9.1 532 | 370 | 890(0.35) 11 3.6 366 | 587
32 600 52 | 1422(0.56) 14 90 | 529 | 367 | 900(0.36) 22 36 363 | 580
32 1200 S22 | 1442(057 238 89 | 521 | 362 | 920(0.36) 44 35 354 | 567
2 2400 52 | 1482(0.59) 5.4 86 | 507 | 352 | 960(0.38) 8.3 33 40 | 544
2 4800 52 | 1562(062) | 102 82 | 482 | 334 | 1040(041) | 154 31 313 | 502
32 9600 522 | 1722(0.68) | 18.6 74 | 437 | 303 | 1200(048) | 267 2.7 272 | 435
64 0 522 | 1338 (0.53) 0.0 96 | 514 | 390 | 816(0.32) 0.0 39 321 | 640
6 300 522 | 1348 (0.53) 07 95 | S1.0 | 387 | 826(0.33) 1.2 39 317 | 632
64 600 522 | 1358 (0.54) 1.5 94 | 507 | 384 | 836(0.33) 24 33 313 | 624
64 1200 52 | 1378 (0.55) 29 93 | 499 | 379 | 856(0.34) 47 37 306 | 61.0
64 2400 52 | 1418 (0.56) 5.6 90 | 486 | 368 | 896(0.36) 8.9 3.6 2.3 | 583
64 4800 52 | 1498(0.59) | 107 85 | 460 | 348 | 976(039) | 164 33 269 | 535
64 9600 522 | 1658 (0.66) | 19.3 77 | 415 | 315 | 1136045 | 282 2.8 2.1 | 460

Appendix B 162
Table B-11. Simulation Results for Motorola Running PE COMP
Bus Width | Cache Time | TotFPU Sequential Execution Parailel Execution

To FPU per Miss Cycles Tot Prog % Cache | %Loop | FP | % FP Tot Prog % Cache | % Lloop | %FP | %FP
(bits) (nsec) Cycles OvHd | OvHd | OvHd | Op Cycles OvHd | OvHd | OvHd | Op
8 0 520 1896 (0.92) 0.0 76 649 | 274 | 1376 (0.6D 0.0 105 518 | 378

8 300 520 | 1901 (0.92) 0.3 76 648 | 274 | 1381 (0.67 04 104 515 | 377

8 600 520 | 1906(0.93) 0.5 16 647 | 27.3 | 1386 (0.6T) 0.7 104 514 | 375

8 1200 520 | 1916(0.93) 1.0 15 643 | 27.1 | 1396 (0.68) 14 10.3 510 | 372

8 2400 520 1936 (0.94) 21 74 63.6 | 269 | 1416(0.69) 2.8 10.2 503 | 367

8 4800 520 | 1976 (0.96) 4.1 13 624 | 263 | 1456 (0.71) 55 99 489 | 357

8 9600 520 | 2056 (1.00) 7.8 7.0 59.9 | 253 | 1536(075) | 104 94 464 | 339
16 0 520 1436 (0.70) 0.0 78 560 | 362 | 916(045) 0.0 12.2 31.0 | 568
16 300 520 1441 (0.70) 03 78 558 | 361 | 921(045) 05 122 308 | 565
16 600 520 1446 (0.70) 07 78 $5.6 | 360 | 926(045) 11 121 307 | 562
16 1200 520 1456 (0.71) 14 77 552 | 357 | 936(0.46) 21 12,0 303 | 556
16 2400 520 1476 (0.72) 27 76 545 | 352 | 956(0.46) 42 117 2.7 | 544
16 4800 520 1516 (0.74) 53 74 531 | 343 | 996(048) 8.0 112 285 | 522
16 9600 520 | 1596(0.78) | 100 7.0 504 | 326 | 1076(0.52) 149 104 264 | 483
32 0 520 1352 (0.66) 0.0 71 544 | 385 | 832(040) 0.0 115 260 | 625
32 300 520 1357 (0.66) 04 7.1 542 | 383 | 837(041) 0.6 115 258 | 621
2 600 520 | 1362(0.66) 0.7 71 541 | 382 | 842(041) 1.2 114 257 | 618
2 1200 520 1372 (0.67) 1.5 70 536 | 379 | 852(041) 24 11.3 254 | 610
32 2400 520 1392 (0.68) 29 69 529 | 374 | 872(042) 46 11.0 248 | 596
2 4800 520 | 1432(0.70) 56 67 514 | 363 | 912(0.44) 8.8 10.5 237 | 510
2 9600 520 | 1512(0.74) | 106 64 487 | 344 | 992(048) 16.1 97 218 | 524
6 0 520 1320 (0.64) 0.0 13 533 | 394 | 800(0.39) 0.0 12.0 230 | 650
64 300 520 1325 (0.64) 04 73 531 | 392 | 805(0.39) 0.6 119 28 | 646
64 600 520 1330 (0.65) 0.8 7.2 530 | 39.1 | 810(0.39) 1.2 119 27 | 62
64 1200 520 1340 (0.65) 1.5 72 525 | 388 | 820¢0.40) 24 1.7 25 | 634
6 2400 520 1360 (0.66) 29 71 518 | 382 | 840(041) 48 114 219 | 619
64 4800 520 1400 (0.68) 5.7 69 502 | 371 | 880(043) 9.1 109 29 | 591
64 9600 520 1480 (0.72) | 108 6.5 476 | 351 | 960(047) 16.7 10.0 192 | 542

Table B-12. Simulation Results for Motorola Running PE ASSM
Bus Width | Cache Time | Tot FPU Sequential Execution Parallel Execution

To FPU per Miss Cycles Tot Prog % Cache | % Loop | %FP | %FP Tot Prog % Cache | %Loop | % FP | %FP
(bits) (nsec) Cycles OvHd | OvHd | OvHd | Op Cycles OvHd | OvHd | OvHd | Op
8 0 520 1344 (0.92) 0.0 56 66.1 | 28.2 | 1324 (0.66) 0.0 79 529 | 393

8 300 520 1849 (0.92) 03 56 66.0 | 28.1 | 1329 (0.66) 0.4 78 527 | 391

8 600 520 1854 (0.93) 0.5 56 658 | 28.0 | 1334(0.67 08 7.8 525 | 390

8 1200 520 1864 (0.93) 1.1 56 655 | 219 | 1344 (067 1.5 17 521 | 387

8 2400 520 1884 (0.94) 21 5.5 647 | 27.6 | 1364 (0.68) 29 76 513 | 381

8 4800 520 1924 (0.96) 4.2 54 634 | 27.0 | 1404 (0.70) 57 74 499 | 370

8 9600 520 | 2004(1.00) 8.0 52 609 | 259 | 1484(074) | 108 7.0 412 | 350
16 0 520 1384 (0.69) 0.0 52 573 | 376 | 864(043) 0.0 8.3 314 | 602
16 300 520 1389 (0.69) 04 52 570 | 374 | 869(043) 06 8.3 313 | 598
16 600 520 1394 (0.70) 0.7 52 568 | 373 | 874(044) 1.1 8.2 311 | 595
16 1200 520 1404 (0.70) 1.4 5.1 564 | 37.0 | 884(044) 23 81 | 307 | 588
16 2400 520 1424 (0.71) 28 5.1 556 | 365 | 904(0.45) 44 8.0 301 | 575
16 4800 520 1464 (0.73) 5.5 49 541 | 355 | 944(047) 8.5 16 288 | 55.1
16 9600 520 | 1544(0.77) | 104 47 513 | 337 | 1024051 15.6 7.0 2.5 | 508
2 0 520 1300 (0.65) 0.0 43 557 | 40.0 | 780(0.39) 0.0 72 %1 | 667
2 300 520 1305 (0.65) 04 43 554 | 39.8 | 785(0.39) 0.6 7.1 260 | 662
2 600 520 1310 (0.65) 0.8 43 553 | 397 | 790(0.39) 13 7.1 258 | 658
2 1200 520 1320 (0.66) 1.5 42 548 | 394 | 800(0.40) 25 1.0 255 | 650
73 2400 520 1340 (0.67) 3.0 42 540 | 388 | 820(0.41) 49 6.8 29 | 634
32 4800 520 | 1380(0.69) 5.8 41 524 | 317 | 860(043) 9.3 65 2.7 | 605
7] 9600 520 1460 (0.73) | 11.0 2.8 49.6 | 356 | 940 (047 17.0 6.0 217 | 553
64 0 520 1268 (0.63) 0.0 44 545 | 41.0 [748037 0.0 1.5 230 | 695
64 300 520 | 1273(0.64) 04 44 544 | 408 | 753(0.38) 07 74 29 | 69.1
64 600 520 | 1278(0.64) 0.8 44 542 | 407 | 758(0.38) 13 74 27 | 686
64 1200 520 | 1288 (0.64) 1.6 44 537 | 404 | 768(0.38) 26 73 24 | 617
64 2400 520 1308 (0.65) 3.1 43 529 | 39.8 | 788(0.39) 5.1 7.1 21.8 | 66.0
64 4800 520 | 1348 (0.67) 59 42 514 | 386 | 828(0.41) 9.7 6.8 208 | 628
64 9600 520 1428070 | 112 39 485 | 364 | 908 (0.45) 17.6 6.2 189 | 573

Appendix B

B.3.3. SPUR Floating-point Performance

163

Table B-13. Simulation Results for SPUR Running GE COMP
Bus Width | Cache Time | Tot FPU Sequential Execution Parallel Execution
To FPU per Miss Cycles Tot Prog % Cache | % Loop % FP % FP Tot Prog % Cache | % Loop % FP % FP
(bits) (nsec) Cycles OvHd OvHd OvHd Op Cycles OvHd OvHd OvHd Op
8 0 56 180 (0.57) 0.0 10.6 58.3 31.1 144 (0.45) 0.0 104 50.7 38.9
8 300 56 186 (0.58) 31 102 56.6 30.1 150 (0.47) 2.0 10.0 50.6 373
8 600 56 190 (0.60) 5.1 10.0 55.5 29.5 154 (0.48) 33 9.7 50.7 36.4
8 1200 56 198 (0.62) 9.0 9.6 53.1 28.3 162 (0.51) 71 9.3 49.0 34.6
8 2400 56 216 (0.68) 16.6 8.8 48.7 259 180 (0.57) 164 8.3 442 31.1
8 4800 56 250 (0.79) 279 16 42.1 224 214 (0.67) 29.7 7.0 371 26.2
3 9600 56 318 (1.00) 433 6.0 33.1 17.6 | 282 (0.89) 46.6 5.3 28.2 19.9
16 0 56 132 (0.42) 0.0 144 43.2 424 100 (0.31) 0.0 10.0 340 56.0
16 300 56 138 (0.43) 42 138 41.6 40.6 105 (0.33) 29 10.5 333 53.3
16 600 56 142 (0.45) 6.9 134 40.3 394 109 (0.34) 4.6 10.3 338 514
16 1200 56 150 (047) 11.8 127 38.1 373 117 (0.37) 9.8 9.6 327 47.9
16 2400 56 168 (0.53) 213 113 34.1 333 135 (0.42) 219 83 28.3 41.5
16 4800 56 202 (0.64) 345 9.4 284 217 169 (0.53) 37.6 6.7 226 33.1
16 9600 56 270 (0.85) 51.0 7.0 21.1 20.7 237 (0.75) 55.5 4.8 16.1 23.6
32 0 56 108 (0.34) 0.0 17.6 30.6 519 84 (0.26) 0.0 11.9 214 66.7
32 300 56 114 (0.36) 5.0 167 29.2 49.1 87 (0.27) 35 115 20.7 64.4
32 600 56 118 (0.37) 83 16.1 28.2 475 91 (0.29) 55 12.1 209 61.5
32 1200 56 126 (0.40) 141 15.1 264 44 99 (0.31) 11.6 114 20.5 56.6
32 2400 56 144 (0.45) 24.8 132 231 389 117 (0.37) 25.2 9.6 173 479
32 4800 56 178 (0.56) 39.2 107 18.7 315 151 (0.47) 421 15 134 37.1
32 9600 56 246 (0.77) 56.0 7.7 13.5 22.8 219 (0.69) 60.0 5.1 9.3 25.6
64 0 56 96 (0.30) 0.0 19.8 21.9 58.3 76 (0.24) 0.0 13.2 13.1 73.7
64 300 56 102 (0.32) 5.6 18.6 20.9 54.9 79 (0.25) 38 12.7 127 70.9
64 600 56 106 (0.33) 92 179 20.1 52.8 82 (0.26) 6.1 12.8 12.8 68.3
64 1200 56 114 (0.36) 15.6 16.7 187 49.1 90 (0.28) 12.8 12.5 125 62.2
64 2400 56 132(0.42) 27.1 144 16.1 424 108 (0.34) 213 104 10.5 51.9
64 4800 56 166 (0.52) 420 114 128 337 142 (0.45) 44.7 79 79 394
64 9600 56 234 (0.74) 58.9 8.1 9.2 23.9 210 (0.66) 62.6 54 5.4 26.7
Table B-14. Simulation Results for SPUR Running GE ASSM
Bus Width Cache Time | Tot FPU Sequential Execution Parallel Execution

To FPU per Miss Cycles Tot Prog % Cache | %Loop { %FP % FP Tot Prog % Cache | % Loop % FP % FP
(bits) (nsec) Cycles OvHd OvHd OvHd Op Cycles OvHd OvHd OvHd Op
8 0 56 168 (0.55) 0.0 6.6 60.2 333 132 (0.43) 0.0 8.3 492 424
8 300 56 174 (0.57) 32 6.3 58.4 322 138 (0.45) 1.1 8.0 504 40.6
8 600 56 178 (0.58) 53 6.2 57.0 315 142 (0.46) 25 7.8 50.3 394
8 1200 56 186 (0.61) 9.4 59 54.6 30.1 150 (0.49) 6.7 73 48.6 313
8 2400 56 204 (0.67) 174 54 49.7 215 168 (0.55) 16.7 6.6 435 333
8 4800 56 238 (0.78) 29.2 4.6 426 235 202 (0.66) 30.7 55 36.1 277
8 9600 56 306 (1.00) 449 3.6 33.3 18.3 270 (0.88) 48.1 4.1 270 20.7
16 0 56 120 (0.39) 0.0 92 4.2 46.7 88 (0.29) 0.0 6.8 29.5 63.6
16 300 56 126 (0.41) 44 8.7 42.5 4.4 93 (0.30) 1.6 75 30.6 60.2
16 600 56 130 (0.42) 13 8.5 41.1 43.1 97 (0.32) 36 15 312 577
16 1200 56 138 (0.45) 127 8.0 389 40.6 105 (0.34) 9.5 6.9 302 533
16 2400 56 156 (0.51) 228 71 344 359 123 (0.40) 2.8 59 258 455
16 4800 56 190 (0.62) 36.6 58 28.2 29.5 157 (0.51) 395 4.6 20.2 35.7
16 9600 56 258 (0.84) 53.3 4.3 20.7 21.7 225 (0.74) 57.8 3.2 14.2 24.9
32 0 56 96 (0.31) 0.0 11.5 303 583 72 (0.24) 0.0 6.9 15.3 77.8
32 300 56 102 (0.33) 54 10.8 29.0 54.9 75 (0.25) 20 7.0 163 74.7
32 600 56 106 (0.35) 9.0 104 219 52.8 79 (0.26) 44 79 16.8 70.9
32 1200 56 114 (0.37) 154 9.7 26.0 49.1 87 (0.28) 11.5 15 16.6 64.4
32 2400 56 132 (0.43) 269 83 224 424 105 (0.34) 26.7 6.2 13.8 533
32 4800 56 166 (0.54) 419 6.6 17.8 33.7 139 (0.45) 4.6 4.7 104 40.3
32 9600 56 234 (0.76) 58.8 4.7 12.7 23.9 207 (0.68) 62.8 3.1 7.0 27.1
6 0 56 84 (0.27) 0.0 13.1 202 | 667 | 64(021) 00 63 63 | 875
64 300 56 90 (0.29) 6.1 122 19.5 62.2 67 (0.22) 22 6.7 15 83.6
) 600 56 94 (0.31) 101 11.7 18.6 59.6 70 (0.23) 5.0 7.1 79 80.0
64 1200 56 102 (0.33) 17.2 10.8 17.2 549 78 (0.25) 12.8 74 8.0 71.8
64 2400 56 120 (0.39) 29.6 9.2 14.6 46.7 96 (0.31) 29.2 6.0 6.5 58.3
64 4800 56 154 (0.50) 45.1 71 114 364 130 (0.42) 477 4.4 49 43.1
64 9600 56 222 (0.73) 61.9 5.0 7.9 25.2 198 (0.65) 65.7 2.9 3.1 28.3

Appendix B 164
Table B-15. Simulation Results for SPUR Running DP COMP
Bus Width | Cache Time | Tot FPU Sequential Execution Parallel Execution
To FPU per Miss Cycles | TotProg | % Cache | %loop | %FP | %FP | TotProg | % Cache | %Lloop | %FP | %FP
(bits) (nsec) Cycles OvHd OvHd | OvHd | Op Cycles OvHd OvHd | OvHd | Op
8 0 a 132 (0.49) 0.0 106 561 | 333 | 124(0.46) 0.0 8.1 564 | 353
8 300 44 138 (0.51) 44 10.1 536 | 319 | 130(048) 44 77 541 | 33.8
8 600 44 142 (0.53) 1.0 9.9 521 | 310 | 134(0.50) 73 75 524 | 328
8 1200 44 150 (0.56) 120 93 494 | 293 | 142(0.53) 125 70 495 | 310
8 2400 44 168 (0.62) 214 83 441 | 262 | 160(0.59) 23 63 439 | 215
8 4300 a4 202 (0.75) 347 69 367 | 218 | 194(0.72) 36.0 52 362 | 227
8 9600 44 270 (1.00) 51.1 52 274 | 163 | 262(0.97) 526 3.8 268 | 1638
16 0 a4 100 (0.37) 0.0 140 420 | 440 | 92(039) 0.0 109 413 | 418
16 300 44 106 (0.39) 57 132 395 | 415 | 98(0.36) 59 102 390 | 449
16 600 44 110 (0.41) 9.1 127 381 | 400 | 102(0.38) 9.6 9.8 375 | 431
16 1200 44 118 (0.44) 153 119 355 | 373 | 110(041) 16.1 9.1 348 | 400
16 2400 4 136 (0.50) 265 103 308 | 324 | 128(047) 219 78 299 | 344
16 4800 44 170 (0.63) 412 82 248 | 259 | 162(0.60) 43.1 62 236 | 272
16 9600 4 238 (0.88) 58.0 5.9 177 | 185 | 230(0.85) 59.9 4.4 166 | 19.1
32 0 44 84 (0.31) 0.0 167 31.0 | 524 | 76(0.28) 0.0 132 289 | 579
2 300 44 90 (0.33) 67 156 288 | 489 [82(0.30) 70 122 271 | 537
2 600 44 94 (0.35) 106 14.9 277 | 4638 | 86(0.32) 113 11.6 259 | 512
32 1200 44 102 (0.38) 17.6 137 255 | 431 | 94(0.35) 18.9 10.6 237 | 4638
2 2400 44 120 (0.44) 300 117 216 | 367 | 112(041) 319 89 199 | 393
2 4800 44 154 0.57) 455 9.1 169 | 286 | 146(0.54) 418 69 153 | 30.1
2 9600 44 222 (0.82) 62.2 63 1.8 | 198 | 214(0.79) 64.4 47 104 | 206
64 0 44 76 (0.28) 00 184 237 | 579 | 68(025) 0.0 147 206 | 647
64 300 44 82 (0.30) 13 171 20 | 537 | 74027 78 135 193 | 595
64 600 a4 86 (0.32) 116 163 210 | S12 | 78(0.29) 125 128 183 | 564
64 1200 44 94 (0.35) 19.1 149 192 | 468 | 86(032) 20.6 116 166 | 512
64 2400 a4 112 0.41) 321 125 161 | 393 | 104(0.39) 4.4 96 137 | 423
64 4800 44 146 (0.54) 419 9.6 124 | 301 | 138(0.51) 50.5 13 103 | 319
64 9600 44 214 (0.79) 64.5 65 84 | 206 | 206(0.76) 669 4.9 69 | 214
Table B-16. Simulation Results for SPUR Running DP ASSM
Bus Width | CacheTime | Tot FPU Sequential Execution Parallel Execution
To FPU per Miss Cycles Tot Prog % Cache | %Loop | %FP | %FP Tot Prog % Cache | %oloop | %FP | % FP
(bits) (nsec) Cycles OvHd OvHd | OvHd | ©Op Cycles OvHd OvHd | OvHd | Op
3 0 a 132 (0.49) 0.0 38 629 | 333 | 1140042 0.0 33 579 | 386
8 300 44 138 (0.51) 44 3.6 601 | 319 | 120(044) 5.0 33 550 | 367
8 600 a 142 (0.53) 10 35 585 | 310 | 124(046) 8.1 32 532 | 355
8 1200 44 150 (0.56) 12.0 33 553 | 293 | 132(049) 13.6 30 500 | 333
8 2400 44 168 (0.62) 214 3.0 494 | 262 | 150(0.56) 24.0 27 440 | 293
8 4800 44 202 (0.75) 347 25 410 | 218 | 184 (0.68) 38.0 22 359 | 239
8 9600 44 270 (1.00) 51.1 1.9 308 | 163 | 252(0.93) 54.8 1.6 262 | 175
16 0 44 92 (0.34) 0.0 5.4 467 | 418 | 74(027) 0.0 54 352 | 595
16 300 44 98 (0.36) 6.1 5.1 439 | 449 | 80(030) 75 50 325 | 550
16 600 24 102 (0.38) 9.8 49 422 | 41 | 84031 11.9 48 310 | S24
16 1200 44 110 (0.41) 16.4 4.6 39.1 | 400 | 92(0.34) 19.6 44 282 | 478
16 2400 44 128 (0.47) 28.1 39 336 | 344 | 110(041) 327 36 237 | 400
16 4800 44 162 (0.60) 432 31 %6 | 272 | 144(053) | 486 28 180 | 306
16 9600 44 230 (0.85) 60.0 22 187 | 19.1 | 212(0.79) 65.1 1.9 122 | 208
32 0 44 72 (0.27) 0.0 6.9 20 | 6.1 | 54(0.20) 0.0 09 176 | 8Ls
32 300 44 78 (0.29) 117 6.4 295 | 564 | 60(0.22) 8.8 038 17.1 733
32 600 44 82 (0.30) 122 6.1 281 | 537 | 64(0.29) 14.5 038 160 | 688
32 1200 44 90 (0.33) 20.0 5.6 256 | 489 | 720027 24.0 0.7 142 | 6Ll
32 2400 44 108 (0.40) 333 46 213 | 407 | 90(0:33) 39.2 0.6 114 | 489
32 4800 44 142 (0.53) 493 35 163 | 310 | 124 (0.46) 55.8 04 83 | 355
32 9600 44 210 (0.78) 65.7 24 1.0 | 210 | 192(©71) 71.5 0.3 54 | 229
64 0 44 62 (0.23) 0.0 8.1 210 [710 | 44¢0.16) 0.0 0.0 00 | 1000
64 300 44 68 (0.25) 8.5 74 195 | 647 | 50(0.19) 55 0.0 6.5 88.0
64 600 44 72 (0.27) 135 6.9 185 | 611 | 54(0.20) 12,0 0.0 6.5 815
64 1200 44 80 (0.30) 222 6.3 166 | 550 | 62(0.23) 234 0.0 56 | 7.0
64 2400 44 98 (0.36) 36.5 5.1 135 | 449 | 80(0.30) 40.6 0.0 44 | 550
64 4800 44 132 (0.49) 528 38 101 | 333 | 114(0.42) 583 0.0 3.0 | 386
64 9600 44 200 (0.74) 63.9 25 67 | 20 | 182(0.67) 739 0.0 20 | 242

Appendix B 165
Table B-17. Simulation Results for SPUR Running PE COMP
Bus Width | Cache Time | Tot FPU Sequential Execution Parailel Execution
To FPU per Miss Cycles Tot Prog % Cache | % Loop % FP % FP Tot Prog % Cache | % Loop | %FP % FP
(bits) (nsec) Cycles OvHd | OvHd | OvHd | Op Cycles OvHd | OvHd | OvHd | Op
8 0 4 92(0.57) 0.0 109 414 | 418 | 64(040) 0.0 47 266 | 688
8 300 44 95 (0.59) 32 105 401 | 463 | 67(042) 0.0 45 299 | 657
8 600 44 97 (0.60) 52 103 92 | 454 | 69(043) 1.1 44 308 | 6338
8 1200 44 101 (0.63) 8.9 9.9 377 | 436 | 73(045) 62 4.1 295 | 603
8 2400 44 110 (0.68) 164 9.1 345 | 400 | 82(051) 16.5 37 262 | 537
8 4800 44 127(079) | 276 79 300 | 346 | 99(061) | 308 3.0 217 | 444
8 9600 44 161 (1.00) | 429 6.2 26 | 273 | 133(083) | 485 23 162 | 331
16 0 44 76 (0.47) 0.0 132 290 | 579 | 48(0.30) 0.0 21 63 | 917
16 300 44 79 (0.49) 338 127 2779 | 557 | 51032 0.0 29 108 | 863
16 600 44 81 (0.50) 6.2 123 271 | 543 | 53(033) 14 28 127 | 830
16 1200 4 85 (0.53) 10.6 11.8 259 | 518 | 570039 7.9 2.6 123 | 772
16 2400 44 94 (0.58) 19.1 106 B4 | 468 | 66(041) | 205 2.3 106 | 667
16 4300 44 111 (0.69) | 315 9.0 198 | 396 | 83052 | 367 18 84 | 530
16 9600 44 145(0.90) [476 6.9 152 | 303 | 117(0073) | 551 1.3 60 | 376
32 0 44 68 (0.42) 0.0 147 206 | 647 | 44027 0.0 0.0 0.0 | 1000
32 300 44 71 (0.44) 42 14.1 197 | 620 | 46(0.29) 0.0 1.1 32 | 957
32 600 44 73 (0.45) 6.9 137 192 | 603 | 48(0.30) 1.6 1.6 52 | 917
32 1200 44 77 (0.48) 117 13.0 182 | 571 | 52(0.32) 8.7 1.4 53 | 846
32 2400 44 86(0.53) | 209 116 163 | 512 | 61(038) | 221 1.2 45 | 721
32 4800 44 103 (0.64) | 340 97 136 | 427 | 78(048) | 391 1.0 35 | 564
32 9600 44 137 (0.85) | 504 73 102 | 321 | 112(070) | 576 0.7 24 | 393
64 0 44 64 (0.40) 0.0 156 157 | 688 | 44(0.27) 0.0 0.0 00 | 1000
64 300 44 67 (0.42) 45 149 150 | 657 | 45(0.28) 0.0 0.6 17 | 978
64 600 44 69 (0.43) 73 145 146 | 638 | 47(0.29) 1.6 1.6 32 | 936
64 1200 44 73 (0.45) 123 137 137 | 603 | 51032 8.8 15 34 | 863
64 2400 44 82(0.51) | 220 122 122 | 537 | 60(03n | 225 13 29 | 733
64 4300 44 99 (0.61) | 354 10.1 101 | 44 | 77048 | 396 1.0 23 | s11
64 9600 44 133(083) [519 7.5 76 | 331 | 111069 | S8t 0.7 16 | 396
Table B-18. Simulation Results for SPUR Running PE ASSM
Bus Width | CacheTime | Tot FPU Sequential Execution Panallel Execution
To FPU per Miss Cycles | TotProg | % Cache | %Loop | %FP | %FP | TotProg | %Cache | %Loop | %FP | %FP
(bits) (nsec) Cycles OvHd OvHd | OvHd | Op Cycles OvHd OvHd | OvHd | Op
8 0 g 84 (0.55) 0.0 3.6 341 | 524 | 3520034 0.0 19 113 | 846
8 300 44 87(0.57) 32 3.5 429 | 506 | 55(036) 0.0 3.6 163 | 800
8 600 44 89 (0.58) 53 34 419 | 494 | 57037 0.0 35 193 | 772
8 1200 44 93 (0.61) 94 32 4.1 | 473 | 61(040) 4.1 33 205 | 721
8 2400 44 102 (0.67) 174 29 36.6 | 431 | 70(046) 16.4 29 178 | 629
8 4800 44 119(0.78) | 292 25 313 | 370 | s7(SnH | 328 2.3 144 | 506
8 9600 44 153(1.00) | 449 2.0 244 | 288 | 121079 | S51.7 1.7 103 | 364
16 0 44 68 (0.44) 0.0 44 309 | 647 | 44(029) 0.0 0.0 00 | 1000
16 300 44 71 (0.46) 39 42 29 | 620 | 450029 0.0 0.6 17 | 978
16 600 44 73 (0.48) 65 41 291 | 603 | 47031 0.0 1.1 53 | 936
16 1200 44 77 (0.50) 114 3.9 276 | S7.1 | 51(033) 49 1.0 79 | 863
16 2400 44 86(0.56) | 206 35 247 | s12 | 60(0.39) 19.2 038 67 | 733
16 4800 44 103(0.67) | 337 29 206 | 427 | 77050 | 370 0.6 52 | sm1
16 9600 44 137(0.90) | S02 22 156 | 321 | 1110073 | 563 05 36 | 396
32 0 44 60 (0.39) 0.0 5.0 216 | 733 | 44(029) 0.0 0.0 00 | 1000
32 300 44 63 (0.41) 44 48 210 | 698 | 44(029) 0.0 0.0 00 | 1000
32 600 44 65 (0.42) 73 46 204 | 617 | 45(029) 0.0 06 17 | 978
32 1200 44 69 (0.45) 127 44 193 | 638 | 49(032) 5.1 1.0 4.1 89.8
32 2400 44 78(0.51) | 2238 3.9 170 | 564 | 58(0.38) 19.8 09, 34 | 759
32 4800 44 95(0.62) | 366 32 140 | 463 | 75(049) | 380 0.7 26 | 587
32 9600 44 129(0.84) | 533 23 103 | 341 | 109(071) | 57.3 0.5 1.8 | 404
64 0 44 56 (0.37) 0.0 5.4 161 | 786 | 44(0.29) 0.0 0.0 0.0 | 1000
64 300 44 59 (0.39) 47 5.1 157 | 746 | 44(029) 0.0 0.0 0.0 | 1000
64 600 44 61 (0.40) 78 49 152 | 721 | 44(029) 0.0 0.0 00 | 1000
64 1200 44 65 (0.42) 135 46 143 | 677 | 48(031) 52 1.0 21 | 917
64 2400 44 74(048) | 240 4.1 125 | 595 | 57031 | 202 0.9 17 | 72
64 4800 44 91(0.59) | 382 33 102 | 484 | 74(048) | 385 0.7 13 | 595
64 9600 44 125(0.82) | 550 24 74 | 352 | 108071 | 579 05 09 | 407

Appendix B 166

B.3.4. Intel Floating-point Performance — Non-Concurrent Model

Table B-19. Simulation Results for Intel Running DP COMP Non-parallel
Bus Width | Cache Time | Tot FPU Sequential Execution Parailel Execution

To FPU per Miss Cycles Tot Prog % Cache | %loop | %FP | %FP Tot Prog % Cache | %Loop | %FP | % FP
(bits) (nsec) Cycles OvHd | OvHd | OvHd | ©Op Cycles OvHd | OvHd | OvHd | ©Op
8 0 2388 | 5224 (0.96) 0.0 5.7 436 | 457 | 5224(0.96) 0.0 5.7 486 | 457
8 300 2388 | 5230 (0.97) 0.1 57 486 | 457 | 5230(0.97) 0.1 57 486 | 457
8 600 2388 | 5236 (0.97) 02 5.1 485 | 456 | 5236 (0.97) 0.2 5.7 485 | 45.6
8 1200 2388 | 5248 (0.97) 05 56 484 | 455 | 5248 (097 0.5 56 484 | 455
8 2400 2388 | 5272097 09 56 482 | 453 | 5272(0.97) 09 5.6 482 | 453
8 4800 2388 | 5320(0.98) 18 5.6 417 | 449 | 5320(0.98) 1.8 56 417 | 449
8 9600 2388 | 5416(1.00) 36 5.5 469 | 441 | 5416(1.00) 36 5.5 469 | 441
16 0 2388 | 4456(0.82) 0.0 6.6 398 | 53.6 | 4456(0.82) 0.0 6.6 98 | 536
16 300 2388 | 4462(0.82) 0.1 6.6 397 | 53.5 | 4462(0.82) 01 66 397 | 535
16 600 2388 | 4468 (0.82) 03 6.6 397 | 534 | 4468(0.82) 0.3 6.6 9.7 | 534
16 1200 2388 | 4480 (0.83) 0.5 6.6 39.6 | 533 | 4480(0.83) 0.5 6.6 396 | 533
16 2400 2388 | 4504 (0.83) 1.1 66 393 | 53.0 | 4504 (0.83) 1.1 66 393 | 53.0
16 4800 2388 | 4552(0.84) 21 65 389 | 525 | 4552(0.84) 21 6.5 389 | 525
16 9600 2388 | 4648 (0.36) 4.1 64 381 | 514 | 4648 (0.86) 4.1 6.4 381 | 514
32 0 2388 | 4072(0.75) 0.0 73 341 | 8.6 | 4072(0.75) 0.0 73 241 | 586
32 300 2388 | 4078 (0.75) 0.1 13 340 | 586 | 4078(0.75) 0.1 73 340 | 586
32 600 2388 | 4084 (0.75) 03 73 340 | 585 | 4084(0.75) 0.3 73 340 | 585
32 1200 2388 | 4096 (0.76) 0.6 72 339 | 583 | 4096(0.76) 0.6 7.2 339 | 583
32 2400 2388 | 4120(0.76) 12 7.2 337 | S8.0 | 4120(0.76) 12 12 337 | 580
32 4300 2388 | 4168 (0.77) 23 | 11 333 | 573 | 4168 (0.7 23 7.1 333 | 573
2 9600 2388 | 4264(0.79) 45 6.9 326 | 560 | 4264(0.79) 4.5 6.9 32.6 | 56.0
64 0 2388 | 4136 (0.76) 0.0 72 351 | 517 | 4136(0.76) 0.0 72 351 | 577
64 300 2388 | 4142(0.76) 0.1 12 351 | 577 | 4142(0.76) 0.1 72 351 | 577
64 600 2388 | 4148 (0.7 0.3 11 350 | 576 | 4148(0.77) 03 7.1 350 | 576
64 1200 2388 | 4160(0.77) 06 71 349 | 574 | 416007 06 7.1 349 | 574
64 2400 2388 | 4184 (0.77) 12 7.1 347 | 571 | 4184077 1.2 7.1 47 | 571
64 4800 2388 | 4232(0.78) 23 1.0 343 | 564 | 4232(0.78) 23 7.0 343 | 564
64 9600 2388 | 4328 (0.80) 44 6.8 33.5 | 552 | 4328(0.80) 44 6.8 335 | 552

B.4. Floating-point Performance Histograms

The data contained in Table B-1 through Table B-18 are illustrated in Figure B-1 through Figure
B-9. The floating-point operation time, floating-point overhead, loop overhead, and cache-miss over-
head are shown for different size busses and all versions of all programs. The left-most histogram bar
of each figure represents the longest execution time, and all others are normalized to it. The left-most
histogram-bar of each pair shows the execution time for sequential operation (i.e., no concurrency
between the CPU and FPU) and the right-most bar shows paralle! operation for the same cache service
time and buswidth. The number above the left-most bar in each pair is the cache service time in

nanoseconds divided by 100.

Appendix B 167

B.4.1. Intel Floating-point Performance Histograms

1.00

N

5 080

R

M

M os0

L

I

2 070

E

D se0

E

X

X o0s0

c

U

T 040

1

0

N 0.30

T o2

M

E 010
0.00

FPU DATA BUS WIDTH (BITS)

1.00

0.90

0.80

0.70

0.60

0.40

0.30

0.20

mZ—- ZOo—HCcOAmXE UmMN—CP»ZxR0CZ

0.10

0.00

FPU DATA BUS WIDTH (BITS)

Figure B-1. Intel System Performance for GE Programs.

168

Appendix B

1 } 1
r v r v A4 r r * r
=] =) Q =] Q =]

g8 &8 &8 &8 & § § 8 8§ =

— S S < S o S =] =] [

ZOmS <A~ NmA mMERNUODE~0Z R—~3m

32

16

FPU DATA BUS WIDTH (BITS)

0.90 o
0.80 1
0.70 9
0.60

0.50 9
0.40 1
030 1

ZOMS <A~ NmA mXmOPDEH—~0Z

o= S

32

16

FPU DATA BUS WIDTH (BITS)

2. Intel System Performance for DP Programs

B

gure

Fi

Appendix B

mZm~ ZO—HCAOmXE UmN—C>E®0Z

mME~r ZO—~HCOmXE UON—~CPZTW0Z

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

1.00

0.50

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

DT Y ST Sy

FPU DATA BUS WIDTH (BITS)

Figure B-3.

I P OPERATION

B FP OVERHEAD

LOOP OVERHEAD

[J MISS OVERHEAD

s

16 32
FPU DATA BUS WIDTH (BITS)

Intel System Performance for PE Programs.

169

170

Appendix B

B.4.2. Motorola Floating-point Performance Histograms

12
R&

24
L]

B8 FP OVERHEAD
] MISS OVERHEAD
64
B FP OVERHEAD
[J MISs OVERHEAD

2
96
I

3

24
LI]

-0""“

3

I} P OPERATION

LOOP OVERHEAD
LOOP OVERHEAD

I FPOPERATION

FPU DATA BUS WIDTH (BITS)

6

1
T2 g

A
LA
‘

43

020 1-
0.10 -
0.00

g g 2
(=] o o

1.00

.

(=4
2 /|
(=] (=]

ZOKS<A-NDA mM}XMUDE—~O0Z H—3m ZOMS<A=NERA MYXMUODE~O0Z H—~ISm

32

16

FPU DATA BUS WIDTH (BITS)

Figure B-4. Motorola System Performance for GE Programs.

171

Appendix B

B FPOVERHEAD

32

I FP OPERATION

6

1

oF
L
3
o0
o
C]
3
-
]
A
I
v v 11 '
12 T A v L4 ¥ g v '
(=4 [~ (=}
g 8§ &8 & 8 § § &8 & & 8
— (=] o o < o o (=] o (=] o

ZOMS <A~NEA KMYXRMUDH~0Z H-3m

FPU DATA BUS WIDTH (BITS)

B FpOVERHEAD
[0 MISs OVERHEAD

I FP OPERATION
LOOP OVERHEAD

. .

r * '
§ 8 § %
(=] o (=] (=]

0.70 -

1
g
(=3
ol
S

1.00
0.90

g
S

0.50

ZOMS<A~NIA mXPMUDH—~0Z ~—3m

32

6

1

FPU DATA BUS WIDTH (BITS)

Figure B-5. Motorola System Performance for DP Programs.

172

Appendix B

B8 FpOVERHEAD

I P OPERATION

0.50 9
40

—
g 8
S o

0.80 1

1
r
=
)
=)

ZOMS €A~ NLmA MXMUODH~0Z =3}

32

16

FPU DATA BUS WIDTH (BITS)

B FPOVERHEAD
) MISS OVERHEAD

I FPOPERATION

1 v
y v
[=3 =3 =3
o] * ©
= < S

ZOHS <= NRA MYXMUDK=0Z H—~3M)

FPU DATA BUS WIDTH (BITS)

6. Motorola System Performance for PE Programs.

Figure B

Appendix B

173

B.4.3. SPUR Floating-point Performance Histograms

M=+ ZO~HCOEXE UmN-t-P>ZX0Z

mZ—~- ZO~HCOmMXE UmMN—UP>»Z®0Z

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

0.00

1.00
0.90

0.80

0.60
0.50
0.40
0.30
0.20
0.10

0.00

9
. FP OPERATION E FP OVERHEAD
961 LOOP OVERHEAD D MISS OVERHEAD
- ”_
24
i "
12
S3 hi
0 48
b .
I u
iniu ¥y 0 24.

3 : I l-lﬂ
6 12
3 _o Mrls

3 16 32 64
FPU DATA BUS WIDTH (BITS)
96
Il P OPERATION Bl FPOVERHEAD

9 LOOP OVERHEAD [0 MISS OVERHEAD

o3
k.3
%

— 96

8 16 32 &

FPU DATA BUS WIDTH (BITS)

Figure B-7. SPUR System Performance for GE Programs.

Appendix B 174

1.00 117
N Bl FPOPERATION B FPOVERHEAD
0.90 v
g A LOOP OVERHEAD [0 wmiss OVERHEAD
96
M a e
A 080 9%~
L hug
' om0
z O
5 % I
0.60 "
E 12 . M -
X oso Adirs 24
C Hﬂu 24
U 40 4 NN s i 24
T y ° 12
: 08 i
o] R - il 3 | 6 .
N 030 1 o- ;
T
1 020 - .
M
E o0 ¢ - -
0.00
3 16 32 6
FPU DATA BUS WIDTH (BITS)
1.00 -0
N I FP OPERATION B8 FPOVERHEAD
0.90 ;
o :
R % LOOP OVERHEAD 0 MISS OVERHEAD
M
A 0.80 "‘i
I{ o T % _
z 070
E
D
0.60 1 f L
;5{ 12
050 1 30K . -
E ° 48
[od 24 M T
U] LA
T 0.40 12 4
: ' I
3 24
(o] 030 1- - [12]
N 6
3 12
] 6
11. 0.20 |- : B4t - - - g nnni
M
E 10§ - -
0.00 4
3 16 32 64
FPU DATA BUS WIDTH (BITS)

Figure B-8. SPUR System Performance for DP Programs.

Appendix B

mE~H ZO=HoAmMXiE UEN-CP»RWOZ

Mg~ Zo—HCoAmMXE UmN—CP»IW0Z

1.00

0.90

0.70

0.60

0.50

0.40

0.30

0.20

0.00

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

175

W FP OPERATION
- LOOP.QVERHEAR
r ”— 9%
| i il
48 _
FPU DATA BUS WIDTH (BITS)
I FP OPERATION B8 FPOVERHEAD
LOOP OVERHEAD [0 MIsS OVERHEAD
%_ % o
8
48 _ ‘-‘ ”
m e
1 1, i
3
: : 2 I8
- S eeeaenan A Alone 12
: & & A 0 3 o 6 3 []

Figure B-9.

16 32 64
FPU DATA BUS WIDTH (BITS)

SPUR System Performance for PE Programs.

Appendix B 176

B.5. Floating-point Instruction Times for Commercial Coprocessors

Included below are the instruction times for the Intel 18087 and 180287 Numeric Data Processors
and the Motorola MC68881 Floating-point Coprocessor. These have been taken from [Inte85a,
Inte85b, Moto85] and are expressed as clock ticks — the number of clock cycles to complete an opera-
tion. In some cases, the data books specify clock counts, which are multiple-clock-tick events. To
determine the execution time, simply multiply the number of clock ticks by the assumed clock cycle
period.

B.6. Intel i8087 or i80287 Floating-point Instruction Times

Table B-21. Intel i8087 and i82087 Instruction Times
Floating-point Clock Cycles
Operation Reg-Reg Mem-Reg-Sgl | Mem-Reg-Dbl | Mem-Reg-Ext
FLD 34-44 76-112 80-120 106-130
FST 30-44 168-180 192-208 -
FADD/FSUB 140-200 180-240 190-250 -
FMUL 180-290 220-250 224-336 -
FDIV 386-406 430-450 440-460 -
FSIN/FCOS - - - -
FSINCOS - - - -
FPTAN 60-1080 - - -
FSQT 360-372 - - -
FASIN - - - -
FACOS - - - -
FPATAN 500-1600 - - -
Assumptions for Intel FPU’s:

1. 8 MHz, 10 MHz, and 12 MHz parts are available from Intel. Faster equivalent parts are avail-
able from second source vendors.

2. The above numbers do not account for effective address calculation time for memory-held
operands, which varies between five and 12 clock-ticks. On average, eight is a reasonable estimate.
3. The above numbers do not account for bus cycles needed to fetch memory-held operands. Each
operation which uses operands from memory consumes between two and six bus cycles. Each bus
cycle costs four clock-ticks. Thus, each memory reference could consume between four and 24
clock-ticks. These times and amounts are given in the data book for each instruction and vary
according to the alignment of words in memory. Odd-address aligned data requires typically two
more bus cycles than even-address aligned data, or eight clock ticks.

4. The compiler generally inserts a "CPU WAIT" instruction in front of every FPU instruction.
This costs (3 + 5n) clock-ticks, where n = number of times the cpu examines the TEST line before
the 18087 lowers BUSY. The above numbers DO account for the average WAIT encountered (5/2
clock-ticks according to the Intel databook).

5. The above times assume all FPU instruction fetching is overlapped with CPU operations, so that
no fetch-cost is accounted for in the above times.

Appendix B

6. The above numbers account for the average amount of time used for local bus arbitration, execu-
tion of the ESC instruction, and average WAIT (as mentioned before)..

7. The low end of the clock-cycle range for the i8087 can be as much as 80 clock cycles slower
than the 180287 for FMUL reg-reg and double precision mem-reg operations.

B.7. Motorola MC68881 Floating-point Instruction Times

Table B-22, Motorola MC68881 Instruction Times
Floating-point Clock Cycles
Operation Reg-Reg Mem-Reg-Sgl | Mem-Reg-Dbl | Mem-Reg-Ext
FMOVE(in) 33 52 58 56
FADD/FSUB 51 72 78 76
FSGLDIV 69 90 96 94
FSGLMUL 59 80 86 84
FDIV 103 124 130 128
FMUL 71 92 98 96
FSIN/FCOS 581 410 416 414
FSINCOS 451 470 476 474
FTAN 473 492 498 496
FASIN 581 600 606 604
FACOS 625 644 650 648
FATAN 403 422 428 426

Assumptions for Motorola FPU:

1. 12 MHz, 16 MHz, 20 MHz, and 25 MHz parts are available.

2. The above numbers do not account for effective address calculation time for memory-held
operands, which varies between zero and 24 clock-ticks.

3. The above numbers do not account for bus cycles needed to fetch memory-held operands. Each
operation which uses operands from memory consumes between two and four bus cycles. Each bus
cycle costs a minimum of four clock-ticks. Thus, each memory reference could consume between
eight and 16 clock-ticks. These times and amounts are given in the data book for each instruction
and vary according to the alignment of words in memory. Odd-address aligned data typically
requires more bus cycles than even-address aligned data.

4. The above times assume all FPU instruction fetching is overlapped with CPU operations, so that
no fetch-cost is accounted for in the above times.

5. The above numbers account for the average amount of time used for local bus arbitration and
execution of the read response register operation.

177

178

Path Optimization

Simulation Results

This appendix contains the simulation results for various scan-based élgoﬂthms described in
Chapter 5. Ten maps were solved for each of six TCM sizes and all algorithms. Each table entry lists
the algorithm number, the size of the TCM array, the lowest, highest, mean, median, and mode number
of cell checks, standard deviation, and coefficient of variation for the number of cell checks for the 10
maps. The manual pages for both the scan-based simulator scan and Dijkstra’s Algorithm dij are

included in Section C.2 and Section C.3.

C.1. Scan-based Algorithm Simulation Resuits

Table C-1 and Table C-2 report results for 4-way tests with the goal point at [1,3] and [C,C]
respectively. Table C-3 and Table C-4 report results for 8-way tests with the goal point at [1,3] and

[C,C] respectively.

Appendix C

C.1.1. Four-way Cell Check with Goal at TCM[1,3]

Table C-1. Cell Checks: 4-Way Test, Goal at [1,3], Grouped by Algorithm, 10 Maps

Alg Size Low High Mean Median Mode Std Dev Coeff Var
2 008 144 252 172.8 144 144 40.9 23.65
2 016 980 1568 1391.6 1372 1568 215.7 15.50
2 064 61504 99944 84952.4 84568 84568 11944.6 14.06
2 128 428652 857304 666792.0 682668 698544 114483.4 17.17
2 256 4903216 5741924 5251602.5 5290312 5290312 234006.3 4.46
2 512 34853400 46297800 423182720 41616000 41355900 3209186.5 7.58
3 008 72 132 114.0 132 132 29.0 25.42
3 016 756 1134 831.6 756 756 159.4 19.2
3 032 1800 5280 3540.0 3540 3540 820.2 23.17
3 064 15252 53072 25841.6 22816 15252 12954.9 50.13
3 128 63252 346752 214452.0 220752 346752 1037324 48.37
3 256 900176 1928368 1542796.0 1671320 1671320 277643.1 18.00
3 512 10903800 17133960 13395864.0 12980520 11942160 2030042.3 15.15
4 008 144 252 172.8 144 144 40.9 23.65
4 016 1176 1568 1411.2 1372 1568 180.1 12.76
4 032 9000 15300 11070.0 10800 9000 2036.9 18.40
4 064 69192 103788 86105.6 84568 84568 12316.8 14.30
4 128 603288 825552 684255.6 666792 666792 69986.6 10.23
4 256 4774184 5677408 5116119.0 5032248 5032248 296510.0 5.80
4 512 35633700 43176600 40575604.0 40835700 41095800 2300356.0 5.67
5 008 126 186 132.0 126 126 19.0 14.37
5 016 742 2380 14154 1106 1106 569.4 40.23
S 032 5250 24390 16212.0 17430 20910 6408.9 39.53
5 064 121086 162688 138105.0 136214 121086 17216.3 12.47
5 128 1039626 1590876 1263276.0 1260126 1260126 194576.0 15.40
5 256 8225790 11952986 10577778.0 10539222 11952986 11873434 11.22
5 512 69570632 91376192 81771360.0 79954232 91376192 6945050.5 8.49
6 008 144 216 176.4 144 144 35.8 20.29
6 016 980 2156 1568.0 1568 1764 357.9 22.82
6 032 8100 18900 12690.0 10800 10800 3781.7 29.80
6 064 73036 115320 88027.6 84568 92256 13248.0 15.05
6 128 460404 714420 6255144 635040 635040 73022.0 11.67
6 256 4129024 5200312 4787087.0 4774184 5032248 332882.2 6.95
6 512 30951900 42136200 35451632.0 34593300 39015000 3643540.3 10.28
7 008 108 216 151.2 144 108 44.3 29.27
7 016 1176 1568 1332.8 1372 1372 124.0 9.30
7 032 9000 16200 11250.0 10800 9000 23334 20.74
7 064 65348 111476 87643.2 88412 88412 14920.8 17.02
7 128 587412 746172 662029.2 635040 746172 58476.0 8.83
7 256 4338700 5483860 5161280.0 5096764 5006764 194733.1 3.77
7 512 36414000 44477100 41459936.0 41616000 41616000 2403388.8 5.80
8 008 108 216 154.8 144 108 41.7 26.97
3 016 784 2156 1489.6 1372 1372 394.2 26.46
3 032 8100 19800 12510.0 11700 16200 3944.7 31.53
8 064 65348 115320 86490.0 84568 92256 14970.2 17.31
8 128 460404 682668 614401.2 619164 619164 65693.4 10.69
8 256 4129024 5096764 4729023.0 4774184 4774184 294945.5 6.24
8 512 31212000 42136200 35087492.0 33032700 32252400 3414353.0 9.73
9 008 140 245 196.0 175 175 37.6 19.20
9 016 1755 3315 2301.0 1950 1950 5344 23.23
9 032 14384 25172 20766.9 20677 20677 3753.6 18.08
9 064 126819 249795 205216.2 219051 219051 42686.3 20.80
9 128 1111250 2079625 1647825.0 1730375 1730375 338567.0 20.55
9 256 9290160 14580390 12419138.0 11677215 11677215 1979678.0 15.94
9 512 102479008 137072176 120894016.0 123286928 113663264 12661642.0 1047

179

b

Appendix C

C.1.2. Four-way Cell Check with Goal at TCM[C,C]

Table C-2. Cell Checks: 4-Way Test, Goal at [C,C], Grouped by Algorithm, 10 Maps
Alg | Size Low High Mean Median Mode StdDev | Coeff Var
2 | 008 144 252 172.8 144 144 40.9 23.65
2 | 016 980 1568 1391.6 1568 1568 215.7 15.50
2 | 032 9000 12600 10980.0 10800 10800 1106.3 10.08
2 | o064 61504 99944 84952.4 88412 84568 11944.6 14.06
2| 128 428652 857304 666792.0 698544 698544 1144834 17.17
2 | 256 4903216 5741924 5251602.5 5200312 5200312 234006.3 4.46
2 | 512 | 34853400 | 46207800 | 423182720 | 42656400 | 41355900 | 3209149.3 7.58
3 | 008 72 132 114.0 132 132 29.0 25.42
3 | 016 756 1134 8316 756 756 25401.6 | 159.4
3 | 032 1300 5280 3540.0 3540 3540 820.2 23.17
3 | o0& 15252 53072 25841.6 22816 15252 12954.9 50.13
3 128 63252 346752 214452.0 20752 63252 103732.3 48.37
3 | 256 900176 1928368 1542796.0 1671320 1671320 277643.1 18.00
3 | s12 10903800 | 17133960 | 13395864.0 | 12980520 | 11942160 | 2030046.0 15.15
2| o008 144 252 172.8 144 144 40.9 23.65
4 | o16 1176 1568 1411.2 1568 1568 180.1 1276
4 | 032 9000 15300 11070.0 10800 9000 2036.9 18.40
4| o064 69192 103788 86105.6 84568 84568 12316.8 14.30
4| 128 603288 825552 684255.6 666792 666792 69987.0 10.23
4| 256 4774184 5677408 5116119.0 5032248 5032248 296510.0 5.80
2 | 512 | 35633700 | 43176600 | 405756000 | 41095800 | 40575600 | 2300397.5 5.67
5 | oos 126 186 132.0 126 126 19.0 14.37
s | 016 742 2380 1415.4 1470 1106 569.4 4023
s | 032 5250 24390 16212.0 19170 17430 6408.9 39.53
5 | o064 121086 162688 138105.0 136214 121086 17216.3 12.47
5 128 1039626 1590876 1263276.0 1260126 1039626 194576.0 15.40
5 | 256 8225790 | 11952086 | 105777780 | 10667746 | 11952086 | 1187337.0 11.22
S | s12 | 69570632 | 01376192 | 81771368.0 | 81511768 | 69570632 | 6944995.5 8.49
6 | 008 144 216 1764 180 144 35.8 20.29
6 | o016 980 2156 1568.0 1568 1372 357.9 22.82
6 | 032 8100 18900 12690.0 12600 9000 3781.7 29.80
6| 064 73036 115320 88027.6 92256 92256 13248.0 15.05
6| 128 460404 714420 625514.4 635040 619164 73022.0 11.67
6 | 25 4129024 5290312 4787087.0 4838700 4129024 332879.3 6.95
6 | 512 | 30951900 | 42136200 | 35451628.0 | 35893800 | 30951900 | 36435798 10.28
7_| o008 108 216 151.2 144 108 44.3 29.27
7_| 0i6 1176 1568 13328 1372 1372 124.0 9.30
7| 032 9000 16200 11250.0 10800 9000 2334 20.74
7_| 064 65348 111476 876432 88412 88412 14920.8 17.02
7 128 587412 746172 662029.2 666792 619164 58476.0 8.83
7 | 256 4838700 5433360 5161280.0 5161280 5096764 104733.1 371
7| 512 | 36414000 | 44477100 | 414599360 | 42136200 | 41616000 | 2403388.3 5.80
8| 008 108 216 154.3 144 108 417 26.97
8 | o016 784 2156 1489.6 1372 1372 394.2 26.46
8 | 032 8100 19800 12510.0 12600 8100 3944.7 31.53
8 | 064 65348 115320 86490.0 92256 92256 14970.2 17.31
8 128 460404 682668 614401 2 619164 619164 65693.4 10.69
8 | 256 4129024 5096764 4729023.0 4774184 4774184 294945.5 6.24
8 | 512 | 31212000 | 42136200 | 350874880 | 35893800 | 32252400 | 34143983 ° 9.73
9 | 008 140 245 196.0 175 175 3.6 19.20
9 | 016 1755 3315 2301.0 2145 1950 5344 23.23
9 1 032 14384 25172 20766.9 21576 20677 3753.6 18.07
9 | 064 126819 249795 2052162 219051 219051 42686.3 20.80
9 128 1111250 2079625 1647825.0 1730375 1730375 338567.7 20.55
9 | 25 9200160 | 14580390 | 124191380 | 13999755 9200160 | 1979684.0 15.94
9 | 512 | 102479008 | 137072176 | 120894016.0 | 124587424 | 102479008 | 12661642.0 10.47

180

Appendix C

C.1.3. Eight-way Cell Check with Goal at TCM[1,3]

Table C-3. Cell Checks: 8-Way Test, Goal at [1,3), Grouped by Algorithm, 10 Maps
Alg | Size Low High Mean Median Mode StdDev | Cocff Var
2| 008 144 252 162.0 144 144 35.0 21.60
2 | o6 1176 2156 1666.0 1568 1568 295.8 17.76
2| 032 9900 15300 13500.0 13500 12600 16432 12.17
2 _| o0& 96100 130696 107247.6 103788 103788 10480.3 9.77
2 128 7771924 936684 874767.6 873180 857304 45182.9 5.17
2| 256 6645148 8064500 7148373.0 7032244 7354824 | 400946.1 5.61
2 | 512 | 50459400 | 60343200 | 552452360 | 55401300 | 56181600 | 2656009.8 481
3 008 192 372 240.0 192 192 620 | 2582
3 016 1848 3668 2685.2 2576 2576 486.9 18.13
3 032 17460 29640 24768.0 24420 24420 3460.6 13.97
3 064 181660 257300 203595.6 189224 189224 24038.7 11.81
3 128 1480752 1795752 1647702.0 1638252 1638252 86650.3 5.26
3 256 | 11953240 | 15808960 | 139068050 | 13881100 | 14266672 | 1002516.9 721
3 S12 | 99683584 | 118893240 | 1076789520 | 107990464 | 107990464 | 54518355 5.06
4 | o008 108 252 1584 144 144 387 2%.43
4_| 016 1176 2156 1803.2 1764 1960 303.6 16.84
4 | o032 13500 18000 15570.0 15300 14400 15326 9.84
4| o064 111476 157604 1310804 126852 126852 14882.2 11.35
4 128 952560 1190700 1085918.4 1079568 1063692 80327.0 7.40
4 | 256 | 7677404 | 10258044 8535466.0 8258048 9225788 | 763400.8 8.94
4 | 512 | 65545200 | 73348200 | 60654784.0 | 70487104 | 70487104 | 2315997.0 332
5 008 126 186 141.0 126 126 21.2 15.04
5 016 1470 2380 1925.0 1834 1834 300.3 15.60
5 032 13080 21780 18300.0 18300 20040 2151.2 15.03
5 064 132432 177816 152476.6 147560 162688 15649.5 10.26
s 128 1134126 1291626 1231776.0 1244376 1244376 43165.9 3.50
5 256 9189720 | 10474960 9748800.0 9703816 9768078 | 3584919 368
s S12_| 72166528 | 81771360 | 770727840 | 76319968 | 79954232 | 3376726.3 4.38
6_ | 008 108 216 154.8 144 144 4.1 2.06
6 | o016 1372 2352 1822.8 1960 1960 292.9 16.07
6| 032 12600 20700 16920.0 16200 19800 2642.7 15.62
6| o4 126852 169136 147994.0 142228 126852 166327 11.24
6 128 984312 1238328 11176704 1111320 1111320 81022.1 725
6 | 256 8387080 | 10387076 9122562.0 8903208 8838692 | 5650580 6.19
S | 512 | 67105800 | 73868400 | 706171440 | 70747200 | 71007296 | 2152824.0 3.05
7| o008 144 216 165.6 144 144 4.8 21.00
7_| 016 1568 2352 1803.2 1568 1568 303.6 16.84
7 032 9900 17100 13500.0 13500 9900 2545.6 18.86
7 064 88412 134540 103403.6 96100 115320 14320.0 13.85
7 128 650916 920308 T74748.8 746172 793800 86244.9 11.13
7 256 5161280 6903212 5858053.0 5677408 5225796 | 609628.9 1041
7 512_| 39535200 | 46297800 | 435927600 | 44217000 | 45777600 | 2785687.0 6.39
8 008 108 252 1764 180 180 43.1 24.43
8 016 1568 2548 1940.4 1764 1568 374.7 19.31
8 032 11700 17100 14580.0 14400 15300 1839.6 12.62
8 | oes 103788 138384 118779.6 119164 123008 9319.4 7.85
8 128 746172 1047816 920808.0 904932 963436 86957.0 9.44
8 256 6387084 8580628 7174179.0 6709664 6700664 | 7221413 10.07
8 512 | 47338200 | 62944200 | SG8B38720 | 57742200 | 54360900 | 4289747.0 7.54
9 008 105 210 1435 140 140 385 26.84
9 016 975 2145 1540.5 1755 1755 394.8 25.63
9 032 8990 18879 13305.2 12586 15283 3249.7 %42
9 064 76860 119133 99918.0 103761 107604 15157.0 15.17
9 128 682625 1031875 860425.0 857250 952500 | 1201571 13.96
9 256 5935380 8709525 7225680.0 7032135 6580530 | 8328883 11.53
9 S12 | 43956732 | 64764652 | 563114360 | 56961680 | 58262176 | S688224.5 10.10

181

-

Appendix C

C.1.4. Eight-way Cell Check with Goal at TCM[C,C]

Table C-3. Cell Checks: 8-Way Test, Goal at [C,C], Grouped by Algorithm, 10 Maps
Alg Size Low High Mean Median Mode SdDev | Coeff Var
2 008 144 216 130.0 180 180 17.0 943
2 016 1372 2156 1705.2 1568 1568 262.1 15.37
2 032 10800 18900 14400.0 15300 11700 25100 17.43
2 064 99944 142228 116088.8 115320 111476 134143 11.56
2 128 793800 920808 881118.0 889036 889056 411626 4.67
2 256 6258052 7161276 6670954.5 6774180 6903212 290440.8 435
2 S12_| 10000000 | 56181600 | 3524101480 | 52540200 | 51239700 | 16689463 318
3 008 252 312 300.0 312 312 253 8.43
3 016 1848 2940 2430.4 2576 2576 3069 12.63
3 032 17460 20940 19548.0 19200 19200 13725 7.02
3 064 128712 174096 149134.8 143840 143340 16359.5 1097
3 128 882252 1197252 1052352.0 1197252 1102752 105209.9 10.00
3 256 7197852 8740140 7801915.0 7840472 7583424 4772483 612
3 512 | 10000000 | 61264260 | 574223280 | 57110820 | 57110820 | 18670029 3.25
4 008 144 216 1872 180 180 2238 1216
4 016 1176 2156 1587.6 1568 1372 284.0 17.89
4 032 9900 16200 12960.0 13500 12600 1654.1 1276
4 064 96100 126852 1072476 96100 111476 10480.3 9.77
4 128 714420 825552 766810.8 762048 762048 35930.7 4.69
4 256 5032248 6322568 5735472.5 5806440 5806440 3513308 6.13
4 512_| 10000000 | 46037700 | 445811440 | 44737200 | 43696800 902585.1 202
5 008 156 186 171.0 186 156 15.8 9.25
5 016 1470 1834 1597.4 1652 1652 1228 7.69
5 032 10470 14820 12993.0 13080 13080 11922 9.18
s 064 94612 109740 1017978 109740 105958 51826 5.09
5 128 677376 882126 748251.0 756126 756126 58579.1 783
5 256 5076952 6169406 5507507.0 5462524 5076952 3428015 622
5 512 | 10000000 | 44390400 | 42780944.0 | 43611632 | 44390400 | 1589899.1 372
6 008 144 216 180.0 180 180 17.0 9.43
6 016 1372 1764 1470.0 1372 1372 1386 9.43
3 032 10800 15300 12960.0 13500 11700 1481.9 11.43
6 064 80724 103788 94178.0 92256 92256 7526.1 7.99
3 128 603288 711924 689018.4 682663 666792 480383 697
3 256 4774184 5935472 5154828.5 5032248 4838700 3328313 7.43
6 512_| 10000000 | 44737200 | 38572832.0 | 38494800 | 36934200 | 2380815.8 617
7 008 144 216 194.4 216 216 252 12.95
7 016 1176 852 17052 1764 1568 307.1 18.01
7 032 11700 15300 13680.0 13500 13500 1394.3 10.19
7 064 88412 103788 99944.0 96100 103788 47942 430
7 128 587412 809676 7207704 714420 714420 66603.6 9.24
7 256 5032248 5999988 5522569.5 5612892 5741924 2920333 5.29
7 512 | 10000000 | 46297800 | 434106920 | 43436700 | 43176600 | 16652536 384
8 008 144 216 190.8 180 180 24.3 1273
8 016 1176 1960 1607.2 1568 1568 2024 12.60
8 032 11700 15300 12870.0 13500 11700 1203.7 9.35
8 064 80724 115320 93793.6 92256 92256 9450.6 10.08
8 128 555660 666192 606463.2 635040 555660 517425 853
8 256 3870960 4709668 4232249.5 4193540 4193540 247451.8 5.85
8 512 | 10000000 | 38754900 | 33891032.0 | 34073100 | 28871100 | 2580830.0 7.62
9 008 105 175 140.0 140 140 286 2041
9 016 975 1560 1287.0 1365 1170 209.6 16.29
9 032 8990 9889 9529.4 9889 9889 4642 487
9 064 61488 92232 79550.1 80703 80703 8884.3 11.17
9 128 460375 587375 546100.0 571500 539750 418009 7.65
9 256 3354780 4580565 39225115 3999930 3999930 398631.1 10.16

K 512 | 10000000 | 34593168 | 321742460 | 33032572 | 34333068 | 2230878.3 6.93

182

Appendix C 183

C.2. Scan-based Path Optimization Simulator Manual Page

SCAN(ILOCAL) USER COMMANDS SCAN(LOCAL)

NAME
scan — simulator for scan-based path optimization algorithms

SYNOPSIS
scan [options]

DESCRIPTION
Scan is a C-language simulator designed to explore various algorithms and techniques used in a
dynamic programming implementation of path planning optimization. The program allows a large
number of user specified parameters for input variables, diagnostic functions, and output informa-
tion. Scan can either generate its own DCM data, as specified by a command line option, or read
DCM data sets. It reads files as specified and either writes to standard output or files named in the
command line. The following command-line options are understood:

-aN Select algorithm N for the simulation run. See header file scan.h for a complete list.

-b N Specify the beginning map number N. This allows a simulation which terminates after run-
ning several maps to be re-run at a later time generating the same output as would have been
created had the program continued initially.

¢ A debugging feature for the Algorithm No. 9, showing the addresses considered during the
* scan’ing processing.

-d Enable debug. As a result, many parameters and a lot of information about the program as it
runs will be printed to standard out.

-e N Specify the ending map number N(see -b above).

-g outTem
Write TCM array in gremlin format to file outTcm.

-iinFile
Read in DCM data sets from file inFile, data rather than create it using the random number
generator. If the user selects this option, the concatenated DCM’s (in the order NE, NE, N,
NE, E, SE, S, SW, W) must be in one single file, name following the option switch.

-k
Change some elements in the TCM after the solution has been found. This allows the user to

determine if the algorithm operates correctly in finding the TCM solution following a single
pass with no exchanges.

-1N N is the number of nochange sweeps (a macro-sweep) that occur before the algorithm ter-
minates because of convergence.

-m N N is the maximum DCM value, within the range [1 .. 255].

-0 tcmFile
Write the TCM array into tcmFile.

Appendix C

SCAN(LOCAL) USER COMMANDS SCAN(LOCAL)

-nN N specify a template which will be used to determine which of the eight neighbor cells will be con-
sidered in determining the minimum cost cell for the center. The template is represented by three
numbers. The first number is the decimal equivalent of the binary number derived by writing in
order 1’s for each of the cells which will be considered for the minimization function. For exam-
ple, if the NW, N, and NE cells are all to be considered, the decimal equivalent number of 7 would
be the first digit of the template value. If the W and the E cells are to be considered, the next
decimal number in the template would be 5, and if the SW, S, and SE cells are to be considered, the
last number in the template would again be 7.

-p demfFile
Write the DCM arrays into demFile.

-q updateMap
For algorithm debugging purposes. A map representing the cells of the TCM will be written
to updateMap each sweep. A 1 in updateMap represents a cell where an update was made
this sweep; a 0 represents a cell in which there was no update.

-r N N s the seed supplied to the random number generator routine.

-s inGoalPoints
Open and read the file inGoalPoints, which should be pairs of [row][column] coordinates
that are the goal points to use in solving the TCM. Besides reading the goal coordinates, the
DCM’s will also be read.

-v
Print a map of the same dimensionality as the TCM indicating the order in which cells have
been checked. For most scan-based algorithms, this has no particular utility. For some algo-
rithms, this is useful in debugging.

-w swlUpdateFile
Write the number of updates performed during a given sweep of the algorithm to file swUp-
dateFile. The numbers in the file which are written are: (1) sweep number, followed by (2)
the number of exchanges during that sweep.

-x N N is the goal point row number, in the range [0 .. N-1].
-y N N is the goal point column number, in the range [0 .. N-1].

-zN N is the size of the TCM. The smallest map is a 4-by-4 array of elements, and the largest
map is an array of size 512-by-512 elements. Larger maps take a considerable amount of

time to solve.
-h
The help option. Lists the command line options and their parameters.
FILES
/usr/name/scan/scan.h header file containing definitions
fusr/name/scan/*.c source files (approx. 3150 lines)
SEE ALSO

gremlin(LOCAL), ditroff(1)

AUTHOR
Paul M. Hansen

184

Appendix C 185

CJ3. Dijkstra’s Algorithm Path Optimization Simulator Manual Page

DIJ(LOCAL) USER COMMANDS DIJLOCAL)

NAME
dij — simulator for Dijkstra’s Shortest Path Algorithm

SYNOPSIS
dij [options]

DESCRIPTION
Dij is a C-language implementation of Dijkstra’s Shortest Path Algorithm applied to path planning
optimization. The program allows a large number of user specified parameters for input variables,
diagnostic functions, and output information. Dij can either generate its own DCM data, as
specified by a command line option, or read DCM data sets. It reads files as specified and either
writes to standard output or files named in the command line. The following command-line options
are understood:

-b N Specify the beginning map number N. This allows a simulation which terminates after run-
ning several maps to be re-run at a later time generating the same output as would have been
created had the program continued initially.

~-c inTcmFile
Read in TCM map from file inTcmFile. Useful when planning a path through a previously
solved TCM.

-d Enable debug. As a result, many parameters and a lot of information about the program as it
runs will be printed on standard out.

-e N Specify the ending map number N(see -b above).

-f Simulate using a four-near-neighbor test. Otherwise, do 8-way tests.

-g pathFile
Write a gremlin-format file pathFile that plots the path from start to goal point.

-i inFile
Read in DCM data sets from file inFile, data rather than create it using the random number
generator. If the user selects this option, the concatenated DCM’s (in the order NE, NE, N,
NE, E, SE, S, SW, W) must be in one single file, name following the option switch.

-m N N is the maximum DCM value, within the range [1 .. 255].

-n Find and print the maximum value of TCM array.

-0 tcmFile
Write the TCM array into tcmFile.

-p Print the path on standard out using line printer format.

-q dcmFile
Write the DCM arrays into demfFile.

Appendix C
DIJ(LOCAL) USER COMMANDS DIJ(LOCAL)
-r N N is the seed supplied to the random number generator routine.

-s inStartPoints

-zN

-h

FILES

Open and read the files inStartPoints and inGoalPoints, which should be pairs of
[row][column] coordinates that are the start and goal points to use in solving the TCM.
Besides reading the start/goal coordinates, the DCM’s will also be read.

Print the TCM on standard out.

If N is 1, start an interactive session; otherwise, this is a batch simulation run.
N is the goal point row number, in the range [0 .. N-1].
N is the goal point column number, in the range [0 .. N-1].

N is the size of the TCM. The smallest map is a 4-by-4 array of elements, and the largest
map is an array of size 512-by-512 elements. Larger maps take a considerable amount of
time to solve.

The help option. Lists the command line options and their parameters.

Jusr/name/dij/dij.h header file containing definitions
fusr/name/dij/*.c source files (approx. 2700 lines)

SEE ALSO

gremlin(LOCAL), ditroff(1)

AUTHOR

Paul M. Hansen

186

<This page is intentionally blank.>

187

D

Digital Signal Processing Chips
with Floating-point Arithmetic

This appendix contains a list of several manufactures who already or soon will offer DSP chips

that support floating-point arithmetic. The second section illustrates a block diagram of the AT&T

DSP32 architecture, one of the most popular commercial DSP chips supporting floating-point opera-

tions.

Appendix D 188
D.1. Commercial DSP Chips with Floating-point Arithmetic

This table lists several parameters for each of six DSP chips that are now or will soon be offered
commercially [Wils88]. An entry marked ‘‘na’” is used for information that was not available at the

time of this writing, does not necessarily imply that the given device does not support or include that

parameter.
Table D-1. Commercial Digital Signal Processing Chips Supporting Floating-point Arithmetic
Manufacturer
Parameter
AT&T AT&T Fujitsu Moto NEC TI
Name DSP32 DSP32C MB86232 96002 uPD77230 320C30
Year avail 1/85 89 12/88 6/89 86 87
Technology NMOS CMOS CMOS HCMOS CMOS CMOS
Line width 1.5u a5u L5u 12u L5p 10u
Cycle time 250 nsec 80 nsec 75 nsec 75 nsec 150 nsec 60 nsec
FP Data 32-bit 32-bit 24-bit 32-bit 32-bit 32-bit
Addr bits 16 24 24 24 32 24
1024 pt. FFT 6.7 msec 2.2 msec 2.2 msec 2.0 msec 4.7 msec 1.67 msec
Peak MIPS 4.0 12.5 12.5 13.3 6.7 16.7
Peak MFLOPS 8 25 na 40 na 33
RAM 2@512x32 | 2@1Kx32 na na 2@512x32 | 1@2Kx32
ROM 1@512x32 | 1@4Kx32 na na]‘1%12%3322 1@4Kx32

This table lists several commercial digital signal processing chips that provide floating-point arith-
metic. The processing rates reflect the current state of the art in VLSI and specialized architectures.

D.2. The AT&T DSP32 Digital Signal Processing Chip Architecture

AT&T was the first commercial manufacturer to offer a 32-bit floating-point DSP chip. Used
internally at AT&T since 1985, it is still one of the few devices in volume production. ;I‘he DSP32 has
one parallel port, two serial ports, a 64-Kbyte program/address space, byte addressability, concurrent
DMA, and the memory is not partitioned — it can be used for either data or instructions [Brod85]. The
next generation DSP32C will have an 80-nanosecond cycle time, increased addressing capability (24-bit
addresses), be able handle interrupts more efficiently, and will allow flexibility in interfacing to dif-

ferent speed memories.

Appendix D
B ADDRESS BUS (16)
u
F
z,
PO cau ALU
PAR (16)
PDR (16) ROM RAM RAM
_ N PIR (16) PC(16)
i PCR (8) S12X32 512X32 s12X32 r1-rl4
EMR (10) r15-r19
ESR (16) PIN, POUT
B
U ¥
F DATA BUS (32)
SI0 DAU
IBUF (32)
ISR FP
MULTTPLIER
OBUF (32) T]
R ¢ 3 A;;R
AND

< CONTROL
R ‘ DAUC

Figure D-1. Block Diagram of the AT&T DSP32 Architecture.

This figure shows a simplified block diagram of the AT&T DPS32 digital signal processing chip.
The system allows concurrent operation between the integer instruction unit and the data arithmetic
unit (DAU).

189

<This page is intentionally blank.>

[ASPLS2]

[ASPL87]

[Aho76]

[Amda67]

[Ande67]

[Ande87]

[Andr88]

[Anon85]
[Amo83]

[Asai86]
[(Baas78]

[Bacc84]

[Batag2]

[Bell78]

[Belig4]

(Bell86]
[Bell58]

[Bell65]

' [Bim85]

190

References

ASPLOS-I, Conference Proceedings, Symposium on Architectural Support for
Programming Languages and Operating Systems, Palo Alto, CA, March 1-3 1982.
ASPLOS-II, Conference Proceedings, Second International Conference on Architectural
Support for Programming Languages and Operating Systems, Palo Alto, CA, October 5-8,
1987.

A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Massachusetts, 1976.

G. M. Amdahl, Validity of the Single-processor Approach to Achieving Large Scale
Computing Capabilities, AFIPS Conference Proceedings, Vol. 30, April 18-20, 1967, pp.
483-485, AFIPS Press, Reston, VA,

D. W. Anderson, F. J. Sparacio and F. M. Tomasulo, The IBM System/360 Model 91:
Machine Philosophy and Instruction-Handling, /BM Journal, Vol. 11, January 1967, pp. 8-
24,

D. V. Anderson, A. E. Koniges and A. A. Mirin, Multiprocessing Algorithms for the Cray-
2, Institutional Research and Development, Report UCRL-53689-87, Lawrence Livermore
National Laboratory, Livermore, CA, 1987.

W. Andrews, DSP Applications Ride the Wave of Floating-point Processing, Computer
Design, Vol. 27, No. 16, September 1, 1988, pp. 50-61.

Anonymous, Database Sorter, Datamation, May 1, 1985, pp. 150.

R. D. Amold, Automated Stereo Perception, STAN-CS-83-961, Department of Computer
Science, Stanford, CA, March 1983.

S. Asai, Semiconductor Memory Trends, Proceedings of the IEEE, Vol. 74, No. 12,
December 1986, pp. 1623-1635.

S. Baase, Computer Algorithms: Introduction to Design and Analysis, Addison-Wesley,
1978.

G. Baccarani, M. R. Wordeman and R. H. Dennard, Generalized Scaling Theory and Its
Application to a 1/4 Micrometer MOSFET DESIGN, IEEE Transactions on Electron
Devices, Vol. ED-31, No. 4, 1984, pp. 452-462.

J. Batali and et al., The Scheme-81 Architecture — System and Chip, Proceedings of the
Conference on Advanced Research in VLSI, 1982, pp. 69-77.

C. G. Bell, J. C. Mudge and J. E. McNamara, The PDP-8 and Other 12-Bit Computers in
Computer Engineering - A DEC View of Hardware Systems ~Design, Bedford,
Massachusetts, September 1978, pp. 175-208.

C. G. Bell, The Mini and Micro Industries, Computer, Vol. 17, No. 10, October 1984, pp.
14-30.

C. G. Bell, Personal Letter, May 10, 1986.

R. E. Bellman, On a Routing Problem, Quarterly of Applied Mathematics, No. 16, 1958,
pp. 87-90.

R. Bellman and R. Kalaba, Dynamic Programming and Modern Control Theory, Academic
Press, New York, 1965.

J. S. Bimbaum and W. S. Worley, Jr., Beyond RISC: High-Precision Architecture,
Hewlett-Packard Journal, Vol. 36, No. 8, August 1985, pp. 4-10.

[Bizj86]
(Blaa64]

[Bori88]

[Borr85]

[Borr87]

[Bose85]

[Bose88a]

[Bose88b]

[Bose88c]

[Boss87]

[Brad85]

[Brig74]
[Brig88]

[Brod85]
(Brow72]

{Buch87]

(Burg84]

[Care85]

191

C. Bizjak, Unpublished data from personal communication, Sun Microsystems, June 1986.
Reports experience with the Sun Microsystems bitblt chip.

G. A. Blaauw and F. P. Brooks, The Structure of SYSTEM/360, IBM Systems Journal, Vol.
3, No. 2, 1964, pp. 119-135.

G. Boriello, A New Interface Specification Methodology and its Application to Transducer
Synthesis, Computer Science Division (EECS) Report No. UCB/CSD 88/430, University
of California, Berkeley, CA, May 26, 1988. Ph.D. Dissertation.

G. Borriello, R. Katz, A. Bell and L. Conway, VLSI Design ‘By The Numbers’, IEEE
Spectrum, Vol. 22, No. 2, February 1985.

G. Borriello, A. Cherenson, P. Danzig and M. Nelson, RISCs or CISCs for Prolog: A Case
Study, Second International Conference on Architectural Support for Programming
Languages and Operating Systems, Palo Alto, CA, October 5-8, 1987.

P. Bose and E. S. Davidson, Design of Instruction Set Architectures for Support of High-
level Languages, Proceedings of the 12th International Symposium on Computer
Architecture, Boston, June 1985, pp. 198-206.

B. K. Bose, P. M. Hansen, C. Lee and D. A. Patterson, Fast Scientific Computation in
CMOS VLSI Shared-Memory Multiprocessors, 1988 IEEE International Symposium on
Circuits and Systems (ISCAS’ 88), Helsinki, Finland, June 1988, pp. 811-814.

B. K. Bose, VLSI Design Techniques for Floating-Point Computation, Computer Science
Division (EECS) Report No. UCB/CSD TBD, University of California, Berkeley, CA,
December 1988. Ph.D. Dissertation.

B. K. Bose, P. M. Hansen, C. Lee and D. A. Patterson, VLSI Multiprocessor/Memory
Interactions for Scientific Computation, Accepted for publication. Journal of Parallel and
Distributed Computing, 1988.

P. W. Bosshart, C. R. Hewes, M. D. Ales, M. Chang, K. K. Chau, K. Fasham, C. C. Hoac,
T. W. Houston, V. Kalyan, S. L. Lusky, S. S. Mahant-Shetti, D. J. Matzke, K. N. Ruparel,
J. F. Sexton, C. Shaw, T. Sridhar, D. Stark and A. L. Lee, A 533K-Transistor LISP
Processor Chip, IEEE Journal of Solid State Circuits, Vol. SC-22, No. 5, October 1987, pp.
808-819.

M. J. Brady and A. Davidson, Flip-chip Bonding With Solder Dipping, The Review of
Scientific Instruments, Vol. 56, July 1985, pp. 1459-1460, American Institute of Physics.

E. O. Brigham, The Fast Fourier Transform, Prentice Hall, Englewood Cliffs, NJ, 1974.

E. O. Brigham, The Fast Fourier Transform and lIts Applications, Prentice Hall,
Englewood Cliffs, NJ, 1988.

J. R. Broddi, E. M. Fields, C. J. Garen, W. P. Hays and J. Tow, WE DSP32 Information
Manual, January 25, 1985.

D. T. Brown, R. L. Eibsen and C. A. Thom, Channel and Direct ‘Access Device
Architecture, IBM Systems Journal, Vol. 11, No. 3, 1972, pp. 186-199.

I. Y. Bucher and M. L. Simmons, A Close Look at Vector Performance of Register-to-
Register Vector Computers and a New Model, Proceedings of the 1987 ACM
SIGMETRICS Conference on Measurement and Modeling of Computer Systems, Vol. 15,
No. 1, May 11-14, 1987, pp. 39-45.

R. M. Burger, R. K. Cavin III, W. C. Holton and L. W. Sumney, The Impact of ICs on
Computer Technology, Computer, Vol. 17, No. 10, October 1984, pp. 88-95, IEEE.

M. L Carey, P. M. Hansen and C. D. Thompson, Sorting Records in VLSI in
Algorithmically Specialized Parallel Computers, L. Snyder, L. H. Jamieson, D. B. Gannon
and H. J. Siegel ed., Academic Press, Orlando, Florida, 1985, pp. 27-36. Also appeared in
Proceedings of the Purdue Workshop on Algorithmically-specialized Computer

[Caso86]
[Cass84]

[Chab85]

[Char81]
[Char86]
[Chat87]

[Chen85]

[Chen86]
[Ches88]
[Clar82]

[Clar86a]
[Clar86b]
[Cody84]
[Cohl81]
[Cole83]

[Cole85]
[Cool65]

[Corb88]
[Cray86]

[Curn76]
[Curr83]

[Denn83]

192

Organizations, West Lafayette, Indiana, October 1982.

A. Casotto, F. Romeo and A. Sangiovanni-Vincentelli, A Parallel Simulated Annealing
Algorithm for the Placement of Macro-Cells, ICCAD, 1986.

B. A. Cassel, ed., MC68020 32-Bit Microprocessor User's Manual, Prentice-Hall,
Englewood Cliffs, NJ, 1984,

D. M. Chabries, Unpublished data from personal communication, Brigham Young
University EE Department, April 1985. Experience using the CSPI MAP200 attached
Processor.

A. E. Charlesworth, An Approach to Scientific Array Processing: The Architectural Design
of the AP-120B/FPS-164 Family, Computer, Vol. 14, No. 9, September 1981, pp. 18-27.

A. E. Charlesworth and J. L. Gustafson, Introducing Replicated VLSI to Supercomputing,
IEEE Computer, Vol. 19, No. 3, March 1986, pp. 10-23.

S. Chatterjee and A. Fischer, A Coprocessor Design Environment, International Workshop
on Hardware Accelerators, Oxford, UK., October 1987.

C. Chen, S. Kong, D. Lee and T. Stetzler, Design Notes for the SPUR Processor in Proc. of
CS292i: Implementation of VLSI Systems, R. H. Katz ed., University of California,
Berkeley, CA, September 1985.

P. Y. Cheng, The Pixel Planner for the Autonomous Vehicle Test Bed (AVTB), Central
Engineering Laboratories, FMC Corporation, June 12, 1986.

G. Chesson, XTP/PE (Protocol Engine) Overview, IEEE Local Area Network Conference,
Minneapolis, MN, October 1988.

J. H. Clark, The Geometry Engine: A VLSI Geometry System for Graphics, ACM Siggraph
Conference Proceedings, Vol. 16, No. 3, July 1982, pp. 127-133.

D. W. Clark, Unpublished data from CS 298 Systems Seminar, University of California,
October 16, 1986.

W. A. Clark, Personal Letter, May 20, 1986.

W. 1. Cody, J. T. Coonen, D. M. Gay, K. Hansen, D. Hough, W. Kahan, R. Karpinski, J.

Palmer, F. N. Ris and D. Stevenson, A Proposed Radix- and Word-length-independent
Standard for Floating-point Arithmetic, /[EEE Micro, Vol. 4, No. 4, August 1984.

E. U. Cohler and J. E. Storer, Functionally Parallel Architecture for Array Processors,
Computer, Vol. 14, No. 9, September 1981, pp. 28-36.

C. T. Cole, Attaching An Array Processor In the UNIX Environment, Master’s Report,
University of California, Berkeley, CA, April 1983.

C. T. Cole, Unpublished data from personal communication, April 198S.

J. W. Cooley and J. W. Tukey, An Algorithm for the Machine Calculation of Complex
Fourier Series, Mathematics of Computation, Vol. 19, No. 90, 1965, pp. 297-301.

R. Corbett, Unpublished data from personal communication, 1988.

Cray-1 X-MP Hardware Reference Manual, Cray Research, Inc., 1986. Order No. HR-
0097.

H. J. Cumow and B. A. Wichmann, A Synthetic Benchmark, The Computer Journal, Vol.
19, No. 1, February 1976.

T. W. Curry and A. Kukhopadhyay, Realization of Efficient Non-numeric Operations
Through VLSI, VLSI '83, 1983.

J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice-Hall, 1983,

[Digi76]
[Digi81]
[Digi8s]

[Digi87]
[Dijk59]

[Ditz80]

[Ditz81]

[Dobr87]

[Dong79]
[Dong87]
[Dong88]
[Elec87]
[Elec85]
[Ewer27]
(Fagg77]
[Fand85]
[Faro83]

[Fauc86]

[Flyn72]
[Foss88]
[Fuss84]

[Geor87]

193

PDP 11/70 Processor Handbook, Digital Equipment Corporation, Maynard, MA, 1976.
VAX Hardware Handbook, Digital Equipment Corporation, Maynard, MA, 1980-81.
MicroVAX 78132 Floating-point Unit Data Sheet (Preliminary), Digital Equipment
Corporation, April 1985.

U.S. Price List, Digital Equipment Corporation, 1987.

E. W. Dijkstra, A Note on Two Problems in Connexion with Graphs, Numerishe
Mathematik, Vol. 1, 1959, pp. 269-271.

D. R. Ditzel and D. A. Patterson, Retrospective on High-Level Language Computer
Architecture, Proceedings of the 7th International Symposium on Computer Architecture,
May 1980, pp. 97-104.

D. R. Ditzel, Reflections on the High-Level Language Symbol Computer System, /EEE
Computer, Vol. 14, No. 7, July 1981, pp. 55-66.

T. Dobry, A High-Performance Architecture for Prolog, Computer Science Division
(EECS) Report No. UCB/CSD 87/352, University of California, Berkeley, CA, May 1987.
Ph.D. Dissertation.

. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart, LINPACK Users’ Guide,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1979.

J. J. Dongarra, J. L. Martin and J. Worlton, Computer Benchmarking: Paths and Pitfalls,
IEEE Spectrum, Vol. 23, No. 7, July 1987, pp. 38-43.

J. J. Dongarra, Performance of Various Computers Using Standard Linear Equations

Software in a Fortran Environment, Computer Architecture News, Vol. 16, No. 1, March
1988, pp. 47-69, ACM Press.

ATT Sells Solder-bump, Electronics, October 1987.

Motorola unveils floating-point coprocessor for 68020, Electronics Week, January 21,
1985.

H. H. Ewers, The Sorcerer’s Apprentice, also the title of a musical interpretation of Johann
Wolfgang von Goethe’s ballad, Der Zauberlehrling, by Paul Dukas, 1927.

F. Faggin, Keynote Address: Future Directions in Computer Architecture, ACM Sigarch
Workshop, Austin, Texas, 1977, pp. 612-614.

J. Fandrianto and B. Y. Woo, VLSI Floating-point Processors, /[EEE Computer Society
Press, May 1985, pp. 93-100.

R. T. Farouki, S. L. Shapiro and S. A. Teukolsky, Computational Astrophysics on the
Array Processor, Computer, Vol. 16, No. 6, June 1983, pp. 13-15.

R. Faucette, SPUR Performance Monitor Coprocessor (PMC), Computer Science Division
(EECS) University of California, Berkeley, CA, September 30, 1986. Unpublished
manuscript. :

M. J. Flynn, Some Computer Organizations and Their Effectiveness, IEEE Transactions on
Computers, Vol. C-21, No. 8, September 1972, pp. 948-960.

T. Fossum, Unpublished data from personal communication, Digital Equipment
Corporation - High Performance Systems Division, November 1988.

D. Fuss and C. G. Tull, Centralized Supercomputer Support for Magnetic Fusion Energy
Research, Proceedings of the IEEE, Vol. 72, No. 1, January 1984, pp. 32-41.

C. I. Georgiou, S. L. Palmer and P. L. Rosenfeld, An Experimental Coprocessor for
Implementing Persistent Objects on an IBM 4381, Second International Conference on
Architectural Support for Programming Languages and Operating Systems, Vol. 10, No. 2,
October 5-8, 1987, pp. 84-87, IEEE Computer Society Press.

[Gibs70]

[Gibs87]

[Goer88]

[Gust88]

[Hans83]

[Hans85]

[Hans86]

[Hans87]

[Hans88]

[Harr85]

[Hear88]
[Henn82)

[Henn85]

[Henr88]
[Hill86]

[Hil85]
[Hock81]
[Honi84]

[Inte81a]
[Inte81Db]
[Inte85a]

194

J. C. Gibson, The Gibson Mix, IBM Systems Development Division Tech. Report, June
1970.

G. Gibson, Estimating Performance of Single Bus, Shared Memory Multiprocessors,
Computer Science Division (EECS) Report No. UCB/CSD 87/355, University of

.California, Berkeley, CA, 1987.

R. Goering, Silicon Compilation Boosts Productivity in 88000 Design, Computer Design,
Vol. 27, No. 9, May 1, 1988, pp. 28.

J. L. Gustafson, Reevaluating Amdahl’s Law, Communications of the ACM, Vol. 31, No. 5,
May 1988, pp. 532-533.

P. M. Hansen, R. N. Mayo, M. Murphy, M. A. Linton and D. A. Patterson, A Performance
Evaluation of the Intel iAPX432 in Advanced Microprocessors, A. Gupta and H. D. Toong
ed., IEEE Press, June 1983. (Originally appeared as ‘‘A Performance Evaluation of the
Intel iAPX 432,”> Computer Architecture News, ACM, June 1982, pp. 17-26. Vol. 10, No.
4)).

P. M. Hansen and D. A. Patterson, A Graphical Method for Comparing Computer System
Performance Using Floating-point Benchmarks, University of California, Computer
Science Division (EECS), Berkeley, CA, November 1985. Unpublished manuscript.

P. M. Hansen and S. 1. Kong, SPUR Coprocessor Interface Description, Computer Science
Division (EECS) Report No. UCB/CSD 87/308, University of California, Berkeley, CA,
October 1986.

J. Hansen, Architecture For a High Speed Path Optimization Processor, Central
Engineering Laboratories, FMC Corporation, Santa Clara, CA, July 1987.

P. M. Hansen, Coprocessor Architectures for VLSI, Computer Science Division (EECS)
Report No. UCB/CSD 88/466, University of California, Berkeley, CA, November 1988.
Ph.D. Dissertation.

P. Harris, P. Wensley and E. Wogsberg, Unpublished data from personal communication,
Jupiter Computer Corp, April 1985.

1988 IC Master, Hearst Business Communications, Garden City, NY, 1988.

J. Hennessy, N. Jouppi, F. Baskett, T. Gross and J. Gill, Hardware/Software Tradeoffs for
Increased Performance, Symposium on Architectural Support for Programming Languages
and Operating Systems, Vol. 10, No. 2, March 1-3, 1982, pp. 2-11, IEEE SIGARCH.

J. L. Hennessy, VLSI RISC Processors, VLSI Systems Design, Vol. 6, No. 10, October
1985, pp. 22-32.

R. R. Henry, Unpublished data from personal communication, June 1988.

M. D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K. Bose, G. A. Gibson, P.
M. Hansen, J. Keller, S. L. Kong, C. G. Lee, D. Lee, J. M. Pendleton, S. A. Ritchie, D. A.
Wood, B. G. Zom, P. N. Hilfinger, D. Hodges, R. H. Katz, J. Ousterhout and D. A.
Patterson, Design Decisions in SPUR, /EEE Computer, Vol. 19, No. 11, November 1986.

W. D. Hillis, The Connection Machine, Ph.D. Dissertation, MIT Press, May 1985.
R. W. Hockney and C. R. Jesshope, Parallel Computers, Adam Hilger, Bristol, 1981.

M. L. Honig and D. G. Messerschmitt, Adaptive filters: Structures, Algorithms, and
Applications, Kluwer Academic Publishers, 1984.

in iAPX 86,88 User’s Manual, Intel Corporation, Santa Clara, CA, 1981, pp. S-3.
iAPX 86,88 User’s Manual, Intel Corporation, Santa Clara, CA, 1981.

8087 Numeric Data Coprocessor in Microsystem Components Handbook, Volume I, Intel
Corporation, Santa Clara, CA, 1985, pp. 3.175-3.197.

[Inte85b]
[Inte87]

[Joup88]

[Joy85]

[Kaha85]
[Kais67]
[Kane85]

[Karp81]

[Kate83]

[Katz85]

[Kava86]

[Kirk83]

[Knut71]
[Knut75]
[Koba84]
[Kogg81]
[Kuck78]
[Kung81]
{Latt82]

[Lawl76]

[Lee86]

195

80287 80-Bit HMOS Numeric Processor Extension in Microsystem Components
Handbook, Volume I, Intel Corporation, Santa Clara, CA, 1985, pp. 4.54-4.78.

80387 80-Bit CHMOS I1II Numeric Processor Extension, Intel Corporation, Santa Clara,
CA, January 1987.

N. Jouppi, J. Dion and D. Boggs, MultiTitan: Four Architecture Papers, DEC Westem
Research Lab Report 87/8, April 10, 1988. Paper titles: MultiTitan Central Processor Unit;
Multitan Floating-point Unit; MultiTitan Cache Control Unit; MultiTitan Intra-Processor
Bus.

W. Joy, Presentation at ISSCC ’85 Panel Session, February 1985.
W. Kahan, Unpublished data from personal communication, April 1985.
J. B. Kaiser, System Analysis by Digital Computer , John Wiley and Sons, New York, 1967.

R. Kane, Unpublished data from personal communication, Intel Applications Engineering,
April 1985.

W. J. Karplus and D. Cohen, Architectural and Software Issues in the Design and
Application of Peripheral Array Processors, Computer, Vol. 14, No. 9, September 1981, pp.
11-17.

M. G. H. Katevenis, Reduced Instruction Set Computer Architectures for VLSI, Computer
Science Division (EECS) Report No. UCB/CSD 83/141, University of Califomia,
Berkeley, CA, October 1983. Ph.D. Dissertation.

R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins and R. G. Sheldon, Implementing a
Cache Consistency Protocol, Proceedings of the 12th International Symposium on
Computer Architecture, Boston, June 1985, pp. 276-283.

R. A. Kavaler, The Design and Evaluation of a Speech Recognition System for Engineering
Workstations, Electronics Research Laboratory Memorandum No. UCB/ERL M&86/39,
University of California, Berkeley, CA, May 5, 1986. Ph.D. Dissertation.

S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by Simulated Annealing,
Science, Vol. 220, No. 4598, May 1983, pp. 671-680.

D. E. Knuth, An Empirical Study of Fortran Programs, Software Practice and Experience,
Vol. 1, 1971, pp. 105-133.

D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms (Vol 2),
Addison-Wesley, Menlo Park, California, 1975.

M. Kobayashi, Dynamic Characteristics of Loops, IEEE Transactions on Computers, Vol
C-33, No. 2, 1984,

P. M. Kogge, The Architecture of Pipelined Computers, McGraw-Hill and Hemisphere
Publishing Company, New York, NY, 1981.

D. I. Kuck, The Structure of Computers and Computations Vol. 1, John ‘Wiley & Sons,
New York, NY, 1978.

H. T. Kung and M. Foster, Recognize Regular Languages with Programmable Building-
Blocks, VLSI’81, August 1981,

W. Lattin, J. R. Rattner and J. Palmer, Private Communication, Industrial Liason Program,
University of California, Berkeley, CA, March 1982.

E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and
Winston, 1976.

C. Lee, Micro-architecture of the SPUR Floating-point Unit, University of California,
Berkeley, Computer Science Division, Unpublished Report, Berkeley, CA, March 17,
1986.

[Leun86]
[Lind86]

[Mars80]
[Mash87]

[Mayo86]
[McEw85]
[McMa86]

[Mead80]
[Melv88]
[Mess87]
[Mira83]

Mitr85]

[{Mola88]

[Moon85]

[Moto85]
{Moto87]
[Murp64]

[Myer78]
[Myer86]

[Nati84]
[Nave80]

196

B. Leung and Y. M. Lin, Statistics on Floating-point Arithmetic, CS 252 Class Project,
May 1986.

T. Linden, J. Marsh and D. L. Dove, Architecture and Early Experience with Planning for
the ALV, IEEE International Conference on Robotics and Automation, San Francisco, CA,
April 7-10, 1986.

J. P. Marsh and H. L. Steadman, United States Patent No. 4,210,962, July 1, 1980.

K. Mashiko, M. Nagatomo, K. Arimoto, Y. Matsuda, K. Furutani, T. Matsukawa, M.
Yamada, T. Yoshihara and T. Nakano, A 4-Mbit DRAM with Folded-Bit-Line Adaptive

Sidewall-Isolated Capacitor Cell, IEEE Journal of Solid-State Circuits, Vol. SC-22, No. 5,
October 1987.

R. N. Mayo, Unpublished data from personal communication, University of California,
Berkeley, Computer Science Division, June 1986. Reports experience with the Magic
VLSI layout system.

R. B. McEwen, R. E. Witmer and B. S. Ramey, USGS Digital Cartographic Data
Standards - Digital Elevation Models, Department of the Interior, United States Geological
Survey, 1985.

F. H. McMahon, The Livermore Fortran Kemnels: A Computer Test of the Numerical

Performance Range, UCRL-53745, Lawrence Livermore National Laboratory, December
1986.

C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Menlo Park,
California, 1980.

S. Melvin, Unpublished data from personal communication, University of California,
Berkeley, CS Division, November 1988.

D. G. Messerschmitt, Unpublished data from personal communication, University of
California, Berkeley, EECS Department, March 1987.

G. S. Miranker, L. Tang and C. K. Wong, A Zero Time Sorter, IBM Journal on Research
and Development, Vol. 27, No. 2, March 1983.

D. Mitra, F. Romeo and A. Sangiovanni-Vincentelli, Convergence and Finite-time
Behavior of Simulated Annealing, Proceedings of the IEEE Conference on Decision and
Control, 1985.

C. Molar, G. S. Miranker, J. Rubenstein, J. Sanguinetti, R. Allen, B. Borden, S. Johnson,
M. Kaplan, W. Ting and C. Wetherell, The Dana Personal Supercomputer (related papers),
Proceedings of the IEEE Computer Society International Conference (COMPCON),
February 29-March 4, 1988, pp. 448-467.

D. A. Moon, Architecture of the Symbolics 3600, Proceedings of the 12th International
Symposium on Computer Architecture, Boston, June 1985, pp. 76-83.

MC68881 Floating-point Coprocessor User’s Manual, Motorola, 1985.
MC68030 32-Bit Microprocessor User’'s Manual, Motorola, 1987.

B. T. Murphy, Cost-Size Optima of Monolithic Integrated Circuits, Proceedings of the
IEEE, Vol. 54, No. 12, December 1964, pp. 1537-15435.

G. J. Myers, Advances in Computer Architecture, John Wiley & Sons, New York, 1978.

G. 1. Myers, A. Y. C. Yu and D. L. House, Microprocessor Technology Trends,
Proceedings of the IEEE, Vol. 74, No. 12, December 1986, pp. 1605-1622, IEEE.

Series 32000 Databook, National Semiconductor Corporation, Santa Clara, CA, 1984.

R. Nave and J. Palmer, A Numeric Data Processor, 1980 IEEE International Solid-State
Circuits Conference, February 14, 1980, pp. 108,109.

[Oppe75]
[Ordy83]

[Oust88]

[Palm80]
[Paro85]
[Patt85]
[Patt80]
[Patt84]

[Ples86]

[Pren87]
{Radi82]
[Robi76]

[Rome84]

[Rowe88]

[Ruet86]

[Sarr85]

[Shan77]
[Siew82]
(Sipp82]

[Smit85]

[Sohi87]

197

A. V. Oppenheim and R. W. Shafer, Digital Signal Processing, Prentice-Hall, 1975.

G. M. Ordy and C. W. Rose, The N.2 System, ACM [EEE 20th Design Automation
Conference, Miami, FL, June 1983, pp. 520-526.

J. K. OQusterhout, A. R. Cherenson, F. Douglis, M. N. Nelson and B. B. Welch, The
SPRITE Network Operating System, /[EEE Computer, Vol. 21, No. 2, February 1988, pp.
23-35.

J. Palmer, The Intel 8087 Numeric Data Processor, Proceedings of the 7th Annual
Symposium on Computer Architecture, 1980, pp. 174-181.

A. M. Parodi, Multi-goal Real-time Global Path Planning for an Autonomous Land Vehicle
Using a High-speed Graph Search Processor, International Conference on Robotics and
Automation, St. Louis, March 25-28, 1985, pp. 161-167.

Y. Patt, Unpublished data from personal communication, April 1985.

D. A. Patterson and D. R. Ditzel, The Case for the Reduced Instruction Set Computer,
Computer Architecture News, Vol. 8, No. 6, 15 October 1980, pp. 25-33.

D. Patterson, RISC Watch, Computer Architecture News, March 1984.

A. R. Pleszkun, G. S. Sohi, B. Z. Kahhaleh and E. S. Davidson, Features of the Structured
Memory Access (SMA) Architecture, Proceedings of the IEEE Computer Society
International Conference (COMPCON), San Francisco, CA, March 3-6, 1986, pp. 259-263.

MC68881/MC68882 Floating-point Coprocessor User’'s Manual, Prentice-Hall, 1987.

G. Radin, The 801 Minicomputer, Symposium on Architectural Support for Programming
Languages and Operating Systems, Vol. 10, No. 2, March 1-3, 1982, pp. 39-47, IEEE
SIGARCH.

S. K. Robinson and I. S. Torsun, An Empirical Analysis of Fortran Programs, The
Computer Journal, Vol. 19, No. 1, 1976, pp. 56-62.

F. Romeo and A. Sangiovanni-Vincentelli, Probabilistic Hill Climbing Algorithms:
Properties and Applications, 1985 Chapel Hill Conference on VLSI, and Electronics
Research Laboratory Memorandum No. UCB/ERL M84/34, 1984, 1984.

C. Rowen, M. Johnson and P. Ries, The MIPS R3010 Floating-point Coprocessor, /EEE
Micro, June 1988, pp. 53-62.

P. A. Ruetz, Architectures and Design Techniques for Real-time Image Processing ICs,
Electronics Research Laboratory Memorandum No. UCB/ERL MS86/37, University of
California, Berkeley, CA, May 2, 1986. Ph.D. Dissertation.

C. Sarreno, Unpublished data from personal communication, Applications Engineering,
Motorola Advanced Microprocessor Division, April 1985.

R. C. Shank and R. P. Abelson, Scripts, Plans, Goals, and Understandmg An Inquiry into
Human Knowledge Structures, L. Erlbaum Associates, 1977.

D. P. Siewiorek, C. G. Bell and A. Newell, Computer Structures: Principles and Examples,
McGraw-Hill, New York, NY, 1982.

T. N. Sippel, Floating RISCs: Implementation and Analysis of Floating-point on RISC I,
Computer Science Division (EECS) Unpublished Masters Report, 1982.

J. E. Smith and A. R. Pleszkun, Implementation of Precise Interrupts in Pipelined
Processors, Proceedings of the 12th International Symposium on Computer Architecture,
June 1985, pp. 36-44.

G. S. Sohi and S. Vajapeyam, Instruction Issue Logic for High-performance Interruptable
Pipelined Processors, Proceedings of the 12th International Symposium on Computer
Architecture, June 1987, pp. 27-34.

[Stec88]
[Ston87]
[Sze85]

[Tayl83]

[Tayl86]

[Tekt83]
[Tekt86]
[Texa76]
[Thei83]
[Thor77]
[Tick83]
[Vite79]
[V1ah88]
[Warr83]
[Wile83]
[Wils88a]
[Wils88b]
[Wulf88]

[Zilo83]

198

R. Steck, Unpublished data from personal communication, Intel Corporation, Beaverton,
OR, October 1988.

H. S. Stone, High-Performance Computer Architecture, Addison-Wesley, Reading, MA,
October 1987. ‘

S. M. Sze, Semiconductor Devices, Physics and Technology, John Wiley and Sons, New
York, NY, 1985.

G. S. Taylor, Arithmetic on the ELXSI System 6400, Proceedings of IEEE 1983 Gth
Symposium on Computer Arithmetic, 1983.

G. S. Taylor, P. N. Hilfinger, J. R. Larus, D. A. Patterson and B. G. Zorn, Evaluation of the
SPUR Lisp Architecture, Proceedings of the 13th International Symposium on Computer
Architecture, Tokyo, Japan, June 1986.

Digital Analysis System 9100 Series User's Manual, Tektronix Corporation, Beaverton,
OR, 1983.

91DVV2 (DAS VLSI Verification - version 2) Installation and User’'s Manuals, Tektronix
Corporation, Beaverton, OR, 1986.

The TTL Data Book for Design Engineers, 2nd Edition, Texas Instruments, Dallas, Texas,
1976.

D. J. Theis, Applications for Array Processors, Computer, Vol. 16, No. 6, June 1983, pp.
13-15.

J. E. Thornton, Parallel Operation in the Control Data 6600, AFIPS Proceedings, Fall Joint
Computer Conference, 1964, pp. 3340.

E. Tick and D. H. D. Warren, Towards a Pipelined Prolog Processor, Artificial
Intelligence Center, SRI International, August 1983. '

A. J. Viterbi and J. K. Omura, Principles of Digital Communications and Coding,
McGraw-Hill, New York, 1979.

H. Vlahos and V. Milutinovic, GaAS Microprocessors and Digital Systems, /JEEE MICRO,
February 1988, pp. 28-56.

D. H. D. Warren, An Abstract Prolog Instruction Set, Attificial Intelligence Center, SRI
Intemational, August 1983.

R. Wilensky, Planning and Understanding - A Computational Approach to Human
Reasoning, Addison-Wesley, 1983.

R. Wilson, Designers’ Buying Guide to Microprocessors and Peripheral ICs, Computer
Design, Vol. 27, No. 4, February 15, 1988, pp. 77-127.

R. Wilson, Newest Floating-point Processors Blur Architectural Distinctions, Computer
Design, Vol. 27, No. 8, April 15, 1988, pp. 32-43.

W. A. Wulf, The WM Computer Architecture, Computer Architecture’ News, March 1988,
pp. 70-84.

Z8000 CPU Technical Manual, Zilog, Inc., Campbell, CA, January 1983.

