Limits on the Provable Consequences of One-way Functions

By
Steven Rudich

B.A. (Wesleyan University) 1984

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in

COMPUTER SCIENCE

in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA at BERKELEY

ooo

......... Potd, Aol N 17,156

Rk kkkkkkkkkkkkkkkkkkkkkkkkkkk

Limits on the Provable Consequences of One-way Functions.
Steven Rudich

Abstract

We present strong evidence that the implication, “if one-way permutations
exist, then secure secret key agreement is possible”, is not provable by standard
techniques. Since both sides of this implication are widely believed true in real
life, to show that the implication is false requires a new model. We consider
a world where all parties have access to a black box for a randomly selected
permutation. Being totally random, this permuation will be strongly one-way in
a provable, information-theoretic way. We show that, if P = NP, no protocol
for secret key agreement is secure in such a setting. Thus, to prove that a
secret key agreement protocol which uses a one-way permutation as a black
box is secure is as hard as proving P # NP. We also obtain, as a corollary,
that there is an oracle relative to which the implication is false, i.e., there is
a one-way permutation, yet secret-exchange is impossible. Thus, no technique
which relativizes can prove that secret exchange can be based on any one-way
permutation. Furthermore, we show that if a certain combinatorial conjecture
is true, then there is similar evidence to show that a one-way permutation can’t
be contructed from a one-way function.

Our results present a general framework for proving statements of the form,
“Cryptographic application X is not likely possible based solely on complexity

assumption Y.”

This research was supported by NSF grant CCR 88-13632 and by an IBM
Doctoral Fellowship.

Al £ py__

Committee Chairman: Manuel Blum

il

To NATHAN CONGDON

My first intellectual companion

il
Acknowledgements.

I am extremely grateful to Manuel Blum for everything. He has been a
fantastic advisor. From the very beginning, he boosted my mathematical self-
confidence by treating me as a peer. He also took the time to show me more
than his perfected and polished ideas. He showed me the guts of research—false
starts, fallacies, inchoate intuitions, and all. This exceptional honesty gave me
a generous look at the inner working of a truly creative mind. Knowing Manuel
has been. without any doubt, the high point of my intellectual life.

As far as this thesis is concerned, I owe Manuel more than a methodologi-
cal debt. He was thinking about problems and issues treated here long before
I came to graduate school. In particular, he asked if P = NP implies that
secret-key agreement is impossible with a random oracle, and conjectured that
P = NP implies NPRNCo— NPR = PR, He pointed out that a random oracle
provides an ideal one-way function, giving his conjectures a natural interpreta-
tion. He also detected the subtle possibility that we might simulate a random
permutation oracle in such a way that it is invertible. As with all of Manuel’s
problems. I learned a great deal from these, not realizing the full depth of some
of the issues for several years.

Russell Impagliazzo is my dear, dear friend and colleague. He never faiis to
have unique (often deeply unified) views on an issue. It is always wonderful to
talk to him. Like Manuel, his intellectual honesty has always made it possible
for me to learn from him.

This thesis is joint work with Russell. We will co-author all papers which
result. We have discussed these questions with each other for about two years.
The history of the secret-key agreement result includes about forty fallacious
proofs; I could never have survived this cruel form of torture if I had been going

it alone A lesser co-author would have given up. Russell was always tenacious

111

and insightful. If he were a sword, I would call him Theorem Killer.

I am very grateful for discussions with Amos Fiat, Mario Szegedy, and
Gabor Tardos.

I want to thank Noam and Umesh for helping me check the details of the
main result. I am also grateful to my proofreaders, David Feldman, Nathan
Tawil, Charlie Rackoff, and Rachel Rue. Nathan’s feedback clearly demon-
strated the subtle relation between syntax and semantics.

My years at Berkeley were greatly enhanced by the faculty and my fellow
students. Umesh Vazirani inspired me with his unique form of self-fulfilling
optimism. Dick Karp is a flawless teacher; I now aspire to the standards of
mathematical exposition he has set. I will be taking with me many mathemati-
cal manoeuvres which I learned by observing other students, Sampath Kannan,

Moni Naor, Noam Nisan, and Ronitt Rubinfeld, to name a few.

CONTENTS
Contents

1 Introduction.
1.1 The power of cryptographic assumptions.

1.2 One-way functions vs. one-way permutations

2 Notation and definitions.
3 Dirichlet’s pigeonhole principle.

4 Cryptographic Preliminaries.

4.1 Secret-Key Agreement

4.2 One-way permutations.

4.3 The state of the art.

.........................

5 Uniform Generation.

5.1 Polynomial-time relations

.......................

5.2 What is uniform generation?

....................

5.3 P = NP and uniform generation

5.4 An application to cryptography

Random Oracles.
6.1 Definition
6.2 Random oracles and one-way functions.

6.3 Random oracles and uniform generation

Random Permutation Oracles.

7.1 Introduction.

7.2 Random oracles are quite similar to random permutation oracles.

7.3 Similarities can be deceiving.

.............................

............

..........................

.................

10

10
10
13

16
16
16

CONTENTS

8 Cryptographic Lower Bounds.

8.1 Introduction.

8.2 A normal form for secre

8.3 Notation and definitions

8.4 Eve’s sample space. . .
8.5 Eve's algorithm. . ..

8.6 Intersection queries and

8.7 The efficacy of Eve’s algorithm

8.8 Related results.

9.1 Introduction.

9.2 The combinatorial conjecture
9.3 Definitions and notation

94 Priorwork.

9.5 Applying the conjecture

10 Conclusions.

t-key agreement.

........................

........................

thesecret.

....................

........................

Random functions vs. one-way permutations.

.....................

........................

........................

20
20
20
21

23
24
24
36

37
37
38
38
39
41

45

1 INTRODUCTION. 1
1 Introduction.

Complexity theory is a field in its technical infancy. Problems greatly out-
number solutions. Even seemingly unsubtle questions, such as PTIME =
PSPACE?, are likely to remain open into the next century. To sort out the
relevant issues, one of the objects of study has become the set of open problems
themselves.

Complexity theorists have developed a taxonomy of problem difficulty. N P-
completeness theory was the first example of a method to classify by difficulty
a seemingly diverse set of problems. Inspired by this example, theorists have
isolated a core set of problems and complexity classes. Results take the form:
Resolving problem X is as hard as resolving problem Y. Thus, researchers have
maintained an understanding of an enlarging, diverse set of open problems.

In this thesis, we develop new techniques for obtaining results of the form:
Proving that the existence of an ideal one-way function (or permutation) im-
plies X, is as hard as proving P # NP. Consequently, we argue that certain
statements are very hard to prove from the assumption that an ideal one-way
function (or permutation) exists. The next two sections will describe the prob-

lems studied and the manner in which our techniques are applied.

1.1 The power of cryptographic assumptions.

A typical result in cryptography will be of the form: With assumption X,
we can prove that a secure protocol for P is possible. Because the standard
cryptographic assumptions are, at present, unproved, many results focus on
weakening the assumptions known to imply that a given protocol is possible.
As a consequence, we ask a new form of question: Which assumptions are too

weak to yield a proof that a secure protocol for P is possible?

1 INTRODUCTION.

3]

The protocol we will study is secure secret-key agreement. Secret-key agree-
ment is a protocol where Alice and Bob, having no secret information in com-
mon. agree on a secret key over a public channel. Such a protocol is secure
when no polynomial-time Eve listening to the conversation can determine part
of the secret. Secure secret-key agreement is known to be possible under the
assumption that trapdoor functions exist. Unsuccessful attempts have been
made to base it on the weaker assumption that one-way functions exist.

We provide strong evidence that assuming a one-way permutation exists
is unlikely to yield a proof that secure secret-key agreement is possible. We
model the existence of a one-way permutation by assuming the availability
of a random permutation oracle. A random permutation oracle is provably
one-way in the strongest possible sense. We show that proving secure secret-
key agreement possible in a world with a random permutation oracle would
simultaneously prove P # N P. This implies the existence of an oracle relative
to which one-way permutations exist, but secret-key agreement is impossible.

Combining our result with known implications in cryptography, we obtain

forty-two natural corollaries:

No assumption from column A is likely to yield a result from column B.

A B
One-way permutations exist Secret-key agreement is possible
Signature schemes exist Oblivious transfer is possible
Identification schemes exist Trapdoor functions exist
Telephone coin flipping is possible Multi-party computation is possible
Private-key cryptosystems exist Public-key cryptosystems exist
Pseudo-random number generators exist || Voting schemes exist
Everything with an interactive protocol
has a zero-knowledge protocol

1 INTRODUCTION. 3

These are the first results of this type in cryptography.

1.2 One-way functions vs. one-way permutations.

Bennett and Gill[BG81] have raised the question: Can we construct a one-way
permutation from a random oracle? (Actually, they did not raise this exact
question, but Blum has pointed out that they meant to raise this question!)
They showed that an affirmative answer would prove NPRNCo —~ NPR £ PR
with a random oracle. A cryptographic interpretation of this question would be:
Given a one-way function can we build a one-way permutation? An affirmative
answer would show that the large set of cryptographic protocols whose security
is now based upon the existence of a one-way permutation could be based on a
weaker assumption.

We wish to give a negative answer to this question. However, our results are
based on an unproven combinatorial conjecture. Assuming this conjecture to be
true, we show that constructing a one-way permutation from a one-way function
would prove P # N P. Furthermore, the conjecture implies the existence of an

oracle relative to which one-way functions exist, but one-way permutations do

not.

wa

2 NOTATION AND DEFINITIONS. 4

2 Notation and definitions.

The notation and definitions, unless otherwise stated, are the standard ones
encountered in a first-year complexity or cryptography course. The reader
wishing to review these is directed to [AHU74, Sip83]. The probability theory
used can be found in [Fel68§].

Less familiar conventions:

We will abbreviate probabilistic polynomial-time Turing machine with the no-
tation PPTM. The computation of a PPTM on a given input will be a trace of
the entire run of the machine given the input. (The computations are indexed
by the possible random tapes.) If the machine is an oracle machine, this would
include all the queries and answers received during the computation. (In this
case, each computation would be determined by a random tape, and by a finite
set of query-answer pairs.) We use the notation poly to refer to some polyno-
mial function. Thus, we can use the freewheeling arithmetic poly * poly = poly.
A conversation between two PPTMs is the history of writes to the cells of a

common communication tape.

3 Dirichlet’s pigeonhole principle.

We take this opportunity to remind the reader of a useful form of the pigeonhole
principle:

Let M be a 0-1 matrix with a 1 — a proportion of 1s. For every ab = a, a
1 — a portion of the columns have at least a 1 — b portion of 1s. (It suffices to

note that the worst case is when the 0’s are concentrated in an a by b rectangle.)

4 CRYPTOGRAPHIC PRELIMINARIES. 5

4 Cryptographic Preliminaries.

We start by giving the cryptographic definitions used in this thesis. Any infor-
mality is deliberate. Our results remain unaltered by any reasonable formal-
1zation of these definitions. Making an explicit choice would be an arbitrary

restriction. The skeptical reader is welcome to fill in any missing formal details

as he or she chooses.

4.1 Secret-Key Agreement.

A secret-key agreement protocol is a pair of PPT Ms called Alice and Bob. Each
machine has a set of private tapes: a random-bit tape, an input tape, two work
tapes, and a secret tape. In addition, they have a common communication tape
that both can read and write. A run of the protocol is as follows: Alice and
Bob both start with the same integer ! written in binary on their input tapes;
Alice and Bob run, communicating via the common tape; Alice and Bob both
write an [-length string on their secret tape. If this string is the same, Alice and
Bob are said to agree. The entire history of the writes to the communication
tape 1s called the conversation. a(l) will denote the probability that Alice and
Bob agree on a secret of length .

A PPTM Eve breaks a secret-ket agreement protocol if Eve, given only the
conversation, can guess the secret with probability a(l)/poly(l). A protocol is
secure if no Eve can break it. One could imagine far more stringent notions of
security. For example, we might require that Eve can’t even get one bit of the
secret. However, in our scenario, we will be breaking secret-key agreement in
the strong sense defined above, thus including the weaker notions of breaking
that an applied cryptographer would use. (For example, a cryptographer would

be happy to learn one bit of the secret.)

4 CRYPTOGRAPHIC PRELIMINARIES. 6

4.2 One-way permutations.

A one-way permutation is a 1-1, onto, polynomial-time computable function
from n-bit strings to n-bit strings, where the inverse permutation is not com-
putable in polynomial-time. In fact, for cryptography we require that no
PPTM can expect to invert the function on more than a 1/poly(n) fraction of

the inputs of length n.

4.3 The state of the art.

For the reader familiar with the myriad of cryptographic protocols and assump-
tions. we cite some known connections to secret-key agreement protocols and
one-way permutations:

The existence of a one-way permutation is known to imply that signature
schemes exist[NY], identification schemes exist[FS86], telephone coin flipping is
possible[Blu82], private-key cryptosystems exist[LR86), pseudo-random number
generators exist[Yao82], and everything with an interactive protocol has a zero-
knowledge interactive protocol[GMW87, IY87, BCCS87].

Secure secret-key agreement is known to be possible under any of the follow-
ing assumptions: Oblivious transfer is possible[Blu81, Rab81], trapdoor func-
tions exist{DH76], multi-party computation is possible, public-key cryptosys-
tems exist, and voting schemes exist{Ben87].

The reader is challenged to think of a natural cryptographic objective that
is neither implied by one-way permutations, nor implies that secure secret-
key agreement is possible. It seems that these assumptions partition known
cryptographic objectives into two categories.

Thus, if one-way permutations do not suffice to show secure secret-key agree-

ment, then no objective implied by one-way permutations suffices to show any

5 UNIFORM GENERATION.

-1

objective which implies secure secret-key agreement.

5 Uniform Generation.

5.1 Polynomial-time relations.

A relation, R, is polynomial-time if we can decide zRy in time polvnomial in
Izl + |lyll. In this thesis, we will only consider relations where the length of
y i1s polynomially related to the length of z. Is satisfied by is an example of
such a relation: z is satisfied by y iff z is a boolean formula and y is one of its

satisfying assignments.

5.2 What is uniform generation?

Let R be the “is satisfied by” relation. We can ask two natural questions:
Existence Given z, does there exist a y such that zRy?

(Does a given formula has a satisfying assignment?)

Counting Given z, how many y exist such that zRy?
(How many satisfying assignments does a given formula have?)
The existence question, satisfiability, is NV P-complete. The counting ques-
tion, thought to be harder than satisfiability, is # P-complete. Jerrum, Valiant,

and Vazirani[JVV86] introduced a problem of intermediate complexity.

Uniform generation Given z, pick a y uniformly at random such that zRy.

(Given a formula, find a random satisfying assignment.)

More generally, let R be a polynomial-time relation. Let M be a PPTM
with a fixed (as opposed to expected) polynomial running time. We say M
uniformly generates R if given z, M has at least a 50% chance of outputting a

uniformly chosen y such that zRy; otherwise, M outputs “try again”. If such

5 UNIFORM GENERATION. 8

a y does not exist, M will only output “try again”. Notice that rerunning the
algorithm when it fails to generate a random y will succeed in generating a

random y in expected polynomial time.

5.3 P = NP and uniform generation.

Theorem 5.1 (JVV) For any polynomial-time relation, there ezists a PPTM

equipped with a T8 oracle that uniformly generates it.

Theorem 5.2 P = NP=> for any polynomial-time relation, there ezists a

PPTAM that uniformly generates it.

Proof: P = N'P= the polynomial-time hierarchy collapses|CKS81] =
a polynomial-time machine can simulate a Zf oracle =we can use previous

theorem to uniformly generate. L]

Let A be a PPTM. There are possibly many different computations of
A consistent with a given input and output. (Of course, there may be none.)
The following corollary shows that if P = NP, we can efficiently pick a random
element from the finite set of these computations.
Corollary 5.1 P = NP = it is possible to generate a random computation
for a given PPTM, M, with giﬁen input, I, and given output, O, in ezpected

polynomial time.

Proof: Checking that the trace of a computation is consistent with M, I. and

O is a polynomial-time relation. =

Corollary 5.2 P = NP== given a conversation, C, between two PPTMs M

and N, we can uniformly generate a possible computation of M.

5 UNIFORM GENERATION. 9

Proof: Checking that C is consistent with a given computation of M is possible

in polynomial-time. .

5.4 An application to cryptography.

Public-key cryptography relies on the assumption that P#NP. The formal
version of this fact, P = NP implies secret key agreement is not possible, is
something one might see a rather technical proof of in a first-year course. We
can use our results on uniform generation to give a particularly simple proof of

the optimal result.

Theorem 5.3 P = NP=> Eve has an ezpected polynomial time algorithm to
break any given secret key agreement protocol in the strongest possible sense:
Eve will find the secret with ezactly the same probability that Alice and Bob

agree on omne.

Proof: Fix a computation and resulting secret for Bob. We will show that the
probability that Alice agrees with Bob is the same as the probability that Eve
agrees with Bob. By corollary 5.2, Eve can generate a random computation
of Alice consistent with the conversation. Alice’s particular computation is,
by definition, a random computation of Alice consistent with the conversation.
Thus, Eve and Alice produce secrets with exactly the same probability distri-
bution. They must, therefore, have exactly the same probability of agreeing
with Bob. In other words, from Bob’s point of view, Alice and Eve think alike:

he will fool Eve with exactly the same probability that he will fool Alice. »

6 RANDOM ORACLES. 10

6 Random Oracles.

6.1 Definition.

Let r be a random real between 0 and 1, chosen with the uniform distribution;
express r in binary notation. A random oracle is the set induced from r as
follows: {z : the zth binary digitof risa 1 }.

With each random oracle R. we can associate a functionffrom n-bit strings
to n-bit strings. f(¢) is defined by its length(i) binary digits; the jth digit is 1
iff (2i+1)27 € R. (Every natural is uniquely expressed as an odd times a power
of 2.) Notice that as we vary over all possible R, we get all possible length-
preserving functions, each one occurring with the same frequency. Furthermore,
using R as an oracle, f is polynomial-time computable. Thus, a TM with a
random oracle also has at its disposal an easy to compute length-preserving
random function. The notions of a random oracle and a random function oracle

will be used interchangeably. We will now show that this function is one-way

in the strongest possible sense.

6.2 Random oracles and one-way functions.

First, for a given machine, we fix the input and the random-bit tape; we show
the machine can only invert a very small fraction of functions as we vary over

oracles.

Lemma 6.1 Let T be an oracle PPTMuwith random oracle R and a fized
random-bit tape. Fiz an input r of length n. Let f be the random function

associated with R (as above) The probability that f(T(z)) = z, is less than

poly(n)/2". OVer Comdovn ocaclea R

(Mc«. o rmdon kb fupe it Lraed

ard R v 6llewed 4o vory.

)

6 RANDOM ORACLES. 11

Proof: W.L.O.G., we can assume T queries the function oracle f. If T never
asks a y such that f(y) = z, then the probability that f(T(z)) = z is bounded
by 1/2". We argue that T never asks such a y with very high probability. Each
time T asks a y the probability that f(y) = z is equal to 1/2"; T asks only
poly(n) many queries; T asks such a y with probability less than poly(n)/2".
The probability that f(T(z)) = z is therefore bounded by (poly(n) + 1)/2".

Now. for a given machine, we fix the oracle; we show that the machine has

a low expectation of inverting as we vary over inputs and random-bit tapes.

Lemma 6.2 Let T be an oracle PPTMwith random oracle R. Let I be the
random function associated with R. There ezists a poly(n) such that for every
length n, there 1s a 1 —1/n? measure of oracles (f’s) for which the ezpectation

that f(T(z)) = = on a rendom input of length n, is less than poly(n)/2™.

Proof: Consider the matrix whose rows are labeled by inputs of length n
and fixed random-bit tapes, and whose columns are labeled with all possible
functions from n-bits to n-bits. Put a 1 in positioﬁ <1, f > iff T on input
1 with oracle f outputs y such that f(y) = ;. By lemma 6.1, each row has
a 1 — poly(n)/2™ proportion of 0’s. By the pigeonhole principle, 1 — 1/n?
proportion of the columns have more than 1 — (n®poly(n))/2" proportion of

0’s. The result follows. =

We say T with f inverts better than < poly(n),n >, when the expectation

that f(T(z)) = z, on a random z of length n, is more than poly(n)/2".

6 RANDOM ORACLES. 12

Lemma 6.3 For every oracle PPTM T, there ezists a poly such that for most

oracles, T with f inverts better than < poly(n),n > for only finitely many n.

Proof: Fix T. By lemma 6.2, there exists a poly such that the measure of f’s
for which T inverts better than < poly(n),n > is bounded by 1/n2. T, 1/n?

converges; by the Borel-Cantelli lemma, measure one of oracles invert better

than < noluin),n > only finitely often. n

Theorem 6.1 For most oracles, the function associated with the oracle is one-
way in the strongest possible sense: For every oracle PPT M, there ezists a poly,
such that the machine has ezpectation no more than poly(n)/2" of inverting the

inputs of length n.

Proof: By lemma 6.3, for every oracle PPT M, we can throw out the measure
zero of oracles where the machines invert well infinitely often (as above). There
are only countably many machines; we have thrown out measure zero of oracles
in all. Therefore, the remaining measure one of oracles has the property that
for every machine. there exists a poly, such that there are only finitely many
lengths where the machine can invert more than poly(n)/2" of the inputs. By
adding a large constant to poly, we can deal with the finite number of lengths
on which the machine is able to invert frequently.

This is the strongest possible sense because a machine that samples f at
poly(n) random points has a poly(n)/2" chance of finding the inverse. Such a
machine has expectation equal to poly(n)/2" of inverting a random inpupis/ﬂof

length n. [

6 RANDOM ORACLES. 13

In [Bra83, Bra81), Brassard solves what seems to be the more difficult prob-
lem of explicitly constructing a strongly one-way function oracle. (He uses no

randomness or counting techniques.)

6.3 Random oracles and uniform generation.

Theorem 6.1 implies that uniform generation is impossible in a random world;
it is impossible to uniformly generate an inverse to the function associated with
the oracle. One of the projects in this thesis is, assuming P = NP, to break
secret key exchange in a random world. (In theorem 3.3, we saw how to break
it in the real world.) Even though we can’t hope for uniform generation in a
random world (which would make life very easy), we can prove weak analogues
of the uniform generation results, which will be helpful in realizing our goal.
The idea is not to generate the computation of an oracle PPTM, M, with a
particular random oracle, but rather, with a random random oracle; we want a
random computation of the machine over all possible oracles. Let M!© be the
finite set of possible computations of M given input I, output O, using some
oracle. (These computations are indexed by the random-bit tape, and the
oracle query-answer pairs used during the computatién.) A natural probability
distribution to put on M9 is to weight each computation by the probability
that it occurs using a random oracle. We want to be able to pick a random
element of the space M!©. Note: This time the distribution on the underlying
set is not necessarily uniform. The probability of a computation with ¢ queries

being chosen is 277/277 as likely as a computation with p queries being chosen.

Theorem 6.2 P = NP== there exists a PPTM that picks a random element

from the probability space M1 in ezpected polynomial time.

Proof: From the oracle PPTM M, we construct a PPTM M’ such that

6 RANDOM ORACLES. ‘ 14

a uniformly generated computation of M’ given input I and output O, when
suitably syntactically modified, yields a random element of the probability space
MT9. Intuitively, M’ is an oracle machine that makes up its own oracle on the
fly.

Without loss of generality, assume the computation of M never makes the
same oracle query twice; keep track of queries asked in a table, and use the
oracle only when the table does not have the answer. Let ¢(rn) be a polynomial
bound on the number of oracle queries M asks given an input of length n. M’
starts its computation by writing down ¢(n) random bits on a separate tape,
called the answer tape. M’ then proceeds as M would, except that when M asks
the oracle for a query answer, M’ answers the simulated query with the first
unused bit from the answer tape. By corollary 5.2, we can generate a random
computation m’ of M’, with input I and output O, in expected polynomial
time. To make m' look like a random computation of M, strip away the answer
tape. pretending that all answers came from an oracle; call the computation
that remains m. The probability associated with an m asking ¢ queries is

proportional to 277, Hence, m is a random element of M/:©. n

We can strengthen our result slightly by fixing some finite portion of the
oracles we wish to consider. Let E be a finite set of oracle addresses and their
contents. An oracle is said to be consistent with E if the content-address pairs
in E are also in the oracle. We define a space similar to M!©: M,{:‘O is a finite
set of computations of M given I and O, using oracles consistent with E. Each
element in M,{:’O is weighed by the probability of it occurring using a random
oracle consistent with E. Once again, we wish to pick a random element of the

space.

6 RANDOM ORACLES. 15

Theorem 6.3 P = NP== there ezists a PPTM that picks a random element

of the probability space .Mé‘o in ezpected polynomial time.

Proof: Same as the proof of the previous theorem with one important modifi-
cation: Hardwire the answers to oracle queries in E into the finite state control

of M'. When M’ asks a query in E, do not use a bit from the answer tape.

We can now prove the analogue of corollary 5.2 using oracle PPT Ms Alice
and Bob. In the case where oracle Alice and oracle Bob have conversation C,
and E is a finite set of queries and answers, we define another similar space:
A€ is the space of possible computations of oracle Alice consistent with the
conversation C, where each computation is weighed by its probability of occur-
ring with a random oracle consistent with E. The next theorem will be very

important in the results on secret key agreement.

Theorem 6.4 P = NP=> there ezists a PPTM that picks a random element

of AS in ezpected polynomial time.

Proof: From Alice’s point of view a conversation is a set of inputs and out-
puts occurring at certain prescribed times during her computation. No further

modification of the above proof technique is required. =

7 RANDOM PERMUTATION ORACLES. 16
7 Random Permutation Oracles.

7.1 Introduction.

Random permutation oracles are similar to the random function oracles dis-
cussed in the previous section, except that the random functions must be 1-1
onto. A random permutation oracle II is a random length-preserving function
from the set of finite strings onto itself. Again, the function is chosen from the
uniform distribution. The relationship between random oracles and random

permutation oracles is one of the subjects of this thesis.

7.2 Random oracles are quite similar to random permu-

tation oracles.

From the point of view of oracle PPTMs, there is no difference between the
two types of oracles. We will formalize this in the spirit of pseudo-randomness.

A tester is an oracle PPT Mwhich, given n and a function oracle from n-bit
strings to n-bit strings, outputs either 0 or 1. Let T be a tester. Let P, be the
probability that T will output a 0, when given n and a random function from
n-bit strings to n-bit strings. Let P, be the probability that T will output a
0, when given n and a random permutation from n-bit strings to n-bit strings.
Let D, = |P, — P.|. Thus, Dr, measures how well the tester can distinguish
between the two types of oracles.

Theorem 7.1 For every tester T, Dz, < poly(n)/2"

Proof: Assume T makes ¢ < poly(n) queries. In the case of a random function
oracle, the answer to a previously unasked query is a random n-bit number,
independent of the answers to previously asked queries. Thus, for each query

made the probability that it gets the same answer as a previously made query

7 RANDOM PERMUTATION ORACLES. 17

is less than ¢/2". Summing, we conclude that the probability that two queries
received the same answer is less than ¢?/2". Next we observe that the distri-
bution on possible query answers, given that all query answers are different.
is the same for random function oracles and random permutation oracles: the
probability that T will output a 0 given that all query answers are different. is

the same for the two types of oracles. It follows that Dy, < ¢2/2". =

There are further similarities between the two types of oracle:

Theorem 7.2 Measure one of random permutation oracles are one-way in the
strongest possible sense: For every oracle PPTM, there ezists a poly, such that
the machine has ezpectation no more than poly(n)/2" of inverting the inputs

of length n.

Proof: Simply substitute the word “permutation” for the word “function” in

the proofs of the lemmas leading up to Theorem 6.1.]

Proposition: Given a black box for a random permutation oracle. we can

efficiently simulate a random oracle.

Proof: When we get the query “is z in the oracle?”, answer ves iff 7(2z) >

7(2z + 1). This is an independent random bit. n

The proof of the next theorem is due to M. Naor[Nao].

Theorem 7.3 We can efficiently simulate an (almost) random permutation

oracle given a random oracle.

Before we prove this theorem, we cite a theorem of Aldous and Diaconis[ADS86].

7 RANDOM PERMUTATION ORACLES. 18

Given a deck of 2n cards, a random shuffle consists of the following operations:
Make n pairs of cards; pair ¢ has cards number ¢ and n + i. Order the cards in
each pair randomly (according to a fair coin flip). Make up the shuffled deck

of 2n cards by taking the (now ordered) pairs in order.

Theorem 7.4 (Aldous and Diaconis) After O(log?n) random shuffles a deck

with 2n cards is in nearly random order. (ILe., The distribution on possible or-

ders 1s exponentially close to the uniform distribution.)

Proof:[of theorem 7.3] Think of the random oracle as indexing the results of
the coin flips in a random shuffle. Thus, a stretch of the oracle determines a
random shuffle. If we want to know where the card in the ith position will be
after a shuffle, we simply check one bit of the oracle.

Given an n-bit number z, we want to compute 7(z). Think of the possible
z’s as a deck of 2". By the Aldous-Diaconis result, we know O(log®(2")) =
O(n?) random shuffles will (almost) perfectly shuffie the deck. The random
oracle can index the required sequence of shuffies. What we do is figure out
where all those shuffles take the zth card. The first takes z to z,, the second
takes z, to z, the third takes z, to 3, and so on. By above remarks, it only
takes one query to the oracle (and some trivial arithmetic) to compute 4,

from z;. Hence, we can compute n(z) in O(n?) time. =

7.3 Similarities can be deceiving.

The two types of oracle might seem interchangeable. However, the astute reader
will notice that in the above theorem the simulated permutation oracle is in-
vertible relative to the random oracle from which it was constructed! Thus,

random oracle worlds have random permutation oracles, but not necessarily

7 RANDOM PERMUTATION ORACLES. 19

one-way permutation oracles. (Though random permutation oracles are super-
one-way relative to themselves, they might always be invertible relative to a
more primitive black box from which they are built.) Despite the other strong
similarities, one can’t always assume that anything true relative to a random
permutation oracle is true relative to a random oracle. The question of whether

a one-way permutation oracle can be built from a random oracle is the subject

of a later section.

8 CRYPTOGRAPHIC LOWER BOUNDS. 20
8 Cryptographic Lower Bounds.

8.1 Introduction.

We will show that the existence of a very strong one-way permutation is not an
assumption likely to yield a proof that secure secret key agreement is possible.
By theorem 7.2, we know that a random permutation oracle is one-way in the
strongest possible sense. Therefore, we will use the availability of a random
permutation oracle to model the existence of an ideal one-way permutation.
We will show that it is as hard to prove secure secret key agreement is possible
using a common random permutation oracleas it is to prove P # NP. The
result will take the form of the contrapositive: P = N P implies that any secret-
key agreement protocol can broken even when a random permutation oracle is
available to all parties.

Summarizing the results of this section: We first show that P = NP implies
there is no secret-key agreement protocol that is secure with measure 1/poly
of random oracles (random function oracles). Theorem 7.1 will be used to
extend the result to random permutation oracles. Further strengthening the
result by swapping the quantifiers, we show P = N P implies for measure one of
oracles there is no secure secret-key agreement. A corollary of this result is the
existence of an oracle relative to which one-way permutations exist, but secure
secret-key agreement is impossible. We also distinguish between two strong

senses of breaking a secret-key agreement protocol.

8.2 A normal form for secret-key agreement.

To facilitate our analysis, we will assume that the secret-key agreement protocol
has a normal form. Communication takes place in n rounds. Each round

involves one person speaking and computing. Before each round, the party who

8 CRYPTOGRAPHIC LOWER BOUNDS. 21

is to speak asks the oracle a single query, and then does some computation. If
Alice speaks first, the protocol would take the following form: Alice queries the
oracle; Alice computes; Alice speaks (i.e. writes on the communication tape);
Bob queries the oracle; Bob computes; Bob speaks; Alice queries the oracle;
Alice computes; Alice speaks; Bob queries the oracle; ...

Any protocol can be converted to normal form with only a polynomial blow-

up in running time.

8.3 Notation and definitions.

We wish to investigate a random world where Alice and Bob attempt to agree
on an [-bit secret. In other words, we vary over runs of Alice, Bob, and Eve:
and over oracles. Formally, a world situation is a five-tuple < I, random 4;ce,
randompey, randome,., R >. I, the input to Alice, Bob, and Eve, is the length
of the secret being agreed upon. random yi., randompg.s, and randomg,. are
random bit tapes for Alice, Bob, and Eve to use during their computations (the
random bit tapes are just long enough that they never get used up). R is a
random oracle. Let S, be the set of all world situations where Alice and Bob
attempt to agree on an I-length secret (! is the first entry of the five-tuple). We
will also think of WS, as a probability space with the uniform distribution. A
world situation determines a random run of the protocol with a random oracle.
With each world situation we can associate the following variables:

C., the conversation up to and including round r.

¢-, the query asked in round r.

A,, the query-answer pairs Alice knows up to and including round r.

B,, the query-answer pairs Bob knows up to and including round r.

If it 1s ambiguous which world situation C, comes from, we write C¥ to

mean the conversation comes from world situation w.

8 CRYPTOGRAPHIC LOWER BOUNDS. 22

World situation w satisfies C, (written w = C,) means that the conversation
between the machines in w is identical to C, for the first r rounds. We will use
the |= notation with the other world situation variables as well.

Notice that none of the three polynomial time machines involved will be
able to access the oracle past some very large address. Thus, without any loss,
we can think of the oracle as finite. This means that the probability space W S,
is finite. Similarly any space we will discuss can be considered finite. This
technical point will prevent the reader from suspecting any measure-theoretic

fallacy.

8.4 Eve’s sample space.

We need to define the probability distributions Eve samples from during her
algorithm. They have already been described in section 6.3, Theorem 6.4. We
define them again here.

Call a random tape for Alice consistent with conversation C, and oracle R if
the run of Alice, determined by the random tape and input from Bob’s portion
of C;, outputs Alice’s portion of C,. (What she does after round r does not
matter.) Let E be a finite set of query-answer pairs.

Let ASE™ be the set of <oracle, random tape for Alice> pairs such that
E is in the oracle and the random tape for Alice is consistent with C, and
the oracle. Eve will be sampling from the space AS™ of computations of Alice
consistent with C; and the query-answer pairs in E. The distribution on Ag'
is induced from the uniform distribution on ASS™; sample a point in ASE,
that point corresponds to a computation of Alice: An <oracle, random tape
for Alice> pair corresponds to a <finite portion of the oracle used during the

computation, random tape for Alice pair>.

8 CRYPTOGRAPHIC LOWER BOUNDS. 23

8.5 Eve’s algorithm.

We now give an algorithm for Eve to break a secret-key agreement protocol in
a random world. This algorithm runs in polvnomial time under the assumption
that P = NP. S, is a function of the form 1/poly (called a security parameter),
which determines Eve’s probability of failure. The smaller S|, the longer Eve
must run to break the protocol.

For each of n rounds of communication between Alice and Bob, Eve does
m = [3(n/5)In(2n/S;)] segments. Each segment has a simulate phase and an
update phase. We will describe these phases in segment : for round 7.

Without loss of generality, assume Alice speaks in round r. Let E.._, be
the finite set of query-answer pairs that Eve knows about the oracle so far;
< g,a >€ E,;_, +ff prior to round r, segment i, Eve has asked if g is in the
oracle (¢ € R?), and received answer a. Recall that C, is the conversation that
has occurred up to this round.

SIMULATION PHASE:

Using the method described in theorem 6.4, Eve picks a random run of Alice
from the space Agl._,- (If Bob speaks in round r, Eve would instead simulate
Bob.) Let F.; be the set of queries that the simulated run of Alice asks her
simulated oracle. (Note that so far in this segment, we have not asked any real
oracle queries. Recall that when simulating a random Alice, we make up the
answers to the oracle queries.)

UPDATING PHASE.:

Eve asks all the queries in F;; of the actual oracle R. Thus, E, ; equals E, ;_;
union the new query-answer pairs Eve learned by asking F;; of the oracle.

The following variables are also associated with any world situation:

E.;, the query-answer pairs Eve knows up to and including the ith segment

of her simulation of round r.

8 CRYPTOGRAPHIC LOWER BOUNDS. 24

E. o, the query-answer pairs Eve knows before she simulates round r. (E,q =

Ef—l.m') -

BPQ),,;, the query-answer pairs Bob knows and Eve does not, up to and

including round r, segment i. BPQ stands for Bob’s private queries. Note the

relation: BPQ,;, = BPQ., - E, .

8.6 Intersection queries and the secret.

Intersection queries are the queries Alice and Bob ask in common during an
execution of their protocol. A particular query becomes an intersection query,
not when it is first asked by one party, but rather when it is later asked by
the other party. For conceptual unity, we can assume without loss of generality
that the secret is an intersection query; assume that as their final act Alice and
Bob query the oracle at the location addressed by the secret.

The next Theorem will i)rove that with high probability Eve finds all the
intersection queries. Thus, Eve will have a polynomial-length list containing

the secret; Eve breaks the protocol.

8.7 The efficacy of Eve’s algorithm.

Theorem 8.1 Suppose Alice and Bob attempt to agree on an l-length secret.

The probability that Eve finds all the intersection queries is greater than 1 — 5.
Formally,

PROB;cws[AnNBr C Enm] >1~ S

Proof: (We show the stronger result that Eve probably anticipates (asks) a
query before it becomes an intersection query.) Eve’s algorithm has n rounds.
If Eve fails to find all intersection queries, there must be a first round where

she fails to anticipate an intersection query that occurs in the next round; there

8 CRYPTOGRAPHIC LOWER BOUNDS. 25

exists a first time ¢ € A, N B, and ¢ € E,_; m. To formalize the event that Eve
fails for the first time to anticipate an intersection query in the next round, we
write it as the conjunct of three events:

e Eve has, in previous rounds, anticipated all intersection queries about to

happen. (Thus, Eve knows all intersection queries to date.)

® ¢-41, the query asked in the next round, is an intersection query.

AND

¢ Eve fails to find ¢r+1. (gr4+1 € Erm.)
Lemma 8.1, the technical heart of the proof, will show this event has probability
no more than S;/n by showing that the complementafy event has probability
greater than 1 — §;/n. Thus, for each round the probability of failing for the
first time to anticipate an intersection query in the next round is less than S;/n.

Summing the error probability for each round, we get a total error probability

bounded by §;. N

Lemma 8.1 The probability that in round r, either
e In a previous round, Eve failed to anticipate the intersection query about

to happen,

® g-41 s not an intersection query,

OR

o Eve finds ¢,y

is greater than 1 — S;/n.

Proof: Without loss of generality assume that Alice spoke in round r. We will

prove the stronger result that even when conditioned on any consistent choice

8 CRYPTOGRAPHIC LOWER BOUNDS. 26

of Cr, E. o, randompgy, and BPQ, o, the probability that one of the following
occurs is greater than 1 — S;/n:

1. A,NBPQ.o # 0. (In the last round, Eve did not know all the intersection

queries for round r: Alice asked a query in Bob’s private query set making

an intersection query that Eve had not anticipated. This is stronger than

Eve failing to anticipate an intersection query in a previous round.)

2. gr41 € A;. (For g,11to be an intersection query in round r, Alice must
have asked it previously.)

OR

3. ¢r+1 € E; ;. (The definition of Eve finding ¢,4;.)

Fix any consistent C;, E}, randomy,,, and BPQ;,. (The * superscript will
later serve to disambiguate sets that have been previously defined from similar
sets occurring as free variables in expressions.) An important consequence of
fixing these variables is to fix ¢r41. gr41is to be asked by Bob in round r + 1;
we have fixed his tape (randomp,,), his input (C7), and his oracle queries and
answers (contained in E7, U BPQ:,); thus, Bob's computation, up until he
queries in round 7 + 1, has been fixed. q,,,is therefore determined.

W will be the set of world situations satisfying these conditions:

W={weWSsS : (v CT, Elg,randomy ., BPQ’) }
We wish to show that a 1 — S;/n fraction of W satisfies conditions 1,2, or

3. Partition W into three sets P, P,, and P;:
Py ={we W: w £ (condition 1), w £ (condition 2), and
31 PROB:ew(z |= (conditions 1 or 2) | z |= E¥]>1-5/2n}

(Thus, w € Pi= w [~ (condition 1) and w }& (condition 2), but an observer

who only knew the E.; portion of w would guess otherwise.)

8 CRYPTOGRAPHIC LOWER BOUNDS.

[SV]
-1

P, ={weW: w (condition 1), w & (condition 2), and
Vi PROB:ew| z |= (conditions 1 or 2) |z = E¥] < 1— 5,/2n}
Py={weW: w = conditions 1 or 2 }
Clearly, |Pi| + [P| + |Ps| = [W].
Claim 1 : jlf—;tl < %
Proof:

For each element z € W, we can associate a number First,: The first :
such that PROByew| y k= (conditions 1 or 2) | y = EZ,] > 1 — Si/2n; if there
is no such z, let First; = co.

Partition W as follows: Place all z such that First, = oo in the same block.
The remaining z’s index the other blocks. Block, consists of all y such that
y = Elr,,, and Random},, = Randomi,,. (We have a partition because z,y
in the same block implies that First, = First,; the Eve’s in z and y must
behave exactly the same until the First,th segment.)

We will show that each block of the partition has a small intersection with
Py. The block where First, = oo has no intersection with P,. Consider one of
the remaining blocks, Block,. The proportion of elements of Block; not in P,
1s given by:

PROByew| w k= (conditions 1 or 2)

| w = E? gy, and Random%,, = Randomy,,]
Conditions 1 and 2 are independent of Random¥, .. Therefore, we rewrite our
proportion:
PROByew| w |= (conditions 1 or 2) |w = EZ g,]
Which, by definition of First,, is greater than 1 — 5;/2n. Thus, P, makes

up less than 5;/2n proportion of each block, and hence of the whole space V.

8 CRYPTOGRAPHIC LOWER BOUNDS. 28

Thus, P is small and can be ignored. By definition, all of P; satisfies con-
ditions 1 or 2, and hence can only help us. We now show that for most world

situations in P,, Eve finds ¢,4;.

We give an overview of our strategy: First, we argue that when Eve (in
P;) samples from her space, and happens to produce an Alice whose queries do
not intersect BPQ,;, she has a pretty good chance of finding ¢,,;. Second, we
note that when Eve samples an Alice who does intersect BPQ, ;, Eve will learn
a new query in BPQ,; in her update phase. (This can only happen size of
BPQ;,,; times.) Therefore, there will be many segments where Eve has a pretty
good chance of finding g¢r4;.

By definition,

Yw € PV,
PROB;:ew[z = (conditions 1 or 2) |z = E¥] <1~ 5/2n
Equivalently, we can describe the probability of the complementary event:
Yw € P, Vi,
PROB.ew[AZ(\BPQi,=0and ¢4 € A% |z |= EX 1> S5/2n
Recall z,w € W. BPQi, = BPQ;, = BPQ?,. Furthermore, BPQY; =
BPQY, — £, implying BPQY¥; C BPQ?,. Substituting we get:
Yw € P, Vi,
PROB.cw[AI[\BPQY, =0 and g4y € A% | 2 =E%]> S5/2n
Which implies the weaker statement:

Yw € PzVi,

8 CRYPTOGRAPHIC LOWER BOUNDS. 29

PROB:ewlgr+1 € A7 | z = EY; and A,’.ﬂBPQ’,‘:,- =0]>5/2n
The next claim is very important. It relates distribution W to the space Ag,.-
from which Eve samples. Let e be a random element of Af;':'.,; e, will denote all

the oracle queries the Alice in e asks up to and including round r.

Claim 2 : For eny fized E}; and BPQ;,,

PROB:ew(gr1 € AT | (z = El;,BPQ; ;) and AfﬂBPQ:,i =0]
PROB g1 €€ | e, [|BPQ:,; = 0]

i

eEAgf [

L&}

Proof: By definition of W,
PROB:ewl(gr+1 € AT | (z = E;;,BPQ};) and AT ﬂBPQ;',- =0]=

PROB;ews,[gr+1 € AT |
(z |k E3,, Eso, Ci. randomy,y, BPQ;, BPQ:,) and AZ(\BPQ;, = 0]
We will consider the two relevant probability spaces as sets with the uniform
distribution:
Si={zeWS;:
(z = E7,, Ey, C7, randomy,,, BPQ;,, BPQ:,) and AZNBPQ;; =0}
S:={e€ ASgl : AZNBPQ;; =0}

Partition S) by equating z,z’ € S; iff they are the same on the oracle
and randomajc. (They are all the same on randomy,, and may differ on
randomg,..) Each block has the same size; if a randomg,, is possible with one
<oracle, random 4. > pair, it is possible with another. (Simply recall that
E.; and C, are fixed.) Notice that if ¢,;; € AT for one element of a block.
then the same holds for all elements of the block. A block is described by a

random 4. and an oracle containing BPQ; ;U E:..

.t

8 CRYPTOGRAPHIC LOWER BOUNDS. 30

Partition S; by equating e, e’ € S; iff they are the same everywhere except
the oracle locations in the set BPQ; ;. Each block of the partitiorrlﬁhas the same
size (2!BFQ7.0); recall that AiNBPQ;; = 0. If g-41 € A; for one element of a
block, then the same holds for all elements of the block. A block is described
by a randomgi.. and an oracle containing E7; in addition to “don’t care”
as the contents of the addresses contained in BPQ;;. Thus, there is a 1-1
correspondence between the blocks of S1 and the blocks of 52.

These facts yield the desired claim. n

We conclude:

Yw € P, Vi, (1)

PROBCEAC; [q'r+1 € [[€y ﬂBPQ:.U,t = @] > 51/271
EW

e

Claim 3 : In every world situation, for each round r, there are at least m—n

segments where F,;\BPQ.; = 0.

Proof: At the beginning of round r, Bob’s private query set has no more
than n elements (there is only one query per round). After each segment, the
cardinality of Bob’s private query set can only decrease. In a segment where
F..NBPQ,; # 8, Eve will discover a new query-answer pair in Bob’s private
query set during the update phase; thus, Eve will decrease Bob’s private query
set by at least one. By the above remarks, this can only happen n times. The

other m — n segments must therefore satisfy ;N BPQ,, = 0. -

We can think of a random w € W as being generated, segment by segment,
as follows: Conditioned on everything so far, pick random values for the vari-

ables in the next segment. In fact, in each segment, we pick a random € € Agiy

8 CRYPTOGRAPHIC LOWER BOUNDS. 31

(recall randomy,, is fixed).

Furthermore, we can think of a random e € Agéi as being generated as
follows: Let b be the probability that a random e € Agi:p‘ has no intersection
with BPQ, ;. Flip a coin of bias b. If heads, then pick a random e € Agél given
that e N BPQ,; = 0. If tails, pick arandome € Agé. given that e BPQ,; # 0.

The above claim tells us that there are at least m — n segments where
F.:NBPQ.; = 0. Therefore, in the generation of each world situation there
are m — n segments where the coin comes up heads. In each of these segments,
we pick a random € € Ag;l conditioned on e,; N BPQ,; = §. By inequality 1,
we conclude that in each w € P,, there are m — n segments where we have a
greater than 5;/2n chance of finding g¢,4,. The proportion of P, where we fail
to find ¢,41is therefore bounded by (1 — §;/2n)™"".

We now calculate, using the fact that (1 — 1/z)* < 1/e. Alsom —n >
2(n/S)1n(2n/S)).

S
(1"'2;

_ (1o SEy”
= (a-50%)

12
<()"F
€
_3
" 2n

We conclude that a 1 — §;/2n portion of P, satisfies condition 3. Recall,

2
pERS

s
3

|

U

!

Py accounts for no more than a S;/2n portion of W, and all of P; satisfies
conditions 1 or 2. Therefore, at least a 1 — S; portion of W satisfies conditions
1,2, or 3. This yields the desired result.

Theorem 8.2 Theorem 8.1 is irue relative to a random permutation oracle:

8 CRYPTOGRAPHIC LOWER BOUNDS. 32

Given any secret-key agreement protocol and a random permutation oracle, the

probability that Eve finds all the intersection queries is greater than 1 — S;/2.

Proof: Assumenot. We will construct a tester to distinguish between a random
function oracle and a random permutation oracle. We start with a protocol
where Eve will find all the intersection queries with probability less than 1—5,/2
if a random permutation oracle is used, and probability greater than 1 — S, if a
random function oracle is used. A tester can simulate runs of Alice, Bob, and
Eve, counting the fraction of times Eve finds all the intersection queries. The
essence of the situation is that the tester is flipping a coin with two possible
biases: 1 — 5;/2 and 1 — Si; the tester must guess which. If the tester flips the
coin 1/ S;? times, even a very weak form of the law of large numbers would tell
us that Eve can guess the bias of the coin at least 99% of the time. This very

strongly contradicts theorem 7.1. .

Notice the order of the quantifiers in the above result. We picked the pro-
tocol between Alice and Bob, then we picked the oracle (since the protocol is
bound by definition to work with a random oracle). Then, we showed Eve can
break the protocol. We prove a stronger result which reverses the quantifiers.
First, we pick a random oracle; then a protocol for Alice and Bob (this time
the protocol need not work properly on other oracles). Then, we show that Eve

can break the protocol relative to the chosen oracle.

Theorem 8.3 P = NP== relative to a random permutation oracle. any se-

cret key agreement scheme can be broken.

Proof: First, we argue that for every secret-key agreement protocol, there are
only measure zero of oracles where it can’t be broken. Fix a protocol. The

P = NP assumption allows us to use Eve’s algorithm as before. Choose S; =

8 CRYPTOGRAPHIC LOWER BOUNDS. 33

1/1**¢. Theorem 8.1 tells us that in 1 - 5;/2 of world situations we succeed in
breaking the protocol. By the pigeon-hole principle, for each length I, there are
1- \/ST/E oracles relative to which thereisa 1 — \/E-/—Z chance of Eve breaking
the protocol. Call all such oracles good for length I. The probability that a
random oracle fails to be good for length [is \/?/2 Y2 \/—51—/2 converges; by
the Borel-Cantelli lemma, measure one of oracles are good on all but finitely
many lengths. For measure one of the oracles, past some length, Eve has a
1- \/.r/‘l chance of breaking the protocol. (We can even non-uniformly boost
Eve’s ability to break protocols for finitely many lengths.) Thus, there are only
measure zero oracles where the protocol can’t be broken.

For each of the countably many protocols we throw out the measure zero of
oracles where the protocol is secure. We have thrown out measure zero in all.
Every protocol can be broken relative to the measure one of remaining oracles.

Corollary 8.1 There ezists an oracle relative to which a strongly one-way per-

mutation ezists, but secure secret-key agreement is impossible.

Proof: Consider any oracle world where P = NP. Add a random permutation
oracle to this world. Because all the techniques in our theorem relativize, we
can conclude that secure secret-key agreement is not possible in the resulting
world.

Construct an example of such an oracle as follows: The even numbers form
an oracle for PSPACE (a PSPACE-complete problem), the odd numbers form
a random permutation oracle. P = NP relative to a PSPACE-complete oracle.

We know the random permutation is one-way in the strongest possible sense.

B

8§ CRYPTOGRAPHIC LOWER BOUNDS. 34

The only other relativized result that I know in cryptography is
Brassard[Bra83, Bra]. He explicitly constructs an oracle where secret-key agree-
ment is possible.

So far, our sense of breaking a secret key agreement consists of finding a
polynomial-sized list with the secret on it somewhere. The strongest sense of
breaking secret key agreement is clearly to find the secret itself. We show how
to extend Eve to actually find the secret. For the same reasons as before, the ar-
gument works equally well with both random oracles and random permutation
oracles.

Eve’s strategy can be extended as follows: Eve's final round will be her
simulation of the n — 1th round of the protocol. In each segment of her final
round, Eve records her last query to the oracle. (Recall that the last query
to the oracle should be thought of as the secret.) Of the final queries Eve has
recorded, she outputs the one which occurs the majority of the time. (If there
is no majority, output “failure”.)

Theorem 8.4 Suppose that Alice and Bob agree on a secret with probability at
least 1 — a over world situations in WS,. Then, for every 6 > 0, there ezists

an Eve who can guess the secret with probability at least 1 — a(2+6) over world

sttuations in WS,.

Proof: Without loss of generality, assume Alice asks her final query (the secret)
in round n —1; then Bob asks his final query (the secret) in round n. The proof
hinges on two inequalities. The first is the formal statement of what we are

assuming:
PROByews,[Alice and Bob agree on a secret 121 -

The second is a consequence of Theorem 8.1: if no intersection queries were

8 CRYPTOGRAPHIC LOWER BOUNDS. 35

missed, then Alice could not make an unanticipated intersection query in her

final round.
PROBuews [AY_ [\BPQY_,; # 01 < S,

We abbreviate the expression of two events: FINDSECRETY iff in the ith
segment of the last round of Eve’s simulation in world situation w, Eve's last
query is the secret. ASKBPQY iff in the ith segement of the last round of Eve’s
simulation in world situation w, Eve asks a query in BPQ,,_;;. NOTASKBPQV
is the complementary event.

Fix a segment :. We will lower bound the following quantity in a four step

calculation:

PROB,ews,[FINDSECRETY" or ASKBPQY]
> PROB,cws,[FINDSECRETY | NOTASK BPQ¥]

= PROByews,[Alice and Bob agree on a secret | AY_, [|BPQY_,; # 0]

n-1,
(Partition WS, according to randompog, Cn-1, En_14, and BPQ._,., and
apply claim 2 of lemma 8.1 to each block. Alice and Bob will agree on the
secret iff ¢,41 € AY_,.)

> PROB,ews,[Alice and Bob agree on a secret]—

PROB.ews,[A*_;NBPQY_, , # 0]

>1—a -5

Thus, for any segement :, PROByews,|[FINDSECRET” or ASKBPQY¥] >
1—a;—S;. By the pigeonhole principle, there is a 1 — (a; + $)((2 — ¢€) fraction
of world situations where a 1/((2— €) fraction of the segments of the final round
satisty FINDSECRETY” or ASKBPQ¥. By Claim 3 of lemma 8.1, the frac-
tion of segments of any round of any world situation which satisfy AS KBPQY
is smaller than n/m. As [l increases, n/m is smaller than any constant. There-

fore, thereisa 1—(a;+5)((2—¢) fraction of world situations where the majority

8 CRYPTOGRAPHIC LOWER BOUNDS. 36

of segments of the final round find the secret. By choosing sufficiently small S,

and ¢, Eve can guess the secret with probability at least 1 — (2 +6). =

8.8 Related results.

A result similar to theorem 8.4 is claimed by Judit Bar-ilan and Michael Ben-or,
however, I am unable to understand their proof.

Merkle[Mer78] has shown that relative to a random oracle there is a secret-
key agreement protocol where Alice and Bob can agree on a secret in time n.
but Eve requires O(n?) time to break it. Choosing S; = 1/100 in theorem 8.4,
we see that Eve can break any protocol in time O(n®lnn). (Bar-ilan, Ben-or

claim the tight result that Eve can break any protocol in time O(n?).)

9 RANDOM FUNCTIONS VS. ONE-WAY PERMUTATIONS. 37

9 Random functions vs. one-way permutations.

9.1 Introduction

Two natural objects in cryptography are one-way functions and one-way permu-
tations. We address the question: Assuming the existence of one-way functions,
can one prove the existence of one-way permutations? We wish to answer this
question in the negative, using the formal strategy developed in earlier sections.

Once again, we model a one-way function by a random function (oracle).
We wish to show: If one can prove a one-way permutation exists in a random
world, then one can prove P # NP. Formally, P = NP implies there are no
one-way permutations in a random world. However, we are unable to prove
a combinatorial conjecture which is key to obtaining this result. Therefore,
we present the theorem that the conjecture implies the desired result. The
conjecture itself, though resistant to proof, is quite plausible.

Some earlier work of Blum[BI87], Hartmanis and Hemachandra[HHS87], and
Tardos[Tar] shows that P = NP implies no oracle PPTM computes a one-
way permutation on all oracles. We can interpret their result as saying that a
uniform efficient method of constructing a one-way permutation from a random
(one-way) function would prove P 74 NP. This does not rule out standard
non-uniform constructions. (For example, one could imagine using a one-way
function to construct a one-way function which computed a permutation on
all but finitely many lengths; then concluding that a finite modification of the
function would produce the desired one-way permutation.) Our target result
rules out these constructions by arguing that (assuming P = NP) for most
oracles no machine computes a one-way permutation. Furthermore, our result
implies the existence of an oracle where one-way functions exist, but one-way

permutations do not.

9 RANDOM FUNCTIONS VS. ONE-WAY PERMUTATIONS. 38

9.2 The combinatorial conjecture.

Let V be a set of variables, i.e., V = {w,z,y,2,...}. Let T be a set of conjunc-
tive terms over the variables in V, i;j, T = {zyz,wz,7%,...}. Forevery SC T,
Ps = the probability over uniformly chosen assignments to the variables in V
that at least one term in S is satisfied. (A random assignment can be thought
of as flipping a fair coin for each variable.) Us = the probability over random
assignments to variables in V' that ezactly one term of S is satisfied. For every
teem t € T, N(t) = {t’ € T : t' has a variable in common with ¢.}. (z and
T are considered the same variable.) N(t) can be thought of as {¢} union the

neighbor set of ¢ in the graph whose nodes are the elements of T placing an

edge between two nodes iff they have a variable in common.
Examples:

Let V = {z1,22,23,...,Z10f. Let T be the set of all 10 variable terms.
There are 2'° such terms. Pr = Ur = 1. For every t € T, Py = Uy = 1/210
Foreveryte T, N(t)=T.

Let V, = {z1,22,23,...,Za2n}. Let T, be a set of 2" disjoint n-variable

terms: {Z1T2Z3... Zn;, Tnt1Tns2Tn43 - T2nye ey +vvs Tnomons1Zn2n—ne2Zn2mongd - - - Tpon }.

limpaoo Pr, =1 —(1/€). limn_oo Uz, = 1/€. Forevery t € T, N(¢t) = {t}.

Conjecture: 3¢,6 > 0s.t. VT, Ur >1 - ¢ = 3t € T such that Py > 6.

9.3 Definitions and notation.

A non-deterministic polynomial-time oracle machine M with oracle O is an
NP coNP machine if on each input M has either an accepting path or
a rejecting path, but not both (although it might have many of either kind).

Notice that a machine might be NP N coN P for one oracle, but not for another.

9 RANDOM FUNCTIONS VS. ONE-WAY PERMUTATIONS. 39

L§, is the language accepted by such a machine on oracle 0. Query complezity
is a measure of complexity where we only count the number of queries to the
oracle. The class QP? contains all languages L§, where M is a deterministic

machine asking only polynomial many queries to O on each input.

9.4 Prior work

The techniques we will be using are inspired by the next theorem. This theorem

was discovered independently by Blum([BI87], Hartmanis and Hemachandra[HH87),

and Tardos|Tar].

Theorem 9.1 Let M be an NP\ coNP machine on all oracles. LG € QP°

for all oracles O.

Proof: We will show how to decide “z € LE,?” for any z on any oracle O. First
some notation and an observation. Let E be any finite set of oracle queries and
answers. For each oracle there is at least one poly-sized subset of oracle queries
and answers which would cause M to accept or reject z. Let Yz be the set
of all such subsets which cause M to accept z on some oracle consistent with
E. Let Ng be the set of all such subsets which cause M to reject = on some
oracle consistent with E. Now for the critical observation: Any y € Y¢ and any
n € Ng have a query in common which is not contained in E. (If not, we can
build an oracle consistent with the queries and answers in both y and n. M(z)
is not well defined on this oracle, contradicting our assumption.)

Now for the algorithm. At any point in the algorithm, E will denote the
finite set of query answer pairs we have gotten from asking queries of O. (E
starts as the empty set.) We terminate when Yz = 0 or Ng = §; In particular,
if Ye = 0 then the answer to “z € L$?” must be no (and vice-versa). As

long as the termination conditions are not met, we proceed as follows: Pick any

9 RANDOM FUNCTIONS VS. ONE-WAY PERMUTATIONS. 40

y € Ye. Ask O all the queries mentioned in y.(Update E.) Repeat.

We argue that the algorithm terminates after poly many queries. Each
time we ask the queries in y, we ask only poly many queries. By our critical
observation, each time we ask the queries in y, we reduce the number of unasked
(not in E) queries in each element n € Ng. Therefore, if we do poly many
reductions without termination, there is an n € Ng all of whose queries are
in E. Again by our critical observation, this implies Yz = @, which causes

termination. n

Corollary 9.1 Let M be an NP\ coNP machine on all oracles. P = NP=>
L§, € P° for all oracles O.

Proof: P = NP implies that we can pick an element of Yg or decide it is empty
in polynomial time: The questiori “Does M have an accepting path whose oracle

query answers are consistent with E?” is in N P. Use self-reducibility to actually

find a path. if one exists. n

Corollary 9.2 Let Il be an oracle PPTMwhich for every oracle and every n
computes a permutation from n-bit strings to n-bit strings. P = NP= II"! is

polynomial time computable relative to all oracles.

Proof: There clearly exists an NP () coNP machine which inverts II on all

oracles. =

This last corollary already shows that it would be very hard to construct a
polynomial time machine which takes any one-way function (a random oracle)

and uses it to compute a one-way permutation. We are interested in the stronger

EZE

9 RANDOM FUNCTIONS VS. ONE-WAY PERMUTATIONS. 41

result that it would be hard to prove a one-way permutation exists given that a
one-way function exists. A proof might be non-uniform. For example, a proof
might produce a one-way function which is a permutation on all but finitely
many lengths, and then conclude a one-way permutation exists.

Thus, we are motivated to prove the a stronger version of the above result.
We wish to show P = NP implies that there are no one-way permutations
relative to a random oracle.

If we assume to the contrary that there are one-way permutations in a ran-
dom world, then there must be some oracle PPTM which computes a one-way
permutation in some positive measure ¢ of worlds. (There are only countably
many oracle PPTMs, if they all computed a one-way permutation on a mea-
sure zero of oracles, then almost all oracles would have no machine computing a
one-way permutation.) Let M be an oracle PPTM which computes a one-way
permutation on a positive measure of oracles. By the Lebesgue Density Theo-
rem, we can make a machine M’ which has a finite number of oracle answers
hardwired, and computes a one-way permutation on 1 — § of oracles (For any
6 > 0 we choose).

The above theorem says that, if P = NP, there is no M’ for which § = 0.
To contradict our assumption that there are one-way permutations in a random

world, we need to prove the same result for some § > 0.

9.5 Applying the conjecture.

Assume the conjecture is true. There are particular constants €,6 which make
it work. Rename é as 8. Pick an a < es.t. /a < 3. Thus, a, 8 still work as
constants in the conjecture and /a < 8.

Theorem 9.2 (Assuming conjecture) IfII is an oracle PPTA which com-

putes a permutation on 1—a oracles, then there is a polynomial query complezity

9 RANDOM FUNCTIONS VS. ONE-WAY PERMUTATIONS. 42

algorithm which, for each z, will compute II-}(z) on 1 — \/a oracles.

Proof: Fix an z. Let E be any finite set of oracle queriés and answers. A
proof that II(y) = z for some oracle O is the pair < y, the set of queries and
answers II asks O during the computation>. If an oracle agrees with the query
answer pairs contained in a proof, it is said to be consistent with that proof.
Let Tg be the set of proofs that II(y) = z with some oracle consistent with E
where all the query answer pairs in E are deleted from the proofs. Notice that if
each possible query is considered as a variable, then each query answer pair can
be considered as a variable or the negation of that variable. Furthermore, the
query answer part of each proof can be considered a term (as in conjecture).
Observe, each oracle on which II computes a permutation is consistent with
only one proof in Ty. Therefore, Uz, > 1 — . Call an oracle good if there is
exactly one proof in Ty which is consistent with that oracle. Otherwise, call an
oracle bad. Consider any decision tree for asking oracle queries. A node of the
tree is bad if it is the first node along its path from the root such that the set
E of oracle queries and answers learned so far has the property Urp, < 1= /a.
The critical observation is that at most a \/a fraction of oracles will cause us to
hit a bad node in the decision tree. (At least a 1/a fraction of oracles which hit
a particular bad node are bad oracles. No oracle hits two bad nodes. Thus, if
there were more than a /a fraction of oracles which hit a bad node, we would
contradict the fact that there is less than an a fraction of bad oracles.)

Now for the algorithm. At any point in the algorithm, F will denote the
finite set of query answer pairs we have gotten from asking queries of 0. (E
starts as the empty set.) Notice that the proofs in T contain only queries we
have not asked so far. We proceed as follows: If Tt is a singleton, output the
indicated y such that II(y) = z. If Ur, <1 - /&, output “failure”. Otherwise,
pick a proof p such that Py, > . Ask O all the queries in p. (Update E.)

9 RANDOM FUNCTIONS VS. ONE-WAY PERMUTATIONS. 43

Repeat.

By the conjecture, as long as we have Ur, > 1 — y/a, there will be a proof
p such that Py;) > f. By the critical observation, only a y/a fraction of
oracles will ever cause our algorithm (decision tree) to reach a state where
Ur, £ 1-+/a. Thus, our algorithm will output “failure” on at most a /a
fraction of oracles.

We will argue that the number of proofs asked is no more than a polynomial.
Define Qg as follows: Average the contribution over all oracles, where each
oracle not consistent with E contributes zero, each bad oracle contributes zero,
and each good oracle consistent with E contributes the number of queries in
its unique proof but not in E. Because no proof is longer than poly(||z]),
Qo < poly(]|z]|). Observe, if we reach a stage where Qg = 0, the algorithm will
terminate. Each time the algorithm asks a proof p, we know two properties:
Pny) > B and Uy, > 1—+/a. Therefore, we decrease Qg by at least §—+/a: Of
the oracles consistent with E, at least # of them intersect p in at least one query
(none of which are in E); at most v/a of those oracles are bad. Therefore, the

number of stages we can have without termination is bounded by poly/(8—/@).

Theorem 9.3 (Assuming conjecture) P = NP=> IfIl is an oracle PPTM
which computes a permutation on 1 — a oracles, then there 1s a polynomial time

algorithm which, for each z, will compute II71(z) on 1 — \/a oracles.

Proof: Each time the above algorithm picks a proof p such that Pyg) > 8,2
polynomial time algorithm can choose a proof p in Tg such that Py, > 8/2:
Approximate counting is in the polynomial time hierarchy[Sto83], and hence

in P (Recall we assume P = NP). Thus, there is a polynomial time predicate

9 RANDOM FUNCTIONS VS. ONE-WAY PERMUTATIONS. 44

that will say “yes” to all p such that Py, > $, and will say “no” to all p such
that Py(;) < B/2. Using self-reducibility, we can find a proof which satisfies
this predicate. (One must exist since there is a p such that Prnpy > B.)

Assuming a was chosen sufficiently small that /2 > /a, we will only
repeat this selection process poly/(8/2 — \/a) times (argue as above). Thus,
we require only polynomial time in all.

If we come to a stage where there is no p which satisfies our predicate then
the above algorithm must have output “failure”. In this case, the polynomial

time algorithm should also output “failure”. =

Theorem 9.4 (Assuming conjecture) P = NP== there is no one-way

permutation relative to a random oracle.

Proof: Assume not. Pick a A < .min(1/16,a). By the remarks at the end of
section 9.4, there is a II which computes a one-way permutation on a 1 — A
fraction of oracles. The polynomial time algorithm above will invert II on any
given input for all but a v/ fraction of oracles. By the pigeonhole principle,
there are 1 — \/ﬁ oracles for which the are infinitely many n where II will
be inverted on all but a \/7X fraction of inputs of length n. This violates
the definition of one-way permutation given in section 4.2. Thus, we have a

contradiction when VX +\/v/X < 1. This is guaranteed by A<1/16. =

Corollary 9.3 (Assuming conjecture) There ezists an oracle relative to which

one-way functions ezist, but one-way permutations do not.

Proof: Construct the oracle as follows: The even numbers form an oracle for

PSPACE, the odd numbers form a random oracle. To see this oracle works,

10 CONCLUSIONS. 45

mimic the proof of Corollary 8.1. [

10 Conclusions.

Previous results in cryptography had the form: From assumption X we are
able to prove Y. We have introduced a strategy for obtaining a new type
of result; we explain why certain assumptions are not sufficient to obtain a
desired consequence. In particular, we have studied two problems which have
frequently frustrated researchers in cryptography. Assuming our conjecture is
correct, we have given evidence that the existence of one-way function is not a
sufficently powerful assumption from which to prove the existence of a one-way
permutation. Moreover, we have given evidence that a one-way permutation
is not a sufficiently strong assumption from which to prove the existence of a
secure secret key agreement protocol. We have observed that this last result

has many natural similar corollaries.

REFERENCES 46

References

[ADSE6]

(AHU74)

(BCCST]

[Ben87)

(BGS1]

[BIS7]

(Blu81]

[Blug2]

D. Aldous and P. Diaconis. Strong uniform times and finite random
walks. Technical Report 39, Department of Statistics, Berkeley, Feb
1986.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, MA, 1974.

G. Brassard, D. Chaum, and C. Crepeau. Minimum disclosure
proofs of knowledge. Technical Report PM-R8710, Centre for Math-

ematics and Computer Science, Amsterdam, The Netherlands, 1987.

J. Cohen Benaloh. Verifiable Secret-Ballot Elections. PhD thesis,
Yale University, Sept 1987. YALEU/DCS/TR-561.

C.H. Bennett and J. Gill. Relative to a random oracle A, P4 #
NP# # co-NP* with probability 1. Siam Journal of Computing,
10:96-113, 1981.

M. Blum and R. Impagliazzo. Generic oracles and oracle classes.
In Proceedings of the 25th Annual Symposium on Foundations of
Computer Science, 1987.

M. Blum. Three applications of the oblivious transfer: Part i: Coin
flipping by telephone; part ii: How to exchange secrets; part iii: How
to send certified electronic mail. Department of EECS, University

of California, Berkeley, CA, 1981.

M. Blum. Coin flipping by telephone: A protocol for solving impos-
sible problems. In Proceedings of the 2/th IEEE Computer Confer-

REFERENCES 47

[Bra]

[Bra81]

[Bra83]

[CKS81)

[DHT76)

[Fel68]

[FS86]

[GMW87)

ence (CompCon), pages 133-137, 1982. reprinted in SIGACT News,
vol. 13, no. 1, 1983, pp. 23-27.

G. Brassard. An optimally secure relativized cryptosystem. Ad-
vances in Cryptography, a Report on CRYPTO 81, Technical Re-
port no. 82-04, Department of ECE, University of California, Santa
Barbara, CA, 1982, pp. 54-58; reprinted in SIGACT News vol. 15,
no. 1, 1983, pp. 28-33.

G. Brassard. A time-luck tradeoff in relativized cryptography. Jour-

nal of Computer and System Sciences, 22:280-311, 1981.

G. Brassard. Relativized cryptography. JEEE Transactions on In-
formation Theory, IT-19:877-894, 1983.

A K. Chandra, D. Kozen, and L. Stockmeyer. Alternation. JACM,
28:114-133, 1981.

W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22:644-654. 1976.

William Feller. An Introduction to Probability Theory and Its Ap-

plications, volume I. John Wiley & Sons, New York, third edition,
1968.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Proceedings of Advances

in Cryptography. CRYPTO, 1986.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental

game or a completeness theorem for proto cols with honest major-

REFERENCES 48

(HHS7]

[1Y87]

[IVVss)

[LRS6]

[Mer78]

[Nao]
Y]

[Rab81]

[Sip83]

ity. In Proceedings of the 19th Annual Symposium on Theory of
Computing. ACM, 1987.

J. Hartmanis and L.A. Hemachandra. One-way functions, robust-

ness, and the non-isomorphism of np-complete sets. Cornell Univer-

sity DCS TR86-796, 1987.

R. Impagliazzo and M. Yung. Direct minimum-knowledge computa-

tions. In Proceedings of Advances in Cryptography. CRYPTO, 1987.

Mark Jerrum, Leslie Valiant, and Vijay Vazirani. Random genera-
tion of combinatorial structures from a uniform distribution. Theo-

retical Computer Science, 43:169-188, 1986.

M. Luby and C. Rackoff. How to construct pseudo-random permu-
tations from pseudo-raridom functions. In Proceedings of the Eigh-

teenth Annual ACM Symposium on Theory of Computing, 1986.

R. C. Merkle. Secure communications over insecure channels.

CACM, 21(4):294-299, April 1978.
M. Naor. Personal communication.
M. Naor and M. Yung. Personal communication.

M. O. Rabin. How to exchange secrets by oblivious transfer. Tech-

nical Report TR-81, Harvard University, 1981.

Michael Sipser. Lecture notes in complexity theory. Manuscript,

MIT, 1985.

REFERENCES 49

[Sto83] L. Stocmeyer. The complexity of approximate counting. In Pro-

ceedings of the 15th Annual Symposium on Theory of Compu ting.
ACM, 1983.

[Tar] Gabor Tardos. Query complexity, or why is it difficult to separate
NP#NcoNP# from P4 by random oracles A? Manuscript. Eotvos

University, Budapest.

[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Pro-

ceedings of the 23rd Annual Symposium on Foundations of Computer

Science, pages 80-91. IEEE, 1982.

