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Abstract

Write-invalidate and write-broadcast coherency protocols have been criticized for being unable to
achieve good bus performance across all cache configurations. In particular, write-invalidate performance
can suffer as block size increases; and large cache sizes will hurt write-broadcast. Read-broadcast and
competitive snooping extensions to the protocols have been proposed to solve each problem.

Our results indicate that the benefits of the extensions are limited. Read-broadcast reduces the
number of invalidation misses, but at a high cost in processor lockout from the cache. The net effect can
be an increase in total execution cycles. Competitive snooping benefits only those programs with high per
processor locality of reference to shared data. For programs characterized by inter-processor contention
for shared addresses, competitive snooping can degrade performance by causing a slight increase in bus
utilization and total execution time.






1. Introduction

Snooping cache coherency protocols [Arch86] are a good match for bus-based, shared memory mul-
tiprocessors, because they take advantage of the broadcast capabilities of the single interconnect. Within
the snooping coherency category, two approaches to maintaining coherency, write-invalidate and write-
broadcast, have been developed. In write-invalidate a processor invalidates all other cached copies of
shared data and can then update its own without further bus operations. Under write-broadcast, a processor

broadcasts updates to shared data to other caches, so that all processors always have the most current value.

Both techniques have been criticized for being unable to achieve good bus performance across all
cache configurations. In particular, write-invalidate performance can suffer as block size increases because
of inter-processor contention for addresses within the cache block; and large cache sizes will hurt write-
broadcast, because of continued bus updates to data that remains in the cache but is no longer activity

shared.

Enhancements to the original protocols have been proposed to solve each problem. A read broadcast
extension [Good88, Sega84] to write-invalidate reduces the number of misses for invalidated data by allow-
ing all caches with invalidated blocks to receive new data when any of them issues a read request. It
should therefore improve both the miss ratio and bus utilization of write-invalidate. The competitive
snooping protocol [Karl86] was designed to limit the number of broadcasts in write-broadcast. It therefore

puts a cap on the performance loss caused by large caches.

The goal of this paper is twofold: first, to measure the performance problems in the write-invalidate
and write-broadcast protocols, as block or cache size increases; and second, to gauge the extent to which
the read-broadcast and competitive snooping extensions solve each problem. All studies were done via
trace-driven simulation of parallel applications. Our results have found that read-broadcast reduces the
number of invalidation misses, but at a high cost in processor lockout from the cache. The net effect can
be an increase in total execution cycles. Competitive snooping benefits only those programs with high per
processor locality of reference to shared data. For programs characterized by inter-processor contention
for shared addresses, competitive snooping can degrade performance by causing a slight increase in bus

utilization and total execution time.



We have used trace-driven simulation of parallel programs in two other studies. In [Egge88a] trace-
driven analysis verified a model of coherency overhead in write-invalidate and write-broadcast protocols.
[Egge88b] studies the effects of increasing block and cache size on the cache and bus behavior of parallel
programs running under write-invalidate protocols. A summai of the block size results from that paper is

the basis for the evaluation of write-invalidate protocols in this work.

The remainder of this paper begins with a brief description of the methodology. The two companion
protocol studies follow. Each begins with a description of the original protocol and empirical evidence of
the performance loss caused by increasing block or cache size. Then the protocol extensions are described,
and the extent to which they improve performance is measured. Section 3 reviews write-invalidate proto-
cols and the effects of increasing block size on miss ratio and bus utilization studied in [Egge88b]. Section
4 presents the read-broadcast extension and its benefits and costs to both performance and cache controller
implementation. Write-broadcast and the effects of increasing cache size on bus traffic is covered in sec-
tion 5. Section 6 discusses the competitive snooping alternative. And the last section briefly summarizes

the results.

2. Methodology and Workload

We used trace-driven simulation in our analysis. Our simulator emulates a simple shared memory
architecture, in which a modest number of processors (five to twelve) are connected on a single bus. The
CPU architecture is RISC-like [Patt85], assuming one cycle per instruction execution. With the exception
of those cache parameters that are varied in the studies (cache size, block size and coherency protocol), the
memory system architecture is roughly that of the SPUR multiprocessor [Hill86]. The simulator’s board-
level cache is direct mapped, with one-cycle reads and two-cycle writes. Its cache controller implements
in-cache address translation [Wood86], segment-based addressing, no fetch-bypass on reads, a test-and-
test-and-set sequence for securing locks [Wood87), and mény of the timing constraints of the actual SPUR
implementation. Bus activity is implemented using a modified NuBus arbitration protocol [Gibs88], and

bus contention is accurately modeled.

The inputs to the simulator are traces gathered from four parallel CAD programs, developed for

single-bus, shared memory multiprocessors (Table 2-1). The choice of application area was deliberate, so
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that the workload being analyzed was appropriate for the underlying architecture. One program is produc-
tion quality (SPICE); the others are research prototypes. Two of the programs are based on simulated
annealing algorithtms. CELL [Caso86) uses a modified simulated annealing algorithm for IC design cell
placement, and placed twenty-three cells in our trace. TOPOPT [Deva87] does topological compaction of
MOS circuits, using dynamic windowing and partitioning techniques. Its input was a technology indepen-
dent multi-level logic circuit. VERIFY [Ma87] is a combinational logic verification program, which com-
pares two different circuit implementations to determine whether they are functionally (Boolean)
equivalent. The final program, SPICE [McGr86], is a circuit simulator; it is a parallel version of the origi-

nal direct method approach, and its input was a chain of 64 inverters.

All applications use the same programming paradigm for carrying out parallel activities. The granu-
larity of parallelism is a process, in this case one for each processor in the simulation. The model of execu-
tion is single-program-multiple-data, with each process independently executing identical code on a dif-
ferent portion of shared data. The shared data is divided into units that are placed on a logical queue in
shared memory. Each process takes a unit of work from the queue, computes on it, writes results, and then

returns the unit of work to the end of the queue.

The traces were generated on a per-processor basis. The number of processors in the simulations is

identical to the number of processors used in trace generation. For SPICE this number is 5, and for the

Parallel Applications
Trace Name Architecture, Program Description Number of
Operating System Processors
CELL Sequent Balance, Unix simulated annealing algorithm 12
for cell placement
TOPOPT " Sequent Balance, Unix simulated annealing algorithm 11
for topological optimization
VERIFY Sequent Balance, Unix logic verification 12
SPICE [ ELXSI 6400, Embos direct method circuit simulator 5

Table 2-1: Traces Used in the Simuiations

The traces used in the sharing simulations were gathered from paralle]l programs that were written for shared memory
multiprocessors. The programs are all "real”, being either production quality (SPICE) or research prototypes.




Sequent traces either 11 or 12. Each per-processor trace is a separate input stream to the simulator. Syn-
chronization among the streams depends on the use of locks and barriers in the programs, and is handled
directly by the simulator. Statistics are generated from approximately 300K references per processor, after

steady state has been reached. (See [Egge88a) for a more detailed discussion of the methodology.)

3. The Write-Invalidate Protocols

3.1. Protocol Description

Write-invalidate protocols maintain coherency by requiring a writing processor to invalidate all other
cached copies of the data before updating its own. It can then perform the current update, and any subse-
quent updates (provided there are no intervening accesses by other processors) without either violating
coherency or further utilizing the bus. The invalidation is carried out via an invalidating bus operation.
Caches of other processors monitor the bus through the snoop portion of their cache controllers. When

they detect an address match, they invalidate the entire cache block containing the address.

Berkeley Ownership [Katz85] is a write-invalidate protocol that has been implemented in the SPUR
multiprocessor [Hill86]. It is based on the concept of cache block ownership. A cache obtains exclusive
ownership of a block via two invalidating bus transactions. One is used on cache write misses and obtains
the block for the requesting processor, at the same time it invalidates copies in other caches. The second is
an isolated invalidation signal and is used on cache write hits. Once ownership has been obtained, the
cache can update a block locally without initiating additional bus transfers. A block owner also updates
main memory on block replacement and provides data to other caches upon request. Cache-to-cache

transfers are done in one bus transfer, with no memory update.

Write-invalidate protocols have two sources of bus-related coherency overhead. The first is the
invalidation signal mentioned above. The second is the cache misses that occur when processors need to
rereference invalidated data. These misses, called invalidatic;n misses, would not have occurred had there
been no sharing. They are present because the shared data had previously been written, and therefore
invalidated, by another processor. They are additional to the customary, uniprocessor misses (for example,

first-reference misses and those necessitated by block replacements).



3.2. The Write-Invalidate Trouble Spot

Because they create a data writer that can access a shared block without using the bus, we expect
write-invalidate protocols to minimize the overhead of maintaining cache coherency in two cases: when
there are multiple consecutive writes to a block by a single processor, and when there is little inter-
processor contention for the shared data. Periods of severe contention, however, will cause coherency
overhead to rise. Inter-processor contention for an address produces more invalidations; the invalidations
interrupt all processors’ use of the data and increase the number of invalidation misses to get it back. Th.e
result is that shared data pingpongs among the caches, with each processor’s references causing aglditional

coherency-rclated bus operations. The greater the number of processors contending for an address, the

more frequent the pingponging.

The problem is exacerbated by a large block size, because contention can occur for any of the
addresses in the block. The situation can occur for both writers and readers of shared data. Alternating
writes by different processors to different words within a block produce separate invalidations for each
write (see Figure 3-1). The invalidations are responsible for a subsequent rise in invalidation misses. The
invalidation misses occur each time a processor rereads any word in the block; the overhead is paid even
when the processor reads an address that was not updated. Reads by different processors to the words
within an invalidated block also contribute to the rise in invalidation misses (see Figure 3-2). An invalida-
tion to one word in a block also causes all other words to be invalidated;A when other processors subse-
quently reread these addresses, additional read misses are incurred. With small block sizes, particularly

those of only one word, a write to one address has less effect on reads to another.

3.3. Empirical Evidence for the Trouble Spot Analysis

[Egge88b] studied the effect on both miss ratio and bus utilization of increasing block size and cache
size under write-invalidate protocols. The results quantify the loss in performance due to invalidations and
invalidation misses. In particular, they support the above analysis conceming the adverse effects of con-

tention, as block size increases.

Parallel programs, with or without contention, suffer from coherency overhead. Unlike uniprocessor

misses [Agar88, Alex86, Good87, Hill87, Smit87], invalidation misses react less favorably to increasing
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Figure 3-1: Intra-block Write Contention

This illustration of intra-block contention depicts the effects of multiple processor write activity for some addresses in a
block on others. In the one-word block, the writes to addresses B through D do not affect reads to A; in the four-word
block they cause invalidation misses for each reread, because they invalidate the entire block. In addition, if it is
known in the one-word block example that the writing processor has the only cached copy of the data, invalidation sig-
nals need not be issued. (The arrows in both examples all move in the direction of time.)
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Figure 3-2: Intra-block Read Contention

This diagram of intra-block contention demonstrates multiple processor read contention for different addresses within a
block. For large block sizes, the contention causes additional invalidation misses. With the one-word block, the invali-
dation misses become cache hits. (The arrows in both examples all move in the direction of time.)

block size. [Egge88b] found that the proportion of invalidation misses to total misses actually increased
with larger block sizes. The proportions grow from .32 to .37 for CELL, .14 to .30 for SPICE, .06 to .51
for VERIFY and .39 to .94 for TOPOPT, as block size is increased from 4 to 32 bytes. For programs
without contention (CELL and SPICE), total miss ratios were higher than for comparable uniprocessor pro-

grams and declined with increasing block size at a slower rate.

The effect on programs with contention (TOPOPT and VERIFY) is more severe, Here invalidation
misses increase not only in proportion to total misses, but in absolute numbers as well. (The proportion of
‘invalidation misses for TOPOPT and VERIFY is stated above; the percentage increase in number of misses

was 511 and 840 percent, respectively.) Invalidation miss dominance was so complete that they reversed



the declining miss ratio that normally occurs with uniprocessor programs in caches of this size (128K

bytes).

The additional cache misses increased bus utilization. Moreover, sharing under write-invalidate pro-
tocols introduces another type of bus operation, the invalidation signal, which further increases bus utiliza-
tion. Bus utilization rose 407 and 94 percent for TOPOPT and VERIFY, as block size increased from 4 to
32 bytes. Even for the small-scale multiprocessors studied (12 processors), the bus was well utilized, with
bus utilization figures of 45 and 97 percent, respectively, at the 32 byte block size. (Bus utilization for

CELL and SPICE was comparable to TOPOPT).

4. The Read-Broadcast Extension

4.1. Protocol Description

Since invalidation misses play such a large role in the cache and bus performance of parallel pro-
grams at large block sizes, coherency protocols that can reduce them are desirable. Read-broadcast
[Sega84] is an enhancement to write-invalidate protocols designed explicitly for this purpose. Its snoops
update an invalidated block with data from the bus, whenever they detect a read bus operation for the
block’s address. Detection is positive whenever the tag of the snooped address matches that of a cached
block, and the block state is invalid. The extension adds little complexity to the cache controller hardware.
An examination of the SPUR cache controller implementation”indicates that one additional minterm is
required in the snoop PLA for the detection. Assuming that the snoop can have access to the cache in a
short and bounded amount of time, a buffer large enough to hold the data as it comes from the bus is also
needed. If timely snoop access to the cache cannot be guaranteed, an extra bus lihe is necessary to delay

transmission of the data.

The technique improves the performance of write-invalidate by limiting the number of invalidation
misses to one per invalidation signal. One invalidation miss occurs if the bus operation is a read issued by
a cache with a previously invalidated block. No invalidation misses result when the bus read is a first-
reference or replacement miss. Subsequent rereads by processors that have received data on a read-

broadcast will be a cache hits rather than invalidation misses.



4.2. Read-Broadcast Results

4.2.1. The Benefits to Miss Ratio and Bus Utilization

Rcad-broadcast.reduced the number of invalidation misses. For three of the traces (CELL, TOPOPT
and VERIFY) the drop ranged from 13 to 51 percent, over all block sizes. The decrease for SPICE was
much lower. SPICE data structures had been explicitly sized to the ELXSI 6400 64-byte cache block to
avoid inter-processor contention for addresses within a block. Therefore, for block sizes considered in this
study, up to 32 bytes, little contention was observed; and read-broadcast consequently brought less benefit.

(Exact figures for each trace appear in Table 4-1.)

Because of the decrease in invalidation misses, the proportion of invalidation misses within total
misses also declined. This is important, because uniprocessor misses are more sensitive to increases in
block and cache size than invalidation misses. Therefore, to the extent that misses in parallel programs are
caused by normal cache accesses rather than sharing activity, cache performance will improve as block and
cache sizes increase. At larger block sizes invalidation misses for CELL, TOPOPT and VERIFY dropped
to between a quarter and a third of the total. (Under Berkeley Ownership they had ranged from thirty to
over forty percent.) But for TOPOPT invalidation misses still dominate miss ratio behavior at most block
sizes (at most, 90 percent at 32 bytes). As with the original write-invalidate protocol, the ratio of invalida-

tion to total misses for all traces rose with increasing block size (see Figure 4-1).

For the most part the consequence of the drop in invalidation misses was a decline in the total miss
ratio (see Table 4-1). CELL and TOPOPT had moderate decreases (13.7 to 15.6 percent and 17.2 to 33.8
percent, respectively); VERIFY had a wider range of decrease (1.0 to 19.3 percent). The miss ratio for
SPICE did not decline across all block sizes, and, when it did, the decrease was less. The small increases
occured because the samples in comparative (Berkeley Ownership vs. the read-broadcast extension) simu-
lations covered a slightly different set of references. The difference in samples was caused by the elimina-
tion of invalidation misses from the read-broadcast simulations. Changing invalidation misses to cache hits
allows processors to process references more quickly (than under Berkeley Ownership). The effect is to
slightly alter the set of references executed and the global order in which they are processed under the two

protocols. For SPICE the consequence was a slight rise in the uniprocessor component of the miss ratio for



Comparison of Berkeley Ownership & Read-Broadcast
Trace Blocksize Invalidation Misses Miss Ratio
(bytes)

Berk Read Change | Berk Read Change

Own Bdcast rcent Own | Bdcast | (percent)
CELL 4 22649 | 13566 40.1 193 1.67 13.7
CELL 8 18823 | 11264 40.2 149 1.28 14.1
CELL 16 15040 8942 40.5 1.10 0.93 15.6

CELL 32 11748 7325 37.6 0.86 0.73 14.4.
SPICE 4 6918 6663 37 2.90 2.97 22
SPICE 8 4143 3870 6.6 1.64 1.65 0.2
SPICE 16 3607 3447 44 1.09 1.10 -0.4
SPICE 32 3726 3009 19.2 0.77 0.74 3.4
TOPOPT 4 1890 922 51.2 0.15 0.12 20.1
TOPOPT 8 6117 4706 23.1 0.25 0.20 17.2
TOPOPT 16 8835 6459 26.9 0.30 0.23 232
TOPOPT 32 11556 7385 36.1 0.37 0.25 33.8
VERIFY 4 2441 2062 15.5 142 141 1.0
VERIFY 8 8921 7786 12.7 1.38 1.34 2.6
VERIFY 16 15371 | 11497 25.2 1.40 1.28 9.1
LVERIFY 32 22957 | 13717 40.2 145 1.17 19.4

Table 4-1: Comparison of Invalidation Misses and Miss Ratio for Berkeley Ownership and Read-Broadcast

This table depicts the decline in the number of invalidation misses and the miss ratio that occured with read-broadcast.
The drop in invalidation misses was less pronounced for SPICE, because its shared data had been optimized for a block
size larger than the maximum studied here. This small decline, coupled with a slight rise in uniprocessor misses, pro-
duced rising miss ratios for some block sizes. (All simulations were run with a 128K byte cache; miss ratios are the

geometric mean across all processors.)
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Figure 4-1: Proportion of Invalidation Misses Within Total Misses for Read-Broadcast

Under read-broadcast the ratio of invalidation misses to total misses increases with block size, although the proportions
are lower than with Berkeley Ownership. At larger block sizes the invalidation misses for three of the traces have
dropped to between a quarter and a third of the total; for TOPOPT they still dominate miss ratio behavior. (The
numbers are the geometric mean of the ratio of invalidation to total misses, across all processors.)
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read-broadcast (relative to Berkeley Ownership), which offset the small decline in the number of invalida-
tion misses. For all other traces the sample discrepancy was considerably less, the uniprocessor misses
were almost identical, and the reduction in the number of invalidation misses was also greater. Therefore

the drop in invalidation misses produced a corresponding decline in the miss ratio.

The critical system bottleneck in a single-bus, shared memory multiprocessor is the bandwidth of the
system bus. Therefore the most important consequence of read-broadcast is the effect of its lower miss
ratios on bus utilization. The improvement ranged from 8.7 to 10.9 percent for CELL, .8 to 5.1 percent for
SPICE, 14.3 to 22.6 percent for TOPOPT and .8 to 11.5 percent for VERIFY. (Details appear in Table 4-
2.) To put the read-broadcast benefit in perspective, the change is large enough to allow an additional two
processors for TOPOPT, and one each for CELL and VERIFY, and still maintain the same level of bus

utilization. (SPICE has lower bus utilization for the block sizes that had a slight rise in the miss ratio,

Comparison of Berkeley Ownership & Read Broadcast |
Trace Blocksize Bus Utilization
(bytes)

Berk Read Change
Own Bdcast | (percent
CELL 4 42.155 | 38470 8.743
CELL 8 39.798 | 35.849 9.924
CELL 16 38.592 | 34.383 10.906
CELL 32 42.559 | 38.042 10.614
SPICE 4 59.546 | 59.070 0.798
SPICE 8 44.821 | 44,159 1.477
SPICE 16 40.298 | 39.948 0.870
SPICE 32 42221 | 40.061 5.117
TOPOPT 4 8.925 6.979 21.806
TOPOPT 8 21289 | 18.247 14.288
TOPOPT 16 30.972 | 25.656 17.165
TOPOPT 32 45,108 | 34.895 22.640
VERIFY 4 49,738 | 49.346 0.788
VERIFY 8 68.380 | 66.802 2.307
VERIFY 16 84.760 | 79.215 6.543
LVERIFY 32 96.566 | 85.491 11.469

Table 4-2: Comparision of Bus Utilization for Berkeley Ownership and Read-Broadcast

This table depicts the decline in bus utilization that occured with read-broadcast. (All simulations were run with a
128K byte cache; bus utilization figures are the geometric mean across all processors.)

11



because the total cycles in the simulation was higher with read-broadcast. The cycle increase is due to a
greater delay in obtaining the bus and several other read-broadcast-related factors that are discussed

below.)

The magnitude of the drop in both miss ratio and bus utilization is moderate. The performance gain

is less than expected because of the extremely sequential nature! of the sharing in the programs. Sequential
sharing can be measured by several metrics. The most pertinent for a study of invalidation misses is the
average number of processors that reread an address between writes by different processors. For all traces
tﬁis figure averaged around one (1.1 for CELL, .7 for SPICE, .8 for TOPOPT and 1.0 for VERIFY), with
the distribution heavily weighted by zeros and ones. (CELL had the most evenly spread distribution, with
2 or more processors rereading between 25 and 21 percent of the time. This accounts for its greater decline
in invalidation misses. SPICE had the most skewed distribution, with between 91 and 98 percent of the
writes followed by zero or one rereads. Therefore its improvement was the least of the traces.) In actual
practice the number of invalidation misses was quite close to the read-broadcast limit (one). This was true
even for the traces in which there was inter-processor contention for addresses within the cache block
(TOPOPT and VERIFY). If there had been more processors involved in the contention, read-broadcast

would have provided more benefit.

4.2.2. The Cost in Per Processor and System Throughput

The reduction in invalidation misses did not come for free. Read-broadcast has two side effects that
contribute to processor execution time: an increase in processor lockout from the cache and an increase in
the average number of cycles per bus transfer, Their consequence for three of the traces was an increase in

total execution cycles over the Berkeley Ownership simulations.

The more important of the two factors is the increase processor lockout. It is caused by (1) the
snoop’s using the cache to deposit read-broadcast data and (2) cache controller participation in snoop-
initiated coherency operations. Both activities divert the CPU from its normal instruction execution and

contribute to program slowdown.

! In sequential sharing each processor completes multiple accesses to the data before another processor begins. The altemative
is inter-processor contention for the data. E
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Cache lockout occurs because of CPU and snoop contention over the shared cache resource. The
CPU must use the cache for fewching the current instruction (on a miss in the onchip instruction cache or
for all instructions if there is no onchip cache), obtaining data referenced by the current instruction, and
prefetching subsequent instructions. In machines like the one being simulated, with a RISC-based architec-
ture, no onchip instruction cache and a cache access time that matches the cycle time of the CPU, the CPU
may need to access the cache each cycle. At the same time, the snoop also needs access o the cache for
maintaining coherency. Read-broadcast requires more snoop-related cache activity than Berkeley Owner-
ship, because snoops must deposit data into the cache on some bus reads and more snoops must update the
processor’s cache state on subsequent invalidations. The first operation does not occur under Berkeley

Ownership, and the latter occurs less frequently.

The increase in lockout with read-broadcast was substantial (278 to 305 percent for CELL, 147 to
191 percent for SPICE, 35 to 87 percent for TOPOPT and 143 to 329 percent for VERIFY). On the aver-
age 42 percent of total lockout cycles was attributable to taking data on read-broadcasts, and 40 percent to
the state updates. The increase due to these factors was softened somewhat by the lockout savings froma

decline in cache-to-cache transfers that had satisfied invalidation misses under Berkeley Ownership.

However, in terms of total execution cycles, processor lockout was a minor cost. The ratio of
lockout to total cycles averaged 5.8 percent for all traces, across most block sizes. The lone exception was
VERIFY's 32 byte block simulation, in which processor lockout accounted for an appalling 21 percent of
total cycles. The importance of processor lockout is that for three of the traces (CELL, SPICE and VER-
IFY), its increase wiped out the benefit to total execution cycles gained by the decrease in invalidation
misses. The consequence was a slight increase in total execution cycles, ranging from .9 to0 3.6. The lone
exception was TOPOPT, in which the benefit from declining invalidation misses was greater than the cost
of processor lockout; here the improvement in total execution cycles varied from .1 to 7.7, as block size

increased from 4 to 32 bytes.

The negative effect of processor lockout would not be as severe with a more optimized cache con-
troller implementation. In the SPUR implementation, the priority for u.sing the cache belongs to the pro-
cessor rather than the snoop, and the two run on asynchronous clocks. Therefore the snoop must negotiate

to obtain use of the cache (via separate request and grant cycles), and acknowledge that it has finished. A

13



more optimized implementation would eliminate the handshaking cycles by using a single clock for the

entire system.

A lower bound can be placed on processor lockout by eliminating the extra cycles from the above
results: read-broadcast is then assumed to cost only the number of cycles needed to fill the cache. The
lower bound results indicate that, even under these best case assumptions, the increase in processor lockout
cycles is greater than the decrease in iﬁvalidation miss cycles for more than half the simulations. For these

simulations read-broadcast still causes a net loss in total execution cycles.

The second factor that contributed to an increase in processor execution time was a rise in the aver-
age number of cycles per bus transaction. The increases ranged from .3 to 3.1 percent, for all traces and
over all block sizes, and averaged around one. There are two causes. The first is the additional cycle
required in the read-broadcast implementation for the snoops to acknowledge that they have completed the
operation. Under write-invalidate the same snoops are not actively involved in the bus operation; they
merely do a lookup and decide to take no action. The lookup can easily be subsumed in the time required
for either the cache-to-cache or memory transfers that satisfy invalidation misses. The second is the need to
update the processor’s state on both read-broadcasts and simple state invalidations. For both operations
more caches are involved than with invalidation misses and state invalidations under Berkeley Ownership.
Therefore there is a greater probability that the update will be delayed, because the processor is using it to

service a memory request.

4.3. Write-Invalidate/Read-Broadcast Summary

The criticism of write-invalidate, that multiple-processor contention within the block would cause
excessive invalidation misses as block size was increased, was not bom out by the analysis of these traces.
It is true that the nﬁmber of invalidation misses rose with increasing block size, and for the traces with
inter-processor contention this caused an adverse effect on miss ratios and bus utilization. However, most
of these misses were caused by a reread by a single processor. Sharing for addrésses within the block
occurred in a very sequential fashion, with very few processors irivolved at a time. Therefore the read-

broadcast solution had less impact than was originally postulated.
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Still, at first glance it appears that read-broadcast is a good extension to the write-invalidate proto-
cols, primarily because it is an extremely low cost solution for the moderate benefit it provides. However,
when the increase in processor lockout and the average cycles per bus transaction are considered, for most

of the traces the result is a net [oss in total execution cycles.

Read-broadcast would be more beneficial if two conditions were different. The most important is if
the workload were one in which more processors were contending for the data (for example a one
producer/several consumers situation). In this case the reduction in invalidation misses would be greater.
The second condition, which is a second order effect, is a more optimized cache controller implementation,

designed to reduce the cycles consumed during processor lockout.

5. The Write-Broadcast Protocols

5.1. Protocol Description

Write-broadcast protocols broadcast writes to shared addresses, so that all caches and memory have
access to the most current value. Blocks are known to be shared through the use of a special bus line.
Snoops assert this signal whenever they address match on an operation for a block that resides in their
caches. When a writing processor detects an active shared line, it issues a broadcast. In the absence of an
active shared signal, the processor completes the write locally. Thus, the signal provides write-through for

shared data, but allows a copy-back memory update policy to be used for private data.

Write-broadcast protocols have potential performance benefits for both private and actively shared
blocks. First, an inactive shared line prevents needless bus operations to data that reside only in the cache
of the writing processor. In addition, because it broadcasts all shared updates, write-broadcast avoids the
pingponging of shared data that occurs in programs with inter-processor data contention under write-
invalidate. However, for data that is shared in a sequential fashion, with each processor accessing the data
many times before another processor begins, the write-through policy for shared data may degrade bus per-

formance.

In the write-broadcast protocols coherency overhead stems entirely from the bus broadcasts to shared

data. They occur for all updates to data that is contained in more than one cache, and for the first update to
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an address after the writing processor has the only copy. (In this case the block has been replaced in the

other caches.)

The particular write-broadcast protocol that has been used in this study is the Firefly protocol imple-
mented on the DEC SRC Firefly [Thac88]. It differs from other write-broadcast protocols in that it updates

memory simultaneously with each write to shared data.

5.2. The Write-Broadcast Trouble Spot

[Egge88b) demonstrated that sharing-related bus traffic will require multiprocessors to have larger or
more complex caches than uniprocessors to obtain comparable performance. The requirement is particu-
larly troublesome for the write-broadcast protocols, because larger cache sizes can cause an increase in
write-broadcasts. As cache size grows, the lifetime of cache blocks increases, because of a decline in
block replacements. Shared data tends to remain in the cache for longer periods of time, long past the point
when its processor has finished accessing it. However, its presence in the cache drives the shared bus line,
giving the illusion of sharing. Therefore write-broadcasts continue for data that used to be shared, but is no

longer.

5.3. Empirical Support for the Trouble Spot

The traces confirm this analysis. For all traces, the number of write-broadcasts rises with increasing
cache size (see Figure 5-1). CELL and SPICE have a much larger increase than TOPOPT and VERIFY
(84.2 and 100.3 percent over the entire cache size range, versus 3.7 and 15.2). The steepness of the rise
correlates with several factors, the most important of which is the pattern of inter-processor references to
shared data. For CELL and SPICE this pattern is characterized by good per processor locality for shared
data in a coherency block. Per processor locality is indicated by long average write run lengths? for the
blocks. (The exact figures are 4.9 for CELL and 6.2 for SPICE.) In small caches not all the writes in a long
write run result in write-broadcasts. First, shared data is replaced more frequently than in larger caches,

and, secondly, in these traces only two processors are involved in the sharing the vast majority of the time.

2 A write run is a sequence of write references to the shared addresses in a coherency block by a single processor, uninterrupted
by any accesses by other processors. The length of a write run is the number of writes it contains. The average write run length is that
figure, averaged over all coherency blocks [Egge88a). In other words the average write run length is the average number of writes that
are issued for the addresses within a particular block, each time a new processor writes 1o them.

16



40000 100
_ 4CELL 90 ,1\‘\
35000 1 X
A i b . .\:9\
B 300001 i, S < N
: X P g s VERIFY
O 250004--—-+ : SPICE N
HIR4 . € ¢ P
a NSO o S VERIFY 3 ;
a s N K N
20000 4 ===~ peesze ) c 501 TN
¢ A e \ N xSPICE
2 15000 2 n 1 t .
S 4 ~ <SCELL
t 1 4 L 394
s 1000077 TOPOPT ! $——4TOPOPT
50007 101
0 v v v v 0 v - - v v .
16 32 64 128 25 512 16 32 64 128 256 512
Cache Size (K) Cache Size (K)
Figure 5-1: Write Broadcasts to Shared Data under Firefly Figure 5-2: Bus Utilization under Firefly
In the Firefly protocol the number of write-broadcasts increases Despite the rise in write-broadcasts, bus utilization fell bec:
with increasing cache size for all traces, given credence to the of the benefits of large caches on uniprocessor misses.

“illusion of sharing” theory.

The combined effect is that data may reside in only one cache for the final writes in a write run, allowing
these writes to take place locally. In an infinite cache, all writes become write-broadcasts, because blocks
remain in the cache indefinitely. Therefore, as cache size increases, more writes in a long write run will
result in bus broadcasts; and the greater the average write run length, the greater the increase in write-
broadcasts. TOPOPT and VERIFY, on the other hand, had short average write run lengths, 1.21 and 2.2,
respectively. The smaller length was one of the factors responsible for the more level write broadcast

curves, as cache size increased.

A second factbr contributing to the shape of the curves is the rate of block replacement. Within a
particular trace, the increase in write-broadcasts is most pronounced at smaller cache sizes, where the drop
in block replacements is also greatest. Finally, at large cache sizes the working sets of TOPOPT and VER-
IFY fit into the cache. The number of block replacements drops to zero and the level of write-broadcasts

remains constant.
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Despite the rise in write-broadcasts, bus utilization fell for all traces (see Figure 5-2). The decrease
is due to the positive effects of increasing cache size on the uniprocessor component of bus utilization,
which dropped an average of 84 percent over the cache size range. It is offset somewhat by the increase in

write-broédcast cycles (see a representative trace in Figure 5-3).

For all traces, the proportion of write-broadcast cycles within total cycles increased dramatically
with increasing cache size (see Figure 5-4). The increase only leveled off at the point at which the working
set of the program fit into the cache. At the largest cache sizes the write-broadcast cycles dominated bus
activity for all traces. The high ratio of sharing cycles to total cycles means that with large cache sizes,
sharing bus traffic will be the cause of bus-based performance degradation. Therefore a protocol that limits

the number of write-broadcasts is desirable.
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Figure 5-3: Bus Cycles for CELL under Firefly
This classification of bus cycles for CELL illustrates the effect of
write-broadcast cycles on total bus cycles, using the Firefly pro-
tocol. Write-broadcast cycles rise with increasing cache size;
uniprocessor bus cycles tend to fall. The two effects produce
bus utilization that still declines, but less steeply than for unipro-

Cessor programs.

Figure 5-4: Ratio of Broadcast Cycles to Total Bus Cycles
The ratio of write-broadcast cycles to total bus cycles increases
with increasing cache size. The rise is much steeper for the
traces with longer average write run lengths, CELL and SPICE.

18

2%



6. Competitive Snooping

6.1. Protocol Description

Competitive snooping [Karl86] is a write-broadcast protocol that switches to write-invalidate when
the breakeven point in bus-related coherency overhead between the two approaches is reached. The
breakeven point for a particular address occurs when the sum of the write broadcast cycles issued for the
address equals the number of cycles that would be needed for rereading the data if it had been invalidated.

Competitive snooping thus limits the overhead of write-broadcast to twice that of optimal.

The first algorithm proposed in [Karl86] assigns a counter, whose initial value is the cost in cycles of
a data transfer, to each cache block in every cache. On a write broadcast, a cache that contains the address
of the broadcast is chosen at random, and its counter is decremented. When a counter value reaches zero,
the cache block is invalidated. When all counters for an address are zero, write-broadcasts for it cease.

Any reaccess by a processor to an address resets its cache’s counter to the initial value.

In an equivalent algorithm all caches that contain the address decrement their counters on consecu-
tive write broadcasts (to the address) by a particular processor. As in the original scheme, when a cache’s
counter reaches zero, it invalidates the block containing the address; write broadcasts are discontinued
when all caches but the writer have been invalidated; and when any cache rereads the address, all counters
are reset. Unlike the [Karl86] algorithm, rereads that cause invalidation misses are read-broadcast. All
other caches with invalidated copies tAke the data, and reset their counters. The advantages of the alternate
scheme are that (1) it is well suited for a workload in which there are few rereads (as is the case with these
traces) and (2) its implementation doesn’t require hardware to "randomly” choose a cache for counter
decrementing. In the simulator’s implementation a writing processor keeps track of the number of its con-
secutive writes to each address (through cache state values). When the breakeven point for broadcasts has
been reached, it signals to the other caches to invalidate. The breakeven point was defined to be the
minimum of the ratio of data transfer to write-broadcast cycles and the value three. The constant insures
that write-broadcasts will continue long enough to prevent busywaiting over the bus. A processor uses the
first of the three broadcasts for setting the lock, and the second for clearing it. At this point the lock is still

present in other caches, and processors can detect locally that it has been freed. On the third broadcast
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(which, if it occurs, demonstrates that the address is not a lock), the data is invalidated. This implementa-
tion requires a six-value coherency state, and a correspondingly larger PLA for both the snoop and the por-

tion of the cache controller that services processor memory requests.

6.2. Competitive Snooping Results

Competitive snooping decreased the number of write-broadcasts issued for all traces (see Table 6-1).

The benefit was greater for those traces with the good per processor locality for shared data within a

Write-Broadcast Comparison
Trace Cachesize || Firefly | Competitive | Percentage
(Kbytes) Snooping | Change
CELL 16 20402 13199 35.31
CELL 32 26841 15507 4223
CELL 64 31300 15514 5043
CELL 128 34287 15212 55.63
CELL 256 35444 15192 57.14
CELL 512 37579 15338 59.18
SPICE 16 12076 4510 62.65
SPICE 32 18555 5900 68.20
SPICE 64 20362 6373 68.70
SPICE 128 22925 7045 69.27
SPICE 256 23344 7251 68.94
SPICE 512 24184 7412 69.35
TOPOPT 16 8918 8218 7.85
TOPOPT 32 911 8352 8.33
TOPOPT 64 9190 8410 8.49
TOPOPT 128 9244 0 0
TOPOPT 256 9244 8458 8.50
TOPOPT 512 9244 8458 8.50
VERIFY 16 20589 0 0
VERIFY 32 21726 0 0
VERIFY 64 22914 19097 16.66
VERIFY 128 23476 19107 18.61
VERIFY 256 23719 19330 18.50
_VERIFY | 512 | 23719 0 0

Table 6-1: Comparison of Write-Broadcasts for Firefly and Competitive Snooping

This table depicts the decline in the number of write-broadcasts that occured with competitive snooping. The drop was
most pronounced for CELL and SPICE, which had the longest average write run lengths. Identical values across cache
sizes for TOPOPT and VERIFY indicate that their working sets fit into the cache. (All simulations were run with a 32
byte block. An entry of 0 indicates data that was not available at the time of paper submission, but will be included in
the final copy.)
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coherency block (CELL and SPICE). (Recall that their average write run lengths were 4.9 and 6.2.) Given
the breakeven point in the simulations, each trace saved on the average, 2 or 3 broadcasts each time a dif-
ferent processor wrote to a shared address.? The average write run lengths for TOPOPT and VERIFY were
below the simulator’s breakeven point (1.2 and 2.2, respectively). Therefore no broadcast savings was

accrued in the average case.

The corresponding decrease in the number of write-broadcast cycles was offset to varying extents by
the additional cycles for invalidation signals and invalidation misses (see Table 6-2). For CELL and
SPICE the effect was to reduce the percentage improvement in cycles consumed in sharing-related bus
operations to 10 to 26 percent for CELL and 49 to 52 percent for SPICE. However, the savings is still sub-
stantial enough to cause a drop in bus utilization relative to write-broadcast. The decline in bus utilization
for CELL ranged as high as 19 percent; for SPICE as high as 30 percent. For TOPOPT and VERIFY the
smaller decline in write-broadcasts, coupled with the additional cycles for invalidation signals and invalida-
tion misses, produced an increase in sharing-related bus cycles. This increase was responsible for a slight
rise in their bus utilization figures over write-broadcast (1.6 to 4.5 for TOPOPT and .8 percent at most for

VERIFY).

6.3. Write-Broadcast/Competitive Snooping Summary

The extent to which competitive snooping improves the perfqnnance of write-broadcast depends on
the pattern of references to shared data. When there is good per processor locality, as exhibited by rela-
tively longer average write run lengths, the benefit is greatest. Here the savings in write-broadcast cycles
decreases bus utilization and total execution time. As inter-processor contention for the shared addresses
rises, competitive snooping becomes less attractive. The decrease in write-broadcasts diminishes, and in
some cases can be offset by the rise in invalidations and the more expensive (in numbers of cycles) invali-
dation misses. The result is an increase in bus utilizaton and total execution time. (An alternative z;rgu-
ment is that programs with inter-processor contention for shared addresses are a good match for write-
broadcast protocols. Therefore, they have less need for competitive snooping, and it consequently provides

less benefit.)

3 Technically this is true only for the large caches. At smaller cache sizes the savings would be less. See the discussion on the
effect of average write run length on write-broadcast protocols in section 5.3.
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Comparison of Sharing Cycles
Trace Cachesize Firefly Competitive Snooping Percentage
(Kbytes) Write Write Invalidations | Invalidation Total Change
Broadcasts || Broadcasts Misses
CELL 16 167122 108850 24489 17820 151159 9.55
CELL 32 221925 129716 33051 28706 191473 13.72
CELL 64 259327 130740 37395 39140 207275 20.07
CELL 128 285430 129361 40597 51286 221244 22.49
CELL 256 295069 129527 41450 55567 226544 23.22
CELL 512 312668 130360 42849 57944 231153 26.07
SPICE 16 102645 39190 7912 2236 49338 51.93
SPICE 32 158119 51491 13660 12786 77937 50.71
SPICE 64 172139 55384 15115 15168 85667 50.23
SPICE 128 191106 60515 18126 18068 96709 49.40
SPICE 256 193971 61880 18491 18262 98633 49.15
SPICE 512 200782 63020 19076 18907 101003 49.70
TOPOPT 16 75828 74927 1603 2655 79185 -4.43
TOPOPT 32 77214 76249 1916 3366 81531 -5.59
TOPOPT 64 77936 76821 1920 3238 81979 -5.19
TOPOPT 128 78256 0 0 0 0 0
TOPOPT 256 78256 77120 1942 3380 82442 -5.35
TOPQPT 512 78256 77120 1942 3380 82442 -5.35
VERIFY 16 170952 0 0 0 0 0
VERIFY 32 183516 0 0 0 0 0
VERIFY 64 194813 170477 12007 15809 198293 -1.79
VERIFY 128 199733 171116 12744 18125 201985 -1.13
VERIFY 256 200341 171961 13323 19132 204416 -2.03
L VERIFY 512 200341 0 0 0 0 0

Table 6-2: Comparison of Sharing Cycles for Firefly and Competitive Snooping

This table depicts the difference in the number of cycles for the sharing-related bus operations for Firefly and competi-
tive snooping. The decline in write-broadcast cycles is offset by cycles for invalidation signals and invalidation misses.
For TOPOPT and VERIFY the combination of a smaller cycle savings from write-broadcast and the additional cycles
related to invalidations produced & net increase in sharing-related cycles. (All simulations were run with a 32 byte
block. An entry of 0 indicates data that was not available at the time of paper submission, but will be included in the

final copy.)

7. Summary

This paper contains two companion studies of bus-based, shared memory cache coherency protocols.

The purpose of each is twofold: first, to measure the performance loss of changing particular cache param-

~ eter values on well-known snooping coherency techniques; second, to determine to what extent extensions,

designed specifically to eliminate deficiencies in the original protocols, achieve performance improve-

ments. In the first study, read-broadcast was proposed to eliminate the rise in invalidation misses in write-
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invalidate protocols that occur with increasing block size. In the second, competitive snooping was

intended to limit the increase in write-broadcasts caused by increasing cache size.

Our results have found that neither extension produces a savings in coherency overhead across all
workloads. In those cases in which there was a performance loss, the original protocol, write-invalidate or
write-broadcast, was a good match for the program. Therefore there was not much room for improvement;
and the extension often introduced secondary costs which outweighed the small savings in coherency over-

head.

Our particular workload is characterized by sequential sharing, i.e., data is shared by very few pro-
cessors at a time. Therefore read-broadcast reduced the number of invalidation misses, but at a high cost in
processor lockout from the cache. In some cases, the net effect was an increase in total execution cycles.
The results clearly indicate that read-broadcast is inappropriate for programs with sequential sharing.
However, if more processors had been involved in the sharing, for example, a single-producer, multiple-
consumer situation, read-broadcast would have provided more benefit for a similar cost in processor

lockout.

Competitive snooping benefits only those programs in which per processor locality of reference to
shared data is high. In this case the decline in the number of write-broadcast cycles is greater than the
additional cycles introduced by invalidations and invalidation misses; the net effect is a drop in bus utiliza-
tion. However, for programs characterized by inter-processor contention for shared addresses, competitive
snooping can degrade performance by causing a slight increase in bus utilization and total execution time.
Competitive snooping works well in programs that would have incurred less coherency overhead with
write-invalidate protocols (rather than write-broadcast). The reason is that it uses invalidations to terminate

broadcasts to shared data.
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