TOWARDS A UNIFIED FRAMEWORK FOR VERSION MODELING'
Randy H. Katz

Computer Science Division
Electrical Engineering and Computer Science Department
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT: Support for computer-aided design data has been of increasing interest to
database system architects. In this survey, we concentrate on one aspect of such sup-
port, namely version modeling, i.e., how best to describe the structure of a complex de-
sign artifact as it evolves across its multiple representations and over time. An opera-
tional mode! is also needed to describe how artifact descriptions are created and modi-
fied. While there has been much work in proposing new models and mechanisms for
supporting version concepts in a database, it is our purpose not merely to describe such
proposals but to attempt to unify them. It is not our goal to propose yet another model,
but rather to provide a common terminology and a common collection ot mechanisms
that should underlie all version models. The key remaining chailenge is to construct a
single framework, based on these mechanisms, which can be tailored for the needs of a
given version environment.

KEY WORDS AND PHRASES: version models, version frameworks, computer-aided
design databases, design data management

1. Introduction

The database research community has recently shown substantial interest in ex-
tending database technology to better support non-traditional non-commercial applica-
tions. These new applications, in areas as diverse as computer-aided design, office in-
formation systems, and artificial intelligence, do not fit well within the confines of the
usual database models based on tables, set-oriented non-procedural guery languages,
and the transaction models based on serializability. For these applications, data re-
quires more complex organizations, with a high degree of connectivity that leads more
naturally to retrieval via navigation, and support for interactive, long duration access.

Computer-aided design (CAD) has emerged over the last decade as an applications
area of enormous economic importance, and one with significant demands as a con-
sumer of database services. In broad strokes, its requirements are not very different
from its cousins computer-aided software engineering (CASE) and computer-integrated
manufacturing (CIM), which have begun to enter the database literature more recently.
While Very Large Scale Integrated (VLSI) circuit design is usually chosen as the appli-
cations domain, the database requirements are not significantly different whether the
object being designed is a chip, a software system, or an integrated circuit fabrication
process. Each application must manage vast cuantities of complex, highly interrelated

1. Research supported under NSF Grant # MIP 8706002.

1 -

data that changes over time, and must be prepared to react to cerntain kinds of data
changes (e.g., alerters, change notification, etc.).

In this paper, we shall concentrate on computer-aided design, as it is the domain
best understood by the author. The computer-aided design environment is particularly
interesting for a number of important reasons. First, it is representative of the kind of
non-traditional application domains that are driving the extension of conventional data-
base systems. Second, computer-aided design software represents a multi-billion dollar
software industry, with intense motivation for improving performance and ease of use.
Third, because of the iterative and tentative nature of design activities, the CAD environ-
ment demands unconventional solutions (at least in the sense of traditional database
management systems) for concurrency control, consistency, and crash recovery.
Fourth, the CAD environment is history oriented: current data is not overwritten with
new data, but rather maintained as historical data. And finally, the data organization
supported by the system must be able to handle multi-faceted, multi-representational,
complex (i.e., hierarchical) data aggregates.

A data model for computer-aided design must consist of two components: a version
model, describing primitives for organizing data across time, and a design transaction
model, specifying how such data can undergo change in a consistent manner. In this
paper, we will concentrate on the former, but will touch on some aspects of the latter,
since the version model is closely tied to the manner in which design objects are permit-
ted to evolve.

Version-oriented databases are related to, but distinct from, time-oriented databas-
es. Versions represent a significant, semantically meaningful change. Thus, it is implic-
it in a version database that not every update need result in the construction of a new
version. Similarly, it does not make sense to perform a time series analysis of ver-
sioned data: there is no meaningful correlation between the time of the change and the
value of the change.

The first papers within-the database literature to address database support for CAD
appeared in the early 1980s (actually the CAD literature is full of attempts to use data-
base technology long before this). In the intervening years, there have been many
models for version management proposed, but comprehensive frameworks for under-
standing version semantics are still absent. To be a true version framework, it must be
possible to tailor the semantics of the version model to the needs of the particular user's
environment. One of the key goals of this paper is to review the existing models in an
effort to produce the catalog of features every version model must support, as well as
the mechanisms proposed to implement these features. Only once the appropriate
“knobs” are made visible and available to the user, with mechanisms clearly distin-
guished from policies, will it be possible to achieve a true version framework.

Throughout this paper, we will concentrate on modeling and operational issues in

version management. Version modeling deals with such data structuring issues as or-
ganizing individual versions into version histories (i.e., which version is derived from

-2

!

which), composing composite objects from versions of their components (i.e., configura-
tions), and tracking equivalent versions across representations. Some of the operation-
al issues include inheritance (i.e., a new version looks like its ancestors), change notifi-
cation and propagation, and workspace space models with check-in/out mechanisms.

The rest of this paper is organized as follows. Section 2 defines some basic terms
of relevance to version modeling, and describes the requirements that must be met by
any model claiming to support computer-aided design data. Section 3 presents a de-
tailed version model, developed by the author over the last few years, to highlight the
basic modeling and operational issues. An in-depth survey of the evolution of version
models is given in Section 4. We claim to be representative in our choice of models if
not exhaustive. In particular, we will highlight recent developments in the commercial
arena, such as the version models supported by Sun Microsystems’ Network Software
Environment and Apollo’s Distributed Software Engineering Environment (bcth of which
are targeted for software development, but actually have wider application). Section 5
extracts the basic mechanisms of version modeling from the systems reviewed in
Section 4, and presents our proposal towards a unified framework. Our summary and
conclusions are given in Section 6, followed by our references.

-3

2. Definition of Terms and Basic Requirements

As stated in the introduction, the field of design databases is too new to have yet
evolved a consistent terminology. In this section, we try to remedy this problem by de-
fining some basic terms related to design management. In addition, we briefly review
the requirements that any serious approach to version and design management must
satisfy.

2.1. Terms

A design system is the collection of software for creating or synthesizing the de-
sign, analyzing it for design correctness, managing the storage and organization of the
design data itself, and managing the process of design flow.

We make a distinction between design applications, i.e., the CAD programs that
consume and produce design data, and CAD design management, i.e., the programs
that structure the data and provide an operational interface through which design appli-
cations can access their data on demand. A design database system is that portion of
the design management software that deals with (1) the storage of design data on disk,
and (2) its consistent update. The design management software interprets how the data
in the database represents a design, i.e., how the collection of design files is interrelated
to form an organization for the design. In addition, the design manager provides certain
operational supports, such as performing the more difficult task of interpreting design
consistency rather than database consistency, that are beyond the capabilities of the
database system. '

Two key elements of design management are workspaces and design objects.
Workspaces are named repositories of design objects, from which users and design ap-
plications can access them. They are also a unit of sharing among users of the design
management system, as well as a point of access control. Design objects are aggre-
gates of design primitives, such as layout geometries or lines of source code. They
tend to be related to other design objects in rather complex ways. ‘While a design object
could be as primitive as a single geometry or a single line of code, it is better to think of
them as units of the design that can be given a name, such as “Arithmetic Logic Unit” or
‘String Handler”. Simply stated, a design object is a useful module of the design.

A version is a semantically meaningful snapshot of a design object at a point in
time. As such, it is a descendent of some existing versions (if not the first version) and
can serve as an ancestor of additional versions. While every change could resuilt in a
new version, this is usually not the case. New versions are created as part of the de-
sign process: changes are made, the changed object is verified, and if these changes
are deemed acceptable, a new version is created or “released”. Since some design ob-
jects are themselves an hierarchical collection of component objects, we define a con-
figuration as a binding between a version of a composite object and the versions of its

components.

S

... | User Interface/ |
.| . Browser

WORKSPACE
. MANAGER

- OBJECT
- MANAGER

~ PHYSICAL
~DATABASE

FIGURE 2.1: Architecture for Design and Process Management i L
The figure shows a leveled architecture for design and process management [KATZ 8s}. . Design ap-
plications and the User Interface sit on top of the Workspace Manager, which controls access to
objects [GEDY 88]. The Object Manager implements the semantics of design objects on top of the
primitives supplied by the Physical Database component, which stores data on disk. In parallel
-with these components, the design process is.controlled by a History Manager, which captures de-
- 5ign events, a Workflow:-component, which mterpreres these to determine what to do next,:and a}
";-;jstored event Iog : : o i i

Some of these concepts are |llustrated in a sample system archltecture for desngn
management shown in Figure 2.1. The physical database component stores data on
disk and ensures that the disk representation is updated atomically, i.e., is not left in a
broken state in the event of a system crash in the middie of the update. It corresponds
to what we have called the design database system. Implemented on top of this is an
Object Manager that implements the highly interrelated network of design objects from
the storage and access primitives provided by the physical database manager. Built on
top of this is the Workspace Manager. It provides shared workareas to hold design ob-
jects. Special utility programs, such as a design browser, and the Workspace and
Object Managers, represent aspects of design management not normally supported by
a conventional database management system.

Figure 2.1 also shows some components for design process management, which
we view as an independent subsystem distinct from design management. The History
Manager tracks all accesses of data from design applications, and records these
“events” in a log managed by the physical database component. The Workflow compo-
nent reacts to these events, perhaps by scheduling the next logical event (e.g., tool in-
vocation) in the design process fiow.

2.2. Basic Requirements

Here we list the basic set of features every design data model should support. This
“feature summary” can be further broken down into modeling requirements and design
transaction requirements. A basic list follows.

-5

(1) The design mecdel should permit design primitives to be aggregated intc named
units called design objects. Design objects are aggregations cf design primitives.

(2) The design model should allow design objects to be hierarchically composed
from more primitive design objects. Design objects are composite, hierarchically
constructed from components.

(3) The design model should associate contents and interfaces with design objects.
Interface data is an important aspect of design representation.

(4) The design model should provide mechanisms to represent, construct, and ma-
nipulate configurations of design objects in terms of the interactions of their inter-
faces.

(5) The design model should provide mechanisms to specily and manipulate multi-
version design objects and configurations of such design objects.

(6) The design model should include primitives to permit the selection of a particular
version of a design object (“last created”, “currently released”, etc.) to participate
in construction of a configuration, with a default mechanism.

(7) It should be possible to reuse previously defined cells, drawing a distinction be-
tween /nstances and definitions.

(8) The design model should incorporate a history mechanism to record design deci-
sions for future review.

These general requirements can be made more specific, by separating them into the
key requirements for representing the design data structure (*modeling”) and for mediat-
ing the access and consistent update of design data (“design transaction”). The model-
ing requirements follow. ‘

(1) Design data is organized hierarchically across all design representations.

(2) The model must support design evolution, i.e., the modeling of versions (alsc
known as alternatives, revisions, engineering change orders) and configurations.
Configurations should be able to be constructed both statically (all component
references bound at creation time) and dynamically (references bound at the
time of access). Dynamic configurations are also known as parametrized ver-
sions.

(3) The model must provide a way to identify equivalent or corresponding design ob-
jects across representations.

(4) The model should support object-oriented concepts, such as design objects as

-6 -

instances of abstract data types and inheritance mechanisms.

Design transaction requirements describe how designers and design applications in-
teract with design data. A list of these requirements foliow:

(1) The design transaction model should support both loose and tight application
coupling. In the former, the applications and the design management system
work at arms length. The mechanisms provided are check-in/check-out and
workspaces. In the latter, the design manager is part of the run-time environ-
ment of the application, providing it with a persistent object store.

(2) The design transactions should be conversational, i.e., a design transaction is a
unit of concurrency (only one designer can access an object for update at a
time), but not consistency or recovery. Thus a design transaction holds locks
through crashes, but need not recover an in-progress object to its last consistent
state.

(3) The design transaction model should provide mechanisms for supporting cooper-
ative work and design teams. Such mechanisms as change notification and
propagation, as well as support for workflow concepts address this requirement.

3. Detailed Presentation of a Version Model

3.1, Introduction and Motivation

In this section, we will present a detailed description of a particular version model,

implemented in a Version Server for computer-aided design data [KATZ 86a; KATZ 86b;

[KATZ 87). We make no claim that the Version Server data model is the ultimate or most
comprehensive, but it is representative of the approaches that have appeared in the lit-
erature. The model serves to highlight the requirements presented in the previous sec-
tion and one set of mechanisms designed to meet those requirements.

The most important aspects of CAD data are their eveolutionary, multirepresentation-
al, and complex structure. The model has evolved tc meet these representational de-
mands of CAD data. Further, because of the way we update CAD cata, the model sup-
ports workspaces and check-in/check-out operations for moving design objects among
them. The greatest challenge is maintaining the correspondences across representa-
tions of the design, and we shall discuss mechanisms for enforcing such “equivalences”
[BHAT 87].

In developing the model, we were guided by a single pragmatic consideration: that it
be possible to implement the model on top of existing design files and environments to
avoid rewriting any existing design applications.

3.2. Modeling Primitives

3.2.1. Philosophy

The underlying primitives of the Version Server data model are design objects and
the relationships among them. In a sense, the model is like the popular Entity-
Relationship model for commercial databases, except that certain relationships (intro-
duced in the following subsections) are specially distinguished within the model. These
include is-a-kind-of and is-a-part-of relationships, but others as well. We will often re-
sort to figures to explain concepts within the model, and will use a nodes and arcs rep-
resentation that naturally follows from objects and relationships.

A useful analogy can be drawn between a hierarchical file system and the space of
design objects. Consider the former. The actual space of files is flat. Directories refer-
ence other directories and simple files, imposing hierarchical names on the flat space.
Directories are merely files whose internal structure has special meaning for the operat-
ing system.

Now consider the space of design objects, which roughly correspond to files of de-
sign data produced and consumed by design applications. It is also flat. The purpose
of the design model is to impose useful hierarchical organizations on this space. Thisis
accomplished by introducing special organizational objects and relationships, in much

-8 -

.

the same way that directories are added to a file space. We call these additional ob-
jects structural objects to distinguish them from the representational cbjects accessed
by design tools.

It is a key aspect of our organization that structural information be separated from
representational information. This is absolutely necessary if the same model is to be
applicable to a wide range of design domains. Structure is clearly the responsibility of
design management, while representation is determined by the design.tools.

Our model distinguishes three structural relationships upon which to organize hierar-
chical groupings of design objects. These are component hierarchies, version histories,
and equivalences, and each is introduced in the following subsections.

3.2.2. Component Hierarchies/IS-A-PART-OF

Design objects are either primitive or composite, and are of a particular representa-
tion type. Associated with each design object are primitives of its type, such as layout
geometries, logic schematics, or functional descriptions. A primitive design object re-
sides at the leaves of a component hierarchy, while a composite object is the root of a
subgraph. A particular representation of a complete design is represented by a compo-
nent hierarchy of representation objects rooted at the object that describes the top-level
of the design. Figure 3.1 shows a portion of a component hierarchy rooted at the datap-
ath layout object.

The relationship between a component object and the composite object that “con-
tains” or “uses” it has been called is-a-part-of in the artificial intelligence literature, and
aggregation in the semantic data modeling literature. Note that although Figure 3.1
shows a tree structured composition, it is more general to permit compoasition hierar-
chies to be directed acyclic graphs (DAGs). Thus, a given component may be used by
multiple composite objects simultaneously, yielding a DAG structure. Also note that al-
though the figure shows a type homogeneous composition (all objects are of type lay-

out), it is possible to mix objects of different types within the same hierarchy if desired.

Datapath.Layout

FIGURE 3.1: Component Hierarchies
Datapath.Layout is a composite object.
Rfile.Layout 1S-A-PART-OF Datapath.Layout.
This kind of interobject relationship is often
called aggregation. Note that the component
hierarchy can be a general directed acyclic
graph, and is not constrained to be a tree as
Shown here.

AlLU.Layout Shitter.Layout RFile.Layout

3.2.3. Version Histories/IS-A-KIND-OF: IS-DERIVED-FROM

We now incorporate the time dimension into the representation of design objects, by
adding a version number to the name and type associated with each object (we denote
objects by the triple name[version #].type). Yet this is not sufficient to capture all of the
interesting semantics of versions. In particular, it is not possible to determine from this
naming scheme which version is descended from which. Thus, we introduce the con-
cept of a version history and is-derived-from as a new relationship distinguished by the
model. This is shown in Figure 3.2.

In the figure, ALU[2).Layout is-derived-from ALU[0].Layout, where the latter is the
ancestor of the former. We also say that ALU[2] is a derivative of ALU[O] since they are
on the same path to the root, and that ALU[1], ALU[2], and ALU[3] are alternatives be-
cause they are NOT on the same path to the root (i.e., they are parallel versions). Note
that in the figure, the version history is a tree, that is, every version has a single ances-
tor. From a data structure viewpoint, there is no reason why this cannot be generalized
to a directed acyclic graph, although one with a single root. However, there are opera-
tional reasons why this may be difficult to support in practice, and we shall describe
these in Section 3.3.

As can be seen in the figure, we have introduced a new object called ALU.Layout.
Each of the objects ALUJi].Layout corresponds to some existing design file, but there is
no such correspondence for the “generic” ALU Layout. This is our first example of a
structural object introduced by the model to organize the underlying design objects.
Each ALUJ[].Layout is-a-kind-of ALU.Layout in much the same way as instances are
related to types in object-oriented languages such as Smalltalk. Other researchers
have proposed that versions be viewed as instances of a type (i.e., the type-version
generalization of Batory and Kim [BATO 85j).

3.2.4. Confiqurations

ALU.Layout X
i

FIGURE 3.2: Version History

Version histories explicitly record the ances-
tor/descendent interrelationships among ver-
sions through distinguished is-derived-from
relationships. Alternatives are parallel versions
while derivatives are versions on the same path
from the root. Note that ALU[i].layout corre-
sponds to some existing design file, but there is
no such corresponding file for the generic
ALU.Layout object. This is an example of a
Structural object added by the model/ to the
space of design objects to assist in organizing
themn.

DERIVATIVE

10 -

. Datapath[SjZLayo

IGURE3 3: Confuguratlons '
+The mode! supports ‘a concept of d:stnbuted
sconfigurations. A version of a composite object
.is_composed from specific versions of its com-
.ponents.. .Thus, Datapath Layout Version 3 is
-gconfigured from Versions 4 and 2 of the
“Register File ‘and ALU respectively. -If the
-Register File and the ALU are not primitive,
then they in turn are conflgured from versions of
the:r components.

When the concepts of version history and component hierarchies are combined, the
result is a configuration. This follows from the observation that a version of a composite
cbject is composed from specific versions of its component objects. This is shown in
Figure 3.3.

It should be noted that the model supports a kind of “hierarchical” configuration con-
cept. Rather than associate a mapping between generic objects and specific versions
of those objects for an entire component hierarchy, we associate such mapping infor-
mation at each internal node of the hierarchy. In other words, a composite object ver-
sion carries with it the version numbers of its components. This leads to the important
concept of static versus dynamic configurations, which will be explored in greater depth
in Section 3.3.2. There we will describe a mechanism that allows the binding between
component generic object and one of its specific versions to be deferred until the is-a-
part-of relationships is actually traversed.

3.2.5. Equivalences

Design data has often been called “multifaceted” because a variety of representa-
tions are needed in order to describe a design artifact. Each one of these fazets or
views (e.g., a layout view, a transistor view, a functional view) is a design object in its
own right, yet the model should provide some primitive to tie these independent objects
together. In the Version Server Data Model, this is accomplished-through equivalences,
another Kind of structural object added to the design space to impose organization on

ALU FIGURE 3.4: Equivalences
‘ The structural/equivalence object ALU ties to-
gether the independent representations of the
“ALU, ie, its layout, transistor, and functional
facets. The arcs represent Is-equivalent-to re-
_lationships. Although we have shown them as
- having similar names, it is not a requirement
" that every object participating in the equiva-
“:lence relation need have the same name or the
“same version number. Equivalences are also
o o constraints on the database that can be exploit-

ALU[4].Layout i ALUI2].Function) Lo
ALU[4].Transistor , ed at design verification time.

—-11 -

design objects. This is illustrated in Figure 3.4.

Equivalence objects stand in for design objects that are independent of representa-
tion type. Contrast the structural/version object ALU.Layout with the structural/equiva-
lence object ALU. The former represents the version history and is type homogeneous,
while the latter spans heterogeneous types.

Note that equivalence objects define equivalence relations on the space of design
objects: they collect together design objects across types that describe the same real-
world thing. It is necessary to initially make equivalences known to the system. As the
design database evolves, equivalences can be inherited by new versions and later en-
forced during design verification. This will be discussed in Section 3.3.6.

3.3. Operations

Of course, every design object must be read or written. However, in this subsection
we focus on those operations of design management that go beyond what one might
expect to find in a conventional database system. These include operations for: identi-
fying the current version within a version history, describing dynamic configurations,
managing the movement of objecis among workspaces, supporting change propaga-
tion, and inheriting attributes from related design objects.

3.3.1. Currency

It is frequently the case that the default or current version is not the most recently
created version. Thus it is useful to separate “current” from “last”, and to make currency
update explicit. The currency concept can also be used to limit the branchiness of the
version history. In the Version Server data model, we restrict new versions to be (tran-
sitive) descendants of the current version. That is, it is not possible to create a new de-
rivative of an alternative of the current version. This is illustrated in Figure 3.5.

Operations are provided to explicitly position currency anywhere within the version
history, although not every user should have access to such an operation. Multiple cur-
rencies can be made available, and references to current can be resolved with respect

ALUI0] FIGURE 3.5: Currency Mechanism
Main - ALU[2] is identified as the current version even
Derivation though ALU[4] and ALU[5] were derived from it.

- The main derivation is the path from the root of
the version history to the current version. Note
that under the rules of currency, no new deriva-

ALU[3]

O ALUny R ALY tive of ALUJ0], ALU1], or ALU[3] can be made
unless the currency is reset. However, new de-
Current . rivatives of ALU[4] and ALU[5] (and ALU[2] of
Version course) can be added to the version history
O o - e without changing currency.

ALU[4] ALU(s]

—-12 --

to a chosen currency setting. For example, ALU[0] may be current in the “May Release”
while ALU[2] is current in the “June Release”. Obviously, the advantage of currency to
constrain the proliferation of versions will be squandered if too many parallel currencies
can be created.

Currency is our first example of an operational mechanism supported by the model.
Associated with it is a policy that determines how the mechanism should be applied
within a particular project context. Examples of policy specifications include: (1) which
users are permitted to reset currency, (2) how many currencies may be simultaneously
active within a single version history, (3) whether currencies can move backwards to
earier versions or must they always advance towards later versions.

3.3.2. Dynamic Configurations

It is useful to be able to create dynamic configurations, i.e., configurations in which
references to components are not resolved until the is-a-part-of relationships are actu-
ally traversed. There are a variety of methods for implementing such a mechanism.
We will describe the implementation used in the Version Server. An example is given in
Figure 3.6.

The Version Server data model's mechanism is based on the layers and context ap-
proach used in the PIE System developed at Xerox PARC [GOLD 81]. The basic idea is
to place portions of the version histories for multiple related objects into layers, and to
provide contexts which order the layers. If two versions of different objects must be
used together, then they are placed in the same layer. The context defines the search
order over the layers. For example, if the current context defines the layer search order
to be L3/L2/L1/LO, then a reference to ALU will resolve to version 2 and a reference to
RFile will resolve to version 2. If the layers are shuffled so that LO dominates L3, then
the resolution will be to version 0 of each object.

A weakness of this method is that it is possible to combine the layers in ways that
do not make sense. There are no explicit constraints that state, for example, which ver-
sions of the ALU can “interface with” which versions of the Register File. It may not be
possible to combine ALU version 2 with the the first version of the Register File, al-
though a context with layer 2 dominating layer 1 would lead to this resolution.

Lo QALU[O]_; L /q RFils[0] FIGURE 3.6: Dynamic Configurations
' The version histories of related objects are lay-
: / ered and “compatible” versions of objects are
L1 ALU[1] O RFig1] placed within the same layer. Thus, ALU[0] and
RFile[0] are compatible, as are ALU[1] and

5 : RFile[1]. A context is a particular ordering of
ALU[2] layers. Object resolution proceeds by search-

L2

ing for a version of a named object through the
layers in the order defined by the current con-
RFile[2) text. -In a way, contexts are like directory

L3
search paths in file systems.

—-13--

3.3.3. Workspaces

Workspaces are named repositories for design objects. Workspaces can be ar-
chive, group, or private. Each kind of workspace is implemented in the same way, the
only difference being who has the right to access the contents of workspace for the pur-
poses of reading or writing. An archive workspace is readable by all and anyone may
append to it, except that special protocols are enforced to ensure that only fully verified
(i.e., “released”) objects are placed into it. The Validation Subsystem is responsible for
performing the necessary verification before permitting the archive to be updated (this is
described in more detail in Bhateja and Katz [BHAT 87}). In a sense, an archive is meant
to contain fully verified and finished design objects.

Private workspaces belong to specific designers, and only the owner of the work-
space may read or append to its contents. The idea is that private workspaces can con-
tain incomplete work in progress, so incomplete that other designers should be protect-
ed from looking at them.

it turns out that two kinds of workspaces are not sufficient for the CAD environment.
Sometimes it is necessary to combine the in-progress werk of two or more designers
before it can be determined that the assembly works as required. Group workspaces
are meant to support this kind of activity: any member of a specific group may access
the contents of a group workspace or append to it.

Figure 3.7 shows a typical way in which a new version might evolve as it moves
among the different kinds of workspaces. The object is checked-out from the archive
into a private workspace, where changes are made. This is then made available to
other designers in the group by checking the new version out of the private workspace
and into the appropriate group workspace. Finally, after the required verification suite
has been successfully run against the object, it can be checked back into the archive as
a new version, with all the necessary version relationships automatically established.

ARCHIVE FIGURE 3.7: Workspace Model
is-a-descendent-of w0 The figure shows the evolution of V(4] as it
v ~ v moves through the different kinds of workspac-
4 4 5 es. A designer checks-out V[4] into his private
ZROUE y workspace as V[5], where he proceeds to make
some changes. The version is then checked

check-in back to a group workspace for integration test-

ing with other design objects. Perhaps bugs

are uncovered, and the version has tc be re-

PRIVATE | checked into the private workspace to correct
the errors. Finally, the new version is verified

and returned to the archive for public use. At

Vg Vg this point, its version history relationships are
established.

check-out

14 -

3.3.4. Logical vs. Physical Representation

To make the discussion of the next two subsections a bit easier to understand, it will
be necessary to reveal some of the details of how the Version Server physically imple-
ments the design model presented above. The basic idea is to represent the web of in-
terrelationships by linked list structures on disk. Representation objects are implement-
ed by records that point to the UNIX files containing actual design pnmmves in the for-
mat expected by the design tools.

Figure 3.8 shows the contrast between the logical view (what the designer sees) of
the design and its internal representation. Internally, design objects are represented by
configuration objects that contain references to design files, and pointers to associated
configuration objects of descendants (via version links) and components (via compo-
nent links). The structural objects for version histories and equivalences are present,
with pointers to the configuration objects of the versions or equivalent objects. The ver-
sion database is actually the set of configuration, version, and equivalence nodes, as
well as the version, component, and equivalence links. The design files are not man-
aged by the Version Server's database software, although new file system files are cre-
ated as a side effect cf check-out. Consequently, the storage overhead for representing
versions can be kept relatively small.

3.3.5. Change/Constraint Propagation

We define change propagation as the process that automatically incorporates new

PHYSICAL

. Ver A

/\

A~ [s-a-descendent-of
——p- |5-a-component-of _ =

........ e is-equivalent

FIGURE 3.7: Implementation of Version Mode! Relationships

The logical view shows a three efement version history, a compenent hiearchy rooted at A[2], and an
equivalence between objects C and E. The physical view shows how these are implemented as linked
structures on disk. The nodes represent records, the arcs pointers, and the squares UNIX files. A con-
tiguration (CON) object points to: (1) the associated design file, (2) configuration objects of its descen-
dents, and (3) configuration objects of its components. An equivalence (EQ) points to the configuration
objects which are constrained to be equivalent. A version (VER) cbject points at all objects which are
versions of the same generic object.

—~15 --

versicns into configurations. Constraint propagation refers to the enforcement of equiv-
alence constraints by procedurally regenerating new versions [KATZ &8]. For constraint
propagation to be supported, equivalences must be “directional”, i.e., objects in one rep-
resentation can be derived from objects in the other equivalent representation, such as
between source and object code. :

The two key issues in developing a mechanism for change propagation are to pro-
vide ways to (1) limit the scope of propagation -- rarely does the designer want to create
a new configuration all the way up to the root of the component hierarchy, and (2) dis-
ambiguate the path of changes -- the resulting configuration can be quite different de-
pending on the sequence in which the propagation takes place. This latter point is illus-
trated in Figure 3.8. While it is usually the case that a new version shouid supersede all
uses of the version it replaces (case (i) in Figure 3.8), there are situations in which it is
useful to have more than one version of the same object in a given configuration. For
example, a newer version of a register cell may be used in the area sensitive instruction
cache of a microprocessor, while an older version is sufficient for the register file.

Figure 3.9 shows a sample sequence of steps followed in applying change and con-
straint propagation for an example configuration. In (a), the initial logical and physical
configurations are given. Step (b) shows the result of executing a check-out followed by
some update activity: a new version of B is created, pointing to a file with updated con-
tents. The next step shows how the new version of B is embedded in a new configura-
tion rooted at A. Even though A's contents have not changed, it now points to a new
component, and is thus a new version in its own right. In step (e), the change to B trig-
gers the invocation of a script to generate a new version of E. Note that the equiva-

)

AO y\Q\\\-O A1
(iii)

is-a-descendent-of

FIGURE 3.8: Ambiguous Change Propagation

The figure illustrates three possible outcomes for-creating a new configuration as the result of em-
bedding A[1] in the configuration at the left. Choice (i) shows the change being propagated aleng
the path from A to C to D. Choice (iii) is its analog from A to B to D. Choice (i) has propagated the
change along both paths.

- 16 --

d Bo O‘I ' h |
|l(”“lu, ll”“'ﬁ. ,rl':l””' yll"!””

W \ !
ty by ot
IIlln.""““.u“lll"unlnl r

i _...n,‘"i Eq .

(b) Check-out B[0] to Create B[1]

(f) Final Logical View
FIGURE 3.8: Change Propagation
The figure shows the steps from an initial configu-
ration (a), as a new version of B is created (b),
embedded in a new configuration rooted at A (c),
spawning a new version of E through constraint
propagation (d), and embedding this new version
in a new configuration rooted at D (e). The final
fogical view appears in (f). Note that aithough
D[1] and D[0] point to the same Unix file in (e),
they have different components and thus.are dif-
ferent versions in {f).

{(c) Change Propagate to A

lence relationship is updated to point at the newly generated version. This is then em-
bedded in a new configuration rooted at D, again shown as a new version because its
components have changed, in step (e). The configuration as seen by the user is shown

in ().

There are several choices for how to deal with the ambiguity that is inherent in at-

~17 -

tempting to propagate changes through DAG structured configurations. The first is to
simply disallow all change propagation in non-tree situations. This is likely to lead to in-
frequent application of change propagaticn. The second is to create the cross-product
of all resulting configurations, but to represent these as alternative versions of the root
of the configuration. This proliferation of versions, many of which are likely to be of little
interest to users, is also undesirable. The third is to propagate whenever the choices
are unambiguous, but to abort propagation as soon as an ambiguous situation is en-
countered. The final approach, taken in our model, is to define operational mechanisms
through which designers can make their intentions unambiguous.

The key mechanisms we use are group check-in and group check-out. The result
of a group check-in is to guarantee the unambiguous creation of a single new configura-
tion. Figure 3.10 shows the difference between checking in two new versions as a
group versus checking them in independently. When an object is checked back in indi-
vidually, the change paths are determined from the composition relationships associat-
ed with the object's ancestor (i.e., the object originally checked-out). These paths are
followed creating new configuration nodes along their routes. A configuration node
spawns a new version at most once no matter how many times a change path passes
through that node. It is easy to show that the resulting configuration is independent of
the check-in order and that only one final configuration is possible. Obviously, if multi-
ple objects are checked back individually, a new resulting configuration will be created
for each. On the cother hand, when objects are checked back as a group, a single new
configuration is created.

Group check-out clarifies which equivalences should be inherited at check-out time.
Figure 3.11 shows where the ambiguity can arise. A checked-out object inherits the
same equivalences as its immediate ancestor (unless overridden at check-out time).
This can cause a problem if two equivalent objects are checked-out for simultaneous
update with the intention of keeping them equivalent. The solution is to provide group
check-out, tc limit inherited equivalence to those objects within the group.

ANRERRRRANN
AV N
o

~
RS
\\\\\\\:\\\

B c
, 1 1
Check-in (B[1], C[1]) o . Check-In (B[1]); Check-in (C[1])

FIGURE 3.10: Group Check-in vs. Individual Check-in

In group check-ins (on the left), configuration nodes are updated only once, no matter how many
times a change propagation path passes through them. Thus all new objects participate in a single
resulting configuration. The right half of the figure shows what happens during individual check-ins:
each check-in results in a new configuration.

-~ 18 --

iCheck-out(C); Chack-our(E) 5

FIGURE 3. 11 Group Check Out G
The figure illustrates the differences between individual (on the Iefz‘) and group (on the right) check-
out. When C[0] and E[0] are checked out individually to form C[1] and E[1], the latter inherit the
equivalences of the former. When they are checked out together as a group, the new versions in-
herit equivalences to other new versions within the group, not to any ancestor objects of the group.

The second major issue in change propagation is limiting the scope of the change.
There are a number of different mechanisms that can be employed, and we only touch
on these briefly here. The first is to place constraints on configuration nodes so that
change propagation will halt if creating a new version of the configuration would cause
the constraint to be violated [RUMB 88] (see Section 4.2.11 for more details). Most of
the approaches based on timestamps can be supported in this fashion. The mecha-
nism can also support compatible interfaces, as well as proper containment and parti-
tioning. A second possibility is to use a graphical presentation of the configuration
[GEDY 88] and to hold a dialogue with the user to establish how far to propagate. This
mechanism can also assist in disambiguating change propagation if the operational ap-
proaches described above prove difficult to use.

3.3.6. Inheritance

The concepts of object-oriented system are having a profound impact on all fields
within computer science, and CAD databases are no exception. The most important as-
pects of the approach are its concepts of packaging operations with data (abstract data
types) and inheritance. Abstract data types make it possible to apply certain operations
to layout objects but not to transistor objects and vice versa. Inheritance is usually
thought of as a mechanism to provide scoping for data and operation references. In ad-
dition, inheritance can be used to define how to propagate default operations and val-
ues to new versions. Some models have adopted inheritance as the primary mecha-
nism through which to model versions. These are viewed as instances of a type, and
inheriting certain aspects of that type, such as their interface description, at the time of
their creation (see Figure 3.12). We have already seen the use of inheritance to de-
scribe how new versions participate in equivalence relationships/constraints.

Most models limit their support to type-instance inheritance , i.e., the only path of
definition propagation is from types to instances. However, in a structural model such
as ours there are other avenues for inheritance. For example, it is not particularly con-

-19 --

o Datapath - Layout FIGURE 3.12: Inheritance
i Objects ~ Objects ~ The figure illustrates inheritance among super-
- SUPERTYPES : types, types, and instances as it may be used in
SR It ..a version database. The ALU.Layout gener-
. lc/structural object is an instance of the super-
types Datapath Object and Layout Object. It is a
“type in turn, with each of its “instances” versions
of the ALU Layout. Any operation that can be ap-
plied to a datapath object or a layout object can
be applied to a version of the ALU Layout.
Further, the ALU Layout versions can inherit
INSTANCEs O o o common attributes and operations from the ALU
ALU[i].Layout Layout, or override them on a version by version

basis.

Tvees

venient to model the equivalence inheritance of the version model solely in terms of in-
heritance from types to instances. See Figure 3.13. The desired semantics are that a
new version inherits constraints from its ancestor in the version history, which is another
instance. Since equivalence constraints are defined over specific instances, the only
way to model this with conventional type-instance inheritance is by introducing new sub-
types for each group of instances that share a common constraint. This proliferation of
subtypes is obviously undesirable.

A better mechanism can be based on direct instance-to-instance inheritance, i.e., it
is possible to inherit directly among instances, and there is no real difference between
types and instances [KATZ 89). This is most appropriate in a CAD database, since relat-
ed objects are connected via structural relationships, and these are the most appropri-
ate paths for inheritance. For example, a new version is highly likely to inherit most of
its initial description from its ancestor in the version history. Alternatively, values may

TYPE ALU.Layout

ALUL4]. ALUIS]. SUBTYPES
Layout Eq Jransistor
9.!l"”ll"llllllllll'"“::;;;;;no ==ALUI‘5]_ ::ALU[S].
:\~ o ‘ Transistor “Jransistor
§ ‘””“.m ! E ‘.." oy 0y ", .l:l “‘U'%j‘a.-:_n‘)&I.‘I‘l'
o +d B ALUAL P o
ALU[S]. ll: i \3 Ld‘.yout :II / ‘l,
Layout " N o / ,
e O ALY(E) . O o
Sttt ayout Vi A
INSTANCES IARAERXENEE

FIGURE 3.13: Problems with Type-Instance Inheritance

The figure illustrates the problem of support instance specific equivalence constraint inheritance. To
do this with conventional type-instance inheritance requires that each group of instances that partici-
pate in the same constraint should be members of the same Subtype. Then, when a new version is
Created, it can inherit the constraint from the subtype of its ancestor. Unfortunately, this proliferation
of subtypes confuszs the issue, and is not as desirable as Ssupporting direct instance-to-instance
inheritance.

-20 --

be determined via context, with inheritance directed along configuration relationships.
These may be such things as I/O port types, delays computed from loads, hints for
placement and routing, and the change propagation constraints mentioned in the previ-
ous subsection. Finally, it may be useful to inherit along equivalence relationships as
well, such as interface specifications from the functional description.

3.4. Summary

To summarize this section, we have presented a version model based on three or-
thogonal relationships for organizing the design space: version histories, configurations,
and equivalences. We have also examined some of the operational aspects of the
model, such as change propagation and instance-to-instance inheritance. In the former,
the key issues were how to disambiguate changes and limiting propagation scope, and
in the latter, it is clear that embedding versions in an object-oriented type system is a
complex undertaking.

Now we turn to how the model described in this section meets the requirements of
the previous section. The Version Server supports design objects, compositions, con-
figurations, version histories, and equivalences. It also provides mechanisms to select
the current version within a version history, and a primitive form of dynamic configura-
tions through a layer/context mechanism. Where the model is weak is its lack of sup-
port for separate interface and contents portions of design objects, and an unclear dis-
tinction between instances and definitions.

21 --

4. Survey of Version Data Models

In this section, we review the various proposed version models and examine how
they have evolved over the last eight years. In Section 5, we will put the different mech-
anisms into context by showing their similarities and differences across the proposec

models.

4.1. General Trends

The beginning of the 1980’s saw the emergence of the relational model as the data
organization of choice tor commercial data. Almost as soon as the model began to be
more widely adopted by users outside the research community, attention became fo-
cused on the search for new applications of the relational approcach. CAD data was one
of the earliest to be examined, in part because of the rapid growth of the CAD industry
during this time, as well as the growing interest in VLSI circuit design within the universi-
ties.

Over the last few years, three basic approaches have been pursued in developing
new data models. The first is to extend the relational model, the second is to extend the
entity-relationship model (the model of Section 3 falls into this class), and the third is to
develop new models based on object-oriented concepts. We will examine each of
these approaches in turn.

The relational mode! is based on tables, rows and columns of information, and pow-
erful set-oriented query languages. However, it is difficult to model hierarchy with flat
tables, and the concept of transaction, at least as implemented in most relational sys-
tems, is not well matched to the needs of the design environment. Thus, the extensions
have focused on these issues. Complex objects, i.e., hierarchical collections of tuples,
have been added to the relational model, and the transaction model has been extended
with conversational and nested transactions. In addition, to overcome some implemen-
tation restrictions, the mode! has been extended with long fields, allowing tuple columns
to contain data of almest unlimited length.

The entity-relationship model divides the world into objects of the real world, called
entities, and their interrelationships. The way in which the E-R mcdel is extended for
CAD data is to select distinguished relationships to embed into the model, such as the
is-derived-from, is-a-part-of, and is-equivalent-to relationships of the Version Server
data model. In addition, the model must be extended in the operational direction, along
the lines of Section 3.3.

Object-oriented models are the newest development. These fall into two broad
classes: operational models, with support for packaging operations with data and mech-
anisms such as inheritance, and structural models, with distinguished inter-object rela-
tionships that can be used to mode! design objects as complex objects. The key differ-
ence in the object-oriented approach is to extend the type system to cover CAD data

22 -

through such mechanisms as inheritance. Obviously. models that combine operational
and structural objects are the best suited for CAD data.

in tracing the evolution of version ideas over the last several years, we can see a
growing awareness of the complexity of the issues and a proliferation of ever more com-
plex mechanisms to deal with versions. Back in 1980-1981, many researchers thought
that it was sufficient to model versions in a database with records or tuples extended
with timestamps. 1982 saw the introduction of the important concept of the complex ob-
ject, i.e., a way to represent hierarchical data within a relational database. This led to
increased interest during 1983-84 on how best to structure CAD data, through such
concepts as molecular objects and composite objects. During this time there was much
controversy over the terminology associated with versions (which unfortunately, still ex-
ists to this day). Distinctions were made between versions as revisions and alternatives
as alternate implementations. Further, the first mechanisms to support dynamic config-
urations were proposed. During 1985-86, the importance of derivation/version histories,
configurations, and equivalence/correspondences were beginning to become recog-
nized, while object-oriented type systems were beginning to influence the structure of
models for design data. Change notification and propagation became key operational
issues in 1986-87. In 1988, the field has moved towards extending the version con-
cepts to model schema evolution (e.g., [BANE 87}), i.e., how the structure of the database
changes over time, not just how its contents change. An increased awareness of the
need for comprehensive version frameworks is also becoming widely recognized.

4.2. Proposed Models and Concepts

In this subsection, we will review key proposals from the literature, describing the
version models and peinting out the basic concepts and what new ideas have emerged.
Our presentation is largely chronological. A good way of tracking the evolution of the
ideas is shown in Figure 4.1, which shows a “version graph” of the some of the key pa-
pers in the field, most of which we will discuss in the following subsections.

4.2.1. Haskin and Lorie [HASK 82]

One of the most fundamental papers to describe extensions to relational systems to
handle CAD data was written by Haskin and Lorie of the IBM Research Laboratory at
San Jose in 1982. This paper described a variety of extensions to the System-R
Relational Database System to improve its ability to store and manipulate CAD data, in-
cluding support for hierarchical aggregates of tuples across relations (complex objects)
and mechanisms for long duration transactions, such as non-blocking locks and an on-
disk lock table.

Despite ignoring the issue of versions, the system made an important contribution to
the modeling of complex objects within the relational model. The schema definition lan-
guage was extended to make it possible to declare explicit key attributes and to refer-
ence these from other relations as foreign keys. The SQL language was extended to
make it possible to retrieve a heterogeneous, hierarchical collection of tuples based on

—-23 ..

Ecklund, et. al., Katz & Chang

“DVSS: A Distributed ‘“Managing Change in a
Version Storage System” CAD DB~ o
VLDB ‘87 VLDB ‘87 ™
Chou & Kim “+ Klahold, Schiageter, Wilkes
“Unitying Framework for “A Genearal Model for Versnon
... Version Control” \ Landis Mgmt In DBs™
VLDB ‘86 “Design Evolution & History VLDB ‘86

in an OO CAD/CAM DB"

" . Compcon ‘86
' Batory & Kim
“Support for Versions of

VLS| CAD Objects Dittrich & Lorle

IEEE TSE 86 " “Version Support for
Englneenng DB Systems”
----- -1EEE TSE '88

Katz, Chang, Bhateja
“Version Modeling

Constructs for CAD DBs”
‘SIGMOPD ‘86

v Katz & Lehman
, “DB Support for Versions &

Alternatlves of Large Design Files”
= IEEE TSE ‘84

Batory & Kim
“Modeling Concepts for

VLS! CAD Objects”
~_4fACM TODS ‘85

» v Katz“ 7
- “Managing the Chip
. Design Database”
" |EEE Computer ‘83

Batory & Buchmann
“Molecular Objects, ADTs,
Data Models: A Framework”
VLDB ‘84 G

“McLeod, Narayanaswamy,

L - “Bapa Rae "/ -
. “An Approach to Info.

Mgmt. for CAD/VLS!”

. SIGMOD '83

',Lorle & Plouffe
Complex Objects. andiTholr
Use in Design Transactlons

~Haskin & Lorie
“On Extending the
Functions of a Relatlonal
Database System”
SIGMOD '82

Wiederhoid, Beetem, Short
“A DB Appr. to Comm. in
VLSi Design™
|EEE Trans. CAD '82

FIGURE 4.1: A “Version Graph" of Some Papers cn Versions
Note that [WIED 82; KATZ 83; LOR! 83; BATO.84; KATZ 84] are early papers not mentioned in the text.

key-foreign key matching given just the key value of the root tuple.

Figure 4.2 shows how inter-relation hierarchical relationships are specified through
COMP-OF and REF attributes. An SQL query can be phrased to bring into memory the
root tuple of a complex object (there is one complex object per tuple in MODULES), fol-
lowed by a related PART tuple, FUNCTION tuple, and set of PINS tuples, next related
FUNCTION tuple, and so on. So the query language can support a kind of hierarchical
traversal of the underlying relationships. This works well as long as the relationships
are tree-structured, and if they are not, the schema definer must identify the preferred
retrieval path since only one attribute of a tuple can be COMP-OF. 1t is possible to de-
fine the interface so that an appropriately linked record structure is formed in memory as

the result of a complex object retrieval.

- 24 --

MID Module Name MODULES
g A comp_ormopuLES)
PID MID Part Name
l COMP_OF(PARTS) - .
FID PID Function Name

' 5 SID Signal Name SIGNALS
COMP_OF(FUNCTIONS) A

e i REF(SIGNALS)
. [Fp | Pin | PinName |SID fvo | BEINS

FIGURE 4.2: An Example CAD Complex Object

Attribute MID of the MODULE relation is declared as a key. Attribute MID of relation PARTS is de-

clared as a foreign key of MODULES by using the notation COMP_OF(MODULES). Similarly for

the attributes PID in PARTS and FUNCTIONS, and FID in FUNCTIONS and PINS. An SQL query

can retrieve a set of tuples rooted at a particular MODULE tuple, with many PARTS tuples, each
- PARTS tuple with many FUNCTIONS tuples, each with a nested set of PIN tuples. If the relation-
" ships are not tree structured, as with PINS, FUNCTIONS and SIGNALS, the tuples are rerr/eved
~but not in nested h/erarch/cal order R ‘

4.2.2. McLeod, Narayanaswamy, and Bapa Rao [MCLE 83]

In their 1983 paper, McLeod, Narayanaswamy, and Bapa Rao were among the first
to realize the importance of data mode! support for versions and configurations, borrow-
ing on some earlier work from the software engineering literature. Unlike Haskin and
Lorie, who concentrated on extending the relational model, their work was developed
within the framework of semantic data models. However, the paper does describe a
procedure for realizing the semantic design schema as a collection of relational tables.

The model introduces the explicit concepts of compositions and versions. Although
called configuration in their paper, their notion of object composition is not the same as
what we have been using so far. The model distinguishes among versions representing
alternative implementations, revisions, and different representations. Their model
makes an explicit distinction between instances and definitions, and associates an inter-
face description with objects.

These notions are combined and visualized in terms of an AND-OR graph with alter-
nating AND and OR nodes, in which AND nodes represent object compositions while
OR nodes represent alternative versions (see Figure 4.3). Thus, a version is described
in terms of a composition of its subcomponents, each of which has its own versions. To
promote reusability, composite objects are actually represented as instantiations, sort of
a template with slots for instance specific attributes and a reference to the object’s actu-
al definition. In addition, versions are viewed as instances of the same type, sharing
common attributes with their siblings. Note, however, that the model does not explicitlv
support relationships among versions, such as is-derived-from.

- 25 -

FIGURE 4.3: AND-OR Graph
AND nodes are circles and OR nodes are
squares. A particular Datapath version is con-
figured from RFile, ALU, and Shifter compo-
nents. ~The ALU has four versions in turn.
© Version 1 of the ALU has the components
Function Generator and Carry Propagate, which
“in turn have versions. Each version can be
. : viewed as an instance of a type, sharing at-
tributes with other instances, such as a com-
mon interface.

. Datapath

- Shitter

4.2.3. Dittrich and Lorie [DITT 88]

Dittrich and Lorie present a model of versions based on the concepts of design ob-
jects, generic references, and logical version groupings. In their view, a design object is
a set of versions with a single distinguished current version. They provide no explicit
support for derivation information. Design objects can reference other design objects to
form hierarchical aggregations. These references may be bound to a specific version of
a design object (including such qualifiers as “last frozen version”) or they may be gener-
ic, which is to say that they refer to a particutar design object, but not to any of its specif-
ic versions. Generic references are one way to provide the dynamic configurations dis-
cussed in Section 3. Similar to the proposal in Section 3, generic references can be
dereferenced through an environment mechanism. Environments bind design objects
to specific versions, or may reference other environments which define the binding.
Environments may be ordered so that a given environment’s bindings may dominate the
bindings of other environments. The basic concepts are illustrated in Figure 4.4.

In addition, their model supports the concept of logical version cluster, which aliows
the user to impose more structure on the design versions by aggregating them into arbi-
trary groups. For example, it is possible to impose on the space of versions a grouping
structure that clusters together versions that are revisions of the same alternative.
Thus, under the design object node are a group of nodes representing version clusters
for individual alternatives. Under these are additional clusters representing revisions of
each alternative. Finally, associated with each revision cluster are those versions that
participated in the revision. Thus, arbitrary hierarchies of version clusters can be
formed. Note that the clustering structure need not partition the versions; a version may
appear in more than one cluster.

4.2.4. Klahold, Schiageter, and Wilkes [KLAH 86]

Klahold, Schiageter, and Wilkes proposed additional methods for imposing structure
on the version space. Their model is founded on the concept of Version Graph, which
is similar to the Version History of Section 3, but more general since derivation history is
only one of many possible threadings through the versions to form a graph. In an effort
to combine concepts of object consistency with version information, they laver partitions
on top of the Version Graph. Partitions are groupings of versions based on their level of

- 26 --

-‘Datapath

G ENV2
o Riile ALU V1
. Rfile V1
g - ENVT
VO V2 Vo v1 o JALU V2
hUE e e Rile =——1—/ Sear
. - Generic Reference
mamnmnmmme>- Direct Reference
o - Design Object

O - Version

FIGURE 4.4: Dereference Procedure for Generic References ,

A datapath object is formed from Rfile version 0 and a generic reference to the ALU. The generic

ALU reference is dereferenced with respect to Envronment 1, thus binaing to version 2. Note a ge-

neric reference to Rfile would be redirected to Environment 2, where the binding would be to ver-
- sion 1. If Environment 2 is given priority over Environment 1, either gener/c reference would bind to

versron 1 of the respect/ve des:gn objects S R

consnstency the |dea bemg that older versions have passed more consxstency checks
than new versions. They also provide support for subset views of the Version Graph,
which are subsets of the graph that satisfy specified criterion. Linkages among objects
are inferred if intermediate nodes are left out of the subset. Figure 4.5 gives an exam-
ple of a Version Graph and one of its subset views.

4.2.5. Batory and Kim [BATO 85]

Batory and Kim published an important paper addressed at how to model VLS| CAD
objects and their versions. Their approach was an Entity-Relationship model extended

Version Graph Subset View
Consistent

Unchecked O O

O Consistent OR)
Unchecked but Derived
from Test_B

FIGURE 4.5: Version Graphs, Partitions, and Subset Views

On the left is a Version Graph partitioned into the four groups "consistent”, “passed test_A”", "passed
test B”, and “unchecked”. At the right is a subset view of this version history that shows all versions
that are either consistent or are as yet unchecked but have been derived from some version which
has passed test B.

27 -

with object-oriented inheritance. The paper introduced four new modeling concepts:
molecular objects, type-version generalization, instantiation, and parametrized versions.
We will discuss each of these in turn.

Molecular objects are a way to aggregate more primitive objects and their relation-
ships. For example, a 4-input NAND circuit could be aggregated from three interrelated
2-input NAND gates. The 2-input NANDs are primitive objects, while their aggregation
into the 4-input NAND constitutes a molecular object. A key aspect of molecular objects
which makes them attractive for modeling VLSI components is their explicit separation
of interface from implementation. In essence, the molecular object model describes the
construction of higher level component assemblies in terms of the interconnection of
component interfaces.

If molecular objects form the component hierarchy, then type-version generalization
provides the mechanism through which a form of version history can be supported. In
the Batory and Kim model, interfaces are used as the specification of an object type,
and versions are represented as instances of that type. in other words, all versions of
an object are constrained to implement the same interface. Versions are viewed as al-
ternative implementations or revisions to previous versions, with no explicit support for
derivation history. One important advantage of using the type mechanism as a way to
aggregate versions of the same object is that the type system’s inheritance mechanisms
can be leveraged to good advantage: properties of the type (i.e., the interface) can be
inherited by the versions (i.e., the implementations).

The model's instantiation concept separates use of design data from its definition.
Instances are distinct from versions; the former represents a use and is a copy cf a ver-
sion, whereas the version corresponds to a definition. Once again, property inheritance
can be used to propagate attribute values from definitions (versicns) to uses (instantia-

tions).

The fourth mechanism they introduced was parametrized versions, basically a way
to support dynamic configurations. A molecular object reference can be bound to a
specific version of its component or it can reference the component's type, leaving the
binding to a specific version unresclved. The semantics of parametrized versions is that
any version of the component can be plugged into the molecular object.

Batory and Kim also address the operational issues of change notification in their
design data model. They point out that there are many directions in which change infor-
mation can spread: from one representation to another, from a component to its con-
tainer, or from an ancestor to a descendent. Because of this potentially vast complexity,
they propose a mechanism that uses timestamp information to limit the range of notifi-
cation messages that must be sent.

The mechanism works as follows. Associated with each object are two timestamps:
TCN' the time when the object was last changed, and TCA’ the time when changes

- 28 --

were last acknowledged. An object is implementation consistent if its TC A exceeds
TCN' In other words, its designer has acknowledged the changes that have been made
to the object. An object is reference consistent if its TC A exceeds the TCN of all of its
components. Thus the designer of a composite must acknowledge the changes of the
components s/he has used. Finally, if object L is derived from object H, they are repre-
sentation consistent if L's TCA exceeds H's TCN’ L's designer must acknowledge the

changes made to the object it depends on, namely H. Change notification is complete
once all objects are implementation, reference, and representation consistent.

4.2.6. Landis [LAND 86]

Landis described an early version of Ontologic's data model for applications like
computer-aided design. The model is based on four concepts: non-linear version histo-
ries, version references, change propagation, and limiting of change scope.

The model supports branching version histories, where each branch is meant to rep-
resent a new alternative. It has explicit support for identifying the current version and
the default branch, in a manner very similar to the model of Section 3.

Version references are a mechanism to deal with dynamic configurations. Historical
references are always bound, that is, once a version is superseded, its references to
other versions cannot be altered. References from current versions which are not ex-
plicitly bound always reference the current version of the target. This is illustrated in
Figure 4.6.

The model also provides some operational support for change propagation. New
versions of related objects are created as a result of a change made to the version they
reference. Under user specification, change propagation is invoked whenever (1) a new
version is created, (2) the schema is changed (e.g., a new property is added to a ver-
sion), or (3) a property value is changed.

As mentioned in Section 3, such a change propagation strategy could lead to a pro-
liferation of new versions, many of which may not be cf relevant interest to the design

M M1 M M M FIGURE 4.6: Version References
2 3 4 Object M references object D. The objects
evolve as follows. D1 js current, and is refer-
' enced from M1 when it is created. M2 then su-
percedes M1, forcing M1°s reference tec be per-
manently bound to D1. Next, M3 supercedes
M2, forcing M2 to be permanently bound to D1
@) as well. Now D2 supercedes D1, and M3 refer-
D ences it, since M3's reference always binds to
the current D until it is superceded. This is

shown as M3 is superceded by M4.

Dy D,

- 29 .-

team, but merely artifacts of the change propagation process. To help control changes,
the Ontologic model provides two additional mechanisms: delta sets and pended ver-
sion creation. Delta sets are much like the log of changes maintained by a transaction-
based system. These are sets of changes to related objects that should be considered
the unit of undo or redo. Pended version creation is similar in spirt to the group check-
in mechanism of Section 3.3.5: in propagating changes through the lattice of relation-
ships, no change should cause an object to evolve through more than one new version.

4.2.7. Chou and Kim [CHOU 88]

Chou and Kim collaborated to produce a major revision of the earlier model pro-
posed by Batory and Kim. Their new model borrowed much from the model discussed
in Section 3, such as support for configurations, versions, derivations, and equivalenc-
es, and an operational model based on workspaces with check-in/check-out operations
and dynamic configuration binding via a context mechanism. They also distinguished
among three different types of versions: transient, working, and released.

Their new contribution was a further exploration of the change notification problem
within the context of their data model. They distinguish between message-based notifi-
cation mechanisms, which may be either immediate or deferred, and flag-based mecha-
nisms. In the latter, the designer is made aware of a change that may affect his/her ob-
ject only when it is next accessed. Because of the difficulty of successfully limiting the
scope of changes, their approach to change propagation is to limit changes to a single
level. That is, only those object which directly reference the changed object undergo
change themselves, and the process does not recurse.

4.2.8. Ketabchi and Berzins [KETA 87]

Ketabchi and Berzins propose another variation on database models for versions
based on their concept of refinement. They describe three different kinds of refine-
ments: (1) template refinement, in which a design object is described in terms of its mul-
tiple “aspects”, (2) explosion refinement, in which a version of a composite object is de-
scribed in terms of versions of its components, and (3} instance refinements, which de-
scribe the revisions and alternatives of a design object. These three concepts are varia-
tions on the notions of equivalences, configurations, and version histories introduced in
Section 3.

An interesting aspect of their model is their suppert for incremental, independent,
and alternative refinements in describing the evclution of a design object. Version histo-
ries are actually represented by two related graphs. The refinement graph (RG) de-
scribes which versions are derived from which earlier versions. This is exactly like a
version history graph, except that it can be a DAG rather than a tree. Associated with
this is the incremental refinement graph (IRG), which records the changes or deltas that
differentiate the new version from its ancestor. These may represent dependent refine-
ments, in which changes to the ancestor directly affect the descendent, independent re-
finements, in which deltas on parallel paths do not change the same data, and alterna-

--30 --

tive refinements, in which changes on parallel paths do affect the same information.
The three different kinds of incremental refinement are shown in Figure 4.7.

The authors also describe a check-in/check-out model based on Parts, Projects,
and Private databases. The Parts database is a global, essentially read-only repository
of design components common to multiple design projects. Project databases contain
the refinements, alternatives, and versions of a given project. The addition of new ob-
jects to these kinds of databases requires a careful validation before update. Private
database are the purview of the individual designer, and have few restrictions. Note the
general similarity to the Archive, Group, and Private databases of Section 3.

4.2.9. Eckland, et. al. [ECKL 87]

Eckland, et. al. describe a system which generalizes the simple server/client models
presented so far. Their system, called DVSS (for Distributed Version Storage Server),
views access to design objects in terms of a federation scheme, in which users have ac-
cess to objects which are allocated to sites. A user who is an associate member of a
federation has read-only access to its assigned objects, while participating members
have read/write access. A federation is similar to the public workspace in the terminolo-
gy we have already presented. Federations correspond to major repositories of design
data, such as specific part libraries or project design data.

Design objects are represented by version sets organized not as trees but as rooted
DAGs. A distinguished path through the DAG is called the principal path. The current
version of the object is defined to be the most recently created version on the principal
path.

The DVSS model distinguishes among three different ancestor/descendent relation-
ships within the version DAG. A new version created along the principal path is called

dt1 11 o
Dependent Independent : Alternative
Refinement Refinement -~ = .= Refinement

FIGURE 4.7: Dependent, Independent, and Alternative Refinements

£ach of the three portions of the figure shows an incremental Refinement Graph of deltas on the
left and a Refinement Graph of versions on the right. For dependent refinement, the versions form
a path. T2 is derived from TO by applying both deltas in sequence. For independent refinement,
the versions form a tree with each associated delta changing a different portion of T0. In this case
it is possible to combine the changes on multiple paths to create a new version, as is shown for T3.
Delta T3 is the combination of Deltas T1 and T2. Alternative refinement also produces a tree, but
the associated deltas overiap. An attempt to combine them to form a new version is flagged as an
error, as is indicated in I1T3.

-~ 31--

the principal successor, and there is at most one such successor. Hs relationship with
its ancestor is called refinement. 1f multiple users are making changes to the same ver-
sion at the same time, the first to finish and check-back the changes as a new version
creates the principal successor. Other users create in-parallel descendants, whose re-
lationship with their common ancestor is called derivation. When versions along multi-
ple paths are reconciled to form a new common path, the relationships between the
newly created version and its multiple ancestors are called consolidation.

References among objects can be fixed to a specific version or left floating. Floating
references can have an optional time associated with them. At check-out time, floating
references are resolved to the current version (at the optionally specified time) along the
specified version path. The version path used for evaluation can be altered via assign
commands issued to the DVSS.

4.2.10. Beech and Mahbod [BEEC 88]

Beech and Mahbod describe a version model that has been embedded within the
object-oriented type system of the IRIS database manager developed at Hewlett-
Packard Research Laboratories. In their model, a version is an object in its own right,
with its own unique Object Identifier. Version instances are organized into version sets
associated with a single generic instance. Generic and version are built-in types, and
can be mixed with conventional design types, such as layout and netlist. The version
graph is realized via functions associated with the generic and version instances.
These functions define the first, last, successor, predecessor versions, etc.

New versions can be automatically generated via two methods: by mutation and by
propagation. In the former, a change to a prespecified “significant” property triggers a
copy on write: the current version is frozen and a new version is created before the
change is made. The second method is very similar to the change propagation of
Section 3.3.5, i.e., the creation of a new version of a subcomponent triggers the creation
of a new version of its containing object.

Interobject references may be either specific cr generic. Specific references identify
a particular related version while generic references identify a generic instance and its
associated version set, but no specific version. A context mechanism is used to specify
when and how generic references are to be resolved. It is a very general mechanism,
based on database triggers, which can take place either before or after an operation in-
vocation, and user specified rules, which declare how resolution is to take place.

4.2.11. Rumbaugh [RUMB 88]

Rumbaugh has proposed a simple mechanism for controlling operation propagation
across relationships. It is based on associating propagation attributes for particular op-
erations with the relationships. These attributes can take on one of four values: none,
i.e., the particular operation does not propagate; propagate, i.e., the operation should be
applied to both the relationship instance and the related object; shallow, i.e., the opera-

—-32 -

tion should be applied to the relationship instance but not the related object; and inhibit,
which suppresses propagation as long as an instance of the relationship exists. The lat-
ter is not quite the same as none. It allows propagation to take place once the las* in-
stance of a relationship associated with a changed object is deleted, and is useful for
implementing propagated destroys to objects that are no longer referenced. While the
operations Rumbaugh had in mind are things like copy, destroy, print, and save, the
mechanism has general application for controlling change propagation as discussed in
Section 3.3.5.

4.2.12. Vines, Vines, and King [VINE 88]

These authors describe the version and change control model of GAIA, an object-
oriented framework for an ADA programming environment being developed by
Honeywell. Their approach for change control is based on four related concepts. First,
versions are represented by timestamps rather than version numbers, to more clearly
correlate events with the versions that they spawn.

Second, explicit relationships between objects are created to define the impacts of
change. These relationships may be version-sensitive, in which an object is notified of
a change to a related object, or change-sensitive, in which an object may not itself be
sensitive to the change but may be related to another object that could be afiected by
the change. Change-sensitive relationships allow an object to redirect a change notifi-
cation to another related object which is not directly related to the changed object.

Third, their model supports explicit objects for managing change. A change request
object is created in response to a human or machine generated change request. It be-
comes associated with the object that is to be changed, tracks the change as it evolves,
and provides the anchor for an audit trail. A change notification object is spawned when
a change request is propagated along version or change sensitive relationships. These
can spawn new change request objects if the target object must be changed in re-
sponse to the change being made to the source object. While these change reguests
can be generated automatically, they are more likely to be created at the discretion of
the responsible designer.

Fourth and finally, configuration objects are introduced to group changes together.
A configuraticn is a tabulation of objects and their specific versions. New configuration
objects can be generated in response to requests spawned from changes to component
objects.

4.2.13. SUN NSE [SUN 88

The SUN NSE system is a design environment for software development, but incor-
porates many of the concepts discussed above. It views the design environment In
terms of objects that are to be manipulated by type-specific tools and type-generic com-
mands. The kinds of objects known to the system include the following:

33 --

File which can be source, derived, or generic. Files can be versioned.

Target a package of a derived file, the objects it depends on, and its reconstruc-
tion recipe.

Component a building block for constructing hierarchical structures which can be
type heterogeneous. Components are very much like file system direc-
tories, except that they are organized by time sensitive snapshots called
revisions. In essence, components provide an hierarchical name space
for objects.

Linkdb supports arbitrary connections among related objects. Linkdbs can be
versioned.

Versions are stored as interleaved deltas within the object.

The access paradigm is based on the operations of acquire, modify, and reconcile.
The effect of an acquire operation is to copy (i.e., check-out) an object from one “envi-
ronment” (i.e., workspace) to another. Reconcile copies back (i.e., check-in) the object
as a new revision. The system provides special type-dependent tools to assist in merg-
ing together parallel revisions.

The environments, which are essentially workspaces, are arranged hierarchically.
While not limited to three levels, the documentation suggests organizing the environ-
ments into levels representing at least release, integration, and development activities.

The system provides some operational support for change notification. Developers
register notification requests with the system. When a particular “interesting” event hap-
pens in an “interesting” environment, such as a recompiling a particular file, the system
will send email to the requester.

An interesting aspect of NSE is its ability to be configured for a variety of different
hardware architectures. The concept of variant allows the design team to specify the
appropriate compilers, libraries, etc. that are to be used for a particular target architec-
ture.

4.2.14. Apolio DSEE [LEBL 84]

The Apollo DSEE system is a comprehensive environment for software develop-
ment. It consists of five main components, of which we will concentrate on the first two.
These are: (1) the History Manager, which provides SCCS-like version control, (2) the
Configuration Manager, which through a system model supports the construction of a
complex system in terms of its more primitive components, (3) the Task Manager, which
guarantees proper tool invocation and sequencing, (4) the Monitor Manager, which sup-
ports change notification, and (5) the Advice Manager, which provides on-line assis-
tance for users when executing tasks.

The History Manager provides Reserve and Replace operations that are compara-
ble to check-out and check-in respectively. Similar to the NSE, versions of a program

34 -

module are maintained via interleaved deltas within a single file. Variants can evolve in
one of three ditferent ways: as a new independent line of descent (with support for
merged versions), as alternative radically different implementations, and as conditional
or parametrized descendants. The system identifies the most recent version within a
distinguished main derivation as the default version, although this can be changed
through a version map mechanism very similar to the layers and contexts described in
Section 3.3.2.

The Configuration Manager uses a system model to describe (1) how a module is
composed of its components, (2) the sequence of tasks necessary to reconstruct these
components in the event of a change, and (3) build dependencies that may exist among
the components and other objects known to the system. |f a module depends on an ob-
ject that undergoes change, then it must be reconstructed according to the specified

tasks.

The Configuration Manager depends on the concept of configuration threads to de-
fine the composition of modules. These are similar to the configurations of Section
3.2.4, implemented as described in Section 3.3.4. A configuration thread is a tabulation
of component names and versions of those components to be used. Some references
can be bound to specific versions while others default to the most recent version of a
given component. However, this binding can be modified by a mechanism called ver-
sion maps, which is very similar to the environments of Section 4.2.3. A bound configu-
ration thread is one in which all dynamic bindings have been resolved so that all refer-
ences are to specific versions. Configuration threads can be arranged hierarchically, so
the configuration thread for a module can reference a configuration thread for each of its
major subsystem components. A release is nothing more than a built system, its bound
configuration thread, and a keyword to identify it.

--35 --

5. Version Modeling Mechanisms and Policies

In this section, we take a different cut through the mechanisms underlying version
management. Rather than present them from the viewpoint of a given model, as we did
in Sections 3 and 4, we shall group the various proposals by the basic aspect of version
management they are meant to support in the next subsection. It is no great surprise
that much of the variation across models is due not to sc much different concepts, but to
different terminology for the same concept. Where possible, we present a unified termi-
nology in Section 5.2.

5.1. Basic Mechanisms

While at first glance it may appear that an enormous number of new concepts have
been introduced by the papers we have reviewed, a closer inspection reveals that there
are really only a small number of notions underying the various proposals. Broadly
stated, these consist of seven classes of mechanisms: (1) organization of the space of
versions, (2) dynamic configurations and dereferencing, (3) hierarchical compositions
across versions (configurations), (4) alternative groupings of versions, (5) distinctions of
instances versus definitions, (6) change notification and propagation, and (7) workspace
organization. We shall examine how the models of Section 4 provide alternative mech-
anisms for each of these.

5.1.1. Organizing the Version Set

All models geared towards supporting versions have some conception of a version
set. For example, [DITT 88] defines a design object as a set cf versions. [RATO 85] use
type-version generalization to associate a type specification with what amounts to a set
of versions. They support the inheritance of common attributes, such as interface infor-
mation, from types to version instances. [KATZ 86a] introduces the version history, which
arranges the versions according to ancestor/descendent relationships. Versions are
uniguely identified by system assigned version numbers, although some models use
timestamps [VINE 88] and others use object IDs [BEEC 88]. Branches are called alterna-
tives, with a distinguished current version and a main derivation path from the root to
the current. Associated with the version history is a distinguished generic object which
loosely corresponds to Dittrich and Lorie's design object and Batory and Kim's type.
[LAND 86] presents a similar model, but current is indistinguishable from last created.
[KLAH 86] generalizes version histories by introducing version graphs, in which ances-
tor/descendent relationships are only one of the possible threads that can link versions
together. [KETA 87] call their version of the version history a refinement graph, and they
make the incremental changes explicit in an associated incremental refinement graph.
Their mechanism supports a true directed graph. The version model of [ECKL 87] is not
very different from the version history/graph or refinement graph, and like Landis’
model, current is the same as “last created” on a distinguished principal path. The
same is true of the model of the DSEE [LEBL 84]. The contribution of the model of
[BEEC 88] is to phrase generic instances and version sets in terms of a functional data

- 36 --

model. Thus arbitrary relationships among versions, such as first, last, successor, pre-
decessor, etc. are easy to define and modify.

5.1.2. Dynamic Confiquration Mechanisms

Most of the models we have reviewed have some mechanisms to support dynamic
dereferencing of relationships between versions, usually used to support dynamic con-
struction of configurations. [KATZ 85) distinguishes between static and dynamic configu-
ration binding. A static reference binds to a specific version of the component, while a
dynamic reference is dereferenced at run-time to some version of the component's ver-
sion history. [ECKL 87] calls these fixed and floating references respectively. [BEEC 88]
call them specific and generic references. [DITT 88] also calls the latter generic referenc-
es, while [LAND 86] calls then dynamic version references. [BATO 85] use parametrized
versions with type rather than instance specific references to achieve the same effect.

The models provide a variety of different ways to perform the dereferencing of dy-
namic references to specific versions. One set of mechanisms is based on placing ver-
sions into /ayers, and ordering the collection of layers into a context [CHOU 86; KATZ 85].
[DITT 88] proposes a similar method based on hierarchical environments, which can be
ordered in manner similar to layers within contexts. The version maps of [LEBL 84] are
essentially the same thing as Dittrich and Lorie’s environments.

A second dereferencing method resolves to the current version on the the distin-
guished path within the version history. Both [LAND 86; ECKL 87] use this method, while
[LEBL 84] defaults to this method if no version maps are specified. Actually, [ECKL 87] is
somewhat more general, in that a reference can be resolved to the current with respect
to a given time stamp.

[BEEC 88] provides the most general mechanism of all: the user must supply rules to
drive the resolution method.

5.1.3. Hierarchical Compositions (Configurations)

There are really just two ways to represent configurations in the models we have
surveyed: flat configurations and hierarchical configurations. [VINE 88] is an example of
the former. A configuration is viewed as a flat table that maps objects onto their specific
versions.

A more flexible approach is adcpted by most of the other models. Basically, a ver-
sion of a design object references specific versions of its component objects, as amend-
ed by the discussion of dynamic references in the previous subsection. [KATZ 87] intro-
duces composite objects; similar mechanisms are used in [DITT 88; LAND 86]. [KETA87]
calls these explosion refinements. [LEBL 84] describes configuration threads, which are
like composite objects, except that they are separated from the underlying modules
rather than being stored within the module versions. [BATO 85] use molecular objects,
but the way in which they map versions of molecular objects onto versions of their com-

-37 -

ponents is not clearly stated in their model.

5.1.4. Version Grouping Mechanisms

[DITT 88] introduce logical version clusters as a way to group versions in arbitrary
ways. [KLAH 86] provide version partitions, which provide a single level partitioning of the
version space.

5.1.5. Instances versus Definitions

Only the models of [MCLE 83] and [BATO 85] make a clear distinction between instanc-
es and definitions. In the former, versions are viewed as instances of a type which
share common attributes. Composite objects are templates with slots for instance spe-
cific attributes. When a composite object is instanced, this template is copied and the
instance specific attributes are filled in with the appropriate values. A very similar ap-
proach is used in Batory and Kim’s model. Instances are distinguished from definitions,
and references are maintained between definitions and their associated uses.

5.1.6. Change Notification and Propagation

Several models concentrate on change notification, with limited support for change
propagation. [BATO 85] proposes a timestamp based mechanism for change notification
that distinguishes between the time that a designer is notified of a change and the time
that he or she acknowledges the change. A variety of consistency conditions are de-
fined based on timestamps of components being appropriately ordered with respect to
the time stamps of containers. [CHOU 86] proposes a variation of the scheme, with sup-
port for both message-based (immediate) and flag-based (deferred) notifications as well
as a single level of change propagation. [SUN 88] sends messages when triggered by
centain “interesting” events, such as compilations.

Other operational models concentrate on supporting change propagation. [LAND 86}
and [KATZ 88] view change propagation as the process of constructing a new configura-
tion to incorporate a newly created version of one of its components. [BEEC 88} takes a
similar view. As pointed out in Section 3, change propagation mechanisms must deal
with the dual problems of unambiguous change paths and limited change scope to con-
trol the effects of changes. [LAND 86] and [KATZ 88] propose pended version creation and
group check-in respectively to unambiguous define the propagation effects. [VINE 88]
uses version sensitive and change sensitive relationships to control the path of chang-
es. Finally, [KATZ 88] and [RUMB 88] propose using propagation attributes to limit the
range of propagation.

5.1.7. Object Sharing Mechanisms

Most of the models we have described provide some flavor of workspace model for
supporting the sharing of objects among multiple designers. Objects move between
workspaces as the result of check-in/check-out operations. [SUN 88] refers to these op-

.- 38 --

erations as acquire, modify, and reconcile, the latter being a special operation for merg-
ing together derivation paths in the version history. [LEBL 84] calls them reserve and re-
place.

A second variation among the models is how the shared repositories are named and
how they are arranged hierarchically. Usually they are called workspaces, as in
[KATZ 87] and [CHOU 86], but sometimes the terms database [KETA87], federation
[ECKL 87], and environment [SUN 88] have been used. Although the models support the
construction of multiple levels of repositories, most agree that at least three levels are
necessary. These have been called archive, group, and private in [KATZ 87; CHOU 86];
parts, projects, and private in [KETA87]; and release, integration, and development in
[SUN 88].

5.2. The Grand Unification

Much of the above discussion has pointed out the similarity in the proposed models.
In this subsection, we shall propcse a unified terminology where a conceptual consen-
sus appears to exist, based wherever possible on the model of Section 3.

5.2.1. Organizing the Version Set

The key concepts we introduce here are version history, generic object, ances-
tor/descendent relationships, main derivation, branches, and current. Version instances
are objects in their own right, and are uniquely identified to the system. They may be
identified by the user through a unique version number or time stamp, implemented as
distinguished attributes. Version instances are related to a common generic instance,
from which attributes and default values can be inherited. They are also interrelated to
each other by system maintained ancestor/descendent relationships, as well as any
other relationships created by the users. These may be implemented by links as in
[KLAH 86] or functional relationships as in [BEEC 88].

Ancestor/descendent relationships are used for placing an ordering on the version
history. This has also been called the version set [DITT 88; BEEC 88], version graph
[KLAH 86], and refinement graph [KETA87]. A single version instance is identified as the
current version. We feel it is important to decouple the notion of current from last creat-
ed. There is no such decoupling in the models of [LEBL 84; LAND 86; ECKL 87]. The path
from the root to the current is called the main derivation [LEBL 84]. This is the same as
the principal path in [ECKL 87) and the default branch in [LAND 86]. Alternatives are repre-
sented by branches in the version history. This has been called variants in [LEBL 84] and
derivations in [ECKL 87]. Alternative paths can be merged to form a single subsequent
path, thus the history is a directed graph rather than a tree. This has been called a
merged line of descent in [LEBL 84)], a reconciliation in [SUN 88], and a consolidation in
[ECKL 87]. These terms are summarized in Figure 5.1.

5.2.2. Dynamic Confiquration Mechanisms

-39 --

_FIGURE 5.1: Version Terminology

. A version history is shown with versions related
- by anscestor/descendent links. Alternatives
_--are branches. The main derivation traces a
“ path from the root version to a distinguished
~current version, shown as a black dot. A
. merged descent is when two or more alterna-
tive paths are merged together in the creation
- of a new version. :

Main Derivation

= Current_/)’ Merged Desca-r‘ut;

EZ:Y' .

We adopt the terminology presented in Section 3: static references bind to specific
versions, while dynamic references refer to generic objects and must be dereferenced
to a specific version for certain operations, such as check-in/check-out. While the rule-
based method of [BEEC 88] is clearly the most general, it is not clear exactly how to for-
mulate rules that would allow the resolution order to be permuted in a flexible and easy
to understand manner. Therefore, we prefer the concept of hierarchical environments
as proposed in [DITT 88]. The mechanism has the advantage of being hierarchical, i.e.,
the internal bindings of a submodule can be defined within an environment associated
with that particular submodule. The order is easily permuted to create “what-it?" config-
urations. Finally, both the “layers and contexts” approach and the “current on a path”
kinds of mechanisms can be supported within the environment model.

5.2.3. Hierarchical Compositions {(Configurations)

The composite object terminology of Section 3 is quite adequate to describe config-
urations in terms of versions of composite objects constructed from versions of their
components. Note that Figure 3.7 shows how configuration mappings are separated
from the versioned data, so the implementation of configurations is essentially identical
to DSEE's configuration threads. An additional mechanism to describe flattened config-
urations, constructed from walking the object hierarchy to create a list of objects and
their associated versions is also of use, especially for archived configurations, and
should be supported in a version medel.

5.2.4. Version Grouping Mechanisms

The logical version clusters of [DITT 88] are certainly more general than the version
partitions of [KLAH 86). The creation of hierarchical version clusters should be orthogonal
to the descendent and ancestor relationships already supported by the version histery.
Figure 5.2 shows how version clusters can be grafted on top of the version history.

5.2.5. Instances versus Definitions

- 40 --

-~ FIGURE 5.2: Grouping Mechanisms

‘The figure shows a version history overlaid with
logic version clusters. The small area and low
power alternatives are subclusters of the slow
alternatives. Orthogonal to these are the fast
alternatives. Clusters are permitted to overlap
in any desired manner. Note how version clus-
- ters naturally allow names to be associated with
- branches (i.e., alternatives) in the version histo-

‘Alternatives k;:;::tn:; S v

Because of the need to maintain instance specific attributes, it is not possible to de-
scribe the component hierarchy simply as a directed acyclic graph with arcs represent-
ing uses and nodes representing definitions. A distinction needs to be made between a
definition hierarchy and an instance hierarchy. Figure 5.3 shows the relationship be-
tween the two for a simple example of a register file consisting of sixteen instances of a
register. The instance hierarchy makes reference back to the definition hierarchy to as-
sociate instances (uses) with their definitions.

5.2.6. Change Notification and Propagation

Change notification and propagation is a relatively new area, and one in which there
is certainly more work to be done. Change notification is fairly straightforward, and any
of the message or flag-based approdches seem sufficient. Change propagation, on the
other hand, is a more difficult and challenging problem. Change propagation as the in-
corporaticn of new versions within the configuration hierarchy appears to be a widely
accepted terminology.

Mechanisms to disambiguate the change effects and to limit its scope are needed in
any propagation mechanism. To disambiguate the change path, we have described
some mechanisms based on group check-in. To limit change scope, the propagation
attribute approach of [RUMB 88] can be made to cover the timestamp methods of
[BATO 85] and [CHOU 86], as well as the change sensitive relationships of [VINE 88], and is
more general. Such a mechanism should be incorporated within change propagation.

FIGURE 5.3: Instances vs. Definitions
The definition hierarchy on the right while the
instance hierarchy is on the left. The register
file is defined in terms of sixteen instances of
the register. If instance specific attributes are
fo be asscciated with the individual registers,
then sixteen separate instances must be creat-
ed, eaching referencing back to the original
register definition. The instance and definition
|||| , hierarchies can be comingled in the sense that

............................ separate instance nodes are needed in the
case that an object can have instance specific
attributes.

Reg File

hitd Register

"
"
"t
"

- 41 --

5.2.7. Object Sharing Mechanisms

Despite the varying terminology, the basic concepts reduce to private, group/project,
and public/archive workspaces, with objects moved among the workspaces through
check-in and check-out operations. The federation concept of [ECKL 87] is a natural ex-
tension from single site workspaces to workspaces that are spread across multiple
sites. It also clarifies who has what kind of access to which workspaces. It is straight-
forward to combine the federation notion with multi-layer workspaces. -

L -

6. Summary and Conclusions

In this paper, we have described the general requirements for version management
systems, presented one model in some detail to highlight these requirements, and have
reviewed a collection of representative proposals for version management mechanisms
from the literature. Despite the large number of proposals, each with its own idiosyn-
cratic terminology, we were able to see that most proposals were really minor variations
on a small number of themes. :

A major goal of this paper has been to attempt to unify the terminology of these dis-
parate proposals. In certain areas, we have been successful. There is really little that
separates the mechanisms for organizing version histories, for example. Most of the
apparent differences are really due to variations in terms rather than fundamental differ-
ences in underlying concepts. This was also true of support for dynamic configurations
and workspaces. In other cases, we were able to identify mechanisms that generalized
on previously proposals. For example, propagation attributes for limiting change propa-
gation can alsc be used to implement the variety of timestamp methods that have been
proposed, and thus represent a more fundamental mechanism upon which a variety of
different approaches can be implemented.

While we would have liked to have been able to present the ultimate version man-
agement model, we do not feel that such a model is likely to exist for some time. Our
preferred model would be based on the proposal of Section 3, extended with liberal
sprinklings of ideas from the literature we have reviewed: the logical version clusters
and hierarchical environments of [DITT 88}, the federation concept of [ECKL 87), the propa-
gation attributes of [RUMB 88], and the merged path version history of a number of pro-
posals.

The final challenge, that of creating a single framework, based on the mechanisms
we have identified, that can be tailored for the needs of a given version environment, is
something that is still left to be accomplished. This paper represents a first step in that
direction, but much work remains before we can fully understand how best to support
versions in design environments.

- 43 --

7. Bibliography

BANE 87 Banerjee, J., W. Kim, H-J Kim, H. F. Korth, “Semantics and Implementation of Schema
Evolution in Object-Oriented Databases,” Proc. 1987 SIGMOD Conference, San Francisco, CA, (May
1987).

BATO 84 Batory, D., A. Buchmann, “Molecular Objects, ADTs, and Data Models: A Framework,”
Proc. Conference on Very Large Databases, Mexico City, Mexico, (August 1984).

BATO 85 Batory, D., W. Kim, “Modeling Concepts for VLSI CAD Objects,” ACM Trans on Database
Systems, V. 10, N. 3, {September 1985}, pp. 322-346.

BEEC 88 Beech, D., B. Mahbod, “Generalized Version Control in an Object Oriented Database,”
Proc. IEEE Data Engineering Conference, Los Angeles, CA, {(February 1988), pp. 14-22.

BHAT 87 Bhateja, R., R. H. Katz, “A Validation Subsystem of a Version Server for Computer-Aided
Design Data,” Proc. 24th ACM/IEEE Design Automation Conference, Miami, FL, (June 1987).

CHOU 86 Chou, H., W. Kim, “A Unifying Framework for Version Control in a CAD Environment,”
Proceedings 12 VLDB Conference, Kyoto, Japan, (August 1986).

DITT 88 Dittrich, K., R. Lorie, “Version Support for Engineering Database Systems,” /EEE Trans. on
Software Engineering, V. 14, N. 4, (April 1988), pp. 429-437.

ECKL 87 Eckland, D. J., E. F. Eckland, R. O. Eifrig, F. M. Tonge, “DVSS: A Distributed Version
Storage Server for CAD Apphcanons " Proc. 13th VLDB Conference, Brighton, England, {September
1987), pp. 443-454.

GEDY 88 Gedye, D. M., R. H. Katz, “Browsing the Chip Design Database,” Proc. 25th ACM/IEEE
Design Automation Conference, Anaheim, CA, (June 1988).

GOLD 81 Goldstein, I., D. Bobrow, “Layered Networks as a Tool for Software Development,” Proc.
7th Intl, Conference on Articial Intelligence, (August 1981).

HASK 82 Haskin, R. L., R. A. Lorie, “*On Extending the Functions of a Relational Database System,”
Proc. ACM SIGMOQOD Conterence, (May 1982), pp. 207-212.

KATZ 83 Katz, R. H., “Managing the Chip Design Database,” IEEE Computer, V, N 12, (December
1983).

KATZ 84 Katz, R. H., T. J. Lehman, “Database Support for Versions and Alternatives of Large Design
Files,” |IEEE Transactions on Software Engineering, V SE-10, N 3, (March 1884).

KATZ 85 Katz, R. H., Information Management for Engineering .Design, Springer-Verlag Computer
Science Survey Series, Heidelberg, West Germany, 1985.

KATZ 8ega Katz, R. H.,, E. Chang, R. Bhateja, "Version Modeling Concepts for Computer-Aided
Design Databases,” Proc. ACM SIGMOD Conference, Washington, DC, (May 19886).

KATZ 86b Katz, R. H., M. Anwarrudin, E. Chang, “A Version Server for Computer-Aided Design
Data,” Proc. 23rd ACM/IEEE Design Automation Conference, Las Vegas, NV, (June 1986).

KATZ 87 Katz, R. H., R. Bhateja, E. Chang, D. Gedye, V. Trijanto, “Design Version Management,”
IEEE Design and Test, V 4, N 1, (February 1987_).

KATZ 88 Katz, R. H., E. Chang, “Managing Change in a Computer-Aided Design Database,” Proc.
13th Conference on Very Large Databases, Brighton, Engiand, {(September 1987). Also in Readings
in Object-Oriented Databases, S. Zdonik, D. Maier, eds., Morgan-Kaufman Publishers, San Mateo,
CA, 1988.

KATZ 89 Katz, R. H., E. Chang, “Inheritance Issues in Computer-Aided Design Databases,” in Object-

[

Oriented Database Systems, K. Dittrich, U. Dayal, eds., Springer-Verag, Berlin, West Germany,
1989.

KETA 87 Ketabchi, M. A., V. Berzins, “Modeling and Managing CAD Databases,” |.E.E.E. Computer
Magazine, (February 1987), pp. 83-102.

KLAH 86 Klahold, P., G. Schlageter, W. Wilkes, “A General Model for Version Management in
Databases,” Proc. VLDB Conference, Kyoto, Japan, (August 1986}, pp. 319-327.

LAND 86 Landis, G. S., “Design Evolution and History in an Object-Oriented CAD/CAM Database,”
Proceedings 31st COMPCON Conference, San Francisco, CA, (March 1986).

LEBL 84 Leblang, D. B., R. P. Chase, “Computer-Aided Software Engineering in a Distributed
Workstation Environment,” Proceedings ACM SIGPLAN/SIGSOFT Conference on Practical Software
Development Environments, (April 1984).

LORI! 83 Lorie, R. L., W. Plouffe, “Complex Objects and Their Use in Design Transactions,” ACM
SIGMOD Conference, San Jose, CA, (June 1883).

MCLE 83 MclLeod, D., K. Narayanaswamy, K. Bapa Rao, “An Approach to Information Management
for CAD/VLS! Applications,” Proceedings SIGMOD Conference on Catabases for Engineering
Applications, San Jose, CA, {May 1983), pp. 39-50.

RUMB 88 Rumbaugh, J., “Controlling Propagation of Operations Using Attributes on Relations,” Proc.
OOPSLA ‘88 Conference, (September 1988), pp. 285-296.

SUN 88 SUN Microsystems, “Introduction to the NSE,” Part No. 800-2362-1300, (March 7, 1988).

VINE 88 Vines, P., D. Vines, T. King, “Configuration and Change Control in GAIA,” Proc. OOPSLA '88
Conference, (September 12€8).

WIED 82 Wiederhoid, G., A. Beetem, G. Short, “A Database Approach to Communication in VLSI
Design”, IEEE Transactions on Computer-Aided Design, V 1, N, (1982).

