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Abstract

A number of application-specific searching mechanisms, including keyword searching in textual

databases, can be implemented naturally in a relational DBMS using abstract datatypes and user-

defined operators. For query efficiency these operators and abstract datatypes must be supported

by indices. A new indexing scheme is proposed which allows a large class of query predicates to be

evaluated using indices, including many key operators for textual databases. The indexing scheme

also significantly reduces the space required to store indexed textual data in a relational database

system.

1. Introduction

Information retrieval systems such as online library catalogs, citation retrieval systems, and

full-text database systems are usually implemented using cither inverted-file database systems or

special-purpose software that does not use a DBMS [Lynch 1987]. Substantial problems arise

when attempts are made to use a modern relational DBMS such as INGRES or DB2 to support

these applications. Examples of such problems are excessive disk space consumption and overly

complex and expensive queries. This paper explores the application of user-defined operators and

abstract datatypes as a means of effectively implementing information retrieval (IR) applications

using relational DBMS technology.

An abstract datatype (ADT) is an encapsulated data structure that is accompanied by a

set of user-defined operators with which to manipulate the ADT. The internal implementation is

concealed from its users, who manipulate the ADT using its associated operators. User-defined

operators can also be defined for existing (built-in) datatypes, and thus serve as an extensibility



mechanism in their own right. In the early 1980s several efforts were made to incorporate ADTs
into relational database systems, including ADT-INGRES [Ong et al. 1984] and RAD [Osborn &
Heaven 1986], Current research DBMSs such as POSTGRES [Stonebraker &Rowe 1985], EXODUS
[Carey &DeWitt 1985, Carey et al. 1986a,1986b] and STARBURST [Schwarz et al. 1986, Lindsay
et al. 1987] clearly view system extensibility as a major goal and include mechanisms to simplify
the incorporation of new operators and datatypes.

In order to make user-defined operators practical for large, high-volume database applications,
however, appropriate secondary index structures must provide fast access paths for query evalua
tion. Previous work on indexing support for ADTs and user-defined operators [Stonebraker et al.

1983a, Stonebraker 1986] showed how a variety of operators and accompanying indices could be
included in a relational DBMS. This paper demonstrates that the previous indexing proposals must

be generalized in order to overcome the problems inherent in using relational DBMS technology

for IR applications.

Section 2 of the paper begins by defining keyword searching, a common search technique

for textual data of all types. This is done in the context of a database design for an online

library catalog. The space utilization and query complexity problems that arise with a standard

RDBMS are illustrated. Section 3 reviews previous proposals for addressing these problems and

argues the case for user-defined operators as the appropriate method for incorporating keyword

searching into an RDBMS. Previous proposals for indexing such operators are examined in Section

4. Section 5 develops a new extended indexing proposal and compares the resulting performance

and query utilization against a typical inverted-file DBMS, INGRES, and DB2. As a byproduct

of this analysis we show that the storage system used in INGRES provides major benefits for

bibliographic databases compared to that of DB2. Section 6 surveys related user-defined operators

for IR applications that can be supported effectively by the proposed indexing scheme. Section 7

concludes the paper by describing a further generalization of indexing that can be used to support

an even larger class of user-defined operators.

2. Database Definition and Queries for Keyterm Searching

A relational database corresponding to a typical online library catalog would include a relation

BOOKS:

CREATE TABLE BOOKS

(BOOK-ID INTEGER,
TITLE LONG VARCHAR.

other columns);



and a relation containing keywords from the TITLE column of books in the BOOKS relation:

CREATE TABLE TITLE-KEYWORDS

(TITLE-KEYWORD VARCHAR.
BOOK-ID INTEGER);

An online catalog would include similar relations for keywords extracted from other columns, such

as subject headings or cataloger's notes appearing in BOOKS.

The keywords appearing in the TITLE-KEYWORDS relation that corresponds to a TITLE

column value in the BOOKS relation are not simply all of the words in the TITLE column value.

The precise algorithm for deriving keywords is very application-dependent. The value in the TI

TLE column of BOOKS will be in mixed case, and, therefore, the keywords appearing in TITLE-

KEYWORDS will be converted to all uppercase (or lowercase) to permit case-insensitive searching.

Words containing punctuation, such as "data-base" may generate multiple keywords (e.g., "DATA",
"BASE", and "DATABASE"). Variant spellings may beaccommodated by generating multiple key
words (thus the word "colour" in a title generates keywords "COLOR" and "COLOUR"). Abbre
viations may be expanded (e.g., "U.S." in a title generates keywords "UNITED" and "STATES").
Some words are suppressed because they are too common to be useful for retrieval purposes (e.g.,

articles such as "THE" or "A").

A typical large online catalog might have 4 million tuples in the BOOKS relation and 20 million
tuples in the TITLE-KEYWORDS relation. For performance reasons, indices would be created on
BOOKS(BOOK-ID) and TITLE-KEYWORDS(TITLE-KEYWORD).

The database requires considerable disk space for redundant information. Specifically, the
DBMS does not understand the semantics of keywords because keywords are derived from title by

an application program external to the DBMS. These derived values appear once in the TITLE-
KEYWORDS table proper and again in the secondary index to this relation (at least under DB2).
In addition, the need to create multiple tables because a book title can have many keywords creates
overhead through the BOOK-ID columns necessary to relate those tables to one another and the

need to index BOOKS on BOOK-ID.

Space utilization is not a problem unique to relational databases. It also arises in inverted-file
systems commonly used for information retrieval applications. An inverted-file implementation
of the example database would consist of book records containing a title and all the extracted
title keyterms. The title keywords would be extracted into a B-tree index, with each unique title
keyword appearing in the B-tree accompanied by a list of pointers to all records containing that
keyword. An inverted-file system has no built-in understanding of keywords, and thus precomputed



keywords must be stored in both data and indices. Computer Corporation ofAmerica's Model 204
inverted-file DBMS includes an interesting but ultimately unsatisfactory attempt to ameliorate

this problem. Model 204 allows fields in records to be defined as standard keys (both indexed and
stored in the data records) or as invisible keys [CCA 1986]. Invisible keys are indexed and then
removed from the data records. While this reduces space utilization, the reduction is accomplished

at the expense of logical database integrity and consistency. There is no way to update invisible
key entries in indices to reflect changes to the data records that they came from since the DBMS
has no means of computing invisible key values from the remaining fields of the data record. In

addition, query evaluation strategies are severely constrained because predicates involving invisible

keys can be resolved only through reference to indices and not by direct examination of records

selected by other predicates.

However, a relational system consumes substantially more space than an inverted-file system

since BOOK-ID values connecting the multiple relations must be stored as well. The need for

indices on BOOK-ID to provide adequate retrieval performance further increases storage overhead.

Techniques such as invisible keys will be no more satisfactory in a relational system than they are

in an inverted-file system like Model 204.

The amount of space consumed is dependent on the specifics of table storage and index data

structures. It is interesting to contrast INGRES and DB2 in this regard. INGRES has the ability to

construct primary or secondary indices, whereas DB2 offers only secondary indices and clustering

[Selinger et al. 1979, Stonebraker et al. 1976]. Since the relations BOOKS and TITLE-KEYWORDS

each have only a single index, the INGRES storage scheme allows significant space savings by

allowing these tables also to serve directly as indices. In the case of INGRES, we assume that

BOOKS is a hash table on a primary key of BOOK-ID and that TITLE-KEYWORDS is a B-

tree on primary key of TITLE-KEYWORD. For DB2, we assume that TITLE-KEYWORDS is

clustered on TITLE-KEYWORD, and that secondary indices exist on BOOKS(BOOK-ID) and

TITLE-KEYWORDS(TITLE-KEYWORD).

DB2 does manage index storage more efficiently than INGRES. In particular, DB2 stores each

value only once in an index, followed by a list of tuple IDs (TIDs) identifying rows containing that

value. INGRES repeats the index value once for each tuple containing it by storing a (value,TlD)

entry. In a bibliographic database, some keyword values will appear tens of thousands of times.

Implementation of a compressed storage scheme for index pages in INGRES using differential

encoding techniques would be advantageous in bibliographic retrieval applications.



A typical user query against an online catalog is "find all books containing the words 'american'

and 'history' anywhere in the book's title." This translates into the SQL query:

SELECT BOOK-ID.TITLE.other columns

FROM BOOKS. TITLE-KEYWORDS TK1, TITLE-KEYWORDS TK2

WHERE BOOKS.BOOK-ID = TK1.B00K-ID

AND TK1.B00K-ID = TK2.B00K-ID

AND TK1.TITLE-KEYWORD = "AMERICAN"

AND TK2.TITLE-KEYWORD = "HISTORY";

This is a reasonably complex query involving 3 joins. In general, a user query involving n

keywords translates to an SQL query involving n +1 joins. These joins make the queries expensive,

particularly when more than 2 or 3 keywords are specified.

3. Previous Proposals for Improving Bibliographic Databases
with RDBMSs

A few researchers have previously examined the difficulties in using standard RDBMSs for

bibliographic and information retrieval applications. [Macleod & Crawford 1983] survey this work.
Papers such as [Crawford 1981, Macleod &Crawford 1983, Schek 1981] discuss some ofthe problems
in handling keywords within the relational model and recognize that in a standard relational system

separate relations for keywords are required, and consequently that keyword queries will require

joins. These papers offer few proposals for resolving the problems that they identify. [Macleod 1979]
suggests some cosmetic extensions using macros to simplify query formulation and some extended
string-matching operators that are akin to more elaborate versions ofthe SQL LIKE operator. Such
extended string-matching operators have also been proposed in other contexts such as document

processing [Stonebraker et al. 1986]. [Schek 1981] sketches a proposal to enhance an RDBMS with
a series of operators that pattern match on text fields and thus allow the searching of keywords

that are appropriately encoded within the text fields (or any other substring). This approach has

been refined and implemented in the AIM-II system [Dadam et al. 1986]. These proposals are not

satisfactory solutions for keyword searching for the following reasons:

• Proposals for pattern-matching operators areoflittle use unless indices can bedefined to permit

their rapid evaluation. However, pattern-matching facilities aresogeneral that the only feasible
type of index structure will be similar to that described in [Schek 1981]. Such a structure

requires a very large index on arbitrary string fragments and slow, complex access method
algorithms that match fragment patterns by selecting candidate tuples through computations

on the index and then examining the tuples. Space requirements and performance from such

an index will be unacceptable in a large database.



• The extraction ofkeywords is a sufficiently complex, algorithmically oriented process that it is
unlikely to be expressed through any reasonable set of pattern-matching operators. At best,
enormously complex patterns will be required which will be computationally expensive.

• Proposals to add built-in operators specifically to match fields that contain a keyword do not
make sense since, as previously discussed, keyword extraction is highly application-dependent.
It is not feasible to develop a standard keyword matching operator that will meet the needs of

textual applications.

Set-valued relations [Zaniolo 1983] offer a way to avoid joins. The BOOKS relation might be
redefined (using Zaniolo's GEM notation for sets, adapted for SQL) as:

CREATE TABLE BOOKS

(BOOK-ID INTEGER.
TITLE LONG VARCHAR.

TITLE-KEYWORDS {VARCHAR},
other columns);

and a query for books by title keyword "history" in the set-valued relation would be specified as

SELECT * FROM BOOKS WHERE "HISTORY" IN TITLE-KEYWORDS;

However, the availability of sets does not eliminate the need to store keyterms redundantly both in

the relation proper and again in the index. Additionally, proposals for set-valued relations do not

speak to an indexing strategy for members of a set comprising a column value and have not been

generalized to permit set elements that are ADTs. The indexing proposal presented here can be

readily extended to work for an RDBMS that has been enriched to include sets as a datatype, and

complements set-valued relations well.

Nested relations [Dadam et al. 1986] can be viewed as a generalization of set-valued relations.

They could be used to provide much the same effect as set-valued relations: the title keywords

for each title could be defined as a single-column relation. Nested relations share with set-valued

relations a high storage overhead due to the need to redundantly store the keywords in the relation

and in an index, and again proposals for nested relations do not fully address the indexing issue.

Finally, a nested relation implementation of a large bibliographic database would give rise to a

database containing millions of relations; this is likely to be quite cumbersome.



4. Extended Secondary Indices, User-Defined Operators,
and Abstract Datatypes

Keyword derivation is a rather ad-hoc, database- and application-specific process, best imple

mented by the developer of a particular application using procedures written in a programming

language. By its nature, keyword extraction is not a database primitive. The natural and appro

priate tools for this type of application-specific extension within a DBMS are abstract datatypes

and user-defined operators. However, to be practical, user-defined operators must be accompanied

by secondary indices. Previous proposals reviewed below do not provide the necessary indexing

capability and must be generalized.

[Stonebraker et al. 1983a] (and subsequently [Stonebraker 1986], which greatly extended, sim
plified, and generalized the proposal from the original paper) developed a detailed scheme for

defining ADTs and user-defined operators in database systems. Perhaps the most important con

tribution of these two papers is their recognition that ADTs and accompanying operators must

be supported by secondary indices to be viable in many real-world contexts. Without the perfor

mance such indices provide, ADTs have limited utility as practical tools for building production

applications. Thus, a facility called extended secondary indices was also proposed, which provides

the following capabilities:

• The ability to create indices on ADT columns with existing operators.

• The ability to create indices on ADT columns to support new user-defined operators.

• The ability to create indices on non-ADT columns (e.g., existing built-in datatypes) to support

new user-defined operators.

The proposed facility can be summarized as follows. Note that the proposal of [Stonebraker 1986]
has been recast from QUEL to SQL and some of the terminology has been changed here.

1. ADTs are registered with the DBMS; the definition includes the specification of a pair of

functions to convert the ADT to and from character form, which are used to support input and

output of the ADT.

2. New operators can be registered with the DBMS. The main case considered is binary infix

operators, where one defines the datatypesof the left- and right-hand operands and the operator's

result, the operator's precedence, and the name of a function that implements the operator.



3. Restricted classes of Boolean-valued binary operators, in which both arguments have the

same datatype, may be supported through B-tree indices using the B-tree access method built into

the DBMS. The classes of operators that can be supported through the B-tree access method are

those that can play the same role as the usual comparison operators with respect to the datatype

upon which they operate. To construct a B-tree consisting of instances of a given datatype, it

is necessary to have an operator that provides an ordering on that datatype analogous to the <

operator on numeric or character datatypes. This B-tree can be searched for entries satisfying

operators analogous to any of the operators {<, >, =, >, <} using this comparison operator.

Other restricted classes of operators can be supported through other access methods which may

be included in the DBMS. The specific restrictions are access-method-dependent. In this paper we

will consider only B-tree indices.

A user-defined operator class is established for B-trees by providing a name for the class and

supplying a list of user-defined operator names, and specifying the correspondence between the

user-defined operators and the standard B-tree operators {<, >, =, <, >}. (See [Stonebraker

1986] for details.) Any built-in datatype that can be ordered using the usual comparison operators

(e.g., integers or strings) is assumed to have an associated default ordering class consisting of the

standard comparison operators.

A B-tree index to support a specific ordering operator class can be created through the SQL

statement

CREATE INDEX index-name ON table (column) ORDERING operator-class-name

The analog to < in operator-class-name is used to place the values that appear in column into

a B-tree structure. Subsequently, predicates of the form (column relop value) can be supported

through this B-tree index when relop is an operator that is a member of the user-defined ordering

operator class specified in the CREATE INDEX statement. The ORDERING clause is compatible

with current query language usage in that, if it is omitted, the built-in ordering operator class is

used when column contains a built-in datatype known to the DBMS, such as integer or character

string.

Two approaches to formulating keywords with user-defined operators are possible. Neither

approach allows useful indexing to support the operators under the propos;il of [Stonebraker 1986].

The first approach uses an ADT for sets of strings. Define a unary operator, KEYWORDS, on

strings returning a set-of-strings ADT containing all the keywords from the input string. Define

CONTAINS as a Boolean-valued binary operator with one ADT set-of-strings operand and one

string operand. CONTAINS is true if the string operand is a member of the set specified by the



set-of-strings operand. Using these operands a user query such as "find all books with the word

'history' in the title" can be formulated as:

SELECT * FROM BOOKS WHERE KEYWORDS(TITLE) CONTAINS "HISTORY";

The indexing proposal of [Stonebraker 1986] does not allow rapid evaluation of this query for

two reasons. The two operand datatypes of the CONTAINS operator are not identical, and thus

CONTAINS cannot be a member of an operator class. Additionally, even if CONTAINS could be

indexed somehow, the presence of the unary operator KEYWORDS in the WHERE clause of the

query prohibits the use of an index to evaluate the predicate. The first objection can be overcome

by redefining CONTAINS as an operator on pairs of sets-of-strings (where A CONTAINS B is true

if every member of B is a member of A). However, this more general CONTAINS operator cannot

be indexed using [Stonebraker 1986] because it is not analogous to one of the ordering operators

{=, >, <, <, >} in any operator class.

The second approach defines a Boolean-valued binary operator on strings, CONTAINS-
KEYWORD. A CONTAINS-KEYWORD B is true if B is a keyword contained in the string A.

With this approach, the user request for all books with the word 'history' in the title becomes the

SQL query

SELECT * FROM BOOKS WHERE TITLE CONTAINS-KEYWORD "HISTORY";

Again, the indexing proposal of [Stonebraker 1986] provides no help in evaluating this query.
The problem is that the CONTAINS-KEYWORD operator is not analogous to any of the compar

ison operators and thus cannot be a member of an operator class.

5. Generalized Extended Secondary Indices

The keyterm searching problem is an instance of a general retrieval problem that seems likely
to arise in a wide range ofapplications. One has a table with a column C ofdatatype Dl> and a
unary operator U which takes an argument of type Dl and returns a datatype D2 or set-of-02.
There is a B-tree operator class on D2, and an index is required to evaluate predicates ofthe form
(U(C) opr v), where opr is a member ofthe operator class and v is a (constant) value ofdatatype
D2. The following extensions to the scheme described in [Stonebraker 1986] add the functionality

necessary to create indices in support of this class of predicates.



5.1 List Datatypes

A new set of datatypes called LISTs is defined. It is proposed that these be built-in, rather

than user-defined, datatypes for the following reasons:

• Building in lists allows the DBMS to extend automatically most built-in or user-defined oper
ators on other datatypes to lists of these datatypes. The inheritence technique used to extend

these operators is described below.

• The DBMS will need to understand the semantics of lists in order to implement the extensions

to indexing discussed below. If lists are to be user-defined datatypes, an ad-hoc parameter

passing mechanism will have to be defined to support indexing.

Almost everything discussed below can be accomplished with lists as a user-defined rather than a

built-in datatype, at the expense of less attractive syntax and more effort for the user in explicitly

extending operators to lists.

A list is a set of zero or more instances of a specific datatype; the datatype may be a built-

in datatype or a user-defined ADT. Thus, there are datatypes LIST-OF-INTEGER, LIST-OF-

CHARACTER, LIST-OF-REAL, etc. The syntax for defining a list encloses its elements with

braces, for example, {1, 2, 3, 4} or {'a,' 'b,' 'c,"d'}. Listsof lists (ofa specific type) are permitted.

Built-in or user-defined operators on instances of a given datatype extend to lists of that

datatype as follows. Assume that {x,} and {yj} are lists of the appropriate datatype.

• A unary operator (in functional notation) F applied to a list {a:,} returns a new list {Ffa)}.

• Any binary-valued operator OPR where both arguments are of the same datatype permits a

list of that datatype for cither or both arguments, and {x^OPR {t/y} returns a new list with

t * j entries {x, OPR t/j}. If either argument list is empty, the result is an empty list.

• The exception to the preceeding rule is that lists of Boolean values are not permitted. While

Boolean-valued operators extend to permit lists as arguments, they continue to return Boolean

values. A value of true is returned if the operator returns true for any {x, OPR yy} and false

otherwise. These rules define the operator =, when extended to lists, to have the semantics

that {x,} = z is true if and only if x, = z for some : ; {x,} = {yj} is true if x, = tjj for some

pair (f, j ). This exception permits built-in comparison operators to extend to lists gracefully.

An alternative way of formulating the same requirement would be to allow lists of Boolean

values, and to say that when a predicate evaluates to a list of Boolean values it is considered
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true if the list contains the value true, and false only if all entries in the list of Boolean values

have the value false.

Through these rules all built-in arithmetic operators extend immediately to lists of integers

or reals; all comparison operators {=, >, <, >, <} extend to lists of any built-in datatypes on

which they are defined (such as integers and strings). Because of the rule for extending Boolean-

valued binary operators above, if L is a list of integers, for example, (L > X) and (L < X) may

both be true. Thus the standard comparison operators do not form a B-tree operator class on

L1ST-OF-1NTEGERS since they do not create an ordering on these lists.

5.2 Indexing

We proposed to extend the CREATE INDEX statement to permit another parameter OPER

ATOR operator-name in addition to the ORDERING parameter of [Stonebraker 1986].

The semantics of

CREATE INDEX index-name ON table (column-name) ORDERING operator-class-name
OPERATOR operator-name

arc as follows:

1. The operator-name operator must be a unary operator that has an argument datatype

equal to the datatype of the column being indexed. It can return any datatype including list of a

datatype.

2. If operator-name returns an ADT, the ORDERING parameter must also be supplied to

define an ordering operator class for that ADT type that will be used to build the index. This is
necessary because the DBMS must know how to order the ADT to build the index. A nonstandard
(user-defined) ordering operator class can be employed toconstruct an index on a built-in datatype
returned by operator-name by specifying the ORDERING parameter to identify the nonstandard
ordering operating class. If operator-name returns a built-in datatype, the ORDERING parameter
may be omitted, and the standard built-in ordering operator class for that datatype will be used
by default to build the index ifsuch a class exists. (If the DMBS does not know how to order the
datatype returned by operator-name and is not instructed how to do so through specification ofan
ordering operator class through the ORDERING parameter of the CREATE INDEX statement,

the attempt to construct the index is terminated with an error indication.)

11



3. As the index is created, each value in column-name is passed to the operator operator-name.

If the operator returns a single value, that value (along with the TID of the relevant row) is placed

in the index. If the operator returns a list, then entries are placed in the index for each element of

the list, along with the TID of the relevant row. If null values are allowed in the relation, it will

be desirable to allow the operator to return zero values (indicating that nothing is to be stored in

the index for the given tuple) or a null value for the returned datatype, depending on the specific

application.

The choice of processing here, depending on whether the operator returns a list, is the only

point where DBMS must understand the semantics of lists. If lists are provided as user-defined

rather than built-in datatypes, some ad-hoc method'must be used to allow lists to be passed back

from the operator.

4. An index built through this construct can be used to resolve predicates of the form

(operator-name(column-name) relop value)

where relop is any operator in the B-tree operator class used to build the index (either the default

ordering operator class or one explicitly specified through the ORDERING parameter). Resolving

the predicate is accomplished simply by looking up value in the B-tree index that has been created

on operalor-name(column-name) using the ordering operator class. This proposal is upwardly

compatible to the proposal in [Stonebraker 1986]. If no OPERATOR parameter is specified in

the CREATE INDEX statement, then the index can be used to resolve predicates of the form

(column-name relop value) where relop is a member of the ordering operator class specified in

the ORDERING parameter. Note that the two predicate types (column-name relop value) and

(operator-name (column-name) relop value) cannot be supported through the same index.

SQL also permits the creation of indices using multiple columns through the syntax

CREATE INDEX index-name ON table (columnl,column2,...,columnk)

Specifying A;-ary operators rather than unary operators in the OPERATOR keyword of the ex

tended CREATE INDEX statement permits a straightforward accommodation of this more general

form of index construction, thus allowing the construction of an index that can be used to quickly

evaluate predicates of the form

(operalor-name(columnl,column2,...,columnk) relop value).

12



5.3 Applications to Kcyterm Searching

One operator needs to be defined to extract all keywords from a string:

DEFINE OPERATOR T0KEN=KEYW0RDS,
ARGUMENT1 CHARACTER.
RESULT=LIST-OF-CHARACTER

The table TITLE-KEYWORDS then can be eliminated, along with its associated index. In its

place, an additional index on the BOOKS relation can be built:

CREATE INDEX TITLE-KEYWORDS ON BOOKS(TITLE) OPERATOR KEYWORDS;

Using this operator, a search for all books with titles containing a specified keyword (for example,

"DATABASE") can be formulated as

SELECT * FROM BOOKS WHERE KEYWORDS(TITLE) = "DATABASE";

Here the operator = is being extended as discussed above to permit a LIST-OF-CHARACTER

datatype on the left and a CHARACTER datatype on the right. Similarly, all books with titles

containing keywords beginning with the prefix "COMPUT" ("COMPUTERS", "COMPUTING",

etc.)' can be requested by

SELECT * FROM BOOKS WHERE KEYWORDS (TITLE) LIKE "COMPUT0/.";

5.4 Effects on Quory Processing Costs

Comparisons will be made among four environments: an inverted-file system such as ADABAS

[Software AG 1982] (which is commonly used in real bibliographic retrieval systems today, and thus

provides a performance baseline for other implementations); standard INGRES; standard DB2; and

a relational system incorporating the extensions proposed in this paper. The results of this analysis

arc summarized in Table 1. In the analysis, we assume that the database consists of the two tables

defined at the beginning of Section 2 for the INGRES and DB2 cases, and that in the extended

relational case the database consists of a single relation with secondary index as defined in Section

5.3.

We will compare the number of reads necessary to evaluate queries. A hash table lookup is

assumed to be 1 read; a B-tree lookup is assumed to be 3 reads (the effects of caching index blocks

in the buffer pool are ignored). Storage pages are assumed to be AK. We assume that a TID or

an inverted-file record number is 4 bytes, and thus about 1000 TIDs fit on a storage page. We
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assume that title keywords average 9 characters in length, and that the integer values for BOOK-
IDs require 4 bytes. We assume that about 300 tuples from the TITLE-KEYWORDS relation fit
on a storage page since each tuple averages 14 bytes including a length count for the variable-length

keyword.

Consider a single keyword query, such as "find all books with the word 'packet' Jn the title."

This translates into an SQL query:

SELECT BOOK-ID,TITLE.other columns FROM BOOKS.TITLE-KEYWORDS WHERE
BOOKS.BOOK-ID = TITLE-KEYWORDS.BOOK-ID AND

TITLE-KEYWORDS.TITLE-KEYWORD = "PACKET";

in standard DB2 or INGRES, and into the query

SELECT BOOK-ID.TITLE.other columns FROM BOOKS WHERE KEYWORDS(TITLE) = "PACKET";

in the extended relational system.

Assume that there are n books containing the keyword "packet" in the title. For the inverted-

file system, the query requires one index lookup (3 reads), n/1000 reads to obtain the inverted

list, and n reads to actually fetch the records, for a total of 3 + n/1000 + n reads. For INGRES,

one index lookup on TITLE-KEYWORDS is required (3 reads), followed by n/300 page reads to

obtain all of the tuples and BOOK-IDs; n hash table lookups are then required against the BOOKS

relation to obtain the actual records, for a total of 3 + n/300 + n reads. If differental encoding is

used to store the TITLE-KEYWORDS relation in unextended INGRES, query cost is equivalent

to that of the inverted-file system.

For DB2, the situation is much worse. One index lookup (3 reads) and n/300 reads of tuples

in TITLE-KEYWORDS are needed to obtain BOOK-IDs. Each of the n BOOK-IDs must then

be looked up (at 3 reads per lookup) in the BOOK-ID index to BOOKS. After each BOOK-ID is

looked up, the corresponding tuple from BOOKS must be read. The total cost is 4n + n/300 + 3

reads.

With the proposed extension, DB2 requires only 3 + n/1000 + n reads, as does INGRES

with differential encoding on the secondary index built through the extended indexing mecha

nism. Without differential encoding, the performance of INGRES with the proposed extension is

unaltered.

Consider a two-keyword query, such as "find all books with the words 'computer' and 'art'

appearing in the title." This turns into an SQL query like

14



SELECT BOOK-ID,TITLE.other columns FROM BOOKS WHERE
KEYWORDS(TITLE) = "ART" AND KEYWORDS(TITLE) = "HISTORY*;

in the extended RDBMS. The query for the standard DBMS is identical in structure to the example

query at the beginning ofthe paper. Assume that there are 12,000 books that have a title containing

the keyword COMPUTER and 17,000 that have a title containing the keyword ART, and assume

that there are 40 books where the keywords COMPUTER and ART both appear in the title.

In analyzing standard INGRES and DB2 we will assume (optimistically) that the query planner

chooses the most selective predicate as its access path and that there is sufficient memory to

maintain one part of the join in memory.

In an inverted-file system like ADABAS, this query would require two index lookups (one for

each keyword) and the reading into memory of two record pointer lists, one of 12 pages and one

of 17 pages. These two lists of pointers would be intersected to find the records containing both

keywords, and the 40 resulting record pointers would be used to read 40 records. The total is 75

reads.

INGRES will perform one lookup and 40 page reads to load the tuples in TITLE-KEYWORDS

satisfying TITLE-KEYWORD="COMPUTER" into memory, and then perform an index lookup

and 56 page reads to run through the tuples in TITLE-KEYWORDS satisfying TITLE-

KEYWORD= "ART", matching each against the incore tuples from the first predicate. This will

result in 40 tuples, each of which has to be read from BOOKS for a total of 142 reads. If differ

ential encoding is used to store TITLE-KEYWORDS, then the performance is equivalent to the

inverted-file system in terms of I/O as long as the tuples satisfying the most selective predicate

can be maintained entirely in memory. It is worth noting, however, that the processing done by

INGRES to resolve the join will be much more CPU-intensive than the pointer list intersection

performed by the inverted-file system. In addition, if the smallest set of tup>les cannot be main

tained in memory, the I/O cost for INGRES without differential encoding becomes 1927 reads;

with differential encoding it is 271 reads.

Again, the situation with DB2 is much worse. Basically the same processing logic is followed,

but it requires 160 reads instead of 40 to obtain the resultant tuples from BOOKS. In addition,

an extra read is required after each index lookup to start the sequential scan of tuples in TITLE-

KEYWORDS. Thus, DB2 will require 264 reads.

For the proposed extended relational database, this query would require one index lookup (3

reads) followed by reading 12 index pages that identify 12,000 rows in BOOKS (assuming that

the extended RDBMS selects the optimal access path). These rows would be read and scanned to
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resolve the index. The total is 12,015 reads. The reason that this performs badly, however, is that

the evaluation strategy for the Boolean AND is not appropriate. If the DBMS knew the strategy

of looking up the other predicate involved in the AND, first intersecting the TID lists and then

reading the TIDs resulting from the TID list computation, the performance would be identical to

that of the inverted-file implementation. (See [Lynch 1987] for a discussion of this query processing

strategy.)

In general, if there are two keywords, the first identifying x books and the second y books

(x < y)} and there are z books containing both keywords, then the inverted-file system takes 6

+ x/1000 + y/1000 + z reads; INGRES requires 6 + x/300 + y/300 + z; and the extended

relational system requires 3 + x/1000 + x reads. With appropriate query processing strategies,

the extended relational system requires min{6 + x/1000 + y/1000 + 2,3 + x/1000 + x} reads.

5.5 Effects on Space Utilization

Assume that the database contains 4 million books, that the average title is 45 characters long,

and that the average title keyword is 9 characters long; we assume 5 keywords per title on average.

Assume further that about 1 million unique title keywords occur in the database. There are 20

million occurrences of title keyterms. (These values are consistent with actual observed figures for

bibliographic databases of this size, such as the University ofCalifornia's MELVYL®online catalog
[Lynch 1987].) We analyze the space required in order to provide an index on title keyterms. The

results are summarized in Table 2.

The inverted-file system will store every title keyterm occurrence in its record in the data

records (20 million * 9 bytes), the unique title keywords in the index (1 million * 9 bytes), and 20

million pointers in the index. This totals 215MB.

Standard INGRES will require 24 million BOOK-IDs to connect the TITLE-KEYWORDS and

BOOKS relations (20 million in TITLE-KEYWORDS and 4 million in BOOKS), plus one copy

of the title keywords (20 million * 9 bytes, or about 1 million * 9 bytes if differential encoding is

used). This totals 105MB if differential encoding is used in the TITLE-KEYWORD relation and

276MB if differential encoding is not used.

Standard DB2 will store an extra (differentially encoded) copy of the keywords in an index

(89MB) and an index for BOOKS on BOOK-ID (8 bytes * 4 million, or 32MB), for a total of 226MB

if the TITLE-KEYWORD relation is stored with differential encoding, and 397MB if differential

encoding is not used.
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The extended relational system will store 1 million * 9 bytes of keywords and 20 million * 4

bytes of pointers (assuming a differential encoded index) for a total of only 89MB.

6. Other Applications of User-Defined Operators and Generalized
Extended Secondary Indexing

The same need for lists of values derived from columns appears in many other contexts in

bibliographic databases. In this section we consider a few of these situations.

6.1 Searchable vs. Displayable Forms

Typically, users want to search independently ofcase and without regard to most punctuation,

accent marks, and special characters. In addition, when specifiying full titles or subject headings,

users want to search independently of the presence or absence of a leading article. Thus, a second

copy of each field in a bibliographic record is normally maintained which has been converted to a

suitable form for matching against searchcriteria entered by the user at a terminal, along with the

"full" field suitable for display to the user as a search result. These two forms are called searchable

and displayable fields respectively. The precise conversion process from displayable to searchable

form is complex and varies from system to system, but is similar to keyword extraction. The

searchable form of the field is derivable from the displayable form (which must be retained in the

database) and its only purpose is to serve as an access path into the database.

In a standard RDBMS one would construct the BOOKS table as

CREATE TABLE BOOKS

(BOOK-ID IIITEGER,
DISPLAYABLE-TITLE LONG VARCHAR,

SEARCHABLE-TITLE LONG VARCHAR.

other columns);

with an index on the SEARCHABLE-TITLE column. By defining a unary operator SEARCHABLE

that returns the searchable form of the string that is passed as the function argument, this table

could be simplified by eliminating the SEARCHABLE-TITLE column and creating an index:

DEFINE INDEX SEARCHABLE-TITLES ON BOOKS(DISPLAYABLE-TITLE) OPERATOR SEARCHABLE;

Using this new operator, one can search for books containing a given title through a query such as

SELECT * FROM BOOKS WHERE SEARCHABLE(DISPLAYABLE-TITLE) = "THE WINDS OF WAR";
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6.2 Personal Name Indexing

(Personal) author names provide an interesting example ofa rather different keyword extraction
algorithm. A tuple for a book usually will contain a full author name, such as JOHN JACOB
ASTOR, as an additional field. A user can specify many forms of a name that should match this

author name, such as ASTOR; ASTOR,J.; ASTOR,J.J.; ASTOR,JOHN; ASTOR,JOHN JACOB;

or ASTOR,J. JACOB.

To support this type of access, a series of "name keywords" are extracted from each name
in the database using a rather complex algorithm [DLA 1987]. Each keyword that is not from

the last name is prefixed with a character that cannot occur in a name (the symbol @is used in

the example below); these keywords denote initials, first names, and middle names. The number
of prefix characters gives the "type" of the extracted keyword (e.g., one for first initial or first
name, three for middle name, etc.). Essentially, these special characters are used to avoid requiring

separate indices on first name, first initial, middle name, first and middle initials, etc. For exam
ple, the name above might produce the name keywords: ASTOR,@J,@JOHN,@@JJ,@@@JACOB.
Clearly, this personal name keyword extraction can be implemented by a user-defined operator,

say NAMEKT, where NAMEKT("JOHN JACOB ASTOR") = {"ASTOR", "@J", "©JOHN",

"@@JJ", "@@@JACOB"}.

When various forms of the name are encountered by the user interface, the interface generates

name keywords as follows:

Name entered by user Name keywords generated

ASTOR,J ASTOR,@J
ASTOR,JJ ASTOR,@@JJ
ASTOR,JOHN ASTOR,@JOHN
ASTOR,J011N JACOB ASTOR,@JOHN,@@@JACOB

Searches for personal names result in predicates of the form (NAMEKT(AUTHOR) = name-
keyword) being included in thequery constructed by the user interface, with one predicate for each
name keyword generated by the user interface. For example, for the end-user query

FIND AUTHOR ASTOR, J

the user interface will generate two name keywords for "ASTOR" and "@J" and construct the

query
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SELECT * FROM BOOKS WHERE

NAMEKT(AUTHOR) = "ASTOR" AND NAMEKT(AUTHOR) = »«J»;

7. Compatible Operators and Generalized Secondary Indices

Even with the extensions proposed earlier in this paper, many operators cannot be indexed.

The most general type of predicate that can be supported by indices thus far has the form (opera-

tor(column) relop value), where operator is a unary function. Additionally, relop in the predicate

above can only be one of five possibilities { = , < , > , <, > } for B-trees. This section defines

compatible operators and describes how they can be supported through B-tree indices. This is a

general extension that allows a much larger class of predicates to be supported by a single extended

secondary index.

Consider a B-tree index on a column C of datatype D constructed using an operator class OC =

{=, <, >, <, >}. Predicates are resolved using this index as follows in a standard RDBMS:

• For (C< value) or (C < value), find the smallest key in the B-tree index. Proceed sequentially

through the pages of the B-tree from this smallest key, testing each new key encountered to

ensure that (key < value) or (key < value) remains true. If this relationship is true, then the

index entry for the new key specifies a TID satisfying the predicate. If the relationship is false,

stop the index scan; all relevant TIDs have been found.

• For (C —value), look up value in the B-tree through a standard comparison search. If a match

occurs, proceed sequentially as for < and < until a key is encountered such that (key = value)

is false.

• For (C > value), look up value in the B-trcc through a standard comparison search. If value

docs not exist in the B-tree, locate the smallest key > value. All keys from that point are

considered to match the predicate.

• For (C> value), look up the smallest key in the B-tree that is greater than value through a

standard comparison search. All keys from that point are considered to match the predicate.

This search mechanism can be generalized to allow many additional Boolean-valued binary

operators (with both arguments of datatype D) to be supported using this B-tree index on C. Let

@ be such an operator. Predicates of the form

(C @ value)
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can be resolved using the B-tree access method and the index for C can be built using the class
OC, if the access method is provided with a unary operator F on datatypes D (returning datatype
D) that provides a scan start point, and if the operators F and @together have the properties

CI: if X< F(Y), then (X@ Y) is false.
C2: if Y> F(X) and (Y @X) is true, then for all Z such that

F(X) < Z< Y, (Z @ X) is true.
C3: if Y> F(X) and (Y @X) is false, then for all Z such that

Y< Z, (Z @ X) is false.

Intuitively, these axioms require that the computed start point F(A) is either the first key satisfying

the predicate (C @A) or that the smallest key > F(A) is the first key satisfying the predicate,

and that the values in the index satisfying the predicate appear as a single contiguous block of

values starting at F(A) (or the first key greater than F(A)) in the ordering defined by the operator

ordering class OC used to build the B-tree.

An operator that satisfies the axioms C1-C3 for an operator ordering class OC is said to be

compatible with the operator class OC. A mechanism is required to indicate that an operator is

compatible with an orderingclass (and consequently any B-tree built using this operating class can

be used to resolve predicates involving the compatible operator). As part of this mechanism, the

unary function F that supplies the scan start point to the B-tree access method must be provided.

The following simple directive is proposed:

operator COMPATIBLE WITH ordering-class START function type

where operator is the name of the compatible operator, ordering class is the name of an ordering

operator class (on some datatype D), and function is the name of a unary operator on datatype

D returning a datatype D that supplies the scan start point for the access method. Type is either

"EQUAL" or "GREATER" and indicates whether the scan start point is the first value in the

index equal to the value returned by function, or the smallest value in the index greater than the

value returned by function. As with a standard B-tree scan, processing stops when the first key in

the B-tree after the start point fails to satisfy the predicate being evaluated.

Compatible operators have a wide range of uses. For example, consider the ordering operator

class consisting of the standard built-in operators on strings, and suppose we have a column C of

datatype string where all strings are at least four characters. The same B-tree used to index the

column C can also be used to support a set ofcompatible operators {@ =, @<, @>, @<, @>}

that compare the four-character initial stems of strings in C defined as follows:
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SL @= So

SX @< So

Sx @> So

Si @< So

Si @> So

f SUBSTR(si,l,4) = SUBSTR(s2,l,4)
f SUBSTR(si,l,4) < SUBSTR(s2,l,4)
f SUBSTR(s2,l,4) > SUBSTR(s2,l,4)
f SUBSTR(si,l,4) < SUBSTR(s2,l,4)
f SUBSTR(si,l,4) > SUBSTR(s'o,l,4)

If we let -oo denote the smallest possible value for a string, then the START functions are as

follows:

Operator START Function Name Definition

@= H*l) SUBSTR(si,l,4)
@< G(si) -oo (constant)
@< G(si) -co (constant)
@> F(*i) SUBSTR(si,l,4)

@> F(«i) SUBSTR(si,l,4)

Ifthe standard stringcomparison operators areassigned theordering operator class name STRING-

COMP, then the compatible operators defined above would be specified as

«= COMPATIBLE WITH STRINGCOMP START F EQUAL;

<3< COMPATIBLE WITH STRINGCOMP START G EQUAL;

®< COMPATIBLE WITH STRINGCOMP START G EQUAL;

<9> COMPATIBLE WITH STRINGCOMP START F EQUAL;

<3> COMPATIBLE WITH STRINGCOMP START F GREATER;

As a second example, consider ADTs consisting of two component integer vectors (written

[x, y\), with the ordering operator class given by

[a, b| < \c, d] if a < c or if a = c and b < d.

The class ofoperators comparing second components ofvectors when the first components are

equal is compatible with this ordering class. These operators include

[a, b\ @< [c, d] if a = c and b < d
\a, b| @> [c, d\ if a = c and b > d
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The scan start point determination functions would be

Fl([a,6]) = [a,-oo] for @<
F2([a,6]) = [a,6] for @>

And, if the ordering operator class is called VECTORD, the compatibility definitions would be

Q< COMPATIBLE WITH VECTORD START Fl EQUAL;

«> COMPATIBLE WITH VECTORD START F2 GREATER;

Compatible operators are also useful in textual applications where they can index operators

used in word adjacency searching (e.g., "find books with the words 'american' and 'history' in the

title separated by not more than two other words." See [Lynch 1987] for details).

8. Conclusions

The extensions to indexing for user-defined operators given in this paper enable a large class of

user-defined operators to be supported by indices. These extensions are essential for the efficient

support of large text-oriented databases by RDBMSs and additionally offer great space savings for

textual databases. The extensions seem to fit well with proposals for extended relational systems

that allow set-valued columns. When complemented by proper query optimization methods [Lynch

1987], they also provide substantial gains in query execution performance. The compatible operator

construction should be particularly useful in applications involving vector ADTs. In general, we

believe that these constructions should be useful in a wide range of applications outside the realm

of textual databases.
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