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A Method for Obtaining a Canonical Hamiltonian for Nonlinear LC Circuits*

G. M. Bernstein and M. A. Lieberman

Department of Electrical Engineering and Computer Sciences,

and the Electronics Research Laboratory

University of California, Berkeley CA 94720

ABSTRACT

A method is given for obtaining by inspection the Hamiltonian and canonical variables for nonlinear

lossless circuits composed of charge controlled capacitors, flux controlledinductors and independent voltage

and current sources.

1. Introduction

With the current resurgence of interest in classical dynamics, a simple method for obtaining a Hamiltonian

for nonlinear LC circuits would permit the application of new mathematical methods in classical dynamics

[1,2] to circuits. Obtaining a Hamiltonian for the lossless part of an electronic system can be an important

initial step in system analysis. In the study ofweaklynonlinear oscillator circuits [3], all resistive elements are

removed from the circuit, the lossless circuit is analyzed and a change of variables to action-angle coordinates

is performed. As another exampleof this approach, in a study of a digital phase locked loop [4], an estimate

of the average hang timeof the loop due to transient chaos was obtained by studying the underlying chaotic

Hamiltonian system.

Previous studies [5,6] have tended to focus on the Lagrangian formulation of circuit equations and give

the Hamiltonian formulation of the circuit equations as a special case. In [5] this resulted in the restriction

that the nonlinear capacitors and inductors have bijective element relations; in addition, the formulation

used capacitor flux and inductor charge as state variables, which in some sense seems unnatural. In [6]

the result was a generalized Hamiltonian formulation; although the variables used were capacitor charge

and inductor flux, a generalized notion of derivative was used, which results in the Hamiltonian not having

the usual canonical form. In this work we show how to construct, based on the circuit topology, canonical

*Research sponsored by Office of Naval Research Contract N00014-84-K-0367 and National Science Foun

dation Grant ECS-8517364.
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variables that are simple linear combinations of capacitor charges and inductor fluxes, so that the circuit

equations have the canonical form:

Pk = —5- » (la)

_ -gJ5T(ptq) ,•*
q* nZ » ^ '9Pk

for k = 1,..., r.

2. Basic equations

Let jVbea circuit composed of nc, two-terminal, nonlinear, charge-controlled capacitors and nL, two-

terminal, nonlinear, flux-controlled inductors. The constitutive relations for the capacitors and the inductors

are written as follows:

vck = «cfc (Vck )> k= !> -1nc (2)

and

«Lk = *Lk(¥>Lfc)> *= !»•••» n£- (3)

Assume that there are no capacitor loops or inductor cutsets. If capacitor loops or inductor cutsets

exist and the offending elements have byective relations between charge and voltage or flux and current then

the circuit can be transformed to an equivalent circuit with no capacitor loops or inductor cutsets. See [7],

pages 304 - 305, for details. From this assumption we can pick a tree containing all of the capacitors and no

inductors. Partition the branch voltage and current vectors as follows:

^PLic] 1 and V= [VLVS] •

Where iL, vL € Rn^ and ic, vc € Rnc. With the above partition the fundamental loop matrix has the

form:

B = (IntxnL BLC).

KirchhofFs voltage law, Bv = 0, gives:

vL = -BLCvc. (4)

KirchhofFs current law, i = BTiKnfc,, gives:

*c = BlciL. (5)
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Thestate equations for this circuit,using capacitor charge and inductor flux as state variables, can be written

as follows:

4c = BlcK^l). Vl ~ -BLCv(qc) (6)

where

v(gc)= [*cMct)»•••»0c.c(9cnc)] i kvL)=[iLl(<PL1)>'''>hnL((PLnL)] • (7)

To obtain a Hamiltonian, we give the energy function for the circuit and use this energy function to

formulate the state equations of the circuit. Define the energy, E(qc, <pL), of the circuit to be the sum of

the energies in all the inductors and capacitors, that is

£= r*ck lk^ fVLk .

k=iJo k=iJo

We can write the state equations in terms of this energy function as follows:

4c = BLc
dE(qCi(pL)

d<P!
Vl = "BLC

dE(qc,(pL)

He

(8)

(9)

For the above equations to be in canonical Hamiltonian form the number of capacitors and the number of

inductors should be equal and BLC must be the identity matrbc. Since this would only be true for a trivial

circuit, the above equation is not generally in canonical form.



3. Change of variables

Let N G Rnixn* and M G Rn<?xnc be nonsingular matrices, x G R"c and y G Rnt. Define a change of

variables as follows:

qc = Mx, (pL = Ny.

Applying this change of variables to equation (9) gives:

x = M-1Blc(NTy1

y = -N-1B£C(MTr1

Our goal is to find M and N such that

iTdE(qCi<pL)

dE(qCl(fiL)
dx

N-

^°(nt-r)xr °(nt-r)x(nc-r)

(10)

(11a)

(lib)

(12)

With this choice of M and N we see that

(1) for Jfe > r, xk = 0 and yk = 0; therefore, xk and yk are constant. Because of this, we can restrict our

analysis to the 2r active variables, xk% yk for k = 1,..., r. For these variables, E(qCi<pL) is the canonical

Hamiltonian.

(2) E(qCj <pL), the Hamiltonian for the 2r active variables, still represents the total energy in the capacitors

and inductors.



4. Calculation of the M and N matrices

Although there are many choices for M and N that satisfy equation (12), we will restrict ourselves to

two alternative choices that can be easily obtained by inspection of the circuit topology. Let C denote the

set of allcapacitors in the circuit and £ the set of all inductors in the circuit. Our topological restriction

of no capacitor loops or inductor cutsets implied that the set C forms a tree and C forms a cotree for the

circuit and using the C tree and C cotree we wrote the state equation (9) of our circuit. The essence of our

method is to look at an alternate tree (cotree) containing as many inductors (capacitors) as possible.

Let / denote the number ofindependent, inductor-only loops and s the number of independent, capacitor-

only cutsets. The colored branch theorem [8], corollary 6, allows us to partition C and C as follows:

£j is the largest subset of C that can be put into a tree for the circuit; Cx contains nL —I elements.

Ci is the largest subset of C that can be put into a cotree for the circuit; Cx contains nc —s elements.

C2 is the subset of C needed to complete a tree for the circuit with C±\ Cj contains s elements.

C2 is the subset of C neeeded to complete a cotree for the circuit with Cx; £2 contains / elements.

We now have a tree, C1UC2, containing as many inductors as possible and a cotree, C1UC2, containing

as many capacitors as possible. Since the number of tree branches is a constant of the circuit, that is,

independent of the chosen tree, we have nc = nL —/ + s and thus nc —s —nL —I. Let r = nc —s = nL —l.

We partition and order our branch voltage and current vectors as follows:

i= [S^1?,."c^SfJ » v= [v^.v^.v^.vjj , (13)

where i£ , i^ , v£ andvc are elements of Rr; ic and v£ are elements of R*; i^ and vc are elements of

R5.

Based on the C tree, the £ cotree and the partitioning of the variables in (13), the fundamental loop

matrix can be written as follows:

/ Ir 0rx/ Bn B12\
B = (14a)

\°/xr Ij B21 B22/

where BLC is partitioned as:

(Bn B12\
(14b)

B21 B22/



The corresponding fundamental cutset matrix is

/-B?i -B£ I, 0rx,\

V-B?2 -B£ 0iXr I, /

The colored branch theorem along with the £x UC2 tree and Cx U £2 cotree gives us a fundamental loop

matrix with the following form:f

/Bn 0rx, Ir B12\
B=l . (16)

\B2l I, 0/xr 0,x,/

Note that B22 = 0. This is because we defined Lx to be the largest set of inductors that can be put into a

tree, that is, if Lt G£2 then L{ forms a loop exclusively with branches of Cx and not with branches ofC2.

The corresponding fundamental cutset matrix is

/I, -B?l -B?1 0rxA (i?)
\o,xr o,xl -bT2 I, J

TellegenVtheorem tells us that BQT = 0 and QBT = 0. Applying Tellegen's theorem to equations (14a) -

(17) we get:

-BnBn + Ir = 0, -BnB12 + B12 = 0, (18a)

-B21Bn - B21 = 0, -B21B12 - B22 = 0, (18b)

and

I,-§1*^ = 0, -Bli-BjiBj^O, (19a)

-BT2Bf1 + Bf2 = 0, -BSBii + Bji = 0. (19b)

We are now ready to give two different change ofvariable schemes based on the components of the B and

B matrices.

t The form of the fundamental loop and fundamental cutset matrix for the £x UC2 tree is nonstandard

because of the ordering of the circuit variables, that is, we are not listing links before tree branches.



Change of variables I

Let

Then

and furthermore

M-'= 7 "" , N-'= " ™ . (20a)•i-(lr °n") N-'=(BU °rX'
Ur, -I./' W i,

N^B^M-1)7 =( ^ °rX'Y (20b)
0/xr 0/x,

M=/ir orx,\ n= _ .„
B12 -I*

__ /Bn 0rxA

" VB2i I, 7
Proof Multiply the matrices and apply equations (18a) and (18b).

Change of variables II

Let

Then

M'

, /Bli 0rx,\ / I, 0rxl\
i= , N-^f . (21a)

\B?2 -ij VB21 I, J

M-lBjc(N-l)T =f ^ ^'Y (21b)
Vo_. o.'*xr "*xl

and furthermore

/Bli 0rxA / I, 0rxI\
M=f , N=l . (21c)

VBli -I. J V-B21 I, /

Proof Multiply the matrices and apply equations (19a) and (19b).

Change of variables I leaves the r active capacitor charges untouched while the change of variables II

leaves the r active inductor fluxes untouched.



5. Change of Variables by Inspection

To ease application of the above changes of variables, relabel the capacitors and inductors so that the first

r capacitors are in Cx and the first r inductors are in £x, that is: Ck G Cx for k = 1,..., r; Ck G C2 for

k = r + 1,...,nc; Lk G Cx for A: = 1,..., r; and Xfc G£2 for k = r + 1,..., nL. Interpreting the above changes

of variables in terms of loops and cutsets we get the following:

Change of Variables I

For k = 1,..., r:

qk = xk.

For k = r + 1,..., nc:

qk = —xk —Algebraic sumof Xj such that Cj GCi is in a fundamental cutset defined by Ck with Cx UC2

as tree.

For k = l,...,r:

V?jb = Algebraic sumof y;- such that C,- GCx is in a fundamental loop defined by Lk with Cas tree.

For k = r + 1,..., nL:

^t = Vk + Algebraic sumof y;- such that CJ GCx is in a fundamental loop defined by Lk with Cas tree.

Inverse Change of Variables I

For k = 1,..., r:

xfc = qk.

For fc =»r+ l,...,nc:

xfc = —gfc —Algebraic sumof <fy such that Cj GCx is in a fundamental cutset defined by Ck with £xUC2 as

tree.



For k = l,...,r:

yk = Algebraic sumof <pj such that Lj G£>i is in a fundamental loop defined by Ck with £xUC^ as tree.

For k = r + 1,..., n£:

yfc = yjfc -f Algebraic sum of<Pj such that Lj G£1 is ina fundamental loop defined by Lk with with C1UC2

as tree.

Change of Variables II

For k = l,...,r:

qk = —Algebraic sumof x;- such that Lj G£1 is ina fundamental cutset defined by Ck with Cas tree.

For k = r + 1,..., nc:

gj. = —xk j^Algebraic sumof Xj such that Lj GC\ is ina fundamental cutset defined by Ck with Cas tree.

For k = 1,..., r:

¥>* = 2>fc-

For k = r+ l,...,n£:

y>fc = yfc —Algebraic sum ofy^- such that Lj G£x isina fundamental loop defined byLk with £xUC2 as tree.

Inverse Change of Variables II

For k = 1,..., r:

xk = —Algebraic sumof ty such that Cj GCj_ is in a fundamental cutset defined by Lk with £xU(^ as tree.

For k = r+ 1, ...,nc:

xk = —gfc —Algebraic sumof <^ such that Cj GC2 is in a fundamental cutset defined by Ck with Cx UC2 as

tree.



For k = l,...,r:

Vk = W

For A: = r + 1,..., nL:

yk = <pk + Algebraic sumof^ such that Lj G£1 is ina fundamental loop defined by Lk with with Cx U(^

as tree.

We obtain the linear transformations between the *fc's and the gt's by looking at various cutsets;

similarly, we obtain the linear transformations between the yfc's and the <pks by looking at various loops.

When we obtain either the inverse change of variables /or the inverse change of variables II we only need to

consider the Cx UC2 tree. However, when weobtain the forward change of variables /or change of variables

II we need to use both the C tree and the CxU C2 tree.

Example 1

For the circuit shown in Fig. 1(a), we show with thick lines the elements in the capacitor tree, C =

{C11C3,C3}. The corresponding cotree is £ = {i1,X2}. We redraw the circuit in Fig. 1(b), and show

with thick lines the tree containing as many inductors as possible {LVL2,C3}. For this circuit, the number

of capacitors nc = 3, the number of inductors nL = 2, the number of independent inductor loops / = 0 and

the number of independent capacitor cutsets s = 1. We note that r = nc —s = nL = 2. We partition C into

Cx and C2, and £ into Cx and £2 where Cx = {Clt C2}, C2 = {C3}, Cx = {LlyL2} and £2 = 0.

The capacitor element relations are:

cM

vc = v(qc) = c7?2 (22)

The inductor element relations are:

h = X<Pl) =
k sin <p2

(23)

The energy function for the circuit is:

E(qCi<PL) = pi + 2£f?2 + 2C"«3 + 2l"^i - *cosv?2. (24)
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The BLC matrbc, obtained from Fig. 1(a), is

BLC
V 0 -10/

(25)

In this example we apply the change ofvariables /. We obtain the inverse change of variables I from

Fig. 1(b), thatis, we use the £XUC2 tree. To obtain yx and y2 interms of<px and <p2 we look at the fundamental

loops involving the cotree branches Cx and C2. Cx forms a fundamental loop with L1% orientation opposing

the loop, and i2, orientation opposing the loop. Hence, yx = —<px -<p2. C2 form a loop with Z-2, orientation

opposing the loop. Hence, y2 = —<p2. Since the change of variables I leaves the first r = 2 capacitor

charges alone we have: xx = qlt x2 = q2. Capacitor C3 form a cutset by itself and not with any other

capacitors in the Cx U £2 cotree, hence x3 = —q3.

For the forward change of variables I we use both Fig. 1(a) and Fig. 1(b). To obtain <px and <p2 in terms

of yxand y2 we look at the fundamental loops formed by Lxand L2 with Cas tree, that is Fig. 1(a). Lx forms

a fundamental loop with C2, orientation the same, and with C1} orientation opposing. Hence, <px = —yx +y2.

L2 forms aiundamental loop with C2, orientation opposing. Hence, <p2 = —y2. By definition: qx = x1 and

q2 = x2. Looking at the £x UC2 tree, Fig. 1(b), we see that C3 forms a cutset by itself. Hence, q3 = —x3

Our transformation matrices are:

M =

The transformed energy function is:

/l 0 0

I1 ° °\
0 1 0

Vo o -1/

£(Mx, Ny) =^x\ +—x\ +—x'i +^-(-yi +y2)2 - kcos y2.

x =

y = -

11

N"x =

N =

'2 ^3 2ZX

With this transformed energy function we have the following state equation:

/l Ox

-1 -1

V o -l
(26)

(27)

(28)

(29a)

(29b)



For our four active variables xlt *2, yx and y2 the transformed energy can be used as a Hamiltonian.

Example 2

For the circuit shownin Fig. 2(a), weshowwith thick linesthe elementsin the capacitor tree C= {Clt C2,C3}.

The corresponding inductor cotree is £ = {Lx,L2, L3i L4}. Weredraw the circuit in Fig. 2(b) and show with

thick lines the tree containing as many inductors as possible {Lx, L2,L3}. For this circuit, the number of

capacitors nc = 3, the number of inductors nL = 4, the number of independent inductor loops / = 1 and

the number of independent capacitor cutsets s = 0. We note that r = nL —l = nc —s = Zand we partition

C into Cx and C2, and £ into Cx and £2 where Cx = {C1? C2, C3}, C2 = 0, Cx = {Lx, L2l L3} and £2 = {L4}.

The capacitor element relations are:

(bq\ \

C7«2

Vdql )
vc = v(qc) =

The inductor element relations are:

The energy function for the circuit is:

ii = KVi) =
kcos <p2

\ 9&1 I

£(qc» <Pl) =T9i +-£r<& +7«3 +77-¥>i +*8in ^2 +^¥>3 +T^4
2C 2Zj

(I -1 0\

0 1 0

0 1-1

M 0 -1/

The BLC matrix, obtained from Fig. 2(a), is

BLC =

(30)

(31)

(32)

(33)

In this example we apply the change of variables II. We obtain the inverse change of variables //from

Fig. 2(b), that is, we use the Cx UC2 tree. To obtain xx, x2 and x3 in terms of qXi q2 and q3 we look at

the fundamental cutsets involving the tree branches LXl L2 and L3. Lx forms a cutset with Cx, orientation

opposing, and L4 orientation the same. Recall, we are only concerned with the elements of Cx in the cutset
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for the purposes of obtaining the transformation. Hence, xx = qx. L2 forms a cutset with CXl orientation

opposing, C2, orientation opposing and C3 orientation opposing. Hence, x2 = qx + q2 + q3. L3 form a

cutset with C3, orientation the same, and L4i orientation the same. Hence, x3 = -g3. By definition of

change of variables II we have: yx = <px, y2 = (p2 and y3 = <p3. L4, an element of the Cx U£2 cotree,

forms a loop with i3, orientation opposing and Llt orientation opposing. Hence, y4 = <p4 —<px —<p3.

For the forward change of variables II we use both Fig. 2(a) and Fig. 2(b). To obtain qx, q2 and q3

in terms of xv x2 and x3} we look at the fundamental cutsets formed by Cx, C2 and C3 with Cas tree.

Cx forms a cutset with LXi orientation opposing and L4 G £2, orientation opposing. Hence, qx = xx. C2

forms a cutset with Lx, orientation the same, X2, orientation opposing and £3, orientationopposing. Hence,

q2 = —xx + x2 + x3. C3 forms a cutset with L3, orientation the same and L4 G £2, orientation the same.

Hence, q3 = -x3. By definition of change of variables II we have: <px = yv <p2 = y2, <p3 = y3. To obtain

<p4 we refer to Fig. 2(b), that is, the CXUC2 tree. L4 forms a fundamental loop with L3, orientationopposing

and Lx orientation opposing, from the inpection rules we get <p4 = y4+ yx + y3.

Our transformation matrices are:

/ 1 o

0 1

0 0

\-l 0

lVT^

/I 0 0\

1 1 1

\0 0 -1/

M =

/I 0 0\

-1 1 1

\ 0 0 -1/

The transformed energy function is:

N"x =

N =

0 0^

0 0

1 0

-1 1/

/l 0 0 0\

0 10 0

0 0 10

Vi o i iy

(34)

(35)

2?(Mx, Ny) =h-x\ +5^(-*i +*2 +̂ 3)2 +J*S +2l"yi +*sin y2 +^y| +9±fa +Vz +V*)4 (36)
'2 « ^^i

With this transformed energy function we have the following state equation:

(\ 0 0 0\

x= 0 10 0
dE(Mx,Ny)

dy
(37a)

\0 0 1 0/
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y = -

/! 0 °\

0 1 0

0 0 1

Vo 0 o/

d£(Mx,Ny)
dx

(37b)

For our six active variables xv x2, x3, ylf y2 and y3 the transformed energy can be used as a Hamiltonian.

6. LC Circuits with Independent Sources

Let Afbe a circuit containing nE independent voltagesourcesand nj independent current sources, in addition

to nc two terminal, charge-controlled capacitors and nL two-terminal, flux-controlled inductors. We now

show how to obtain a canonical Hamiltonian formulation for this circuit.

Assume that the circuit has no loops formed by capacitors and voltage sources and no cutsets formed

by inductors and current sources. Let £ denote the set of independent voltage sources and J the set of

independent current sources. The above condition implies that CU S forms a tree for the circuit and CUj

forms a cotree for the circuit. Partition the branch voltage and current vectors as follows:

s _ rT «t «t -TiT
l — UliV^c^bJ

and

v = [vl,vj,v?,v£]r.

With the above partition the fundamental loop matrix has the form:

0 Br/7 B,

Kirchhoff's voltage law gives:

Kirchhoff's current law gives:

InL V DLC 0LE
B =

0 !„, BJC BJE

vL = -BLCvc - BLEvE

Vj = —BJcvc —BJEvE.

*c = BLc*i, + BJC\j

1E = B££»l£ + BjElj

14
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(38b)

(39a)

(39b)



Note that vE G R"B and ij G Rnj are given functions of time, since they are the voltages across the

independent voltagesources and the currents throught the independentcurrent sources, respectively. From

(38a) - (39b) we see that once we know vc and iL we can determine all other circuit variables. The state

equations for this circuit are:

<Pl = -BLcVc(qc)" BxjVaM (40a)

qc = BjciL(VL) + BjciJ(«) (40b)

Consider the circuit Afx obtained from Af by short circuiting the voltage sources and open circuiting the

current sources. Mx has the following fundamental loop matrix:

B^1=(-f„1 BLC).

Orderand partition Cand £ as in Sec. 4 and obtain the transformation matrices M and N for ftfx. Applying

the change of variables (10) to (40a) and (40b) gives:

x =

Xr °rx(nt-r)

Q(nc-r)xr ®{nc-r)x(nL-r)

(Jr °rx(nc-r)

0(nL-r)xr °(nt-r)x(nc-r)

a£(*g'Ny)] +M-'B501,W (41.)

«2g!fii]T-N-iBL,TJ,W (41b)

or in component form:

dEC.

6Vk

and

where

.t=aS(Mx,Ny)+at(t)| lik^ (42a)

M(Mx,Ny) li4Sp (42b)
dxk

** = «*(<) r<k< nc, (42c)

Vk = -AW r < A: < nL, (42d)

<**«) =EE^^i^W' (43a)

AC) = E EcN"x]«B".i^i(*)- (43b)
i=i i=i

15



The variables xk for r < A: < nc and yk for r < Ar < nL are trivial in the sense that their dynamics can

be obtained simply by integrating equations (42c)-(42d) directly; therefore, they will be omitted from the

canonical Hamiltonian formulation.

Define

JT(«, y) =E(Mx, Ny) +j>*M% +AbM*J-
Jt=i

Then for our 2r active variables we have the following canonical Hamiltonian formulation:

dH(x,y,t)

for 1< Ar < r.

(44)

(45a)

(45b)

Example 3.

In Fig. 3 we show a circuit M that contains independent voltage and current sources. Let the capacitor and

inductor constitutive relations be the same as in Example 1. We show with thick lines the elements in the

capacitor-voltage source tree, CU6 = {CXl C2,C3,w,3}. The corresponding inductor-current source cotree is

CUj = {Lx,L2,i3l,i32}. The fundamental loop matrix is

/l 0 0 0 -1 1 0 0\

01000-10 1

0 0 10 1 0-10

\0 0 0 1 1 0 0 0/

B =

Note:

Blc — BLE =

BJC = [ I and BJE =
10 0/ Vo

(46a)

(46b)

If we short circuit the voltage sources and open circuit the current sources we get the circuit of Example

1 (Fig. 1). Using the M and N matrices (26) and (27) obtained in Example 1, we obtain the following
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transformed state equations:

x =

0£(Mx,Ny)

y = -

dy

dE{Mx^y)
dx

(I 0\

0 0

Vi o)

(i.iit)
UaW.

V,3(<).

where £(Mx, Ny) is givenin (28). Define

/-i\ (i i\/mW
J5T(x,y) = ^(Mx,Ny) +(x1 x2)\ KsM+ dfc %)

= £(Mx, Ny) + fo + *2K3(t) + yJtrtW + **(*)]

Then

_ 0ff(x,y)

y* = -
0ff(x,y)

5«L

for A: = 1,2 is the canonical Hamiltonian formulation for our four active variables and

is = ».iW

is the equation for our inactive variable.

17
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(47b)

(48)

(49a)

(49b)

(50)



7. Separation of Variables for Linear Systems

When the nonlinearities in the capacitors and inductors aresmall, so that the unperturbedcircuit jVcontains

linear capacitors and inductors, then a change of coordinates to the principal axes of the system is desirable

in order to reveal the oscillatory modes of the circuit, to put the equations in a form suitable for canonical

perturbation analysis, or to obtain the action-angle variables for the circuit. In this section we give a

method for obtaining this transformation starting from the canonical form derived earlier. In addition, this

transformation only involves the active variables, whichare already separated into two canonicallyconjugate

sets. This contrasts with the technique used in [3] where the transformation to principal axes was made

directly for the entire set of active and inactive variables.

Let Afbe the circuit of Sec. 2 or Sec. 6, with the matices M and N giving the transformation to canonical

form. Partition the x and y vectors as follows:

x = [xrWf and y = [yrT,yiT]T (51)

where x^y, GRr are the active variables and xB GR', yi GR' are the inactive variables. For the active

variables we have

'd£(Mx,Ny)"
x„ =

yr = -

dyr

&E(Mx,Ny)
dx.

(52a)

(52b)

Suppose the capacitors and inductors have the followingconstitutive relations:

vCk = -pr9ck + ™ck («ck) A: = 1,..., nc (53a)
Ck

and

hk = -jT~VLk +«Lfc (<PLk) *=1. •••* nL- (53b)

Note that e = 0 is the linear case.

The energy has the form Ee(qc, <pL) = E0(qc, tpL) + eEnl(qc, <pL), where

£o(qc> Vl) = l/SqcC-Sc + 1/2*£L-Vx (54)

and

Eni(<ici<PL) =E / *cfc(«)rf«+E / Mw)du» (55)
k=iJ° k=ij°

18



C = diagtC*!, C2,..., CnJ, (56a)

L= diag[I1,i:2,...,ZnJ. (56b)

Under the transformation, M and N, to canonical form the energy becomes:

£e(Mx, Ny) = (l/2)xTAx+ (l/2)yTDy+ e£n,(Mx, Ny) (57a)

where

A = MTC-1M and D = NTL"XN *(57b)

For change of variables I:

/Au A12\ /Cr-l + Bl2Cm-lBj2 -BuC.-'N
A= = , (58a)

Va?2 a22; V -c,-1^ c,-1 J
/D„ D12\ /BjiLr^u + BSL,-^ B^L^X

D= = . (58b)
\D?2 D22/ V Li"lB2i Ii"1 /

For changejpf variables II:

(BnCr" B]i + B12C8" B12 -B12CS" \
(59a)

c.-lBT. c.-1 /

(Lr" +BjiLi" B21 -B21L," \

• (59b)-Lx B21 Li /

Where

CP = diagfC*!,..., CJ, C9 = diag[Cr+1,..., Cn<.], (60a)

Lr = diag[Z1}..., Lr) and Li = diag[Lr+1,...,£nJ. (60b)

To achieve the transformation to principal axes it suffices to separate only the active variables in

£0(Mx,Ny). To do this we need a transformation that diagonalizes An and Dn while preserving the

canonicalstructure of (52a) and (52b). Consider the change of variables

xr = Fu, yP = Gw (61).

Applying this change of variables to (52a) and (52b) weget the following necessary and sufficient condition

on the matrices F and G to preserve the canonical form

F-1(G"1)T =I or FGT = I (62)
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Since Au and Dn are positivedefinite we can take their square root, i.e., Cholesky decomposition [9],

A - A1/2 A1/2

D - D1/2TD1/2
rp

Let P and Q be the singular value decomposition [9] of Axx Bxx , i.e.,

where

Define

Ai/2Bi/2J
P = ft,

n = diag[w1,w2,...,wr],

PTP = I and QTQ = I.

F= AIi1/aQn1/2 and G= D^Pft1'2

where

i-iAul/2=[Alf] , D-'^fDlf]

and

n1/2 = diag[Vw7, Vw7,..., y/uQ.

One can check that (62) is satisfied and that

/ n FTA

-1

(63a)

(63b)

(64a)

(64b)

(64c)

(65a)

(65b)

(65c)

£o(u,w;x9,yi) = (l/2)(u',x8')
AToF A12* A22")(><•«-<l DO

For the linear case, 6 = 0, the equations are

u = flw + GTD12y„

w = -ftu + FTA12x8.

(66)

(67a)

(67b)

Recall, y| and xs are inactive or trivial variables and are either constants or independent functions of time.

For the weakly nonlinear case, e ^ 0, we have

ii = flw + GTD12y! + €

w = —fiu —FTA12xs —e

20

0£nf(u,w;xfl,yi)
dw

d£n,(u,w;xa,yi)
du

(68a)

(68b)



Example 4.

Consider the circuit of Fig. 2(a) with linear capacitors and inductors, i.e.,

vck = TT<lck for *=1»2,: (69a)

and

iLk = y-<PLk for * = 1,2,3,4 (69b)

with the following normalized capacitor and inductor values: Cx = IF, C2 = IF, C3 = (1/2)F, Lx = (1/2)5,

L2 = (1/2)5", L3 = 15, and L4 = (1/3)5. Using the M and N matrices obtained from Example 2, we

have:

/2 -1 -1X

A = MTC"1M = -1 1 1

\-l 1 3 /

/5 0 3 Z\

0 2 0 0

3 0 4 3

\z 0 3 3/

D = NTL_1N =

Hence,

A„ =

2 -1 -1

-1 1 1

V-i 1 3/

\

The Cholesky factorization of An and Dn is

Ai/2_Axx —

1.4142 -0.7071 -0.7071

0.0000 0.7071 0.7071

V0.0000 0.0000 2.0976

Thesingular value decomposition ofAx[ Bx{ is

Q =

/ 0.4082 -0.8991 0.1581

0.4082 0.3347 0.8493

V0.8165 0.2822 -0.5037.

and Dn =

/5 0 3 \

0 2 0

\3 0 4 /

and T>\{2 =

/ 2.2361 0.0000 1.3416 \

0.0000 1.4142 0.0000

\ 0.0000 0.0000 1.4832/

P =

21

/ 0.8563 -0.4505 0.2524 \

0.0000 0.4888 0.8724

V0.5164 0.7471 -0.4185/

(70a)

(70b)

(71)

(72)

(73a)



and

ft = diag[3.3166,2.5243,0.7923]

Finally,

/1.0514 -0.6340 0.6340 \

0.0000 0.4350 1.3861

V1.0514 0.3170 -0.3170 /

/ 0.3170 -0.8003 0.2512 \

0.0000 0.5491 0.5491

V0.6340 0.8003 -0.2512/

F = A-^Qft1'2 =

and

G = Dn1/2Pft1/2 =

The Hamiltonian for the active variables is

/ 3.3166 0.0000 0.0000 \

—E(vl, w; y4) = (l/2)( ux u2 u3 ) 0.0000 2.5243 0.0000

\ 0.0000 0.0000 0.7923/ \«3/

/3.3166 0.0000 0.0000 2.8532\ fu>i\

0.0000 2.5243 0.0000 0.000 w2

0.0000 0.0000 0.7923 0.0000 w3

\ 2.8532 0.0000 0.0000 3.0000/ \ y4 /

Recall y4 = ip4 —<px —<p3 = const is the inactive variable for this circuit. The equation of motion for the

active variables is

/ 2.8532 \

u = diag[3.3166,2.5243,0.7923]w + U.UUUO y4,

+ (l/2)(wx w2 w3 y4)

w = -diag[3.3166,2.5243,0.7923]u

0.0000

V0.0000 J

and the final change of variables is

fqc \ / 1.0514 -0.6340 0.6340\ /ux\

qCa = 0.0000 1.3860 0.4351 u2

\qcJ V-1.0514 -0.3170 0.3170/ \u3J
22

u.

(73b)

(74a)

(74b)

(75).

(76a)

(76b)

(77a)



<PL,

<Pls

W

(0.3170 -0.8003 0.2512 0.0000^

0.0000 0.5491 0.5491 0.0000

0.6340 0.8003 -0.2512 0.0000

V0.9510 0.0000 0.0000 1.0000 J

w2

(77b)
w?

\vJ

8. Conclusion

In this paper we have given a method for obtaining the Hamiltonian and the proper canonical variables

that is both very general and simple. A tree of capacitors was used to write the state equations for an LC

circuit with independentsources, and transformations to canonical variables weregeneratedfrom the circuit

topology by considering an alternate tree (cotree) containing of as many inductors (capacitors) as possible.

A method was given to obtain these transformations byy inspection, based upon fundamental loops and

cutsets of both the capacitor and alternate trees. Furthermore, when the nonlinearities in the capacitors

and inductors are small, a change of coordinates was given to achieve completeseparation of the canonical

variables of the unperturbed (linear) system. These results should allow the application of techniques from

Hamiltonian dynamics, such as canonical perturbation theory, to circuits.
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Figure captions

Fig. 1. (a) Nonlinear LC circuit with capacitor tree highlighted, (b) Same circuit with Cx UC2 alternate tree

highlighted.

Fig. 2. (a) Nonlinear LC circuit with capacitor tree highlighted, (b) Same circuit with Cx UC2 alternate tree

highlighted.

Fig. 3. Nonlinear LC circuit with independent voltage and current sources. Capacitor-voltage source tree

highlighted.
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