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G. M. Bernstein and M. A. Lieberman

Department of Electrical Engineering and Computer Sciences,
and the Electronics Research Laboratory

University of California, Berkeley CA 94720

ABSTRACT

A method is given for obtaining by inspection the Hamiltonian and canonical variables for nonlinear
lossless circuits composed of charge controlled capacitors, flux controlled inductors and independent voltage

and current sources.

1. Introduction

With the current resurgence of interest in classical dynamics, a simple method for obtaining a Hamiltonian
for nonlinear LC circuits would permit the application of new mathematical methods in classical dynamics
[1,2] to circuits. Obtaining a Hamiltonian for the lossless part of an electronic system can be an important
initial step in system analysis. In the study of weakly nonlinear oscillator circuits [3], all resistive elements are
removed from the circuit, the lossless circuit is analyzed and a change of variables to action-angle coordinates
is performed. As another example of this approach, in a study of a digital phase locked loop [4], an estimate
of the average hang time of the loop due to transient chaos was obtained by studying the underlying chaotic

Hamiltonian system.

Previous studies [5,6] have tended to focus on the Lagrangian formulation of circuit equations and give
the Hamiltonian formulation of the circuit equations as a special case. In [5] this resulted in the restriction
that the nonlinear capacitors and inductors have bijective element relations; in addition, the formulation
used capacitor flux and inductor charge as state variables, which in some sense seems unnatural. In [6]
the result was a generalized Hamiltonian formulation; although the variables used were capacitor charge
and inductor flux, a generalized notion of derivative was used, which results in the Hamiltonian not having

the usual canonical form. In this work we show how to construct, based on the circuit topology, canonical

*Research sponsored by Office of Naval Research Contract N00014-84-K-0367 and National Science Foun-
dation Grant ECS-8517364.



variables that are simple linear combinations of capacitor charges and inductor fluxes, so that the circuit

equations have the canonical form:

. _0H(p,q)
pk - aqk ) (la’)
. -8H (p,
= 2200 a

for k=1,...,r.

2. Basic equations

Let N be a circuit composed of ng, two-terminal, nonlinear, charge-controlled capacitors and n;, two-
terminal, nonlinear, flux-controlled inductors. The constitutive relations for the capacitors and the inductors

are written as follows:

‘vck = f)ck (qu), k = 1, gl (2)
and
iLk = ;Lk(‘pz'k)’ k = 1, ceny nL. (3)

Assume that there are no capacitor loops or inductor cutsets. If capacitor loops or inductor cutsets
exist and the offending elements have bijective relations between charge and voltage or flux and current then
the circuit can be transformed to an equivalent circuit with no capacitor loops or inductor cutsets. See [7],
pages 304 - 305, for details. From this assumption we can pick a tree containing all of the capacitors and no

inductors. Partition the branch voltage and current vectors as follows:

i=[I,i%)", and v=[I,v3 .

Where iy, v; € R?. and ig, v € R?c. With the above partition the fundamental loop matrix has the

form:
B=(I,,xn, Brc)
Kirchhoff’s voltage law, Bv = 0, gives:
vy =-Brcve. (4)
Kirchhoff’s current law, i = BTi,,,, gives:
ic = Biciy. (5)
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The state equations for this circuit, using capacitor charge and inductor flux as state variables, can be written

as follows:
dc =Blci(er), ¢ =-Brc¥ac) (6)
where

T . X . T
V(gc) = [f'c,(‘Ic,)wn 130,6(410,,0)] y  i(pr)= [iL,(‘PLl)’---a i, (‘PL,,L)] . (7

To obtain a Hamiltonian, we give the energy function for the circuit and use this energy function to
formulate the state equations of the circuit. Define the energy, E(qc, L), of the circuit to be the sum of

. the energies in all the inductors and capacitors, that is

ne o, _ ne Ly .
E(ac,vL) = E/o ¥c, (u)du + E/o i, (u)du. (8)
k=1 k=1

We can write the state equations in terms of this energy function as follows:

0E(ac, )"

9B(ag,er)]”
dor

dq¢ ®

qc = B{c[ y W= _BLC[

For the above equations to be in canonical Hamiltonian form the number of capacitors and the number of
inductors should be equal and B, must be the identity matrix. Since this would only be true for a trivial

circuit, the above equation is not generally in canonical form.



3. Change of variables

Let N € R"2*". and M € R"c*"c be nonsingular matrices, x € R"c and y € R"z. Define a change of

variables as follows:

qc = Mx, 1 =Ny. (10)

Applying this change of variables to equation (9) gives:

x=M" lBT (NT) [8E(qc"PL)] (lla.)
y=-N"1B, (MT)- [aE(th‘PL) (11b)

Our goal is to find M and N such that

(12)

N-1B,,(MT)-! = ( I 0;x(nc-r) )

O, —ryxr  O(ny—r)x(nc-r)

—

With this choice of M and N we see that

(1) for k > r, &, = 0 and g, = 0; therefore, z; and y, are constant. Because of this, we can restrict our
analysis to the 2r active variables, z;, y), for k = 1,...,r. For these variables, E(qc¢, %) is the canonical

Hamiltonian.

(2) E(qc, L), the Hamiltonian for the 2r active variables, still represents the total energy in the capacitors

and inductors.



4. Calculation of the M and N matrices

Although there are many choices for M and N that satisfy equation (12), we will restrict ourselves to
two alternative choices that can be easily obtained by inspection of the circuit topology. Let C denote the
set of all capacitors in the circuit and £ the set of all inductors in the circuit. Our topological restriction
of no capacitor loops or inductor cutsets implied that the set C forms a tree and £ forms a cotree for the
circuit and using the C tree and £ cotree we wrote the state equation (9) of our circuit. The essence of our

method is to look at an alternate tree (cotree) containing as many inductors (capacitors) as possible.

Let [ denote the number of independent, inductor-only loops and s the number of independent, capacitor-

only cutsets. The colored branch theorem [8], corollary 6, allows us to partition C and £ as follows:
L, is the largest subset of £ that can be put into a tree for the circuit; £; contains ny — I elements.
C, is the largest subset of C that can be put into a cotree for the circuit; C, contains ns — s elements.
C, is the subset of C needed to complete a tree for the circuit with £,; C, contains s elements.
L, is the subset of £ neeeded to complete a cotree for the circuit with C,; £, contains ! elements.

We now have a tree, £; UC,, containing as many inductors as possible and a cotree, C; U £,, containing
as many capacitors as possible. Since the number of tree branches is a constant of the circuit, that is,
independent of the chosen tree, we havenp, =n; —l+sand thusng—s=ny—Il. Let r=ns—-s=n; —1l.

We partition and order our branch voltage and current vectors as follows:

T
1= [ ,ic,ﬂc vig ] v= [VZ,,VZ,,Vg,,V?:;] ) (13)

where iz , ic , v, and v are elements of R"; iz and v, are elements of R'; ic, and v, are elements of

R’

Based on the C tree, the £ cotree and the partitioning of the variables in (13), the fundamental loop

matrix can be written as follows:

I. 0, By By
B = (14a)
O L By By
where B . is partitioned as:
B, By
BLC = . (14b)
B;; By
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The corresponding fundamental cutset matrix is

Q=

<_B’{1 —Bgl Ir 0rxs )
. (15)

“B{z -Bg; 05 Xr Is

The colored branch theorem along with the £, UC, tree and C; U £, cotree gives us a fundamental loop

matrix with the following form:{

~ ﬁ11 orxl Ir ﬁ12
B=| _ . (16)
By, L 0, 0,

Note that ﬁn = 0. This is because we defined £, to be the largest set of inductors that can be put into a
tree, that is, if I; € £, then L; forms a loop exclusively with branches of £; and not with branches of C,.

The corresponding fundamental cutset matrix is

~ Ir "ﬁg'l "ﬁg'l orxs
. (17)
0

sxr oaxl -ﬁ{z I:
Tellegen’sEeorem tells us that BQT = 0 and QBT = 0. Applying Tellegen’s theorem to equations (14a) —

(17) we get:

-By;By;+1,=0, -B;;B;;+B;;,=0, (18a)
-B;;B;; — By =0, -B;,B;; — By =0, (18b)
and
L - BB, =0, -B7, - BI;B}, =0, (192)
-BL,BT, + B =0, -B],B], + B}, =0. (19b)

We are now ready to give two different change of variable schemes based on the components of the B and

B matrices.

t The form of the fundamental loop and fundamental cutset matrix for the £, U C, tree is nonstandard

because of the ordering of the circuit variables, that is, we are not listing links before tree branches.
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Change of variables I

Let

Then

N-IBLC(M-l)T _ ( I orxs),
olxr olxa

Ir 0rxa B11 orxl
M= __ , N= :
Bl2 "Ia B21 Il

Proof Multiply the matrices and apply equations (18a) and (18b).

and furthermore

Change of variables II

—

Let

Then

0 x
M-1BI (N1 = ( i '),

oaxr ocxl

Bfl orxa Ir orxl
M= R N= - .
B"l’; _Ia _BZI Il

Proof Multiply the matrices and apply equations (19a) and (19b).

and furthermore

(20a)

(20b)

(20¢)

(212)

(21b)

(21c)

Change of variables I leaves the r active capacitor charges untouched while the change of variables II

leaves the r active inductor fluxes untouched.



5. Change of Variables by Inspection

To ease application of the above changes of variables, relabel the capacitors and inductors so that the first
r capacitors are in C, and the first » inductors are in £,, that is: C; € C, for k = 1,...,7; C; € C, for
k=r+1,.,n0; Ly €L, for k=1,...,r; and L; € £, for k =r+1,...,n;. Interpreting the above changes

of variables in terms of loops and cutsets we get the following:

Change of Variables I
Fork=1,..,r:

q) = Tg.

Fork=r+1,..nc:
g; = —z;, — Algebraic sum of z; such that C; € C, is in a fundamental cutset defined by C; with £, UC,

as tree.

Fork=1,..,r:

3 = Algebraic sum of y; such that C; € C, is in a fundamental loop defined by L; with C as tree.

Fork=r+1,..,n.:

#i = Y + Algebraic sum of y; such that C; € C, is in a fundamental loop defined by L; with C as tree.

Inverse Change of Variables I
Fork=1,..,m

T = Q-

Fork=vr+1,..,nc:
z), = —q;, — Algebraic sum of g; such that C; € C, is in a fundamental cutset defined by C; with £, UC; as

tree.



Fork=1,..,r:

¥ = Algebraic sum of ; such that L; € £, is in a fundamental loop defined by C; with £; UC, as tree.

Fork=r+1,..,n:
Y = ¢ + Algebraic sum of p; such that L; € £, is in a fundamental loop defined by L, with with £, UC,

as tree.

Change of Variables II
Fork=1,..,r:

g, = — Algebraic sum of z; such that L; € £, is in a fundamental cutset defined by C}, with C as tree.

Fork=r+1,..,n¢c:

@i = —&; — Algebraic sum of z; such that L; € £, is in a fundamental cutset defined by C; with C as tree.

Fork=1,..,r:

Pr = Yg-

Fork=r+1,..,n:

¥y = y), — Algebraic sum of y; such that L; € £, is in a fundamental loop defined by L, with £, UC, as tree.

Inverse Change of Variables 1II
Fork=1,..,r:

z), = — Algebraic sum of g; such that C; € C, is in a fundamental cutset defined by L, with £, UC; as tree.

Fork=r+1,..,n¢:
) = —¢q;, — Algebraic sum of g; such that C; € C, is in a fundamental cutset defined by C} with £, UC, as

tree.



Fork=1,..,r

Y = -

Fork=r+1,..,ng
Y& = @i + Algebraic sum of ; such that L; € £, is in a fundamental loop defined by L, with with £, UG,

as tree.

We obtain the linear transformations between the z,’s and the g;’s by looking at various cutsets;
similarly, we obtain the linear transformations between the y,’s and the ¢.’s by looking at various loops.
When we obtain either the inverse change of variables I or the inverse change of variables II we only need to
consider the £; UC, tree. However, when we obtain the forward change of variables Ior change of variables

II we need to use both the C tree and the £, UC, tree.

Example 1

For the circuit shown in Fig. 1(a), we show with thick lines the elements in the capacitor tree, C =
{C;,C5,C3}. The corresponding cotree is £ = {L,,L,}. We redraw the circuit in Fig. 1(b), and show
with thick lines the tree containing as many inductors as possible {L,, L,,C3}. For this circuit, the number
of capacitors n, = 3, the number of inductors ny = 2, the number of independent inductor loops ! = 0 and
the number of independent capacitor cutsets s = 1. We note that r = n¢ — s = ny = 2. We partition C into

Cl and 02, and £ into Ll and £2 where cl = {Cl’ Cz}, C2 = {Ca}, Cl = {LI? Lz} and £2 =90.

The capacitor element relations are:

aq}
ve =¥(q¢) = c}, 92 (22)
z-l';%
The inductor element relations are:
1
. - I,%1
ip =(pL) = ( ! ) (23)
ksin p,
The energy function for the circuit is:
a
E(qc, L) = 3% T+ C —a} + 203‘13 + E‘Pl k cos p,. (24)
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The By matrix, obtained from Fig. 1(a), is

-1 1 0
BLC = ( )- (25)
0o -1 0

In this example we apply the change of variables I. We obtain the inverse ckange of variables I from
Fig. 1(b), that is, we use the £,UC, tree. To obtain y, and y, in terms of ¢, and ¢, welook at the fundamental
loops involving the cotree branches C, and C,. C; forms a fundamental loop with L,, orientation opposing
the loop, and L,, orientation opposing the loop. Hence, y; = —; — ¢,. C, form a loop with L, orientation
opposing the loop. Hence, y, = —¢p;. Since the change of variables I leaves the first r = 2 capacitor
charges alone we have: z; = q;, z, = g,. Capacitor C3 form a cutset by itself and not with any other

capacitors in the C; U £, cotree, hence 23 = —gs.

For the forward change of variables I we use both Fig. 1(a) and Fig. 1(b). To obtain ¢, and ¢, in terms
of y, and y, we look at the fundamental loops formed by L, and L, with C as tree, that is Fig. 1(a). L, forms
a fundamental loop with C,, orientation the same, and with C,, orientation opposing. Hence, ¢; = —y, +y,.
L, forms a fundamental loop with C,, orientation opposing. Hence, ¢, = —y,. By definition: ¢, = z; and

g, = z,. Looking at the £, UC, tree, Fig. 1(b), we see that C; forms a cutset by itself. Hence, g3 = -2,

Our transformation matrices are:

1 0 0
( \ -1 -1

M '=]01 0|, N!= , (26)

\0 0 —1)

(10 0y o
M=|01 o |, N=( ) @n
\o 0 -1/

The transformed energy function is:

a 1 1 1
E(Mx,Ny) = 33? + E-’Bg + Ezg + E(—yl +92)? — kcosy,. (28)
With this transformed energy function we have the following state equation:
10
T
x=|0 1 [M} (29a)
dy
0 0
1 00 T
5’ - [BE(N;x, Ny)] (29b)
010 x

11



For our four active variables z,, z,,y, and y, the transformed energy can be used as a Hamiltonian.

Example 2

For the circuit shown in Fig. 2(a), we show with thick lines the elementsin the capacitor tree C = {C;, C,,C3}.
The corresponding inductor cotree is £ = {L,, Ly, L, L,}. We redraw the circuit in Fig. 2(b) and show with
thick lines the tree containing as many inductors as possible {L;, L3, L3}. For this circuit, the number of
capacitors ne =3, the number of inductors ny = 4, the number of independent inductor loops { = 1 and
the number of independent capacitor cutsets s = 0. We note that r = ny — ! = no — s = 3 and we partition

C into Cl and Cz, and £ into Cl and ﬁz where 01 = {Cl’ Cz, Cs}, CQ = 0, Ll = {Ll1 Lz, L3} and Ez = {L4}.

The capacitor element relations are:
ba3
vo=¥ac)= | &a (30)
dg3
The inducter element relations are:
11‘1"P1
: k cos p,
ir =i(pr) = s (31)
9a¥3
94‘!’3

The energy function for the circuit is:

b 1 d 1 . g g
E(qc,wL) = qu + ﬁqg + gqg + 2—LI'<P§ + ksinp, + f‘/’g + f’ﬁoz (32)

The By matrix, obtained from Fig. 2(a), is

1 -1 0
0 1 0
0 1 -1
1 06 -1

In this example we apply the change of variables II. We obtain the inverse change of variables II from
Fig. 2(b), that is, we use the £, U C, tree. To obtain z,, z, and z3 in terms of ¢;, g, and g3 we look at
the fundamental cutsets involving the tree branches L, L, and L3. L, forms a cutset with C;, orientation

opposing, and L, orientation the same. Recall, we are only concerned with the elements of C; in the cutset
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for the purposes of obtaining the transformation. Hence, z; = ¢;. L, forms a cutset with C, orientation
opposing, C,, orientation opposing and C; orientation opposing. Hence, =z, = ¢, +¢; +¢3. Lz form a
cutset with Cj, orientation the same, and L,, orientation the same. Hence, z3 = —g3. By definition of
change of variables I we have: y; = ¢;, ¥ =, and Y3 = @3. Ly, an element of the C; U £, cotree,

forms a loop with Lg, orientation opposing and L,, orientation opposing. Hence, y, = ¢4 —¥; —¢3-

For the forward change of variables II we use both Fig. 2(a) and Fig. 2(b). To obtain ¢;, ¢ and ¢;
in terms of z,, z, and z5, we look at the fundamental cutsets formed by C,, C, and C3 with C as tree.
C, forms a cutset with L, orientation opposing and Ly € £;, orientation opposing. Hence, q; = 2;. C;
forms a cutset with L,, orientation the same, L,, orientation opposing and L3, orientation opposing. Hence,
g3 = —%; + 2, + z3. Cj forms a cutset with Lg, orientation the same and L, € £L,, orientation the same.
Hence, g3 = —z5. By definition of change of variables II we have: ¢, = y,, @2 = ¥, ¥3 = y3. To obtain
¢4 we refer to Fig. 2(b), that is, the £, UC, tree. L, forms a fundamental loop with L3, orientation opposing

and L, orientation opposing, from the inpection rules we get ¢, = y, + y; + ¥3.

Our transformation matrices are:

1 0 0 O
10 0
0o 1 0 O
M'=]|11 1], N1= . (34)
.0 0 1 0O
0 0 -1
-1 0 -1 1
1000
1 0 0
01 00
M=|-11 1], N= (35)
0 01 0
0 0 -1
1011
The transformed energy function is:
E(Mx,Ny) = 2"’% + —1"("3"1 +2y+23)" + izg + 'l—yf + ksiny, + Byt By +ys+v)*  (36)
417 2¢, 63" 2L, 4 4
With this transformed energy function we have the following state equation:
1 0 00
T
x=[0 100 [E(MT’;EQ] (37a)

0 0 10
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010 T

y=- [M] (37b)
00 1 ox
00 0

For our six active variables z,, 2,, 23, ¥;, ¥, and y; the transformed energy can be used as a Hamiltonian.

6. LC Circuits with Independent Sources

Let A be a circuit containing ng independent voltage sources and n; independent current sources, in addition
to no two terminal, charge-controlled capacitors and n; two-terminal, flux-controlled inductors. We now

show how to obtain a canonical Hamiltonian formulation for this circuit.

Assume that the circuit has no loops formed by capacitors and voltage sources and no cutsets formed
by inductors and current sources. Let £ denote the set of independent voltage sources and J the set of
independent current sources. The above condition implies that C U £ forms a tree for the circuit and LU J
forms a cotree for the circuit. Partition the branch voltage and current vectors as follows:

i= [i%" i.'II” ig’ iE]T
and

v= [V}."V;’Vg)VE]T'

With the above partition the fundamental loop matrix has the form:

B (InL 0 By BLB)
0 I, Byc By

Kirchhoff’s voltage law gives:

vp==Brcve—Brgpvg (38a)
vy =-B;cve —Bygve. (38b)
Kirchhoff’s current law gives:
ic = BIcip +BJci; (39a)
ip = BIgiy + BTsi, (39b)
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Note that vg € R"= and i; € R"’ are given functions of time, since they are the voltages across the
independent voltage sources and the currents throught the independent current sources, respectively. From
(38a) - (39b) we see that once we know v and iy we can determine all other circuit variables. The state

equations for this circuit are:

.

¢ =-Brcve(ac) = Breve(t) (40a)

dc =BIci(pL) +BIcis(2) (40b)

Consider the circuit A obtained from A by short circuiting the voltage sources and open circuiting the

current sources. A; has the following fundamental loop matrix:

By, =(I,, Bic)

Order and partition C and £ as in Sec. 4 and obtain the transformation matrices M and N for V;. Applying

the change of variables (10) to (40a) and (40b) gives:

-— 1 0
%= r rx(ng—r) dE(Mx,Ny)1” +M™'BTi, (1) (412)
0 . — jcls
(ng=-r)xr V(ng-r)x(n,-r)
I 0 x(ng-r) 0E(Mx,N T
V = — Pt Sehinivnd AV 4 y) — -1gT
h4 (0 0 [ ax ] NTBLevs() o
(np-r)xr  Y(np-r)X(nc-r)

or in component form:

dE(Mx,Ny)
& = ————=

9 +ai(t)y, 1<k<r (422)
=220 ), 1<ksr (42)
and
=) r<k<ng, (42¢)
h=-B() r<k<ng (42d)
where
ny; ng
a(t) =Y > IMHyBjq, iz, (1), (43a)
i=1lI=1
ng ng
Be(t) =D IN"yBLg, vg,(t). (43b)
j=1ll=1

15



The variables z,, for r < k < ng and y, for r < k < ny are trivialin the sense that their dynamics can
be obtained simply by integrating equations (42c)-(42d) directly; therefore, they will be omitted from the

canonical Hamiltonian formulation.

Define

H(z,y) = E(Mz,Ny) + ) [ (t)y;, + Bi (t)=y). (44)
k=1

Then for our 2r active variables we have the following canonical Hamiltonian formulation:

8H(z,y,t
. _ 8H(z,y,t)
=7 45b
Yse oz, (45b)
for1<k<r.
Example 3.

———

In Fig. 3 we show a circuit A that contains independent voltage and current sources. Let the capacitor and
inductor constitutive relations be the same as in Example 1. We show with thick lines the elements in the
capacitor-voltage source tree, CUE = {Cy, C,, C3,v,3}. The corresponding inductor-current source cotree is

LUJ ={L,,L,,i,;,i,,}. The fundamental loop matrix is

(] (=] @

(=]
—
(=]
[
o
|

-
o

Note:

-1 1 0 0

Bic= , B;p= , (46a)
0 -1 0 1
1 0 -1 0

BJC = and BJE = B (46b)
1 0 0 0

If we short circuit the voltage sources and open circuit the current sources we get the circuit of Example

1 (Fig. 1). Using the M and N matrices (26) and (27) obtained in Example 1, we obtain the following

16



transformed state equations:

1 0
= [M}T +{0 0 (id(t)) (47a)
is2(t)
1 0
-1
= -[2E0enT) N”)] 3(t) (47b)
-1

where E(Mx, Ny) is given in (28). Define

-1 1 1\ /i)
H(x,y) = E(Mx,Ny) + (=, “2)( )v,a(t)+(yl yz)( )( )
-1 0 0/ \i,()

= E(Mx,Ny) + (2, + £2)v,3(t) + 151 (2) + i,2(2)] (48)
Then
_ 0H(x,y)
U 1 ——3yk (498.)
U = -%‘;’L) (49b)

for k = 1,2 is the canonical Hamiltonian formulation for our four active variables and

23 = i,(¢) (50)

is the equation for our inactive variable.

17



7. Separation of Variables for Linear Systems

When the nonlinearities in the capacitors and inductors are small, so that the unperturbed circuit A" contains
linear capacitors and inductors, then a change of coordinates to the principal azes of the system is desirable
in order to reveal the oscillatory modes of the circuit, to put the equations in a form suitable for canonical
perturbation analysis, or to obtain the action-angle variables for the circuit. In this section we give a
method for obtaining this transformation starting from the canonical form derived earlier. In addition, this
transformation only involves the active variables, which are already separated into two canonically conjugate
sets. This contrasts with the technique used in [3] where the transformation to principal axes was made

directly for the entire set of active and inactive variables.

Let A be the circuit of Sec. 2 or Sec. 6, with the matices M and N giving the transformation to canonical

form. Partition the x and y vectors as follows:
1T and y=[y."»n"I" (51)

x= [xl'T’ x’

where X,,¥% € R" are the active variables and x, € R?, y; € R are the inactive variables. For the active

variables we have

% = [313(1\;1:; Ny)]’ (52a)
Go=— [aE(l\;I: N}’)] . (52b)

Suppose the capacitors and inductors have the following constitutive relations:

1 .
vck = C—chk -+ C‘Uch (qck) k= 1, ey NN (533)
and
. 1 4
i, = L—k<ka +“L,,(‘PL,,) kE=1,..,n;. (53b)

Note that € = 0 is the linear case.

The energy has the form E (ac, ¥) = Eo(dc: ¥r) + €Eniac: L), Where

Eo(ac,wr) =1/2a5C Yqc + 1/2¢1 L™ gy (54)
and
ne e ng s, .
E (qa¢c L) = Z./t; * be, (u)du + Z/; ig, (v)dy, (55)
k=1 k=1
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C= diag[Cl, Cz, eeny Cnc], (563.)

L= diag[Ll, Lz, cony L”L]. (56b)
Under the transformation, M and N, to canonical form the energy becomes:
E,(Mx,Ny) = (1/2)xT Ax + (1/2)y" Dy + €E,,;(Mx, Ny) (57a)

where

A=MTC'M and D=N7L-!N *(57b)

For change of variables I:

A Agp C,”'+B,,C,”'B], -B,,C,~!
A= = . , (58a)
A’f2 A22 _Cs-lB'{z Cs-l
D;; Dy, B,L.”'By, + BLL,"'B,;; BLL™
D= = . (58b)
D, Dy, L, 'By L,~?
For change of variables II:
B,,C, 'Bf, + B;C,”'B], -B,,C,™*
A = ) (598')
Cu-lB'{z Cs-l
L' +BRLL B, -ByL™
D= . . (59b)
-L,"'B,, L'
Where
C, = diag[C,, ..., C,], C, = diag[C, 41, Cp s (60a)
L, = diag[L,,..,L,] and L,=diag[L,;1,. Ly ]- (60b)

To achieve the transformation to principal azes it suffices to separate only the active variables in
Ey(Mx,Ny). To do this we need a transformation that diagonalizes A,; and D,; while preserving the

canonical structure of (52a) and (52b). Consider the change of variables
x, = Fu, Y. =Gw (61).

Applying this change of variables to (52a) and (52b) we get the following necessary and sufficient condition

on the matrices F and G to preserve the canonical form

F1(G ) =1 o FGT=1 (62)
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Since A,, and D,, are positive definite we can take their square root, i.e., Cholesky decomposition (9],
Ay = AYET AL (63a)

D,, = DY pl/? (63b)

Let P and Q be the singular value decomposition [9] of All 2B1/ 2T y L.,

QT [A‘”B"2 ]P =9, (64a)
where .
N = diaglw,, wq oy W, (64b)
PTP=1 and QTQ=1L (64c)
Define
F=A;/?QY? and G=D;/’Pal/? (65a)
where
N ATM? = [A}{’] , D= [D"’] (65b)
and
N2 = diag[\/fwg, /gy -+ V@, - (65¢)

One can check that (62) is satisfied and that

. Coer o Q@ FTA,\/u - T( o GTDlz)(w)
o, wix,, y1) = (1/2)(7,x, )( ALE A, )(x,)“/)(w "Npre b, \n/

(66)

For the linear case, ¢ = 0, the equations are
a= 0w+ GTD,,y,, (67a)
W= —Qu+FTA x,. (67b)

Recall, y; and x, are inactive or irivial variables and are either constants or independent functions of time.

For the weakly nonlinear case, € # 0, we have

u = 0w+ GTD,y, + e[ '(“’w x”y')] (68a)

aEnl(u’ W;Xs5 yl)

- (68b)

w=-0u- F|TA12xs - C[
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Example 4.

Consider the circuit of Fig. 2(a) with linear capacitors and inductors, i.e.,
v, =1 for k=1,2,3 (69a)
Cr — Ck (Ic* = 414

and

. 1
‘lLk = -.[T;SOL" for k= 1, 2,3,4 (69b)

with the following normalized capacitor and inductor values: C, = 1F, C, = 1F, C3 = (1/2)F, L, = (1/2)H,
L, = (1/2)H, Ly = 1H, and L, = (1/3)H. Using the M and N matrices obtained from Example 2, we

have:
2 -1 -1
A=MTC"'M=|-1 1 1 (702)
-1 1 3
50 3 3
N 0200
D=NTL-!N= (70b)
3043
3033
Hence,
2 -1 -1 50 3
Ay=]-1 1 1| ad Dj;=|0 2 0 (71)
-1 1 3 3 0 4
The Cholesky factorization of A;; and D,, is
1.4142 —0.7071 —0.7071 2.2361 0.0000 1.3416
AM2=100000 07071 07071 | and D}*= | 0.0000 1.4142 0.0000 (72)
0.0000 0.0000  2.0976 0.0000 0.0000 1.4832
The singular value decomposition of Ai{zBﬂzT is
0.4082 —0.8991 0.1581 0.8563 —0.4505 0.2524
Q=|04082 03347 08493 |, P=| 00000 0.4888 0.8724 (73a)
0.8165 0.2822 —0.5037 0.5164 0.7471 —0.4185
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and

0 = diag[3.3166, 2.5243, 0.7923] (73b)
Finally,
1.0514 —0.6340  0.6340
F=A;"?QnY?=| 00000 04350 1.3861 (74a)
1.0514 0.3170 —0.3170
and

0.3170 —0.8003 0.2512
G =D;/?PaY/? = | 0.0000 05491  0.5491 (74b)

0.6340 0.8003 —0.2512

The Hamiltonian for the active variables is

3.3166 0.0000 0.0000 uy
~E(u,w;y,) = (1/2)(u, u, wuz)| 0.0000 2.5243 0.0000 U,

0.0000 0.0000 0.7923/ \u,
3.3166 0.0000 0.0000 2.8532\ /w,
0.0000 2.5243 0.0000 0.000 || w,
+(1/2)(w; w, wy y,) (75)-
0.0000 0.0000 0.7923 0.0000 | | ws
2.8532 0.0000 0.0000 3.0000/ \ y,

Recall y, = ¢, — ¢, — p3 = const is the inactive variable for this circuit. The equation of motion for the

active variables is

2.8532
u = diag(3.3166, 2.5243,0.7923]w + | 0.0000 |y,, (76a)
0.0000
w = — diag[3.3166, 2.5243,0.7923]u (76b)
and the final change of variables is
dc, 1.0514 —0.6340 0.6340 Uy
gc, | = | 0.0000 1.3860 0.4351 u, |, (77a)
ac, —1.0514 -0.3170 0.3170 U
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L, 0.3170 —0.8003 0.2512 0.0000 w,

L, 0.0000 0.5491  0.5491 0.0000 | | w,

= . (77b)
oL, 0.6340 0.8003 —0.2512 0.0000 | | w,
or, 0.9510 0.0000  0.0000 1.0000/ \ g,

8. Conclusion

In this paper we have given a method for obtaining the Hamiltonian and the proper canonical variables
that is both very general and simple. A tree of capacitors was used to write the state equations for an LC
circuit with independent sources, and transformations to canonical variables were generated from the circuit
topology by considering an alternate tree (cotree) containing of as many inductors (capacitors) as possible.
A method was given to obtain these transformations byy inspection, based upon fundamental loops and
cutsets of both the capacitor and alternate trees. Furthermore, when the nonlinearities in the capacitors
and inductors are small, a change of coordinates was given to achieve complete separation of the canonical
variables of the unperturbed (linear) system. These results should allow the application of techniques from

Hamiltonian dynamics, such as canonical perturbation theory, to circuits.
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Figure captions

Fig. 1. (a) Nonlinear LC circuit with capacitor tree highlighted. (b) Same circuit with £, U C, alternate tree
highlighted.

Fig. 2. (a) Nonlinear LC circuit with capacitor tree highlighted. (b) Same circuit with £, U C, alternate tree
highlighted.

Fig. 3. Nonlinear LC circuit with independent voltage and current sources. Capacitor-voltage source tree

highlighted.
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