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MINIMIZING PSEUDO-CONVEX FUNCTIONS ON CONVEX COMPACT SETS1

1 1
J. E. Higgins and E. Polak

ABSTRACT

An algorithm is presented which minimizes continuously differentiable pseudo-convex functions

on convex compact sets which are characterized by their support functions. If the function can be

minimized exactly on affine sets in a finite number of operations and the constraint set is a polytope,

the algorithm has finitie convergence. Numerical results are reported which illustrate the performance

of the algorithm when applied to a specific search direction problem. The algorithm differs from exist

ing algorithms in that it has proven convergence when applied to any convex compact set, and not just

polytopal sets.
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1. INTRODUCTION

The selection of an algorithm for solving problems of the form:

P: maflx), (u)

where C is a convex compact subset of a Hilbert space H, and /: H -» R is a continuously

differentiable pseudo-convex function, depends on the description of the set C. When the set C is

described by a finite or infinite number of differentiable inequalities, problem (1.1) can be solved by a

large number of algorithms. When the set C is characterized only by its support function

o(h) £ max (Ji,x\ the number of possibilities reduces toa very small handful (see [1,2,3,4,5]), all of
xe C

which can be tracedback to the Frank-Wolfe algorithm [2].

Problems of the form (1.1), where the set C is characterized only by its support function, com

monly arise as search direction subprocedures in semi-infinite optimization algorithms for engineering

design (see, e.g. [6,7]). Quite frequently, in engineering applications, the set C has an infinite number

of extreme points. For example (see [8]), the design of a stabilizing controller for a feedback system,

which minimizes sensitivity of the closed loop system to disturbances can be cast in the form:

SVP: min max ^(//(x Jco)), a2\
xelR" toe [ffli'.ffl'T \***»/

where ax(-) denotes the maximum singular value of its argument, and the disturbance-to-output transfer

function H: Rnx € -> C**p is affine in the design vector x and continuously differentiable in co. By

defining the function <|>: JRBx Cx C*x C-» R as <K* Jco.tt.v) ^ Re[«*//(*,y©)v], we may tran

scribe SVP into the form:

SVP: min max max <J>(xJco,tt,v). ,.-.
Xa TR" 00 6 [<D'.©"] ltd S 1 U'j)

Mil

The search direction problem which results from applying Algorithm 5.2 (see Example 5.2, p. 65 of [7])

to the problem (1.3) requires the minimization of the convex function |° + ViB£fl2 on the set

J v(*)-<K*J©.".v) 1
i |[ V^xjco,«,v) JJ'Gy(x) £ co

ids:
MS

016 [a/,of"]

(1.4)
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where \\f(x) 4 max ^(//(xjco)). It is easy to see that, in general, the set Gy(x) has an infinite
096 W.aH

number of extreme points.

We shall now briefly survey the existing algorithms for solving the problem P for the case where

the set C is described only by its support function. In [2] Frank and Wolfe proposed an algorithm

which solves P when /(•) is convex and continuously differentiable, and C is a nonempty bounded

polyhedron described by a system of equations and inequalities. Frank and Wolfe showed that the

iterates constructed by their algorithm converge to a solution at least as fast as aJk where &is the itera

tion number and a > 0, while in [9], Canon and Cullum showed that under certain conditions, the

iterates converge to a solution no faster than a/fc1*6, where e >0 is arbitrary and a > 0. In [3], Gil

bert makes the observation that the Frank-Wolfe algorithm can be used for solving problems of the

form P, with the compact convex set C defined only by its support function, and evolves an algorithm

for the minimization of a class of convex quadratic functions on a general convex, compact set The

main difference between the Gilbert algorithm and the Frank-Wolfe algorithm is that the Gilbert step

size is less restrictive. If we set 8 = 1 in [3] the algorithms are identical.

Given an x e C, the algorithms in [2,3] approximate the set C by the closed line segment [r,f],

where t e arg min {Vftx) ,£) is a tangency point of the set C. In [1], Barr modifies the algorithm of [3]

by maintaining a "larger" approximation to the set C at each step, andby prescribing rules for updating

this larger approximation. At each iteration, the Barr algorithm requires that the quadratic cost function

be minimized on the convex hull of p+2 points (selected from the set Q for some integerp. The Barr

algorithm converges in a finite number of iterations on polytopes. However each iteration requires that a

quadratic program be solved. In [5] von Hohenbalken presents an algorithm which minimizes pseudo-

convex functions on polytopes. The algorithm in [5] is similar to that of [1] except that instead of main

taining p+2 points, the algorithm maintains an affinely independent collection of tangency points which

contain the current iterate in the relative interior of their convex hull. The use of affinely independent

sets is useful from a numerical standpoint At each iteration, the von Hohenbalken algorithm attempts

to construct a minimum of /(•) on certain affine sets and presents a technique for dealing with the case

when/(') has no minimum on these affine sets. The algorithm is shown to converge in a finite number
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of iterations when the set C has a finite number of extreme points. When the set C has an infinite

number of extreme points, the von Hohenbalken algorithm may fail to converge, as shown in the appen

dix. In addition [5], has the implicit assumption that for all affine sets A on which/(•) has a minimizer,

argmin/(jc) is a bounded set. While this assumption is true in many cases, it is not required for the
xe A

algorithm presented in this paper. In [4], Wolfe presents a finitely converging algorithm similar to that

of [5], for the special case of minimizing the square of the Euclidean norm (f{x) £ Lcfl2) on the convex

hull of a finite number of points. In [10] computational results are presented which suggest that in prac

tice Wolfe's method performs much better than the Frank-Wolfe algorithm.

In this paper we present an algorithm for the solution of the general case of problem P, i.e. for

the case where the set C can have an infinite number of extreme points. Our algorithm is a modification

of the von Hohenbalken algorithm [5], the main difference being the addition of a guard step. Our

algorithm converges finitely on problems with polyhedral constraint sets C, but, in addition, it also con

verges to a solution on general problems of the form P. To illustrate the the use of our algorithm, we

include implementation details and some numerical experience with the search-direction calculation

problems of [7].

2. PRELIMINARIES

We begin by reviewing some basic concepts associated with convexity and pseudo-convexity.

Let co A denote the convex hull of the set A, and, for convenience, let [x,y] = co{ x,y }.

Definition 2.1: A subset A of a real linear space is affine if and only if for all x,y e A, for all

Xe JR, Xx + (l-X)y e A. •

Definition 2.2: Let A be a subset of a real linear space. We say that off A is the affine null of A if it

is the smallest affine set containing A. •

It follows from Definition 2.2 that the affine hull of a set A is given by:

afTA=i E^*/l/cNfinite, x,-e A, 2^=1).
JeJ jeJ

Definition 2.3: A subsetA of a real linear space is said to be affinely independent if and only if the



vectors {(1 ,x) }x6 A are linearly independent •

Definition 2.4: Let A be a subset of a real topological linear space. We say that ri A is the relative

interior ofA if it is the interior of A relative to off A. •

Definition 2.5: Let A be a subset of a real topological linear space. We say that rb A is the relative

boundary ofA if it is the boundary of A relative \oaffA. •

We shall make frequent use of the following obvious results.

Proposition 2.1: Let A be a subset of a real linear space V and let xe V, then Au{ x } is affinely

independent if and only if A is affinely independent and xeajfA. •

Proposition 2.2: Let A be a subsetof a real linear space. Then A is affinely independent if and only

m m

if for all x € offA there exist unique { Xf.a,- }ie a c R x A, me N, such that £ X* = 1, £ %& ~ *•
pal £=1

and Xi * 0 for all i e m, •

Given an affinely independent set A and a point x e A, the unique multipliers [Xi}iea whose

existence is guaranteed by Proposition 22 are known as the barycentric coordinates of x with respect to

A.

Definition 2.6: A set S is said to be a simplex if and only if it is the convex hull of an affinely

independent set A. The set A is referred to as the affine basis of S. •

Definition 2.7: Let S be a simplex, A its basis, and let x e S.We say that a pointa e A carries x if

and only if the barycentric coordinate of x corresponding to a is strictly positive. •

Following Rockafellar [11] we say that a convex set C is a polyhedron if it is represented as the

intersection of a finite number of half-spaces, and we call it a polytope if it is the convex hull of a finite

number of points. The following results summarize some relevant properties of convex sets in Rn.

Theorem 13% ([11, Theorem 17.1]) Let A c Rn. Then x e co A if and only if x can be represented

as a convex combination of at most n + 1 points of A. •

Theorem 2.4: ([11, Corollary 19.1.1]) A compact polyhedral (or polytopal) subset of RB has a finite

number of extreme points.



As a consequence of Theorem 2.4, the number of simplices which may be formed from the

extreme points of a compact polyhedron is finite. Similarly for a polytope, the number of simplices

which may be formed from its underlying point set is also finite. This property is utilized in the algo

rithm presented in Section 5 to guarantee finite termination when the set C in problem P is a polytope

or a compact polyhedron.

The following is a useful generalization of the concept of a convex function. The definition is

essentially that of [12, p. 140] but is slightly more restrictive.

Definition 2.8: Let .ft-) be a real valued function on a Hilbert space H. The function/: H -» R is

said to be pseudo-convex at x e H if and only if (i)/0 is (Frechet) differentiable at x and (ii) for all

y e H such that (Vflx) ,y - x) £ 0 we have/(y) £ f{x). The function f{-) is said to be pseudo-convex

on H if and only if it is pseudo-convex for all x e H. •

Pseudo-convex functions have properties similar to those of convex functions. These are sum

marized by the following propositions. The proofs are straightforward and are omitted.

Proposition 2.6: Let/(0 be a pseudo-convex function on a Hilbert space H. Then for all a € R, the

level sets La k [x \f{x) £ a }are convex. •

Proposition 2.7: Suppose /(•) is a pseudo-convex function on a Hilbert space H, and let C c H be

convex. Then x minimizes/(•) on C if and only if (Vflx),% - x) £ 0 , for all %e C. •

Proposition 2.8: Suppose /(•) is a pseudo-convex function on a Hilbert space H, and let C c H be

convex. Suppose x e HC minimizes/(•) on C. Then x minimizes/(•) on off C,

Proof: Let z e affC. Since x 6 riC, there exists a point y e &,z]nCt and a Xe (0,1) such that

y - Xx+ (1- X)z. By Proposition 2.7 we have

Wf$).y-x) =(Vy£)Ax+(l-X)z-x} (2.1)

= (i-*)(vy£)f2-x)
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£ 0.

from which we conclude that (Vflx),z-x) £ 0. Applying Proposition 2.7 once more, we conclude that

x minimizes/(') on affC. •

A useful consequence of Proposition 2.6 is that if/CO is pseudo-convex and ^2) £ Ax\) then

f(g) £ f(x{) for all £ e [xi.xj. We use the following notion of a closed map to establish convergence

of the algorithm in Section 3.

Definition 2.9: ([13, p. 88]) Let X,Y be topological spaces and let A(-) be a set valued mapping

A : X -»2r. Then A(-) is said to be closed at x e X if and only if whenever x\ -»x and y,- -> y with

xf e X and y»- e A(x^, then y e A(x). The map A(-) is said to be closed if it is closed at each xe X. M

3. ALGORITHM MODEL

An algorithm model and convergence proofare presented. The algorithm model is an extension of

the Frank-Wolfe algorithm in [2]. Let C be a compact convex subset of a real Hilbert space H, and let

/(•) be a continuously (Frechet) differentiable pseudo-convex function defined on H. We define the con

tact point function T:C-»2C, the optimality function 6:C-»(-<»,0] and the algorithm map

A:C->2C as follows:

T(x) 4 argmin(Vflx).$-x), (3.1)
§6 C

9(x) £ min(V/(x),$-x}, (3.2)

A(x) A u {$e Cl/£) * min J© ) • (3.3)

An illustration of the sets T(x) and A(x) is given in Figure 3.1. Informally, A(x) consists of points

in C which have cost less than or equal to the cost of the points produced by the Frank-Wolfe algo

rithm. It is easy to see that 8(-) (and hence T(-)) is related to the support function of C by

0(x) = -Oc(-V/(x))-<Vy(x) .A where ac(0 is the support function of C. When the set C is a polytope,

an element of the set T(x) may be obtained by minimizing a linear function over a finite collection of

points. The following result, which characterizes solutions to P in terms of 0(0, follows immediately



from Proposition 2.7.

Proposition 3.1: Let C be a compact convex subset of a real Hilbert space, and lotA') be a pseudo-

convex function defined on some open superset of C. Then 8(x) = 0 if and only if x minimizes A') on

C. •

The algorithm model for solving problem P may now be stated.

Algorithm 3.1

Data: xq e C.

Step 0: Set i = 0.

Step 1: If Q(xd = 0 stop.

Step 2: Select xM e A(xj).

Step 3: Replace i by i+1 and go to Step 1. •

Step 2 implicitly contains the guard step, mentioned in the introduction, which ensures that for

some /,• e T(xi), f(xM) <, min /(Q. This guard step ensures that the algorithm converges on sets
le[xt.t{)

with an infinite number of extreme points. To prove global convergence of the algorithm we first show

that the algorithm map A(-) is closed.

Proposition 3.2: Let C be a compact convex subset of a real Hilbert space H, and let /(0 he a con

tinuously (Frechet) differentiable pseudo-convex function defined on H. Then the function A(-) defined

by (3.3) is closed.

Proof: Suppose x,- -» x and y,- -> y with x,- e C and yt e A(xj). We must show that y e A(x). It fol

lows from the definition of AQ that since yt- e A(x,-), there exists a 4 e T(xj) such that

JXyd £ min f(Q. By compactness of C the sequence { u }£o will have an accumulation point

Af€C. Since

(Vy(xi) .$ <; (V/fo),© for any | e C , (3.4)

we may conclude by continuity of V/(0 and of the inner product that



Aftx),!) <; <Vflx).§ for all \ e C. (3-5)

Hence'* e T(x). In addition, for any Xe [0,1], we have

ftyd Z&Xi + CL-fytd. (3.6)

We may conclude by continuity offt-) that

f$) Zf&x+il-Xft , (3.7)

and so

f$) £ min y(0 • (3.8)

Therefore y e A(J) as required. •

The following Proposition is similar to ZangwuTs Convergence Theorem A [13, p. 91].

Proposition 3.3: Let C be a compact convex subsetof a real Hilbert space H, and let ft) be a con

tinuously (Frechet) differentiable pseudo-convex function defined on H. Then any accumulation pointx

of an infinite sequence { x{} £4, generated by Algorithm 3.1, satisfies8(x) = 0.

Proof: Suppose to the contrary that x,- -» x where K is some infinite subset of INand that 0(x) < 0.

Since x*1e A(xd c C, it follows by compactness of C that there exists an infinite subsetL of K such

that xM -> x, for some x e C. Clearly since A(-) isa closed map, x e A®. Since 8(x) < 0, it follows

K

thaty(x) < ./(x). By construction /(xl+1) £ /(xj), which combined with the fact that X,- -> x implies that

fed ->./£)• This, however, contradictsf(x) < y(x), and so we may conclude that 6(x) = 0. •

The following theorem shows that any sequence generated by Algorithm 3.1 converges to the set

of solutions of P. Let0 denote the setof minimizers ofP, and define d©(x) k minlx-^l.
§6 8

Theorem 3.4: Let C be a compact convex subset of a real Hilbert space H, and let/(0 be a continu

ously (Frechet) differentiable pseudo-convex function defined on H. Let {x* }£o be an infinite

sequence generated by Algorithm 3.1. Then



limde&) = 0. (3.9)

Proof: To obtain a contradiction suppose that d©(Xj) does not converge to 0. Then there exist an

e > 0 and an infinite subset K of N such that defo) £ e for all i e K. Let

AA(^eCI^)^e). (3.10)

It follows by continuity of d&(-) that A is closed and hence compact Since { x,-}f6 Kc A, there exists

an accumulation point x e A. However Proposition 3.3 implies that 6(x) = 0, and Proposition 3.1

implies that x e 0 which is a contradiction. •

Under fairly mild conditions on/(0 (for example if/Q has strictly convex level sets), the set 0

contains a single point and the sequence produced by Algorithm 3.1 will converge in the usual sense.

In addition, in some special cases this result may be strengthened considerably to give convergence to

the set 0 in a. finite number of iterations.

4. ACTUAL ALGORITHM

An algorithm which falls within the framework of Algorithm 3.1 is described, along with certain

implementation details. Let C be a compact convex subset of a real Hilbert space H, and let/(0 be a

continuously (Frechet) differentiable pseudo-convex function defined on H. The functions TQ) and 6(0

are defined by (3.1) and (3.2). Let E c C be a set containing the extreme points of C. The computation

of Step 3 will be described subsequently.

Algorithm 4.1 (Minimize/)/) on Q.

Data: xq e E.

StepO: Set i = 0. Let B0 = { x0 }.

Step 1: If 8(x;) = 0 stop.

Step 2: Select *,- e T(xd n E.

Step 3: Compute xM, BM c Bju {tt ) satisfying the following conditions:



(i)f(xM) <; min AO (Guardstep).

(ii) BM is affinely independent

(iii) Xf+x € ri co BM.

(iv) xM minimizes A') on co BM .

Step 4: Replace i by z+1 and go to Step 1. •

It should be evident that Algorithm 4.1 fits into the class of algorithms described by Algorithm

3.1, and that Step 3 is well defined. For example, one may choose Xi+i e arg min/(Q, where
£ e B

B k B,u { ti}, and let BM be the set of points carrying x^. Bycombining the fact that 8(x;) < 0

and Proposition 2.1, we see that B (and hence any subset) is affinely independent. The pair (x,+1 ,BM)

clearly satisfies condition (i)-(iv) of Step 3. The requirement that the B, be affinely independent (Step 3

(ii)) allows condition (iii) of Step 3 to be checked easily, and is usually useful from a numerical stand

point The convergence result of Theorem 3.4 can be strengthened as follows.

Theorem 4.1: Let C be a compact convexpolytopal subsetof a real Hilbert space H, and let/(0 be a

continuously (Frechet) differentiable pseudo-convex function defined on H. Suppose that the set E c C,

used in the Data of Algorithm 4.1, is a finite set containing the extreme points of C. Then Algorithm

4.1 solves P in a finite number of iterations.

Proof: Obviously, if the algorithm terminates, it is at a solution. Suppose that for some i we have

9(Xf) < 0. Since x< minimizes A') on co Bt, and^x^O < A*d it follows that BM *Bj for all y'^ /.

By construction B, c £, and by assumption E is finite. Hence only a finite number of distinct B, exist

and so we conclude that the algorithm terminates in a finite number of iterations. •

To continue we need the following definition:

Definition 4.1: Let H be a real Hilbert space and let/: H -» R be a pseudo-convex function. Let

A 4 {a c H Ia isaffine }, and define if:A-> {0,1 }as:

has no minimizer on a

*/W - li if ft.) nas a minimizer on a '
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Let M ^ i7x([ 1 }),and for each a e M let mAa) be an arbitrary element of argminXx). _
' xe a m

The method of computing Step 3, described below, requires that the functions i/(-) and m/0 be

explicitly provided. While it is clear that these functions are well defined for any function A')* m prac

tice this restricts the class of functions to which the algorithm can be applied.

We now consider a subprocedure which implements Step 3 of Algorithm 4.1. The idea underly

ing the subprocedure is as follows: Suppose the subprocedure is passed a triple (x,B ,t\ where B is an

affinely independent set x e ri co B minimizes A') on co &• and ' is a P°mt sucn mat <Y/W>*-*) < 0-

We wish to compute a pair (x,8) satisfying Condifions (i>(iv) of Step 3. First we obtain a point

£ € arg min AO- If £ = f we may return the pair (£,{£}) which clearly satisfy Conditions (i)-(iv)

of Step 3 in Algorithm 4.1. If not we let Xo ^ £ and B0 ^ Bu {t). It is straightforward to verify

that B0 is affinely independent (Proposition 2.1), and hence any subset of B0 will also be affinely

independent If a minimizer x of XO on affB0 exists and is in coB0 then we return (x,&) where

&c B0 is the set of points which carry the minimizer (see Figure 4.1). If no minimizer exists, or the

minimizer lies in ajfB0n(coB0)c, a point mo e offBqC\{coB^c is obtained such that/(mo) £ /(x0).

Note that by Proposition 2.6,/(Q £ /(xb) for all £ e [mo,Xo\. We then obtain the point Xj (see Figure

42) defined by [x\) £ [xo,md\ n rb co Bo (it should be clear that since XoericoB0 and

mo e cffB0r\(coBo)c that exactly one point of intersection exists). The set Bt is formed by dropping

all points in B0 which do not carry xx. Since Axi) ^ ./fro)* the pair {xx ,BX) satisfies Conditions (i)-(iii)

of Step 3 in Algorithm 4.1. In order to satisfy Condition (iv), the above procedure is repeated, starting

with (xi ,BX), until a suitable point is obtained. The actual algorithm which implements Step 3 of Algo

rithm 4.1 is as follows, Step 5 of Subprocedure 4.1 will be elaborated later. Let/(0 be a continuously

(Frechet) differentiable pseudo-convex function defined on a real Hilbert space H. Let ijQ and mfc) be

defined as above.

Subprocedure 4.1 (Implementation of Step 3 of Algorithm 4.1).

Data: B affinely independent set x e ri co B such that x minimizes A') on co B, t e H such that

WAx).t-x) < 0.

-11-



Step 0: Let {; e arg min AO (Guardstep).

Step 1: If 5 = t then set x k %t 6 £ { %} and return the pair (x,£).

Step2: Leti =0,xb £ 5,B0 £ Bu{/}.

Step 3: If ifiaffB-) - 1then let m,- £ m/aj^B,). Else go to Step 5.

Step 4: If Wf e coB„ then let £ c Bj be the set of points carrying m,-, let x = m,- and return the

pair (x,£). Else go to Step 6.

Step5: (No minimizer exists) Obtain a m,- e ajfBin(co Bjf such that^m,) <, Axd-

Step 6: Let Xf+i e [xt ,mj\nrb co Bh and let Bw c B,- be the set of points carrying xM.

Step 7: Replace i by i+1 and go to Step 3. •

The following result shows that Subprocedure 4.1 returns a pair satisfying Conditions (i)-(iv) of

Step 3 in Algorithm 4.1.

Proposition 4.2: Let H be a real Hilbert space, and let /: H -»IR be a continuously (Frechet)

differentiable pseudo-convex function. Suppose that (i) B is a finite, affinely independent subset of H,

(ii) xe ricoB such thatx mimmizes^O on coB and (iii) / e H is such that (V/(x),t-x) < 0. Then

Subprocedure 4.1 will terminate in a finite number of iterations returning a pair ($,£) satisfying the fol

lowing conditions:

(i)/6) <; ^nffQ.
?e [x.t]

(ii) 6 is affinely independent

(iii) x e ri co6.

(iv) x minimizesA') on co6 .

(v)dcBu(r).

Proof: Since B is finite and Step 6 always removes at least one point it is clear that the algorithm

terminates in a finite number of steps. In addition, the Algorithm returns only from Steps 1 and 4, and

consequently Conditions (iii) and (iv) are satisfied. As remarked earlier, the set Bu {t} is affinely

-12-



independent and hence so is B. By construction Axm) ^ Axdt and /(xq) = min /(Q, and so Condi-

tion (i) is satisfied. Condition (v) is trivially true. •

Some remarks regarding the implementation of Subprocedure 4.1 are in order. From a computa

tional standpoint the Hilbert space in question is invariably R", and the affinely independent sets B, can

have cardinality at most n+l (Theorem 2.3). Thus the sets Bt may be represented by a matrix B, whose

columns are the elements of Bit and where B; has at most n+l columns. Any point x e qffB, can be

represented by a multiplier \i of suitable dimension such that x = B,u. and ie,\i)= 1, where (•,•)is the

usual inner product on R" and e is a vector of ones.

One method of implementing Step 5 is as follows: Suppose that Bf = { bj }*,lt and define the

matrix L,- e R"**-1) ty i. £ [^-^...^-^j. it is trivial to verify that affB{ - R(Lf)+{ bk } where

R(0 denotes the range space of a linear operator, and set addition is defined in the usual manner.

Define <fc: R*"1 -» R by (J>,{y) £ AUy+bd. It is possible to show that by applying a method of

steepest descent (see, for example, Algorithm 37 in Section Zl of [14]) to $,{0, a point in

affBiC\(co Bjf with cost lower than Axd may be obtained in a finite number of iterations (under the

assumption that ij(affBj) = 0). For many functions (see Section S for an example) it is possible to com

pute such a point directly without iteration. Alternatively, the procedure of [5] may be modified (by the

addition of a suitable guard step) to compute Step S. Using this procedure requires the additional

assumption that on all affine sets A such that UA) = 1 (i.e. A 6 M), argmmAx) is a bounded set
xe A

The computation in Step 6 is straightforward. Suppose that xi = Bi\ii and mi = Bivi, where

<£,Hi)=<ie,V;)= 1, (i| > 0 (componentwise) and v( < 0 for some; (since mt £coB*). Then a simple

calculation shows that

x^Bite+^Vi-pi)) (4.2)

where

Xi £ min{ -t~t Iu^-vj > 0 }. (4.3)

The set BM is computed by dropping all points in B,- for which the associated multiplier |4+X,,(v{-u|)

is zero (at least one such point exists).
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In practice, the stopping rule (Step 1) in Algorithm 4.1 is replaced by a rule which stops when the

point Xi is "close enough" to a desired point For example, if the function A') is convex and continu

ously differentiable (hence trivially pseudo-convex), a suitable stopping criteria is to stop when

I8(x,)l <> e where e > 0 is suitably small. In this case, when the algorithm terminates the following

condition holds:

min/(x) £ A*d - e • (4.4)

In many instances more appropriate stopping rules can be used for specific^).

5. APPLICATION

To illustrate Algorithm 4.1 we consider the application of Algorithm 4.1 to a specific cost func

tion. Relevant properties of the cost function A') are developed, an alternative stopping criterion is

presented, and some numerical implementation details are discussed. This cost function arises when a

modified version of Algorithm 5.2 of [7] is applied to the problem:

SVP: min ai(A(x)), (5.1)
xe IR"

where <Ji(0 denotes the maximum singular value of itsargument, and A : Rn -> R*xp is a continuously

differentiable function. By defining the function <>: RnxR*xRp -> R as <Kx,«,v) = urA(x)v, we

may transcribe SVP as:

SVP: min max <b(x,«,v). ,e<>\
xeJR«i«i£iT \?-*)

MSI

Algorithm 52 is modified by replacing the optimality function and the augmented search direction by

those given in Proposition 5.5 of [7]. A suitable a.c.d.f. map (see [7] for details) for problem SVP is

given by

G\i/(x) £ co •*
iid si

MSI

0-i(A(x))-(|)(x,tt,v)
VMx.u.v) } (5.3)

The search direction computation of the modified algorithm requires the solution of the problem
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mfo$° +V4l9r\ (5.4)

where f £ (£°,$y, £° e R, $ e RB, and C £ G\|f(*). Given a direction A £ (A°,/ir)r, a tangency

point to the set C may be computed by solving the problem

min_ (h ,?)= min /t°(ai(A0c)) - <|>(x, u,v))+(h, V^(x, u,v)>, ,- ..
I e C MSI p.j;

MSI

=min A^^xW+^ttf^-^x))^,
MSI j=1 OAT
M S 1 w

=A°a1(A(x))-max j<pAfy)-ftH*Zff-)v.
MSI w «*
MSI **

Hence a tangency point to C may be computed by evaluating the maximum singular value and

corresponding right and left singular vectors of the matrix

#MA-±rt&l®.. (5.6)
»=i ox

From a numerical standpoint it is sometimes useful to scale the search direction calculation by

replacing the lAl%\2 term in (5.4) by Wfc.QQ where Q is a symmetric positive definite.scaling matrix.

The resulting search direction problem becomes:

SDPi: nuRfpp&), (5.7)

where

/*© 4 ?+*i*.G6. (5.8)

(2 is a positive definite symmetric matrix, and C is a convex compact subset of [0,<»)xR*. The func

tion fpp(') has some useful properties, which are summarized in the following proposition. Define

e0 ^ (1,0,... ,0)r, and let et denote the vector with 1 in the i+l position and zero elsewhere.

Proposition 5.1: LetjJpQ be as in (5.8), and let C be a convex compact subset of [0,«>)xRB. Let

Be R**"1 be an affinely independent setand define B £ { £ I£ € £ }. Define B tobe a matrix whose

columns are the elements of B. Partition B as follows (where B has row dimension n):
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B = (by
B

Then the following are true:

(i)Jjp(0 is convex, smooth (hence pseudo-convex) and is non-negative on C.

(ii) For all Xe WL.fJ£+\ed -/„© =X.

(iii) The set 0 ^ arg m\nfpp(^) isa singleton.
?6 C

(ydfppi') has a minimizer on q^iT(equivalently if (affB) = 1) <*> B is affinely independent

(v) B is affinely independent <=> the matrix A defined by:

A £

is invertible.

(vi) If if (affB) = 1, then vy (affB) =B#, where w solves the system

0 eT
e BTQB

1

-b°

(5.9)

(5.10)

(5.11)

Proof: Notice that affB - { Bw Ite, W>= 1 }, where e is a vector of ones and dimension equal to the

cardinality of B. Properties (i) and (ii) are obvious. To prove (iii) note that

/„A?i+(i-^2)- ftfcffO+d-Wj&» = M\X) <ki-$2.Q<Z>i-&l (5.12)

Suppose that ^ ,f2 e 0. It foUows from (5.12) that &=5*and since/pp(fi) =^(^2) we conclude that

?i =?2 which shows that 0 contains a single point

(iv) (=>) To obtain a contradiction suppose^) has a minimizer on affB and that B is affinely depen

dent Hence by suitably numbering the elements of B, we mayobtain a multiplier Xsuch that

$1 = £ *A. £ ^=1. ^5. (5.13)
»' # 1 »' * 1

Since B is affinely independent, we have $? * £ ^$?. Since ^ , £ Xj?i e a#B it foUows that
i * 1 « 1* 1

IRx { $1 }c <#£"• Since^O) is unbounded from below on Rx { ^ } we obtain acontradiction.

(<=) Suppose B is affinely independent It is straightforward to verify that the matrix A (defined by

(5.10)) is non-singular, and so the foUowing system has a solution:
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*• * =-b» • (5-14)

The system (5.14) is a first order necessary and sufficient optimality condition for the convex problem

min{ fpp(fiw) I(w,e)= 1 }. (5.15)

Hence Biv minimizes fpp(-) on affB* with %being the Lagrange multiplier associated with the equality

constraint

(v) This foUows from the definition of affine independence and the fact that Q is positive definite.

(vi) Since the point w defined by (5.14) is the unique solution of (5.15), it is clear that

mfJiaffB) =Bw. H

The foUowing is an alternative stopping criterion which is appropriate for this search direction

calculation. This stopping rule is similar to that in [10], and utilizes the fact that/ppQ is non-negative

on C. Two numbers £i,£2 > 0 are selected, respectively representing an absolute and relative accu

racy. Step 1 of Algorithm 4.1 is replaced by the foUowing rule, where x,- is the current iterate. If

I8(x-}l
fpp(xi) £ Ej stop, otherwise if -rrrr ^ £2 men stop. If the Algorithm stops by satisfying the second

Jpp\Xi)

inequality the foUowing condition holds:

mm/ff>(0 fi/„x
5gc 2> i+JW ;> i-e,, (5.16)

jppyXu fpp\Xu

and sofpp(xd is within 100e2% of the optimal value.

Consider the implementation of Subprocedure 4.1 for the function/^ : R"*1 -> R. Each affinely

independent set B,- of Subprocedure 4.1 may be represented by a matrix B,- e R "f x ', where k( is the

cardinality of Bh and whose columns are the elements of Bt (a subset of the ti generated by Step 2 of

Algorithm 4.1). Proposition 5.1 provides a means of computing it (affBi) and mf (affB^ in terms of

operations on the matrix B,. Partition the matrix B, as in (5.9). By determining the rank of the matrix

A (5.10), if (affBi) may be computed. If A has fuU rank, then nu (affBD may be obtained by solving

the system (5.11). If A is singular, Step 5 requires a point mt e affBin(coB-f satisfying
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Amd £ Axd- Step 6 the obtains the successorxM by intersecting [*,-,mJ with r£ co Bt. For the func-

tion/ppC) these two steps may be combined by computing a suitable direction of descent for fpp(-) and

then moving in this direction until a point in rb co Bi is obtained (Le. xm). Proposition 5.1 (ii) shows

that -e0 is a suitable direction. A convenient way of computing xM is to solve the system

11 =
0

(5.17)

It is straightforward to verify that (5.17) has a unique solution since B,- is affinely dependent and B, is

affinely independent Let \i be the barycentric coordinates of the current iterate x,-. Clearly

B,<u. + Xr\) e affBi for all X e R, and by choosing

X=min{—% \v( < 0} , (5.18)

the point xM & Bt<|x + Xt\) is obtained. Since at least one component of \l + Xi\ is zero, x,- e rb co Bt

and proposition 5.1 (ii) ensures that ./^fo+i) < fpp(xi). The set BM is computed by dropping all ele

ments whose corresponding multiplier is zero.

Some numerical details relevant to the proceeding discussion wiU now be considered. Of particu

lar concern are the issues of rank determination and speed of execution. Since either the system (5.11)

or (5.17) must be solved at each iteration, the latter concern suggests that any decompositions used to

solve these systems should be updated incrementally rather than performing a complete decomposition

at each stage. It may be readily verified that the matrix A (5.10) is invertible if and only if the matrix

H £ BrgB + eeT is invertible. Working with the positive semi-definite matrix H instead of A has

some advantages which will be described subsequently. It should be noticed at this stage that H (and

hence A) can only drop rank by one. This foUows since Subprocedure 4.1 is always initialized with an

affinely independent set B which satisfies if (B) = 1, and the only time the corresponding H may drop

rank is when B is augmented by the vector t in Step 2. Subprocedure 4.1 always returns an affinely

independent set £ satisfying if (S)-l (and hence the corresponding Hhas full rank).

The four types of operations performed on H are, (i) to determine rank (or some approximation to

its numerical rank), (ii) to augment H to form //+, when the matrix B is replaced by the augmented
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matrix B+ k Ib l\ (where t=(t°,iI)T)1 (iii) to downdate Hby removing a column of B and (iv) to

solve systems of the form Hx-b (to solve (5.11) or (5.17)). The Cholesky decomposition may be

used to perform the operations (i)-(iv) in a convenient manner. Suppose that H is positive definite and

that RTR is its Cholesky decomposition, where R is upper triangular. Given the factorization of H, the

factorization of //+ k BjQB+ +eeT (operation (ii) above), where B+ is the "lower" part of B+ as in

(5.9)), is given by:

R+ 4 [o y] (5-19)

where r k (R1Yl(BTQt +e) and y k ^irQt+ l-r^r. It is straightforward to show that (theoreti-

cally) y is weU defined and that //+ is indefinite if and only if y = 0. An approximate determination of

the numerical rank may be made by examinining y2. If y2 is less than some specified tolerance, then it

is replaced by 0, and if (Bu { t}) is taken to be 0 (B is the affinely independent set used to generate

H). To remove an element from the set B (i.e. remove a column from the matrix B), remove the

corresponding column from R and use Givens rotations ([15, p 45]) to restore the reduced R to upper

triangular form. To solve the system (5.11) (assuming that A and hence H are invertible), let

Ho k fl^b0, T| k lTle, (5.20)

and define

<J\.e) K }

Then the pair ((1-a), (Uo + v.xtf? solves the system (5.11). If the matrix //+ (formed by operation (ii))

drops rank (i.e. y = 0), then the system (5.17) may be solved by obtaining a solution T| to the system

//+n = o, o>j,ti)=-i, (5.22)

where b+ k ((b°)r./°)r. This is equivalent to solving the system

u k R~lr, (5.23)

(where R and r areas in (5.19)), in which case the solution to (5.17) is given by
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-["111 ^ M»T. (5.24)

The algorithm was coded in C and tested by solving a number of problems with known solutions.

To examine the numerical behavior of the Cholesky decomposition scheme described above, each itera

tion was performed in parallel using LINPACK routines to solve the systems (5.10) and (5.17), and the

results compared. No significant difference in the results was observed.

In general, the algorithm performed significantly better than the Frank-Wolfe algorithm, in terms

of time and number of iterations required to solve a given problem. To give an indication of the rela

tive performance, both algorithms were applied to the minimization of fppfc) on the set

C^{xeR3lx°£l + V6 (x1)2 , (x2)2
10 1000

; x° <£ 106 } , (5.25)

with the seating matrix Q (5.8) taken to be the identity. The solution is easily seen tobex = (1,0,0)T.

This set is similar to Example 3 in [3]. Figures 5.1 and 5.2 show the cost versus time and iteration

number respectively, starting from xo = (6.0005,10,-l)r: The times were measured ona VAXstation

WGPX running Ultrix V2.0. The solid fine represents the Frank-Wolfe method, and the dashed fine

represents Algorithm 4.1. To interpret the performance of the algorithm when appUed to other sets C,

the time required to compute a tangency point to the set must be considered. The computation of the

tangency point (Step 2, Algorithm 4.1) to the set C (5.25) requires a negUgible amount of time com

pared with that required to execute the algorithm. Consequently, if the tangency point routine for a

different set also requires a negUgible amount of time, it is reasonable to expect that the cost versus

time graph would be similar to Figure 5.1. However, if the tangency point routine requires a significant

amount of time, the the cost versus iteration graph (Figure 5.2) would give a more realistic estimate of

the time required to solve the problem. An empirical estimate of the rate of convergence of the cost

can be made by examining Figure 5.3, which graphs log(/^(Xj)-,/^,(x)) versus the iteration number i.

Algorithm 4.1 is seen to have a linear rate of convergence in this example.
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If the set Chas the form C k co {xt},- e ffl, then the performance may becompared with that of

a quadratic program solver in the foUowing manner. Define the matrix X as

X = (x°f
X

k [xi...xm].
Then problem SDP} (5.7) is equivalent to:

QP: mm{(x(Y\i + \iTXTQX\i\ \ie Rm; u. £ 0; eru,= l}.

(5.26)

(5.27)

As before, the matrix Q is taken to be the identity. The quadratic program solver used was the LSSOL

package [16] (default options, problem type QP2, print level 10). The set C was formed by taking m

points at random, distributed uniformly on the set [O.Slxt-lO.lO]""1 c R". In aU cases the Frank-

Wolfe algorithm required more than 200 iterations and more time than either LSSOL or Subprocedure

4.1 To provide a resonable basis for comparison, the time taken to compute the matrix XTX was added

to the time taken to solve the quadratic program. The times (in seconds) required to solve the problem

for varying dimension and number of points are given in Tables 5.1 and 5.2.

Time (s) using Algorithm 4.1 on fbD

n

number of points
10 25 50 100

10 0.13 0.53 0.72 1.13

25 0.92 2.03 4.79 7.38

50 2.89 8.91 15.42 38.93

100 11.98 30.62 63.59 114.03

Table 5.1. Time required to solve SDPj with Algorithm 4.1.

Time (s) LSSOL on fbo

n

number of points
10 25 50 100

10 0.68 2.15 526 12.6

25 0.85 3.49 10.75 37.69

50 0.8 3.26 15.15 76.88

100 0.98 4.08 16.16 98.62

Table 5.2. Time required to solve SDPi with LSSOL.
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The tables suggest that the algorithms have comparable performance when the number of points

m is equal to the dimension of the underlying space n, and that Algorithm 4.1 performs considerably

better when m > n. In the search direction calculations of many engineering design problems, the

parameter space dimension n is considerably smaller than the number of points, and consequently we

would expect that Algorithm 4.1 performs better that LSSOL on these problems. In the case where

m < n, the number of iterations required by Algorithm 4.1 to solve the problem is approximately equal

to the number of points carrying the final solution (and also approximately equal to m). Since the algo

rithm only picks up one extra point per iteration, we observe that the time in Figure 4.1 is that required

to "collect" aU m points via the tangency point routine. Since LSSOL has the full description of the set

C available initially through the set X, it does not suffer from this disadvantage.

6. CONCLUSION

We have presented an extension of the von Hohenbalken algorithm [5], which maintains the

desirable property of finite convergence when the set C (in (1.1)) is a polytope, and also converges

when the set C is a general convex compact set Such (non-polytopal) sets arise in many engineering

design problems. We have also presented an implementation for a specific search direction problem,

along with some numerical results. We observe that our modified algorithm exhibits good performance

in most cases. So far we have not encountered a case where our modified algorithm has not converged

linearly. We are therefore led to suspect that is should be possible to establish theoreticaUy that, under

suitable conditions, the algorithm converges to a solution with a linear rate.
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APPENDIX: A counter example

In this appendix, a convex compact (non-polytopal) set C is constructed on which the von Hohen

balken algorithm [5] does not converge when applied to the function Ax) = Vilxl2, for certain initial

starting points. Strictly speaking, the algorithm [5] maximizes pseudo-concave functions, so to minim

ize a pseudo-convex function /(•), the algorithm is appUed to the function -/(0-

Given the set C a sequence { & }£o is created which satisfies tne argmin (CV/^),
£ e C

A^m) < A%d* and £* does not converge to the (unique) solution. As a result when the algorithm of

[5] is used (starting from the point £q) it will cycle indefinitely between Basic step 1 and Basic step

2(a), generating the sequence { £,- }£o,which does not converge to the solution.

Define the function X : R -> R as

X(x) k ea<w-D + K (A.1)

(where a k 10/11, k 4 1/10) and the setC as

C £ {x.€ R2 I X(Xz) <; xj <. Xi\\) }. (A.2)

Since X(0 is convex, it is clear that the set is convex. Compactness of C is obvious. Note in passing

that X(-) is differentiable everywhere except at 0. Define the cone A as

A £ {xe R2lxt > 0; ae^Xx < bcjl < ae10ax, }. (A.3)

It is straightforward to show that for all h e A,

min (£,A) = min <£,#> = min X(y)hi +yh2 , (A4)
£ Q C Z,e epi\ y e R \ • /

where epi Xdenotes the epigraph of X(-). Define the function y : A -> R by

argrmn £.» = { (My(h)),y(h)) } , (A.5)

where y(h) satisfies

aeaOXA).-l)=J^L| y(h)h2<0. (A.6)

Define a coUection of neighborhoods of the points .1 and -1 by Uz k { x e R 11 \x\- II < e }. Since
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A is open, and (A,(1),1),(X(-1),-1) e A, it is clear that (X(x),x) e A for aU xe U^ for some

Ei > 0. For convenience, define

♦W^^gg^-. •»*•#»• (A.7)

Direct calculation shows that (|)(1) = G(l)= 1, <J>(-1) = 9(-l) = 1, (j»'(l) > 0, <J>'(-1) < 0, 9'(1) < 0,

and 0'(-l) > 0. Hence there exists an e2 > 0 such that if x e U^ and bd > 1, then tyx) > 1 and

8(x) < 1. Suppose that xe C/e, where e k min{ ti,e2 }, and y((X(x),x)) is defined by A.5, A.6.

Then the foUowing hold

ea<itfW*).*»i-i) =m > xt r g^i) =e(jc) < i § (A.8)

andwe may conclude that \y((X(x) ,x)) I- 1 > 0, ly((X(x) ,x))l < bd, andhencey((X(x) ,x)) e Ue.

To continue, notice that V/(0) = 0, and so the Initial step of the algorithm may select any extreme

point of the set C asan initial point Choose any x e l/e, with bd > 1, and define £0 = (Mx) .*) (it is

straightforward to verify that £o is an extreme point of Q. Define the sequence inductively by

€m = <M)<6))\y(S)). Observe that \(X(x),x)l > l(X(z),z)l whenever bd > Izl. Hence by A.8, and

the associated remarks we see that l&+il < l&l (i.e. A$m) < A$d)- 1° addition, since

&H e arg min <£, Vfl&)) = argmin (£,,&, (A.9)

it follows that if the algorithm is initialized at £0» then it wUl generate the sequence { ^ }£o. Finally,

since l£2l > 1 for all i, we observe that the sequence does not converge to the solution (X(0), 0).
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A(x)

Figure 3.1. Illustration of the sets T(x) and A(x).



Figure 4.1. Minimizer inside convex hull.

B- (b1(b2}

Figure 4.2. Minimizer does not exist or is outside convex hull.
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Figure S.l. Cost vs. time plots for the Frank-Wolfe algorithm(solid) and Algorithm 4.1 (dashed).
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Figure 5.2. Cost vs. iteration plots for the Frank-Wolfe algorithm (solid) and Algorithm 4.1 (dashed).
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