

Copyright © 1988, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

FINITE-ELEMENT METHODS FOR PROCESS

SIMULATION APPLICATION TO SILICON OXIDATION

by

Pantas Sutardja

Memorandum No. UCB/ERL M88/26

2 May 1988

FINITE-ELEMENT METHODS FOR PROCESS

SIMULATION APPLICATION TO SILICON OXIDATION

by

Pantas Sutardja

Memorandum No. UCB/ERL M88/26

2 May 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

FINITE-ELEMENT METHODS FOR PROCESS

SIMULATION APPLICATION TO SILICON OXIDATION

by

Pantas Sutardja

Memorandum No. UCB/ERL M88/26

2 May 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Finite-Element Methods for Process Simulation

Application to Silicon Oxidation

Ph.D. Pantas Sutardja EECS Department

ABSTRACT

Two-dimensional (2D) process simulation has become increasingly important for process

design as the lateral dimensions of the devices in integrated circuits (IC) shrink to sizes compar

able to their vertical dimension. In this dissertation, we explore the applicability of the finite-

element numerical method in IC process simulation.

A new 2D process simulator has been developed and named the CREEP program. The

modeling and simulation of silicon oxidation are used as the test vehicles in this research.

Models to account for the stress-effects in silicon oxidation are developed. The finite-element

numerical algorithms required to solve the model equations are then developed to test the

models against experimental observation.

A new data structure for handling 2D geometric structures has also been built into CREEP

so that the program can now handle a large class of oxidation related problems. The data struc

ture is sufficiently general to allow the implementation of other process simulation capabilities

into the program in the future.

The practical acceptance of the use of the finite-element method in IC process simulation

would be difficult if the grid or mesh required for the finite-element discretization cannot be

generated automatically. The new geometric data structure has made possible the design and

implementation of a robust automatic mesh-generator. This mesh-generator demonstrates the

feasibility of reliably automating the finite-element discretization process.

The stress-dependent models developed for silicon oxidation have been verified to accu

rately predict the retardation of oxidation rate on cylindrical silicon surfaces. The CREEP

program can now simulate various types of LOCOS processes, oxidation of silicon gate and

trenchstructures, glass reflow (a subset problem of silicon oxidation) and so on. However, the

development of a framework for a general purpose finite-element based process simulator, the

CREEP program itself, is the major contribution of this project.

f/J C^ <?)/<+M6L,
Committee Chairman

Dedicated to my parents

11

Acknowledgement

I would like to thank my advisor Professor William G. Oldham for his encouragement and

guidance throughout the course of this work. I would also like to thank Professor A.R.

Neureuther and Professor R.L. Taylor for serving on my dissertation committee. Discussions

with them have further enhanced my technical understanding.

It has been a great pleasure working with my colleagues in the IC processing and simula

tion groups at UC Berkeley. It is not possible to list all their names here. However, I would

especially like to thank Gino Addiego, Carl Galewski and Pei-Lin Pai for their friendship and

the many technical discussions we had. My technical presentation skill has been greatly

influenced by them through the critical but informal training they provided. This has perhaps

been the most important learning experience during my graduate study.

The financial support provided by the IBM Corporation and the Semiconductor Research

Corporation is gratefully acknowledged.

I would like to thank my parents for their love, support and patience through the years.

The sacrifice made on their part in order to provide me with excellent education is greatly

appreciated. Last, but not the least, I thank my fiancee, Ting Chuk, for her love and moral sup

port in the past few years.

HI

Table of Contents

1. Introduction 1

2. Historical Account 3

3. Modeling of Silicon Oxidation 7

3.1 Introduction 7

3.2 2D Deal-Grove Models 8

3.3 Limitation of the 2D Deal-Grove Models 11

3.4 Characterization of Stress-Effects 12

3.5 Effects of Crystal-Orientation 13

3.6 Kao's Models for Stress-Effects in Oxidation 17

3.7 Limitation of Kao's Models 18

3.8 Improved Stress-Dependent Parameters 20

3.8.1 Surface Reaction Rate Model 20

3.8.2 Oxidant Diffusivity Model 20

3.8.3 Oxide Viscosity Model 21

3.9 Model Fit to the Experimental Data 25

3.10 Intrinsic Stress in Thermal Oxidation 28

3.11 Viscosity of Vitreous Silica 33

3.12 Other Models and Applications 40

3.12.1 Oxidation of Sharp Silicon Corners 40

3.12.2 Other Material Problems 42

3.13 Concluding Remarks 44

4. Numerical Algorithms 45

IV

4.1 Introduction 45

4.2 Virtual Work Formulation for the Oxide Deformation 46

4.2.1 Discretization of the Velocity 47

4.2.2 Formulation and Discretization of the Strain-Rate 56

4.2.3 Formulation and Discretization of the Stress 59

4.2.4 Discretization of the Virtual Work Equation 60

4.2.5 Assembly of the Stiffness Matrix 62

4.2.6 Difficulty in the Incompressible Formulation 63

4.3 Discretization of the Oxidant Diffusion Equations 65

4.4 Implementation of the Stress-Dependent Oxidation Models 70

4.4.1 Calculation of the Hydrostatic Pressure 70

4.4.2 Calculation of the Normal Interface Stress 70

4.4.3 Assembly of the Matrix tf, 72

4.4.4 Accuracy of the Calculated Normal Stress 73

4.4.5 Algorithms for the Stress-Dependent Oxidation Models 76

4.5 Other Material Problems 79

4.5.1 Linear Visco-Elastic Formulation 79

4.5.2 Non-Linear Visco-Elastic Formulation 81

4.6 Boundary Conditions 84

4.6.1 Reflection Boundary 84

4.6.2 Oxide/Silicon Interface 84

4.6.3 Oxide/Nitride Interface 85

4.6.4 Silicon/Ambient and Nitride/Ambient Interfaces 85

4.6.5 Silicon/Nitride/Ambient Triple Point 85

4.6.6 Oxide/Nitride/Silicon Triple Point 86

V

4.6.7 Oxide/Ambient Interface 87

5. Data Structure 89

5.1 Introduction 89

5.2 Node-Segment Representation 89

5.3 Data File Format 90

5.4 Tri-Directional Linked-List Structure 93

5.5 Basic Traversal Operations 99

5.6 Future Enhancements 100

6. Mesh Generation 101

6.1 Introduction 101

6.2 Conversion of Complex to Convex Polygons 102

6.3 Triangulation of Convex Polygons 108

6.4 Results and Performance 113

7. Application Examples 118

7.1 Oxidation of LOCOS Stnicmre with Thin Nitride 118

7.2 Oxidation of LOCOS Structure with Stiff Nitride 120

7.3 Oxidation of Silicon Gate Structure 123

7.4 Flow-Anneal of Glass 124

7.5 Shrinkage of Spin-On-Glass 126

8. Conclusions 129

References 132

Appendix A. CREEP User Manual 135

Appendix B. Examples of Input Files 159

CHAPTER 1.

INTRODUCTION

Various types of computer aided design (CAD) tools have become indispensable in the design

and fabrication of today's integrated circuits (IC). Circuit simulators such as SPICE 1 were

among the first to be developed and gain popular acceptance. Then, process simulators, logic

and timing simulators and various types of automatic synthesis, layout and placement tools

were developed. Yet, after more than a decade of continuing development, process simulators

have not gained as much acceptance as the other CAD tools by the IC industry.

The slower acceptance of process simulators stems primarily from a lack of confidence in

the accuracy of most of the available process simulators. There are very few process models

that match the accuracy and qualities of models used in, for example, circuit simulations. A

few process simulators that are fairly accurate can only simulate a limited class of processes.

What is needed is a complete process simulator package or a collection of process simulators

that provide the capabilities of accurately predicting the important processes encountered in IC

fabrication technology. In order to do this, it is necessary to step up our effort to obtain more

accurate and scalable physical models. Scalable models are models which provide accurate

prediction of processes occurring in physical dimensions (size and shape) different from those

used to characterize the models. These models are more likely to be physically-based than

empirical. However, verifying such models is often difficult, as analytical solutions to many of

them are generally not available. Numerical simulations are often needed to solve the model-

equations so that the models can be tested againstexperimental observations. At present, unfor

tunately, the numerical techniques for solving continuum-equations, which are needed in most

process simulation, are not as well developed as the numerical-techniques used in solving

discrete-systems, such as those used in circuit simulations. The models needed to accurately

describe most of the IC processes are usually difficult enough to solve in one-dimensional sys

tems. As the device dimensions become smaller, it becomes necessary to solve the model-

equations in two-dimensional (2D) or even three-dimensional systems. The complexity of pro

cess simulation thus increases dramatically.

Certainly, the model-verification step requires systematic experimental data that can be

readily quantified, and it is often difficult to design and perform the experimental procedures to

obtain these data. In this work, however, the focus is more on the issue of simulation. Since it

is impossible for a single person to develop all the simulation capabilities that process-designers

are interested in, this work is restricted to the development of a framework for a general purpose

2D process simulator. It is hoped that other simulation capabilities can be added into the pro

gram without too much difficulty in the future. The modeling and simulation of silicon oxida

tion in wet ambient are chosen as the vehicles for the development of this program. The choice

should prove to be interesting and useful as the algorithms needed to solve the models for sili

con oxidation are quite difficult and comprehensive. Because silicon oxidation is a creep-flow

problem, the program developed in this work is named CREEP.

The historical events that led to the development of the CREEP program is described in

chapter 2. Various aspects related to the modeling of silicon oxidation will be given in chapter

3. The numerical discretization algorithms for solving the silicon oxidation models will then be

described in chapter 4. A special geometric data structure developed for CREEP, and the

finite-element mesh generation algorithms used will be described in chapter 5 and 6 respec

tively. Finally, some application examples of the CREEP program will be given in chapter 7

before concluding this dissertation in chapter 8.

CHAPTER 2.

HISTORICAL ACCOUNT

This work started in 1984 with the attempt to explore new silicon isolation technology. Many

different isolation schemes were already proposed by other researchers in the field. But there

was a general lack of physical understanding for non-planar oxidation. Hence, instead of per

forming many trial-experiments in search of yet another isolation technique, we thoughtthat it

would be fruitful to pursue for a physical understanding of non-planar oxidation. We hoped

that a betterunderstanding of silicon oxidation would eventually help us in identifying better

isolation technologies, orthe inherent limitation of silicon oxidation technology.

As in any other modeling work, it is necessary to verify any proposed silicon oxidation

models against experimental observation. By definition, non-planar oxidation is at least two-

dimensional (2D) in nature. Unfortunately, there is generally no analytical solution foreven the

simplest 2D extension of the Deal-Grove models of oxidation* in arbitrarily structured 2D

domains. It was clear that the use of 2D numerical simulation would be required to verify any

model which might be proposed.

Two oxidation simulators were available at that time: SOAP2, from Stanford University,

and NEOVEDA3, from NEC ofJapan (several other oxidation simulators were developed more

recently by Poncet4, Boruki et al5, Tung et al6, and Rafferty et al7.). SOAP used aviscous-

incompressible oxide model while NEOVEDA used a linear visco-elastic oxide model. But

both programs used a 2D extension of the Deal-Grove models for the oxidation kinetics. The

simulation results of LOCOS oxidation from both programs generally differed from the experi

mental observations. The disagreements between the simulated and experimental results were

more noticeable when large silicon-curvature or thick nitride layers existed in the structures.

Assuming that the two programs solved the intended physical and mathematical models

* The2D Deal-Grove models aredescribed inchapter 3.

properly, we concluded that the simple 2D Deal-Grove models were not accurate, regardless of

the mechanical model used for the oxide. A careful comparison of the simulated profiles and

experimental results led us to suspect that mechanical-stress in the oxide modifies some of the

parameters in the Deal-Grove models. The experimental results from Marcus and Sheng8,

which show clear oxidation rate retardation on both convex and concave comers of a silicon

trench, provided more graphical evidence of the stress-effects in silicon oxidation. It was then

our goal to determine the functional dependence of the Deal-Grove parameters on the various

stress-components in the oxide or silicoa

The modification of one of the existing simulators to include some stress-dependent oxi

dation models seemed to be the simplest approach to study the stress-effects in silicon oxida

tion. A feasibility study was made. A major consideration was the frequent no-convergence

problems that the existing programs suffered. Coupled with the slow speed of the programs (

typically several hours computer time on a minicomputer for one complete simulation of a

LOCOS process), we had no confidence that we could achieve a workable enhancement of

either program. Another consideration, which turned out to be more fundamental, is the numer

ical approach used in both programs. Both programs (and more recently the work of Tung et

al6) used some form of boundary-element methods for the numerical discretization of the

oxide deformation and oxidant diffusion. As a result, material non-homogeneity or non-

linearity within the bulk of the material could not be handled easily. Since we did not rule out

the possibility of testing non-linear bulk properties (such as oxidant diffusivity), we had to

choose numerical techniques that discretize both the bulk and boundaries of the domain of

interest It was quite apparent that the required modification of the existing programs would be

a major undertaking that offer little or no advantage over starting a new program. We thus

decided to write a new program, which was subsequently called the CREEP program.

Among the two well established techniques, the finite-difference and the finite-element

methods, we chose the latter for several reasons. First, the finite-element method can be easily

applied to irregularly shaped domains. Next, the size and shape of the finite-elements can vary

drastically over a short distance in a domain, making it possible to allocate dense mesh (

discretization) only in regions of high variation for the unknown variables or the material

properties. On the other hand, there is no clear way of formulating the finite-difference method

for an arbitrarily irregular grid. The computation time for a program using the finite-element

method can thus be greatly reduced by using a proper mesh-generation or discretization. Lastly,

the finite-element method is a widely established technique used in the civil and mechanical

engineering disciplines. This is a practical consideration for us since the problems are similar

and knowledge acquired from the other disciplines might speed the development of the CREEP

program.

To take advantage of the finite-element method clearly requires the ability to generate a

reasonable mesh of elements. The mesh-generation can be done either manually by the user, or

automatically by the program. For silicon oxidation which is a moving boundary problem,

repeated mesh-generation may be needed throughout the whole simulation process. User-aided

mesh-generation may become unacceptably tedious. We thus decided to build an automatic

mesh-generator. The finite-element algorithms needed to solve silicon oxidation models were

assumed to be available by adapting certain well known techniques used in the civil engineering

discipline.

Many different element types are in used in the field of the finite-element analysis. The

quadrilateral elements are the most commonly used elements. We chose to use the triangular

elements mainly for the reason of the relative easein implementing automatic triangular mesh-

generator. It also turned out that when the meshes are highly irregular, triangular elements

oftenprovide superior results compared to thequadrilateral elements9.

Becauseof our inexperience in using and building an automatic mesh-generator, we were

concerned that the mesh-generation process might be time-consuming. We concentrated our

effort on building anefficientinstead of a robust code for the mesh-generator. After a first ver

sion of our mesh-generator was tested in the finite-element analysis of silicon oxidation, we

realized that the speed of the program was primarily determined by the speed of the finite-

element discretization process and the linear-system solution process. The computer time used

by the mesh-generation turned outto benegligible. As expected, the computer time involved is

strongly dependent on the the number of nodes in the system. But it wasnot expected thatade

quate accuracy canoften be obtained with a relatively low node-count in the discretized system.

To take advantage of this situation, the mesh-generator should run with a low mesh-density and

yet produce a reasonably good mesh. The first mesh-generator built was unfortunately not

robust enough when running under low mesh-density. It was then clear that we could afford to

have a slower but more reliable mesh-generator.

A second mesh-generator was then written. This mesh-generator was more robust than

the first one, but still not satisfactory. Occasionally, zero-area elements were formed, causing

the program to crash. Although the problems were identified and could have been fixed, we

were more concerned about the inability of the program to handle more than one polygonal

structure. Before the third mesh-generator was written, we determined that we need a general

data structure for the efficient manipulation of arbitrarily shaped and connected geometries.

Such a data structure will not only allow the program to handle a larger class of geometric

structures, it will also simplify the design of the mesh-generator. The third version of the

mesh-generator was then built around this data structure. This data structure is presented in

chapter 5. The mesh-generator is described in chapter 6.

The various support routines needed for the finite-element discretization of silicon oxida

tion models are also applicable to other process simulation. The routines that handle the data

structure, the mesh-generator, the linear-system solvers and the input interpreter can actually

provide a basis for other process simulation capabilities. Only the routines for the finite-

element discretization of the silicon oxidation models are particular to local oxidation problems.

Simulation of bulk processes, such as impurity diffusion in solids, requires the same set of sup

port routines. Topographical process simulation such as etching and deposition requires a

robust and general data structure for profile description. It then appears that many other impor

tant process simulation capabilities can be added into the CREEP program with relatively minor

additional effort. Thus the various parts of the program are implemented in a modular fashion

to make the CREEP program a framework for a general purpose process simulator.

CHAPTER 3.

MODELING OF SILICON OXIDATION

3.1. INTRODUCTION

Silicon oxidation is a moving boundary problem in which the oxide is continuously generated (

ie, no conservation of volume). Although the numerical algorithms used in this work is

described in chapter 4, it is worth discussing certain aspects of the numerical approach used at

this early stage. The formulation and numerical solution of the models for silicon oxidation in

this dissertation closedly follow the approach often used in the solution of metal forming

processes (extrusion, rolling, etc). Metal forming is a moving boundary problem in which

creep flow is often assumed for the deformation of the material. A simple time-stepping

scheme often used in updating the profile of the material at time t = to to another profile at t -

to + At involves the displacement of every point in the material by an amount equals to At

times the velocity of that point. The time-stepping scheme used in this work follows a similar

strategy as that used in metal forming. At any time t - to during the oxidation process, the

model equations for silicon oxidation are formulated and solved, using the configuration/profile

of the materials at t = fo- The velocity field is obtained and the profile is updated by moving

every point by At times the velocity at that point.

Although the resultsof the numerical simulation performed so far appear to be correct, no

attempt has been made to prove that the numerical solution converges to the true solution as the

spatial discretization andthe At usedin the time-stepping scheme approach zero. This is partic

ularly a concern for the time-stepping process. In this work, oxide is assumed as a viscous

fluid, and the formulation for the oxide deformation is based on the linear (infinitesimal)

strain-rate theory. However, silicon oxidation is clearly a large scale deformation problem.

More rigorous formulation using the large strain/displacement (finite deformation) theory may

8

be needed to avoid possible accumulation of error in the deformation that does not vanish even

as Ar approaches zero. The numerical algorithms used in this work is only a first implementa

tion of the algorithms for silicon oxidation. Future work should consider the application of the

finite deformation theory in silicon oxidation. This is especially crucial if visco-elastic and/or

elasto-plastic models are to be used in oxidation modeling, as the stress in the material may also

accumulate incorrectly if a proper finite-deformation formulation is not used.

3.2. 2D DEAL-GROVE MODELS

The Deal-Grove models of oxidation10 represent the first major break-through in the modeling

of silicon-oxidation. The models state that the oxidant diffuses from the ambient into the oxide,

and react with the silicon at the silicon/silicon-dioxide interface. The Deal-Grove models are

usually applied to one-dimensional (planar) oxidation, although the extension to two- or

three-dimensional systems appears to be straight-forward. The first attempt to solve the model

in two-dimensional (2D) systems was made by Chin et al2. In the set of the original (one-

dimensional) Deal-Grove models, the mechanical properties of the oxide are not considered

since the oxide flows only in one direction, normal to the planar-surface. In a two-dimensional

system, the mechanical properties of the oxide must be explicitly included in the models. In

Chin's program, the oxide is modeled as a viscous fluid. Because the models for oxidant diffu

sion and reaction are essentially due to those of Deal and Grove, we will consider Chin's

models as 2D Deal-Grove models.

To explain the 2D Deal-Grove models, consider the common LOCOS process illustrated

in Fig. 3.2.1. Since the oxidation rate is usually slow comparedto the time constant for oxidant

diffusion, the oxidant diffusion is quasi-steady-state :

V(DVC) = 0 in Q (3.2.1)

where D and C are the oxidant diffusivity and concentration respectively in the bulk of the

oxide (CI).

NITRIDE \

Q,

\
Ta

Ts

Tr
"""" rn

SILICON

Fig. 3.2.1. A typical oxide profile from a LOCOS process.

The oxidation rate at the Si/Si02 interface is assumed to be proportional to the oxidant

concentration:

dV

<jf" = ksC on Ts (3.2.2)

where N is the number of oxygen atoms per unit volume of oxide, Vox is the volume of oxide

formed, ks is a proportionality factor known as the surfacereaction rate parameter and Ts is the

Si/Si02 interface.

Given the model described by Eqn. 3.2.2, we must have

D%k - **c on Ts (3.2.3)

as the boundary condition for the oxidant diffusion at Ts. In the above, n is the normal direc

tion outward from the oxide region.

The ambient phase gas transport coefficient for the oxidant (which is H2O in our case)

was found to be sufficiently high10 that we can accurately approximate the boundary condition

10

at the Si02/ambient interface (Ta) by setting the oxidant concentration there to the maximum

oxidant solubility in the oxide at the given ambient conditions. This maximum solubility is

called the equilibrium oxidant concentration, C* :

C = C* on Ta (3.2.4)

Nitride (S13N4) is assumed to be a perfect oxidant mask and thus no oxidant flux can go

through the Si02/Si3N4 interface (Tn). The boundaries with the simulation window (Tr) are

assumed to be reflection boundaries. The reflective symmetry of the structures requires that no

flux crosses any of the reflection boundaries. Thus, we have

- D-^L =0 on Tr and Tn (3.2.5)

Eqn. 3.2.1 through 3.2.5 determine the oxidant diffusion in the oxide and the reaction at

the Si/Si02 interface. The reaction generates new oxide at the Si/Si02 interface which is about

2.2 times the volume of silicon consumed. This newly formed oxide layer "pushes" the existing

oxide layer away from the silicon region. Assuming that the Si/Si02 interface is smooth, then

the displacement of the existing oxide at the Si/Si02 interface is normal to the interface. The

displacement of the existing oxide regions as a whole depends on the mechanical properties of

the oxide. The mechanical properties of a material are usually described by the stress-strain

relationship for the material, commonly known as the material's constitutive relationship. In

Chin's work, the oxide is assumed to be a viscous incompressible fluid at the oxidation tem

perature. The constitutive relationship for the oxide is given by

cs = 2i\es (3.2.6)

and

ev = 0 (3.2.7)

In the above, cs is the shear stress and e, is the shear strain-rate in the oxide. The proportional

ity factor ri is the viscosity of the oxide. The incompressibility condition is specified by set

ting the volumetric strain (ev) to zero, regardlessof the hydrostatic pressure in the oxide.

11

3.3. LIMITATION OF THE 2D DEAL-GROVE MODELS

Certainly, the models described by Eqn. 3.2.6 and 3.2.7 are an idealization of the complex

behavior of oxides. Other models for the mechanical properties of oxide are possible. Both

visco-elastic3,6 and elastic4 models were used in other oxidation simulators. However, because

all the modeling work used the same Deal-Grove diffusion and reaction rate models, we will

classify these models under the 2D Deal-Grove models.

Most of the tests for the 2D Deal-Grove models were performed on LOCOS processes.

Simulation results from several programs, including the earlierversion of our program, showed

that the simple 2D Deal-Grove models provide qualitatively good predictions of LOCOS

processes, if the nitride masks used were thin enough. The actualmechanical properties of the

oxide used have little effect on the predicted-profiles. However, the model-prediction degrades

as the thickness of the nitride mask used in the LOCOS process is increased. The model-

prediction for oxide grown on a silicon trench was even less successful. The experimental

results of Marcus and Sheng8 showed that oxide grown around both the convex and concave

comers of a silicon trench are thinner than oxide grown on flat silicon surfaces. Their results

are illustrated in Fig. 3.3.1. The apparent retardation in the oxidation rate cannot be explained

by the simple Deal-Grove models of oxidant diffusion and reaction, nor by any reasonable con

stitutive relationship for oxide. It may be expected that silicon oxidation is influenced by the

mechanical stress generated in the oxide. The discrepancy between the predictions and the

experimental results of thick-nitride LOCOS process can then be qualitatively explained, as

higher stresses are expected to exist in LOCOS structures with thicker nitride-masks.

12

OXIDE

ft

SILICON SUBSTRATE

Fig. 3.3.1. Retardation of oxidation around both the convex (upper) corner and
concave (lower) corner of a silicon trench.

3.4. CHARACTERIZATION OF STRESS-EFFECTS

Marcus recognized that the stress effects in silicon oxidation might be quantitatively character

ized by studying the oxidation of cylindrical silicon structures of different radii11. The experi

ments were performed by Kao et al at Stanford University12. In Kao's experiments, cylindrical

ring structures with heights of about 3u.m were fabricated on (100) silicon wafers (see Fig.

3.4.1). The wafers were oxidized at various temperatures for various times so that all the oxide

films grown on flat (110) surfaces were approximately 0.5 um thick. The wafers were then

coated with poly-silicon for protection, and lapped by about 1.5um to reveal the cross-section

of the cylindrical structures. The thickness of oxide grown on the different-sized cylinders and

at the various temperatures was measured and compared with the thickness of oxide grown on

flat (110) surfaces at the corresponding temperatures.

Concave Surface

Convex Surface

Substrate

Fig. 3.4.1. Cylindrical silicon rings usedin the oxidation experiments performed by
Kao et al12.

13

3.5. EFFECTS OF CRYSTAL-ORIENTATION

The cylindrical structures were used in the experiments because they offer considerable sym

metry to simplify the interpretation and analysis of the data. However, the oxidation rate varies

significantly with the crystal-orientation of the silicon surface, especially in the lower tempera

ture range. For wet thermal oxidation in the temperature range of 800 to 900 °C , the relative

magnitudes of the reaction rate on the different crystal surfaces are approximately given by

*,(1H) _ lfi8 (3.5.1)

14

IS= lA5 (3-5-2)
For cylindrical silicon structures fabricated on (100) oriented wafers, the faces of the cylinders

are oriented between (110) and (100), as illustrated in the following figure:

[100]

\

[110]- (100) —-[HO]

Fig. 3.5.1. The surface orientation on a cylindrical structure etched in (100) oriented
wafers.

Despite the fact that the starting silicon structures were cylindrical, the oxidized profiles

had four-fold symmetry instead of full cylindrical symmetry. To collect a set of consistent data,

all measurements were made along the [110] direction. The measured oxide thickness was nor

malized to the thickness of oxide grown on flat (110) surfaces. The distance between the center

of the structure to the Si/Si02 interface at the end of the oxidation process was also measured

along the [110] directioa This distance provided an estimate for the radius of curvature of the

Si/Si02 interface at the end of the oxidation process, and thus was designated as r. The normal

ized oxide thickness was then plotted against the reciprocal of r. The results for both the con

vex and concave structures, reproduced from the work of Kao et al, are shown in Fig. 3.5.2 and

3.5.3.

Normalized Tox

1.2

1.0

0.8 -

+
+

* T

A

A

+ *

•

1 1 1—

a a

T

• T

1 1

a

T

-

+

+
A

+

A

-

♦ 1200°C

-

a 1100°C

• 1000°c -

A 900 °C
+

•

800 °C

• i i i • i

0.6 "

0.4 -

0.2 "

0.0

0 8 A/T(\inrl)

Fig. 3.5.2. Convex experimental data. All measurements were made along the
[110] direction.

15

16

Normalized Tox

1.0 !*♦--♦ -4 r-+*—
-A?°,

-v
A +
A

3 D
D

D

D

-

A
AA

A

"a--
T

-

-

+

" ♦ 1200 °C
-

• 1100 °C

• 1000 °c

A

+

900 °C

800 °C

>

-

0.5 -

0.0

Fig. 3.53. Concave experimental data.
[110] direction.

2 l/r(um-1)

I [110]

All measurements were made along the

17

3.6. KAO'S MODELS FOR STRESS-EFFECTS IN OXIDATION

Kao modeled the stress-effects in silicon oxidation in terms of a set of stress-dependent Deal-

Grove parameters and oxide viscosity. The models are:

ks = ks0(T) exp(<5m VklkT) (3.6.1)

D = DoCO exp(-pVd I kT) (3.6.2)

C* = C0* (T) exp(-pVc I kT) (3.6.3)

11 = 710(7)exp(ocCr)p) (3.6.4)

In the above, k is the Boltzman constant and T is the temperature. kso , D0 , Co* and rj0 are

the zero-stress reaction rate parameter, oxidantdiffusivity, equilibrium concentration and oxide

viscosity respectively.

The reaction rate parameter was assumed to be retarded by a normal compressive stress (

<*wx < 0). The volume parameter V* has the physical meaning of the reaction jump-volume

and was argued to be 25 A3, the difference between the volume of an Si02 molecule and a sili

con atom. Eqn. 3.6.1 states that extra work needs to be done in the oxidation reaction to move a

newly formed and expanding Si02 molecule against a normal compressive force field acting on

the molecule.

No significant physical basis is available for the other three models. As the oxidant dif

fusivity, equilibrium concentration and oxide viscosity are bulk properties, they are assumed to

be dependent on the hydrostatic pressure in the oxide. Both D and C* are assumed to be

retardedby a compressive hydrostatic pressure (p > 0), while rj is assumed to increase with

increasing compression. Because these models are empirical, the parameters Vd , Vc and a(T)

cannot be predicted and thus must be extracted from experimental data.

The low-stress viscosity Tio for wet thermal oxide is not well known and thus must also be

extracted from model fitting to the experimental results. The parameter kso can be inferred from

the Deal-Grove parameters obtained for planar oxidation10. The values for D0 and C0* can

also be inferred from the Deal-Grove parameters for planar oxidation, even though planar

oxides actually grow under compressive stress condition in a certain temperature range. Slight

18

errors may be introduced into the values for Do and Co* at a lower temperature range. But

these errors can be minimized by using their extrapolated values from a high temperature range

where oxides grow under a relatively low stress condition.

3.7. LIMITATION OF KAO'S MODELS

Careful examination of the behavior of Kao's models would reveal that the model for the oxide

viscosity renders the whole set of models non-physical under certain circumstances. In the oxi

dation ofcylindrical silicon structures, compressive (positive) hydrostatic pressureexists in the

oxide grown on inner cylindrical surfaces (concave structures) and tensile or negative hydros

tatic pressure in the oxide grown on outer cylindrical surfaces (convex structures). In concave

structures, the positive hydrostatic pressure increases the oxide viscosity, which in turn

increases the hydrostatic pressure. A positive feedback between the stress and the viscosity is

thus established. This leads to a possibility that there may be no physical solution to the

models, if the Deal-Grove parameters cannot be sufficiently reduced by the stress to counter the

trend of the positive feedback. Under such a situation, numerical computation of the oxidation

equations will always diverge.

The model for the C* is also inconsistent with some observed oxidation phenomena.

Deal and Grove found that the value of C* for wet thermal oxide is almost constant between

900 to 1200 °C10. EerNisse found that there is an "intrinsic" stress during thermal oxidation of

silicon13. For wet thermal oxidation below about 950 °C, the oxide is under a compressive

stress of the order of le9 dyne Icm2. Above that temperature, there is almost no "intrinsic"

stress (actually, the stress is below the le9 dyne Icm2thatwasneededto accurately observethe

bending of silicon wafers). If C* is significantly dependent on the hydrostatic pressure, the

measured value for C* obtained by Deal and Grove should be temperature-dependent. The lack

of an obvious "breakpoint" for the activation energy of the linear-rate constant (the parameter

BIA ~ ksC*/N in the original Deal-Grove model) also suggests that C* should not depend

much on the oxide-stress.

19

The remaining two models (Eqn. 3.6.1 and 3.6.2) were tested against the available exper

imental data by using 2D numerical simulation. Our simulation results indicated that all the

convex data points can be quantitatively explained by the two stress-dependent models, if the

volume parameter Vd is allowed to be temperature-dependent. However, the concave data set

cannot be fitted by any combination of Vk, Vd and rfc. The concave data set shows an initial

rapid decrease in the thickness of the oxide with increasing curvature. However, at higher cur

vature, the "rate" of retardationwith increasing curvature decreases. If we attempt to fit the data

points in the low-curvature regime, we invariably over-estimate the amount of retardation at

higher curvature. Fig. 3.7.1 illustrates this difficulty.

Normalized Tox

1.0

0.5 -

0.0

1 2 1/r (um"1)

Fig. 3.7.1. Model fit to the 900°C concave experimental data using only the stress-
dependent reaction-rate and diffusivity models of Kao.

20

3.8. IMPROVED STRESS-DEPENDENT PARAMETERS

It is apparent that Kao's models must be revised or replaced to improve the model-fit to the

experimental results. We propose a revision of the following form (the removal of the stress

dependent model for C* is explained in section 3.7):

K = ks0(T) exp(o^ I kT) (3.8.1)

D = DoCT) exp(-pVd I kT) , D < Dmax(D (3.8.2)

r\ =TloCT) 2kIVn (3.8.3)

3.8.1. Surface Reaction Rate Model

This model is physically appealing and thus is unmodified. But we now argue that the reaction

jump-volume V* should be the volume expansion involved in every single oxygen atom attach

ment to an Si-Si bond. This means that Vk should be about 12.5a3 , instead of 25a3. However,

other values for this parameter will be tested during the model-fitting process to find out if

12.5a3 is the only numberthatcan fit theexperimental results.

3.8.2. Oxidant Diffusivity Model

The oxidant diffusivity, being a bulk quantity, is likely to depend on the micro-structure of the

oxide. This means that it should in some way depend on the density of the oxide. It is also pos

sible that the diffusivity depends anisotropically on the the direction of the shear-strain in the

oxide. Presently, it is difficult enough to characterize the dependence of the diffusivity on the

density of the oxide. Thus, any higher order effect will not be considered at the moment.

Characterizing the effect of the oxide-density on the oxidant diffusivity is difficult because the

change in the density is usually very small (typically about 1%). It is much easier to measure

and calculate the hydrostatic pressure in the oxide. Unfortunately, in the usual range of oxida

tion temperature, oxide behaves as a visco-elastic material. The density of the oxide can have a

delayed-response on the applied hydrostatic pressure. The phenomena is called dilatational

21

creep. The only data on the dilatational creep of oxide are probably the measurements of Cor-

saro14. The experiment used a mercury-filled acoustic dilatometer to measure the dilatational

compliance (ie, the dilatational response to a step change in the hydrostatic pressure) of B2O3

in the temperature range of 227 to 282 °C. The dilatational compliance for B2O3 was found to

be well described by the equation

/dW =nk +(^h ~ih>{* ~exp["(t/TD)0-6]} • (3-8-2-1)
where Kq and A*„ are the instantaneous and final values, respectively, for the bulk modulus of

elasticity. The term %d is a time constant for the dilatational creep. The experimental pro

cedure is obviously unsuitable for measuring the dilatational compliance of thermal oxide in the

temperature range of interest (800 to 1200 °C). In the absence of any experimental evidence

of the dilatational creep of thermal oxide, we will assume that Zq for oxide is sufficiently short

so that the density changes with the applied hydrostatic pressure without delay. This assumption

allows us to use the hydrostatic pressure for further characterization of the stress-effect on the

oxidant diffusivity of oxide.

In the absence of a physical model for the dependence of the oxidant diffusivity on the

density or hydrostatic pressure, we propose a slightly modified version of Eqn. 3.6.2 , given in

Eqn. 3.8.2. In the equation, Dmax is the maximum value the oxidant diffusivity can reach under

tensile hydrostatic pressure. It is intuitively appealing that the diffusivity cannot increase

indefinitely under tensile pressure. It is likely that the actual transition to the maximum value is

smooth. However, the present simple model is used in the absence of any specific diffusivity

data. Further modification to the model can be made as dictated by experimental data.

3.8.3. Oxide Viscosity Model

The viscosity model described in Eqn. 3.8.3 represents the major modification to Kao's models.

Here, the viscosity is assumed to be dependent on the shear-stress (as) in the oxide. This model

was actually developed in the 1930's from the theory of rate processes15, and was meant to

describe the behavior of the viscosity of general fluids under high shear-stress. Fig. 3.8.3.1

illustrates the behavior of this model. The model predicts that the viscosity remains constant

22

over a wide range of low stress levels. But the viscosity drops rapidly at higher stress levels,

creating the appearance of the existence of a critical stress. Li et al16 showed that the model

agrees reasonably well with the measured viscosity of glass fibers containing 8% of Rb20. A

reproduction of their experimental results is given in Fig. 3.8.3.2. The results show that at an

applied stress of less than about le9 dyne Icm2, the viscosity of the oxide is a constant value at a

constant temperature. This is indicated by the unit slope of the log-strain-rate v.s. log-stress

curves in the lower stress regions. Although a similar measurement for pure silica is not yet

available, it is still worth investigating the applicability of the model in describing the viscosity

of pure silica. Also, the apparent critical stress value in the range of \09dyneIcm2 observed in

Li's experiment correlates well with the intrinsic stress observed in the oxidation of planar sili

con surface13. Later, wewill show that this model indeed can explain the intrinsic stress levels

in planar oxidation.

o
o
C/3

o
o

LOG (Shear Stress)

Fig. 3.8.3.1. The behavior of viscosity as a function of shear stress, as described by
Eqn. 3.8.3.

23

24

1 1 1 i

-3 -

0.08 Rb2O0.92Si02 /

—

1 „ -1

'i

•CO

-4 —

4v /
/ //

—

a
o

-5

// /
-

-6 — —

-7

1 i

10

LOG a Idyne/cm21

Fig. 3.83.2. The log-strain-rate v.s. log-stress curves for0.08Rb2O0.92SiO2 glass
fiber (reproduced from the workof Li et al16).

25

3.9. MODEL FIT TO THE EXPERIMENTAL DATA

The revised models were implemented into the CREEP process simulator. Many trial runs of

the simulator using different values of V*, Vd t Dmia/Do , Tjo and Vo were performed. The

experimental data of Kao was successfully fitted within the error range of the measurement

processes. Fig. 3.9.1 and 3.9.2 show the model-fit to the experimental data of convex and con

cave structures.

Normalized Tox

1.2

1.0

0.8 •

1 1 r 1 1 1——i 1

* n n
\V%T

a

• •
•

+

^\a

*

-

♦ 1200°C

•

D 1100 °C

- t 1000 °C -

a 900 °C

+ 800 °C
i i i i i i • i

0.6 "

0.4

0.2 "

0.0

0 8 l/r(um-1)

Fig. 3.9.1. Model fit to the convex experimental data. The solid lines are the model
predictions.

26

Normalized Tox

1.0 'kf*— =*= =x=**~
-

-AjFvs -

a\

•j

D

-

^s^^
+

•
-

-

+

' ♦ 1200 °C
-

D 1100°C

T 1000 °C

A 900 °C ••

. + 800 °C

L

0.5 -

0.0

0 1 2 l/r(um"1)

Fig. 3.9.2. Model fit to the concave experimental data. The solid lines are the
model predictions.

Table 3.9.1 lists the values of the parameters used to obtain the fit shown in Fig. 3.9.1 and

3.9.2. The major finding is that the value for Vk and Vd are almost constant. In addition, the

value for Vk is verified to be closed to 12.5 A3 , with an uncertainty of about ±2a3 . Trial runs

using values of Vk that significantly differ from 12.5A3 have not been successful. The value of

Vd is found to be closed to 75 A3, withanuncertainty of about ± 10a3.

Fitting Parameters

T(°C)

Viscosity Parameters
Diffusivity and Surface

Reaction Rate Parameters

T|0
(poise) Vo (A3)

00
vd (A3) Vk (A3)

1200 5ell 800 1.0

75 12.5

1100 1.5el3 800 1.0

1000 7el3 340 1.1

900 5el4 220 1.6

800 2el5 180 2.0

Table 3.9.1. Model parameters used to obtain the results shown in Fig. 3.9.1 and
3.9.2.

27

The other parameters are temperature dependent. The volume parameter for the viscosity,

Vo, varies strongly with temperature. This behavior is not understood. The temperature depen

dency ofDmax/D0 is actually not surprising. As we will detail in section 3.10 , intrinsic stress is

known to exist in oxides grown on planar silicon surfaces. Planar oxides grown at higher tem

perature are in a relatively relaxed state and thus the oxidant diffusivity cannot be significantiy

increased by the application of a tensile pressure. At lower temperature, planar oxides are in a

relatively compressed state and thus can be relaxed more by the tensile pressure. This account

for the progressively increasing value for Dmax/D0 at lower temperature.

The extracted linear viscosity, r)0, varies strongly with temperature, which is expected.

Our extracted viscosity data is compared withother independently measuredviscosity for vitre

ous silica in section 3.11.

28

3.10. INTRINSIC STRESS IN THERMAL OXIDATION

EerNisse 13 showed in his wet O2 experiments that a lateral compressive stress of about 7e9

dyne Icm2 exists in oxide grownat 900 °C. This stressis shownas o^* in Fig. 3.10.1 (Note the

reversal of the sign convention for o^):

•> o\ OXIDE

SILICON
•> x

Fig. 3.10.1. The lateral stress observed in planar oxide films during oxidation. Note
the reversal in the sign convention for a^. There is also anothercomponent, Cyy ,
in the direction perpendicular to the plane of the figure.

For oxides grown at and beyond 975 °C, the stress is smaller than the resolution of the measure

ment process, which was about le9 dyne Icm2. The presence of this "intrinsic" stress in planar

oxidation was attributed to the volumetric expansion and viscous flow during silicon-oxidation.

We shall attempt to estimate the intrinsic stress using the shear-stress dependent viscosity

model of Eqn. 3.8.3. Consider the volume expansion during the oxidation of a silicon atom, as

shown in Fig. 3.10.2 (the "Manhattan" shapes are only for illustrative purpose):

Si
Si-O

Free

Expansion
B

Constrained Expansion

Si-0

Fig. 3.10.2. Volume expansion during silicon oxidation. The shear-strain system (
e,) involved in the B-»C transition is shown by the four arrows in box-C.

29

If a silicon atom (A) is allowed to be oxidized in a stress-free condition, it should on average

expand in all direction, as illustrated by the larger square on the right (B). However, the silicon

substrate constrains the volume expansion in the lateral direction, forcing the oxide element to

be elongated in the vertical direction(C). This process involves a large amount of strain, which

can be estimated by the transformation from B to C in Fig. 3.10.2. A crude estimate gives a

shear-strain of approximately 0.3. The direction of the shear-strain is given in Fig. 3.10.2, with

another component of the samemagnitude in a vertical plane perpendicular to the drawing. The

initial shear-stress within thenewoxide element canthenbe estimated by 2Ges, where G is the

shear modulus of elasticity and e, is the shear-strain. It is difficult to determine if the G of sili

con or silicon dioxide should be used. In either case, the estimated value for the initial shear-

stress should be in the range of le 10 to lei 1 dyne Icm2. At this range of high stress, the exact

value is not important. The reason will become clear by examining the dynamics of the stress

30

relaxation process.

Using a simple visco-elastic model for oxide, we can estimate the shear-stress relaxation

in the oxide after its formation. Consider the mechanical analog for the simple visco-elastic

model, using a spring and a dash-pot connected in series :

A/W
g n

Fig. 3.10.3. A mechanical analog of a visco-elastic material. The spring represents
the elastic component (G), and the dash-pot represents the viscous or dissipative
component (T]).

In the above, we can associate G with the spring, and T| with the dash-pot Given an initial

stress gs applied on the visco-elastic element, the stress then relaxes at a rate given by

-^r =-|- • (3-1(U)
where

T=3^1 (3.10.2)

It turns out that when V[(gs) is given by Eqn. 3.8.3, Eqn. 3.10.1 can be solved analytically

to yield

Gs (0 =$jfc tanh-k tanh(^2-) exp(di)) , (3.10.3)

where

T0 = Ife- (3.10.4)

and r|o is the linear viscosity value. To make a comparison of this shear-stress relaxation with

the experimental results, we need to determine the shear-stress in the oxide. As indicated in

31

Fig. 3.10.1, the stress observed in EerNisse's experiment is a lateral stress in the oxide film.

This stress system can be decomposed into two components: a shear-stress system and a hydros

tatic componentp, as shown in Fig. 3.10.4.

w
1"

OXIDE

SILICON
>x

Fig.' 3.10.4. Decomposition of the lateral stress system found in planar oxidation
into a shear system (cs) and a hydrostatic pressure system (p).

The values of the different stress components are given by

(3.10.5)

and

Gs = Gxx - P = -TT- (3.10.6)

Now, the measured value for o^ is the average value across the oxide thickness. Eqn.

3.10.3 only gives the shear-stress relaxation in an oxide film after it is formed. To calculate the

average shear-stress across the oxide element, we can calculate the growth rate of the oxide as a

function of time, and integrate Eqn. 3.10.3 appropriately. However, we shall only make an

approximation by using the time average of gs (t):

Gs(t) =
]a,(0 dt'

(3.10.7)

32

This estimate will be exact if the oxidation rate is constant. The actual oxidationof planar sili

con surfaces follow a linear-parabolic law10, which is not a strong non-linear function. Thus

the time-average should give a reasonable estimate of the film-average.

Using the extracted viscosity parameters, we plot in Fig. 3.10.5 the average shear-stress as

a function of time. On the same figure, the range of the experimentally inferred shear-stress

value for900 °C oxide is also given, showinga reasonable matchbetweenthe model prediction

and the experimental observation. The stressat the severaldifferent oxidation temperatures was

initially quite high, but quickly relaxed to a lower level. Hence the actual values of the initial

stresses are not important For oxidation at and beyond 1000°C, the stresslevel falls rapidly,

making it difficult to measure the value from wafer bending experiments. The overall model

predictionis consistent with the observationsmade by EerNisse.

le+11

<s le+10

le+09

le+08

0

Average shear stress for
900°Coxide. (Estimated

from EerNisse' data)

1100°C

1000 2000

t [s]

3000

33

4000

Fig. 3.10.5. Average shear-stress relaxationin planaroxide films during oxidation.

3.11. VISCOSITY OF VITREOUS SILICA

Hetiierington et al measured the equilibrium viscosity of vitreous silica as a function of tem

perature and hydroxyl content17. Theresults are reproduced in Fig. 3.11.1.

34

£
.s

O
o

o

17

16

15

14

13

12

11

10

0.5

Source: Hetiieringtonet al,
Phys. Chem. Glasses 5 (1964) 130

4,

A

0.6

' w /
' ' /

' ' /
t / ' /

/ / •* /

'''' //

,< /A
lit*

,'/ //

/ /

i *

7 /

//

m Type I (IR VitreosU) 3e-4 wt% OH

t Type H (OG Vitreosil) 0.027 wt% OH

• Type 0 (OG Vitreosil) 0.04 wt% OH

a Type III (Spectrosil) 0.12 wt% OH

0.7 0.8

4£ (»K-i>
0.9

Fig. 3.11.1. Equilibrium viscosityof silica.

The different types of silica contain different levels of impurities, with type I silica containing

the largest amount of metallic ions (about 30 to 100 ppm by weight of Al and 4 ppm of Na)

and type III silica containing the smallest amount of metallic impurities. However, type I silica

contains the least amount of hydroxyl groups (3 ppm by weight of OH groups), and type III

contains the largest amount of hydroxyl groups (1200 ppm by weight of OH groups). It is

known that impurities in silica generally loosen the glass-network and thus reduce the viscos

ity17' 18. The data shown in Fig. 3.11.1 show that type I silica has the highest viscosity values,

35

and type III has the lowest viscosity values. This reduction in the equilibrium viscosity should

be attributed mainly to the level of hydroxyl content in the the silica. Hence, we need to esti

mate the hydroxyl content in wet thermal oxides in order to meaningfully compare this set of

data to our extracted values. Unfortunately, the water content in a growing oxide is a function

of location. Fig. 3.11.2 illustrates the distribution of the oxidant within the oxide during the

oxidation process.

Ambient

0.04 wt% [H20] (< 0.08 wt% [OH])

Si02 Si *

Fig. 3.11.2. A typical oxidant concentration profile in the oxide during oxidation.

For oxides grown under an H2O partial pressure of 0.84 atm (a typical value used in most

atmospheric pressure steam oxidation), the equilibrium oxidant concentration C* is about 3el9

moleculesIcm3. This corresponds to about 400 ppm by weight of H2O content near the surface

of the oxide. Note that H20 may or may not be in a molecular form. Experimental works on

high pressure oxidation 19,2° show that the linear and parabolic rate parameters forsteam oxida

tion are proportional to the H2O partial pressure. Using the conventional interpretation of

Henry's Law, the results indicate that the H2O molecules do not dissociate in the oxide.

36

However, infra-red spectroscopy 21 and isotope-tracing experiments 22,23 clearly established

that almost all of the H20 molecules interact with the glass-networkto form Si-OH bonds. The

apparentlycontradicting experimental evidence are not well understood at present In any case,

assuming that the H20 molecules fully interact with the glass network to form Si-OH bonds,

there will be about 800 ppm by weight ofhydroxyl content in the oxide at the ambient interface,

and progressively lower hydroxyl content towards the silicon interface. It is difficult to define a

meaningful average value for the hydroxyl content. But such an average value should be less

than 800 ppm by weight of hydroxyl content. The type n silica should then be closest to the

atmospheric steam oxide in terms of the amount of hydroxyl content. In fact, the agreement

between the equilibrium viscosity of the type n silica with 400 ppm of hydroxyl content and

our extracted linear viscosity values is surprisingly good at high temperature. The comparison

is shown in the following figure :

37

17

.,

1 1 1—

Type II (OG Vitreosil)
" 0.04 wt% OH

16

o
Thermal Oxide

O
15

(extracted from simulation)

/ O
QJ /•
C0 /

•^-i /

£ 14 / o
-

.s
/

/

*-•

*53 13 /
•

o
/

o *
Gfl /

> 12

/
/

-

o ♦'
J t

/

11
/

/
/

/
/

/

10 /
/

/
/

/

' • ' •

0.5 0.6 0.7 0.8 0.9

4°1 (OK-l)

Fig. 3.11.3. Comparison of our extracted linear viscosity values with the equilibri
um viscosity of type II silica containing 400 ppm by weight of OH groups.

The two sets of data almost coincide at 1100 °C and 1200 °C. At lower temperature, our

extracted linear viscosity values deviate from the Arrhenius temperature dependence that the

equilibrium viscosity values exhibit. This deviation is not surprising since it is highly unlikely

that a growing oxide which has undergone large deformation at the time of its formation can

exhibit equilibrium viscosity values at low temperature. It is a well known faa from the field of

glass technology that glassy materials exhibit a range of viscosity values at the same

38

temperature, depending on their thermal history18. At high temperature, typically higher than

the glass transition temperature, glasses usually exhibit equilibrium viscosity values that follow

a simple Arrhenius temperature dependence. However, the equilibrium viscosity at lower tem

perature can only be reached through slow coolingfrom high temperature. A typical plot of the

log of non-equilibrium viscosity v.s. the reciprocal temperature for glasses is given in Fig

3.11.4:

JL
T

Fig. 3.11.4. A typical temperaturedependence-curve for the viscosityof glasses.

In the above, Tg is called the glass transition temperature*. The apparent activation

energy of the curve at lower temperature is a fraction of that at higher temperature (typically

x = 0.5).24 Aglass material is essentially aliquid at atemperature well beyond Tg. The glass

transition is a region of temperature in which molecular rearrangements occur on a scale of

minutes or hours, so that the properties of the material change at a rate which can be con

veniently observed. If the material does not have enough time to make complete structural

See page 120 of reference [24] for its technical definition.

39

rearrangement, it is in a non-equilibrium, glassy state. Without going into the technical

definition of the Tg, we can qualitativelyexplain why our extracted data deviate significantly at

1000 °C and below. We shall first assume that the equilibrium viscosity for the wet thermal

oxide under investigation is given by the equilibrium viscosity for type n silica with 400 ppm

hydroxyl content. Define

**=£ (3.11.1)

where t* is the equilibrium viscosity, and G is the shear modulus of elasticity for oxide, which

is around 3ell dyne Icm2. Then x* should give a crude but useful estimate of the relaxation

time constant for the structural rearrangement. The ratio of the total oxidation time over t*

will then give an indication of the amount of structural rearrangementin the oxide. The larger

the ratio is, the more complete is the structural rearrangement. The following table summarizes

the results:

Temp 800°C 900°C 1000°C 1100°C 1200°C

Oxidation

Timer

1440

min

300

min

96

min

40

min

24

min

x* 3700 hr 29 hr 18 min 50 s 2s

t
0.006 0.17 5.3 48 720

Table 3.11.1. Ratio of the total oxidation time v.s. the characteristic relaxation

time. The oxidation timeatthevarious temperature was given by Kao25.

For 1200and 1100°C oxidations, structural rearrangement should be easily accomplished

well within the time scale of the oxidation process. Equilibrium viscosity should then be exhi

bited. For 900 and800°C oxidation, the oxidehas little time to make structural rearrangement.

Non-equilibrium (lower viscosity) values are thus expected. For 1000 °C oxidation, partial

structural rearrangement occurs, which explains the slight deviation of our extracted data from

40

the equilibrium viscosity data.

3.12. OTHER MODELS AND APPLICATIONS

One of the objectivesof this project is to develop an ability to simulate oxidation processes that

areencountered in IC fabrication. The models presented thus far arenot enough to allow us to

handle more interesting structures other than the cylindrical silicon structures discussed. In the

following two sections we discuss some needed models that have not been fully understood or

developed.

3.12.1. Oxidation of Sharp Silicon Corners.

In our earlier discussion, we have assumed that the oxidized silicon surface is relatively smooth

so that we can meaningfully define a normal vector for the motion of the existing oxide region.

However, we often encounter sharp silicon comers in some critical oxidation steps, such as the

oxidation of silicon trenches. The oxidation rate around sharp comers is not well understood.

During silicon oxidation, sharp concave silicon comers tend to smooth out A slight errorin the

advancement of a sharp concave comer does not pose too serious a problem since the error

diminishes after several time steps of the numerical computation, as the profile becomes

smoother. However, a sharp convex silicon comer can become smoother, remain as sharp, or

become sharper, depending on the oxidation condition. As a result, errors in the profile

advancement algorithms may accumulate. Approximation of a sharp comer by small radius of

curvature is impractical as it increases the computation time significantiy. It actually does not

avoid the problem of sharp convex comers over a longer run of computational steps. The

numerical advancement of the Si/Si02 interface will eventually create a sharp comer at a high

convex curvature region after several time steps of numerical computation. This behavior is

inherent in string (discretized surface) advancement algorithms that employ deloop procedures.

The solution to this problem is to find out how sharp convex comers actually advance during

the oxidation process.

For lack of a systematic data on sharp-comer-oxidation, we currently approximate the

advancement of the Si/Si02 interface using the surface-motion algorithm, which is illustrated in

the following figure:

Fig. 3.12.1.1. Advancement of segmented surface by advancing the segments and
calculating the intersection point.

41

The segment AB and BC represents the initial Si/Si02 interface near the sharp convex sil

icon comer (point B). Point B moves to B' after certain amount of oxidation. The coordinate

of B' is located at the intersection between the line segmentsA'X and YC\ which are moved

from the segments AB and BC respectively. The amount of motion of the line segments is

determined by the oxidant concentration and the reaction rate parameter at the Si/Si02 interface.

Several simulation runs for the oxidation of convex silicon comer at different tempera

tures were performed to check the accuracy of the program. Fig. 3.12.1.2 shows a typical

example of the simulation results. Our simulation results do not agree very well with the limited

experimental data provided byMarcus and Sheng8. Both the simulation results and the experi

mental data show sharpening of sharp silicon comers when the structures are oxidized at a rela

tively low temperature (800 to 1000 °C). However, the simulation results consistently show

more oxidation retardation at sharp convex silicon comers than experimentally observed. At

present, we believe that the error is mainly attributable to the basic surface-motion algorithm

used. A more refined string-motion algorithm may be needed to improve the accuracy of the

simulation results.

42

Fig. 3.12.1.2. A typical simulated result for the oxidation of a convex silicon comer.

3.12.2. Other Material Problems

Most interesting examples of silicon oxidation involve other materials such as silicon nitride (

used mainly as oxidant mask) and poly-silicon layers. Examples of these oxidation processes

are the various forms of the LOCOS process and the oxidation of the poly-silicon gate in MOS

processes. These materials must also be modeled to simulate the oxidation of structures that

contain them. Both silicon and silicon nitride are commonly assumed to be elastic. This

assumption is reasonable when the materials are under low to moderate stress levels. However,

in the oxidation of non-planar structures, the stress levels in the oxidized structures can easily

be in the range of le9 to lelO dyne/cm2. Manyelastic materials deform plastically at this high

stress level, especially at high temperature. Little work has been done in this area of modeling.

Currently, nitride and silicon are modeled in CREEP as quasi-visco-elastic materials, in the

sense that the materials are assumed to be elastic in every time-step of the numerical computa

tion, assuming no accumulation of stress from the previous time-step. This is only a first imple

mentation to allow us to generate some initial results on the LOCOS and poly-gate oxidation

processes for further discussion.

43

Consider a LOCOS simulation illustrated in Fig. 3.12.2.1. The nitride layer is seen to be

bent during the oxidationprocess. It has been shownthat whenthe grown oxide is etched away,

the bent nitride layer does not always return fully to its shape before the oxidation26,27. This

suggests that either plastic deformation has occurred or the nitride is a non-linear visco-elastic

material, with the viscosity of nitride probably behaving in a similar manner as that for oxide.

(a)

(b)

Pad Oxide Nitride

k 4-

Silicon Substrate

Nitride v

Si02
- —

Silicon Substrate

Fig. 3.12.2.1. Simulation of a LOCOS process: (a) the initial structure and (b) the
structure after oxidation.

Considerthe oxidation of a silicongate. Fig. 3.12.2.2 shows a simulationexample of such

a structure. For simplicity, the silicon gate is assumed to be single crystalline with the same

crystalorientation as the substrate. The simulation shows that the silicongate is noticeably bent

after a certain amount of oxidation. This bending has been observed in real experiments28. The

amount of strain in the bent-region is in the range of several percent, indicating that plastic

deformation is likely to occur. Aside from thepossible anisotropy that results from the crystal

line structure of silicon, it is possible that the mechanical behavior of silicon is similar to that of

44

silicon nitride.

(a)

(b)

Silicon

Si02 U

Silicon Substrate

Fig. 3.12.2.2. Oxidation of silicongate structure : (a) the initial structure and(b) the
structure after oxidation.

Clearly, the modeling of the mechanical properties of bothsilicon and silicon nitride pro

vides further challenges in the modeling of silicon oxidation.

3.13. CONCLUDING REMARKS

In this chapter, we have described a set of stress-dependent Deal-Grove parameters and anoxide

viscosity model. By further introducing the visco-elastic model, we have successfully applied

the shear-stress dependent viscosity model to explain the observed stress in planar oxide films

during silicon oxidation. The results suggest that the non-linear visco-elastic model should be

used to improve the accuracy of the program.

45

CHAPTER 4.

NUMERICAL ALGORITHMS

4.1. INTRODUCTION

Silicon oxidation is a coupled process of oxidant diffusion and oxide deformation. In general,

the diffusion and deformation equations should be solved simultaneously. However, for the

simple 2D Deal-Grove models which are not stress-dependent, the oxidant diffusion and oxide-

deformation can be considered uncoupled and separately solved using the following steps :

1. Calculate the oxidant diffusion everywhere in the oxide.

2. Use the concentration at the Si/Si02 interface to calculate the oxidation-rate at that

interface. This gives the velocity of the Si/Si02 interface and the velocity of the

existing oxide layer at the original Si/Si02 interface, assuming that the silicon

regions are rigid bodies.

3. Use the velocity of the existing oxide at the original Si/Si02 interface to calculate

the deformation of the existing oxide region.

4. Use a small time-step At to calculate the profile of the newly formed oxide at the

Si/Si02 interface, as well asthe deformed profile of the existing oxide regioa

5. Merge the new andold oxide regions together. This gives the new oxide profile.

6. Repeat the above 5 steps as many times as it takes to reach the total oxidation time

desired.

It would be difficult to immediately explain the algorithms required to solve the stress-

coupled oxidation models. Instead, we shall first explain the discretization algorithms required

to solve the uncoupled problem. Section 4.2 describes the finite-element discretization of the

virtual work equation for the flow/deformation of oxide. Section 4.3 describes some of the

46

important aspects in the discretization of the oxidant diffusion equation. With the numerical

tools for the uncoupled problem developed, the extension of the algorithms to solve the stress-

coupled oxidation/deformation models of Eqa 3.8.1 through 3.8.3 will then be described in sec

tion 4.4 . In section 4.5, the numerical algorithms for handling nitride and floating silicon

regions will be described, and the assumption of the silicon as a rigid body will be removed.

Methods to handle special geometries will be discussed in section 4.6.

4.2. VIRTUAL WORK FORMULATION FOR THE OXIDE DEFORMATION

The laws of mechanics (eg, balance of force/momentum) can beexpressed in many ways. The

integral form provided by the virtual work statement is suitable for the finite-element discretiza

tion of continuum systems:

f tea da = f5uf dr+ f8u bda (4.2.1)

In the above equation, e is the strain tensor, a is the stress tensor, u is the displacement of the

system , f is the traction/stress applied on the boundary (r) of the system, and b is the body

force applied within thebulk(a) of the system. 8urepresents an arbitrary orvirtual displace

mentof each point in the system about its real displacement, and 5e represents the virtual strain

due to the virtual displacement. The virtual work principle states that if the virtual displace

ments go through the real forces that exist in the system, the resulting internal virtual energy (

the left hand term above) must be equal to the external virtual energy (the right hand terms).

That is, Eqn. 4.2.1 is a statement of conservation of virtual energy*.

It is also possible to use another form of the virtual work equation, if instead of the dis

placement, the velocity is the quantity of interest:

f 5eadH = f6Vfdr+ f 5vbda (4.2.2)

*See page 58ofreference [29] foranother interpretation asa weak form ofequilibrium conditions.

47

The above equation is actually a virtual power statement, as v is the velocity-distribution of the

system, and e is the strain-rate of the system. Nevertheless, it shall also be called the virtual

work equation, and it will be used as the basis of our analysis in the next few sections.

Before we proceed to describe the discretization algorithms for solving Eqn. 4.2.2, it is

worth making a final remark about the generality of the virtual work statements. Although Eqn.

4.2.1 seems to apply only to static problems, and Eqn. 4.2.2 to creep-flow problems, they both

can be generalized to describe the dynamic behavior of continuum systems by invoking the

d'Alembert Principle*. This is done by replacing the body force b of Eqn. 4.2.1 by (

b - p-^-jr)»or that of Eqn. 4.2.2 by (b - p-^-), where pis the density of the material.

The generalized equations are generally much harder to solve. Fortunately, Eqn. 4.2.2 is ade

quate for our modeling purpose as silicon-oxidation is a creep-flow problem.

4.2.1. Discretization of the Velocity

The velocity vector in a continuum system is a function of position (ie, a velocity field). We

assume that if the velocities at a number of selected points in the system are known, then we

know the velocity everywhere in some approximate sense. The selected points are called the

grid-points or nodes of the system. In finite-element analysis, the approximation must be expli

citly specified. The most common way of specifying this approximation is to subdivide the

domain of interest into simple-shaped "elements". Each element has a certain number and pat

tern of nodes. Interpolation functions are then set up within each element to specify the velo

city anywhere within the element as a function of the velocities at the grid-points:

y(x,y) =/(V0,V7,...,V„.,) , (4.2.1.1)

where V,- = VXI-
is the velocity of the i -th node, and n is the number of nodes on the element.

The indices (0,l,...,n-l) are the local-node-numbers of the nodes with respect to the element,

since there can be many other nodes outside the element. These indices corresponds to some

* See, for example, page 5 of reference [30].

48

other numbers in the global node-numbering system.

For simplicity of the analysis, the interpolation function within each element is assumed

to be linearly dependent on the nodal velocities :

vfroO-ZNfCxoOV,- , (4.2.1.2a)

where

N/(*oO =
Ni(x,y) 0

0 Ni(x,y) (4.2.1.2b)

and each N[(xty) is a scalar interpolation function that will be described shortly. In a more

compact form the above equation can be represented in terms of matrix quantities :

vfroO = NV , (4.2.1.2c)

where

N = [N0,N;,..] (4.2.1.2d)

and

V =
Vi

(4.2.1.2e)

The interpolation functions for a 3-node triangular element are linear in x and y. To

obtain the interpolation functions, we firstconsider the linear triangle of Fig. 4.2.1.1:

49

(*i.yi)

Fig. 4.2.1.1. A 3-node triangle.

Assume that <{>(*,y) is a scalar profile to be interpolated over the element, using the nodal

values <j>o, <h and $2. In the form of Eqn. 4.2.1.2c, we write

<K*00 = [N0(x,y)> Ntixy), N2(x,y)]
<i>o

*i
<1>2

a NO , (4.2.1.3)

bearing in mind that the N here is not the same as the N of Eqn. 4.2.1.2d because we now

assume a single variable per node. Since §(x,y) is linearly interpolated, it can be written in the

form

§(x>y) = a + bx + cy

To get the values ofa,b and c, we write

<|>o = a +bx0 + cyo

<|>i = a +bx\ + cy\

§2 = # +bx2 + cy2

(4.2.1.4)

(4.2.1.5)

50

or

where

We thus have

Hence

00 a

01 = A b

02 c

A =

1 *o y0

1 *i yi

1 x2 y2

a 0o
b = A"1 0i
c 02

= A-!<&

0(*,y) = [i*y] = [l^y]A"10

Comparing the above with Eqn. 4.2.1.3 , we get

[^o(^,y)^1(^,y),^2(A:,y)] = [lxylA"1

or

Ni = [lJcylcolKA"1) , i = l,2,3

wherecol/(A-1) is the i -th column of A~l. Solving A-1 symbolically, we obtain

Wo = (ao + po*+Yoy)/2A

where ao = *iy2-*2yi

Po = yi-y2

Yo = x2-xi

A = Area of triangle

= (^iy2+Jfoyi+^2yo-^2yi-^iyo-^oy2)/2

(4.2.1.6)

(4.2.1.7)

(4.2.1.8)

(4.2.1.9)

(4.2.1.10)

(4.2.1.11)

(4.2.1.12a)

(4.2.1.12b)

(4.2.1.12c)

(4.2.1.12d)

(4.2.1.12e)

51

and so on. All the Ni 's have the following properties :

Ni(KW) = 1.0 (4.2.1.13a)

Ni(Xj,yj) = 0.0 , i*j (4.2.1.13b)

Fig. 4.2.1.2 depicts the shape ofthe various Ni's forthe linear triangle.

52

(a)

(b)

(c)

N0(x,y)
1.0--

4 Ni(x,y)
1.0-

. N2(x,y)
1.0--

Fig. 4.2.1.2. Shape functions of a 3-node triangle: (a) No, (b) Jv*i and (c) 7V2.

It is also possible to evaluate the interpolation functions using the area-coordinate formu-

latioa Consider the areas (Ao, Ai and A2) of the various sub-regions in the following triangle

Fig. 4.2.1.3. Sub-regions of a triangle formed by drawing lines from a point P (x ,y)
to the vertices of the triangle.

53

As in Eqn. 4.2.1.12e, let A be the area of the triangle. Define the area-coordinates :

L0 = Aq/A

L\ = Ai/A (4.2.1.14)

Z,2 = A2/A

An alternative way of specifying the point (x,y) is by using (L0X1^2) . or simply (L0,L{)

since Lo + L\+L2 = 1.

It can be easily seen that

Li(xi,yi) = 1.0 (4.2.1.15a)

U(Xj,yj) = 0.0 , i*j (4.2.1.15b)

Since all the L,- 's are linear in x and y, we can identify them as the linear interpolationfunctions

for a triangular element, which can be evaluated using Eqn. 4.2.1.12 .

The area-coordinates are often used in finite-element analyses where triangular elements

are used. One of the reasons for this is that most numerical integration schemes samples the

integrand at certain locations that are stationary if expressed in area-coordinates, regardless of

54

the shape of the triangle*. Another reasonis that the use of the area-coordinates simplifies the

formulation of the interpolation functions for higher order triangular elements. Consider the

second order triangle of the following figure.

(X5,y5)5/ \4(x4,y4)

(*o,yo) (x3,y3) C*i<yi)

Fig. 4.2.1.4. A 6-node (quadratic) triangle

If we had to go through a similarprocedure that we applied to the linear triangle, we would be

facing a difficult task of inverting the matrix A of Eqn. 4.2.1.6, which will now be of size 6x6 .

However, by observing that the interpolation functions must have the properties described by

Eqn. 4.2.1.13, and that they are quadratic polynomials in x and y, we can generate them by

inspecting their roots:

N0 = Lo(2L0 - 1) (4.2.1.16a)

Ni = Li(2Li - 1) (4.2.1.16b)

N2 = L2 (2L2 - 1) (4.2.1.16c)

N3 = 4L<£i (4.2.1.16d)

N4 = 4LXL2 (4.2.1.16e)

N5 = 4L2L0 (4.2.1.161)

Seepage 201 ofreference [29] forsome examples ofnumerical integration on triangular elements.

55

Fig. 4.2.1.5 shows some of the interpolation functions for a 6-node triangle :

Ni(x,y)

(a)

N5(x,y)

(b)

Fig. 4.2.1.5. Some of the interpolation functions of a 6-node triangle.

Other types of elements, not restricted to the family of triangular elements, are also possi

ble. Triangular elements are used in the CREEP program because it is easier to write an

automatic mesh-generator for triangular elements than for otherelements such as the quadrila

teral elements. Both the linear- and quadratic-triangles are used in oxidation simulation. The

quadratic-triangles are needed for the analysis of incompressible-flow. This will be explained

in section 4.2.6. Either the linear- or the quadratic-triangle can be used for the discretization of

the diffusion equation. But for reasons of numerical-stability that will be explained in section

56

4.2.6 and 4.3, we use the linear-triangles for the diffusion equation.

4.2.2. Formulation and Discretization of the Strain-Rate

In a three-dimensional space, the strain-rate is generallya tensor defined as

e =

e« £*y e«

£jey £yy EyZ

e« Zy* e2Z

In the virtual-work formulation, the strain-rate is usually written in a vector form

e =

•

e« e*c

Eyy Eyy

Ezz £zz

2£xy — %
2ixz Yxz
Z£y2 %z

m m

(4.2.2.1)

(4.2.2.2a)

For 2D plane-strain problems in the xy-plane (ie, the material is infinitely deep in the z-axis),

the components exz = tyz = ezz = 0 . It is not necessary to include all the zero terms in the

strain-ratevector. The following form for the strain-rate vector will be used from now on:

e =

"
-

e« £jcc

Zyy

£zz

%

=

Eyy

0

- »

The various components of the strain-rate are defined as:

e« =
dvx

Eyy -
3v

- -gy • % ~

(4.2.2.2b)

9v

dy dx
(4.2.2.2c)

Eqn. 4.2.2.2a includes ezz even though e2Z = 0. This is done because we would like to

decompose the strain-rate vector into two orthogonal components :

57

e = e' + e" (4.2.2.3)

where e' is the shear component and e" is the dilatational/volumetric component of e. This

decomposition is made partly because the shear and volumetric strain-rates can often be related

to their stress-counterparts in a form given by:

& =

*

2 0 0 0

0 2 0 0
0 0 2 0
0 0 0 1

.

Pt' a" = Qt' (4.2.2.4)

where P and Q are scalardifferential-operators, & and a" are the shear and hydrostatic stress-

vectors respectively. This decomposition makes & also orthogonal to e" and a" to e', allowing

some simplification in the virtual work formulation (see section 4.2.4). The decomposition is

also necessary because the numerical method we have chosen requires that the shear and the

hydrostatic terms in the virtual work equation be integrated differently when the material is

nearly incompressible. Further discussion on this is given in section 4.2.6.

The volumetric strain-rate is given by:

Therefore

£" =

£v

£v

£v

0

. _ Exx+Eyy+Ezz _ Exx+Eyy

£' =

2a 1 A
T ** T w

Ovry ^ Oy

-1 . 2 •

-£v ~lF -1F

fe

(4.2.2.5a)

(4.2.2.5b)

58

2 dvz 1 dVy
3 dx

-1 d\x
3 dy

+ 2 dVy
3 ^ 3 -&

-1 dvx i a?,
3 ^fcc

9vx
ay

a ay

2 a -l a
T"33F ' T"dy
-l a 2 a
3 "3x 3"3y
-l a -l a
3 "5* 3 "3y

a a

^y "3x

a L'v

where L' is the differential operator for the shearstrain-rate.

Similarly, we have

£" =

£v

£v
£v
0

i a i a
T"37 T"3y
i a i a

T"a* T"3y
i a i a
3 "53c 3"3F

0 0

and L" is the differential operator for the volumetric strain-rate.

The discretized strain-rate vectors can now be expressed as

s' = L'v = L'NV

e" = L"v = L"NV

B L"v

(4.2.2.6)

(4.2.2.7)

(4.2.2.8)

(4.2.2.9)

4.2.3. Formulation and Discretization of the Stress

The stress-tensor is similar to the strain-tensor and is generally expressed as

a =

Gxx Gxy Gxz
Gxy Gyy GyZ
Gxz Gyz Gzz

59

(4.2.3.1)

In 2D plane-strain problems , a» = oyz =0 and azz * 0 in general. Hence, we rewrite the

stress into a vector form with the following components :

o =

Gxx
Gyy
Gzz
Gxy

Again, a is decomposed into a pure shear and pure hydrostatic term :

G = & + &'

where a" =

-P

-P
-P
0

(4.2.3.2)

(4.2.3.3a)

(4.2.3.3b)

(4.2.3.3c)and p = - -^-2 £L U-L is the hydrostatic pressure.

For incompressible analysis in 2D plane-strain problems, o^ = -^E.+Gw '2*-^- and so

_ -(Gxx+Gyy)
P =

The shear term of the stress vector is thus given by

& =

Gxx+P
Gyy +P
Gzz+P

G'xy

(4.2.3.3d)

(4.2.3.4)

At this point, we need to relate the stress with the strain-rate. Currently, silicondioxide is

modeled in the CREEP program as a viscous fluid which is nearly incompressible. This model

is given by:

60

•

& = T|

2 0 0 0
0 2 0 0

0 0 2 0
0 0 0 1

.

e' = tiDe' (4.2.3.5)

g" = oce" , a » r| (4.2.3.6)

where r) is the viscosity and a is a number much larger than tj so as to approximate the

incompressible condition. Normally, the hydrostatic term a" is related to the volumetric strain

through the bulk modulus. However, in the limit that a » r\, the volumetric strain can be

replaced by the the volumetric strain-rate e" without much changein the results.

The discretized version of the stressvectors are then given by

& = nD L'NV (4.2.3.7)

a" = aL"NV (4.2.3.8)

4.2.4. Discretization of the Virtual Work Equation

The virtual work equation can now be discretized. First, Eqn. 4.2.2 is rewritten using the

column vector form of stress and strain-rate :

f8£Tada = f5vTfdr (4.2.4.1)

For siliconoxidation simulation, the body force termof Eqn. 4.2.2 is negligible compared to the

other 2 terms. It has thus been omitted in the above equation.

Now, consider the first term

f 8£TadQ = f (fc'T +6£,'T)(G, +a")da (4.2.4.2)

It can be shown that the cross-terms 8e'to" = §e"t& = 0 by explicitly evaluating the cross-

terms. Thus we have:

f 8etct dQ = f oe'V dQ + f oe^o" da

= f StL'NV^TiDO/NVHQ + f 5(L"NV)Ta(L"NV)da

= f 8VT(L'N)T tiD (I/N) da V + f 8VT(L"N)T a (L"N) da V

= 8V1 f (L/N)T<nD(L'N) + (L"N)Ta(L"N) da

For the right hand term of Eqn. 4.2.4.1, we have

f8vTfdr = f8(NV)Tfdr = 8VT fNTfdr

61

(4.2.4.3)

(4.2.4.4)

Since the virtual work equationmust hold true for any arbitrary variation of 8v , 8VTcan

be factored out from the virtual work equation:

or

where

f (L'N)TT|D(L'N) + (L"N)Ta(L"N) da V = fNTfdr

KV = F,

K = K' + K" ,

K' = f (I/N)TT|D (L'N) da ,

K" = f (L"N)Ta(L"N) da ,

F, = f NTfdr

(4.2.4.5)

(4.2.4.6a)

(4.2.4.6b)

(4.2.4.6c)

(4.2.4.6d)

(4.2.4.6e)

The matrix K is known as the stiffness-matrix of the discretized system, and Fi is called the

equivalent nodal-load vector. For a system with n nodes, K is a 2n x2n matrix, and F| is a

column vector with 2n entries, since each node has 2 variables :vx and vy. But it is convenient

to look at K as annxn matrix with entires of 2x2 sub-matrices, because it simplifies the index

ing of the matrix-entries. By doing this, we were able to write a direct-solver that solves Eqn.

4.2.4.6a at a rate of approximately 3 times faster than a general purpose direct-solver. Naturally,

Fi is also grouped into a column-vector with n entries of 2-component column vectors. In this

way, the individual entries of K aregiven by

62

Kij = f (L'Ni)TTiD(L/N/) + (L"Nt)Ta(L"N;) da (4.2.4.7)

andofFi:

Fu = fN^fdr (4.2.4.8)

4.2.5. Assembly of the Stiffness Matrix

Since L' and L" are first orderdifferential operators, L'N andL"N canonly contain finite-jump

discontinuity between elements. Hence, it is possible to assemble K from the individual ele

ment stiffness matrix Ke :

K = £ Ke (4.2.5.1)
e

Ke = J (L'N)TriD(L'N) + (L"N)T a (L"N) da (4.2.5.2)= J (L'l
a*

Note that the assembled matrix equation is singular, as the Dirichlet boundary condition of the

system has not been specified. For silicon-oxidation, the Dirichlet boundary is the boundary

where the velocity of the system is known (ie, the Si/SiC>2 interface). Specification of the

known velocities in the discretized equation is performed by modifying the appropriate equa

tions contained in Eqn. 4.2.4.6a. For example, if the velocity ofnode m is known to be equal to

V„,o »the original equation in Eqn. 4.2.4.6a correspondingto node m (row m of K and F|) can

be changed to the equation

Vm = Vm0 (4.2.5.3)

by simply setting K^ to a 2x2 identity matrix, the other entries of row m to null-matrices ,

and Fiot to Vmo- The resulting matrix-equation will be slightly different from Eqn. 4.2.4.6a and

non-singular. The solution of which yields an approximate velocity profile in the oxide.

63

4.2.6. Difficulty in the Incompressible Formulation

It turns out that if each of the K;7- is integrated exactly from Eqn. 4.2.4.7, the solution to Eqn.

4.2.4.6a gives a poor approximation to the solution of the continuum system. This phenomena

has been reported many times in the finite-element literature. The problem is attributed to an

excessive discretization error from the finite-element interpolation scheme, when used in near-

incompressible analysis. Simply stated, there is no possible value of V that makes the velocity

distribution approximate the actual viscous-incompressible solution if either the linear or the

quadratic elements are used. Mathematically, the poor approximation is attributed to an inade

quate number of zero energy modes for the hydrostatic term K" of Eqn. 4.2.4.6d. To overcome

this problem, we have to settle for a good approximation of the velocity, but not the incompres-

sibility condition, since a slight errorin the velocity distribution can easily lead to a large error

in the incompressibility condition (in terms of energy consideration). This can be accom

plished by using low-order numerical integration to evaluate K", so as to artificially increase

the number of its zero-energy modes. Here lies the reasonthat a linear-triangle cannot be used

in incompressible analysis: the lowest order integration scheme (1 point quadrature at the cen-

troid) for a triangle will integrate both K' and K" of Eqn. 4.2.4.6b exactly, if alinear-triangle is

used. If a quadratic-element is used, we can use quadratic integration (3 point quadrature

which leads to exact integration if the viscosity is constant within the element) for K' and

linear-integration (1 pointquadrature) for K", asshownin following figure :

64

(a) (b)

Fig. 4.2.6.1. Numerical integration points for triangular elements : (a) centroid for
first order (linear) integration and (b) mid-side-nodes for second order (quadratic)
integration.

The resulting solution of Eqn. 4.2.4.6a when the mixed integration scheme is employed is

well behaved and converges to the exact solution when the size of the elements decreases. One

way to interpret the effect of reduced-integration is that it enforces incompressibility condition

only at the reduced integration-point (centroid of the triangles), thus placing little constraint on

the overall shear-deformation of the discretized system. The implication is that the hydrostatic

pressure should only be evaluated at the centroids of the triangles. Since the hydrostatic pres

sure can be directly evaluated only at the centroid of the triangles, and the oxidant diffusivity

depends on the hydrostatic pressure in our stress-dependent oxidation models, we should use

the linear-triangles to discretize the oxidant diffusion equation. We shall elaborate on this later

in the next section.

65

4.3. DISCRETIZATION OF THE OXIDANT DIFFUSION EQUATIONS

The finite-element formulation for the oxidant diffusion equations of Eqn. 3.2.1 through 3.2.5

is given by:

f(VN)TD«(VN) dft +J NT^N dT C = 0 (4.3.1)

or

KCC = 0 (4.3.2)

where N is the appropriate interpolation function, Dox is the oxidant diffusivity, ks is the sur

face reaction rate parameter and r, is the Si/Si02 boundary. The assembled matrix Kc is singu

lar since the Dirichlet boundary condition of the diffusion equation (in this case, the

oxide/ambient boundary) has not been specified. By a similar procedure described in section

4.2.5, we can enforce the Dirichlet boundary condition and form a new matrix equation that we

shall write as

KcC = Fc (4.3.3)

where the two Kc in Eqn. 4.3.2 and 4.3.3 are different. In subsequent sections, when we refer to

Kc, we shall mean the one in Eqn. 4.3.3.

The derivation of Eqn. 4.3.1 and the assembly process can be found in many textbooks on

FEM (eg, reference [29]) and also in reference [31]. We will not repeat the derivation here

but make aspecial note concerning the evaluation of the term J N^N dl\ First, let us call

this term the loss term, since it represents a "sink" of oxidant. Consider the oxidation of a

LOCOS structure with a uniformly thin pad-oxide, as illustrated in Fig. 4.3.1 . Then, the oxi

dant concentration under the oxide region covered by the nitride can be calculated using the

Fourier-Series analysis, assuming that the structure is periodic in the x-direction. The oxidant

concentration is then approximately given by

C(x,y) = C0cos(^ks/toxDox(tox -;y))exp(-* iksltoxDox) (4.3.4)

Where Co is the oxidant concentration in the oxide at the Si/Si02 interface and tox is the oxide

thickness. The approximation approaches the exact solution as tox decreases. For very small

66

AMBIENT

4

f

NITRIDE

OXIDE C(x,y)

(0,0) x

SILICON

1
tox

T

Fig. 4.3.1. A locos structure with thin pad oxide at the beginning of the oxidation
process. Eqn. 4.3.4 describes the oxidant concentration within the oxide to the right
ofthey-axis.

tox, the solution is practically given by

C(x,y) = C0exp(-;c ^ksltoxDox) (4.3.5)

Unfortunately, if the loss term is evaluated exactly (using quadratic numerical integration if

linear-elements are used), the finite-element solution of the oxidant concentration under the

nitride region can become oscillatory. The solution of oxidant concentration oscillates between

positive and negative values in such regions, creating a non-physical condition for the oxidation

rate. This oscillatory solution is obtained when the product of ^ks/toxDox and the element

length exceeds some critical value. The oscillation is caused by an excessive discretization

error when the element length along the x-direction is too coarse to approximate the rapid

exponential drop of the oxidant concentration along the x-direction. The situation can be

analyzed by noting that the thin-oxide system is effectively a one dimensional system. First, the

flux of oxidant across an arbitrary vertical line at location x (under the nitride region) is

approximately given by

Flux = - tojcD^ dC
~3F

67

(4.3.6)

The loss of oxidant molecules per unit length along the x-direction due to oxidation at the

Si/Si02 interface is - ks C. The continuity requirement states that

VFlux = -ksC

or, for constant values ofDox and tox, we have

(4.3.7)

/ n d2C —u c (4.3.8)

Notice that the analytical solution of Eqn. 4.3.8 yields Eqn. 4.3.5. Now, Using a one-

dimensional finite-element discretization, as illustrated in Fig. 4.3.2, one can set up a difference

equation

or

isd^E-CC.-! +Cn+l-2Cn) =ks

tox^ ox
Ax2

ks
" ~F

*

Cn+l - 2
taxDox j_ ks

Ac2 T"
c„ + tox ^ ox

Ac2

J Ax I

n-2 rt-1 n +1 n+2

(4.3.9)

C„_i = 0

(4.3.10)

Fig. 4.3.2. One-dimensional approximation to the oxide region of the LOCOS struc
ture shown in Fig. 4.3.1. The spatial discretization is assumed to be uniform to sim
plify the stability analysis.

68

The general solution to the above difference equation becomes oscillatory when

toxDox , ks , -\\, toxDox Kj o / tox^ox ks %2

T~D K ° (4-3-U)loxL/ox _ ftj

Ac2 "5"

or when

/ toxDox ks ^ , «A/ tox^ox ks
(~A^~ +"5")±2^"AP~"g"

/ toxuox ks \

C~AP~ " T'
< 0 (4.3.12)

The numerator in the above inequality is always non-negative and thus the above inequality can

be reduced to

^^- - ^- <0 (4.3.13)

or

£,Ac2
•ox. L*ox

> 6 (4.3.14)

We see that unless we are willing to decrease the element size, oscillation cannot be avoided

when tox is small. The problem with decreasing element size is that excessively many grid-

points can be generated thus increasing the total computational time. To avoid this problem, we

propose a less accurate one-point integration scheme that samples at the grid-point. This

scheme, when applied to Eqn. 4.3.1, results in a difference equation of the form

tpxDox
Ac2

(C„_! + Cn+l - 2Cn) = ksCn (4.3.15)

The solution of which is unconditionally stable, reasonably smooth and always positive. This

method, compared to the exact integration method, results in an only slightly less accurate solu

tion for structures with small variation of the oxidant concentration. In relative magnitude, the

solution in the thin oxide regions under a nitride mask will be noticeably different from the

exact solution. Fortunately, since the concentration in such regions are very small, a large rela

tive error in the solution will not cause a significant errorin the calculated oxide profile around

such regions.

69

Finally, we should also elaborate on the need to use linear-triangles in our analysis. As

mentioned in section 4.2.6, the numerical techniques we used to solve oxide flow allow us to

evaluate the hydrostatic-pressure, and thus also the oxidant diffiisivity, only at the centroid of

the triangles. This is not a problem if we use linear-triangles, since it will be sufficient to evalu

ate the bulk-diffusion term f (VN)TD0X(VN) dQ using a 1-point integration scheme that sam

ples at the centroid, even if Dox varies linearly within each element. If quadratic-triangles are

used to discretize the diffusion equation, it is impossible to evaluate the bulk-diffusion term

accurately. If the oxidant-diffusivity is assumed to be constant within every-element, the accu

racy of the solution obtained will not be better than that obtained using linear-triangles.

Nonetheless, the major objection to using quadratic-triangles is that the overall numerical algo

rithm as described in section 4.4 becomes less stable, when the stress-models of Eqn. 3.8.1

through 3.8.3 are implemented.

70

4.4. IMPLEMENTATION OF THE STRESS-DEPENDENT OXIDATION MODELS

The stress-dependent oxidation models described by Eqn. 3.8.1 through3.8.3 depend on 2 com

ponents of the stress: the hydrostatic pressure (p) and the normal stress (Gm) acting at the

Si/Si02 interface. Hence, explicit expressions to calculate both p and onn must be available

before algorithms for the non-linearlycoupled oxidationmodels can be implemented.

4.4.1. Calculation of the Hydrostatic Pressure

The incompressibility condition for oxide was modeled in section 4.2.3 by Eqn. 4.2.3.6 :

a" = ae" , (4.4.1.1)

where a" contains the hydrostatic pressure. The hydrostatic pressure should then be con

sistently calculated from Eqa 4.2.3.8 , and evaluated only at the centroid of the triangles :

p =-a *»+*?? (4.4.1.2)

=-f<^+*) =-f d d
"dx ~dy NV (4.4.1.3)

4.4.2. Calculation of the Normal Interface Stress

The normal-stress om can usually be evaluated using

Gnn =C'nn - P , (4.4.2.1)

where <fm is the normal stress obtained from the pure-shear stressvector & :

o'nn=[nx2 «/ 0 2nxny]& (4.4.2.2)

and [nx , ny]T is the unit normal vector.

The problem with this approach, however, is that the hydrostatic pressure p can only be

directly evaluated at the centroid of the triangular elements. To obtain <5m at the Si/Si02

71

interface, the value ofp must be extrapolated to the interface, which is a difficult procedure if

an irregular mesh is used. Fortunately, there is anotherway of calculatingthe interface traction.

We first note that aM = nTf, where f is the surface-traction, and n is the outward unit normal

vector at the boundary. Then, we note that the nodal load vector F| of Eqn. 4.2.4.6a is assem

bled using Eqa 4.2.4.8

Fh- = f N,Tf dT

When numerical integration is used,

f„ = 2 bijtj (4.4.2.3)

where fy = traction at node j , and the by are the coefficients obtained from the numerical

integration of Eqn. 4.2.4.8. If V is known, we may perform a reverse calculation for f) from

Eqn. 4.4.2.3 and Eqa 4.2.4.8 . Unfortunately, there is a uniqueness problem here. There can be

several different f that generate a particular F| for a given mesh configuration. The calculation

for f usirig Eqa 4.4.2.3 automatically assumes that f is smooth over r . This assumption is

made at present, although it may not be reasonable to assume that f is smooth around the sharp

corners of the interface T.

Certainly, it is possible to calculate only for the stress at the Si/Si02 interface. This is

done by first splitting F/ into 2 parts:

F| = Fio + F|S (4.4.2.4)

where Fk is the contribution of the traction at the Si/Si02 interface to F|, and F|0 is the contri

bution from the other boundaries.

Now instead of destroying the rows of K corresponding to the nodes on the Si/Si02 inter

face to specify the Dirichlet boundary condition of the system, we propose the following

arrangement:

K , Ks

Is , 0

V

Fs
=

Fio
Vso (4.4.2.5)

In the above, Fs contains the traction variables of the nodes on the Si/Si02 interface. Let n be

72

the total number of nodes in the system, and ns be the number of nodes at the Si/Si02 interface.

Then Ks is a matrix of size 2nx2ns. The matrix Ks is assembled from the coefficients by of

Eqn. 4.4.2.3 for the nodes on the Si/Si02 interface. In effect, we make the nodal traction at the

Si/Si02 interface part of the unknown variables of the matrix equation. The specification of the

Dirichlet boundary condition is given by

Is = V^ (4.4.2.6)

where Vso is the interface velocity as calculated from the oxidation rate at the Si/Si02 interface,

and Is is an identity matrix of size 2ns*2ns (scalar entries).

4.4.3. Assembly of the Matrix K,

The solution to Eqn. 4.4.2.5 provides the nodal velocities V and the surface traction at the

Si/Si02 interface simultaneously. But the solution for Fs strongly depends on how the matrix

Ks is assembled.' By making the nodal surface traction Fs an unknown variable of the matrix

equation, we are essentially discretizing the surface traction f at the Si/Si02 interface. Since

quadratic-elements are used in our analysis, we may be tempted to use a quadratic interpolation

for the discretization of f. But this choice is found to yield an oscillatory solution for f,- . To

avoid oscillation, a linear interpolation function must be used. For the quadratic triangular ele

ments, this means that the mid-side-node is not used in the interpolation of the surface-traction.

The need to use a linear-interpolation function can be intuitively explained by the fact that the

stress is a first order derivative function of velocity. Hence, to be consistent with the quadratic

distribution of velocity used, a linear stress distribution on every element should be assumed.

A special note needs to be made regarding a possible no-convergence problem in the

above approach. If the quadratic-elements are used to discretize the oxidant diffusion equa

tions, and the oxidation-rate at the mid-side-node of the triangle calculated using the oxidant

concentration at that node, the solution for Fs depends strongly on the shape (aspect ratio) of

the elements at the Si/Si02 interface. If the oxidation-rate or velocity at the mid-side-node is

set to the mean value of their neighboring vertex-velocities, the convergence of the calculated

73

stress improves drastically. The reason for this behavior is not known at present and may

require further investigation. But it may be guessed that the use of reduced-integration scheme

to evaluate the hydrostatic term K" of Eqn. 4.2.4.6d implies that the velocity distribution is

actually quasi-quadratic. Hence, to get an accurate stresscalculation, anotherlevel of constraint

must be imposed on the interpolation function of some of the discretized variables, which in

this case happens to be the velocity distribution at the Si/Si02 interface. The requirements for

the convergence of the calculated normal interface-traction thus provide us another reason to

use the linear-triangles in the discretization of the oxidantdiffusion equation.

Certainly, the assembly of Eqn. 4.4.2.5 must be modified to reflect the linear-velocity

variation usedat the Si/Si02 interface. This is accomplished by modifyingpart ofEqn. 4.4.2.6.

But we shall continue to usethe form of Eqn. 4.4.2.5 in ourfuture discussion, with the assump

tion that the appropriate modification to Eqn. 4.4.2.5 has been made.

4.4.4. Accuracy of the Calculated Normal Stress

Once the nodal interface traction Fs is obtained, the normal interface traction at node / (ow)

can be equated using

<5mi = nTf, (4.4.4.1)

where n is the outward unit normal vector at node i.

In general, it is not possible to verify the accuracy of the calculated interface stress for

arbitrary structures. We may only check the convergence of the calculated stress with increas

ing mesh density. However, it is still possible to obtain some level of confidence by studying

somesimple structures whichhave knownanalytical solution for the interface stress. A cylindr

ical structure is convenient for such a study. Consider the test case shown in Fig. 4.4.4.1.

Assume that the inner surface of the cylinder (at radius ra) represents the Si/Si02, and the

oxidation-rate is uniform along the interface. Let the oxide velocity at the Si/Si02 interface =

va. Then, for a viscous-incompressible oxide model, the normal surface-traction at the Si/Si02

74

interface is given by

Gm = -2r\va{X- X) (4.4.4.2)

where r0 is the outer-radius (at the oxide/ambient interface). The numerical solution for o^

at the Si/Si02 interface can then be compared with the analytical solution given above. In gen

eral, the numerical solution for am is not exactly constant over the Si/Si02 interface. Hence,

the maximum deviation of the numerically computed a^, from the analytical solution is used as

an error indicator. Fig. 4.4.4.2 shows the dependence of this error on the mesh-density used (

the mesh-density is represented by the square root of the number of nodes used). One can see

that reasonably good accuracy (error of 8%) can be obtained with the coarser mesh shown. A

finer mesh gives higher accuracy but requires significantly more computation time.

Onn =-2TlVB(4j. - X;)
'a 'b

Fig. 4.4.4.1. Analytical solution to the normal stress acting on the Si/Si02 interface
of a convex cylindrical silicon structure, assuming no orientation effect on the reac
tion rate.

80

60

40

20

0

' i

I CPU TIME(sec) /

r^ % ERROR IN /
V NORMAL STRESS /

_s<^^L____
10 15 20 25 30 35

V # OF NODES

Fig. 4.4.4J. The dependence of the accuracyof the calculated normal interface trac
tion on the mesh-density used. Also shown is the cpu time needed to solve Eqn.
4.4.25 on a VAX 11/780 computer. The vertical scale is in percent error and
seconds cpu-time. The calculation is performed on a quadrantof the structure by ex
ploiting the cylindrical symmetry.

75

It should be noted that further tests on the accuracy and convergence of the program is

needed. The cylindrical structure is too simple in the sense that it is essentially a one-

dimensional problem. Further tests should use truly 2D structures which can be verified.

76

4.4.5. Algorithms for the Stress-Dependent Oxidation Models

With the algorithms for individually solving the oxidant diffusion and oxide deformation, it is

now possible to implement the stress-dependent oxidation models of Eqn. 3.8.1 through 3.8.3.

Since V^ of Eqa 4.4.2.5 is calculated from the oxidant concentration at the Si/Si02 interface, it

is possible to write a matrix equation relating Vso and C :

Vso = KcvC (4.4.5.1)

Combining Eqa 4.4.2.5 and 4.4.5.1 together:

K , Ks , 0 V Fio
Is . 0 , —Kcv Fs = 0

0,0, Kc C Fc

To introduce the stress-models, we first note that

K = K(e') = K(V)

Kcv = Kcv(Fs)

Kc = Kc(p) = Kc(V)

Thus, we obtain an equation of the form

K(V),KS, 0
Is , 0 , —Kcv(Fs)
0 , 0 , KC(V)

V Fio
Fs — 0

C Fc

= 0

(4.4.5.2)

(4.4.5.2a)

(4.4.5.2b)

(4.4.5.2c)

(4.4.5.3)

This system of non-linear equation can be solved using the Newton-Raphson iteration algo

rithm. Let us first call the solution to the above equation as

X =

V

F,
C

(4.4.5.4)

Also, let us set the left terms of Eqn. 4.4.5.3 to E(X). Assuming that X* is the solution of the

system at the &-th Newton-iteration, then the solution obtained at the next iteration is given by

77

X*+i = X* - J-i(Xk)E(X*) (4.4.5.5)

where J is the Jacobian of E with respect to X. The assembly process of J is tedious but

straight-forward,and thus will not be presentedhere. In our solution process, J takes the form :

J =

where

KJ , Ks , 0

Is t Kf » —Kcv
K{ , 0 , K/

(4.4.5.6)

K7 = Jacobian of K w.r.t V,

K/y = Jacobian of Kcv w.r.t. C ,

Ki = Jacobian of Kc w.r.t. C ,

K{ = Jacobian of Kcvw.r.t. F, ,

K{ = Jacobian of Kc w.r.t. V

A general purpose direct sparse matrix solver is used to solve the Newton iteration of Eqn.

4.4.5.5 since J is not symmetric and may contain diagonal zero. The iteration process is gen

erally stable unless the volume parameterV^ of Eqn. 3.8.2 becomes too large. The possible ins

tability is often due to the inadequate accuracy in the discretization of the continuum. A higher

density mesh should be used for strongernon-linearity or stress-coupling.

It is important to keep the time-steps in the profile advancement small enough so that the

normal interface stress <5m at the beginning and the end of the time-step (actually the begin

ning of the next time-step) does not differ by very much. This is to ensure that o™ does not

change significantly during the time-step to make the oxidation-rate stay approximately con

stant during the time-step.

It is also appropriate to make a final remark about the size of the matrix K^. As noted in

section 4.2.4, grouping the entries of K in Eqn. 4.2.4.6a into 2x2 sub-matrices provides us an

approximately 3 fold advantage in computational speed in solving Eqn. 4.2.4.6a. For the same

reason, we should organize the entries of J in Eqn. 4.4.5.6 into 2x2 sub-matrices. The presence

of K/ in J may introduce some difficulties into the 2x2 organization process because there is no

78

obvious or preferred way of grouping the entries of C, and the number of vertex-nodes (nc)

can be odd. In the CREEP program, the variables in C are grouped in the form (Co,CO ,

(C2, C3),...., etc. In case nc is odd, a dummy concentration variable and a dummy equation is

added to the last row of Eqn. 4.4.5.3, so as to complete the 2x2-block organization of J.

79

4.5. OTHER MATERIAL PROBLEMS

The algorithms described in section 4.2 and 4.4 are developed for the growth of oxide on a

rigid, immovable silicon substrate. To handle a more interesting class of oxidation problems

that involve the presence of silicon nitride, we also need to discretize the nitride regions. Also,

silicon and poly-silicon layers that are either floating or thin cannot be assumed to be rigid

bodies. In section 3.12.2, we have indicated that both silicon and silicon nitride are elasto-

plastic or non-linear visco-elastic materials. In the present version of the CREEP program,

however, we have assumed them to be elastic materials that relax all the stress after every time

step. In the following discussion, we will describe some algorithms that should properly handle

the behavior of these materials.

4.5.1. Linear Visco-Elastic Formulation

The finite-element algorithms for handling silicon and silicon nitride can be made similar to

that for oxide regions, if the constitutive relationship for the two materials can be written in

forms similar to that in Eqa 4.2.3.5 and 4.2.3.6. Assuming that silicon and silicon nitride are

first-order linear visco-elastic materials, their stress-strain relationship are then given by:

*f +^ =GDe' , x=-g- (4.5.1.1)

and

a" = 3K e" (4.5.1.2)

where T|, G and K are the viscosity, the elastic shear modulus and the elastic bulk modulus

respectively. D is the same matrix as that given in Eqn. 4.2.3.5. Note that e" is the total

volumetric strain vector. Hence, if a" = a0" at time = to , o" at time = 10 + At can be written

as

a" = 2>K Ae" + a0" (4.5.1.3)

where Ae" is the incremental volumetric strain vector during At. If At is small, Ae" = At e"

and thus Eqn. 4.5.1.3 can be further written as

80

a" = 3#Ar e" + a0" (4.5.1.4)

By letting a = 2>KAt , Eqa 4.5.1.4 becomes similar to Eqn. 4.2.3.6, except for the "memory"

term Oo". A similar equation involving a memory term can also be derived for Eqn. 4.5.1.1.

We first note that Eqn. 4.5.1.1 is a first-order ordinary differential equation. Thus we can solve

it to yield

&{t)e x
*o+At f0 +Af t
to = J GDe'(t)ex dt (4.5.1.5)

fa

Letting &Qq) = Co' and assuming that At is small enough so that e' does not change

significantly during the time At, we get

-Af -Af

&(t0 + At) = GDxe'(l - e x) + a0'e x (4.5.1.6)

By writing &(to + At) as & and simplifying the above expression, we get

-A/ -At

& = i\D(l - e x) e' + a0'e x (4.5.1.7)

-Af

We can now identify the term T|D(l-gt)asthe effective viscosity of the material within

-A/

the time step At. The term oV e x represents the residual stress that decays from the previous

time step. By using Eqa 4.5.1.4 and 4.5.1.7 in Eqn. 4.2.4.1 , and employing the orthogonality

between the shear and hydrostatic deformation modes, we get the following virtual work equa

tion :

f 8e/rAa/ dO + f 5e/,TAa"6Q =

-Af

f5vTfdr - f oe^oV* x dtt - f 5e,/rOo"dn (4.5.1.8)

-Af

where A& = T|D (1 - e x) e' (4.5.1.9)

and Ao" = 3ATAr e" (4.5.1.10)

The discretization process is then similar to that for silicon dioxide, except for the extra two

terms on the right of Eqn. 4.5.1.8. However, special care needs to be taken when evaluating ao'

81

. In every time-step, the bulk of the material, and thus the elements used in the discretization

deform in some way that is determined by the numerical computation. As mentioned earlier,

the stresses should only be evaluated at certain "optimal" sampling points. These points (actu

ally every point) also move with the elements. Furthermore, there can be non-zero rotation

associatedwith every point. In some LOCOS simulation using the viscous model in this work,

the rotation was found to be substantial (in the range of a few degrees per time-step at some

point in the oxide). Thus, to avoid the accumulation of error in the stress, the calculated stress

tensor at every point should also be "rotated" (using similarity transformation) before the stress

is integrated in the next time-step.

4.5.2. Non-Linear Visco-Elastic Formulation

The preceding procedures are also applicable to non-linear visco-elastic materials, aslong asthe

time step At is small enough so that the variation of i = T|/G over the time period At is small

enough to justify the use of Eqn. 4.5.1.5. Unfortunately, severe difficulties may arise when t

changes rapidly with time. This may happen when the viscosity of the material depends

strongly on the shear stress, such as those described by Eqn. 3.8.3 for the viscosity of oxide. The

computational time required to solve the problem as a result of the small At used may become

unacceptably high. In principle, this difficulty may be overcome by solving the differential

equation of Eqn. 4.5.1.1 for stress-dependent x . Unfortunately, for most cases of stress-

dependent x, there is no closed-form analytical solutionto Eqn. 4.5.1.1.

The most common catastrophic behavior for elastic materials is the plastic deformation.

We may, to the first order, model these materials as having very high viscosity when the shear-

stress is below the critical plastic-flow-stress, and rapidly falling viscosity values beyond this

stress level. Applying large enough strain and strain-rate, we would expect the stress in the

material to be pinned around the plastic stresslevel, as illustratedin the following figure.

82

Ob'

eo ei

Fig. 4.5.2.1. Strain v.s. loading curve of a plastic material. In the plastic deforma
tion regime,, the stress changes slowly with increasing strain/strain-rate.

Assume that the material is in a state described by point A of Fig. 4.5.2.1 at time t = to,

where the stress in the material is Gq . When the material is further strained to point B at time

t = to + At , we expect little change in the stress in the material. In the plastic deformation

regime, the effective viscosity of the material is low, yielding a low value for x. If the At used

is large compared to x, the calculated shear stress from Eqn. 4.5.1.7 can become very small,

possibly much smaller than Gq . This is an unacceptable error. The major source of this error

-Af

comes from the residual-stress Go'e x . During the time duration At , the viscosity of the

material changes rapidly to a higher value in a certain fraction of At. Hence the residual-stress

should not fall very much. A heuristic remedy for this situation is provided by calculating this

residual stress from Eqn. 4.5.1.1, assuming that the strain-rate e' is zero within the time dura

tion At . The computation may still be difficult and require numerical integration. But at least

it is easier than solving Eqn. 4.5.1.1 , for general (unknown) value of e' . In the case the

viscosity is described by Eqn. 3.8.3, and the shear modulus of elasticity G is a constant, we may

83

even use an analytical solution for the residual stress, which is given by Eqa 3.10.3.

The concept of "yield surface" is another and more common way of describing plastic

behavior of materials32. At present, we prefer to model silicon and silicon nitride as non-linear

visco-elastic material. Hence the stress/stain-rate formulation described in this section should

be more appropriate for our modeling work.

84

4.6. BOUNDARY CONDITIONS

Most of the interfaces and boundaries that occur in silicon oxidation simulation require special

treatment The number of different material interfaces depends on the number of different

materials we are willing to handle. The following sub-sections describe some of the interfaces

and boundaries that need special attention, assuming that there are only silicon, silicon dioxide,

silicon nitride and ambient regions in the simulation domain.

4.6.1. Reflection Boundary

This is an artificial boundary which arises when the simulation domain is limited to a finite size.

It is actually a "partial" Dirichlet boundary, in the sense that one component of the nodal-

velocity is known. For example, on a rectangular simulation window, the reflection boundaries

are located at the sides of the window. The x-component of the velocity for nodes on the verti

cal boundaries and the y-component of the velocity for nodes on the horizontal boundaries

should be set to zero.

4.6.2. Oxide/Silicon Interface

In the previous sections, silicon was assumed to be a rigid material that would not move or

deform. This approximation is good only if the silicon region is the supporting substrate of

large size. In cases where either the silicon is thin or floating, we need to take into account the

deformation/motion of the silicon material. To handle the oxidation reaction that occurs at the

interface, we need to split every node on the Si/Si02 interface into two nodes, one for the sili

con region, and the other for the oxide region. The nodes are then separately numbered. The

two regions are coupled by specifying that the tractions applied on the oxide and the silicon are

equal in magnitude but opposite in sign. Further, the normal velocity of the existing oxide at

the interface point is equal to the normal velocity of its corresponding silicon node plus the

growth velocity that was described in section 4.1. The tangential velocities of the split-nodes

are set to be equal. After solving the system of the discretized problem, the nodes in the discre

tized system are then moved by amounts determined by their velocities. The final Si/Si02

85

interface is then approximated by converting a layer of the silicon material to Si02, by an

amount proportional to the oxide growth rate at the interface.

4.6.3. Oxide/Nitride Interface

CREEP currently assumes that there is no reaction occurringat this interface. In reality, oxida

tion does occur slowly at this interface. But there is almost no volume expansion involved in

the conversion of Si3N4 to Si02. Hence the oxidation of Si3N4 can be handled without the use

of node-splitting technique. The solution involves the simple conversion of an amount of Si3N4

to Si02 by an amount proportional to the oxidant concentration at the Si02/Si3N4 interface.

However, the out-diffusion of the nitrogen or ammonia released from the reaction and its possi

ble effect on the oxidation kinetics have not been adequately understood. Further investigation

is needed.

4.6.4. Silicon/Ambient and Nitride/Ambient Interfaces

These interfaces can only exist at the first time step of the simulation. After that they will be

covered with Si02. These interfaces are not yet handled by the CREEP program. However,

they can be handled by simply converting a layer of the material to Si02, by an amount propor

tional to the oxidant concentration in the ambient. For silicon, volume expansion during the

oxidation is also involved.

4.6.5. Silicon/Nitride/Ambient Triple Point

Little physical understanding of this interface-point is available. We propose the use of the fol

lowing heuristic scheme, in which a small amount of the silicon material is converted to S1O2 in

a small time step:

86

(a)

(b)

Ambient

Nitride

Silicon

Fig. 4.6.5.1. Heuristic solutionto the oxidation of a thin layerof siliconinto silicon
dioxide near a silicon/ambient/nitride triple point.

The time step should be kept small so that there will be no excessive conversion of the silicon

under the nitride to Si02. Furtheroxidation of this region should be determined by the compu

tation performed in the subsequent time-steps, so that the stress-effects in the oxidation process

can be as closely accounted as possible.

4.6.6. Oxide/Nitride/Silicon Triple Point

There is also little understanding of this interface-point at present. Normally, the oxide/nitride

interface is assumed to be a non-slip boundary, while the oxide and the silicon at the

oxide/silicon interface are assumed to be moving apart from each other in a direction normal to

87

the interface. Obviously the two assumptions are incompatible at this triple point. One or both

of the assumptions must be violated as a result of the high stress generated around the triple

point We propose to overcomethis dilemma by allocating only one node at the triple point in

the discretization process, even though oxidation occurs at this point. This scheme effectively

set the velocity of the existing oxide region at the triple point zero relative to the point. How

ever, the etch-conversion of the silicon and the Si3N4 materials is performed in the same way

described in section 4.6.2 and 4.6.3 , thus allowing the advancement (oxidation) of the triple

point.

4.6.7. Oxide/Ambient Interface

Normally, nothing needs to be done for this interface. However, in the annealing of glasses

with low viscosity, where the surface tension is a significantdeformation driving force, the sur

face tension effect should be accounted for. The surface tension is simply a surface traction

force that will be included in the the right hand term of Eqn. 4.2.4.1.

Surface tension appears as a normal stress that is proportional in magnitude to the curva

ture of the oxide surface. For low curvature surfaces, the surface tension can be easily

estimated from the discretized (segmented) surface. But this method cannot meaningfully

estimate the surface tension around a sharpcomer, where the stress approaches a singular value.

Fortunately, the finite element method uses the concept of nodal lumped forces in the discre

tized equation. We first note that surface tension is really a tangential force along the oxide sur

face, which results in a normal stress acting on the oxide surface when the surface is curved.

Hence, instead of attempting to estimate the surface tension forces everywhere on the surface,

we propose to calculate the lumped forces on the nodes directly by taking advantage of the seg

mented oxide surface. This is illustrated in the following figure :

segmented surface

Fig. 4.6.7.1. Calculation of the equivalent nodal lumped-forces F|,- due to the sur
face tension at the point Pt directly from the segmented surface. The direction of
F|f- bisects the vertex at the point P,- .

The above approach is applicable to smooth surfaces and sharp comers. The only prob

lem is that the straight-line segments are curved after every time-step of the computation

because of the use of the quadratic-elements. Our discretization algorithms require the use of

straight segments.in every time-step and thus reconditioning of the surface to straight line seg

ments is needed. In the CREEP program, this is done by moving the mid-side-nodes of the ele

ments back to their center position after updating the discretized profiles. The problem with

this approach is that truncationerrormay accumulate. But this is not a difficulty peculiarto sur

face tension problems. If higher accuracy is needed, we propose to re-interpolate the surface to

straight-line segments using some kind of least-square algorithm.

89

CHAPTER 5.

DATA STRUCTURE

5.1. INTRODUCTION

As statedin chapter 1 and2, one of the goals of this project is to develop a framework for a gen

eral purpose 2D process simulator. To achieve this goal, we need to define and implement a

data structure for the description of general 2D geometric structures. Access and manipulation

of the geometric information should be simple and flexible. This data structurewill also be cru

cial for the successful implementation of an automatic triangular mesh generator. This chapter

is devoted to the description of the datastructure currentlyused in CREEP.

5.2. NODE-SEGMENT REPRESENTATION

By definition, a general 2D geometric data structure must be able to represent arbitrarily com

plex planar graphs. Forthe purpose of process simulation, it is often sufficient to represent only

straight-line segmented planar graphs. It is clear that all straight-line segmented planar graphs

must and can be represented by nodes and segments. Hence, it is natural to also base our data

structure on node and segment representation.

While it is possible that all segmented planar graphs can be represented by nodes and seg

ments, it is obvious that infinitely long and open regions cannot be represented by planar

graphs. This case is not important in process simulation and thus will not be considered. We

will restrict ourselves to the handling of geometric structures with only closed regions. We

further restrict that all material regions represented by the data structure must be enclosed in a

rectangular "simulation window".

90

5.3. DATA FILE FORMAT

The first step in defining such a data structure is to define the format for the data file that stores

the geometric information. The access of data files by the CREEP program is usually infre

quent. Thus the format for the data files may be relatively simple. Our choice of the data file

format is shown in the following :

nodes

0 x0 yo

1 xi yi

2 x2 yi

3 X3 73

4 Xt\ 74

5 xs 3>S

N xN yN

segments

0 «o,i «0,2 mo,\ ^0,2

1 «u "1,2 Wl,l Wi;

2 *2.1 «2,2 ^2,1 m2,2

3 «3,1 «3,2 ^3,1 m3,2

S ns,i "5,2 tf*s,i WS,2

Fig. 5.3.1. File format for geometric information.

The data file contains the information of all the nodes and segments that exist in the

geometric structure. In the above, the entry "nodes" signifies the start of the node-list. Each

node-entry contains 3 components : the node-number and the x- and y-coordinates of the node.

Node-numbers must always start from zero. In addition, the first four nodes must be used to

specify the four corners of the simulation window. Node 0,1,2 and 3 are respectively located

at the lower-left, lower-right, upper-right and upper-left corners of the window :

0 1

Fig. 5.3.2. The node-numbers for the corners of the simulation window.

91

The other nodes in the structure should be located within or on the boundaries of the simulation

window. .They may be numbered in any sequence, as long as they are all positively and dis

tinctly numbered. The node-numbers are specified only for the references made by the the

segment-entries. There is, however, a limit on the memory allocation within the program which

limits the use of large node-numbers.

The segment-list starts immediately after the word "segments" in Fig. 5.3.1. Each

segment-entry contains a segment-number, the node-numbers of the two end-points of the seg

ment, and the identification numbers for the material types on both sides of the segment. For

example, in the illustration of Fig. 5.3.1, the two end-nodes of segment number 3 are

represented by «3ti and n^. The material types on the two sides of the segment are represented

by the numbers #13,1 and #13,2 . The convention is such that the region spanned counter

clockwisefrom ft3t\ to ^,2 is of type specified by 013,1. This convention is illustrated in the fol

lowing figure:

92

i -th segment

*U • • *«\2

Fig. 53J. The convention for the location of the material regions as specified by the
structure file.

All segment-numbers must be distinct and non-negative. They may, however, be ordered

in any sequence. The only limitation is imposed by the fixed size of memory space initially

allocated within the CREEP program to store the largest numbered segment.

All material types are identified by their identification numbers, which must be positive.

The data structure used in CREEP is currently configured to handle up to 127 different material

types. The first five numbers from 1 through 5 have been tentatively assigned to label ambient

regions, rigid substrate regions, silicon regions, oxide regions and nitride regions respectively.

The oxidation module in CREEP assumes that the rigid substrate region is silicon, and the

ambient region contains gaseous oxidizing species. However, we intend to leave the rigid sub

strate and the ambient regions open to interpretation, so that other simulation modules added

into the CREEP program in the future will not be unnecessarily forced to deal with silicon

region.

Regions outside the simulation window must also be labeled. They are labeled as number

0. Again, the meaning of the window boundaries is open to interpretation. The oxidation

module in CREEP assumes that the window boundaries are reflection boundaries and hence the

material outside a window segment is the same as the material inside the window at that seg

ment.

93

5.4. TRI-DIRECTIONAL LINKED-LIST STRUCTURE

The data file format adequately describes most of the geometric structures that are of interest to

us, but is certainly unsuitable for fast accessand recognition within the CREEP program. Once

the node-segment information of a geometric structure is read into the CREEP program, the

program must reorganize the datausing some internal data structure so that the geometric infor

mation can be easily accessed by other modules in the program, in such a way that every region

within the geometric structure can be traversed easily, and that neighboring regions from any

particular region can be found easily. The data structure proposed by Lee33 provides some

flexibility in representing a large class of geometric structure. However, only a fixed number

of segments can be connected to a node. Further, when two or more adjacent regions have the

same material type, it becomes difficult to traverse any of the regions. This is not much of a

limitation for Lee's application, but a severe one for us since we always create connected

regions with the same material type during mesh-generation. After much consideration, we

decided to use a tri-directional linked-list structure to represent the nodes and segments within

the program. This structure is designed to eliminate the two limitation of Lee's data structure.

We shall call every tri-directional linked-list structure a "terminal". Every segment will be con

structed of two terminals. In the C programming language, the terminal is defined as a C-

structure:

typedef struct terminal_strct {
short nodejio;
short Ijiode ;
struct terminal_strct *oppterm;
struct terminal_strct *fivdterm;
struct terminal_strct *bckterm;
double vjingle;
char cc_in, cc_out;
char marker] , marker2 ;
} TERMINAL;

94

In the CREEP program, the entries of the terminal structure are actually not arranged in

the order shown. The order shown is not efficient in terms of the memory size needed to define

the terminal structure. Each entry in the terminal structure will however be explained in the

order shown.

The first entry nodejio is a short integer variable used for storing the node-number of the

terminal. The actual x- and y-coordinates of the node is stored in a separate node-table which

will be described later.

The l_node entry is used to provide an alternative index number for a terminal, indepen

dent of the node-number of the terminal. It is mainly used in the re-numbering of the nodes and

terminals.

The pointers Jwdterm, bckterm and oppterm are described in the following pictorial

representation of the terminal structure :

Jwdterm • • bckterm
4—t d—>

oppterm

Fig. 5.4.1. A pictorial representation of a terminal structure.

The purpose of the 3 pointers is best explained by describing their usage in representing a seg

mented graph. We first consider the representation of a segment by 2 terminals :

&=»
"l "2 T2

(a) (b)

Fig. 5.4.2. (a) A line segment withend-nodes n\ and n2, and (b) the representation
of the line segment by two terminals. Node n\ is represented by terminal T\ and n2
byT2.

95

In the above, the oppterm pointer on each terminal is used to point at the other terminal on the

segment. Supposethat two segments are connected, as shownin Fig. 5.4.3a. Then the two seg

ments are represented by 4 terminals :

«i n2 n3

(a)

i>
T4

(b)

Fig. 5.4.3. (a) Two connected line segments and (b) their representation by 4 termi
nals. Node n\ is represented by terminalT\% n2by T2 and T$, and /13 by T4 .

That is, the Jwdterm and bckterm pointers are used to link connected segments together. For 3

segments connected to a node, we have the following representation :

96

T*4

(a)
«3

n\

(b)
TA

Fig. 5.4.4. (a) Three line segments connected to a node and (b) their representation
by 6 terminals. This figure is simplified by using fine lines and filled circles to
represent bi-directional links and terminals respectively.

In the above, all the arrows that are shown in Fig. 5.4.2 and 5.4.3 are omitted, every bi

directional link is drawn as a curved or straight line, and the terminal structures are simply

represented by filled circles. This simplified representation will be used again when detailed

explanation is not needed.

The representation of 4 or more segments connected to a single node is straight forward.

There is no limit on the number of segments that can be connected to a single node. Note that

the node-number (nodejio) on every terminal connected to a single node should all be identi

cal.

Since we have decided that we will only handle geometric structures that are closed, we

are guaranteed that there will be no dangling Jwdterm and bckterm pointers on any terminal in

the whole data structure. As an illustration, Fig. 5.4.5a shows a simple but complete geometric

structure bounded by a rectangular simulation window. The representation of the complete

structure in terms of terminals are shown in Fig. 5.4.5b . We shall call the completed graph

formed by the linked-list structures the map of the geometric structure.

(a)

(b)

Fig. 5.4.5. (a) A simple but complete geometric structure and (b) its representation
by terminals.

97

The tri-directional linked-list structure allows one to traverse any region in the geometric

structure in any direction (this is the subject of the next section). In every polygonal region,

we define the convention for traversal as forward motion for counter-clockwise and backward

motion for clockwise traversal of the region. Note that the Jwdterm and bckterm pointers on

every terminal are defined according to this convention.

Each node in a geometric structure represents the vertices of several polygonal regions.

Since there are as many terminals on a node as there are polygonal regions connected to the

node, we assign each terminal on a node to represent the polygonal region immediately to the

left of the terminal. The left hand side of a terminal is defined as the region on the side of the

98

bckterm pointer of the terminal, as illustrated in Fig. 5.4.6

oppterm

LEFT RIGHT

bckterm 4 r~ H • Jwdte

Fig. 5.4.6. The definition of the left and right hand sides of a terminal.

The double precision floating point variable vjzngle of a terminal is used to store the

internal vertex-angle of the polygon at the vertex represented by the terminal.

The ccjn and cc_out entries in the terminal structure are used to specify the material

types on the left and right hand sides of the terminal respectively.

The marker} entry is used as a bit field for general purpose flags. Because different

machine architectures may perform sign extension from a character variable to an integer vari

able differently, the most significant bit of marker! is not used to prevent any possible uncer

tainty due to sign-extension. A character is normally 1 byte and thus we have 7 bits for general

purpose flags. If more flags are needed for every terminal, we may convert the marker! vari

able to a long integer type. On a 32-bit machine, this will give us 32 bits of flags for every ter

minal.

The marker! entry is a reserved variable that is not yet in used. No specific plan has been

made as to how it will be used in the future. It is defined in the terminal structure because it

doesn't cost the terminal structure extra memory space when the entries of the structure are

properly ordered.

term

99

5.5. BASIC TRAVERSAL OPERATIONS

As mentioned in section 5.4 , the coordinates of the nodes are stored in a separate node-table.

Each node-entry in this node-table also contains a pointer to one of the terminals that form the

node. Given a node-number, the pointer in the node-table provides a quick way for locating the

node in the map of the geometric structure. Once the structure map of the geometric structure is

assembled, we can perform many searching operations on the map. The basic operation in most

searching algorithms is the traversal of regions. We will thus attempt to explain the operations

involve in the traversal algorithms.

First, let us call the polygonal regions defined by the nodes and segments the basic

polygons of the map. To traverse the boundary of a basic polygon is simple. Let p be a pointer

that points to a terminal that represents a vertex of a polygonal region. Then, in the C language

notation, the operation

p = p->oppterm->Jwdterm

moves the pointer p a step forward (counter-clockwise) to the next vertex in the basic

polygon. Similarly, the operation

p - p->bckterm->oppterm

moves the pointer p a step backward (clockwise) to the previous vertex in the basic polygon.

The operationis valid regardless of the number of polygons connected to the node pointed to by

P-

The ability to traverse any basic polygon in a simple and unambiguous way is important

but not sufficient for many purposes. Sometimes we may want to define a composite polygon

that encompasses several basic polygons. For example, several connected basic polygons may

be of the same material types and we would like to traverse the outer-boundary of all the

regions with the same material type (this always happen when a material region is cut into

many triangles by a finite-element mesh generator). In such a case, we need to first mark the

boundary of the composite polygon. A bit-field in the marker! entry of the terminals at the ver

tices of the composite polygon may then be set to 1 to mark the boundary of the composite

polygon. The traversal of the composite polygon will then involve the checking of the bit-field

that is used to mark the composite polygon. But the operation is still simple andunambiguous.

100

For example, moving from one vertex of a composite polygon to the next (in the counter

clockwise direction) involves a jump through the oppterm pointer, then a jump through the

Jwdterm pointer with a check of the bit-field in question, and possibly several other jumps

through theJwdterm pointersuntil a terminal is found for which the bit-field in question is set.

5.6. FUTURE ENHANCEMENTS

The data structure described thus far is able to represent a large class of geometric structures.

However, the handling of other quantities such as doping profiles is also important in general

process simulation. We have not adequately addressed the issue of handling distribution of

quantities inside materialor polygonal regions in a general way. A related issue is the difficulty

in interpolating a quantity distribution from an old mesh to a new mesh, given that the mesh

used is often irregular. Future development in the datastructure should include the provision to

simultaneously specify several quantity distributions in any polygonal regions, and the imple

mentation of interpolation algorithms to map data from one mesh to another with a minimal

loss of accuracy.

101

CHAPTER 6.

MESH GENERATION

6.1. INTRODUCTION

The mesh is the assembly of elements used to discretize a geometric structure in a finite-

element analysis. The quality of the mesh often stronglyaffects the results of the finite-element

analysis. Hence, mesh generation is animportantprocess in finite-element analyses.

It is difficult to quantify the quality of a mesh. However, meshes that are qualitatively

smooth and regular usually provide good results in finite-element analyses. Meshes formed of

triangular elements that are nearly equilateral usually exhibitthe smoothness and regular qual

ity. Hence, whenever possible, we should attempt to make elements that are closed to equila

teral triangles.

Mesh generation is a tedious process if done manually. Commercially available finite-

element analysis packages often provide semi-automated mesh-generators that allow the user to

generate meshes interactively usinggraphic terminals. For ourpurpose, that approach may still

be inadequate. For problems with continuously expanding and deforming material regions, it is

often necessary to generate a new mesh at a new time-step of the analysis. For problems that

may take large amount of computing time, it is not convenient for the user to interact with the

program continually until the end of the program execution. Hence, a fully automated mesh-

generator is desirable.

User aided mesh-generation can be considered an art that improves withtheusers' experi

ence. Thus, mesh-generation algorithms are also heuristic in nature. Mesh-generators that can

discretize arbitrary 2D geometric structures can be difficult to implement if a data structure and

algorithms for manipulating arbitrarily shaped geometric structures are not available. As men

tioned in chapter 2, we developed three versions of the mesh-generator because the first two

102

were unsatisfactory. It is worth making a remark here that one of the common difficulties

involved in the development of the first two mesh-generators was in the tracking of connected

polygonal regions. When triangulating a polygonal region, we would invariably add new nodes

on the sides of the polygon. The earlier data structure used did not provide a way of automati

cally updating the boundaries of the polygonal regions connected to the polygon being triangu

lated. The difficulties involved in searching for the other affected polygons prevented us from

successfully implementing a mesh generator that can handle geometric structures with multiple

polygonal regions. In addition to providing simple an unambiguous traversal algorithms, the

current geometric data structure used in CREEP treats a geometric structure as one unit, thus

eliminating the problems ofupdating nodes on region boundaries.

There have been several mesh-generation algorithms published in the literature. The algo

rithms weused are derived from the work of Bykat34, with the following 2-step strategy :

1. Convert all complex polygons to convex polygons.

2. Triangulate all convex polygons.

Complex polygons are polygons with some of the internal vertex-angles larger than 180° (

they are also often referred to as concave polygons). Convex polygons are polygons with all

their internal vertex-angles less than or equal to 180°. Complex polygons are first truncated into

convex polygons. Triangulation of the remaining convex polygons is then simplified because

any cut-line drawn across a convex polygon will only intersect the polygon at two points (

unless the cut-line is tangential to the polygon, which can be easily avoided). We shall

describe the algorithms we used in some detail in the next two sections.

6.2. CONVERSION OF COMPLEX TO CONVEX POLYGONS

Before attempting mesh-generation , we need to decide on the density of the mesh. We define

an average length parameter lave so that the elements created during mesh-generation will tend

to have side-lengths approximately equal to l^e . This parameter will only be used as a guide

line to divide a larger segment into several smaller sized segments. In general, we do not

attempt to remove or move existing nodes in the geometric structure. Existing segments that

103

are much shorter than lave will thus be left unchanged.

The complete division of long segments into segments with length approximately equal to

lave is not performed during the reduction of a complex polygon into convex polygons. In the

process of reducing complex polygons to convex polygons, long segments are cut into shorter

segments only when needed to truncate a largerpolygon into smaller polygons. The first step in

the procedures of the complex to convex polygon-truncation process is to first search for a ver

tex with internal vertex-angle greater than 180°. Following a terminology used by Bykat, we

call such a vertex a reflexive vertex. We draw an internal bisector line at the reflexive vertex, as

illustrated in the following figure:

Fig. 6.2.1. Searching for a cut-point starting from a reflexive vertex R\. The dash-
line is the guiding cut-line, initially chosen as the angle-bisector at R\. Pc is the
closest point of intersection from R \.

The bisector line is only used as a guiding cut-line. The intersection points of this guiding cut-

line with the polygon are calculated. The intersection point closest to the reflexive vertex is

noted and designated as Pc. The distances between this intersection point to the two vertices

immediately before and after this intersection points are computed, and designated as l\ and l2

104

in Fig. 6.2.1. These two distances arecompared.

If both /1 and l2 are greater than 0Jlave , we create a new node (vertex) at the intersec

tion point Pc . A segment is then added across the reflexive vertex and the new vertex to cut the

complex polygon into two polygons.

If the intersection point Pc happens to coincide with an existing vertex, a segment will be

added across that vertex and the reflexive vertex. In practice, we define that such a coincidence

occurs when the computed distance between the intersection point to the nearest vertex along

the polygon boundary is shorterthan a very small number (for example, a number smaller than

le-10). This is to avoid problems that may arise due to the finite-precision of the computer

architecture.

If the above conditions are not true but l\ is smaller than l2, we change the guiding cut-

line to a line drawn from the reflexive vertex through the vertex P \. All of the above pro

cedures of finding the shortest intersection point is performed again. This is to detect the possi

bility that the rotated guiding cut-line may intersect at another point, such as in the case illus

trated in Fig. 6.2.2:

Fig. 6.2.2. A possible case in which the rotated guiding cut-line intersects at a closer
point from the reflexive vertex R i.

105

Note that if the rotated guiding cut-line does not intersect the polygon at a closer point, the

coincidence test will pass at the next round of searchingand testing.

If, however, l2 is shorter than /i, we change the guiding cut-line to a line drawn from the

reflexive vertex through the vertex P2. The remaining test procedures are then similar to that of

the case of /1 less than l2.

There is a possibility that whenwe try to change the guiding cut-line, the cut-line may be

tangential to one of the segments connected to the reflexive vertex, as illustrated in Fig. 6.2.3.

In such a case, we are forced to create a newnode (or vertex) mid-way betweenP i andP2. A

new guiding cut-line will then be drawn from the reflexive vertex through the new vertex. All

the procedures listed above will then be repeated to detected the possibility of shorter intersec

tion points.

106

Fig. 6.2.3. An illustration of the possibility that when the guiding cut-line shown in
dash is rotated clockwise to P2, the new guiding cut-line will be tangential to a seg
ment connected to the reflexive vertex R \.

The resulting two polygons cut from the complex polygon will each go through the reduc

tion procedures recursively until all of the polygons contain no reflexive vertex.

The procedures outlined thus far, if carefully implemented, should be fairly robust and

capable of truncating most conceivable complex polygons into convex polygons. But there is a

possibility that the following situation may occur:

Fig. 6.2.4. A possible case in which a new cutting-segment is too close to another
reflexive vertex R 2.

107

That is, a new segment added to truncate the polygon may be too close to another reflexive ver

tex (R 2 in Fig. 6.2.4). In Bykat's work, a proximity test is performed to check for such a con

dition and invalidate the cut-line. We choose not to do such a test, even though the mesh gen

erated around the second reflexive vertex during the subsequent triangulation procedure may be

ill shaped when compared to an equilateral triangle. This situation rarely occurs in process

simulation problems. If it does, the effect is still dependent on the robustness of the finite-

element algorithms. The effect of poorly formed mesh on the result of our oxidation simulation

has not been fully characterized, although simulation results from CREEP appear to suggest

that the finite-element algorithms used to discretize the oxidation equations are tolerant to

poorly formed mesh. However, in case it is necessary to use a "good" mesh, the user can still

manually place segments across appropriate nodes in the data-file of the geometric structure to

remove some of the reflexive vertices.

108

6.3. TRIANGULATION OF CONVEX POLYGONS

After the reduction of complex polygons into convex polygons, all the sides of the convex

polygons with length significantiy larger than /«„,* are divided into segments each with length

approximately equal to lave (in CREEP, the threshold for such a division is about 1.5/ave). Tri

angulation procedure is then performed on each convex polygon.

If a polygon is already a 3-node triangle, no further triangulation is needed. Otherwise,

we search for the vertex with the sharpest internal vertex-angle. Referring to Fig. 6.3.1, if the

smallest vertex-angle is less than 60°, we draw a virtual line (ie, not a real segment) between

the two vertices P \ and P2 immediately before and after the sharpest vertex Pq :

Fig. 6.3.1. Once the sharpest vertex Pq is found, a line is drawn across its immediate
neighbor vertices P \ and P2. The size of <J>i and fyi determines if a segment will ac
tually be placed across P \ and P2.

If either <j>! or §2 of Fig. 6.3.1 is smaller than 45° , we consider the polygon a "small"

polygon. The polygon is then sent through a procedure called MGJTriangSmallPoly for tri

angulation. This procedure will be described at the end of this section.

If both §\ and (J>2 are greater than 45°, a segment is added across P \ and P2 to truncate the

polygon. The process for triangulation is then recursively applied to the remaining polygon.

If, however, the smallest internal vertex-angle is greater than 135°, the polygon is cut into

two by approximately bisecting the internal angle of the sharpest vertex, as illustrated in Fig.

6.3.2:

Fig. 6.3.2. If the intemal angle at the sharpest vertex P0 is greater than 135°, the po
lygon is cut into two, using a segment (shown as a fine-line) drawn from P0.

109

The truncation is done by using a procedure similarto but simpler than the procedure used for

reducing a complex polygon into convex polygons.

If the sharpest vertex has an internal vertex-angle in the range of 60° to 135°, we search

for a cut-line nearthe sharpest vertex. Consider the polygon shown in Fig. 6.3.3 :

Fig. 6.3.3. A polygon with the internal angle of the sharpest vertex in the range of
60° and 135°.

Let 7*0 be the sharpest vertex and P i and P2 be the 2 neighboring vertices. First, we draw a vir

tual line between P i and another vertex Pf, such that the line P\Pf is closest to being parallel

110

to the segment P 0^2 :

Fig. 6.3.4. Searching for a possible cutting point Pf from P\ so that P\Pf is nearly
parallel to PqP2 .

The angle <J>i and the length l\ arecalculated. Similarly, we draw a virtual line between P2 and

anothervertex Pb, such that the line P2PD is closest to being parallel to the segment PqP :

Fig. 6.3.5. Searching for a possible cutting point Pb from P2 so that P2Pb is nearly
parallel to P oP\.

The angle <j>2 and the length l2are also calculated.

If both <|>i and §2 are smaller than 7.5°, we will consider the polygon a "small-polygon"

and triangulate it with the procedure MGJTriangSmallPoly.

Ill

If <j>i > 7.5° and $2<7.5°, a segment is addedacross P \ and Pf. If <j>2 > 7.5° and <j>i <7.5°,

the segment is added across P2 and Pb instead. If <|>i > 7.5° and <J>2 > 7.5°, the segment is added

across P\ andPf if l\ < l2, or the segmentis added across P2 andPb \fl\> l2. Forthe exam

ple shown in Fig. 6.3.3 through 6.3.5, the cut line will be drawn across P2 and Pb .

If the new (cutting) segment is appreciably longer than lave, it is divided into several seg

ments, each with a length approximately equal to lave • The resulting polygon that contains the

vertex Po is then sent through the procedure MGJTriangSmallPoly for triangulation. The

whole process for triangulation will be applied recursively to the remaining polygon.

In general, a "small" polygon is either a polygon with only a few vertices or a long but

thin polygon. They are triangulated by the procedure MGJTriangSmallPoly , which is

described in the following. Consider the "small" polygon shown in Fig. 6.3.6 :

Pa

Fig. 6.3.6. A "small" polygon.

First, the sharpestvertex P0 is searched for (note that P3 andP4 may actually be the same ver

tex if the polygon has only 4 vertices). Then, we try to draw three different virtual cut-lines.

The first cut-line is shown in Fig. 6.3.7 :

112

Fig. 6.3.7. The first trial cut.

The angles <|>fl , <j>& , <J>C and fa are calculated. The smallest of them is then noted and defined as

♦1.

The second cut-line is shown in Fig. 6.3.8 :

Fig. 6.3.8. The second trial cut

The various angles are calculated and the smallest of them defined as §2.

The third cut-line is shown in Fig. 6.3.9 :

113

Fig. 63.9. The third trial cut.

Again, the various angles are calculated andthe smallest of them defined as $3.

The three angles (j>i, <J>2 and <j>3 arecompared. If §\ is the smallest among the 3 angles, the

cut-line shown in Fig. 6.3.7 is used in the actual truncation process. If $2 is the smallest among

the 3 angles, the cut-line shown in Fig. 6.3.8 is used. If $3 is the smallest angle, the cut-line

shown in Fig. 6.3.9 is used. The remaining polygon then goes through the

MGJTriangSmallPoly procedure again until the whole polygon is triangulated.

6.4. RESULTS AND PERFORMANCE

The mesh-generator implemented in the CREEP program performs quite well on a variety of

test cases. In the following, we show the results of mesh-generation over some test structures.

114

1. Chemical-vapor-deposited oxide film over a silicon step

(a)

(b)

Fig. 6.4.1. (a) A CVD oxide film over a silicon step and (b) the mesh generated over
the oxide region.

2. Local oxidation structure:

(a)

(b)
\

^^^f^N^ \
^ ^\^ \S\S \ /\ lx**J \ //7Vtt""X K rv /x I S.

Fig. 6.4.2. (a) A LOCOS oxide and (b) the mesh generated over the oxide and ni
tride regions.

115

116

Silicon Gate Structure

Ambient

(a) Silicon Gate

Oxide

Sdicon Substrate

(b)

Fig. 6.4.3. (a) A silicon gate structure with oxide grown over it and (b) the mesh
generated over the oxide and silicon gate regions.

4. Cylindrical structure (one quadrant):

(a)

(b)

Fig. 6.42. (a) A quadrant of a cylindrical oxide region and (b) the mesh generated
over the oxide region.

117

118

CHAPTER 7.

APPLICATION EXAMPLES

Although the modeling of silicon oxidation cannot be considered complete because of the lack

of accurate mechanical models for silicon and silicon nitride, the CREEP program can still be

used to investigate many silicon oxidation related problems. In this chapter we present some

example runs of the CREEP program.

7.1. OXIDATION OF LOCOS STRUCTURE WITH THIN NITRIDE

Fig. 7.1.1 shows an initial LOCOS structure (before oxidation). The nitride mask is about 500

A thick, and the initial oxide under the nitride mask is 400 A thick. The simulation window is 2

urn wide by 1 urn high. The structure is oxidized at 1000 °C in wet ambient for 90 minutes,

using 15 uniform time-steps. The input files for this simulation is given in Example 1 of

Appendix B. The time evolution of the profile is shown in Fig. 7.1.2. The time evolution of the

normal traction (positive values for compression) acting on the Si/Si02 interface is given in

Fig. 7.1.3. The total CPU time required to run this example is about 7 minutes on the VAX

8800 computer.

The three figures are the actual hard-copy outputs (reduced in size to fit into this disserta

tion) of the CREEP program. Hence, the various material regions are not labeled in Fig. 7.1.1.

119

\

Fig. 7.1.1. Initial structure for a LOCOS oxide.

Fig. 7.1.2. Profile evolution of the LOCOS oxide.

120

le+10

•le+10

X-coordinate of Si/Si02 interface (um)

Fig. 7.1,2. Time evolution of the normal traction at the Si/Si02 interface.

7.2. OXIDATION OF LOCOS STRUCTURE WITH STIFF NITRIDE

In actual experiments, thicker nitride masks are used to stiffen the oxidant mask. This can also

be done in CREEP. At present, however, CREEP does not integrate the stress in the nitride.

This makes nitride appear to be "softer" than it should be. To simulate the effects of stiff nitride

mask on LOCOS oxidation, the thickness of the nitride mask should be artificially increased.

Unfortunately, the simulation time will become excessive whenmany grid points are generated

in the large nitride mask. An altemative way of stiffening the nitride is to artificially increase

the elastic moduli of nitride. This approach is taken in this example.

Fig. 7.2.1 shows the initial structure for the oxidation, Fig. 7.2.2 shows the time evolution

of the oxidation process and Fig. 7.2.3 shows the time evolution of the normal traction at the

Si/Si02 interface. The size of the simulation window, the oxidation temperature, the total oxi

dation time and the number of time-steps used are the same as those given in the previous

121

example. The input files for this simulation are given in Example 2 of Appendix B. The total

CPU time required to ran this example is about 7 minutes on the VAX 8800 computer.

By comparing the results of this example with those of the previous one, we see that the

lateral encroachment of the oxide under the mask region is reduced by using a stiffer nitride

mask. However, the stress at the Si/Si02 interface is increased, which may result in an unac

ceptable level of defect generation in the silicon substrate. This simulation can thus be used to

help determine the trade-off between a small lateral encroachment and a low defect generation

in LOCOS processes.

Fig. 7.2.1. Initial structure for a LOCOS oxide with stiff nitride.

122

""••™
Fig. 7.2.2. Profile evolution of the LOCOS oxide with stiff nitride.

3e+10

-3e+10

X-coordinate of Si/Si02 interface (um)

Fig. 7.2.2. Time evolution of the normal traction at the Si/Si02 interface.

123

7.3. OXIDATION OF SILICON GATE STRUCTURE

In this example we show the profile evolution of an MOS silicon gate during an oxidation pro

cess (see Example 3 of Appendix B for the input files). Fig. 7.3.1 shows the initial structure.

The simulation window is 2 um wide by 0.7 um high. The structure is oxidized at 1000 °C for

24 minutes in wet ambient, using 6 uniform time-steps. The time evolution of the profile is

shown in Fig. 7.3.2. The CPU time required to run this example is about 11 minutes on the

VAX 8800 computer.

Fig. 7.3.1. Initial profile of a silicon gate structure.

124

Fig. 7.3.2. Profile evolution during the oxidation of the silicon gate.

7.4. FLOW-ANNEAL OF GLASS

The flow-anneal of glass can be considered a subset problem of silicon oxidation which can be

handled by the CREEP program. This is done by simply giving the oxide a lowerviscosity and

a certain value for its surfacetension. In this example the oxidant partial pressure is set to zero

to inhibit the oxidation process. The input files for this example are given in Example 4 of

Appendix B.

Fig. 7.4.1 showsthe (initial) profile of a phospho-silicate glass (PSG) as deposited over

a silicon step. Fig. 7.4.2 shows the time evolution of the PSG profile. The total CPU time

required to runthis example is about30 secondson the VAX 8800computer.

The anneal time and temperature is not relevant here since the viscosity and the surface

tension of the oxide have been arbitrarily chosen in this example (see the input files for the

values used). The implication is that the viscosity and surfacetension of PSG should be exper

imentally characterized.

125

Fig. 7.4.1. Initial profile of a PSG film deposited over a silicon step

Fig. 7.4.2. Profile evolution of the PSG film during the anneal process.

126

7.5. SHRINKAGE OF SPIN-ON-GLASS

Spin-on-glasses (SOG) are sometimes used in IC fabrication to provide a smooth surface

profile over an originally severe topography. Although we have not characterized and fully

understood SOG processes, it is generally understood that most SOG materials shrink

significantly after they are spin-coated on silicon wafers. The shrinkage of SOG can be simu

lated by assuming that the material remains viscous during the shrinking process, and changing

Eqn. 4.4.3.6 to the form

g" = a(e" -

5/3

5/3

S/3
0

(7.5.1)

where S is parameter that controls the shrink-rate (negative values for shrinkage and positive

values for expansion). Here, S has the physical significance of the divergence of the velocity

field everywhere in the oxide.

Assuming an initial profile for an SOG film over a silicon step shown in Fig. 7.5.1, we can

calculate the evolution of the SOG profile during shrinkage. The result is shown in Fig. 7.5.2.

The total CPU time required to run this example is about 30 seconds on the VAX 8800 com

puter. The input files for this example are given in Example 5 of Appendix B.

127

Fig. 7.5.1. Initial profileof an SOG film coated over a silicon step.

128

Fig. 732. Profile evolution of the SOG film duringthe annealprocess.

129

CHAPTER 8.

CONCLUSIONS

The finite-element method has been applied to the simulation of silicon oxidation. Although

not mentioned in any of the previous chapters, the success obtained so far in the modeling work

depends very much on the success of the finite-element algorithms and the other support rou

tines. In the course of this work, several different stress dependent oxidation models were

tested. Without the ability to solve the model equations, we would not have been able to verify

any of the proposed models with sufficient confidence. The speed/efficiency of the finite-

element codes developed also helped us "debug" the CREEP program quickly, because test

problems can be run almost in real time to allow the programmer to interact directiy with the

program.

In this research, we have demonstrated the viability of the finite-element algorithms

applied to the CREEP process simulator. CREEP can be differentiated from other process

simulators by its high level of automation in the mesh-generation and the efficiency of the

overall computer codes. This has been achieved through a careful choice of the data structure

and the finite-element algorithms. As far as we can learn from the literature, CREEP is the first

program that successfully implemented stress-dependent oxidation models which agree well

with the only available set of quantitative data of oxidation on cylindrical silicon structures.

We would like to attribute this to its ability to provide stable stress calculation, using some

finite-element algorithms that were adapted from the field of civil engineering. However, only

perfecdy cylindrical structures have been used to verify the accuracy of the calculated stress.

Further tests are thusneeded to verify the accuracy of the program forarbitrary 2D structures.

CREEP can now simulate a number of different oxidation problems, and some other

creep-flow problems such as glass flow and spin-on-glass shrinkage processes. However,

improvements are still needed even in the area of silicon oxidation. Further modeling work is

needed to improve the prediction accuracy of LOCOS and other interesting structures. Non-

130

linear visco-elastic and/or elasto-plastic models are needed to describe the mechanical proper

ties of silicon dioxide, silicon and silicon nitride. Models that accurately describe the oxidation

rate around a sharp convex silicon corner are also needed to accurately simulate the oxidation

of, for example, trench like structures. Heuristic algorithms oudined in section 4.6.5 and 4.6.6

to handle triple points should be characterized. The algorithms outlined in section 4.5.1 and

4.5.2 for the visco-elastic formulation also need to be characterized. At every time-step in the

visco-elastic formulation, the stress-values from the preceding time-step are required to calcu

late the stress-relaxatioa Since a new mesh is generatedat every time-step of the computation,

the stress-values from the previous time-step must be interpolated to the new mesh. Thus, algo

rithms for accurately interpolating data from one mesh to another must be developed to imple

ment the visco-elastic models.

It should be pointed out that once the interpolation algorithms have been developed, many

other important simulation capabilities can be added to CREEP with relative ease. An impor

tant class of process simulation is the impurity diffusion simulation. Impurity diffusion always

occurs simultaneously with silicon oxidation, and the two processes interact with each other.

The finite-element algorithms for diffusion processes are quite well known, and we now have

the major support routines (in particular, the data structure and the mesh-generator). The

difficulty that can be foreseen at present is the interpolation of the impurity concentration data

from one mesh to another mesh. Since CREEP is intended to be a framework for a general pur

pose process simulator, a high priority should be given to the development of the interpolation

algorithms. The interpolation algorithms should be developed as an extension of the geometric

data structure described in chapter 5.

Another two obvious capabilities that can be introduced into CREEP are etching and

deposition simulations. The geometric data structure used in CREEP is ideal for handling

multi-layer etching and deposition simulation, because most conceivable geometric structures

encountered in process simulation can be represented by the data structure.

Finally, we should remark again on the ad hoc nature of applying a simple time-stepping

scheme and linear strain-rate (infinitesimal deformation) theory to the large deformation prob

lem of silicon oxidation. Although the results of the numerical simulation for silicon oxidation

131

appear to be accurate within the constraint of the accuracy of the models used, no attempt has

been made to prove the applicability of the linear strain-rate theory in silicon oxidation model

ing. In the future, the present formulation should be compared to the formulation using the

finite-deformation theory. Appropriate changes should be made if the present formulation is

found to generate significant amount of errors. However, it should be noted that the field of

numerical methods for finite-deformation is relatively new to civil and mechanical engineering,

in the sense that it has only been a subject of intense research in the past two decades. Future

research in process simulation clearly requires a thorough multidisciplinary understanding of

integrated circuit processes, continuum mechanics of finite-deformation and the numerical algo

rithms required to solve the geometrically non-linear problems encountered in the finite-

deformation ofmany different materials.

132

REFERENCES

1. L.W. Nagel, SPICE2 - A Computer Program to Simulate Semiconductor Circuits, ERL

Memo No. ERL-M520, UC Berkeley, May 1975.

2. D. Chin, S.Y. Oh, S.M. Hu, R.W. Dutton, and J.L. Moll, tTwo-Dimensional Oxidation,"

IEEETrans. Electron Devices, vol. ED-30, p. 744,1983.

3. H. Matsumoto and M. Fukuma, "A Two-Dimensional Si Oxidation Model Including

Viscoelasticity," IEDMTech. digest, p. 39,1983.

4. A. Poncet, "Finite-Element Simulation of Local Oxidation of Silicon," IEEE Trans.

CAD, vol. 4, no. 1, p. 41, Jan. 1985.

5. L. Borucki, H.H. Hansen, and K. Varahramyan, "FEDSS — A 2D Semiconductor Fabri

cation Process Simulator," IBMJournal ofReserach and Development, vol. 29, no. 3, p.

263, May 1985.

6. T.L. Tung and D.A. Antoniadis, "A Boundary Integral Equation Approach to Oxidation

Modeling," IEEE Trans. Electron Devices, vol. ED-32, no. 10, p. 1954, Oct. 1985.

7. C. Rafferty, SRC-Berkeley-Stanford Technology Transfer Course, July 8 1986.

8. R.B. Marcus and T.T. Sheng, "The Oxidation of Shaped Silicon Surfaces," /. Electro-

Chemical Soc, vol. 129, no. 6, p. 1278, June 1982.

9. J.A. Stricken, W.S. Ho, E.Q. Richardson, and W.E. Haisler, "On Isoparametric vs Linear

Strain Triangular Elements," International Journal for Numerical Methods in Engineer

ing, vol.11, p. 1041,1977.

10. B.E. Deal and A.S. Grove, "General Relationship for the Thermal Oxidation of Silicon,"

/. Applied Physics, vol. 36, no. 12, p. 3770, Dec. 1965.

11. R.B. Marcus, personal communication, 1984.

12. D.B. Kao, J.P. McVittie, W.D. Nix, and K.C. Saraswat, "Two-dimensional silicon oxida

tion experiment and theory," IEDMTech. digest, p. 388,1985.

133

13. E.P. EerNisse, "Stress in thermal Si02 during growth," Applied Physics Letters, vol. 35,

no. 1, p. 8,1 July 1979.

14. R.D. Corsaro, "Volume relaxation of dry and wet boron trioxide in the glass transforma

tion range following a sudden change of pressure," Physics and Chemistry of Glasses,

vol. 17, no. 1, p. 13,1976.

15. Glasstone, TheTheoryofRate Processes, McGraw-Hill Book Company, 1941.

16. J.H. Li and D.R. Uhlman, "The Flow of Glass at High Stress Levels. I. Non Newtonian

Behavior of Homogeneous O.O8RD20 0.92SiO2 Glasses," /. Non-Crystalline Solids, vol.

3, p. 127,1970.

17. G. Hetherington, K.H. Jack, and J.C. Kennedy, "The Viscosity of Vitreous Silica," Phy

sics and Chemistry ofGlasses, vol. 5, no. 5, p. 130, Oct. 1964.

18. R. Bruckner, "Properties and Structure of Vitreous Silica. II," /. Non-Crystalline Solids,

vol. 5, p. 177,1971.

19. J.R. Ligenza, "Oxidation of Silicon by High Pressure Steam," /. Electrochemical Soc,

vol. 109, no. 2, p. 73, Feb. 1962.

20. R.R. Razouk, L.N. Lie, and B.E. Deal, *'Kinetics of High Pressure Oxidationof Silicon in

PyrogenicSteam," /. Electrochemical Soc, vol. 128,no. 10, p. 2214, Oct. 1981.

21. A.J. Moulson andJ.P. Roberts, Trans. Faraday Soc.,vol. 57, p. 1208,1961.

22. P.J. Burkhardt, "Tracer Evaluation of Hydrogen in Steam-Grown Si02 Films," /. Elec

trochemical Soc, vol. 114, no. 2, p. 196, Feb. 1967.

23. G.J. Roberts and J.P. Roberts, "An Oxygen Tracer Investigation of the Diffusion of

'Water' in Silica Glass," Physics and Chemistry of Glasses, vol. 7, no. 3, p. 82, June

1966.

24. G.W. Scherer, Relaxation inGlassandComposite, Jonh-Wiley and Sons.

25. D.B. Kao,'Two-Dimensional Oxidation Effects In Silicon — Experiments and Theory,"

Ph.D. Thesis (Stanford Univ.), June 1986.

134

26. J.G. Dil, J.W. Bartsen, R.D.J. Verhaar, and A.E.T. Kuiper, "Locos with Thick and Thin

Nitride Spacing," Philips Journal ofResearch, vol. 40, no. 2, p. 72,1985.

27. Kazuhito Sakuma, Yoshinobu Arita, and Masanobu Doken, "A New Self-Ahgned Planar

Oxidation Technology," /. Electrochemical Soc, vol. 134, no. 6, p. 1503, June 1987.

28. N. Novedo , Two Dimensional Characterization ofLine Edge Profile of Poly-Crystalline

Silicon Oxidation, Master Thesis (UC Berkeley), Jan 1980.

29. O.C. Zienkiewicz, TheFinite ElementMethod, McGraw-Hill Book Company.

30. E.P. Popov, Introduction to Mechanics ofSolids, Prentice Hall, Inc..

31. P. Sutardja , Finite element method in oxidation process simulation, Master Thesis (UC

Berkeley), May 1985.

32. C.R. Calladine, Plasticity for Engineers, Ellis Horwood Limited, 1985 .

33. K. Lee , SIMPL-2 (Simulated Profiles From Layout — Version 2), Ph.D. Thesis (UC

Berkeley), July 1985.

34. A. Bykat, "Automatic Generation of Triangular Grid: I — Subdivision of a General

Polygon into Convex Subregions. II — Triangulation of Convex Polygons," Interna

tional Journal for Numerical Methods in Engineering, vol. 10, p. 1329,1976.

APPENDIX A

CREEP User Manual

135

136 CREEP User Manual CREEP(1)

NAME

creep - A 2D Creep-Flow Process Simulator

SYNOPSIS

creep [filel ... fileN ... -x command-string -t]

DESCRIPTION

Creep is a new 2D creep-flow process simulatororiginallydesigned to solve creep-flow related
problems encountered in IC fabrication processes. Its current modeling capabilities include
silicon-oxidation, glass-reflow and spin-on-glass (SOG) shrinkage processes. In anticipation for
the future-expansion of the creep program, we have organized creep into modules running
under an "arithmetic-shell", which we called the creep-shell. The emphasis of this "arithmetic-
shell" is in number-programming, as opposed to the string-programming emphasized in the
UNIX "csh". See CREEP-SH(l) for a more detailed discussionof the shell's capabilities.

Creep receives instructions either from the standard input (interactive-mode), from input-files,
or direcdy from its arguments. If no argument is provided to creep, it reads instructions from
the standard input. If file-names are given as its arguments, then the instructionscontain in the
files are executed in the order that the files are ordered in the argument-strings. Note that
instructions contained in different files are not concatenated, and hence each file must contain a
"complete set" of instructions (eg, the overall structure of conditional statements must be com
plete within each file). A non-fatal error-condition encountered in one file only affects the pro
gram execution for that file. If one of the name of the input-filegiven is a null-string, creep will
read from the standard input in place of that file. To provide instructionsto creep direcdy from
creep's arguments, use the arguments:

-x command-string
where command-string is the instruction to be executed by creep. Naturally only commands
that do not occupy more than one line can be executed this way.

ENVIRONMENT PARAMETERS

Creep reads the environment parameter "TERM" to find out the terminal type the graphics out
put of the program is to be sent to. Currendy creep only recognizes the hp2648 and the xterm (
X-window). If an xterm is specified, creep will read another environment parameter
"DISPLAY" to find out the name of the X-server. In UNIX, the environment parameter is set
using the setenv command.

Occasionally, one might one to run the program with no graphics output. The -t option
instructs creep to send all graphics output to a null device. Graphics output can be obtained
again by using the tset command described in CREEP-SH(l).

AUTHOR

Pantas Sutardja

DIAGNOSTICS

Error messages are generally send to stderr, and interactive prompts to stdout.

BUGS

See the manual pages for the available commands.
Please report undocumented bugs to the author.

CREEP-SH(l) CREEP User Manual 137

NAME

creep-shell - An arithmetic-shell for the CREEP program.

DESCRIPTION

The creep-shell is invoked automatically when creep runs. It is called an arithmetic-shell
because it supports arithmetic operations and conditional/loop statements based on arithmetic
results.

Lexical Structure

With the exception of the control statements (loops and conditional structures) and some very
special custom-commands, one can insert several commands into one line. In such a case, the
commands must be separated by a semicolon ";" (for this reason, we call the semicolon a shell
meta-character). A line which contains one command need not be terminated by a semicolon.

Commands and Key-Words

The interpreter reads the first word in a command to determine the type of the command, and
hence the way to execute the command input. The first word used is known as a key-word (
other words in a command can also be a key-word). Key-words are restricted to 15 characters.
Longer key-words will be truncated to 15 characters. Keywords should be composed of
alphanumeric characters and the underscore character. Further, the first character of a key-word
must be either the underscore character or one of the alpha-characters. Key-words are case-type
sensitive.

A key-word can be either a command, an integervariable,a floatingpoint variable, a string vari
able, a mathematical function, a module name, or a conditional/loop control command. The
shell recognizes the different types of key-words and execute the command inputs according to
their context.

Modules and Hierarchy

When the creep program is first initiated, it will enter its root module. Within the root module
lies a set of commands, variables and functions that will be described later. Other modules can
be installedunder the root module duringcompilation time. At present, there are only two lev
els in the module hierarchy the root module and its sub-modules. There are currently
several sub-modules installed. They are the data-structure module (ds_mod), the plotter
module (plotter) and the oxidation/annealing simulation module (annealer). Each of these
sub-modules contains its own set of commands, variablesand strings that can be accessed exter
nally. Thereare alsoseveral othermodules installed within the creep program. But theyare not
direcdy accessible to the user. Theiroperations are controlled by othermodules within thepro
gram.

To enter a sub-module, simply enter the name of the sub-module. To exit a sub-module, use
exitm . It is possible to enter another sub-module from a current module. In such a case, each
exitm commandwill cause a return to the previous module. Note that it is impossible to exit the
first (root) module.

Search Paths

When a key-word is read, the shell searches the current module to determine its type. If the
key-word is not found in the current module, the shell will then search the root module.

138 CREEP User Manual CREEP-SH(1)

Extension of the search path is possible by the use of the path command, which will be
described later.

Note that there can be identical key-words existing within different modules. Further, they can
havemeaning from one module to another. So there is a possibility of confusion when using a
key-word thatis defined in more than onemodule. It is up to theusertoprevent theconfusion.

The root module contains a set of key-words that are oftenusedand meant to be unique (such
as the loop-control and conditional commands). The programmer should not use these key
words in the sub-modules. Otherwise, it is impossible to access the command that resides in the
root module when one enters a sub-module which contain the identical key-word. For added
protection, the important commands that reside in the root-module are internally labeled to be
unique. Theusercannot externally assign an identical key-word fora new variable or string.

Variables and Strings

The following is a set of commands relatedto variables andstrings:

float variablejiame create a floating point variable called variable_name

int variable_name create an integer variable called variablejiame

rm_var variablejiame remove a (float or int) variable variablejiame

set stringjiame = string_sequence
create a stringvariable called stringjiame, and assign to it the string
given by string_sequence. String_sequence mustbe enclosed by two
double-quotes if it contains any blank character.

unset stringjiame remove thestring variable called stringjame.

Arithmetic Operations

The contentsof int or float variables can be assigned by the command:
variablejiame - arithmetic expression
eg, Probl = 1 - exp(- lambda * x)

As mentioned earlier, the shell recognizes if the first word in a command is an int, a float or
other types of commands. If the first word is an int or a float, then an assignmentcommand is
expected. If, for example, the = character is missing, the commandwill be considerederroneous
and thus aborted.

There are a number of arithmetic operators supported. The evaluationof a complex expression
is determined by the precedence of theoperators. Theoperators supported are (starting with the
one having the highest precedence):

primary operators : () and arithmetic functions

unary operators : + -

binary operators : * /
+ -

CREEP-SH(l) CREEP User Manual 139

i=

Notice that the precedence of the operators are the same as those used in the C programming
language. The operators (><>=<= = != && II) are relational operators that result
in 0 (false) or 1 (true). Thus 1 != 0 (1 not equal to 0) is 1 (true), and so on. They are mainly
used in conditional statements. Since > and < are used as binary operators, they are not used as
input/output redirection characters as in the UNIX sh and csh.

Mathematical Functions

A number of functions are provided for used in arithmetic expressions. They are (including
their arguments):
sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(x,y),
sinh(x), cosh(x), tanh(x), asinh(x), acosh(x), atanh(x),
exp(x), log(x), aloglO(x), loglO(x), pow(x,y)
abs(x), ceil(x), floor(x), sqrt(x)
These functions are the same as those implemented in the UNIX math library for the C program
ming language.

Shell Meta-Characters

Meta-characters are characters with special meaning to the shell. We shall divide the meta
characters into 2 classes — primary and secondary. The primary meta-characters are those
characters which are interpreted and processed immediatelyby the shell. There are only a few
of these : { ; \ $ } (not includingthe curly braces). As mentioned earlier the semicolon (;)
is used as a command separator. The $ is used as a macro-expansion facility. Its usage is $var
or Sstring , where var is a floating point or integervariable, and string is a string variable. If var
or string exists, then $var is replaced by the value of var and Sstring substituted by its content.
To get the literal meaning of";" and "$", use the sequence\; or N& To get the backslash charac
ter \ itself, use \\. ie, 'V is also a meta-character. The backslash is also used to make two lines
into one by placing it just before the newline (or return) character. Any other character that
immediately follows the backslash is converted to the character itself alone.

The secondary meta-characters are those processedand interpreted by the individualcommands
called. These characters can mean differendy to different commands. The most common of
these is the double-quote character (") that is used to enclosed a string that contains blanks.
Another one is the % character that is used to obtain the literal meaning of the double-quote (
usage : %") and the literal meaning of the %character itself (usage :%%). The " and %are
secondary meta-characters in commands that expect to read strings.

Other Special Characters

The # sign is a comment-indicator if it appears as the first non-blank character in a statement
Everything after the # sign till the end of the line is simplya comment and thus ignored by the
shell.

The ! (exclamation) is a shell-escape character if it appears as the first non-blank character in a
statement. It tells the shell that everything after the ! sign till the end of the line are to be exe
cuted by the system shell, without first performing the usual input-processing (such as macro-
substitution). The shell command should be used if input-processing is required before the
shell-escape.

140 CREEP User Manual CREEP-SH (1)

The . (dot) tells the shell to exit the current interactive-session, if it is entered as the first non-
blank character in a line.

Conditionals

See IF-ELSE(l) for more detail

Loop Control

See LOOPS(l) for more detail

Predefined String and Variables

There are several predefined strings and variables. They are:

prompt This is a string which is used for the interactive prompt Defaulted to
contain

creep > .

on This is an int variable that is mainly used as a flag. It is set to 1 and is
read-only.

off This is an int variable that is mainly used as a flag. It is set to 0 and is
read-only.

true Same as on .

false Same as off.

Other Commands in the Root Module

path modulej. . . . module_N
Search for the input key-word, starting from the current module, then the
root module, modulej. , module_2 . . . , and module_N in sequence
until the key-word is found.

exitm Exit from the current module to the previous module.

print arithmetic expression
Print the value evaluated from the arithmetic expression.

p arithmetic expression
same as print.

shell shell escape expression
This is another way of performing a shell escape. Input processing is first
performed on the arguments of this command before escaping to the
operating system shell.

CREEP-SH(1) CREEP User Manual 141

stdout [outputJile]
Redirect the standard output to a file called outputJile (using append-
mode). With no argument, this command sends standard output back to
the system's standard output. Note that some diagnostic messages from
certain commands are direcdy sent to the system's standard output and
thus cannot be redirected.

stderr [errorJile]
Redirect the standard error to a file called errorJile (using append-mode
). With no argument, this command sends standard error back to the
system's standard error. Note that some diagnostic messages from certain
commands are direcdy sent to the system's standard error and thus cannot
be redirected.

echo [-n] anything

interactive

echo anything to the standard output. Carriage return is suppressed with
the -n argument

Enter an interactive input mode.

source filejiame execute the commands infilejiame

exit exit one level from a source file or interactive mode.

killj> kill the program unconditionally.

rename key-word! key-word!
Rename key-word! to key-word!. Many key-words pre-defined by the
program cannot be renamed (find them out for yourself). We do not
recommend the use of this command as it may create great confusion.

tset term-type This is used for the graphics screen. Currendy supported term-types are
"hp2648", "xterm" (X-window system) and the "null" device.

AUTHOR

Pantas Sutardja

DIAGNOSTICS

Error messages are generally send to stderr, and interactive prompts to stdout

BUGS

Currendy, the shell does not recognize the following arithmetic construction
var! = var2 binary-op -var3

Please use the following construction instead :
var! = var2 binary-op (- var3)

See the manual pages for other bugs in the available commands.
Please report undocumented bugs to the author.

142 CREEP User Manual CREEP-SH(l)

EXAMPLE

This is an example file.

Anything after the # sign is a comment string

Blank input lines are allowed :

int i ; # create an integer called i
float x ; # create an integer called x

create a string and assign something to it :
set st = "Hello there" ;

i = 12 ; # assign value 12 to i
x = 1.4 ; # assign value 1.4 to x

print i * 4 ; # print the value of the expression (= 48)
print exp(x) ; # print the value of exp(1.4)

The following prints "The value of i is 12 "
echo The value of i is $i ;

The following prints "x = 1.4 "

echo x = $x ;

The following prints "Hello there "
echo $st ;

The following calculates the approximate value of e
x = 1.001

repeat 999

x = x * 1.001

end

The above take a while to complete

print x ; # print the value of x (= 2.71692)

The following executes the echo command 3 times:
foreach string Hello. "Welcome here." "Thanks for learning this."

echo $string

end

and the results are :

Hello.

Welcome here.

Thanks for learning this.

The following will print numbers from 0 through 9 twice
i » 0

while (i < 20)

if (i < 10)

print i

else

print i - 10
end

i = i + 1

end

CREEP-SH(l) CREEP User Manual 143

The following repeats the above commands, but now the output goes
to the file "outputfile"
stdout outputfile ; # send standard output to "outputfile"
i = 0

while (i < 20)

if (i < 10)

print i

else

print i - 10
end

i = i + 1

end

stdout ; # send standard output back to the system stdout.

The following prints the pattern
A

AA

AAA

AAAA

AAAAA

set st = A

repeat 5

echo $st

- set st = A$st

end

144 CREEPUser Manual IF-ELSE (1)

NAME

if, elseif, end - conditional control-statement

SYNOPSIS

if arith. expr.
command-group 1

elseif arith. expr.
command-group 2

end

DESCRIPTION

The if and elseif are statements for conditional controls. The arguments are arithmetic-
expressions. If theargument of the if evaluates toa non-zero value, thefirst group of commands
are executed. Thereafter, execution continues after the end statement. The elseif commands
provide alternative conditionals. There can be any number of elseif in the if-else conditional
structure. The conditional structure is terminated by the end command. The effect of an error-
condition in the evaluation of an arithmetic-expression is the sameas a false or zero condition.

AUTHOR

Pantas Sutardja

BUGS

For every source file, the total level of loop-nesting and the if statements cannot exceed a
specified number which is pre-determined during compilation time (currently set to 16).
Unpredictable results will occur if this restriction is violated.

LOOPS (1) CREEP User Manual 145

NAME

foreach , repeat, while, end, break, continue — loop-control facilities

SYNOPSIS

foreach strname string! string! ... stringN
commands

end

repeat arith. expr.
commands

end

while arith. expr.
commands

end

DESCRIPTION

The foreach command allows the user to substitute a list of strings in a loop. The body of the
loop will be executed once for each of the strings in the list. A string is defined as a series of
characters enclosed between two double-quotes ("). The quotes can be omited if the there is no
blank character in the string. To get literal double-quote, use \"
Strname is any string variable. It is created, if it doesn't exist prior to the foreach command.
Strname is set to the strings,one at a time, with each pass of the loop.

Examples:
foreach stringname "GutenTag" CREEP "Das Beste Programm"

echo $stringname
end

The command echo string will be executed 3 times. This will produce an output that
looks like:

Guten Tag
CREEP

Das Beste Programm

The repeat command is the simplest of the looping facilities. The argument it takesis an arith
metic expression which evaluates to a number. In case this number is not an integer, it is trun
cated to an integer n. If n is less than one, the loop is not executed. Otherwise, the loopis exe
cuted n times. In caseof anerror in theevaluation of thearithmetic expression, theloop will not
be executed.

The while command executes the loop as longas the arithmetic-expression does not evaluate to
zero (real-number). In case of an error in the evaluation of thearithmetic-expression, the loop
will not be executed.

The end statement is usedto terminate thestructure of all loopcommands

The break statementis used to force a breakfrom the inner-most loop thatcontainsit

The continuestatement is used tojump to the top of the inner-most loop to force the next loop-
iteration.

146 CREEP User Manual LOOPS(l)

RESTRICTIONS

General: All loop-control commands cannotshare its input-line with other commands. Further,
they (the key-words) should not be generatedby macro-substitution.

Specifics:
foreach : macro-substitution that appears in thearguments of foreach is expanded only onceat
the time the loop is entered.
repeat: the arithmetic-expression is evaluated onceat the timethe loopis entered, and so also is
any macro-substitution that appears in the arithmetic-expression.
while : the arithmetic-expression is evaluated as many times as it takes before the loop breaks.
So, if there is any macro-substitution in the arithmetic-expression, removal of the macro-
variable within the loop will cause an error condition.

AUTHOR

Pantas Sutardja

BUGS

For every source file, the total level of loop-nesting and the if statements cannot exceed a
specified number which is pre-determined during compilation time (currently set to 16).
Unpredictable results will occur if this restriction is violated.

PLOTTER(l) CREEP User Manual 147

NAME

plotter - data-plot module

DESCRIPTION

The built-in plotter module in creep provides the capability to do simple x-y plot In addition to
generatingdata-ploton the graphicsscreenof the terminals that creep supports, it also generates
postscript output for hard-copy printing on postscript printers such as the Apple LaserWriter.
Since the plotter is a module widiin creep, the commands belonging to this module can be
accessed by either entering the plotter moduleor setting the path command to access the plotter
module.

Commands and Variables

window xsize ysize
Set the size of the plotting window. The default size is 550 by 275 points or
pixels.

origin xyffset yj>ffset
Set the location of the lower-left corner of the plotting window relative to
the lower-left corner of the graphics screen (or paper in case of a postscript
plot). The default location is (80,80) in points or pixels.

x_range xjow xjiigh
Set the range of the x-axis. There is no default (ie, auto-ranging).

y__range yjow yjiigh
Set the range of the y-axis. There is no default (ie, auto-ranging).

read dataJile Read x-y paired data from the file dataJile . There is a limit of 1000data
pairs. Unpredictable result may occur if this limit is not observed.

r datajde An abbreviation of read.

ra col# xcol ycol arrayJile
Read x-ypaireddata from the filearrayJile. The data in the file is assumed
to be organized in an array format, with colUof columns. The x-axis is read
from the xcol-\h column, and the y-axis is read from the ycol-\h column.
Columns are numbered from 1 through coffl. The limit that applies to the
read command applies to this command as well.

get_range Perform x_range and y_range from the data read by read or ra.

plot / -rg] Plot a graph of the x-y data on the graphics screen. Withoutany argument,
the x-y ranges are automatically determined from the data. With -r , the
ranges are determined by x_range and y_range or get_range. The -g
option plots the graph without grids. The -rg option turns off both auto-
ranging and grids.

148

clear

cl

xlog

ylog

xlin

ylin

Iog_drange

pl

uxlabel

lxlabel

lylabel

rylabel

uxframe

Ixframe

lyframe

ryframe

CREEP User Manual PLOTTER(l)

Clear the graphics screen.

A synonym of clear.

Set the x-axis to logarithmic scale.

Set the y-axis to logarithmic scale.

Set the x-axis to linear scale. This is the default.

Set the y-axis to linear scale. This is the default

An integer variable. This is used to set the dynamic range (in number of
decades) for the fine grids of log-plot If the range of the data in number of
decades is larger than logdrange, the fine grids will not be drawn. How
ever, the fine grids will always be drawn if the range of the data is within 5
decades, regardless of the value of log_drange.

An integer variable (defaulted to 1). This is the line pattern for the data-
line. Currendy defined 11 line-patterns. The line-patterns are similar or
identical to the line-patterns on the hp2648 terminals (1 = solid-line , 7 =
dotted-line, 11 = point-plot).

An integer variable (defaulted to 7). This is the line pattern for the grids.

This is a string variable that is defaulted to be null. It is used to to write a
label on top of plotting window (upper x-label).

Initially a null-string. This is the lower x-label.

Initially a null-string. This is the left y-label.

Initially a null-string. This is the right y-label.

This is an integer variable used as a flag to instruct the plotter to draw the
upper-x window frame. It is initially set to 1 (draw uxframe).

This is an integer variable used as a flag to instruct the plotter to draw the
lower-x window frame. It is initially set to 1 (draw Ixframe).

This is an integer variable used as a flag to instruct the plotter to draw the
left-y window frame. It is initially set to 1 (draw lyframe).

This is an integer variable used as a flag to instruct the plotter to draw the
right-y window frame. It is initially set to 1 (draw ryframe).

PLOTTER(l)

uxscale

lxscale

lyscale

ryscale

uxtick

Ixtick

ly'tick

rytick

lmark

CREEP User Manual 149

This is an integer variable used as a flag to instruct the plotter to print scale-
coordinates on the upper-x window frame. It is initially set to 0 (no uxscale
)•

This is an integer variable used as a flag to instruct the plotter to print scale-
coordinates on the lower-x window frame. It is initially set to 1 (draw
lxscale).

This is an integer variable used as a flag to instruct the plotter to print scale-
coordinates on the left-y window frame. It is initially set to 1 (draw lyscale
)•

This is an integer variable used as a flag to instruct the plotter to print scale-
coordinates on the right-y window frame. It is initially set to 0 (no ryscale
).

This is an integer variable used as a flag to instruct the plotter to draw scale-
ticks on the upper-x window frame. It is initially set to 1 (draw ticks).

This is an integer variable used as a flag to instruct the plotter to draw scale-
ticks on the lower-x window frame. It is initially set to 1 (draw ticks).

This is an integer variable used as a flag to instruct the plotter to draw scale-
ticks on the left-y window frame. It is initially set to 1 (draw ticks).

This is an integer variable used as a flag to instruct the plotter to draw scale-
ticks on the right-y window frame. It is initially set to 1 (draw ticks).

Initially a null-string. If it is set to any string, the string will be printed out
to the right of the last data-point plotted.

The following are only for postscript plot:

fw

pw

Pt

A floating point variable (defaulted to 1.0). This is the thickness of the pen
for drawing the plotting window frame (in points).

A floating point variable (defaulted to 0.5). This is the thickness of the pen
for drawing the data-line (in points).

An integer variable (defaulted to 0). It is used to define the point type
when pi = 11 (0 : dot , 1 : cross , 2 : delta , 3 : del , 4 : square , 5 :
diamond/rhombus , 6 : circle , 7 : filled circle , 8 : filled diamond , 9 : filled
square, 10: filled del; 11: filled delta).

psplot [outputJle]
A postscript version of the plot command. Write output to the outputJle if

150

append

autor

grid

CREEP User Manual PLOTTER(l)

it is specified. Otherwise write output to a file called "GX.ps.out" . Before
sending the output file to a postscript printer, you need to concatenate the file
with a header file ("creep.ps.pro") and a trailer file ("creep.ps.trail"). On
UNIX, the usage is:

cat creep.ps.pro outputJle creep.ps.trail I lpr -^postscriptj>rinter

An integer variable used as a flag. Initially set to 0 (false). This is used to
determine if the output of psplot will be written to a new file or merely
appended to an existing file.

An integer variable used as a flag. Initially set to 1 (true). This is used to
determine if psplot will use auto-rangingon the data (default) or simply take
the ranges set by x_range and y_range.

An integer variable used as a flag. Initially set to 1 (on). This is used to
determine if the grids will be drawn when doing psplot.

AUTHOR

Pantas Sutardja

FILES

You should have these two filesif you want to use psplot:
creep.ps.pro

creep.ps.trail

DIAGNOSTICS

Error messages are generally send to stderr, and interactive prompts to stdout

BUGS

Vertical labels (lylabei and rylabel) cannot be printed on an X-window. Otherwise there
seems to be no serious bugs. Just impossibleto pleaseeveryone.

DS_M0D(1) CREEP User Manual 151

NAME

ds_mod - data-structure module

DESCRIPTION

The data-structure module is used to handle the 2D geometric information. It is currendy being
used by the oxidation simulator. It is separated from the oxidation simulator (annealer module
) because it is designed to be rather general purpose so that it may support other simulation
modules in the future. As with any other (sub-) module, it is invoked by entering the name of
the module (dsmod). Access of the commands belonging to this module can also be made
from other modules by appropriately setting the path command.

Commands and Variables

struct structureJle
Read the geometric information stored in structureJle. The format of the
input file is explained under File Format.

save_struct [structureJle J
Save the geometric information stored in the data-structure module to
structureJle. If a file is not given, the information will be written to the file
".creep.struct".

draw [regionjiumber J
Generate a plot of the structure. The regionjiumber is (currendy) an
integer value for specifying the material-region that needs to be plotted (1:
ambient region , 2 : rigid substrate , 3 : silicon , 4 : oxide , 5 : nitride).
Without the argument, all the material regions within the structure will be
plotted.

draw_top outputJle
Print the x and y coordinates of the top profile of the structure. Output is
overwritten to outputJle .

psdraw [+p] Generate a postscript plot of the whole structure. With the +p argument, the
nodes in the structure will also be shown. The output is appended to the file
"GX.ps.out". As with any postscript file generated by creep, the output file
must be concatenated with a header file ("creep.ps.pro") and a trailer file (
"creep.ps.trail") before it can be sent to a postscript printer.

plot_window xj>Jf yj>ff xsize ysize
Set the offset and the size of the plotting window for draw and psdraw.
Note that the plotting window will not be drawn by draw or psdraw. The
offset is the relative offset of the lower-left corner of the plotting window
from the lower-left corner of the graphic-screen or paper. Default values for
the argumentsare 80 80 550 275 , all in points (1/72 inch) or pixels.

plot_range xjow yjow xjigh yjigh
Set the range values of the plotting window. The x-coordinates of the left-
edge and right-edge of the window are set to xjow andxjigh respectively.

152 CREEP User Manual DS_M0D(1)

The y-coordinates of the lower-edge and upper-edge of the window are set
to yjow and yjigh respectively.

File Format

The structure file should look like the following:

nodes

0 xO yO

1 xl yi
2 x2 y2
3 x3 y3
4 x4 y4

5 x5 y5

N xN yN

segments

0 nl n2 ml m2

1 nl n2 ml m2

3 nl n2 ml m2

nl n2 ml m2

In the above, there are N nodes and S segments in thestructure. Under every node-entry, the
first (integer) number is the node-number. Thesecond and third (real) numbers are thex and
y coordinates of the node. The first four nodes (node 0 through 3) are reserved for the corner
nodes of the simulation window (the whole structure mustbe enclosed in a rectangular simula
tion window). Node 0 , 1 , 2 and 3 are respectively located at the lower-left , lower-right,
upper-right and upper-left corners of thesimulation window. Theother nodes are located any
where else widiin the simulation window.

Under every segment-entry, the first (integer) number is the segment-number, the second and
third (integer) numbers are the node-numbers of theendpoints of the segments, and the fourth
and fifth (integer) numbers are the identification numbers for the materials on the two sides of
the segment. The first material entry (ml) spans the region counter-clockwise from nl to n2.
The other region is of material type m2.

For segments that lie on the boundary of the simulation window, the material type outside the
window must be set to type 0 . Other legal material types are numbered from 1 through 127.
The current version of the data-structure module does not associate any material type with any
material identification number. However, the annealer module assigns the numbers from 1
through 5 for ambient regions, rigid substrate regions, silicon regions, oxide regions, and nitride
regions. It is recommended that this convention be consistendy followed in the future.

DS_MOD(l) CREEP User Manual 153

AUTHOR

Pantas Sutardja

FILES

You should have these two files if you want to use psdraw:
creep.ps.pro

creep.ps.trail

SEE ALSO

PLOTTER(l)

DIAGNOSTICS

Error messages are generally send to stderr, and interactive prompts to stdout

154 CREEP User Manual ANNEALER(l)

NAME

annealer - oxidation/reflow/shrinkage module

DESCRIPTION

The annealer module reads the information stored in the data-structure module and perform a
combination of wet oxidation , reflow and film shrinkage on the structure, accordingto the input
instruction. The module uses a two-dimensional extension of the Deal-Grove models. The
oxide is modeled as a viscous incompressible fluid with shear-stress dependent viscosity. The
surface reaction rate parameter and the oxidant diffusivity are also stress-dependent The
models are described in reference [1],

As with any other (sub-) module, this moduleis invokedby enteringits name dsmod). Access
of the commands thatbelong to thismodule can also be made from other modules by appropri
ately setting the path command.

Commands and Variables

oxidize

temp

time

step

pressure

This is the command to actually perform the combination of oxidation ,
reflowand shrinkage, depending on whatthe environment parameters are.

A float variable (initially set to 1273.15).
anneal/oxidation temperature (in Kelvin).

This is used to set the

A float variable (initially set to 1.0). This is used to set the
anneal/oxidation time (in min) for the oxidize command.

An int variable (initially set to 1). This is used to set the number of time-
steps used by the oxidize command. Note that the user need to specify as
large a number for this variableto obtain the desired time stepping accuracy
in the simulation.

A float variable (initially set to 1.0). This is usedto set the oxidant (water)
partial pressure (in numberof atmospheric pressure). A value of zero or less
is interpretedby the oxidize commandas the presence of no oxidant.

surfjension A float variable (initially set to -20.0). This is used to set the surface ten
sion at the oxide/ambient interface (in dyne/cm). Negative value means
that the surface energy is higher than the bulk energy (ie, contraction force
)•

div v A float variable (initially set to 0.0). This is used to set the rate of diver
gence of the velocity for shrinkage simulation (in per second unit). Set a
negative number for shrinkage, and positive value for expansion.

surf_orient A int variable (initially set to 2). This is tell the crystal orientation of the
silicon substrate. A value of 1 means that the surface shown on the graphic
screen is the (100) plane, with the x and y axis in the [110] direction. A
value of 2 means that the surface shown on the graphic screen is the (110)
plane, with the y axis pointed in the [100] direction and the x axis pointed in

ANNEALER(l) CREEP User Manual 155

the [110] direction. Other orientations are not yet defined.

meshdensity A float variable (initially set to 10). The automatic mesh generator gen
erates a quasi-uniform mesh. The nominal mesh-length will be approxi
mately 1 / meshdensity (in micron).

density A synonym of meshdensity .

stress_effect An int variable used as a flag to determine if the oxidize command will use
the stress-effect models. Initially set to 1 (on).

printstress An int variable used as a flag to tell the oxidize command to print the inter-
facial traction at the oxide/silicon interface after every time-step of the com
putation. Initially set to 0 (off). If set to 1 (on) , the x-component, y-
component , normal component and tangential component of the surface
traction will be respectively (over-) written to the files "force.x", "force.y",
"force.n" and "force.t". The files contain 3-coIumndata array, with the first
two columns locating the x and y coordinates of the interfacial points, and
the third column storing the value of the stress at the points.

adjustnodes An int variable used as a flag to instruct the oxidize command to automati
cally move/removenodes which are too close together. Initially set to 0 (no
adjust). We do not recommend the use of this command unless it is abso
lutely needed (eg, when oxidizing a sharp convex silicon comer), because
the algorithms used are not very robust.

Dmax

Dmin

etaO

eta vol

A float variable used to set the limiting (maximum) value of the normalized
oxidant diffusivity. If set to a number less than 1.0 , The oxidize command
will use an internal model to determine the value of the maximum limit on
the normalized oxidant diffusivity. If set to a value greater than 1.0 , the
oxidize command will be forced to use its value instead. Initially set to -1.0
(use intemal model).

A float variable used to set the minimum value of the normalized oxidant

diffusivity. This parameter is not described in reference 1. It is mainlyused
to increase the stability of the program, and is initially set to 0.01 . It only
has an effect on the execution of the oxidize command when its value lies in
[0.0,1.0).

A float variable used to set the linear-viscosity of oxide (in poise). If set
to a non positive number, the oxidize command will be forced to used its
own internal model to compute the linear-viscosity of oxide. Initially set to
-1.0 (use internal model).

A float variable used to set the volume parameter for the shear-stress-
dependent oxide viscosity model used in the annealer module (in cubic
angstroms). If set to a non positive number, the oxidize command will be
forced to used its own internal model. Initially set to -1.0 (use internal
model).

156

DoxO h

EDox h

DoxO 1

EDox 1

CREEP User Manual ANNEALER(l)

A float variable used to set the pre-exponential term of the oxidant dif
fusivity in the high temperaturerange (in square micron per second).

A float variable used to set the activation energy of the oxidant diffusivity in
the high temperature range (in eV).

A float variable used to set the pre-exponential term of the oxidant dif
fusivity in the low temperature range(in squaremicronper second).

A float variable used to set the activation energy of the oxidant diffusivityin
the low temperature range (in eV).

Doxbrkpoint A float variable used to set the break-pointtemperature (in Kelvin) for the
oxidantdiffusivity, separating the low and high temperature range.

Dox vol

ksO 100

Eks 100

ksO 110

Eks 110

ksO 111

Eks 111

ks vol

A float variable used to set the volume parameter for the hydrostatic-
pressure-dependent oxidant diffusivity model (in cubic angstroms). Ini
tially set to 75.0.

A float variable used to set the pre-exponential term of the surface rate
parameter on (100) silicon surface (in micron / second).

A float variableused to set the activation energyof the surface rate parame
ter on (100) silicon surface (in eV).

A float variable used to set the pre-exponential term of the surface rate
parameter on (110) silicon surface (in micron / second).

A float variable used to set theactivation energy of the surface rate parame
ter on (110) silicon surface (in eV).

A float variable used to set the pre-exponential term of the surface rate
parameter on (111) silicon surface (in micron / second).

A float variable used to set the activation energyof the surface rate parame
ter on (111) silicon surface (in eV).

A float variable used to set the volume parameter for the normal-stress-
dependent surface rate model (in cubic angstroms). Initially set to 12.5 .

K_Nitride A float variable used to set the Elastic Bulk Modulus of Nitride.

G_Nitride A float variable used to set the Elastic Shear Modulus of Nitride.

damp A float variable used to set the damping (less than 1.0) or acceleration (
greater than 1.0) factor in the newton-raphson algorithm. Initiallyset to 1.0

ANNEALER(l) CREEP User Manual 157

monitormesh An int variable used as a flag to tell the oxidize command to show the
finite-element mesh generated at every time-step of the computation. It is
initially set to 1 (true).

psdraw_mode An int variable that is initially set to 0. If set to 1, the oxidize command will
generate a postscript plot of the whole structure together with the 3-node tri
angular mesh used. The output is appended to the file "GX.ps.out". If set to
2, the nodes in the system are also shown. If set to 3, it will draw 6-node tri
angular mesh instead of the 3-node triangular mesh. Nothing is done if any
other value is used.

EXAMPLE

The following is the command input file for a LOCOS simulation

path ds_mod

annealer

; # set alternate command path

; # enter the annealer module

The following 3 commands belongs to the data-structure
(ds mod) module.

plot_window : 80 80 550 275
plot_range : 0 0 2 1

Set the plotting

window information.

struct locos.st ; # read the initial structure from

the file "locos.st"

pressure = 0.84

temp = 1000 + 273

time = 4

step = 1

mesh_density =10

draw

oxidant partial pressure =0.84 atm

temperature = 1273 Kelvin

4 min. oxidation time per oxidize command

1 time-step per oxidize command

set the mesh-density to 10 Jim.

Draw the initial structure. This

command belongs to the ds_mod module.

Repeat the oxidize and draw command 10 times (ie, total

oxidation time of 40 minutes) :

repeat 10

oxidize ;

draw ;

end

save struct locos.st.final ; # Save the final structure.

The following is the structure file "locos.st" for the locos simulation

158 CREEP User Manual ANNEALER (1)

nodes

0 0 0

12 0

2 2 1

3 0 1

4 0 0.56

5 2 0.56

6 2 0.565

7 1 0.6

8 0 0.6

9 0 0.65

10 1 0.65

11 0.95 0.6

12 0.96 0.565

segments

0 0 10 2

1 15 0 2

2 5 4 4 2

3 4 0 0 2

4 5 6 0 4

5 6 12 1 4

6 7 11 5 1

7 8 4 0 4

8 7 10 1 5

9 10 9 1 5

10 9 8 0 5

11 6 2 0 1

12 2 3 0 1

13 3 9 0 1

14 11 8 5 4

15 11 12 4 1

SEE ALSO

DS_MOD(l)

DIAGNOSTICS

Error messages are generally send to stderr,and interactive prompts to stdout.

REFERENCE

[1] P. Sutardja , W.G. Oldham and D.B. Kao, "Modeling of Stress-Effects in Silicon Oxidation
Including the Non-linear ViscosityofOxide," IEDM 1988 .

APPENDIX B

Examples of Input Files

159

160

Example 1. LOCOS with thin nitride

Input Command File:

+++++++++++++++++++++++++++++++++++++

LOCOS simulation example file +
+++++++++++++++++++++++++++++++++++++

path ds_mod plotter
annealer

Set plotting window information :
plot_window : 80 80 550 275 ;
plot_range : 0 0 2 1 ;

shell rm GX.ps.out ; # remove the file GX.ps.out if it exists,
shell rm nfilel.ps ; # remove the file nfilel.ps if it exists

struct locos.st

draw

psdraw

Read the initial structure file.

draw the structure on the screen.

add the profile into the file GX.ps.out
in postscript format

Make another copy of the initial profile :
shell cp GX.ps.out locos.st.ps

pressure = 0.84 ; # oxidant partial pressure =0.84 atm.

Set 6 minutes oxidation per oxidize command , and
use 1 time-step computation :
step = 1 ;

time = 6 ;

mesh_density = 10 ; # mesh density = 10 per micron .
monitor_mesh = on ; # draw the mesh on the graphics screen
print_stress = on ; # print the interface stress.

int count ; # create an integer called count and
count = 0 ; # set it to 0 .

Perform oxidation :

repeat 15

oxidize ;

clear

draw

psdraw

clear the screen

draw the new profile
add the profile into the file GX.ps.out

save the normal traction data in the files f.nO f.nl5

shell mv force.n f.n$count ; # move to a new file

count = count + 1

end

Read the x-coordinates and the values of the

first set of normal traction data :

ra 3 1 3 f.nO ;

Set the range of the plotter using the first set of data
get_range ;

append = on

autor = off

grid = off

Set data-plot window information

origin 200 200 ;

window 400 250 ;

Set the left-y and lower-x labels for the data plot.
Because strings are automatically created even if not
found in the current module, we are forced to set these

strings inside the plotter module (the path command doesn't
help here) :

plotter ; # Enter the plotter module.

set lylabei = "Normal traction (dyne/cnT2)"

set lxlabel = "X-coordinate of Si/Si02 interface (um) "

exitm ; # Exit the plotter module.

We exit the plotter module because the variable count is
defined in the annealer module :

count =0 ;

repeat 15

ra 3 1 3 f.n$count ;

psplot nfilel.ps ; # generate postscript output
count = count +1 ;

end

Send outputs to the postscript printer named "psprinter" for
hard copies of the outputs :

shell cat creep.ps.pro locos.st.ps creep.ps.trail | Ipr -Ppsprinter
shell cat creep.ps.pro GX.ps.out creep.ps.trail I Ipr -Ppsprinter
shell cat creep.ps.pro nfilel.ps creep.ps.trail | Ipr -Ppsprinter

Note : 1. cat is a UNIX command for concatenating files
2. Ipr is a UNIX printer command
3. rm is a UNIX command for removing file

161

162

4. mv is a UNIX command for renaming file

Obviously you need to have the postscript header and trailer
files "creep.ps.pro" and creep.ps.trail to print the
postscript files.

Input Structure File ("Iocos.st")

nodes

0 0 0

12 0

2 2 1

3 0 1

4 0 0.56

5 2 0.56

6 2 0.565

7 1 0.6

8 0 0.6

9 0 0.65

10 1 0.65 .

11 0.95 0.6

12 0.96 0.565

segments

0 0 10 2

1 15 0 2

2 5 4 4 2

3 4 0 0 2

4 5 6 0 4

5 6 12 1 4

6 7 11 5 1

7 8 4 0 4

8 7 10 1 5

9 10 9 1 5

10 9 8 0 5

11 6 2 0 1

12 2 3 0 1

13 3 9 0 1

14 11 8 5 4

15 11 12 4 1

The hard-copies generated in this example are shown in Fig. 7.1.1 (initial profile), Fig. 7.1.2

(profile evolution) and Fig. 7.1.3 (evolution of the normal traction at the Si/SiC>2 interface) of

chapter 7.

163

Example 2. LOCOS with thick nitride

Input Command File:

+++

LOCOS simulation with stiff nitride. +

+
+

Because CREEP currently does not integrate the stress +
history of nitride, the nitride appears to be softer +
than it should be. Here, we attempt to simulate a +
thick nitride LOCOS process by giving nitride a larger +
elastic moduli instead of thickening the nitride +
(in order to save computation time). +
+

+++

path ds_mod plotter
annealer

Set plotting window information :
plot_wihdow : 80 80 550 275 ;
plot_range : 0 0 2 1 ;

Whatever the elastic moduli of nitride are, increase them
by 100 times :

G_Nitride = G_Nitride * 100
K_Nitride = K_Nitride * 100

shell rm GX.ps.out ; # remove the file GX.ps.out if it exists,
shell rm nfile2.ps ; # remove the file nfile2.ps if it exists

struct tlocos.st

draw

psdraw

Read the initial structure file.

draw the structure on the screen.

add the profile into the file GX.ps.out
in postscript format

Make another copy of the initial profile :
shell cp GX.ps.out tlocos.st.ps

pressure = 0.84 ; # oxidant partial pressure =0.84 atm.

Set 6 minutes oxidation per oxidize command , and
use 1 time-step computation :
step = 1 ;

time = 6 ;

mesh_density = 10 ; # mesh density = 10 per micron .

164

monitor_mesh = on ; # draw the mesh on the graphics screen.
print_stress = on ; # print the interface stress.

int count ; # create an integer called count and

count = 0 ; # set it to 0 .

Perform oxidation :

repeat 15

oxidize ;

clear

draw

psdraw

clear the screen

draw the new profile

add the profile into the file GX.ps.out

save the normal traction data in the files t.nO t.nl5

shell mv force.n t.n$count ; # move to a new file

count = count + 1

end

Read the x-coordinates and the values of the

first set of normal traction data :

ra 3 1 3 t.nO ;

Set the range of the plotter using the first set of data :
get_range ;

append = on ;

autor = off ;

grid = off ;

Set data-plot window information
origin 200 200 ;
window 400 250 ;

Set the left-y and lower-x labels for the data plot.
Because strings are automatically created even if not
found in the current module, we are forced to set these

strings inside the plotter module (the path command doesn't
help here) :

plotter ; # Enter the plotter module.

set lylabei = "Normal traction (dyne/cm~2)"

set lxlabel = "X-coordinate of Si/Si02 interface (um) "

exitm ; # Exit the plotter module.

We exit the plotter module because the variable count is
defined in the annealer module :

count =0 ;

repeat 15

ra 3 1 3 t.n$count

psplot nfile2.ps
count = count + 1

generate postscript output

end

Send outputs to the postscript printer named "psprinter"
hard copies of the outputs :

165

for

shell cat creep.ps.pro

shell cat creep.ps.pro

shell cat creep.ps.pro

tlocos.st.ps creep.ps.trail I Ipr -Ppsprinter

GX.ps.out creep.ps.trail I Ipr -Ppsprinter

nfile2.ps creep.ps.trail I Ipr -Ppsprinter

Note : 1. cat is a UNIX command for concatenating files
2. Ipr is a UNIX printer command
3. rm is a UNIX command for removing file
4. mv is a UNIX command for renaming file

Obviously you need to have the postscript header and trailer
files "creep.ps.pro" and creep.ps.trail to print the
postscript files.

Input Structure File ("docos.st")

nodes

0 0

1

2

3

4

5

6

7

8

9

10

segments

0

1

5

4

5

6

7

8

7

10

1

5

4

0

6

7

8

4

10

9 15

56

56

6

6

6

65

65

2

2

2

2

4

4

4

4

1 5

166

10 9 8 0 5

11 6 2 0 1

12 2 3 0 1

13 3 9 0 1

The hard-copies generated in this example are shown in Fig. 7.2.1 (initial profile), Fig. 7.2.2

(profile evolution) and Fig. 7.2.3 (evolution of the normal traction at the Si/Si02 interface) of

chapter 7.

Example 3. Oxidation around a Silicon Gate

Input Command File:

+++++++++++++++++++++++++++++++++++++++

Oxidation of a silicon gate +
+++++++++++++++++++++++++++++++++++++++

path ds_mod plotter
annealer

Set plotting window information :
plot_window : 80 80 550 275 ;
plot_range : 0 0 2 1 ;

shell rm GX.ps.out ; # remove the file GX.ps.out if it exists,
shell rm nfile3.ps ; # remove the file nfile3.ps if it exists.

struct poly.st ; # Read the initial structure file,

draw ; # draw the structure on the screen,

psdraw ; # add the profile into the file GX.ps.out

Rename the file GX.ps.out to another file
shell mv GX.ps.out poly.st.ps

pressure = 0.84 ; # oxidant partial pressure =0.84 atm.

Set 6 minutes oxidation per oxidize command , and
use 1 time-step computation :
step = 1 ;

time = 4 ;

mesh_density = 10 ; # mesh density = 10 per micron .
monitor_mesh = on ; # draw the mesh on the graphics screen.
print_stress = on ; # print the interface stress.

int count ; # create an integer called count and
count = 0 ; # set it to 0 .

Perform oxidation :

while count < 6

oxidize ;

clear

draw

psdraw

clear the screen

draw the new profile
add the profile into the file GX.ps.out

167

168

save the normal traction data in the files p.nO p.nl5
shell mv force.n p.n$count ; # move to a new file

count = count + 1

end

Send output to the postscript printer named "psprinter" for a
hard copy of outputs :

shell cat creep.ps.pro poly.st.ps creep.ps.trail I Ipr -Ppsprinter
shell cat creep.ps.pro GX.ps.out creep.ps.trail I Ipr -Ppsprinter

It is not obvious how to meaningfully plot the normal traction
at the Si/Si02 interface for this example. So we will not
attempt to generate the normal traction plot as in the previous
two examples.

Note : 1. cat is a UNIX command for concatenating files
2. Ipr is a UNIX printer command

3. rm is a UNIX command for removing file

4. mv is a UNIX command for renaming file

Obviously you need to have the postscript header and trailer
files "creep.ps.pro" and creep.ps.trail to print the

postscript files.

Input Structure File ("polv.st")

nodes

0 0 0.3

1 2 0.3

2 2 1.0

3 0 1.0

4 0 0.5

5 2 0.5

6 0 0.6

7 0. 98 0.6

8 0. 98 0.78

9 0 0.78

10 0 0.8

11 1 0.8

12 0. 94 0.52

13 2 0.52

14 1 0.58

15 0. 92 0.58

segments

0 0 10 2

115 0 2

2 5 13 0 4

3 13 2 0 1

4 2 3 0 1

5 3 10 0 1

6 10 9 0 4

7 9 6 0 3

8 6 4 0 4

9 4 0 0 2

10 6 7 4 3

11 7 8 4 3

12 8 9 4 3

13 13 12 1 4

14 14 11 1 4

15 11 10 1 4

16 4 5 2 4

17 12 15 1 4

18 15 14 1 4

169

The hard-copies generated in this example are shown in Fig. 7.3.1 (initial profile) and Fig.

7.2.2 (profile evolution) of chapter 7.

170

Example 4. Flow-anneal ofPSG

InputCommand File

Reflow of a PSG film deposited over a silicon step +

path ds__mod plotter ; # Set alternate command path

annealer ; # Enter the annealer module

plot_window : 80 80 550 275; # Set the plotting window
plot_range : 0 0.1 2 1.1 ; # information

shell rm GX.ps.out ; # Remove the file GX.ps.out if it exist

struct psg.st

draw

psdraw

Read the initial structure

Show the initial structure

draw the initial structure in the file

GX.ps.out in postscript format

Move the file to a new file :

shell mv GX.ps.out psg.st.ps

pressure = 0

mesh_density = 6

surf_tension = -20

etaO = le9

step = 1

time = 2

temp = 1400

repeat 3

oxidize

cl

draw

psdraw

end

t ime = 1.5

repeat 10

Set no oxidant

Set mesh-density to 6

Set surface tension value to -20 dyne/cm

Set viscosity of oxide to le9 poise

Set the anneal time to 2 minutes per
time-step of the computation
Set the anneal temperature (in Kelvin)

Perform the anneal step

Clear the graphics screen

draw the updated profile
add the updated profile to the file

GX.ps.out in postscript format

Set anneal time to 1.5 minute per time-step

oxidize

cl

draw

psdraw

end

Perform the anneal step
Clear the graphics screen
draw the updated profile
add the updated profile to the file

171

Send outputs to the postscript printer named "psprinter" for
hard copies of the outputs :

shell cat creep.ps.pro psg.st.ps creep.ps.trail | Ipr -Ppsprinter
shell cat creep.ps.pro GX.ps.out creep.ps.trail I Ipr -Ppsprinter

Input Structure File ("pse.st")

nodes

0 (3 0.1

1 1.5 0.1

2 1.5 1.1

3 . 0 1.1

4 0.00 0.25

5 0.75 0.25

6 0.83 0.27

7 0.87 0.36

8 0.85 0.53

9 1.5 0.52

10 1.5 0.68

11 1.5 0.875

12 1.25 0.875

13 1.07 0.89

14 0.98 0.92

15 0.86 0.941

16 0.75 0.94

17 0.7 0.915

18 0.63 0.859

19 0.58 0.79

20 0.55 0.67

21 0.568 0.59

22 0.6 0.515

23 0.5 0.55

24 0.25 0.59

25 0 0.6

26 0 0.42

segments

0 4 5 2 4

15 6 2 4

2 6 7 2 4

172

3 7 8 2 4

4 8 9 2 4

5 9 10 0 4

6 10 11 0 4

7 11 12 14

8 12 13 14

9 13 14 14

10 14 15 14

11 15 16 14

12 16 17 14

13 17 18 14

14 18 19 14

15 19 20 14

16 20 21 14

17 21 22 14

18 22 23 14

19 23 24 14

20 24 25 14

21 25 26 0 4

22 26 4 0 4

23 0 1 0 2

24 19 0 2

25 11 2 0 1

26 2 3 0 1

27 3 25 0 1

28 4 0 0 2

The hard-copies generated in this example are shown in Fig. 7.4.1 (initial profile) and Fig.

7.4.2 (profile evolution) of chapter 7.

Example 5. Shrinkage of SOG

Input Command File:

Shrinkage of an SOG film coated over a silicon step

path ds_mod plotter ; # Set alternate command path

annealer ; # Enter the annealer module

stress_effeet = off ; # Do not use stress dependent models

plot_window : 80 80 400 200 ;# Set the plotting window
plot_range : 0 0 2 1 ; # information

shell rm GX.ps.out ; # Remove the file GX.ps.out if it exist

struct sog.st ; # Read the initial structure

draw ; # Show the initial structure

psdraw * ; # draw the initial structure in the file

GX.ps.out in postscript format

Move the file to a new file :

shell mv GX.ps.out sog.st.ps

pressure =0 ; # Set no oxidation

surf_tension = -20 ; # Set surface tension value to -20 dyne/cm

div v = -0.001

#

step = 1

time = 1.5

mesh_density = 7

repeat 5

oxidize

cl

draw

psdraw

end

mesh_density =10

; # Set the diverges of the velocity to
-0.001 everywhere in the oxide

Set 1.5 minute time-step

Set mesh-density to 7

Perform the anneal step
Clear the graphics screen
draw the updated profile
add the updated profile to the file

GX.ps.out in postscript format

; # Increase the mesh density to 10

173

174

repeat 10

oxidize

cl

draw

psdraw

end

Perform the anneal step

Clear the graphics screen

draw the updated profile

add the updated profile to the file

Send outputs to the postscript printer named "psprinter" for
hard copies of the outputs :

shell cat creep.ps.pro psg.st.ps creep.ps.trail | Ipr -Ppsprinter
shell cat creep.ps.pro GX.ps.out creep.ps.trail | Ipr -Ppsprinter

Input Structure File ("sog.st")

nodes

0 0 0

1 1.5 0

2 1.5 1

3 0 1

4 0 0.4

5 0.5 0.4

6 0.5 0.1

7 1.5 0.1

8 0 0.7

9 1.5 0.7

segments

0 0 10 2

117 0 2

2 7 9 0 4

3 9 2 0 1

4 2 3 0 1

5 3 8 0 1

6 8 4 0 4

7 4 0 0 2

8 8 9 4 1

9 4 5 2 4

10 5 6 2 4

11 6 7 2 4

The hard-copies generated in this example are shown in Fig. 7.5.1 (initial profile) and Fig.

7.5.2 (profile evolution) of chapter 7.

	Copyright notice1988
	ERL-88-26 (1 of 2)
	ERL-88-26

