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ABSTRACT

The very high level of integration possible with today's integrated circuits

technology and the availability of powerful IC CAD tools have created tremendous

possibilities for developing electronic systems hitherto considered impractical or not

cost-effective. In this thesis we present the design methodologies, architecture, and

circuit designs used for applying silicon compilation techniques to design problems

requiring custom IC solutions.

Our approach for rapidly generating application specific ICs is based on a

pre-defined architecture model of a processor. This model consists of a powerful,

generic control unit integrated with application specific data paths and associated

localmemories. The design of the processor is composed of highly modular and pa

rameterized macroceJli liierarchically assembled together according to descriptions

in a set of structural description files. The actual generation of a customized version

of the processor's layo it is performed by a silicon compiler package, beginning with

a high-level description of the algorithm being implemented.

We successfully applied the design methodologies, architecture, and cir

cuits developed in this project for automatically generating a custom processor

that implements an adaptive control algorithm for a two-axis robot arm. The chip



n

has been fabricated in 2 micron SCMOS technology. Tests show the chip can oper

ate at up to 15 MHz with a power consumption of 200 milliwatts. We believe our

techniques provide a very viable approach for rapid and cost-effective realization of

application specific ICs.

This research was support by Defense Advanced Research Projects Agency, Contract N00039-87-
C-0182.
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Chapter 1

Introduction

1.1 Cost-Effective Design of Integrated Circuits

The development of integrated circuits (IC) technology has always been

very strongly influenced by the needs of electronic system designers and manufac

turers. In the past, this has led to higher levels of integration at progressively lower

cost per transistor. With the levels of integration now approaching a million transis

tors per chip and the availability of powerful IC CAD tools, major innovations have

taken place and continue to take place in IC design concepts and methodologies.

This in turn has provided new opportunities as well as challenges for the system

designers. In this thesis we show, through an actual design of a robot control chip,

how current IC technologyand state-of-the-art CAD environment can be exploited

for a cost-effective solution to a specific problem. Our design methodology, using

customizablecore processors, is based on application specific IC (ASIC) design tech

niques while at the same time trying to retain the benefits of full custom, standard

ICs. This approach matches well with currently available IC CAD techniques, as

discussed in the next section. Any IC design methodology must of course be judged

by its ability to address the system designers' concerns and to provide a healthy

return for the semiconductor manufacturer.

From a system designers point of view the most important considerations

in designing a product are:



• Access to low cost components.

• Ability to provide unique features in order establish a distinct market presence.

• Ability to respond to market needs very quickly by being first with new system

products.

Traditionally, system designers have relied on semiconductor manufacturers to pro

vide low cost, mass produced, standard IC components such as rams, TTL parts,

microprocessors, etc. Successful commodity digital signal processors and micropro

cessors are able to attract a large clientele of system designers and software expertise

that can be quickly tapped for developing new products. Emulator boards allow

rapid prototyping of systems. Moreover, since the components already exist, risks

and uncertainities involved with a custom designed chip is eliminated. Because

of these and other advantages, the demand for 'high-end' IC components, such as

highly complex 16/32 bit processors, continues to grow.

Nevertheless systems designed with standard components have some ma

jor disadvantages. They do not provide any protection against competition from

similar products by other manufacturers as can be seen by the mushrooming of

IBM-PC compatibles and clones. Moreover, the system cost can be high because

boards full of large number of standard components are needed even though the

capabilities of the individual components are not fully utilized. Large component

counts also lead to large power requirements. On the other hand, for the semicon

ductor manufacturer, standard components are an extremely competitive business.

Huge investments in time and resources are required to get to the market in time

with high performance IC components using state-of-the-art technology. At the

same time competitive pressures continue to drive down prices; only a handful of

semiconductor manufacturers are able to survive in the standard IC market. Con

sequently a large and growing number of semiconductor manufacturers have turned

towards ASIC technology.



Extensive use of CAD tools combined with gate-array, standard-cell, or

similar technologies allow ASIC manufacturers to provide system designers with

relatively small volumes of custom IC components designed for a specific application.

The advantages of ASICs have been extensively discussed in recent literature, (see

for example [Koem86] [MdLki82]). Among the advantages are short design cycles,

distinct product features through proprietary custom ICs, lower cost by integrating

the functions of a large number of standard components in a single custom chip,

etc. ASICs, however, have their limitations too.

ASIC products have short life cycles as the novelty of the product wears

off or the market niche becomes saturated. On the other hand any ASIC product

showing signs of longevity is certain to draw competition from other ASIC man

ufacturers. Moreover, most commercially available ASIC design tools are aimed

at gate-level design. These tools do not support high-level architecture design and

development of processor type circuits which may require large resources. Further

more, additional resources are needed for processor type circuits in order to develop

application software, compilers, etc. Such investments may not be justified for a

custom IC of the complexity of a processorbut targeted only at a specific application

area. One solution, therefore, is to mix standard ICs and ASICs for a cost-effective

system product.

Integration of standard ICs and ASICs can take on many forms depending

on the sophistication of the CAD environment. The simplest approach of building

systems with general purpose microprocessors as the main work horse and ASICs

for proprietary circuits, interface circuits, and glue logic, is already being used in

products such as personal computers. Some of the ASIC/semiconductor houseshave

gone one step further by providing customized interfaces and peripherals on their

successful processor chips [Sim88]. Others are developing variations of a successful

processor family by deleting functions not required and/or adding newer ones aimed

at a specific application area. In this thesis, we have further advanced this approach

by developing a methodology aimed at not onlyadding custom circuits to a core pro

cessor but also providing the ability to extensively customize the processor itself.

High-level silicon compilation tools automatically generate customized processors



from behavioral descriptions of algorithms. We envision this approach a precur

sor for designing fully integrated systems with customized processors, custom glue

logic, memory, and interconnects, all on a single substrate. The success of these ap

proaches depend to a great extent on incorporating the design methodologies inside

silicon compilers.

1.2 Silicon Compilation of DSP circuits

The term silicon compilation has been widely used in recent years to de

scribe generation of IC layouts from high-level descriptions of circuit behavior. A

silicon compiler is generally accepted to mean an IC design methodology embed

ded inside a CAD environment. The design methodology usually involves a series

of transformations which result in a physical layout from an abstract description

of the behavioral intent. These transformations may involve converting a high-

level language (e.g. 'C programming language) description of an algorithm into

a microarchitectural specification, followed by a translation into logic-domain de

scription, and finally mapping into a physical layout. The key point is to hide and

automate the translation process from the user so that system designers can inter

act with the design system at a level which does not require expertise in circuit and

layout design.

Silicon compilers may differ in their design methodologies and capabilities;

however, most of them can be described in terms of a common, basic frame work.

A detailed description is given in [GaDon88]. Examples of several silicon compilers

are found in [Gaj88]. We give below a simplified description of silicon compilers

within the context of research described in this thesis.

A top down silicon compilation process normally starts with a behavioral

description in the form of an algorithm. A DSP algorithm, for example, gives a

sequence of transformations on variables and data structures in order to imple

ment some signal processing function such as Fourier Transforms. The algorithm

is usually described in a programming language such as Silage [Hil85] or 'C and

is independent of any particular hardware realization. An algorithmic description



is next transformed into an implementation at the microarchitectural level. This

implementation consists of structural elements - registers, ALUs, sequencer, etc. -

and a sequence of microoperations - register transfer operations, arithmetic oper

ations, control state transitions, etc. - describing the manipulation of data on the

architecture. This transformation from algorithm to microarchitecture, sometimes

referred to as synthesis, is perhaps the most difficult part of the compilation pro

cess since a wide range of architectural choices exist. Synthesis usually starts with

a data flow representation of algorithms followed by attempts to allocate hardware

based on heuristics or algorithms. Automating this step, however, is feasible only

within a limited design space.

The interaction between high-level architectural decisions and low-level

physical implementation strategies is very complex. An automatic exhaustive search

of the design space for satisfying all the constraints of area, cost, and time is cur

rently not feasible. A more practical approachis to restrict the design space to some

target architecture. Current state-of-the-art silicon compilers vary in their synthesis

strategies from providing programs for automatically synthesizing the target archi

tecture, to open systems where the user completely defines his own architecture.

Many research compilers [JaNoHa85] [Jain86] fall in the former category whereas

commercial compilers (for example [Sil86]) concerned with realizing practical de

signs, fall in the latter category. An example of a silicon compiler targeted to a

specific architecture is GE's Bit-Serial Silicon Compiler (BSSC) [JaNoHaS5]. It

uses a bit-serialarchitecture. Eachoperator in the algorithm is mapped into a pre

determined hardware element. Other than optimizing the number of delay elements

used for synchronization, no other optimization is performed. Another example of

a silicon compiler targeted to a specific architecture is Cathedral-II [RabSS]. It uses

a bit-parallel multi-processor architecture. A rule-based software maps higher-level

program constructs into a specific implementation of the architecture. Another

example of a targeted silicon compiler is Lageii [RaPoBr85]. Lagerl uses a fixed

architecture consisting of parameterized macrocells.

We believe, use of pre-defined architecture currently provides the most

viable option to the architecture synthesis problem. Based on designer's experience



and expertise, an architecture model can be defined for a class of application. For

DSP applications, several architectural choices are available: These include level of

pipelining in the data paths; clocking schemes; support for complex, control flow

type operations; programmable processors versus dedicated, hard-wired processors;

etc. Once an expert designer selects the architecture, high-level compilers can then

be written to map algorithmic descriptions (internally represented most likely in the

form of data flow graphs) into the target architecture. The compiler writer chooses

the most appropriate techniques to apply in performing the mapping. The quality of

a compiler will be judged on the level of customization, variations, and optimizations

allowed in the final implementation. This approach is also in congruence with the

customizable, core processor based approach found suitable from a cost-benefit point

of view as discussed in section 1.1. Whereas the transformation from algorithm to

microarchitecture is regarded as synthesis, the mapping of the microarchitecture

into a physical layout is sometimes referred to as silicon assembly.

The first step in the silicon assembly process is transformation of the mi

croarchitecture into a logic level description. This is followed by a transformation

into a circuit description represented in the physical domain as layouts. In many

cases, the series of transformations from the microarchitecture's structural elements,

such as muxes, registers, etc., to physical layout is a one-step process because of

previously performed mappings, stored in the form of cell libraries. In general, the

logic to layout transformation may use any of the available methodologies such as

gate arrays, standard cells, macrocells, etc. Thus we see the silicon compilation

process as a series of transformations aimed at converting an application idea into

a physical layout.

In the next chapter of this thesis we describe a specific robot control ap

plication and the hardware implementation issues. Based on this discussion we

define a processor architecture in chapter 3. This is followed by a discussion on the

methodology for silicon compilation and the silicon compiler framework in chap

ter 4. The details about the circuit design are given chapter 5. Since design for

testability is a very important design consideration, entire chapter 6 is devoted to

discussing design of testable circuits. This is followed by a description of the im-



plementation of the robot control algorithm on the processor. Finally, in the last

chapter we present our conclusions.



Chapter 2

Digital Control of a Two-Axis

Robot Arm

2.1 Robot Control Systems

A robot is a general-purpose machine system that, like a human, can perform
a variety of different tasks under conditions that may not be known a priori
[Dav85].

An industrial robot (figure 2.1 ) may consist of several mechanical linkages

connected through joints such that the linkages can rotate or slide about the joints,

usually within certain limits.

In typical applications, the robot moves an object such as a tool or a part,

from one point to another point in space alongsomedesired trajectory. The motion

of the robot is usually controlled by a controller. The design of these controllers

are pre-dominantly based on digital control techniques. A complete robot control

system may consist of several levels of hierarchy.

The upper levels of the hierarchy are concerned with global issues of control:
the selection and high-level decomposition ofgoals and objectives, the recogni
tion of complexpatterns and relationships between objects, and the generation
of plans and schedules which span extended periods of time. The middle levels
of the hierarchy are occupied with more immediate issues of tactics and task
sequencing: the decomposition of complex tasks into elemental movements and
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Figure 2.1: A robot arm consists of links and joints

trajectories, the recognition of simple patterns and primitive features, and the
comparison between expectations and observations on a second by second ba
sis. The lowest levels of the hierarchy perform the high-speed computations of
coordinate transformation and servo control: the generation of forces, veloci
ties, and accelerations, the measurement of tracking errors, and the monitoring
of safety and overload conditions [AlBaFi].

The robot control system shown in figure 2.2 groups all the upper and

middle levels of the control hierarchy into a single box labeled as Path Planning and

Profile Generation. The output of this box are time-sequence of points specifying

the desired trajectory for each joint.

The box labeled as controller in figure 2.2 represents a digital feedback

controller which performs the low level control of each joint. It samples sensory

data (such as position, velocity) from the robot joints and the desired trajectory

data from the upper-level control modules at regular intervals. The controller then

computes a control output for reducing the error between the desired joint position

and its actual position. This control output determines the amount of torque re

quired on the joint to reduce the position error. The time required to read in the
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MOTOR #2:

Size: 6 inch

MOTOR #1: Max. Torque: 5 Kgfm

Size: 14 Inch

Max. Torque: 25 Kgfm

Figure 2.3: A two-axis, direct-drive robot arm from NSK/Motornetics Corp., Santa

Rosa, California

sensory data, compute the control output, and apply the new control output to the

joints often limits the sampling rate of the controller.

This thesis deals with the design and implementation of the low-level con

troller. In this chapter we first present the algorithms used for controlling the robot

arm and then discuss the issues pertaining to implementation of the controller. The

design of the controller is targeted towards a two-axis robot arm (figure 2.3 ) with

both axes having rotary motion in the horizontal plane. Each joint is driven by a

direct-drive motor.

The use of direct-drive motors makes payload variations and the link's

inertia variations due to changes in robot's arm configuration a significant issue in

the design of controllers for high performance applications. Another factor affecting

the design of the controller is inherent non-linearities of the robot arm dynamics,

which makes standard feedback control techniques inadequate for precision control

at high speeds.
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2.2 Non-linearities in Robot Arm Dynamics

The general form of the torque equation [Sny85] for a n-joint robot arm is

described below:

%1= EJBi*wpjlx%| +

(2.1)
E£=l D<xnt[ijj\ X0[fl +
E"=i EJUl.J^j Dcor[ijk] X %] X 0[k] +
C/in[»] X 9[{\ + Jg[i] + C?coti/[i]

In the above equation, i and j represent the ith and jth link respectively.

q[t-\ is the torque on the ith joint. The first product-term, m^ x 0y represents

the inertial torque; ra^-j being the inertia and 9[{\ being the angular displacement.

When i = j, the term gives the torque due to self-inertiaof the link; when i ^ j, the

term gives the torque due to inertial coupling between links. The second product-

term represents the torque due to centripetal forces on joint i caused by motion in

link j. The third product-term represents the torque due to Coriolis force. It is

caused by the combined motion of links j and k and therefore does not exist for

a single-joint motion. The last three product-terms represent disturbance forces

due to friction and gravity. dg[{\ represents gravitational force and is a function of

the angular position of the link in the vertical plane. Gravitational force do not

affect motion restricted to the horizontal plane only. cun[i] is a coefficient of viscous

friction, whereas <2coU/[i] represents Coulomb friction.

The torque equation for the two-axis robot arm, shown in figure 2.3, has

been derived by [Tsai87] on the basis of Lagrangian formulation [Paul81]. This

torque equation, which gives a mathematical model for the dynamic behavior of the

arm, is described below.

mn ^i2

m21 m22

(2.2)

<ji, q2 represent the torques; Vi, V2 represent the centripetal and Coriolis forces; and

du d2 represent the frictional forces on joint 1 and 2 respectively. The expressions
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for the various terms in equation 2.2 are:

"in = Ii+h + h + tl (rn2/4 + m3 + m4 + m5)

+% (m4/4 + m5) + 7i l2 Cos62 (m4 + 2ra5) (2.3)

™>12 = h + ll (™>4/4 + m5) + h l2 CosQ2 (m4/2 + m5) (2.4)

m2i = J7ii2 (2«5)

m22 = l3 + l4 + ll(m4/4 + m5) (2.6)

VJ = -(m4/2 + m5) /i l2 (2$i92 +^|) Sm02 (2.7)

V2 = (m4/2 +m5)/i/2^5m^2 (2.8)

m5 is the payload being moved by the robot arm; l\ and l2 are the lengths of link 1

and link 2 respectively; and In represents the moment of inertia of the ntfft member

of the arm (see figure 2.3) The Coulomb friction component of the friction term, d,

is described below,

dcoul = i

dcm x sign[9] if \9\ > 0

dcm x sign[q] if \9\ = 0 and \q\ > d^ (2.9)

q if \9\ = 0 and \q\ < d^

where dCTn is a friction constant. The key point to note from the torque equations

described in this section is the non-linear nature of the robot arm dynamics. The

inertia, Coriolis and centripetal forces, and Coulomb friction terms are all functions

of the payload, the angular position of the joints, and the angular velocities of the

joints. Moreover, the dynamics of one joint is affected by the motion of the other

joint. Furthermore, the trend towards using direct-drive motors in modern, high-

performance robots makes the robot arm dynamics sensitive to payload variations.

D.C. motors generally used in industrial robots develop high speeds but

relatively low torque. Therefore, gears are used to increase torque output. This

also reduces the speed and the load inertia seen by the motor as described by the

following equations,

([(applied to load) = N X q(appUed by motor) (2-10)

9ioad= l/Nx9motor (2.11)
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™>(seen by motor) = ™(at the load) IN2 (2.12)

where N is the gear ratio and m is the inertia. In a multi-axis robot arm, the

load inertia may also include inertia of other links which will vary as a function

of the link's relative position. As described by equation 2.12, the inertia of the

load seen by the motor is scaled down by N2 from its actual value. Therefore, the

effect of load variations on the torque required from the motor (see equation 2.1) is

greatly diminished. However, gears result in back-lash (from wear and tear), and

contribute to increased friction. These problems are overcome in some of the new,

high-performance robots by using direct-drive motors. They produce high torques

without requiring gears, but load variations now have a more pronounced effect on

the motor. This requires compensation by the controller.

Commercial robots use standard feedback control techniques such as PID

[Astrm84] control which do not compensate for non-linearities in the controlled

system's behavior. Consequently, adaptive control techniques have become an im

portant area of investigation for providing satisfactory control of high performance

robot arms.

2.3 Adaptive Controllers for Robots

Adaptive control is a feedback control technique for controlling partially

known and/or time-varying dynamic systems to operate in a consistent and de

sired manner. The adaptive controller automatically adjusts its parameters for

properly controlling the dynamic process. Such controllers are useful in robot con

trol where the complex non-linear dynamics of the robot system limits the per

formance attainable from fixed gain PID (proportional, integral, and derivative)

controllers. With the growing need for high performance robots, many research

groups, in the last several years, have focused on applying adaptive techniques

to robot control [DuDe79] [KoiGuSl] [HorTom82]. In this section we describe a

model reference adaptive control (MRAC) scheme developed by Tomizuka and his

group [Hor86] [Tom86]. The complete algorithm, shown in block diagram form in
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Figure 2.4: Block diagram of the control algorithm showing PID section, adaptive

section, and friction compensation

figure 2.4, consists of two major sections: an adaptive control section including

friction compensation; and a PID control section.

2.3.1 A Model Reference Adaptive Control Algorithm

The MRAC algorithm includes estimation of the robot system's param

eters. In the MRAC scheme studied in this dissertation, parameter estimation is

based on the error between the robot's response and the output of a reference model.

Based on these estimates, torque is computed to acliieve the desired motion. The

following equations in discrete time domain describe the MRAC algorithm. The
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centripetal and Coriolis terms are neglected in these equations.

Ref. model: Ovm[i\(k +1) = 0<w(k) + T.u[{](k) (2.13)

Vel. error : ev[{l(k) = 9vm[n(k) —9v[i\(k) (2.14)

Dead band: if ev[n(k) < Vdby ev[i](k) = 0 (2.15)

Inertia (2.16)

Adaptation : m[ifl(k) = m[ij\(k - 1) + Km[ij] x .

T.e.w(*).ug,(* - 1) (2.17)

Friction (2.18)

Estimation : (see below) (2.19)

Cntl. torque : $[#) = m[iA(k).uw(k) +

dm(k) (2.20)

As illustrated in figure 2.4 the input to the adaptive section is an acceleration

quantity, U[,](&), required to achieve the desired motion of the joint. The reference-

model is a simple integrator whose output is the model velocity 0vm[,i. This velocity

is compared with the actual velocity of the robot arm, 9v[i] and the resulting error is

used to compute mpj], the estimated inertia. The velocity error is set to zero when it

goes below the dead band thresh hold limit, Vdb. Km[ij\ is a coefficient of adaptation

and T is sampling period. Finally, the required control torque, q^ is computed

using the estimated inertia. The torque expression also includes a Coulomb friction

compensation term, d^, which is adaptively estimated.

Adaptation for <//[,] :.

if 9v[n > Vf, dj[i\(k) = df[n(k -1) +Kf x ev[i]
else if 9v[{] < -Vh dm(k) =dm(k - 1) - Ks xev[i] {e> n)
else if \&4n\<Vf & u[t] >0, dj[i](k) =dm(k - 1) +K} xev[i] K~'~ J
else |0y[t]| < Vf & u[q < 0, df[i](k) = dm(k - 1) - Kf x ev[i]

Vdb and Vf are thresh-hold limits for applying dead band and friction compensation

respectively.

Assuming the MRAC algorithm is working perfectly, the robot arm ap

pears as a linear system. Since the MRAC controller effectively results in the
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dynamics from W[,j to velocity, 9v[q (see figure 2.5), appear as a pure integrator, the
position loop dynamics from u[q to position, #[,], is characterized by a double inte

grator. Consequently, a non-adaptive outer loop consisting of a PID type controller

is applied for accurately controlling the joint's position.

2.3.2 A PID Controller for Position Control

A PID controller for one joint of the robot arm is shown in figure 2.5. The

robot joint is modelled by a double integrator since the MRAC algorithm is assumed

to perfectly compensate for the non-linearities, joint interaction, and friction. A PID

controller consists of three actions, which act upon the error between the desired

reference position and the actual position of the joint. The three actions are as

follows:

(i) Proportional or P action,

up(k) = Kp x ep{k) (2.22)

where ep{k) is the position error. For many applications a simple P action is ad

equate. However, it results in steady state error. This error can be reduced by

increasing the gain Kp, but this can lead to oscillatory behavior and instability.

The steady state performance can be improved by adding an I action,

(ii) Integral or I action,

ui(k) = KjxY^ eP(fc) (2.23)

The addition of the I action reduces steady state error (becomes zero for a step in
put). However, too large again if/ can lead to the problem ofreset windup [AstrmS4]
due to the controller output exceeding the saturation limit of the jointdrivers. More

over, I action also reduces the stability of the system. In order to improve stability,
a D action is often added,

(iii) Differential or D action,

ud(k) = Kd x ep(k) (2.24)

TheDaction improves the stability ofthe system byadding adamping effect. Since,
ep(k) can be large at the beginning ofa sample period (when the reference position
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Figure 2.5: PID controller for a robot joint modelled as a double integrator. T is

the sample period.

is updated), Kd x ep(k) can result in a large contribution to the control output.

Therefore, an alternative form of the D operation is sometimes used in which the

D action is performed on the current position, rather than on the position error.

u(k) = Kd x [Ul(k) + up(k) - 9{k)] (2.25)

This is the form of D action used in the PID controller shown in figure 2.5, where

u(k) is the acceleration required by the joint to achieve the desired input reference

position, r(k). In figure 2.5, all the quantities are represented in Z domain. Also

note that in the PID algorithm shown in the figure, the effective P-gain, Kp, and

I-gain, JC/, are given by KdKp and KdKi respectively.

In sections 2.3.1 and 2.3.2 we have presented the adaptive control algorithm

and the PID control algorithm required for accurately controlling the robot joints.

In the next section we shall discuss the issues related to efficiently implementing

the algorithms.

2.4 Issues in Implementing the Robot Controller

In order to specify the requirements for designing a custom hardware for

the robot controller, we examine the implementation issues from three points of
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view:

(i) Efficient implementation of the algorithm,

(ii) Interfacing with the system hardware,

(iii) Testing and debugging.

2.4.1 Efficient Implementation of the Algorithm

The flow chart for the entire control algorithm appears on the preceding

pages. In this section we shall identify commonly used operations in this algorithm

and discuss their implications for designing the hardware.

Multiply-Accumulate

The equations describing both the adaptive control algorithm (equations 2.13

- 2.21) and the PID algorithm(equations 2.22 - 2.25) reveal a large number (22 mul

tiplications in all) of multiply-accumulate type operations. This is typical of signal

processing algorithms, making a hardware parallel multiplier an essential part of

commercial DSPs. In designing a custom processor for implementing the two-axis

robot controller, the question of including a hardware multiplier must be carefully

examined on the basis of required sampling rate.

Simulations and experimental studies reported by [Hor86] as well as our

own simulations, show higher sampling rates improve the performance of the con

troller. A TMS32010 based implementation (see figure 2.7) achieved a sampling
period of 0.7 ms [Anwr87]. For the custom implementation we have targeted a
sampling period of 0.5 ms.

Table 2.1, based on data reported in [Vos86], shows the area speed trade

offs for two forms ofmultiplication: (i) using a parallel multiplier requiring only one
cycle for a n x n multiplication; (ii) using shift and accumulate operations requir
ing n cycles for n x n multiplication. In general parallel multipliers are the fastest
whereas shift and accumulate based multiplication without any booth decoding
are the slowest. The actual cost of using a parallel multiplier is even higher than
what the table shows. This is because a processor using a multiplier still needs a



Area (mm2)
in 3 ^ CMOS

Time (ms)
for 22 multiplies

Parallel 20 x 20

Hardware

Multiplier
6.5 0.0022

20 bits

Shifter/Accum.
Data Path

1.25 0.044
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Table 2.1: Area-speed trade-off: shift /accumulate vs. parallel multiplication

data path for other arithmetic operations. On the other hand with shift-accumulate

multiplication, the data path resources are shared with other arithmetic operations.

The time required to complete 22 multiplications using iterative shift-accumulate

operations, although slower, take only about 10% of the sample period without re

quiring the overhead of a parallel multiplier. We, therefore, conclude that a parallel

multiplier is not necessary for implementing the two axis-robot control algorithm.

Conditional Operations

Apart from the large number of multiplications, the other dominant char

acteristic of the robot control algorithm is the use of conditional operations. The

dead band expression (eqn. 2.15) and the Coulomb friction compensation (eqn. 2.21),

both require if... then ... else type operation. The flow chart of the control algo

rithm shows another use of conditional operation: optionally skipping the I control

part of the PID controller, using an external control signal, IFlag.

if IFlag is true

then compute I Control,

else go to

D Control.

Program loops for efficiently implementing the control algorithm also require con

ditional operation. The iteration count of the loop is usually maintained in a loop

counter. At the end of each iteration the counter is tested and a decision is made

to repeat the loop or to branch to a new section of the program.
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In commercial DSPs, e.g. TMS32010, conditional operations are per

formed with branch instructions requiring two cycles, such as,

BANZ: branch on aux. reg not zero

BGEZ: branch if accum > 0

BZ: branch if accum = 0

Clearly, in applications requiring frequent use of conditional operations, they must

be supported efficiently.

Subroutines and Loops

Subroutines and loops are generally used to provide programming effi

ciency by conserving program rom space. The Lagerl [Pope85] architecture had

very limited support for subroutines and loops. This was not a major problem for

some of the applications for which the Lagerl architecture was used. Partitioning

the application program among several processors operating in parallel, kept the

size of the program (typically less than 100 instructions) in each individual proces

sor relatively small. Parallel processing, however, costs chip area due to multiple

processors and additional hardware for inter-processor communication, not to men

tion the need to maintain synchronism between different processors. For relatively

low sampling rate applications, this type of overhead is not always justified.

In the robot control application, assuming a 100 ns instruction cycle time,

a 0.5 ms sample period allows 5000 instructions to be executed per sample. Since

the 22 multiplications (see section 2.4.1) require 22 x 20 = 440 instruction cycles,

we can safely assume the control algorithm for both the joints can be implemented

on a single processor. This also avoids inter-processor communication problems.

Since at low sampling rate a large number of instructions can be executed on a

single processor, the program rom size can become very large. Therefore, support

for sub-routines and loops is very important for reducing rom size.
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Figure 2.6: Robot controller with external signals and I/O circuits for one joint

2.5 System Interface

Since board-level design can be time-consuming and costly, an effective

custom solution for a specific application must aim at a high-level of system inte

gration. This involves integrating peripheral circuits; customizing the processor to

potentially include the peripheral circuits; and providing convenient I/O interfaces

on the processor. Figure 2.6 shows a block diagram of the robot controller along

with its peripheral and I/O circuits. In the discussion below, we classify these

circuits into two categories: circuits provided by the manufacturer; and circuits

provided by the user.

2.5.1 Circuits Provided by the Manufacturer

The direct-drive motor from NSK/Motornetics comes with an interface

unit [NSK86] which contains three main circuit components:
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(i) Commutation circuit which converts ananalog torque command orvelocity com

mand signal into a three-phase signal for driving the motor.

(ii) Power amplifiers to boost the power of the three-phase signal from the commu

tation circuit, before feeding it to the motor windings.

(iii) Resolver interface circuit which converts a three-phase output signal from a

resolver [ILC73] into an analog velocitysignal as wellas standard two phasequadra

ture pulses [Snyd85]. The latter can be used to keep a digital count of increments in

the motor's angular position. The resolver unit is an electro-mechanical transducer

coupled to the motor shaft which generates a three-phase amplitude modulated

signal. The modulation varies as a function of the position of the shaft.

2.5.2 Circuits Provided by the User

The user must provide the circuits to connect the controller with the inter

face unit. These include the following for each joint: a D/A for converting the digital

output of the controller into an analog command signal; an A/D for converting the

velocity signal into digital form; and a two-phase quadrature decoder-accumulator

to keep a. digital count of the angular position. Since the output of the resolver

interface circuit generates 153,600 counts per revolution corresponding to a resolu

tion of 8.5 arc-seconds, the decoder must be able to hold a count of 18 bits (note

the joint motion is limited to ±7r).

In addition to interfacing with the motor, the controller must also com

municate with a host computer. The host computer provides the coefficients and

constants needed by the controller as well as the reference position data correspond

ing to the desired trajectory. All the interface circuits discussed so far perform in

put/output operations. Certain applications may also require the ability to directly

manipulate the control flow of the program through external signals.

The robot controller application may potentially use three external control

signals. A sync signal, a reset signal, andanI-control select signal (see section 2.4.1).

A sync signal is useful for synchronizing the sample period of the controller with an

external signal, such as a global synchronizing signal or a completion signal from
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an I/O device. The sync signal can also be generated from a timer to ensure each

sample period is of a specified, fixed duration. A reset signal, on the other hand,

is used to force the controller to start up in a known state. This is important in

robot control applications where an unknown initial state can be hazardous to the

operation of the mechanical parts. An external control signal is also required for

selecting or turning off the I-control section of the PID controller.

The discussion in this section shows the need for considerable amount of

hardware overhead for integrating the controller into the robot system. In fact, I/O

requirements were primarily responsible for performance bottle-neck and hardware

overhead in implementing [Anwr87] the controller using a typical TMS32010 board

(see figure 2.7 for a block diagram of the controller). Over 70% of the sample

period (0.7ms) was used for performing I/O and data transfers between the various

processors. The PC-AT #1 executes the P-control section of the PID controller

while the TMS32010 executes rest of the algorithm. The P-control which acts inside

the position loop may execute slower than the adaptation and D-control which are

in the velocity loop. The second PC-AT provides communication between PC-AT

#1 and TMS32010. In addition, PC-AT #2 performs most of the I/O operations.

Since the robot has two joints, a second set of A/Ds, D/A, and quadrature decoder

is also provided. The controller shown in figure 2.7 may not be the most efficient

design; nevertheless, this is an actual system put together by a robotics group. The

design clearly underlines the fact that application designers tend to use off-the-shelf,

easily configurable components rather than spend effort on board-level design. The

interface unit provided by the manufacturer of the motors also adds to the overall

system's cost and size. Clearly, a custom circuit that meets the specific I/O and

system interface requirements of the application would significantly reduce the size,

cost, and design effort needed for the complete system.

2.5.3 Decoding Position Information from Resolver Output

An example of special I/O circuit for the robot control application is the

resolver interface circuit for measuring the joint's position. Each joint of the robot
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Figure 2.7: A TMS32010 based system implementing the adaptive control algo
rithm.
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Figure 2.8: Block diagram showing the operations required to obtain the position

information from the resolver output.

arm from NSK/Motornetics is fitted with a Reactasyn resolver [Ira84]. The resolver

generates a three-phase amplitude modulated signal on a 6Khz carrier signal. The

relative position of the joint is encoded in the modulating signal's phase. One rev

olution of the joint results in 150 cycles of the modulating signal. Thus the relative

joint position within a 1/150 th sector of a complete rotation can be determined.

By keeping count of the digital pulses from the decoded signal, the absolute position

with respect to some reference position can also be found. Furthermore, since the

maximum speed of the joint is 1 revolution per second, the maximum frequency

of the modulating signal is 150 cycles/sec. The robot arm from NSK/Moternetics

uses a fairly complicated hardware [Ira84] for obtaining the position information

in digital form from the three-phase resolver output. The main components of the

hardware are op-amps, electronic Scott-T [ILC73] circuit, and resolver-to-digital

converter (RDC) [ILC73]. A more cost-effective solution, however, can be obtained

using custom VLSI. We discuss below a possible custom implementation for gener

ating digital position data from the resolver signal.

Figure 2.8 shows the block diagram of the position decoder. The input

signals to the demodulator are,
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Va = Ka(l 4-maSin9)Sinuct

Vb = Kb(l + mbSin(9 - 120))Sinuct

Vc = Kc(\ + mcSin(9 - 240))Sinwct (2.26)

where 9 is the angular position we wish to obtain; wc is the carrier frequency;

Kai Kbi Kc are gain values; and raa, mbi mc are the modulation indices. These three

signals from the resolver are first demodulated and then digitized. By taking dif

ferences of the sampled signals we obtain the following signals,

Vab = Va - Vb = E.Sin9

Vte = Vb - Vc = E.Sin(9 - 120)

Va, = Vc - Va = E.Sin(9 - 240) (2.27)

where we have assumed Ka = Kb = Kc = If, ma = mb —mc = m, and E =

(y/Z).K.m Next the Scott-T transformer performs the following operations to gen

erate a two phase signal.

Vx = Vab = E.Sin9

Vy = Vbc-Vca = (y/Z).E.Cos9 (2.28)

Finally, we obtain 9 by trigonometric manipulation.

9 = Tan-l(Vx/V^) (2.29)

where Vy' = Vy/(y/3)/E. All the above algebraic and trignometric operations can be

performed in a microcoded processor such as the one described in this dissertation.
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2.6 Algorithm Development, Testing and Debug

ging

Although extensive simulations of the algorithm and the hardware must

precede an actual custom implementation, in situ development efforts is still neces

sary for ensuring satisfactory performance. This is especially true for robot control

applications where the robot system cannot be precisely modelled. Therefore, the

hardware should allow the user to change the coefficients and constants such as the

P, I, and D gains; dead band limit; etc. Another desirable feature is the ability to

experiment with different forms of the algorithm, such as turning off the I action of

the PID controller.

The controller chip may also fail to perform satisfactorily because of de

sign and/or process problems. Consequently the design must facilitate testing and

debugging of the chip, once it is fabricated. This requires the ability to get the

processor into a known state as well as the ability to observe and control internal

states of the processor for isolating problem areas.



Chapter 3

Architecture Design of the

Custom Digital Signal Processor

3.1 Overview of Digital Signal Processors

Digital signal processors are electronic components useful for building sys

tems that are intended for performing intense arithmetic computations. DSPs

achieve high through-puts through various architectural techniques, which include

parallel functional units, pipelining, dedicated hardware for computationally inten

sive operations, multiple memories, and multiple busses.

Most general purpose DSPs are built around the so called Harvard archi

tecture. Instead of a single memory, as in traditional Von Neumann architectures,

the Harvard architecture has separate program memory and data memory. This,

combined with separate program and data busses, allows simultaneous access to pro
gram instructions and data. The TMS32010 [TMS83] from Texas Instruments, one

of the first generation DSPs on a single chip, uses the Harvard architecture with a

modification that allows data transfer between the program bus and the databus for

greater flexibility. Some of the more recent DSPs (for example DSP56000 [M0S6])
have gone for an architecture based on three memory units: one program memory
and two data/coefficient memories. With the ability to access two pieces of data
in the same cycle this type of architecture is very efficient in implementing the

31
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multiply-accumulate operation,

y(k) = 6 x x(k) (3.1)

However, the implicit assumption that the two operands, 6and x(k) reside

in different memories may not always be true. In addition to providing multiple

memory units operating in parallel, DSPs also have separate address computation

hardware.

Address computation units are dedicated data paths for computing the

memory addresses of operands in parallel with the operations of the main data

path. The address units usually have their own alu, registers, pointers, and stack.

A very popular feature of the address units is built-in hardware for handling mod

ulo addressing useful in accessing and updating circular buffers and data queues.

Whereas the address unit increases through-put by allowing address computation in

parallel with the operations of the main data path, pipeline stages in the processor

allow several instructions to be processed simultaneously.

The TMS32020, for example, has a three stage pipeline:

Instruction Fetch

Instruction Decode

Instruction Execute

With this scheme, execution of three instructions can proceed simultaneously. Op

erations in the execution stage include add, multiply, shift, load register, etc. The

more advanced TMS320C30 has four stages of pipeline for increasing through-puts.

One disadvantage of pipeline, though, is pipeline bubbles caused by conditional

branch operations [LeeJa84]. Since the result of a branch operation cannot always

be predicted in advance, the pipeline must be flushed before a new instruction fol

lowing a branch can be executed. The conditional branch operations are also used

in executing program loops. The TMS32020 makes the flushing operation trans

parent to the user by specifying two instruction cycles for all conditional branches.

The TMS320C30, on the other hand, permits delayed branch [LiFrSi87]. Another

disadvantage of pipelines is seen in executing program loops. Every instruction
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in the loop must be fetched and decoded even though the same instruction or set

of instructions are repeated on each iteration of the loop. In order to overcome

this problem, many commercial DSPs use special techniques. The TMS32020 has

a repeat counter which allows a single instruction to be repeated up to 256 times

without the need for fetch and decode except on the first iteration. DSP56000

from Motorola allows loops of multiple instructions without any instruction cycle

overhead for change-of-flow. This is achieved at the cost of a loop counter and a

loop-end address register as well as making use of a stack. Although most com

mercial DSPs provide some way of efficiently executing loops, other control flow

type instructions such as conditional branch and subroutine call/return still require

certain number of instruction cycles to execute. As discussed in chapter 2, the

robot control application requires efficient support for control flow type operations.

In this chapter the architecture of the robot controller is discussed, which among

other things, supports efficient execution of control flow operations.

3.2 Architectural Model for the Custom Proces

sor

Based on the analysis of the robot controller application, presented in

chapter 2, an architectural model for the custom processor has been defined. This

model comprises of three main parts:

• One or more application specific data paths for executing arithmetic and logical

operations.

• A high-performance, generic processor control unit that determines the oper

ations in the data paths and the sequence in which they are executed.

• Memory units associated with the data paths for data storage, such as RAMs

and register files.

In developing an implementation of the architecture model we have tried to take

advantageof the existing Lagerlarchitecture [Pope85]. However, as describedin this
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Figure 3.1: Processor architecture for the robot controller

chapter, major changes and additions have been made for better performance. The

actual implementation of the architecture not only aims at efficiently supporting

the robot control algorithm, but also making the various functional blocks highly

modular and customizable so that they can be easily adapted for other applications.

As shown in figure 3.1, the architecture [Azim88] a consists of several

customizable functional blocks listed below:

• Processor Control Unit (PCU) - includes instruction memory

• Arithmetic Unit Data Path (AU)

• Address Processing Unit Data Path (APU)

• Data Memory (RAM)

• Logical Unit (LGU)

• Test Logic

lTn some Lager literature, this is referred to as the KAPPA architecture.
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• I/O

The instruction memory or control store inside the control unit holds the application

program and issues a new instruction on every clock cycle. This instruction specifies

the operations to be executed in the data paths, memory, and other functional blocks

except Test-logic. The Test-logic block is a dedicated hardware block used during

testing and does not operate under program control. A description of the test-logic

and the testing strategy is given in chapter 6, whereas the rest of the hardware

blocks are described in this chapter.

3.3 Processor Control Unit

The processor control unit (PCU) controls the instruction by instruction

execution of the application program. Whereas the design of the data paths deter

mine how well the arithmetic operations are executed, the PCU's design determines

how well the control flow operations are executed. The Lagerl architecture used a

very simple design for the control unit. It consisted of a program rom containing

horizontal instruction words, a program counter to sequence through the instruc

tions, and a sub-program counter to execute multiple iterations of any one section

of the rom code. Sub-routines that can be called from different sections of the main

program and branch operations were not supported. Clearly, the requirements of

the robot controller, as -discussed in chapter 2, dictates a major redesign of the

control unit. The design of the PCU is aimed at achieving two major goals: (i)

efficient implementation of the control flow operations; (ii) Support for automatic

generation of the control unit from high-level behavioral descriptions of the proces

sor. In the following sub-sections, the hardware design of the PCU is described,

whereas in chapter 5 the automatic generation of the control unit is described.

3.3.1 A Conceptual Framework for the Control Unit Design

The design of the control unit presented here evolves naturally from a

finite state diagram representation of algorithms. Figure 3.2 shows a partial state
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reset

Figure 3.2: A partial state transition diagram for a PID control algorithm

transition diagram of a PID controller.

The corresponding state table is shown in table 3.1. The output of the

machine represents the next state and the actions taken during each state. When

the conditions necessary for making a state transition are satisfied (usually meaning

completion of all the desired actions), the indicated transition takes place. One

could conceptually identify each state with a machine instruction and therefore,

the entire state table can be regarded as a machine-level program. Such a state

table can be implemented on a finite state machine (fsm) using combinational logic

elements and flip flops or with pla's and flip flops. This, in principle, can serve as



Present

State

Conditions Next

State

Action

INIT ek[0] task complete INIT ek[l] initialize ek[0]
INIT ek[l] task complete INIT SUM initialize ek[l]
INIT SUM task complete READ Kp initialize sum

READ Kp task complete READ Kd read in Kp
...

READ

LIMIT

task complete GET

PLANT-OUT

read in

error limit

GET

PLANT-OUT

task complete COMPUTE

ERR

read plant
output

COMPUTE

ERR

task complete COMPUTE

ABS(ERR)
compute

error

COMPUTE

ABS(ERR)
task complete

and (abserr < limit)
CNTRLR OUT=0 compute

abs(err)
COMPUTE

ABS(ERR)
task complete

and (abserr > limit)

Table 3.1: State table for the PID state transition diagram.

the control unit.
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A straight forward fsm based implementation, however, is inefficient for

most applications. It does not take advantage of program-characteristics such as

ordering of the state table, repetition of a group of state transitions, etc. Practical

realization of the state machine is greatly facilitated by ordering the state table

such that most of the state transitions are effected by simply going to the next

entry in the state table. Such an ordered state table is characterized by two types

of transitions: (i) sequential transitions; and (ii) out-of-sequence transitions. In

practice, programs are generally composed of blocks of sequential state transitions

followed by an out-of-sequence state transition. This leads to a program model based

on separation of the sequential and out-of-sequence state transitions as shown in

figure 3.3. The blocks of sequentially executing states can be identified with blocks

of straight-line machine instructions specifying data manipulation operations (e.g.

add, load), whereas the out-of-sequence transitions can be identified with control

flow operations (e.g branch).
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Figure 3.3: Program model showing data path operations and control flow opera

tions.

Blocks of

Instructions

Sequencer

Control Store

T
Control Signals

Figure 3.4: Hardware modelfor the control unit.
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The program model described here leads to a hardware model of the control

unit. This model (figure 3.4) consists of a sequencer which embodies the control

flow structure of the program and a control store which holds blocks of straight-

line machine instructions specifying data path operations. Based on this hardware

model, a simple control unit can be designed.

3.3.2 Functional Description of the Control Unit

An implementation of the basic control unit is shown in Figure 3.5. The

sequencer is implemented with a finite state machine and a program counter (pc),

whereas the control store is implemented with a pla. The fsm's output for the basic

control unit has two fields: a new-state field and an address field which points to

an instruction block in the control store. The program counter sequences through

the individual instructions of the specified block. These instructions are stored as

horizontal control words whose bit-fields are control signals for executing data path,

memory, and I/O micro-operations. As shown in figure 3.6, the control word has

three main fields: data path control bits; EOB2; and EOB. The end-of-block bit,

EOB, in the control word is set in the last instruction of each block in the control

store. This bit resets the program counter. Since the program counter always counts

up and is reset to zero by EOB, no additional hardware or control is required to

determine when the program counter should be reset.

The size of the program counter should be large enough to sequence

through the largest block. Since the size of the blocks vary, the control store may

have sections of unused locations. This is not a major problem as the unused loca

tions can be deleted during layout generation. The control store's address word-size

however, may be slightly larger than the minimum required. The address word-size

is given by,

As = log2(Nb) + log2(Bmax) (3.2)

where Nb is the number of blocks and Bmax is the number of instructions in the

largest block. Irrespective of the size of the block, on execution of the last instruction
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Figure 3.5: Block diagram of the basic control unit. The higher order bits (block

address) of the control store address are provided by the fsm and the lower order

bits (instruction line address) are provided by the program counter.
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Figure 3.6: Bit-fields of the control-word. EOB specifies end of an instruction block

whereas EOB2 is used during subroutine returns.

of a block, the EOB bit in the control word triggers a state transition in the fsm.

The state transitions in the fsm actually take place in two steps: first, the

EOB causes the fsm to go into a change-over state; second, as EOB goes away after

one cycle, the fsm goes into a new hold state. Upon transition, a new block address

pointer is specified in the change-over state as well as the new hold state. This

allows the first instruction of the new block to be executed immediately following

the cycle in which EOB is asserted (details about the circuit implementation is

discussed in chapter 5). When an instruction block has only one instruction, the

hold state is eliminated. The use of change-over state is shown in figure 3.7 and as

the fsm state-table shows, each control flow operation requires at least two entries.

As described in the preceding paragraphs, the use of a finite state machine

for implementing the control flow operations as state transitions, permits chaiige-

of-flow from one block of instructions to another without requiring any instruction

cycle overhead. This is in contrast with traditional implementation of control in

structions, which like all other instructions, require a certain number of cycles for

fetching, decoding, and executing each instruction. The control instructions imple

mented in the basic control unit shown in figure 3.5 are multi-way branches and

subroutines.

Multi-way Branches

Multi-way branch simply means selecting one of N possible state transi

tions, based on input signals to the fsm. Therefore, such a branch is also executed

without any instruction cycleoverhead. The change-over states and the correspond-
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EOB*

Figure 3.7: Fsm state transitions and state-table. Each transition requires two

entries in the table: change-over and hold. In the change-over state, wliich lasts

for only one cycle following EOB, the first instruction of blockB is executed. The

remaining instructions of blockB are executed during hold state of B.
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EOB.X3

Figure 3.8: Change-over states and the corresponding state table entries for a multi-

way branch. Entries for the hold states are not shown.

ing state table entries for a multi-way branch are shown in figure 3.8. An important

feature of the control unit to note here is the ability to have external control signals

directly effect state transitions without any software or major hardware overhead

as in traditional interrupt schemes. This feature is similar to TMS320 family's BIO

control input. Unlike the TMS320 however, any desired number of external control

inputs can be provided by specifying them during layout generation. On the other

hand the state transitions take place only at the end of a block; whereas in tradi

tional interrupt schemes, the machine can be interrupted at any instruction during

execution of a program.

Subroutines

For executing subroutines, the block pointer in the fsm's output points to

the desired subroutine block (figure 3.9). In this way the same block of instructions

can be specified from different states, thus avoiding the need for having multiple

copies of the same block. Further more, the transitions to and from a subroutine

state may also be multi-way, conditional branch operations. The reader should note,

however, the various states pointing to the same subroutine cannot be merged, since

their next state transitions are not necessarily same. Moreover, nested subroutines
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Figure 3.9: Implementation of limited subroutine capability without using stacks.

Figure showing both subroutine states Si and S2 pointing to the same instruction

block, blockS. Because they return to different states Rl and R2 respectively, the

two states cannot be merged.
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Figure 3.10: Figure showing the addition of a mux and a stack to the PCU for

supporting subroutine. The control store and program counter are not shown.

cannot be handled - they must be flattened. In order to reduce the number of states

and allow nested subroutines, a hardware stack is added. This permits merging of

all the states pointing to the same subroutine.

For incorporating a subroutine stack, a mux is included in the PCU circuit

to select the new state as shown in figure 3.10. Moreover, four extra fields must be

added to the fsm output: a subroutine return-state field, a push-stack control bit, a

pop-stack control bit, and a mux-select control bit (see figure 3.11). While making

a transition to a subroutine state, the return-state is pushed on to the stack. On



Present

State

R1

In

Cond.

EOB

EOB*

EOB

EOB4

EOB'

New

State

R1

£'fteiunv

141111111111111 It 11114 H,

. V N :

Select

•JR1 s>;Vfsm

^ ^XsV \[." J81*1
'* X* 1 stack

fsm

EOB4

Pop Push

niiiiiiiiiiiiii

N -r

o -

Block

Addrs.

Pointer

blocks

blocks

blockD

blockRI

46

Dummy

Change-over

Figure 3.11: State transition diagram and table illustrating use of stack for sub

routines. Notice a dummy change-over state has been used for returning from the

subroutine S. This replaces the usual change-over state required for making a tran

sition to state Rl. X = don't care; Mux Select = fsm, means select fsm's new state

output; Mux Select = stack, means select the stack output; Push/Pop = 1, means

enable signal; and Push/Pop = 0, means disable signal.
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the other hand, while returning from the subroutine state, the fsm first goes into a

dummy change-over state during which the stack is popped and the mux is switched

to select the return-state output from the stack. The instruction block pointed to by

the dummy state contains a single no-op instruction. However, the EOB bit is not

set during this instruction in order to avoid an unwanted state transition. Instead,

the EOB2 bit is set for keeping the program counter reset. Following the dummy

state, the fsm goes into the return-state. The insertion of the dummy state results

in one extra cycle when returning from subroutines (using stack). This also causes

an additional entry in the state-table for each subroutine. However, no change-over

state is required for the return state itself. As a result, the total number of entries

in the state-table for invoking subroutine states is reduced. The savings is even

greater when nested subroutines are present, as explained below.

Let Pi be the number of times the ith subroutine is called (a subroutine

may be a singlesubroutine state or a unique group of states treated as a subroutine).

Also assume JV; to be the number of states (excluding any nested subroutine[s]) in

each unique group of subroutines. The contribution made by the ith subroutine to

the total number of entries in the state-table can be computed as follows:

Pi'. Add one table entry for the change-over state, for each transition (call)
to the subroutine.

1: Add one table entry for the hold state of the first state in each subroutine.

1: Add one table entry for the change-over state for returning from the sub

routine

—Pi'. Subtract one table entry in order to compensate for the change-over

state counted for each return state, (remember subroutine return states do not have

a change-over state.)

2(7V, —1): Add two table entries for every state, excluding the first state, in
the subroutine.

Thus the number of state-table entries due to subroutines is:
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St* Ci = Zi(Pi +1) + (1 - Pi) + 2(N{ - 1)
= E,-2 + 2(JV,-)-2

= E;2JV,-

C,- is the number of entries in the state-table corresponding to each subroutine 2,

and k is the number of unique subroutines. As the equation shows, the number of

state-table entries is independent of the number of times a subroutine is called or

the level of nestings. Moreover, since the number of state entries for the top-level

states is also equal to 2 x Ntop, the total number of state-table entries is easily found

by counting the number of states in each unique group of states (including both

the top-level and the subroutines) and multiplying by two. This is illustrated in

figure 3.12. Note, in the above analysis we have assumed return from subroutines

never jumps across different levels of nesting. If this is not the case then dummy

states must be inserted in order to ensure a return state for each call.

One drawback of using a stack for subroutines is the difficulty of executing

a multi-way branch while returning from a subroutine, since only one return-state

address can be pushed or popped from the stack during a state transition. Multiple

return addresses may be provided with a wider stack, multiple return-state fields

in the fsm output, and additional circuit complexity. Whereas the addition of a

stack to the basic control unit provides a mechanism for handling subroutine states,

another important extension of the basic control unit is a hardware loop counter.

Loops

As discussed in section 3.1, many commercial DSPs provide support for

executing zero instruction-cycle overhead loops. However, zero overhead loops are

useful only for short loops and result in negligible improvement in loops with a large

number of instructions and/or involving complex control flow operations. Conse

quently, we have provided a hardware loop counter in the PCU for executing loops

involving a single block of instructions. For more complex loops, data path reg

isters may be used for loop counters, as described later. The PCU loop counter

adds another bit, called the Incr bit, in the fsm output. (See figure 3.13.) This
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Figure 3.12: State diagram showing two levels of subroutine nesting. Total number

of state entries is 4 x 2 (for top-level states) +2x2 (for subroutine group B1-B2)

+1x2 (for subroutine CI) = 14. A flattened state diagram would require 8x2 = 16

state entries.
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Figure 3.13: State diagram and table for executing loops. The Loop Incr. signal

from fsm's output sets the loop counter in increment mode. When the specified

number of iterations of the block is completed the loop-done signal, Lpd, is asserted

by the counter, causing state transition out of the loop state.
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Incr bit is set when the instruction block addressed by the fsm is to be executed

more than once using the PCU loop counter. At the end of block the loop counter

is incremented by one. A count-detect logic tests the output of the loop counter.

When the pre-specified count is reached, a loop-done signal is asserted wliich trig

gers a new state transition. For each unique loop count to be detected, a separate

count-detect logic and an associated loop-done signal is provided (see chapter 5

for details). We decided to use count-detect logic instead of using the counter in

decrement mode and using carry-out signal. This avoids the need for setting the

counter to an initial value from the fsm, which requires an additional field in the

fsm output plane, as well as additional routing between the fsm and the counter.

We also note in figure 3.13, the loop state, L, requires an additional row (for a total

of three rows) in the state table. In many signal processing applications, in addition

to loop counters, a counter for controlling the length of the sample period (in terms

of number of cycles) may be needed. For this reason, the PCU design includes a

timer.

Timer

The timer is built around a counter which counts up once every instruction

cycle from an initial count value. This initial count is provided by a register which

can be loaded from the data path under program control. Normally, the fsm executes

the entire program once per sample period, at the end of which the fsm goes into

a wait state. Meanwhile the timer keeps counting and when the maximum count is

reached, a control signal is asserted and the counter resets to its initial count. The

control signal from the timer also causes the fsm to restart the program. As shown

in figure 3.14, a control bit is added in the fsm output in order to reset the timer.

Usually the timer is reset during initialization states, which are done only once on

start-up. The ability to reset the timer from the fsm output may be exploited for

other uses too. For resetting the PCU, an external reset signal is provided wliich

forces the fsm to go into a reset state and also resets the program counter.

A complete block diagram of the PCU is shown in figure 3.15. In the next
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Figure 3.14: Fsm input and output fields. Timer reset control bit is high lighted.

section we compare the design of the PCU with alternative designs for implementing

program-control functions. After describing, the control unit used in the Cathedral

design system [Rab88] for custom DSP circuits, we examine a stand alone micro-

sequencer chip recently announced by Altera Corporation [Alt87]. This chip is very

interesting because its design has many similarities with our approach. Finally,

implementation of control flow functions in two commercial DSP chips are discussed.

3.3.3 Comparison with Alternative Approaches to Control

Unit Design for DSPs

In considering alternative designs for implementing program-control func

tions, we examine the following operations.

• Generation of next-instruction address

• Branch

• Loops

• Subroutines

(The description about the designs of the various control units have been obtained or

deduced from information given in data sheets, manuals, and papers. These descriptions

corroborate the hardware behavior; however, they may differ in actual implementation

details.)
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Customizable Control Unit of the Cathedral Design System

The Cathedral design system is aimed at generating custom DSP circuits

from a library of customizable functional blocks. An important functional block

is the control unit wliich is described here. The block diagram of the control unit

is shown in figure 3.16. The next-instruction address is usually obtained by incre

menting the program counter. The addressed instruction is then loaded into an

instruction register from where the control signals are applied to the data paths.

For a change-of-flow operation, the branch control logic consisting of a finite state

machine and a jump-address memory is used to generate the next-instruction ad-
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dress. In order to execute a branch, the next-instruction address is encoded in the

jump address field (JAF). The address of the branch target is eventually provided

by the jump address memory and loaded into the program counter. The finite state

machine is used to evaluate conditional branches and multi-way branches based on

status signals from data path or other sources. Furthermore, the fsm also evaluates

boolean expressions as in the logical unit (see section 3.5) of the robot controller.

One of the fsm's output is used to choose between loading the program counter

with a new address or incrementing the program counter for the next sequential

address. A major difference between the Cathedral control unit and the PCU is in

the pipeline scheme.

The Cathedral control unit has a two stage pipeline with the branch control

logic forming one stage; the program counter and the rom forming the other stage.

All branch addresses must be loaded into the program counter first. As a result

a conditional branch takes two cycles. For unconditional branches, the branch

instruction may be issued two cycles earlier (look-ahead) for avoiding the two-cycle

penalty. In the PCU, on the other hand, the program counter and the finite state

machine (implementing the control flow instructions) are in the same pipeline stage

and jointly provide the rom's address. Consequently, conditional branches take only

one cycle because of the data path pipeline stage. On the other hand unconditional

branches take effect immediately without requiring any look-ahead scheme.

Unlike, all the other control units discussed in this section, no hardware

loop counter is provided. Consequently program loops are implemented using the

branch operation and registers/counters in the data paths. This may lead to

instruction-cycle overhead in tight loops. Loop unfolding technique, however, is

used by the compiler for avoiding the instruction-cycle penalty although such an

approach is too inconvenient for direct programming by the user.

Subroutines are implemented by setting a special bit in the status register

before branching to the subroutine. One bit is dedicated for each subroutine call.

Thus during return, the status bits can be evaluated to choose the correct return

(branch out of the subroutine) address. Since each subroutine call adds a bit to the

status register, it cangrow very large. Moreover, like branch, subroutine call/return
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operations also require one extra cycle.

EPS448, Stand Alone Microsequencer

The EPS448 from Altera Corporation is designed as a stand alone mi

crosequencer (SAM). Figure 3.17 shows a block diagram of the sequencer. The

major blocks of the SAM are branch control logic, microcode memory (EPROM),

loop counter, and stack. The microcode memory holds 'instructions' just Hke the

control store of the PCU. Unlike the PCU, however, 20 of the 36 output bits of

the memory are reserved for internal SAM operation. The bit-fields of the memory

word are shown in figure 3.18. These 20 bits include next state addresses, op code,

and tristate control of outputs. The remaining 16 bits are available for user-defined

outputs to control, for instance, operations of a data path. The memory holds a

total of 448 words whose addresses are generated by the branch control logic, wliich

functions much like the sequencer of the PCU. However, the manner in which the

next state address is generated has many important differences with the PCU's next

state address generation mechanism.

The SAM does not use a program counter to generate the next state ad

dress; instead two possible next state addresses are specified in the D and Q fields

(figure 3.18) of the microcode memory word itself. The mux inside the branch con

trol logic selects one of the two addresses based on the status of the loop counter's

Zero Flag and/or the microcode memory output's Op-code field. This restricts the

SAM to executing a two-way branch for 192 of the 448 words of the microcode

memory. Also, over 50% (20/36 bits) of the microcode memory is used for gener

ating the next state address as opposed to only two bits (EOB and EOB2) in the

PCU's control store. On the other hand, the SAM does not restrict change-of-flow

operations at only block boundaries, as in the PCU. Looping and stack operations

can be specified on any instruction. For multi-way branch, the remaining 256 (of

the 448) microcode memory locations are organized into 64 groups of four words.

A branch select EPLD (erasable programable logic device) selects one of the four

words based on external inputs. Thus the external inputs can select only up to one
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Figure 3.17: Block diagram of the recently introduced Altera EPS448 stand alone

microsequencer (SAM). The operation of the SAM has many similarities with the
PCU's operation
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Figure 3.18: Bit-fields of SAM's microcode memory word.

of four possible next states in the microcode memory space 192-448.

The loop counter, which operates in decrement mode, is used for looping.

A desired constant value specified in the D-Field must be loaded into the register

associated with the loop counter, before entering the loop. On completion of the

specified loop counts, the zero flag is set which causes a next state transition out

of the loop. For nesting loops as well as subroutines, the stack can be used. All

the SAM operations such as push stack, pop stack, and branch take place in one

clock cycle. However, like the state transitions of the PCU, the SAM operations

take place in parallel with the operations specified in the user-defined outputs of

the while at the same time generating an output to control data path operations,

differs from sequencing operations done in general purpose DSPs.

TMS32020

A block diagram of the control section of the TMS32020 is shown in fig

ure 3.19. Unlike the PCU or the SAM, each instruction must be fetched from the

program memory and decoded before executing it. During the fetch cycle, the in

struction addressed by the program counter (PC) is loaded from the program rom

into the instruction register. This instruction is decoded during the decode cycle

and finally the specified operations are executed in the execute cycle. Normally,

on every cycle a new instruction address is generated by incrementing the program

counter. However, when a change-of-flow is required, the next-instruction address
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Figure 3.20: Execution of branch instruction in TMS32020. During cycle 3, based

on evaluation of the branch conditions, PC either gets the address of the next

sequential rom instruction or the address of the branch target. Note that between

the execution of the (n-l)th instruction and the (n+l)th instruction, the branch

operation takes up two cycles. (The actual increment in the PC during fetch cycle

may be more than one, depending on the number of words required by the current

instruction.)

is specified in a separate instruction. This is once again different from the PCU

or the SAM where the next-address is always generated in parallel with the data

path operations. Execution of all control flow instructions on the TMS32020 require

two cycles. As an example, the execution of a branch instruction is illustrated in

figure 3.20. During execution of the branch instruction, the branch conditions are

evaluated in the branch control logic. Accordingly the program counter is either

incremented if branch is not taken, or if the branch is taken, the branch target

address is loaded into the program counter from the instruction register. Unlike the

PCU, the branch mechanism described above allows only a two-way branch. The

status signals for determining the branch may come from such sources as the data

path (accumulator), auxiliary registers, etc. The auxiliary registers are used for,

among other things, looping.

The desired loop count is loaded into one of the auxiliary registers before

entering a loop. By using the BANZ(branch on auxiliary register not zero) instruc

tion at the end of each iteration of the loop, the auxiliary register is decremented
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and tested by the branch control logic. If the auxiHary register is zero, the program

flow branches out of the loop. The BANZ instruction thus adds two cycles to each

iteration of a loop, which can be a substantial penalty for tight loops. This penalty

can be avoided for a single-instruction loop by using a hardware repeat counter.

When the repeat count is in effect, no new instructions are fetched; instead, the

same decoded instruction is repeatedly executed till the repeat counter goes to zero.

At that point, normal program flow resumes.

Subroutine call and return instructions also take two cycles to execute on

the TMS32020. No special mechanism is available to avoid this instruction cycle

overhead. While executing a subroutine call, the next-instruction address (return

address) is pushed on the stack and the subroutine's address is loaded into the

program counter from the instruction register (see figure 3.19). During return from

subroutine, the stack is popped and the return address is loaded back into the

program counter.

DSP56000

The DSP56000 from Motorola is another example of a general purpose DSP

chip. A program address generation (PAG) hardware computes a new instruction

address every cycle, which, Hke the TMS32020, is decoded and executed in the fol

lowing two cycles. The next-instruction address can be the next sequential address

or an out-of-sequence address if a change-of-flow, such as branch, is involved. As in

TMS32020, only two-way branches are allowed. Each branch (JUMP) or subrou

tine caU/return instruction costs four cycles. On the other hand special hardware

is provided for executing multiple-instruction loops with zero cycle overhead. The

hardwareincludes a loopcounter (LC); a loop-end address (LA) register to hold the

address of the last instruction in a loop; and a stack to store the starting address

of the loop. The stack is of course used for other purposes also such as subroutine

call/return. Before entering the loop, a DO instruction is executed to initialize the

LC, LA and to push the loop-start address on the stack. Although the DO instruc

tion costs sixcycles, the loop itself does not require any cycles for change-of-flow at
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the end of each iteration of the loop. On every instruction cycle, the next-instruction

address generated by the PAG is compared with the loop-end instruction address.

If a match is found, the foUowing instruction's address is obtained from the stack

(loop-start address), instead of by simply incrementing the current instruction's

address. As can be seen by the above description, considerable amount of hardware

has been dedicated for providing multiple-instruction loops. This can be contrasted

with the PCU, which requires only a loop counter. Moreover the PCU uses the

same general scheme for implementing all types of control flow instructions without

any cycle overhead.

We conclude this section on comparison of various control unit designs by

giving a summary in figure 3.21 and figure 3.22.

3.4 Arithmetic Unit Data Path

The Arithmetic unit (AU) is the main data path for performing arith

metic computations. In our design of the data path we have tried to maintain the

simpHcity and compactness of the Lagerl data path. However, several important

modifications have been made to remove some of the deficiencies encountered in

Lagerl.

multiplication

In order to reduce truncation error during multiplication, the shifter wliich

was put before the adder in Lagerl data path has now been placed after the adder.

As a result the worst case truncation error in implementing an nxn shift/accumulate

multiplication has been reduced from

error > n X (magnitude of one Isb)

to

error = magnitude of just one Isb.

Moreover, the shifter, which used to be one stage of a three stage pipeline in Lagerl

has been merged with the adder stage. As described in chapter 5, this has been
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Figure 3.22: Summary of characteristicsof the control unit for the Cathedral design
system.
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achieved without necessarily increasing the critical path delay. In order to perform

the iterative shift/accumulate multiplication, the multiplier is loaded into a parallel-

serial coefficient register. On each iteration, product of the multiplicand word and

a multiplier bit (starting with LSB first) is added to the partial sum in the accu

mulator after the accumulator's contents have been shifted right. The operations

performed during each iteration of the multiplication is summarized below.

shift right coefficient register,

B input = accumulator shifted right by one bit,

A input = (LSB of coefficient) x multiplier,

accumulator = A + B, disable saturation;

As described above the shift operation is now done on the accumulator's

contents. This complicates the saturation of the adder's output upon overflow.

The adder's output, in case of overflow, should normally be saturated at 2n_1 —1

(positive maximum) or —2n_1 (negative maximum), n being the number of bits.

For certain cases (e.g. shift/accum. multiplication), however, the number should

not be saturated since a right shift would restore the number back to the bound

of ±2n~1. Consequently, the hardware has been designed to allow the user, under

program control, the option to leave the adder's output unsaturated.

Figure 3.23 shows the section of the data path that executes all the arith

metic operations. In addition to add and shift, the data path supports several other

operations. These include ABSOLUTE of A input, NEGATIVE of A input, IN

CREMENT B input, etc. The NEGATIVE operation gives a true 2's complement

negative result, unlike Lagerl, wliich did a l's complement.

Data Transfers

Three types of data transfers are involved in the data path: with other

functional units on the processor; with memory; and with external devices. In

Lagerl all data transfers to and from other functional units/processors on the chip

took place through serial lines with the objective of reducing routing for data
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Figure 3.23: Section of the AU data path which performs add, shift and other

arithmetic operations. The coefficient register used in shift/accum. multiplication

is not shown here.

busses. Another consideration was to alleviate the synchronization problem in

multi-processor configuration. Consequently, each program variable involved in I/O

communication had a parallel-serial converter at the transmit-end, a serial-parallel

register at the receive-end, and a dedicated serial interconnect. This approach,

however, often led to large overhead in I/O circuits.

Although serial lines take up less area for routing than parallel fines, this

advantage diminishes as the number ofI/O variables increases, with a corresponding

rise in the number of dedicated serial lines. When the number of I/O variables is

equal to the word-size of the variable then the number of data fines required for serial

as well as parallel transfers is exactly same. Moreover serial transfers involve an N

cycle delay, where N is the number of bits. The hardware needed to convert from

serial to parallel form and vice-versa also adds to the hardware cost. As examples

of Lagerl applications in table 3.2 show, the overhead can be considerable.

In order to avoid proliferation of I/O circuits, a different scheme for transferring

data to and from the AU has been adopted in the robot controller.



Application Number of I/O
Variables (with
serial transfer)

Relative Sizes

I/O ckts: Data Path

Correlator 7 1:1

Pitch-Tracker 2 2:5

Decision FBE 4 1:2
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Table 3.2: Relative sizes of I/O circuits - for serial data transfer - and data path

for several Lagerl chips. Note the relatively large area used by I/O circuits.

As shown in figure 3.24, all data I/O are done over parallel lines. Instead

of providing dedicated registers, as in Lagerl, for holding I/O variables, all the

variables are stored in a local ram, which is a much more efficient storage unit. All

external I/O is done through a parallel port. A port address bus selects the desired

I/O device. Since external data cannot be written directly to the local memory in

one cycle, two general purpose registers, R0 and i21? are also provided as shown

in figure 3.25. These registers form one of the three pipeline stages of the data

path. The memory output register, MOR, forms the other pipeline stage besides

the arithmetic stage discussed earlier. As shown in figure 3.26, following the second

stage, data may be stored in the registers while at the same time a new data may

be read into the MOR register. The data in registers R0 and Ri may be moved into

the memory when an idle cycle is available. On the other hand, the data path also

allows the accumulator data to be directly moved into the memory via the Mbus,

by-passing the third stage. The Mbus is the main bus going across the data path,

and also connects with the address processing unit as wellas the coefficient register.

3.5 Logical Unit

The Logical Unit (LGU) implements boolean operations. Consider the

following,

if x > y then {action list).

Although this operation can be implemented with the PCU, for those cases where
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Figure 3.26: The three pipeline stages of the data path.

the action list is a single operation, the LGU may be used. The design of the LGU

is based on a finite state machine, as described in [Pope85]. The state of the fsm

is set by input conditions, such as the sign bit from the data path or even external

signals, and the fsm's past state. This allows the fsm's output, called condition

code, to be a boolean function of past and present input conditions. The condition

code signal, CC, is then used for executing two data path instructions:

write conditionally (to local memory)

accumulate conditionally

Using the LGU avoids creating a large number of small program blocks

in the instruction memory as well as more states in the fsm of the PCU. However,

the execution of conditional operations with the LGU costs instruction cycles which

may be avoided with the PCU.

3.6 Memory Unit

Closely tied with the data path is a local memory which stores program

variables and I/O data as mentioned in section 3.4. The memory is organized in

word-parallel form without any column decoding, the word size being same as that
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MBUS (AU)

Figure 3.27: Address processing unit block diagram.

of the data path. As in Lagerl, any memory location can be configured as a read

only constant. However, the user now also has the option of specifying constants in

the address field of instructions as described below.

3.7 Address Processing Unit Data Path

All address computations for variables in the local memory are done in an

address processing unit (APU). Since the APU operates in parallel with the arith

metic unit, no instruction cycle overhead is required for address computations, thus

increasing through-puts. Like the AU, the APU is also based on a bit-slice architec

ture. The number of bit-slices being strictly dependent on the largest ram address

to be computed, is usually much smaller than for the AU. The main components of

the APU, shown in figure 3.27, are three registers and an adder. The hardware is
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adequate for supporting several addressing modes commonly encountered in digital

signal processing appHcations. In addition the registers can also be used as loop

counters.

3.7.1 Addressing Modes

In the description of the addressing modes given below, the followingsym

bols are used:

EA = effective address.

IAF = address field in the control —word.

Xi = ith register

Immediate Addressing

EA = IAF(= constant)

A constant may be directly specified in the address field of an instruction. Using

the bus connection between the APU and the AU (see section 3.7.3), the constant

may be moved into the AU.

Direct Addressing

EA = IAF

The X input of the adder is forced to zero so that the address field of the instruction

directly forms the effective address.

Indirect Addressing

EA = Xi

The address is supplied by one of the APU's registers and the instruction's address

field is set to zero.
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Indexed Addressing

EA = Xi + IAF

The effective address is formed by adding the address specified in the instruction

and the contents of one of the registers. The same method may be used for pointer

mode addressing by loading a pointer base-address in one of the registers and adding

offsets to address the variables.

3.7.2 Loop Counting

The APU registers can also be used as loop counters. Whereas for short

loops the PCU loop counter is very useful, for large and complex loops the APU

registers may be used as loop counters. These registers allow nesting of loops. At

the same time the contents of the registers are also available for address computa

tions. The loop counter register may be incremented or decremented by setting the

instruction's address field to +1 or —1. The modified count value is then stored

back into the register.

EA = Xi + l; Xi = EA or

EA = Xi - 1; Xi = EA

3.7.3 Data Transfer between APU and AU

Although the APU and the AU are dedicated for address computations and

arithmetic computations respectively, sometimes data may have to be transferred

between the two. For example, the address may be computed in the AU and then

moved into one of the APU's registers, or some of the variables used in the APU may

be saved in the local memory for minimizing the number of registers needed in the

APU. Because of the need, a parallel connection is provided between the EABUS

in the APU and the AU's MBUS. The hardware shown in dotted in figure 3.27

is part of the AU. Since the word length of the two data paths may be different,

the following convention is adopted, assuming APU-word-size < AU-word-size: (i)
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When moving data from APU to AU, data is sign extended; (ii) When movingdata

from AU to APU, data is truncated on the MSB side. Clearly, any loop count or

address value should not exceed the word size of the APU.



Chapter 4

The Silicon Compiler

Environment

In order to create a physical layout of the target architecture described

in chapter 3, the Lager-III [ShS7] silicon compiler environment is used. Using this

CAD environment, a customized layout of the architecture is automatically gen

erated for a specific algorithm. Details about the design of the CAD tools and

the compilers are given in [AzShBr88] [ShJSB87] [Shung88]. The work reported in

this thesis deals with the application of the CAD environment to the robot control

problem. This involves development of the architecture model which provides the

frame work for control generation and synthesis; developing the design methodol

ogy; integrating the design of the architecture inside the CAD environment through

structural description files and front-end routines for generating layouts of specific

macrocells. First, we present an overview of the Lager-III system.

4.1 Overview of Lager-III

Lager-III has two independent parts, illustrated in figure 4.1. At the lower

levela siliconassembly subsystem assembles a customized layout. At the higher level

compilers map algorithmic descriptions into hardware specifications for the proces

sor. The input to the high-level compiler is a program written in Silage [HilSS],
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which is an applicative language for representing signal flow graphs, or RL [Rim88],

which is a procedural language Hke 'C. Next, the RL program is compiled into an

architecture specific assembly language program. This assembly program describes

the algorithm at the microarchitecture level. Various sections of this program are

Hsted below; detailed specifications are given in appendix A

• Hst of variables

• Hst of boolean operations to be performed in the LGU's (logical unit) finite

state machine (dfsm)

• control flow state-transitions

• Hst of loop sizes (number of iterations) to be detected by the loop counter

• width of the arithmetic unit data path

• Hst of control states in which timer is to be kept reset

• maximum size of the sampling period in terms of number of instruction cycles

• Hst of blocks of instructions, each instruction consisting of multiple microop-

erations performed in paraHel

The usermayenter the design systembywriting his own assembly language program

or let the RL compiler [Rim88] generate the assembly language program from a 'C

description.

In order to do the compilation, the RL compiler requires knowledge about

mapping the behavioral descriptionof the algorithm in RL into a behavioral descrip

tion in assembly language. This knowledge is provided in the form of a list of allowed

microoperations, legal data transfers, hardware resources used by each microoper-

ation, and a code-generation table. In order to target a different architecture, the

knowledge-base must be altered. The next level of transformation involves convert

ing the microarchitecture-level behavioral description (assembly language program)
into a microarchitecture-level structural specification.
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The structural specification generated by the control and parameter gen

eration software, rassCG (see figure 4.1), includes hardware parameter values (e.g.

number of ram words, data path word-size), control-words in the rom specifying the

microoperations in each cycle, and an fsm table specifying the state-transitions. As

in the behavioral domain mapping, a structural domain mapping table is required

by rassCG. These tables for the robot control processor and their relationship to

the architecture model are discussed in section 4.2. After generation of the struc

tural specification they are sent to the siHcon assembly part of Lager-III for layout

generation.

At the center of the siHcon assembler in Lager-III is the Design Man

ager [ShJSB87] (DM). It is a program for managing the layout generation process.

The designer provides DM with a set of hierarchical structural description files (sdl)

describing the processor in the structural domain. Each sdl file describes a macrocell

which may be part of a parent macroceU and may itself contain other macrocells

as children. The description in sdl files includes connectivity information, list of

sub-ceUs used, a Hst of hardware parameters, type of layout generator required, and

a simulation model. DM calls up the appropriate layout tools for generating each

hardware block, provides them with the necessary parameter values, and keeps track

of the connectivity information for the routing tools. In this project, the following

layout tools were used.

(i) TimLager: [ShJSB87] Assembles layout of macrocells by tiling together leafceUs.

The macroceU designer must also write a 'C procedure describing the tiling scheme

for the macrocell. The 'C procedure allows the layout to be parameterized with

regard to size, type of ceUs used, etc.

(ii) Data Path Compiler (dpc): [MaS7] Assembles bit-slice data paths. The config

uration of the data path with regard to type of cells used is specified in the sdl file;

the width of the data path is specified as a parameter.

(iii) Standard Cell Generator: [SHJSBS7] Assembles rows ofstandard ceUs for imple

menting logic functions. A front-end program, eqn2sdl [MaS7], aUows the designer

to specify the logic in the form of boolean equations,

(iv) Flint: [RaPoBrS5] [ShJSB87] An interactive place and route program for con-
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Figure 4.2: Architecture model consisting of a central control unit, application

specific data paths, and memory.

necting up macroceUs generated using one of the last three tools.

In addition to the layout tools, DM also needs leafceU Hbraries for the various

macroceUs required to complete the design.

4.2 Relationship Between Architecture Model and

Silicon Compilation

In chapter 3 we briefly discussed the architecture model followed by a

detailed description of the complete architecture. In this section we shall elaborate

on the choice of the architecture modelfrom the point of view of siliconcompilation.

We shall also describe the Hnk between the assembly language program and the

structural specification of the processor.

The architecture model is based on separation of control flow and data

path operations and consists of a single control unit, multiple data paths, and a

memory unit, as shown in figure 4.2. As described in chapter 3, we have designed
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a generic, self-contained control unit which is capable of supporting a small but

functionaUy complete set "of control flow operations. The processor can be built

around the control unit by adding one or more appHcation specific data paths.

This approach also faciHtates adapting the compilers and rassCG program to a new

processordesign. Since the control unit design remains fixed, the rules for mapping

the control flow operations into the control unit's fsm table and the manner in which

the control signals for the data paths are specified in the rom, remain fixed. On

the other hand, the data path's microarchitecture is redefined through the sdl files.

This simply requires a new mapping table for describing the association between

the primitive microoperations and the control-bits of the rom. In addition to the

rom's output controlHng the microoperations in the data paths, a second form of

interaction takes place in the form of status signals from the data paths feeding

back into the finite state machine inside the control unit. These signals are used

for executing conditional operations such as a conditional branch. An arbitrary

number of status signals (e.g. sign bit, carry-out from ALU, etc.) feeding into the

control unit's fsm can be easily specified through the sdl files. The above discussion

shows that appHcation specific processors can be conveniently assembled by using

the same basic architecture model with a fixed control unit design, a fixed scheme

for mapping microoperations into the control-word but with freedom to customize

the data paths for the target appHcation. Once the microarchitecture is described

through sdl files, a customized layout is generated from the structural specifications.

4.2.1 Structural Specifications

The structural specification of the processor consists of four parts: hard

ware parameters; rom control-words specifying the operations in each instruction;

fsm table for the state-transitions; and fsm table specifying the boolean operations

in the LGU.
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Hardware parameters

Hardware parameters are used for customizing the layout. These param

eters include word length of the data path, number of ram words, etc. A complete

Hst of the parameters for the robot control processor is given in appendix B.

Rom Control-words

The rom control-word has a bit-field assigned to every control signal or

group of signals used for controlHng the operation of the data paths, memory, and

any other functional unit. This is iUustrated in figure 4.3 for a smaU subset of

a data path. Each primitive microoperation in the data path is associated with

a particular set of control signals as Hsted in appendix C for the robot control

processor. Appendix D gives a Hst of the control signals and their field assignments

in the rom word. The control signals are explained in chapter 5.

Control FSM Table

The control fsm (cfsm) table describes the state transitions. In chapter 3,

we have presented a detailed discussion on mapping control flow operations such as

branch, subroutine caU, etc., into the fsm table. Part of rassCG program implements

those mapping rules.

Logical Unit FSM Table

The decision fsm (dfsm) table specifies condition codes as boolean func

tions of various input signals. A number of functions can be stored and any one

of them can be invoked from a particular instruction. When a function evaluates

true, the corresponding condition code is asserted.

4.3 Customization of the Hardware

The structural specifications provide the input to Design Manager for gen
erating a customized layout of the processor based on the structural descriptions.
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Figure 4.3: Microoperations and corresponding control signals for a subset of a data

path. The control-bits for SelA and Load are asserted in the rom-word for executing

the instruction ((X=A) (Reg=Reg+X))
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Various levels of customization is possible through the structural specifications and

the sdl files as discussed below.

Level #1 - Software Programmability:

This is the simplest form of customization in which a new assembly lan

guage program is written for a new appHcation on an existing processor. This

results in reprogramming of the control rom and the finite state machine in the

control unit.

Level #2 - Hardware Programmability:

Hardware programmabihty means the hardware can be configured during

layout generation according to the values of the various parameters. The parameters

are a) word size of the data paths, b) word size of the ram, c) number of words

in the ram, d) type of operations in the logical unit, e) number of unique loops in

the PCU, f) depth of the stack inside PCU as determined by the number of levels

of nested sub-routines, g) maximum count of the timer inside PCU as determined

by the maximum sample interval, and h) maximum count of the program counter

inside the PCU.

Level #3 - Customization of the hardware configuration:

The microarchitecture can be re-configured to match the requirements

of the appHcation. These modifications in the hardware include a) choosing the

number and type of functional elements in the data paths (e.g. number of registers);

b) bus structure (inter-connections between elements) of the data paths; and c)

selecting the hardware functions (timer, loop counter, stack) of the control unit.

Level #4 - Inclusion of I/O and interface circuits:

Application specific I/O, interface circuits, and 'glue' logic can be included

with the processor for reducing system cost and facilitating system integration.
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In the above description, level 1 through level 4 represent progressively

increasing levels of customization of the hardware. Customization at levels 1 and

2 require no effort by the user other than writing the RL or assembly language

program. Customization at level 3 requires modifying the sdl files and also providing

new mapping tables to the compiler and rassCG. Customization at level 4 not only

requires modifying the sdl files and mapping tables for compiler and rassCG but

also possibly designing some of the peripheral circuits.



Chapter 5

Circuit and Layout Design

A processor's high level representation, such as the microarchitecture, must

eventuaUy be reduced to transistor-level circuits and finaUy mapped into a physical

layout. Both circuit level design and layout design are very time-consuming and

tedious jobs. Consequently most silicon compilers have fairly powerful tools for

assembHng the layout from some intermediate level representation - net list, logic

diagram, etc. - of the processor. Before a siHcon compiler is capable of generating

the layout, however, the design methodologies, layout styles, ceUHbraries, etc. must

be defined and incorporated into the CAD environment. In this chapter we describe

in detail the circuit design, use of appropriate layout tools, and organization of the

cell hierarchy for the robot controller chip.

5.1 Design Approach

The robot controUer is a macroceU based microcoded processor. In de

signing custom circuits, a designer may choose between a hard-wired circuit which

is fully dedicated to one specific algorithm or a microcoded processor that can

be customized. In hard-wired circuits, the operations and the sequence in which

the operations are performed are fixed and defined by the hardware configuration.

These circuits are usually data path intensive with simple control and are able to

provide high through-put rates [ReuSG] [Bar87]. Consequently they are typically

85
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used in appHcations where desired sampHng rate is close to the clock rate. Since

each circuit is unique, however, considerable design effort is required for defining the

architecture. Moreover, the hard-wired nature of the circuits results in minimum

sharing of hardware resources and hence larger chip area. Therefore, for relatively

low sampHng rate appHcations, a microcoded processor is a better choice.

The robot control processor consists of six macrocells as discussed in chap

ter 3 - AU, APU, PCU, LGU, RAM,-and Test-Logic. The foUowing considerations

guided our design of the cells:

(i) Use of highly parameterized, modular macroceUs.

(ii) Bit-sHce architecture for data path macroceUs.

(iii) Minimize number of leafceUs in the macroceUs and share ceUs.

(iv) LeafceUs designed to be easily adapted for a variety of situations,

(v) Conservative, straight forward circuit design in order to minimize circuit design

time and problems due to complex circuit techniques which are often process de

pendent. AU circuit designs are done in CMOS.

(vi) Use of scalable CMOS (SCMOS) technology in order to aUow some degree of

technology-independence.

5.2 Organization of the Processor

The processor consists of a series of hierarchical structural description

files (sdl) reflecting the ceU hierarchy. The hierarchy of the sdl files are shown in

figure 5.1. At each level of the hierarchy the child cells are assembled together with

FHnt, a place and route tool. One of the design decisions we had to make was the

amount of hierarchy in the processor's layout design.

The amount of hierarchy in the design is a trade-off between convenience

of design and compactness in layout. Ideally, a completely flat design would pro

vide the greatest freedom in moving the cells around for the most compact layout.

Moreover a flat design results in fewer files. However, the place and route tool may

be limited in the number of cells and interconnections it can handle simultaneously.



scpads2.sdl

(north)

proc_chip.sdl

scpads2.sdl
(south)

pcu-au.sdl

procH.sdl scpads2.sdl
(east)

ram-apu.sdl

scpads2.sdl

(west)

87
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Figure 5.1: The structural hierarchy of the robot control processor. In this figure,

the five ceUs at the bottom are the five major macrocells in the processor.
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Apart from overcoming this Hmitation, hierarchy also simpHfies the design task in

many ways:

(i) AUows divide and conquer strategy; smaller cells can be easily debugged and

verified both with respect to the sdl files as weU as the actual layout,

(ii) SubceUs and their sdl files can be easily re-used within the design and also in

other designs.

(iii) SubceUs can be easily added or deleted from the design,

(iv) The design can be easily shared between different designers or design groups,

(v) Simulation and verification of the layout/design can be speeded up by taking

advantage of the hierarchy.

.One possible compromise is to use hierarchy during design and verification but

flattening out the sdl files during layout generation. For the robot controller chip

we maintained a hierarchical structure both during design and layout generation

because of limitations of the place and route tool.

As shown in figure 5.1, the top-level sdl file for the entire chip is called

procchip.sdl. It is composed of five sub-ceUs, four of which are the four pad groups

around the periphery of the chip. Since the North pad group does not have any

real pads, it is deleted in the final layout for minimizing chip area. Inside the space

bounded by the pads is the core processor described by procH.sdl. The top level

layout showing the pad groups and the core processor is shown in figure 5.2. In

order to make the routing problem manageable for FHnt, the procH.sdl is assem

bled from two subceUs pcu-au.sdl and ram-apu.sdl. Finally, at the bottom of the

hierarchy are the five macrocells labeled with their generic names. These macro-

cells are themselves composed of even smaUer child cells as described later. First,

however, we digress briefly for describing the global timing and interconnections of

the processor.

5.3 Global Timing and Interconnections

The processor uses a two phase non-overlapping clocking scheme as shown

in figure 5.3. In a global sense, the processor architecture has a two stage pipeline:
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procH.sdl

sc pads2.<dl scpads2.<dl

TZ" "U
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Figure 5.2: Top-level view of the robot controller chip layout showing three pad

groups surrounding the core processor cell. The North pad group is deleted since it

does not have any actual pads in this example.
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the evaluation and generation of the control-word foUowed by operations in the data

paths and memory. Multiple pipeHne stages, however, exist within the data paths

as described later. At the end of phase 2 of every clock cycle a control-word becomes

valid. This control-word is latched on the faUing edge of phase 2 and is available

in the next cycle. During phase 1 and phase 2 of the next cycle this control-word

is used to control the microoperations in the data path. The control-word also

provides an address input to the APU where the ram address is computed during

phase 1. The ram is also precharged on phase 1 and read or written during phase

2. At the end of a ram read operation, the output of the ram is latched inside a

memory output register which is part of the AU data path.

The top-level interconnection network of the processor is shown in fig

ure 5.4. The individual blocks (macroceUs) of the processor are described next. In

this description the details about the scan path testing circuits - scan register, scan

latch, and Test-logic - are not given here; they are described in chapter 6. The

structural description files of the hardware are given in appendix E.

5.4 Processor Control Unit (PCU)

5.4.1 Macrocell Organization

The control unit consists of six child macrocells: cstore-Macro; cfsm-

Macro; pc-Macro; lpc-Macro; stack-Macro; and timer-Macro as shown in figure 5.5.

Names in itaHcs and enclosed with [] in the figure are instance names of the cells.

The six PCU macroceUs are assembled together using Flint. The boundary ter

minals of the PCU macrocell are shown in figure 5.6 and are described below. In

the figure, the numbers inside [] give the actual bus widths for the robot controller

processor. In general, however, these widths are parameterized.

TIMERINBUS: This is a data bus wliich connects with the global EABUS for

loading the timer register inside the PCU from the AU data path. The number

loaded in the timer register determines the sample period in terms of number of

instruction cycles.
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Figure 5.3: The global timing scheme of the processor is based on a two phase non-

overlapping clock. On each cycle a new control-word is generated which determines

the data path and ram operations in the following cycle.
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data path status signals. Scan path connections are shown as cross-hatched lines.
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Figure 5.5: Structural organization of the PCU macroceU.
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Figure 5.6: Boundary terminals of the PCU. The number inside [] give the actual
bus widths for the robot controUer design.
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CFSMCONDIN: These are the control signals goinginto the PCU and are tested

for executing conditional branchoperations. CFSMCONDINfO] is the APU sign bit,

CFSMCONDIN[l] is the AU sign bit, and CFSMCONDIN[2] is an off-chip signal

used for optionally skipping the integration operation of the PID section of the con

trol algorithm. This is synonymous with the IFLAG signal referred to in chapter 2.

PCURESET: This is the reset signal for the PCU and is connected with the ex

ternal RESET signal. It initializes the program counter to zero and the finite state

machine to state zero.

PHIl, PHI2: These are the phase 1 and phase 2 respectively of the two-phase

master clock generated inside the Test-logic macroceU.

TESTCLOCK1, TESTCLOCK2: These are phase 1 and phase 2 respectively

of a two-phase test clock. Details about using the test clocks are described in chap

ter 6.

PCUSCANIN, PCUSCANOUT: Single-bit scan-in and scan-out lines respec

tively for testing purposes. Details are described in chapter 6.

EOS: This is the end-of-sample signal and is asserted when the timer completes

its count of the length of the sample period. The signal is used within the PCU

for starting a new iteration of the program at the end of a sample. EOS is also

available externaUy for monitoring purposes.

PGMSTATE: These are the state bits of the FSM inside the PCU and are avail

able for monitoring by the testing circuits as described in chapter 6.

INSTRNUM: These are the program counter output bits and provide the low-

order bits of the current instruction's address being executed; high order address

bits are provide by the block address. INSTRNUM is also used by the test circuits.

CTLWORDI, CTLWORDII: These are the control-signals generated by the

control-store and specify the microoperations to be performed during each cycle. For

convenience in placement during layout, the control-word is split into two smaller

sections referred to as CTLWORDI and CTLWORDII.
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5.4.2 Circuit Design

The main circuit components of the PCU are PLA, counters, mux, regis

ters, and some random logic. AU the six child macroceUs of the PCU are built from

these basic circuits.

cstore-Macro

The cstore-Macro consists of three child cells: PLA and two scan-latches.

The PLA holds the control-words which specify the microoperations. By using

a PLA we can take advantage of minimization programs and also delete unused

locations. The PLA itself doesnot have any input or output latches; external scan-

latches are provided for latching the data. The address inputs are assumed to be

latched at the source (cfsm-Macro and pc-Macro), whereas for the outputs, latches

are provided within the cstore-Macro. In order to provide greater freedom for pro

ducing a morecompact layout, the output latch is divided into two, approximately

equal sections - CSTOREOUTREGI and CSTOREOUTREGII. The overall block

diagram of the cstore-Macro is shownin figure 5.7.

The block address from the FSM provide the high order bits of the pla

address whereas the instruction address from the program counter provide the low

order address bits. The outputs from the pla are active high and are latched by
the two latches. The least two significant bits of the control-word from the pla
are EOB and LDTIMER signals. The complemented output is used from the latch

for LDTIMER as required by the timer register. The pla and the latches use only
phase 2 of the clock. Thus, the control-word becomes valid during phase 2 and is
latched on its faUing edge. In addition to the normal clocks, both the latches have
a two-phase test clock for serially shifting scan data in and out through SCANIN
and SCANOUT terminals. The detailed design of the scan latches are described in
chapter 6. We now discuss the design of the pla.

The PLA circuit is shown in figure 5.8. The output lines are precharged
when CLOCK (in the case ofcstore-Macro, CLOCK=phase 2) is low and evaluated
when CLOCK is liigh. Each minterm Hne uses a weak PMOS pullup. When a valid
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Figure 5.7: The cstore-Macro consists of a pla and two scan-type latches.

input is set up, aU the minterm lines are puUed low except the one selected. As a

result the output lines tied to the selected minterm line go high; outputs are active

high. There is also a weak puUup on the output Hnes for preventing charge sharing

problems. The timing diagram for the operation of the PLA is shown in figure 5.9.

The PLA and the latch circuits are generated using the TimLager tiler program

since it provides the most compact layout for array type structures.

cfsm-Macro

The cfsm-Macro (figure 5.10) consists of four child macrocells: PLA, two

scan-latches, and a mux with a built-in latch. The PLA implements the control-

flow state transition table. As in cstore-Macro, the outputs are latched by two

latches CFSMOUTREGI and CFSMOUTREGII. The first one latches the state

outputs whereas the latter one latches the various signals used for controlling the

operation of the PCU. These are: block-address for the control-store, LPINC for

incrementing the loop-counter, and TIMERJR.ST2 for reseting the timer. The block

diagram in figure 5.10 does not show any control signals for stack operation since
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Figure 5.9: Timing diagram showing the operation of the control-store.

in the robot control processor, non-stack based subroutines (see chapter 3) were

used. In order to feed the state outputs back into the PLA for FSM action, the

output from CFSMOUTREGI are latched again, using the second phase of the

clock, in a combined mux/latch circuit called CFSMREG. CFSMOUTREGI and

CFSMREG together form a state feedback register. The mux selects between two

inputs: either the fsm's state output or the output from the stack. The stack

output is normaUy connected to the CFSMREGIN2 terminals but in tliis case these

terminals are grounded since a stack is not used. The mux control signal, SELJN2,

is also grounded which causes the mux to always select the state outputs. As shown

in figure 5.10, the mux output forms part of the PLA's input vector. The remaining

inputs are: ENDLOOP signals, which detect completion of specific loop counts -

in this case two different count values; EOB, end-of-block signal from the control-

store; COND, which are the conditional signals connected to APU sign, AU sign,

and the external IFLAG pin; and EOS, end-of-sample signal from the timer.

The details of the circuit for the PLA has been discussed earlier in the

section on cstore-Macro. We now describe the circuit of the muxJatch shown in
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Figure 5.10: Block diagram of the PCU's finite state machine.
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or the return state from the stack. MuxJatch also provides means for forcing the

FSM into zero state for reset purposes.

figure 5.11. Basically, it consists of a 2X1 mux whose output is latched on CLOCK2.

The mux output switches to IN2 when SELJN2, latched on CLOCKl, is high. The

nor gate provides a mechanism for forcing the output to zero when RESET is

applied. Since the mux output is applied to the FSM input, the FSM is forced into

zero state when RESET is asserted. Without the nor gate, the alternative would

be to allow a state transition to the reset-state from every state in the program.

This of course would result in a very large number of additional entries in the state

table.

The cfsm-Macro uses both the clock phases for its operation. CLOCKl
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is tied to phase 1 and CLOCK2 is tied to phase 2 of the master clock whereas

the PLA's CLOCK is tied to phase 1. Thus the cfsm-Macro's timing scheme is as

foUows. The FSM is precharged when phase 1 is low and is evaluated when phase

1 is high. On the faUing edge of phase 1 the FSM's outputs are latched. On the

foUowing phase 2, the state output of the FSM is transferred to the FSM's input

through the muxJatch. Thus at the end of phase 2 the FSM is ready to start

evaluating a new state.

The layout generation for the child macroceUs of the cfsm-Macro are done

with the TimLager tiHng program. On the other hand, the child macroceUs are

connected together with Flint. All the latches, muxJatch, and the PLA are param

eterized. For example, the number of conditional inputs to the FSM is a parameter

in the csfm-Macro.sdl file. The layout and interconnections are automatically ad

justed to take into account the number of conditional inputs.

Program Counter (PC)

The pc-Macro consists of two child cells: a counter and a latch as shown

in figure 5.12. The counter consists of alternating odd and even counter leafceUs

tiled together with TimLager. In addition, a single leafcell containing some random

control-logic is also tiled with the counter as shown in figure 5.13. The counter

leafceUs consist essentiallyof a half-adderand carry circuit (figure 5.14). The carry-

in of the LSB slice is tied to Vdd so that the counter always operates in an increment

mode. The previous output of the half-adder is fed back into the adder input after

a single clock-cycle delay through a dynamic register. All the storage nodes in the

counter are dynamic. An alternative input into the dynamic register is the initial-

count. For initialization, the counter can be forced to a pre-specified initial value

by applying a reset signal. Three different reset signals can be applied: RESET,

EOB, and EOB2. In order to tie any unused reset terminal to ground, the ZEROpc

terminal, wliich is connected to GND, is provided. The initial-count is specified

during layout generation. Based on the initial-count value, the init-count terminal

of each counter ceU is connected to either GND or Vdd. The outputs become valid
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CONTROL SECTION

(count) (phA) (phB)

COUNTER CELL (even)

(init. count)
Cout*

t> fiOUT[i]

(phA)

[>-SH>-^-I>-i
(phB)

Figure 5.13: Control and counter circuit for the program counter.



104

Coot*

Cany Circuit

Half Adder

Figure 5.14: Half-adder and carry circuits for the even-sHce of the counter. The

sum input is the previous sum whereas sum* is the complement of the new sum.

The odd-sUce circuits are just the complement of the even-shce.

CLOCK1

CLOCK2

RESET/EOB/EOB2 f V

OUT Initial Count X Count+1

Figure 5.15: Timing diagram for the program counter.

on CLOCKl as shown in the timing diagram in figure 5.15.

Loop Counter (LPC)

The loop counter macrocell, lpc-Macro, is very similar to the program

counter in design and layout organization. It consists of a loop counter and a latch.

Only the control section of the counter is different as shown in figure 5.1G. The

LPINC output from the control unit's FSM is held high during any state where

looping is required. This enables the loop counter. Actual increment in the loop
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Figure 5.16: Control circuits for the loop counter.

counter, however, takes place only when the EOB signal is asserted at the end of a

block of code. The counter resets when LPINC is low. In order to implement this

behavior, the phA latch in the counter cell (see figure 5.13) is always turned ON.

As shown in the timing diagram in figrure 5.17, the counter increments on phase

1 of the master clock. The count-detect signals also becomes valid during phase 1

when the appropriate count is reached. The output of the counter and the count-

detect signals are latched by a scan-type latch, LPCOUTREG, on phase 1. Another

difference between the loop counter and the program counter are the count-detect

circuits. When the loop counter reaches a pre-specified count, the corresponding

count-detect circuit, hard wired to detect the particular count, asserts a detect

signal called ENDLOOP. This signal is used by the FSM for making the next state

transition. Each count to be detected has its own detection circuit, which is a

simple nand gate as shown in figure 5.18. The number of nand gates and the count

each one detects are determined during layout generation. Figure 5.IS also shows
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Figure 5.17: Timing diagram for loop counter.

the schemetic of a cell, several of which are tiled together to form a complete nand

gate.

Timer

Like the program counter and the loop counter, the timer is also built

around the same basic counter circuit. The timer-Macro consists of three cliild

macroceUs: timer, scanTLlatch_phl, and scanTLreg2Port and is used for setting

the sample period. A block diagram of the macrocell is shown in figure 5.19. The

timer is assembled from alternating odd and even counter leafceUs and a control-

logic cell. The initial-count, however, is not hard-wired during layout generation.

Instead, initial-count terminals are brought out and connected to the output of

scanTLreg2Port (TIMERINREG), which is a scan-type register. Since the timer's

even slices require inverted inputs, complementary outputs from the TIMERINREG

are used for connecting with the even numbered input terminals on the timer.

TIMERINREG is loaded with a desired initial-count value from the data path

under program control. The LDTIMER (see figure 5.7) signal of the control-word

is applied to the LOADINV terminal of TIMERINREG for loading the initial-count.

Normally, the processor first reads tliis initial-count value from an external source
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Figure 5.18: Count-detect circuits for the loop counter.
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Figure 5.19: Block diagram of the timer-Macro.
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Figure 5.20: Control circuit for reseting the timer.

through the I/O ports. Thus, the user can specify a desired initial-count wliich in

turn determines the sample period.

Since upon reset the counter is initiaUzed to init-count, the length of the

sample period is given by (2n— init-count) where n is the number of bits in the

counter. At the end of the sample period the timer overflows and EOS, which is

the latched carry-out signal from the timer, is asserted. This EOS is used by the

FSM for making the appropriate state transition. At the same time an inverted

version of EOS from TIMEROUTREG (see figure 5.19) is applied to the terminal

INIINV (see figure 5.19 and figure 5.20) of the timer. This generates a reset signal

as shown in the reset-control circuit of the timer in figure 5.20. An alternative way

of reseting the timer is by pulling liigh the IN2 terminal of the timer, also shown

in figure 5.20. IN2 is actuaUy controlled from the FSM in order to keep the timer

reset during initialization states of the program. The timing diagram for the timer

is shown in figure 5.21.

Stack

The stack macrocell, stack-Macro, is used for handling subroutines in the

control unit although a more limited form of subroutine can also be implemented

without the stack as discussed in chapter 3. Stack-Macro consists of two cliild

macrocells: basicStack and scanTLlatch.phl as shown in figure 5.22. Both the
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/

Figure 5.21: Timing diagram for the timer.

macroceUs are generated through tiUng with TimLager and are connected together

with FUnt. The width of the latch and the stack as weU as the depth of the stack

are aU parameterized and determined during layout generation.

The operation of the stack is controUed by two control signals, POP and

PUSH, from the FSM. When making a transition to the subroutine state, the

FSM asserts the PUSH signal and applies the return-state to the stack's input,

TOSTACKIN. When making a return transition back from the subroutine-state,

the FSM asserts the POP signal which causes the stack to be popped after the data

from the stack's output has been used by the FSM. The output data is latched by a

scanTLlatch_phl latch and is available at its output terminals. The circuit diagram

of a stack register cell and the control circuits are shown in figure 5.23

Figure 5.24 gives the timing diagram for subroutine call and return along

with the associated state transitions. In the figure, the EOB signal at time interval

tl causes a state transition to a subroutine-state. At the same time a return-state

and a PUSH signal is put out by the FSM during phase 1 of the clock cycle. In

the following phase 2, the stack control circuit generates the sshd signal from the

PUSH signal, causing the return-state to be pushed on the stack. At the end of

the subroutine block another EOB signal is asserted during time interval t2. This

causes the FSM to make a transition to a dummy state as explained in chapter 3.

At the same time the FSM puts out a mux-select signal, SELJN2, and a POP
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Figure 5.22: Stack-Macro consists of a basic stack and a scan-type latch.
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Figure 5.23: Circuit diagram of a stack cell and stack control circuits. The circuit

within the dotted box contains the basic stack register cell. This cell is replicated

horizontallyfor forming the stack word and vertically for increasing the stack depth.
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Figure 5.24: Timing diagram showing stack operations for subroutine caU and re

turn. EOB signal and FSM state transitions are also shown.

signal. SELJN2 causes the mux inside the FSM (see cfsm-Macro description in this

chapter) to select the stack output, which is the return-state. This return-state is

applied to the input of the FSM during phase 2, causing the FSM to go into the

return-state on foUowing phase 1. After the FSM has made the transition, the sshu

signal is applied by the stack control circuit to the stack thus forcing the next level

return-state (fornestedsubroutines) on to the top of the stack. Note, in the dummy

state, EOB2 is asserted instead of EOB to keep the program counter reset but not

cause another state transition after the fsm has gone into the return state.

In the robot control processor, the stack was not used. However, a separate

test-chip was fabricated for evaluating the control unit including the stack. This

chip was fully functional, verifying the control unit design.
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5.5 Arithmetic Unit (AU)

The arithmetic unit is the main computational engine of the processor.

The AU consists of two major macroceUs: the control circuits, aucntl; and the data

path, audp. An important consideration in designing the data path is to make it

easUy adaptable for different appHcations. This is achieved in two ways. First, by

having a Ubrary of a smaU number of hand designed data path leafceUs such as

register, adder, mux, etc. Second, by implementing the local, random logic control

circuits with standard cells. The control circuit generates the local control signals

for the data path circuits from the primary control signals put out by the control-

store inside the PCU. The standard ceU implementation of the control logic is done

by simply specifying the logic in the form of a boolean equation. The equations

are then converted into an sdl file by a program caUed eqn2sdl [Ma87]. The Design

Manager (see chapter 4) is then able to generate the layout by calling the standard

ceU place and route program, Wolfe. With this scheme the control behavior of

the data path cells is quickly redefined by simply changing the boolean equations.

On the other hand, the data path is also easily reconfigured by rewriting the data

path sdl file. An example of a data path ceU and its control logic implementation is

shown in figure 5.25. The entire data path is composed of several data path leafceUs

connected together.

The circuit diagram for the arithmetic unit data path is shown in fig

ure 5.26. Details about each section of the circuit and its associated control logic

are discussed later in this chapter. The data path has a three stage pipeline as dis

cussed in chapter 3. Within the data path certain operations take place on phase 1

of the clock and other operations occur during phase 2 as listed below.

phase 1:

enable register[0/1] output

shift

phase 2:

load register[0/l]
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Figure 5.25: A data path cell and its control logic. The data path cell is usually

assembled from hand designed bit-slice register cells where as the control logic is

implemented with standard cells. The standard ceU layout is generated from a

boolean expression. The figure shows the generation of LOAD and LOAD* signals

from the primary control signal, pLoad.
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Figure 5.26: Schemetic of the arithmetic unit data path.

memory read/write

arithmetic oper./accumulate

In order to ensure the interconnections between the various data path ceUs do

not lead to any timing conflict, certain composition rules must be observed.

5.5.1 Data Path Composition Rules

Composition rules, based on timing schemes, define a strategy for connect

ing data path cells in order to obtain a functionally working circuit. Although the

control-word in the control unit becomes valid on phase 2, the clock phase in which

the execution of a particular operation takes place depends on the local control cir

cuit of the data path. Based on the clock phase or phases in which a control signal

is active, three basic types of control,circuits - Type 1-2, Type 1, and Type 2 - are

identified (figure 5.27). These circuit types are defined on the basis of a two phase

clocking scheme in which the input signals are latched inside the control unit on

the falling edge of phase 2 and therefore remain stable during the following phase

1. Since Type 1-2 circuits make available both the clock phases for completing an

operation, it is the most commonly used control circuit type unless some constraint

forces use of the other circuit types. In general, Type 1-2 is used for controlling
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Figure 5.27: Three basic types of circuits used in the local control circuits of the

data path.
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data transfer between busses, triggering arithmetic/logic operations, enabling logic

steering circuits (e.g. mux), etc. Type 1 circuit is usually used for enabling the

outputs of two-phase registers. It ensures that registers are read only on phase 1

so that a new data may be loaded into the register on phase 2. A data path ceU

controUed by Type 1 circuit has at most one clock phase to complete its operation.

Data path cells controUed by Type 2 circuits also have at most one clock phase to

complete their operation. Type 2 circuit is usuaUy used for loading registers since

we would Hke to load a register only after aUowing a possible read operation during

phase 1. This scheme also allows time for transferring data from the source to the

destination register during phase 1.

In constructing a data path, the following minimum rules must be ob

served.

(%) Data path cells controlled by the different control circuit types may be connected
in any combination except one: A Type 1 data path cell must not appear after a
Type 2 data path cell (even if there are intervening Type 1-2 cells ) within the same
pipeline stage. A pipeHne register itself, though, may have a Type 2 circuit control

Hng the input (load) and a Type 1 circuit controUing the output enable.

(ii) A Type 1 data path cell using a pre-charge (obviously on phase 2) must be fol
lowed by a Type 1 latch (not necessarily a pipeline register) before being connected
to the input of a Type 2 circuit.

The above rules are the minimum constraints on connecting the data path cells.

The usual rules for connecting CMOS domino type circuits [NelS3] and for mixing
static and dynamic circuits (dynamic circuit must not follow a static circuit within

the same pipeline stage) stiU apply. Special rules, specific to a data path cell, may

also restrict the type of cells that can be connected at the input and/or the output.

Furthermore, the number and the combination in which the cells are connected

within a pipeHne stage will affect the critical path. We now describe in detail the

construction of the data path from the basic cells.
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5.5.2 Circuit Design

The data path is divided into eight sections. These are,

• Memory read/write

• Arithmetic operations

• Coefficient register

• Saturation Logic

• Accumulator

• Registers and I/O ports

• Barrel Shifter

• MBUS to EABUS Interface

In the figures for the data path's sections, dotted box show each data path leafcell,

names in caps are bus names and control signal names, names within () usually refer

to the clock phase being connected to the terminal, and names in italics within []

are the instance name of the leafceUs (corresponding generic names can be found

from the sdl file). AU the primary control-signals coming from the PCU begin with

the letter 'p' (e.g. pRDPORT) and aU the status signals coming out of the data

path start with 'd' (e.g. dSUMMSBINV).

Memory Read/Write

The memory read/write section of the data path is shown in figure 5.28.

The controlcircuitsare shown in figure 5.29. The RAMIO terminal connects directly

with the bit-Hne of the RAM. The bit-line is precharged inside the MEMIO ceU on

phase 1. For writing data into the memory, WEN is held liigh and the data is

applied to the bottom NMOS transistor in MEMIO cell. This data comes from the

MBUS. The write enable signal, WEN, is generated when the control signal pW is

true. Alternatively, a conditional write operation is triggered when pWC is true
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Figure 5.28: Local memory interface and memory output register circuits.

and the condition cc is vaHd. cc is generated by the logical unit (LGU). The control
circuit also generates a WRITE signal which is used in the RAM.

For reading the RAM, the control unit asserts pR which generates READ

for use in the RAM. A read operation dumps the data on the RAMIO which is

sensed by the RAMSENSE inverter. The PMOS transistor of this inverter has been

sized large (10/3) for giving a high inverter threshold in an attempt to improve

the sensing speed of any drop in the bit-Hne's pre-charged voltage. The output of

the RAMSENSE is loaded in the MOR (memory output register) latch through a
mux. MOR is a pipeHne register and its output may be sent either to the MBUS

or to the adder (not shown in figure 5.28). The output of MOR is actually enabled

via MORGATE on phase 1. The MOR's MSB is brought out for testing the sign

of the data in the MOR. As data moves around the loop from MOR to MBUS to

memory and then read back into MOR, a consistent polarity is maintained; there is

no data inversion in writing the MOR data into memory and reading it back from
the memory.
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Figure 5.29: Control circuits for the memory interface section of AU.
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Figure 5.30: Arithmetic section of the data path.
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Arithmetic Operations

The arithmetic section of the data path shown in figure 5.30 performs

all the arithmetic operations. The bbus input of the adder gets its data from

either the shifter's output or the MBUS. The bbus is forced to zero by asserting

pZEROJBIN and is incremented by forcing abus to zero and setting CIN high. The

BLATCH circuit is necessary for isolating the adder from the barrel shifter while

the barrel shifter is being pre-charged during phase 2. This ensures the adder and

the subsequent circuits have valid data during phase 2. Note, tliis is in accordance

with the second rule for data path construction Hsted in section 5.5.1.

The abus gets its data from the MOR after being operated on by the

COMPLZERO circuit. Several operations can be performed on the MOR output

before feeding it to the abus. These include negation, absolute value, and nega

tion of absolute value. Another important use of the COMPLZERO circuit and its

associated control circuit (see figure 5.31) is in performing the shift and add multi

plication. The multiplicand is loaded in the MOR whereas the multiplier is loaded

in the coefficient register (rcoef). The following operation forms the multiplication

product in the accumulator.
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abus pNOABS pMINUS pANDCOEF pCOEFCOMP

0 1 0 0 0

MOR 1 0 0 1

-MOR 1 1 0 1

|MOR| 0 0 0 1

-|MOR| 0 1 0 1

rcoef.MOR 1 0 0

rcoef.-MOR 1 1 0

rcoef.|MOR| 0 0 0

rcoef.-|MOR| 0 1 0

rcoef*.MOR 1 0 1

rcoef*.-MOR 1 1 1

rcoef*.|MOR| 0 0 1

rcoef*.-|MOR| 0 1 1

INCR. bbus 1 1 0 0
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Table 5.1: Truth table for the various operations on MOR output Hsted in the first

column.

product = MOR.-rcoef[n-l] -/- E^1 MOR.rcoef[n - i - l]/2'*,

where n is the number of bits in the coefficient. The rcoef is shifted light, lsb first,

on each iteration of the multiply operation. This serial output of the coefficient reg

ister, dRCOEFSCANOUT, is used in the control circuit (figure 5.31) for generating

the ZERO_AIN signal. The multiplication (AND operation between the MOR data

and the serial output of the rcoef is described by the following boolean operations.

COMPLA = (dMORMSB* + pNOABS) 0 pMINUS ••• (in control circuit)

xorout = COMPLA 0 MOR ••• (in COMPLZERO circuit)

ZERO.AIN = (rcoef[i].pANDCOEF)* 0 pCOEFCOMP ••• (in control cir

cuit)

abus = (ZERO.AIN + xorout)* ••• (in COMPLZERO circuit)

The various operations that can be performed on MOR's output and the corre

sponding logic values of the control signals are listed in Table 5.1. Figure 5.30 also

shows three control outputs from the adder: dCARRYOUT, dCARRYOUTINV,

and dCARRYN-lOUTINV. The first two signals are the carry-out and carry-out*

from the MSB slice whereas the last signal is the carry-in into the MSB slice and is
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Figure 5.32: Circuit diagram of the even slice of the adder. For the MSB slice,

CININV is also brought out as C0UTN-1INV.

used for determining overflows in 2's complement arithmetic. The circuit diagram

for the adder is shown in figure 5.32.

Coefficient Register

As discussed in the previous section, the coefficient register, rcoef, is used

to hold and serially shift out the multiplier. A scan-type latch, circuit diagram

shown in figure 5.33, is used as a coefficient register. The scan output of the

register is also used as the serial output port of the register. The control circuits

(figure 5.34) are designed for serially shifting out the data when either the scan-

clocks or pSHIFTCOEF signal is active. When the register is being shifted out

during multiplication, the serial input is held low, thus shifting in zeros.

Saturation Logic

The largest 2's complement number the data path can handle is limited to

(2n_1 —1) to —2n, where n is the number of bits. Adder operations can, however,
lead to overflows giving erroneous results. If no special measures arc taken the
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Figure 5.33: A scan-type latch is used as the coefficient register for multipHcation.
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Figure 5.35: The adder outputs are saturated to either positive maximum or nega

tive maximum on overflow.

adder output wraps around, i.e. cyclically goes from positive maximum to negative

maximum when incrementing and in the other direction when decrementing. In

the AU data path, the adder's output is saturated at the positive maximum or

the negative maximum, as the case may be, whenever the sum overflows. This

saturation operation is performed by OVFLOGIC circuit shown in figure 5.35. The

control circuits are shown in figure 5.36. POF becomes active high during positive

overflow and NOF* becomes active low during negative overflow. The saturation

operation, however, must be disabled under certain conditions.

During the iterative shift arid add multiplication, even though an interme

diate partial product may overflow, the number is restored to within the maximum

limits after the right shift operation on the next iteration. Therefore, saturation

is disabled under program control by the microinstruction nosat during multiplica

tion. This asserts the pNOSAT signal which disables POF and NOF*. The use of

nosat in effect results in a word size of n + 1, with carry-out being the sign bit. As

discussed later in the section on barrel shifter, POF and NOF* are also used in the

barrel shifter's control circuit for generating the MSB during right shift. The MSB

before saturation (dSUMMSBINV) and after saturation (dSATSUMMSB) are also

brought out from the OVFLOGIC circuit for use in the control circuits.
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Accumulator

The output of the adder is stored in the accumulator. The accumulator

is a scan-type latch but with the addition of the mux, ACCMUX, has the effect of

a register (see figure 5.37). The mux either allows a new output from the adder

(for aip microinstruction) to be stored in the accumulator or maintains the previous

data. In retrospect, the accumulator and the mux can be replaced by a two-phase

register. The output of the accumulator is also connected to the barrel shifter as

well as to the MBUS through the ACCUMLATCH.

As shown in the control circuits in figure 5.38, the accumulator may be

conditionally loaded under program control using two of the microinstructions: (i)

aip, accumulate if positive, which asserts the control signal, pAIP; and (ii) acond-

load, conditionally load accumulator, which asserts pSUMCOND. In the latter case,

loading depends on the status of the condition code, cc, from the logical unit (LGU).

Note, the two microinstruction should not be specified in the same cycle.

Registers and I/O Ports

The data path has two, two-phase registers which are used as temporary

registers and also as I/O registers. The registers can be loaded either from the

accumulator or from a parallel I/O port as shown in figure 5.39. On the other

hand, the output of the registers are connected to the MBUS.

For writing data to the external port, the MBUS is connected to the in

put of a bi-directional I/O pad through PORTOUTBUFFER. The direction of the

pad's data transfer is controlled by WRPORT. Normally, the I/O pad is always in

the input mode. During write operation, however, the control signal, WRPORT,

switches the direction of data transfer through the I/O pad and data is transferred

from the MBUS to the I/O pad. On the other hand, during read operation a control

signal, RDPORT, enables a tristate buffer, IOPORTLATCH, in order to allow data

transfer from the pad to the RBUS and eventually into one of the registers. In addi

tion, RDSTRB and WRSTRB signals are sent off-chip and are asserted during port

read and write operations, respectively. The desired port address for selecting an
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Figure 5.40: Control circuits for registers and I/O port. WRPORT, RDSTRB,

WRSTRB, PORTADDRESS, and their complement signals are all generated using

the same type of circuits, i in OENRi and LDRi refers to the register number (i =

1 or 2).
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external I/O device is put out on the PORTADDRESS bus. For the robot control

processor this bus is four bits wide. All the I/O "control signals become valid during

phase 1 and remain valid for the entire cycle (till the end of phase 2).

Barrel Shifter

The barrel shifter, shown in figure 5.41, uses dynamic circuits and is

precharged on phase 2. The barrel shifter design imposes the following restric

tion on the type of circuit that can be connected at its input. During the evaluation

phase, the circuit driving the barrel shifter's input must have a path to ground in

order to be able to pulldown the precharged node. The shifter can shift right (down)

the accumulator output from zero to six bit positions and shift left (up) one posi

tion. In shifting down, the MSB positions are sign extended. If nosat is in effect

then the sign is the carry-out from the adder output, as discussed earlier under satu

ration logic. The control circuit which generates the sign bit is shown in figure 5.42.

During shift left the LSB position gets a zero.

The desired amount of shift is encoded in a three-bit wide control field of

the control-word. This is decoded in the barrel shifter control circuits as shown in

figure 5.42. The decoded control lines going into the barrel shifter must be driven

byType 1 control circuits in order to prevent theshifter's output node from loosing
charge during precharge phase. This is necessary because the shifter's pull down

path does not have an evaluate transistor that can be turned off during precharge.

MBUS to EABUS Interface

The AU data path is connected with both the APU and the PCU. In

the case of APU, data may be transferred in both directions. On the other hand,
for PCU, data is transferred only from the AU to the PCU for loading the timer
register. On the AU side, all data transfers are done through the MBUS. The MBUS

is connected with the EABUS which in turn connects with the APU and the PCU.

Interface circuits between the MBUS and the EABUS are shown in figure 5.43.
Data transfers from the MBUS to the EABUS take place on phase 1 of the clock
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cycle leaving phase 2 for loading in the destination register. On the other hand,

transfers from the EABUS to the MBUS is first temporarily stored in AREGIN

on phase 2 in order to avoid a long critical path. On phase 1 of the next cycle,

the data is moved into MBUS and eventually loaded into a destination register

(accumulator/rcoef/MOR) or memory on phase 2. This is consistent with the timing

scheme of the rest of the data path.

Since the size of the MBUS and the EABUS are parameterized and may be

different, the following policy is adopted for interfacing the two on the assumption

the MBUS is larger. Data transfer from MBUS to EABUS is truncated on the

MSB side since APU and PCU use positive integers only; whereas, data transfer

from EABUS to MBUS is sign extended since positive or negative constants from

control-word's address field may be transferred to AU via APU. (see figure 5.44).

These parameterized interconnections are specified in the sdl files.

5.6 Address Processing Unit (APU)

The address processing unit is a simple data path dedicated for computing

addresses of variables in ram and for loop counting. The components of the APU

are three scan-type registers, an adder, a pull-down circuit (zero) for one of the

adder input, an output latch for the adder, and a clocked inverter. These are shown

in figure 5.45. The adder circuit is same as one used in AU. All computations inside

the APU are based on unsigned integer arithmetic.

The registers can be conditionally or unconditionally loaded from the

EABUS. Conditional loading is based on one of two different conditions: status

of condition code from LGU; sign bit from the APU's adder (load if positive). The

sign bit is also available for use by the PCU and LGU. The APU circuit allows

modification of the register's content and loading it back into the register in the

same cycle. On phase 1 the register data is applied to one of the adder's input.

The address field in the PCU's control-word, which became stable at the end of the

previous cycle, is applied to the other input of the adder. The adder gets evaluated

during phase 1 and the output is transferred to the register during phase 2 via the
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[RE0X2]

EABUS

Figure 5.45: Circuit diagram of APU.
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EABUS. The adder output may also be temporarily stored in the dynamic latch,
EAGATE. The tristatable inverter, EALATCH, allows data from othersources (e.g.
AU) to be loaded into the register by isolating the adder output from the EABUS.
Another feature of the circuit is to allow constants specified in the address field to

be loaded in the registers or even moved to AU through EABUS and eventually

MBUS. This is made possible by the pull-down circuit, ZERO, which forces a zero

on the xbus. All the control circuits are shown in figure 5.46.

5.7 Local Memory (RAM)

The processor has an on-board local memory for storing variables and

constants. The ram is composed of two child macrocells (figure 5.47) each of which

is assembled using the TimLager tiler program. The two cells are then put together

with Flint. The design of the memory cell is based on a three transistor CMOS

ram cell shown in figure 5.48 and described later. These cells are organized in two

dimensional arrays with each row representing a memory word. A decoder selects a

memory word based on the address input. There is no column decoding for selecting

individual bits. A selected memory word may be written or read through the bit-

lines; a common bit-line is shared by a cell for both reading and writing data. The

number of bit-lines is of course equal to the number of bits in the memory word.

The read and write operation is triggered by READ and WRITE control

signals respectively, generated in the control circuits of the AU data path. Inside

the ram, READ and WRITE signals are latched in the RAMCTL cell as shown in

figure 5.49. The address, on the other hand, is generated by the APU during phase

1 and is held stable during phase 2. Static CMOS nor gates are used as decoder so

that the decoding can start as soon as the address becomes valid sometime during

phase 1. We have assumed the nor gate output becomes valid before the start of

phase 2. The decoder output is fed into two dynamic nand gates: one generates

the read-select signal and the other generates the write-select signal as shown in

figure 5.50. Meanwliile the bit-line of the 3-T cell is precharged on phase 1; the

precharge circuit, MEMIO, being inside the AU data path. On phase 2 when the



(phase 1)

dAPUMSBINV p^—

(phase 1)

pXIP E
(phase 1)

pCONDLD ^^—

(phase 2)

• APUSIGN

CC

(phase 1) L2P\

(phase 1) (phase 2*)

pLOADXl KK>
OENXHNV

OENXi

pXBUSZERO XBUSZERO

OENEALATCH/OENEAGATE

pOENEALATCH

OENEALATCHINV/OENEAGATEINV

(phase 1)

CIN
(to Adder)

Vdd CININV

141

LOADXIINV

LOADXi
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number (as in LOADXi).
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read-select or write-select become valid, data is either dumped on the bit-line for

read operation or stored in the cell from the bit-line for write operation. The

operation of the ram is described in the timing diagram shown in figure 5.51.

Three transistor ram cell

Since the design of the ram cell is very critical for satisfactory performance,

we performed detailed spice analysis of the cell. As shown in figure 5.48, the cell

consists of three n-channel transistors. The following considerations went into the

selection of the transistor sizes which is based on a P-well CMOS process.

When writing a logic '1' into the cell, the storage node capacitor, Cs, is

charged high. Two effects, however, degrade the charge and hence the voltage stored

at this node: (a) Due to body-effect the maximum voltage stored on the storage

node can rise only up to Vgi —Vt = Vwr-3ei —Vt. (b) When wr-sel goes low at the end

of write cycle, the capacitive coupling between Mi gate and the storage node results

in further degradation of the voltage. This degradation of the storage node voltage

affects the read access time. When reading a cell into which a '1' has been written

M2 and M3 must discharge the large bit line capacitance which has been precharged

high. This discharge time is the major component of the read access time. With

a lower M3 gate voltage the discharge time would be larger. Hence the voltage on

the gate of A/3 (storage node) must be kept as high as possible when storing a '1'.



phase 1

phase 2

Address

~L

VaBd Address XII
Read/

Write ^^^^^gY Valid Read/Write Y

RAMDATAIN

(bit-tine during wr)

RAMDATAOUT

M&mM(biMlne during rd) j^j

Valid RAMDATAIN 3C7_

Precharged High

(pull-up Inside AU)
^- Valid

RAMDATAOUT

Figure 5.51: Timing diagram for the ram.
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The body-effect being a function of the doping levels cannot be changed for a given

process. On the other hand, the effect of capacitive coupling can be reduced by

minimizing the ratio Ca/C\. Our spice simulations showed a worst case voltage of

2.5 volts on the storage node with Vdd equal to 4.5 volts.

Minimizing the capacitance on the bit-line is important for quickly dis

charging it during read operation. In our design we assumed a maximumof 64 cells

on each bit-line. Since most of the capacitance comes from the drain diffusions of

M1 and M2, the drain areas have been kept to minimum.

Sizing the transistors M2 and M3 is a trade-off between providing a large
W/L for quick discharge of the bit-line and the desire to keep the cell size small.
Moreover, width of M2 must be kept small to minimize the drain diffusions and also

to keep the capacitive load small on the rd-select line.

Sizing of Mi also involves trade-offs between conflicting requirements. A
large W/L for Mx would provide a faster charging of the storage node during write
operation. However, a large M{ would lead to a larger capacitive load on the wr-

select line. Since Ca is relatively small, its charging time is not a limiting factor in
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the performance of the ram. Hence a minimum sized transistor is chosen for Mi.
The sizes of the other transistors are shown in figure 5.48.

5.8 Logical Unit (LGU)

The logical unit (block diagram shown in figure 5.52) is basically a finite

state machine and uses very much the same circuits as in the PCU's finite state

machine. The muxJatch (CFSMREG) circuit is used only as a latch and the various

unused terminals are grounded. The state transitions and the output of the LGU

are determined by the external conditional signals (such as APU and AU sign bit)

and the state address provided by the control-word in the PCU. For the robot

control processor, bits 48 through 50 in the control-word specify the LGU state to

be evaluated. The output of the LGU is the condition code, cc, which is used in

various conditional operations as discussed earlier in this chapter. Since cc becomes

valid during phase 2, all the conditional operations using cc are done following

the cycle in which LGU is evaluated. Thus a one cycle delay must be allowed

between generating a status signal (such as sign bit) in the data path and executing

a conditional operation based on it by setting cc.
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Chapter 6

Design for Testability

Effective and adequate testing has been a perennial problem for integrated

circuits and continues to grow in importance with the increase in size and complex

ity of circuits. The advent of CAD based IC design techniques has brought even

greater attention to the testing problem. Silicon assembly and silicon compiler

systems, such as the one described in this thesis, now permit system designers to

assemble fairly complex custom circuits without getting involved with low-level cir

cuit design issues. This usually involves connecting together pre-designed leafcells

and macrocells which are often parameterized. The consequence of this is a different

chip for every application; testing becomes even more important in this case for en

suring the combination or configuration of cells and the customization of the layout

done for a particular design do in fact result in circuits that perform satisfacto

rily. Whereas functional simulations during design phase verifies the functionality,

testing of custom chips after fabrication is necessary for several reasons: (i) Fault

detection; (ii) Evaluation of performance in terms of maximum achievable speed;

(iii) Identification of sections of the circuit that limit speed. On the other hand,

the resources and effort usually spent on testing standard parts may not always be

justified for testing low volume, custom parts where overall turn around time must

be kept short and the cost low.

An effective testing strategy must make testing an integral part of the

design process. The following considerations guided the development of our testing
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methodology.

(i) Adopt a uniform testing strategy for all custom chips with minimum amount of

chip specific external test circuits (boards),

(ii) Provide observability and controlability of internal states,

(iii) Minimize the number of device-under-test (DUT) pins assigned for testing pur

poses, thus simplifying tester-board design.

(iv) Permit testing of the DUT at full speed but perform communication with the

tester at low speed for simplifying tester-board design.

6.1 Testing Strategy

Our testing strategy encompasses both design for testability and tester

design for a complete solution. The solution has three components: scan design

of all registers; an external test-board; and a generic, tester interface macrocell

(Test-logic) which is incorporated in each chip design. Test-logic macrocell allows

a single test-board design to test different chips. A high-level view of the test

set-up is shown in figure 6.1. In the beginning of the testing procedure, a break

point condition is loaded through the scan-in pin into a break-point register inside

the Test-logic macrocell. The processor is then allowed to function at a desired

operating speed. When the break-point condition is satisfied, the Test-logic circuit

disables the master-clock and asserts a break-point flag. This triggers the test-board

circuits to begin a read-out of the scan registers and also simultaneous write-in into

the registers. Either the same data may be restored in the registers or new data

may be loaded as desired. When all the registers in the scan path have been read

and a new break-point is loaded, the master-clock is enabled and normal operation

resumes till the next break-point. The data collected by the test-board is eventually

transferred to the host for analysis. The host also provides test vectors and break

points to the test-board. The Test-Mode* signal is used for disabling the test circuits

when the chip is being used fornormal operations. In all, sevenpins are required for

testing purposes although some of the pin functions may be multiplexed on common
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pins. The pins are break-point flag, master-clock control (MCC), scan-in, scan-out,

Tphil (phase 1 of test-clock), Tphi2 (phase 2 of test-clock), and Test-mode*.

6.1.1 Scan Design

Scan path techniques [WiPa83] are very popular for testable design. Using

scan registers in a design, allows one access and control of internal nodes in a chip.

In our design, separate two phase clocks are used for normal operation and for test

operation. Since some of the latches and registers may load on phase 1 and others

on phase 2 of the master clock, keeping the test and master clock independent,

simplifies the design. All the registers and latches are serially connected together

through their scan-input and scan-output terminals (figure 6.2). The scan-output

terminal of individual register bits is connected to the input of the next bit by

abutment in tiled cells. The ends of the scan path are brought out as the chip's

scan-in and scan-out terminals. When starting a serial read-out of the scan path,

shift-out must be performed first before a shift-in is done. Otherwise, the data in

the leading bit position would be lost.

Scan latch and a scan register are the two basic types of scan circuits.

Two versions of each type of circuit were designed; one an exact mirror of the other

about the horizontal axis. This makes routing of the scan path interconnections

easier in bit-slice data paths. Alternate registers in the data path are mirrored so

that scan-out of one register can be connected to the scan-in of the next register on
the same side of the data path.

Scan Latch

The scan latch circuit, shown in figure 6.3, is a dynamic latch. A single

phase of the clock (pliidA) controls the data input through sDINt and sDINb ter

minals. These two terminals are electrically identical but are physically brought
out on the top and bottom of the cell respectively. They are named differently to

satisfy the layout tools. When phidA is asserted, data from the input terminal is

transferred to the output terminals sDOUTt and sDOUTb at the top or bottom of
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Figure 6.2: Hooking scan registers and latches into a serial scan path. Note the two

scan latches in the figure operate on different clock phases during normal operation.

By keeping the scan clock independent of the master clock, any timing conflicts

that may arise due to serial connection of latches operating in different phases are

avoided.
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Figure 6.3: Circuit diagram of scan latch. The latch operates on only one phase

during normal operation.

the cell respectively. For testing purposes, the SCANIN and SCANOUT terminals

are used to serially connect the scan path. During testing, phidA is held low while

phisA and phisB serially shift the data. PhisA and phisB are connected to phase 1

and phase 2 respectively of the scan clock. The two phases essentially act as shift-in

and shift-out signals for the data.

Scan Register

The scan register circuit, shownin figure 6.4, is a two phase static register.

Under normal operation both the input and output transfer gates, T2 and T4, for

the scan-in and scan-out terminals are turned off. Data is loaded through the

sDINt or sDINb terminal. During load, Tl is turned on and T3 is turned off

which disconnects the feedback path. This allows much faster loading and reliable

circuit operation compared to some designs which do not have a transfer gate in

the feedback path but rely on a stronger driver at the data input for changing
the stored state. The addition of T3 results in only a slightly larger cell. On
the other hand, during testing, the feedback transfer gate T3 remains closed when

data is being shifted in through scan-in terminal. This is done in order to avoid

complicated control circuits for generating the LOAD/LOADINV signals for T3.
Keeping the feedback path closed does not cause any problem during test mode
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Figure 6.4: A two phase scan register.

since test clocks are operated at around 1 MHz. Ample time is thus available for

changing the register state. Furthermore, shifting a new data into the register is

helped by having a weak feedback inverter, Ml, as shown in figure 6.4.

For reading out the data, transfer gate T5 is enabled. As the figure shows,

sDOUTb and sDOUTt are tristateable whereas sDOUTINVb is not. During test

ing, data is shifted out through T4. The two inverters after T4 are necessaiy for

providing an active drive into the next stage.

6.1.2 Test-logic Macrocell

Test-logic is a generic macrocell which can be easily incorporated into any

chip design using a two-phase clocking scheme. The hierarchy of the Test-logic

macrocell is shown in figure 6.5. A schematic of the macrocell is given in figure 6.6.

The break-point generator circuit, BPGEN, contains a scan register (break-point

register) and a comparator. The comparator compares the register's contents with

the control unit FSM's state and the control-word address (PC output). When a

match is found, a BPMATCH signal goes high setting a It-S flip-flop (cross-coupled

nor gates). This results in BPFLAG becoming high and at the same time disables

the two-phase master clock going to the rest of the chip's circuits. The processor

thus goes into a 'wait' state. The master clockwithin the Test-logic circuit, however,

continues to operate.
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testmodule.sdl

clockcontrol.sdl

[CLKCTL]

TESTcontrol.sdl
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[CLKGEN]

clockdriver.sdl
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qcanTLreg2Port.sdI

[BPREG]

Figure 6.5: Cell hierarchy of the Test-logic macrocell.
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BPFLAG is constantly monitored by the host. When BPFLAG is asserted,

the host responds by applying a master-clock control signal, MCC to the chip. This

resets the R-S flip-flop but continues to hold the two-phase clocks low. Mean

while, the tester reads and writes into the scan register through the SCANOUT

and SCANIN pins. This includes loading a new break-point state in the break

point register. On completion of this process, the host releases MCC thus enabling

the two-phase master clock, allowing the processor to resume operation. Note,

the break-point generator circuit can be modified or replaced to match the needs

of a particular processor. On the other hand, the Test-logic macrocell provides a

common interface through which the tester can communicate with the chip.

6.1.3 Test-Board

The test-board (figure 6.7) uses a fairly simple design for collecting the

scan path data from the chip and loading in new data into the scan registers. The

board plugs into one of the expansion slots on an IBM PC-AT and communicates

with it through the PC bus. On the test-board are six main registers,

(i) Cntl-fifo: PC writable; holds the control-bit vector for a mux.

(ii) Din-fifo: PC writable; holds the test vector for the scan path,

(iii) Dout-fifo PC readable; stores the output data from the scan path,

(iv) Counter register PC writable; holds the length of the scan path,

(v) Status register PC readable; contains status signals from the DUT as well as

the test-board.

(vi) Control register PC writable; holds the control signals for the test-board and

the DUT. The signals include RSTDUT for resetting the DUT; RSTBOARD for

resetting the flip-flops and registers on the test-board; LDSCAN for enabling the

test-clocks in order to begin serial shifting of the scan path; CLRTC for clearing
a flip-flop which is set when counter completes its count; ENFIFO3 for enabling
Dout-fifo in order to read Dout-fifo from the PC.

In addition, an address decoder generates read/writesignals for the various registers.
These are listed below:
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Figure 6.7: Schematic of the test-board. Only the essential components and signals

are shown here.
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(i) WRFIFO: Provides the write signal for loading Cntl-fifo and Din-fifo. Both the

fifo registers share half the data word. Din-fifo gets 0-7 bits and Cntl-fifo gets 8-15

bits.

(ii) RDFIFO: Provides the read signal for reading Dout-fifo.

(iii) LDCTR: Provides the load signal for the counter register.

(iv) RDSTAT: Provides the read signal for the status register.

(v) WRCTL: Provides the write signal for the control register.

(vi) CLRCTL: Provides the clear signal for resetting the control register.

Initially, the PC loads data into Din-fifo and Cntl-fifo. Din-fifo contains the serial

test data to be loaded into the scanregisters including the break-point register. For

each bit of test data, Cntl-fifo contains a corresponding control bit for setting a

mux on the test-board. As shown in figure 6.7, the mux is used to select either a

new data from the Din-fifo for serially shifting into the scan path or recirculating

the scan data back into the scan path. Thus any section of the scan path may be

modified, or restored to its original state during the serial shifting operation. The

scan data is also loaded serially into the Dout-fifo.

A flow-chart describing the operation of the tester is given in figure 6.8.

The two-phase test-clock generated on the test-board is enabled by the host after

receiving the break-point flag signal. The same clock is also used for serially shifting

data in and out of the fifo registers on the test-board. Once the serial shift operation

starts, a counter on the test-board keeps track of the number of bits being shifted.

The counter is initialized by the host to count up to a number equal to the number

ofbits in the scan path. When the exact number of shifts are completed, a carry-out
signal from the counter sets a flip-flop called TC. This signal disables the test-clock

and also sets a bit in the status register. As a result, the host, which continuously
monitors the status register, responds by up loading the scan path data in Dout-fifo

and down loading new data into the Din-fifo and Cntl-fifo. In order to simplify
transfer of data between host and the tester, the test vectors, which are loaded and

read out of the fifo registers, are made integral multiples of eight. This is achieved
through a programmable register on the test-board which extends the scan path
by a length of 0 to 7 bits. Once the data transfer between the host and the fifo
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registers is completed, the host releases MCC which restarts normal operation of

the chip.

The entire operation from setting the break-point flag to re-enabling the

processor is done in less than 5ms in order to avoid corrupting the data on dynamic

nodes of the processor circuits. The tester operating at 1 MHz takes about 0.5

ms to read out a scan path of 512 bits. (In the present tester design, the Dout

fifo can accommodate up to 64 x 8 bits). This leaves enough time for the host to

write 128 (64 x 2) words of data into Din and Control fifo, read 64 words of data

from Dout fifo, and perform some control functions such as asserting Master-clock

control, enabling test-clocks, etc. Controlling the tester operation from the host

avoids the need for a complicated tester design with a dedicated micro-processor on

the tester-board itself. Another design issue is the size of the host memory. Since

each break-point requires 128 x 8 bits, with a 2 M bits extended memory on an IBM

PC-AT, we can handle 2000 break-points. The desired number of break-points is

initially specified by the user to the host. It keeps track of the number of break

points occurring, in a software counter. When the desired number of break-points

is completed, the host exits the testing session.

6.2 Implementation of test circuits in the Robot

Control Processor

Since the robot control processor operates under program control, the

natural way to set break-points is by specifying program states. As discussed in

section 6.1.2, the break-points are given in terms of the PCU's fsm state and the

instruction address from the program counter. For a custom processor such as the

robot controller, the chip needs to be tested only for verifying the program in the

control-store works. The PCU design makes feasible the addition of a test-state

in which a small test program is executed. Transition to the test-state may be

controlled through external signals going into the PCU's fsm.

In the robot control processor, scan registers are used every where except
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Macrocell Name Register Name Register Type Register size

TESTLOGIC BPREG scanTLreg2Port 11 bits

APU1 REGXO scanreg2Portmx 6

APU1 REGX1 scanreg2Port 6

APU1 REGX2 scanreg2Portmx 6

APU1 EAGATE scanlatch_phl 6

LGU FSMOUTREG scanTLlatch_phl 2

PCU1 CFSMOUTREGI scanTLlatch_phl 7

PCU1 CFSMOUTREGII scanTLlatch_phl 8

PCU1 PCOUTREG scanTLlatch-phl 4

PCU1 LPCOUTREG scanTLlatch_phl 7

PCU1 TIMERINREG scanTLreg2Port 11

PCU1 TIMEROUTREG scanTLlatch_phl 12

PCU1 CSTOREOUTREGI scanTLlatch_phl 27

PCU1 CSTOREOUTREGII scanTLlatch_phl 30

AU1 MOR scanlatch-phlmx 20

AU1 ACCUMULATOR scanlatch_phl 20

AU1 REGO scanreg2Portmx 20

AU1 REG1 scanreg2Port 20

AU1 RCOEF scanlatch_phlmx 20

Table 6.1: List of scan registers/latches used in the robot control processor. They

are listed in the same order in which they are connected. Scan-in of the chip goes

into BPREG and scan-out comes out of RCOEF. The total number of bits in the

scan path of the chip is 243.

in the ram. The outputs of the control-store and the fsm in the PCU are also latched

in scan type latches. This potentially allows the user to introduce new control words

and perform operations not in the original program. In order to analyze the data

from the scan path, the interconnections of the scan path registers must be known.

These interconnections for the robot control processor are given in table 6.1. The

registers are listed in the same order in which they are connected.



Chapter 7

Implementation of the Robot

Control Algorithm on the Custom

Processor

The adaptive control algorithm for a two-axis robot, described in chapter 7,

is implemented on the custom digital signal processor described in chapter 3 and 5.

Controllers for both the joints are implemented on a single processor which also

directly handles all the I/O operations through the parallel prots. The layout was

automatically generated using the Lagerlll silicon compiler system described in

chapter 4. Input to the compiler is provided at the assembly language level. Higher-

level input was not used since the RL compiler (for compiling 'C like programs) was

not fully operational at the time the chip was generated. Moreover, implementing

the algorithm at the assembly language level provides a much clearer understanding

about the capabilities and limitations of the processor. Since the processor performs

integer arithmetic only, all the variables at various computational nodes are scaled in

order to avoid overflows and underflows. The scalingis described in the next section

following which a description is given about the utilization of the various resources

of the processor in implementing the robot control algorithm. In section 7.3, some
fabricated chips are discussed.
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7.1 Scaling

Integer arithmetic makes scaling necessary for avoiding overflows while at

the same time attempting to obtain maximum dynamic range at each computa

tional node. Through simulations of the algorithm in 'C (see appendix G for the

basic program), we determined the dynamic range required at each computational

node. Based on these, suitable scale factors were specified at each node. All scale

factors were constrained to powers of two in order to avoid actual multiphcations

and divisions. In many cases, the scale factors were combined with the gain for

minimizing the number of operations. In general, conversion of a decimal represen

tation of a quantity x into its integer representation is given by,

x.2b~l / S

where S is a scale factor chosen to ensure x/S is within ±1 and b is the integer

word-size. Thus the integer representation has an effective gain of 26-1 / S. The

gain for the input quantities should also take into account the gain through the

transducers.

The position decoder generates 153600 pulses per revolution of the robot

joint or 24446 pulses per radian. In order to keep the register size required to accu

mulate the position count to 16 bits, we chose to divide the count by four, resulting

in an effective gain of 6111.5 counts per radian through the decoder. Looking at it

in another way, this is equivalent to a scale factor of 5.36 or 8/1.49. Consequently

as shown in figure 7.1, the reference input must also be scaled by 8/1:49 before con

verting into a 16 bit integer representation (assuming a 16 bit data path). Similarly,

the velocity input through the 12 bit A/D has a gain of 325.9 based on a maximum

speed of 2tt radians per second. This is equivalent to a scale factor of 32/5.088 for

a 16 bit integer representation.

Going back to the position input, the error between it and the reference

input is multiplied with a gain Kp as"discussed in chapter 2. The question then

is what should be the scaled value of Kp that must be loaded into the processor.

Considering a typical value of 40 for the gain, we need a scale factor of 64 for getting

the value below unity. It is also multiplied with 1.27/1.49 so that the input to the
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Figure 7.1: Partial flow-diagramshowingscale factors at various nodes. MultipHca

tion with constants are done through shifting. All the coefficients are first read from

an external source. These coefficients are pre-scaled with the appropriate factors as

shown. Position and velocity measurements are also pre-scaled before being read
into the chip.

velocity summing node has a scale factor of 32/5.088, which is same as that of the

output of A/D. This, along with scale factors for all the other nodes are shown in

figure 7.1. Typical values for the coefficients and their scale factors are given in
table 7.1.

7.2 Programming the custom processor

The assembly language program written for implementing the adaptive

control algorithm is given in appendix F. It has 66 distinct states and 35 blocks of

code. One caneasily trace the flow of the program byfollowing the state transitions
specified in the cfsm section of the assembly language program. In the first three

states, which are executed only once in the beginning after reset, the program



Coeff'./Variable Typical Value 1/Scale

Kp 40 1.27/1.49/64
Kv 20 1/5.088/8
T 0.001 5.088 * 16

Km[ll] 1 4/5.088
I<m[l2] 0.1 4/5.088
Km{2\\ 0.1 4/5.088
-^m[22] 0.1 4/5.088
W*[ll] 8.5 1/32
rh[12) 1.25 1/32
rk[2i] 1.25 1/32
rh[22] 0.5 1/32
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Table 7.1: Coefficients/Variables along with typical values and scale factors.

does some initialization and reads in coefficients and other data. The rest of the

states are executed once every sample. The program has two sections: an outer

loop which starts with state, PCTLl and an inner loop which starts with state,

ADTRIG. The variable, L, read from outside during initialization determines the

number of iterations of the inner loop for one iteration of the outer loop. Note,

only one iteration takes place per sample period. By setting some of the coefficients

(suchas Kp or Kv) in the program to zero, some functions of the program (such as
P-control or D-control) can be disabled.

The assembly program was processed by the rassCG program which gen

erated the parameter file (see appendix B) used for layout. The parameter file

includes the pla table for the fsm and the cstore. Both the tables were minimized

using espresso [Rud86] which resulted in 10-20% reduction in their sizes. The total

number of instructions in the program are 172 and the execution time is between

593 to 601 cycles per sample. The exact number of cycles depends on the condi

tional branches taken. The size of the sample period, however, can be fixed by the

timer by waiting in the IDLE state till the timer completes its count. The large

ratio between the number of cycles per sample and the total number of instructions

in the program indicates good usage of subroutines and loops for minimizing the
program size.
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Subroutines, Addressing

Since only one level of subroutine was used, we decided not to use a stack;

instead, subroutines were implemented by having different states execute the same

block of code. For instance multipUcation is used a number of times in the program

and therefore it is made into a subroutine. Block 5 executes the basic shift and add

operation. As seen in the cfsm section of the assembly program, block 5 is addressed

by all the states starting with the name MULT. The size of the code space required

for multiplication is further reduced by putting the basic shift and add operation

into a loop thus having only one instruction in block 5. The loop iterates 18 times;

first and last instructions of the multiplication routine are not included in the loop

since they have somewhat different operations. As a result of using a subroutine

and a loop, the number of instructions for doing the core multiplication is reduced

to just one.

An important consideration in executing subroutines is passing data. In

the multipUcation routine, data is passed to the subroutine via the data path reg

isters rcoef (to hold the multipUer) and mor (to hold the multipHcand). Another

way of passing data to the subroutines is through a pointer. For example, block 23,

which performs friction compensation is used twice; once for each joint. The ad

dress pointer for the variable ul (either for joint 1 or joint 2) is loaded into REGXO

of the APU prior to executing block 23. The first instruction in block 23 reads in

the value of ul from memory using the address pointer. Passing address pointers is

even more advantageous when several variables have to be passed to a subroutine.

Another example of using APU register for addressing is in block 1 where the block

is repeated 21 times in order to read in a series of input data from an external port.

The data is first loaded into the AU register RO while in the same cycle the previ

ously loaded data in RO is moved into memory. The memory address is obtained

by incrementing APU register REGXO on every iteration. Incrementing is done by

specifying the address field in the control-word to be 'one', which then gets added

to the register. The modified value of REGXO is also stored back into the register

on ever iteration. In addition to addressing, the APU registers are also used as loop
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counters.

Looping

In block 32, for example, REGX1 is used as a loop counter for 22 iterations

of the block in order to output a series of data. REGXl is first loaded in block 31

and decremented by one on each iteration of the block. As specified in the cfsm

section of the program, when the register value becomes negative, the fsm makes

a state transition from OUTPUT state to DELAY state. Note, OUTPUT state is

the one in which block 32 was being executed. As seen in the code for block 32,

decrementing the loop counter, REGXl, takes one cycle; however, this operation is

combined with the data output operation to the port and therefore does not cost

any extra instruction cycles. For a single instruction loop, however, using an APU

register as a loop counter would cost an extra cycle (100% increase!). Therefore

in states RDCONSTS (block 1) and MULTl (block 5), for example, the PCU loop

counter is used. The state transitions following completion of the loops are specified

in the cfsm section. Further more, the PCU loop counter does not require any

instruction cycle overhead for initiaUzing the counter prior to entering the loop.

Next, we examine the implementation of conditional operations in the processor.

Conditional Operations

States FRICCOMP1 (block 21), FRICCOMP2A (block 22), and FRIC-

COMP3A (block 23) are involved in implementing the friction compensation dis

cussed in chapter 2. Given below are the program blocks for friction compensation.

The state transitions and microinstructions are written in a pseudo mnemonic.

FRICC0MP1 (block 21): ; this is a state

(1) read(FRth) into mor ; friction threshold

(2) move FRth into ace, read(Xvl) into mor ; read joint velocity

(3) take negative of FRth ; negative of FRth

(4) ace = |XVII - FRth ;
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(5) REGXl = addrs[fl] ; address of fric. comp.

if AUSIGN is 1 go to FRICC0MP3A ; state transition

else if AUSIGN is 0 go to FRICC0MP2A

FRICCIMP2A (block 22):

(1) set cc=AUSIGN in LGU, read(fl) into mor ;

(2) move REGO into mor ; Kf.ev

(3) ace = fl- Kf.ev if cc is set ; accumulate if ef is neg.

(4) set cc=!cc ; complement cc

(5) ace = fl+Kf.ev if cc is set ; accumulate if ef is pos.

(6) write(fl) to memory ;

go to FRICC0MP4 ; state transition

FRICC0MP2A (block 23):

(1) read(ul) into mor ;

(2) ace = -ul ; take negative

(3) set PFLAG=AUSIGN in LGU ; set PFLAG if ul pos

(4) ace = ul ;

(5) set cc = AUSIGN in LGU, read(fl) ; set cc if ul is neg

(6) ace = fl, mv REGO to mor ;

(7) ace = fl-Kf.ev if cc is set ; accumulate if ul is neg

(8) set cc = PFLAG in LGU ; set cc if ul is pos

(9) ace = fl+Kf.ev if cc is set ; accumulate if ul is pos

(10) write(fl) to memory ;

The above program code implements friction compensation by setting con

dition code, cc, in LGU and using it to execute several conditional accumulate in

structions for providing decisions. At the end of state FRICCOMPl (block 21),

a conditional branch operation is also performed. Note, the branch is delayed by

one cycle foUowing the subtraction operation done in instruction 4. However, in

this case a useful operation is done during the extra cycle (instruction 5). The use

of LGU, on the other hand, requires one cycle for setting condition codes before

a conditional accumulate can be done. In the above implementation 14 cycles are
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needed in the worst case for providing friction compensation. It also requires three

states and a total of 20"instructions in three blocks. An alternative implementation

without using LGU but using PCU for all conditional operations is described below.

The code for friction compensation using only PCU for conditional oper

ations has four new states, FS1, FS2, FS3, and FS4 which replace FRICCOMP2A

and FRICCOMP3A. Associated with them are four new blocks, 51, 52, 53, and 54

which replace blocks 22 and 23.

FRICCOMPl (block21):

{same as before} ; IXvil - FRth

if AUSIGN is positive go to FS1

else if AUSIGN is neg go to FS2

FS1 (block51):

(1) ace - ace, read(fl) into mor ; check sign of Xvl in ace

(2) no op ; need dummy cycle for delayed conditional branch

if AUSIGN is positive go to FS3

else if AUSIGN is neg go to FS4

FS2 (block52):

(1) read(ul) into mor ;

(2) ace = mor, read(fl) into mor ;

(3) no op ; dummy cycle for delayed conditional branch,

if AUSIGN is positive go to FS3

else if AUSIGN is neg go to FS4

FS3 (block53):

(1) ace = mor+rl ; fl+Kf.ev

(2) write(fl) to memory ;

FS4 (block54):

(1) acc= mor-rl ; fl-Kf.ev

(2) write to fl ;
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The above code achieves friction compensation with only 9 cycles in the worst case.

It uses five states and a total of 13 instructions in five blocks. Clearly, for the fric

tion compensation function, solely using PCU's zero over-head conditional branch

operations for decision making provides a much more efficient implementation than

using logical unit. For comparison, we also give below code [Anwr87] for implemen

tation of the friction compensation on a TMS32010. The code takes 14 cycles in

the worst case and takes up 25 instruction-rom words. (Numbers inside parenthesis

are number of cycles required for the instruction.)

FRIC $MACR0 A,B,C,D ; A=Xv, B=ul, C=FRth, D=+l or -1

LAC :A:,0 (1)

SUB :C: (1)

BLEZ $+6 (2)

LAC ONE,8 (1)

SACL :D: (1)

B $+19 (2)

LAC :A:,0 (1)

ADD :C: (1)

BGEZ $+6 (2)

LAC MINUS,8 (1)

SACL :D: (1)

B $+11 (2)

LAC :B:,0 (1)

BLEZ $+6 (1)

LAC ONE,8 (1)

LAC ONE,8 (1)

SACL :D (1)

B $+4 (2)

LAC MINUS,8 (1)

SACL :D: (1)



Port Address

0 (RD)-

1 (RD)
2(RD)
3(WR)
4(WR)
5(RD)
6(RD)
7(RD)
8(RD)
9(WR)

10 (WR)

Description

Coefficients/
Constants

jointl vel (A/D)
joint2 vel (A/D)
jointl torque (D/A)
joint2 torque (D/A)
jointl pos (quad, dec)
joint2 pos (quad, dec)
jointl ref pos
joint2 ref pos
ram variables

A/D trigger signal

Symbol

1M1L
i[2l

m
m.
^rn

feL
lUL

3*1

Table 7.2: Description of input and output ports

$END

I/O operations
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AU I/O operations are performed through the 20 bit wide parallel I/O

bus. Port addresses are provide through the 4 bit wide I/O address bus. In the

program nine of the 16 port addresses are used as shown in table 7.2. For reading

velocity data through the A/Ds, a begin-conversion signal is written to port 10

during state, ADTRIG, near the beginning of each sample. All the coefficients and

constants are read through port 0 whereas the current value of the various ram

locations are written to port 9. Table 7.3 gives the list of quantities sequentiaUy

(one per cycle) read in through port 0 duringstate RDCONSTS and table 7.4 gives

the list of quantities sequentially (one per cycle) written out to port 9 during state

OUTPUT.



Symbol Description

KP\2] joint2 P-control gain

Kp\l] jointl P-control gain
Kv[2] joint2 D-control gain

Kv[l] jointl D-control gain

Ki\2\ joint2 I-control gain

Km jointl I-control gain

Km jointl fric. coeff.

Kf[2] joint2 fric. coeff.

^m[ll] adaptation gain

-K"m[12l adaptation gain
Km[2i\ adaptation gain

-Km[22] adaptation gain

"Iflll inertia estimate

m[i2] inertia estimate

m[2l] inertia estimate

rh[22] inertia estimate

vdb dead band threshold

vf friction threshold

T sample period
L ratio of inner loop

iterations to outer

loop iterations
PERIOD sample period:

number of cycles

Table 7.3: List of input quantities sequentially read through port 0
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Symbol Description

*rn jointl position

0[21 joint2 position

0*1 jointl velocity

Ov[l] jointl model velocity

e«rn jointl model vel error
tllw jointl Pl-control output

e«[11 jointl vel error

«m jointl PID output

$v[2) joint2 velocity

&v[2] joint2 model velocity

ew[2] joint2 model vel error

«l[2l joint2 Pl-control output

e«[2] joint2 vel error

U\2] joint2 PID output

0v\2] joint2 velocity

rh[u) inertia estimate

rh[i2] inertia estimate

rh[2i] inertia estimate

rh[22] inertia estimate

m jointl torque

m joint2 torque

df[i] jointl fric. comp.

df\2] joint2 fric. comp.

Table 7.4: List of output quantities written to port 9
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7.3 Chip Implementation

A complete customized processor for a two-axis, adaptive robot arm con-

troUer was successfuUy generated using the architecture and design methodology

described in this thesis. AU layout verifications were done by first extracting

the circuit from the layout and then performing switch level simulations using

esim [Term]. We also wrote and verified behavioral simulation models of the leaf-

ceUs using dsim [Shung88]. However, it proved to be too slow to be very useful for

simulating the entire processor. In addition to simulation, we also fabricated the

major macrocells separately and tested them for proper operation. Copies of the

die photos of the 3-T ram and the PCU appear in figures 7.2 and 7.3- respectively.

A copy of the die photo of the complete processor is shown in figure 7.4, the

major macrocells are identified in figure 7.5, and the pin-out is given in figure 7.6.

The chip was fabricated in 2 micron CMOS process through MOSIS. It contains

> 16000 transistors and measures 8406 microns by 7145 microns. Several of the

chips were tested on a test set-up built for the purpose. Tests showed the chip

can perform at up to 15 MHz with a power consumption of approximately 200

mUU-watts. Some of the results are discussed below.

7.3.1 Test Results

The first test was done to check the scan path. The internal master clock

was disabled by puUing TESTMODINV and MCC pins high and a sequence of l's

and 0's were serially shifted in through the SCANIN pin while the output on the

SCANOUT pin was observed. This output correctly foUowed the input pattern after

a delay of exactly 243 cycles, whichis the length of the scan path in this chip. When

the entire scan path is serially loaded with either l's or 0's, the BPFLAG is set as

expected since the BPREG as well as PCOUTREG and CFSMOUTREGI have the

same data. As soon as a sequence of l's (or 0's) being serially shifted through

the scan path is changed to a sequence of 0's (or l's) the BPFLAG disappears,
since BPREG no longer matches the other two register. After 55 shift-cycles, when
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Figure 7.3: Die photo of a control unit (PCU) test chip.
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Figure 7.4: Die photo of the robot controller chip.
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Figure 7.5: A cifplot of the robot controUer chip shewing the major macrocells.
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Figure 7.6: Pin out of the robot controller chip.
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PCOUTREG and CFSMOUTREGI also get seriaUyloaded with 0's (or l's) through

the scan path, the BPFLAG sets immediately.

In the second experiment the processor was allowed to run in its nor

mal mode and the various output pins were observed. RDSTRB, WRSTRB, and

PORTA0-PORTA3 (address port) were verified to appear at the correct program

steps. This showed the processor was sequencing properly and correctly setting the

read/write strobes as weU as the port addresses. Moreover by applying the RESET,

we could get the processor to begin the program sequence again.

For testing out the arithmetic operations, we aUowed the processor to run

in its normal mode for a few cycles and then used the scan path to seriaUy read out

the internal registers. However, we found the data coming out of the SCANOUT

pin, after the processor has gone through a few normal cycles, is corrupted. Upon

some experimentation we arrived at the foUowing explanation. When the processor

is stopped in its normal mode, (this is done by tying MCC pin high for this ex

periment and controUing the internally generated two-phase master clock through

TESTMODEINV pin. [see chapter 6]) some of the control signals that get latched

in the local control-logic of the data paths continue to hold. This would be true

for Type 1-2 circuit (see section 5.5.1). Consequently, if a register's control signal

to load parallel data is generated with a Type 1-2 circuit, the parallel input to the

register would remain turned ON during serial scan. This of course would cause

contention between the data coming into the register through the parallel input

and the data coming through the serial input. We found the only register where

such a situation occured is EAGATE in APU. The control signal OENEAGATE is

generated with a Type 1-2 circuit as shown in figure 5.46 and hence would have the

problem just described.

Our investigations also showed that data is not corrupted if the registers

are scanned immediately after reset cycles. Since during reset, OENEAGATE signal

is not asserted, a scan operation foUowing reset provides good scan data. We used

this fact for getting around the problem of data corruption. After a series of normal

cycles, the processor is always reset for three cycles before shifting the scan data.

The three cycles give enough time for the reset control-word to propagate into the
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data path control logic. This of course destroys the control state of the processor;

however, aU the register data remain intact and can be read out through the serial

scan path. We should point out, however, this problem with scan path does not

affect the normal operation of the processor. Using this technique, we verified the

APU registers are correctly read and written. Furthermore, the adder operation

also takes place correctly. A few other tests were also done to check the data path

operations. Thus, aU the major functions of the processor have been verified to

perform satisfactorily.



Chapter 8

Conclusions and Future Work

The architecture, circuits, ceU Ubrary, and design methodology described

in this dissertation have been successfuUy used to generate a customized, micropro

grammed processor for a two-axis, adaptive robot controUer. We have shown that a

fairly complex algorithm with comphcated control structure can be efficientlyimple

mented on a custom processor from a behavioral description at the microprogram

level provided a suitable, pre-defined architectural model is used. The chip has been

tested and can work up to 15 MHz. Since approximately 600 cycles are required

during each sample period for completing the computations required for two joints,

at 15 MHz we can reach a sampUng period of 0.04 ms. This is over ten times faster

than the target sample period of 0.5 ms. Therefore a single custom chip, such as

the onedescribed in this dissertation, can potentially implement control algorithms
for several joints.

In order to let system designers easily implement their algorithms on cus

tom processors, support for high-level language input is very important. Current

research work makes feasible extension of the user input to higher level languages

such as 'C or Silage. This clearly brings us closer to the exciting possibility of
allowing system designers to generate custom IC solutions for their applications

without requiring expertise in IC design. Our design approach, based on a pre
defined architecture model consisting ofa generic control unit and application spe
cific data paths with local memory, lends itself readily to generation of customized
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processors from high-level descriptions of algorithms. At the same time, creating a

hierarchical design with parameterized macroceUs provides a high-level of flexibil

ity and modularity. Thus, users wiUing to work at the structural level can easily

modify the hardware to more closely match their requirements. This is evidenced

from several projects currently underway that adapt the basic hardware design

described in this thesis for such diverse appUcations as Inverse Kinematics solu

tions for robot arms [Lars87] and a Decision Feedback EquaUzer for digital mobile

phones [LaMLR88]. To a great extent users are able to create a new processor

by simply redefining the top-level structure of the data paths through structural

description files.

One difficulty created by aUowing users to redefine data paths at the struc

tural level is ensuring a legal configuration that wiU function properly. At the same

time the user must not be burdened with the task of understanding the detailed

circuit designs of the ceUs in order to properly interconnect them. To deal with

this problem, we have defined some basic composition rules for hooking together

data path cells. These, however, do not deal with any peculiarities of individual

ceUs. Results from testing the chip (see chapter 7), for example, show that Type 1-2

control circuits should not be used for controlUng the input of scan type registers or

latches. Clearly, a more comprehensive set of rules is required, possibly integrated

inside the CAD environment for automatic checking.

Among the various layout generation tools provided by the silicon assembly

environment of Lagerlll, TimLager (ceU tiler) generates the most compact layout.

The place and route tool, FUnt, and Data Path Compiler, on the other hand,

generate layouts that are much less area efficient. Improvements in this area would

certainly be very welcomed by circuit designers. Further more, the layout system

does not currently provide any feedback on the performance, nor is the layout

generation process guided by any consideration for performance such as power,

speed, and area. Current tools such as TimLager, however, do have the ability to

support parameterization of the cells for selecting driver sizes and bus widths to

match the load requirements. In future, transistor sizing programs [ShySS] may also

be incorporated within Lager in order to simplify leafcell designer's task. Another
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weakness in the CAD support is the lack of a good behavioral simulator. This

problem is currently being addressed through the THOR simulator [Rob].

Whereas the design approach described in this thesis does allow rapid cre

ation of designs, fabrication process stiU forces an eight to ten week delay. Moreover,

after fabrication, there is only very limited flexibiUty for modifications and changes

during testing and system development. This points to the need for providing other

implementation techniques such as gate arrays and EPLD (erasable programmable

logic) within the design environment for even faster prototyping.
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Appendix A

Specification for Assembly
Language Input File

The assembly language file has six sections written in a lisp format. Each
section is identified with a keyword followed by a list. In the description below bold
characters identify a keyword. Expressions enclosed by [] may be optionally repeated
any number of times. Expressions in italics must be replaced with appropriate name
or number. The format of the assembly language file has been designed by C-S
Shung.

Ram Variables:

(ram element [elements ])

element := (array-name n) - for array variable;
n is the number of array elements,

or variable-name - for a single variable.

Logical Unit FSM:

(dfsm (boolean-oper-name ( state-name equation))
[(boolean-oper-name (state-name equation))])

boolean-oper-name := name by which the operation
is invoked within a program block,

state-name := ism's internal or output state,
equation := boolean expression of state and input variables.
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Control Unit FSM:

(cfsm (state-name block-number (conditions) (goto next-state-name))
[(state-name block-number (conditions) (goto next-state-name))])

state-name := name identifying a control state.
block-number := integer identifying a code-block

associated with the state.

conditions := conditions under which state-transition

should occur. Blank means transition occurs

only at the end-of-block. IctestK means when
Kth count in loop count list (see below) is completed.

next-state-name := next-state to which transition takes place.

(Note: If a stack is used, an additional field for return-state)
must be specified

Loop Count:

(loop.test number [number])

number := integer specifying a loop count. The order
K in which the number appears corresponds to the
IctestK signal in cfsm specification above.

Data Path Word-Size:

(dp_wordjsize N)

N := integer specifying number of bit-slices in data path.

Timer Reset:

(reset_timer state-name [state-name])

state-name := state in which timer reset is asserted.



Sampling Period:

(max.sampleJntvl L)

Code-Blocks:

(rom

L := integer specifying length of sampling period
in terms of number of cycles.

(blockP (instruction) [instruction])
[(blockQ (instruction) [instruction])])

P, Q are integers and correspond to block-number
in .cfsm section.

instruction := (microoperation) [(microoperation)]
microoperation := primitive data transfer operation
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Appendix B

Parameters

The parameters listed below are used to parameterize the layout of the pro
cessor. They are read by the Design Manager and are passed on to the appropriate
layout generator for creating a specific instance of the layout.

»

****************************************

Parameters specifying the type of pad at each pad location and the
name assigned to the pad terminals.
;*****************************************************************

(Enumber 20) ; total number of pads in the East pad-group is 20
(EpadO (Vdd))
(Epadl (GND))
(Epad2 (io DATAINP0RT\[0\] DATAINPORT\[0\]* EN\[0\] DATA0UTP0RT\[0\]))
(Epad3 (io DATAINP0RT\[1\] DATAINPORT\[l\]* EN\[l\] DATA0UTP0RT\[l\]))
(Epad4 (io DATAINPORT\[2\] DATAINPORT\[2\] * EN\[2\] DATA0UTP0RT\[2\]))
(Epad5 (io DATAINP0RT\[3\] DATAINPORT\[3\]* EN\[3\] DATA0UTP0RT\[3\]))
(Epad6 (io DATAINPORT\[4\] DATAINPORT\[4\] * EN\[4\] DATA0UTP0RT\[4\]))
(Epad7 (io DATAINPORT\[5\] DATAINP0RT\[5\]* EN\[5\] DATA0UTP0RT\[5\]))
(Epad8 (io DATAINPORT\[6\] DATAINPORT\[6\] * EN\[6\] DATA0UTP0RT\[6\]))
(Epad9 (io DATAINPORT\[7\] DATAINPORT\[7\] * EN\[7\] DATA0UTP0RT\[7\]))
(EpadlO (io DATAINPORT\[8\] DATAINPORT\[8\]* EN\[8\] DATA0UTP0RT\[8\]))
(Epadll (io DATAINP0RT\[9\] DATAINPORT\[9\]* EN\[9\] DATA0UTP0RT\[9\]))
(Epadl2 (io DATAINPORT\[10\] DATAINPORT\[10\]* EN\[10\] DATA0UTP0RT\[10\]))
(Epadl3 (io DATAINP0RT\[11\] DATAINPORT\[ll\]* EN\[ll\] DATA0UTP0RT\[11\]))
(Epadl4 (io DATAINP0RT\[12\] DATAINPORT\[12\]* EN\[12\] DATA0UTP0RT\[12\]))
(Epadl5 (io DATAINP0RT\[13\] DATAINPORT\[13\]* EN\[l3\] DATA0UTP0RT\[l3\]))
(Epadl6 (io DATAINP0RT\[14\] DATAINP0RT\[14\]* EN\[14\] DATA0UTP0RT\[14\]))
(Epadl7 (io DATAINP0RT\[15\] DATAINPORT\[15\]* EN\[15\] DATA0UTP0RT\[15\]))

(Snumber 16) ; total number of pads in the South pad-group is 16
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(SpadO (GND))
(Spadl (Vdd))
(Spad2 (io DATAINPORT\[16\] DATAINPORT\[16\] * EN\[16\] DATA0uTP0RT\[l6\]))
(Spad3 (io DATAINPORT\[17\] DATAINPQRT\[17\] * EN\[17\] DATA0UTP0RT\[17\]))
(Spad4 (io DATAINPORT\[18\] DATAINP0RT\[18\]* EN\[18\] DATA0uTP0RT\[l8\]))
(Spad5 (io DATAINPORT\[19\] DATAINP0RT\[19\]* EN\[19\] DATA0UTP0RT\[19\]))
(Spad6 (in TESTCLK1 TESTCLK1*))
(Spad7 (in TESTCLK2 TESTCLK2*))
(Spad8 (out EOS))
(Spad9 (in EXTC0ND\[0\] EXTC0ND\[0\]*))
(SpadlO (out SCANQUT))
(Spadll (out P0RTADDRESS\[3\]))
(Spadl2 (out P0RTADDRESS\[2\]))
(Spadl3 (out P0RTADDRESS\[1\]))
(Spadl4 (GND))
(Spadl5 (Vdd))

(Wnumber 20) ; total number of pads in the Vest pad-group is 20
(WpadO (out WRITESTRB))
(Wpadl (out P0RTADDRESS\[0\]))
(Wpad2 (in RESET RESET*))
(Wpad3 (out READSTRB))
(Wpad4 (in SCANIN SCANIN*))
(Wpad5 (out BPFLAG))
(Wpad6 (in TESTMODEINV TESTMDDEINV*))
(Wpad7 (in CLOCKIN CLOCKIN*))
(Wpad8 (in MCC MCC*))
(Wpad9 (Vdd))
(WpadlO (GND))
(Wpadl1 (space))
(Wpadl2 (space))
(Wpadl3 (space))
(Wpadl4 (space))
(Wpadl5 (space))
(Wpadl6 (Vdd))
(Wpadl7 (GND))
(Wpadl8 (space))
(Wpadl9 (space))

(Nnumber 16) ; total number of pads in the North pad-group is 16

(NpadO (space))
(Npadl (space))



(Npad2 (space))
(Npad3 (space))
(Npad4 (space))
(Npad5 (space))
(Npad6 (space))
(Npad7 (space))
(Npad8 (space))
(Npad9 (space))
(NpadlO (space))
(Npadil (space))
(Npadl2 (space))
(Npadl3 (space))
(Npadl4 (space))
(Npadl5 (space))

;The following parameters give specifications for the macrocells

AUlwordsize: arithmetic unit word size

num_of_blks: number of code-blocks

max_blk_size: size of the largest code-block
num_of_cstore_mint: number of minterms in the control store (rom)
num_of_cstoreout: number of bits in the cstore output
num_of_states: number of states in the control unit fsm

num_of_cfsm_mint: number of minterms in the control unit fsm

stack_depth: depth of the stack in the control unit
num_of_cond: number of external conditions going into the
control unit

num.ofJoopslice: number of loops with distinct loop counts
maxJoopjsize: size of the largest loop
detslice: list of loop-count values
max_sampleJntvl: maximum sampling period in number of cycles
cstore-input-plane: input plane bit pattern for control store (rom)
cstore-output-plane: output plane bit pattern for control store
nr_ofJgu_feedback: number of feedback lines in the LGU fsm
nr.ofJgu_out: number of outputs in the LGU fsm
nr_ofJgu_xin: number of external inputs to the LGU fsm
nr.ofJgu Jnstr: number of boolean operations specified in the LGU fsm
nr.ofJgu jninterm: number of LGU fsm minterms
lgu-input-plane: input plane bit pattern for the LGU fsm
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lgu-output-plane: output plane bit pattern for the LGU fsm
fsm-input-plane: control unit fsm input plane bit pattern
fsm-output-plane: control unit fsm output plane bit pattern
ramwords: number of words in the ram

ram-address-plane: ram address plane bit pattern
ram-bit-plane: ram data plane bit pattern; x means rd/wr
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Appendix C

Microoperations of the Robot
Control Processor

The microoperations listed below are the basic data path operations al
lowed in the processor described in this thesis. In the context of this processor, an
assembly language program is composed of these primitve microoperations. The
assembly language program is provided as an input to the rassCG program which
generates the structural specifications required for producing the layout. In the fol
lowing list of microoperations, keyword defun precedes each microoperation. Key
word grab specifies processorresources being used by the microoperation. Keyword
high identifies all the control signals which are high in order to execute the associ
ated microoperation. Keyword low identifies control signals which should be low in
order to execute the associated microperation. Comments on the right hand side
beginning with % describe the operation.

>>>>>*»*>>>* t t »>>> t > t t > i t >>>>> y t t > t >>>>>>) t t > f > > t f > i i i > i i > 'i >'>'>'»'} \ '} \ \ \ \ \ >'} 't \ \ >

;;; AU (arithmetic unit)

>>>>>*>*>»> i >> f t > * > i > t t i t > t t > t >> t t >» i i )>> t } \ \ \ \ \ \ > \ \ \ \ \ t \ \ ) \ \ \ \ \ \ \ \ \ \ '>') \ \ '> \ \ \

;;; Register load instructions

(defun mor=mem () ;5C read memory and load data into mor register,
(grab mor mem)
(high pR pLDMOR)
(low pSELMORIN)) ; R: ram, LDMOR, LDMORINV, MORSELMEM

(defun mem=mbus () ;'/, write mbus data into memory,
(grab mem)
(high pW)) ; W: ram, WEN
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(defun mcondload () ;*/• write mbus into memory if condition code cc is
true.

(high pWC)) ; WC

(defun morsmbus () ;'/. load mbus data into mor.
(grab mor)
(high pSELMORIN pLDMOR)) ; MORSELMBUS

(defun r*=rbus (n) ;*/, load rbus data into register n.
;% In robot control processor n = 1 or 2.
(caseq n

(0 (grab rO) (high pLDRO))
(1 (grab rl) (high pLDRl))
(2 (grab r2) (high pLDR2))
(3 (grab r3) (high pLDR3))
(4 (grab r4) (high pLDR4)))) ; LDR4, LDR4INV

(defun rcoef=mbus () ;% load coefficient register from mbus.
(grab rcoef)
(high pLDCOEF)) ; LDCOEF, LDCOEFINV

;;; Move (into a bus) instructions

(defun mbus-mor () ;% move mor register data into mbus.
(grab mbus)
(high pXMITMOR)) ; XMITMOR, XMITMORINV

(defun mbus=r* (n) ;*/, move data from register n into mbus.
(caseq n

(0 (grab mbus) (high pOENRO) (low pXMITMOR)) ; 0NER0 0NER0INV
(1 (grab mbus) (high pOENRl) (low pXMITMOR))
(2 (grab mbus) (high pOENR2) (low pXMITMOR))
(3 (grab mbus) (high p0ENR3) (low pXMITMOR))
(4 (grab mbus) (high p0ENR4) (low pXMITMOR)))) ; 0NER4 0NER4INV

(defun mbus=acc () ;% move accumulator data into mbus.
(grab mbus)
(high pXMITACC)
(low pXMITMOR)) ; XMITACC XMITACCINV

(defun rbus=acc () ;*/, move accumulator data into rbus.
(grab rbus)

LDRO, LDROINV

LDR1, LDR1INV

LDR2, LDR2INV

LDR3, LDR3INV

0NER1 0NER1INV

0NER2 0NER2INV

0NER3 0NER3INV



201

(high pACC2REG)) ; ACC2REG ACC2REGINV

(defun rbus=ioport () ;*/. move data from I/O port into rbus.
(grab rbus)
(high pRDPORT)) ; RDPORT, RDPORTINV

(defun ioport=extport (n) ;'/. read I/O port where n specifies the port
;'/. address. Robot control processor has a
;7. 4 bit port address.
; RDSTRB

(grab ioport extport)
(high pRDSTRB) (low pWRPORT) ; ioport!=mbus
(caseq n
; PORT ADDRESS * 0000,0001,0010, and so on

(0

(1

low pP0RTADDRESS3 pP0RTADDRESS2 pPORTADDRESSl pPORTADDRESSO))
low pP0RTADDRESS3 pP0RTADDRESS2 pPORTADDRESSl) ; 0001
(high pPORTADDRESSO))

(2 (low pP0RTADDRESS3 pP0RTADDRESS2 pPORTADDRESSO)
(high pPORTADDRESSl))

(3 (low pP0RTADDRESS3 pP0RTADDRESS3 pPORTADDRESS2)
(high pPORTADDRESSl pPORTADDRESSO))

(4 (high pP0RTADDRESS2) ; 0100
(low pP0RTADDRESS3 pPORTADDRESSl pPORTADDRESSO))

(5 (high pP0RTADDRESS2 pPORTADDRESSO) ; 0101
(low pP0RTADDRESS3 pPORTADDRESSl))

(6 (high pP0RTADDRESS2 pPORTADDRESSl) ; 0110
(low pP0RTADDRESS3 pPORTADDRESSO))

(7 (high pP0RTADDRESS2 pPORTADDRESSl pPORTADDRESSO) ;
(low pP0RTADDRESS3))

(8 (low pPORTADDRESSO pPORTADDRESSl pP0RTADDRESS2 ) ;
(high pP0RTADDRESS3 ))

(9 (low pPORTADDRESSl pP0RTADDRESS2 ) ; 1001
(high pP0RTADDRESS3 pPORTADDRESSO ))

(10 (low pPORTADDRESSO pP0RTADDRESS2 ) ; 1010
(high pP0RTADDRESS3 pPORTADDRESSl ))

(11 (low pP0RTADDRESS2) ; 1011
(high pP0RTADDRESS3 pPORTADDRESSl pPORTADDRESSO))

(12 (low pPORTADDRESSO pPORTADDRESSl) ; 1100
(high pP0RTADDRESS3 pP0RTADDRESS2))

(13 (low pPORTADDRESSl) ; 1101
(high pP0RTADDRESS3 pP0RTADDRESS2 pPORTADDRESSO ))

(14 (low pPORTADDRESSO) ; 1110

0010

0011

0111

1000
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(high pP0RTADDRESS3 pP0RTADDRESS2 pPORTADDRESSl ))
(15 (high pP0RTADDRESS3 pP0RTADDRESS2 pPORTADDRESSl pPORTADDRESSO ))))

(defun ioport=mbus () ;'/, mbus data send to the I/O port,
(grab ioport)
(high pWRPORT)) ; WRPORT, WRPORTINV

(defun extport3ioport (n) ;% write data to external port where n
;*/, specifies the port address (4 bits).
(grab extport)
(high pWRSTRB) ; WRSTRB
(caseq n
; PORT ADDRESS = 0000,0001,0010, and so on

(0

(1

low pP0RTADDRESS3 pP0RTADDRESS2 pPORTADDRESSl pPORTADDRESSO))
low pP0RTADDRESS3 pP0RTADDRESS2 pPORTADDRESSl) ; 0001
(high pPORTADDRESSO))

(2 (low pP0RTADDRESS3 pP0RTADDRESS2 pPORTADDRESSO)
(high pPORTADDRESSl))

(3 (low pP0RTADDRESS3 pP0RTADDRESS3 pP0RTADDRESS2)
(high pPORTADDRESSl pPORTADDRESSO))

(4 (high pP0RTADDRESS2) ; 0100
(low pP0RTADDRESS3 pPORTADDRESSl pPORTADDRESSO))

(5 (high pP0RTADDRESS2 pPORTADDRESSO) ; 0101
(low pP0RTADDRESS3 pPORTADDRESSl))

(6 (high pP0RTADDRESS2 pPORTADDRESSl) ; 0110
(low pP0RTADDRESS3 pPORTADDRESSO))

(7 (high pP0RTADDRESS2 pPORTADDRESSl pPORTADDRESSO) ;
(low pP0RTADDRESS3))

(8 (low pPORTADDRESSO pPORTADDRESSl pP0RTADDRESS2 ) ;
(high pP0RTADDRESS3 ))

(9 (low pPORTADDRESSl pP0RTADDRESS2 ) ; 1001
(high pP0RTADDRESS3 pPORTADDRESSO ))

(10 (low pPORTADDRESSO pP0RTADDRESS2 ) ; 1010
(high pP0RTADDRESS3 pPORTADDRESSl ))

(11 (low pP0RTADDRESS2) ; 1011
(high pP0RTADDRESS3 pPORTADDRESSl pPORTADDRESSO))

(12 (low pPORTADDRESSO pPORTADDRESSl) ; 1100
(high pP0RTADDRESS3 pP0RTADDRESS2))

(13 (low pPORTADDRESSl) ; 1101
(high pP0RTADDRESS3 pP0RTADDRESS2 pPORTADDRESSO ))

(14 (low pPORTADDRESSO) ; 1110
(high pP0RTADDRESS3 pP0RTADDRESS2 pPORTADDRESSl ))

0010

0011

0111

1000
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(15 (high pP0RTADDRESS3 pP0RTADDRESS2 pPORTADDRESSl pPORTADDRESSO ))))

(defun acc=0 () ;'/. set abus=bbus=0 resulting in acc=0.
(grab abus bbus ace)
(high pNOABS pZER0.BIN) ; ZERO.BIN, ZERO.AIN
(low pANDCOEF pMINUS pCOEFCOMP))

(defun acc=sum () ;*/, load adder output into accumulator,
(grab ace))

(defun acc=abus () ;*/, load abus into accumulator by setting
;*/ bbus=0

(grab ace bbus)
(high pZER0.BIN)) ; ZERO.BIN

(defun acc=bbus () ;'/, load bbus into accumulator by seting
;% abus=0

(grab ace abus)
(high pNOABS) ; ZERO.AIN
(low pMINUS pANDCOEF pCOEFCOMP))

(defun abus=l () ;'/, increment bbus,
;*/, actually abus=0 and cin=l
(grab abus)
(high pNOABS pMINUS)
(low pANDCOEF pCOEFCOMP)) ; COMPLA, COMPLAINV

(defun abus=mor () ;'/, move mor data into abus.
(grab abus)
(high pNOABS pCOEFCOMP)
(low pMINUS pANDCOEF))

(defun abusa-mor () ;*/, move negative mor into abus.
(grab abus)
(high pNOABS pMINUS pCOEFCOMP)
(low pANDCOEF))

(defun abus=absmor () ;'/ move absolute mor into abus.
(grab abus)
(high pCOEFCOMP)
(low pNOABS pMINUS pANDCOEF))
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(defun abus=-absmor () ;*/, move negative of absolute mor into
;'/• abus.

(grab abus)
(low pNOABS pANDCOEF)
(high pMINUS pCOEFCOMP))

(defun abus=coef.mor () ;'/, move product of mor and right most
'/• bit of the coefficient register into
V. abus. Used for shift/add

5£ multiplication.
(grab abus)
(high pNOABS pANDCOEF)
(low pMINUS pCOEFCOMP))

(defun abus=coef.-mor () ;'/. same as above except use -mor.
(grab abus)
(high pNOABS pMINUS pANDCOEF)
(low pCOEFCOMP))

(defun abus=coef.absmor () ;'/. same as above except use absol. mor.
(grab abus)
(high pANDCOEF)
(low pNOABS pMINUS pCOEFCOMP))

(defun abusscoef.-absmor () ;7. same as above except use -absol. mor.
(grab abus)
(high pMINUS pANDCOEF)
(low pNOABS pCOEFCOMP))

(defun abus=~coef.mor () ;'/, same as above except use compl. coeff
(grab abus)
(high pANDCOEF pCOEFCOMP pNOABS)
(low pMINUS))

(defun abus=~coef.-mor () ;'/, same as above except use compl.
;'/• coeff. and negative mor.
(grab abus)
(high pANDCOEF pCOEFCOMP pNOABS pMINUS))

(defun abus=~coef.absmor () ;*/, same as above except use compl.
;*/, coeff. and absol. mor.

(grab abus)
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(high pANDCOEF pCOEFCOMP)
(low pNOABS pMINUS))

(defun abuss**coef.-absmor () ;'/. same as above except use compl.
;'/. coeff. and neg. absol. mor.
(grab abus)
(high pANDCOEF pCOEFCOMP pMINUS)
(low pNOABS))

(defun bbus=mbus () ;'/♦ move mbus data to bbus.
(grab bbus)
(low pZER0.BIN)
(low pSELBBUSIN))

(defun bbus=acc>* (n) ;*/, shift accumulator right n bits
;'/. and move data to bbus.

(grab bbus) ;'/• n is 0 to 6
(low pZER0.BIN)
(high pSELBBUSIN)
(caseq n

(0 (low pS2 pSl) (high pSO))
(1 (low pS2 pSO) (high pSl))
(2 (low pS2) (high pSl pSO))
(3 (high pS2) (low pSl pSO))
(4 (high pS2 pSO) (low pSl))
(5 (high pS2 pSl) (low pSO))
(6 (high pS2 pSl pSO))
(t (format t "Illegal instruction: right-shift ("a) out of bound"'/,"

n))))

(defun bbus=acc<* (n) ;'/, shift accumulator left n bits
;7. n can be only 1.

(grab bbus)
(high pSELBBUSIN)
(low pZERCBIN)
(caseq n

(1 (low pS2 pSl pSO))
(t (format t "Illegal instruction: left-shift ("a) out of bound"'/."

n))))

(defun acondload () ;'/, load accumulator if condition code
;'/, cc is true.



206

(high pSUMCOND))

(defun shrcoef () ;'/. serially shift coefficient register
;'/• one bit to the right. Used for
;*/. shift/add multiplication,
(high pSHIFTCOEF))

;;; Miscellaneous "instructions"

(defun nosat () (high pNOSAT)) ;*/, do not saturate adder output.
(defun aip () (high pAIP)) ;*/, accumulate if adder output is positive.

; APU (address processing unit)
)iii)itii) ii)i linn mm iimni iii))H)))iitii)ii )))))) j )i n m n nn Mimii

;;; Regsiter load instructions

(defun x*=eabus (n) ;*/, load eabus data into apu register n,
;'/. where n is 0 to 2.

(caseq n
(0 (grab xO) (high pLOADXO))
(1 (grab xl) (high pLOADXl))
(2 (grab x2) (high pL0ADX2))
(3 (grab x3) (high pL0ADX3))

L0ADXO, L0ADX0INV

L0ADX1, L0ADX1INV

L0ADX2, L0ADX2INV

L0ADX3, L0ADX3INV

(4 (grab x4) (high pL0ADX4)))) ; L0ADX4, L0ADX4INV

(defun xcondload () ;*/* load apu register only if condition
;'/. code is true. Used together with
;7. the previous instruction,
(high pCONDLD))

;;;Move (into a bus) instructions

(defun addr fexpr (1) ;5C the argument of addr symbolically
;'/, identifies a ram variable.

(grab dbus)
(ramdecodebase (car 1)))

(defun offset (1) ;'/. the argument of offset is added
;'/. to the address constant during
;'/, compile time.
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(ramdecodeoffset 1))

(defun xip () ;'/. load if apu adder output is pos.
(high pXIP))

(defun xbus=x* (n) ;*/, move data from apu register n to
;'/, xbus, where n is 0 to 2.

(caseq n
(0 (grab xbus) (low pXBUSZERO) (high pOENXO))
(1 (grab xbus) (low pXBUSZERO) (high pOENXD)
(2 (grab xbus) (low pXBUSZERO) (high pOENX2))
(3 (grab xbus) (low pXBUSZERO) (high pOENX3))

OENXO, OENXOINV

OENXl, OENXIINV

0ENX2, 0ENX2INV

0ENX3, 0ENX3INV

(4 (grab xbus) (low pXBUSZERO) (high pOENX4)))) ; 0ENX4, 0ENX4INV

(defun xbus=0 () ;'/. set xbus to zero,
(grab xbus)
(high pXBUSZERO)) ; XBUSZERO

(defun eabus=sum () ;'/, dump apu's adder output on eabus.
(grab eabus)
(high pOENEALATCH)) ; OENEALATCH, OENEALATCHINV

> i i i ) n ) ) > i ) i * ) > ) i ) i > i i * > « » « ) i ) i t t > « i t t > > j i > « i i i j i > > j i i i ! i ) i ) * I i ) i ) > ) j j ) > j i j j

;;; Communication between AU and APU

»>» * **»»*»» t »*»»»»* t * t »» t t t t » t »» t » it y \ y \ \ \ \ i t \ \ \ \ y y t t » * »» t i * y »» i \ » \ » \ » y y \ \ \ ] \

(defun eabus=mbus () ;*/, move mbus data to eabus.
(grab eabus)

• (high pMBUS2EABUS))

(defun areg=eabus () ;'/. load areg from eabus.
(grab areg)
(high pEABUS2MBUS))

(defun mbus=areg () ;'/, move areg data to mbus,
;*/• this must always be asserted

(grab mbus) ;'/, following areg=eabus
(low pXMITMOR))

(defun timereg=eabus () ;'/. load timer register in PCU from eabus.
(grab timerinreg)
(high pLDTIMER)) ; LDTIMER, LDTIMERINV
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;;; No operation (nop). Handles all the defaults.

(defun nop ()
(high pXBUSZERO) (ramdecodebase 0) ; xbus=0, dbus=0
(high pSELMORIN) ; mor=mbus
(high pXMITMOR) ; mbus=mor
(high pNOABS) (low pMINUS pANDCOEF pCOEFCOMP) ; abus=0
(high pZER0.BIN) ; bbus=0
(low pAIP pSUMCOND) ; acc=sum
(low pS2 pSl) (high pSO) ; shifterout=acc>0
(high pWRPORT)) ; ioport=mbus

(defun fsm (n) n) ;'/. define boolean expressions for
;'/. LGU.

(defun immed (n) (grab dbus) (ramdecodeoffset n)) ;% specify n as the
address

*/, data in the control-word.

5C This is sent to the dbus

*/, input of the apu's adder.



Appendix D

Bit Assignments of the Control
Signals in the Rom

In the list below, the name identifies the control signal and the number
following it refers to the bit position in the control-word.

Control signals used internal to the PCU

EOB 0

pLDTIMER 1

;;; if stack is used then need E0B2

;;; E0B2 2

>yyyyyyyyy>yyyy>>yy>y>ittiyyyyyyyy>yttyyti)>y>y>ttyj}tt>>>>y}}})}t)>it)t}))))

;;; Arithmetic Unit microcode bits

) i ) i ) I i i ) ) > > > i n ) M i ) i i ) n i i i t i > i > ) i i ) i i > i i ! ! i i i i ! i i i > i I i ! i i i i ! i i i ! i i ! i i i i i i i

pWC 2

pAIP 3

pNOSAT 4

pLDMOR 5

pLDRO 6

pLDRl 7

pLDCOEF 8

pXMITMOR 9

pXMITACC 10

pSELMORIN 11

pANDCOEF 12

pCOEFCOMP 13

pNOABS 14
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Appendix E

Structural Description Files

This appendix contains the top-level structural description (sdl) files of the
robot control processor. These files describe the structure of a cell, called parent-
cell, in terms of types of sub-cells used, list of parameters whose values form the
structural specifications for the layout, and the net list. Each net is a single electrical
node and lists all the terminals belonging to the net. Each terminal appears as a
pair with its cell-name, and enclosed in parenthesis. A cell-name (which always
appears first) given as parent, signifies that the terminal is on the boundary of the
parent-cell. Detailed specification of the sdl files are given in Lager manuals.

The sdl files start with the root sdl file, proc_chip.sdl, and progressively
move down the chip hierarchy, which is described in chapter 5. Only the top two-
levels of the sdl files aregiven. The remaining files are available in Lagerlll directory,
lager/Lagerlll/processor/sdl

*********************************************************************

sdl file for assembling the entire chip from the core processor
and the pads.

*********************************************************************

(layout-generator Padroute)
(parent-cell proc_chip
(parameters

AUlwordsize

side.RAMIO

side.EABUSIN

side_EABUSOUT

side_I0P0RT

side_P0RT0UT

side_RBUS

side_addrsfield

side.EABUS
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num_of_blks

max.blk.size

num_of_cstore_mint

num.of.cstoreout

num.of.states

num_of_cfsm_mint

stack.depth ; set to zero - no stack

num.of.cond ; excluding eob and loop det
num_of_loopslice

max_loop_size
detslice

max.sample.intvl ; in terms of num of cycles
fsm-input-plane

fsm-output-plane

cstore-input-plane
cstore-output-plane

ramvords

ram-address-plane

ram-bit-plane

nr.of.lgu.feedback

nr_of.lgu.out ; including feedbacks
nr_of_lgu_xin ; external inputs to lgu excl signs.
nr_of_lgu_instr ; num of instr addr bit from cstore.
nr.of.lgu.minterm

lgu-input-plane

lgu-output-plane

EpadO Epadl Epad2 Epad3 Epad4 Epad5 Epad6
Epad7 Epad8 Epad9 EpadlO Epadl1 Epadl2 Epadl3
Epadl4 Epadl5 Epadl6 Epadl7 Epadl8 Epadl9 Enumber
WpadO Wpadl Wpad2 Wpad3 Wpad4 Wpad5 Wpad6
Wpad7 Wpad8 Wpad9 WpadlO Wpadll Wpadl2 Wpadl3
Wpadl4 Wpadl5 Wpadl6 Wpadl7 Wpadl8 Wpadl9 Wnumber
SpadO Spadl Spad2 Spad3 Spad4 Spad5

Spad6 Spad7 Spad8 Spad9 SpadlO Spadl1
Spadl2 Spadl3 Spadl4 Spadl5 Snumber

NpadO Npadl Npad2 Npad3 Npad4 Npad5
Npad6 Npad7 Npad8 Npad9 NpadlO Npadll

Npadl2 Npadl3 Npadl4 Npadl5 Nnumber)

)

(sub-cells

(proc LGR3
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(parameters (fplan 'middle)
(AUlwordsize AUlvordsize)

(side.RAMIO side.RAMIO)

(side.EABUSIN side.EABUSIN)

(side.EABUSOUT side.EABUSOUT)
(side.IOPORT side.IOPORT)
(side.PORTOUT side.PORTOUT)

(side.RBUS side.RBUS)

(side.addrsfield side.addrsfield)
(side.EABUS side.EABUS)

(num.of.blks num_of.blks)

(max_blk_size max_.blk.size)

(num.of.cstore.mint num_of.cstore.mint)
(num.of.cstoreout num.of.cstoreout)

(num.of.states num.of.states)

(num.of.cfsm.mint num.of.cfsm.mint)

(stack.depth stack.depth)
(num.of.cond num_of_cond)

(num.of.loopslice num_of_loopslice)
(max.loop.size max.loop.size)
(detslice detslice)

(max.sample.intvl max.sample.intvl)
(fsm-input-plane fsm-input-plane)
(fsm-output-plane fsm-output-plane)
(cstore-input-plane cstore-input-plane)
(cstore-output-plane cstore-output-plane)
(ramwords ramvords)

(ram-address-plane ram-address-plane)
(ram-bit-plane ram-bit-plane)
(nr.of.lgu.feedback nr.of.lgu.feedback)
(nr.of.lgu.out nr.of_lgu.out)
(nr.of_lgu.xin nr_of.lgu.xin)
(nr.of.lgu.instr nr_of_lgu_instr)
(nr_of_lgu_minterm nr_of_lgu.minterm)
(lgu-input-plane lgu-input-plane)
(lgu-output-plane lgu-output-plane)
))

(scpadsl_25 n_group
(parameters (fplan 'top) (number Nnumber)

(padO NpadO) (padl Npadl) (pad2 Npad2) (pad3 Npad3)
(pad4 Npad4) (pad5 Npad5) (pad6 Npad6) (pad7 Npad7)
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(pad8 Npad8) (pad9 Npad9) (padlO NpadlO) (padll Npadll)
(padl2 Npadl2) (padl3 Npadl3) (padl4 Npadl4) (padl5 Npadl5)
))

(scpadsl.25 e.group
(parameters (fplan 'right) (number Enumber)

(padO EpadO) (padl Epadl) (pad2 Epad2) (pad3 Epad3)
(pad4 Epad4) (pad5 Epad5) (pad6 Epad6) (pad7 Epad7)
(pad8 Epad8) (pad9 Epad9) (padlO EpadlO) (padll Epadll)
(padl2 Epadl2) (padl3 Epadl3) (padl4 Epadl4)
(padl5 Epadl5) (padl6 Epadl6) (padl7 Epadl7)
(padl8 Epadl8) (padl9 Epadl9)
))

(scpadsl_25 w_group
(parameters (fplan 'left) (number Wnumber)

(padO WpadO) (padl Wpadl) (pad2 Wpad2) (pad3 Wpad3)
(pad4 Wpad4) (pad5 Wpad5) (pad6 Wpad6) (pad7 Wpad7)
(pad8 Wpad8) (pad9 Wpad9) (padlO WpadlO) (padll Wpadll)
(padl2 Wpadl2) (padl3 Wpadl3) (padl4 Wpadl4)
(padl5 Wpadl5) (padl6 Wpadl6) (padl7 Wpadl7)
(padl8 Wpadl8) (padl9 Wpadl9)
))

(scpadsl_25 s.group
(parameters (fplan 'bottom) (number Snumber)

(padO SpadO) (padl Spadl) (pad2 Spad2) (pad3 Spad3)
(pad4 Spad4) (pad5 Spad5) (pad6 Spad6) (pad7 Spad7)
(pad8 Spad8) (pad9 Spad9) (padlO SpadlO) (padll Spadl1)
(padl2 Spadl2) (padl3 Spadl3) (padl4 Spadl4) (padl5 Spadl5)
))

)

(net datainporte 16 ((LGR3 DATAINPORT 0) (e.group DATAINPORT 0)))
(net dataoutporte 16 ((LGR3 DATAOUTPORT 0) (e.group DATAOUTPORT 0)))
(net datainports 4 ((LGR3 DATAINPORT 16) (s.group DATAINPORT 16)))
(net dataoutports 4 ((LGR3 DATAOUTPORT 16) (s.group DATAOUTPORT 16)))
(net wrport ((LGR3 WRPORT)
(s.group EN 16) (e.group EN 0)
(s.group EN 17) (e.group EN 1)
(s.group EN 18) (e.group EN 2)
(s.group EN 19) (e.group EN 3)
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(e.group EN 4)
(e.group EN 5)
(e.group EN 6)
(e.group EN 7)

(e.group EN 8)
(e.group EN 9)
(e.group EN 10)
(e.group EN 11)
(e.group EN 12)
(e.group EN 13)
(e.group EN 14)
(e.group EN 15)))

(net rdstrb ((LGR3 READSTRB) (w.group READSTRB)))
(net writestrb ((LGR3 WRITESTRB) (w.group WRITESTRB)))
(net portaddress.w 1 ((LGR3 PORTADDRESS) (w.group PORTADDRESS)))
(net portaddress.s 3 ((LGR3 PORTADDRESS 1) (s.group PORTADDRESS 1)))
(net mcc ((LGR3 MCC) (w.group MCC)))
(net bpflag ((LGR3 BPFLAG) (w.group BPFLAG)))
(net clockin ((LGR3 CLOCKIN) (w.group CLOCKIN)))
(net eos ((LGR3 EOS) (s.group EOS)))
(net reset ((LGR3 RESET) (w.group RESET)))
(net testmodeinv ((LGR3 TESTMODEINV) (w.group TESTMODEINV)))
(net scanin ((LGR3 SCANIN) (w.group SCANIN)))
(net scanout ((LGR3 SCANOUT) (s.group SCANOUT)))
(net testclkl ((LGR3 TESTCLK1) (s.group TESTCLK1)))
(net testclk2 ((LGR3 TESTCLK2) (s.group TESTCLK2)))
(net extcond 1 ((LGR3 EXTCOND) (s.group EXTCOND)))

*************************************************************************

sdl file for assembling the core processor
*************************************************************************

(layout-generator Flint)
(parent-cell procH (parameters

; dummy parm for pad route

fplan

; AU

AUlwordsize

side.RAMIO

side.EABUSIN

side.EABUSOUT



side.IOPORT

side.PORTOUT

side.RBUS

; APU

side.addrsfield

side.EABUS

; PCU

num_of_blks

max.blk.size

num.of_cstore.mint

num_of.cstoreout

num.of_states

num_of.cfsm.mint

stack.depth

num_of_cond

; ext cond & apusign, ausign
num_of_loopslice

max_loop_size

detslice

max_sample_intvl

fsm-input-plane

fsm-output-plane

cstore-input-plane

cstore-output-plane

; RAM

ramwords

ram-address-plane

ram-bit-plane

set to zero - no stack

excluding eob and loop det

in terms of num of cycles

; LGU

nr.of.lgu.feedback

nr.of_lgu.out ; including feedbacks
nr_of_lgu_xin ; external inputs to lgu excl signs
nr_of_lgu_instr ; num of instr addr bit from cstore
nr_of_lgu_minterm

lgu-input-plane

lgu-output-plane))

(sub-cells
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(pcu-au DP
(parameters
(ramwords ramwords)

(nr.of.lgu.instr nr.
(AUlwordsize

(side.RAMIO

(side.EABUSIN

(side.EABUSOUT

(side.IOPORT

(side.PORTOUT

(side.RBUS

(num.of.blks

(max.blk.size

(num.of.cstore.mint

(num.of.cstoreout

(num.of.states

(num.of_cfsm.mint

(stack.depth
(num.of.cond

(num.of.loopslice
(max.loop.size
(detslice

(max.sample.intvl
(fsm-input-plane
(fsm-output-plane
(cstore-input-plane
(cstore-output-plane

of.lgu.instr)
AUlwordsize)

side.RAMIO)

side.EABUSIN)

side.EABUSOUT)

side.IOPORT)

side.PORTOUT)

side.RBUS)

num_of_blks)

max_blk_size)

num_of_cstore_mint)

num_of_cstoreout)

num_of.states)

num_of_cfsm.mint)

stack.depth)
num.of_cond)

num_of.loopslice)
max.loop.size)
detslice)

max.sample.intvl)
fsm-input-plane)
fsm-output-plane)
cstore-input-plane)
cstore-output-plane)))

(ram-apu LM
(parameters
(ramwords

(num.of.states
(max.blk.size

ramwords)

num.of.states)

max.blk.size)

(side.addrsfield

(side.EABUS
(AUlwordsize

(ram-address-plane
(ram-bit-plane
(nr.of.lgu.feedback

side.addrsfield)

side.EABUS)

AUlwordsize)

ram-address-plane)
ram-bit-plane)

nr.of.lgu.feedback)
(nr.of_lgu.xin nr.of_lgu.xin)
(nr_of_lgu_instr nr.of.lgu.instr)
(nr_of_lgu_out nr_of_lgu_out)
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(nr_of_lgu_minterm nr_of_lgu_minterm)
(lgu-input-plane lgu-input-plane)
(lgu-output-plane lgu-output-plane))))
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(net WRPORT ((parent WRPORT) (DP WRPORT)))
(net LOADXO ((DP LOADXO) (LM LOADXO)))

(net L0ADX1 ((DP L0ADX1) (LM L0ADX1)))

(net L0ADX2 ((DP L0ADX2) (LM L0ADX2)))

(net CONDLD ((DP CONDLD) (LM CONDLD)))
(net OENXO ((DP OENXO) (LM OENXO)))

(net OENXl ((DP OENXl) (LM OENXl)))
(net 0ENX2 ((DP 0ENX2) (LM 0ENX2)))

(net XBUSZERO ((DP XBUSZERO) (LM XBUSZERO)))
(net OENEALATCH ((DP OENEALATCH) (LM OENEALATCH)))
(net XIP ((DP XIP) (LM XIP)))

(net RAMBUS AUlwordsize ((DP RAMBUS) (LM RAMBUS)))
(net RBUS AUlwordsize ((parent RBUS) (DP RBUS)))
(net RDSTRB ((parent READSTRB) (DP RDSTRB)))
(net WRSTRB ((parent WRITESTRB) (DP WRSTRB)))
(net PORTADDRS 4 ((parent PORTADDRESSS) (DP PORTADDRS)))
(net INPORT AUlwordsize ((parent DATAINPORT) (DP INPORT)))
(net OUTPORT AUlwordsize ((parent DATAOUTPORT) (DP OUTPORT)))
(net EABUSl (- (integer-length (- ramwords 1)) 1) ((DP EABUSl) (LM EABUSl)))
(net EABUS3 1 ((LM EABUS3) (DP EABUS3)))
(net EOS ((parent EOS) (DP EOS)))
(net PGMSTATE (integer-length (- num.of.states l)) ((LM PGMSTATE) (DP
PGMSTATE)))

(net LGUINPUTS nr.of.lgu.xin ((parent EXT.LGUIN) (LM LGUINPUTS)))
(net EXTCOND (- num.of.cond 2) ((parent EXTCOND) (DP EXTCOND)))
(net APUSIGN ((DP APUSIGN) (LM APUSIGN)))
(net AUSIGN ((DP AUSIGN) (LM AUSIGN) ))

(net LGUINSTRADDR nr.of.lgu.instr ((DP LGUINSTRADDR) (LM LGUINSTRADDR)))
(net CC ((DP CC) (LM CC)))

(net RESET ((parent RESET) (DP RESET)))
(net INSTRADDRS (integer-length (- max.blk.size 1)) ((DP INSTRADDRS) (LM
INSTRADDRS)))

(net CSTOREADDRSFIELD (integer-length (- ramwords 1)) ((DP CSTOREADDRSFIELD)
(LM CSTOREADDRSFIELD)))

(net MCC ((parent MCC) (LM MCC)))
(net BPFLAG ((parent BPFLAG) (LM BPFLAG)))
(net MASTERCLOCK ((parent CLOCKIN) (LM MASTERCLOCK)))



(net TESTMODEINV ((parent TESTMODEINV) (LM TESTMODEINV)))
(net READ ((DP READ) (LM READ)))
(net WRITE ((DP WRITE) (LM WRITE)))
(net SCANIN ((parent SCANIN) (LM SCANIN)))
(net SCANLINK.l ((LM SCANOUT) (DP SCANIN)))
(net SCANOUT ((DP SCANOUT) (parent SCANOUT)))
(net PHI1 ((LM PHI1) (DP PHI1)))
(net PHI2 ((LM PHI2) (DP PHI2)))
(net TESTCLKl ((parent TESTCLKl) (DP TESTCLKl) (LM TESTCLKl)))
(net TESTCLK2 ((parent TESTCLK2) (DP TESTCLK2) (LM TESTCLK2)))
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**************************************************************************

sdl file for generating macrocell pcu-au
**************************************************************************

(layout-generator Flint)
(parent-cell pcu-au

(parameters num.of_blks
max.blk.size

num.of.cstore.mint

num_of_cstoreout

num_of_states

num_of_cfsm_mint

stack.depth ; set to zero - no stack

num.of.cond ; excluding eob and loop det
; ext cond & apusign, ausign

num.of.loopslice

max.loop.size

detslice

max.sample.intvl ; in terms of num of cycles
fsm-input-plane

fsm-output-plane

cstore-input-plane

cstore-output-plane

nr.of.lgu.instr

ramwords

AUlwordsize

side.RAMIO

side.EABUSIN

side.EABUSOUT

side.IOPORT



side.PORTOUT

side.RBUS))

(sub-cells

(pcuH PCUl
(parameters (num.

(max.blk.size

(num.of.cstore.mint

(num.of.cstoreout

(num.of.states

(num.of.cfsm_mint

(stack.depth
(num.of.cond

(num.of.loopslice
(max.loop.size
(detslice

(max.sample.intvl
(fsm-input-plane
(fsm-output-plane
(cstore-input-plane
(cstore-output-plane

(au AUl

(parameters (N
(side.RAMIO

(side.EABUSIN

(side.EABUSOUT

(side.IOPORT

(side.PORTOUT

(side.RBUS

of.blks

max.blk.size)

num_of.cstore.mint)

num_of_estoreout)

num.of.states)

num.of.cfsm.mint)

stack.depth)
num.of.cond)

num.of.loopslice)
max.loop.size) •
detslice)

max.sample.intvl)
fsm-input-plane)
fsm-output-plane)
cstore-input-plane)
cstore-output-plane)))

side.RAMIO)

side.EABUSIN)

side.EABUSOUT)

side.IOPORT)

side.PORTOUT)

side.RBUS))))

num_of.blks)

AUlwordsize)

(net WC ((PCUl CTLWORD 2) (AUl pWC)))
(net AIP ((PCUl CTLWORD 3) (AUl pAIP)))
(net NOSAT ((PCUl CTLWORD 4) (AUl pNOSAT)))
(net LDMOR ((PCUl CTLWORD 5) (AUl pLDMOR)))
(net LDRO ((PCUl CTLWORD 6) (AUl pLDRO)))
(net LDR1 ((PCUl CTLWORD 7) (AUl pLDRl)))
(net LDCOEF ((PCUl CTLWORD 8) (AUl pLDCOEF)))
(net XMITMOR ((PCUl CTLWORD 9) (AUl pXMITMOR)))
(net XMITACC ((PCUl CTLWORD 10) (AUl pXMITACC)))
(net SELMORIN ((PCUl CTLWORD 11) (AUl pSELMORIN)))
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(net ANDCOEF ((PCUl CTLWORD 12) (AUl pANDCOEF)))
(net COEFCOMP ((PCUl CTLWORD 13) (AUl pCOEFCOMP)))
(net NOABS ((PCUl CTLWORD 14) (AUl pNOABS)))
(net MINUS ((PCUl CTLWORD 15) (AUl pMINUS)))
(net SELBBUS ((PCUl CTLWORD 16) (AUl pSELBBUSIN)))
(net ZERO.BIN ((PCUl CTLWORD 17) (AUl pZERO.BIN)))
(net SO ((PCUl CTLWORD 18) (AUl pSO)))
(net SI ((PCUl CTLWORD 19) (AUl pSl)))
(net S2 ((PCUl CTLWORD 20) (AUl pS2)))
(net OENRO ((PCUl CTLWORD 21) (AUl pOENRO)))
(net 0ENR1 ((PCUl CTLWORD 22) (AUl pOENRl)))
(net ACC2REG ((PCUl CTLWORD 23) (AUl pACC2REG)))
(net SUMCOND ((PCUl CTLWORD 24) (AUl pSUMCOND)))
(net SHIFTCOEF ((PCUl CTLWORD 25) (AUl pSHIFTCOEF)))
(net pRDPORT ((PCUl CTLWORD 26) (AUl pRDPORT)))
(net pWRPORT ((PCUl CTLWORD 27) (AUl pWRPORT)))
(net WRPORT ((AUl WRPORT) (parent WRPORT)))
(net LOADXO ((PCUl CTLWORD 28) (parent LOADXO)))
(net L0ADX1 ((PCUl CTLWORD 29) (parent L0ADX1)))
(net L0ADX2 ((PCUl CTLWORD 30) (parent L0ADX2)))
(net CONDLD ((PCUl CTLWORD 31) (parent CONDLD)))
(net OENXO ((PCUl CTLWORD 32) (parent OENXO)))
(net OENXl ((PCUl CTLWORD 33) (parent OENXl)))
(net 0ENX2 ((PCUl CTLWORD 34) (parent 0ENX2)))
(net XBUSZERO ((PCUl CTLWORD 35) (parent XBUSZERO)))
(net EABUS2MBUS ((PCUl CTLWORD 36) (AUl pEABUS2MBUS)))
(net MBUS2EABUS ((PCUl CTLWORD 37) (AUl pMBUS2EABUS)))
(net OENEALATCH ((PCUl CTLWORD 38) (parent OENEALATCH)))
(net XIP ((PCUl CTLWORD 39) (parent XIP)))
(net MEMRD ((PCUl CTLWORD 46) (AUl pR)))
(net MEMWR ((PCUl CTLWORD 47) (AUl pW)))
(net RAMBUS AUlwordsize ((AUl RAMIO) (parent RAMBUS)))
(net RBUS AUlwordsize ((AUl RBUS) (parent RBUS)))
(net pRDSTRB ((PCUl CTLWORD 40) (AUl pRDSTRB)))
(net pWRSTRB ((PCUl CTLWORD 41) (AUl pWRSTRB)))
(net pPORTADDRS 4 ((PCUl CTLWORD 42) (AUl pPORTADDRESS)))
(net RDSTRB ((AUl RDSTRB) (parent RDSTRB)))
(net WRSTRB ((AUl WRSTRB) (parent WRSTRB)))
(net PORTADDRS 4 ((AUl PORTADDRESS) (parent PORTADDRS)))
(net INPORT AUlwordsize ((AUl IOPORT) (parent INPORT)))
(net OUTPORT AUlwordsize ((AUl PORTOUT) (parent OUTPORT)))
(net EABUSl (- (integer-length (- ramwords 1)) 1) ((AUl EABUSIN) (AUl
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EABUSOUT) (PCUl TIMERINBUS) (parent EABUSl)))
(net EABUS2 (- (integer-length (- max.sample.intvl 1)) (integer-length
(- ramwords 1))) ((AUl EABUSIN (integer-length (- ramwords l))) (PCUl
TIMERINBUS (integer-length (- ramwords l)))))
(net EABUS3 mergeNet
((parent EABUS3 0)
(AUl EABUSOUT (- (integer-length (- ramwords 1)) 1) (- AUlwordsize

1) 1)
(PCUl TIMERINBUS (- (integer-length (- ramwords 1)) l) (- (integer-length

(- ramwords 1)) 1))

(AUl EABUSIN (- (integer-length (- ramwords l)) 1) (- (integer-length
(- ramwords 1)) 1))))

(net EOS ((PCUl EOS) (parent EOS)))
(net PGMSTATE (integer-length (- num.of.states 1)) ((PCUl PGMSTATE) (parent
PGMSTATE)))

(net EXTCOND (- num.of.cond 2) ((PCUl CFSMCONDIN 2) (parent EXTCOND)))
(net APUSIGN ((PCUl CFSMCONDIN 0) (parent APUSIGN)))
(net AUSIGN ((PCUl CFSMCONDIN l) (AUl AUSIGN) (parent AUSIGN)))
(net LGUINSTRADDR nr.of.lgu.instr ((PCUl CTLWORD 48) (parent LGUINSTRADDR)))
(net CC ((AUl CC) (parent CC)))
(net RESET ((PCUl PCURESET) (parent RESET)))
(net INSTRADDRS (integer-length (- max.blk.size 1)) ((PCUl INSTRNUM) (parent
INSTRADDRS)))

(net CSTOREADDRSFIELD (integer-length (- ramwords 1)) ((PCUl CTLWORD (-
num_of.cstoreout 1) -1) (parent CSTOREADDRSFIELD)))
(net READ ((AUl READ) (parent READ)))
(net WRITE ((AUl WRITE) (parent WRITE)))
(net SCANIN ((PCUl PCUSCANIN) (parent SCANIN)))
(net SCANLINK.l ((PCUl PCUSCANOUT) (AUl SCANIN)))
(net SCANLINK.2 ((AUl SCANOUT) (parent SCANOUT)))
(net PHI1 ((AUl PHI1) (PCUl PHI1) (parent PHI1)))
(net PHI2 ((AUl PHI2) (PCUl PHI2) (parent PHI2)))
(net TESTCLKl ((AUl TPHI1) (PCUl TESTCL0CK1) (parent TESTCLKl)))
(net TESTCLK2 ((AUl TPHI2) (PCUl TESTCL0CK2) (parent TESTCLK2)))

***********************************************************************

sdl file for ram-apu macrocell
***********************************************************************

(layout-generator Flint)
(parent-cell ram-apu
(parameters ramwords
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ram-address-plane

ram-bit-plane
nr.of.lgu.feedback

nr.of_lgu.out ; including feedbacks
nr.of.lgu.xin ; external inputs to lgu excl signs.
nr.of.lgu.instr ; num of instr addr bit from cstore.
nr.of.lgu.minterm
lgu-input-plane

lgu-output-plane

side.addrsfield

side.EABUS

num.of.states

max.blk.size

AUlwordsize))

(sub-cells

(apu APU1
(parameters (side.addrsfield side.addrsfield)

(side.EABUS side.EABUS)
(N (integer-length
(- ramwords 1)))))

(ram3T RAMI

(parameters (width AUlwordsize)
(words ramwords)

(ram-address-plane ram-address-plane)
(ram-bit-plane ram-bit-plane)))

(fsm LGU

(parameters (inwidth (add nr.of.lgu.feedback 2 nr.of.lgu.xin
nr.of.lgu.instr))
; feedbacks + 2(au,apu sign) + xin + nr.of.lgu.instr
(outwidth nr_of_lgu_out)
(minterm nr_of_lgu.minterm)
(nr.of.feedback nr.of.lgu.feedback)
(input-plane lgu-input-plane)
(output-plane lgu-output-plane)))

(testmodule TESTLOGIC

(parameters (num.of.states num.of.states)

(max.blk.size max.blk.size))))
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(net LOADXO ((APUl pLOADXO) (parent LOADXO)))
(net L0ADX1 ((APUl pLOADXl) (parent L0ADX1)))
(net L0ADX2 ((APUl pL0ADX2) (parent L0ADX2)))
(net CONDLD ((APUl pCONDLD) (parent CONDLD)))
(net OENXO ((APUl pOENXO) (parent OENXO)))
(net OENXl ((APUl pOENXi) (parent OENXl)))
(net 0ENX2 ((APUl pOENX2) (parent 0ENX2)))
(net XBUSZERO ((APUl pXBUSZERO) (parent XBUSZERO)))
(net OENEALATCH ((APUl pOENEALATCH) (parent OENEALATCH)))
(net XIP ((APUl pXIP) (parent XIP)))
(net RAMBUS AUlwordsize ((RAMI RAMDATABUS) (parent RAMBUS)))
(net EABUSl (- (integer-length (- ramwords 1)) 1) ((APUl EADDRESS) (RAMI
RAMADDRESS)- (parent EABUSl)))

(net EABUS3 1 ((APUl EADDRESS (- (integer-length (- ramwords 1)) 1)) (RAMI
RAMADDRESS (- (integer-length (- ramwords 1)) 1)) (parent EABUS3)))
(net PGMSTATE (integer-length (- num.of.states 1)) ((TESTLOGIC STATEADDRS)
(parent PGMSTATE)))
(net LGUINPUTS nr.of.lgu.xin ((LGU IN) (parent LGUINPUTS)))
(net APUSIGN ((LGU IN nr.of.lgu.xin) (APUl APUSIGN) (parent APUSIGN)))
(net AUSIGN ((LGU IN (add nr.of.lgu.xin l)) (parent AUSIGN)))
(net LGUINSTRADDR nr.of.lgu.instr ((LGU IN (add nr.of.lgu.xin 2)) (parent
LGUINSTRADDR)))

(net CC ((APUl CC) (LGU OUT 0) (parent CC)))
(net INSTRADDRS (integer-length (- max.blk.size 1)) ((TESTLOGIC INSTRADDRS)
(parent INSTRADDRS)))
(net CSTOREADDRSFIELD (integer-length (- ramwords 1)) ((APUl ADDRSBUS
(- (integer-length (- ramwords 1)) 1) -1) (parent CSTOREADDRSFIELD)))
(net MCC ((TESTLOGIC MCC) (parent MCC)))
(net BPFLAG ((TESTLOGIC BPFLAG) (parent BPFLAG)))
(net MASTERCLOCK ((TESTLOGIC EXTMSTRCLK) (parent MASTERCLOCK)))
(net TESTMODEINV ((TESTLOGIC TESTMODEINV) (parent TESTMODEINV)))
(net READ ((RAMI READ) (parent READ)))
(net WRITE ((RAMI WRITE) (parent WRITE)))
(net SCANIN ((TESTLOGIC SCANIN) (parent SCANIN)))
(net SCANLINK.l ((TESTLOGIC SCANOUT) (APUl SCANIN)))
(net SCANLINK.2 ((APUl SCANOUT) (LGU SCANIN)))

(net SCANOUT ((LGU SCANOUT) (parent SCANOUT)))
(net PHI1 ((TESTLOGIC PHI1) (APUl PHIl) (RAMI PHIl) (LGU PHIl) (parent
PHI1)))

(net PHI2 ((TESTLOGIC PHI2) (APUl PHI2) (RAMI PHI2) (LGU PHI2) (parent
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PHI2)))

(net TESTCLKl ((APUl TPHIl) (TESTLOGIC SHIFTIN) (LGU SHIFTIN) (parent
TESTCLKl)))

(net TESTCLK2 ((APUl TPHI2) (TESTLOGIC SHIFTOUT) (LGU SHIFTOUT) (parent
TESTCLK2)))



Appendix F

Assembly Program for the Robot
Controller

Following is the assembly language program for implementing the robot
control algorithm on the custom processor.

Lagerlll assemble language program to implement a two axes adaptive
robot controller. It includes a PID controller and and adaptive control
algorithm.

The PI controller can operate at a slower sampling rate than the D and
the adaptive controller. The I-controller can be optionally skipped.
-Khalid Azim 6-24-87

(ram

(const 21) ; kp2(0), kpl(l), kv2(2), kvl(3), ki2(4), kil(5),

; kfl(6), kf2(7), kmll(8), kml2(9), km21(10),km22(ll),

; mhll[l](12), mhl2[l](13), mh21[l] (14)

; mh22[l](l5), DBAND(16), FRth(l7),

; T1(18), L(19) PERI0D(20)

(dataptr 22) ; xpl(O), xp2(l)

; (refmodO)
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; xvl(2), xvhl(3), evl(4), ul(5),
; eul(6), u[0](7)
; eul is actually not used

(refmodl)

xv2(8), xvh2(9), ev2(10), u2(ll),
eu2(12), u[0](l3)
eu2 is actually not used

(mhptr)
mhll[0](14), mhl2[0](15),
mh21[0](16), mh22[0](17)

ql(l8) q2(l9)
fl(20) f2(21)

epl

ep2

ulTl

u2Tl

(wl 2)

(w2 2)

(temp 4) ; extra locations for unforeseen needs
)

(dfsm

(DBANDTEST (cc (not AUISIGN))) ; if DBAND>eul

(XVNEG (cc AUISIGN))

(XVPOS (cc (not cc)))

(UPOSFLAG (PFLAG AUISIGN))

(UNEG (cc AUISIGN))

(UPOS (cc PFLAG))

)

(cfsm

(INIT 0 () (goto RDCONSTS))
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(RDCONSTS 1 (not IctestO) (goto RDCONSTS))
(RDCONSTS 1 IctestO (goto SETIMER))
(SETIMER 2 () (goto PCTL1))

start outer loop - P & I control

(PCTL1 3 () (goto MULT1))
(MULT1 5 (not Ictestl) (goto MULT1))
(MULT1 5 Ictestl (goto PCTL2))
(PCTL2 4 () (goto MULT20))
(MULT20 5 (not Ictestl) (goto MULT20))
(MULT20 5 () (goto PCTL3))
(PCTL3 6 Iflag (goto MULT2))
(PCTL3 6 (not Iflag) (goto ADTRIG))
(MULT2 5 (not Ictestl) (goto MULT2))
(MULT2 5 Ictestl (goto ICTL1))
(ICTL1 7 () (goto MULT3))
(MULT3 5 (not Ictestl) (goto MULT3))
(MULT3 5 Ictestl (goto ICTL2))
(ICTL2 8 () (goto ADTRIG))

; start inner loop
; D control

(ADTRIG 9 () (goto DCTL))
(DCTL 10 () (goto MULT4))
(MULT4 5 (not Ictestl) (goto MULT4))
(MULT4 5 Ictestl (goto REFMDL1))
(REFMDL1 11 () (goto MULT5))
(MULT5 5 (not Ictestl) (goto MULT5))
(MULT5 5 Ictestl (goto REFMDL2))
(REFMDL2 12 (not APUISIGN) (goto DCTL))
(REFMDL2 12 APUISIGN (goto INRTSETUPA))

Adaptive control

(INRTSETUPA 13 () (goto MULT6))
(MULT6 5 (not Ictestl) (goto MULT6))
(MULT6 5 Ictestl (goto INRTEST1A))
(INRTEST1A 14 () (goto MULT7))
(MULT7 5 (not Ictestl) (goto MULT7))
(MULT7 5 Ictestl (goto INRTEST2A))
(INRTEST2A 15 () (goto INRTSETUPB))
(INRTSETUPB 16 () (goto MULT8))
(MULT8 5 (not Ictestl) (goto MULT8))



(MULT8 5 Ictestl (goto INRTEST1B))
(INRTEST1B 14 () (goto MULT9))
(MULT9 5 (not Ictestl) (goto MULT9))
(MULT9 5 Ictestl (goto INRTEST2B))
(INRTEST2B IS () (goto INRTSETUPC))
(INRTSETUPC 17 () (goto MULT10))
(MULT10 5 (not Ictestl) (goto MULT10))
(MULT10 5 Ictestl (goto INRTEST1C))
(INRTEST1C 14 () (goto MULT11))
(MULT11 5 (not Ictestl) (goto MULTll))
(MULT11 5 Ictestl (goto INRTEST2C))
(INRTEST2C 15 () (goto INRTSETUPD))
(INRTSETUPD 18 () (goto MULT12))
(MULT12 5 (not Ictestl) (goto MULT12))
(MULT12 5 Ictestl (goto INRTEST1D))
(INRTEST1D 14 () (goto MULT13))
(MULT13 5 (not Ictestl) (goto MULT13))
(MULT13 5 Ictestl (goto INRTEST2D))
(INRTEST2D 15 () (goto FRICESTl))

Friction compensation

(FRICESTl 19 () (goto MULT14))
(MULT14 5 (not Ictestl) (goto MULT14))
(MULT14 5 Ictestl (goto FRICEST2))
(FRICEST2 20 () (goto MULT15))
(MULT15 5 (not Ictestl) (goto MULT15))
(MULT15 5 Ictestl (goto FRICCOMPl))
(FRICCOMPl 21 (not AUISIGN) (goto FRICC0MP2A))
(FRICCOMPl 21 AUISIGN (goto FRICC0MP3A))
(FRICC0MP2A 22 0 (goto FRICC0MP4))
(FRICC0MP3A 23 () (goto FRICC0MP4))
(FRICC0MP4 24 (not AUISIGN) (goto FRICC0MP2B))
(FRICC0MP4 24 AUISIGN (goto FRICC0MP3B))
(FRICC0MP2B 22 () (goto T0RQSETUP1))
(FRICC0MP3B 23 () (goto T0RQSETUP1))

Torque computation

(T0RQSETUP1 25 0 (goto T0RQC0MP1A))
(T0RQC0MP1A 26 () (goto MULT16))
(MULT16 5 (not Ictestl) (goto MULT16))
(MULT16 5 Ictestl (goto T0RQSETUP2))
(T0RQSETUP2 27 () (goto T0RQC0MP1B))
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(T0RQC0MP1B 26 () (goto MULT17))
(MULT17 5 (not Ictestl) (goto MULT17))
(MULT17 5 Ictestl (goto T0RQC0MP2))
(T0RQC0MP2 28 () (goto T0RQC0MP1C))
(T0RQC0MP1C 26 () (goto MULT18))
(MULT18 5 (not Ictestl) (goto MULT18))
(MULT18 5 Ictestl (goto T0RQSETUP3))
(T0RQSETUP3 29 () (goto T0RQC0MP1D))
(TORqCOMPID 26 () (goto MULT19))
(MULT19 5 (not Ictestl) (goto MULT19))
(MULT19 5 Ictestl (goto T0RQC0MP3))
(T0RQC0MP3 30 () (goto OUTPUTSETUP))

; Output states, delay, idle, read position

(OUTPUTSETUP 31 0 (goto OUTPUT))
(OUTPUT 32 (not APUISIGN) (goto OUTPUT))
(OUTPUT 32 APUISIGN (goto DELAY))
(DELAY 33 () (goto IDLE))
(IDLE 35 (not EOS) (goto IDLE))
(IDLE 35 EOS (goto RDVEL))
(RDVEL 34 (not APUISIGN) (goto ADTRIG))
(RDVEL 34 APUISIGN (goto PCTLl))
)

(loop.test 21 18)

(dp.word.size 20)

(reset_timer INIT RDCONSTS SETIMER)

(max.sample.intvl 2048)

(rom

; initialize states

(blockO

((acc=0))

((mbus=acc) (mem=mbus) (addr epl) (xbus=0) (eabus=sum)) ; epl=0
((mbus=acc) (mem=mbus) (addr ep2) (xbus=0) (eabus=sum)) ; ep2=0
((mbus=acc) (mem=mbus) (addr dataptr) (offset 3)

(xbus=0) (eabus=sum)) ; xvhl=0
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((mbus=acc) (mem=mbus) (addr dataptr) (offset 9)
(xbus=0) (eabus=sum)) ; xvh2=0

((mbus=acc) (mem=mbus) (addr dataptr) (offset 20)
(xbus=0) (eabusssum)) ; fl=0

((mbus=acc) (mem=mbus) (addr dataptr) (offset 21)
(xbus=0) (eabus=sum)) ; f2=0

((mbus=acc) (mem=mbus) (addr ulTl) (xbus=0) (eabus=sum)) ;ul[l]=0
((mbus«acc) (mem»mbus) (addr u2Tl) (xbus=0) (eabus=sum)) ;u2[l]=0
((mbus=acc) (mem=mbus) (addr dataptr) (offset 2)

(xbus=0) (eabus«8um)) ; xvl=0
((mbus=acc) (mem=rabus) (addr dataptr) (offset 8)

(xbus=0) (eabusssum)) ; xv2=0
((mbus=ace) (mem=mbus) (addr wl) (offset 1) (xbus=0)
(eabus=sum)) ; w(wl[l])=0

((mbus=acc) (mem=mbus) (addr w2) (offset 1) (xbus=0)
(eabus=sum) ; w(w2[l])=0

(ioport=extport 0) (rbus=ioport) (r*=rbus 0)) ;r0=in() - input
1st const.

((addr const) (offset -1) (xbus=0) (eabus=sum) (x*=eabus 0))
; xO=const.base_addr-l

)

routine to input constants. 21 iterations required.
During the last iteration dummy data would be input,
needed to store the last constant.

Iteration counting is done by the loop counter.
Addressing is done by xO.

(blockl

((ioport=extport 0) (rbus=ioport) (r*=rbus 0) ; r0=in()
(mbus=r* 0) (mem=mbus) ; w(ea)=r0
(xbus=x* 0) (addr 1) (eabus=sum) (x*=eabus 0))

; xO = ea = (xO + 1)

)

; Set the sample interval timer

; Write zero to the D/A ports to remove any torque.
; Reset quad decoder counter.

(block2

((mor^mem) (addr const) (offset 20) (xbus=0) (eabus=sum)) ; r(ea)

[period]
((mbus=mor) (eabus=mbus) (timereg=eabus) ; set timer & rst quad decoder
(acc=0)) ; same ctl sig for timer & quad reset.
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((mbus=acc) (ioport=mbus) (extport=ioport 3)); write zero to D/A

((mbus=acc) (ioport=mbus) (extport=ioport 4)); write zero to D/A
arml

arm2

)

P-control (i)

Read in position and ref data.
Compute position error.

(block3

((rbus=ioport) (ioport=extport 5) (r*=rbus 0))
((rbus=ioport) (ioport=extport 7) (r*=rbus 0)
(mbus=r* 0) (mor^mbus) ; mor s posl
(mem=mbus) (addr dataptr) (offset 0) (xbus=0)

((abus=-mor) (bbus=mbus) (mbus=r* 0) (acc=sum)

(mor=mem) (addr const) (offset 1) (xbus=0) (eabus=sum)) ; r(ea=kpl)=>mor
((mbus=mor) (rcoef=mbus)) ; rcoef=kpl
((shrcoef) (abus=coef.mor) (acc=abus) (nosat) ; kpl*epl [lsb multiply]
(mbus=acc) (mem=mbus) (addr epl) (xbus=0) (eabus=sum)) ; w(epl)

)

; read quadl [posl]
read ref1

(eabus=sum)) ; w(xpl)
acc=ref1-posl

; P-control (ii)

(block4

((shrcoef) (abus=coef.-mor) (bbus=acc>* 1) (acc=sum)) ; msb mult kpl*epl
((bbus=acc<* 1) (acc=bbus)) ; left shift [scale by 64]
((bbus=acc<* 1) (acc=bbus)) ; left shift
((bbus=acc<* 1) (acc=bbus) ; left shift
(mor=mem) (addr const) (offset 0) (xbus=0) (eabus=sum)) ; r(ea=kp2)=>mor
((bbus=acc<* 1) (acc=bbus) ; left shift
(mbus=mor) (rcoef=mbus)) ; rcoef=kp2

((bbus=acc<* 1) (acc=bbus) ; left shift
(rbus=ioport) (ioport=extport 6) (r*=rbus 0)) ; read quad2 [pos2]

((bbus=acc<* 1) (acc=bbus) ; left shift
(rbus=ioport) (ioport=extport 8) (r*=rbus 0) ; read ref2
(mbus=r* 0) (mor=mbus) ; mor = pos2
(mem=mbus) (addr dataptr) (offset 1) (xbus=0) (eabus=sum)) ; w(xp2)

((mbus=acc) (mem=mbus) (addr dataptr) (offset 5)
(xbus=0) (eabus=sum)) ; w(ul)

((abus=-mor) (bbus=mbus) (mbus=r* 0) (acc=sum)) ; acc-ref2-pos2
((shrcoef) (abus=coef.mor) (acc=abus) (nosat) ; lsb multiply
(mbus=acc) (mem=mbus) (addr ep2) (xbus=0) (eabus=sum)) ; w(ep2)

)
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P-control (iii)

Scale up kp2*ep2 and store in uv2
Also perform kil*epl lsb.

This result is not used if I-operation is not selected
(block6

((shrcoef) (abus=coef.-mor) (bbus=acc>* 1) (acc=sum)) ; msb mult kp2*ep2
((bbus=acc<* 1) (acc=bbus)

64]

left shift [scale by

(mor-mem) (addr const) (offset 19) (xbus=0)
((bbus=acc<* 1) (acc=bbus)

(mbus=mor) (eabus=mbus) (x*=eabus 2))
loop iter.

((bbus=acc<* 1) (acc=bbus)) ; left shift
((bbus=acc<* 1) (acc=bbus) ; left shift
(mor=mem) (addr const) (offset 5) (xbus=0) (eabus=sum)) ; rd(kil)

((bbus=acc<* 1) (acc=bbus) ; left shift
(mbus=mor) (rcoef=mbus)) ; rcoef=mor [kil]

((bbus=acc<* 1) (acc=bbus) ; left shift
(mor-mem) (addr epl) (xbus=0) (eabus=sum)) ; rd(epl)
((mbus=acc) (mem=mbus) (addr dataptr) (offset 11)

(xbus=0) (eabus=sum) ; w(uv2)
(abusscoef.mor) (acc=abus) (nosat)) ; acc=coef.mor

)

(eabus=sum))

left shift

x2=mem [L],for inner

rd(L)

[lsb]

; I-control section (i)

(block7

((shrcoef) (abus=coef.-mor) (bbus=acc>* 1) (acc=sum)
+ acc>l

(mor=mem) (addr wl) (offset 1) (xbus=0) (eabus=sum))

((abus=mor) (bbus=acc>* 0) (acc=sum) ;
wl[l]

(mor=mem) (addr dataptr) (offset 5) (xbus=0) (eabus-sum))
((abus^mor) (bbus=acc>* 0) (acc=sum) ; acc=ul+wl[0]
(mbus=acc) (memsmbus) (addr wl) (offset 0) (xbuss0) (eabus-sum))

w(wl[0])

((mor-mem) (addr const) (offset 4) (xbus=0) (eabus=sum) ; rd(ki2)

(rbus=acc) (r*=rbus 1)) ; rl=ul, store later,
((mbus^mor) (rcoef=mbus) ; rcoef=mor [ki2]

(mor=mem) (addr ep2) (xbus=0) (eabus=sum)) ; rd(ep2)
((shrcoef) (abus=coef.mor) (acc=abus) (nosat) ; acc=coef.mor (lsb)
(mbus=r* l) (mem=mbus) (addr dataptr) (offset 5)

acc=coef.-mor

; rd(wlCl])

; acc=kil*epl+

rd(ul)
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(xbus=0) (eabus=sum)) ; w(ul)

)

; I-control section (ii)

(block8

((shrcoef) (abus=coef.-mor) (bbus=acc>* 1) (acc=sum) ; acc=coef.-mor

+ acc>l

(mor=mem) (addr w2) (offset 1) (xbus=0) (eabus=sum)) ; rd(w2[l])

((abus=mor) (bbus=acc>* 0) (acc=sum) ; acc=ki2*ep2+w2[l]
(mor=mem) (addr dataptr) (offset 11) (xbus=0) (eabus=sum)) ; rd(uv2)
((abus=mor) (bbus=acc>* 0) (acc=sum) ; acc=uv2+w2[0]

(mbus=acc) (mem=mbus) (addr w2) (offset 0)

(xbus=0) (eabus=sum)) ; w(w2[0])

((mbus=acc) (mem=mbus) (addr dataptr) (offset 11)
(xbus=0) (eabus=sum)) ; w(uv2)

)

; A/D-Trig : START OF INNER LOOP
; X2 is used for inner loop iteration count - active throughout the inner
loop

; Output A/D trigger
(block9

((addr 1) (xbus=0) (eabus=sum) (areg=eabus)) ; addr=A/D conv. trig.
((mbus=areg) (ioport-mbus) (extport=ioport 10) ; wr A/D trig to portlO.
(addr dataptr) (offset 2) (xbus=0) (eabus=sum)

(x*=eabus 0)) ; x0=refmod0

((addr 1) (xbus=0) (eabus=sum) (x*=eabus 1)) ; xl=l (for two iters.
; of next block)

)

; D-control

(blocklO

((mor=mem) (addr 3) (offset 0) (xbus=x* 0) (eabus=sum)) ; rd(ul)
((abus=mor) (acc=abus) ; acc=ul
(mor=mem) (addr 0) (xbus=x* 0) (eabus=sum)) ; rd(xvl)

((abus=-mor) (bbus=acc>* 0) (acc=sum) ; acc=ul-xvl
[eul]

(mor=mem) (addr const) (offset 2) (xbus=x* 1) (eabus=sum)); rd(kvl)
; const + "kv2" + (xl»l) - address(kvl)

((mbus-mor) (rcoef=mbus)) ; rcoef=kvl
((mbus-acc) (mor=mbus)) ; mor=eul
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((shrcoef) (abus=coef.mor) (acc=abus) (nosat)) ; acc=coef.mor
(lsb)

)

Ref-model (i)

compute u[0] = kvl*eul msb
compute evl, compare with DBAND

compute u[0]*Tl for xvhl
(blockil

((shrcoef) (abus=coef.-mor) (bbus=acc>* 1) (acc=sum)) ; acc=coef.-mor
acc>l

((mem=mbus) (mbus=acc) (addr 5) (xbus=x* 0)) ; w(u[0])
((mor=mem) (addr 0) (xbus=x* 0) (eabus=sum) ; rd(xvl) (addr=x0)
(acc=0)) ; acc=0

((mor=mem) (addr 1) (xbus=x* 0) (eabus=sum) ; rd(xvhl)
(abus=-mor) (acc=abus) ; acc=-mor [-xvl]
(rbus=acc) (r*=rbus 0)) ; rO^acc^O]

((abus=mor) (bbus=acc<* 1) (acc=sum) ; acc=xvhl-2*xvi [evl]

(mor=mem) (addr const) (offset 16) (xbus=0) (eabus=sum)) ; rd(DBAND)
((mbus=acc) (memsmbus) (addr 2) (xbus=x* 0) (eabus=sum) ; w(evl)

(mor=mbus) ; mor^acc [evl]

(abus=mor) (acc-sum)) ; acc=mor (DBAND)

((abus=-absmor) (bbus=acc>* 0) (acc=sum) ; acc=DBAND-IevlI
(mor-mem) (addr const) (offset 18) (xbus=0) (eabus=sum)) ; rd(Tl)

( DBANDTEST ; set dfsm
(mbus=mor) (rcoef=mbus) ; rcoef=T1
(mor=mem) (addr 5) (xbus=x* 0) (eabus=sum)) ; rd(u[0])

((mbus=r* 0) (mem=mbus) (mcondload) (addr 2) (xbus=x* 0) ; wc(evl=0)

(shrcoef) (abus=coef.mor) (acc=abus) (nosat)) ; u[0]*Tl lsb

)

Ref-model (ii).

Compute xvhl.

This is the last block of the loop containing A/D-Trig,D-control,
Ref-model(i), and Ref-model(ii).

Update pointer xO for the second loop iteration.

Decrement loop counter xl

(blockl2

((shrcoef) (abus=coef.-mor) (bbus=acc>* 1) (acc=sum) ; msb mult fo

Tl*ul[0]

(mor=mem) (addr 0) (xbus=x* 0) (eabus=sum)) ; rd(xvl)
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((abus=mor) (acc=abus) ; acc=xvl

(mbus=acc) (mor=mbus) ; mor=Tl*u[0]
(xbus=x* 0) (addr 6) (eabus=sum) (x*=eabus 0)) ; x0=x0+6,update ptr.
((abus=mor) (bbus=acc<* 1) (acc=sum) ; acc=Tl*u+2*xvl [xvhl]
(xbus=x* 1) (addr -i) (eabus=sum) (x*=eabus i)) ; xl=xl-l, loop cnt
((mbus=acc) (mem=mbus) (addr -5) (xbus=x* 0)) ; w(xvhl)

)

Inertia-est setup (A)
Set up for call to inertia est subroutine to compute nihil [0]
mhll[l]=>r0, u[l]=>rl, kmll=>rcoef, evl=>mor

(blockl3

((mor=mem) (addr const) (offset 12) (xbus=0) (eabus=sum)) ;rd(mhll[l])
((abus=mor) (acc=abus) ; acc=mhll[l]
(mor-mem) (addr ulTl) (xbus=0) (eabus=sum)) ; rd(u[l])

((mor=mem) (addr const) (offset 8) (xbus=0) (eabus=sum) ; rd(kmll)
(rbus=acc) (r*=rbus 0) ; r0=mhll[l]
(abus=mor) (acc=abus)) ; acc=u[l]

((mor=mem) (addr dataptr) (offset 4) (xbus=0) (eabus=sum) ;rd(evl)
(rbus=acc) (r*=rbus 1) ; rl=u[l]
(mbus=mor) (rcoef=mbus)) ; rcoef=kmll

((shrcoef) (abus=coef.mor) (acc=abus) (nosat)) ; kmll*evl [lsb
mult]

)

Inertia-est setup(B)
Set up for call to inertia est subroutine to compute mhl2[0]
mhl2[l]=>r0, u[l](2nd joint) =>rl, kml2=>rcoef, evl=>mor

(blockl6

((mbus=acc) (mem=mbus) (addr dataptr) (offset 14) (xbus=0) (eabus=sum))
; store acc=s>mhll[0]

((mor=mem) (addr const) (offset 13) (xbus=0) (eabus=sum)) ;rd(mhl2[l])
((abus=mor) (acc=abus) ; acc=mhl2[l]
(mor=mem) (addr u2Tl) (xbus=0) (eabus=sum)) ; rd(u[l]) - 2nd

joint

((mor=mem) (addr const) (offset 9) (xbus=0) (eabus=sum) ; rd(kml2)
(rbus=acc) (r*=rbus 0) ; r0=mhl2[l]
(abus=mor) (acc=abus)) ; acc=u[l] (2nd

joint)

((mor=mem) (addr dataptr) (offset 4) (xbus=0) (eabus=sum) ;rd(evl)
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(rbus=acc) (r*=rbus 1) ; rl=u[l] (2nd
joint)

(mbus=mor) (rcoef=mbus)) ; rcoef=kml2
((shrcoef) (abus=coef.mor) (acc=abus) (nosat)) ; kml2*evl [lsb

mult]

)

Inertia-est setup(C)
Set up for call to inertia est subroutine to compute mh2l[0]
mh21[l]=>r0, ul[l] (2nd joint)=>rl, km21=>rcoef, ev2=>mor

(blockl7

((mbus=acc) (mem=mbus) (addr dataptr) (offset 15) (xbus=0) (eabus=sum))
; store acc=>mhl2[0]

((mor-mem) (addr const) (offset 14) (xbus=0) (eabus=sum)) ;rd(mh2l[l])
((abus=mor) (acc-abus) ; acc=mh2l[l]
(mor=mem) (addr ulTl) (xbus=0) (eabus=sum)) ; rd(u[l]) (1st

joint)
((mor=mem) (addr const) (offset 10) (xbus=0) (eabus=sum) ; rd(km2l)
(rbus=acc) (r*=rbus 0) ; r0smh21[l]
(abus=mor) (acc=abus)) ; acc=u[l] 1st

joint

((mor=mem) (addr dataptr) (offset 10) (xbus=0) (eabus=sum) ;rd(ev2)
(rbus=acc) (r*=rbus 1) ; rl=u[l] 1st

joint

(mbus=mor) (rcoef=mbus)) ; rcoef=km21
((shrcoef) (abus=coef.mor) (acc=abus) (nosat)) ; km21*ev2 [lsb

mult]

)

Inertia-est setup(D)
Set up for call to inertia est subroutine to compute mh22[0]
mh22[l]=>r0, u[l] 2nd joint =>rl, km22=>rcoef, ev2=>mor

(blockl8

((mbus=acc) (mem=mbus) (addr dataptr) (offset 16) (xbus=0) (eabus=sum))
; store acc=>mh2l[0]

((mor=mem) (addr const) (offset 15) (xbus=0) (eabus=sum)) ;rd(mh22[l])
((abus=mor) (acc=abus) ; acc=mh22[l]

(mor=mem) (addr u2Tl) (xbus=0) (eabus=sum)) ; rd(u[l]) 2nd

joint
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((mor=mem) (addr const) (offset 11) (xbus=0) (eabus=sum) ; rd(km22)
(rbus=acc) (r*=rbus 0) ; r0=mh22[l]
(abus=mor) (acc=abus)) ; accsu[l] 2nd

joint

((mor=mem) (addr dataptr) (offset 10) (xbus=0) (eabus^sum) ;rd(ev2)
(rbus=acc) (r*=rbus 1) ; rl=u[l] 2nd

joint

(mbus=mor) (rcoef=mbus)) ; rcoef=km22
((shrcoef) (abus=coef.mor) (acc=abus) (nosat)) ; km22*ev2 [lsb

mult]

)

Inertia-est (i)

Complete km*em and setup to do (km*em) * u

(blockl4

((shrcoef) (abus=coef.-mor) (bbus=acc>* 1) (acc=sum) ; km*em msb
(mbus=r* 1) (rcoef=mbus)) ; rcoef=u
((mbus=acc) (mor=mbus)) ; mor=(km*em)
((shrcoef) (abus=coef.mor) (acc=abus) (nosat)) ; (km*em)*u [lsb

mult]

)

Inertia-est (ii)

Compute mhij[0]

(blockl5

((shrcoef) (abus=coef.-mor) (bbus=acc>* 1) (acc=sum)) ; (km*em)*u msb
((mbus=r* 0) (mor=mbus)) ; mor=r0 [mhij[l]]
((abus=mor) (bbus=acc>* 0) (acc=sum)) ; mhij[0]
)

Friction-est (i)

compute kfl*evl

(blockl9

((mor=mem) (addr const) (offset 6) (xbus=0) (eabus=sum)) ; rd(kfl)
((mbus=acc) (mem=mbus) (addr dataptr) (offset 17) (xbus=0) (eabus=sum))

w(mh22[0]), left over from inertia comp.



((mor=mem) (addr dataptr) (offset 4) (xbus=0) (eabus=sum)
(mbus=mor) (rcoef=mbus)) ; rcoef=kfl

((shrcoef) (abus=coef.-mor) (acc=abus) (nosat)) ; kfl*evl
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rd(evl)

Friction-est (ii)

(block20

((shrcoef) (abus=coef.mor) (acc=abus) (nosat) ; kfl*evl msb
(mor=mem) (addr const) (offset 7) (xbus=0) (eabus=sum)) ; rd(kf2)

((rbus=acc) (r*=rbus 0) ; r0=kfl.evl
(mbus=acc) (rcoef=mbus) ; rcoef=kf2

(mor=mem) (addr const) (offset 10) (xbus=0) (eabus=sum)) ; rd(ev2)
((shrcoef) (abus=coef.-mor) (acc=abus) (nosat)) ; kf2*ev2

)

Friction-compensation (i)
compute |xvlI-Frth

(block21

((mor=mem) (addr const) (offset 17) (xbus=0) (eabus=sum) ; rd(FRth)
(rbus=acc) (r*=rbus 1)) ; rl=kf2.ev2
((mor=mem) (addr dataptr) (offset 2) (xbus=0) (eabus=sum) ; rd(xvl)
(abus=-mor) (acc=abus)) ; acc=-FRth

((abus=absmor) (bbus=acc>* 0) (acc=sum) ; acc=IxvlI-FRth
test sign in fsm for branch

(addr dataptr) (offset 7) (xbus=0) (eabus=sum) (x*=eabus 0))
x0=refmod0, for block23

((abus=mor) (acc=abus) ; acc«xvl reqd by blk22
(addr dataptr) (offset 20) (xbus=0) (eabus=sum) (x*=eabus l))

)

xl=fl, for block23

Friction-compensation (ii)
This block is executed on the results of block21 (block24 for joint2)

ausign.

>

(block22

( XVNEG
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(mor=mem) (addr 0) (xbus=x* 1) (eabus=sum)) ; rd(fl)
((abus=mor) (acc=abus)

(mbus=r* 0) (mor=mbus)) ; mor=r0 [kf.evl]
((abus=-mor) (bbus=acc>* 0) (acc=sum) (acondload)) ;acc=f1-kf.evl

(condacc)

( XVPOS )

((abus-mor) (bbus-acc>* 0) (acc=sum) (acondload)) ;acc=fl+kf.evl
(condacc)

((mbus=acc) (mem=mbus) (addr 0) (xbus=x* 1) (eabus=sum)) ; w(fl)
)

Friction-compensation (iii)

This block is executed on the results of block21 (block24 for joint2)
ansign.

y

(block23

((mor=mem) (addr 0) (xbus=x* 0) (eabus=sum)) ; rd(ul[0]) x0=refmod0+5
<- ul

((abus=-mor) (acc=abus)) ; acc=-ul
( UP0SFLAG)

((abus=mor) (acc=abus)) ; acc=ul
( UNEG

(mor=mem) (addr 0) (xbus=x* 1) (eabus=sum)) ; rd(f1), xl=fl
((abus=mor) (acc=abus) ; acc=fl
(mbus=r* 0) (mor=mbus)) ; mor=r0 [kfl.evl]
((abus=-mor) (bbus=acc>* 0) (acc«sum) (acondload)) ;acc=f1-kf.evl (condacc
( UP0S)

((abus=mor) (bbus=acc>* 0) (acc=sum) (acondload)) ;acc=f1+kf.evl (condacc)
((mbus=acc) (mem=mbus) (addr 0) (xbus=x* 1) (eabus=sum)) ; w(fl)

)

Friction-compensation (iv)
compute |xv2I-Frth
branch based on the result

kfev2=>r0, addr(u2[0])=>x0, addr(f2)=>xl,preparation for block23 to
do joint2

; acc=xv2 for block22

y

(block24



((mor=mem) (addr const) (offset 17) (xbus=0) (eabus=sum)
(mbus=r* 1) (bbus=mbus) (acc=sum)) ; acc=rl,[kfev2]

((mor=mem) (addr dataptr) (offset 8) (xbus=0) (eabus=sum)
(abus=-mor) (acc=abus)

(rbus=acc) (r*=rbus 0)) ; r0=acc [kfev2] for blk23
((abus=absmor) (bbus=acc>* 0) (acc=sum) ; acc=Ixv2I-FRth

; test sign in fsm for branch

(addr dataptr) (offset 13) (xbus=0) (eabus=sum) (x*=eabus 0))
x0=refmodi, for block23

((abus=mor) (acc-abus)
(addr dataptr) (offset 21) (xbus=0)

xl=f2 for block23

)
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rd(FRth)

; rd(xv2)

: acc=-FRth

; acc=xv2 reqd by blk22

(eabus=sum) (x*=eabus 1))

Torque-setup (i)
Set up to compute ul[0]*mhl1[0]
mor=mhll[0], acc=ul[0]

(block25

((mor=mem) (addr dataptr) (offset 7) (xbus=0) (eabus=sum)); rd(ul[0])
((mor=mem) (addr dataptr) (offset 14) (xbus=0) (eabus=sum)

rd(mhll[0])

(abus=mor) (acc=abus)) ; acc=ul[0]
)

Torque-computation (i)

shift left u[0] by 3 (X 8) followed by u*mhij

(block26 .

((bbus=acc<* 1) (acc=bbus))
((bbus=acc<* 1) (acc=bbus))

((bbus=acc<* 1) (acc=bbus)
(mbus=mor) (rcoef=mbus)) ;

((shrcoef) (abus=coef.mor) (acc=abus) (nosat))
multiply]

)

; acc=ul<l

; acc=ul<l

; acc=ul<l

rcoef=mhll[0]

Torque-setup (ii)
Set up to compute u2[0]*mhl2[0]

ul*mhll [lsb
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; mor=mhl2, acc=u2, save mhll*ul => rO

(block27

((shrcoef)

(mor=mem)

((mor=mem)

rd(mhl2[0])

(abus=mor) (acc=abus)

(rbus=acc) (r*=rbus 0))
)

(abus»coef.-mor) (bbus»acc>* l) (acc=sum) ; ul*mhll msb
(addr dataptr) (offset 13) (xbus=0) (eabus=sum)); rd(u2[0])
(addr dataptr) (offset 15) (xbus=0) (eabus=sum)

acc=u2[0]

r0=ul*mhll

Torque-computation (ii)
compute ql and output it

(block28

((shrcoef) (abus=coef.-mor) (bbus=acc>* 1) (acc=sum) ; u2*mhl2 msb
(mbus=r* 0) (mor=mbus)) ; mor=r0 [ul.mhll]

((abus=mor) (bbus=acc>* 0) (acc=sum) ; acc=u2.mhl2+ul.mhll
(mor=mem) (addr dataptr) (offset 20) (xbus=0) (eabus=sum)) ; rd(fl)

((abus=mor) (bbus=acc>* 0) (acc=sum) ; acc=acc + fl, [ql]
(mor=mem) (addr dataptr) (offset 7) (xbus=0) (eabus=sum)) ; rd(ul[0])

((mbus«acc) (ioport=mbus) (extport=ioport 3) ; output ql
(mem=mbus) (addr dataptr) (offset 18) (xbus=0) (eabus=sum)) ;w(ql)

((mor=mem) (addr dataptr) (offset 16) (xbus=0) (eabus=sum) ; rd(mh2l[0])
(abus=mor) (acc=abus)) ; acc=ul[0]

)

Torque-setup (iii)
ul*mh21 (msb) => rO

setup for mh22*u2

(block29

((shrcoef) (abus=coef.-mor) (bbus=acc>* 1) (acc=sum) ; ul*mh21
msb

(mor=mem) (addr dataptr) (offset 13) (xbus=0) (eabus=sum)); rd(u2[0])
((mor«mem) (addr dataptr) (offset 17) (xbus=0) (eabus=sum)

; rd(mh22[0])

(abus=mor) (acc=abus) ; acc=u2[0]
(rbus=acc) (r*=rbus 0)) ; r0=ul*mh21

)



Torque-compute (iii)
q2 = u2.mh22 + ul.mh21 + f2

output q2

(block30

((shrcoef) (abus=coef.-mor) (bbus=acc>* 1) (acc=sum)
(mbus=r* 0) (mor=mbus))

((abus=mor) (bbus=acc>* 0) (acc=sum)

(mor=mem) (addr dataptr) (offset 21) (xbus=0) (eabus=sum)) ; rd(f2)
((abus=mor) (bbus=acc>* 0) (acc=sum) ; acc=acc + f2,

[q2]
(mbus=acc) (ioport=mbus) (extport=ioport 4) ; output q2
(mem=mbus) (addr dataptr) (offset 19) (xbus=0) (eabus=sum)) ; w(q2)

)
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u2*mh22 msb

mor=r0 [ul.mh2l]

acc=u2.mh22+ul,mh21

Output-data setup

xO gets the ptr address for the state variables

xl gets the iteration count - number of variables.

(block31

((addr dataptr) (xbus=0) (eabus=sum) (x*=eabus 0)) ; xO=dataptr
((addr 22) (xbus=0) (eabus=sum) (x*=eabus 1)) ; xl=22 (loop cnt)
((mor=mem) (addr dataptr) (xbus=0) (eabus-sum)) ; rd(lst var)

)

Output-data

Routine to output state variables

This is put in a loop to send out all the variables.
In this case the apu counter is being used instead of the pcu lpc.
This requires a two cycle block.

(block32

((mbus=mor) (ioport=mbus) (extportsioport 9) ; output mor
(addr -1) (xbus=x* 1) (eabus-sum) (x*=eabus 1)) ; deer xl

((mor=mem) (addr 1) (xbus=x* 0) (eabus=sum) (x*=eabus 0)) ; rd(next

var)

)

; Delay variables
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; Implements delay of variables

j

(block33
((mor-mem) (addr dataptr) (offset 7) (xbus=0) (eabus=sum)) ; rd(ul[0])
((mor=mem) (addr dataptr) (offset 14) (xbus=0) (eabus=sum) ; rd(mhll[0])

(abus=mor) (acc=abus)) j acc=ul[0]
((mbus=mor) (mem=mbus) (addr const) (offset 12) (xbus=0) (eabus=sum)

; w(mhll[l])
(bbus=acc<* 1) (acc=bbus)) ; ul[0] « 1

((mor=mem) (addr dataptr) (offset 13) (xbus=0) (eabus=sum)) ; rd(u2[0])
((abus=mor) (acc=abus) ; acc=u2[0]

(mbus=acc) (mem=mbus) (addr ulTl) (xbus=0) (eabus=sum)) ; w(ul[l])
((mor=mem) (addr dataptr) (offset 15) (xbus=0) (eabus=sum)

; rd(mhl2[0])
(bbus=acc<* 1) (acc=bbus)) ; u2[0] « 1

((mbus=acc) (mem=mbus) (addr u2Tl) (xbus=0) (eabus=sum)) ; w(u2[l])
((mbus=mor) (mem^mbus) (addr const) (offset 13) (xbus=0) (eabus=sum))

; w(mhl2[l])

((mor-mem) (addr dataptr) (offset 16) (xbus=0) (eabus=sum))
; rd(mh21[0])

((mbus=mor) (mem=mbus) (addr const) (offset 14) (xbus=0) (eabus=sum))
; w(mh21[l])

((mor=mem) (addr dataptr) (offset 17) (xbus=0) (eabus=sum))
; rd(mh22[0])

((mbus=mor) (mem=mbus) (addr dataptr) (offset 15)
(xbus=0) (eabus=sum)) ; w(mh22[l])

)

Read velocity

Read in A/D ports and store the velocity data
Also check for inner loop count, L

(block34

((ioport=extport 1) (rbus=ioport) (r*=rbus 0)) ; r0=xvl
((ioport=extport 2) (rbus=ioport) (r*=rbus 0) ; r0=xv2
(mbus=r* 0) (mem=mbus) (addr dataptr) (offset 2) (xbus=0) (eabus=sum))

w(xvl)

((xbus=x* 2) (addr -1) (eabus=sum) (x*=eabus 2)) ; deer x2

((mbus=r* 0) (mem=mbus) (addr dataptr) (offset 8) (xbus=0) (eabus=sum))

)

w(xv2)
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Idle block

Used for doing noops while timer completes its count

(block35

((nop))

)

multiplication routine

loop counter will count shift-accumulate iterations,

lsb accum is done in previous block and msb accum is done in following
block

(block5

((shrcoef) (abus=coef.mor) (bbus=acc>* 1) ; acc=coef.mor + acc>l
(acc=sum) (nosat))

)



Appendix G

Controller Simulation Programs

Two C programs are given in this appendix. The first one implements the
adaptive controller and the second one implements a robot arm model. The con
troller calls the arm model as a subroutine. These programs were used to simulate
the control algorithms.

************************************************************************

C program for simulating the adaptive controller.
************************************************************************

#include <stdio.h>

#include <math.h>

#include "controller.h"

FILE *fclose(), *fopen(), *farml, *farm2, *fothers, *frefl, *fref2;
main ()

{

int i,j;
int . K, L, N;

int CI;

double step;

double evthresh;

double Tl; /* inner loop sample period */
double ul[2], u2[2] ;
double uvl, uv2;

double evl, ev2;

double eml, em2; /* velocity error wrt to ref. model */
double *xpl, *xp2, *xvl, *xv2;

double ql, q2; /* computed torque */
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double refl, ref2; /* reference input to PID controller */
double epl, ep2; /* position error */
double wl[2], w2[2];

double kil, kpl, kvl; /* pid coeffs. */
double ki2, kp2, kv2;

double kmll, kml2, km21, km22;

double xvhl, xvh2;

double mhll[2], mhl2[2], mh21[2], mh22[2];

xpl » (double *) callocd, sizeof(double)); /* measured position */
xp2 • (double *) callocd, sizeof(double)) ; /* measured position */
xvl » (double *) callocd, sizeof(double)) ; /* measured velocity */
xv2 • (double *) callocd, sizeof(double)); /* measured velocity */

Cntrl.filesO; /* open input and output files */

/* Input parameters */
printf("Enter sample period, Tl : ");
scanf('7.1f", &T1);
printf("Enter number of inner loop sample points per Tl, L : ");
scanf('7.d", &L);
printf("Enter number of integration steps per Tl, N : ");
scanf('7.d", &N);

printf("Enter total number of outer sample points desired, K : ");
scanf('7.d", &K);

step = Tl/N;
kpl = KPa*KPb; kp2 = KPa*KPb;

kil = KI; ki2 = KI;

kvl = KVa*KVb; kv2 = KVa*KVb;

kmll = KM11; kml2 » KM12; km21 = KM21; km22 = KM22;

evthresh = DEADBAND;

CI = CIVALUE; /* I-controller option */

/*#############################################################*/

/* FRICTION COMPENSATION NOT INCLUDED IN THIS IMPLEMENTATION */
/*#############################################################*/

/* initialize states */

*xpl = 0; *xp2 = 0; *xvl = 0; *xv2 = 0;

mhll[l] = MH11; mhl2[l] = MH12; mh21[l] * MH21; mh22[l] = MH22;
wl[l] = 0; w2[l] = 0;



/* BEGIN.OUTERLOOP */

for (j=0; j < K; j++) {

/* ## */

if (j==55) {
printf("debug stop \n");
}

fscanf(fref1, "'/.If", &ref1) ;
fscanf(fref2, f7.1f", &ref2) ;

/* P-control */

epl = refl - *xpl;

ep2 • ref2 - *xp2;

uvl = kpl*epi;

uv2 = kp2*ep2;

/* I-control */

if (CI == SET) {
wl[0] = epl + wi[l];
w2 [0] = ep2 + w2 [1] ;
uvl = kil * wl[0] + uvl;
uv2 = ki2 * w2[0] + uv2;

}

/* BEGIN.INNERLOOP, */

for (i=0; i < L; i++) {
/* D-control */

evl = uvl - *xvl;

ev2 = uv2 - *xv2;

ul[0] = kvl * evl;

u2[0] = kv2 * ev2;

/* vel error wrt ref model and check for dead zone */

eml = xvhl - *xvl;

em2 = xvh2 - *xv2;

if (abs(eml) < evthresh) eml = 0;

if (abs(em2) < evthresh) em2 = 0;

/* ref. model */

xvhl = ul[0] * Tl + *xvl;

249



250

xvh2 = u2[0] * Tl + *xv2;

/* inertia estimation */

mhll[0] = kmll * eml * ul[l] + mhll[l]

mhl2[0] = kml2 * eml * u2[l] + mhl2[l]

mh21[0] » km21 * em2 * ul[l] + mh21[l]

mh22[0] - km22 * em2 * u2[l] + mh22[l]

/* torque computation */
ql = mhll[0]*ul[0] + mhl2[0]*u2[0];
q2 - mh2l[0]*ul[0] + mh22[0]*u2[0];

/* robot arm solution */

robot(N,step,ql,q2,xpl,xp2,xvl,xv2);

/* output data to files */
fprintf(farml,"7.1f 7.1f 7.1f 7.g 7.1f 7.1f \n",refl,*xpl,*xvl, ql, epl,
uvl);

fprintf(farm2,"7.1f 7.1f 7.1f 7.g 7.1f 7.1f \n",ref2,*xp2,*xv2, q2, ep2,
uv2);

/* fprintf(fothers,"7.1f 7.1f 7.1f 7.1f Xlf 7.1f \n",evl, ul[0], xvhl,
eml, mhll[0], mhl2[0]); */

fprintf (fothers,"7.1f 7.1f 7.1f 7.1f 7.1f 7.1f \n",mh2l[0] , mh22[0] , ev2,
u2[0], xvh2, em2);

/* update states and refresh constants in ram */
wl[l] = wl[0]; w2[l] = w2[0];
mhll[l] = mhll[0]; mhl2[l] = mhl2[0];
mh21[l] = mh2l[0]; mh22[l] = mh22[0];
ul[l] = ul[0]; u2[l] = u2[0];
}

}

Close_files();

}

************************************************************************

C program for implementing the robot arm
************************************************************************

#include <stdio.h>



#include <math.h>

#include "nskparm.h"

/* Solves the differential equations describing */
/* a two axis robot arm. Uses the 4th order */

/* Rungekutta method. */
/* -Khalid Azim 5-7-87 */
/************************************************/

double Cvl, Cv2, mil, ml2, m21, m22, mm;

extern FILE *fothers;
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robot(N,delh,ql,q2,lxpl,lxp2,lxvl,lxv2)
int N;

double delh, ql, q2, *lxpl, *lxp2, *lxvl, *lxv2;

{

int i;

double Fvl(), Fv2();

double Cmlla, Cmllb, Cml2a, Cml2b, Cm22;

double xpl, xp2, xvl, xv2, pxpl, pxp2, pxvl, pxv2;

double gl,g2,g3,g4,jl,j2,j3,j4,kl,k2,k3,k4,rl,r2,r3,r4;

double m2, m3, m4, m5, 11, 12, II, 12, 13, 14;

m2 = M2; m3 = M3; m4 = M4; m5 = M5;

11 = LI; 12 = L2; II = III; 12 = 112; 13 = 113; 14 = 114;

Cvl = -l*(m4/2 + m5)*ll*12; /* constant for vl expr. */
Cv2 = (m4/2 + m5)*ll*12; /* constant for v2 expr. */

/* constants used in inertia expr.*/
Cmlla = II + 12 + 14 + ll*ll*(m2/4 + m3 + m4 + m5) + 12*12*(m4/4 + m5);

Cmllb = ll*12*(m4 + 2*m5);

Cml2a = 14 + 12*12*(m4/4 + m5);

Cml2b = 11*12*(m4/2 + m5);
Cm22 = 13 + 14 + 12*12*(m4/4 + m5);

xpl = *lxpl;

xp2 = *lxp2;

xvl = *lxvl;



xv2 = *lxv2;

for (i=0; i < N; i++) {

/* arm inertia */

mil = Cmlla + Cmllb*cos(xp2);
ml2 = Cml2a + Cml2b*cos(xp2);
m21 = ml2;

m22 = Cm22;

mm = mil * m22 - ml2 * ml2;

/*

fprintf(fothers, "7.1f 7.1f 7.1f \n", mil, ml2, m22) ;
*/

/* Rungekutta computation */
pxvl = xvl;

pxv2 = xv2;

pxp2 = xp2;

gl = delh*pxvl;

jl s delh*pxv2;
kl = delh*Fvl(ql, q2,pxvl,pxv2,pxp2);
rl = delh*Fv2(ql,q2,pxvl,pxv2,pxp2);

pxvl = xvl + kl/2;

pxv2 = xv2 + rl/2;
pxp2 » xp2 + jl/2;
g2 = delh*pxvl;

j2 s delh*pxv2;
k2 = delh*Fvl(ql, q2,pxvl,pxv2,pxp2);
r2 - delh*Fv2(ql, q2,pxvl,pxv2,pxp2);

pxvl » xvl + k2/2
pxv2 » xv2 + r2/2
pxp2 = xp2 + J2/2
g3 = delh*pxvl;

j3 = delh*pxv2;
k3 • delh*Fvl(ql, q2,pxvl,pxv2,pxp2);
r3 = delh*Fv2(ql, q2,pxvl,pxv2,pxp2);

pxvl = xvl + k3;

pxv2 = xv2 + r3;

pxp2 = xp2 + j3;
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g4 = delh*pxvl;

j4 = delh*pxv2;

k4 = delh*Fvl(ql, q2,pxvl,pxv2,pxp2);
r4 = delh*Fv2(ql, q2,pxvl,pxv2,pxp2);

/* evaluate xpl, xp2, xvl, xv2 for this iteration */
xpl • xpl + (gl +
xp2 = xp2 + (jl +
xvl = xvl + (kl +

2*g2 +

2*j2 +

2*k2 +

2*g3 + g4)/6;
2*j3 + j4)/6;
2*k3 + k4)/6;

xv2 = xv2 + (rl +

}

2*r2 + 2*r3 + r4)/6;

/* save states */

*lxpl = xpl;

*lxp2 s xp2;

♦lxvl « xvl;

*lxv2 = xv2;

return;

}

double Fvl(aql, aq2, axvl,axv2,axp2) /* computes dxvl/dt */
double aql, aq2, axvl, axv2, axp2;

{
double vl, v2, fvl;

vl = Cvl*(2*axvl + axv2)*axv2*sin(axp2);
v2 = Cv2*(axvl*axvl)*sin(axp2);
fvl = (m22*(aql - vl) - ml2*(aq2 - v2))/mm;
return(fvl);

>

double Fv2(aql, aq2, axvl,axv2,axp2) /* computes dxv2/dt */
double aql, aq2, axvl, axv2, axp2;

{

double vl, v2, fv2;

vl = Cvl*(2*axvl + axv2)*axv2*sin(axp2);
v2 = Cv2*(axvl*axvl)*sin(axp2);
fv2 = (mll*(aq2 - v2) - m21*(aql - vl))/mm;
return(fv2);

}
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