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ABSTRACT. In this paper we highlight the salient features of our recently developed theory for the
construction of broad classes of nondifferentiable optimization algorithms. These algorithms can be used
for the solution of a wide variety of unconstrained and constrained minimax problems, such as those
occurring in the design of structures subjected to dynamic loads, floor planning and layout problems,
control system and electronic circuit design.

1. INTRODUCTION

To motivate our discussion of minimax algorithms as a tool for the solution of structural
design problems, let us consider an idealized base isolation problem. Thus, suppose that we are
required to design a passive base isolation system for a structure that must be built on top of a
metropolitan underground train station. Since the motions will be very small, the structure can
be modeled as a linear second order differential equation of the form (see [5])

My(t) + C(x)y(t) + K(x)y(t) = BF(t) (1.1)

where y(t) e JR3q is a vector of floor displacements, with three components per floor (g is the
number of floors), two for horizontal motion and one for vertical motion. Next, M, is a mass
matrix, while C(x) and K(x) are damping and spring action matrices, which we assume to be
continuously differentiable in x g Ra, the design parameter vector of the base isolation device.
The three dimensional ground acceleration forces are described by the time dependent function
F(t) e IR3, and B is the coupling matrix.

Now suppose that the passing trains leave several very specific and repeatable signatures,
p

i.e., they produce a set of excitation functions {Ffi)}^, defined on the interval [0,7], where T
is the maximum duration of the disturbance caused by the trains. Assuming that the com
ponents of the designable parameter x must satisfy a constraint of the form
X€ Xi{xs R'l^^J'Jsl n}, the base isolation design problem can be
expressed in the form

min max max ly(t;x,Fj)l , n y\
xeXjep te [0.71 v '

where p = {1,2,...,/?}, and y(t;xtFfi denotes the solution of (1.1) corresponding to the given
value of the base isolation design vector x and ground motion Fft).

Alternatively, we may have determined that the frequency spectrum of the disturbances is
contained in an interval [<*)',a>"] and that its magnitude is bounded by a function &(co) > 0 on
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that interval Then we can attempt to design the base isolation device using frequency domain
techniques by solving the problem

where w(a>) = l/b((o) and H(x,j<a) is the Zq x 3 complex valued transfer function matrix from
the ground acceleration F(f) to the floor displacement vector y(t). Note that MR2 is the largest
eigenvalue of the positive semidefinite matrix H*H.

For more extensive treatments of modeling design problems as minimax optimization
problems and numerical results, see [1], [3], and [11].

2. UNCONSTRAINED MINIMAX ALGORITHMS

We will develop a family of minimax algorithms by extension of the method of steepest des
cent which solves problems of the form

min/Ct) (2.1)
IR"

where/: IRn -» IR is a continuously differentiable function. We begin by recalling the method
of steepest descent and its convergence properties [9].

STEEPEST DESCENT ALGORITHM 2.1 :

Step 0 : Select an Xq e IR" and set i = 0.

Step 1 : Compute the search direction

^ = -V/(jCf) = arg min {f(x$ +Wf(xith)+ lMM2} . nj)
h e R"

Step 2 : If Vf(xj) = 0, stop. Else compute the step size Xi e Mpcj) 4 arg min /(*,- + Mij).
A* & U

Step 3 : Set xM = x{ + Xfib replace i by i + 1, and go to Step 1. •

In practice one uses the Armijo step size rule [9] which is much more efficient, but
somewhat harder to analyze than the one dimensional minimization rule, used in Step 2, above.

THEOREM 2.1 : If {jc,)r= o is an infinite sequence constructed by Algorithm 2.1, then every

accumulation point 3:of fo}So satisfies V/(x) = 0.

K

PROOF : Suppose that *,- -» a: as i -> °o and that V/® * 0. Then the directional derivative

ay(x;h(x)) = -IIV/®II2 < 0 . (2-3a)

Hence any %e Tuffi satisfies %>0 and there exists a%>0 such that

/#+%h®) -m =-* <0 . (2-3b>

Since AQ = -V/() is continuous by assumption, the function/(* +th(x)) -f(x) is continuous
in x and hence there exists an i0 such that for all i e K, i > i0>
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f(xM) -f(xD Zffri +$h(x$) -/(*<) <i -^2 . (2-3c)
K

Now, by construction, \f(xj)}ZQ is monotone decreasing and f(xj) -»/® as i -» °° by con

tinuity of/(•). Therefore, we must have that/CO -»/<$) as i -» °°. But this contradicts (2.3c).

Hence V/(3c) = 0 must hold. •

Next let us examine the method of steepest descent geometrically, which requires the fol
lowing notation. Given any function g : IRB -> R, we shall denote its level sets by Lg(<x), i.e.,
Lg(<x) = { x e IR" I g(x) £ a }. Now, given a point *,-, we see that the method of steepest des
cent approximates the continuously differentiable function/(x) by the quadratic function

q{x;xd A/W + Wf(xd,(x - x$)+ V&lx - xf, (2.4a)
and its level set

Lf</W» = ( x e R" If(x) <, f(xd }. (2.4b)

by the "disk"

T>f(f(x};x} 4 { x e IR" Iq{x;x-) <f(x) }, (2.4c)

which is tangent to U(f(xj)) at the point *,-. A minimizer of (2.1), % defines a "center" of
Lf(f(Xf)); Xi-Vf(xj), minimizes q(x;xj) and is the center of Df(f(xD;Xi). The method of

steepest descent treats the point jc; - Vft*,) as an approximation to the point x. Since this
approximation is rather poor, the method of steepest descent performs a line search along the
line passing through x\ and xt - V/fcc^), according to (2.2c) to obtain a somewhatbetter approx

imation to % xMt defined by (2.2d).

We can now consider the simplest minimax problem:

min max/(x), (25ax

where the functions/ : IR" -» IR are continuously differentiable and m 4 { lf2,...fm }. Let
\j/(*) 4 maxy€ nf(x)9 then (2.5a) becomes

miny(*)> (25b)

which is a nondifferentiable optimization problem. We need the following results [4].

THEOREM 2.2 : (a) For all x,h e IR", the function \|/() has directional derivatives at x in
the direction h which are given by

dy(x;h) 4 limW +ty-W) = max (yf(x),h), (2.6a)
40 t je I(x)

where l(x) 4 {/e m l/(x) =\|/(x)}.
(b) If x is a local minimizer for (2.5b), then the following equivalent statements hold:

(i) dy&h) > 0, V h g IR" , (2.6b)

(if) 0e co. { V/<$}, (2.6c)
ye 100



(jii) OeGxtfM co Jcrt»-Y»)l (2.6d)
je m ^ v/(3k) J

where "co" denotes the convex hull of the set in question. •

Next we make the observation that the level sets of the function \j/Q are the intersection
of level sets of the functions/(•), i.e.,

L\|/(<x))£{jce R"l\|/(*)<;a)} =n LP(a)). (2.7a)
j g in

Proceeding by analogy with the geometric interpretation of the method of steepest descent,
given a point xt e IR", we approximate the level set L\|f(Y(*i)) by the intersection of the discs
Df^OiK*;)) which approximate the level sets Lf^Oc^), i.e., by the set

Dyfei|iW) £ n DPWxft) ={xg IR" Iq/ixixd £ Wd ), (2.7b)
j g m

and we approximate the "center" 5 which solves (2.5) by the "center" (&+ h-) of Dv(Xj,\|r(*j))
which solves the problem

min max c/ixixj). (2.8)

Adding a line search, we obtain the following extension of Algorithm 2.1.

MINIMAX ALGORITHM 2.2 :

Step 0 : Select a Xq e IR" and set i = 0.

Step 1 : Compute the search direction

hi =arg min max {f(xD + {Vf(xd,h)+ lMhf} . n 9)
he R"7'e m

Step 2 : If hi = 0, stop. Else compute the step size Xi e arg min y(x,-+ Xhj).

Step 3 : Set xM = xt + X&, replace i by 1+ 1, and go to Step 1. •

The search direction finding problem (2.9) is obviously much more difficult to solve than
(2.2c). It is easiest to solve it in dual form. First, it is obvious that

eOCf) k min max {f(x$ + (Vf(xith)+ Whl2)
he JR.B7'e m

m . . -

= min max {£ \iJ{f(x-) + (Vf(xhh)+ WM2} , (2.10a)
he R"^e 2 j^

a mwhere 2§s {u. e IRmIJ^=l,Ji^0}. Next, making use of the von Neumann minimax

theorem [2], we can interchange the min and max operations in (2.10a), to obtain that

B(xD =max min £ \il{f(xd +(Vfj(xhh)+ lMM2} . (2.10b)
He Lhe RB/=i

Eliminating h from (2.10b) by unconstrained minimization, we obtain that
mm

eOtf =- min {£ -M#W + V4I2 u/V/'^ll2} . (2.10c)
**e 2 M >=i



It now follows from the von Neumann minimax theorem that if p; e X is any solution of
(2.10b), then

K =-E M*V/(*i) (2.10d)

is the unique solution of (2.9). Since (2.10c) is easily solved by modem quadratic program
ming algorithms, such as [6], we see that the searchdirection hi is readily computed.

Since it is easily shown that the search direction hi is continuous [8], the following
theorem can be proved by repeating the arguments for Theorem 2.1.

THEOREM 2.3 : If {*/}"= o is 8° infinite sequence constructed by Algorithm 2.2, then every

accumulation point x of {x,}£o satisfies 0 e Gy(x). m

We are now ready to consider the general minimax problem

min max §(x,y) ,
h e R" y e Y

(2.11)

where <j): IR" x IR* -» IR and both <j>(-,0 and VJK(j)(-,-) are continuous and YclR* is compact
First, we state an extension of Theorem 2.2.

THEOREM 2.4 : (a) For all x,h e IR", the function \\t(x) £ max $(x,y) has directional
ye Y

derivatives at x in the direction h which are given by

dy(x;h) k HmYft +rt)-VW = max (VMx,y),h),
tiO t je Y(x)

where Y(x) 4 {y e Y I$(x,y) =\|/(*)}.
(b) If x is a local minimizer for (2.11), then the following equivalent statements hold:

(0 <ty(*;/i) £ 0, V h g IR" ,

(A) 0 € co { V^&y) }
ye Y®

(iii) 0 e G\i/(3c) 4 co -
ye Y

(<K*,y)-v<2>)
v^^y)

(2.12a)

(2.12b)

(2.12c)

(2.12d)

If, as we have just done, we redefine \j/() by y(x) = max <J>(x,y), the formal extension of
ye Y

Algorithm 2.2 to this case is obvious and must be as given below.

MINIMAX ALGORITHM 2.3 :

Step 0 : Select xq e IR" and set i = 0.

Step 1 : Compute the search direction

hi =arg min max {<K*,-,y) +{VMxi,y),h)+ lA\m2} . (2 13^

Step 2 : If hi = 0, stop. Else compute the step size X-t e arg min w(;t,- + TJij).



Step 3 : Set xM = xt + Xfc, replace i by i + 1, and go to Step 1. •

Referring to [8], we see that the search direction hi defined by (2.13) is continuous.
Hence the following theorem can be proved by identical arguments as for Theorem 2.3.

THEOREM 2.5 : If {*,}*= o is an infinite sequence constructed by Algorithm 2.3, then every

accumulation point*k of MS) satisfies 0 e Gy(3c). •

The main question to be resolved is whether the search direction ht can be computed. To
this end, we begin by relating (2.10c) to (2.6d). We note that for any x e IR", G\|f(x)ciR"+1f
and that \ = (5 ,§) is an element of G\|/(x) if and only if there exists a[iel such that
5° =££i \Lj\f(x) - y(x)] and %=J^tl p/V/(x). Hence (2.10c) can be rewritten in the form

FfcO=- min {5° +V^I2}, (2i4a)

and the search direction hit defined by (2.2), is given by ht = -%(x-), where %(x-) consists of the
last n elements of the (n + 1) dimensional vector

5W =<S°tt>.5tt>) =-arg min {£° +V^D2} . (2 14b)

If we define Gy(xj) by making use of (2.12d), and 5(jcj) as in (2.14b), then the formula
hi = -£,(xj) is also valid for Algorithm 2.3. The importance of this observation lies in the fact
that fycD can now be computed by means of a proximity algorithm. These algorithms are des
cendants of the Gilbert algorithm [7], see e.g., [10]. They depend on our ability to compute
tangency points to the sets G\\f(x), which are defined as solutions of the contact problem

min{<v\5l?e Gy(x) ), (2.15)

where V is any given direction.

The computation of these tangency points in structural design problems does not appear
to pose any serious difficulty (see [8] for details). For the sake of completeness, we now state
the simplest of these proximity algorithms for solving the problem (2.14a).

PROXIMITY ALGORITHM 2.4 [7]

Step 0: Select a?0 = (So^o) € Gy(*i) and set k = 0.
Step 1 : SetV, = [d/d%]($ + V&£) = (1 ,?*).
Step 2 : Compute Tfc e Gy^ such that (V*,!!*) = min( ^,515 e Gy(x$ }.
Step 3 : Compute %k+1 = (&i £M) = arg min & + AtfT* - ?*)8.

A> e [0,1]

Step 4 : Replace i by i+1 and go to step 1. •

THEOREM 2.6 : The sequence {§*}* =o constructed by Algorithm 2.4, converges to the
search direction vector -h^ •

Algorithm 2.4 tends to converge very slowly. The version in [10] is considerably more
complex, but it converges considerably faster.

Finally we turn to algorithms for the solution of constrained minimax problems, of the
form



min{ \j/°(jc) Iy>(x) <, 0, j e m }, (2.16)

where, for; =0,1,2,...,m, yfo) =max^g Yj ¥(x,yj), V:IRn x IR** -» IR, and both &(•,-) and
V^(v) are continuous and the subsets YydRJ' are compact

Let 8>0, let \y+(;t) ^ max;e m{0,V(jc)} and, for any re IR", and let the parametrized
function F^x) be defined by

F^x) 4 maxfxjA*) - V°00 - $V+(x),V(x), j e m} . (2.17)

We see that if a: is a local minimizer for (2.16), then it must also be a local minimizer for the
function FJ$). Hence we deduce from Theorem 2.4 (b) the following result

X

THEOREM 2.7 [4]: If x is a local minimizer for (2.16), then

0e co*\j co - (fftoO) (2.18)

where <p°Cc,y) = <|>0(jc,;y) - \|/°(2), and <p(jc,y) = ty(x,y) for ally e m. •
Just as we obtained algorithms for unconstrained minimax problems by geometric exten

sion of the method of steepest descent, we obtain algorithms for the solution of (2.16) from the
following phase I - phase n generalization of the Huard conceptual method of centers (see
[9]), below (c.f. (2.17)), where 8 > 0 is given.

CONCEPTUAL METHOD OF CENTERS 2.4 :

Step 0 : Select Xn e IR" such that \y*(xn) £ 0 for all; e m and set i = 0.

Step 1 : Compute jc^ = arg min FJx),
XG R"

Step 2 : Set i = i + 1 and go to Step 1. •

It is easy to prove convergence of the above algorithm under the following simplifying
assumption.

ASSUMPTION: (a) For every *e IR", the level sets LF^cc) are compact, (b) for every
Te IR" which is not a local minimizer of (2.16), yQc) = min F^x) < 0. •.

xe RB

THEOREM : If {x,}f= 0 is an infinite sequence constructed by the conceptual method of

centers, then every accumulation point x of {*;}£o is a local minimizer for (2.16).

PROOF : First, referring to [8], we conclude that t(-) is continuous. Next suppose that
{Xi)T= 0 is an infinite sequence constructed by the conceptual method of centers, and that there
exists an in such that xj/fr+C^) £ 0. Then yix+ixj)) £ 0 for all i > iQ and

VWi)_ VW ^ y(xD < 0. If {*;}*= 0 has an accumulation point x which is not a local
minimum of (2.16), then 7® < 0 and hence, by continuity, there exists an ix ^ in such that for
all i > in and the elements */ of the subsequence which converges to %
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V°C%i) ~ V°(*i) ^ lfyO& < 0» which leads to the contradictory conclusion that ^f°(xD -» «» and
notto \|/°®. Hence 3:must be a local minimizer.

The case where \|f+(*i) > 0 for all i, is dealt with similarly, using the function
y(x)£mzxJemy'(x). •

To implement the conceptual method of centers, we simply replace Step 1, with a single
iteration of Algorithm 2.3, and substitute in the convergence theorem the statement that accu
mulation points are local minima, by the statement that accumulation points are stationary.

3. CONCLUSION

We have presented a brief survey of the simplest minimax algorithms for engineering design.
For a complete exposition as well as further references, the reader should consult [8].
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