

Copyright © 1988, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN INTEGRATED CAD SYSTEM FOR

ALGORITHM-SPECIFIC IC DESIGN

by

Chuen-Shen Shung

Memorandum No. UCB/ERL M88/44

14 June 1988

AN INTEGRATED CAD SYSTEM FOR

ALGORITHM-SPECIFIC IC DESIGN

by

Chuen-Shen Shung

Memorandum No. UCB/ERL M88/44

14 June 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AN INTEGRATED CAD SYSTEM FOR

ALGORITHM-SPECIFIC IC DESIGN

by

Chuen-Shen Shung

Memorandum No. UCB/ERL M88/44

14 June 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

An Integrated CAD System for Algorithm-Specific IC Design

Ph.D. Chuen-Shen Shung EECS Department

ABSTRACT

Lagerlll, an integrated CAD system for algorithm-specific IC design is described. In partic

ular, applications such as speech processing, image processing, telecommunication, and robot

control are targeted. Designing such circuits usually requires the collaboration of algorithm

developers, architecture designers, and circuit designers. Lagerlll provides the user interface at

behavioral, structural, and physical levels to facilitate this collaboration. It also provides an inter

face for integrating new CAD tools.

Because direct synthesis from a behavioral description has yet to produce efficient results in

a wide range of applications, our approach requires the user to specify a behavior and a

parameterizable datapath. The silicon compilation subsystem translates the behavioral descrip

tion into datapath instructions and parameter values, which, together with the datapath

specification, make up the structural description. The silicon assembly subsystem in turn

translates the structural description into a physical layout. With the aid of simulation tools, the

user can fine-tune the datapath by iterating this process.

The silicon compiler provides two kinds of behavioral languages: an applicative language

called Silage, and an "extended subset" of C called RL. Two external programs, the Silage

translator that translates Silage into RL and the RL compiler that translates the program into data

path instructions, have been linked into the system to allow silicon compilation.

The silicon assembler can be used independently of the silicon compiler for high-sample-

rate applications such as image processing. It consists of a structural interface, a database

manager, module generation tools and a functional simulator. The structural interface processes

the parameterized structural description and enters it into the database, for use by the simulator

and by the module generation tools that generate the layout The database is based on Flavors, an

object-oriented programming system, to facilitate the integration of new CAD tools. The silicon

assembler uses an open cell library consisting of parameterizable modules and leaf-cell layouts

and functional models.

Lagerlll has been applied to a number of algorithm-specific IC designs. Two examples, a

frame buffer controller chip anda pitchtracker chip, are described in this thesis.

Committee Chairman

TABLE OF CONTENTS

1. Algorithm-specific ICs 1
1.1 Commodity, Application-specific and Algorithm-specific ICs 1
12 Dedicated and Programmable Architectures 3

2. The Lagerm CAD System 5
2.1 The Challenge 5
2.2 The Philosophy 7

2.3 System Overview 9
2.4 Related Work 13

3. The Silicon Assembly Subsystem 16
3.1 Internal Design Database 16

3.1.1 Integration Policy 16
3.1.2 Object-oriented System 17
3.1.3 Design Database Implementation 20
3.1.4 An Example 22

3.1.5 Comparison with the OCT Database 28
32 The Design Manager 29

32.1 Structural DescriptionLanguage 29
3.2.2 An Example 35
3.23 The Implementation of the Design Manager 38

3.3 The Layout Generator 42

33.1 The Layout Generation Tools 42
3.3.2 Implementation of the Layout Generator 45

3.4 The Design Simulator 48
3.4.1 Simulator Overview t 49

3.4.2 Functional Model 50

3.43 Implementation of the Design Simulator 53
3.4.4 Input/Output of Design Simulator 57
3.4.5 Remarks on Simulator Performance 58

4. Frame Buffer Controller Chip 59

4.1 Frame Buffers 59

42 Image Signal 60
4.3 Chip Architecture 62
4.4 Layout Generation 68

4.5 Simulation and Testing Results 74
5. The Silicon Compilation Subsystem 75

5.1 The KAPPA architecture 75

52 The Relationship Between the Instruction Set and the Architecture 80
5.3 Silage Translator 87
5.4 RL Compiler 89

5.5 Control Generator • 92
5.6Summary 96

6. Pitch Tracker Chip 98
6.1 Pitch Tracking Algorithm 98
6.2 Chip Implementation 100

7. Conclusions and Remarks 104
7.1 Major Accomplishments 104
12 Remarks onFuture Improvements 105
7.3 Applications of Lagerlll 107

Reference 108
APPENDIX A:(part of) Lagerlll User Manuals 112
APPENDIX B:Frame Buffer Controller input files 126
APPENDDC C: The KAPPA Sadl file 135
APPENDIX D: Pitch Tracker Inputs 145

ACKNOWLEDGEMENTS

I would like to thank my research adviser, Prof. Robert W. Brodersen, for his encouragement, gui
dance and support throughout the course of this thesis work.

The discussion with Dr. R. Jain in the early phase of the LAGER project was very fruitful. K.
Rimey, E. Wang, M. Srivastava, E. Lettang, Dr. R. Jain, Prof. J. Rabaey and Prof. R. Brodersen contri
buted a great deal to the software development of the LAGER system. K. Azim used theLAGER system
in its earlystageofdevelopment andprovided valuable feedback.

I also want to thank P. Schrupp, B. Richards, C. Lee and W. Baringer for sharing with me their
knowledge onimage frame buffers and hardware design.

Theresearch project is funded by DARPA under grant N00039-87-C-0182. The Ministry of Educa
tion of theRepublic of China supported mefor my first two years of graduate study.

I am indebted toC.Leewho patiently read most of the thesis manuscript and corrected my numerous
writing errors.

Finally, I want to thank my wife, Debbie, and my family for their constant care, support and love.

111

CHAPTER 1

Algorithm-specific ICs

1.1. Commodity, Application-specific and Algorithm-specific ICs

Most of the integrated circuits flCs) designed today can be categorized into two groups: commodity

ICs and application-specific ICs (ASICs). Examples ofcommodity ICs include memory chips, TIL MSI

and LSI gates and microprocessor chips. The commodity chips are usually produced inlarge volume with

fully custom design. Because they are standard products, price isthe only figure ofmerits. The companies

that produce commodity chips have to constantly improve the price-performance of their commodity IC

products, usually by more advanced circuit design, and manufacturing processing technology, in order to

be competitive.

The ASICs, as the name suggests, are small-volume products and hence often cannot afford the fully

custom design approach. Examples ofASICs include computer peripheral chips and digital signal process

ing ICs. The turn-around time ofASICs is often more important than the area (cost), which also brings

about the need for computer-aided design (CAD) tools. The ASICs achieve higher performance through

architecture innovations. Due to their application-specific nature, each design can exploit thespecial con

ditions in theparticular application tocreate anefficient architecture.

In the past several years we have seen a steady growth in the ASIC market, and itispredicted that by

1990 the commodity ICs and ASICs will each occupy 50% ofthe IC market It isdue tothe following rea

sons that many believe the trend ofthe increasing importance ofthe ASICs will remain after 1990. First, in

commodity ICs while scale down the technology has been fruitful over the past 10 years, significant invest

ment is required. Second, many new systems and new architectures have been proposed which were

implemented with ASICs as the key components. Even though the cost ofan ASIC ishigher than that ofa

commodity IC with similar complexity and technology, the overall system had lower overall cost due toa

more efficient system architecture.

Another reason of the increasing ASICdesigns is the maturity of CAD tools. It is notuntil recently

that high-quality module generators, silicon compilers and integrated CAD environments were available.

The main products of the CAD industry have changed from layout editor, switch or circuit simulator

(which were used by commodity ICdesigners) to higher level front-end tools liketheschematic entry tools

and functional simulators, and automatic layout generators. The latter played an important role in the

design process of ASICs. Inthe future weexpect to see additional CADtools developed for ASICdesign.

Finally, there is the issue of fast prototyping of design ideas. The system designer often wants to

quicklyevaluate the price/performance of hardware implementation of an application. It is often the case

that the designer has the choiceof a board with commoditychipsor an ASIC to implementhis idea. What

has made the ASIC a more attractive choice is because there are much more tools available at the chip

level than at the board level. The advantage of ASIC design is that thereare a number of cell design styles

(gate-array, standard-cell, semi-custom, etc.) with different turn-around times and performances. Once the

design idea is verified, the performance can be improved with a different cell design style.

One main disadvantage of ASICs is the extra fabrication time as compared to off-the-shelf commo

dity ICs. However, the fabrication time has been reported to be as short as two weeks with some gate array

design systems. Moreover, from our experience the design time is still much longer than the fabrication

time. Therefore, to reduce the design time has a largerimpact on the overall turn-around time.

The focus of this thesis research is on a subset of ASICs in which some computational algorithms are

implemented. I will call them the algorithm-specific ICs. From the experiences of several algorithm-

specific IC designs1* 2«3 , we found that even though the algorithms in various applications are very dif

ferent, they however can all be implemented with a limited set of hardware modules (e.g. ram, data path).

By reusing hardware modules, many of the design difficulties of most ASICs are alleviated. Specifically,

this can be done by (1) selecting hardware modules to be used in a particular algorithm and (2) creating

new hardware modules if necessary in such a way that they are reuseable.

On the other hand, by restricting the design domain to algorithm-specific ICs, the CAD system

design becomes simpler. First, it is possible to develop some special-purpose module generators for

commonly-used hardware modules. Second,one of the tasks of the CAD system is to translate higherlevel

designrepresentations to layout,which is almostuntractable unlesswe restrict the designdomain.

Typical application areas of algorithm-specific ICs include speech processing, image processing,

robot control, computer vision, digital audio and telecommunications. For example, inverse kinematics,

adaptive equalizers for digital cellular telephones, fingerprint recognition, frame buffer controller, channel

emulator for computer network protocols, image processing based on projection-transformed data, milling

machine overseer and robot controller are a number of active research projects which involve algorithm-

specific IC designs, which are underway in our research group.

12. Dedicated and Programmable Architectures

To achieve higher performance in algorithm-specific ICs, efficientarchitectures have larger impact

than efficient layout justasin thecase with ASICs. Ingeneral, themostefficient architecture is one that is

dedicated to theparticular algorithm. A dedicated architecture is often obtained by studying thedata flow

operations in the algorithm and allocating adedicated hardware module for each operation, for example, an

adder for an addoperation. This way the logical data flow in thealgorithm is implemented by thephysical

interconnection of the hardware modules. The control unit of the hardware modules is simple since in gen

eral there is no time-multiplexing of hardware modules, even though the data path may be very compli

cated. Thespeed of theimplementation depends onthe slowest hardware module in the design.

The drawback of dedicated architectures is that they have to be redesigned for new algorithms.

Therefore, another type of architectures is often used in low sampling rate applications which consists of a

number of most commonly used hardware modules, which are time-multiplexed (by microcode control)

according to the algorithm. We call this type of architectures theprogrammable architectures. The control

unit in a programmable architecture is complicated in order to control the time-multiplexing of hardware

modules. The speed of the implementation depends on thetotal number of microcode cycles to realize the

algorithm. A programmable architecture is applicable only if

Forexample, if the circuitruns at 5 MHz, and the sample frequency is 5 kHz, then the maximum number

of cycles of an algorithm is 1000.

It is interesting to compare the differences and similarities of an algorithm-specific IC in programm

able architecture, and an off-the-shelf microprocessor. Both of them offer some programmability. How

ever, a microprocessor is software programmable in the sense that software programs can be compiled and

stored in its program memory for execution. On the other hand, an algorithm-specific IC in programmable

architecture is hardware programmable. Not only can different algorithms be compiled and stored, but the

architecture itself can be tailored for the algorithms. Examples of typical parameters of a programmable

architectureare the word length of the data path, and the depth of the stack, etc. Contrast to software pro

grammable chips that are programmed after the chips are fabricated, the hardwareprogrammable chips are

programmed before the chips are fabricated, i.e. at the design phaseof the chip. However, the fact that the

programmable architecture is subject to customization of the particular algorithm makes the compiler

design more challenging.

In summary, for low sampling rate applications, the programmable architecture is a good choice

because not only the hardware modulesbut the architecture are reused to reduce design difficulties. On the

other hand, dedicated architectures are necessary for high sampling rate applications because only dedi

cated hardware modules canprovide the speed required. In thenext chapter, a description of theCAD sys

tem whichsupports bothtypes of architectures will be given.

CHAPTER 2

The Lagerm CAD System

2.1. The Challenge

The design representation of algorithm-specific ICs can be divided into three categories (by abstrac

tion level): algorithm, architecture and layout. At the algorithm level, the design can be represented by an

application program, or graphically by a signal flow graph. Because this representation describes only the

behavior that the chip shouldimplement without specifying whathardwaremodules to use, it is also called

a behavioral level representation. At the architecture level, the design can be represented by interconnec

tions of hardware modules. It can also be called a structural level representation. At the layout level, the

design is represented by physical IC mask layout. It is the mostdetailed design representation a designer

has to deal with. The hardware modules specified at the structure level are further refined such that their

physical implementation with leafcells is specified. The layout level representation can alsobe called the

physical level.

A good CAD system should allow the user to specify the designs of algorithm-specific ICs at high

levels (behavioral and structural) and generate the physical layout automatically. The productivity of the

designer increases when s/he can use high level representations to describe the designs, an experience we

learned from high-level programming languages.

Thedesign of algorithm-specific ICs requires collaboration of people with expertise in various areas.

Signal processing algorithm developers, VLSI architects and circuit designers is one typical combination.

A CAD system should be easyto useforpeople of all levels of expertise suchthat(1) theycan tryout ideas

easily and (2) they can work together.

The CAD system should provide ameans through which the architectures designed bythe architects

can be used bythe algorithm developers. An algorithm developer can simply design and simulate the algo

rithm in a high-level language, and choose an architecture that is designed to realize the algorithm. The

architecture has tobeparametrizable such that it can betailored according tothe algorithm. For example,

the round-off error characteristics of an algorithm may dictate the word length of thedata path. TheCAD

system should also provide ameans through which the hardware cells designed bythe circuit designers can

beused by the architects. All the architect needs to do is todetermine how and what cells to use inthe

architecture. Basic cells (e.g. adder) and functional blocks (e.g. control unit) can be described in a

parametrized form toencourage re-use and sharing of the leaf cells and functional blocks, and to facilitate

the design of new architectures.

A setof layout generation and simulation tools is needed for quickly evaluating the area and perfor

mance of the architecture. In order to reduce the effort of integrating new design tools in the future, the

CAD system must have a policy to deal with how the toolsareintegrated.

As the design gets increasingly complicated, design representation anddocumentation become more

important. Because the CAD system can carry out the design from either the algorithm or architecture

level, the input descriptions the user specified at those levels are the best design documentations. The

design can be reproduced by giving the same high-level description and the choices of architectures and

circuits.

In summary, the CAD system should be designed based on four considerations: (1) By providing

high-level interfaces such that it can be used by users of different expertise. (2) It facilitates the sharing

and re-using of leaf cells and functional blocks through parameterization. (3) New design tools can be

integrated easily. (4) It should help fast prototyping the user's designs through automatic layout genera

tion. Therefore, in the CAD system described in this thesis four user interfaces are provided: (1) a

behavioral interface for entering algorithms, (2) a structure interface for entering architectures, (3) a cell

interface for entering leaf cells and (4) a tool interface for entering new design tools.

Whether or not to automate the leaf cell design is also an issue to the CAD system design. The

automatic approach is less vulnerable to the design-rule changes, and can produce shortercircuit delays if

timing optimization is performed. It is however less efficient in terms of areaand run-time. The automatic

approach often introduces constraints to the leaf cells and the design tools. In our CAD system, the leaf

cells are manually designed.

12. The Philosophy

In this section I will discuss the approaches and their rationales that are taken in Lagerlll. I will

define the silicon compilation process as the process of translating behavioral level information to struc

tural level information, and silicon assembly process as the process of translating structural level informa

tion to physical layout

The data path synthesis approach4 is often adopted in the silicon compilation process. It tries to

mimic while automate the human designer's design methodology. It investigates the algorithm and finds

out the minimal data path necessary to implement the algorithm. Then it proceeds to schedule the algo

rithm ontothe data path andthereby produces themicrocode. Someconstraints on thenumber of hardware

modules of each type maybe imposed in somesystems, whichmakethe scheduling a bit moredifficult.

However, the data path synthesis approach is not yet able to produce very efficient(in terms of area

and performance) data path architectures for a wide range of applications. The main reason is that there

are simply too many possibilities in architecture design to be captured in one software program. In most

systems, some high-level decisions such as the bus structure, pipelined or parallel, lumped ALU or distri

buted functional modules,are pre-determined, whichreducethe architecture design domain,and make the

problem tractable. Researchers have used rule-based implementations5 for the data path synthesizer butit

was found that a set of rules was only applicableto a limited number ofapplications.

In some high performance applications special i/o considerations have significant impact on the

overall performance of the architecture6 .which are not addressed in mostbehavioral level descriptions.

The data path synthesis approach suffers from the fact that itcan only generate data paths that are similar to

what have been designed. It isnot yetable toinvent new data paths for exotic applications.

In Lagerlll, weuse adata path mapping approach where the data path is manually designed first and

the silicon compilation system maps the behavioral level description onto the pre-defined data path. This

approach results inmore efficient data paths. This approach ismade feasible by providing adedicated data

path module generator that allows easy generation and modification of data paths. For algorithms that have

relatively similar sampling rate and contain the same set of primitive functions (and therefore can exploit

the same data path implementation), the data path mapping approach eliminates the data path synthesis

step. Ontheother hand, for algorithms that need very different data path designs, this data path mapping

approach allows human designers to invent new datapaths.

The implementation of data path mapping calls for a compiler that compiles the high-level behavioral

description into microcode. The challenge of thiscompiler is thatit has to be ableto generate correspond

ing microcode for each manually designed data path. This is donethrough the inputof a code generation

table which essentially describes how each primitive functions in thebehavioral description is implemented

by a sequence of microcode of each data path. Each data path has one corresponding code generation

table. The code generation table in this approach is effectively the same as the rules in a rule-based data

path synthesizer, both describe the data path in an abstract way and allow the behavioral description to

translate into structural level information.

The data path mapping approach is appliedin the following way. First, each pre-designed data path

is picked in turn, and the corresponding microcode will be generated by the compiler with the code genera

tion table of the chosen data path. If none is satisfactory, new data path has to be designed and its code gen

eration table written, and send to the silicon compilation system to generate the microcode. Usually, it is

easy to find out how to modify an old data path to increase the performance for a particularalgorithm.

Even though the above discussion concentrateson the data path design, the same argument applies to

the control unit design as well. In Lagerlll, instead of trying to synthesize the control unit structure, we

map the control flow operation (e.g. branch, if-then-else) in the algorithm into pre-defined control unit

structures. For example, the contents ofFSM and ROM in the control unit design7 can be customized with

thebehavioral description in thesilicon compilation system inLagerm.

In summary, the silicon compilation system in Lagerm maps the behavioral level descriptions to

pre-defined structural designs. This approach leaves room for the user to enter new manually designed data

path and control unit architectures. This approach is the most feasible one under today's situation where

the direct synthesis approach can not produce efficient architectures. It is a necessary first step toward

direct synthesis toget more experiences inarchitectural design through manually design practice.

In the silicon assembly process, there is another issue: whether to let the CAD system or the user

choose the hardware modules and cells in the design. In general, there is more than one cell in the cell

library with the same functionality, each differing from another in, say, driving capability and layout area.

The CAD system can choose the cells based on timing optimization and/or area optimization criteria.

However, thedrawback of this approach is that the CAD system needs tobe re-compiled whenever a new

cellor hardware module is integrated, which increases the maintenance costof the cell library. New ver

sions of the old cells and hardware modules create the same problem.

In Lagerlll, we let the user specify all hardware modules and cells in the whole design hierarchy.

The cell specification includes the cell name and the directory path name. Different versions of the same

cell are stored in different directories.

2J. System Overview

The relationship between the silicon compilation subsystem and the silicon assembly subsystem is

shown in Figure 2.1. To facilitate the reuse of the hardware modules, the structural level description is

parametrized. Therefore, the silicon assembly subsystem requires both the structural description and the

parameter values in order to generate the layout Typical parameters include the word length of the data

path, thecontent of the ROM, etc. The silicon compilation subsystem maps thebehavioral description of

10

the algorithm onto the pre-defined structural design bygenerating the appropriate setof ijarameter values.

The architecture designer can use the silicon assembly subsystem to generate layout, and the algorithm

developer canuse both subsystems togenerate layout from analgorithm given the structural design.

Figure 2.2 shows the block diagram of the silicon compilation subsystem. The behavioral level

description language used inLagerm isSilage9 . Silage isan applicative language designed for describing

the signal flow diagrams easily. A Translator translates the Silage program into a procedural language

similar to C, in which control flow operations are put in. A Compiler compiles the procedural language

into the symbolic microcode based on a code generation table that describes a pre-defined data path. The

symbolic microcode has very general control flow primitives, which can be implemented ina lotofcontrol

units. A Control Generator generates the parameter values for a particular control unit Note that the

structural levelinformation, in the form of a codegeneration table andcontrol unitinformation, contributes

to and affects the silicon compilation subsystem.

structural!

»

BEHAVIORAL

j
SILICON

COMPILATION!

(SC)

PARAMETER VALUES

t
SILICON

ASSEMBLY

(SA)

PHYSICAL

Figure 2.1 Lagerin system overview

11

The silicon compilation subsystem will be described in more details in Chapter 5. '

Figure 2.3 shows the block diagram of the silicon assembly subsystem. It consists of three software

components (the Design Manager, the Layout Generator and the Design Simulator) and a cell library. The

Design Manager translates the parametrized structural description and the parameter values to an internal

database. The Layout Generator integrates a set of module generators. The Layout Generator accesses the

design information from the internal database, and the leaf cell information from the cell library. The

Design Simulator is an event-driven, functional/switch level simulator that allows the user to simulate the

structural description. The Design Simulator accesses the design information from the internal database,

and leaf cell models from the cell library. It is very important to let the Layout Generator and the Design

DATA PATH

INFORMATION

CONTROL

UNIT

INFORMATION

APPLICATIVE

LANGUAGE

TRANSLATOR

PROCEDURAL

LANGUAGE

COMPILER

SYMBOLIC

MICROCODE

CONTROL

GENERATOR

.PARAMETER

VALUES

Figure 12 The silicon compilation subsystem overview

12

Simulator take the same design information input, which eliminates the need of verifying that the two

inputs are the same.

The silicon assembly subsystem will bedescribed inmore details inChapter 3.

Inprevious chapter, it issaid that there are two types ofarchitectures, dedicated and programmable,

for implementing algorithm-specific ICs. Both types ofarchitectures are supported in Lagerm, but in dif

ferent ways. The silicon compilation subsystem isdesigned to be used for programmable architecture and

the silicon assembly subsystem isdesigned to beused for both programmable and dedicated architectures.

This is because (1) The silicon compilation subsystem maps the algorithms onto reuseable pre-defined

architectures, but the dedicated architectures is very hard to reuse. (2)Once thededicated architecture is

described by the structural description, the parameter values are often easy toobtain. (3) The programm

able architecture, because of its nature of simple data path and complicated control, needs the silicon

STRUCTURAL

DESCRIPTION

LAYOUT

GENERATOR

CELL

LAYOUT

LAYOUT

PARAMETER

VALUES

DESIGN

MANAGER

DESIGN

DATABASE

__l

CELL

MODEL

DESIGN

SIMULATOR

Figure 23 The silicon assembly subsystem overview

13

compilation subsystem to help generate thecontrol unit The dedicated architecture has simple control and

hence the silicon compilation subsystem is not critical.

2.4. Related Work

The discussion in this section is organized by a taxonomy of silicon compilation languages (SCL),

which are the input languages to silicon compilation systems.9 Silicon compilation languages can be

divided into two major categories: structural and functional. A structural SCL specifies how a circuit is

constructed. A functional SCL specifies the input/output mapping of a circuit A functional SCL can be

subdivided intotwo groups: architectural and behavioral. A functional SCL is called architectural if it has

predictable structural semantics; otherwise it is abehavioral SCL.

•

There are quite a few general purpose silicon assembly systems developed recently in the CAD

industry. LSI Logic's silicon integrator, VLSI Technology Inc's VTItools, Silicon Compiler Systems's

Genesil and Seattle SiliconTechnology's Concorde are best known examples. The users of thesesystems

usually specify thedesigns using a schematic entry, which can be viewed asa graphical structural descrip

tion. Without the capability of taking behavioral level description as input these systems cannot help the

users in translating an algorithm to a structural design.

The CAD tools in these systems are often developed independently. Therefore, as the number of

CAD tools increases, the tool integration becomes a problem. This issuehasrecently attracted muchatten

tion and research and development efforts in theCAD industry. Moreover, the fact that thecell library is

not parameterizable makes it difficult to maintain thecelllibrary and to share cellmodules among designs.

A few special purpose silicon assembly systems havebeenreported thatwork on architectural level

descriptions. These systems usually have restricted target architectures andapplication domains. The GE

silicon compiler10 , for example, is based on a bit-serial architecture. The MacPitts silicon compiler11 is

based on an architecture that containsa bit-sliceddata pathand a PLA controlunit Furthermore, the input

languages to these systems do not support control flow operations very well. The MacPitts uses an

14

embedded Lisp language as input and the only control flow construct is the Lisp cond function.

The silicon compilation started with abehavioral level description has been ahot research area for a

number of years. A number of systems were proposed, each with different behavioral description

language. The behavioral specifications are divided into three groups in the following discussion:

(1) frequency-domain specification. This behavioral specification describes the frequency-domain behavior

desired in the chip. Typical parameters include the passband ripple, stopband ripple, stopband attenuation,

etc. Based on these specification, a filter issynthesized and its coefficients are optimized for hardware real

ization. The Cathedral-I system was reported12 in which a fixed bit-serial architecture has to be used to

make the architecture mapping and optimization tractable.

(2) machine specification. One important example ofthis kind ofbehavioral specification is the ISPS13

language, on which the CMU-DA4 system isbased. The ISPS language describes the instruction set ofan

architecture and themachine behavior in executing each instruction. TheCMU-DA system synthesizes the

data path that implements the instruction set. Both a iterative algorithmic approach (EMUCS) and a

knowledge-based approach (DAA) have been tried in the CMU-DA system, both neither has yetbeen able

tocomeclose to thehuman designed data paths. Furthermore, thescope of CMU-DA is limited in generat

ingthearchitecture of thedata path, without actually generating thelayout of thedata path.

(3) algorithm specification. In this kind of the behavioral description, aparticular algorithm is specified. It

is lower than the frequency-domain specification because the implementation in terms of algorithm has

been fixed. However, a frequency-domain specification usually is only applicable for a limited range of

applications (e.g. filters). An algorithm specification is different from a machine specification because the

architecture can be tailored by the particular algorithm, which is, however, a very difficult task. For exam

ple, the Lagerl system14 used an assembly level design file as input and the Cathedral-n system5 used the

Silage language. For simplicity, they all assume a fixed architecture onto which the behavioral description

will be mapped.

In summary, even though a lotof silicon assembly and compilation systemshavebeenreported, none

was able to cover the entire design spectrum from behavioral description to layout Silicon assembly

15

systemsare more mature than silicon compilation systems. However, considerable effort is beingdevoted

to make the silicon assembly system open to new CAD tools and cells. Silicon compilation systems have

shown promising progress in the past few years, but significant breakthroughs are still required before the

most efficient architecturecan be generatedgiven an algorithm specification. The Lagerlll system attempts

to do this by providing a structural input and a behavioral input. Because it is developed to support the

design of algorithm-specific ICs, the Lagerm uses an algorithm specification (Silage) as behavioral

description. A unique feature that separate Lagerm silicon compilation subsystem from Lagerl and

Cathedral-n is the structural input with which the user can modify the target architecture. Finally, the

Lagerm silicon assembly system is implemented in an object-oriented environment which makes it easy

for new CAD tools and cells to be integrated.

CHAPTER 3

The Silicon Assembly Subsystem

The Lagerm silicon assemblysubsystem is composedof four parts: an internaldesign database (sec

tion 3.1), a structural interface called the Design Manager (section 3.2), a Layout Generator that integrates

a set of module generation tools (section 3.3) and an event-driven, functional level simulator called the

Design Simulator (section 3.4).

3.1. Internal Design Database

The importance of a consistent internal database in a silicon assembly system will be discussed first

in section 3.1.1. Second, in section 3.1.2 the object-oriented programming paradigm will be described,

which is shown to be a suitable tool for implementing the database. The organization and actual imple

mentation of the design database using Flavors and Lisp will be described in section 3.1.3. The Lisp inter

preter provides a nice interactive environment in which the user can send queries to access the database. In

section 3.1.4, a sorter example is used to show the internal organization of the database by using the Lisp

interpreter. Finally, in section 3.1.5 some comparisons are made between the design database with the

OCT database.

3.1.1. Integration Policy

The integration policy defines how the design information is stored in the internal design database.

In traditional CAD program implementations, each program has its private data structures and the com

munication is throughreading and writing files. The integration policy is the common datastructure that is

shared by all CAD programs, and hence eliminates the file transfer overhead in program communications.

A well-thought integration policy also makes the integration of new CAD programs easier because the

16

17

interface problem isconfined between the new CAD program and the internal design database.

Each CAD program has its own optimal data structures. However, since the integration policy is

shared byall CAD programs, itisdifficult to satisfy them all. If the common data structure were to be con

structed to be the union of all private optimal data structures, then the overall database will be inefficient

due to its enormous size. The integration policy has to compromise and be optimized for the overall per

formance. Therefore, it often depends on the CAD programs involved.

After the integration policy isdefined, the CAD programs can bewritten as a sequence of queries to

the design database to access, process and finally store the information. The productivity of the CAD tool

designer increases when they can implement the CAD programs with high-level queries. The implementa

tiondetail of thedatabase is encapsulated and can be modified without affecting theCAD programs.

In Lagerm, an object-oriented programming system (Flavors15*16) is used to implement the design

database. The object-oriented programming system provides a way of implementing highly modular sys

tems and generic operations, which allows the high-level queries tobeeasily implemented.

3.1.2. Object-oriented System

Aflavor is the fundamental entity inthe Flavors system, which designates aclass of objects that have

common characteristics. A flavor consists of local state and a set of operations (called methods) that can

be performed onit An instance is created by instantiating a flavor. The elements of local state are called

instance variables. The values of the instance variables are different from instance to instance, though

their number and names are the same for all instance of a flavor.

An instance is asked to perform an operation by specifying thegeneric name of theoperation and by

specifying arguments to that operation (a value may be returned). This is also called sending a message.

Associated with eachinstance is a means by which a piece of code (method) canbe found from the name

of anoperation. When a message is sent to an instance, theinstance finds theappropriate method and runs

18

it giving it the supplied arguments.

This paradigm permits the implementation of generic operations. A set of messages is defined,

which specifies what the external behavior must be if an instance is toimplement the message. The mes

sage does not define how the operation is implemented in the instance. This feature allows the implemen

tation detail to be hidden in the instance. A good analogy of themessages is the computer network proto

cols, where the hardware, software and firmware implementations of the protocols is hidden from other

computers in the network.

The terminologies used in Flavors are slightly different from other object-oriented systems. For

example, inSmalltalk17 , a flavor iscalled aclass and an instance iscalled an object. Flavors issupported

ina number of Lisp dialects. In the following, only the Franz Lisp Flavors isdescribed. Several functions

are included here for completeness and ease ofdiscussion, and adetailed description is available15 .

A flavor is defined by the special form

(defflavor flavor-name

((varl [init-varl]) (var2 [init-var2]) ...)

(flavl flav2 ...)

(optionl option2 ...))

where flavor-name is a symbol which is the name of the flavor, varl, var2,... are the names of instance

variables andinit-varl, init-varl,... are their initial values. An initialization is not required but is useful for

assigning default values to the instance variables, optionl, optionl,... are options to the defflavor form.

flavl,flav2,... are thenames of the component flavors which the flavor-name flavor inherits. Theinstance

variables and methods of the component flavors are inherited by theflavor-name flavor. The inheritance

mechanism is one of the major differences between Flavors and other object-oriented programming sys

tems. In Smalltalk, for instance, a class canonly inherit from one parent class (called superclass). There

fore, the only possible ways to modify an existing class are by adding additional instance variables, by

adding additional methods, or by shadowing (replacing) existing methods. Because of the strict hierarchy

19

among classes, this scheme cannot handle orthogonal attributes in amodular form. When there are several

features that need to be combined in a pick-and-choose fashion, the single-superclass scheme becomes

hard to use.

In Flavors, any flavor can inherit more than one component flavors, whose order is important in

determining which method to inherit if there are more than one defined in the component flavors. The fol

lowing flavor organization conventions are recommended. A base flavor isa flavor that defines awhole

family ofrelated flavors, all ofwhich have that base flavor as acomponent Amix-in flavor is aflavor that

defines one particular feature ofan object A mix-in flavor cannot beinstantiated, because itisnot acom

plete description. Ausable flavor can be constructed by choosing the mix-ins for the desired characteristics

and combining them,along withtheappropriate base flavor.

An instance can be instantiatedby the special form

(make-instance 'flavor-name [init-option value] ...)

A method is defined by the special form

(defmethod (flavor-name message-name) argument-list

forml form2 ...)

where flavor-name is the name of the flavor in which the message isdefined. The name of the message is

specified bythe symbol message-name. The message-name has to be aLisp keyword (which starts with a

":")• argument-list is a list of auxiliary variables used by the method, forml, forml,... are the method

body.

A messageis sent to an instance by the special form

(send instance message-name argument-list)

where instance is the receiving instance to which the message message-name and the argument-list are

sent A message can be handled by the instance only if the appropriate method has been defined for the

instance by a defmethod, otherwise it results in an error.

20

3.1J. Design Database Implementation

In an ICdesign system, wefind thatthemost important objects are terminals, nets andcells, which

are defined to be the base flavors in the design database. Theirinstance variables are defined in Table3.1

to 3.3. Some instance variables used by the Design Simulator willbe discussed later. A cell x is said to be

the sub-cellof a cell X if X contains x. X is called theparent-cell of x. The notions of the parent-cell and

thesub-cell are useful in a hierarchical design system, which allows us to focus thediscussion on one level.

The generic-parameter-list stores a list of parameter names by which thecell is parametrized. The

instance-parameter-list stores a listof parameter name andvalue pairs, which is obtained bycombining the

parameter names with theinput parameter values through a parameter passing mechanism (see section 3.2).

Forexample, suppose a cell is parametrized by two parameters, a and b, then thegeneric-parameter-list of

instance variable brief descriotion

generic-name flavor name

instance-name instance name

layout-generator type of layout generator used

sub-cell-list sub-cells described in sdl

instance-sub-cell-list list of instantiated sub-cells

generic-parameter-list list of parameter declarations
instance-parameter-list list of parameter definitions

generic-terminal-list list of formal terminals

instance-terminal-list list of instantiated terminals

VGC-terminal-list list of Vdd, GND and clock terminals

net-list net-list described in sdl

instance-net-list list of instantiated nets

generic-equivalent-list list of lists of equiv terminals

generic-feed-thru-list list of lists of feed-thru terminals

xbot minimum x coordinate

ybot minimum y coordinate

xtop maximum x coordinate

ytop maximum y coordinate
cell-number cell enumeration

sim-list simulation model in a list

sim-level simulation level

geometric-constraint-list list of geometric constraints

Table 3.1 Instance variables of the cell flavor

21

a cell instance is (a b) while the instance-parameter-list is ((a 2) (b 5)).

The three most important instance variables of the cell flavor are (1) instance-sub-cell-list which

contains a list of sub-cell instances, (2) instance-net-list which contains a list of net instances and (3)

instance-terminal-list which contains a list of terminal instances. This information can be used to traverse

the whole design hierarchy. The instance variable instance-terminal-list contains only the terminals that

are defined in thestructural descriptions. Thespecial terminals likeVdd, GNDandclockterminals arenot

defined in the structural descriptions. Instead, they are created as a result of the layout generation. The

special terminals are storedin VGC-terminal-list.

instance variable brief descriDtion

side side which terminal is on

name terminal name

index bit number in a bus

coord terminal coordinate

layer layer which terminal is on
net-number number of net which terminal is on

net-name name of net which terminal is on

inward-net-name name of net in lower level which terminal is on

cell-name name of cell which terminal is in

function function definition for simulation

Table 3.2 Instance variables of the terminal flavor

instance variable brief descriotion

name net name

number net number

connect-list list of (cell terminal)'s on the net

fanin-list list of fan-in nets for simulation

fanout-list list of fan-out nets for simulation

state Forced,HZ,Weak for simulation

value 1.0.X value for simulation
driven-cell-list list of driven cells for simulation

driving-cell-list list of driving cells for simulation

Table 3.3 Instance variables of the net flavor

22

From the terminal instance t, the net instance that t is on can be readily obtained by the net-name

instance variable of t. From the net instance n, in order to find out whether or not a particular terminal

instance is on n, the connect-listinstance variable of n can be searched. The information can sometimes be

retrieved in morethan one approach for efficiency. For example, if we wantto find out all the terminals in

the sub-cells that are connected to a particular terminal t in the parent-cell p, we can either start from the

instance-net-list of p to search all terminals of the sub-cells that are in the same connect-list thatt is in, or

we can start with the instance-sub-cell-list of p to get all the terminals in each sub-cell, which have the

same net-number as t.

The integration policy is essentially howthe structural information is organized usingthe cell, termi

nalandnet flavors. Each CAD tool designer needs only to understand the relationship among them to be

able to access the structural information efficiently. In the next section, a small example is given to illus

trate the design database.

3.1.4. An Example

A typical design may consist of tens or hundreds of instances (of cell, terminal or net flavors).

Therefore, it is crucial to get the correct instance efficiently. Due to the hierarchical organization of these

instances it is possible to reach every instance in the hierarchy by traversing up and down the hierarchy and

by exploiting the integration policy. However, this is not efficient because it involves considerable list

searching.

Another approach is to give every instancea unique name. Since a name can be used as a pointer to

the instance in Lisp, we can get to any instance by its unique name. The naming convention is to concaten

ate the instance names of the parent-cell of an instancewith the instancename of the cell, net or terminal

instance. To increase readability, special characters are insertedbetween every two instance names. The

character "-" is used to concatenate a cell; the character "." is used to concatenate a terminal; the character

"@" is used to concatenate a net; the characters "[" and T are used to delimit an index number. For exam-

23

pies,

sorter-pr-mux

refers to the mux cell of the pr cell of the sorter cell. Sorter is the root cell in the structural hierarchy.

sorter@ctrlnet

refers to the ctrlnet net of the root cell.

sorter-pr.in[0]

refers to the in terminal (bit 0 in the bus) of the pr cell of the root cell. Note that the terminals and the nets

can only appear at the end; they cannot be the ancestors of any instances.

Now let us consider the example depicted in Figure 3.1, where the cell names are shown with bold

face, net names with Italic and terminal names with Roman fonts. The root of the design hierarchy i»

MUX

REG

PR

oat

-9-

«rf

SORTER

Ctrl
cui II _.., U

lull etrhut

inl

nn[0]
<^-«l

tn2lh
itvutO

Mt3
<PUU

iiutttl

M* ~ti *

Figure 3.1 Sorter example

PADS

n«

41 b

He

1ld

24

sorter, which contains two sub-cells, sorter-pr and sorter-pads. Sorter-pr has two sub-cells, sorter-pr-mux

and sorter-pr-reg. After the design database is created with the Design Manager by translating the struc

tural description, the following Lisp queries can beused to access the information. The "=>" is theFranz

Lisp prompt sign. The queries are shown in bold-face. The returned values (returned by evaluating the

queries) are found next tothe queries. Aninstance inFlavors isidentified by its flavor name and aunique

ID(e.g.#<prll52884>).

=>(send sorter :instance-sub-cell-list)

(#<pads 1153436>#<pr1152884>)

=> (send sorter :instance-net-list)

(#<net 1153900> #<net 1154140> #<net 1154192> #<net 1154244>)

=> (send sorter :instance-terminal-list)

nil

The values of the instance variables can be accessedexternallyby sending messages to the instance.

In this case, themessage name is thesame asthe instance variable name with thecharacter ":" astheprefix

. This effectively shields the instance variables from the external world. If the instance variables are

changed later, the CAD programs remain unaffected if there are new methods defined for the messages.

For example, if the instance variables xtop, xbot, ytop and ybot are changed to xdim, xbot, ydim and ybot,

thenthe messages :xtop and:ytop canstillbe handled by the following methods

(defmethod (cell :xtop) ()(+ xbot xdim))

(defmethod (cell ytop) () (+ ybot ydim))

and theCAD programs are unaffected. Within themethod body, aninstance variable can be accessed sim

ply by providing the name. Sometimes the notion of self is handy, which allows an instance to refer to

itself. For instance, the above methods can also be written as

(defmethod (cell :xtop)()(+ (send-self rxbot) (send-self :xdim)))

25

(defmethod (cell ytop) () (+ (send-self :ybot) (send-self :ydim)))

Note that the instance-net-list of sorter contains the nets between sorter-pr and sorter-pads. The

instance-terminal-list contains the terminals on the perimeter which, for the case of sorter, is null. The

instance-sub-cell-list shows that there are two instances in the list and if we evaluate the cells sorter-pr

sad sorter-pads as

=> sorter-pr

#<prll52884>

=> sorter-pads

#<padsll53436>

we can verify that they are indeed the sub-cells of sorter by comparing the id's. For readability, queries

can be designed such that they produce names (as defined by the naming convention) instead of instances.

However, creating new queries in the form of methods will dictate the recompilation of the database

software. An alternative is for the user to create his own Lisp functions on top of the primitive set of

queries. Forexample, the printlcell function defined as

(defun printlcell (cell)

(dolist (a (send cell :instance-sub-cell-list))

(format t ""a~%" (send a :instance-name))))

can be used to returnthe names of the sub-cellsgiving the parent-cell. Forexample,

=>(printlcell sorter)

sorter-pads

sorter-pr

nil

Now suppose we start from the terminal instance sorter-pr.in(0J and would like to find out what ter

minals it connects to in its parent-cell and in it sub-cells. We can get the external connection information

26

by the net-name with

=>(send sorter-pr.in\[0\] :net-name)

sorter@innetO

Since "[" and T are special characters in Franz Lisp, a back-slash escape character is used in front of

them. We can find out the terminal instances on the sorter@innetO net by accessing its connect-list

instance variable as

=>(send sorter@innetO :connect-list)

((#<pads 1153436>#<terminal 1154764>) &)

or by using the user-defined printlconn function to get the names of the cell instances and terminal

instances, as

=>(printlconn sorter@innetO)

(sorter-pads b)

(sorter-pr in[0])

nil

whichshowsthatthe in[0] terminal on sorter-pr is connected to theb terminal on sorter-pads. However, if

we insert the (send sorter-pr.in[0] :net-name) query into the (send sorter@innetO :connect-list) query

directly, we will get an error.

=>(send (send sorter-prJn\[0\] :net-name) :connect-list)

Error funcall: Bad function sorter@innetO

Form: (send-(send lsorter-pr.in[0]l :net-name) :connect-list)

c{l)

This is because (send sorter-pr.in\[0\] :net-name) returns the name instead of the flavor instance thatis

required for the query. The fix is to insert an additional evaluation step as

27

=>(send (eval (send sorter-pr.in[0] :net-name)) :connect-Iist)

((#<pads 1153436> #<terminal 1154764>) &)

The function symbol-value can alsobe used in placeof eval.

The internal net that sorter-pr.in[0] connectsto can be found by the inward-net-name instancevari

able of sorter-prJn[0]. Using the printlconn function, it is shown that the inl terminal of the sorter-pr-

mux cell is connected with sorter-pr.in[0].

=> (printlconn (symbol-value (send sorter-pr.in[0]:inward-net-name)))

(sorter-pr in[0])

(sorter-pr-mux inl)

nil

Another Lisp query that often comes handy is the describe function, which takes an instanceas argument

and returns the values of all the instance variables. For a list of generic Lisp query functions, the reader is

referred to theFranz Lispmanual.15

All the queries above are used to access the information in the design database. The queries to store

information can be formed by concatenating the string ":set-" to the instance variable names. Forexample,

the following query store 0 to the xbot instance variable of sorter. Note that this query has an argument

=> (send sorter :xbot)

nil

=> (send sorter :set-xbot 0)

0

=> (send sorter :xbot)

0

28

This example shows that design information can be accessed and stored by issuing Lisp queries in

the form of message passing. This mechanism allows easy access to thedesign database whilekeeping the

implementation detail of the design database independent of theCAD programs.

3.1.5. Comparison with the OCT Database

The design database was developed in parallel with the OCT database project18 . In this section,

some comparisons between them are presented.

First the instantiation scheme of the two systems are different In Lagerm, an instance is instan

tiated with all of its parameter expressions evaluated. Instances of the same flavor description canbe dif

ferent due to different parametrizations. In OCT, the masters (the counterpart of flavors) are not

parametrized. All instances of the samemaster are thesame except theid's. Therefore, a 3x3 PLA is a dif

ferent master from a 4x4 PLA in OCT, while in Lagerm they are two instances of the same PLA flavor

withdifferent parameter values. It is a trade-off between run-time andstorage space. The Lagerm scheme

consumes more run-time for evaluating the parameter expressions during instantiation; however, it allows

more economic cell library and design database.

The integration policy in Lagerm corresponds to the symbolic policy in the OCT database. In

Lagerm, the physical layout is stored in Magic19 format and hence nophysical policy is developed. The

structural description language can be thought of as the textual form of a schematic policy. For the sym

bolic policy, there are noticeable differences between Lagerm and OCT. Forexample, In Lagerlll a net

namecanbe readily obtained from the terminal instance with the :net-name message. In OCT, a generator

has to be used to searchthe net name given a terminalinstance. In OCT, the actual terminals (terminals on

the sub-cells) need not to be instantiated explicitly, whereas they do in Lagerm because of the possible

variations from instance to instance. Nevertheless, a link has been implemented to generate an OCT data

base with symbolic viewtype from the design database of Lagerlll, which makes it possible to exploit the

CAD tools attached to OCT.

29

Other differences are listed below. In Lagerm, the layout generator information is stored as an

instance variable of the cell flavor in order to perform the layout generation automatically. In OCT,a shell

script isusually needed tomanage the layout generation process. OCTtreats Supply and Ground terminals

thesame wayasother signal terminals. Therefore Supply and Ground are also considered as formal termi

nals,which means that the user has to specify the clustering of the Supply and Ground nets. Li Lagerm,

the Supply and Ground terminals are defined after the layout generation and hence they are notdefined in

the structural descriptions. OCThas the advantage that the database is non-volatile. The design database

in Lagerm is onlyin themain memory without having aback-up image in the secondary memory, which

makes it impossible to recover if the program crashes. OCT also has a powerful property set which pro

vides an easy wayto introduce new attributes. OCT uses full path names and Lagerm uses a special path

search mechanism to direct the searching of remote files.

32, The Design Manager

The Design Manager is responsible for translating the structural descriptions to the design database,

which was described in section 3.1. In this section, the syntaxand the semantics of the structural descrip

tionlanguage are described first which is followed by thedescription of the implementation of the Design

Manager.

3.2.1. Structural Description Language

A structural description language (sdl) file is used to describe the structure (cell hierarchy, intercon

nection, etc.) of a cell. Sdl files are inputs to the Design Manager, the structural interface program of

Lagerm. The cell-name.sdl file specifies the relationship between the cell cell-name and its sub-cells,

which are described by other sdl files. To implement an architecture, a set of sdl files is required. The

Design Manager provides a path mechanism thatallowsusinguser-specified sdl files alongwith library sdl

files. Sdl files can be parameterized to facilitate the re-useof library sdl files.

30

A sdl file includes 7 sections, the order of which is not critical. Each section is recognized by a key

word. Layout-generator, parent-cell, sub-cells, net, geometric-constraint-list, sim-list and lisp-

function are the keywords for the 7 sections. The sdl file is written in a lisp-like format; each section is

composed of one or more lists. A list has zero or more elements, each of which can be a lists itself,

enclosed by a pair of parentheses. The first element of the list in each section is the corresponding key

word of the section.

1. Layout-generator section

The layout-generator section is a list with two elements. The first element is the keyword layout-

generator and the second element is the name of thelayout generator. At thismoment six layout genera

tors (TimLager, dpc, Flint, Padroute, stdcell and mosaico) can be used.

Example:

(layout-generator TimLager)

2. Parent-cell section

Theparent-cell section hasonelistof 3 elements. Thesecond element is thename of theparent cell,

which has to be the same as cell-name (the name of the sdl file). The third element is a list whose first ele

ment is the keyword parameters, and the rest of the list is a number of parameter declarations that

parameterize the parent cell.

Example:

(parent-cell rom (parameters row column))

3. Sub-cells section

The sub-cells section is one list of the keyword sub-cells, followed by n sub-cell definitions where n

is the number of sub-cells in the parent cell. Each sub-cell definition is a list of 4 elements: its generic

name, its instance name, a list of parameter definitions and an optional flag-expression. Hie generic name

specifies the name of the sdl file where the sub-cell is defined. The instance name is used to refer to the

31

sub-cell in the sdl file. If more than one instance of the samegeneric sub-cellareused, then theirinstance

names can be used to distinguish them.

The first element in the parameter definition listis thekeyword parameters, witheach following ele

ment of the form (parameter expression). The result of evaluating the expression defines the value of the

parameter. The expression is a Lisp expression constructed by primitive Lisp functions and/or user-

defined Lisp functions (see lisp-function section), which returns an integer, a literal symbol oran array of

strings (in this case theparameter isa truth table). Theflag-expression is used todecide whether to include

the specific instance in the sub-cell listof the parent-cell. Ifflag-expression is evaluated into a non-zero

value (default), then the instance is included; otherwise it is removed. If the instance is removed then all

associated nets and terminals are removed as well.

Forexample,an instance decl of the generic rom-decoder cell beinga sub-cell of the parent cell rom

can be represented by

(sub-cells

(rom-decoder decl (parameters (row row) (column (/ column2))))

... (other sub-cells))

From theexample, we seethat the rom-decoder has two parameters rowand column, (which are defined in

rom-decoder.sdl). In the instance of decl, the value of row is the same as the value of row in the parent

cell (rom), andthe valueof column is the valueof column in the parent cell dividedby 2. The combination

of parameter declaration (in the parent-cell section) and parameter definition (in the sub-cell section) pro

vide a mechanism for parametrizing the design with very few parameters. Note that since thereis noflag-

expression field in the definitionthe sub-cell decl is included.

4. Net section

The net section consists of one or more lists, each of which contains 3 or 4 elements. The first ele

ment in the list is the keyword net. The secondelement is the net name. The third element is an optional

bus-expression which, if present evaluates into the widthof the net (or, the number of nets);otherwiseone

32

net is included. If the width is zero, the net is removed. The lastelement of the net definition is a connec

tivity list that is used to specify the connectivity. Each element in the connectivity list is a terminal

definition. Each terminal definition defines a terminal on thenet.

A terminal definition can be used to refer to one ormore terminals, depending on the width of the

net The terminal definition isa listof 2,3 or 4 elements. The first element is the instance name of the cell

where theterminal ison,orthe keyword parent if the terminal isontheparent cell. The second element is

the name of the terminal. The third element is an optional starting index and the fourth element is an

optional increment. The starting index and increment are useful when the terminal definition is to define

theconnection of a bus. The increment elementcan be present onlyif thewidth of the net is greater than 1.

The increment is 1 by default, and the default value of starting index is0 if the width of the netis greater

than 1. If the widthof the net is 1, then the terminal is not indexed. Note that the increment and the start

ing index can, in general, be Lisp expressions.

For examples,

(net netl ((parentx) (decl out) (decl in 3)))

shows that the out terminal and the in[3] terminal of the sub-cell decl connect to the x terminal of the

parent cell on thenet netl; The width ofnetl is 1 since there is no bus-expression.

(net net2 row ((decl inl (- row 1) -1) (otherout)))

shows the inl bus of the sub-cell decl connects to the out bus of the sub-cell other in bit-reversed order.

The width of net2 is equal to theparameter value of row. Ned can beviewed asa shorthand of the follow

ing set of net definitions:

(net net2[0] ((decl inl (- row 1)) (other out 0)))

(net net2[l] ((decl inl (- row 2)) (other out 1)))

(net net[row-l] ((decl in 0) (other out (- row 1))))

33

A special syntax iscreated for describing the connection ofbuses toa single terminal. The third ele

ment in thiscase is thekeyword mergeNet. Thefourth element in thenetdefinition is again thelistof ter

minal definitions except that the first terminal definition defines only 1terminal (Le. no increment field) and

therest havea mandatory thirdand fourth elements forstarting index and ending index respectively.

For example,

(net net3 mergeNet ((decl cin) (othercin 0 6 2)))

connects the cin terminal of the sub-cell decl and the cin[0J, cin[2], cin[4] and cin[6J terminals of the

sub-cell other on net3.

The generic terminals (the terminals on the boundary) of the parent cell are implicitly defined inthe

net section through the parent keyword. Forcompleteness, feed-through terminals and equivalent termi

nals can bedefined by the net constructs also. Ifmore than one generic terminal with noinstance terminal

(the terminals of the sub-cell instances) appear inthe connectivity list, the generic terminals in the listcon

stitute a feed-through. If more than one generic terminal with at least one instance terminal appear in the

connectivity list, thegeneric terminals in thelistare said tobeequivalent.

5. Geometric-constraint-list section

Stricdy speaking, geometric constraints, which areproperties in the layout aspect of the parent cell,

should notbe considered as partof thestructures of theparent cell. They areputtogether in thesame sdl

file for convenience. The geometric constraint definition is a list whose first element is the keyword

geometric-constraint-list. Each following element deals with oneaspect of geometric constraints. Atthis

moment only the side information of the generic terminals can be specified. Others like the aspect ratio

and theplacement information are under consideration.

The terminal aspectof the geometric constraints is specified by a list whose first element is the key

word terminal. Each following elementis in turna listof 2 elements: the firstbeing the nameof the termi

nal; the secondbeinga list whose first element is thekeyword side, followed by the sidespecification (top,

34

bottom, right or left, or a Lisp expression that returns one of the four side names), and a real number

between0 and 1 which specifies the location of the terminals.

For example,

(geometric-constraint-list

(terminal

(in (side top 0.65))

(out (side right 0.2))

))

At this momentthere is no construct to specify the sideinformation of a bus except to list them one at a

time.

6. Sim-list section

Sim-list is used to describe the simulation model of the parent cell, which is used by the Design

Simulator. Sim-list is a list of at most 5 elements. The first element is the keyword sim-list. The second

element is a list of thekeyword in-term and all the input terminals/buses. A bus is specified by a listof

name and expression that evaluates to the width of the bus. Thethird element in thesim-list is a listof the

keyword out-term followed by all the output terminals/buses. The fourth element is a listof thekeyword

local and all the local states. If there are no input terminals/buses or local states, then the corresponding

elementcanbe absent The fifthand lastelement is a listof the keyword function followedby a numberof

function definitions.

Each output terminal/bus and local state should have afunction definition. Each function definition is

a list of the nameof the outputterminal/bus or the local state, anda Lispexpression whichevaluates to the

simulation resultof the corresponding outputor local state. In the Lisp expression, one can use the names

of the input terminals/buses and local states and output terminals/buses to refer to the values carried by

those terminals/buses/local states, and the parametername to refer to the parameter values.

35

For example, let us create a sim-listof an inverter,

(sim-list

(in-term in)

(out-term out)

(function

(out (Xlognot in))

))

where Xlognot is a built-in function in the Design Manager which implements l's complement Note that

the Design Simulator works on strings instead of integers.

7. Lisp-function section

Oftena Lisp expression is used more than once in a sdl file, in which case a lisp-function definition

can be used to avoid entering the Lisp expression over and over again. The lisp-function sectionconsists

of one or more lists, each of which starts with thekeywordlisp-function and is followedby a Lisp function

definition (e.g. defun).

For example,

(lisp-function (defun add2 (n)

(addn2)))

322. An Example

The set of sdl files for the sorterexample in previous section is shown in Figure 32 to 3.6.

The way the Design Manager is invoked is illustrated in figure 3.7. The user manual of the Design

Manager is listed in Appendix A. Note that only the root sdl file name is required because the rest can be

inferred recursively from the generic names of the sub-cells.

(layout-generatorFlint)

(parent-cell sorter (parameter a))

(sub-cells
(pr pr (parameter (b (+ a 2))))
(pads pads))

(net ctrlnet ((pads a) (pr Ctrl)))
(net innetO ((pads b) (pr in 0)))
(net innetl ((pads c) (pr in 1)))
(net outnet ((pads d) (pr out)))

Figure 3.2 sorter^dl

Gayout-generatorFlint)

(parent-cell pr (parameterb))

(sub-cells
(mux mux)
(regreg))

(net netl ((parent Ctrl) (mux Ctrl)))
(net net2 ((parent in 0) (mux inl)))
(net net3 ((parent in 1) (mux in2)))
(net net4 ((mux out) (reg in)))
(net net5 ((reg out) (parent out)))

Figure 3J pr^dl

(layout-generator leafcell)

(parent-cell pads)

(net a ((parent a)))
(net b ((parent b)))
(net c ((parent c)))
(net d ((parent d)))

Figure 3.4 pads^dl

36

(layout-generator leafcell)

(parent-cell mux)

(net Ctrl ((parent Ctrl)))
(net inl ((parent inl)))
(net in2 ((parent in2)))
(net out ((parent out)))

Figure 3.5 miutsdl

(layout-generator leafcell)

(parent-cell reg)

(net in ((parent in)))
(net out ((parentout)))

Figure 3.6 reg.sdl

37

yosemite 8» DM_new -I
=>(DM)
Please enter root type (generic name): sorter
Please enter root name (instance name): sorter

Please enter parameter file name (if none enter N): N
Pleaseenter parameter value of a in cell sorter(root): 4
Parametervalues incorporatedin file sorter.par.
start creating structures

Now if you want to continue with layout generation
Type (LG) to the coming prompt
Or type (DSIM) to continue with event-driven simulation
nil

=>

Figure 3.7 Invoking the Design Manager

The -I option specifies the interactive mode. The parameter values can be entered one by one

interactively or through a file. In this example, there is only one parameter value to be entered. In

sortersdl, the parameter b of the sub-cell pr is defined to be (a + 2). Therefore, when the user enters 4 as

the value of the parametera of sorter, the parameter value of b in sorter-pr will be 6. In general, the user

only needs to enter the parametervalues of the root cell, and the parameter values of all parameters in the

design hierarchy will be evaluated accordingly. After the Design Manager finishes and new Lisp prompt

38

(=>) appears, the designdatabase is created. The usercan access the design database with the queries dis

cussedin previoussection,or proceed to perform layoutgeneration or simulation. A log file with the name

rooz-dnUog is created which contains verbose information about the status of the Design Manager opera

tion. All the errorand warning messages detected in the sdl filesarealso reportedin the log file.

The sdl files can be either in the working directory or in some remote librarydirectories. A user uses

the .lager file to specify where the Design Manager looks to find the sdl files. The Design Manager first

attempts to find the .lager file in the working directory. If it fails to find onethere, thenthe home directory

is searched for a .lager file. The .lager file can be used by any tools in Lagerm to specify library paths.

The .lager file may consist of any number of lists, each of which takes the form

(keyword element [elements...])

where the keyword specifies an attribute of a tool that makes use of the list Normally each element in the

list is a directory path (absolute or relative). Note that the order of the elements determines the priority.

For example, the Design Manager has only one attributedm.sdlfile in the .lager file. The user can use the

.lager file to specify the directory paths that the Design Manager needs to search other than the working

directory. Comments in the .lager file can be entered in the same way as in the sdl file. An .lager file

example is shown in Figure 3.8.

3.23. The Implementation of the Design Manager

The Design Manager is basically implemented by one generic operation: the create-structures mes

sage. The create-structure method is implemented in the cell flavor because it is a generic operation com

mon to all cell instances. The main program of the Design Manager can be constructed by the 3-line

pseudo code:

(open-parse-sdl-file root)

(parameter-value-binding root)

39

(dm^dlfile
"lager/Lagerlll/processor/sdl
lager/Lagerin/lib/stdcell
lager/Lagerm/lib/dpc/leafcells)

(TimLager.olager/UgerIIl/Ub/TimI^ger/scpads/scpadsl.25)

(TimLager.leafcells Tager/Lagerm/libATimLager/scpads/scpadsl .25/leafcells)

(DPC.cd Tager/Lagerin/lib/dpc/leafcells)

(DPC.mag lager/Lagerm/lib/dpc/leafcells)

(bin lager/Lagerm/bin)

(octbin "cad/bin /usr5/octtools/bin)

(stdcellJeafcelllager/Lagerlll/lib/stdcell)

(Padroute.hdl "bilbo/moslib/frames)

Figure 3.8 A .lager file example

(send root xreate-structures)

The open-parse-sdl-file function expects oneargument, which is a sdl file namewithout the .sdlsuffix. In

the case of the Design Manager main program, theroot sdl file is specified by the user. The sdl file willbe

searched first in the working directory. If not found, then the library paths specified by the dm.sdlfile list in

the .lager file will be searched in order. The open-parse-sdl-file function creates an instance of the rootand

fills in the instancevariables with valuesobtained from parsing the sdl file. Since the sdl file is of Lisp syn

tax, the parsing is reduced to (1) reading the lists in the sdl file and (2) recognizing each list by the first

symbol in the list (e.g. parent-cell, net etc.). These listsarestored in the instance variables of the instance

of root for further processingby the create-structures method.

The parameter-value-binding function bindsthe parameter valuesdefined in the user-defined param

eter value file to the parameters of the root. The parameter value file containsa number of lists of the form

(parameter-name parameter-value)

where the parameter-value can be a number, a symbol-name or a truthtable. If any parameter is defined in

the parameter value filebut not in the parameter list of the root sdl file, then a message

40

Warning: unused parameter: parameter-name.

is reported to the user. On the other hand, if any parameter is defined in the root sdl file but not in the

parametervalue file, the Design Manager will ask the user to enter its value,by

Please enter parameter value tor parameter-name:

As a result of theparameter-value-binding function, the valueof the instance-parameter-list instance vari

able is created, which consists of a number of (parameter-name parameter-value) pairs. Each parameter-

name is made to be an instance variable too, which makes it possible to direcdy access the parameter

values. Otherwise, the instance-parameter-list instance variable would have to be searched given a

parameter-name for its parameter value.

The create-structures method is defined as the following:

(defmethod (cell :create-structures) 0

(send-self :instantiate-sub-cel]s)

(send-self :instantiate-nets)

(send-self :instantiate-terminal-lists)

(dolist (a (send-self :instance-sub-cell-list))

(send a xreate-structures)))

The create-structures is a recursive method. It first creates all the sub-cell instances, net instances and ter

minal instances, and then send the create-stnicture message to its sub-cell instances. It is a top-down

implementation since the structures of the parent-cell are always created before those of the sub-cells are.

The three methods, which are also defined for the cell flavor, instantiate-sub-cells, instance-nets and

instance-terminal-lists, serve to create the instance-sub-cell-list, instance-net-list and instance-terminal-list

instance variables. In doing so, the three methods make use of the instance variables deposited by the

open-parse-sdl-file function.

41

The instantiate-sub-cells method works on the sub-cells section in the sdl file.' It then calls the

open-parse-sdl-file function to access and parse the sdl files of the sub-cells. It calls a evaluate-expr func

tion to evaluate the parameter passing expressions in the sub-cell definitions, giving all .the parameter

values of the parent-cell. The parameters of the sub-cells are made to be instance variables of the sub-cell

instances too.

The instantiate-nets method works on the net section in the sdl file. Each net declaration can gen

erate zero or more net instances depending upon the valueof the parameter in the net The instantiate-nets

method creates a connect-list instance variable for each of the net instance, which consists of a number of

(cell-instance terminal-instance) pairs. The cell-instance in the connect-list instance variable canbe either

the parent cell instance or anyof the sub-cell instances. The terminal instances of the sub-cells are instan

tiated by the instantiate-nets methodof the parent-cell except forthe root cell, where the terminal instances

areinstantiated by the root itself. Sometimesnot all the terminals in the sub-cellsareused for interconnec

tion, in which case only the used terminalsare instantiated.

The instantiate-terminal-lists method generates the generic-terminal-list instance variableby collect

ing all the terminals of the parent cell defined in the netsection. For verification, the generic-terminal-list

instance variable is compared with the instance-terminal-list instance variable created by the parent cell of

the parent cell. The instance-terminal-list should be a subsetof the generic-terminal-list, which indicates

some generic terminals arenot used for interconnection. On the other hand,if some terminal instances in

the instance-terminal-list are not defined in the generic-terminal-list will cause a warning message. The

instantiate-terminal-lists method also creates the generic-equivalent-list and the generic-feed-thru-list

instance variables. Terminals in the generic^quivalent-list are generiG terminals that are connected inside

the parent cell along with some terminals in the sub-cells. Terminals in the generic-feed-thru-list aregen

eric terminals that are connected inside the parentcell without connecting to any sub-cell terminals.

42

33. The Layout Generator

TheLayout Generator integrates a number of layout generation tools andautomatically generates the

layout In this section, the layout generation tools are described first, followed by thedescriptions of tool

integration andautomatic layout generation. Theuser manual of theLayout Generator is listed in Appen

dix A.

33.1. The Layout Generation Tools

Sixlayout generation tools are currently available in theLagerm silicon assembly subsystem: Tim

Lager, DPC, Wolfe, Flint, Padroute and Mosaico. Brief descriptions of them are included here, and

detailed information can be found in20*18 .

Ideally, all layout generation tools should access the internal database direcdy for design informa

tion. However, some existing tools were written in C and were designed to use files as input and output

TheLayoutGenerator thusprovides an interface routine foreachsuch tool. The interface routine explodes

the internal database to generate the corresponding input file, and store the information from the output

files generated by the tools into the internal database. There are tools that are attached to the OCT data

base, and the LayoutGeneratorprovidesa link to generate the OCTdatabasefrom the internaldesigndata

base.

TimLager is a tiling tool that puts together cells by abutment The cells can be leaf cells or

TimLager-tiled cells. TimLager is normally used to generate RAM, ROM, PLA, The abutment is per

formed according to a C routine that specifies how the cells are placed. The primitive functions used in the

C routine are addup()and addrightf). AddupO initiates a new row of tiled cells and addright() adds a new

cell to the right of the current row. The advantage of the C-routine approach over the personalitymatrix

approach is that a C routine is more expressive than a matrix of symbols. For example, C control constructs

such as for-loop can be exploited. Furthermore, the C routine can be designed to read in parameter values

to generate different cells with the same C routine.

43

TimLager requires apdl file which indicates theparameter values of the cell. The format of thepdl

file is similar to the parameter file required by the Design Manager. TimLager generates a layout file in

eitherKic or Magic format and a hdl file which describes the dimension of the cell and the terminal loca

tions. The C routines and leaf cells should be stored in the cell library and be accessed using the path

mechanism in the .lager file.

DPC (DataPathCompiler) is usedto generate bit-sliced datapaths. The user specifies the intercon

nections of blocks in the form of a sdl file. The blocks are built a priori out of leaf cells of the same func

tionality. Forexample, theadderblock consists ofa number of interleaved adder.even andadder.odd cells.

The actual size of the block depends on the number of bits in the data path as defined by the user as a

parameter value.

The DPCcell library consists of 30-40 leafcellswhich can be classified into three types: arithmetic-

logic cells such as adder and xor cells, storage cells such as scanlatch and scanreg2Port cellsandbuffer-

mux <xMs. Eachcell in general havean evenandan odd instances. Somehavea msbinstance as well. All

leaf cells are of the same height and with the same wellorientation.

Unlike TimLager which abutsleaf cells,DPC performs routing in the data signal direction (within

each bit-slice) and abutment in the control signal direction (between bit-slices). The routing strategy is

described in21 . DPC accesses the internal database direcdyby beinga tighdy-coupled subroutine of the

Layout Generator. DPC produces a Magic layout file.

Wolfe is a standard-cell place and route tool. It is used to generate random logic blocks or state

machines. Standard-cells are placed in rows, and Wolfe tries to find the optimum placement of the

standard-cells to minimize the routingarea betweenthe rows. The user can choose the number of rows and

the number of trials per iteration in the placement state, otherwise default valuesare used. The larger the

number of trials per iteration, the denser the layout and the longer the run-time.

44

The Wolfe cell library contains roughly 50 standard-cells, whichcontains essentially logic gates and

storage elements such as flip-flops. The library cells are in both Magic and OCT physical view formats.

Wolfe takesas inputan OCT symbolic view, which is translated from the internal database by the Layout

Generator. Wolfe generates as outputan OCT symbolic view in which the physical placement of the leaf

cells and the geometric implementations of nets are embedded. A Magic layout file is created from the

OCT physical view.

TimLager, DPC andWolfe are layout generation tools that generate cell modules from leaf cells

direcdy. Flint, Padroute and Mosaico which will be described below, are used to put together the cell

modules and the leaf cells by placement and routing.

Flint is a general purpose placeand route tool. The user has the optionof choosing the cell place

ment channel assignment and global routingarrangements, andFlint takescaseof detailrouting automati

cally. The user interaction is done via a graphical interface implemented on engineering workstations.

User-specified cell placement channel assignment and global routing assignments can be stored for later

use. The cell placement is restricted to slicing structures.

Flint can take two kinds of input specifications: an OCT format and a hdl format The OCT format

contains the symbolic view definition of the parent cell and the physical view definitionsof the sub-cells.

The symbolic view definition is generated from the internal database in a similar way as in theWolfe situa

tion. The physical view definitions of the sub-cells contain only the boundary geometries because Flint

does not utilize the protection frame information to perform any over-the-cell routing. The hdl format

essentially contains the pdl file of the parentcell and hdl files of the sub-cells. These files are stored in a

file system that has similar structureas the design hierarchy. Flint generatedsa Magic or a Kic layout file,

and a OCT physical view or a hdl file depending on the input format used.

Padroute is used to route the chip core to a ring of I/O pads. Pads are divided into four pad groups

which are constructed by TimLager and one pad group is placed on each side of the chip. Padroute

adjusts the dimension of the pad ring which is determined by the chip core dimension and the routing area.

45

It also connects the pad groups to form the padring by extending the pad groups and puttingin corner

pads.

Padroute accepts the OCT or the hdl formats as Flint does except a few minor differences. The

nature of the Padroute problem dictates that there be five sub-cells, namelythe chipcoreandthe four pad

groups. There is one special parameter called fplan required for the sub-cells, which is used to specify

where to put the sub-cells. The fas fplan parameter values are: middle, top, bottom, leftandright. In the

hdl format, all five hdl files can be in the working directoryor be accessed through the path mechanism of

the .lager file.

Mosaico is another general purpose place and route tool. It only takes the OCT format as input

Mosaico tries to obtain the optimum placement automatically by a generic algorithm called simulated

annealing. The trade-offbetween Flint and Mosaico is that Flint takes some user's time to expedite the

layout generation while Mosaico takes much more cpu time but generates the layout automatically. Flint

encourages cell hierarchy in order to reduce the number of cells the user needs to interactwith at any given

level. Mosaico desires that all cells (including pads) bsflat so as to fully exploit the simulated annealing

algorithm. Mosaico requires the user to specify the partitioning of the Supply and Ground nets when there

is more than one Supply and Ground pads. Flint lets the user specify the Supply and Ground routing at the

globalrouting stage and hence the Supply and Groundnets arenot specified in the structural description.

332. Implementation of the Layout Generator

The automatic layout generation can be thought of as a recursive function call. In order to perform

the layout generation of the parent cell, the layout of the sub-cells has to be generated first In the Layout

Generator, the automatic layout generation is implemented using a layout-gen message. The external pro

tocol of the layout-gen message is pretty clean it accesses the size and terminal location information of the

sub-cells and returns the size and terminal location information of parent cell as a result of the layout gen

eration. However, depending upon the layout generation tool involved with each cell, the method of nan-

(defmethod (cell idmtopdl) ()
(prog (port cable cable-temp pin j)

;;;open pdl file

(setq port(outfile (concat (send-self :instance-name) ".pdl")))

;;; printcell instance nameand generic name

(format port"(module(name"a) (type"a)"%" (send-self
:instance-name) (send-self :generic-name))

;;;generate parameter values
;;; the parameter value can be a integer,a symbol or a list (for 2-d
;;; array), the list value is printed differently from the other two

(dolist (a (send-self :instance-parameter-list))
(cond [Oistp (cadr a)) ; list

(patom T port) (patom (cara) port)(terpri port)
(cond [Oistp (caadr a)) (dolist (text (cadr a)) (print-list text port))]
[t (print-list (cadr a) port)])
(patom ")" port) (terpri port)]

[t ; integer or symbol
(patom "(" port) (patom (cara) port) (patom " " port)
(patom (cadra) port) (patom ")" port)(terpri port)]))

(format port") "%")

;;; generate terminal information
;;; including (1) the name (2) the net number (3) the connection

(dolist (a (send-self :instance-terminal-list))
(setq cable-temp(send (symbol-value(senda :net-name)) xonnect-list))
(dolist (pin cable-temp)

(cond [(eq self (car pin))]
[t (setq cable (cons (send (carpin) :instance-name) cable))]))

(setq cable (cons 'cable cable))

;;;actually printing

(format port "(term (name "a) (net "d) "a)"%"
;name

(substring (send a :name) (+2 (string-length (send-self :instance-name))))
;net

(send a :net-number)
;cable
cable))

;;;close pdl file and quit

(close port)))

Figure 3.9 dmtopdl method

46

47

dling the layout-gen message isdifferent In the Flavors system, this is taken care of by the use ofmix-in

flavors.

The implementation of the Layout Generator involves defining seven mix-in flavors: TimLager-

mixin, dpc-mixin, stdcell-mixin, Flint-mixin, Padroute-mixin, mosaico-mixin and leafcell-mixin. Each

mix-in flavor has a method for handling the layout-gen message. The layout-gen method for the leafcell-

mixin, for example, parses the Magic layout file of the leaf cell and returns the size and terminal location

information of the leaf cell. Each cell flavor in thedesign hierarchy inherits the cellbaseflavor (defined in

3.1) and onelayout generation mix-in flavor according to thelayout generation tool used.

The use of mix-in flavors contributes to the software modularity. In the method of any layout gen

eration mix-in flavor, the layoutgeneration of the sub-cells canbe enforced by

(dolist (a (send-self :instance-sub-cell-list))

(send a :layout-gen))

without worrying aboutwhatkind of layoutgenerators areused forthe sub-cells.

New layout generation tools can be integrated very easily by defining new mix-in flavors and new

layout-gen methods. The implementation of theexisting layout generation mix-in flavors and methods will

not be affected. Since the layoutgeneration tools have several common input/output formats such as hdl,

pdl and OCT formats, somegeneric methods such asdmtopdl, dmtohdl, hdltodm, dmtoPhysical, etc. have

been created. These generic methods are defined in the cell base flavor in order to be shared by all cell

instances, no matter which layout generation mix-in flavors they inherits. For example, the dmtopdl

method is shown in Figure 3.9.

The layout-gen method ofTimLager canbe represented by the following pseudocode:

(defmethod (TimLager-mixin :layout-gen) 0

(send-self rdmtopdl)

48

*** exec TimLager ***

(send-self ihdltodm))

where TimLager takes a pdl file as input and generates a hdl file and a layout file. Note that cells gen

erated byTimLager normally do nothavesub-cells.

The LayoutGeneratormainprogram is simply

(send Igroot :layout-gen)

which will send layout-gen message to the sub-cells of the Igroot cell, which will in turn send layout-gen

messages to their sub-cells, and so on. The Igroot may or may not be the same as the root of the entire

design hierarchy, which makes possible to optionally perform layout generation on some part ofthe design.

Adesignflow is implemented which issimilar tothe make program in Unix. The time stamp ofthe

layout file will be checked to determine whether new layout generation needs to be performed. If any of

the three in the following are updated, including (1) the parameter file of the whole design, (2) thesdl file

corresponding tocell Aor (3) any layout files ofthe sub-cells ofcell A, then the layout ofthe cell Aisre

generated; otherwise the layout generated will be bypassed if ithas already been generated. This mechan

ism is particularly useful in the debugging phase in which modifications of the design need to be done

quickly.

3.4. The Design Simulator

The Design Simulator is anevent-driven functional simulator that is used to simulate the functional

correctness of the sdl files. In this section, the functional modeling of the leaf cells and the algorithm and

implementation of the simulator are described. The Design Simulator requires an event file as input and

produces an outputvaluefile, which are described at theendof thissection.

49

3.4.1. Simulator Overview

The circuit under simulation is a network consisting of a number of cells which are interconnected

through nets. The task of the simulation is to calculate the values of certain nets given thevalues of some

input nets. The value of a netcan be 1,0, X ora vector. Logic 1 stands for high voltage. Logic 0 stands

for low voltage. LogicX stands for unknown. To speed up thesimulation, thevalues of a bus(Nnets) can

be stored in a hypothetic net. The value of thehypothetic net is a vector which is theconcatenation of the

values of the N nets. Because the values of some nets in the bus may be X, the value of the hypothetic net

cannotbe represented by aninteger. Also,if we assign thevalue of thehypothetic net to be X whensome

net values in the bus are X, then we lose the information of the values of other nets in the bus.

The valuesarestored as Lisp symbols. For example, to store a logic 1 in the net sorter@innetO anda

logic X in sorter@innetl, we do

(send sorter@innetO:set-value '111)

(send sorter@innetl :set-value 'X)

Note thatthe vertical barsarerequired to turn an integer (orany identifier starting with a digit) to a symbol.

The state of a net describes the dynamic statusof the net A net can be in one of three possibles

states, namelyforced, weakor high-imp. The state ofa net isforced if it drivenby some user input There

fore, the value of the net cannot be changedunless the user input is removed. The state of a net is high-imp

if the net is not driven by any cells, and hence the net shouldretain its previousvalue. The stateof a net is

weak if the net is driven by some cells, and the value of the net is determined by the cells that drives the

net Note that the state of a net is not a static value because the cells can be turned on or turned off (by

clocks, for example), which renders the net to be weak or high-imp.

The basic framework of the Design Simulator is given below. Each output terminal has a function

definition which describes its dependency on input terminals of the same cell. The value of a net can be

calculated by evaluating the functions of all the output terminals connected to the net There is no notion

50

of strength inthe Design Simulator. That is, all the cells are assumed tohave the same driving capability.

Thus, if the functions of twooutput terminals of two cells evaluate todifferent values, then the final value

of the net is logic X regardless of the physical dimension of the cells. When the calculated value of the net

is different from its old value,an event is saidto occurwhichtriggers further nets to be simulated.

The transmission gate is handled ina special way by the Design Simulator. It is special because of

its bidirectional nature which makes its modeling very difficult. In the Design Simulator it is assigned a

special instance variable called IsON which indicates whether the value of the net connected tothe gate ter

minal of the transmission gate isa logic 1 ora logic 0. If the nethas a logic 1 value, then the transmission

gate isONand weconsider the two nets connected tothe source and drain terminals tobeequivalent The

simulation of the two nets is done separately with theeffectof the transmission gate removed, and their

values are compared. If the values are not the same we assign alogic X toboth of them. If the transmis

sion gate if OFF then thetwonets are independent and can hold different values.

3.42. Functional Model

A functional model of a cell is a description of the cell's behavior in terms of its inputand output

relationship. In addition to the input and output terminals, it is convenient to introduce the notion of local

terminals in the functional model to simplify the description. For example, if some output terminal func

tions have a common sub-expression, a local terminal can be defined to havethe common sub-expression

as its function, andhence simplifythedescription by replacing thecommon sub-expression in the functions

of the output terminal by thelocal terminal A local netis defined for each local terminal to store thesimu

lation value. In summary, a functional model of acellcontains an input terminal list an output terminal list

a local terminal list and a function description for eachoutputterminal and local terminal. The function

description of a terminal is essentially a Lisp expression which describes the relationship between the ter

minal with other terminals in the cell.

51

The local terminal can also be used in the functional models of the cells that have internal states. For

example, a local terminal can be defined for the internalnode S of the register cell depicted in Figure3.10.

During <j>i, the value of S will be replaced by the complement of IN. During $2, the value of OUT will be

replaced by the complement of S. However, the local terminal is not the only way to describe internal

states. In memory cells (e.g. RAM, ROM), it will be very inefficient if a local terminals has to be defined

for each memory location, since the initialization of the huge number of internal states is a problem.

One unique feature of the functional models used in the Design Simulator is that the model can be

parametrized. For example, the memory contents of a memory cell is initialized and stored as a parameter

value of the cell by the Design Manager. In addition, the parameter values can be changed as a result of

simulation! This is useful for RAM cell whose memory content may be different after the simulation. The

parameter values of a cell can be accessed in the functional model of the cell by specifying the parameter

name. In the register cell example, the value of S depends on the value of IN. The Design Simulator first

searches IN in the terminal list If it fails to find IN, then the parameter list will be searched. This mechan

ism is powerful and general. However, the side effect is that the name of the parameter cannot be the same

as the terminals if it is used in the model.

The parametrizable functional models are useful when there are buses in the cell. As mentioned in

section 3.4.1, buses are treated as a hypothetic net whose value is a vector that is the result of concatenating

all the values of the nets in the bus. The local net is always a hypothetic net whose bus width is the same as

^ OUT

Figure 3.10 Register cell schematics

52

the buses it connects to. For example, if oneregister instance has a 5-bit IN bus with IN[0]=1, IN[1]=0,

IN[2]=X, IN[3]=X andIN[4]=0, thenwhen fo goes high,the value of thelocal net S willbe 11XX101.

A couple of examples are now presented. In Figure 3.11, the sim-list of theregister cell is shown. IN

andOUT aredefined to be busesofwidthwidth, which is a parameter of the register cell,by specifying (IN

width) and (OUT width) respectively. Xlogout is abuilt-in function of theDesign Simulator that is similar

to Franz Lispbit-wise inversion function, lognot, except thatit can handle X value aswell.

Figure 3.12 shows the sim-list of an adder cell, which adds INA, INB and CARRYIN to produce

OUTand CARRYOUT. Inorder to speed upthecomputation, thebinary2decimal built-in function is used

to convert symbol values of INA and INB to decimal values, and thedecima12binary function is used to

convert the decimal result toa symbol tobe stored inOUT. (Nallone N) returns the value 2N - 1.

The functional model of a cell is contained in the sdl file of the cell for convenience. First all the

descriptions of a cell are stored in the same file. Second, theuser can check for discrepancy between the

terminal lists defined in the model (sim-list) and that in the net list

(sim-list function
(in-term (IN width) 4>i &)
(out-term (OUT width))
(local S)
(function
(OUT
(if (eq <>2 *l 11) then (Xlognot S)
elseif (eq <|>2 '10 0 then 'HZ
else'X))

(S
(if (eq <>i *l 10 then (Xlognot IN)
elseif (eq <>i M0 0 then 'HZ
else'X))

))

Figure 3.11 Functional model of register cell

(sim-list function
(in-term (INA N) (INB N) CARRYIN)
(out-term (OUT N) CARRYOUT)
(function

(OUT
(prog(x)

(cond ((or (eq INA 'X) (eqINB 'X) (eqCIN *X)) (return 'X)))

(setqx (add (binary2decimal INA) (binary2decimal INB)
(binary2decimal CARRYIN)))

(return (decimal2binary x N))
))

(CARRYOUT
(prog(x)

(cond((or(eq INA *X) (eq INB »X) (eqCIN 'X)) (return *X)))

(setq x (add (binary2decimal INA) (binary2decimal INB)
(binary2decimal CARRYIN)))

(if (> x (Nallone N)) then (return M11) else (return M01))
))

))

Figure 3.12 Functional model for adder cell

3.43. Implementation of the Design Simulator

53

The Design Simulator requires some data structures in addition to those are created by the Design

Manager.

A cell is saidto be driving (driven by) a net if the net is connected to anoutput (input) terminal of the

cell. All the driving (driven) cells of a net are stored in an driving-cell-list (driven-cell-list) instance vari

able of the net A net a is said to be thefanin (fanout) net of net b if the simulationof b (a) requires the

valueofnet a (b). More specifically, net b (a) is connected to an output terminal whose function definition

depends on an input terminal of the same cell, which is connected to net a (b). All the fanin (fanout) nets

of a net are stored in anfanin-list (fanout-list) instance variable of the net

54

A create-sim-structures message is used to create the additional data structures required by the

Design Simulator, by processing the sim-lists in the sdl files. It is a recursive method like the create-

structures method, except that the recursion stops when a functional model is found. If the functional

models are specified only for theleafcells, then thecreate-sim-structures message willbe sentto theentire

design hierarchy. However, functional models can also be specified for high-level cell modules, to

increase the simulation speed. In this case, the create-sim-structures message does not have to be sent to

the sub-cells of the cell modules.

After the create-sim-structures message is processed, aflatten message is sent to the root to flatten

thedesign hierarchy such that thedesign is represented by theinterconnection of leafcells orcellmodules

thathave functional modelsdefined. Flattening the design hierarchy not only simplifiesthe implementation

but speeds up the simulation, because the net values no longer need to be passed through the intermediate

levels in the design hierarchy. However, flattening changes the interconnection information in the design

database. In addition, the parameter values of a cell may be modified by simulation as mention above.

Therefore, the LayoutGenerator cannotbe invokeddirecdy after the simulation. Once the design is simu

lated and proven to be correct the userneedsto rerun the Design Manager beforerunning the LayoutGen

erator.

For instance, in the sorterexample in Figure3.1, if thereare simulation models defined for mux, reg

and pads cells, then after the flattening, the root sorter cell will see three sub-cells: sorter-pr-mux,

sorter-pr-reg and sorter-pads. The pr hierarchy, which is there for layout generation reason, is removed.

If a simulation model is created for the pr cell then the models of mux and reg cells are not used and the

root sorter cell has sorter-pads and sorter-pr sub-cells.

The create-sim-structures method for the transmission gate cell is different from other cells. There

fore, two mix-in flavors are created: a switch-mixin flavor for the cells that can be modeled by switches,

and afunction-mixin flavor for the cells that can be described by functional models. The transmission gate

cell is a switch cell and its create-sim-structure method simply determines to which net the gate is con-

55

nected and to which nets the source and drain are connected to. For the function cell, the create-sim-

structure method involves the creation of the values of the fanin-list, fanout-list driven-cell-list and

driving-cell-list instance variables for all the netsthat are connected to the cell In addition to thebasecell

flavor and a layout generation mix-in flavor, every cell instance also inherits either the function-mixin

flavor or the switch-mixin flavor. Therefore, the create-sim-structure can be used as a generic message for

all cell instances.

The event-driven simulation algorithm is described as follows. In orderto exercise the simulator, the

userhasto providean event file (described in 3.4.4). An event is definedto a tripletofan eventnet name,a

value and a state. We call that a value is applied to the event net with the state. The simulatorcollects

inputeventsuntila run command is issued, andthen the inputeventsare put intoa net-event-list list First

all the nets thatare affected by these event nets (i.e. thatare fanout nets of some event nets) are found and

put into the affected-net-list list Next we simulate the affected nets and if there areany affected net that

have new values as a result of the simulation, those nets are put into the net-event-list and iterate until no

new values is found. Then it proceeds to the next set of input net events until all the input net events are

processed. The top-level simulation algorithmis summarized in Figure 3.13.

The presence of the switch cell makes the simulation a little bit more complicated. Before simulating

a net in the affected-net-list we first have to find out if there are any other nets in the affected-net-list that

are equivalentto the net The nets are equivalent if they are connected by switch cells which are ON. The

equivalent nets have to be simulated collectively. The simulation of a net can be performed by simply

evaluating all the Lisp function of the terminals connected to the net in its driving-cell-list instance vari

able. If there is any conflict in value, then the value will be assigned to logic X and a warning is reported.

Furthermore, if there is any conflict in values returned by simulation of equivalent nets, then the value of

all the equivalent nets will be logic X and warnings are reported.

Since most of the nets are affected by either 4>i or fa clocking signals, we can use static variables to

store the fanout-lists of the 4>i and fa nets at initialization phase. This approach can be called the static

start

read

event/command

if (run)

else

find

affected

nets

simulate

affected

nets

X_
if (new event)

done if

exhausted

56

Figure3.13 Design Simulatorevent-drivenalgorithm

scheduling for clock signals as opposed to the dynamic scheduling which involves calculating the

affected-net-list at run time.

Sometimes there are cells that provides values to the output nets without any input nets (e.g. a static

pull-down). This type of cells iscalled self-generated. Due tothe nature of the event-driven algorithm, the

output nets of the self-generated cells are notaffected by any nets and hence will notbe invoked for simu

lation. Therefore, these self-generated nets have to be recognized and simulated at the initialization phase

and their values will notchange during the simulation. The self-generated netscan be recognized by the

fact that their fanin-list is null.

57

Properly handling the bus is an important issue in order to speed up the simulation. For each bus

(which isa collection of nets), a hypothetic local netis created to store the ensemble value of the bus in a

vector. For the input (output) bus, wetreat the hypothetic local netas the fan-out (fan-in) netof all the nets

in the bus by defining proper packing (unpacking) functions. This approach makes the hypothetic local

nets act equally as the real nets. The simulation within the cell deals with the local nets instead of the input

and output buses. Therefore, for abusof sizeN, weneed toperform justonesimulation instead of N simu

lations.

3.4.4. Input/Output of Design Simulator

The Design Simulator is a batch mode simulator which takes an event file as inputand generates a

file of output values. The input event file consists of anumber of commands, each of which is a list The

name of thecommand is specified by the first element in the list Therestin thelistspecifies thenets orthe

buses that the command operates on. A bus is specified by the common name of the nets in the bus (the

namesof the nets are different only in the index part). A netcanbe specified eitherby a net-name orby a

list of a cell-name and a terminal-name. Note that the net-names and the cell-names are full names

(described in 3.1.4). Therefore, the event file has to be updated once the instance-name of the design is

changed.

The commands in theinput event file are used tospecify input events and control thesimulation. For

examples, the command (h netl net2 ...)sets netl, net2,... to the value 1. The command (w netl net2 ...)

enters netl, net2,... into the watch list whosevalues will be printed by the printcommanddefined by (p).

The (r) (run) command demands the simulation to be performed based on the events specified before the

command. The usercan define clock signals in the inputevent file and ask the simulation to be done in

major cycles (a complete sequence of all phases of clock signals) instead of minor cycles. For a complete

set of commands thatareavailable for the Design Simulator, the reader shouldconsult the user manual of

the Design Simulator, which is listed in Appendix A.

58

Theoutput of the Design Simulator isa file that consists of sections of output values of nets specified

by the (w) command. Each section corresponds toa(p) command in the input event file.

3.45. Remarks on Simulator Performance

In general, the simulation of VLSI circuits can be performed onseveral levels which, from lower to

higher abstraction levels, include process, circuit timing, switch, logic, function and behavioral levels.

The higher the abstraction level, the less accurate the result and the faster the simulation. The Lagerm

Design Simulator canbe categorized to a functional level simulator.

A switch level simulator uses a simple switch model of the MOS transistor. Even with these

simplifications, the simulations of the entire chip using timing or switch-level simulators sometimes are

found unfeasible. This is particularly true for the case of microprogrammed processors. To simulate the

processing of one data input hundreds orthousands of cycles of microprograms have to simulated. Logic

simulators deal larger primitives such as AOI gates, than the switch level simulators. If a logic simulator

allows functional models to be used to describe large functional blocks, it is referred to as thefunctional

simulator. In general, the functional simulators are one order of magnitude faster than the switch-level

simulator because larger primitives are used.

The Design Simulator in Lagerlll is slowbecause it is onlytwoto five times faster than esim,which

is a switch-level simulator. The speed of the Design Simulator maybe improved by fine tuning the simula

tion algorithm and the coding. However, it is found that theLisp and the Flavors cause inherent perfor

mance degradation to the Design Simulator. The message sending is implemented by Lisp functions, and

there is some overhead in finding the Lisp function from the message name.15 However, theLisp and Fla

vors are excellentdevelopment toolswhichallows the Design Simulator to be prototyped in a very short

amount of time, which may even be shorter than interfacing existing functional simulator to the Design

Database. For efficient simulation, dedicated hardware such as the Lisp machine should be used to allevi

ate performance problem.

CHAPTER 4

Frame Buffer Controller Chip

In this chapter, a frame buffer controller chip is illustrated which serves as an example of theuse of

the silicon assembly subsystem.

4.1. Frame Buffers

A frame buffer is a device to store aframe of image data in image processing systems. When the

image processing algorithm requires random accessing of the image data, a frame buffer is necessary to

hold theincoming image data (usually from a camera) which is in a raster-scan format Theframe buffer

normally canwork ononeof two modes: flash inmode when the frame buffer keeps receiving image data

from thecamera, orflash end mode when oneimage frame is selected and stored in theframe buffer tobe

processed. If the image processing circuitry needs to access the frame buffer at the same time when the

camera is sending image data to the frame buffer, a double-buffered scheme has to be used. A double-

buffered frame bufferuse twobuffers for reading andwriting, and theirroles switcheveryother frame.

Frame buffers are commercially available a , which can typically store a frame up to the size of

1024 x 1024 x 8 (256 gray levels) x 3 (RGB colors) bits in a board. Besides being expensive, they also

occupy a lot of space, which leads to increased cost of the entire image processing systems. With the

advancement of the memory technology, we are now in a position to realize morecompact frame buffers.

One of the key components in doing this is the frame buffer controller. A frame buffercontroller inter

faces the frame buffer to various other devices in the image processing system, and therefore has to be

flexible to deal with different characteristics (e.g. interlaced or non-interlaced, number of lines in the

image, synchronization, etc.) ofvarious components. The TIVSC frame buffer controller chip a that was

designed around TI's 256K VRAMs attempts to do this through user programmability, but is found to be

59

60

notflexible enough for some configurations and requires cosdy supporting hardware.

In this chapter, a frame buffer controller for single-buffered frame buffers is presented. It was

designed for an image processing system that consists of aGE TN2250 camera which generate analog

image signals at 10 Mhz rate, aRS170 monitor, a512 x 512 x 8 frame buffer implemented in two 1-Mbit

DRAMs, amultibus host processor interface and acustom image processing board, and yet itsarchitecture

can easily be re-configured for other image processing system organizations. Furthermore, bymodulariz

ing the architecture and customizing the design for the particular image processing system, we can take

advantage of the most advanced memory technology, and integrate peripheral glue-logic chips toreduce

the board area.

4.2. Image Signal

A frame of image signal consists of N lines and each line consists ofM pixels (picture elements). A

typical timing specification 24 of image data is shown inFigure 4.1a and 4.1b. The timing of the lines are

also referred toasthevertical timing. The timing of the pixels are also referred toasthe horizontal timing.

There is a horizontal blanking period which corresponds to the elapsed time to sweep from the rightmost

pixel back to the leftmost to start the next horizontal line. Likewise, there is a vertical period which

corresponds tothe elapsed time to sweep from the bottom line back tothe top tostart the next frame. The

blanking period consists of three parts: front porch, sync and back porch. The horizontal and vertical sync

signals are used for the image processing devices to synchronize with one another. The timing is usually

different for different devices. For example, thehorizontal front porch is equivalent to 16pixel periods for

theGE TN2250 camera, and 11pixel periods for the SONY XC-37 camera.

Synchronization can bedone in two possible ways. A device can either receive the externally gen

erated horizontal and vertical drive signals that trigger thehorizontal and vertical sync signals, orsend out

the horizontal andvertical syncsignals. In an image processing system, the syncsignals can be generated

by one of the devices or by an external signal generator.

61

12. lus
HH

1.6uS"

<-
H COMPONENT OF COMPOSITE
BLANKING (BLANK)

I

7pS
K= »

4.8yS

H DRIVE (HDR)

H COMPONENT OF COMPOSITE
SYNC (SYNC OUT)

•* 100ns 1 PIXEL = 100 ns
EOL

•J J

V COMPONENT OF COMPOSITE BLANKING

Figure 4.1a Horizontal timing
front porch = .1.6 us, sync =4.8 us, back porch =5.7 us

20H

U- 3H*

3H

4h
V COMPONENT OF COMPOSITE
BLANKING (BLANK)

V COMPONENT OF COMPOSITE
SYNC (SYNC OUT)

* 1
6H -3»|

1 *

I ' L- 4H

V DRIVE (VDR)

L

J1 1H
1H = 63.5ysec

EOF

Figure 4.1b Vertical timing
front porch = 3 lines, sync =3 lines, back porch = 14 lines

62

There are two standards to arrange the line signals. An interlaced device generates or receives

image data in the order ofline 0, line 2, line 4,... line N-2, line 1, line 3, line 5,... line N-1, where Nis the

total number oflines (assumed tobe an even number). Even half and odd half frames each take -gj sec to

sweep. Anon-interlaced device generates or receives image data in the order of line 0, line 1, line 2,...

line N-1.

Aframe buffer controller should beable toadapt tothese variations ofsignal timing, synchronization

and line signal standard. The 11VSC chip provides the user away to program the chip for different situa

tions. In my design, parametrizable cell modules are used such that new chips can be generated for dif

ferent image processing systems.

43. Chip Architecture

The frame buffer controller chip architecture is composed of four parts: (1) an H-V control unit

which deals with the image data synchronization, (2) a memory control unit which generates timing signals

to control the read and write of the frame buffer memories, (3) an address generator that generates the

memory addresses, and (4) a data path that connects the data ports ofvarious devices in the image process

ing system and controls the data flow among them. This hardware modularization isofcritical importance

tore-configuration. For example, suppose a new camera isused, then only the H-V control unit has to be

adjusted for the new image data timing. Likewise, changing frame buffer memories only affects the

memory control unit, and theaddressing mode of the host processor only affects the address generator.

The H-V control unit is implemented bya state machine. There are 16states, which are listed in

Table 4.1 in order of actual timing.

Thereare five external signals thatcontrol thestate transition: horizontal sync, vertical sync, compo

site blank, eof(end of frame) and eol (end of line). For example, the state (vertical front porch, horizontal

front porch) transfers into the state (vertical front porch, horizontal sync) when the horizontal sync goes

state bits state descriDtion

0000 (vertical front porch, horizontal front porch)
0001 (vertical front porch, horizontal sync)
0010 (vertical front porch, horizontal back porch)
0011 (vertical front porch, horizontal signal)
0100 (vertical sync, horizontal front porch)

0101 (vertical sync, horizontal sync)

0110 (vertical sync, horizontal back porch)
0111 (vertical sync, horizontal signal)

1000 (vertical back porch, horizontal front porch)
1001 (vertical back porch, horizontal sync)
1010 (vertical back porch, horizontal back porch)

1011 (vertical back porch, horizontal signal)
1100 (vertical signal, horizontal front porch)
1101 (vertical signal, horizontal sync)
1110 (vertical signal, horizontal back porch)
mi (vertical signal, horizontal signal)

63

Table 4.1 The 16 states of the H-V control unit

from HIGH to LOW, andthen transfer into the state (vertical front porch, horizontal back porch) when the

horizontal sync goes from LOW back to HIGH. When the eol signal is HIGH, thestate (X, horizontal sig

nal) transfers to the state (Y, horizontal front porch) where X and Y may or may notbe thesame vertical

sub-state. When theeo/signal is HIGH, thestate (vertical signal, horizontal signal) transfers intothestate

(vertical front porch, horizontal front porch). The state transition of the H-V control unit is described in

bdsyn format in Appendix B.

The fact thatthe GE camera does not provide separate vertical andhorizontal blanking signals make

thedesign of theH-Vcontrol unitabitmore difficult A counter is required to makesure that thetransition

from the state (X, horizontal back porch) to the state (X, horizontal signal) does not have to depend on

external signals. For thecase of theGEcamera, the(X, horizontal back porch) state is55cycles or5.5 us.

To implement this, we have thechoice of either a loadable down counter ora resettable up counter witha

constant modulus. The second architecture is selected based on macrocell availability and the tact that the

Lagerm silicon assembly sub-system makes it easy to program the constant modulus through parametriza-

tion. The architecture of the H-V control unit is shown in Figure 4.2.

Sync, Blank
eol, eof

\f Nl/

\/_

Register

H-V Control

State Machine

Counter

Constants

(r

Control

Signal

64

Figure 4.2 H-V control unit architecture

The memory control unit provides five modes of memory access timing: refresh, read, write, column

read and column write. Each of the five memory access operations takes different numbers of cycles to

complete. A refresh operation takes 3 cycles. Aread operation and a write operation each take 3 cycles.

A column readoperation anda column write operation each take 1 cycle (with some initial cycles to setup

the row). The memory control unit is also implemented by a state machine. The inputs to the state

machine include the state of the H-V control unit, host bits and theflash bit The host bits encodes the

status of thehost processor. 00 = no host operation, 01 = host read, 10= host write and 11 = illegal. The

flash signal determines whether to receive image data from the camera. TheH-V control unit state is also

used to determine which memory operation to perform. Forexample, if theH-V control unitstate is (X,

horizontal front porch) then refresh operations are performed. Thestate transition of the memory control

unit is described in Appendix B.

65

There is a priority among the five memory operation modes. The refresh operation has the highest

priority. Therefore, during the (X, horizontal front porch) H-V control unit state,the refresh operation will

not be interrupted. The column writeoperation has the secondpriority. Therefore, during the (X, horizon

tal signal) H-V control unit state and if the flash bit is HIGH then the column write operations are per

formed without interrupt This ensuresa correct content in the frame buffer memory. The read and write

operations have the third priority. The column read operation has the lowest priority. Since the column

readoperation can be interrupted by host read or writeoperations, some darkspots on the monitormay be

created as a result. However, the priorities of the five operations can be rearranged easily if the system

designer is willing to, for example, buffer the host readand write operations such that the monitor display

will not be interrupted.

The memory control unit statemachinehas four output signals: cos*, ras*, wr* and oe*. These tim

ing signals are used to control the memory operations. For Toshiba TC514256 1-Mbit DRAMs that the

designed frame buffer controller is targeted to, the statemachinegenerates new output signalsevery 100ns

except that the ras* changes every 50 ns during the column read or column write modes. The architecture

of the memory control unit is shown in Figure 4.3.

The address generator provides three types of address: host random access (row and column)

addresses, raster-scan (row and column) addresses and refresh (row) addresses. In the TI VSC chip, the

host addresses are provided in an indirectway. The VSC chip has X-Y registers on chip, which store the

row and column addresses of a particular image pixel that the host processor needs to access. The values

of the X-Y registers can be adjusted by X-Y adjustment code to move around the image frame. The advan

tage of this scheme is that fewer host addressbits need to be specified. The disadvantage is that it does not

provide full degree of freedom of random accessing. The address generator in my design assumes that the

host processor specifies both the row and column addresses completely.

The address generator generates the raster-scan and refresh addresses internally. The raster-scan row

address is generated by a row counter, which is incremented under the control of the H-V control unit

Inputs from
H-V Control —

Unit

±VL

Register

±UL

Memory Control

State Machine

v Timing

Signals

66

Figure A3 Memory control unit architecture

when the (X, horizontal signal) state transfer into the (Y, horizontal front porch) state. The raster-scan

column address isgenerated byacolumn counter, which isincremented every (100ns) cycle.

Because a refresh operation takes 3 cycles, one approach is to let the refresh row address change

every 3cycles. However, it is easier to break the refresh address generator into two counters, in which the

higher bits (N-2 with 2N equals the number of lines) increment when the H-V control unit enters the (X,

horizontal front porch) state, and the lower bits (2) increment every cycle. Because 3 is co-prime with

22=4, and the horizontal front porch time segment is 16 (> 3x4 =12) cycles, this scheme guarantees that

all four rows are refreshed in one horizontal front porch time segment. The Toshiba TC514256 memory

chips require 512 refresh cycles/8ms. The refresh address generator will sweep all 512 rows in

-^x63.5usec=8.1m5
which is only slighdy off the specification.

Host column

address

IL

Column

Counter

^^

Column MUX

Local

Controller

Refresh

Counter

Row

Counter

±LL

RowMUX

MUX

Frame Buffer

Memory Address

67

Host row
address

Figure 4.4 Address generator architecture

There are a number of multiplexers in the address generator which are used to select one of the

addresses generated. Since the refresh operations have the highest priority, hence in the (X, horizontal

front porch) state ofthe H-V control unit, the refresh address is selected. The choice ofhost addresses or

raster-scan addresses are determined by the host external control signals that control the memory control

unit as well. The choice of row or column address depends on the memory timing. The Toshiba

TC514256 memory chip requires that the column address follows the row address. The architecture of the

address generator is shown in Figure 4.4.

The frame buffer controller provides a data path through which various devices inthe image system

can communicate with each other. The sources of image data include the camera, the host processor and

the frame buffer memory. The destinations of image data include the monitor, the host processor, the

68

image processing board and the frame buffer memory. The data path has to make sure that only one ofthe

sources is sending image data atany given time. This isdone by a simple logic design. First, if the flash

signal is HIGH, then the camera is sending data and the host and the frame buffer memory are prohibited

from sending data. Otherwise if the host signals signify host write operations, then the host processor is

sending out image data. If camera and host are both inactive, then the frame buffer memory isenabled.

An A/D converter macrocell ^ canbe integrated which takes the camera analog signal as input and gen

erates 8-bit digital values. Thearchitecture of the data path isshown inFigure 4.5.

4.4. Layout Generation

The layout of the frame buffer controller chip isgenerated using the Lagerm silicon assembly sub

system. Asetofsdl files are created tospecify the design hierarchically. Three test chips are also prepared

to test thefunctionality of the H-V control unit (HVCtest chip), the memory control unit (MCtest chip)

and the address generator (AGtest chip) respectively. Because the design is hierarchical, the test chips are

Camera

>

Camera

<

A/D »

D/A G=

Data

Bus

<^\

<=a

<^i
Figure 4.5 Data path architecture

Memory

host

processor

image board

69

conveniently generated.

The layout generation makes use of four layout generation tools: Flint, DPC, TimLager and Wolfe.

The counter and constant cells in the H-V control unit aregenerated by TimLager. The registers in H-V

control unit and memory control unit, and counters and multiplexers in the address generator are generated

byDPC. Local control units ineach of the four parts of the chip, and the combinational blocks of the H-V

control unit and memory control unit are generated byWolfe. Theplacement and routing of the four parts

and the whole chip aredone by Flint

Lagerm only provides equation level input for specifying the logic blocks with limited logic minimi

zation. This is used to specify the local control units. However, it is cumbersome to describe the state

transitions using aequation level input, and hence the two combinational blocks are designed in bdsyn for

mats (Appendix B, in which sml.bdsyn is for the H-V control unit and sm2.bdsyn is for the memory control

unit) and are minimized bya multi-level logic minimizing program, mis. Alternatively, the bdsyn input

can also beminimized byatwo-level logic minimizer, espresso, which results inaPLA-based realization.

The data path contains an 8-bit 10MHz analog-to-digital converter which is manually designed.25

The Lagerm silicon assembly system can incorporate macro cells designed through other means by treat

ing them as big leaf cells. The macro cells must be designed or generated in Magic format. The two com

binational blocks inthe the H-V control unit and the memory control unit are incorporated thesame way by

first translating the OCT physical view formats generated byWolfe into Magic formats.

With the aid of Lagerm silicon assembly system, the frame buffer controller chip were designed,

generated and simulated in two months. The die photos of the frame buffer controller chip and three test

chipsareshownin Figure 4.6 - 4.9.

70

Figure 4.6 The frame buffer controller chip die photo

71

Figure 4.7 The H-V control unittest chip die photo

72

Figure 4.8 The memory control unit test chip die photo

73

Figure 4.9 The address generator test chip die photo

74

4.5. Simulation and Testing Results

All the testing chips were simulated using RSIM before sending to fabrication. In addition to simu

lating the functionality, RSIM also provides estimates of circuit delays using a primitive model for the

MOS transistor. However, since RSIM cannot handle analog circuit simulation, the entire frame buffer

controller chip isnot simulated with the analog-to-digital converter (A/D). For testing purpose, achip con

taining all the frame buffer controller circuits except the A/D issimulated and fabricated.

The five chips (frame buffer controller, frame buffer controller without the A/D and three test chips)

were fabricated by MOSIS. All but the HVCtest chip were tested. The MCtest chip was the first one

tested. Two design errors caused by mistakes in entering the design input files were discovered. These

were subsequently removed in the design of the frame buffer controller chip. The AGtest chip was tested

to function correctly at 10MHz.

The A/Dmacro cell is currently under test by aseparate test chip. Therefore, thetesting of the frame

buffer controller chip is performed with the one without the A/D. Due to inavailability of the 1 Mbit

DRAMin the market, the testing is done using 8 256 Kbit DRAMchips. The testing results show that the

four parts, the H-V control unit, the memory control unit, the address generator and the data path, of the

chip are functioning by itself. However, the timing of the memory control signals generated by the

memory control unit, and the memory address signals generated by the address generator needs some

adjustments. The main problem is that all signals are derived from a 10 MHz system clock, and without

using anyone-shot it is difficult to meetthesetup andhold timespecs for arbitrary signal edges.

CHAPTER 5

The Silicon Compilation Subsystem

The LagerHI silicon compilation subsystem consists of three parts: a translator that translates the

applicative Silage program to a procedural intermediate language called RL% a compiler that compiles the

RL language into symbolic microcode (also called a rass program)and a control generator that produces

the parameter file output from the rass program. A unique feature of the siliconcompilation subsystemis

that the behavioral description can be retargeted to different pre-defined structural descriptions. One struc

ture design which is called the KAPPA architecture, that the behavioral description is currently mapped

onto is also described. Thisworkhas been done incollaboration withEdward Wang (Silage translator)26 ,

Ken Rimey (RL compiler)27 and Khalid Azim (KAPPA structure design)28 .

5.1. The KAPPA architecture

The KAPPA architecture is based on a simple architecture model29 (Figure 5.1) that consists of a

control unit and a data path. The control unit generates controlsignals that control the operations of the

data path, and the data path provides status signals that affect state transitions in the control unit The

KAPPA data path contains four components: an arithmetic unit (AU), an address processing unit (APU), a

logicunit (LGU) anda data memory(RAM). Typical status signals from the data pathincludethe signbits

of the AU and APU, and state bits of the LGU.

The block diagram of the AU is shown in Figure 5.2. It does not containa multiplierand hence mul

tiplications are performed by a series of shift-and-add operations. There are only two data manipulation

operators in the AU: the shifter and the adder. In addition, complementationor zeroing can be performed

to modify the data at the two input buses (abus and bbus) of the adder. The operands of the adder can

come from RAM, the local registers or the APU (immediate addressing mode). The result of the adder can

75

Control

Unit

Control Signals

Data

PathStatus Signals

76

Figure5.1 The architecturemodel that KAPPA is basedon

go to RAM or the local registers. There isan I/O port, which allows data communication between the local

registers andthe outsideworld (e.g. off chip,other processor, etc.).

The block diagram of the APU is shown in Figure 5.3. The APU calculates the effective address of

the RAMusing the address field inthe control signal generated bythe control unit The APU supports four

addressing modes: index, relative, immediate and looping. The index addressing can be performed by

using oneof local registers as theindex register. The relative addressing can be performed by storing the

base address in the register and supply the offset address through the address field in the control signals.

The immediate addressing can be performed by supplying thedata directly through theaddress field in the

control signals. The immediate data is transferred to AU by theconnection of the AU mbus withthe APU

eabus. The magnitude of the immediate data is limited by the word length of the APU, which is usually

smaller than the wordlength of AU. The looping addressing modeis usually handled by a loop counter in

the control unit (discussed later). The APU plays an auxiliary role when there are nested looping opera

tions. A looping operation can be supported in theAPU by storing the loop count (number of iterations) in

one of the registers anddecrement its valuewhen one loop is completed. When the register reaches zero,a

control signal is sent to the finite state machine to change the state.

The LGU is implemented by a state machine whose combinational part is implemented by a PLA.

The primary inputsof the PLA includethe signbits of the APUand AU andoptionally any pertinent exter-

r—&

<^r^j| IOPORT

l-c:

DATA MEMORY

, I ,
I MEMIO I

I
I MUX I

, , T I ~
Io,i,»,-»,t»t.-t»n i mux n

77

MBUS

Serial oat

Figure 5.2 The arithmetic unit (AU) of KAPPA

nal signals. The primary outputs of the PLA form part of the status signals that feedback to the control

unit The logic operations in LGU are determined by the particular behavioral description. Contrary to

most processor architecture inwhich the arithmetic and logic operations are performed together inan ALU,

the AU and LGU are two separatefunctional unitsin the KAPPA architecture.

The KAPPAcontrol unit containssix majorcomponents: a finitestate machine, a programcounter,a

control store, a stack, a loop counter and a timer (Figure 5.4). The control store stores a number of blocks

of control signals. The address of thecontrol store contains two parts: the higher bits (block address) are

milmm

Instruction

Address Field

I O-.Xi 1

X

ADDER

3 EABUS

Effective Address

MBUS (AU)

78

—' * Tareg]

Figure 53 Theaddress processing unit(APU) of KAPPA

generated by the finite state machine and the lower bits (line address) are generated by the program

counter. If the program execution reaches the end ofablock ofcontrol signals, aeob (end ofblock) signal

signifies the finite state machine to change state and thereby generates anew block address, and reset the

program counter. Otherwise, the finite state machine stays at the same state and the program counter incre

ments thelineaddress ateach cycleto generate thenextsetof control signals.

The stack and the loop counter provide more control flow operations inaddition tothe branch opera

tion supported by the finite state machine. The stack efficiently supports the subroutine call and return

operations. The loop counter efficiently supports the looping operation. The number of iterations (loop

count) for each looping operation can be extracted from the algorithm and loaded in the loop counter.

When executing the looping operation, the loop counter increments and compares with a pre-stored loop

Control

Inputs
leset

<p1 r u

Finite State

Machine

\

Stack
''

Program

Counter
<—

'

* i

f '
Loop

Counter

Control

Store

from datapath

»

Timer

i '

Control Signals
(to datapath, memory, etc)

Figure 5.4 The controlunit of KAPPA

79

count A control signal isgenerated bythe loop counter that depends on the comparison result. The con

trol signal issent to the finite state machine to control the state transition. If the content of the loop counter

is smaller than the loop count, then the state machine stays at the current state. If the content of the loop

counter isequal tothe loop count, then the state machine transits tothe next state. When there are several

looping operations inthe algorithm with different loop counts, all loop counts are stored Each loop count

results in a control signal to the state machine. When there are nested looping operadons, only the inner

most looping operadons are handled by the loop counter and therest are handled in theAPU.

80

The timer is used to synchronize the program execution with the data samples. Due to the more

sophisticated control flow operations with some ofwhich are data-dependent, the total number ofinstruc

tions executed may vary from sample to sample. The timer stores the worst case Oargest) number of

instructions and if the program finishes earlier, the finite state machine will enter await state till the timer is

done.

The KAPPA architecture can be parametrized. For example, the word length of the AU is deter

mined by the fixed-point arithmetic accuracy required by the algorithm. The word length of the APU is

determined by the sizes of the RAM, which is in turn determined by the algorithm. Other parameters

include the memory contents ofthe LGU and the finite state machine and control store in the control unit,

the size of the stack and loop counter, etc. The possibility of parametrization is one of advantages of the

KAPPA architecture over the commercial signal processor30 in which the physical dimensions of func

tional modules cannot be tailored to match the algorithm. The parametrizable architecture also lends itself

easily for the silicon compilation subsystem to map the behavioral description ofthe algorithm to the archi

tecture.

5.2. The Relationship Between the Instruction Set and the Architecture

Most conventional architecture designs are referred to as the instruction set architecture31 because

the architecture isconceived by the programmer as an implementation ofaparticular instruction set This

approach leads to atop-down design methodology in which the instruction set isdesigned before the archi

tecture is designed. Italso causes the computer architects toput emphases on the design of instruction set,

rather than the structural implementation ofthe instruction set For example, the RISC32 concept was pro

posed toadvocate the use of a simpler instruction set One major problem of this approach is, however,

that the instruction set designer does not have agood understanding of how long each instruction takes to

execute until the implementation of the instruction set is completed. Moreover, since the instruction set

designer does not know how the structural implementation is designed, the addition of new instructions

may require a majorredesign of the structural implementation.

81

In the Lagerm silicon compilation subsystem, since the structural implementation isdesigned first, a

bottom-up approach is employed in which the instruction set is extracted from the existing structural

design. Each instruction extracted iscalled aprimitive instruction. Each primitive instruction describes an

operation that a piece of data is transferred from the source(s) to the destination. Both the source and the

destination are called resources which can be divided into two types: buses and registers. Each primitive

instruction can be executed in one instruction cycle. Two primitive instructions are said to have a conflict

inresource if they both transfer data to the same destination. Several primitive instructions may beexe

cuted in the same cycle if noconflicts isresulted in. For example, the

(mor=mbus)

primitive instruction transfers the data in the main bus (mbus) to the memory output register (mor). The

(mbus=r* 2)

primitive instruction transfers the data in the 2nd register ofthe registerfile to the main bus. This example

shows that an argument can be used to customize the primitive instruction, and hence the total number of

primitive instructions is reduced. The sets ofprimitive instructions extracted from the AU and APU in the

KAPPA architecture are described in Table 5.1 and 5.2, respectively. The sets of buses and registers

defined in the KAPPA architecture are described in Table 53.

One of the advantages of extracting the primitive instructions is that the user instructions (or assem

bly level instructions) can easily be formed by grouping anumber of primitive instructions. For example,

the user instruction which reads the 3rd element in the array A,

r(A[3])

can be constructed by the group of

(mor=mem) (addrA) (offset 3)

primitive instructions. Two user instruction are said to have aconflict if the corresponding two groups of

primitive instructions result inaconflict For example, by setting the bbus toONE, an addl user instruc

tion is formed which simply increments theabus operand. By setting thebbus to ONE and complementing

instruction description argument

mor=mem read from memory to
memory output register

mem=mbus write to memory from main bus •

mcondload conditional write

mor=mbus

r*=rbus load register bank by
register bus

register bank address

rcoef=mbus load multiplication coefficient
register form main bus

mbus=mor

mbus=r* load main bus by the register register bank address

mbus=acc load main bus by accumulator

rbus=acc load register bus by accumulator

rbus=ioport input from ioport to register bus
ioport=extport latch external data to ioport external port address

ioport=mbus output to ioport from main bus

extport=ioport strobe ioport data to external port external port address

acc=0 clear accumulator .

acc=sum store adder result to accumulator

acc=abus bbus is zero

acc=bbus abus is zero

abus=l carry-in to adder is set high
abus=mor

abus=-mor abus gets the 2's complement of
memory output register

abus=absmor abus gets the absolute value
of memory output register

abus=-absmor abus gets the 2's complement of the
absolute value of memory output register

abus=coef.mor same as abus=mor

if the LSB of the multiplicationcoefficient
register is HIGH

abus=coef.-mor same as abus=-mor

if the LSB of the multiplicationcoefficient
register is HIGH

abus=coef.absmor same as abus=absmor

if the LSB of the multiplication coefficient
register is HIGH

abus=coef.-absmor same as abus=-absmor

if the LSB of the multiplicationcoefficient
register is HIGH

abus="coef.mor same as abus=mor

if the LSB of the multiplicationcoefficient
register is LOW

Table 5.1 Primitive instructions of AU

82

instruction descriDtion argument

abus="coef.-mor same as abus=-mor

if the LSB of the multiplication coefficient
register is LOW

abus=~coef.absmor same as abus=absmor
if the LSB of the multiplication coefficient
register is LOW

abus=~coef.-absmor same as abus=-absmor
if the LSB of the multiplication coefficient
register is LOW

bbus=mbus

bbus=aco* bbus gets right-shifted accumulator bits shifted

bbus=acc<* bbus gets left-shifted accumulator bits shifted

acondload conditionally load the accumulator

shrcoef right shift the multiplication coefficient
register

nosat turns off saturation of accumulator

aip accumulate if positive

Table 5.1 (cont) Primitive instructions of AU

instruction

x*=eabus

xcondload

addr

offset

xip

xbus=x*

xbus=0

eabus=sum

eabus=mbus

areg=eabus
mbus=areg

timerreg=eabus

description

load x register by effective
address bus

conditionally load x register

address from the control store
used togetherwith addr primitive
instruction to address an array

accumulate if positive

load xbus by x register
clear xbus

store adder result in effective
address bus

load effective address register by
main bus of AU

load main bus of AU by effective
address bus; it takes two cycles
load timer register in control store
by effective addressbus

argument

register bank address

variable name

array index

register bank address

Table 5.2 Primitive instructions of APU

83

resource name description

mor memory output register

ace accumulator

rO,rl AU register bank

rcoef multiplication coefficient register

x0,xl,x2 APU register bank

mem data memory

areg hypothetical APU register

timerinreg timer register

ioport i/oport

mbus AU main bus

rbus AU register bus

abus AU adder inputA

bbus AU adder inputB

eabus effective address bus

xbus APU adder inputA

dbus APU adder inputB

extport external port

84

Table 53 Resources (registers and buses) in KAPPA

the abus operand, a unary minus user instruction is formed. These two user instructions conflict with each

otherbecause theybothuse theabus andbbusin a different way.

In summary, from the structural design of the architecture, a set of primitive instructions can be

extracted. The setmay notbe the exhaustive listof all possible primitive instructions in the architecture,

some judgements onwhich primitive instruction is useful should bemade. In addition, a number of user

instructions can be obtained by grouping the primitive instructions. This approach is contrary to the

instruction setarchitecture approach because the architecture isdesigned before theinstruction setis.

Becausea fixed architecture does not work well in a wide range of applications, it is very important

tobe able to tailor thearchitecture accordingly to theparticular application. InLagerm silicon compilation

subsystem, this can be done in an iterative way. First an existing architecture and its instruction set are

used to which thealgorithm is mapped. If theresult is unsatisfactory, then the architecture is modified and

new sets of primitive instructions and user instructions are obtained. The new user instruction setis then

used for the algorithm. This process iterates until a satisfactory architecture is obtained. In general, the

reason that an architecture is not efficient for an algorithm is that some frequendy used instructions arenot

85

direcdy implemented, which can easily be recognized from the histogram ofthe user instruction set.

For example, the AU in the KAPPA architecture does not have a multiplier and the multiplication is

done by a series ofshift-and-add's. There are two possible ways to place the shifter either before the

adder and hence it shifts one of the operands, orafter the adder and hence it shifts the result (in the accu

mulator). To analyze the trade-offs of the two arrangements, the following 2nd-order finite impulse

response(FIR)filteris used:

I

to data memory
I I

MOR

IE
2=1 MUX

T
BARREL
SHIFTER

(0-7 BITS)

SOR

T

1

MIR

k f

COMPLEMENTOR

(0)-
1

(0)

COEF _ —

(serial
2=1 MUX

input)
' >

3=1 MUX

QUOT*

(serial
output)

A~\/ B~
ADDER

ACC

MBUSf toI/O
circuits

Figure 5.5 A shifter-before-adder datapatharchitecture
(which was used in Lagerl)

86

y=x[0] +aixx[l] + fl2x*[2]

with ai=0.101, a2=0.011. Using the AU in KAPPA architecture, the FIR filter can berealized inthe fol

lowing code block:

r(x[0]);

r(x[l]), acc=mor, /*acc =x[0]*/

acc=mor, regl=acc;

moral, acc=mor+aco2;

r(x[2]), acc=mor+acol; /* ace =x[0] +.101 * x[l] */

acc=mor, regl=acc;

mor=rl, acc=mor+acol;

acc=mor+aco2; I* ace= x[0]+ .101 * x[l] + .011 * x[2] */

w(y)=acc;

Because the shifter shifts the contents of the accumulator, the partialsum has to be moved to the register

file (in this example, regl) before the next multiplication is performed. This in general requires extra

cycles. Moreover, during the series of shift-and-add's, this architecture may produce an intermediate result

that is larger than the final result, which may create superfluous overflows and result in arithmetic errors.

Special hardware has to be devoted28 to correct the overflows in the intermediate results. On the other

hand, using an AU3 (Figure 5.5) with the shifter before the adder, theFIR filter can be realized in the fol

lowing code block:

r(x[l]);

r(x[0]), sor=mor>l;

r(x[2]), sor=sor>2, acc=mor+sor,

sor=mor>2, acc=acc+sor, I* ace = x[0] + .101 * x[l] */

sor=sor>1, acc=acc+sor,

acc=acc+son /* ace = x[0] + .101 * x[l] + .011 * x[2] */

w(y)=acc;

87

This realization uses 2 less cycles because the accumulatordoes not have to be reset Also, the intermedi

ate values during the shift-and-add operationsare always less than the final result However, this approach

isproven to be numerically inferior. It results in -Jf- inaccurate bits after N shift-and-add operations while

the KAPPA architecture always produce a i bit error regardless of the number of shift-and-add opera

tions. Therefore, for the same numerical performance, this architecture requires a wider word length. The

trade-off between the two architectures is the size of the arithmetic unit versus the size of the control store

(or code size).

For simplicity and ease of comparison, the above code blocks only show the multiplication and sum

mation part of the FIR filter. It assumes the x array is stored in the data memory. A complete implementa

tion also needs to deal with the updating of the x array, i.e. moving input data to x[0], x[0] to x[l], x[l] to

x[2], and so on. This requires a lot of data memory access and will limit the code efficiency. Further

investigation shows that the code size difference between the two architectures is less significant in the

complete implementation. Implementations of a number of other more complicated algorithms also show

that the code size of the shifter-before-adderarchitecture is only slighdy smaller the that of the shifter-

after-adder architecture.

In the following sections, the software partof the Lagerlll silicon compilation subsystem will be dis

cussed. The challenges are, first of all, that KAPPA is not a conventional architecture and hence new com

pilertechniqueshave to be developed to map the high level behavioral description to the KAPPA architec

ture. Furthermore, the compiler has to be designed with the possibility of modifying the target architecture

in mind, to allow the improvement of the architectural design through iteration. The discussion will follow

the actual software flow, that is, (1) silagetranslator, (2) RL compilerand (3) controlgenerator.

S3, Silage Translator

The Silage Translator is thework of Edward Wang.26

88

Silage* is the highest level behavioral description language in the LagerlH silicon-compilation sub

system. Silage is afunctional (or appUcative) language that differs from conventional procedural (or

imperative) languages in that the user does not have to program the control flow ofthe algorithm. A func

tional language has two advantages: (1) side-effect-free functions. Since a functional language program

consists only of function definitions and function applications, library functions (e.g. filters) can be easily

combined. (2) no over-specificity. The lack of explicit control flow specifications in the functional

language allows more freedom inexploiting the concurrency in the algorithm.

A number of features of the Silage language facilitates its use in signal processing applications.

Delays are supported as alanguage construct Therefore, the user does not need to explicidy allocate an

array for all the past values ofavariable, and update the array in every sample. Decimation and interpola

tion are supported as library functions. The Silage language provides the following data types: integer,

boolean and fixed-point. The fixed-point data type is especially useful in signal processing applications,

where expensive floating-point hardware is oftenunnecessary.

A Silage program describing a 16-tap FIR filter is shown in Figure 5.6. The lwb() and upb() func

tions return the lower and upper bounds ofan array, respectively. The in@i notation denotes the ith delay

of the in variable.

#define word fix<8>

coefs =[word(5/128), 7/128,8/128,9/128,12/128,16/128,27/128,81/128,
-81/128, -27/128, -16/128, -12/128, -9/128, -8/128, -7/128, -5/128];

func main(in: word): word =
begin

s[upb(coefs) +1] = 0;
(i: lwb(coefs).. upb(coefs)):: s[i] =s[i +1]+in@i * coefsfi];
return = s[lwb(coefs)];

end;

Figure 5.6 A FIR filter in Silage

89

The Silage translator consists of two parts: a syntactic analysis part and a semantic analysis part

The syntactic analyzer parses the Silage program and converts it into Lisp s-expressions. The semantic

analyzer is organized in nine phases, which are described below. In phase 0, transformations are per

formed to canonicalize the Silage input. Forexample, the definition

coefs = [word(5/128), 7/128,8/128,...];

is transformed into

coefs[0] = word(5/128);

coefs[l] = 7/128;

coefs[2] = 8/128;

In phase 1,name references are resolved: uses of variable and function names are matched tocorrespond

ing definitions. In phase 2, manifest expressions (whose values can be calculated at compile time) are

recognized. Expressions that must be manifest (e.g. iterator bounds) are checked. In phase 3, thetype of

eachvariable is determined Since Silage hasno type declarations otherthanthoseof function parameters,

the type of a variable is determined by itsdefinition. If avariable is manifest itsvalue is also calculated in

phase 3. Phase 4 handles decimation and interpolation functions such that the data rate ofevery variable is

determined. In phase 5, iterated definitions are expanded, and manifest expressions are replaced by their

values. In this phase, a signal flow graph is generated. In phase 6 (optional), loop folding is performed to

reduce code sizeby creating loops outof repeated parts of the signal flow graph. In phase 7, imperative

code is generated from the signal flow graph. Finally in phase 8,a program inRL language syntax is gen

erated.

5.4. RL Compiler

TheRLCompiler is the work of Ken Rimey.27

The RL language27 is a procedural language that is an extended subset of the C language. In addi

tion,two major extensions are made. First a fixed-point data type is added. Second, a declaration syntax

90

isprovided for specifying which register bank avariable is stored in. The 16-tap FIR filter programmed in

RL is shown in Figure 5.7.

The first task of theRL compiler is to separate thecontrol flow operations (e.g. branch, loop) from

data flow operations (e.g. add, multiply) in the RL program. The data flow operations are grouped into

straight-line code blocks, which contain nocontrol flow operations. The entire program is composed of a

number of straight-line code blocks and anumber of control flow operations that control the execution flow

of the straight-line code blocks. Each straight-line code block corresponds toastate of thecontrol unit At

theendof each straight-line codeblock,a control flow operation is executed to change the state to another

straight-line code block.

The maintaskof the RL compiler is to compile straight-line codeblocksof RL codeintocodeblocks

of primitive instructions of the target architecture. To enable the compiler to do this for different target

architectures (so that it is retargetable\ an abstract description of the target architecture is required. The

description contains three kinds of definitions: define-register, define-move anddefine-operation. A regis

ter bank or a bus can be defined by the define-register definition with the following arguments. The capa

city(default value = 1)givesthe number of registers in a register bank. The delay argument is used to dif

ferentiate a register and a bus. A register has delay 1 and a bus has delay 0.

Data flow operations canbe dividedinto two classes: transfers thatmove data from one place to the

otherand computations that transform data, cause side-effector move data in a data-dependent manner. A

define-move definition describes a transfer operation that moves data from some source to some destina

tion. The source anddestination can eachbe eithera bus or a register. The delay of the transfer is defined

to be the delay of the destination. The define-move definition also describes how the transfer is performed

by one or more primitive instructions(see section 5.2). A define-operation definition describesa computa

tion operation by describing a sequence of primitive instructions thatimplementthe computation operation.

The define-move and define-operation functions constitute the code generation tables.

91

#pragma multjiardware
#pragma wordjength 8

#defineN16

fix c[N] = { 5/128,7/128,1/16,9/128,3/32,1/8,27/128,81/128,
-81/128, -27/128, -1/8, -3/32, -9/128, -1/16, -7/128, -5/128 };

fixa[17];

void initO
{
register int i;

for (i = 0; i < N; i++)
a[i]=0;

}

void loopO
{
register fix total;
register int i;

a[N] = inO;
total = 0;
for(i = 0;i<N;i++) {
total += c[i] * (a[i] = a[i + 1]);

}
out(total);

}

Figure 5.7 A FIR filter in RL

A scheduling algorithm is implemented to compact the primitive instructions corresponding to the

transfer and computation operations in the straight-linecode block. The goal is to allocate registers to the

computation operations and route data using the transferoperations in an optimal way. Register allocation

has been extensively studied in conventional compiler design, but little has been done for pipeline registers.

Furthermore, the KAPPA architecture has volatile registers which can hold data for only one cycle. These

complexities make the design of the compiler challenging.

The RL compiler also transforms the control flow operations in the RL program into three primitive

control instructions: branch, subroutine call and return (from subroutine). The control unit of the KAPPA

architecture can perform multiway control instructions (e.g. multiway branch). Therefore, optimization is

92

performed in theRL compiler to takeadvantage of this.

55. Control Generator

The input to the control generator (or the output of the RL compiler) is called a rass program. A

rass program includes the description ofan algorithm in primitive data and control instructions, and some

hardware information (e.g. the word length of the data path). For a detailed description of the rass

language and the Control Generator program, the reader is referred to the user manual in Appendix A. A

rass file consists of six sections: (1) variable declarations, (2) constant declarations, (3) logic instruction

declarations, (4) control flow (5) code blocks of primitive instructions and (6) hardware information. The

variable declarations are given by the form

(ram scalar! scalar!... arrayl array! ...)

which declares all the local variables used. A local variable can be either a scalar or an array with constant

dimension. The constants can be declared by the form

(const init-scalar... init-array...)

in whichinit-scalar is a scalarwithan initialvalueand init-array is an arraywithan initialvaluesfor every

elementin the array. The logic instructions are declared by the form

(dfsm <logic-inst> <logic-inst>...)

Ina primitive instruction code block, a logic instruction can beinvoked byreferring toitsinstruction name

which is defined in the logic instruction declaration section. The control flow of the algorithm is specified

by the form

(cfsm <state-trans> <state-trans>...)

<state-trans> = (state-name block-number <cond> <control>)

<control> = (goto state-name) I(callstate-name state-name) I(return)

which is organized as a set of statetransitions. Each statetransition is composed of a present statename, a

corresponding code block number, an optional condition and a control instruction. Thecontrol instruction

93

can be one of goto, call and return. The call instruction requires twoarguments: a subroutine state name

anda return state name. A multiway control operation can easily be described by a number of state transi

tions with thesame present state name and different (complementary) conditions. The primitive instruction

code blocks is described by the form

(rom <blockO> <blockl>...)

<blocki>s (blocki <u-inst> <u-inst>...)

<u-inst> =(<u-op> <u-op> ...) I(logic-inst-name <u-op> <u-op> ...)Each code blocks consists of a

number of micro instructions (<u-inst>). Each micro-instruction consists of a number of primitive instruc

tions and at most one logic instruction defined in the logic instruction declaration section. Last, the

hardware information contains the following forms:

(dp_word_size value)

(reset_timer list)

(max_sample_intvl value)

(stack_depth value)

(loopjtest list)

Dpwordsize specifies the word length of the data path. Resetjimer specifies a listof block numbers,

each of which specifies a primitive instruction code block. In each code block that is specified by the

reset_timer listthe timer isreset Max_sample_intvl specifies the worst case sample interval that isused

by the timer to produce a constant sampling period. Stackjlepth specifies the maximumdepth of the sub

routine nesting. If no subroutine is used, then stack_depth is zero. Loop_test specifies a list of loop

counts thatareused by the loop counter of the control unit

Forexample, the rassprogram for the 16-tap FIR filter is shown in Figure 5.8.

In generating the parameter file from the rass file, the control generator has to know two pieces of

information. The first information is the control signal names involved in each primitive instruction. The

(ram(v9517)(a8517))

(const (cl07 16 (-5 -7 -8 -9 -12 -16 -27 -81 8127 16 129875)))

(dfsm (0 Cbc _xsign)))

(cfsm (00 nil(goto 1)) (11 _bc (goto 1))(1 1(not _bc) (goto 2))
(2 2 nil (goto 0)))

(dp_word_size 8)

(stack_depth 0)

(reset_timer nil)

(max_sample_intvl 1)

(rom(0
((r*=rbus 0) (rbus=ioport) (x*=eabus 0) (addr0) (acc=0)
(ioport=extport 0))
((mbus=r* 0) (r*=rbus 0) (rbus=acc) (addr a85) (offset 16)
(mem=mbus))
((mbus=r* 0) (addr v95) (mem=mbus)))
(1 ((xbus=x* 0) (addr a85) (offset 1) (mor=mem))
((xbus=x* 0) (mbus=mor) (addra85) (mem=mbus))
((xbus=x* 0) (addr cl07) (mor=mem))
((xbus=x* 0) (r*=rbus 0) (rbus=ioport) (ioport==mbus) (mbus=mor)
(addr v95) (mor=mem))
((xbus=x* 0) (r*=rbus 1)(rbus=ioport) (ioport=mbus) (mbus=mor)
(addr a85) (mor=mem))
((mbus=mor) (x*=eabus 1) (addr 0) (xbus=x* 0) (rcoef=mbus))
((mor=mbus) (mbus=r* 0) (xbus=x* 1)(x*=eabus 0) (addr1))
((fsm0) (xbus=x* 0) (addr-16) (nosat) (acc=abus)
(abus=coef.mor) (shrcoef))
((nosat) (acc=sum) (abus=coef.mor) (shrcoeO (bbus=acc>* 1))
((nosat) (acc=sum) (abus=coef.mor) (shrcoef) (bbus=acc>* 1))
((nosat) (acc=sum) (abus=coef.mor) (shrcoef) (bbus=acc>* 1))
((nosat)(acc=sum) (abus=coef.mor) (shrcoef) (bbus=acc>* 1))
((nosat) (acc=sum) (abus=coef.mor) (shrcoef) (bbus=acc>* 1))
((nosat) (acc=sum) (abus=coefjnor) (shrcoef) (bbus=acc>* 1))
((mor=mbus) (mbus=r* 1) (acc=sum) (abus=coef.-mor) (shrcoef)
(bbus=aco* 1))

((bbus=acc>* 0) (abus=mor) (acc=sum))
((xbus=x* 1) (mbus=acc) (addr v95) (offset 1) (mem=mbus)))
(2 ((addr v95) (offset 16) (mor=mem))
((ioport=mbus) (mbus=mor) (extportpioport 0))))

Figure 5.8 A FIR filter in rass language

94

95

second information is the architecture of the control unit The control signal information is organized in a

so-called sadl file, which is read inby thecontrol generator atrun-time. In addition, thesetof registers and

buses aswell as the setof theprimitive instructions are also defined in sadl file. Once the architecture is

modified, and new primitive instructions are defined, the sadl file can bemodified accordingly tomake the

control generator program unaffected. The sadl file for the KAPPA architecture isshown in Appendix C.

The three primitive control operations, branch, call and return, can be implemented in anumber of

different control unit architectures. Therefore, the control generator has toknow theparticular control unit

architecture that the control operations are mapped into. Ideally, the control unit architecture should be

described externally, like the sadl file, such that the same control generator program can be applied to dif

ferent control unit architectures. The current control generator, however, hard-wires the KAPPA control

unit architecture in its implementation.

The algorithm ofthe control generator is described in the following. First the hardware information

section ispassed to the output without modification. For the variable and constant declarations in the rass

program, ahash table is created to store the variable or constant names and values. Later, when avariable

or constant name is used as a key then its address can be obtained from the hash table. For the logic

instruction declarations and thecontrol flow sections, theboolean variables involved are analyzed to deter

mine each of which tobeone of the primary inputs, primary outputs or feedbacks. The logic instructions

will be implemented by the LGU and the control flow will be implemented by the finite state machine in

the control unit Thebitorder of the primary inputs, primary outputs and feedbacks has to be consistent

with the structural description of the control unit The primitive instructions inthe code block section are

translate to the control signal patterns bythe help ofthe sadl file. The control generator will check whether

the primitive instructions in the same cycle have any conflicts. Finally, the sizing parameters ofeach ofthe

functional blocksin thearchitecture are determined, andanoutputparameter value file is generated.

96

5.6. Summary

The software flow ofthe Lagerin silicon compilation subsystem is summarized in Figure 5.9. Itcon

sists of three components: aSilage translator that translates aSilage program to an RL program, an RL

compiler that compiles the RL program to arass program and acontrol generator program that generates a

parameter value file from the rass program. This subsystem maps aSilage program to apre-defined archi

tecture, such as KAPPA. Itprovides ameans for the user to tailor the architecture and create new primitive

instructions to match the algorithm better. In particular, a code generation table is used by the RL com

piler, and asadl file is used by the control generator, to allow customization ofthe subsystem.

SILAGE

SILAGE

TRANSLATOR

Code

Generation

<
RL •

Table RL

COMPILER

SADL

'
, RASS

(Control Signals) CONTROL

GENERATOR

\ ,PARAN

VALUE

IETER

,S

Figure5.9 The software flow of Lagerin silicon compilation subsystem

97

The Cathedral-II system5 has been developed in parallel with the LagerlTJ silicon-compilation sub

system. Both of these systems use Silage as a behavioral description language for describing the algo

rithms. There are two major differences between Lagerlll and Cathedral-II in their silicon compilation

parts. First in Lagerlll the system isadapted to new architecture bymodifying two tables: the code gen

eration table used by the RLCompiler and the sadl file used by the Control Generator, and inCathedral-II

it is adapted by modifying a set of hardware-dependent rules. Because the unification process in a rule-

based system searches the set ofrules sequentially, the order ofthe rules iscritical. Thus, the insertion and

deletion of rules, as required to modify the architecture, is hard to do. Second, the Lagerin system

schedules the Silage program to generate the control flow operations (using the Silage translator) before the

compilation of the data path operations. On the other hand, the Cathedral-n system first compiles the

Silage program into symbolic microcode which does not have absolute timing, and subsequendy schedules

the microcode to generate the control flow.

In addition, the Lagerin system has aunique structural interface to allow quick layout generation of

new architectural designs.

CHAPTER 6

Pitch Tracker Chip

In this chapter, a pitch tracker chip design is used as an example of the use of the Lagerin silicon

compilation subsystem.

6.1. Pitch Tracking Algorithm

The pitch tracking algorithm used is referred to as the second modification of the Gold pitch

tracker33 , a summary of which can also be found in3 . In this section, abrief description of the algorithm

is provided.

The algorithm is shown in Figure 6.1. The pitch is the fundamental period in a speech signal. The

pitch is a low frequency signal and hence a low pass filter (LPF) is used to filter out the high frequency

components in thespeech signals. However, harmonics of the fundamental mayalso pass through theLPF.

The goal of thealgorithm is toreject the harmonics and extract the fundamental period. The peaks and val

leys of the filtered speech signal are then found, and the six new signals that are combinations of present

peaks or valleys and previous peaks or valleys (Figure 6.2) are calculated. The six signals are sentto six

identical pitch detectors.

A pitch detector forms an estimate of the time interval between major peaks in their input. The

minorpeaksarerejected basedon the following algorithm. First aftera majorpeak is detected, a blanking

periodof 3ms duration is entered during whichall peaks are rejected. Inotherwords, the pitch period can

not be shorter than 3ms. Following the blanking interval, an exponentially-decaying threshold signal is

computed. This threshold is initialized with the amplitude of the previous peak,anddecaywith a time con

stant of 5ms. Minor peaks which fail to exceed this thresholdarerejected.

98

SPEECH_
INPUT ^

2-POLE
LPF

PEAK/
VALLEY

DETECTOR

PITCH DETECTOR

PITCH DETECTOR

PITCH DETECTOR

PITCH DETECTOR

PITCH DETECTOR

♦ PITCH DETECTOR

Figure 6.1 Gold pitch tracker algorithm

Figure 6.2 Sixsignals formed afterpeak-valley detection

, PITCH
ESTIMATE

99

100

The six pitch detectors are working in parallel and six pitch estimates are obtained. Each estimate is

considered as a candidate for possibly being the actual pitch period. A scoring algorithm is used to select

one of the six as the best estimate. Each candidate is given a score ranging from one to eighteen by per

forming a window comparison between the candidate and each of the following eighteen values: the six

candidates themselves, the six previous estimates and the six sums of the current and previous estimates,

where a window comparison is to compare if two values are within a pre-defined window (distance). If

none of the estimate has a score greater than a fixed threshold then the input speech is considered as

unvoiced.

6.2. Chip Implementation

To use the Lagerin silicon compilation subsystem, the algorithm is programmed in Silage. At the

development phase of the silicon compilation subsystem, RL andrass programs arealso written manually

andcompared with the onesproduced by theSilage translator andRL compiler. In particular, thecodesize

generated by the RL compiler is about 8% longer than that of the manually written rass program. The

Silage, RL andrassprograms forthe pitch tracking algorithm are shownin the Appendix D.

The KAPPA architecture is used to implement the pitch tracking algorithm. The samplingrateof the

speech signal is 8 KHz. The circuit clock rateof the KAPPA architecture is 5 MHz. Therefore, the max

imum number of cycles in a sample is 625. For the pitch tracking algorithm, the total number of cycles is

310 for the manually written rass program and 335 for the rass program generated by the RL compiler.

The KAPPA architecture provides a sufficient implementation because the sampling rate can be met

After applying the silicon compilation subsystem, a parameter value file is generated. By using this

parameter value file and the set of structural description language files that describe the KAPPA architec

ture as inputs to the Lagerlll silicon assembly subsystem, the chip layout can be generated automatically,

which is shown in Figure 6.3.

101

In the layout generation process, the macro cell place and route tool, Flint, is used extensively. It

has a nice feature that once the floorplanning and global routing are in place, then thedetail routing can be

performed very quickly. Therefore, byusing the same architecture, the algorithm developer can reuse not

only the architecture but also the existing floorplans. However, one drawback is that the floorplan files use

theabsolute names and hence slight modifications are necessary if the root instance name is changed. This

should be improved in the future.

102

»»"»»""»»»"»»»"»""»»" IHIIHHimHllMhUIHiffl

Figure 63 The pitch tracker chip CIF plot

CHAPTER 7

Conclusions and Remarks

7.1. Major Accomplishments

One of the key accomplishments of the LagerlH system is that it provides four interfaces such that

users with different expertise can work together and make use ofother people's results. The collaboration

has proven to be very important in the design ofalgorithm-specific ICs. Abehavioral interface is provided

for algorithm developers to enter new algorithms. A structural interface is provided for architecture

designers to enter new architectures. A CAD tool interface is provided for CAD tool designers to enter

new module generation tools. A cell library interface isprovided for the circuit designers to enter new leaf

cells.

Because the direct synthesis ofa structural description from abehavioral description has not yet able

to result in efficient architectures in a wide range of applications, the Lagerin silicon compilation subsys

tem employs a novel approach to map a behavioral description to a pre-defined parametrizable structural

description by generating a set of parameter values that istailored tothe behavioral description. The capa

bility of selecting the architecture and iteratively optimizing it is useful ingaining experience of architec

tural design for new algorithms. This experience isvery valuable in the direct synthesis research.

The Lagerin silicon assembly subsystem contains anumber of module generation tools, a simulator

and acell library. It is designed with emphasis onproviding an open system such that new module genera

tion tools and cells can be integrated easily. To do this, a database with a consistent integration policy is

developed.

104

105

Even though the algorithms in various applications are different it is found that theycan all imple

mented by the same set of functional modules, which include memories, data paths, etc. The use of

parametrizable functional modules is a unique feature of the Lagerin system. The parametrizability not

only facilitates the reuse of functional modules, but also alleviate the problem ofcell library maintenance.

12. Remarks on Future Improvements

Nevertheless, a few improvements can bemade tomake the Lagerin system better. These points are

discussed in this section.

The LagerHI system employs acell-based design methodology. All the leaf cells in the cell library

are manually designed. One ofreasons that this approach is taken isthe relatively poor performance ofthe

automatically generated leaf cells. However, there have been anumber ofnew and promising approaches

in the automatic generation of leaf cells, including standard cells with transistor sizing34 , gate matrix35 ,

and sea of gates. These approaches should be looked into and employed if advantageous to alleviate the

problem of design rule dependence inthe manually designed leaf cells.

The LagerlU silicon assembly subsystem is implemented in Lisp with the Flavors object-oriented

programming system, which is very nice developing tools and helps to prototype ofthe system in ashort

amount of time. However, it suffers from speed penalty unless high performance, dedicated hardware is

used. In addition, the capacity of a Lisp process in Unix environment limits the size of the design. The

volatile database also contributes to the capacity problem.

A development project (which isdubbed LagerlV) is currendy undertaken which re-implements the

LagerHI silicon assembly subsystem in Clanguage and replaces the Flavors based database bythe OCT

database. This should solve the capacity problem because OCT is a non-volatile database and hence the

intermediate results can be saved in the secondary memory. A C based simulator, which is called

Xhor36.37 ^win te m place for $& j^so based Design Simulator. Besides speed improvements, the Thor

simulator has two additional advantages. First it isbacked by acomplete setof library models for off-die-

106

shelf chips. This makes the simulation ofthe whole board possible. Second, an interface to aswitch level

simulator, rsim, which can beused tosimulate the extracted layout isprovided. This helps to verify acir

cuit model against its layout

Somebelieve that theautomatic layout generation is correct byconstruction, and therefore nodesign

verification. However, verification is stillrequired at least in thedevelopment phase. Magic provides an

incremental design rule checking environment which can beused toverify the design atthe physical level.

An interface is established between Thor and rsim to verify thecell modelagainst the cell layout After

the cell models areverified, all further simulation canbe carried out at the structural level usingThor. The

verification between the behavioral level description and structural level description remains, however, an

open research problem.

Due to the parametrization mechanism in the LagerHI system, special care has to be taken in the

LagerlV project Firsta Lisp interpreter38 is still required to evaluate the parameterization expression in

the structural descriptions. Second, a pre-processor is required to generate the Thor model instances from

the model templates which are parametrized.

The Lagerin silicon subsystem tries to generate the layout of all the cell modules, even with those

which have the same parameter values and hence have the physical layout This is also fixed in LagerlV

by modifying the syntax and semantics of the structural descriptionlanguage.

In the Lagerin siliconcompilation subsystem, one drawback is that it is left to the user to diagnosis

the efficiencyof a particular architecture and find the remedy. The subsystem provides user the number of

instruction cycles that the algorithm will require if using the architecture, as the only figure of merits.

Moreover, the user has to provide the code generation tableas well as the sadl file at every iteration. Some

architecture level design aids that facilitates the user in exploring the design space by quickly providing

estimates of the architecturalefficiency will be very helpful.

107

73. Applications of Lagerin

The LagerHI system has been applied to a number of algorithm-specific IC designs, two of which

werereported in this thesis. In addition, a robot arm controller chiphasbeendesigned andgenerated using

LagerllL28 It implements an adaptive control algorithm which compensates the inherent non-linearity in

the robot arm dynamics. This chip was generated by both the silicon compilation and silicon assembly

subsystems using the KAPPA architecture.

A set of four chips has been designed, fabricated and individually tested which is used for imple

menting a channel emulator.39 A channel emulator emulates the architecture of a computer network and

can beused to study the performance and effects of different network protocols. The four chips include a

tap switch which emulates the physical connection ofacomputer tothe network, avariable register delay

line to simulate the time delays through different network paths, a crossbar switch to emulate thetopology

of the network and a maskOR crossbarswitch. The mask OR crossbar switch is essentially similarto the

crossbar switch with additional flexibility in the topology it can emulate. The four chips were generated

using the LagerHIsilicon assembly subsystem.

The Lagerlll silicon assembly system was also applied to the development ofVLSI implementation

of projection-based image processing algorithms.40 In all the applications, algorithm-specific ICs were

found toproduce much higher performance. Byusing the LagerHI system, the design difficulty and cost of

algorithm-specific ICs are reduced, which further makes the algorithm-specific ICs approach more attrac

tive.

References

1. R. A. Kavaler, The Design and Evaluation ofASpeech Recognition Systemfor Engineering Worksta

tions, University ofCalifornia at Berkeley (May 1985). Ph. D. Thesis

2. P. A.Ruetz, Architectures and Design Techniques for Real-Time Image Processing ICs, University

of California at Berkeley (May 1986). Ph. D.Thesis

3. S. P. Pope, Automatic Generation ofSignal Processing Integrated Circuits, University ofCalifornia

atBerkeley (February 1985). Ph.D.Thesis

4. D. Thomas, C. Hitchcock HI, T. Kowalski, J. Rajan, and R. Walker, "Automatic Data Path Syn

thesis,'f IEEE Computer Magazine, pp.59-70 (December 1983).

5. J. Rabaey, H. De Man, J. Vanhoof, G. Goossens, and F. Catthoor, "Cathedeal-H: A Synthesis Sys

tem for Multiprocessor DSP Systems/* in Silicon Compilation, Addison-Wesley (December 1987).

6. P. A. Ruetz, R. Jain, and R. W. Brodersen, "Cbmparision of parallel architectures for real-time

image processing ICs," Proc. ISCAS, (December 1987).

7. S. K. Azim, C-S Shung, and R.W. Brodersen, "Automatic Generation of A Custom Digital Signal

Processor for An Adapter Robot Arm Controller," IEEE ICASSP, (April 1988).

8. P. N. Hilfinger, "Silage: A Language for Signal Processing," Proceedings ofCICC, (May 1985).

9. A. Goldberg, S. Hirschhom, and K. Lieberherr, "Approaches toward Silicon Compilation," IEEE

CircuitsandDevices Magazine, pp. 29-39 (May 1985).

10. J. R. Jasica, S. E. Noujaim, R. Hartley, and M. J. Hartman, "A Bit-Serial Silicon Compiler,"

Proceedings oflCCAD, pp. 91-93(November1985).

11. J. R. Southard, "MacPitts: An Approach to Silicon Compilation," IEEE Computer Magazine, pp.

74-82 (December 1983).

12. R. Jain, F. Catthoor, J. Vanhoof, B. De Loore, G. Goossens, N. Goncalvez, L. Claesen, J. Van Gin-

derdeuren, J. Vandewalle, and H. De Man, "Custom Design of A VLSI PCM-FDM Transmulti-

plexer from System Specification to Circuit Layout Using A Computer-Aided Design System,"

108

109

IEEE J. Solid-State Circuits, Vol.21, No. 1, pp. 73-85 (February 1986).

13. M. Barbacci, "Instruction Set Specification (ISPS): The Notation andits Applications,**IEEE Trans.

Computers, Vol.30, No. 1, (January 1981).

14. J. Rabaey, S. Pope , and R. Brodersen, "An Integrated Automatic Layout Generation System for

DSPCircuits,*' IEEE Trans. Computer-aided Design, Vol. 4, No. 3, (July 1985.).

15. Franz Inc.,Franz LispUserManual, Opus 43.1,Franz Inc. (1987).

16. H. Cannon, Flavors: ANon-Hierarchical Approach to Object-Oriented Programming, MTT Artificial

Intelligence Lab 0- unpublished paper

17. A. Goldberg and D.Robinson, Smalltalk-80: The Language anditsImplementation, Addison-Wesley

(1984).

18. W. Baker,J. Burns, S. Chow, D. Harrison, M. Igusa, C. Kring,T. Laidig,B. Lin, P. Moore, J. Reed,

R. Rudell, C. Sechen, R. Segal, R. Spickelmier, A. Wang, A. R. Newton, and A. Sangiovanni-

Vincentelli, OCTTools Distribution 2.0, University of California at Berkeley, Electronics Research

Lab (November 1987).

19. W. Scott R. Mayo, G. Hamachi, and J. Ousterhout, editors, 1986VLSI Tools, University of Califor

nia at Berkeley, Report No. UCB/CSD 86/272(December 1985).

20. C-S Shung, R. Jain, M. B. Srivastava, and R. W. Brodersen, LagerlllUser's Manual, Universilty of

Californiaat Berkeley, internal documentation (August 1987).

21. M. B. Srivastava, Automatic Generation of CMOS Data Paths in LAGER Framework, University of

California at Berkeley (May 1987). M S. Thesis

22. J. Perl andR. Chapman, "New Image-Processing Frame Memory," Computer Graphics World, pp.

73-75 (June 1986).

23. Texas Instruments, TMS34061 User's Guide, Texas Instruments (1986).

24. GE Company, TN2250 512x512 CID Automation Camera Interface Specification, GE Company

(October 1986).

110

25. A. J. Burstein, A 9 Bit 10 MHz AID Macrocell, University of California at Berkeley (November

1987). MS.Thesis

26. E. Wang, private communication

27. K. Rimey, A Compiler for Horizontal-Instruction-Word Signal Processors, University of California

at Berkeley,QualifyingProposal (April 1988).

28. S. K. Azim, Applications ofSilicon Compilation Techniques to ARobot Controller Design, Univer

sityof California at Berkeley (in preparation). Ph. D.Thesis

29. Davio, Marc, and Deschamps, Digital Systems with Algorithm Implementation, John Wiley & Sons

(1983).

30. G. Frantz, K. Lin, J. Reimer, and J. Bradley, "The Texas Instruments TMS320C25 Digital Signal

Microcomputer,** IEEE Micro, Vol. 6,No. 6, pp. 10-28 (December 1986).

31. Sieworek, Bell, and Newell, Computer Structures: Principles and Examples, McGraw Hill (1982).

32. D. A. Patterson, "Reduced Instruction Set Computers,** Communications of the ACM, Vol. 28,No.

1, pp. 8-21 (January 1985).

33. B. Gold and L. R. Rabiner, "Parallel Processing Techniques for Estimating Pitch Periods of Speech

in theTime Domain,** /. Acoustical Society ofAmerica, V. 34,No. 7, pp. 916-921 (1962).

34. J-M Shyu, A. Sangiovanni-Vincentelli, J. Fishburn, and A. Dunlop, "Optimization-Based Transistor

Sizing,'* IEEE J. Solid-State Circuits, (April 1988).

35. A. D. Lopez and H. A. Law, "Design Gate Matrix Layout Method for MOS VLSI,*' IEEE Trans, on

Electronic Devices, vol. ED-27, pp. 1671-1675 (August 1980).

36. Robert Alverson, Tom Blank, Kiyoung Choi, Arturo Salz, Larry Soule, and Thomas Rokicki, THOR

User's Manual: Tutorial and Commands, Stanford University (January 1988). Technical Report

CSL-TR-88-348

37. Robert Alverson, Tom Blank, Kiyoung Choi, Arturo Salz, Larry Soule, and Thomas Rokicki, THOR

User's Manual: Library Functions, Stanford University (January 1988). Technical Report CSL-TR-

Ill

88-349

38. W. C. Baker, LightLisp: ALight-Weight Lisp Interpreter, University ofCalifornia at Berkeley, Elec

tronic Research Lab (November 1987).

39. J. S. Sun, Design and Implementation of Integrated Circuits for a Real-time Flexible Emulator

Applying Silicon Assembly Tools, University ofCalifornia at Berkeley (March 1988). M. S. Thesis

40. W. B. Baringer, B.C. Richards, and R.W. Brodersen, "A VLSI Implementation of PPPE for Real-

Time Image Processing in Radon Space -Work in Progress,** Workshop on Computer Architectures

forPattern Analysis and Machine Intelligence, pp. 88-93 (October 1987).

1. Design Manager (DM)

2. Layout Generator (LG)

3. Design Simulator (DSIM)

4. Control Generator (rassCG)

APPENDIX A

(part of) Lagerin User Manuals

112

DM(1) LagerHI User*s Manual 113

NAME

DMjiew - Design Manager

SYNOPSIS

DM [options]

DESCRIPTION

DM_new is a structural interface program which serves as thefront-end of thelayout generation
and the simulation. DMjiew requires the following information: sdl files, parameter values of
all the parameters defined in the sdl files anda listof options. Since the namesof the sdl files of
the sub-cells can be inferred from the sdl file of the parent cell, only the name of the sdl file of
the root of the design hierarchy is needed. The parametervalues can be provided by the user
through a file,or interactively foranyparameter values not specified in the file.

DMjiew can be run in both an interactive and a batch mode, depending on whether a
command-line option -I is set or not. In the interactive mode, the Lisp prompt (=> for Franz
Lisp 43.1) will appear. The usercan then invoketheDMLisp functionby

=>(DM)

(DM) will ask a series of questions:

Please enter root type (generic name): rom

Please enter root name (instance name): ROM1

Please enter parameter filename (if none enter N): N

Please enter parameter value of row in cell rom (root): 12

The generic nameof the root is the nameof the rootsdl filename withoutthe ".sdl"suffix. The
instance name of the root is a name for the particular design. The user has the option of entering
the parametervalues througha file,or interactively as shownin the above queries. The parame
ter file may contain any number of lists, each of which has two elements. The first element is
the name of the parameter and the second is the value of the parameter. Because the parameters
of the sub-cells can be definedby the parametersof the parent cell, only the parameter values of
the root need to be specified. Those parameter values that the user enters interactively are col-
lecdy and incorporated into the parameter file such that the user doesn't have to type them in
again next time. If there is no parameter file specified at the first time, the file root-instance-
name.pai is used.

If the (DM) finishes creating the structures, the user will be prompted to enter (LG) or (DSIM)
depending on whether he/she wants to generate the layout or simulate the design. If (DM)
aborts because some of the sdl files in the design hierarchy are not found by (DM), see the
PATH MECHANISM section. Otherwise, (DM) should report a number of DM-ERRORs, see
the ERROR DIAGNOSIS section.

PATH MECHANISM

In LAGER-III all the tools have a joint startup file called .lager that should be in the working
directory or home directory. If both locations have a .lager file, the one in the working directory
prevails. The user may use the .lager file to specify where the library files for any tools can be
found.

The .lager file may consist of any number of lists, each of which takes the form

(keywordelement [elements...])

where the keywordspecifies an attribute of a tool that makes use of the list Normally each ele
ment in the list is a directory path (absolute or relative). Note that the order determines the
priority. For example, DM has only one attribute dm.sdlfile in the .lager file. The user can use

DM (1) LagerHI User's Manual 114

the .lager file to specify the directory paths that DM needs to search other than the (default)
working directory. The working directory has toberepresented byV (back-slash and adot, for
some lispish reasons) or a full absolute path. Comments in the .lager file can beentered in the
same way as in the sdl file.

A .lager file example:

(dm^dlfile V
lager/LagerHI/processor/sdl
"lager/Lagerin/lib/stdcell
"lager/Lagerlll/lib/dpc/leafcells)

(TimLager.o Tager/l^gerni/UbyTimLager/scpads/scpadsl^5)

(TimLagerJeafcellsTager/LagerHI/lib/rimLager/scpads/scpadsl.25/leafc

(DPCcd lager/Lagerni/lib/dpc/leafcells)

(DPCmag "lager/LagerHI/lib/dpc/leafcells)

(bin lager/Lagerin/bin)

(octbin 'cad/bin AisrS/octtools/bin)

(stdcell.leafcelinager/Lagerlll/lib/stdcell)

(Padroute.hdl "bilbo/moslib/frames)

OPTIONS

I — to invoke interactive mode DM

The following optionsare forbatchmode DM

ganme name - theroot generic name (without the.sdl extension)

iname name - the root instance name

pfilefilename - parameter file name

c - scmos technology (default)

n - nmos technology

m - magic layout (default)

k - kic layout

hdl - use hdl format for Padrouteand Flint (default is oct format)

LG - run LG automatically following DM

DSIM - run DSIM automatically following DM

eGle filename - the event file input of DSIM

ofile filename - the output file of DSIM

LOG FILES

There are 3 log files tobookkeep the program status. Their names have the instance name of the
root asa prefix. The"-dm.log" file is the log file for DM(1). The "-sim.log" file is for DSIM(l)
and B-lg.log" is for IG(J).

An instance-name-dm.log file contains the following information: the paths of the sdl files if
they are found through .lager file, the number of nets generated for each net definition, all
instances of parameter evaluation andwarnings such asto default the starting index to zero. The
information is organized in a top-down way, the parent cellbeingin front of the sub-cells.

DM (1) LagerlH User*s Manual 115

NAMING CONVENTION

Each cell, net and terminal in the entire design hierarchy has a unique name. These names are
used all the log files. The namingconventionsare:

1. The name of the root is the root instancename entered interactively by the user when (DM) is
invoked.

2. The name of a sub-cell is the concatenation of the name of the parent cell, the separator"-"
and the instance-name of the sub-cell.

3. The name of a net is the concatenation of the name of the parent cell, the separator "@" and
the net name.

4. The name of a terminal is the concatenation of the name of the parent cell, the separator "."
and the name of the terminal.

5. In the case of a bus, the net name and the terminalname are indexed by the bit number (start
ing from 0) enclosed in brackets(T and T).

ERROR DIAGNOSIS

An important task of DM is to find syntax errors andinconsistencies in the sdl files thatthe user
provides. The errors will be reported in the instance-name-6m.log file starting with "DM-
ERROR". If there is any DM-ERRORs found, then the number of DM-ERRORs wffl be
reported after (DM) finishes. The common errormessages are:

1. "param not evaluatedto a number, net ignored"

The parameter param specifies the width of a net definition but the value of param is not a
number.

2. "terminal term connects to net neta and netb."

The terminal term appearson two nets, neta and netb.

3. "net name neta repeated, 2nd one deleted"

The same net name neta is used to referred to two nets. The second net definition is removed.

4. "instance terminal term in cell cell not defined as a generic terminal"

The terminal term of the sub-cell cell is instantiated; however, in the sdl file corresponding to
cell (generic-name.sdl), the terminal termis not definedas a generic terminal.

5. "Error. Can't find generic-name.sdl"

The generic-name.sdi is not in the working directory, nor can it be found from the paths of the
dm.sdlfile entry in the .lagerfile. This is a fatal error and DM will halt

6. "generic-name.sdl: too many parentheses?" "after form form"

Lisp read fails. Usually the error is because of unmatched left and right parentheses. DM will
show you what the last successful Lisp form (form) read.

7. "generic-name.sdl: unrecognized keyword word" "after formform"

DM recognized differentconstructs by keywords, see sdl(5). This error reports an unrecognized
keyword word found after the last successfully readform.

SEE ALSO

sdl(5),DSIM(l),LG(l)

FILES

Tager/Lagerni/src/DM/DMiniLl

DM (1) Lagerin User*s Manual 116

1ager/Lagerin/lisplib/{*.l,*.o}

Tager/Lagerni/bin/DM

AUTHORS

Chuen-Shen Shung

Rajeev Jain

LG (1) Lagerm User's Manual 117

NAME

LG - Layout Generators

SYNOPSIS

(LG)

DESCRIPTION

(LG) is one of the two back-ends of (DM). Before (LG) can be run, the user has to run (DM).
(DM) creates the necessary data structures for (LG) to perform layout generation. The layout
generation is performed in a bottom-up way. The layouts of the sub-cells are generated before
the layout of the parent cell is generated. This is because that the layout generation of the parent
cell usually requires some information (e.g. size, terminal locations) of the sub-cells.

(LG) serves as a centralized data manager. Instead of letting module generators communicate
with each other directly, each module generator communicates with (LG) only. Before the lay
out generation is performed, the module generator gets the information of the sub-cells from
(LG); after the layout generation is done, the module generators sends the result to (LG) for use
of the parent cell. New module generators can be integrated by simply interfacing with (LG),
which has no effect on the existing module generators.

The entire layout generation is pseudo automatic because some of the layout generators require
human interaction. Ideally if all the module generators were written in Lisp, then they can
access the data structures direcdy. However, most tools are in C, and were designed to use files
as input and output, hence (LG) has to create the input files and to read back in the output files.
These layout generator oriented issues are discussed in the LAYOUT GENERATORS section.

(LG) creates a instance-name-\g.\og file to record the status of the layout generation. (LG)
reports only one kind of LG-ERROR which indicates that some terminals of the sub-cells are not
connected by the parent cell.

LAYOUT GENERATORS

This section describes the input andoutput files/directories and the necessary user interactions of
the layout generators. In case of any problems during the layout generation, the user can consult
the input and output files/directories in additionto the log file to troubleshoot

1. Flint

Flint assumes a directory as the input. The name of the directory is the instance name of the
parent cell. Each sub-cell occupies a sub-directory which contains a pdl file and a hdl file. The
time stamp of the hdl file has to be later thanthatof the pdl file to ensure properoperation. The
parent cell also requires a pdl file and a con file that contains a list of the sub-cell names.

The output of Flint includes a hdl file which shows that size of the parent cell and the coordi
nates of the terminalsof the parent cell, and a layout file. In the hdl file that Flint generates, the
names of the terminalsare the instancenames of the sub-cells. (LG) changes the names into the
generic namesof the parent cell in orderto be consistentwith the higherlevel

Flint requires the user to place the cells, to define the channels and to do the global routing
manually. However, these information can be dumped into a floorplan file that can be used
later. Flint does the detail routing automatically, except that it fails for the nets which contains
nothing but two terminals on the same cell (feedback nets). In general, some kind of rip-up
routing has to be done manuallyas well.

2. TimLager

TimLager assumes apdl file as the input When TimLager is invoked by (LG), the netandthe
cable fields in the pdl file are not used. TimLager generates a layout file and a ihdl file (used
with (LG)) or a hdl file (used stand-alone). The only difference between the ihdl fileand the hdl

LG(1) LagermUser*s Manual 118

file is that the hdl file copies the netand the cable fields from the inputpdl file and the ihdlfile
doesn't

3. Stdcell

The standard cell module generator is called Wolfe. Wolfe takes the contents facet of a sym
bolic view (the view name is designated to be "wolfe" by (LG)) of the parent cell as the input.
After the layout generation, Wolfe writes the informationback into the same contents facet and
creates a layout file. The OCT facet is not in ascii format hence the user has to use vem or
attache to browse it

The user will be asked of two questions:

Enter the number of rows desired (n => decided by wolfe): 2

Enter number of iterations of sim. anneal, desired (n => 100): 5

The first question should be self-explanatory. The placement step in Wolfe uses a technique
called simulated annealing. The second question asks the user to specify the number of simu
latedanealing iterations. The larger the number, the slower the program runs and the better the
result

Wolfe doesn't extend the Vdd and GND terminals to the boundary of the parent cell. (LG) pro
vides a kludgy way to get around the problem. After the layout is generated, (LG) will interrupt
the running process and ask the user to fix the layout file. The user can resume the process by

c{l} ?ret

where c{1} is the Lisp breakprompt

4. Dpc

Dpc is written in Lisp such that it can access the data structures direcdy. Dpc generates a layout
file and a hdl file.

S.Padroute

Padroute takes 5 hdl files as input which are created automatically by (LG). Padroute gen
erates a layout file. Usually Padroute is used as the module generator of the root, so no termi
nal is present on the boundary.

6. Mosiaco

Like Wolfe, Mosaico takes the contents facet of a symbolic view (the view name is designated
to be "mosaico" by (LG)) as the input In addition, Mosaico requires the contentsand interface
facets of the physical view of all the sub-cells. All these facets are created by (LG). However,
(LG) doesn't call Mosaico direcdy. The user should ask the maintainer of the Mosaico pro
gram to run it Again the process can by interrupted to wait for the layout generation to be done.

DEBUG MODE

When the option g is specified in (DM) prior to the (LG) run, then the process is in the debug
mode. In this case most of the module generators will ask the question "Do you want to gen
erate the layout for... cell?". If the user replies n (No) then the layout generation of that cell and
all its sub-cells are by-passed. This is useful when some of the cells in the design hierarchy
have been generated successfully and the user wants to avoid duplicating the effort

SEE ALSO

sdl(5), hdl(5), pdl(5), DM(1), DPC(l), Padroute(l), TimLager(l), Flint(l)

Oct Tools Distribution 1.0

LG(1) Lagerin User's Manual 119

FILES

1ager/Lagerin/src/DM_v3/*.I._ source files

lager/LagerHI/bin/DM - executable file.

AUTHORS

Chuen-Shen Shung

Mani B. Srivastava

DSIM (1) LagerlH User's Manual 120

NAME

DSIM - Design Simulator

SYNOPSIS

(DSIM)

DESCRIPTION

(DSIM) is one of the two back-ends of DM. Before (DSIM) can be run, the user has to run
(DM). (DM) creates the necessary data structures for (DSIM) to perform simulation. (DSIM)
is an event-driven simulatorand requires an event fileas the input The event file canbe thought
ofas the input waveform specification withouttheabsolute timinginformation.

The simulation models are stored in the sdl files using the sim-list constructs. If the simulation
models aredefined forboth the parent cell andthe sub-cell, then the modelof the parent cell will
be used. The simulationruns faster if higher level models are used. However, the user has the
responsibility to verify the higher level models if he/shewants to create one out of lower level
models.

(DSIM) will ask a series of questions after it is invoked:

=>(DSTM)

Pleaseenter a list of globalclock signals: (APU@PHI1 APU@PHI2)

Please enter input events filename: APU.edl
Output file will be APU^a

t

=>

When simulation finishes, t and a Lisp prompt are returned. The user can run another (DSIM)
with a different input event file. However, the name of the output file is always instance-
name.sa,so the new simulation results will overwrite the previous simulation results.

The list of global clock signals (clock list) is used in conjunction with the (R) command in the
inputevent list Unless the clock list is nil (which can be specified by 0). it has to be a list of
two elements. Each of the two elements can be either a symbol or a list The clock list supports
a two-phase non-overlapping clockingscheme. Let's represent the first element in the clocklist
by phil and the second element by phi2. The (R) command is equivalent to the following
sequence ofcommands: phil=l phi2=0 (f),phil=0phi2=0 (r), phil=0 phi2=\ (r),phil=Q pfu2=Q
(r).

(DSIM) creates a instance-name-sim.log file to record the status of the layout generation.
(DSIM) reports only one kind of LG-ERROR which indicates that some terminals of the sub-
cells are not connected by the parent cell.

EVENT FILE FORMAT

The event file consists of a number of commands, each of which is a list The name of the com
mand is specified by the first element in the list The rest in the list specifies the nets or the
buses that the command operates on. A bus is specified by the common name of the nets in the
bus (the names of the nets are different only in the index part). A net can be specified either by
a net-name or by a list of a cell-name and a terminal-name. Note that the net-names and the
cell-names are full names (see the NAMING CONVENTION section ofDM(1)). Therefore, the
event file has to be updated once the instance-name of the design is changed.

1. alias command

(a (namela namelb) (name2a name2b)...)

DSIM(1) LagerlH User's Manual 121

After this command, namela will be replaced by namelb where it appears; name2areplaced by
name2b,... and so on.

2. break command

(b)

The simulation gets interrupted when thebreak command is read, the usercanresumethe simu
lation by ?ret.

3. set-high command

(h netl net2...)

The values of netl, net2,... are set to "1".

4. set-low command

(1 netl net2...)

The values of netl, net2,... are set to "0".

5. set-vector command

(V bus string)

Set the value ofeach net in the bus to the correspondingbit in the string.

6. clear command

(x netl net2...)

Remove netl, net2,... from pre-set status. The values of them will be determined by simulation.

7. watch command

(w netl net2...)
(W bus start-index end-index)

Put netl, net2,... and the nets from start-index to end-index in the bus to the watch list.

8. print command

(P)

Prints the values of all the nets in the watch list. Note that the single nets and buses are printed
differendy.

9. run command

(r)
(R)

Start the simulation with all the events since last run command as the input (R) is used in con
junction with the clock list specification to run a major cycle, (r) runs a minor cycle.

SEE ALSO

sdl(5),DM(l),esim(l)

FILES

Tager/LagerHI/src/DM_v3/*.l - source files

Tager/Lagerlll/bin/DM - executable file.

1ager/Lagerm/lib/processor/*.sdl
Tager/LagerIII/lib/stdcell/*.sdl
"lager/Lagerin/lib/dpc/leafcells/*.sdl

DSIM(1) Lagerlll User's Manual 122

AUTHORS

Chuen-Shen Shung

BUGS

Slow. (DSIM) can't run one order of magnitude faster than esim, even though the latterworks
off transistors.

CG(1) Lagerm User's Manual 123

NAME

rassCG - Control Generator from the rass file

SYNOPSIS

rassCG [-i sadl file] < rass file > parameterfile

DESCRIPTION

CG is a pre-processor for DM. For a complicated design, the parameter file neededby DM is
often too tedious and error-prone to be created manually. CG can be used to generate the
parameter file from a behavioral description, the rass file.

Even though the ideaof CG is general, the implementation is constrained by the target architec
ture,which is described by a set of sdl files. The namesof the parameters used in the sdl files
have to be the same as the names used by the CG program to generate the parameter file. At
this moment CG support only one target architecture, KAPPA, (described by
"lager/LagerIII/processor/sdl/*.sdl). KAPPA is a programmable architecture which consists of
data paths controlled by a microprogram and a control unit that stores the microprogram.
Nontheless, the KAPPA architecture can be used in quite a wide range of applications,in which
cases the useronly needs to program the applications in rass files and use the set of CG-DM-
LG programs to generate the layoutautomatically.

A rass file describes the behavior of an algorithm and some hardware information (e.g. word
lengthof the data path). The userhas the optionsto write the rass file direcdy (in which case it
should be more optimized) or write a high-level language (RL or Silage) and have the RL and
Silage compilers generate the rass file. The RL compiler is written in such a way that the user
can describe the architectures for it to generate different code. CG takes the rass file as the
input and translates it to the parameter file in which the decoded microprogram is considered to
be one of the parameter valuesof the controlunit in KAPPA.

By usinga sadl file as a second inputto the CG program, the usercan change the data paths in
the KAPPA. The sadl file describes the instruction set and the control signals of each instruction
in the target architecture. If sadl is not specified, the one which describes KAPPA is usedby CG
(see appendix).

However, if the user wants to change the control unit in the KAPPA as well, then the rass file
and the CG program have to be changed in a big way. Therefore, the name of the program is
calledrassCG. It is expected that some users will rewrite the CG program for theirnovel archi
tectures.

RASS FILE FORMAT

A rass consists of a number of lists. The first element of each list is used to distinguish the list
The order of these lists is not critical.

1. Hardware information

(dp_word_size value)
(reset_timer list)
(max_sample_intvl value)
(stack_depth value)
(loopjtest list)

Dp_word_size specifies the word length of the data path. Resettimer specifiesa list of block
numbers, each of which specifies a microprogram block (see the Microprogram blocks list). In
each microprogram that is specified by the resettimer list the timer is reset
Max_sample_intvl specifies the worst case sample interval that is used by the timer to produce
a constant sampling period. Stack_depth specifies the maximum depth of the subroutine nest
ing. If no subroutine is used, then stackdepth is zero (default). Loop_test specifies a list of

CG (1) LagerlH User's Manual 124

test vectors that are used by the hardware loop counter. An internal conditional input Ictesu',
which is used to control the state machine in the control unit of KAPPA, is asserted when the
value of the hardwareloop countermatches the fth test vector.

2. Local variables

(ram scalarl scalar2... arrayl array2...)

This list declares all the local variables names (including scalars and arrays). In the micropro
gram, these names can be used torefer to the local variables. A scalar is represented by a sym
bolstarting with a character (A-Z, a-z). Both "_" (underscore) and"-" (hyphen) are allowed in
the symbol. An array is represented by alistof asymbol and a integer. Thesymbol is thename
of the array and the integer is the length of the array. The order of scalars and arrays isnotcriti
cal.

3. Constants

(const init-scalar... init-array...)

The list declares a numberof constants (initialized local variables whose values arenot changed
in the entire microprogram). An init-scalar is represented by a list of the a symbol and the an
initial value of thesymbol. An init-scalar is represented by a listof a symbol (the array name),
an integer (the length of the array) and a list of initial values, each for oneelementin the array
(in order).

4. Logic state machine

(dfsm <logic-inst><logic-inst>...)
<logic-inst> = (inst-name <logic-prim> <logic-prim>...)
<logic-prim> = (out-name <in-exprs>)
<in-exprs> =<in-expr> I(and <in-expr> <in-expr>...)
<in-expr> = in-name I(not in-name)

This list defines the logicinstructions thatare usedin the microprogram. In the microprogram, a
logic instruction can be invoked by referring to its inst-name. A logic instruction consists of one
or more logic primitives. Each logic primitive describes the logic relation between the state
out-name and some states in-names. Note that only and and not can be used to describe the
logicrelation. The or logic can be produced by specifying a logic primitive for each or-clause
in the same inst-name.

5. Control state machine

(cfsm <state-trans> <state-trans>...)
<state-trans> = (state-name block-number<in-expr> <control>)
<in-expr> see Logic state machine list
<control> = (goto state-name) I(call state-name suite-name) I(return)

This list is a list of state transitions. Each state transition is specified by a list of the present
state name, the block number of the present state name, a logic relation and a destination con
trol. Because several state names may use the same block of microprogram, a block number
field is required. The destination control implements 3 functions: (1) go to next state, (2) call a
subroutine state and push the return state into the stack, and (3) return from a subroutine. It can
be shown that the multi-way branch and the looping can be implemented by the go to with
proper logic relations.

6. Microprogram blocks

(rom <blockO> <blockl>...)
<blocki> = (block; <u-inst> <u-inst>...)
<u-inst> = (<u-op> <u-op>...) I(logic-inst-name <u-op> <u-op>...)

CG(1) Lagerffl User's Manual 125

The microprogram is broken intoblocks in which there is no state transition present. We call
these blocks the straight-line code blocks. Each block has a block number and a list of micro
instructions. Each micro-instruction consists of a list of micro-operations with one optional
logic instruction defined in the Logic state machine list The entire set of micro-operations and
their relations (e.g. someof themcan co-exist in the same micro-instruction, whilesomeof them
can't) are recorded in the .sadl file of the targetarchitecture.

SADL FILE

The sadl file consists of three parts: (1) the set of micro-operations, (2) a list of rom control sig
nals and (3) a list of all the resources in the target architecture. Each micro-operation requires a
numberof controls signals and occupies a numberof resources (e.g. registers andbuses). If two
micro-operations need to occupy the sameresource then they can't co-exist in the same micro
instruction. The CG program is able to findthese conflicts and report them to the user.

Most of the micro-operationsareof the form

(dest=src [arg])

which means the contents of the resource dest will be equal to the contents of the resource src
after the execution of the micro-operation. The micro-operation occupies the resource dest.
Some micro-operationsrequireone additional argument

The .sadl file of the KAPPA architecture is in the appendix.

FILES

"lager/Lagerni/processor/{ctrl-gen.l^om_gen.Usm_gen.l} - source files

lager/LagerHI/bin/rassCG - executable file

lager/Lagerlll/processor/KAPPA.sadl

"lager/Lagerin/processor/sdV.sdl -- sdl files forKAPPA

SEE ALSO

S. Khalid Azim, "Customizable ProcessorDesign for Rapid Implementation of ASICs"

AUTHOR

Chuen-Shen Shung

sml.bdsyn

APPENDIX B

Frame Buffer Controller input files

MODEL plal ! statetransitions of H-Vcontrol unit
! in bdsyn format

! this is specially for the GE camera
! which would providevsyn, hsyn and cblank signals.

! OUTPUT

count,

nextstate<3:0> =
! bring the h and v signals(theseare usedby pla2)
! from the output of the register to delay one cycle.
! h<l:0>=nextstate<l:0>, v<l:0>=nextstate<3:2>

! INPUT

presentstate<3:0>,
vsyn,

hsyn,
cblank,
eol,
eof,
sign;

CONSTANT

VAHA=0, 10000

VAHB=1, 10001

VAHC=2, 10010

VAHD=3, 10011

VBHA=4, 10100

VBHB=5, ! 0101

VBHC=6, 10110

VBHD=7, 10111

VCHA=8, 11000

VCHB=9, 11001

VCHC=10, ! 1010

VCHD=11, ! 1011

VDHA=12, 11100

VDHB=13, 11101

126

VDHC=14, ! 1110
VDHD=15; 11111

ROUTINE main;

SELECT presentstate FROM ! a multiway switch basedon the
! the value of 'presentstate'

[VAHA]: BEGIN

count=0;

IF (vsyn EQL 0) THEN nextstate=VBHA
ELSE IF (hsyn EQL 0) THEN nextstate=VAHB
ELSE nextstate=VAHA;

END;

[VAHB]: BEGIN

count=0;

rF (hsyn EQL 0) THEN nextstate=VAHB
ELSE nextstate=VAHC;

END;

[VAHC]: BEGIN

count=l;

IF (sign EQL 1) THEN nextstate=VAHD
ELSE nextstate=VAHC;

END;

[VAHD]: BEGIN

count=0;

IF (eol EQL 1) THEN nextstate=VAHA
ELSE nextstate=VAHD;

END;

[VBHA]: BEGIN

count=0;

JF (vsyn EQL 1) THEN nextstate=VCHA
ELSE IF(hsyn EQL 0) THEN nextstate=VBHB
ELSE nextstate=VBHA;

END;

127

[VBHB]: BEGIN

count=0;

IF (hsyn EQL0) THENnextstate=VBHB
ELSE nextstate=VBHC;

END;

[VBHC]: BEGIN

count=l;

IF(signEQL 1)THEN nextstate=VBHD
ELSE nextstate=VBHC;

END;

[VBHD]: BEGIN

count=0;

TF (eol EQL 1)THEN nextstate=VBHA
ELSE nextstate=VBHD;

END;

[VCHA]: BEGIN

count=0;

IF(hsyn EQL 0) THEN nextstate=VCHB
ELSE nextstate=VCHA;

END;

[VCHB]: BEGIN

count=0;

IF(hsynEQL0) THEN nextstate=VCHB
ELSE nextstate=VCHC;

END;

[VCHC]: BEGIN

count=l;

ff (signEQL 1)THEN nextstate=VCHD
ELSE nextstate=VCHC;

END;

128

[VCHD]: BEGIN

count=0;

JF (cblankEQL 1)THEN nextstate=VDHD
ELSE JF (eol EQL 1)THEN nextstate=VCHA
ELSE nextstate=VCHD;

END;

[VDHA]: BEGIN

count=0;

JF (hsyn EQL 0) THEN nextstate=VDHB
ELSE nextstate=VDHA;

END;

[VDHB]: BEGIN

count=0;

JF (hsyn EQL 0) THEN nextstate=VDHB
ELSE nextstate=VDHC;

END;

[VDHC]: BEGIN

count=l;

ff (sign EQL 1)THEN nextstate=VDHD
ELSE nextstate=VDHC;

END;

[OTHERWISE]: BEGIN !!! note HI
! mis insists to have an OTHERWISE state
! which serves as the default

count=0;

JF (eol EQL 1) AND (eof EQL 1)THEN nextstate=VAHA
ELSE JF (eol EQL 1)THEN nextstate=VDHA
ELSE nextstate=VDHD;

END;

ENDSELECT;

ENDROUTINE;
ENDMODEL;

129

sm2.bdsyn

MODEL pla2 ! state transitions of memory control unit
1in bdsyn format

'.OUTPUT

rasINV<0>,
casINV<0>,
oeINV<0>,
wrINV<0>,
nextstate<4:0> =

I INPUT

h<l:0>, ! horizontal regions
! h=0(HA), h=l (HB), h=2(HC), h=3 (HD)

v<l:0>, ! vertical regions
1v=0 (VA), v=l (VB), v=2(VQ, v=3 (VD)

flash<0>, ! flash=l (flcont), flash=0 (flend)
host<l:0>, ! host=0 (no host), hostel (host read),

! host=2 (host write), host=3 (illegal)
presentstate<4:0>;

! state assignments
CONSTANT

IDLE=0, REF1=1, REF2=2, REF3=3,
CWR1=8,CWR2^9,
RE1=12, RE2=13, RE3=14, RE4=15,
WR1=20, WR2=21, WR3=22, WR4=23,
CRD1=28, CRD2=29, CRD3=30, CRD4=31;

ROUTINE main;

nextstate = IDLE;

SELECT presentstate FROM

[IDLE]: BEGIN

rasINV=l; casINV=l; oeINV=l; wrINV=sl;

1priorityof the five memory operations:
1REF (refresh) (1st)
1CWR (column write)(2nd)
IRE (hostread) (3rd)
IWR (host write) (4th)
1CRD (cloumn read) (5th)

JFh EQL 0 THEN nextstate=REFl
ELSE TF(h EQL 3) AND (vEQL 3) AND flashTHEN

nextstate=CWRl

ELSE IF (h NEQ 0) AND NOT (flash AND (h EQL 3) AND (v EQL 3))
AND (host EQL 1) THEN
nextstate=REl

130

ELSE JF (h NEQ 0) AND NOT (flash AND (h EQL 3) AND (v EQL 3))
AND (host EQL 2) THEN
nextstates^WR1

ELSE JF (h EQL 3) AND (v EQL 3) AND NOT flash AND (host EQL 0)
THEN nextstate=CRDl

ELSE nextstate=IDLE;

END;

[REF1]: BEGIN

rasINV=l; casINV=0; oeINV=l; wrINV=l;

nextstate=REF2;

END;

[REF2]: BEGIN

rasINV=0; casINV=0; oeINV=l; wrINV=l;

nextstate=REF3;

END;

[REF3]: BEGIN

rasINV=0; casINV=0; oeINV=l; wrINV=l;

JF (h EQL 0) THEN nextstate=REFl
ELSE nextstate=IDLE;

END;

[CWR1]: BEGIN

rasINV=0; casINV=l; oeINV=l; wrINV=0;

nextstate=CWR2;

END;

[CWR2]: BEGIN

rasINV=0; casINV=l; oeINV=l; wrINV=0;

DF (h EQL 3) AND (v EQL 3) AND flash THEN
nextstate=CWRl

ELSE nextstate=n)LE;

END;

[RE1]: BEGIN

131

rasINV=l; casINV=l; oeINV=l; wrINV=l;

nextstate=RE2;

END;

[RE2]: BEGIN

rasINV=0; casINV=l; oeINV=0; wrINV=l;

nextstate=RE3;

END;

[RE3]: BEGIN

rasINV=0; casINV=0; oeINV=0; wrINV=l;

nextstate=RE4;

END;

[RE4]: BEGIN *

rasINV=l; casINV=l; oeINV=0; wrINV=l;

JF (h NEQ 0) AND NOT ((h EQL 3) AND (v EQL 3) AND flash)
AND (host EQL 1) THEN
nextstate=REl

ELSE nextstate=IDLE;

END;

[WR1]: BEGIN

rasINV=l; casINV=l; oeINV=l; wrINV=l;

nextstate=WR2;

END;

[WR2]: BEGIN

rasINV=0; casINV=l; oeINV=l; wrINV=0;

nextstate=WR3;

END;

[WR3]: BEGIN

rasINV=0; casINV=0; oeINV=l; wrINV=0;

nextstate=WR4;

132

END;

[WR4]: BEGIN

rasINV=l; casINV=l; oeINV=l; wrINV=0;

JF (h NEQ 0) AND NOT ((h EQL 3) AND (v EQL 3) AND flash)
AND (host EQL 2) THEN
nextstate=WRl

ELSE nextstate=IDLE;

END;

[CRD1]: BEGIN

rasINV=l; casENV=l; oeINV=l; wrINV=l;

nextstate=CRD2;

END;

[CRD2]: BEGIN

rasINV=0; casINV=l; oeINV=0; wrINV=l;

nextstate=CRD3;

END;

[CRD3]: BEGIN

rasINV=0; casINV=0; oeINV=0; wrINV=l;

JF (h EQL 3) AND (v EQL 3) AND NOT flash AND (host EQL 0) THEN
nextstate=CRD3

ELSE nextstate=CRD4;

END;

[CRD4]: BEGIN

rasINV=l; casINV=l; oeINV=0; wrINV=l;

JF (h NEQ 0) AND NOT ((h EQL 3) AND (v EQL 3) AND flash)
AND (host EQL 1) THEN
nextsiate=REl

ELSE JF (h NEQ 0) AND NOT ((h EQL 3) AND (v EQL 3) AND flash)
AND (host EQL 2) THEN
nextstate=WRl

ELSE nextstate=IDLE;

END;

! Note no OTHERWISE state is required

133

! This is because there are state numbers that are not
! output of this swtich (such as 4,5,6,7,10,11,...)

ENDSELECT;

ENDROUTINE;
ENDMODEL;

134

APPENDIX C

The KAPPA Sadl file

»»»»>»«»t»,»»»»»ft»»»»lt»»lt»»*»»»»»*»»t»»»»t»»»»»»»»tt»tl»»»»»»»»»t»t»t»»»»f»

;;;Name : KAPPA.sadl
;;; Purpose: Descriptionof the Lager3 Kappainstruction set architecture
;;;Architecture, Instruction Design,
;;; and Control Signal Specifications: Syed Khalid Azim
;;; Author: Chuen-Shen Bernard Shung
;;;Changes: Lars Thon Mar 1988 (brush-up)

(declare (specials t))
(declare (macros t))

;;; AU (arithmetic unit)

Register load instructions

(defun mor=mem 0
(grab mor mem)
(high pR pLDMOR)
(lowpSELMORIN)) ; R: ram, LDMOR, LDMORINV, MORSELMEM

(defun mem=mbus 0
(grab mem)
(highpW))

(defun mcondload 0
(highpWQ)

;W: ram, WEN

;WC

(defun mor=mbus 0
(grab mor)
(high pSELMORIN pLDMOR)) ; MORSELMBUS

(defun r*=rbus (n)
(caseqn

(0 (grab r0) (high pLDRO))
(1 (grab rl) (high pLDRl))
(2 (grab r2) (high pLDR2))
(3(grabr3)(highpLDR3))
(4 (grab r4) (high pLDR4))))

LDR0,LDR0INV
LDR1.LDR1INV
LDR2.LDR2INV
LDR3.LDR3INV
LDR4.LDR4INV

135

(defun rcoef=mbus 0
(grabrcoef)
(highpLDCOEF)) ; LDCOEF, LDCOEFINV

;;; Move (into a bus) instructions

(defun mbus=mor 0
(grab mbus)
(highpXMITMOR)) ; XMTTMOR, XMITMORINV

(defun mbus=r* (n)
(caseqn

(0 (grab mbus) (high pOENRO) (low pXMITMOR))
(1 (grab mbus) (high pOENRl) (low pXMITMOR))
(2 (grab mbus) (high pOENR2) Gow pXMITMOR))
(3 (grab mbus) (high pOENR3) (low pXMITMOR))
(4 (grab mbus) (high pOENR4) (low pXMITMOR))))

ONER0ONER0INV

ONER1 ONERHNV

ONER2 0NER2INV

ONER3 ONER3INV

ONER4 ONER4INV

(defun mbus=acc 0
(grab mbus)
(highpXMTTACQ
(low pXMITMOR))

(defun rbus=acc 0
(grabrbus)
(highpACC2REG))

(defun rbus=ioport 0
(grabrbus)
(highpRDPORT))

; XMITACC XMTTACCINV

; ACC2REG ACC2REGINV

; RDPORT, RDPORTINV

(defun ioporfc=extport(n) ;RDSTRB
(grab ioport extport)
(high pRDSTRB) Gow pWRPORT) ; ioportI=mbus
(caseqn

; PORT ADDRESS = 0000,0001,0010, and so on
(0 Gow pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSl pPORTADDRESSO))
(1 Gow PPORTADDRESS3 PPORTADDRESS2 pPORTADDRESSl); 0001

(high pPORTADDRESSO))
(2 Gow pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSO); 0010

(high pPORTADDRESSl))
(3 Gow pPORTADDRESS3 pPORTADDRESS3 pPORTADDRESS2); 0011

(high pPORTADDRESSl pPORTADDRESSO))
(4(highpPORTADDRESS2) ;0100

Gow pPORTADDRESS3 pPORTADDRESSl pPORTADDRESSO))
(5 (high pPORTADDRESS2 pPORTADDRESSO) ; 0101

Gow pPORTADDRESS3 pPORTADDRESSl))
(6 (high pPORTADDRESS2 pPORTADDRESSl) ; 0110

Gow pPORTADDRESS3 pPORTADDRESSO))
(7 (high pPORTADDRESS2 pPORTADDRESSl pPORTADDRESSO) ; 0111

Gow pPORTADDRESS3))
(8 Gow pPORTADDRESSO pPORTADDRESSl pPORTADDRESS2) ; 1000

(high pPORTADDRESS3))
(9 Gow pPORTADDRESSl pPORTADDRESS2) ; 1001

136

137

(high pP0RTADDRESS3 pPORTADDRESSO))
(10 Gow pPORTADDRESSOpPORTADDRESS2) ; 1010

(high pP0RTADDRESS3 pPORTADDRESSl))
(11 Gow pPORTADDRESS2) ; 1011

(high pPORTADDRESS3 pPORTADDRESSl pPORTADDRESSO))
(12 Gow pPORTADDRESSOpPORTADDRESS1) ; 1100

(high PPORTADDRESS3 pPORTADDRESS2))
(13 Gow pPORTADDRESSl) ; 1101

(high pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSO))
(14 Gow pPORTADDRESSO) ; 1110

(high pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESS 1))
(15 (high pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSl pPORTADDRESSO))))

(defun ioport=mbus 0
(grab ioport)
(highpWRPORT)) ; WRPORT, WRPORTINV

(defun extport=ioport (n)
(grab extport)
(highpWRSTRB) ;WRSTRB
(caseqn

; PORT ADDRESS = 0000,0001,0010, and so on
(0 Gow pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSl pPORTADDRESSO))
[1 Gow pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSl); 0001

(high pPORTADDRESSO))
(2 Gow pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSO); 0010

(high pPORTADDRESSl))
(3 Gow pPORTADDRESS3 pPORTADDRESS3 pPORTADDRESS2); 0011

(high pPORTADDRESSl pPORTADDRESSO))
(4(highpPORTADDRESS2) ;0100

Gow pPORTADDRESS3 pPORTADDRESSl pPORTADDRESSO))
(5 (high pPORTADDRESS2 pPORTADDRESSO) ; 0101

Gow pPORTADDRESS3 pPORTADDRESSl))
(6 (high pPORTADDRESS2 pPORTADDRESSl) ; 0110

Gow pPORTADDRESS3 pPORTADDRESSO))
(7 (high pPORTADDRESS2 pPORTADDRESSl pPORTADDRESSO) ; 0111

Gow pPORTADDRESS3))
(8 Gow pPORTADDRESSO pPORTADDRESSl pPORTADDRESS2) ; 1000

(high pPORTADDRESS3))
(9 Gow pPORTADDRESSl pPORTADDRESS2) ; 1001

(high PPORTADDRESS3 pPORTADDRESSO))
[10 Gow pPORTADDRESSO pPORTADDRESS2) ; 1010

(high pPORTADDRESS3 pPORTADDRESSl))
[11 Gow pPORTADDRESS2) ; 1011

(high pPORTADDRESS3 pPORTADDRESSl pPORTADDRESSO))
[12 Gow pPORTADDRESSO pPORTADDRESS 1) ; 1100

(high pPORTADDRESS3 pPORTADDRESS2))
[13 Gow pPORTADDRESSl) ; 1101

(high pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSO))
[14 Gow pPORTADDRESSO) ; 1110

(high pPORTADDRESS3 pPORTADDRESS2pPORTADDRESSl))
[15 (high pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSl pPORTADDRESSO))))

(defun acc=0 0

(grab abus bbus ace)
(high pNOABS pZERO_BIN) ; ZERO_BIN, ZERO.AIN
Gow pANDCOEF pMINUS pCOEFCOMP))

(defun acc=sum 0
(grab ace))

(defun acc=abus 0
(grab ace bbus)
(highpZERO.BIN))

(defun acc=bbus 0
(grab ace abus)
(high pNOABS)
Gow pMINUS pANDCOEF pCOEFCOMP))

the old bbus=0

ZEROJBIN

the old abus=0

ZERO_AIN

(defun abus=l 0 ; actually abus=0 and cin=l
(grab abus) ; used for incr bbus
(high pNOABS pMINUS)
Gow pANDCOEF pCOEFCOMP)) ; COMPLA, COMPLAINV

(defun abus=mor 0
(grab abus)
(high pNOABS pCOEFCOMP)
(low pMINUS pANDCOEF))

(defun abus=-mor 0
(grab abus)
(high pNOABS pMINUS pCOEFCOMP)
(low pANDCOEF))

(defun abus=absmor 0
(grab abus)
(high pCOEFCOMP)
Gow pNOABS pMINUS pANDCOEF))

(defun abus=-absmor 0
(grab abus)
(low pNOABS pANDCOEF)
(high pMINUS pCOEFCOMP))

(defun abus=coef.mor 0
(grab abus)
(high pNOABS pANDCOEF)
Gow pMINUS pCOEFCOMP))

(defun abus=coef.-mor 0
(grab abus)
(high pNOABS pMINUS pANDCOEF)
Gow pCOEFCOMP))

(defun abus=coef.absmor 0
(grab abus)
(high pANDCOEF)

138

Gow pNOABS pMINUS pCOEFCOMP))

(defun abus=coef.-absmor 0
(grab abus)
(high pMINUS pANDCOEF)
Gow pNOABS pCOEFCOMP))

(defun abus=~coef.mor 0
(grab abus)
(high pANDCOEF pCOEFCOMP pNOABS)
(low pMINUS))

(defun abus="coef.-mor 0
(grab abus)
(high pANDCOEF pCOEFCOMP pNOABS pMINUS))

(defun abus="coef.absmor 0
(grab abus)
(high pANDCOEF pCOEFCOMP)
Gow pNOABS pMINUS))

(defun abus=~coef.-absmor 0
(grab abus)
(high pANDCOEF pCOEFCOMP pMINUS)
Gow pNOABS))

(defun bbus=mbus 0
(grab bbus)
Gow pZERO_BIN)
(lowpSELBBUSIN))

(defun bbus=aco* (n)
(grab bbus)
GowpZERO_BIN)
(high pSELBBUSIN)
(caseqn

(0 Gow pS2 pSl) (high pSO))
(1 Gow pS2 pSO) (high pSl))
(2 (low pS2) (high pSl pSO))
(3 (high pS2) Gow pSl pSO))
(4(highpS2pS0)GowpSl))
(5 (high pS2 pSl) Gow pSO))
(6(highpS2pSlpS0))
(t (format t "Illegal instruction: right-shift Ca) out of bound~%n n))))

(defun bbus=acc<* (n)
(grab bbus)
(high pSELBBUSIN)
(lowpZERO_BIN)
(caseqn

OGowpS2pSlpS0))
(t (format t "Illegal instruction: left-shift fa) out of bound'%" n))))

(defun acondload 0

139

(highpSUMCOND))

(defun shrcoef 0
(high pSfflFTCOEF))

;;; Miscellaneous "instructions"

(defun nosat 0 (high pNOSAT))
(defun aip 0(highpATP))

; APU (address processing unit)

;;; Regsiter load instructions

(defun x*=eabus (n)
(caseqn

(0 (grab xO) (high pLOADXO)); LOADXO, LOADXOINV
(1 (grab xl) (high pLOADXl)) ; LOADXl, LOADXIINV
(2 (grab x2) (high pLOADX2)) ; LOADX2, LOADX2INV
(3 (grab x3) (high pLOADX3)); LOADX3, LOADX3INV
(4 (grab x4) (high pLOADX4)))) ; LOADX4, LOADX4INV

(defun xcondload 0
(highpCONDLD))

;;;Move (into a bus) instructions

(defun addr fexpr (1)
(grab dbus)
(ramdecodebase (car 1)))

(defun offset (1)
(ramdecodeoffset 1))

(defun xip 0
(highpXTP))

(defun xbus=x* (n)
(caseqn

(0 (grab xbus) Gow pXBUSZERO) (high pOENXO))
(1 (grab xbus) Gow pXBUSZERO) (high pOENXl))
(2 (grab xbus) Gow pXBUSZERO) (high pOENX2))
(3 (grab xbus) (low pXBUSZERO) (high pOENX3))
(4 (grab xbus) Gow pXBUSZERO) (high pOENX4))))

(defun xbus=0 0
(grab xbus)
(high pXBUSZERO)) ;XBUSZERO

(defun eabus=sum 0
(grab eabus)
(high pOENEALATCH)) ; OENEALATCH, OENEALATCHDSTV

OENXO, OENXOINV
OENXl.OENXHNV
OENX2.0ENX2INV
OENX3,OENX3INV
OENX4.0ENX4INV

140

»»»♦»»»»»»»,»»»»»♦»,»»»»»,»»»,»t»»»»tt»»»,»»»»»»»»»»»»»»»»»»»»»»»t»»»»»t»»»»t»

;;; Communication between AU and APU

(defun eabus=mbus 0
(grab eabus)
(highpMBUS2EABUS))

(defun areg=eabus 0
(grabareg)
(high pEABUS2MBUS))

(defun mbus=areg 0
(grab mbus)

Gow pXMITMOR))

(defun timereg=eabus 0
(grab timerinreg)
(highpLDTIMER))

; this must always be asserted
; following areg=eabus

; LDTIMER, LDTTMERINV

;;; No operation (nop). Handles all the defaults.

(defun nop 0
(high pXBUSZERO) (ramdecodebase 0) ; xbus=0, dbus=0
(high pSELMORIN) ; mor=mbus
(high pXMITMOR) ; mbus=mor
(high pNOABS) (low pMINUS pANDCOEF pCOEFCOMP) ; abus=0
(high pZERO_BIN) ; bbus=0
(low pATP pSUMCOND) ; acc=sum
(low pS2 pS 1) (high pSO) ; shifterout=acc>0
(high pWRPORT)) ; ioport=mbus

;;;Ken insists to use (fsm #) instead of an identifier
;;; to refer to the dfsm instruction

(defun fsm (n) n)

;;; Ken invented

(defun immed (n) (grab dbus) (ramdecodeoffset n))
(setq reg+bus 20)

;;;Register inventory

(setq mor 0)
(setq ace 1)
(setq r0 2)
(setq rl 3)
(setq rcoef 4)
(setq xO5)
(setq xl 6)

141

(setqx2 7)
(setq mem 8)
(setq areg 9) ; fictitious
(setq timerinreg 10) ; write only

;;;Bus inventory

(setq ioport 11)
(setq mbus 12)
(setq rbus 13)
(setq abus 14)
(setq bbus 15)
(setq eabus 16)
(setq xbus 17)
(setq dbus 18)
(setq extport 19) ; fictitious

EOB

(setq EOB 0)
(setq pLDTIMER 1)
;;; if stack is used then need EOB2
;;;(setqEOB22)

;;;Arithmetic Unit microcode bits (26 in this version)

(setqpWC2)
(setq pAIP 3)
(setqpNOSAT4)
(setq pLDMOR 5)
(setq pLDRO 6)
(setq pLDRl 7)
(setqpLDCOEF8)
(setq pXMITMOR 9)
(setqpXMTTACClO)
(setqpSELMORINll)
(setq pANDCOEF 12)
(setq pCOEFCOMP 13)
(setq pNOABS 14)
(setq pMINUS 15)
(setq pSELBBUSIN 16)
(setq pZERO.BIN 17)
(setqpS018)
(setqpSl 19)
(setqpS220)
(setq pOENRO 21)
(setq pOENR122)
(setqpACC2REG23)

142

(setqpSUMCOND24)
(setqpSfflFTCOEF25)
(setqpRDPORT26)
(setqpWRPORT27)

»»t»»»»t»»»»»t»»»t»»lt»»»»?»»»»?»»»t»»»»!tt»»»l»»!»t»»»ttt»t»«»»t»»»t»»»»»»»t»

;;; Address Processing Unit microcode bits (12 in this version)
»»»»»»»»»»T»»»»»ttt»»»t»»f»»»»t»»t»t»»»»»»»t»»»»»»»»»t»t»tt»l»»t»tt»»t»lt»»t»»

(setq pLOADXO 28)
(setq pLOADXl 29)
(setqpLOADX2 30)
(setqpCONDLD31)
(setqpOENX0 32)
(setqpOENX133)
(setqpOENX2 34)
(setq pXBUSZERO 35)
(setq pEABUS2MBUS 36)
(setq pMBUS2EABUS 37)
(setq pOENEALATCH 38)
(setqpXIP39)

;;; I/O related microcode bits (6 in this version)

(setqpRDSTRB40)
(setqpWRSTRB41)
(setq pPORTADDRESSO 42)
(setq pPORTADDRESSl 43)
(setq pPORTADDRESS2 44)
(setq pPORTADDRESS3 45)

;;;RAM control microcode bits (2 in this version)

(setq pR 46)
(setq pW 47)

(setq NR_CTR 48) ;0-48 makes 49 bits

;;; "Other fields"

(setqFSMFIELD48)
(setqADDRCODE49)
(setqADDRCODE150)

143

1. Silage program

2. RL program

3. Rass program

APPENDIX D

Pitch Tracker Inputs

145

/*
* Gold Pitch Tracker in Silage
*/

#define W 16 /* data path width */

VOICED = 5;
BLANK =12;
DECAY = 1-3/128;
DELTA = 4;

I* Interpretation of the constants:

* After locating a pitch, a blanking interval of duration BLANK
* if entered during which all peaks are rejected.

* Then, an exponentially-decaying threshold signal with time
* constant DECAY is computed. Minor peaks fail to exceed this
* threshold is rejected.

* Window comparison: two values are said to be the same
* if their difference is less than or equal to DELTA

* If all scores are less than VOICED then the speech are
* considered as unvoiced

•/

#defineN6

#define compare(a, b) (abs(a - b) < DELTA -> 1II0)

#define is_peak(x) (x@ 1 & !x)
#define is_valley(x) (!x@ 1 & x)

func main(in: fix<16>): int<8>=
begin

Y = Y@l >= N-1 -> int<W>(0) II Y@l + 1;

sig = fix<W>(in); /* new input value */
sip o sig > sig@1; /* slope */

lp = is_peak(slp) -> sig@1II lp@1; /* last peak */
lv = is_valley(slp) ->sig@1II lv@1; /* last valley */

/* compute 6 pitch candidates */
signal[0]= sig;
signaljl] =- sig;
signal[2] = sig / 2 - lv / 2;
signal[3]= - signal[2];
signal[4]= lp/2-sig/2;
signal[5] = - signal[4];

score[0] = int<W>(0);

146

end;

(X: N) ::pp, score:begin
newppc = ppc@ 1 + 1;
after_blank = newppc > BLANK;
newthresh = after_blank -> DECAY * thresh® 1II thresh® 1;

/* new candidate if (A) after blanking period (B) greater than
* threshold (C) peak or valley
*/

ping = afterJblank & signal[X] >newthresh &
(is_peak(slp) Iis_valley(slp));

lpp = ping -> pp[X]@1 HIpp@1;
pp[X] = ping -> newppc II pp[X]@l;
ppc = ping -> int<W>(0) II newppc;
thresh = ping -> signal[X] II newthresh;

/* compute score */
score[X+l] = score[X] + compare(pp[X], pp[Y])

+ compareflpp, ppITI)
+ compare(pp[X] + lpp, pp[Y]);

end;

I* compare scores */
bingo = score[N] > topscore® 1;
newtopscore = bingo -> score[N] II topscore@ 1;
winner = bingo -> pp[Y] II winner® 1;

/* if top score > VOICED then update pitch else retain pitch */
pitch = (Y = N-1) -> (newtopscore < VOICED -> 0II winner)

II pitch® 1;
topscore = (Y = N-1) -> 0II newtopscore;
return = int<8>(pitch);

147

I*
* Gold Pitch Tracker in RL

*/

macro N = 6;
macro VOICED = 5, BLANK =12, DECAY = (1 - 3/128), DELTA = 4;
I* see constant interpretation is Silage program */

macro compare(a, b) = abs(a - b) < DELTA;

macro is_peak(x, old_x) = old_x and not x;
macro is_valley(x, old_x) = not old_x and x;

fix signal[N], sig, old_sig, last_peak, lastjvalley;
int score, topscore, pitch, winner, pp[N], old_pp[N];
bool slope, old.slope;

mainO {
pitch a (topscore < VOICED) ? 0: winner,
topscore = 0;

forI = 0toN-ldo{
fixx;

out(pitch);

low_pass(sig, old_sig, fix inO);

old_slope= slope;
slope = (sig > old_sig);

x = old_sig;
signal[0]= x;
signalfl] = - x;

last_valley = is_valley(slope, old_slope) ? old_sig: last_valley;

x = old_sig/2 - last_valley/2;
signal[2] = x;
signal[3] = - x;

last_peak = is_peak(slope, old.slope) ? old_sig: last_peak;

x = last_peak/2 - old_sig/2;
signal[4] = x;
signal[5] = - x;

score = 0;

for J = 0 to N-1 do {
intppc[N],ppc_J;
fix thresh[N], thresh_J;
bool is_extremum, after_blank;

148

}
}

ppc_J = ppc[J] + 1;
ppc[J]= ppc_J;
after_blank = (ppc_J > BLANK);

is.extremum = is_peak(slope, old_slope)
or is_valley(slope, old_slope);

thresh_J = thresh[J];
thresh_J = after_blank ? DECAY * thresh_J: threshj;
thresh[J] = threshjf;

I* new candidate if (A) after blanking period (B) greater than
* threshold (C) peak or valley (or is_extreme)
*/

if after.blank and is.extremum and signal[J] > thresh_Jthen {
old_pp[J] = pp[J];
pp[J] = ppc[J];
ppc[J]= 0;
thresh[J] = signal[J];

} else { /* refresh */
old_pp[J] = old_pp[J];
pp[J] = PP[J];

}

tally_score(score, pp[I], pp[J],old_pp[J]);
}

if score > topscore then {
topscore = score;
winner = ppU);

}

I* low pass filter*/
inline low_pass(in out z, out old_z, in x)
fix x, y, z, old_z; /* y is internal state.*/
{

old_z = z;
y = -x/4 + (3/4)*y;
z = y + (3/4)*z;

}

/* compute raw scores */
inline talry_score(in out score, in a, in b, in c)
int score, a, b, c;
{

score = compare(a, b) ? score +1: score;
score = compare(a, c) ? score + 1: score;
score = compare(a, b + c) ? score + 1: score;

}

149

this rass program implements the (modified) Gold pitch tracking
algorithm. The LPF front-end is included, whose transfer
function is

-(l/4)/(l-3/4*l/zr2

local variables

(ram f g (thresh 6) (ppc 6) (pp 7) (lpp 6) (signal 6)
Is Ip lv score topscore pitch winner)

; VOICED, DELTA, DECAY and BLANK constants are
; hardwired in the program, and hence are not defined
; as constants

(const (timer 350))

; define logic instructions
(dfsm

(SET (cc (not AU1SIGN)))
(AND_MINUS (cc (and cc AU1SIGN)))
(APV (cc (and cc even (not sip) lsp))
(cc (and cc (not even) sip (not lsp)))
(even (not even)))

(VPE(ccAPUlSIGN)
(even ONE))

(SIP (cc (and (not sip) lsp)))
(SIV (cc (and sip (not lsp))))
(SSL (lsp sip)

(slp(notAUlSIGN)))
)

; define control flow
; syntax in each state
; (1) statename (2) code block number (3) condition(4) control flow operation
(cfsm

0 (gotoRSTCOUNTER))
5 0 (gotoLPFPV))
0 (goto PITCH))
(not APU1SIGN) (goto PITCH))
APU1SIGN (goto IDLE))

(goto SCORE))
S) (goto IDLE))
APU1SIGN (gotoRSTCOUNTER))
(not APU1SIGN) (goto LPFPV))

(inittimer 0

(RSTCOUNTER
(LPFPV 1

(PITCH 2

(PITCH 2

(IDLE 4 EOS
(IDLE 4 (not]
(SCORE 3
(SCORE

)
3

; some hardware information
(reseuimer INITTIMER)
(max_sample_intvl 350)
(dp_word_size 16)

; code blocks
(rom

(blockO
((mor=mem) (addrtimer) (xbus=0)(eabus=sum)) ; r(timer)

150

((mbus=mor) (eabus=mbus) (timereg=eabus)) ; ldtimer
)

(blockl
;LPF
((mor=mem) (addr 0 (rbus=ioport) (r*=rbus 1) (xbus=0)
(eabus=sum) (ioport=extport 0)) ; r(f), rl=in(port0)

((bbus=mbus) (mbus=r* 1) (acc=bbus)) ; acc=rl

((abus=-mor) (bbus=aco* 0) (nosat) (acc=sum)) ; acc=-mor+acc

((mor=mem) (addr g) (bbus=aco* 2) (acc=bbus) (xbus=0)
(eabus=sum)); acc=aco2, r(g)

((abus=-mor) (acc=abus) (rbus=acc) (r*=rbus 1) (nosat) (eabus=sum)
(mbus=acc) (mem=mbus) (addr f) (xbus=0)) ; acc=-mor, rl=acc, w(f)=acc

((abus=mor) (bbus=aco* 2) (acc=sum) (mor=mbus)
(mbus=r* 1)) ; acc=mor+acc>2,mor=rl

((abus=-mor) (bbus=aco* 0) (acc=sum) (addr Is) (mor=mem))
; acc=-mor+acc, r(ls)

; peak/valley detector
((mem=mbus) (addrg) (abus=-mor) (bbus=acc>* 0) (eabus=sum) (xbus=0)
(acc=sum) (rbus=acc) (r*=rbus 1)(mbus=acc)) ; w(g)=acc, acc=-mor+acc, rl=acc

(SSL (mem=mbus) (addr signal) (mbus=r* 1)(acc=0) (mor=mbus) (xbus=0)
(eabus=sum)); w(signal)=rl, acc=0, mor=rl, SSL

((abus=-mor) (acc=abus) (mem=mbus) (addr score) (xbus=0)
(mbus=acc) (eabus=sum)) ;acc=-mor, w(score)=acc

((bbus=aco* 1)(acc=bbus) (mem=mbus) (mbus=acc) (addr signal)
(eabus=sum) (xbus=0) (offset1)) ;acc=acol, w(signal[l])=acc

((rbus=acc) (r*=rbus 0) (mor=mem) (addr lv) (xbus=0)
(eabus=sum)) ; r(lv), r0=acc (-g/2)

((mbus=r* 0) (mor=mbus) (abus=mor) (acc=abus)); mor=r0, acc=mor

((abus=mor) (bbus=aco* 1) (acc=sum)) ;acc=mor+acc>l

((mbus=acc) (mem=mbus) (addr signal) (offset3) (mor=mbus)
(eabus=sum) (xbus=0)) ; w(signal[3])=acc, mor=acc

((abus=-mor) (acc=abus) (mor=mem) (addr lp) (xbus=0)
(eabus=sum)) ; acc=-mor, r(lp)

((mem=mbus) (mbus=acc) (addr signal) (offset2) (xbus=0)
(eabus=sum)); w(signal[2])=acc

((mbus=r* 0) (mor=mbus) (acc=abus) (abus=mor)); mor=rO, acc=mor

151

((abus=mor) (bbus=aco* 1) (acc=sum)) ; acc=mor+acol

((mbus=acc) (mem=mbus) (addr signal) (offset 5) (xbus=0)
(eabus=sum) (mor=mbus)) ; w(signal[5])=acc, mor=acc

((abus=-mor) (acc=abus) (mor=mem) (addr pitch) (xbus=0) (eabus=sum))
; acc=-mor, r(pitch)

((mem=mbus) (mbus=acc) (addr signal) (offset 4) (xbus=0)
(eabus=sum)); w(signal[4])=acc

((mbus=mor) (ioport=mbus) (extport=ioport 0) (addrO) (xbus=0)
(eabus=sum) (x*=eabus 1)) ; out(portO)=mor, xl=0

); end blockl

(block2; pitch detector
((mor=mem) (addr thresh) (xbus=x* 1) (eabus=sum)) ; rxl(thresh)

((mor=mem) (addr ppc) (xbus=x* 1) (abus=mor) (eabus=sum)
(acc=abus)) ; rxl(ppc), acc=mor

((addr 12) (areg=eabus) (abus=mor) (acc=abus) (xbus=0) (eabus=sum)
(rbus=acc) (r*=rbus 1)) ; rc(12), acc=mor, rl=acc (thresh)

((mbus=areg) (abus=l) (mor=mbus)
(bbus=aco* 0) (acc=sum)) ; acc=l+acc, mor=areg

((abus=-mor) (bbus=aco* 0) (acc=sum) (mbus=r* 1) (mem=mbus)
(addr thresh) (xbus=x* 1) (eabus=sum) (rbus=acc) (r*=rbus 0))

; acc=-mor+acc, r0=acc (newppc), wxl(thresh)=rl

((bbus=mbus) (mbus=r* 1) (nosat) (acc=bbus) (mor=mbus)
SET) ; acc=rl, mor=rl, SET

((addr ppc) (xbus=x* 1) (mem=mbus) (mbus=r*0) (abus=mor) (eabus=sum)
(bbus=aco* 1) (nosat) (acc=sum)) ; wxl(ppc)=r0,acc=mor+acol

((bbus=aco* 6) (acc=bbus) (mor=mem) (addrlp) (eabus=sum)
(xbus=0)) ; acc=acc>6, rflp)

((mor=mbus) (mbus=acc) (acc=abus) (abus=mor))
; mor=acc, acc=mor

((abus=-mor) (bbus=mbus) (mbus=r* 1) (acc=sum) (mor=mem) (eabus=sum)
(addr signal) (rbus=acc) (r*=rbus 0) (xbus=0))

; acc=-mor+rl, r(signal), rO=acc (lp)

((mbus=acc) (mcondload) (mem=mbus) (addrthresh) (xbus=x* 1) (eabus=sum)
(abus=-mor) (acc=sum) (bbus=aco* 0) APV)

; acc=-mor+acc, wxlc(thresh)=acc, APV

(AND_MINUS (abus=mor) (acc=abus) (mor=mem) (addr lv) (xbus=0)
(eabus=sum)) ; AND_MINUS, acc=mor,r(lv)

152

((mbus=acc) (mcondload) (mem=mbus) (addrthresh) (xbus=x* 1) (acc=abus)
(abus=mor) (eabus=sum)) ; wxlc(thresh)=acc, acc=mor

((mor=mem) (addr pp) (xbus=x* 1) (eabus=sum)(rbus=acc) (r*=rbus 1))
; rxl(pp), rl=acc (W)

((mbus=mor) (mcondload) (mem=mbus) (addr lpp) (xbus=x* 1) (eabus=sum))
; wxlc(lpp)=mor

((mor=mem) (addr ppc) (xbus=x* 1) (acc=0)
(eabus=sum)); rxl(ppc), acc=0

((mbus=acc) (mcondload) (mem=mbus) (addr ppc) (xbus=x* 1)
(eabus=sum)); wxlc(ppc)=acc

((mbus=mor) (mcondload) (mem=mbus) (addr pp) (xbus=x* 1)
(eabus=sum)); wxlc(pp)=mor

((mbus=r* 0) (mem=mbus) (addr lp) (xbus=0) (eabus=sum)) ; w(lp)=rO

((mbus=r* 1) (mem=mbus) (addr lv) (xbus=0) (eabus=sum)) ; w(lv)=rl

; modify the score
((mor=mem) (addr pp) (xbus=0) (eabus=sum)) ; r(pp)

((mem=mbus) (mbus=mor) (addr pp) (offset 6) (xbus=0))
; w(pp[6])=mor

((mor=mem) (addr pp) (offset 1) (xbus=x* 2) (eabus=sum)); rx2(pp[l])

((mor=mem) (addr pp) (xbus=x* 1) (eabus=sum) (abus=-mor)
(acc=abus)) ; rxl(pp), acc=-mor

((addr 4) (areg=eabus) (abus=mor) (bbus=acc>* 0)
(acc=sum)) ; rc(4), acc=mor+acc

((mor=mbus) (mbus=areg) (addr -8) (xbus=0)
(eabus=sum)); rc(-8), mor=areg

((abus=mor) (bbus=aco* 0) (acc=sum) (mor=mbus) (mbus=areg))
; acc=mor+acc, mor=areg

((abus=mor) (bbus=acc>* 0) (acc=sum) SET (mor=mem)
(addr score) (xbus=0) (eabus=sum)) ; acc=mor+acc, SET, r(score)

((abus=mor) (acc=abus) AND_MINUS) ; acc=mor, AND_MINUS

((mor=mem) (addr pp) (offset 1) (xbus=x* 2) (abus=l) (eabus=sum)
(bbus=aco* 0) (acc=sum)) ; rx2(pp[l]), acc=l+acc

((mor=mem) (addr lpp) (xbus=x* 1) (abus=-mor) (eabus=sum)
(acc=abus) (rbus=acc) (r*=rbus 1)) ; rxl(lpp). acc=-mor, rl=acc

((addr 4) (areg=eabus) (xbus=0) (eabus=sum) (abus=mor) (bbus=aco* 0)

153

(acc=sum)) ; rc(4), acc=mor+acc

((addr -8) (mbus=areg) (areg=eabus) (xbus=0) (eabus=sum) (mor=mbus))
; rc(-8), mor=areg

((abus=mor) (acc=sum) (bbus=acc>* 0) (mor=mbus) (mbus=areg))
; acc=mor+acc, mor=areg

((mem=mbus) (mcondload) (addr score) (xbus=0) (eabus=sum) SET
(mbus=r* 1) (abus=mor) (bbus=acc>* 0) (acc=sum))

; wc(score)=rl, SET, acc=mor+acc

((addr score) (xbus=0) (eabus=sum) AND_MINUS (abus=l)
(acc=abus)) ; AND_MINUS, r(score), acc=1

((mor=mem) (addr pp) (offset 1) (xbus=x* 2) (eabus=sum) (abus=mor)
(bbus=aco* 0) (acc=sum)) ; rx2(pp[l]), acc=mor+acc

((mor=mem) (addr pp) (xbus=x* 1) (abus=-mor) (rbus=acc) (r*=rbus 1)
(acc=abus)) ; rxlQpp), acc=-mor, rl=acc

((addr 4) (areg=eabus) (abus=mor) (bbus=acc>* 0) (xbus=0) (eabus=sum)
(acc=sum)) ; rc(4), acc=mor+acc

((addr -8) (areg=eabus) (mbus=areg) (mor=mbus)
(xbus=0) (eabus=sum)) ; rc(-8), mor=areg

((mbus=areg) (mor=mbus) (abus=mor) (bbus=acc>* 0) (acc=sum))
; mor=areg, acc=mor+acc

((mcondload) (mem=mbus) (mbus=r* 1) (addr score) (xbus=0)
(eabus=sum) SET (abus=mor) (acc=sum) (bbus=aco* 0))

; SET, wc(score)=rl, acc=mor+acc

((mor=mem) (addr score) (abus=l) (xbus=0) (eabus=sum)
(acc=abus) AND_MINUS) ; r(score), acc=l, AND_MINUS

((abus=mor) (bbus=aco* 0) (acc=sum) (xbus=x* 1) (addr 1)
(eabus=sum) (x*=eabus 1)) ; acc=mor+acc, xl=xl+l

((mcondload) (mem=mbus) (mbus=acc) (addr score) (xbus=0)
(eabus=sum)) ; wc(score)=acc

((addr -5) (xbus=x* 1) (eabus=sum)) ; ea=xl-5
); end b!ock2

(block3; scoring

((mor=mem) (addr score) (eabus=sum) (xbus=0)) ; r(score)

((mor=mem) (addr topscore) (abus=mor) (eabus=sum) (xbus=0) (acc=abus))
; r(topscore), acc=mor

((abus=-mor) (bbus=aco* 0) (acc=sum) (rbus=acc) (r*=rbus 1)

154

(mor=mem) (addr pp) (xbus=x* 2) (eabus=sum))
; acc=-mor+acc,rl=acc, rx2(pp)

(SET (abus=mor) (acc=abus) (addr 1)(xbus=x* 2)
(eabus=sum) (x*=eabus 2)) ; SET, acc=mor, x2=x2+l

((mcondload) (mem=mbus) (addr winner) (xbus=0) (eabus=sum)
(mbus=acc)) ; wc(winner)=acc

((mcondload) (mem=mbus) (addr topscore) (xbus=0) (eabus=sum)
(mbus=r* 1)) ; wc(topscore)=rl

((addr-6) (xbus=x* 2) (eabus=sum)) ; ea=x2-6

(VPE (mor=mem) (addr winner) (xbus=0) (eabus=sum)) ; VPE, r(winner)

((addr topscore) (xbus=0) (eabus=sum) (mor=mem)
(abus=mor) (acc=abus)) ; r(topscore), acc=mor

((addr pitch) (mem=mbus) (mcondload) (xbus=0) (eabus=sum)
(mbus=acc) (abus=mor) (acc=abus)) ; wc(pitch)=acc, acc=mor

((addr 5) (xbus=0) (eabus=sum) (acc=0) (rbus=acc)
(r*=rbus 0)) ; rc(5), rO=acc, acc=0

((mor=mbus) (mbus=areg)) ; mor=areg

((addr topscore) (mem=mbus) (mcondload) (xbus=0) (eabus=sum)
(mbus=acc)) ; wc(topscore)=acc

((addr signal) (mor=mem) (xbus=0) (eabus=sum) (abus=mor)
(bbus=mbus) (mbus=r* 0)) ; r(signal), acc=mor+r0

((acc=0) AND_MINUS); acc=0, AND_MINUS

((mcondload) (mem=mbus) (mbus=acc) (addr pitch) (abus=mor)
(acc=abus) (xbus=0) (eabus=sum) SIP) ; wc(pitch), acc=mor, SIP

((mcondload) (mem=mbus) (mbus=acc) (addr lp)
(xbus=0) (eabus=sum) SIV) ; wc(lp), SIV

((mcondload) (mem=mbus) (mbus=acc) (addr lv)
(xbus=0) (eabus=sum)) ; wc(lv)

((mem=mbus) (mbus=acc) (addr Is) (xbus=0) (eabus=sum)); w(ls)

((addr -6) (xbus=x* 2) (eabus=sum)) ; ea=x2-6
);endblock3

(block4; IDLE
((nop))

)

(block5; handles x2 counter

155

((addr 0) (xbus=0) (eabus=sum) (x*=eabus 2))
); end blockO

)

^

156

	Copyright notice1988
	ERL-88-44 (1 of 2)
	ERL-88-44 (2 of 2)

