Copyright © 1988, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN INTEGRATED CAD SYSTEM FOR
ALGORITHM-SPECIFIC IC DESIGN

by

Chuen-Shen Shung

Memorandum No. UCB/ERL M88/44

14 June 1988

AN INTEGRATED CAD SYSTEM FOR
ALGORITHM-SPECIFIC IC DESIGN

by

Chuen-Shen Shung

Memorandum No. UCB/ERL Mg88/44

14 June 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

AN INTEGRATED CAD SYSTEM FOR
ALGORITHM-SPECIFIC IC DESIGN

by

Chuen-Shen Shung

Memorandum No. UCB/ERL M88/44

14 June 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

An Integrated CAD System for Algorithm-Specific IC Design

Ph.D. Chuen-Shen Shung EECS Department

ABSTRACT

LagerIll, an integrated CAD system for algorithm-specific IC design is described. In partic-
ular, applications such as speech processing, image processing, telecommunication, and robot
control are targeted. Designing such circuits usually requires the collaboration of algorithm
developers, architecture designers, and circuit designers. Lagerlll provides the user interface at
behavioral, structural, and physical levels to facilitate this collaboration. It also provides an inter-
face for integrating new CAD tools.

Because direct synthesis from a behavioral description has yet to produce efficient results in
a wide range of applications, our approach requires the user to specify a behavior and a
parameterizable datapath. The silicon compilation subsystem translates the behavioral descrip-
tion into datapath instructions and parameter values, which, together with the datapath
specification, make up the structural description. The silicon assembly subsystem in tum
translates the structural description into a physical layout. With the aid of simulation tools, the
user can fine-tune the datapath by iterating this process.

The silicon compiler provides two kinds of behavioral languages: an applicative language
called Silage, and an “‘extended subset’” of C called RL. Two external programs, the Silage
translator that translates Silage into RL and the RL compiler that translates the program into data-
path instructions, have been linked into the system to allow silicon compilation.

The silicon assembler can be used independently of the silicon compiler for high-sample-
rate applications such as image processing. It consists of a structural interface, a database
manager, module generation tools and a functional simulator. The structural interface processes
the parameterized structural description and enters it into the database, for use by the simulator
and by the module generation tools that generate the layout. The database is based on Flavors, an
object-oriented programming system, to facilitate the integration of new CAD tools. The silicon

assembler uses an open cell library consisting of parameterizable modules and leaf-cell layouts

and functional models.

LagerllI has been applied to a number of algorithm-specific IC designs. Two examples, a
frame buffer controller chip and a pitch tracker chip, are described in this thesis.

Committee Chairman

TABLE OF CONTENTS

1. Algorithm-specific ICs

1.1 Commodity, Application-specific and Algorithm-specific ICs

1.2 Dedicated and Programmable Architectures

2. The LagerIll CAD System

2.1 The Challenge
2.2 The Philosophy

2.3 System Overview

2.4 Related Work

3. The Silicon Assembly Subsystem

3.1 Internal Design Database
3.1.1 Integration Policy

3.1.2 Object-oriented System

3.1.3 Design Database Implementation

3.1.4 An Example

3.1.5 Comparison with the OCT Database
3.2 The Design Manager

3.2.1 Structural Description Language
3.2.2 An Example

3.2.3 The Implementation of the Design Manager

3.3 The Layout Generator
3.3.1 The Layout Generation Tools

3.3.2 Implementation of the Layout Generator
3.4 The Design Simulator

3.4.1 Simulator Overview

3.4.2 Functional Model
3.4.3 Implementation of the Design Simulator

3.4.4 Input/Output of Design Simulator
3.4.5 Remarks on Simulator Performance

4. Frame Buffer Controller Chip

4.1 Frame Buffers

4.2 Image Signal

4.3 Chip Architecture
4.4 Layout Generation

4.5 Simulation and Testing Results

5. The Silicon Compilation Subsystem
5.1 The KAPPA architecture

5.2 The Relationship Between the Instruction Set and the Architecture

5.3 Silage Translator

5.4 RL Compiler

[l o
OO\ W O Wi W

0 00 00 ~ N 9 [2 thhthhhhhhhund bbb bW NoN -

5.5 Control Generator

5.6 Summary

6. Pitch Tracker Chip

6.1 Pitch Tracking Algorithm

6.2 Chip Implementation

7. Conclusions and Remarks

7.1 Major Accomplishments

7.2 Remarks on Future Improvements

7.3 Applications of LagerlIl
Reference

APPENDIX A: (part of) LagerlII User Manuals
APPENDIX B: Frame Buffer Controller input files
APPENDIX C: The KAPPA Sadl file

APPENDIX D: Pitch Tracker Inputs

ii

92

96

98

98
100
104
104
105
107
108
112
126
135
145

ACKNOWLEDGEMENTS

I would like to thank my research adviser, Prof. Robert W. Brodersen, for his encouragement, gui-
dance and support throughout the course of this thesis work.

The discussion with Dr. R. Jain in the early phase of the LAGER project was very fruitful. K.
Rimey, E. Wang, M. Srivastava, E. Lettang, Dr. R. Jain, Prof. J. Rabaey and Prof. R. Brodersen contri-
buted a great deal to the software development of the LAGER system. K. Azim used the LAGER system
in its early stage of development and provided valuable feedback.

I also want to thank P. Schrupp, B. Richards, C. Lee and W. Baringer for sharing with me their
knowledge on image frame buffers and hardware design.

The research project is funded by DARPA under grant N00039-87-C-0182. The Ministry of Educa-
tion of the Republic of China supported me for my first two years of graduate study.

I am indebted to C. Lee who patiently read most of the thesis manuscript and corrected my numerous
writing errors.

Finally, I want to thank my wife, Debbie, and my family for their constant care, support and love.

CHAPTER 1

Algorithm-specific ICs

1.1. Commodity, Application-specific and Algorithm-specific ICs

Most of the integrated circuits (ICs) designed today can be categorized into two groups: commodity
ICs and application-specific ICs (ASICs). Examples of commodity ICs include memory chips, TTL MSI
and LSI gates and microprocessor chips. The commodity chips are usually produced in large volume with
fully custom design. Because they are standard products, price is the only figure of merits. The companies
that produce commodity chips have to constantly improve the price-performance of their commodity IC
products, usually by more advanced circuit design, and manufacturing processing technology, in order to

be competitive.

The ASICs, as the name suggests, are small-volume products and hence often cannot afford the fully
custom design approach. Examples of ASICs include computer peripheral chips and digital signal process-
ing ICs. The tumn-around time of ASICs is often more important than the area (cost), which also brings
about the need for computer-aided design (CAD) tools. The ASICs achieve higher performance through
architecture innovations. Due to their application-specific nature, each design can exploit the special con-

ditions in the particular application to create an efficient architecture.

In the past several years we have seen a steady growth in the ASIC market, and it is predicted that by
1990 the commodity ICs and ASICs will each occupy 50% of the IC market. It is due to the following rea-
sons that many believe the trend of the increasing importance of the ASICs will remain after 1990. First,in
commodity ICs while scale down the technology has been fruitful over the past 10 years, significant invest-
ment is required. Second, many new systems and new architectures have been proposed which were

implemented with ASICs as the key components. Even though the cost of an ASIC is higher than that of a

commodity IC with similar complexity and technology, the overall system had lower overall cost due to a

more efficient system architecture.

Another reason of the increasing ASIC designs is the maturity of CAD tools. It is not until recently
that high-quality module generators, silicon compilers and integrated CAD environments were available.
The main products of the CAD industry have changed from layout editor, switch or circuit simulator
(which were used by commodity IC designers) to higher level front-end tools like the schematic entry tools
and functional simulators, and automatic layout generators. The latter played an important role in the

design process of ASICs. In the future we expect to see additional CAD tools developed for ASIC design.

Finally, there is the issue of fast prototyping of design ideas. The system designer often wants to
quickly evaluate the price/performance of hardware implementation of an application. It is often the case
that the designer has the choice of a board with commodity chips or an ASIC to implement his idea. What
has made the ASIC a more attractive choice is because there are much more tools available at the chip
level than at the board level. The advantage of ASIC design is that there are a number of cell design styles
(gate-array, standard-cell, semi-custom, etc.) with different turn-around times and performances. Once the

design idea is verified, the performance can be improved with a different cell design style.

One main disadvantage of ASICs is the extra fabrication time as compared to off-the-shelf commo-
dity ICs. However, the fabrication time has been reported to be as short as two weeks with some gate array
design systems. Moreover, from our experience the design time is still much longer than the fabrication

time. Therefore, to reduce the design time has a larger impact on the overall turn-around time.

The focus of this thesis research is on a subset of ASICs m which some computation;ﬂ algorithms are
implemenéd. I will call them the algorithm-specific ICs. From the experiences of several algorithm-
specific IC designs!+2:3 , we found that even though the algorithms in various applications are very dif-
ferent, they however can all be implemented with a limited set of hardware modules (e.g. ram, data path).
By reusing hardware modules, many of the design difficulties of most ASICs are alleviated. Specifically,

this can be done by (1) selecting hardware modules to be used in a particular algorithm and (2) creating

new hardware modules if necessary in such a way that they are reuseable.

On the other hand, by restricting the design domain to algorithm-specific ICs, the CAD system
design becomes simpler. First, it is possible to develop some special-purpose module .generators for
commonly-used hardware modules. Second, one of the tasks of the CAD system is to translate higher level

design representations to layout, which is almost untractable unless we restrict the design domain.

Typical application areas of algorithm-specific ICs include speech processing, image processing,
robot control, computer vision, digital audio and telecommunications. For example, inverse kinematics,
adaptive equalizers for digital cellular telephones, fingerprint recognition, frame buffer controller, channel
emulator for computer network protocols, image processing based on projection-transformed data, milling
machine overseer and robot controller are a number of active research projects which involve algorithm-

specific IC designs, which are underway in our research group.

1.2. Dedicated and Programmable Architectures

To achieve higher pe:rfomance in algorithm-specific ICs, efficient architectures have larger impact
than efficient layout just as in the case with ASICs. In general, the most efficient architecture is one that is
dedicated to the particular algorithm. A dedicated architecture is often obtained by studying the data flow
operations in the algorithm and allocating a dedicated hardware module for each operation, for example, an
adder for an add operation. This way the logical data flow in the algorithm is implemented by the physical
interconnection of the hardware modules. The control unit of the hardware modules is simple since in gen-
eral there is no time-multiplexing of hardware modules, even though the data path may be very compli-

cated. The speed of the implementation depends on the slowest hardware module in the design.

The drawback of dedicated architectures is that they have to be redesigned for new algorithms.
Therefore, another type of architectures is often used in low sampling rate applications which consists of a
number of most commonly used hardware modules, which are time-multiplexed (by microcode control)

according to the algorithm. We call this type of architectures the programmable architectures. The control

unit in a programmable architecture is complicated in order to control the time-multiplexing of hardware
modules. The speed of the implementation depends on the total number of microcode cycles to realize the

algorithm. A programmable architecture is applicable only if

sample _period

total number of cycles <zt le time

For example, if the circuit runs at 5 MHz, and the sample frequency is 5 kHz, then the maximum number

of cycles of an algorithm is 1000.

It is interesting to compare the differences and similarities of an algorithm-specific IC in programm-
able architecture, and an off-the-shelf microprocessor. Both of them offer some programmability. How-
ever, a microprocessor is software programmable in the sense that software programs can be compiled and
stored in its program memory for execution. On the other hand, an algorithm-specific IC in programmable
architecture is hardware programmable. Not only can different algorithms be compiled and stored, but the
architecture itself can be tailored for the algorithms. Examples of typical parameters of a programmable
architecture are the word length of the data path, and the depth of the stack, etc. Contrast to software pro-
grammable chips that are programmed after the chips are fabricated, the hardware programmable chips are
programmed before the chips are fabricated, i.e. at the design phase of the chip. However, the fact that the
programmable architecture is subject to customization of the particular algorithm makes the compiler

design more challenging.

In summary, for low sampling rate applications, the pfogrammable architecture is a good choice
because not only the hardware modules but the architecture are reused to reduce design difficulties. On the
other hand, dedicated architectures are necessary for high sampling rate applications because only dedi-
cated hardware modules can provide the speed required. In the next chapter, a description of the CAD sys-
tem which supports both types of architectures will be given.

CHAPTER 2

The LagerIII CAD System

2.1. The Challenge

The design representation of algorithm-specific ICs can be divided into three categories (by abstrac-
tion level): algorithm, architecture and layout. At the algorithm level, the design can be represented by an
application program, or graphically by a signal flow graph. Because this representation describes only the
behavior that the chip should implement without specifying what hardware modules to use, it is also called
a behavioral level representation. At the architecture levei, the design can be represented by interconnec-
tions of hardware modules. It can also be called a structural level representation. At the layout level, the
design is represented by physical IC mask layout. It is the most detailed design representation a designer
has to deal with. The hardware modules specified at the structure level are further refined such that their
physical implementation with leaf cells is specified. The layout level representation can also be called the
physical level.

A good CAD system should allow the user to specify the designs of algorithm-specific ICs at high
levels (behavioral and structural) and generate the physical layout automatically. The productivity of the
designer increases when s/he can use high level representations to describe the designs, an experience we

learned from high-level programming languages.

The design of algorithm-specific ICs requires collaboration of people with expertise in various areas.
Signal processing algorithm developers, VLSI architects and circuit designers is one typical combination.
A CAD system should be easy to use for people of all levels of expertise such that (1) they can try out ideas

easily and (2) they can work together.

The CAD system should provide a means through which the architectures designed by the architects
can be used by the algorithm developers. An algorithm developer can simply design ‘and simulate the algo-
rithm in a high-level language, and choose an architecture that is designed to realize the algorithm. The
architecture has to be parametrizable such that it can be tailored according to the algorithm. For example,
the round-off error characteristics of an algorithm may dictate the word length of the data path. The CAD
system should also provide a means through which the hardware cells designed by the circuit designers can
be used by the architects. All the architect needs to do is to determine how and what cells to use in the
architecture. Basic cells (e.g. adder) and functional blocks (e.g. control unit) can be described in a
parametrized form to encourage re-use and sharing of the leaf cells and functional blocks, and to facilitate

the design of new architectures.

A set of layout generation and simulation tools is needed for quickly evaluating the area and perfor-
mance of the architecture. In order to reduce the effort of integrating new design tools in the future, the

CAD system must have a policy to deal with how the tools are integrated.

As the design gets increasingly complicated, design representation and documentation become more
important. Because the CAD system can carry out the design from either the algorithm or architecture
level, the input descriptions the user specified at those levels are the best design documentations. The

design can be reproduced by giving the same high-level description and the choices of architectures and

circuits.

In summary, the CAD system should be designed based on four considerations: (1) By providing
high-level interfaces such that it can be used by users of different expertise. (2) It facilitates the sharing
and re-using of leaf cells and functional blocks through parameterization. (3) New design tools can be
integrated easily. (4) It should help fast prototyping the user’s designs through automatic layout genera-
tion. Therefore, in the CAD system described in this thesis four user interfaces are provided: (1) a
behavioral interface for entering algorithms, (2) a structure interface for entering architectures, (3) a cell

interface for entering leaf cells and (4) a tool interface for entering new design tools.

Whether or not to automate the leaf cell design is also an issue to the CAD system design. The
automatic approach is less vulnerable to the design-rule changes, and can produce shorter circuit delays if
timing optimization is performed. It is however less efficient in terms of area and run-time. The automatic
approach often introduces constraints to the leaf cells and the design tools. In our CAD system, the leaf

cells are manually designed.

2.2, The Philosophy

In this section I will discuss the approaches and their rationales that are taken in LagerIll. I will
define the silicon compilation process as the process of translating behavioral level information to struc-
tural level information, and silicon assembly process as the process of translating structural level informa-

tion to physical layout.

The data path synthesis approach* is often adopted in the silicon compilation process. It tries to
mimic while automate the human designer’s design methodology. It investigates the algorithm and finds
out the minimal data path necessary to implement the algorithm. Then it proceeds to schedule the algo-
rithm onto the data path and thereby produces the microcode. Some constraints on the number of hardware

modules of each type may be imposed in some systems, which make the scheduling a bit more difficult.

However, the data path synthesis approach is not yet able to produce very efficient (in terms of area
and performance) data path architectures for a wide range of applications. The main reason is that there
are simply too many possibilities in architecture design to be captured in one software program. In most
systems, some high-level decisions such as the bus strdcture, pipelined or parallel, lumped ALU or distri-
buted functional modules, are pre-determined, which reduce the architecture design domain, and make the
problem tractable. Researchers have used rule-based implementations’ for the data path synthesizer but it

was found that a set of rules was only applicable to a limited number of applications.

In some high performance applications special i/o comidexiﬁons have significant impact on the

overall performance of the architecture$,which are not addressed in most behavioral level descriptions.

The data path synthesis approach suffers from the fact that it can only generate data paths that are similar to

what have been designed. It is not yet able to invent new data paths for exotic applications.

In Lagerlll, we use a data path mapping approach where the data path is manually designed first and
the silicon compilation system maps the behavioral level description onto the pre-defined data path. This
approach results in more efficient data paths. This approach is made feasible by providing a dedicated data
path module generator that allows easy generation and modification of data paths. For algorithms that have
relatively similar sampling rate and contain the same set of primitive functions (and therefore can exploit
the same data path implementation), the data path mapping approach eliminates the data path synthesis
step. On the other hand, for algorithms that need very different data path designs, this data path mapping

approach allows human designers to invent new data paths.

The implementation of data path mapping calls for a compiler that compiles tl;e high-level behavioral
description into microcode. The challenge of this compiler is that it has to be able to generate correspond-
ing microcode for each manually designed data path. This is done through the input of a code generation
table which essentially describes how each primitive functions in the behavioral description is implemented
by a sequence of microcode of each data path. Each data path has one corresponding code generation
table. The code generation table in this approach is effectively the same as the rules in a rule-based data
path synthesizer; both describe the data path in an abstract way and allow the behavioral description to

translate into structural level information.

The data path mapping approach is applied in the following way. First, each pre-designed data path
is picked in tumn, and the corresponding microcode will be generated by the compiler with the code genera-
tion table of the chosen data path. If none is satisfactory, new data path has to be designed and its code gen-
eration table written, and send to the silicon compilation system to generate the microcode. Usually, it is

easy to find out how to modify an old data path to increase the performance for a particular algorithm.

Even though the above discussion concentrates on the data path design, the same argument applies to

the control unit design as well. In Lagerlll, instead of trying to synthesize the control unit structure, we

map the control flow operation (e.g. branch, if-then-else) in the algorithm into pre-defined control unit
structures. For example, the contents of FSM and ROM in the control unit design can be customized with

the behavioral description in the silicon compilation system in LagerIII.

In summary, the silicon compilation system in LagerIll maps the behavioral level descriptions to
pre-déﬁned structural designs. This approach leaves room for the user to enter new manually designed data
path and control unit architectures. This approach is the most feasible one under today’s situation where
the direct synthesis approach can not produce efficient architectures. It is a necessary first step toward

direct synthesis to get more experiences in architectural design through manually design practice.

In the silicon assembly process, there is another issue: whether to let the CAD system or the user
choose the hardware modules and cells in the design. In general, there is more than one cell in the cell
library with the same functionality, each differing from another in, say, driving capability and layout area.
The CAD system can choose the cells based on timing optimization and/or area optimization criteria,
However, the drawback of this approach is that the CAD system needs to be re-compiled whenever a new
cell or hardware module is integrated, which increases the maintenance cost of the cell library. New ver-

sions of the old cells and hardware modules create the same problem.

In Lagerlll, we let the user specify all hardware modules and cells in the whole design hierarchy.
The cell specification includes the cell name and the directory path name. Different versions of the same

cell are stored in different directories.

23. System Overview

The relationship between the silicon compilation subsystem and the silicon assembly subsystem is
shown in Figure 2.1. To facilitate the reuse of the hardware modules, the structural level description is
parametrized. Therefore, the silicon assembly subsystem requires both the structural description and the
parameter values in order to generate the layout. Typical parameters include the word length of the data

path, the content of the ROM, etc. The silicon compilation subsystem maps the behavioral description of

10

the algorithm onto the pre-defined structural design by generating the appropriate set of parameter values.
The architecture designer can use the silicon assembly subsystem to generate layout, and the algorithm

developer can use both subsystems to generate layout from an algorithm given the structural design.

Figure 2.2 shows the block diagram of the silicon compilation subsystem. The behavioral level
description language used in LagerIIl is Silage® . Silage is an applicative language designed for describing
the signal flow diagrams easily. A Translator translates the Silage program into a procedural language
similar to C, in which control flow operations are put in. A Compiler compiles the procedural language
into the symbolic microcode based on a code generation table that describes a pre-defined data path. The
symbolic microcode has very general control flow primitives, which can be implemented in a lot of control
units. A Control Generator generates the parameter values for a particular control unit. Note that the
structural level information, in the form of a code generation table and control unit information, contributes

to and affects the silicon compilation subsystem.

BEHAVIORAL

!

SILICON
COMPILATION|
(O

STRUCTURAL t
—_— PARAMETER VALUES

i

SILICON
»— ASSEMBLY
(SA)

i

PHYSICAL

4

Figure 2.1 LagerlIl system overview

11

The silicon compilation subsystem will be described in more details in Chapter 5.

Figure 2.3 shows the block diagram of the silicon assembly subsystem. It consists of three software
components (the Design Manager, the Layout Generator and the Design Simulator) and a cell library. The
Design Manager translates the parametrized structural description and the parameter values to an internal
database. The Layout Generator integrates a set of module generators. The Layout Generator accesses the
design information from the internal database, and the leaf cell information from the cell library. The
Design Simulator is an event-driven, functional/switch level simulator that allows the user to simulate the
structural description. The Design Simulator accesses the design information from the internal database,

and leaf cell models from the cell library. It is very important to let the Layout Generator and the Design

APPLICATIVE
LANGUAGE

TRANSLATOR

PROCEDURAL
| LANGUAGE

DATA PATH
INFORMATION
* COMPILER

SYMBOLIC

CONTROL 1 MICROCODE

UNIT
INFORMATION

CONTROL
GENERATOR

PARAMETER
VALUES

Figure 2.2 The silicon compilation subsystem overview

12

Simulator take the same design information input, which eliminates the need of verifying that the two

inputs are the same.

The silicon assembly subsystem will be described in more details in Chapter 3.

In previous chapter, it is said that there are two types of architectures, dedicated and programmable,
for implementing algorithm-specific ICs. Both types of architectures are supported in LagerII, but in dif-
ferent ways. The silicon compilation subsystem is designed to be used for programmable architecture and
the silicon assembly subsystem is designed to be used for both programmable and dedicated architectures.
This is because (1) The silicon compilation subsystem maps the algorithms onto reuseable pre-defined
architectures, but the dedicated architectures is very hard to reuse. (2) Once the dedicated architecture is
described by the structural description, the parameter values are often easy to obtain. (3) The programm-

able architecture, because of its nature of simple data path and complicated control, needs the silicon

PARAMETER
STRUCTURAL | VALUES
DESCRIPTION [

| DESIGN
MANAGER
DESIGN
DATABASE
[
1 1
LAYOUT DESIGN
{ GENERATOR { SIMULATOR
CELL CELL
LAYOUT MODEL
LAYOUT

Figure 2.3 The silicon assembly subsystem overview

13

compilation subsystem to help generate the control unit. The dedicated architecture has simple control and

hence the silicon compilation subsystem is not critical.

2.4. Related Work

The discussion in this section is organized by a taxonomy of silicon compilation languages (SCL),
which are the input languages to silicon compilation systems.? Silicon compilation languages can be
divided into two major categories: structural and functional. A structural SCL specifies how a circuit is
constructed. A functional SCL specifies the input/output mapping of a circuit. A functional SCL can be
subdivided into two groups: architectural and behavioral. A functional SCL is called architectural if it has

predictable structural semantics; otherwise it is a behavioral SCL.

There are quite a few general purpose silicon assembly systems developed recently in the CAD
industry. LSI Logic’s .s:ilicon integrator, VLSI Technology Inc.’s VITtools, Silicon Compiler Systems’s
Genesil and Seattle Silicon Technology’s Concorde are best known examples. The users of these systems
usually specify the designs using a schematic entry, which can be viewed as a graphical structural descrip-
tion. Without the capability of taking behavioral level description as input, these systems cannot help the

users in translating an algorithm to a structural design.

The CAD tools in these systems are often developed independently. Therefore, as the number of
CAD tools increases, the tool integration becomes a problem. This issue has recently attracted much atten-
tion and research and development efforts in the CAD industry. Moreover, the fact that the cell library is
not parameterizable makes it difficult to maintain the cell library and to share cell modules among designs.

A few special purpose silicon assembly systems have been reported that work on architectural level
descriptions. These systems usually have restricted target architectures and application domains. The GE -
silicon compiler!? , for example, is based on a bit-serial architecture. The MacPitts silicon compiler!! is
based on an architecture that contains a bit-sliced data path and a PLA control unit. Furthermore, the input

languages to these systems do not support control flow operations very well. The MacPitts uses an

14
embedded Lisp language as input, and the only control flow construct is the Lisp cond function.

The silicon compilation started with a behavioral level description has been a hot research area for a
number of years. A number of systems were proposed, each with different behavioral description

language. The behavioral specifications are divided into three groups in the following discussion:

(1) frequency-domain specification. This behavioral specification describes the frequency-domain behavior
desired in the chip. Typical parameters include the passband ripple, stopband ripple, stopband attenuation,
etc. Based on these specification, a filter is synthesized and its coefficients are optimized for hardware real-
ization. The Cathedral-I system was reported!2 in which a fixed bit-serial architecture has to be used to

make the architecture mapping and optimization tractable.

(2) machine specification. One important example of this kind of behavioral specification is the ISPS!13
language, on which the CMU-DA# system is based. The ISPS language describes the instruction set of an
architecture and the machine behavior in executing each instruction. The CMU-DA system synthesizes the
data path that implements the instruction set. Both a iterative algorithmic a;iproach (EMUCS) and a
knowledge-based approach (DAA) have been tried in the CMU-DA system, both neither has yet been able
to come close to the human designed data paths. Furthermore, the scope of CMU-DA is limited in generat-

ing the architecture of the data path, without actually generating the layout of the data path.

(3) algorithm specification. In this kind of the behavioral description, a particular algorithm is specified. It
is lower than the frequency-domain specification because the implementation in terms of algorithm has
been fixed. However, a frequency-domain specification usually is only applicable for a limited range of
applications (e.g. filters). An algorithm specification is different from a machine specification because the
architecture can be tailored by the particular algorithm, which is, however, a very difficult task. For exam-
ple, the Lager] system! used an assembly level design file as input and the Cathedral-I system® used the
Silage language. For simplicity, they all assume a fixed architecture onto which the behavieral description
will be mapped.

In summary, even though a lot of silicon assembly and compilation systems have been reported, none

was able to cover the entire design spectrum from behavioral description to layout. Silicon assembly

15

systems are more mature than silicon compilation systems. However, considerable effort is being devoted
to make the silicon assembly system open to new CAD tools and cells. Silicon compilation systems have
shown promising progress in the past few years, but significant breakthroughs are still required before the
most efficient architecture can be generated given an algorithm specification. The LagerllI system attempts
to do this by providing a structural input and a behavioral input. Because it is developed to support the
design of algorithm-specific ICs, the LagerIll uses an algorithm specification (Silage) as behavioral
description. A unique feature that separate Lagerlll silicon compilation subsystem from Lagérl and
Cathedral-II is the structural input, with which the user can modify the target architecture. Finally, the
LagerIlI silicon assembly system is implemented in an object-oriented environment which makes it easy

for new CAD tools and cells to be integrated.

CHAPTER 3

The Silicon Assembly Subsystem

The LagerllI silicon assembly subsystem is composed of four parts: an internal design database (sec-
tion 3.1), a structural interface called the Design Manager (section 3.2), a Layout Generator that integrates
a set of module generation tools (section 3.3) and an event-driven, functional level simulator called the

Design Simulator (section 3.4).

3.1. Internal Design Database

The importance of a consistent internal database in a silicon assembly system will be discussed first
in section 3.1.1. Second, in section 3.1.2 the object-oriented programming paradigm will be described,
which is shown to be a suitable tool for implementing the database. The organization and actual imple-
mentation of the design database using Flavors and Lisp will be described in section 3.1.3. The Lisp inter-
preter provides a nice interactive environment in which the user can send queries to access the database. In
section 3.1.4, a sorter example is used to show the internal organization of the database by using the Lisp

interpreter. Finally, in section 3.1.5 some comparisons are made between the design database with the
OCT database.

3.1.1. Integration Policy

The integration policy defines how the design information is stored in the internal design database.
In traditional CAD program implementations, each program has its private data structures and the com-
munication is through reading and writing files. The integration policy is the common data structure that is
* shared by all CAD programs, and hence eliminates the file transfer overhead in program communications.

A well-thought integration policy also makes the integration of new CAD programs easier because the

16

17

interface problem is confined between the new CAD program and the internal design database.

Each CAD program has its own optimal data structures. However, since the integration policy is
shared by all CAD programs, it is difficult to satisfy them all. If the common data structure were to be con-
structed to be the union of all private optimal data structures, then the overall database will be inefficient
due to its enormous size. The integration policy has to compromise and be optimized for the overall per-

formance. Therefore, it often depends on the CAD programs involved.

After the integration policy is defined, the CAD programs can be written as a sequence of queries to
the design database to access, process and finally store the information. The productivity of the CAD tool
designer increases when they can implement the CAD programs with high-level queries. The implementa-

tion detail of the database is encapsulated and can be modified without affecting the CAD programs.

In LagerIIl, an object-oriented programming system (Flavors'S-16) is used to implement the design
database. The object-criented programming system provides a way of implementing highly modular sys-

tems and generic operations, which allows the high-level queries to be easily implemented.

3.1.2. Object-oriented System

A flavor is the fundamental entity in the Flavors system, which designates a class of objects that have
common characteristics. A flavor consists of local state and a set of operations (called methods) that can
be performed on it. An instance is created by instantiating a flavor. The elements of local state are called
instance variables. The values of the instance variables are different from instance to instance, though

their number and names are the same for all instance of a flaver.

An instance is asked to perform an operation by specifying the generic name of the operation and by
specifying arguments to that operation (a value may be retuned). This is also called sending a message.
Associated with each instance is a means by which a piece of code (method) can be found from the name

of an operation. When a message is sent to an instance, the instance finds the appropriate method and runs

18
it, giving it the supplied arguments.

This paradigm permits the implementation of generic operations. A set of messages is defined,
which specifies what the extemnal behavior must be if an instance is to implement the message. The mes-
sage does not define how the operation is implemented in the instance. This feature allows the implemen-
tation detail to be hidden in the instance. A good analogy of the messages is the computer network proto-
cols, where the hardware, software and firmware implementations of the protocols is hidden from other

computers in the network.

The terminologies used in Flavors are slightly different from other object-oriented systems. For
example, in Smalltalk!? , a flavor is called a class and an instance is called an object. Flavors is supported
in a number of Lisp dialects. In the following, only the Franz Lisp Flavors is described. Several functions

are included here for completeness and ease of discussion, and a detailed description is available!s .

A flavor is defined by the special form

(defflavor flavor-name
((varl (init-varl)) (var2 [init-var2]) ...)
(flavl flav2 ...)
(optionl option2 ...))

where flavor-name is a symbol which is the name of the flavor. varl, var2, ... are the names of instance
variables and init-varl, init-var2, ... are their initial values. An initialization is not required but is useful for
assigning default values to the instance variables. opfionl, option2, ... are options to the defflavor form.
flavl, flav2, ... are the names of the component flavors which the flavor-name flavor inherits. The instance
variables and methods of the component flavors are inherited by the flavor-name flavor. The inheritance
mechanism is one of the major differences between Flavors and other object-oriented programming sys-
tems. In Smalltalk, for instance, a class can only inherit from one parent class (called superclass). There-
fore, the only possible ways to modify an existing class are by adding additional instance variables, by

adding additional methods, or by shadowing (replacing) existing methods. Because of the strict hierarchy

19

among classes, this scheme cannot handle orthogonal attributes in a modular form. Wheri there are several
features that need to be combined in a pick-and-choose fashion, the single-superclass scheme becomes
hard to use.

In Flavors, any flavor can inherit more than one component flavors, whose order is important in
determining which method to inherit if there are more than one defined in the éomponent flavors. The fol-
lowing flavor organization conventions are recommended. A base flavor is a flavor that defines a whole
family of related flavors, all of which have that base flavor as a component. A mix-in flavor is a flavor that
defines one particular feature of an object. A mix-in flavor cannot be instantiated, because it is not a com-
plete description. A usable flavor can be constructed by choosing the mix-ins for the desired characteristics

and combining them, along with the appropriate base flavor.

An instance can be instantiated by the special form

(make-instance ’flavor-name [init-option value) ...)

A method is defined by the special form

(defmethod (flavor-name message-name) argument-list

forml form2 ...)

where flavor-name is the name of the flavor in which the message is defined. The name of the message is
specified by the symbol message-name. The message-name has to be a Lisp keyword (which starts with a
":"). argument-list is a list of auxiliary variables used by the method. forml, form2, . . . are the method
body. |

A message is sent to an instance by the special form
(send instance message-name argument-list)

where instance is the receiving instance to which the message message-name and the argument-list are

sent. A message can be handled by the instance only if the appropriate method has been defined for the

instance by a defmethod, otherwise it results in an error.

20

3.1.3. Design Database Implementation

In an IC design system, we find that the most important objects are terminals, nets and cells, which
are defined to be the base flavors in the design database. Their instance variables are defined in Table 3.1
to 3.3. Some instance variables used by the Design Simulator will be discussed later. A cell x is said to be
the sub-cell of a cell X if X contains x. X is called the parent-cell of x. The notions of the parent-cell and

the sub-cell are useful in a hierarchical design system, which allows us to focus the discussion on one level.

The generic-parameter-list stores a list of parameter names by which the cell is parametrized. The
instance-parameter-list stores a list of parameter name and value pairs, which is obtained by combining the
parameter names with the input parameter values through a parameter passing mechanism (see section 3.2).

For example, suppose a cell is parametrized by two parameters, a and b, then the generic-parameter-list of

instance variable brief description
| generic-name flavor name
instance-name instance name
layout-generator type of layout generator used
sub-cell-list sub-cells described in sdl
instance-sub-cell-list list of instantiated sub-cells

|_generic-parameter-list list of parameter declarations
instance-parameter-list list of parameter definitions

| generic-terminal-list list of formal terminals
instance-terminal-list list of instantiated terminals
VGC-terminal-list list of Vdd, GND and clock terminals
net-list net-list described in sdl
instance-net-list list of instantiated nets

| generic-equivalent-list list of lists of equiv terminals
| _generic-feed-thru-list list of lists of feed-thru terminals

xbot minimum X coordinate
ybot minimum y coordinate
Xtop maximum X coordinate
ytop maximum y coordinate
cell-number cell enumeration

sim-list simulation model in a list
sim-level simulation level

| geometric-constraint-list | list of geometric constraints

Table 3.1 Instance variables of the cell flavor

21

a cell instance is (a b) while the instance-parameter-list is ((a 2) (b 5)).

The three most important instance variables of the cell flavor are (1) instance-sub-cell-list which
contains a list of sub-cell instances, (2) instance-net-list which contains a list of net instances and (3)
instance-terminal-list which contains a list of terminal instances. This information can be used to traverse
the whole design hierarchy. The instance variable instance-terminal-list contains only the terminals that
are defined in the structural descriptions. The special terminals like Vdd, GND and clock terminals are not
defined in the structural descriptions. Instead, they are created as a result of the layout generation. The
special terminals are stored in VGC-terminal-list.

instance variable brief description
side side which terminal is on

name terminal name

index bit number in a bus

coord terminal coordinate

layer layer which terminal is on
net-number number of net which terminal is on
net-name name of net which terminal is on
inward-net-name | name of net in lower level which terminal is on
cell-name name of cell which terminal is in
function function definition for simulation

Table 3.2 Instance variables of the terminal flavor

| instance variable brief description !
name net name
number net number
connect-list list of (cell terminal)’s on the net
fanin-list list of fan-in nets for simulation
fanout-list list of fan-out nets for simulation
state Forced, HZ,Weak for simulation
value 1,0,X value for simulation
driven-cell-list list of driven cells for simulation
driving-cell-list | list of driving cells for simulation

Table 3.3 Instance variables of the net flavor

22

From the terminal instance t, the net instance that t is on can be readily obtained by the net-name
instance variable of t. From the net instance n, in order to find out whether or not a particular terminal
instance is on n, the connect-list instance variable of n can be searched. The information can sometimes be
retrieved in more than one approach for efficiency. For example, if we want to find out all the terminals in
the sub-cells that are connected to a particular terminal t in the parent-cell p, we can either start from the
instance-net-list of p to search all terminals of the sub-cells that are in the same connect-list that t is in, or
we can start with the instance-sub-cell-list of p to get all the terminals in each sub-cell, which have the

same net-number as t.

The integration policy is essentially how the structural information is organized using the cell, termi-
nal and net flavors. Each CAD tool designer needs only to understand the relationship among them to be
able to access the structural information efficiently. In the next section, a small example is given to illus-

trate the design database.

3.1.4. An Example

A typical design may mn;ist of tens or hundreds of instances (of cell, terminal or net flavors).
Therefore, it is crucial to get the correct instance efficiently. Due to the hierarchical organization of these
instances it is possible to reach every instance in the hierarchy by traversing up and down the hierarchy and
by exploiting the integration policy. However, this is not efficient because it involves considerable list

searching.

Another approach is to give every instance a unique name. Since a name can be used as a pointer to
the instance in Lisp, we can get to any instance by its unique name. The naming convention is to concaten-
ate the instance names of the parent-cell of an instance with the instance name of the cell, net or terminal
instance. To increase readability, special characters are inserted between every two instance names. The
character "-" is used to concatenate a cell; the character "." is used to concatenate a terminal; the character

"@" is used to concatenate a net; the characters "[" and "]" are used to delimit an index number. For exam-

ples,
sorter-pr-mux

refers to the mux cell of the pr cell of the sorter cell. Sorter is the root cell in the structural hierarchy.
sorter@ctrinet

refers to the ctrinet net of the root cell.
sorter-pr.in{0]

refers to the in terminal (bit O in the bus) of the pr cell of the root cell. Note that the terminals and the nets

can only appear at the end; they cannot be the ancestors of any instances.

Now let us consider the example depicted in Figure 3.1, where the cell names are shown with bold-

face, net names with Italic and terminal names with Roman fonts. The root of the design hierarchy is

SORTER
PR PADS
MUX
out
nesd
REG
in
out
out netS outnet ®d

Figure 3.1 Sorter example

24

sorter, which contains two sub-cells, sorter-pr and sorter-pads. Sorter-pr has two sub-cells, sorter-pr-mux
and sorter-pr-reg. After the design database is created with the Design Manager by translating the struc-
tural description, the following Lisp queries can be used to access the information. The "=>" is the Franz
Lisp prompt sign. The queries are shown in bold-face. The returned values (retumed by evaluating the
queries) are found next to the queries. An instance in Flavors is identified by its flavor name and a unique
ID (e.g. #<pr 1152884>).

=> (send sorter :instanc.e-sub-cell-list)

(#<pads 1153436> #<pr 1152884>)

=> (send sorter :instance-net-list)

(#<net 1153900> #i<net 1154140> #<net 1154192> #<net 1154244>)

=> (send sorter :instance-terminal-list)

nil

The values of the instance variables can be accessed externally by sending messages to the instance.
In this case, the message name is the same as the instance variable name with the character ":" as the prefix
. This effectively shields the instance variables from the external world. If the instance variables are
changed later, the CAD programs remain unaffected if there are new methods defined for the messages.
For example, if the instance variables xtop, xbot, ytop and ybot are changed to xdim, xbot, ydim and ybot,

then the messages :xtop and :ytop can still be handled by the following methods
(defmethod (cell :xtop) () (+ xbot xdim))
(defmethod (cell ;ytop) () (+ ybot ydim))

and the CAD programs are unaffected. Within the method body, an instance variable can be accessed sim-
ply by providing the name. Sometimes the notion of self is handy, which allows an instance to refer to

itself. For instance, the above methods can also be written as

(defmethod (cell :xtop) () (+ (send-self :xbot) (send-self :xdim)))

25

(defmethod (cell :ytop) () (+ (send-self :ybot) (send-self :ydim)))

Note that the instance-net-list of sorter contains the nets between sorter-pr and sorter-pads. The
instance-terminal-list contains the terminals on the perimeter which, for the case of sorter, is null. The
instance-sub-cell-list shows that there are two instances in the list, and if we evaluate the cells sorter-pr

and sorter-pads as
=> sorter-pr
#<pr 1152884>
=> sorter-pads
#<pads 1153436>

we can verify that they are indeed the sub-cells of sorter by comparing the id’s. For readability, queries
can be designed such that they produce names (as defined by the naming convention) instead of instances.
However, creating new queries in the form of methods will dictate the recompilation of the database
software. An alternative is for the user to create his own Lisp functions on top of the primitive set of

queries. For example, the printIcell function defined as
(defun printlcell (cell)
(dolist (a (send cell :instance-sub-cell-list))
(format t ""a"%" (send a :instance-name))))
can be used to return the names of the sub-cells giving the parent-cell. For example,
=> (printIcell sorter)
sorter-pads
sorter-pr

nil

Now suppose we start from the terminal instance sorter-pr.in[0] and would like to find out what ter-

minals it connects to in its parent-cell and in it sub-cells. We can get the external connection information

26

by the net-name with
=> (send sorter-pr.in\[0\] :net-name)
sorter@innet0
Since "[" and "]" are special characters in Franz Lisp, a back-slash escape character is used in front of

them. We can find out the terminal instances on the sorter@innet0 net by accessing its connect-list

instance variable as
=> (send sorter@innet0 :connect-list)
((#<pads 1153436> #<terminal 1154764>) &)

or by using the user-defined printIconn function to get the names of the cell instances and terminal

instances, as
=> (printIconn sorter@innet0)
(sorter-pads b)
(sorter-pr in[0])
nil
which shows that the in[0] terminal on sorter-pr is connected to the b terminal on sorter-pads. However, if

we insert the (send sorter-pr.in[0] :net-name) query into the (send sorter@innet0 :connect-list) query

directly, we will get an error.
=> (send (send sorter-pr.in\[0\] :net-name) :connect-list)
Error: funcall: Bad function sorter@innet0
Form: (send (send Isorter-pr.in[0]l :net-name) :connect-liét)
c(1})

This is because (send sorter-pr.in\[0\] :net-name) returns the name instead of the flavor instance that is

required for the query. The fix is to insert an additional evaluation step as

27

=> (send (eval (send sorter-pr.in[0] :net-name)) :connect-list)
((#<pads 1153436> #<terminal 1154764>) &)

The function symbol-value can also be used in place of eval.

The internal net that sorter-pr.in[0] connects to can be found by the inward-net-name instance vari-
able of sorter-pr.in[0]. Using the printIconn function, it is shown that the in1 terminal of the sorter-pr-

mux cell is connected with sorter-pr.in[0].
=> (printlconn (symbol-value (send sorter-pr.in[0] :inward-net-name)))
(sorter-pr in[0])
(sorter-pr-mux inl)
nil
Another Lisp query that often comes handy is the describe function, which takes an instance as argument

and returns the values of all the instance variables. For a list of generic Lisp query functions, the reader is

referred to the Franz Lisp manual.!>

All the queries above are used to access the information in the design database. The queries to store
information can be formed by concatenating the string ":set-" to the instance variable names. For example,

the following query store 0 to the xbot instance variable of sorter. Note that this query has an argument.
=> (send sorter :xbot)
nil
=> (send sorter :set-xbot 0)
0
=> (send sorter :xbot)

0

28

This example shows that design information can be accessed and stored by issuirig Lisp queries in
the form of message passing. This mechanism allows easy access to the design database while keeping the

implementation detail of the design database independent of the CAD programs.

3.1.5. Comparison with the OCT Database

The design database was developed in parallel with the OCT database project!® . In this section,

some comparisons between them are presented.

First, the instantiation scheme of the two systems are different. In Lagerlll, an instance is instan-
tiated with all of its parameter expressions evaluated. Instances of the same flavor description can be dif-
ferent due to different parametrizations. In OCT, the masters (the counterpart of flavors) are not
parametrized. All instances of the same master are the same except the id’s. Therefore, a 3x3 PLA is a dif-
ferent master from a 4x4 PLA in OCT, while in LagerIll they are two instances of the same PLA flavor
with different parameter values. It is a trade-off between run-time and storage space. The LagerIIl scheme
consumes more run-time for evaluating the parameter expressions during instantiation; however, it allows

more economic cell library and design database.

The integration policy in LagerIll corresponds to the symbolic policy in the OCT database. In
LagerIIl, the physical layout is stored in Magic!? format and hence no physical policy is developed. The
structural describtion language can be thought of as the textual form of a schematic policy. For the sym-
bolic policy, there are noticeable differences between LagerIll and OCT. For example, In LagerIII a net
name can be readily obtained from the terminal instance with the :net-name message. In OCT, a generator
has to be used to search the net name given a terminal instance. In OCT, the actual terminals (terminals on
the sub-cells) need not to be instantiated explicitly, whereas they do in LagerIIl because of the possible
variations from instance to instance. Nevertheless, a link has been implemented to generate an OCT data-
base with symbolic viewtype from the design database of LagerlIll, which makes it possible to exploit the
CAD tools attached to OCT.

29

Other differences are listed below. In Lagerlll, the layout generator information is stored as an
instance variable of the cell flavor in order to perform the layout generation automatically. In OCT, a shell
script is usually needed to manage the layout generation process. OCT treats Supply and Ground terminals
the same way as other signal terminals. Therefore Supply and Ground are also considered as formal termi-
nals, which means that the user has to specify the clustering of the Supply and Ground nets. In LagerIll,
the Supply and Ground terminals are defined after the layout generation and hence they are not defined in
the structural descriptions. OCT has the advantage that the database is non-volatile. The design database
in LagerIlI is only in the main memory without having a back-up image in the secondary memory, which
makes it impossible to recover if the program crashes. OCT also has a powerful property set which pro-
vides an easy way to introduce new attributes. OCT uses full path names and LagerIII uses a special path

search mechanism to direct the searching of remote files.

3.2. The Design Manager

The Design Manager is responsible for translating the structural descriptions to the design database,
which was described in section 3.1. In this section, the syntax and the semantics of the structural descrip-
tion language are described first, which is followed by the description of the implementation of the Design
Manager.

3.2.1. Structural Description Language

A structural description language (sdl) file is used to describe the structure (cell hierarchy, intercon-
nection, etc.) of a cell. Sd! files are inputs to the Design Manager, the structural interface program of
LagerIll. The cell-name.sdl file specifies the relationship between the cell cell-name and its sub-cells,
which are described by other sd! files. To implement an architecture, a set of sdl files is required. The
Design Manager provides a path mechanism that allows using user-specified sdl files along with library sdl
files. Sdl files can be parameterized to facilitate the re-use of library sd! files.

30

A sd! file includes 7 sections, the order of which is not critical. Each section is recognized by a key-
word. Layout-generator, parent-cell, sub-cells, net, geometric-constraint-list, sim-list and lisp-
function are the keywords for the 7 sections. The sdl file is written in a lisp-like format; each section is
composed of one or more lists. A list has zero or more elements, each of which can be a lists itself,
enclosed by a pair of parentheses. The first element of the list in each section is the corresponding key-

word of the section.

1. Layout-generator section

The layout-generator section is a list with two elements. The first element is the keyword layout-
generator and the second element is the name of the layout generator. At this moment, six layout genera-
tors (TimLager, dpc, Flint, Padroute, stdcell and mosaico) can be used.

Example:

(layout-generator TimLager)

2. Parent-cell section

The parent-cell section has one list of 3 elements. The second element is the name of the parent cell,
which has to be the same as cell-name (the name of the sd! file). The third element is a list whose first ele-
ment is the keyword parameters, and the rest of the list is a number of parameter declarations that
parameterize the parent cell.

Example:

(parent-cell rom (parameters row column))

3. Sub-cells section

The sub-cells section is one list of the keyword sub-cells, followed by n sub-cell definitions where n
is the number of sub-cells in the parent cell. Each sub-cell definition is a list of 4 elements: its generic
name, its instance name, a list of parameter definitions and an optional flag-expression. The generic name

specifies the name of the sdl file where the sub-cell is defined. The instance name is used to refer to the

31

sub-cell in the sd! file. If more than one instance of the same generic sub-cell are used, then their instance

names can be used to distinguish them.

The first element in the parameter definition list is the keyword parameters, with each following ele-
ment of the form (parameter expression). The result of evaluating the expression defines the value of the
parameter. The expression is a Lisp expression constructed by primitive Lisp functions and/or user-
defined Lisp functions (see lisp-function section), which returns an integer, a literal symbol or an array of
strings (in this case the parameter is a truth table). The flag-expression is used to decide whether to include
the specific instance in the sub-cell list of the parent-cell. If flag-expression is evaluated into a non-zero
value (default), then the instance is included; otherwise it is removed. If the instance is removed then all

associated nets and terminals are removed as well.

For example, an instance dec! of the generic rom-decoder cell being a sub-cell of the parent cell rom

can be represented by

(sub-cells
(rom-decoder decl (parameters (row row) (column (/ column 2))))

- (other sub-cells))

From the example, we see that the rom-decoder has two parameters row and column, (which are defined in
rom-decoder.sdl). In the instance of decl, the value of row is the same as the value of row in the parent
cell (rom), and the value of column is the value of column in the parent cell divided by 2. The combination
of parameter declaration (in the parent-cell section) and parameter definition (in the sub-cell section) pro-
vide a mechanism for parametrizing the design with very few parameters. Note that since there is no flag-

expression field in the definition the sub-cell dec! is included.

4. Net section

The net section consists of one or more lists, each of which contains 3 or 4 elements. The first ele-
ment in the list is the keyword net. The second element is the net name. The third element is an optional

bus-expression which, if present, evaluates into the width of the net (or, the number of nets); otherwise one

32

net is included. If the width is zero, the net is removed. The last element of the net definition is a connec-
tivity list that is used to specify the connectivity. Each element in the connectivity list is a terminal

definition. Each terminal definition defines a terminal on the net.

A terminal definition can be used to refer to one or more terminals, depending on the width of the
net. The terminal definition is a list of 2, 3 or 4 elements. The first element is the instance name of the cell
where the terminal is on, or the keyword parent if the terminal is on the parent cell. The second element is
the name of the terminal. The third element is an optional starting index and the fourth element is an
optional increment. The starting index and increment are useful when the terminal definition is to define
the connection of a bus. The increment element can be present only if the width of the net is greater than 1.
The increment is 1 by default, and the default value of starting index is 0 if the width of the net is greater
than 1. If the width of the net is 1, then the terminal is not indexed. Note that the increment and the start-

ing index can, in general, be Lisp expressions.

For examples,
(net netl ((parent x) (dec1 out) (decl in 3)))

shows that the out terminal and the inf3] terminal of the sub-cell decl connect to the x terminal of the

parent cell on the net netl; The width of netl is 1 since there is no bus-expression.
(net net2 row ((decl in1 (- row 1) -1) (other out)))

shows the inl bus of the sub-cell decl connects to the out bus of the sub-cell other in bit-reversed order.
The width of net2 is equal to the parameter value of row. Net2 can be viewed as a shorthand of the follow-

ing set of net definitions:
(net net2[0] ((decl in1 (- row 1)) (other out 0)))
(net net2[1] ((decl in1 (- row 2)) (other out 1)))

(net net{row-1] ((decl in 0) (other out (- row 1))))

33

A special syntax is created for describing the connection of buses to a single terminal. The third ele-
ment in this case is the keyword mergeNet. The fourth element in the net definition is again the list of ter-
minal definitions except that the first terminal definition defines only 1 terminal (i.e. no increment field) and

the rest have a mandatory third and fourth elements for starting index and ending index respectively.

For example,
(net net3 mergeNet ((decl cin) (other cin 0 6 2)))

connects the cin terminal of the sub-cell dec! and the cinf0], cin[2], cin[4] and cin[6] terminals of the

sub-cell other on net3.

The generic terminals (the terminals on the boundary) of the parent cell are implicitly defined in the
net section through the parent keyword. For completeness, feed-through terminals and equivalent termi-
nals can be defined by the net constructs also. If more than one generic terminal with no instance terminal
(the terminals of the sub-cell instances) appear in the connectivity list, the generic terminals in the list con-
stitute a feed-through. If more than one generic terminal with at least one instance terminal appear in the

connectivity list, the generic terminals in the list are said 0 be equivalent.

5. Geometric-constraint-list section

Strictly speaking, geometric constraints, which are properties in the layout aspect of the parent cell,
should not be considered as part of the structures of the parent cell. They are put together in the same sdl
file for convenience. The geometric constraint definition is a list whose first element is the keyword
geometric-constraint-list. Each following element deals with one aspect of geometric constraints. At this
moment only the side information of the generic terminals can be specified. Others like the aspect ratio

and the placement information are under consideration.

The terminal aspect of the geometric constraints is specified by a list whose first element is the key-
word terminal. Each following element is in turn a list of 2 elements: the first being the name of the termi-

nal; the second being a list whose first element is the keyword side, followed by the side specification (top,

34

bottom, right or left, or a Lisp expression that returns one of the four side names), and a real number

between 0 and 1 which specifies the location of the terminals.

For example,

(geometric-constraint-list
(terminal
(in (side top 0.65))
(out (side right 0.2))
)]

At this moment there is no construct to specify the side information of a bus except to list them one at a

time.

6. Sim-list section

Sim-list is used to describe the simulation model of the parent cell, which is used by the Design
Simulator. Sim-list is a list of at most S elements. The first element is the keyword sim-list. The second
element is a list of the keyword in-term and all the input terminals/buses. A bus is specified by a list of
name and expression that evaluates to the width of the bus. The third element in the sim-list is a list of the
keyword out-term followed by all the output terminals/buses. The fourth element is a list of the keyword
local and all the local states. If there are no input terminals/buses or local states, then the corresponding
element can be absent. The fifth and last element is a list of the keyword function followed by a number of

function definitions.

Each output terminal/bus and local state should have a function definition. Each function definition is
a list of the name of the output terminal/bus or the local state, and a Lisp expression which evaluates to the
simulation result of the corresponding output or local state. In the Lisp expression, one can use the names
of the input terminals/buses and local states and output terminals/buses to refer to the values carried by

those terminals/buses/local states, and the parameter name to refer to the parameter values.

35

For example, let us create a sim-list of an inverter,
(sim-list
(in-term in)
(out-term out)
(function
(out (Xlognot in))
)

where Xlognot is a built-in function in the Design Manager which implements 1’s complement. Note that

the Design Simulator works on strings instead of integers.

7. Lisp-function section

Often a Lisp expression is used more than once in a sdl file, in which case a lisp-function definition
can be used to avoid entering the Lisp expression over and over again. The lisp-function section consists
of one or more lists, each of which starts with the keyword lisp-function and is followed by a Lisp function

definition (e.g. defun).

For example,

(lisp-function (defun add2 (n)
(addn 2)))

3.22, An Example
The set of sdl files for the sorter example in previous section is shown in Figure 3.2 to 3.6.

The way the Design Manager is invoked is illustrated in figure 3.7. The user manual of the Design
Manager is listed in Appendix A. Note that only the root sdl file name is required because the rest can be

inferred recursively from the generic names of the sub-cells.

(layout-generator Flint)
(parent-cell sorter (parameter a))

(sub-cells
(pr pr (parameter (b (+ a 2))))
(pads pads))

(net ctrlnet ((pads a) (pr ctrl)))
(net innetO ((pads b) (pr in 0)))
(net innetl ((pads ¢) (prin 1)))
(net outnet ((pads d) (pr out)))

Figure 3.2 sortersdl

(layout-generator Flint)
(parent-cell pr (parameter b))

(sub-cells
(mux mux)

(reg reg))

(net netl ((parent ctrl) (mux ctrl)))
(net net2 ((parent in 0) (mux in1)))
(net net3 ((parent in 1) (mux in2)))
(net net4 ((mux out) (reg in)))

(net netS ((reg out) (parent out)))

Figure 3.3 pr.sdl

(layout-generator leafcell)
(parent-cell pads)

(net a ((parent a)))
(net b ((parent b)))

(net ¢ ((parent c¢)))
(net d ((parent d)))

Figure 3.4 pads.sdl

37

(layout-generator leafcell)
(parent-cell mux)

(net ctrl ((parent ctrl)))
(net in1 ((parent inl)))
(net in2 ((parent in2)))
(net out ((parent out)))

Figure 3.5 mux.sdl

(layout-generator leafcell)
(parent-cell reg)

(net in ((parent in)))
(net out ((parent out)))

Figure 3.6 reg.sdl

yosemite 8>> DM _new -I

=>(DM)

Please enter root type (generic name) : sorter
Please enter root name (instance name) : sorter

Please enter parameter file name (if none enter N) : N
Please enter parameter value of a in cell sorter (root) : 4
Parameter values incorporated in file sorter.par.

start creating structures

Now if you want to continue with layout generation
Type (LG) to the coming prompt

Or type (DSIM) to continue with event-driven simulation
nil

=>

Figure 3.7 Invoking the Design Manager

The -I option specifies the interactive mode. The parameter values can be entered one by one
interactively or through a file. In this example, there is only one parameter value to be entered. In
sorter.sdl, the parameter b of the sub-cell pr is defined to be (a + 2). Therefore, when the user enters 4 as
the value of the parameter a of sorter, the parameter value of b in sorter-pr will be 6. In general, the user
only needs to enter the parameter values of the root cell, and the parameter values of all parameters in the

design hierarchy will be evaluated accordingly. After the Design Manager finishes and new Lisp prompt

38

(=>) appears, the design database is created. The user can access the design database with the queries dis-
cussed in previous section, or proceed to perform layout generation or simulation. A log file with the name
root-dm.log is created which contains verbose information about the status of the Design Manager opera-

tion. All the error and warning messages detected in the sdl files are also reported in the log file.

The sdl files can be either in the working directory or in some remote library directories. A user uses
the .lager file to specify where the Design Manager looks to find the sdl files. The Design Manager first
attempts to find the .lager file in the working directory. If it fails to find one there, then the home directory

is searched for a .lager file. The .lager file can be used by any tools in LagerIlI to specify library paths.

The .lager file may consist of any number of lists, each of which takes the form
(keyword element [elements ...])

where the keyword specifies an attribute of a tool that makes use of the list. Normally each element in the
list is a directory path (absolute or relative). Note that the order of the elements determines the priority.
For example, the Design Manager has only one attribute dm.sdlfile in the .lager file. The user can use the
Jager file to specify the directory paths that the Design Manager needs to search other than the working
directory. Comments in the .lager file can be entered in the same way as in the sdl file. An .lager file

example is shown in Figure 3.8.

3.23. The Implementation of the Design Manager

The Design Manager is basically implemented by one generic operation: the create-structures mes-
sage. The create-structure method is implemented in the cell flavor because it is a generic operation com-
mon to all cell instances. The main program of the Design Manager can be constructed by the 3-line
pseudo code:

(open-parse-sdl-file root)

(parameter-value-binding root)

39

(dmsdifile
“lager/LagerIll/processor/sdl
“lager/LagerIII/lib/stdcell
“lager/Lagerlll/lib/dpc/leafcells)

(TimLager.o “lager/LagerIIl/lib/TimLager/scpads/scpads1.25)
(TimLager.leafcells “lager/LagerIll/lib/TimLager/scpads/scpads1.25/leafcells)
(DPC.cd “lager/Lagerlll/lib/dpc/leafcells)

(DPC.mag “lager/LagerlIl/llib/dpc/leafcells)

(bin “1ager/LagerIlI/bin)

(octbin “cad/bin /usr5/octtools/bin)

(stdcell.leafcell lager/LagerlIl/lib/stdcell)

(Padroute.hdl “bilbo/moslib/frames)

Figure 3.8 A .lager file example

(send root :create-structures)

The open-parse-sdl-file function expects one argument, which is a sdl file name without the .sd! suffix. In
the case of the Design Manager main program, the root sdl file is specified by the user. The sdl file will be
searched first in the working directory. If not found, then the library paths specified by the dm.sdlfile list in
the .lager file will be searched in order. The open-parse-sdl-file function creates an instance of the root and
fills in the instance variables with values obtained from parsing the sdl file. Since the sdl file is of Lisp syn-
tax, the parsing is reduced to (1) reading the lists in the sdl file and (2) recognizing each list by the first
symbol in the list (e.g. parent-cell, net, etc.). These lists are stored in the instance variables of the instance

of root for further processing by the create-structures method.

The parameter-value-binding function binds the parameter values defined in the user-defined param-

eter value file to the parameters of the root. The parameter value file contains a number of lists of the form
(parameter-name parameter-value)

where the parameter-value can be a number, a symbol-name or a truth table. If any parameter is defined in

the parameter value file but not in the parameter list of the root sdl file, then a message

40

Warning: unused parameter: parameter-name.

is reported to the user. On the other hand, if any parameter is defined in the root sdl file but not in the
parameter value file, the Design Manager will ask the user to enter its value, by

Please enter parameter value for parameter-name:

As a result of the parameter-value-binding function, the value of the instance-parameter-list instance vari-
able is created, which consists of a number of (parameter-name parameter-value) pairs. Each parameter-
name is made to be an instance variable too, which makes it possible to directly access the parameter
values. Otherwise, the instance-parameter-list instance variable would have to be searched given a

parameter-name for its parameter value.

The create-structures method is defined as the following:
(defmethod (cell :create-structures)
(send-self :instantiate-sub-cells)
(send-self :instantiate-nets)
(send-self :instantiate-terminal-lists)
(dolist (a (send-self :instance-sub-cell-list))
(send a :create-structures)))

The create-structures is a recursive method. It first creates all the sub-cell instances, net instances and ter-
minal instances, and then send the create-structure message to its sub-cell instances. It is a top-down
implementation since the structures of the parent-cell are always created before those of the sub-cells are.
The three methods, which are also defined for the cell flavor, instantiate-sub-cells, instance-nets and
instance-terminal-lists, serve to create the instance-sub-cell-list, instance-net-list and instance-terminal-list
instance variables. In doing so, the three methods make use of the instance variables deposited by the

open-parse-sdl-file function.

41

The instantiate-sub-cells method works on the sub-cells section in the sdl file. "It then calls the
open-parse-sdl-file function to access and parse the sdl files of the sub-cells. It calls a evaluate-expr func-
tion to evaluate the parameter passing expressions in the sub-cell definitions, giving all the parameter
values of the parent-cell. The parameters of the sub-cells are made to be instance variables of the sub-cell

instances too.

The instantiate-nets method works on the net section in the sdl file. Each net declaration can gen-
erate zero or more net instances depending upon the value of the parameter in the net. The instanti?tc-nets
method creates a connect-list instance variable for each of the net instance, which consists of a number of
(cell-instance terminal-instance) pairs. The cell-instance in the connect-list instance variable can be either
the parent cell instance or any of the sub-cell instances. The terminal instances of the sub-cells are instan-
tiated by the instantiate-nets method of the parent-cell except for the root cell, where the terminal instances
are instantiated by the root itself. Sometimes not all the terminals in the sub-cells are used for interconnec-

tion, in which case only the used terminals are instantiated.

The instantiate-terminal-lists method generates the generic-terminal-list instance variable by collect-
ing all the terminals of the parent cell defined in the net section. For verification, the generic-terminal-list
instance variable is compared with the instance-terminal-list instance variable created by the parent cell of
the parent cell. The instance-terminal-list should be a subset of the generic-terminal-list, which indicates
some generic terminals are not used for interconnection. On the other hand, if some terminal instances in
the instance-terminal-list are not defined in the generic-terminal-list will cause a warning message. The
instantiate-terminal-lists method also creates the generic-equivalent-list and the generic-feed-thru-list
instance variables. Terminals in the generic-equivalent-list are generic terminals that are connected inside
the parent cell along with some terminals in the sub-cells. Terminals in the generic-feed-thru-list are gen-

eric terminals that are connected inside the parent cell without connecting to any sub-cell terminals.

42

3.3. The Layout Generator

The Layout Generator integrates a number of layout generation tools and automatically generates the
layout. In this section, the layout generation tools are described first, followed by the descriptions of tool
integration and automatic layout generation. The user manual of the Layout Generator is listed in Appen-

dix A.

3.3.1. The Layout Generation Tools

Six layout generation tools are currently available in the LagerIIl silicon assembly subsystem: Tim-
Lager, DPC, Wolfe, Flint, Padroute and Mosaico. Brief descriptions of them are included here, and

detailed information can be found in20:18 ,

Ideally, all layout generation tools should access the internal database directly for design informa-
tioh. However, some existing tools were written in C and were designed to use files as input and output.
The Layout Generator thus provides an interface routine for each such tool. The interface routine explodes
the internal database to generate the corresponding input file, and store the information from the output
files generated by the tools into the internal database. There are tools that are attached to the OCT data-
base, and the Layout Generator provides a link to generate the OCT database from the internal design data-

base.

TimLager is a tiling tool that puts together cells by abutment. The cells can be leaf cells or
TimLager-tiled cells. TimLager is normally used to generate RAM, ROM, PLA, The abutment is per-
formed according to a C routine that specifies how the cells are placed. The primitive functions used in the
C routine are addup() and addright(). Addup() initiates a new row of tiled cells and addright() adds a new
cell to the right of the current row. The advantage of the C-routine approach over the personality matrix
approach is that a C routine is more expressive than a matrix of symbols. For example, C control constructs
such as for-loop can be exploited. Furthermore, the C routine can be designed to read in Mem values

to generate different cells with the same C routine.

43

TimLager requires a pdl file which indicates the parameter values of the cell. The format of the pdl
file is similar to the parameter file required by the Design Manager. TimLager generates a layout file in
either Kic or Magic format, and a hdl file which describes the dimension of the cell and the terminal loca-
tions. The C routines and leaf cells should be stored in the cell library and be accessed using the path

mechanism in the .lager file,

DPC (Data Path Compiler) is used to generate bit-sliced data paths. The user specifies the intercon-
nections of blocks in the form of a sdl file. The blocks are built a priori out of leaf cells of the same func-
tionality. For example, the adder block consists of a number of interleaved adder.even and adder.odd cells.
The actual size of the block depends on the number of bits in the data path as defined by the user as a

parameter value.

The DPC cell library consists of 30-40 leaf cells-which can be classified into three types: arithmetic-
logic cells such as adder and xor cells, storage cells such as scanlatch and scanreg2Port cells and buffer-
mux cells. Each cell in general have an even and an odd instances. Some have a msb instance as well. All

leaf cells are of the same height and with the same well orientation.

Unlike TimLager which abuts leaf cells, DPC performs routing in the data signal direction (within
each bit-slice) and abutment in the control signal direction (between bit-slices). The routing strategy is
described in?! . DPC accesses the internal database directly by being a tightly-coupled subroutine of the
Layout Generator. DPC produces a Magic layout file.

Wolfe is a standard-cell place and route tool. It is used to generate random logic blocks or state
machines. Standard-cells are placed in rows, and Wolfe tries to find the optimum placement of the
standard-cells to minimize the routing area between the rows. The user can choose the number of rows and
the number of trials per iteration in the placement state, otherwise default values are used. The larger the

number of trials per iteration, the denser the layout and the longer the run-time.

44

The Wolfe cell library contains roughly 50 standard-cells, which contains essentially logic gates and
storage elements such as flip-flops. The library cells are in both Magic and OCT physical view formats.
Wolfe takes as input an OCT symbolic view, which is translated from the internal database by the Layout
Generator. Wolfe generates as output an OCT symbolic view in which the physical placement of the leaf
cells and the geometric implementations of nets are embedded. A Magic layout file is created from the

OCT physical view.

TimLager, DPC and Wolfe are layout generation tools that generate cell modules from leaf cells
directly. Flint, Padroute and Mosaico which will be described below, are used to put together the cell

modules and the leaf cells by placement and routing.

Flint is a general purpose place and route tool. The user has the option of choosing the cell place-
ment, channel assignment and global routing arrangements, and Flint takes case of detail routing automati-
cally. The user interaction is done via a graphical interface implemented on engineering workstations.
User-specified cell placement, channel assignment and global routing assignments can be stored for later

use. The cell placement is restricted to slicing structures.

Flint can take two kinds of input specifications: an OCT format and a hd! format. The OCT format
contains the symbolic view definition of the parent cell and the physical view definitions of the sub-cells.
The symbolic view definition is generated from the internal database in a similar way as in the Wolfe situa-
tion. The physical view definitions of the sub-cells contain only the boundary geometries because Flint
does not utilize the protection frame information to perform any over-the-cell routing. The hdl format
essentially contains the pdl file of the parent cell and hdl files of the sub-cells. These files are stored in a
file system that has similar structure as the design hierarchy. Flint generateds a Magic or a Kic layout file,

and a OCT physical view or a hdl file depending on the input format used.

Padroute is used to route the chip core to a ring of I/O pads. Pads are divided into four pad groups
which are constructed by TimLager and one pad group is placed on each side of the chip. Padroute

adjusts the dimension of the pad ring which is determined by the chip core dimension and the routing area.

45

It also connects the pad groups to form the pad ring by extending the pad groups and ‘putting in corner
pads.

Padroute acéepts the OCT or the hdl formats as Flint does except a few minor differences. The
nature of the Padroute problem dictates that there be five sub-cells, namely the chip core and the four pad
groups. There is one special parameter called fplan required for the sub-cells, which is used to specify
where to put the sub-cells. The five fplan parameter values are: middle, top, bottom, left and right. In the
hdl format, all five hdl files can be in the working directory or be accessed through the path mechanism of
the .lager file.

Mosaico is another general purpose place and route tool. It only takes the OCT format as input.
Mosaico tries to obtain the optimum placement automatically by a generic algorithm called simulated
annealing. The trade-off between Flint and Mosaico is that Flint takes some user’s time to expedite the
layout generation while Mosaico takes much more cpu time but generates the layout automatically. Flint
encourages cell hierarchy in order to reduce the number of cells the user needs to interact with at any given
level. Mosaico desires that all cells (including pads) be flar so as to fully exploit the simulated annealing
algorithm. Mosaico requires the user to specify the partitioning of the Supply and Ground nets when there
is more than one Supply and Ground pads. Flint lets the user specify the Supply and Ground routing at the

global routing stage and hence the Supply and Ground nets are not specified in the structural description.

3.3.2, Implementation of the Layout Generator

The automatic layout generation can be thought of as a recursive function call. In order to perform
the layout generation of the parent cell, the layout of the sub-cells has to be generated first. In the Layout
Generator, the automatic layout generation is implemented using a layour-gen message. The external pro-
tocol of the layout-gen message is pretty clear: it accesses the size and terminal location information of the ‘
sub-cells and returns the size and terminal location information of parent cell as a result of the layout gen-

eration. However, depending upon the layout generation tool involved with each cell, the method of han-

46

(defmethod (cell :dmtopdl) ()
(prog (port cable cable-temp pin j)

+» open pdl file |
(setq port (outfile (concat (send-self :instance-name) ".pdl")))
;s print cell instance name and generic name

(format port "(module (name “a) (type "a) “%" (send-self
:instance-name) (send-self :generic-name))

:+ generate parameter values
;:; the parameter value can be a integer, a symbol or a list (for 2-d
i1 array), the list value is printed differently from the other two

(dolist (a (send-self :instance-parameter-list))
(cond [(listp (cadr a)) ’ ; list
(patom "(" port) (patom (car a) port) (terpri port)
(cond [(listp (caadr a)) (dolist (text (cadr a)) (print-list text port))]
[t (print-list (cadr a) port)])
(patom)" port) (terpri port)]
[t ; integer or symbol
(patom "(" port) (patom (car a) port) (patom " " port)
(patom (cadr a) port) (patom ")" port) (terpri port)]))
(format port ") “%")

:» generate terminal information
+»; including (1) the name (2) the net number (3) the connection

(dolist (a (send-self :instance-terminal-list))
(setq cable-temp (send (symbol-value (send a :net-name)) :connect-list))
(dolist (pin cable-temp)
(cond [(eq self (car pin))]
[t (setq cable (cons (send (car pin) :instance-name) cable))]))
(setq cable (cons ’cable cable))

s+ actually printing

(format port "(term (name “a) (net “d) "a)%"
;name
(substring (send a :name) (+ 2 (string-length (send-self :instance-name))))
snet
(send a :net-number)
scable
cable))

+» close pdl file and quit
(close port)))
Figure 3.9 dmtopd]l method

47

dling the layout-gen message is different. In the Flavors system, this is taken care of by the use of mix-in

flavors.

The implementation of the Layout Generator involves defining seven mix-in flavors: TimLager-
mixin, dpc-mixin, stdcell-mixin, Flint-mixin, Padroute-mixin, mosaico-mixin and leafcell-mixin. Each
mix-in flavor has a method for handling the layout-gen message. The layout-gen method for the leafcell-
mixin, for example, parses the Magic layout file of the leaf cell and returns the size and terminal location
information of the leaf cell. Each cell flavor in the design hierarchy inherits the cell base flavor (defined in

3.1) and one layout generation mix-in flavor according to the layout generation tool used.

The use of mix-in flavors contributes to the software modularity. In the method of any layout gen-

eration mix-in flavor, the layout generation of the sub-cells can be enforced by
(dolist (a (send-self :instance-sub-cell-list))
(send a :layout-gen))

without worrying about what kind of layout generators are used for the sub-cells.

New layout generation tools can be integrated very easily by defining new mix-in flavors and new
layout-gen methods. The implementation of the existing layout generation mix-in flavors and methods will
not be affected. Since the layout generation tools have several common input/output formats such as hdl,
pdl and OCT formats, some generic methods such as dmtopd!, dmtohdl, hdltodm, dmtoPhysical, etc. have
been created. These generic methods are defined in the cell base flavor in order to be shared by all cell
instances, no matter which layout generation mix-in flavors they inherits. For example, the dmtopdl

method is shown in Figure 3.9,

The layout-gen method of TimLager can be represented by the following pseudo code:
(defmethod (TimLager-mixin :layout-gen) ()

(send-self :dmtopdl)

48

*** exec TimLager ***
(send-self :hdltodm))

where TimLager takes a pdl file as input and generates a hdl file and a layout file. Note that cells gen-

erated by TimLager normally do not have sub-cells.

The Layout Generator main program is simply
(send Igroot :layout-gen)

which will send layout-gen message to the sub-cells of the Igroot cell, which will in turn send layout-gen
messages to their sub-cells, and so on. The Igroot may or may not be the same as the root of the entire

design hierarchy, which makes possible to optionally perform layout generation on some part of the design.

A design flow is i:nple;rlented which is similar to the make program in Unix. The time stamp of the
layout file will be checked to determine whether new layout generation needs to be performed. If any of
the three in the following are updated, including (1) the parameter file of the whole design, (2) the sdl file
corresponding to cell A or (3) any layout files of the sub-cells of cell A, then the layout of the cell A isre-
generated; otherwise the layout generated will be bypassed if it has already been generated. This mechan-
ism is particularly useful in the debugging phase in which modifications of the design need to be done
quickly.

3.4. The Design Simulator

The Design Simulator is an event-driven functional simulator that is used to simulate the functional
correctness of the sdl files. In this section, the functional modeling of the leaf cells and the algorithm and
implementation of the simulator are described. The Design Simulator requires an event file as input and

produces an output value file, which are described at the end of this section.

49

3.4.1. Simulator Overview

The circuit under simulation is a network consisting of a number of cells which are interconnected
through nets. The task of the simulation is to calculate the values of certain nets given the values of some
input nets. The value of a ret can be 1, 0, X or a vector. Logic 1 stands for high voltage. Logic 0 stands
for low voltage. Logic X stands for unknown. To speed up the simulation, the values of a bus (N nets) can
be stored in a hypothetic net. The value of the hypothetic net is a vector which is the concatenation of the
values of the N nets. Because the values of some nets in the bus may be X, the value of the hypothetic net
can not be represented by an integer. Also, if we assign the value of the hypothetic net to be X when some

net values in the bus are X, then we lose the information of the values of other nets in the bus.

The values are stored as Lisp symbols. For example, to store a logic 1 in the net sorter@innet0 and a

logic X in sorter@innetl, we do
(send sorter@innet0 :set-value i 11)
(send sorter@innet] :set-value 'X)

Note that the vertical bars are required to turn an integer (or any identifier starting with a digit) to a symbol.

The state of a net describes the dynamic status of the net. A net can be in one of three possibles
states, namely forced, weak or high-imp. The state of a net is forced if it driven by some user input. There-
fore, the value of the net cannot be changed 'unless the user input is removed. The state of a net is high-imp
if the net is not driven by any cells, and hence the net should retain its previous value. The state of a net is
weak if the net is driven by some cells, and the value of the net is determined by the cells that drives the
net. Note that the state of a net is not a static value because the cells can be turned on or turned off (by

clocks, for example), which renders the net to be weak or high-imp.

The basic framework of the Design Simulator is given below. Each output terminal has a function
definition which describes its dependency on input terminals of the same cell. The value of a net can be

calculated by evaluating the functions of all the output terminals connected to the net. There is no notion

50

of strength in the Design Simulator. That is, all the cells are assumed to have the same driving capability.
Thus, if the functions of two output terminals of two cells evaluate to different values, then the final value
of the net is logic X regardless of the physical dimension of the cells. When the calculated value of the net

is different from its old value, an event is said to occur which triggers further nets to be simulated.

The transmission gate is handled in a special way by the Design Simulator. It is special because of
its bidirectional nature which makes its modeling very difficult. In the Design Simulator it is assigned a
special instance variable called IsON which indicates whether the value of the net connected to the gate ter-
minal of the transmission gate is a logic 1 or a logic 0. If the net has a logic 1 value, then the transmission
gate is ON and we consider the two nets connected to the source and drain terminals to be equivalent. The
simulation of the two nets is done separately with the effect of the transmission gate removed, and their
values are compared. If the values are not the same we assign a logic X to both of them. If the transmis-

sion gate if OFF then the two nets are independent, and can hold different values.

3.4.2. Functional Model

A functional model of a cell is a description of the cell’s behavior in terms of its input and output
relationship. In addition to the input and output terminals, it is convenient to introduce the notion of local
terminals in the functional model to simplify the description. For example, if some output terminal func-
tions have a common sub-expression, a local terminal can be defined to have the common .sub-expression
as its function, and hence simplify the description by replacing the common sub-expression in the functions
of the output terminal by the local terminal A local net is defined for each local terminal to store lhé simu-
lation value. In summary, a functional model of a cell contains an input terminal list, an output terminal list,
a local terminal list, and a function description for each output terminal and local terminal. The function
description of a terminal is essentially a Lisp expression which describes the relationship between the ter-
minal with other terminals in the cell.

51

The local terminal can also be used in the functional models of the cells that have internal states. For
example, a local terminal can be defined for the internal node S of the register cell depicted in Figure 3.10.
During ¢, the value of S will be replaced by the complement of IN. During ¢, the value of OUT will be
replaced by the complement of S. However, the local terminal is not the only way to describe internal
states. In memory cells (e.g. RAM, ROM), it will be very inefficient if a local terminals has to be defined

for each memory location. since the initialization of the huge number of internal states is a problem.

One unique feature of the functional models used in the Design Simulator is that the model can be
parametrized. For example, the memory contents of a memory cell is initialized and stored as a parameter
value of the cell by the Design Manager. In addition, the parameter values can be changed as a result of
simulation! This is useful for RAM cell whose memory content may be different after the simulation. The
parameter values of a cell can be accessed in the functional model of the cell by specifying the parameter
name. In the register cell example, the value of S depends on the value of IN. The Design Simulator first
searches IN in the terminal list. If it fails to find IN, then the parameter list will be searched. This mechan-
ism is powerful and general. However, the side effect is that the name of the parameter cannot be the same

as the terminals if it is used in the model.

The parametrizable functional models are useful when there are buses in the cell. As mentioned in
section 3.4.1, buses are treated as a hypothetic net whose value is a vector that is the result of concatenating

all the values of the nets in the bus. The local net is always a hypothetic net whose bus width is the same as

D

Figure 3.10 Register cell schematics

52

the buses it connects to. For example, if one register instance has a 5-bit IN bus with fN[O]:l, IN[1]=0,

IN[2]=X, IN[3]=X and IN[4]=0, then when ¢, goes high, the value of the local net S will be | 1XX101.

A couple of examples are now presented. In Figure 3.11, the sim-list of the register cell is shown. IN
and OUT are defined to be buses of width width, which is a parameter of the register cell, by specifying (IN
width) and (OUT width) respectively. Xlogout is a built-in function of the Design Simulator that is similar

to Franz Lisp bit-wise inversion function, lognot, except that it can handle X value as well.

. Figure 3.12 shows the sim-list of an adder cell, which adds INA, INB and CARRYIN to produce
OUT and CARRYOUT. In order to speed up the computation, the binary2decimal built-in function is used
to convert symbol values of INA and INB to decimal values, and the decimal2binary function is used to

convert the decimal result to a symbol to be stored in OUT. (Nallone N) returns the value 2V — 1.

The functional model of a cell is contained in the sdl file of the cell for convenience. First, all the
descriptions of a cell are stored in the same file. Second, the user can check for discrepancy between the

terminal lists defined in the mode! (sim-list) and that in the net list.

(sim-list function

(in-term (IN width) ¢; ¢2)

(out-term (OUT width))

(local S)

(function

(OUT

(@if (eq ¢2 "1 11) then (Xlognot S)
elseif (eq ¢ "1010) then "HZ
else 'X))

S
(if (eq ¢1 '111) then (Xlognot IN)
elseif (eq ¢ "10) then "HZ
else "X))

)]

Figure 3.11 Functional model of register cell

53

(sim-list function
(in-term (INA N) (INB N) CARRYIN)
(out-term (OUT N) CARRYOUT)
(function
(out
(prog (x)
(cond ((or (eq INA "X) (eq INB *X) (eq CIN ’X)) (return 'X)))

(setq x (add (binary2decimal INA) (binary2decimal INB)
(binary2decimal CARRYIN)))

(return (decimal2binary x N))
)]

(CARRYOUT
(prog (x)

(cond ((or (eq INA "X) (eq INB 'X) (eq CIN "X)) (return "X)))

(setq x (add (binary2decimal INA) (binary2decimal INB)
(binary2decimal CARRYIN)))
(if (> x (Nallone N)) then (return ’1 11) else (return *10 D)
)
)

Figure 3.12 Functional model for adder cell

3.4.3. Implementation of the Design Simulator

The Design Simulator requires some data structures in addition to those are created by the Design
Manager.

A cell is said to be driving (driven by) a net if the net is connected to an output (input) terminal of the
cell. All the driving (driven) cells of a net are stored in an driving-cell-list (driven-cell-list) instance vari-
able of the net. A net a is said to be the fanin (fanout) net of net b if the simulation of b (a) requires the
value of net a (b). More specifically, net b (a) is connected to an output terminal whose function definition
depends on an input terminal of the same cell, which is connected to net a (b). All the fanin (fanout) nets

of a net are stored in an fanin-list (fanout-list) instance variable of the net.

54

A create-sim-structures message is used to create the additional data structures required by the
Design Simulator, by processing the sim-lists in the sdl files. It is a recursive method like the create-
structures method, except that the recursion stops when a functional model is found. If the functional
models are specified only for the leaf cells, then the create-sim-structures message will be sent to the entire
design hierarchy. However, functional models can also be specified for high-level cell modules. to
increase the simulation speed. In this case, the create-sim-structures message does not have to be sent to

the sub-cells of the cell modules.

After the create-sim-structures message is processed, a flatten message is sent to the root to flatten
the design hierarchy such that the design is represented by the interconnection of leaf cells or cell modules
that have functional models defined. Flattening the design hierarchy not only simplifies the implementation
but speeds up the simulation, because the net values no longer need to be passed through the intermediate
levels in the design hierarchy. However, flattening changes the interconnection information in the design
database. In addition, the parameter values of a cell may be modified by simulation as mention above.
Therefore, the Layout Generator can not be invoked directly after the simulation. Once the design is simu-
lated and proven to be correct, the user needs to rerun the Design Manager before running the Layout Gen-

erator.

For instance, in the sorter example in Figure 3.1, if there are simulation models defined for mux, reg
and pads cells, then after the flattening, the root sorter cell will see three sub-cells: sorter-pr-mux,
sorter-pr-reg and sorter-pads. The pr hierarchy, which is there for layout generation reason, is removed.
If a simulation model is created for the pr cell then the models of mux and reg cells are not used and the

root sorter cell has sorter-pads and sorter-pr sub-cells.

The create-sim-structures method for the transmission gate cell is different from other cells. There-
* fore, two mix-in flavors are created: a switch-mixin flavor for the cells that can be modeled by switches,
and a function-mixin flavor for the cells that can be described by functional models. The transmission gate

cell is a switch cell and its create-sim-structure method simply determines to which net the gate is con-

55

nected and to which nets the source and drain are connected to. For the function celi, the create-sim-
structure method involves the creation of the values of the fanin-list, fanout-list, driven-cell-list and
driving-cell-list instance variables for all the nets that are connected to the cell. In addition to the base cell
flavor and a layout generation mix-in flavor, every cell instance also inherits either the function-mixin
flavor or the switch-mixin flavor. Therefore, the create-sim-structure can be used as a generic message for

all cell instances.

The event-driven simulation algorithm is described as follows. In order to exercise the simulator, the
user has to provide an event file (described in 3.4.4). An event is defined to a triplet of an event net name, a
value and a state. We call that a value is applied to the event net with the state. The simulator collects
input events until a run command is issued, and then the input events are put into a net-event-list list. First,
all the nets that are affected by these event nets (i.e. that are fanout nets of some event nets) are found and
put into the affected-net-list list. Next, we simulate the affected nets and if there are any affected net that
have new values as a result of the simulation, those nets are put into the net-event-list and iterate until no
new values is found. Then it proceeds to the next set of input net events until all the input net events are

processed. The top-level simulation algorithm is summarized in Figure 3.13.

The presence of the switch cell makes the simulation a little bit more complicated. Before simulating
a net in the affected-net-list, we first have to find out if there are any other nets in the affected-net-list that
are equivalent to the net. The nets are equivalent if they are connected by switch cells which are ON. The
equivalent nets have to be simulated collectively. The simulation of a net can be performed by simply
evaluating all the Lisp function of the terminals connected to the net in its driving-cell-list instance vari-
able. If there is any conflict in value, then the value will be assigned to logic X and a waring is reported.
Furthermore, if there is any conflict in values returned by simulation of equivalent nets, then the value of

all the equivalent nets will be logic X and warnings are reported.

Since most of the nets are affected by either ¢; or ¢, clocking signals, we can use static variables to

store the fanout-lists of the ¢, and ¢» nets at initialization phase. This approach can be called the static

{

Init

i

read

else

event/command

if (run)

find
affected
nets

1

simulate
affected

nets -

A

Figure 3.13 Design Simulator event-driven algorithm

else

if (new event)

done if
exhausted

56

scheduling for clock signals as opposed to the dynamic scheduling which involves calculating the

affected-net-list at run time.

Sometimes there are cells that provides values to the output nets without any input nets (e.g. a static

pull-down). This type of cells is called self-generated. Due to the nature of the event-driven algorithm, the

output nets of the self-generated cells are not affected by any nets and hence will not be invoked for simu-

lation. Therefore, these self-generated nets have to be recognized and simulated at the initialization phase

and their values will not change during the simulation. The self-generated nets can be recognized by the

fact that their fanin-list is null.

57

Properly handling the bus is an important issue in order to speed up the simulatibn. For each bus
(which is a collection of nets), a hypothetic local net is created to store the ensemble value of the busin a
vector. For the input (output) bus, we treat the hypothetic local net as the fan-out (fan-in) net of all the nets
in the bus by defining proper packing (unpacking) functions. This approach makes the hypothetic local
nets act eciually as the real nets. The simulation within the cell deals with the local nets instead of the input
and output buses. Therefore, for a bus of size N, we need to perform just one simulation instead of N simu-

lations.

3.4.4. Input/Output of Désign Simulator

The Design Simulator is a batch mode simulator which takes an event file as input and generates a
file of output values. The input event file consists of a number of commands, each of which is a list. The
name of the command is specified by the first element in the list. The rest in the list specifies the nets or the
buses that the command operates on. A bus is specified by the common name of the nets in the bus (the
names of the nets are different only in the index part). A net can be specified either by a net-name or by a
list of a cell-name and a terminal-name. Note that the net-names and the cell-names are full names
(described in 3.1.4). Therefore, the event file has to be updated once the instance-name of the design is
changed.

The commands in the input event file are used to specify input events and control the simulation. For
examples, the command (h netl net2 ...) sets netl, net2, ... to the value 1. The command (w netl net2 ...)
enters netl, net2, ... into the watch list whose values will be printed by the print command defined by (p).
The (r) (run) command demands the simulation to be performed based on the events specified before the
command. The user can define clock signals in the input event file and ask the simulation to be done in
major cycles (a complete sequence of all phases of clock signals) instead of minor cycles. For a complete
set of commands that are available for the Design Simulator, the reader should consult the user manual of

the Design Simulator, which is listed in Appendix A.

58

The output of the Design Simulator is a file that consists of sections of output values of nets specified

by the (w) command. Each section corresponds to a (p) command in the input event file.

3.4.5. Remarks on Simulator Performance

In general, the simulation of VLSI circuits can be performed on several levels which, from lower to
higher abstraction levels, include process, circuit, timing, switch, logic, function and behavioral levels.
The higher the abstraction level, the less accurate the result and the faster the simulation. The LagerIll

Design Simulator can be categorized to a functional level simulator.

A switch level simulator uses a simple switch model of the MOS transistor. Even with these
simplifications, the simulations of the entire chip using timing or switch-level simulators sometimes are
found unfeasible. This is particularly true for the case of microprogrammed processors. To simulate the
processing of one data input, hundreds or thousands of cycles of microprograms have to simulated. Logic
simulators deal larger primitives such as AOI gates, than the switch level simulators. If a logic simulator
allows functional models to be used to describe large functional blocks, it is referred to as the functional
simulator. In general, the functional simulators are one order of magnitude faster than the switch-level

simulator because larger primitives are used.

The Design Simulator in LagerIlI is slow because it is only two to five times faster than esim, which
is a switch-level simulator. The speed of the Design Simulator may be improved by fine tuning the simula-
tion algorithm and the coding. However, it is found that the Lisp and the Flavors cause inherent perfor-
mance degradation to the Design Simulator. The message sending is implemented by Lisp functions, and
there is some overhead in finding the Lisp function from the message name.!5 However, the Lisp and Fla-
vors are excellent development tools which allows the Design Simulator to be prototyped in a very short
amount of time, which may even be shorter than interfacing existing functional simulator to the Design
Database. For efficient simulation, dedicated hardware such as the Lisp machine should be used to allevi-

ate performance problem.

CHAPTER 4

Frame Buffer Controller Chip

In this chapter, a frame buffer controller chip is illustrated which serves as an example of the use of

the silicon assembly subsystem.

4.1. Frame Buffers

A frame buffer is a device to store a frame of image data in image processing systems. When the
image processing algorithm requires random accessing of the image data, a frame buffer is necessary to
hold the incoming image data (usually from a camera) which is in a raster-scan format. The frame buffer
normally can work on one of two modes: flash in mode when the frame buffer keeps receiving image data
from the camera, or flash end mode when one image frame is selected and stored in the frame buffer to be
processed. If the image processing circuitry needs to access the frame buffer at the same time when the
camera is sending image data to the frame buffer, a double-buffered scheme has to be used. A double-

buffered frame buffer use two buffers for reading and writing, and their roles switch every other frame.

Frame buffers are commercially available 2 , which can typically store a frame up to the size of
1024 x 1024 x 8 (256 gray levels) x 3 (RGB colors) bits in a board. Besides being expensive, they also
occupy a lot of space, which leads to increased cost of the entire image processing systems. With the
advancement of the memory technology, we are now in a position to realize more compact frame buffers.
One of the key components in doing this is the frame buffer controller. A frame buffer controller inter-
faces the frame buffer to various other devices in the image processing system, and therefore has to be
flexible to deal with different characteristics (e.g. interlaced or non-interlaced, number of lines in the
image, synchronization, etc.) of various components. The TI VSC frame buffer controller chip 23 that was

designed -around TI's 256K VRAMs attempts to do this through user programmability, but is found to be

59

60

not flexible enough for some configurations and requires costly supporting hardware.

In this chapter, a frame buffer controller for single-buffered frame buffers is presented. It was
designed for an image processing system that consists of a GE TN2250 camera which generate analog
image signals at 10 Mhz rate, a RS170 monitor, a 512 x 512 x 8 frame buffer implemented in two 1-Mbit
DRAMs, a multibus host processor interface and a custom image processing board, and yet its architecture
can easily be re-configured for other image processing system organizations. Furthermore, by modulariz-
ing the architecture and customizing the design for the particular image processing system, we can take
advantage of the most advanced memory technology, and integrate peripheral glue-logic chips to reduce
the board area. |

4.2, Image Signal

A frame of image signal consists of N lines and each line consists of M pixels (picture elements). A
typical timing specification 24 of image data is shown in Figure 4.1a and 4.1b. The timing of the lines are
also referred to as the vertical timing. The timing of the pixels are also referred to as the horizontal timing.
There is a horizontal blanking period which corresponds to the elapsed time to sweep from the rightmost
pixel back to the leftmost to start the next horizontal line. Likewise, there is a vertical period which
corresponds to the elapsed time to sweep from the bottom line back to the top to start the next frame. The
blanking period consists of three parts: front porch, sync and back porch. The horizontal and vertical sync
signals are used for the image processing devices to synchronize with one another. The timing is usually
different for different devices. For example, the horizontal front porch is equivalent to 16 pixel periods for

the GE TN2250 camera, and 11 pixel periods for the SONY XC-37 camera.

Synchronization can be done in two possible ways. A device can either receive the externally gen-
erated horizontal and vertical drive signals that trigger the horizontal and vertical sync signals, or send out
the horizontal and vertical sync signals. In an image processing system, the sync signals can be generated

by one of the devices or by an external signal generator.

) 61

-

L
F 4

12. 1y
2.1us _>| B COMPONENT OF COMPOSITE
BLANKING (BLANK) C —

<—— ——>1 H DRIVE (HDR)

. I]
l.6uys™ ™ < H COMPONENT OF COMPOSITE

I SYNC (SYNC OUT)
| e
1 T4.8ys
‘o
— *
] 100ns oL 1 PIXEL = 100 ns

1)

V COMPONENT OF COMPOSITE BLANKING

Figure 4.1a Horizontal timing
front porch = 1.6 s, sync = 4.8 ps, back porch = 5.7 ps

*)
20H Jr—
< _ >| vV COMPONENT OF COMPOSITE
" BLANKING (BIANK) L
— !-<—— 3H
| *
| = f<— 3H Vv COMPONENT OF COMPOSITE
, SYNC (SYNC OUT)
| |
* | -
6H —= < .-V DRIVE (Vpp)
| | |
s
| 4H
ﬁ-F-<—— * . *
1H 1H = 63.5usec

EOF

Figure 4.1b Vertical timing
front porch = 3 lines, sync = 3 lines, back porch = 14 lines

62

There are two standards to arrange the line signals. An interlaced device generates or receives

image data in the order of line 0, line 2, line 4, ... line N-2, line 1, line 3, line S, ... line N-1, where N is the
total number of lines (assumed to be an even number). Even half and odd half frames each take '610' sec to

sweep. A non-interlaced device generates or receives image data in the order of line 0, line 1, line 2, ...

line N-1.

A frame buffer controller should be able to adapt to these variations of signal timing, synchronization
and line signal standard. The TI VSC chip provides the user a wéy to program the chip for different situa-
tions. In my design, parametrizable cell modules are used such that new chips can be generated for dif-

ferent image processing systems.

4.3. Chip Architecture

The frame buffer controller chip architecture is composed of four parts: (1) an H-V control unit
which deals with the image data synchronization, (2) a memory control unit which generates timing signals
to control the read and write of the frame buffer memories, (3) an address generator that generates the
memory addresses, and (4) a data path that connects the data ports of various devices in the image process-
ing system and controls the data flow among them. This hardware modularization is of critical importance
to re-configuration. For example, suppose a new camera is used, then only the H-V control unit has to be
adjusted for the new image data timing. Likewise, changing frame buffer memories only affects the

memory control unit, and the addressing mode of the host processor only affects the address generator.

The H-V control unit is implemented by a state machine. There are 16 states, which are listed in

Table 4.1 in order of actual timing.

There are five external signals that control the state transition: horizontal sync, vertical sync, compo-
site blank, eof (end of frame) and eol (end of line). For example, the state (vertical front porch, horizontal

front porch) transfers into the state (vertical front porch, horizontal sync) when the horizontal sync goes

63

state bits state description

0000 (vertical front porch, horizontal front porch)
0001 (vertical front porch, horizontal sync)

0010 (vertical front porch, horizontal back porch)
0011 (vertical front porch, horizontal signal)
0100 (vertical sync, horizontal front porch)

0101 (vertical sync, horizontal sync)

0110 (vertical sync, horizontal back porch)

0111 (vertical sync, horizontal signal)

1000 (vertical back porch, horizontal front porch)
1001 (vertical back porch, horizontal sync)

1010 (vertical back porch, horizontal back porch)
1011 (vertical back porch, horizontal signal)
1100 (vertical signal, horizontal front porch)

1101 (vertical signal, horizontal sync)

1110 (vertical signal, horizontal back porch)

1111 (vertical signal, horizontal signal)

Table 4.1 The 16 states of the H-V control unit
from HIGH to LOW, and then transfer into the state (vertical front porch, horizontal back porch) when the
horizontal sync goes from LOW back to HIGH. When the eol signal is HIGH, the state (X, horizontal sig-
nal) transfers to the state (Y, horizontal front porch) where X and Y may or may not be the same vertical
sub-state. When the eof signal is HIGH, the state (vertical signal, horizontal signal) transfers into the state
(vertical front porch, horizontal front porch). The state transition of the H-V control unit is described in

bdsyn format in Appendix B.

The fact that the GE camera does not provide separate vertical and horizontal blanking signals make
the design of the H-V control unit a bit more difficult. A counter is required to make sure that the transition
from the state (X, horizontal back porch) to the state (X, horizontal signal) does not have to depend on
external signals. For the case of the GE camera, the (X, horizontal back porch) state is 55 cycles or 5.5 ps.
To implement this, we have the choice of either a loadable down counter or a resettable up counter with a
constant modulus. The second architecture is selected based on macrocell availability and the fact that the
LagerlII silicon assembly sub-system makes it easy to program the constant modulus through parametriza-

tion. The architecture of the H-V control unit is shown in Figure 4.2.

Sync, Blank
eol, eof
‘ J Control
7" Signal
Register &
\(|_
H-V Control
State Machine

Counter }

v

Constants

Figure 4.2 H-V control unit architecture

The memory control unit provides five modes of memory access timing: refresh, read, write, column
read and column write. Each of the five memory access operations takes different numbers of cycles to
complete. A refresh operation takes 3 cycles. A read operation and a write operation each take 3 cycles.
A column read operation and a column write operation each take 1 cycle (with some initial cycles to set up
the row). The memory control unit is also implemented by a state machine. The inputs to the state
machine include the state of the H-V control unit, kost bits and the flash bit. The host bits encodes the
status of the host processor: 00 = no host operation, 01 = host read, 10 = host write and 11 = illegal. The
flash signal determines whether to receive image data from the camera. The H-V control unit state is also
used to determine which memory operation to perform. For example, if the H-V control unit state is (X,
horizontal front porch) then refresh operations are performed. The state transition of the memory control

unit is described in Appendix B.

65

There is a priority among the five memory operation modes. The refresh operatidn has the highest
priority. Therefore, during the (X, horizontal front porch) H-V control unit state, the refresh operation will
not be interrupted. The column write operation has the second priority. Therefore, during the (X, horizon-
tal signal) H-V control unit state and if the flash bit is HIGH then the column write operations are per-
formed without interrupt. This ensures a correct content in the frame buffer memory. The read and write
operations have the third priority. The column read operation has the lowest priority. Since the column
read operation can be interrupted by host read or write operations, some dark spots on the monitor may be
created as a result. However, the priorities of the five operations can be rearranged easily if the system
designer is willing to, for example, buffer the host read and write operations such that the monitor display

will not be interrupted.

The memory control unit state machine has four output signals: cas*, ras*, wr* and oe*. These tim-
ing signals are used to control the memory operations. For Toshiba TC514256 1-Mbit DRAMs that the
designed frame buffer controller is targeted to, the state machine generates new output signals every 100 ns
except that the ras* changes every 50 ns during the column read or column write modes. The architecture

of the memory control unit is shown in Figure 4.3.

The address generator provides three types of address: host random access (row and column)
addresses, raster-scan (row and column) addresses and refresh (row) addresses. In the TI VSC chip, the
host addresses are provided in an indirect way. The VSC chip has X-Y registers on chip, which store the
row and column addresses of a particular image pixel that the host processor needs to access. The values
of the X-Y registers can be adjusted by X-Y adjustment code to move around the image frame. The advan-
tage of this scheme is that fewer host address bits need to be specified. The disadvantage is that it does not
provide full degree of freedom of random accessing. The address generator in my design assumes that the
host processor specifies both the row and column addresses completely.

The address generator generates the raster-scan and refresh addresses intemally. The raster-scan row

address is generated by a row counter, which is incremented under the control of the H-V control unit

Inputs from \|{ Timin

H-V Control Register > Si lg

Unit l ignals
N/

Memory Control

State Machine

Figure 4.3 Memory control unit architecture

when the (X, horizontal signal) state transfer into the (Y, horizontal front porch) state. The raster-scan

column address is generated by a column counter, which is incremented every (100ns) cycle.

Because a refresh operation takes 3 cycles, one approach is to let the refresh row address change
every 3 cycles. However, it is easier to break the refresh address generator into two counters, in which the
higher bits (N-2 with 2¥ equals the number of lines) increment when the H-V control unit enters the (X,
horizontal front porch) state, and the lower bits (2) increment every cycle. Because 3 is co-prime with
22=4, and the horizontal front porch time segment is 16 (> 3x4 = 12) cycles, this scheme guarantees that
all four rows are refreshed in one horizontal front porch time segment. The Toshiba TC514256 memory

chips require 512 refresh cycles/8ms. The refresh address generator will sweep all 512 rows in

%3x63.5psec =8.1ms

which is only slightly off the specification.

Column Refresh Row
Counter Counter Counter
Host column
address ,
Column MUX
\\ 4 \\ 2 N\
Local MUX
Controller

67

Host row
address

N ﬁ
Row MUX

+ Frame Buffer

Memory Address

Figure 4.4 Address generator architecture

There are a number of multiplexers in the address generator which are used to select one of the

addresses generated. Since the refresh operations have the highest priority, hence in the (X, horizontal

front porch) state of the H-V control unit, the refresh address is selected. The choice of host addresses or

raster-scan addresses are determined by the host external control signals that control the memory control

unit as well. The choice of row or column address depends on the memory timing. The Toshiba

TC514256 memory chip requires that the column address follows the row address. The architecture of the

address generator is shown in Figure 4.4.

The frame buffer controller provides a data path through which various devices in the image system

can communicate with each other. The sources of image data include the camera, the host processor and

the frame buffer memory. The destinations of image data include the monitor, the host processor, the

68

image processing board and the frame buffer memory. The data path has to make sure that only one of the
sources is sending image data at any given time. This is done by a simple logic design. First, if the flash
signal is HIGH, then the camera is sending data and the host and the frame buffer memory are prohibited
from sending data. Otherwise if the host signals signify host write operations, then the host processor is
sending out image data. If camera and host are both inactive, then the frame buffer memory is enabled.
An A/D converter macrocell 25 can be integrated which takes the camera analog signal as input and gen-

erates 8-bit digital values. The architecture of the data path is shown in Figure 4.5.

4.4. Layout Generation

The layout of the frame buffer controller chip is generated using the LagerIlI silicon assembly sub-
system. A set of sdl files are created to specify the design hierarchically. Three test chips are also prepared
to test the functionality of the H-V control unit (HVCtest chip), the memory control unit (MCtest chip)

and the address generator (AGtest chip) respectively. Because the design is hierarchical, the test chips are

<:> Memory
Data

host
Bus processor
<___-_> image board

Figure 4.5 Data path architecture

Camera

Camera

/N

—

69

conveniently generated.

The layout generation makes use of four layout generation tools: Flint, DPC, TimLager and Wolfe.
The counter and constant cells in the H-V control unit are generated by TimLager. The teéistcrs in H-V
control unit and memory control unit, and counters and multiplexers in the address generator are generated
by DPC. Local control units in each of the four parts of the chip, and the combinational blocks of the H-V
control unit and memory control unit are generated by Wolfe. The placement and routing of the four parts

and the whole chip are done by Flint.

LagerIII only provides equation level input for specifying the logic blocks with limited logic minimi-
zation. This is used to specify the local control units. However, it is cumbersome to describe the state
transitions using a équation level input, and hence the two combinational blocks are designed in bdsyn for-
mats (Appendix B, in which sml.bdsyn is for the H-V control unit and sm2.bdsyn is for the memory control
unit) and are minimized by a multi-level logic minimizing program, mis. Alternatively, the bdsyn input

can also be minimized by a two-level logic minimizer, espresso, which results in a PLA-based realization.

The data path contains an 8-bit 10MHz analog-to-digital converter which is manually designed.?
The LagerllI silicon assembly system can incorporate macro cells designed through other means by treat-
ing them as big leaf cells. The macro cells must be designed or generated in Magic format. The two com-
binational blocks in the the H-V control unit and the memory control unit are incorporated the same way by

first translating the OCT physical view formats generated by Wolfe into Magic formats.

With the aid of LagerIlI silicon assembly system, the frame buffer controller chip were designed,
generated and simulated in two months. The die photos of the frame buffer controller chip and three test

chips are shown in Figure 4.6 - 4.9.

i e

;

G 0 A T A A SESED
AL LI B LI
i = 5 = == = == "1::

" L S
L B

el | e EYI K

JEES Address

Fetd

= (enerator

i Memory
—# Control Unit

70

1]

2 {| H-V Control [
53 Unit

jwm
WD,

Gl

4!
LR,
i

L4 3
)
: i}
R e

&

n
u

Figure 4.6 The frame buffer controller chip die photo

5 % Local
: Controller

Figure 4.7 The H-V control unit test chip die photo

71

2 ¢ A NSRRI S S s M N o

Figure 4.8 The memory control unit test chip die photo

72

73

VR

—
3
3]
Q

-

Horizontal
Counter

Controller

Figure 4.9 The address generator test chip die photo

74

4.5. Simulation and Testing Results

All the testing chips were simulated using RSIM before sending to fabrication. In addition to simu-
lating the functionality, RSIM also provides estimates of circuit delays using a primitive model for the
MOS transistor. However, since RSIM cannot handle analog circuit simulation, the entire frame buffer
controller chip is not simulated with the analog-to-digital converter (A/D). For testing purpose, a chip con-
taining all the frame buffer controller circuits except the A/D is simulated and fabricated.

The five chips (frame buffer controller, frame buffer controller without the A/D and three test chips)
were fabricated by MOSIS. All but the HVCtest chip were tested. The MClest chip was the first one
tested. Two design errors caused by mistakes in entering the design input files were discovered. These
were subsequently removed in the design of the frame buffer controller chip. The AGtest chip was tested

to function correctly at 10MHz.

The A/D macro cell is currently under test by a separate test chip. Therefore, the testing of the frame
buffer controller chip is performed with the one without the A/D. Due to inavailability of the 1 Mbit
DRAM in the market, the testing is done using 8 256 Kbit DRAM chips. The testing results show that the
four parts, the H-V control unit, the memory control unit, the address generator and the data path, of the
chip are functioning by itself. However, the timing of the memory control signals generated by the
memory control unit, and the memory address signals generated by the address generator needs some
adjustments. The main problem is that all signals are derived from a 10 MHz system clock, and without

using any one-shot it is difficult to meet the setup and hold time specs for arbitrary signal edges.

CHAPTER $§

The Silicon Compilation Subsystem

The Lagerlll silicon compilation subsystem consists of three parts: a translator that translates the
applicative Silage program to a procedural intermediate language called RL, a compiler that compiles the
RL language into symbolic microcode (also called a rass program) and a control generator that produces
the parameter file output from the rass program. A unique feature of the silicon compilation subsystem is
that the behavioral description can be refargeted to different pre-defined structural descriptions. One struc-
ture design which is called the KAPPA architecture, that the behavioral description is currently mapped
onto is also described. This work has been done in collaboration with Edward Wang (Silage translator)25 ,
Ken Rimey (RL compiler)?’ and Khalid Azim (KAPPA structure design)28 .

5.1. The KAPPA architecture

The KAPPA architecture is based on a simple architecture model?® (Figure 5.1) that consists of a
control unit and a data path. The control unit generates control signals that control the operations of the
data path, and the data path provides status signals that affect state transitions in the control unit. The
KAPPA data path contains four components: an arithmetic unit (AU), an address processing unit (APU), a
logic unit (LGU) and a data memory (RAM). Typical status signals from the data path include the sign bits
of the AU and APU, and state bits of the LGU.

The block diagram of the AU is shown in Figure 5.2. It does not contain a multiplier and hence mul-
tiplications are performed by a series of shift-and-add operations. There are only two data manipulation
operators in the AU: the shifter and the adder. In addition, complementation or zeroing can be performed
to modify the data at the two input buses (abus and bbus) of the adder. The operands of the adder can

come from RAM, the local registers or the APU (immediate addressing mode). The result of the adder can

75

76

Control Signals

L g

Control Data
Unit Status Signals Path

<

Figure 5.1 The architecture model that KAPPA is based on

g0 to RAM or the local registers. There is an I/O port, which allows data communication between the local

registers and the outside world (e.g. off chip, other processor, eic.).

The block diagram of the APU is shown in Figure 5.3. The APU calculates the effective address of
the RAM using the address field in the control signal generated by the control unit. The APU supports four
addressing modes: index, relative, immediate and looping. The index addressing can be performed by
using one of local registers as the index register. The relative addressing can be performed by storing the
base address in the register and supply the offset address through the address field in the control signals.
The immediate addressing can be performed by supplying the data directly through the address field in the
control signals. The immediate data is transferred to AU by the connection of the AU mbus with the APU
eabus. The magnitude of the immediate data is limited by the word length of the APU, which is usually
smaller than the word length of AU. The looping addressing mode is usually handled by a loop counter in
the control unit (discussed later). The APU plays an auxiliary role when there are nested looping opera-
tions. A looping operation can be supported in the APU by storing the loop count (number of iterations) in
one of the registers and decrement its value when one loop is completed. When the register reaches zero, a

control signal is sent to the finite state machine to change the state.

The LGU is implemented by a state machine whose combinational part is implemented by a PLA.

The primary inputs of the PLA include the sign bits of the APU and AU and optionally any pertinent exter-

77

DATA MEMORY

ey
| * el
0! 1,x, X, “Il 'h‘ I Mux£
1 1 MBUY
A \/ B
ADDER
HIFTER
k] s

Figure 5.2 The arithmetic unit (AU) of KAPPA

nal signals. The primary outputs of the PLA form part of the status signals that feedback to the control
unit. The logic operations in LGU are determined by the particular behavioral description. Contrary to
most processor architecture in which the arithmetic and logic operations are performed together in an ALU,

the AU and LGU are two separate functional units in the KAPPA architecture.

The KAPPA control unit contains six major components: a finite state machine, a program counter, a
control store, a stack, a loop counter and a timer (Figure 5.4). The control store stores a number of blocks

of control signals. The address of the control store contains two parts: the higher bits (block address) are

78

Instruction
Address Field

D
ADDER
EABUS
Effective Address [- l_ -
— . 1AREG,
_———d e Ve =
MBUS (AU)

Figure 5.3 The address processing unit (APU) of KAPPA

generated by the finite state machine and the lower bits (line address) are generated by the program
counter. If the program execution reaches the end of a block of control signals, a eob (end of block) signal
signifies the finite state machine to change state and thereby generates a new block address, and reset the
program counter. Otherwise, the finite state machine stays at the same state and the program counter incre-

ments the line address at each cycle to generate the next set of control signals.

The stack and the loop counter provide more control flow operations in addition to the branch opera-
tion supported by the finite state machine. The stack efficiently supports the subroutine call and return
operations. The loop counter efficiently supports the looping operation. The number of iterations (loop
count) for each looping operation can be extracted from the algorithm and loaded in the loop counter.

When executing the looping operation, the loop counter increments and compares with a pre-stored loop

79

Control
Inputs
Reset
L 4
Finite State T
Machine
Stack
» Program
Counter
I 3
s J Loop
1 _Counter |
h
Control from datapat
Store >
< Timer

v

Control Signals
(to datapath, memory, etc.)

Figure 5.4 The control unit of KAPPA

count. A control signal is generated by the loop counter that depends on the comparison result. The con-
trol signal is sent to the finite state machine to control the state transition. If the content of the loop counter
is smaller than the loop count, then the state machine stays at the current state. If the content of the loop
counter is equal to the loop count, then the state machine transits to the next state. When there are several
looping operations in the algorithm with different loop counts, all loop counts are stored. Each loop count
results in a control signal to the state machine. When there are nested looping operations, only the inner

most looping operations are handled by the loop counter and the rest are handled in the APU.

80

The timer is used to synchronize the program execution with the data samples. ‘Due to the more
sophisticated control flow operations with some of which are data-dependent, the total number of instruc-
tions executed may vary from sample to sample. The timer stores the worst case (largest) number of
instructions and if the program finishes earlier, the finite state machine will enter a wait state till the timer is

done.

The KAPPA architecture can be parametrized. For example, the word length of the AU is deter-
mined by the fixed-point arithmetic accuracy required by the algorithm. The word length of the APU is
determined by the sizes of the RAM, which is in turn determined by the algorithm. Other parameters
include the memory contents of the LGU and the finite state machine and control store in the control unit,
the size of the stack and loop counter, etc. The possibility of parametrization is one of advantages of the
KAPPA architecture over the commercial signal processor30 in which the physical dimensions of func-
tional modules cannot be tailored to match the algorithm. The parametrizable architecture also lends itself
easily for the silicon compilation subsystem to map the behavioral description of the algorithm to the archi-

tecture.

5.2. The Relationship Between the Instruction Set and the Architecture

Most conventional architecture designs are referred to as the instruction set architecture3! because
the architecture is conceived by the programmer as an implementation of a particular instruction set. This
approach leads to a top-down design methodology in which the instruction set is designed before the archi-
tecture is designed. It also causes the computer architects to put emphases on the design of instruction set,
rather than the structural implementation of the instruction set. For example, the RISC32 concept was pro-
posed to advocate the use of a simpler instruction set. One major problem of this approach is, however,
that the instruction set designer does not have a good understanding of how long each instruction takes to
execute until the implementation of the instruction set is completed. Moreover, since the instruction set
designer does not know how the structural implementation is designed, the addition of new instructions

may require a major redesign of the structural implementation.

81

In the LagerII silicon compilation subsystem, since the structural implementation is designed first, a
bottom-up approach is employed in which the instruction set is extracted from the existing structural
design. Each instruction extracted is called a primitive instruction. Each primitive instruction describes an
operation that a piece of data is transferred from the source(s) to the destination. Both the source and the
destination are called resources which can be divided into two types: buses and registers. Each primitive
instruction can be executed in one instruction cycle. Two primitive instructions are said to have a conflict
in resource if they both transfer data to the same destination. Several primitive instructions may be exe-

cuted in the same cycle if no conflicts is resulted in. For example, the
(mor=mbus)

primitive instruction transfers the data in the main bus (mbus) to the memory output register (mor). The
(mbus=r* 2)

primitive instruction transfers the data in the 2nd register of the register file to the main bus. This example
shows that an argument can be used to customize the primitive instruction, and hence the total number of
primitive instructions is reduced. The sets of primitive instructions extracted from the AU and APU in the
KAPPA architecture are described in Table 5.1 and 5.2, respectively. The sets of buses and registers
defined in the KAPPA architecture are described in Table 5.3.

One of the advantages of extracting the primitive instructions is that the user instructions (or assem-
bly level instructions) can easily be formed by grouping a number of primitive instructions. For example,

the user instruction which reads the 3rd element in the array A,

r(A[3])
can be constructed by the group of
(mor=mem) (addr A) (offset 3)

primitive instructions. Two user instruction are said to have a conflict if the corresponding two groups of
primitive instructions result in a conflict. For example, by setting the bbus to ONE, an addl user instruc-

tion is formed which simply increments the abus operand. By setting the bbus to ONE and complementing

82

instruction description | _argument |
mor=mem read from memory to
memory output register
mem=mbus write to memory from main bus
mcondload conditional write
mor=mbus
r*=rbus load register bank by register bank address
register bus
rcoef=mbus load multiplication coefficient
_register form main bus
mbus=mor
mbus=r* load main bus by the register register bank address
mbus=acc load main bus by accumulator
rbus=acc load register bus by accumulator
rbus=ioport input from ioport to register bus
ioport=extport latch external data to ioport external port address
ioport=mbus output to ioport from main bus
extport=ioport strobe ioport data to external port external port address
acc=0 clear accumulator
acc=sum store adder result to accumulator
acc=abus bbus is zero
acc=bbus abus is zero
abus=1 carry-in to adder is set high
abus=mor
abus=-mor abus gets the 2's complement of
memory oulput register
abus=absmor abus gets the absolute value
of memory output register
abus=-absmor abus gets the 2’s complement of the
absolute value of memory output register
abus=coef.mor same as abus=mor

if the LSB of the multiplication coefficient
register is HIGH

abus=coef.-mor

same as abus=-mor
if the LSB of the multiplication coefficient
register is HIGH

abus=coef.absmor

same as abus=absmor
if the LSB of the multiplication coefficient
register is HIGH

abus=coef.-absmor

same as abus=-absmor
if the LSB of the multiplication coefficient
register is HIGH

abus="coef.mor

same as abus=mor
if the LSB of the multiplication coefficient
register is LOW

Table 5.1 Primitive instructions of AU

‘ instruction description __argument |
abus="coef.-mor same as abus=-mor
if the LSB of the multiplication coefficient
register is LOW
abus="coef.absmor | same as abus=absmor
if the LSB of the multiplication coefficient
_register is LOW
abus="coef.-absmor | same as abus=-absmor
if the LSB of the multiplication coefficient
register is LOW
bbus=mbus
bbus=acc>* bbus gets right-shifted accumulator bits shifted
bbus=acc<* bbus gets left-shifted accumulator bits shifted
acondload conditionally load the accumulator
shrcoef right shift the multiplication coefficient
register
nosat turns off saturation of accumulator
aip accumulate if positive
Table 5.1 (cont.) Primitive instructions of AU
instruction description argument
x*=eabus load x register by effective register bank address
address bus
xcondload conditionally load x register
addr address from the control store variable name
offset used together with addr primitive | array index
instruction to address an array
xip accumulate if positive
xbus=x* load xbus by x register register bank address
xbus=0 clear xbus
eabus=sum store adder result in effective
address bus
eabus=mbus load effective address register by
main bus of AU
areg=eabus load main bus of AU by effective
mbus=areg address bus; it takes two cycles
timerreg=cabus | load timer register in control store
by effective address bus

Table 5.2 Primitive instructions of APU

resource name description ‘
mor memory output register
acc accumulator
r0, r1 AU register bank
rcoef multiplication coefficient register
x0, x1, x2 APU register bank
mem data memory
| areg hypothetical APU register
timerinreg timer register
ioport ifo port
mbus AU main bus
rbus AU register bus
abus AU adder inputA
bbus AU adder inputB
eabus effective address bus
xbus APU adder inputA
dbus APU adder inputB
extport external port

84

Table 5.3 Resources (registers and buses) in KAPPA

the abus operand, a unary minus user instruction is formed. These two user instructions conflict with each

other because they both use the abus and bbus in a different way.

In summary, from the structural design of the architecture, a set of primitive instructions can be
extracted. The set may not be the exhaustive list of all possible primitive instructions in the architecture,
some judgements on which primitive instruction is useful should be made. In addition, a number of user
instructions can be obtained by grouping the primitive instructions. This approach is contrary to the

instruction set architecture approach because the architecture is designed before the instruction set is.

Because a fixed architecture does not work well in a wide range of applications, it is very important
to be able to tailor the architecture accordingly to the particular application. In LagerIII silicon compilation
subsystem, this can be done in an i.teraﬁve way. First, an ex}sﬁng architecture and its instruction set are
used to which the algorithm is mapped. If the result is unsatisfactory, then the architecture is modified and
new sets of primitive instructions and user instructions are obtained. The new user instruction set is then
used for the algorithm. This process iterates until a satisfactory architecture is obtained. In general, the

reason that an architecture is not efficient for an algorithm is that some frequently used instructions are not

85

directly implemented, which can easily be recognized from the histogram of the user instraction set.

For example, the AU in the KAPPA architecture does not have a multiplier and the multiplication is
done by a series of shift-and-add’s. There are two possible ways to place the shifter: either before the
adder and hence it shifts one of the operands, or after the adder and hence it shifts the result (in the accu-
mulator). To analyze the trade-offs of the two arrangements, the following 2nd-order finite impulse

response (FIR) filter is used:

to data memory
) [

'

MOR

2:1 MUX MIR

:

BARREL
SHIFTER
(0-7BITS)

|
SOR MBUS_ 101/0
__—i circuits
COMPLEMENTOR

O | ©— | g
COEF — — 21 MUX 3:1 MUX

(seriat
in:t':::) l 1

QUOT @ = —~ — —— ACC . -
{serio!
output) |

Figure 5.5 A shifter-before-adder data path architecture
(which was used in Lagerl)

86

y =x[0]+ay xx[1] +a2xx[2]

with a; = 0.101, a2 = 0.011. Using the AU in KAPPA architecture, the FIR filter can be realized in the fol-
lowing code block:

r(x[0]);
r(x[1]), acc=mor; /* acc = x[0] */
acc=mor, regl=acc;
mor=rl, acc=mor+acc>2;
r(x[2]), acc=mor+acc>1; /* acc = x[0] +.101 * x[1] */
acc=mor, regl=acc;
mor=rl, acc=mor+acc>1;
acc=mor+acc>2; * acc = x[0] +.101 * x[1] + .011 * x[2] */

w(y)=acc;

Because the shifter shifts the contents of the accumulator, the partial sum has to be moved to the register
file (in this example, regl) before the next multiplication is performed. This in general requires extra
cycles. Moreover, during the series of shift-and-add’s, this architecture may produce an intermediate result
that is larger than the final result, which may create superfluous overflows and result in arithmetic errors.
Special hardware has to be devoted?® to correct the overflows in the intermediate results. On the other

hand, using an AU3 (Figure 5.5) with the shifter before the adder, the FIR filter can be realized in the fol-

lowing code block:
r(x[11);
r(x[0]), sor=mor>1;
r(x[2]), sor=sor>2, aCC=mor+Ssor;
sor=mor>2, acc=acc+sor; /* acc =x[0] +.101 * x[1] */
sor=sor>1, acc=acc+sor;

acc=acc+sor; /* acc=x[0] +.101 * x[1] + .011 * x[2] */

w(y)=acc;

87

This realization uses 2 less cycles because the accumulator does not have to be reset. Also, the intermedi-

ate values during the shift-and-add operations are always less than the final result. However, this approach

is proven to be numerically inferior. It results in -]} inaccurate bits after N shift-and-add operations while

the KAPPA architecture always produce a !1- bit error regardless of the number of shift-and-add opera-

tions. Therefore, for the same numerical performance, this architecture requires a wider word length. The
trade-off between the two architectures is the size of the arithmetic unit versus the size of the control store

(or code size).

For simplicity and ease of comparison, the above code blocks only show the multiplication and sum-
mation part of the FIR filter. It assumes the x array is stored in the data memory. A complete implementa-
tion also needs to deal with the updating of the x array, i.e. moving input data to x[0], x[0] to x[1], x[1] to
x[2], and so on. This requires a lot of data memory access and will limit the code efficiency. Further
investigation shows that the code size difference between the two architectures is less significant in the
complete implementation. Implementations of a number of other more complicated algorithms also show
that the code size of the shifter-before-adder architecture is only slightly smaller the that of the shifter-

after-adder architecture.

In the following sections, the software part of the LagerllI silicon compilation subsystem will be dis-
cussed. The challenges are, first of all, that KAPPA is not a conventional architecture and hence new com-
piler techniques have to be developed to map the high level behavioral description to the KAPPA architec-
ture. Furthermore, the compiler has to be designed with the possibility. of modifying the target architecture
in mind, to allow the improvement of the architectural design through iteration. The discussion will follow

the actual software flow, that is, (1) silage translator, (2) RL compiler and (3) control generator.

53. Silage Translator

The Silage Translator is the work of Edward Wang.26

88

Silage® is the highest level behavioral description language in the LagerIII silicon-compilation sub-
system. Silage is a functional (or applicative) language that differs from conventional procedural (or
imperative) languages in that the user does not have to program the control flow of the algorithm. A func-
tional language has two advantages: (1) side-effect-free functions. Since a functional language program
consists only of function definitions and function applications, library functions (e.g. filters) can be easily
combined. (2) no over-specificity. The lack of explicit control flow specifications in the functional

language allows more freedom in exploiting the concurrency in the algorithm.

A number of features of the Silage language facilitates its use in signal processing applications.
Delays are supported as a'language construct. Therefore, the user does not need to explicitly allocate an
array for all the past values of a variable, and update the array in every sample. Decimation and interpola-
tion are supported as library functions. The Silage language provides the following data types: integer,
boolean and fixed-point. The fixed-point data type is especially useful in signal processing applications,

where expensive floating-point hardware is often unnecessary.

A Silage program describing a 16-tap FIR filter is shown in Figure 5.6. The lwb() and upb() func-
tions return the lower and upper bounds of an array, respectively. The in@i notation denotes the ith delay

of the in variable.

#define word fix<8>

coefs = [word(5/128), 7/128, 8/128, 9/128, 12/128, 16/128, 27/128, 81/128,
-81/128, -27/128, -16/128, -12/128, -9/128, -8/128, -7/128, -5/128];

func main(in: word): word =

begin
s[upb(coefs) + 1] = 0;
(ic Iwb(coefs) .. upb(coefs)) :: s[i] = s[i + 1] + in@i * coefs[i];
return = s[lwb(coefs)];

end;

Figure 5.6 A FIR filter in Silage

89

The Silage translator consists of two parts: a syntactic analysis part and a semantic analysis part.
The syntactic analyzer parses the Silage program and converts it into Lisp s-expressions. The semantic
analyzer is organized in nine phases, which are described below. In phase 0, transformations are per-

formed to canonicalize the Silage input. For example, the definition
coefs = [word(5/128), 7/128, 8/128, ...J;
is transformed into
coefs[0] = word(sl 128);
coefs[1] = 7/128;
coefs[2] = 8/128;

In phase 1, name references are resolved: uses of variable and function names are matched to correspond-
ing definitions. In phase 2, manifest expressions (whose values can be calculated at compile time) are
recognized. Expressions that must be manifest (e.g. iterator bounds) are checked. In phase 3, the type of
each variable is determined. Since Silage has no type declarations other than those of function parameters,
the type of a variable is determined by its definition. If a variable is manifest, its value is also calculated in
phase 3. Phase 4 handles decimation and interpolation functions such that the data rate of every variable is
determined. In phase 5, iterated definitions are expanded, and manifest expressions are replaced by their
values. In this phase, a signal flow graph is generated. In phase 6 (optional), loop folding is performed to
reduce code size by creating loops out of repeated parts of the signal flow graph. In phase 7, imperative
code is generated from the signal flow graph. Finally in phase 8, a program in RL language syntax is gen-
erated.

54. RL Compiler
The RL Compiler is the work of Ken Rimey.%’

The RL language?’ is a procedural language that is an extended subset of the C language. In addi-

tion, two major extensions are made. First, a fixed-point data type is added. Second, a declaration syntax

90

is provided for specifying which register bank a variable is stored in. The 16-tap FIR filter programmed in
RL is shown in Figure 5.7.

The first task of the RL compiler is to separate the control flow operations (e.g. branch, loop) from
data flow operations (e.g. add, multiply) in the RL program. The data flow operations are grouped into
straight-line code blocks, which contain no control flow operations. The entire program is composed of a
number of straight-line code blocks and a number of control flow operations that control the execution flow
of the straight-line code blocks. Each straight-line code block corresponds to a state of the control unit. At
the end of each straight-line code block, a control flow operation is executed to change the state to another

straight-line code block.

The main task of the RL compiler is to compile straight-line code blocks of RL code into code blocks
of primitive instructions of the target architecture. To enable the compiler to do this for different target
architectures (so that it is retargetable), an abstract description of the target architecture is required. The
description contains three kinds of definitions: define-register, define-move and define-operation. A regis-
ter bank or a bus can be defined by the define-register definition with the following arguments. The capa-
city (default value = 1) gives the number of registers in a register bank. The delay argument is used to dif-

ferentiate a register and a bus. A register has delay 1 and a bus has delay 0.

Data flow operations can be divided into two classes: transfers that move data from one place to the
other and computations that transform data, cause side-effect or move data in a data-dependent manner. A
define-move definition describes a transfer operation that moves data from some source to some destina-
tion. The source and destination can each be either a bus or a register. The delay of the transfer is defined
to be the delay of the destination. The define-move definition also describes how the transfer is performed
by one or more primitive instructions (see section 5.2). A define-operation definition describes a computa-
tion operation by describing a sequence of primitive instructions that implement the computation operation.

The define-move and define-operation functions constitute the code generation tables.

91

#pragma mult_hardware
#pragma word_length 8

#define N 16

fix c[N] = (5/128, 7/128, 1/16, 9/128, 3/32, 1/8, 27/128, 81/128,
-81/128, -27/128, -118, -3/32, -9/128, -1/16, -7/128, -5/128 };

fix a[17];

void init()

{register int i;
for(i=0;i<N; i++)

ali] =0;
}

void loop()

register fix total;
register int i;
a[N] =inQ;
total = 0;
for=0;i<N;i++) {
total += c[i] * (a[i] = a[i + 1]);

)
out(total);
)
Figure 5.7 A FIR filter in RL

A scheduling algorithm is implemented to compact the primitive instructions corresponding to the
transfer and computation operations in the straight-line code block. The goal is to allocate registers to the
computation operations and route data using the transfer operations in an optimal way. Register allocation
has been extensively studied in conventional compiler design, but little has been done for pipeline registers.
Furthermore, the KAPPA architecture has volatile registers which can hold data for only one cycle. These

complexities make the design of the compiler challenging.

The RL compiler also transforms the control flow operations in the RL program into three primitive
control instructions: branch, subroutine call and return (from subroutine). The control unit of the KAPPA

architecture can perform multiway control instructions (e.g. multiway branch). Therefore, optimization is

92

performed in the RL compiler to take advantage of this.

§.5. Control Generator

The input to the control generator (or the output of the RL compiler) is called a rass program. A
rass program includes the description of an algorithm in primitive data and control instructions, and some
hardware information- (e.g. the word length of the data path). For a detailed description of the rass
language and the Control Generator program, the reader is referred to the user manual in Appendix A. A
rass file consists of six sections: (1) variable declarations, (2) constant declarations, (3) logic instruction
declarations, (4) control flow (5) code blocks of primitive instructions and (6) hardware information. The
variable declarations are given by the form

(ram scalarl scalar2 ... arrayl array? ...)

which declares all the local variables used. A local variable can be either a scalar or an array with constant
dimension. The constants can be declared by the form

(const init-scalar ... init-array ...)

in which init-scalar is a scalar with an initial value and init-array is an array with an initial values for every

element in the array. The logic instructions are declared by the form
(dfsm <logic-inst> <logic-inst> ...)

In a primitive instruction code block, a logic instruction can be invoked by referring to its instruction name
which is defined in the logic instruction declaration section. The control flow of the algorithm is specified

by the form
(cfsm <state-trans> <state-trans> ...)
<state-trans> = (state-name block-number <cond> <control>)
<control> = (goto state-name) | (call state-name state-name) | (return)

which is organized as a set of state transitions. Each state transition is composed of a present state name, a

corresponding code block number, an optional condition and a control instruction. The control instruction

93

can be one of goto, call and return. The call instruction requires two arguments: a subroutine state name
and a return state name. A multiway control operation can easily be described by a number of state transi-
tions with the same present state name and different (complementary) conditions. The primitive instruction

code blocks is described by the form
(rom <block0> <blockl> ...)
<blocki> = (blocki <u-inst> <u-inst>...)

<u-inst> = (<u-op> <u-op> ...) | (logic-inst-name <u-op> <u-op> ...) Each code blocks consists of a
number of micro instructions (<u-inst>). Each micro-instruction consists of a number of primitive instruc-
tions and at most one logic instruction defined in the logic instruction declaration section. Last, the

hardware information contains the following forms:
(dp_word_size value)
(reset_timer list)
(max_sample_intvl value)
(stack_depth value)
(loop_test list)

Dp_word_size specifies the word length of the data path. Reset_timer specifies a list of block numbers,
each of which specifies a primitive instruction code block. In each code block that is specified by the
reset_timer list the fimer is reset. Max_sample_intvl specifies the worst case sample interval that is used
by the timer to produce a constant sampling peribd Stack_depth specifies the maximum depth of the sub-
routine nesting. If no subroutine is used, then stack_depth is zero. Loop_test specifies a list of loop

counts that are used by the loop counter of the control unit.
For example, the rass program for the 16-tap FIR filter is shown in Figure 5.8.

In generating the parameter file from the rass file, the control generator has to know two pieces of

information. The first information is the control signal names involved in each primitive instruction. The

94

(ram (v95 17) (a85 17))
(const (c107 16 (-5 -7 -8 -9 -12 -16 -27 -81 8127 16 129 8 7 5)))
(dfsm (0 (_bc _xsign)))

(cfsm (0 0 nil (goto 1)) (1 1 _be (goto 1)) (1 1 (not _bc) (goto 2))
(2 2 nil (goto 0)))

(dp_word_size 8)
(stack_depth 0)
(reset_timer nil)
(max_sample_intvl 1)

(rom (0

((r*=rbus 0) (rbus=ioport) (x*=eabus 0) (addr 0) (acc=0)
(ioport=extport 0))

((mbus=r* 0) (r*=rbus 0) (rbus=acc) (addr a85) (offset 16)
(mem=mbus))

((mbus=r* 0) (addr v95) (mem=mbus)))

(1 ((xbus=x* 0) (addr a85) (offset 1) (mor=mem))

((xbus=x* 0) (mbus=mor) (addr a85) (mem=mbus))

((xbus=x* 0) (addr c107) (mor=mem))

((xbus=x* 0) (r*=rbus 0) (rbus=ioport) (ioport=mbus) (mbus=mor)
(addr v95) (mor=mem))

((xbus=x* 0) (r*=rbus 1) (rbus=ioport) (ioport=mbus) (mbus=mor)
(addr a85) (mor=mem))

((mbus=mor) (x*=eabus 1) (addr 0) (xbus=x* 0) (rcoef=mbus))
((mor=mbus) (mbus=r* 0) (xbus=x* 1) (x*=eabus 0) (addr 1))
((fsm 0) (xbus=x* 0) (addr -16) (nosat) (acc=abus)
(abus=coef.mor) (shrcoef))

((nosat) (acc=sum) (abus=coef.mor) (shrcoef) (bbus=acc>* 1))
((nosat) (acc=sum) (abus=coef.mor) (shrcoef) (bbus=acc>* 1))
((nosat) (acc=sum) (abus=coef.mor) (shrcoef) (bbus=acc>* 1))
((nosat) (acc=sum) (abus=coef.mor) (shrcoef) (bbus=acc>* 1))
((nosat) (acc=sum) (abus=coef.mor) (shrcoef) (bbus=acc>* 1))
((nosat) (acc=sum) (abus=coef.mor) (shrcoef) (bbus=acc>* 1))
((mor=mbus) (mbus=r* 1) (acc=sum) (abus=coef.-mor) (shrcoef)
(bbus=acc>* 1))

((bbus=acc>* 0) (abus=mor) (acc=sum))

((xbus=x* 1) (mbus=acc) (addr v95) (offset 1) (mem=mbus)))

(2 ((addr v95) (offset 16) (mor=mem))

((ioport=mbus) (mbus=mor) (extport=ioport 0))))

Figure 58 A FIR filter in rass language

95

second information is the architecture of the control unit. The control signal information is organized in a
so-called sadl file, which is read in by the control generator at run-time. In addition, the set of registers and
buses as well as the set of the primitive instructions are also defined in sadl file. Once the architecture is
modified, and new primitive instructions are defined, the sadl file can be modified accordingly to make the

control generator program unaffected. The sadl file for the KAPPA architecture is shown in Appendix C.

The three primitive control operations, branch, call and return, can be implemented in a number of
different control unit architectures. Therefore, the control generator has to know the particular control unit
architecture that the control operations are mapped into. Ideally, the control unit architecture should be
described externally, like the sadl file, such that the same control generator program can be applied to dif-
ferent control unit architectures. The current control generator, however, hard-wires the KAPPA control

unit architecture in its implementation.

The algorithm of the control generator is described in the following. First, the hardware information
section is passed to the output without modification. For the variable and constant declarations in the rass
program, a hash table is created to store the variable or constant names and values. Later, when a variable
or constant name is used as a key then its address can be obtained from the hash table. For the logic
instruction declarations and the control flow sections, the boolean variables involved are analyzed to deter-
mine each of which to be one of the primary inputs, primary outputs or feedbacks. The logic instructions
will be implemented by the LGU and the control flow will be implemented by the finite state machine in
the control unit. The bit order of the primary inputs, primary outputs and feedbacks has to be consistent
with the structural description of the control unit. The primitive instructions in the code block section are
translate to the control signal patterns by the help of the sadl file. The control generator will check whether
the primitive instructions in the same cycle have any conflicts. Finally, the sizing parameters of each of the

functional blocks in the architecture are determined, and an output parameter value file is generated.

96

5.6. Summary

The software flow of the LagerIII silicon compilation subsystem is summarized in Figure 5.9. It con-
sists of three components: a Silage translator that translates a Silage program to an RL program, an RL
compiler that compiles the RL program to a rass program and a control generator program that generates a
paraméler value file from the rass program. This subsystem maps a Silage program to a pre-defined archi-
tecture, such as KAPPA. It provides a means for the user to tailor the architecture and create new primitive
instructions to-match the algorithm better. In particular, a code generation table is used by the RL com-

piler, and a sadl file is used by the control generator, to allow customization of the subsystem.

SILAGE
SILAGE
TRANSLATOR
Code : t{ RL
Generation
Table RL
" COMPILER
1 RASS
SADL
(Control Signalsz CONTROL
. GENERATOR
PARAMETER
VALUES

Figure 59 The software flow of LagerIll silicon compilation subsystem

97

The Cathedral-II system® has been developed in parallel with the LagerII silicon -compilation sub-
system. Both of these systems use Silage as a behavioral description language for describing the algo-
rithms. There are two major differences between Lagerlll and Cathedral-II in their silicop compilation
parts. First, in LagerIII the system is adapted to new architecture by modifying two tables: the code gen-
eration table used by the RL Compiler and the sadl file used by the Control Generator, and in Cathedral-II
it is adapted by modifying a set of hardware-dependent rules. Because the unification process in a rule-
based system searches the set of rules sequentially, the order of the rules is critical. Thus, the insertion and
deletion of rules, as required to modify the architecture, is hard to do. Second, the Lagerlll system
schedules the Silage program to generate the control flow operations (using the Silage translator) before the
compilation of the data path operations. On the other hand, the Cathedral-II system first compiles the
Silage program into symbolic microcode which does not have absolute timing, and subsequently schedules

the microcode to generate the control flow.

In addition, the LagerIIl system has a unique structural interface to allow quick layout generation of

new architectural designs.

CHAPTER 6

Pitch Tracker Chip

In this chapter, a pitch tracker chip design is used as an example of the use of the LagerIIl silicon

compilation subsystem.

6.1. Pitch Tracking Algorithm

The pitch tracking algorithm used is referred to as the second modification of the Gold pitch
tracker33 , a summary of which can also be found in3 . In this section, a brief description of the algorithm
is provided.

The algorithm is shown in Figure 6.1. The pitch is the fundamental period in a speech signal. The
pitch is a low frequency signal and hence a low pass filter (LPF) is used to filter out the high frequency
components in the speech signals. However, harmonics of the fundamental may also pass through the LPF.
The goal of the algorithm is to reject the harmonics and extract the fundamental period. The peaks and val-
leys of the filtered speech signal are then found, and the six new signals that are combinations of present
peaks or valleys and previous peaks or valleys (Figure 6.2) are calculated. The six signals are sent to six

identical pitch detectors.

A pitch detector forms an estimate of the time interval between major peaks in their input. The
minor peaks are rejected based on the following algorithm. First, after a major peak is detected, a blanking
period of 3ms duration is entered during which all peaks are rejected. In other words, the pitch period can-
not be shorter than 3ms. Following the blanking interval, an exponentially-decaying threshold signal is
computed. This threshold is initialized with the amplitude of the previous peak, and decay with a time con-
stant of 5ms. Minor peaks which fail to exceed this threshold are rejected.

98

—’—-[PlTCH osrsc*ron}—L
J—oImTCH DETECTOR]--L.

" speecH_| 2-poLE PEAK/ BITCH DETECTOR SCORING
INPUT] LPF VALLEY [LPITCH DETECTOR}— —

DETECTOR

ALGO-
L| PITCH oe*rec'roal-l RITHM
PITCH DETECTOR

PITCH DETECTOR

Figure 6.1 Gold pitch tracker algorithm

—r————_.—-—

.Figure 6.2 Six signals formed after peak-valley detection

PITCH
ESTIMATE

99

100

The six pitch detectors are working in parallel and six pitch estimates are obtained. Each estimate is
considered as a candidate for possibly being the actual pitch period. A scoring algorithm is used to select
one of the six as the best estimate. Each candidate is given a score ranging from one to eighteen by per-
forming a window comparison between the candidate and each of the following eighteen values: the six
candidates themselves, the six previous estimates and the six sums of the current and previous estimates,
where a window comparison is to compare if two values are within a pre-defined window (distance). If
none of the estimate has a score greater than a fixed threshold then the input speech is considered as

unvoiced.

6.2. Chip Implementation

To use the LagerllI silicon compilation subsystem, the algorithm is programmed in Silage. At the
development phase of the silicon compilation subsystem, RL and rass programs are also written manually
and compared with the ones produced by the Silage translator and RL compiler. In particular, the code size
generated by the RL compiler is about 8% longer than that of the manually written rass program. The
Silage, RL and rass programs for the pitch tracking algorithm are shown in the Appendix D.

The KAPPA architecture is used to implement the pitch tracking algorithm. The sampling rate of the
speech signal is 8 KHz. The circuit clock rate of the KAPPA architecture is S MHz. Therefore, the max-
imum number of cycles in a sample is 625. For the pitch tracking algorithm, the total number of cycles is
310 for the manually written rass program and 335 for the rass program generated by the RL compiler.

The KAPPA architecture provides a sufficient implementation because the sampling rate can be met.

After applying the silicon compilation subsystem, a parameter value file is generated. By using this
parameter value file and the set of structural description language files that describe the KAPPA architec-
ture as inputs to the LagerlII silicon assembly subsystem, the chip layout can be generated automatically,

which is shown in Figure 6.3.

101

In the layout generation process, the macro cell place and route tool, Flint, is used extensively. It
has a nice feature that once the floorplanning and global routing are in place, then the detail routing can be
performed very quickly. Therefore, by using the same architecture, the algorithm developer can reuse not
only the architecture but also the existing floorplans. However, one drawback is that the floorplan files use
the absolute names and hence slight modifications are necessary if the root instance name is changed. This

should be improved in the future.

102

cifplot® Vindow: § 39F1.6 § 2646.5 ¢ us288 --- Scsler 1 micron e §.08199293 inches {51x)

1 : l

- EgEaEiaka IEE

Hf TR
i

Biiid

eerire e

i Hif 18

| :

| 3 {}n'thmetlc e - g

% RAM { nit LI L e
i ;]

5 E ! .] :

| S 17 g ol
L Be=llii———— -
i ‘ 1 ot il ‘

Processing 1= o5 i U
Unit -

i -]

L S A TR R H The
— \; TER
™ ' Test U ._LLITTT Processor : { k %5
- Logic : Control j |

e e e e I

Figure 6.3 The pitch tracker chip CIF plot

CHAPTER 7

Conclusions and Remarks

7.1. Major Accomplishments

One of the key accomplishments of the LagerIII system is that it provides four interfaces such that
users with different expertise can work together and make use of other people’s results. The collaboration
has proven to be very important in the design of algorithm-specific ICs. A behavioral interface is provided
for algorithm developers to enter new algorithms. A structural interface is provided for architecture
designers to enter new architectures. A CAD tool interface is provided for CAD tool designers to enter
new module generation tools. A cell library interface is provided for the circuit designers to enter new leaf

cells.

Because the direct synthesis of a structural description from a behavioral description has not yet able
to result in efficient architectures in a wide range of applications, the LagerIlI silicon compilation subsys-
tem employs a novel approach to map a behavioral description to a pre-defined parametrizable structural
description by generating a set of parameter values that is tailored to the behavioral description. The capa-
bility of selecting the architecture and iteratively optimizing it is useful in gaining experience of architec-

tural design for new algorithms. This experience is very valuable in the direct synthesis research.

The LagerIlI silicon assembly subsystem contains a number of module generation tools, a simulator
and a cell library. It is designed with emphasis on providing an open system such that new module genera-
tion tools and cells can be integrated easily. To do this, a database with a consistent integration policy is

developed.

104

105

Even though the algorithms in various applications are different, it is found that thiey can all imple-
mented by the same set of functional modules, which include memories, data paths, etc. The use of
parametrizable functional modules is a unique feature of the LagerIIl system. The parametrizability not

only facilitates the reuse of functional modules, but also alleviate the problem of cell library maintenance.

7.2. Remarks on Future Improvements

Nevertheless, a few improvements can be made to make the LagerlII system better. These points are

discussed in this section.

The LagerlII system employs a cell-based design methodology. All the leaf cells in the cell. library
are manually designed. One of reasons that this approach is taken is the relatively poor performance of the
automatically generated leaf cells. However, there have been a number of new and promising approaches
in the automatic generation of leaf cells, including standard cells with transistor sizing34 , gate matrix35 ,
and sea of gates. These approaches should be looked into and employed if advantageous 10 alleviate the

problem of design rule dependence in the manually designed leaf cells.

The Lagerlll silicon assembly subsystem is implemented in Lisp with the Flavors object-oriented
programming system, which is very nice developing tools and helps to prototype of the system in a short
amount of time. However, it suffers from speed penalty unless high performance, dedicated hardware is
used. In addition, the capacity of a Lisp process in Unix environment limits the size of the design. The

volatile database also contributes to the capacity problem.

A development project (which is dubbed LagerIV) is currently undertaken which re-implements the
LagerIII silicon assembly subsystem in C language and replaces the Flavors based database by the OCT
database. This should solve the capacity problem because OCT is a non-volatile database and hence the
intermediate results can be saved in the secondary memory. A C based simulator, which is called
Thor36:37 , will be in place for the Lisp based Design Simulator. Besides speed improvements, the Thor

simulator has two additional advantages. First, it is backed by a complete set of library models for off-the-

106

shelf chips. This makes the simulation of the whole board possible. Second, an interface to a switch level
simulator, rsim, which can be used to simulate the extracted layout, is provided. This helps to verify a cir-

cuit model against its layout.

Some believe that the automatic layout generation is correct by construction, and therefore no design
verification. However, verification is still required at least in the development phase. Magic provides an
incremental design rule checking environment which can be used to verify the design at the physical level.
An interface is established between Thor and rsim to verify the cell model against the cell layout. After
the cell models are verified, all further simulation can be carried out at the structural level using Thor. The
verification between the behavioral level description and structural level description remains, however, an

open research problem.

Due to the parametrization mechanism in the LagerIIl system, special care has to be taken in the
LagerIV project. First, a Lisp interpreter38 is still required to evaluate the parameterization expression in
the structural descriptions. Second, a pre-processor is required to generate the Thor model instances from

the model templates which are parametrized.

The LagerIII silicon subsystem tries to generate the layout of all the cell modules, even with those
which have the same parameter values and hence have the physical layout. This is also fixed in LagerIV

by modifying the syntax and semantics of the structural description language.

In the LagerIII silicon compilation subsystem, one drawback is that it is left to the user to diagnosis
the efficiency of a particular architecture and find the remedy. The subsystem provides user the number of
instruction cycles that the algorithm will require if using the architecture, as the only figure of merits.
Moreover, the user has to provide the code generation table as well as the sadl file at every iteration. Some
architecture level design aids that facilitates the user in exploring the design space by quickly providing
estimates of the architectural efficiency will be very helpful.

107

7.3. Applications of LagerIIl

The Lagerlll system has been applied to a number of algorithm-specific IC designs, two of which
were reported in this thesis. In addition, a robot arm controller chip has been designed and generated using
LagerIIL.28 It implements an adaptive control algorithm which compensates the inherent non-linearity in
the robot arm dynamics. This chip was generated by both the silicon compilation and silicon assembly

subsystems using the KAPPA architecture.

A set of four chips has been designed, fabricated and individually tested which is used for imple-
menting a channel emulator3® A channel emulator emulates the architecture of a computer network and
can be used to study the performance and effects of different network protocols. The four chips include a
tap switch which emulates the physical connection of a computer to the network, a variable register delay
line to simulate the time delays through different network paths, a crossbar switch to emulate the topology
of the network and a mask OR crossbar switch. The mask OR crossbar switch is essentially similar to the
crossbar switch with additional flexibility in the topology it can emulate. The four chips were generated

using the LagerIII silicon assembly subsystem.

The LagerIII silicon assembly system was also applied to the development of VLSI implementation
of projection-based image processing algorithms.*0 In all the applications, algorithm-specific ICs were
found 1o produce much higher performance. By using the LagerIII system, the design difficulty and cost of
algorithm-specific ICs are reduced, which further makes the algorithm-specific ICs approach more attrac-

tive.

References

1.

10.

11.

12

R. A. Kavaler, The Design and Evaluation of A Speech Recognition System for Engineering Worksta-

tions, University of California at Berkeley (May 1985). Ph. D. Thesis

P. A. Ruetz, Architectures and Design Techniques for Real-Time Image Processing ICs, University
of California at Berkeley (May 1986). Ph. D. Thesis

S. P. Pope, Automatic Generation of Signal Processing Integrated Circuits, University of California

at Berkeley (February 1985). Ph. D. Thesis

D. Thomas, C. Hitchcock III, T. Kowalski, J. Rajan, and R. Walker, ‘‘Automatic Data Path Syn-

thesis,”’ IEEE Computer Magazine, pp. 59-70 (December 1983).

J. Rabaey, H. De Man, J. Vanhoof, G. Goossens, and F. Catthoor, ‘““Cathedeal-II: A Synthesis Sys-

tem for Multiprocessor DSP Systems,” in Silicon Compilation, Addison-Wesley (December 1987).

P. A. Ruetz, R. Jain, and R. W. Brodersen, *‘Comparision of parallel architectures for real-time
image processing ICs,’* Proc. ISCAS, (December 1987).

S. K. Azim, C-S Shung, and R. W. Brodersen, ‘‘Automatic Generation of A Custom Digital Signal

Processor for An Adapter Robot Arm Controller,” IEEE ICASSP, (April 1988).
P. N. Hilfinger, *‘Silage: A Language for Signal Processing,”” Proceedings of CICC, (May 1985).

A. Goldberg, S. Hirschhorn, and K. Lieberherr, *‘Approaches toward Silicon Compilation,” JEEE
Circuits and Devices Magazine, pp. 29-39 (May 1985).

J. R. Jasica, S. E. Noujaim, R. Hartley, and M. J. Hartman, “‘A Bit-Serial Silicon Compiler,”
Proceedings of ICCAD, pp. 91-93 (November 1985).

J. R. Southard, *“MacPitts: An Approach to Silicon Compilation,” IEEE Computer Magazine, pp.
74-82 (December 1983).

R. Jain, F. Catthoor, J. Vanhoof, B. De Loore, G. Goossens, N. Goncalvez, L. Claesen, J. Van Gin-
derdeuren, J. Vandewalle, and H. De Man, *“Custom Design of A VLSI PCM-FDM Transmulti-

plexer from System Specification to Circuit Layout Using A Computer-Aided Design System,”

108

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

109

IEEE J. Solid-State Circuits, Vol. 21, No. 1, pp. 73-85 (February 1986).

M. Barbacci, “‘Instruction Set Specification (ISPS): The Notation and its Applications,’’ JEEE Trans.
Compuiters, Vol. 30, No. 1, (January 1981).

J. Rabaey, S. Pope , and R. Brodersen, ‘“‘An Integrated Automatic Layout Generation System for
DSP Circuits,’’ IEEE Trans. Computer-aided Design, Vol. 4, No. 3, (July 1985.).

Franz Inc., Franz Lisp User Manual, Opus 43.1, Franz Inc. (1987).

H. Cannon, Flavors: A Non-Hierarchical Approach to Object-Oriented Programming, MIT Artificial
Intelligence Lab (). unpublished paper

A. Goldberg and D. Robinson, Smalltalk-80: The Language and its Implementation, Addison-Wesley
(1984).

W. Baker, J. Burns, S. Chow, D. Harrison, M. Igusa, C. Kring, T. Laidig, B. Lin, P. Moore, J. Reed,
R. Rudell, C. Sechen, R. Segal, R. Spickelmier, A. Wang, A. R. Newton, and A. Sangiovanni-
Vincentelli, OCT Tools Distribution 2.0, University of California at Berkeley, Electronics Research

Lab (November 1987).

W. Scott, R. Mayo, G. Hamachi, and J. Ousterhout, editors, 1986 VLSI Tools, University of Califor-
nia at Berkeley, Report No. UCB/CSD 86/272 (December 1985).

C-S Shung, R. Jain, M. B. Srivastava, and R. W. Brodersen, LagerlIl User's Manual, Universilty of

California at Berkeley, internal documentation (August 1987).

M. B. Srivastava, Automatic Generation of CMOS Data Paths in LAGER Framework, University of
California at Berkeley (May 1987). M. S. Thesis

J. Perl and R. Chapman, ‘‘New Image-Processing Frame Memory,” Computer Graphics World, pp.
73-75 (June 1986).

Texas Instruments, TMS34061 User's Guide, Texas Instruments (1986).

GE Company, TN2250 512x512 CID Automation Camera Interface Specification, GE Company
(October 1986).

26.

27.

28.

29.

30.

31

32.

33.

3s.

36.

37.

110

A. . Burstein, A 9 Bit 10 MHz AID Macrocell, University of California at Berkeley (November
1987). M. S. Thesis

E. Wang, private communication

K. Rimey, A Compiler for Horizontal-Instruction-Word Signal Processors, University of California
at Berkeley, Qualifying Proposal (April 1988).
S. K. Azim, Applications of Silicon Compilation Techniques to A Robot Controller Design, Univer-

sity of California at Berkeley (in preparation). Ph. D. Thesis

Davio, Marc, and Deschamps, Digital Systems with Algorithm Implementation, John Wiley & Sons
(1983).

G. Frantz, K. Lin, J. Reimer, and J. Bradley, **The Texas Instruments TMS320C25 Digital Signal

Microcomputer,”” IEEE Micro, Vol. 6, No. 6, pp. 10-28 (December 1986).
Sieworek, Bell, and Newell, Computer Structures: Principles and Examples, McGraw Hill (1982).

D. A. Patterson, *‘Reduced Instruction Set Computers,” Communications of the ACM, Vol. 28, No.
1, pp. 8-21 (January 1985).
B. Gold and L. R. Rabiner, *‘Parallel Processing Techniques for Estimating Pitch Periods of Speech

in the Time Domain,”’ J. Acoustical Society of America, V. 34, No. 7, pp. 916-921 (1962).

J-M Shyu, A. Sangiovanni-Vincentelli, J. Fishburn, and A. Dunlop, *‘Optimization-Based Transistor
Sizing,"” IEEE J. Solid-State Circuits, (April 1988).

A. D. Lopez and H. A. Law, *‘Design Gate Matrix Layout Method for MOS VLSI,"”” IEEE Trans. on
Electronic Devices, vol. ED-27, pp. 1671-1675 (August 1980).

Robert Alverson, Tom Blank, Kiyoung Choi, Arturo Salz, Larry Soule, and Thomas Rokicki, THOR
User's Manual: Tutorial and Commands, Stanford University (January 1988). Technical Report
CSL-TR-88-348

Robert Alverson, Tom Blank, Kiyoung Choi, Arturo Salz, Larry Soule, and Thomas Rokicki, THOR

User's Manual: Library Functions, Stanford University (January 1988). Technical Report CSL-TR-

38.

39.

111

88-349

W. C. Baker, LightLisp: A Light-Weight Lisp Interpreter, University of California at Berkeley, Elec-
tronic Research Lab (November 1987).

J. S. Sun, Design and Implementation of Integrated Circuits for a Real-time Flexible Emulator

Applying Silicon Assembly Tools, University of California at Berkeley (March 1988). M. S. Thesis

W. B. Baringer, B. C. Richards, and R. W. Brodersen, *‘A VLSI Implementation of PPPE for Real-
Time Image Processing in Radon Space - Work in Progress,”” Workshop on Computer Architectures
for Pattern Analysis and Machine Intelligence, pp. 88-93 (October 1987).

APPENDIX A

‘(part of) LagerIIl User Manuals

1. Design Manager (DM)
2. Layout Generator (LG)
3. Design Simulator (DSIM)

4, Control Generator (rassCG)

112

DM(1)

NAME

LagerIIl User’s Manual 113

DM_new — Design Manager

SYNOPSIS

DM [options]

DESCRIPTION

DM_new is a structural interface program which serves as the front-end of the layout generation
and the simulation. DM _new requires the following information: sdl files, parameter values of
all the parameters defined in the sd! files and a list of options. Since the names of the sdl files of
the sub-cells can be inferred from the sd! file of the parent cell, only the name of the sd! file of
the root of the design hierarchy is needed. The parameter values can be provided by the user
through a file, or interactively for any parameter values not specified in the file.

DM_new can be run in both an interactive and a batch mode, depending on whether a
command-line option - is set or not. In the interactive mode, the Lisp prompt (=> for Franz
Lisp 43.1) will appear. The user can then invoke the DM Lisp function by

=>(DM)
(DM) will ask a series of questions:
Please enter root type (generic name) : rom
Please enter root name (instance name) : ROM1
Please enter parameter file name (if none enter N) : N
Please enter parameter value of row in cell rom (root) : 12

The generic name of the root is the name of the root sd! file name without the ".sdl” suffix. The
instance name of the root is a name for the particular design. The user has the option of entering
the parameter values through a file, or interactively as shown in the above queries. The parame-
ter file may contain any number of lists, each of which has two elements. The first element is
the name of the parameter and the second is the value of the parameter. Because the parameters
of the sub-cells can be defined by the parameters of the parent cell, only the parameter values of
the root need to be specified. Those parameter values that the user enters interactively are col-
lectly and incorporated into the parameter file such that the user doesn’t have to type them in
again next time. If there is no parameter file specified at the first time, the file root-instance-
name.par is used.

If the (DM) finishes creating the structures, the user will be prompted to enter (LG) or (DSIM)
depending on whether he/she wants to generate the layout or simulate the design. If (DM)
aborts because some of the sdl files in the design hierarchy are not found by (DM), see the
PATH MECHANISM section. Otherwise, (DM) should report a number of DM-ERRORs, see
the ERROR DIAGNOSIS section.

PATH MECHANISM

In LAGER-III all the tools have a joint startup file called .lager that should be in the working
directory or home directory. If both locations have a .lager file, the one in the working directory
prevails. The user may use the .lager file to specify where the library files for any tools can be
found.

The .lager file may consist of any number of lists, each of which takes the form
(keyword element [elements ...])

where the keyword specifies an attribute of a tool that makes use of the list. Normally each ele-
ment in the list is a directory path (absolute or relative). Note that the order determines the
priority. For example, DM has only one attribute dm.sdlfile in the .lager file. The user can use

DM(1) LagerlII User’s Manual 114

the .lager file to specify the directory paths that DM needs to search other than the (default)
working directory. The working directory has to be represented by \. (back-slash and a dot, for
some lispish reasons) or a full absolute path. Comments in the .1ager file can be entered in the
same way as in the sdl file.

A lager file example:

(dm.sdlfile \
“lager/Lagerlll/processor/sdl
“lager/LagerIIl/lib/stdcell
“lager/LagerlIIl/lib/dpc/leafcells)

(TimLager.o “lager/LagerIIl/lib/TimLager/scpads/scpads1.25)

(TimLager Jeafcells “lager/LagerIIl/lib/TimLager/scpads/scpads1.25/leafcells)
(DPC.cd "1ager/LagerlIl/lib/dpc/leafcells)

(DPC.mag “lager/LagerlIl/lib/dpc/leafcells)

(bin "lager/LagerIIl/bin)

(octbin “cad/bin fusr5/octtools/bin)

(stdcell.leafcell 'lager)LagerIIIllib/stdcell)

(Padroute.hdl “bilbo/moslib/frames)

OPTIONS
1 - to invoke interactive mode DM

The following options are for batch mode DM

ganme name -- the root generic name (without the .sdl extension)
iname name -- the root instance name

pfile filename -- parameter file name

¢ -- scmos technology (defauit)

n - nmos technology

m -- magic layout (default)

k -- kic layout

hdi -- use hdl format for Padroute and Flint (default is oct format)
LG -- run LG automatically following DM

DSIM -- run DSIM automatically following DM

efile filename -- the event file input of DSIM

ofile filename -- the output file of DSIM

LOG FILES
There are 3 log files to bookkeep the program status. Their names have the instance name of the

root as a prefix. The "-dm.log" file is the log file for DM(1). The "-sim.log" file is for DSIM(I)
and "-1g.log" is for LG(1).

An instance-name-dm.log file contains the following information: the paths of the sd! files if
they are found through .lager file, the number of nets generated for each net definition, all
instances of parameter evaluation and wamnings such as to default the starting index to zero. The
information is organized in a top-down way, the parent cell being in front of the sub-cells.

DM(1) LagerlIll User’s Manual 115

NAMING CONVENTION
Each cell, net and terminal in the entire design hierarchy has a unique name. These names are
used all the log files. The naming conventions are:

1. The name of the root is the root instance name entered interactively by the user when (DM) is
invoked.

2. The name of a sub-cell is the concatenation of the name of the parent cell, the separator "-"
and the instance-name of the sub-cell.

3. The name of a net is the concatenation of the name of the parent cell, the separator "@" and
the net name.

4. The name of a terminal is the concatenation of the name of the parent cell, the separator "."
and the name of the terminal.

5. In the case of a bus, the net name and the terminal name are indexed by the bit number (start-
ing from 0) enclosed in brackets ("[" and "]").

ERROR DIAGNOSIS
An important task of DM is to find syntax errors and inconsistencies in the sd! files that the user
provides. The errors will be reported in the instance-name-dm.log file starting with "DM-
ERROR". If there is any DM-ERRORs found, then the number of DM-ERRORs will be
reported after (DM) finishes. The common error messages are:

1. "param not evaluated to a number, net ignored” .

The parameter param specifies the width of a net definition but the value of param is not a
number. .

2. "terminal term connects to net neta and netb.”

The terminal term appears on two nets, neta and neth.

3. "net name neta repeated, 2nd one deleted”

The same net name neta is used to referred to two nets. The second net definition is removed.
4. "instance terminal zerm in cell cell not defined as a generic terminal”

The terminal term of the sub-cell cell is instantiated; however, in the sdl file corresponding to
cell (generic-name.sdl), the terminal term is not defined as a generic terminal.

5. "Error: Can’'t find generic-name.sdl”

The generic-name.sdl is not in the working directory, nor can it be found from the paths of the
dm.sdlfile entry in the .lager file. This is a fatal error and DM will halt.

6. "generic-name sdl: too many parentheses?” "after form form"

Lisp read fails. Usually the error is because of unmatched left and right parentheses. DM will
show you what the last successful Lisp form (form) read.

7. "generic-name.sdl: unrecognized keyword word" "after form form"

DM recognized different constructs by keywords, see sdl(5). This error reports an unrecognized
keyword word found after the last successfully read form.

SEE ALSO
sdi(5), DSIM(1), LG(1)

FILES
“lager/Lagerll/src/DM/DMinit.]

DM(1) LagerIII User’s Manual 116

“lager/LagerIII/lisplib/{*.1,*.0}
“lager/LagerIlL/bin/DM

AUTHORS
Chuen-Shen Shung

Rajeev Jain

LG (1)

NAME

LagerIII User’s Manual 117

LG -~ Layout Generators

SYNOPSIS

(LG)

DESCRIPTION

(LG) is one of the two back-ends of (DM). Before (LG) can be run, the user has to run (DM).
(DM) creates the necessary data structures for (LG) to perform layout generation. The layout
generation is performed in a bottom-up way. The layouts of the sub-cells are generated before
the layout of the parent cell is generated. This is because that the layout generation of the parent
cell usually requires some information (e.g. size, terminal locations) of the sub-cells.

(LG) serves as a centralized data manager. Instead of letting module generators communicate
with each other directly, each module generator communicates with (LG) only. Before the lay-
out generation is performed, the module generator gets the information of the sub-cells from
(LG); after the layout generation is done, the module generators sends the result to (LG) for use
of the parent cell. New module generators can be integrated by simply interfacing with (LG),
which has no effect on the existing module generators.

The entire layout generation is pseudo automatic because some of the layout generators require
human interaction. Ideally if all the module generators were written in Lisp, then they can
access the data structures directly. However, most tools are in C, and were designed to use files
as input and output, hence (LG) has to create the input files and to read back in the output files.
These layout generator oriented issues are discussed in the LAYOUT GENERATORS section.

(LG) creates a instance-name-lg.log file to record the status of the layout generation. (LG)
reports only one kind of LG-ERROR which indicates that some terminals of the sub-cells are not
connected by the parent cell.

LAYOUT GENERATORS

This section describes the input and output files/directories and the necessary user interactions of
the layout generators. In case of any problems during the layout generation, the user can consult
the input and output files/directories in addition to the log file to troubleshoot.

1. Flint

Flint assumes a directory as the input. The name of the directory is the instance name of the
parent cell. Each sub-cell occupies a sub-directory which contains a pd! file and a kdl file. The
time stamp of the hdl file has to be later than that of the pd! file to ensure proper operation. The
parent cell also requires a pdl file and a con file that contains a list of the sub-cell names.

The output of Flint includes a hdl file which shows that size of the parent cell and the coordi-
nates of the terminals of the parent cell, and a layout file. In the hdl file that Flint generates, the
names of the terminals are the instance names of the sub-cells. (L.G) changes the names into the
generic names of the parent cell in order to be consistent with the higher level.

Flint requires the user to place the cells, to define the channels and to do the global routing

" manually. However, these information can be dumped into a floorplan file that can be used

later. Flint does the detail routing automatically, except that it fails for the nets which contains
nothing but two terminals on the same cell (feedback nets). In general, some kind of rip-up
routing has to be done manually as well.

2. TimLager

TimLager assumes a pd! file as the input. When TimLager is invoked by (LG), the net and the
cable fields in the pdl file are not used. TimLager generates a layout file and a ihdl file (used
with (LG)) or a hdl file (used stand-alone). The only difference between the ikdl file and the hdl

LG (1) LagerllI User’s Manual 118

doesn’t.
3. Stdcell

The standard cell module generator is called Wolfe. Wolfe takes the contents facet of a sym-
bolic view (the view name is designated to be "wolfe” by (LG)) of the parent cell as the input.
After the layout generation, Wolfe writes the information back into the same contents facet, and
creates a layout file. The OCT facet is not in ascii format, hence the user has to use vem or
attache to browse it.

The user will be asked of two questions:
Enter the number of rows desired (n => decided by wolfe) : 2
Enter number of iterations of sim. anneal. desired (n => 100): §

The first question should be self-explanatory. The placement step in Wolfe uses a technique
called simulated annealing. The second question asks the user to specify the number of simu-
lated anealing iterations. The larger the number, the slower the program runs and the better the
result.

Wolfe doesn’t extend the Vdd and GND terminals to the boundary of the parent cell. (LG) pro-
vides a kludgy way to get around the problem. After the layout is generated, (LG) will interrupt
the running process and ask the user to fix the layout file. The user can resume the process by

c{1)} 7ret
where c{1) is the Lisp break prompt.
4. Dpc

Dpc is written in Lisp such that it can access the data structures directly. Dpc generates a layout
file and a hdl file.

5. Padroute

Padroute takes 5 hdl files as input, which are created automatically by (LG). Padroute gen-
erates a layout file. Usually Padroute is used as the module generator of the root, so no termi-
nal is present on the boundary.

6. Mosiaco

file is that the Adl file copies the net and the cable fields from the input pdl file and the ihd! file

Like Wolfe, Mosaico takes the contents facet of a symbolic view (the view name is designated
to be "mosaico” by (LG)) as the input. In addition, Mosaico requires the contents and interface
facets of the physical view of all the sub-cells. All these facets are created by (LG). However,
(LG) doesn’t call Mosaico directly. The user should ask the maintainer of the Mosaico pro-
gram to run it. Again the process can by interrupted to wait for the layout generation to be done.

DEBUG MODE _ :
When the option g is specified in (DM) prior to the (LG) run, then the process is in the debug
mode. In this case most of the module generators will ask the question "Do you want to gen-
erate the layout for ... cell?”. If the user replies n (No) then the layout generation of that cell and
all its sub-cells are by-passed. This is useful when some of the cells in the design hierarchy
have been generated successfully and the user wants to avoid duplicating the effort.

SEE ALSO
sdl(5), hdl(5), pdi(5), DM(1), DPC(1), Padroute(1), TimLager(1), Flint(1)
Oct Tools Distribution 1.0 '

LG(1) LagerIll User’s Manual

FILES
“lager/Lager]Il/src/DM_v3/*.1 -- source files

“lager/LagerlIl/bin/DM -- executable file.

AUTHORS
Chuen-Shen Shung

Mani B. Srivastava

119

DSIM(1) Lagerlll User’s Manual 120

NAME
DSIM — Design Simulator

SYNOPSIS
(DSIM)

DESCRIPTION
(DSIM) is one of the two back-ends of DM. Before (DSIM) can be run, the user has to run
(DM). (DM) creates the necessary data structures for (DSIM) to perform simulation. (DSIM)
is an event-driven simulator and requires an event file as the input. The event file can be thought
of as the input waveform specification without the absolute timing information.

The simulation models are stored in the sdl files using the sim-list constructs. If the simulation
models are defined for both the parent cell and the sub-cell, then the model of the parent cell will
be used. The simulation runs faster if higher level models are used. However, the user has the
responsibility to verify the higher level models if he/she wants to create one out of lower level
models.

(DSIM) will ask a series of questions after it is invoked:
=> (DSIM)
Please enter a list of global clock signals: (APU@PHI1 APU@PHI2)

Please enter input events filename : APU.edl
Output file will be APU.sa

t
=>

When simulation finishes, ¢ and a Lisp prompt are returned. The user can run another (DSIM)
with a different input event file. However, the name of the output file is always instance-
name.sa, so the new simulation results will overwrite the previous simulation results.

The list of global clock signals (clock lis) is used in conjunction with the (R) command in the
input event list. Unless the clock list is nil (which can be specified by (), it has to be a list of
two elements. Each of the two elements can be either a symbol or a list. The clock list supports
a two-phase non-overlapping clocking scheme. Let’s represent the first element in the clock list
by phil and the second element by phi2. The (R) command is equivalent to the following
sequence of commands: phil=1 phi2=0 (r), phil=0 phi2=0 (1), phil=0 phi2=1 (r), phil=0 phi2=0
(r).

(DSIM) creates a instance-name-sim.log file to record the status of the layout generation.
(DSIM) reports only one kind of LG-ERROR which indicates that some terminals of the sub-
cells are not connected by the parent cell.

EVENT FILE FORMAT

The event file consists of a number of commands, each of which is a list. The name of the com-
mand is specified by the first element in the list. The rest in the list specifies the nets or the
buses that the command operates on. A bus is specified by the common name of the nets in the
bus (the names of the nets are different only in the index part). A net can be specified either by
a net-name or by a list of a cell-name and a terminal-name. Note that the net-names and the
cell-names are full names (see the NAMING CONVENTION section of DM(1)). Therefore, the
event file has to be updated once the instance-name of the design is changed.

1. alias command
(a (namela namelb) (name2a name2b) ...)

DSIM(1) LagerlII User’s Manual 121

After this command, namela will be replaced by namelb where it appears; name2a replaced by
name2b, ... and so on.

2. break command
()

The simulation gets interrupted when the break command is read, the user can resume the simu-
lation by ?ret.

3. set-high command
(h netl net2...)
The values of netl, net2, ... are set to "1".
4. set-low command
(I netl net2 ...)
The values of netl, net2, ... are set to "0".
5. set-vector command
(V bus string)
Set the value of each net in the bus to the corresponding bit in the string.
6. clear command
(x netl net2 ...)
Remove netl, net2, ... from pre-set status. The values of them will be determined by simulation.
7. watch command

(w netl net2 ...)
(W bus start-index end-index)

Put netl, net2, ... and the nets from start-index to end-index in the bus to the watch list.
8. print command
()

Prints the values of all the nets in the watch list. Note that the single nets and buses are printed
differently.
9. run command

™
R)

Start the simulation with all the events since last run command as the input. (R) is used in con-
junction with the clock list specification to run a major cycle. (r) runs a minor cycle.

SEE ALSO

FILES

sd1(5), DM(1), esim(1)

“lager/LagerIll/scc/DM_v3/*.1 -- source files
“lager/LagerIIl/bin/DM -- executable file.

“lager/LagerlIl/lib/processor/*.sdl
“lager/LagerIIl/lib/stdcell/*.sdl
“lager/LagerlIl/lib/dpc/leafcells/*.sdl

DSIM(1) LagerIIl User’s Manual 122

AUTHORS
Chuen-Shen Shung

BUGS
Slow. (DSIM) can't run one order of magnitude faster than esim, even though the latter works
off transistors.

CG(1)

NAME

LagerIll User’s Manual 123

rassCG — Control Generator from the rass file

SYNOPSIS

rassCG [-i sadl file] < rass file > parameter file

DESCRIPTION

CG is a pre-processor for DM. For a complicated design, the parameter file needed by DM is
often too tedious and error-prone to be created manually. CG can be used to generate the
parameter file from a behavioral description, the rass file.

Even though the idea of CG is general, the implementation is constrained by the target architec-
ture, which is described by a set of sd! files. The names of the parameters used in the sdl files
have to be the same as the names used by the CG program to generate the parameter file. At
this moment CG support only one target architecture, KAPPA, (described by
“lager/LagerIIl/processor/sdl/*.sdl). KAPPA is a programmable architecture which consists of
data paths controlled by a microprogram and a control unit that stores the microprogram.
Nontheless, the KAPPA architecture can be used in quite a wide range of applications, in which
cases the user only needs to program the applications in rass files and use the set of CG-DM-
LG programs to generate the layout automatically.

A rass file describes the behavior of an algorithm and some hardware information (e.g. word
length of the data path). The user has the options to write the rass file directly (in which case it
should be more optimized) or write a high-level language (RL or Silage) and have the RL and
Silage compilers generate the rass file. The RL compiler is written in such a way that the user
can describe the architectures for it to generate different code. CG takes the rass file as the
input and translates it to the parameter file in which the decoded microprogram is considered to
be one of the parameter values of the control unit in KAPPA.

By using a sadl file as a second input to the CG program, the user can change the data paths in
the KAPPA. The sadl file describes the instruction set and the control signals of each instruction
in the target architecture. If sadl is not specified, the one which describes KAPPA is used by CG
(see appendix).

However, if the user wants to change the control unit in the KAPPA as well, then the rass file
and the CG program have to be changed in a big way. Therefore, the name of the program is
called rassCG. It is expected that some users will rewrite the CG program for their novel archi-
tectures.

RASS FILE FORMAT

A rass consists of a number of lists. The first element of each list is used to distinguish the list.
The order of these lists is not critical.

1. Hardware information

(dp_word_size value)
(reset_timer list)
(max_sample_intvl value)
(stack_depth value)
(loop_test list)

Dp_word_size specifies the word length of the data path. Reset_timer specifies a list of block
numbers, each of which specifies a microprogram block (see the Microprogram blocks list). In
each microprogram that is specified by the reset_timer list the tmer is reset.
Max_sample_intvl specifies the worst case sample interval that is used by the fimer to produce
a constant sampling period. Stack_depth specifies the maximum depth of the subroutine nest-
ing. If no subroutine is used, then stack_depth is zero (default). Loop_test specifies a list of

CG(1) LagerIll User's Manual 124

test vectors that are used by the hardware loop counter. An internal conditional input, Ictesti,
which is used to control the state machine in the control unit of KAPPA, is asserted when the
value of the hardware loop counter matches the ith test vector.

2. Local variables
(ram scalarl scalar2 ... arrayl array2 ...)

This list declares all the local variables names (including scalars and arrays). In the micropro-
gram, these names can be used to refer to the local variables. A scalar is represented by a sym-
bol starting with a character (A-Z, a-z). Both "_" (underscore) and "-" (hyphen) are allowed in
the symbol. An array is represented by a list of a symbol and a integer. The symbol is the name
of the array and the integer is the length of the array. The order of scalars and arrays is not criti-
cal.

3. Constants
(const init-scalar ... init-array ...)

The list declares a number of constants (initialized local variables whose values are not changed
in the entire microprogram). An init-scalar is represented by a list of the a symbol and the an
initial value of the symbol. An init-scalar is represented by a list of a symbol (the array name),
an integer (the length of the array) and a list of initial values, each for one element in the array
(in order).

4. Logic state machine

(dfsm <logic-inst> <logic-inst> ...)

<logic-inst> = (inst-name <logic-prim> <logic-prim> ...)
<logic-prim> = (out-name <in-exprs>)

<in-exprs> = <in-expr> | (and <in-expr> <in-expr> ...)
<in-expr> = in-name | (not in-name)

This list defines the logic instructions that are used in the microprogram. In the microprogram, a
logic instruction can be invoked by referring to its inst-name. A logic instruction consists of one
or more logic primitives. Each logic primitive describes the logic relation between the state
out-name and some states in-names. Note that only and and not can be used to describe the
logic relation. The or logic can be produced by specifying a logic primitive for each or-clause
in the same inst-name.

5. Control state machine

(cfsm <state-trans> <state-trans> ...)

<state-trans> = (state-name block-number <in-expr> <control>)
<in-expr> see Logic state machine list

<control> = (goto state-name) | (call state-name state-name) | (return)

This list is a list of state transitions. Each state transition is specified by a list of the present
state name, the block number of the present state name, a logic relation and a destination con-
trol. Because several state names may use the same block of microprogram, a block number
field is required. The destination control implements 3 functions: (1) go to next state, (2) call a
subroutine state and push the return state into the stack, and (3) return from a subroutine. It can
be shown that the multi-way branch and the looping can be implemented by the go to with
proper logic relations.

6. Microprogram blocks

(rom <block(O> <blockl> ...)
<blocki> = (blocki <u-inst> <u-inst> ...)
<u-inst> = (<u-op> <u-0p> ...) | (logic-inst-name <u-op> <u-0p> ...)

CG(1) LagerIIl User’s Manual 125

The microprogram is broken into blocks in which there is no state transition present. We call
these blocks the straight-line code blocks. Each block has a block number and a list of micro-
instructions. Each micro-instruction consists of a list of micro-operations with one optional
logic instruction defined in the Logic state machine list. The entire set of micro-operations and
their relations (e.g. some of them can co-exist in the same micro-instruction, while some of them
can't) are recorded in the .sadl file of the target architecture.

SADL FILE
The .sadl file consists of three parts: (1) the set of micro-operations, (2) a list of rom control sig-
nals and (3) a list of all the resources in the target architecture. Each micro-operation requires a
number of controls signals and occupies a number of resources (e.g. registers and buses). If two
micro-operations need to occupy the same resource then they can’t co-exist in the same micro-
instruction. The CG program is able to find these conflicts and report them to the user.

Most of the micro-operations are of the form
(dest=src [arg])

which means the contents of the resource dest will be equal to the contents of the resource src
after the execution of the micro-operation. The micro-operation occupies the resource dest.
Some micro-operations require one additional argument.

The .sad! file of the KAPPA architecture is in the appendix.

“lager/LagerIIl/processor/{ctrl_gen.l,rom_gen.l fsm_gen.1} -- source files
“lager/LagerIIl/bin/rassCG -- executable file
“lager/LagerIll/processor/KAPPA .sadl
lager/Lagerlll/processor/sdl/*.sdl -- sd! files for KAPPA

SEE ALSO
S. Khalid Azim, "Customizable Processor Design for Rapid Implementation of ASICs"

AUTHOR
Chuen-Shen Shung

Frame Buffer Controller input files

oooooooooooooo
..............

sm1l.bdsyn
MODELplal ! state transitions of H-V control unit
! in bdsyn format
! this is specially for the GE camera
! which would provide vsyn, hsyn and cblank signals.
! OUTPUT
count,
nextstate<3:0> =

APPENDIX B

! bring the h and v signals (these are used by pla2)
! from the output of the register to delay one cycle.
! h<1:0>=nextstate<1:0>, v<1:0>=nextstate<3:2>

{ INPUT
presentstate<3:0>,
vsyn,

hsyn,

cblank,

eol,

eof,

sign;

CONSTANT
VAHA=0,
VAHB=1],
VAHC=2,
VAHD=3,

VBHA=4,
VBHB=S5,
VBHC=6,
VBHD=7,

VCHA-=S8,
VCHB=9,
VCHC=10,
VCHD=11,

VDHA=12,
VDHB=13,

10000
10001
10010
10011

10100

10101
10110
10111

! 1000
11001
11010
11011

11100
11101

126

VDHC=14, 11110

VDHD=15; 11111
ROUTINE main;
SELECT presentstate FROM ! a multiway switch based on the
‘ ! the value of ’presentstate’
[VAHA]: BEGIN
count=0;

IF (vsyn EQL 0) THEN nextstate=VBHA
ELSE IF (hsyn EQL 0) THEN nextstate=VAHB
ELSE nextstate=VAHA;

END;

[VAHB]: BEGIN

count=0;

IF (hsyn EQL 0) THEN nextstate=VAHB
ELSE nextstate=VAHC;

END;

[VAHC]: BEGIN

count=1;

IF (sign EQL 1) THEN nextstate=VAHD
ELSE nextstate=VAHC;

END;

[VAHD]: BEGIN

count=0;

IF (eol EQL 1) THEN nextstate=VAHA
ELSE nextstate=VAHD,

END;

[VBHA]: BEGIN

count=0;

IF (vsyn EQL 1) THEN nextstate=VCHA
ELSE IF (hsyn EQL 0) THEN nextstate=VBHB
ELSE nextstate=VBHA;

END;

127

[VBHB]: BEGIN
count=0;

IF (hsyn EQL 0) THEN nextstate=VBHB
ELSE nextstate=VBHC;

END;
[VBHC]: BEGIN
count=1;

IF (sign EQL 1) THEN nextstate=VBHD
ELSE nextstate=VBHC;

END;
[VBHD]: BEGIN
count=0;

IF (eol EQL 1) THEN nextstate=VBHA
ELSE nextstate=VBHD;

END;
[VCHA]: BEGIN
count=0;

IF (hsyn EQL 0) THEN nextstate=VCHB
ELSE nextstate=VCHA;

END;
[VCHB]: BEGIN
count=0;

IF (hsyn EQL 0) THEN nextstate=VCHB
ELSE nextstate=VCHC;

END;
[VCHC]: BEGIN
count=1;

IF (sign EQL 1) THEN nextstate=VCHD
ELSE nextstate=VCHC;

END;

128

[VCHD]: BEGIN
count=0;
IF (cblank EQL 1) THEN nextstate=VDHD
ELSE IF (eol EQL 1) THEN nextstate=VCHA
ELSE nextstate=VCHD;
END;

[VDHA]: BEGIN

count=0;

IF (hsyn EQL 0) THEN nextstate=VDHB
ELSE nextstate=VDHA;

END;
[VDHB]: BEGIN
count=0;

IF (hsyn EQL 0) THEN nextstate=VDHB
ELSE nextstate=VDHC;

END;
[VDHC]): BEGIN
count=1;

IF (sign EQL 1) THEN nextstate=VDHD
ELSE nextstate=VDHC;

END;
{OTHERWISE]: BEGIN 1! note 11!
1 mis insists to have an OTHERWISE state
! which serves as the default
count=0;
IF (eol EQL 1) AND (eof EQL 1) THEN nextstate=VAHA
ELSE IF (eol EQL 1) THEN nextstate=VDHA
ELSE nextstate=VDHD;
END;
ENDSELECT;

ENDROUTINE;
ENDMODEL,;

129

130

oooooooooooooo
oooooooooooooo

sm2.bdsyn
MODEL pla2 ! state transitions of memory control unit
! in bdsyn format
! OUTPUT
rasINV<0>,
casINV<0>,
0eINV<0>,
wrINV<0>,
nextstate<4:0> =
1 INPUT
h<1:0>, ! horizontal regions
! h=0 (HA), h=1 (HB), h=2 (HC), h=3 (HD)
v<1:0>, ! vertical regions
1 v=0 (VA), v=1 (VB), v=2 (VC), v=3 (VD)
flash<0>, ! flash=1 (ficont), flash=0 (flend)
host<1:0>, ! host=0 (no host), host=1 (host read),
! host=2 (host write), host=3 (illegal)
presentstate<4:0>;
! state assignments
CONSTANT
IDLE=0, REF1=1, REF2=2, REF3=3,
CWR1=8, CWR2=9,

RE1=12, RE2=13, RE3=14, RE4=15,
WR1=20, WR2=21, WR3=22, WR4=23,
CRD1=28, CRD2=29, CRD3=30, CRD4=31;

ROUTINE main;
nextstate = IDLE;
SELECT presentstate FROM
[IDLE]: BEGIN
rasINV=1; casINV=1; ceINV=1; wrINV=1;

! priority of the five memory operations:
! REF (refresh) (1st)

! CWR (column write)(2nd)

!RE (hostread) (3rd)

! WR (host write) (4th)

1 CRD (cloumn read) (Sth)

IF h EQL 0 THEN nextstate=REF1

ELSE IF (h EQL 3) AND (v EQL 3) AND flash THEN
nextstate=CWR1

ELSE IF (h NEQ 0) AND NOT (flash AND (h EQL 3) AND (v EQL 3))
AND (host EQL 1) THEN
nextstate=RE1

131

ELSE IF (h NEQ 0) AND NOT (flash AND (h EQL 3) AND (v EQL 3)5
AND (host EQL 2) THEN
nextstate=WR1
ELSE IF (h EQL 3) AND (v EQL 3) AND NOT flash AND (host EQL 0)
THEN nextstate=CRD1
ELSE nextstate=IDLE;
END;
[REF1]: BEGIN
rasINV=1; casINV=0; oeINV=1; wrINV=1;
nextstate=REF2;
END;
[REF2}): BEGIN
rasINV=0; casINV=0; oeINV=1; wrINV=1;
nextstate=REF3;
END;
[REF3]: BEGIN
rasINV=0; casINV=0; ceINV=1; wrINV=1;

IF (h EQL 0) THEN nextstate=REF1
ELSE nextstate=IDLE;

END;
[CWR1]: BEGIN
rasINV=0; casINV=1; oeINV=1; wrINV=0; .
nextstate=CWR2;
END;
[CWR2]: BEGIN
rasINV=0; casINV=1; 0eINV=1; wrINV=0;
IF (h EQL 3) AND (v EQL 3) AND flash THEN
nextstate=CWR1
ELSE nextstate=IDLE;
END;

[RE1]): BEGIN

rasINV=1; casINV=1; oeINV=1; wrINV=1;
nextstate=RE2;
END;
[RE2]): BEGIN
rasINV=0; casINV=1; 0eINV=0; wrINV=1;
nextstate=RE3;
END;
[RE3]: BEGIN
rasINV=0; casINV=0; oeINV=0; wrINV=1;
nextstate=RE4;
END;
[RE4): BEGIN ~
rasINV=1; casINV=1; 0eINV=0; wrINV=1;
IF (h NEQ 0) AND NOT ((h EQL 3) AND (v EQL 3) AND flash)
AND (host EQL 1) THEN
nextstate=RE1
ELSE nextstate=IDLE;
END;
[WR1]: BEGIN
rasINV=1; casINV=1; oeINV=1; wrINV=1;
nextstate=WR2;
END;
[WR2]: BEGIN
rasINV=0; casINV=1; 0eINV=1; wriINV=0;
nextstate=WR3;
END;
[WR3]: BEGIN
rasINV=0; casINV=0; 0eINV=1; wrINV=0;

nextstate=WR4;

132

END;
[WR4): BEGIN
rasINV=1; casINV=1; oeINV=1; wrINV=0;
IF (h NEQ 0) AND NOT ((h EQL 3) AND (v EQL 3) AND fiash)
AND (host EQL 2) THEN
nextstate=WR1
ELSE nextstate=IDLE;
END;
[CRD1]): BEGIN
rasINV=1; casINV=1; oeINV=1; wrINV=1;
nextstate=CRD2;
END;
(CRD2}: BEGIN
rasINV=0; casINV=1; 0eINV=0; wrINV=1;
nextstate=CRD3;
END;
[CRD3]: BEGIN
rasINV=0; casINV=0; 0eINV=0; wrINV=1;

IF (h EQL 3) AND (v EQL 3) AND NOT flash AND (host EQL 0) THEN

nextstate=CRD3
ELSE nextstate=CRD4;

END;
[CRD4): BEGIN
rasINV=1; casINV=1; 0eINV=0; wrINV=1;
IF (h NEQ 0) AND NOT ((h EQL 3) AND (v EQL 3) AND flash)

AND (host EQL 1) THEN
nextstate=RE1

ELSE IF (h NEQ 0) AND NOT ((h EQL 3) AND (v EQL 3) AND flash)

AND (host EQL 2) THEN
nextstate=WR1

ELSE nextstate=IDLE;

END;

! Note no OTHERWISE state is required

133

134

! This is because there are state numbers that are not
! output of this swtich (such as 4, 5, 6,7, 10, 11, ...)

ENDSELECT;

ENDROUTINE;
ENDMODEL;

APPENDIX C

The KAPPA Sadl file

"3 Name : KAPPA.sadl
+:; Purpose: Description of the Lager3 Kappa instruction set architecture
+3» Architecture, Instruction Design,
B and Control Signal Specifications: Syed Khalid Azim
;3 Author : Chuen-Shen Bernard Shung
;s Changes: Lars Thon Mar 1988 (brush-up)

ooooooo

(declare (specials 1))
(declare (macros t))

Yy e
TIIVIPIINRINIIVINNONIIDINIVINIVIVRIRORINRERIPINIIINIVOLRSININNINIFNIDIIINIININNY

11: AU (arithmetic unit)

;»» Register load instructions

(defun mor=mem ()
(grab mor mem)
(high pR pLDMOR)

(low pSELMORIN)) ; R: ram, LDMOR, LDMORINV, MORSELMEM

(defun mem=mbus O

(grab mem)
(high pW)) ; W: ram, WEN
(defun mcondload ()
(high pWC)) i WC
(defun mor=mbus Q
(grab mor)
(high pSELMORIN pLDMOR)) ; MORSELMBUS
(defun r*=rbus (n)
(caseq n
(0 (grab r0) (high pLDROQ)) ; LDRO, LDROINV
(1 (grab r1) (high pLDR1)) ; LDR1, LDRI1INV
(2 (grab r2) (high pLDR2)) ; LDR2, LDR2INV
(3 (grab r3) (high pLDR3)) ; LDR3, LDR3INV
(4 (grab r4) (high pLDRA4)))) : LDR4, LDR4INV

135

(defun rcoef=mbus ()
(grab rcoef)
(high pLDCOEF)) ; LDCOEF, LDCOEFINV

+»» Move (into a bus) instructions

(defun mbus=mor ()

(grab mbus)
(high pXMITMOR)) ; XMITMOR, XMITMORINV

(defun mbus=r* (n)

caseq n
(0 (grab mbus) (high pOENRO) (low pXMITMOR)) ; ONERO ONEROINV
(1 (grab mbus) (high pOENR1) (low pXMITMOR)) ; ONER1 ONER1INV
(2 (grab mbus) (high pOENR2) (low pXMITMOR)) ; ONER2 ONER2INV
(3 (grab mbus) (high pOENR3) (low pXMITMOR)) ; ONER3 ONER3INV
(4 (grab mbus) (high pOENR4) (low pXMITMOR)))) ; ONER4 ONER4INV

(defun mbus=acc Q
(grab mbus)
(high pXMITACC)
(low pXMITMORY)) s XMITACC XMITACCINV

{(defun rbus=acc Q

(grab rbus)
(high pACC2REG)) : ACC2REG ACC2REGINV

(defun rbus=ioport
(grab rbus)
(high pRDPORT)) ; RDPORT, RDPORTINV

(defun ioport=extport (n) ; RDSTRB
(grab ioport extport)
(high pRDSTRB) (low pWRPORT) ; ioport!=mbus

(caseq n

; PORT ADDRESS = 0000,0001,0010, and so on

(0 (low pPPORTADDRESS3 pPORTADDRESS2 pPORTADDRESS1 pPORTADDRESS0))

(1 (low pPPORTADDRESS3 pPORTADDRESS2 pPORTADDRESS1) ; 0001
(high pPORTADDRESSO0))

(2 (tow pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSO0) ; 0010
(high pPORTADDRESS1))

(3 (low pPORTADDRESS3 pPORTADDRESS3 pPORTADDRESS?) ; 0011
(high pPPORTADDRESS1 pPORTADDRESS0))

(4 (high pPORTADDRESS2) ; 0100
(low pPORTADDRESS3 pPORTADDRESS1 pPORTADDRESS0)) -
(5 (high pPORTADDRESS2 pPORTADDRESS0) ;0101
(low pPPORTADDRESS3 pPORTADDRESS1))
(6 (high pPPORTADDRESS2 pPORTADDRESS!) ; 0110

(low pPORTADDRESS3 pPORTADDRESS0))

(7 (high pPORTADDRESS2 pPORTADDRESS1 pPORTADDRESS0)
(low pPORTADDRESS3))

(8 (low pPPORTADDRESS0 pPORTADDRESS1 pPORTADDRESS?2)
(high pPORTADDRESS3))

(9 (low pPORTADDRESS1 pPORTADDRESS2) ; 1001

;0111
; 1000

136

137

(high pPPORTADDRESS3 pPORTADDRESSO0))

(10 (low pPORTADDRESS0 pPORTADDRESS?) : 1010
(high pPORTADDRESS3 pPORTADDRESS]1))

(11 (low pPORTADDRESS?2) + 1011
(high pPPORTADDRESS3 pPORTADDRESS1 pPORTADDRESSO))

(12 (low pPORTADDRESS0 pPORTADDRESS1) ;1100
(high pPPORTADDRESS3 pPORTADDRESS?))

(13 (low pPORTADDRESS1) ;1101
(high pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSO0))

(14 (low pPORTADDRESS0) ;1110

(high pPPORTADDRESS3 pPORTADDRESS2 pPORTADDRESS1))
(15 (high pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESS1 pPORTADDRESSO0))))

(defun ioport=mbus
(grab ioport)
(high pWRPORT)) ; WRPORT, WRPORTINV

(defun extport=ioport (n)
(high pWRSTRB) ; WRSTRB

; PORT ADDRESS = 0000,0001,0010, and so on
(0 (low pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESS1 pPORTADDRESS0))
(1 (low pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESS]1) ; 0001
(high pPORTADDRESS0))
(2 (low pPPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSO) ; 0010
(high pPORTADDRESS1))
(3 (low pPORTADDRESS3 pPORTADDRESS3 pPORTADDRESS?2) ; 0011
(high pPORTADDRESS1 pPORTADDRESS0))
(4 (high pPORTADDRESS?) ;0100
(low pPORTADDRESS3 pPORTADDRESSl pPORTADDRESSO))
(5 (high pPORTADDRESS2 pPORTADDRESS0) ; 0101
(low pPORTADDRESS3 pPORTADDRESS1))
(6 (high pPORTADDRESS2 pPORTADDRESS1) ;0110
(low pPORTADDRESS3 pPORTADDRESS0))
(7 (high pPORTADDRESS2 pPORTADDRESS1 pPORTADDRESS0) ;0111
(low pPORTADDRESS3))
(8 (low pPORTADDRESSQ pPORTADDRESS1 pPORTADDRESS?) ; 1000
(high pPORTADDRESS3))
(9 (low pPORTADDRESS1 pPORTADDRESS?2) ; 1001
(high pPORTADDRESS3 pPORTADDRESSO0))
(10 (low pPORTADDRES SO pPORTADDRESS?2) ;1010
(high pPORTADDRESS3 pPORTADDRESS]1))
(11 low pPORTADDRESS2) ;1011
(high pPORTADDRESS3 pPORTADDRESS1 pPORTADDRESSO))
(12 (low pPORTADDRES S0 pPORTADDRESS1) . ; 1100
(high pPORTADDRESS3 pPORTADDRESS?2))
(13 Jlow pPORTADDRESS1) ; 1101
(high pPPORTADDRESS3 pPORTADDRESS2 pPORTADDRESSO0))
(14 (Jow pPORTADDRESS0) ; 1110
(high pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESS]1))
(15 (high pPORTADDRESS3 pPORTADDRESS2 pPORTADDRESS1 pPORTADDRESSO))))

(defun acc=0 Q

(grab abus bbus acc)
(high pNOABS pZERO_BIN) 1 ZERO_BIN, ZERO_AIN
(low pANDCOEF pMINUS pCOEFCOMP))

(defun acc=sum

(grab acc))

(defun acc=abus ; the old bbus=0
(grab acc bbus)
(high pZERO_BIN)) : ZERO_BIN

(defun acc=bbus () ; the old abus=0
{grab acc abus)
(high pNOABS) : ZERO_AIN
(low pMINUS pANDCOEF pCOEFCOMP))

(defun abus=1 Q ; actually abus=0 and cin=1
(grab abus) ; used for incr bbus
(high pNOABS pMINUS)

(low pANDCOEF pCOEFCOMP)) ; COMPLA, COMPLAINV

(defun abus=mor (
(grab abus)
(high pNOABS pCOEFCOMP)
(low pMINUS pANDCOEF))

(defun abus=-mor
(grab abus)
(high pNOABS pMINUS pCOEFCOMP)
(low pANDCOEF))

{defun abus=absmor ()
(grab abus)
(high pPCOEFCOMP)
(tlow pNOABS pMINUS pANDCOEF))

(defun abus=-absmor ()
(grab abus)
(low pNOABS pANDCOEF)
(high pMINUS pCOEFCOMP))

(defun abus=coef.mor ()
(grab abus)
(high pNOABS pANDCOEF)
(fow pMINUS pCOEFCOMP))

(defun abus=coef.-mor ()
(grab abus)
(high pNOABS pMINUS pANDCOEF)
(low pCOEFCOMP))

(defun abus=coef.absmor ()

(grab abus)
(high pANDCOEF)

138

(low pNOABS pMINUS pCOEFCOMP))

(defun abus=coef.-absmor ()
(grab abus)
(high pMINUS pANDCOEF)
(low pNOABS pCOEFCOMP))

(defun abus="coef.mor ()
(grab abus)
(high pANDCOEF pCOEFCOMP pNOABS)
(low pMINUS))

(defun abus="coef.-mor

(grab abus)
(high pANDCOEF pCOEFCOMP pNOABS pMINUS))

(defun abus="coef.absmor (
(grab abus)
(high pANDCOEF pCOEFCOMP)
(low pNOABS pMINUS))

{defun abus="coef.-absmor ()
(grab abus)
(high pANDCOEF pCOEFCOMP pMINUS)
(low pNOABS))

(defun bbus=mbus Q
(grab bbus)
(low pZERO_BIN)
(low pSELBBUSIN))

(defun bbus=acc>* (n)

(grab bbus)

(low pZERO_BIN)

(high pSELBBUSIN)

(caseqn
(0 (low pS2 pS1) (high pS0))
(1 (low pS2 pS0) (high pS1))
(2 (low pS2) (high pS1 pS0))
(3 (high pS2) (low pS1 pS0))
(4 (high pS2 pSO0) (low pS1))
(5 (high pS2 pS1) (low pS0))
(6 Chigh pS2 pS1 pS0))

(t (format t "Illegal instruction: right-shift (“a) out of bound %" n))))

(defun bbus=acc<* (n)
(grab bbus)
(high pSELBBUSIN)
(low pZERO_BIN)
{caseq n
(1 (low pS2 pS1 pS0))

(t (format t "Illegal instruction: left-shift ("a) out of bound~%" n))))

(defun acondload ()

139

(high pSUMCOND))

(defun shrcoef O
(high pSHIFTCOEF))

s.: Miscellaneous "instructions”

(defun nosat () (high pNOSAT))
(defun aip ((high pAIP))

I””'!!;;’i"""!"””"””’l;;;;;;!’li"""”"’!’9:;"!"'7'9’!'IO”"'
; APU (address processing unit)

2999999990000 999099999999999909999903909909999999099099999999299299999999999999

s Regsiter load instructions

(defun x*=eabus (n)
(caseq n
(0 (grab x0) (high pLOADXO0)) ; LOADX0, LOADXOINV
(1 (grab x1) (high pLOADX1)) ; LOADX1, LOADX1INV
(2 (grab x2) (high pLOADX?2)) ; LOADX2, LOADX2INV
(3 (grab x3) (high pLOADX3)) ; LOADX3, LOADX3INV
(4 (grab x4) (high pLOADX4)))) : LOADX4, LOADX4INV

(defun xcondload ()
(high pCONDLD))

ss:Move (into a bus) instructions

(defun addr fexpr ()

(grab dbus)
(ramdecodebase (car I)))

(defun offset (1)
(ramdecodeoffset 1))

(det:un xip Q
(high pXIP))

(defun xbus=x* (n)
(caseq n

(0 (grab xbus) (low pXBUSZERO) (high pOENX0)) ; OENXO0, OENXOINV
(1 (grab xbus) (low pXBUSZERO) (high pOENX1)) ; OENX1, OENX1INV
(2 (grab xbus) (low pXBUSZERO) (high pOENX2)) ; OENX2, OENX2INV
(3 (grab xbus) (low pXBUSZERO) (high pOENX3)) ; OENX3, OENX3INV
(4 (grab xbus) (low pXBUSZERO) (high pOENX4)))) ; OENX4, OENX4INV

(defun xbus=0 (

(grab xbus)
(high pXBUSZEROY)) ; XBUSZERO

(defun eabus=sum ()

(grab eabus)

(high pPOENEALATCH)) s OENEALATCH, OENEALATCHINV

140

141

.. .
PPIPNIRIIIIIIITINRIINNIININNINIININIRINININININNINNNNININRINNININNINIINRIINNNY

:»» Communication between AU and APU

..
99TV ITIIVVININNRNNNNININITIINENINITIININIVINIINININIININIDVIIVIITIIIIIIGNGG

(defun eabus=mbus ()

(grab eabus)
(high pMBUS2EABUS))

(defun areg=eabus (

(grab areg)
(high pEABUS2MBUS))

(defun mbus=areg ; this must always be asserted
(grab mbus) ; following areg=eabus
(low pXMITMOR))

(defun timereg=eabus
(grab timerinreg)
(high pLDTIMER)) ; LDTIMER, LDTIMERINV

;»: No operation (nop). Handles all the defaults.

(defun nop ()
(high pXBUSZERO) (ramdecodebase 0) + Xbus=0, dbus=0
(high pSELMORIN) ;s mor=mbus
(high pXMITMOR) ; mbus=mor
(high pNOABS) (low pMINUS pANDCOEF pCOEFCOMP) ; abus=0
(high pZERO_BIN) ; bbus=0
(low pAIP pSUMCOND) ; acc=sum
(low pS2 pS1) (high pS0) ; shifterout=acc>0
(high pWRPORT)) ; ioport=mbus

.+ Ken insists to use (fsm #) instead of an identifier
i to refer to the dfsm instruction

(defun fsm (n) n)
::: Ken invented

(defun immed (n) (grab dbus) (ramdecodeoffset n))
(setq reg+bus 20)

’!1"1"’!9"I"!"!"""I""’Ol'l"'i'!'!"”"’l’!';v”v’ov”v”'."'t"”
s»» Register inventory

PIRIINNNININININIIIINININININNIIININININNINNNINNNNNINIININININIIINNISNIININY

(setq mor 0)
(setq acc 1)
(setqr02)
(setqrl 3)
(setq rcoef 4)
(setq x0 S)
(setq x1 6)

(setq x2 7)

(setq mem 8)

(setq areg 9) ; fictitious
(setq timerinreg 10) ; write only

PIRIIINIININNIINRNINNNNNDIRRRRNINNININININININRININIINNINININNINNNINNNINNINGNDY
A
+»» Bus inventory

(setq ioport 11)

(setq mbus 12)

(setq rbus 13)

(setq abus 14)

(setq bbus 15)

(setq eabus 16)

(setg xbus 17)

(setq dbus 18)

(setq extport 19) ; fictitious

. EOB

.
*

(setq EOB 0)

(setq pLDTIMER 1)

+» if stack is used then need EOB2
s (setq EOB2 2)

”0'!!!t:”""":,”"l”"’ll"!"""""”!1"’l”"""D":’l’ll)l':""’
+»s Arithmetic Unit microcode bits (26 in this version)

P00900000999990999990909900 00200099979 99992099290 0000903009999 999933799999999

(setq pWC 2)

(setq pAIP 3)

(setq pNOSAT 4)

(setq pLDMOR 5)
(setq pLDRO 6)

(setq pLDR17)

(setq pLDCOEF 8)
(setq pXMITMOR 9)
(setq pXMITACC 10)
(setq pSELMORIN 11)
(setq pPANDCOEF 12)
(setq pCOEFCOMP 13)
(setq pNOABS 14)
(setq pMINUS 15)
(setq pSELBBUSIN 16)
(setq pZERO_BIN 17)
(setq pSO 18)

(setq pS1 19)

(setq pS2 20)

(setq pOENRO 21)
(setq pOENR1 22)
(setq pACC2REG 23)

142

(setq pSUMCOND 24)
(setq pSHIFTCOEF 25)
(setq pRDPORT 26)
(setq pWRPORT 27)

coe
9999999999990 00 000000000 09090909999999939999999999999999909 299999999 9999999999

++: Address Processing Unit microcode bits (12 in this version)

.. .o o (X3
9999929999979 9 2090000000929 9909399 2939390990299 9995930099099920997999930 098

(setq pLOADXO 28)

(setq pLOADX1 29)

(setq pLOADX2 30)

(setq pCONDLD 31)

(setq pPOENXO0 32)

(setq pOENX1 33)

(setq pPOENX2 34) .
(setq pXBUSZERO 35)
(setq pPEABUS2MBUS 36)
(setq pPMBUS2EABUS 37)
(setq pPOENEALATCH 38)
(setq pXIP 39)

""”’,’l!"l"',"""ll;;l'I!’i""!l"'!!’I!D,,"”";;')"1"!"""";;;
+» /O related microcode bits (6 in this version)

PN INNRTI NIRRT NINNNNN NN NR RN I RITINIIINIIIIINVININIRIINNIIVIVIINNNNNNNNNY

(setq pRDSTRB 40)
(setq pWRSTRB 41)
(setq PPORTADDRESSO0 42)
(setq pPPORTADDRESS1 43)
(setq pPPORTADDRESS?2 44)
(setq PPORTADDRESS3 45)

I IIIIINIIIIINIIINIINININNINNNNINNINININIINININNNNNININNINNINININNINIININNY

+»s RAM control microcode bits (2 in this version)

..
PIIININNRINIINININIINIIININIIIIIIIIITIVIVININININIIVININIIINNNINIIICINIIIGNGY

(setq pR 46)
(setq pW 47)

(setq NR_CTR 48) ;0-48 makes 49 bits

PRI NN R NI RN eI PRI RN RN RN NIRRT IRIRIRORIRISIIRIRINIININIRRINININY
", "
s "Other fields

2999999990999 0000 00909 99999999909099 0900999379952 92302970999990999909R00999909

(setg FSMFIELD 48)
(setqg ADDRCODE 49)
(setqg ADDRCODEI 50)

143

APPENDIX D

Pitch Tracker Inputs

1. Silage program
2. RL program

3. Rass program

145

r~
* Gold Pitch Tracker in Silage

*/
#define W 16 /* data path width */
VOICED =5;
BLANK =12;
DECAY =1 - 3/128;
DELTA =4;
I* Interpretation of the constants:
*
* After locating a pitch, a blanking interval of duration BLANK
* if entered during which all peaks are rejected.
*
* Then, an exponentially-decaying threshold signal with time
* constant DECAY is computed. Minor peaks fail to exceed this
* threshold is rejected.
*
* Window comparison: two values are said to be the same
* if their difference is less than or equal to DELTA
*®
* If all scores are less than VOICED then the speech are
® considered as unvoiced
*/
#define N6

#define compare(a, b) (abs(a-b) <DELTA ->110)

#define is_peak(x) x@1 & !x)
#define is_valley(x) (x@1 & x)

func main(in: fix<16>): int<8> =
begin
Y=Y@1>=N-1->in<W>0) Il Y@1 + 1;

sig = fix<W>(in); /* new input value */
slp = sig > sig@1; /* slope */

Ip = is_peak(slp) -> sig@1 ll Ip@1; /* last peak */
Iv =is_valley(slp) -> sig@1 Il Iv@1; /* last valley */

/¥ compute 6 pitch candidates */
signal[0] = sig;

signal[1] = - sig;

signal(2] =sig/2-1v/2;
signal(3] = - signal[2];

signal[4] =1p/2-sig/2;
signal[5] = - signal(4];

score[0] = int<W>(0);

146

end;

(X: N) :: pp, score: begin
newppe =ppc@1 + 1;
after_blank = newppc > BLANK;

newthresh = after_blank -> DECAY * thresh@1 Il thresh@1;

/* new candidate if (A) after blanking period (B) greater than
* threshold (C) peak or valley
*/
ping = after_blank & signal(X] > newthresh &
(is_peak(slp) | is_valley(slp));

Ipp = ping -> pp(X]@1 Il Ipp@1;
pp[X] = ping -> newppc Il pp[X]1@1;
ppc = ping -> int<W>(0) Il newppc;
thresh = ping -> signal[X] || newthresh;

/¥ compute score */
score[X+1] = score[X] + compare(pp[X), pp[Y])
+ compare(Ipp, pp[Y])
+ compare(pp(X] + Ipp, pp(Y]):
end;
/* compare scores */

bingo = score[N] > topscore@1;
newtopscore = bingo -> score[N] Il topscore@1;
winner = bingo -> pp[Y] Il winner@1;

/* if top score > VOICED then update pitch else retain pitch */

pitch = (Y = N-1) -> (newtopscore < VOICED -> 0 ll winner)

Il pitch@1;
topscore = (Y = N-1) -> 0 ll newtopscore;
return = int<8>(pitch);

147

/*
* Gold Pitch Tracker in RL
*/

macro N=6;

macro VOICED=5, BLANK=12, DECAY=(1-3/128), DELTA=4;

/* see constant interpretation is Silage program */
macro compare(a, b) = abs(a - b) < DELTA;

macro is_peak(x, old_x) = old_x and not x;
macro is_valley(x, old_x) = not old_x and x;

fix signal[N], sig, old_sig, last_peak, last_valley;
int score, topscore, pitch, winner, pp[N], old_pp[N];
bool slope, old_slope;
main() (

pitch = (topscore < VOICED) ? 0 : winner;

topscore = 0;

forI=0toN-1do {
fix x;

out(pitch);
low_pass(sig, old_sig, fix inQ);

old_slope = slope;
slope = (sig > old_sig);

x =old_sig;

signal(0] = x;

signalf1] = - x;

last_valley = is_valley(slope, old_slope) ? old_sig : last_valley;
x = old_sig/2 - last_valley/2;

signal[2] = x;

signal[3] = - x;

last_peak = is_peak(slope, old_slope) ? old_sig : last_peak;

x = last_peak/2 - old_sig/2;

signal[4] = x;
signal(5] =-x;
score = 0;

forJ =0 toN-1do
int ppc[N], ppc_J;
fix thresh[N], thresh_J;
bool is_extremum, after_blank;

148

149

ppeJ=ppcJ] + 1;
ppclJ] =ppe_J;
after_blank = (ppc_J > BLANK);

is_extremum = is_peak(slope, old_slope)
or is_valley(slope, old_slope);

thresh_J = thresh[J];
thresh_J = after_blank ? DECAY * thresh_J : thresh_J;
thresh[J] = thresh_J;

/* new candidate if (A) after blanking period (B) greater than
* threshold (C) peak or valley (or is_extreme)
*/
if after_blank and is_extremum and signal[J] > thresh_J then {
old_pp(J] = pp[J];
pplJ] = ppclL;
ppeJ] =0;
thresh(J] = signal[J];
} else /* refresh */
old_pp(J] = old_pp[J];
ppl31=pp0l;

| tally_score(score, pp{I], pp(J], old_pp[J1);

if score > topscore then {
topscore = score;
winner = pp(I];

)
)

/* low pass filter */
inline low_pass(in out z, out old_z, in x)
fix X, Y, z,0ld_z; /* y is internal state. */

old_z=z;
y =-x/4 + (3/4)*y;
z=y+(3/4)*z;

/* compute raw scores */

inline tally_score(in out score, in a, in b, in c)

i{nt score, a, b, c;
score = compare(a, b) ? score + 1 : score;
score = compare(a, ¢) ? score + 1 : score;
score = compare(a, b + ¢) ? score + 1 : score;

)

; this rass program implements the (modified) Gold pitch tracking
; algorithm. The LPF front-end is included, whose transfer
; function is

*

; “(1/4)/(1-3/4*1/2)"2

; local variables

(ram f g (thresh 6) (ppc 6) (pp 7) (Ipp 6) (signal 6)
Is Ip Iv score topscore pitch winner)

; VOICED, DELTA, DECAY and BLANK constants are
; hardwired in the program, and hence are not defined

; as constants

(const (timer 350))

; define logic instructions
{dfsm
(SET (cc (not AUISIGN)))
(AND_MINUS (cc (and cc AUISIGN)))
(APV (cc (and cc even (not slp) Isp))
(cc (and cc (not even) slp (not Isp)))
(even (not even)))
(VPE (cc APUISIGN)
(even ONE))
(SIP (cc (and (not slp) Isp)))
(SIV (cc (and slp (not Isp))))
(SSL (Isp slp)
(slp (not AU1SIGN)))

; define control flow

; syntax in each state

; (1) state name (2) code block number (3) condition (4) control flow operation
(cfsm

(NITTIMER 0 0 (g0to RSTCOUNTER))
(RSTCOUNTER 5 0 (g0to LPFPV))
(LPFPV 1 0 (goto PITCH))
(PITCH 2° (not APUISIGN) (goto PITCH))
(PITCH 2 APUISIGN (goto IDLE))

(IDLE 4 EOS (goto SCORE))

(IDLE 4 (not EOS) (goto IDLE))

(SCORE 3 APUISIGN (goto RSTCOUNTERY))
(SCORE 3 (not APU1SIGN) (goto LPFPV))
)

: some hardware information
(reset_timer INITTIMER)
(max_sample_intvl 350)
(dp_word_size 16)

; code blocks
(rom
(block0
((mor=mem) (addr timer) (xbus=0) (eabus=sum)) ; r(timer)

150

151

((mbus=mor) (eabus=mbus) (timereg=eabus)) ; ldtimer

(block1
z(ll‘nl:)imem) (addr f) (rbus=ioport) (r*=rbus 1) (xbus=0)
(eabus=sum) (ioport=extport 0)) ; 1(f), rl=in(port0)
((bbus=mbus) (mbus=r* 1) (acc=bbus)) ; acc=rl
((abus=-mor) (bbus=acc>* 0) (nosat) (acc=sum)) 3 acC=-mor+acc

((mor=mem) (addr g) (bbus=acc>* 2) (acc=bbus) (xbus=0)
(eabus=sum)) ; acc=acc>2, r(g)

((abus=-mor) (acc=abus) (rbus=acc) (r*=rbus 1) (nosat) (eabus=sum)
(mbus=acc) (mem=mbus) (addr f) (xbus=0)) ; acc=-mor, rl=acc, w(f)=acc

((abus=mor) (bbus=acc>* 2) (acc=sum) (rﬁor:mbus) .
(mbus=r* 1)) ; acc=mor+acc>2, mor=rl

((abus=-mor) (bbus=acc>* 0) (acc=sum) (addr Is) (mor=mem))
s acc=-mor+acc, r(ls)

; peak/valley detector
((mem=mbus) (addr g) (abus=-mor) (bbus=acc>* 0) (eabus=sum) (xbus=0)
(acc=sum) (rbus=acc) (r*=rbus 1) (mbus=acc)) ; w(g)=acc, acc=-mor+acc, rl=acc

(SSL (mem=mbus) (addr signal) (mbus=r* 1) (acc=0) (mor=mbus) (xbus=0)
(eabus=sum)) ; w(signal)=r1, acc=0, mor=rl, SSL

((abus=-mor) (acc=abus) (mem=mbus) (addr score) (xbus=0)
(mbus=acc) (eabus=sum)) ; acc=-mor, w(score)=acc

((bbus=acc>* 1) (acc=bbus) (mem=mbus) (mbus=acc) (addr signal)
(eabus=sum) (xbus=0) (offset 1)) ; acc=acc>1, w(signal[1])=acc

((rbus=acc) (r*=rbus 0) (mor=mem) (addr lv) (xbus=0)
(eabus=sum)) : 7(lv), r0=acc (-g/2)

((mbus=r* 0) (mor=mbus) (abus=mor) (acc=abus)); mor=r0, acc=mor
((abus=mor) (bbus=acc>* 1) (acc=sum)) ; acc=mor+acc>1

((mbus=acc) (mem=mbus) (addr signal) (offset 3) (mor=mbus)
(eabus=sum) (xbus=0)) s w(signal[3])=acc, mor=acc

((abus=-mor) (acc=abus) (mor=mem) (addr Ip) (xbus=0)
(eabus=sum)) ; acc=-mor, r(lp)

((mem=mbus) (mbus=acc) (addr signal) (offset 2) (xbus=0)
(ecabus=sum)) ; w(signal[2])=acc

((mbus=r* 0) (mor=mbus) (acc=abus) (abus=mor)); mor=r0, acc=mor

((abus=mor) (bbus=acc>* 1) (acc=sum)) ; acc=mor+acc>1

((mbus=acc) (mem=mbus) (addr signal) (offset 5) (xbus=0)
(eabus=sum) (mor=mbus)) ; w(signal[5])=acc, mor=acc

((abus=-mor) (acc=abus) (mor=mem) (addr pitch) (xbus=0) (eabus=sum))
; acc=-mor, r(pitch)

((mem=mbus) (mbus=acc) (addr signal) (offset 4) (xbus=0)

(eabus=sum)) ; w(signal[4])=acc
((mbus=mor) (ioport=mbus) (extport=ioport 0) (addr 0) (xbus=0)
(eabus=sum) (x*=eabus 1)) ; out(port0)=mor, x1=0
) ; end block1 :
(block2; pitch detector

((mor=mem) (addr thresh) (xbus=x* 1) (eabus=sum)) ; rx1(thresh)

((mor=mem) (addr ppc) (xbus=x* 1) (abus=mor) (eabus=sum)
(acc=abus)) ; rx1(ppc), acc=mor

((addr 12) (areg=eabus) (abus=mor) (acc=abus) (xbus=0) (eabus=sum)
(rbus=acc) (r*=rbus 1)) ; r¢(12), acc=mor, rl=acc (thresh)

((mbus=areg) (abus=1) (mor=mbus)
(bbus=acc>* 0) (acc=sum)) ; acc=1+acc, mor=areg

((abus=-mor) (bbus=acc>* 0) (acc=sum) (mbus=r* 1) (mem=mbus)
(addr thresh) (xbus=x* 1) (eabus=sum) (rbus=acc) (r*=rbus 0))
s acc=-mor+acc, rd=acc (newppc), wx1(thresh)=r1

((bbus=mbus) (mbus=r* 1) (nosat) (acc=bbus) (mor=mbus)
SET) ; acc=rl, mor=rl, SET

((addr ppc) (xbus=x* 1) (mem=mbus) (mbus=r* 0) (abus=mor) (eabus=sum)
(bbus=acc>* 1) (nosat) (acc=sum)) ;s wx1(ppc)=10, acc=mor+acc>1

((bbus=acc>* 6) (acc=bbus) (mor=mem) (addr Ip) (eabus=sum)
(xbus=0)) s acc=ace>6, r(lp)

((mor=mbus) (mbus=acc) (acc=abus) (abus=mor))
; mor=acc, acC=mor

((abus=-mor) (bbus=mbus) (mbus=r* 1) (acc=sum) (mor=mem) (eabus=sum)
(addr signal) (rbus=acc) (r*=rbus 0) (xbus=0))
; acc=-mor+r1, r(signal), rO=acc (Ip)

((mbus=acc) (mcondload) (mem=mbus) (addr thresh) (xbus=x* 1) (eabus=sum)
(abus=-mor) (acc=sum) (bbus=acc>* 0) APV)
; acc=-mor+acc, wxlc(thresh)=acc, APV

(AND_MINUS (abus=mor) (acc=abus) (mor=mem) (addr 1v) (xbus=0)
(eabus=sum)) » AND_MINUS, acc=mor, r(lv)

152

153

((mbus=acc) (mcondload) (mem=mbus) (addr thresh) (xbus=x* 1) (acc=abus)
(abus=mor) (eabus=sum)) ; wx1c(thresh)=acc, acc=mor

((mor=mem) (addr pp) (xbus=x* 1) (eabus=sum) (rbus=acc) (r*=rbus 1))
; x1(pp), rl=acc (Iv)

((mbus=mor) (mcondload) (mem=mbus) (addr Ipp) (xbus=x* 1) (eabus=sum))
; wxlc(lpp)=mor

((mor=mem) (addr ppc) (xbus=x* 1) (acc=0)
(eabps:sum)) ; rx1(ppc), acc=0

((mbus=acc) (mcondload) (mem=mbus) (addr ppc) (xbus=x* 1)
(eabus=sum)) ; wx1c(ppc)=acc

((mbus=mor) (mcondload) (mem=mbus) (addr pp) (xbus=x* 1)
(eabus=sum)) ; wx1c(pp)=mor

((mbus=r* 0) (mem=mbus) (addr Ip) (xbus=0) (eabus=sum)) s wlp)=10

((mbus=r* 1) (mem=mbus) (addr lv) (xb.us=0) (cabus=sum)) s w(lv)=rl
; modify the score

((mor=mem) (addr pp) (xbus=0) (eabus=sum)) + 1(pp)

((mem=mbus) (mbus=mor) (addr pp) (offset 6) (xbus=0))
; w(pp[6]))=mor

((mor=mem) (addr pp) (offset 1) (xbus=x* 2) (eabus=sum)) ; rx2(pp[1])

((mor=mem) (addr pp) (xbus=x* 1) (eabus=sum) (abus=-mor)
(acc=abus)) ; rx1(pp), acc=-mor

((addr 4) (areg=eabus) (abus=mor) (bbus=acc>* 0)
(acc=sum)) ; rc(4), acc=mor+acc

((mor=mbus) (mbus=areg) (addr -8) (xbus=0)
(eabus=sum)) ; rc(-8), mor=areg

((abus=mor) (bbus=acc>* 0) (acc=sum) (mor=mbus) (mbus=areg))
; acc=mor+acc, mor=areg

((abus=mor) (bbus=acc>* 0) (acc=sum) SET (mor=mem)
(addr score) (xbus=0) (eabus=sum)) ; acc=mor+acc, SET, r(score)

((abus=mor) (acc=abus) AND_MINUS) ; acc=mor, AND_MINUS

((mor=mem) (addr pp) (offset 1) (xbus=x* 2) (abus=1) (eabus=sum)
(bbus=ace>* 0) (acc=sum)) ; x2(pp[1]), acc=1+acc

((mor=mem) (addr Ipp) (xbus=x* 1) (abus=-mor) (eabus=sum)
(acc=abus) (rbus=acc) (r*=rbus 1)) ; x1(Ipp), acc=-mor, rl=acc

((addr 4) (areg=eabus) (xbus=0) (eabus=sum) (abus=mor) (bbus=acc>* 0)

(acc=sum)) ; rc(4), acc=mor+acc

((addr -8) (mbus=areg) (areg=eabus) (xbus=0) (eabus=sum) (mor=mbus))
; rc(-8), mor=areg

((abus=mor) (acc=sum) (bbus=acc>* 0) (mor=mbus) (mbus=areg))
; aCC=MOr+acc, mor=areg

((mem=mbus) (mcondload) (addr score) (xbus=0) (eabus=sum) SET
(mbus=r* 1) (abus=mor) (bbus=acc>* 0) (acc=sum))
s we(score)=r1, SET, acc=mor+acc

((addr score) (xbus=0) (eabus=sum) AND_MINUS (abus=1)
(acc=abus)) ; AND_MINUS, r(score), acc=1

((mor=mem) (addr pp) (offset 1) (xbus=x* 2) (eabus=sum) (abus=mor)
(bbus=acc>* 0) (acc=sum)) ; rx2(pp[1]), acc=mor+acc

((mor=mem) (addr pp) (xbus=x* 1) (abus=-mor) (rbus=acc) (r*=rbus 1)
(acc=abus)) ; x1(Ipp), acc=-mor, rl=acc

((addr 4) (areg=eabus) (abus=mor) (bbus=acc>* 0) (xbus=0) (eabus=sum)
(acc=sum)) ; rc(4), acc=mor+acc

((addr -8) (areg=eabus) (mbus=areg) (mor=mbus)
(xbus=0) (eabus=sum)) ; rc(-8), mor=areg

((mbus=areg) (mor=mbus) (abus=mor) (bbus=acc>* 0) (acc=sum))
; mor=areg, acc=mor+acc

((mcondload) (mem=mbus) (mbus=r* 1) (addr score) (xbus=0)
(eabus=sum) SET (abus=mor) (acc=sum) (bbus=acc>* 0))
; SET, wc(score)=rl, acc=mor+acc

((mor=mem) (addr score) (abus=1) (xbus=0) (eabus=sum)
(acc=abus) AND_MINUS) ; r(score), acc=1, AND_MINUS

((abus=mor) (bbus=acc>* 0) (acc=sum) (xbus=x* 1) (addr 1)
(eabus=sum) (x*=eabus 1)) s acc=mor+ace, x1=x1+1

((mcondload) (mem=mbus) (mbus=acc) (addr score) (xbus=0)
(eabus=sum)) ; wc(score)=acc

((addr -5) (xbus=x* 1) (eabus=sum)) ; ea=x1-5
) ; end block2

(block3; scoring
((mor=mem) (addr score) (eabus=sum) (xbus=0)) s r(score)

((mor=mem) (addr topscore) (abus=mor) (eabus=sum) (xbus=0) (acc=abus))
; r(topscore), acc=mor

((abus=-mor) (bbus=acc>* 0) (acc=sum) (rbus=acc) (r*=rbus 1)

154

155

(mor=mem) (addr pp) (xbus=x* 2) (eabus=sum))
; acc=-mor+acc, rl=acc, rx2(pp)

(SET (abus=mor) (acc=abus) (addr 1) (xbus=x* 2)
(cabus=sum) (x*=eabus 2)) s+ SET, acc=mor, x2=x2+1

((mcondload) (mem=mbus) (addr winner) (xbus=0) (eabus=sum)
(mbus=acc)) ; wc(winner)=acc

((mcondload) (mem=mbus) (addr topscore) (xbus=0) (eabus=sum)
(mbus=r* 1)) ; wc(topscore)=rl

((addr -6) (xbus=x* 2) (eabus=sum)) ; ea=x2-6
(VPE (mor=mem) (addr winner) (xbus=0) (eabus=sum)) ; VPE, r(winner)

((addr topscore) (xbus=0) (eabus=sum) (mor=mem)
(abus=mor) (acc=abus)) ; r{topscore), acc=mor

((addr pitch) (mem=mbus) (mcondload) (xbus=0) (eabus=sum)
(mbus=acc) (abus=mor) (acc=abus)) ; wc(pitch)=acc, acc=mor

((addr 5) (xbus=0) (eabus=sum) (acc=0) (rbus=acc)
(r*=rbus 0)) ; re(5), r0=acc, acc=0

((mor=mbus) (mbus=areg)) ; mor=areg

((addr topscore) (mem=mbus) (mcondload) (xbus=0) (eabus=sum)
(mbus=acc)) s we(topscore)=acc

((addr signal) (mor=mem) (xbus=0) (eabus=sum) (abus=mor)
(bbus=mbus) (mbus=r* 0)) ; r(signal), acc=mor+rQ

((acc=0) AND_MINUS) ; acc=0, AND_MINUS

((mcondload) (mem=mbus) (mbus=acc) (addr pitch) (abus=mor)
(acc=abus) (xbus=0) (eabus=sum) SIP) ; wc(pitch), acc=mor, SIP

((mcondload) (mem=mbus) (mbus=acc) (addr Ip)
(xbus=0) (eabus=sum) SIV) s we(lp), SIV

((mcondload) (mem=mbus) (mbus=acc) (addr Iv)
(xbus=0) (eabus=sum)) s we(lv)

((mem=mbus) (mbus=acc) (addr Is) (xbus=0) (eabus=sum)) ; w(ls)

((addr -6) (xbus=x* 2) (eabus=sum)) ; ea=x2-6
) ; end block3

(block4; IDLE
, ((nop))

(blockS; handles x2 counter

)

((addr 0) (xbus=0) (eabus=sum) (x*=eabus 2))
) ; end block0

156

	Copyright notice1988
	ERL-88-44 (1 of 2)
	ERL-88-44 (2 of 2)

