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ABSTRACT

We examine optimal control problems for a class of systems described by partial and

ordinary differential equations. After presenting a few illustrative optimal control problems,

we formulate an abstract differential equation to describe system dynamics and a canonical

optimal control problem with control constraints, terminal inequality constraints, and state-

space constraints as an infinite dimensional nonlinear programming problem with inequality

and box constraints. The abstract differential equation and the canonical problem are

sufficiently general as to admit the as an infinite dimensional nonlinear programming problem

with inequality previously described optimal control problems. We show that the costs and

inequality constraints of the nonlinear program are Gateaux differentiable so that standard

infinite dimensional nonlinear programming algorithms can be applied to problems with no

control constraints. Equivalently, optimal control algorithms for problems with ODE's and

control constraints are extended to PDE systems.

We extend the theory of relaxed controls as presented by Warga [War.l] and

Williamson-Polak [Wil.l] to optimal control problems in which the dynamics are described

by our abstract differential equation.

We introduce an extension of the Klessig-Polak [Kle.l] adaptive precision gradient

method to perform a discretization of the PDE into a finite difference equation and show that

for optimal control problems with control constraints the limits of the solutions to the discre-

tized problems satisfy a necessary condition for optimality of the original problem.



We introduce an extension of the Pironneau-Polak [Pir.l] method of feasible directions

with two new search direction finding subprocedures. Finally, using this algorithm we solve

a collection of optimal control problems involving the rotation of a flexible beam with vari

ous objectives and constraints.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The development of optimal control theory was motivated in the 1950s and 1960s by

the need to extend the calculus of variations to solve the problem of controlling spacecraft

trajectories. Determining a sequence of controls to maneuver the Apollo 11 command

module to the Moon and back involved solving enormously complicated problems. Espe

cially critical was the craft's return trajectory since incorrect trajectories could have resulted

in the command module either burning up as it re-entered the Earth's atmosphere or skip

ping over the atmosphere and not returning to Earth. The trajectories of the Earth and Moon,

the gravitational effects of the Sun, Moon, and Earth, and solar pressures, as well as the

dynamics of the spacecraft had to be modeled. The resulting system was nonlinear and of

high order. More general applications of open-loop optimal control theory have included cal

culating minimum time and minimum fuel trajectories for unmanned craft for both orbiting

and interplanetary missions.

Optimal control theory has also been used to develop feedback laws to regulate finite-

dimensional linear, time-invariant systems. An optimal control problem is formulated in

which the cost is the integral of the sum of quadratic functions of the state error and the con

trol. It has been shown (see [Ath.l] for example) that for the solution to this optimal control

problem, the control at time t is a linear function of the state error at time t. The linear func

tion is an easily found matrix multiplied by the solution to a Riccati equation.

However, many of the physical processes in the world cannot be described by ordinary

differential equations. Two major classes of physical processes, vibration and diffusion, are
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usually described by partial differential equations. Most moving objects exhibit some degree

of vibration such as the swaying of a building due to high winds or the vibration of a car

moving down a road. Although some vibrational processes can be modeled effectively by

ordinary differential equations1, others exist for which ordinary differential equations models

are inadequate. Many of the structures to be placed in space in the next decades will be hun

dreds of feet long, and very light. These structures will be flexible with low damping and so

the appropriate models will be determined using partial differential equations.

Many physical processes can be modeled as diffusion processes. The best known

diffusion process is the heat equation, which models the flow of heat in a homogeneous

material Variants of the heat equation can be used to model electron flow, and even the

price of stock options [Bla.l]. More complicated equations can be used to model diffusion in

membranes and fluid flows.

There are two major differences between ordinary and partial differential equations.

First, most ODEs can be written in the form z(t) = f(z(t), u(t), t) where ft- f •, •) satisfies cer

tain continuity assumptions. This formulation has allowed for a uniform development of

algorithms to solve optimal control problems with ODE dynamics. There is no such canoni

cal form for partial differential equations. Second, partial differential equations are often

3composed of unbounded operators such as —. Although the meaning of the exponential of a
ox

bounded linear operator is well understood in the control literature, the properties of

exponentials of unbounded operators, and the role they play in solving optimal control prob

lems with PDEs needs further examination.

This dissertation provides a framework for solving optimal control problems arising in

systems that can be modeled by partial differential equations. Central to this framework is a

The vibration of the car is oftenmodeled by a simple spring-mass-damper ordinary differential equation.
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canonical abstract differential equation. Any problem whose dynamics fit the abstract

differential equation and whose cost and constraints are continuously differentiable functions

of the state can be solved. This abstract differential equation is general enough for many of

the systems described above, as well as for any system whose dynamics can be described by

first-order ordinary differential equations satisfying certain continuity requirements.

1.2 ALGORITHMS FOR ODES

In this section, we review earlier work in the field of optimal control of ODEs. The

section is divided into three parts. We present several conceptual algorithms for solving

optimal control problems with ODE's. These algorithms are primarily extensions of finite

dimensional non-linear programming algorithms although some have no finite dimensional

analog. The proofs of convergence for these optimal control algorithms follow their finite

dimensional counterparts with one exception: for any bounded sequence in finite dimensional

space, there exists at least one accumulation point. In infinite dimensional space, it is not

necessary that a bounded sequence have an accumulation point. Since the proofs are based

on showing various properties of accumulation points, when no accumulation points exists

the proofs are null. We shall describe some previous work which has been done to close this

gap. Rnally, the above algorithms are conceptual in that they require the exact solution of

ordinary differential equations and the calculation of an infinite dimensional design vector.

We present a few of the previously developed methods for implementing these algorithms on

a computer.

CONCEPTUAL ALGORITHMS:

We begin by stating a canonical optimal control problem for systems described by ordi

nary differential equations.
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P;inf {g\u,x)\gl(u,'Z)<0J<= { 1,2. • • • .ifij },

^(u.x) = 0,;e { mi+\t • ,m },<|>*(u,x,f) <0,f e [0,x],*e { 1,2, • • • ,p },

M€ Gt,X€ [tmin.Xn^l.O^Xmin^Xm^^oo }, (]])

where ^(k.x) =#(;c(x,u,x)) for je { 1,2, • • • ,m }, <|>*(u,x,0 =£*(*(*, u,x)) for

&€ { 1,2, • • • ,p }, fi is either a compact, convex subset of R" or the entire space IR",

x(-, u, x) is the solution to

4**(/,k,x) =/(*(*,K,x),u(r)), re [0,x], Jt(0,u,x) =*<,, (1.2)
or

GT4 { ue L?([0,x])nL«([0,x])lu(r)e {/},/€ [0,x], (1.3)

U is either a compact, convex subset of IRm or the entire space IRm. When m > 0, we say

that the problem has terminal constraints; when p > 0, the problem has state-space con

straints. If Xmjn < Xjnaj, P is called a free-time problem; otherwise it is called a fixed-time

problem.

A standard method of transcription for converting free-time problems into fixed-time

problems is described in Chapter 4. Its only drawback is that the resulting dynamics are

non-linear even if the original dynamics were linear. With suitable assumptions on ft-, •),

g*(-, •) is differentiable in the control u. Consequently, it is at least theoretically possible to

extend any algorithm designed to solve finite dimensional non-linear programming problems

to an algorithm to solve an optimal control problem if there are no control constraints. A

survey of such methods, including a discussion of infinite dimensional analogs appears in

[Pol.4]. We also refer to Polak's book [Pol.l], which gives a detailed look at many of these

algorithms, and Luenberger's book [Lue.l], which presents some additional general non

linear programming algorithms. Although the algorithms in [Lue.l] are not presented in the

context of optimal control algorithms, the extensions are farily straightforward. In particular,
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we point out that the Newton method has been extended to solve unconstrained optimal con

trol problems in which g° is twice continuously differentiable [Gol.l, Mill]. Furthermore, a

Newton method can be used [Pol.l] to find a control which satisfies the necessary condition

for optimality arising from the Maximum Principle.

Bertsekas [Ber.l] has extended the Goldstein-Levitin-Polyak gradient projection algo

rithm to problems with only control constraints. Mayne and Polak have developed a family

of optimal control algorithms to solve problems with control constraints and terminal inequal

ity constraints [Pol.2, Pol.3], control and terminal equality and inequality constraints [May.2],

and control, state-space, and terminal equality and inequality constraints [May.3]. The algo

rithms in [Pol.2] and [Pol.3] are extensions of the Pironneau-Polak algorithm [Pir.l] to the

infinite dimensional case with control constraints. [May.2] and [May.3] are extensions of

exact penalty function algorithms to the infinite dimensional case with control constraints.

Warga's [War.2] algorithm solves problems with state-space, control and terminal inequality

constraints.

RELAXED CONTROLS:

Early in the study of optimal control theory it was realized that there may not be solu

tions to optimal control problems. For example, consider the problem:

min{ g(u) lue G }, (1.4)

where

G&{ue L£lw(f)e U,r e [0,1] }, (1.5)

U is a compact convex set of IRm, and g(u) = h(x(\,«)) and *(•, u) is the solution to

—x(t,u) =f(x(t,u),u(t)), x(P,u) = xb, (1.6)
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and h() is continuous. Consequently, g() is continuous. The set G is closed and bounded

but not compact, and therefore, there is no guarantee that a solution to (2.1.4) exists. It was

realized that for many infimizing sequences, the controls become increasingly chattering, and

that the effects chattering controls on ODEs is the same as that exhibited by a modified ODE

system:

-j-x(t,u) e co Kxif,m),k), *(0,u) =V (1.7)

This observation leads to a more formal theory [War.l] in which each member of the convex

hull of&x{tt u), U) is expressed as an integral over the set U with a specific measure.

DISCRETIZATION:

The numerical solutions of optimal control problems require some form of discretization

since all numerical integration techniques involve discretization. The most basic method

[Ros.l] is to replace the differential equation modeling the dynamics with a finite difference

equation obtained by discretizing the differential equatioa By contrast, Canon, Cullum and

Polak [Caal] proposed using standard sampled data discretization of the control, which res

tricts the control to be piecewise constant with a finite number of discontinuities. These algo

rithms raise the question of the relation between the solutions to the discretized problems and

the solution to the original problem. It was shown by Cullum [Cul.l] that only under reason

ably restrictive assumptions can one be sure that the solutions of the discretized problems

will converge in some sense to the solution of the original problem as the discretization is

infinitely refined. Furthermore, she showed that if a free-time problem is discretized in an ad

hoc fashion, then the solutions of the discretized problems would almost certainly not approx

imate a solution of the original problem. However, if the free-time problem is transcribed

2This means that x(-, u) is a function such that for all t. -r*(f. u) is a member of the convex hull off{x(l ,u),U).
at
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into a fixed-time problem, then the solutions of the discretized problems will approximate a

solution of the original problem. Similarly, she showed that state-space constraints must be

transformed into affine constraints by the introduction of additional variables in order to make

the problem stable with respect to discretization.

Klessig and Polak have developed a theory of adaptive precision discretization for

implementation. In [Kle.l], they present an algorithm model for solving an unconstrained

optimal control problem. Their theory is based on the ability to calculate the value of the

cost and the gradient of the cost to an arbitrary accuracy. For a given value of the control

and a given tolerance, an approximate cost and gradient of the cost are calculated within the

tolerance. These approximations are substituted for the true cost and true gradient in a stan

dard gradient algorithm. When a certain criterion is met, the required accuracy is increased

(i.e., the tolerance is reduced). This approach has two main benefits: it is believed that accu

racy of the calculation of the cost and its gradient is less critical farther from the optimal

point Since it is cheaper to calculate the cost and its gradient with lower accuracy, the adap

tive technique could be more efficient in finding an optimal point. As for the convergence

issue, Klessig and Polak have proven that accumulation points of sequences produced by

such an adaptive strategy satisfy first order necessary optimality conditions for the original

problem. They present a specific algorithm implementation for solving unconstrained optimal

control problems. Their experimental data has shown their adaptive strategy to be much

more efficient than the standard nonadaptive approach.



CHAPTER 2

OPTIMAL CONTROL WITH PDE DYNAMICS

In this chapter, we present two examples of problems in the optimal control of systems

with PDE dynamics. Although the original motivation of our research was to solve the prob

lem of optimal slewing of flexible structures, we discovered that this work is general enough

to apply to a larger class of problems.

2.1 EXAMPLE - OPTIMAL SLEWING OF FLEXIBLE STRUCTURES:

Recent years have seen an increase in research in the optimal control of flexible struc

tures. The primary motivation for this research is the control of flexible aerospace structures,

which are becoming larger and more flexible while their performance requirements are

becoming more stringent (see, e.g., [Tay.l, Nas.l]). For example, in tracking and other

applications, satellites with large antennae, solar collectors, and other flexible components

must perform fast slewing maneuvers while maintaining tight control over the vibrations of

their flexible elements. Outside of the aerospace applications .research on flexible structure

control may have an impact on the control of mechanisms with flexible links.

There are two major reasons to study optimal control for slewing flexible structures.

First, the equations describing the dynamics of flexible structures are usually pseudo-linear,

there are linear partial differential equations (PDEs) which are coupled by non-linear ordinary

differential equations (ODEs). It is therefore very difficult to control the structures

effectively by feedback laws alone. Open loop optimal control can be used to bring a flexible

structure close to the desired state and feedback control l can be used to ensure the final

1The feedback control law is basedon linearized modelsof the system.
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accuracy.2 Second, the solution to the optimal control problem is by definition the best con

trol given our performance criteria. We can use this as a benchmark with which to compare

suboptimal (and possibly easier to compute) strategies.

We begin with four illustrative problems. These examples, although simple, are

representative of optimal control problems involving slewing of flexible structures.

We consider the hollow aluminum tube depicted in figure 2.1. The tube is one meter

long and has a uniform cross sectional radius of 1.0 cm and a thickness of 1.6 mm. Attached

to one end of the tube is a mass of 1 kg, and attached to the other end is a shaft connected to

a motor. For simplicity, we assume that the torque produced by the motor can be directly

controlled. Our aim is to determine the torque necessary to rotate the tube and bring it to rest.

The maximum torque produced by the motor is 5 Newton-meters.

2We also envision using a hybrid open-loop / closed-loop control inwhich the open-loop control isused to determine the
setpoints for a seriesof closed loop controllers.
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Figure 2.1 - Configuration of Slewing Experiment
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the following relation between the stress in the bar, o, and the strain, e = -r-:
ox

o=£e +ri|j.. (2.1.2)

Since the partial derivative of stress with respect to distance, is equal to the mass per unit

length times the acceleration,

Ad2u 3a „ , „.

32u _d*K ro2u _ n ,. , A.
p-tf-n!M-ET?-°- (2L4)

The Maxwell assumptions lead to a different relation between stress and strain:

Therefore, by taking the partial of (2.1.5) with respect to xt and using (2.1.3), we obtain

Jg_ =lA +£.£* (2 i 6)
dxdt E 3/3 ri dr2 K }

Integrating with respect to f, and setting the constant of intergration to zero, (2.1.6) becomes

dr T[ dt dx2

In PDEs derived using the Kelvin-Voigt damping model, pulses travel infinitely fast

through the beam, and therefore the Kelvin-Voigt assumption is accurate for only low fre

quency modeling. Conversely, Maxwell damping is not accurate for modeling low frequen

cies.

Returning to the beam, and applying Kelvin-Voigt and Maxwell damping to (2.1.1), we

obtain (2.1.8) and (2.1.9) respectively.
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Modeling

Several different PDEs can be obtained to model the dynamics of the tube. The most

sophisticated PDEs, which arise from applying the Theory of Elasticity, are very accurate and

can model vibrations that have wavelengths at the order of magnitude of the molecular level.

However, calculation with this model is prohibitively expensive in all but the simplest cases.

A simpler model is based on the Timoshenko assumption that the planar sections remain

planar under deformation [Gra.l]. Using this model, we obtain a hyperbolic PDE which is

fourth order in time and space. This model is considered to be fairly accurate for a wide

range of wavelengths. Finally, a third model is based on the Euler-Bemoulli assumptions

that the planar sections remain planar and that the planar sections remain perpendicular to the

centroid axis under deformation [Gra.l]. This model gives rise to the classical beam equa

tion:

However, this model is limited in its ability to model high-frequency responses. For a uni

form beam, this model becomes inaccurate when the wavelength of the vibration is less than

about ten times the depth of the beam. It is easily shown that Equation (2.1.1) is parabolic,

and therefore predicts that pulses will travel infinitely fast through the beam. This directly

contradicts experimental evidence.

Several different models also exist for damping. For ease of exposition, these models

are described in terms of longitudinal waves through a bar. The classical Kelvin-Voigt model

assumes that each infinitesimally small section of the bar can be modeled as a spring in paral

lel with a dashpot. Its dual, Maxwell damping, assumes that this infinitesimally small section

can be modeled as a spring in series with a dashpot. The Kelvin-Voigt assumptions lead to
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d2u d5u 34m „

d2u , ^ du , 34u n M ^
!? +am-*+y!7°0- (2,-9)

A third type of damping combines Kelvin-Voigt and Maxwell damping. A fourth type, pro

portional damping, in which the damping of a mode is proportional to its frequency, does not

have a simple physical interpretation. However, recent experimental results on vibrating

beams [Tay.2] indicate that proportional damping is the best model of the four. Applying

proportional damping to (2.1.1), we obtain:

d2u 33k 34m „
U +a^ +Ya7 =0- (2110)

Finally, non-linear models of deformation and vibration have been developed. See Vu-Quoc

[Vuq.l]. These models are accurate under large deformations where both the Timoshenko

and Euler-Bernoulli models break down due to inaccuracy in geometric modeling.

In summary, there are four models: the Theory of Elasticity, Timoshenko, Euler-

Bemoulli, and the non-linear models. We have also discussed four types of damping: none,

Kelvin-Voigt, Maxwell, and proportional. The abstract differential equation in Chapter 3 is

general enough to admit the Euler-BemouUi beam with each type of damping for fixed-time

problems and Kelvin-Voigt and proportional damping for free-time problems.3 For subse

quent analysis and simulation (see Chapter 8), we have chosen to use the Euler-BemouUi

assumptions with Kelvin-Voigt damping. We have neglected coupling between the axial and

flexural modes of the tube. This simplification may cause large modeling errors at high velo

cities [Sim. 1}.

Models with Maxwell damping or no damping cannot be shown to generate the analytical semigroups necessary for
free-time problems. See Chapter 4.
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The appropriate equations of motion determined by application of the standard Euler-

Bernoulli tube with Kelvin-Voigt visco-elastic damping are:

mwM(f, x) + CIwfrrrJt, x) +Elw^t, x) - mCl\t)w(t, x)

m
u(t)xtxe [0,/]

Ml2 + ±mP <2-U1>

with boundary conditions:

w(f ,0) = 0,w,(r,0) = 0,C/wm(r, 1) + Elwjf, 1) = 0. (2.1.12)

M[Cl2(t)w(t, 1) - wtt(t, 1) - u(t)[\ +Clw^t, 1) +Elw^t, 1) = 0, (2.1.13)

and rigid body dynamics:

4e(r) =n(r), 4n(') = Ll—M(r)' «ii^
* * M2 +lm/3 (2'U4)

3

where w(t,x) is the displacement of the tube from the shadow tube (which remains unde-

formed during the motion) due to bending as a function of time and distance along the tube;

u(t) is the torque applied by the motor, and Q(t) is the resulting angular velocity (in radians

per second). We shall denote by ©(f) the angular displacement of the rigid body (in radians).

The values for the parameters in (2.1.11) - (2.1.13) are: / = 1.0 m, m = .257 kg/m,

C = 6.30xl07 Pascals/sec, E = 6.30xl09 Pascals, / = 1.005xl0~8m4, M = 0.914 kg. The

tube is very lightly damped (0.1 percent).

We assume that the tube is initially at rest with no deformations, and so the following

initial conditions hold:

w(0,x) = w,(0,*) = 0, xe [0,11. (2.1.15a)

0(0) = Q(0) = 0. (2.1.15b)

We consider four problems:
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P^ Minimize the time required to rotate the tube 45 degrees, from rest to rest, subject to

the given torque constraint.

P2: Minimize the total energy required to rotate the tube 45 degrees, from rest to rest, sub

ject to the given torque constraint and the maneuver time not exceeding a given bound.

P3: Minimize the time required to rotate the tube 45 degrees, from rest to rest, subject to

the given torque constraint and an upper bound on the potential energy due to deforma

tion of the tube throughout the entire maneuver.

P4: Minimize the total energy required to rotate the tube 45 degrees, from rest to rest, sub

ject to the given torque constraint, the maneuver time not exceeding a given bound, and

an upper bound on the potential energy due to deformation of the tube throughout the

entire maneuver.

ALGORITHMS FOR OPTIMAL SLEWING OF FLEXIBLE STRUCTURES:

There are two basic schools of thought concerning slewing of space structures. One

advocates discretizing the PDE into an ODE using the Raleigh-Ritz or Finite Element

Method. The resulting problem is then solved by replacing the PDE dynamics with the ODE

dynamics using standard methods for optimal control of ordinary differential equations. Such

an approach often involves an attempt to determine the spill-over effect of the ignored

dynamics on the solution. The second school advocates solving the original problem with

dynamics described by the PDE. The second approach is much more difficult, since it

requires the invention of new methods. There is some debate as to whether it is necessary to

use the second approach for slewing of flexible structures.4

4 We need to distinguish here between slewing control and feedback control. By the former, we wish to slew a flexible
structure close to the desired sute. By the latter, we wish to use feedback to close the loop resulting in a suble system. We
believe that spill-overeffect is much more critical for feedback control because it can result in an unstablesystem.
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We present one of the best known strategies of the first school for slewing a flexible

structure. Junkins and Turner [Jun.l] have developed a method for solving the slewing prob

lem of a rotating structure. They first consider the fixed-time problem in which the vibration

at the final time is arrested and the final rotational velocity is fixed. The final rotation angle

may be free or fixed. Using the Rayleigh-Ritz method, they determine a set of non-linear

differential equations to approximate the dynamics of the system. Their objective is to

minimize the performance index J=J [uT(t)Wuji(t) +^{tW^if^dt subject to the final

state conditions where «(•) and *(•) are the input and state respectively, and W^ and W„ are

positive definite matrices chosen by the designer. A linearized set of equations is generated

and the resulting two-point boundary value problem (TPBVP) is solved. Finally, using a con

tinuation technique [Sch.l], they determine the solution to the non-linear TPBVP. The con

tinuation is iterative, and each iteration requires at least one solution of the non-linear state

transition matrix. For problems in which a bifurcation point exists, the Chow-Yorke algo

rithm [Cho.l] may be used, but at considerable cost. By exploiting the sparse matrix proper

ties of the problem, they are able to reduce computational effort by up to seventy-five per

cent. They have performed some frequency shaping on the control by augmenting the non

linear differential equation. For a simple problem, Junkins and Turner have produced numer

ical results. See [Jun.l]

For linear free-time problems, those in which tf is not fixed, they solve the fixed-time

problem for several different values of tf. Then, using the minimum of these times such that

J as described above is satisfactory as a starting point, an iterative algorithm determines the

minimum time.

The limitations of this technique are: (1) it does not solve optimal control problems with

hard control constraints (e.g. u(t) £ 1 for t e [0, tj\)\ (2) it does not solve problems with state
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space constraints (e.g., bounding the potential energy resulting from the deformation of the

tube throughout the entire maneuver); (3) The PDE dynamics are not used directly, and Jun

kins and Turner provide no analysis that shows the relation between their solution and the

solution to the original problem. Additional work in this area includes [Bre.l, Chu.l, Flo.l]

A strategy from the second school for slewing a flexible structure is shown by Araya's

[Ara.l] solution of the minimum-time optimal control problem:

PA : min{ t I tc(x, «)l £ 8, u e Gx },
T,U

where *(•, u) is the mild solution of:

-^x(t) =Ax(t) + K(x(t)) +£u(r), *(0) =Xq,

(2.1.16)

(2.1.17)

A is a strongly continuous group generator, B is a linear finite dimensional operator, AT is a

C°° non-linear operator, 5 is a small positive number, and Gx is defined as in (2.1.9).

Araya chose the model general enough to be useful for many types of flexible structure slew

ing. In particular, he was interested in solving the NASA SCOLE design challenge, [Tay.l].

He creates a series of subproblems, Ptt f.

P*. t4

min f g%x(s)) +^(uis^ds

x = Ax + K(x) + Bu, x{Q) = Xq

where fl e C~(0,1), ITC*) £ 0, and

II(j) 4
for s £ 2

0fors£ r

^£(«) =̂ -B(N-Q)+]2

g\u) = n \x\2 - 52
2e

(2.1.18)

(2.1.19)

He derives maximum principles for P and PzT. Finally he shows that as e -> 0 and
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T -> «», the controls derived from Ptt T approach the optimal control for P weakly in the

Z^fO, xl norm for every x £ 0. It appears that state-space constraints can be added to his

formulation without serious difficulty.

However, no effort has been made to implement this algorithm, and in fact implementa

tion seems quite difficult since in its current form the algorithm requires the solution of an

infinite-dimensional state transition matrix.

12 HEAT-EQUATION EXAMPLE

In this section we examine another example of an optimal control problem with PDE

dynamics. In this example, the dynamics can be modeled as a diffusion process. Consider a

cylinder (hot dog) of infinite length and radius 1. The cylinder has initial temperature w(0, •)

zero. Starting at t = 0, we can control the time derivative of the temperature at the boun

dary w(f, 1) of the cylinder, u(f), such that u{t) e [-5,5]. The objective is to bring the entire

cylinder to within a small tolerance of the temperature 5 in minimum time. We require the

temperature of the cylinder yv{t, r) to be between 0 and 10 during the heating process.

By symmetry, we can consider the plane perpendicular to the axis of the cylinder. The

heat equation in this plane in polar coordinates is:

3 1 ei2-w(r,r) =-w(r,r) +^jw(r,r), w(0,r) =0,r e [0,1], (2.2.1)

with boundary conditions:

Jj-w(f, 1) =u{t), -$-w(t, 0) =0. (2.2.2)

We introduce an auxiliary variable z() so that
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-|-w(r,r) =->v(r,r) +^Tw(r,r) w(0,r) =0,re [0,1], (2.2.3)
dt r or2

•|z(f) =u(f),z(0) =0, (2.2.4)

with boundary conditions:

w(t, 1) =z(t), ^w(r, 0) =0. (2.2.5)

Therefore a mathematical formulation for the hot dog problem is:

min{ xI(lw(r, )l2 - 5)2 fS e, l^-w(r, )l2 £e, z(r) e [0,10], ue Gx ), (2.2.6)

where

Gt4{u6 LJtO.x]) IM(r) e [-5,5] ,r e [0,x] }. (2.2.7)

23 THESIS SUMMARY AND CONTRIBUTIONS

Now that we have explained the problem and given some introductory notation, we are

in the position to present an outline for the rest of this thesis.

Chapter 3: We introduce a canonical form for the dynamics:

4^k)=^^") +̂ (*'.")."(')). re [0,x], *(0,k) =*o. (2.3.1)
at

where x(t,u) is a member of a Hilbert space X, u e Gx =(«eL"([0,l])

I u{t) € U, [0,x] }, U is a convex, compact subset of Rm, A:D(A)-*X is the

infinitesimal generator of a strongly continuous semigroup, and F : XxIRm -> X is a non

linear bounded operator satisfying certain assumptions (see Sections 3.2 and 3.3).

We establish Gateaux differentiability with respect to the control for fixed-time prob

lems, i.e., for u<z Gx, t e [Q,x], there exists xu(tyu) e B(L^[0f 1]<^Z£([0,1]); X) such that
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for any h e L?([0, l])nz£([0,1]),

lim v\x(t, u + Xh) - x(t, m) - tejj, u)/zl = 0. (2.3.2)
X.-»0 A,

Furthermore, we can show that xu(t, u) is continuous in u at all u e Gt. Based on this

differentiability, we construct an algorithm to solve optimal control problems with control

constraints.

Chapter 4: We consider free-time problems and show that by using a standard transcrip

tion, the free-time problem becomes a fixed-time problem whose dynamics are similar to

(2.3.1). We show Gateaux differentiability of the state for the transcribed free-time problem

with respect to the control and the final time.

Chapter 5: We extend the theory of Chapter 3 to relaxed controls (i.e., Gx is replaced by

a new set with a new topology.)

Chapter 6: We present two implementable algorithms for solving the optimal control

problem with control-constraints. These algorithms are extensions of the Klessig-Polak algo

rithms [Kle.l, Kle.2]. We briefly describe our changes, and extensions. First, the Klessig-

Polak algorithms consist of finding a sequence of approximations to the cost function and the

gradient of the cost functioa These algorithms find a sequence of approximations to the cost

function and then find the exact gradient of each approximate cost function. The latter

method is actually a subset of the former, but experimental evidence has shown that the laner

method is far superior to general method of discretization described in [Kle.l] Second, we

have extended the Klessig-Polak algorithms to the case with control constraints. Third, we

have made less restrictive requirements on functions approximating the cost. Since integra

tion methods for PDEs are less well understood, this extra leeway is a benefit. Fourth, we

have extended the proofs of convergence to relaxed controls.
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We also provide a simple example based on Fujii's [Fuj.l] analysis of Newmark's

method on a vibrating string to show how these approximating cost functions can be con

structed.

Chapter 7: We present our canonical optimal control problem:

inf{ g°(«,w)l^,iv)<0,ie £,<|>(",w,f) < 0,f e [0,1], ue G,we C ) (2.3.3)

where g/iuM = H{x{\ ,u,w)), ; e &4 { 1,2, • • ,p } and

<j)(«, w, t) = /T(;t(r fu, w)), f € [0,1], and x(-, u, w) is the solution to an abstract differential

equation with control u and initial state w.

An extended version of the Polak-Mayne [Pol.2] algorithm is presented with two

different search direction finding subprocedures.

Chapter 8: We present numerical solutions to the problems Pj - P4 described above,

obtained by using implementable versions of the algorithms in Chapter 7. We compare the

two subprocedures presented in Chapter 7 and discuss the selection of parameters for these

algorithms.

Chapter 9: Concluding Remarks.

2.4 EXTENSIONS

There are several directions in which to continue this research:

2.4.1. Examination of Different Models

For this thesis, we have been able to perform numerical tests only for a beam described by

the Euler-BemouUi equations with Kelvin-Voigt damping. Dynamics obtained from the

Timoshenko model and proportional damping, as weU as the non-linear rod model and com

putational procedure discussed in Vu-Quoc [Vuq.l], should be examined.
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2.4.2 Extension of the Canonical Form of the Abstract Differential Equation (2.3.1)

We have done preliminary work to model a two-link flexible manipulator with revolute joints

using the Euler-BemouUi assumptions. This work indicates that equation (2.4.1) is not gen

eral enough to accommodate the resulting PDEs. We propose two extensions to (2.4.1).

First for a two-link flexible manipulator in which there is no coupling from the flexible

modes to the rigid body modes:

-4-x(t, u) =C{z{t, u))Ax{t, u) +Fx{x(t, u), z(/, u), u(t)), te [0, x], x(0, u) =xQ. (2.4.1)

^z(t, u) =F2(z(t, u), ii(d), z(0, u) =z0. (2.4.2)

where x(t,u) is a member of a Hilbert space X% z(t,u) € IR", u is the control, A : D(A) -» X

is the infinitesimal generator of a strongly continuous semigroup, Fx : XxIR'txlRm -» X, and

F2 : IR^xR"1 -> Rrt and C : IR" -4 B(X,X) are non-linear bounded operators satisfying con

tinuity assumptions similar to those in Sections 3.2 and 3.3.

To aUow for coupling between rigid and flexible modes, we replace/2(z(r,«),w(r)) by

/3(*(f,K),z(f,u),tt(f)).

In (2.4.1), the operators on the control are bounded. In certain applications it may be

desirable to make these operators unbounded. We suggest an additional canonical form to be

examined:

~*(f,«) = Ax(t, u) + F(x(t, u), z(t, u), K(r)) + Bu(t) t € [0, x], x(0, m) = Xq. (2.4.3)

where A and F are defined as in (2.4.1) and B : TRm -» X is an unbounded operator.
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2.4.3. Development of Optimal Control Algorithms

The algorithms presented in Chapters 7 and 8 are based on first order nonlinear pro

gramming methods. Future work could examine other first-order and second order methods

for nonUnear programming to see if they could be efficiently extended to optimal control

problems (2.4.3). Several new first-order methods for nonUnear programming are being

developed, with a particular view toward efficient scaling [Pol.6]; as these become available,

they might also be extended.
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CHAPTER 3

ABSTRACT FORMULATION FOR FIXED TIME PROBLEMS

3.1 INTRODUCTION

Extending optimal control algorithms for problems with ODEs, such as those described

in Chapter 2, to optimal control problems with PDEs depends on how the PDE dynamics of

the system are formulated into state space form. While it is stiU unclear which systems of

partial differential equations are transcribable into the specific form (3.1.2), below, we know

that system (2.2.5) can be transcribed (see Appendix 2). The central issue in validating a for

mulation is whether the resulting operator A, defined below, is the infinitesimal generator of a

continuous semigroup. In this chapter, we shaU consider the fixed time problem with only

cost and hard control constraints. The minimum time problem with state-space and general

constraints wiU be discussed in Chapters 4 and 7. We wiU use the foUowing notation:

Let {•, •) denote the Li inner product Let X denote a Hilbert Space with inner pro

duct (•, • )x and dual space X*. Since X is a HUbert Space, X* can be identified with X. Let

A : D(A) -» X be the infinitesimal generator of a continuous semigroup { T(t) }ti,o, let

F : X x Rm -> X be a nonlinear operator, and let G be the set of admissible controls defined

by:

G&[ue L£([0,l])nz£([0,l])lu(f)€ t/.re [0,1] }. (3.1.1)

where U is a compact convex subset of IRm. We choose L%([0f 1])^L"([0,1]) as the topol

ogy for our controls. This topology contains as open sets, sets which are open in both the

LjdO, 1]) and L£([0,1]) topologies. We need the boundedness associated with the L^ topol

ogy. However L„ is too fine a topology; the Li topology is sufficiemly coarse for showing

the differentiability properties that are needed for optimization. For notational convenience,
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we denote this space by L^L^.

PDE-FORM I:

We shaU consider dynamics in a general and a specialized form. We now state the gen

eral form.

Let xif, u) e X, V re [0,1] denote the solution (if one exists) to:

4*('.") =Ax(t,u) +F(x(t,u)tu(i)), x(0fu) =x0<z D(A). (3.1.2)
dt

The simplest canonical optimal control problem P that we wiU consider has the form:

P : inf { g(u) } (3.1.3)
U € G

where g{u) = h(x(\, u)) and h is a continuously differentiable function from X into IR.

3.2 EXISTENCE AND BOUNDEDNESS OF SOLUTIONS TO PDE

The first issue to consider is what type of solutions to (3.1.2) exist. There are two

types of solutions of interest Using standard definitions [Paz.l]:

Definition: A function *(•, u) e C([0,1] ,X) is a mild solution to (3.1.2) if

x(tfu) =T(t)xo+ f T(t-s)F(x(s,u),u(s))ds. (3.2.1)

Definition: A function x{-, u) e C([0,1] ,X) is a classical solution to (3.1.2) if

(i) x(-, u) is continuously differentiable on [0,1];

(ii) x(t,u)e D(A), *€ [0,1];

(iii) (3.1.2) is satisfied. •

To simplify the discussion, we define an open set O containing G:

O&iue L^L^ Iu(t) e U,t € [0,1] }, (3.2.2)
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where U is an open set containing U.

Under our assumptions, if a mild solution exists, it is unique; and if a classical solution

exists, then mild solution exists, and the two solutions are equal. We cannot guarantee the

existence of either a mild or classical solution of (3.1.2) under our hypotheses. The foUowing

additional condition guarantees existence of a mUd solution (Lemma A2.3.1):

Assumption 3.2.1: (Lipschitz Continuity of F(-, •)). There exists K < «> such that for all

x,xe XandaUfc.ue £, IIFfrfc)-F(*,k)I < K[tx-xl + tu- ul]. •

This is too strict a condition for the dynamics in (1.8) Consequently the issue of

whether a mild solution exists must be handled case by case.

We now introduce a more restrictive abstract form. Mild solutions exist for aU systems

which can be transcribed into this form. Furthermore, any system of PDEs transcribable into

the second form (3.2.3a) - (3.2.3c) can also be transcribed into the first form, see Lemma

A2.1.1

PDE-FORM H:

Let W denote a Hilbert Space with inner product (•, • )w and dual space W*. Since W

is a Hilbert Space, W* can be identified with W. Let AL(Y ,Z) denote the space of Lipschitz

continuous functions from Banach Spaces Y into Z, with Lipschitz constant L, let B(Y,Z)

denote the the space of bounded linear functions from Y into Z, let %:D(X) -> X be the

infinitesimal generator of a continuous semigroup {J{t) }li0» and lel B :1R.n -* B(W,W),

C : 1R" -» W, and E : IR" -» W be twice continuously Frechet differentiable maps l ,

/: IRn x Rm -> IR" be a twice continuously differentiable function.
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For u e 0, let w(t, u) e W.Vre [0,1], and z(r,«) e R", V r e [0,1], denote the

solution to:

4-w(t, u) =(X +B(z(r, u)))w(r, w) +C(z(f, m)) +£(u(r)), (3.2.3a)
dt

w(0,u) =w0e D#), (3.2.3b)

4-zit, m) =Az{t, u), M(r)), z(0, u) =z0. (3.2.3c)

We make the additional assumptions:

Assumption 3.2.2:

(i) There exist M, (0 e R+ such that 17X01 <Me0* and l5tr)l £ Me™, for aU f 2> 0. Let

M £ life*

(ii) There exists K < ~ such that for aU z e R" and aU w e U, \f(z, m)I < K(lzl + 1).

(iii) For every bounded set 5 c R", there exists Ks such that for aU z"ze S and all

u.fce I/.

(a) l!/Cz,fc)-./(z,K)l </5T5[rz-zl + l?i-ttl],

(b) i-l^a.w) --^(z,^! s/syrz-za +fc-tti],
dz 0Z

(c) i-f£(z.fc) -^(z,u)i £/srs[rz-zi +fo-ai].
dK du

(iv) For every bounded set S c Rn, there exists Ls such that

(a) Be AL/S,B(W,W)),

1B is Frechet differentiable at z, i.c, for z e R", There exists B,(z) € B(W, B(R", WO) such that
c „ w .. IB(z +8z)w - A(z)w - B,(z)w6zl
For all w e vv, lim -7— = 0.

iw -»o I6zl
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(b) Ce ALjCS,W),

(c) Bz e AL/5, B(W, B(R",W))),

(d) Cze AL/5,B(Rn,W)),

(e) Eg AL/Rm,W). a

Then we have the foUowing theorems:

Lemma 3.2.3: For aU u e 0, The ordinary differential equation (3.2.3c) has a unique

solution z(-, u), and there exists b\ < « such that for aU u e 0, lz(/, m)I < fci for aU

re [0,1].

Proof: The existence and uniqueness of the solution is established in Chapter 1 of

Hale[Hal.l]. Next,

z(r, u) =z0 + ff(z(s, u), «(*))<&, (3.2.4)

lz(r, m)I £ lz0l +k\ (lz(s, «)l + l)<fc. (3.2.5)

Defining y(s,«) = lz($, m)II + 1,

t

y(s,u) £ y(0,u) +tff y(j, a)<fc. (3.2.6)

Therefore, by the Bellman-GronwaU Lemma, y(t,u) <y(01u)eK1 for re [0,1]. Define

&! 4 <r*(lz0l + 1). •

Theorem 3.2.4: The system (3.2.3a)-(3.2.3c) has a mild solution for aU u e L^L^.

Proof: Lemma 3.2.3 shows that z(f,w) exists and that there exists b\ such that

lz(f,u)l £ bx for aU f e [0,1] and aU u e O. Consequently by Assumption 3.2.2, (3.2.3a)

satisfies aU assumptions in Theorem A2.3.1, with X = W, and so (3.2.3a) has a mild solution.
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Let S = { z I Izl < bx }. Then, by Assumption 3.2.2(ii), there exists L < «> such that

B(), C() and £(•) are Lipschitz continuous on S with constant L.

Lemma 3.2.5: Let 0 be defined as in (3.2.2.). Then there exists b2 e (bx,») such that

for aU u e 0, Iw(r,i0l £ fc2. for aU f e [0,1].

Proof:

t

w{t, u) =7-(0w0 -*- f 7Xr —s)[B(z(s, u))w(s,k) +C(z(5, u)) +E(u(5))]<fc. (3.2.8)

Since B, C, and £ are Lipschitz continuous, and Iz(s,k)I < bh there exists b3 such that

\B(z(s, w))l £ &3, IC(z(j , w))l £ &3, l£(u(^))l £ fc3 for aU s e [0,1], u e 0. Hence

lw(r, u)l <Mlw0l + fM(b3lw(s, u)l +2b3)ds. (3.2.9)

The constant b2 is determined using the Bellman-GronwaU Lemma. •

This abstraction is general enough for the slewing problems we have studied. Appendix

2, Section 2 shows how the problem developed in Chapter 2 can be transcribed into PDE-

FORM n.

3.3 DIFFERENTIABILITY OF PDE SOLUTION WITH RESPECT TO CONTROL

We wiU show that the mild solution to (3.1.2) is Frechet differentiable with respect to

the control, iiQ. in the L^^L*, topology. We make the foUowing assumptions:

Assumption 3.3.1:

(i) For every bounded set KX, there exists Ks such that for aU x,xe S and• all

w.fce U,

(a) IIF(x,k)-F(jc,k)I £ Ks[(k-x\ + tu-ul],
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(b) l^LCxA) -^(x,u)l ZKs[tx-xt +tu-ul],
ox dx

(c) l-^CU) ~^-{x,u)\ £**[&-2ll&-i<l].
du du

(ii) For each u e 0, a mild solution to (3.1.2) exists, and there exists b4 < °° such that for

all u e 0 and f e [0,1], U(/,u)l £ Z?4. •

For a system whose dynamics are of PDE-FORM II, Assumption 3.3.1 (ii) is satisfied

by Lemmas 3.2.3 and 3.2.5. However, Assumption 3.3.1 (ii) must be verified on a case by

case basis for aU systems whose dynamics are of PDE-FORM I but not PDE-FORM II.

Lemma 3.3.2: (Lipschitz Continuity.) Let *(•,) be the mild solution of (3.1.2). Then,

there exists b5 such that for any u,ue 0, re [0,1]

l*(f,u) - x(t, w)l £ b5tu - wli £ b5tu - u\2, (3-3.1)

where llj and 112 denote the Lx and Z^ norms.

Proof: For any u, u e 0 and r e [0,1],

x{t,m) - x(t,m) = f 7X* - j)[F0c(r, u) ,%s)) - F(x(j ,u),u(s))]ds. (3.3.2)

Since { x(t,u) I f e [0,1], u e 0 } c S £ [ x e X I Id £ fc, }, by Assumption 3.3.1(ib),

there exists a constant Ks, such that with y(r) = tc(r, u) - jc(r, it)l, t e [0,1],

y(f) £ MA^f [ly(j)lfiCs) - «(^)l]^. (3.3.3)

Applying the Bellman-GronwaU Lemma, we obtain2

y(t) £ MKseMKsXu - u\x £ b5\tu - u\\2 (3.3.4)

2For u € L£([0,1]), lul, S lul2by the Schwartz Inequality.
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where b5 ±MKseMK$. •

We now define a linear approximation to x{-, u + bu) where 8m is a perturbation. For

bu e L^L^ we define 8x(-, u, bu) e C([0,1] ,X) to be the solution to:

'«,-,*. _,.__. ^8x(f) =fr(f-*)[^(;c(j,u),K(j)^ fe [0,1]. (3.3.5)

It is easy to show that such a solution exists.

Lemma 33.3: (Differentiability) Let *(•,•) be the mild solution to (3.1.2). Then, there

exists b6<oo such that for any u, u e 0, re [0,1]

lx(f,Ii) - x(t,m) - 8*(f, u, m- m)I £ 66Im - m£ (3.3.6)

To simplify notation, we make the foUowing definitions:

bu(t) A%t) - u(t), Ax(t, u, 5m) Axit, m) - x(/, m) , (3.3.7a)

A(5) 4^-(x(s, m) ,«&)) , B(s) 4|£fcfr, m) ,«(i)). (3.3.7b)
dbc du

Proof: By Assumption 3.3.1, there exists bj < «» such that for aU m, u e 0, aU s e [0,1],

the foUowing are true: lbx(s, u, 8m)I1 £ ^ISmI, lx(s, m)I £ fy, I—(x(s, m) , m(^))0 < 67,
dx

l-^-W*.»). "(•*))• * *7- Therefore,
dW

IAx(r,M,6M)-8x(f,M,ti)I^Mlf { F(X(5,M),M(^))-F(X(5,M),M(J))

- A£sy&x(s,u,bu)~ B(s)bu(s) }dsl

<Jiff ju(*)(Ax(j, m, 8m) - Sx(.y, u, 8m))I +
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Af fl4^0^.«) +rAx(.y, m,bu), mCO +rbu(s)) - BCtflMH&iC*)! I<fe

<Af f\L4(s)(Ax(s, m,8m) - 5x(,s, u, 8m))I

l

+ f /Tsr(IAx(5, m,Sm)I +l8M(j)l)rfrlAx(j, u, 8m)II

+JAT5KIAx(5, m,8m)I +lbu(s)\\)ddbu(s)l I<fr

<Aff { &7IAx(j,m,8m)-c*Cs,m,8m)II

+Af/jr5[IIAx(5, u, 8m)I + lbu(s)l\)2 }ds. (3.3.8)

Since by Lemma 3.3.4, IAx($, u, 8m)I < bslbui2,

i

IAx(f,M,SM) - 8x(r,M,M)l <Aff { bjiAx(s,u,8m) - 8x(j,m,8m)I }<fr

+Af^s[fr5l8Ml2 + lbu(s)l]2. (3.3.9)

Applying the Bellman-GronwaU Lemma,

lAxit, m,8m) - 8x(f, m,m)I < ^6l5ul|, (3.3.10)

where fc6 4 MK^l +b5)2eMhl. •

The map 8m -> 8x(f, u, 8m) is linear in 8m for each t e [0,1], u e 0. If we call this

map *w(f,m), then we have the foUowing theorem:
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Theorem 33.4: For aU u e 0 and t e [0,1], x{t ,u) admits a Gateaux derivative in the

L^L^ topology. That is, there exists a linear operator xu(t,u) e B(L2^L00 ,X) such that for

aU 8m e L2n^oo

lim ^t,u +sbu)-x(t,u) bXu{u fr)5M 03U)
s ->0 S g

So far we have stated that for u e 0, 8m e L^L^ the directional derivative *M(f,M)8M

exists. We now seek to find the differential xu(t, u) : l^L^ -> X explicitly. We begin by

defining w(-, u, 8m) e C([0,1] ,X), to be the mild solution to

—w(r) = (A + B(r, m)M0 + C(f, m)8m(0 , w(0) = 0 (3.3.12)
dt

with B(r, m) 4-|^(xa, m) ,m(0) , C(r, m) 4|^Wr, m) ,m(0).
dx du

Since A is an infinitesimal generator,

JB(-,M)e L?([0,l],B(X,X))n L£([0,1],B(X,X)) and , C(-,m) e L?([0,l],X)n

£•([0,1] ,X), we can apply Lemma A 1.3 (see Appendix I) to determine an evolution opera

tor Uu(t,s), 0 £ s £ t£ 1 such that

w(f,M,8M) = f Uu(t,s)C(stu)bu(s)ds (3.3.13)

is the mild solution to (3.3.12). w(t, u, 8m) also satisfies:

M,8m) = f

Comparing with (3.3.8), w(f, m, 8m) = 8*(f, u, 8m). Therefore,

xu(r,M)8M = f Uu(t,s)C(s,u)bu(s)ds. (3.3.14b)

Next, we show that xu(t, u) is Lipschitz continuous in u e 0.

w(f,m,8m) = f T(t - *)[£(*, m)w(5 ,m,8m) +C(s, m)8m(5)]^. (3.3.14a)
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Lemma 33.5: (Lipschitz Continuity of xu(t, u) in m.)

There exists b9 < ~ such that for aU t e [0,1], u e 0, u e 0

\xu(t, m)8m - xuQ, m)8mI ,,,...
sup sup —- <bqtu-u\2. (3.3.15)

t € [0,1] bu e Lf^L_ |5M|2

Proof: For Me 0, 8x(f ,&,8m) = xu(t,u)bu satisfies

i

8x(r,ti,8M)=f 7(r-5){ (j^Ws.fyMsVbxis^bu) +j£(x(s,u),%s))bu(s)) )ds. (3.3.16)

Therefore, xu(t,$t)bu - xk(f,u)bu = &c(r,ti, 8m) - 8x(r,m, 8m) and hence

i

3^^. As ^NN dFl8x(r,ti,8M) - 8*0,m,8m)I £ Aflf { ^-(x(s,tD,tfe)) - 4f-(x(stu)tu(s)) }bu(s)ds
o dM dw

i

dF+f{j^Ws,fi) ,fc)(8x(* ,&, 8m) - c*Cy, m, 8m))

+(-|£fcC*.") .**)) - -^(^."), u(s)))bx(s, m,8m) }dst
t

< Af f ff5[lx(j ,fc) - x(j, m)I + tu(s) - u(s)\\][\bu(s)l + \bx(s, M, 8M)<fcl]<is

+ f Mbjlbxis, m) - bx(s, m)I<&

£ tf5[(l +65)Im- mI2(I8mI2 +^ISmIj)] + fAf^lcbtCy ,fc) - c*(,y, m)I<*s. (3.3.17)

Applying the Bellman-GronwaU Lemma,

l8x(r,M,8M) - 8x(/,m,8m)I <MKseM\\ +b5)tu- mI2(1 +67)I8mI2, (3.3.18)

and therefore,
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\xujtyti)bu-xujt$u)bul
— < b9fu - mI2 , (3.3.19)
I8mI2

where b9 4 MKseM\\ +b,)il +bs). •

3.4 EXISTENCE OF GRADIENTS

Let 0 be defined as in (3.2.2) and consider the function g : 0 -> IR defined by

giu) = hixil, m)) where h : X -»IR is continuously differentiable and x(-, u) is the solution to

(3.1.2). We denote the derivative of hi) at x by Dhix). We wiU establish the existence of a

gradient of gi) at m for all u e 0.

Lemma 3.4.1:

(i) The function g ; 0 —> IR is continuous, i.e., For any sequence {ui) c-0 which con

verges to m e 0 in the L2riLoa topology, lim giuj) = giu).
llf-» u

(ii) The function g() admits a Gateaux derivative in the L^L^ topology at aU u e 0.

That is, there exists a linear operator Dg(M) e B(L2^L0O, IR) such that for aU

8m e Li^U*

lim *»+**"> ~*W =D*(m)8m.
j -»0 5

(iii) For every u e 0, there exists a unique Vg(M) e L^L^ such that for aU me 0,

<Vg(M),t<-M) =D$(M)(M-M).

(iv) The function Vg : L^L^ -» LjtfO, 1]) is continuous.

(v) If the derivative of hi), Dhi), is Lipschitz continuous on bounded sets then there exists

&io < °° such that for aU u, v e G, IV#(m) - Vg(v)l £ 610Im - vl and therefore Vg(-) is

uniformly Lipschitz continuous.
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Proof: (i) By Lemma 3.3.4, x(l,•) is continuous in m. Since h is continuous in x, gi) is con

tinuous in m.

(ii) For me 0 and bu e l^L^ define

Dgiu)bu &Dhixil, m))8x(1 ,m,8m). (3.4.1)

For s sufficiently smaU, u + sbu e 0 and

—\giu + sbu) - giu) - sDgiu)bu\ = —IA(x(l, m+58m)) - hixil, m)) - sDhixil, m))8x(1 ,m,8m)
s s

1

= -lf(D/»Ct(l, m) + r(x(l, m+ sbu) - x(l,m))) - D*(*(.l, m)))(x(1 ,m+ 58m) - x(l, u))dr

+ Dhixi\, u))ixi\, m+ 58m) - x(l, m) - 58x(l, u, 8m))I

i

£ - flD/i(x(l, m) + r(x(l, m+ 58m) - x(l, m))) - D/z(x(1 ,m))!^^^

+ ID/i(x(1,m))I66I8mI^5.

Therefore,

lim —\giu + 58m) - giu) - sDgiu)bu\ = 0. (3.4.3)
s -*0 S

(iii) Since X is a Hilbert space, we can identify X* with X. Therefore, we denote the adjoint

of Cis,u)e B(IRm,X) by Cistu)*e B^.R"1); the adjoint of Uuitts)e B(X,X) by

£/"(*,5)* e B(X,X) and the adjoint of Dhix) e B(X,IR) by Dhix? e BGR.X) which we

identify with v7z(x) e X. We define

Vgiu)is) d C(5, m)V(l, 5)*V/z(x(l, m)) e Rm. (3.4.4)

First, we show that Vgi) e L^L„ Since IC(5,m)*I = IC(5,m)II <bj and

II/M(l,5)*l = IC7M(l,5)I^Af, for aU se [0,1], Me 0, IV5(m)(5)D ^ ^AfID/z(x(l,m))II, so
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VgOOO is bounded. Since it is also measurable, V#(m) e L^L^. Second,

1

(Vs(M),M-M> = f (C(5,M)V(l,5)*V/lW,M)),M(5)-M(5))d5

1

= (V/z(x(l, m)) , fU\\, s)Cis, uMs) - uis))ds)

= Dhixil, m))*m(1 , m)(m - m) = Dgiu)(u - m). (3.4.5)

For 5 e [0,1], we define pis, u) = £/"(l ,5)*V/i(x(l, m)). By Lemma A1.4, pi-, •) is the mild

solution to the problem:

±pit)= - (A* +Bit)m)pit), pil) =Vhixil, m)) , (3.4.6)

and

V*(M)(5) = C(5,M)V(5). (3.4.7)

(iv) For any sequence { m4- }c0 such that ut -» u e 0,

IVg(Mi) - V£(m)0 = ID^(Mi) - D5(m)D (3.4.8)

< KDhixil , M^) - Dhixil , M)))x„(l , Ufl + IDhil , M)(XU(1 , Mf) - Xu(l , M))l

By Lemma 3.3.5 and the continuity of Dh{-)%

Wgiu) - Vg(M)B -> 0. (3.4.9)

(v) Since lxit,u)l^b4 for aU re [0,1] and Me G, there exists bu <°° such that

ID/i(x(l, v)) - Dhixil, M))U?nlM - vl for aU m, v e G. Therefore,

IV£(v) - Vg(M)l <; l(D/i(x(l , v)) - Dhixil, m)))*„(1 , v)l + Dhixil, m))(xm(1 , v) - xu(l, m)I

< [bnlxuil, v)l + b9lDhixil, m))I]Im - vl, (3.4.10)

Since there exists bl2 such that l*u(r,u)\ < bl2 and D/i(;t(r, m))I < £>12 for re [0,1] and

M€ G,
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IVg(v) - Vg(M)l £ bl0iu - vl, (3.4.11)

where bl0 £ ibu + b9)bl2 . •

Lemma 3.4.2: (First Order Expansion) For any m,m e 0,

gCu) - giu) =| {V^(m +s(u- u)),u-u)ds. (3.4.12)

Proof: For fc.Me 0, we define eis) 4 g(M +si%- m)). We now show that e(-) is

differentiable at aU s e (0,1). Choose 5 e (0,1), then

eis + As)~ eis) = gju + js +A5)(m- m)) - i(m +s(u- u)) (3.4.13)
As Aj

Set z ^ m+5(m- m) e 0 and 8m 4 m- m. Then 8m e l^L^ and

Hm e(5 +Aj) - ejs) = ^ j(i +A58m) - 8jz) mDg{z)Su (3 4J4)
As-*0 As &s-*o As

1

by Lemma 3.4.1(ii). Since e(l) - e(0) = fe'(5)d5,

l

g<M) - $(") = f<Vrfu +5(M- m)),m- m)&. (3.4.15)

33 OPTIMIZATION ALGORITHMS I

In Section 3.4, we have shown that the gradient of gi-) exists and is continuous. We

wiU show that this fact can be used to prove convergence of the foUowing algorithm for solv

ing problem P:

P ; inf { giu) } (3.5.0)
ue G
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Algorithm 3.5.1:

Data: mq€ G, ae (0,1), pe (0,1).

Step 0: i = 0.

Step 1: Compute Vgiu$ using (3.4.6) and (3.4.7).

Step 2: Compute @(Mj) and v,- using

0(Mi) Amin {4»v - up + {Vg(Mi), v- m, ) }. (3.5.1a)
V€ G 2

v; =v(Mi) Aarg min{ -^-Iv - up +{Vgiud, v- ii, ) }. (3.5.1b)
ve G 2

If 0(Mi) = 0, STOP.

Step 3: Compute the step size X, using

X,- = a,(Mi)£max{ Xe {0,l,p,p2, ••• }l (3.5.2)

A«l, Mi + X(v,- - u$) - Kxil, m^) < aXSiud }.

Step 4: Set ut+! = m,- + A.,<v/ - m^.

Step 5: Set i = / + 1; go to Step 1. •

First, we show that 0(m) = 0 is a necessary condition for u to be a minimizer of P and

that Algorithm 3.5.1 is weU-defined.

Lemma 3.5.2: If ue 0 is such that 0(m) <0, then there exists %e (0,1) such that for all

Xe (0,1],

g(u + Xiv(u) - m)) - g(u) < Xae(u), (3.5.3a)

and therefore (i) mis not a minimizer of P and (ii) Algorithm 3.5.1 does not jam up in Step 3

at u.
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Proof: Let*v A v(m). Then ( Vg(fc) .'v - u) <0(m) =-8 <0. Therefore,

$(& + A.(v - fc)) - g(S) - Xoc0(m)

l

= X{ VgG),V-u) - 0Xe(u) + Xl {Vg(M+ 5*.(V- M)) - V^(M),V-ti)^5

1

«S X(l - a)0(M) + f (Vg(u+sX(v-u)) - Vg(&),v- u)ds.

l

£ X( - (1 - a)8 + f (Vg(M +sX(v - m)) - Vg(&), v- m)ds. (3.5.3b)

Since Vg() is continuous, there exists %e (0,1) such that for aU Xe (0,5], the right hand

side of (3.5.3b) is less than zero, so that g& +5(v- u)) < g(ju). Since u+ S(v - u) e G, mis

not aminimizer for P, and X(m) £ pi so that the algorithm does not jam up in Step 3 at m. •

We shaU prove that v() and 0() are continuous. We state a preliminary lemma.

Lemma 3.5.3: Let C c Rm be a compact, convex set, and x,y be arbitrary points in Rm.

If x and y are the closest points in C to x and y respectively, i.e.,

x£ are min [ 1% - xl2 }, (3.5.4)

y£ arc^imn {1^ - yl2 }, (3.5.5)

then

lx-yl2£Ix-yl2. (3.5.6)

Proof: Assume that for some x,ye R"\ Ix - yl2 > Ix - yl2. Define

^ ^ arg min { Xe IR I 1(1 - X)x + Xy- x\2 }, (3.5.7)

Xy £ arg min { Xe IR I1(1 - X)x + Xy- y\2 }, (3.5.8)

x±il-Xjx+Xj, (3.5.9)



§3.5 Optimization Algorithms I 41

yAii-Xpr+Xp (3.5.10)

Then x is the point on the line through x and y nearest to x, and y is the point on the line

through x and y nearest to y. Define a co-ordinate system for lRm with x as the origin, and

chose an orthogonal basis { £; },-e a where ex =-^—. We can find a,p e Rm so that
ly-xl

m m

x = Z aA and y = ^ p,€,-. Thenar = a^ and y = pi«lt and therefore
i=i i=i

Cc-5i2 =(ot, - P,)2 <! £ (a,- - P^2 =\x - yl2 (3.5.11)
i= 1

Now, we claim that Xy > 1. Let us assume that Xy e [0,1). Since C is convex, yeC, but

this is not possible since $ - yl <ly - yl2. Assume that Xy <0. Since II is strictly convex,

1(1 - p)y + py - yl2 < (1 - p)liy - yl2 + plly - yl2 < ly - yl2 (3.5.12)

for pe(0,l), and there exists pe (0,1) such that (1 - p$ + py" = r so that

DT-yl < ly-yl which is a contradiction. Similarly, Xx < 0, and therefore

(x-yt> IT- yl > Lc - yl which contradicts (3.5.11). •

Theorem 3.5.4: The function v() is continuous.

Proof: Let { ii(- } c G be a sequence such that if(- -» u e G. For any u e G,

v(u)(r) = arg min { ~lv - (u(r) - Vg(«)(r))l2 }, (3.5.13a)
ue U 2

and so by Theorem 3.5.3,

lv(«/)(r) - v(«t)(r)l2 <S !(«//) - Vtfu-Kr)) - («,</) - V5(Mj-)(0)l2. (3.5.13b)

Since (a + 6)2 <£ 2\(p- + £2],
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IvtyXf) - vOO(f)l2 <2[lu/f) - «,<r)l2 +lVg(up(t) - VtfiO(f)l2]. (3.5.13c)

Therefore,

lv(u,) - v(u$\ <S 21m, - up +2lVs(u;) - Vg(u)l2. (3.5.14)

Since m,- -> £ and Vg(Mi) -> Vg(M), { m,-} and { Vg{u-) } are Cauchy sequences, and conse

quently { v(Uj) } is a Cauchy sequence, and since Lz^L^ is a Banach space, there exists

v e G such that v(uj) -» v. Suppose v 4 v(m). Then

±iv(M)-a2 + (v$®,v<»-a) <±rv-u2 + (v$®,*-a). (3.5.15)

Since m,- -> mand V^(w^) -> Vg(S), there exists / such that

•ilv® - M/l2 + (V^(Ml) ,V® - II; ) <i|V|- - Mj2 + (Vg(Mi) ,Vi - m,- ). (3.5.16)

which is a contradiction. Therefore v(«i) -» v(m), and v() is continuous. •

Corollary 3.5.5: The function 0() is continuous. •

Theorem 35.6: If { u, } is an infinite sequence generated by Algorithm 3.5.1, then any

accumulation point tie G satisfies the optimality condition 0(m) = 0.

Proof: Assume that u € G is an accumulation point of { «,-} such that 0(m) = -6 < 0. Let

*=minUe {0,1,2, •• } Ig(u + P*(v- m)) - g(u) <ccP*0(m) }. (3.5.17)

Such a\< oo exists by Lemma 3.5.2. By the continuity of g(), Vg(-), and v(), there exists i0

such that for all i > z0.

*<«,- +PVi - «*» - *GO <ap*0W <yp*0(&). (3.5.18)

* ct ^
Therefore X,- £ p and hence g(ui+ i) - g(uj) < —-P 0(u), and g(«i) —»• -«» which is a con-
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tradiction since g(-) is continuous, and the theorem is proved. •
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CHAPTER 4

ABSTRACT FREE-TIME FORMULATION

In problem P (3.5.0), the final time is fixed at x = 1. Using suitable scaling, the final

time can be fixed at any value. In this chapter, we consider free-time problems, and show

that by using a particular transcription, a free-time problem can be cast into a form similar to

that of the fixed-time problem. By extending the results of the previous chapter on the

existence of continuous gradients, we can apply an algorithm similar to one used for the

fixed-time problem.

4.1 ANALYTIC SEMIGROUP

We make one additional assumption on the operator A defined in Section 3.1:

Assumption 4.1.1: For some 8e (0,-^-), the semigroup generated by A% {7(f) },^0,

can be extended to be analytic in a sector Ag = { z I \arg z\ < 8 }, and I71(z)l is uniformly

bounded in every closed subsector Ag', S' £$, of A$. The semigroup { T(t) }/S0 *s then

called an analytic semigroup. •

Showalter [Sho.l] has shown that for flexible structures with Kelvin-Voigt damping and

Chen and Russel [Che.l] have shown that for flexible structures with proportional damping,

the operator A generates an analytic semigroup. Appendix n (A2.2) shows that for the flexi

ble beam ,(2.2.5)-(2.2.7), A generates an analytic semigroup.

We take the following theorem from Pazy [Paz.l]:

Theorem 4.1.2: The semigroup { T(t) }tiQ generated by the operator A is analytic if and

only if there exists a constant C < «» such that (i) T(t) is differentiable in t > 0; (ii)
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-4-Tit) =ATit)\ and (iii) L47(r)l <—, for all t >0. _
dt t •

Theorem 4.1.2 implies local Lipschitz continuity of Tit). Furthermore, the following

holds.

Lemma 4.1.3: For all t > 0 and x e [x^x^], with 0 < x^ < x^ < ~, the map

x -> Tizt) is Lipschitz continuous uniformly in x, i.e., there exists C < ~ such that for all

lie [x^.XroaJ and all r £ 0, \T(tt) - 7(xr)l < Cft- xl.

Proof: Since 7X0 is differentiable for r > 0,

A A AAA

t/ T T - t X

\T(tt) - T(xr)l =\\ ATis)dsl =ijA7Xtt)fcfcl £J—tds =cj —<is <c\ —ds
xt x t '^ t ^ x Tnin

£Clx-xl, <4-u>

where C 4 Cr/x^. •

We next prove that —7X0 is continuous. If A is bounded then since — Tit) = ATit), —7X0

is continuous. Since A is unbounded, the proof is more involved.

Lemma: 4.1.4 For t > 0, -7-7XO = ATit) is continuous.
dt

Proof: Since A is analytic, 7*(0 = —7X0 exists for all t > 0 and from Pazy [Paz.l, page
dt

61],

00 0

r(r) =-i-J p6'VP^/?(pe'v,AKpe'V) +-i- J pe-'VP^(pe-'vfA)d(p<f*) (4.1.3)
(2ra) 0 (2jc0 -i»

and l/?(pe'v,A)l = lltf(p£f,v,A)l < — where, \|/ e (jc/2, jc/2 + 8) and /?(*., A) = (A/ - A)"1.
P
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We assume without loss of generality that t -> s and t > s > 0. Then

oo

ir(0 - rcr)0 <— f M** - e**\dp (4.1.4)

oo

£ M. f ^Pcos V|g(< - *)P«>s v+i/psin \|/ _ gwpsin V|^p (4 ]5)

Since cosy<0 and p e [0,~]. ie<'-*>P«>sv +'''Ps»V| £ 1 ^4 |^«"V|S1 for al]

r > 5 > 0, p>0. Since the function e* is Lipschitz continuous on bounded sets, there exists

b such that

fcO-,)pcosV +*psin¥ _ ^psiny, <|(f_ j)ptf*fo = p|, _ s[b (4 j 6)

Therefore, integrating by parts:

oo

ir(0 - Tis)l <S \t - s\— f p^P008^ £ ^—r\t- s\. (4.1.7)
ft 0 7t($COS\|0

Hence, T(0 -> Tis) as r -» j. •

Theorem 4.1.5: For^ and x > x^, the following inequality holds:

it - s)lAT(Xt - s)) - ATixit - s))\\ £ M^" ? forl2>f>*£0. (4.1.8a)
JCX^COS^

Proof: Set t = %t - s) and s = x(r - 5) in (4.1.7). (4.1.7) becomes:

lATCKt-s)) - ATixit- 0)1 <Mb\<!t-W-s)\ = Art ft-xllr-sl (4 , gb)
rcrcor \|/lr - sr jrrcos2y U- sr

Since x £ x^, (4.1.8a) is obtained from (4.1.8b). •

With these additional properties, we can examine free-time problems. We state the

canonical free-time, control constrained problem PF. We require x to be in the interval

[*min. *miix] where z^ > 0 and x^ < <~.
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PF . inf { #(M,x) I u e G(x), x e [x^.x^] }, (4.1.9)

where giu ,x) = hix\x,u))t X is the Hilbert space defined in Section 3.1, h : X -> R, is con

tinuously differentiable, G(x) £ { u e L?([0,x])n L£([0,x]) I m(j) e t/, * e [0,x] }, £/ is

a compact, convex subset of Rm, and x\-, u) is the mild solution to the system:

-7-i(j,M)=Ai(^,M) + F(x(j,tt),u(1y)), * € [0,x], i(0,u) = ^ e D(A). (4.1.10)
ds

42 TIME SCALING

We shall transcribe problem PF into a fixed-time problem. First, by referring to (3.1.1), we

see that G = G(l). Next, with each u e G(x), we associate aue<7 defined by u(t) = w(x0

for te [0,1]. With each ie C([0,x],X), we associate * g C([0,1],X) defined by

*(r,K,x) 4i(rx,M) for all te [0,1]. Then,

-7-tff.K.x) = -j-**1'*) = T[Ai(rc,«) + F(i(n),u(n))] (4.2.1)
at af

= x[Ax(f,u,x) + F(x(r,u,x),u(0)].

Define g(a,x) ^ A(x(l,w,x)). Then g(u,x) = hix\x,u)) = g(u,x). Therefore PF is

equivalent to (4.2.2):

PF : inf{ g(«,X) I M€ G, X € [X^X^] }, (4.2.2)

with the dynamics

-j-x(r,M,x) = x[Ax(r,M,x) + F(jc(r,M,x),M(0)], x(0,m)=^g D(A), re [0,1]. (4.2.3)
at

Thus, the form of PF is similar to that of P (3.5.0). For any fixed value of x, we can

redefine A and F(-, 0 by multiplying each by x, and apply the results of Chapter 3 to derive

properties for the solutions x(-, u, x). We note that if the operator A generates the semigroup
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{ 7(0 }(2 0> men *A generates the semigroup { T(x0 }/* o

Theorem 4.2.1: Problems PF and PF are equivalent.

Proof: Let (x, u) e [x^,^] x G(x) be optimal for PF. Define

(x, u)e [zmintzmfa] xG where x = x and uis) = m(xj), se [0,1]. Then giu,z) = giu,z)

and so Pv ^ Pv- Similarly, we can show Pv ^ Py and so Py = Py. •

43 DIFFERENTIABILITY OF SOLUTION OF THE PDE WITH RESPECT TO THE

CONTROL AND FINAL TIME

We make the following assumptions:

Assumption 4.3.1:

(i) For all x e [x^/c^], a mild solution to (4.2.3) exists.

(ii) There exists bx <«» such that for all x e [x^,^], ueO and re [0,1],

IIx^m.x)!!^!. •

The next few theorems are natural extensions of theorems in Chapter 3. We define

Theorem 432: (Lipschitz Continuity of xit, u, x) in m.)

There exists b2 < ~ such that for all m, me O, t e [0,1], x e [x^,x^],

l*(f,fc,x) -xit,u,z)l < b2tu- Mil. (4.3.1)

•

For m, 8m e Li^l^ such that ue 0, we define 8x(-, m, x, 8m) e C([0,1] ,X) to be the mild

solution to
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8*(0 =f\Tizit - s))zi^ixis,m,x), uis))bxis) +̂ (xis), m(j))8mC*)) *ds. (4.3.2a)

Equation (4.3.2a) is an integral from of the first variation with respect to u of equation

(4.2.1). Then we have:

Theorem 433: (Differentiability with Respect to the Control.)

There exists b3 < °° such that for all ft, u e 0,ze [x^, x^]

lbc(r,M,x)-^r,M,x)-8x(r,M,x,8M)ll<ft3lM-Mll, (4.3.2b)

where 8m = u - u. •

We will denote the linear map 8m -» 8x(/, u, x, 8m) by xuit, u, x).

Theorem 43.4: (Continuity of the Differential in the Control)

For all x e [Xn^.x^, u%ue G such that u -» uin the 1%([0,'1\) norm

lim xuit, m, x) -» *„(*, m, x).
u —» u

(4.3.3)

Next, we will show that xu is continuous in x. We present the following three preliminary

lemmas.

Lemma 4.3.5: Let U be defined as in (3.2.2). Then, there exists

64 £ max{ b\,Z>2»^3.''roax. 1 }. ^4 < °°» such that for all u, me £/, all Id < dlt all tx\ £ ^,

allx/xe [x^x^] andallf e [0,1]:

(i) |-|£(;t,M)l<;&4,
dx

(ii) |-|£(;c,M)l<&4,
Bu
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(iii) I-^CX.M) - -^(*,M)I <*4[lft-Jdl +l&- Mil],
dx dx

(iv) l-^0c,ti) - 4£(x,ii)l £b4[\tx-x\\ +ft- Mil],
du ox

(v) I7XxOI</>4.
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(vi) I7(xf) - 7*(xOI £ 64ft - xl. •

Lemma 43.6: Given a bounded set 5 c X, if fit ie {1,2, • • • n } is a finite sequence

n

of Lipschitz Continuous functions from 5 to Y where Y is a Banach space, then/^ 17/ is

Lipschitz Continuous on S.

Proof: Let the Lipschitz constant for each f{ be Lt. Furthermore, ft must be bounded on S,

and we denote this bound &,-. Then for x,x e S:

if®-Ax)\ =\flfj$)-hfjW

7=1

n j-l

n yaaosa -#*» n /«o
P=l t=/ + 1

r=l

LjCc-x\

Therefore, f has a Lipschitz constant

Theorem 43.1: (Lipschitz Continuity of xit, u, x) in x.)

\hj+\ J

tFl J

(4.3.4)

< 00.

There exists a constant &5 e [b4too) such that for all t e [0,1], Me G, x,x e [^.x^]

lx(r,M,x) -x(r,M,x)l £ 65lx-xl.

Proof:

(4.3.5)

Ixit, m,x) - *(f, m,x)l =if T(x(r- s))Fixis,m,x),mOO)<& - f 7(x(r - j))F(x(5,m,x),uis))dsl
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t

< f [\[T(Kt - s)) - Tizit - s)))Fixis, m,x),uis))l +

l7Xx(f - s))iFixis, m, x), uis)) - Fixis, u, x), uis)))l)ds

t

£Cb31z - Xl +A7j Kslxis, m,x) - xis, m,x)l<fc, (4.3.6)

for some Ks < ~ by Assumptions 3.3.1 (i) and 4.3.1 (ii). By applying the Bellman-Gronwall

Lemma,

ixit, m/x) - xit, m,x)l £ C&3(x - xl*M*'. (4.3.7)
•

Choose fc5 Amax { b4, C^e '}.

Theorem 4.3.8: (Lipschitz Continuity of xuit, u, x) in x.)

There exists 66 < «» such that for all u e G, all x,xe [x^.^^] and all t e [0,1],

\xuit, m, x) - xuit, m, x)I £ 66lx- xl.

Proof:

I8*(r, m,x, 8m) - 8x(r,m,x, 8m)I (4.3.10)

=Ij{Tfrt - sM^ixis,m,x), uis))dxis, m,x, 8m) +jj^ixis, m,x), mC0)8mC0)

- Tizit - s)yzi^ixis,m ,x),m(5))8^,u%z,u) +^ixis, M,X) ,M(5))8M(5)) }<isl
dx du

<\{ {T(Kt - sM^ixis,m,x),uis))ibxis,M ,x,8m) - 8x(5,M,x,8m))

+iTCKt - S)yt^ixis ,M,<t) ,M(5)) - 7(X(r - J))X-|^(X(5 ,M,X) ,M(j)))8x(5 ,M,X,8«)
dx dx
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+iT(Kt - s)Jt^-ixis, m,<t), uis)) - Tizit - s))z^-ixis, m,x), uis)))buis)) }dsl
du du

By Lemma 4.3.6, there exists B6 < «» such that

Ibxit, m,% 8m) - 8x(r, m,x, 8m)I

^ fMx^^loXy, m,x, Sm) - 8x(5, m,x, 8M)l<fc + fc6lx- xII8mI2. (4.3.11)

By applying the Bellman-Gronwall Lemma,

lfc*(r,m,x,8m) - 8*(f ,m,x,8m)I <; S^^lx- xII8mI. (4.3.12)

Since

lxuit, m,x) - xuit, m,x)l = max I8x(r, u, x, 8m) - 8x(r, m,x, 8m)I1 , (4.3.13)
i&i,

Theorem 4.3.8 is proved with b6 4 56eMXaJ>A. •

We now show differentiability of the PDE with respect to the final time, x. We define

Bxit, m, x, 8x) to be the solution to:

bxit, m,x, ox) =fT(x(r - «y))x-^(x(,y. u, x), m(s))8x(j ,m,x, 8x)ds (4.3.14)

+ f (7(x(f - *)) +zit - s)ATizit - s)))Fixis, m,x),m(j))8x^.

Equation (4.3.14) is an integral from of the first variation with respect to x of equation

(4.2.1). Because A generates an analytic semigroup, the map 8x -» 8x(r,M,x,8x) is well-

defined, linear and bounded, i.e., there exists ty such that \Sx(t, u, x, 8x)B £ frylSxI.

Theorem 4.3.9: Differentiability of xit, m,x) in x.

For all Me G, all re [0,1], x,xe [x^.x^],
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lim kfr«'" ^)-xit,utx)-bxit,utx,x- x)l =0 (4.3.15)
x -» x ft - Xl

Proof: To simplify notation, we make the following definitions: 8x =x- x and

Ax(/,m,x,8x) =xit,u,%-xit,u,z).

t

IAx(r, m,x, 8x) - 8x(/, m,x, 8x)l < f \T<Xt - s)ftFixis, m,t) ,M(.y))

- T(x(r - s)yzFixis, m,x), m(s)) - 7(x(r - s))z^-ixis, m,x), M(,y))c*Cy, u, x, 8x)

- (/ + x(r - 5)A)I(x(r - s))Fixis, m, x), m(5))8xI<&

<; f { KTCKt - s))x - T(x(r - s))x - (/ + x(f- ^)A)T(x(r - ,y))8x)IIF(^, u, x), m(^))I

i

+\T<Xt - s)M[ l-|^ (*C* ,". x) +rAxCs, m,x, 8x), m(^)) - j^isis.".*). "C*))l^

IAa:(5,m,x,8x)II + I-^(j:(5,m,x),m(5))(Ax(j,m,x,8x)-8^,m,x,8x)I]
d*

+IT(x(r-j))x-r(x(r-j))xll-^(^,M,x),M(j))8x(5,M,x,8x)ll }<&
dx

£ ft - xlHI7(x(r - 5)) - 7(x(r - *))

+xit - s)\ AiTix +r(x - x))(r - j)) - 7(x(r - .y)))drl \lFixis, u, x), m(j))I^

r

+ f {Mem^xmJAx(j,M,x,8x)ll2 +66IAx(5,M,x,8x)--8x(5,M,x,8x)l )ds

+ Cb6xmJt-x\2. (4.3.16a)
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By Lemma 4.1.4, 7X0 and ATi) are continuous, and by Theorem 4.3.7,

IAx(.y,M,x,8x)l2<6?ft-xl2. Therefore,

IAx(r,M,x,8x)- 8x(/,m,x,8x)I1 <

t

ft- xlG(Sx) +b6\ IAz(.y,m,x,8x) - 8x(.y,M,x,8x)l<iy, (4.3.16b)

where lim 0(8x) = 0. To finish the theorem, apply Lemma 4.3.6 and the Bellman-Gronwall
&r-»0

Lemma. •

The map 8x -» bxit ,utx,8x) is linear in 8x for each te [0,1], u e G, x e [x^, T„,aJ. If

we call this map xxit, u, x), then we have the following theorem:

Theorem 4J.10: For all t e [0,1], u e G, xit, u, x) is Gateaux differentiable with respect

to x and its differential is given by Xxit, u, x). •

Next, we show that x^r, u, x) is continuous in u e G, x e [x^, x^].

Theorem 4.3.11: (Continuity of Xj(f, u, x) in m, x.) For u, me G and x, x e [xmin, xmax],

lim x,(r, ft,% -> ^(r, m,x). (4 3 17)
u -* u x —»t

Proof:

lxt(r,M,x)8x-xx(r,M,x)8xl = l8x(^,T,8x)-8x(f,M,x,&r)l

£j[l[7Xr(f - ^)) - T(x(f - s))]z^ixis ,&/t) ,^))8^,m,t, 8x)I

+l7Xx(f - s))(t - z)^-is, m,x),%s))te(s, m,x, 8x)l
dx

+ l7-(x(r - j))xM:5[lbc(s, m,x) - x(.y, m,x)l + fi(s) - m(j)I]I8x(5 ,m,x, Sr)l
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+ir(x(r- j))x^(*(s,M,x),M(j))(8;c(j,fi,x,8x) - c*(j,m,x,8x))I1
dx

+ \TCKt - s)) - Tixit - s)) + (x - x)it - s)AT<Xt - s))

+ + x(f - s)AiT(Kt - s)) - T(x(f - s)))l\Fixis, m,x) , «Cy))8xll

+ IT(x(r - 5)) + x(* - 5M7(x(r - j))ltf5[U(j, m,t) - xis, m,x)l + ImCj) - M(j)l]lloxl]<fc

£ fc8[ft- xl +Im- Ml2]l8xl +bJ 18^(5,m,x,8x) - 8x(j,M,x,8t)ll^ (4.3.18)

for some 68 < °°. Applying the Bellman-Gronwall Lemma,

U^r.M^Sx -Xt(f,M,x)8xl <; A>8[ft- t' +»- "i2]!8xl. (4.3.19)

Therefore,

Lc,(f ,m,x) - ^(r.M.x)! <, e\fft- xl +Im- mI2]. (4.3.20)

We have shown existence and continuity of the partial derivatives xuit,u,z) and

xxit,m,x). Since the partial derivatives are continuous, the function x(ttu,z) is fully continu

ously differentiable in m,x by Dieudonne[Die.l].

4.4 EXISTENCE OF GRADIENTS

Consider the function g : Gx[xmin,x^] -» R, g(M,x) = hixil ,m,x)) where h is con

tinuously differentiable as in Section 3.4. Extending the results of Section 3.4, we obtain the

following lemma:
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Lemma 4.4.1:

(i) g : GxfXmjn, x^] -> R is continuous in (m , x).

(ii) g : Gx[Tmjn,TIMX] -» R is differentiable in (m,x), i.e., for all u e G, x e [Xj^.x^J,

there exists a differential Dgiu,z) .-Z^n/^xIR -»R such that for u,ue G,

X,X € l^min »^maxJ'

lim lg(M +S(M- M),X +5(X- X)) - RJU,Z) " sDgjU,Z)(u- M,X- X) =Q (44 ^
j -»0 lUj - MI2 + IXj - xl

(iii) There exists Vgiu, x) e L2nLoexR such that

(Vg(M,X),(M-M,X-X)) =Dg(M,X)(M-M,X-X)forallM,Me G,X,X€ [tB,in,XllliJ.

(iv) Vg : Gx[xmin, x^] -> Z^n^xR is continuous.

Consequently, we can show that the following algorithm, which is an extension of Algorithm

3.5.1 is convergent, and that all accumulation points (m,x) satisfy the necessary condition for

optimality, 0(m,x) = 0 where 0(-, ) is defined by (4.4.2a).

Algorithm 4.4.2:

Data: mq e G, Xq e [x^x^], <xe (0,1), f) € (0,1).

Step 0: /' = 0.

Step 1: Compute Vg(M,-, Xj).

Step 2: Compute 0(m,- , xD and (v,-,%) using

eiUi,xi) ± ^ min {ilv - m,I2 +-ift - x,l2 +(Vg(M|-,x),
(v,T)6 GxfXain.Xn,,,]

V^M;

X-X/
) ) (4.4.2a)

(v,-,ty d ^. arg min {-Ilv - m,I2 +-ift - x,l2 (4 42b)
(V.T)€ GxlT^.T,,,,,]
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+ (VsOi/.Ti),
V-M;

) }•

If ©(M.-.Xj) = 0, STOP.

Step 3: Compute the step size X,- using

Mmax{ Xe { 0,1,p,|32, • • • } I

giUi + X(V; - Mi) , X; + Xft - X$) - giu{,X$ < oX0(m,- , X,) }

Step 4: Set i<; + i = ut + X,(v(- - m^), xi+ ! = x,- + Xfc - x^).
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(4.4.3)

Step 5: Set / = i + 1; go to Step 1. •

Theorem 4.4.2: If { iuitx$ } is an infinite sequence generated by Algorithm 4.4.2, then

any accumulation point (m,x) € Gx[xmin,x^] satisfies the optimality condition 0(m,x) = O.a
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CHAPTER 5

RELAXED CONTROLS

Theorem 3.5.4 states that any accumulation point of Algorithm 3.5.1, Me G, satisfies

the optimality condition 0(m) = 0. However, since the closed unit ball in l^L^ is not com

pact, there may be bounded sequences generated by the algorithm which have no accumu

lation points. In these cases, Theorem 3.5.4 gives no indication as to the performance of the

algorithm. How then do we evaluate algorithm performance? An answer is either to change

the set of admissible controls, G, or to change its topology. For problems with linear dynam

ics, results have been obtained by replacing the L^L^ topology by the weak*-L2 topology

(see [Ara.l].) Since the unit ball and G are compact in the weak*-topology (Banach-Alaoglu

Theorem), and g() and Vg() are wea/:*-continuous, the problem min{ giu) Iu e G } defined

in (3.5.0) has a solution. Furthermore, any bounded sequence generated by the algorithm

admits an accumulation point satisfying the optimality condition 0(m) = 0.

For problems with nonlinear dynamics, gi) may not be weak*-continuous. Warga

[War.l] describes a method for analyzing problems in which the dynamics are described by a

system of non-linear ordinary differential equations. The principle is to densely embed the set

of admissible controls, G, into a larger set G. The function g *G -> R is extended to

|": G -> R, and a topology is chosen so that G is compact and £() is continuous on G.

Some additional continuity properties are also required. The set G is called the set of admissi

ble relaxed controls. Although in this chapter we consider only fixed-time problems, the

extension to free-time problems is simple.
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5.1 DEFINITIONS

We give a brief description of the properties of relaxed controls. See Warga [War.l]

for a more complete exposition. We recall that U is a compact, convex subset of Rm. We

define a finite Radon measure u. on the Borel sets of U, to be a measure such that Iu.l(t7) < ».

The set of finite Radon measures on U is denoted by frmiU). We define a Radon probability

measure p. on t/ to be a positive measure such that p(lO = 1. The set of Radon probability

measures is denoted rpmiU). A relaxed control, o, is a measurable function

o : [0,1] -> rpmiU). We define

G 4 { me Z2([0,l])nz£([0,l]) I"(0 e U for almost all t e [0,1] }, (5.1.1)

G ^ { o : [0,1] -> rpm(t/) Io is measurable }, (5.1.2)

R 4 { a : [0,1] ->frmiU) Ia is measurable }. (5.1.3)

By the Dunford-Petis Theorem which is an extension of the Riesz-Representation Theorem,

the set R is isomorphic to Lli[0,\],CiU))* where C(i/) is the set of continuous, real-valued

functions on U. That is, for each c e R, there exists y e L1([0,1],C(£/))* such that

lolR dess sup \cit)KU) =l\|/ll £ sup •&£&, (5.1.4)
*€ [0,0 ♦ c tfao.n.cao) 'v1

and

l

«>.¥) =fjyvit,u)cit)idu)dt, , (5.1.5)

where (m,v) denotes m being operated on by v which is a member the dual of the space in

which m lies. The unit ball in R, £(R), is wea£*-compact since

{ y € L1([0,l],C(t/))* I l\j/l <1 } is weak*-compact. We use the weak*-topology on

/^([O.ll.CCI/))* to topologize G. Consequently, { a, } c G converges to a € G if and only if
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l l

lim J f $ittu)ot{f)idu)dt =J J $it,u)oit)idu)dt for all <|> e L\[0,1],C(10). (5.1.6)

Since G is a closed subset of fl(R), it is compact. There is an injection of the ordinary con

trols into the relaxed controls. With each ordinary control, u e G, we associate a relaxed

control a e G such that o(f)(S) = 8^(5) for all measurable sets Sc U. fyS) £ 1ifxe S

otherwise 0. We note that <K'«u(0) =J W^u(t)(du)-

We now apply this theory to problems where the dynamics are described by nonlinear

partial differential equations in the form of

4-xit,u) =Axit%u) +F(x«,m),m(/)), x(f,M) =xq e DiA), (5.1.7a)
dt

where the underlying Hilbert Space is called H. We extend the map x : G -» C([0,1],#) to

G by defining for each a e G, *(-,a)) e C([0,l],/f) to be the mild solution to

-^*(*,c) =Axit.G) +jF(^(r,a),M)o(0(dM), xiO,G) =*b. (5.1.7b)
Such a solution can be shown to exist and to be unique.

Lemma 5.1.0: If o e G is an ordinary control, i.e., there exists ue G such that

Git)iS) = 6u(/)(5) for all measurable sets 5 c U and almost all t e [0,1], then xittG) = xit,u)

for all t e [0,1] where x(-,o) is the solution to (5.1.7b) and xi,u) is the solution to (5.1.7a).

Proof: Substituting 8u(/)(5) in (5.1.7b),

•j^xit^G) =AxiUG) +fF(x(r,o),M)5M(0(rfM)

= Aixit,G) + F(x(f,a),M(0). (5.1.8)

Therefore *(/,o) = jc(*,m) for all t e [0,1]. •
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We shall show that the map a -»*(f,o) is continuous in a, uniformly in t e [0,1].

We begin with a preliminary result.

Lemma 5.1.1: For every <j> e C([0, ljxt/j/j) and any e > 0, there exists jc < « such that

oo

2 <t>,{r,M)2 < e for all t e [0,1], ue U. (5.1.9)

Proof: Suppose that the lemma is false. Then for some $ e C([0,l]x£/;/2), there exists

e > 0 such that for ally e 2Z+, there exists r; e [0,1] and m; e U such that

£ M$.k/>2 >£• (5.1.10)

Since [0,l]x£/ is compact, there exists ft") e [0,l]xt/ and K c Z+ such that tk-?t and

m*->m. There must exist 7 < °° such that

£ (t),0r,M)2 <f. (5.1.H)

Since <|) is continuous, there exists Icq such that for all k> *q, ke K% mtk>uk> ~ <!>(*. W2 ^ "T-

Therefore, 2 $,<**, «a)2 ^ —. Contradiction.
1=7 "

Theorem 5.1.2: Let [ ot- } c G be a sequence of relaxed controls such that Gi-> g e G.

Then, for any $ e C([0,l],C(£/,/2))

l

lim J f tfMi)(o,<f) - Git))idu)dt = 0.
«-* °°D fr

Proof: By Lemma 5.1.1, for any e>0, there exists; such that 2>/r»M)2 £4 for ^

m € £/, for all t e [0,1]. Therefore,
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l| f4>(r,M)(o1<0 -Git))idu)dt\\ =£ (f ftfiMojit) -o(f))(dM>fc)2. (5.1,12)

Now,

£ [f f<|>/r,M)(ol<r) - Git))idu)dt]2 <; £ [f f l<t>/r,«)l(a1<0 +<xmdu)di]2. (5.U3)

Applying Schwartz inequality iijfgd\i)2 <> ijfidu.XJ^du,)) to (5.1.13), we obtain

~ l - i ,J [f f♦AM)(Ol<0 - 0(f))(^M)A]2 £ Z I(f 'VWKOiCO +Git))idu))2dt. (5.1.14)

Applying Schwartz inequality to (5.1.14), we obtain

oo >
£ [f f 4>/r,M)(o,<r) - o(r))(dM)dr]2 <;

;=y

£ If tjbuftoit) +Git))idu) J(aft) +Git))idu) dt. (5.1.15)
/=; t.

Applying Lesbegue's Monotone Convergence Theorem to (5.1.15), we obtain

oo i J
S [f f tytMotf) - o(f))(^MMr]2 £2f(J (£ <j>/r,M)2)(c4<0 +o(r))(<fti))dr

> =y i=/

(5.1.17)

Since of -> a, there exists it such that for all i £ /E,

y-i lL if f<l>/'.")(°,<0 - Git))idu)dt\2 <; -|. (5.1.18)

l

Therefore, if J ^>(/,m) (a,<r) - o(f))0*M)drl22 £e for all i£ ie, and the theorem is proved.
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Corollary 5.13: Let Y be any separable Hilbert Space. Let { o, } c G be a sequence of

relaxed controls such that a, -> a e G. Then, for any <J) e C([0,l],C(tf,y))

l

lim f J <|>(r,M)(o,<0 - a(t))idu)dt =0. (5.1.19)

Proof: Any separable Hilbert space is isomorphic to /2. •

Corollary 5.1.4: If <|> : [0,1] -» CiU,Y) is continuous except at a finite number of points

s e [0,1], then the results of Corollary 5.1.3 hold. •

Theorem 5.1.5: (Continuity of *(-,o) in a.) If the sequence { Gt } c G is such that

c, -> g e G, then xi' ,Gj) -» *(• ,o).

Proof: Since for g e G, xi- ,c) is the mild solution to (5.1.7b),

xittG) = f f Tit - s)Fixis,G),u)Gis)idu)ds. (5.1.20)

Therefore,

t

lxit,Gd - x(t,G)l = if [f Tit - s)Fixis,Gd,u)Gt<s)idu) -

f Tit - s)Fixis,G),u))Gis)idu)W

t

£ if f T(r- s)Fixis,G^u) - Fixis,G),u))G£s)idu)ds\l

t

+ if f Tit - 5)FW5,o),m)(o,<j) - o(.y))(dM)<fcll

I 1

£ M/ifsf bc(5,a») - xis,G)\ds +If f tfbMafa) - Gis))idu)dsl, (5.1.21)

where M is defined in Assumption 3.2.2 (i), 5 is a bounded set which contains

{ xit,G) },IG ,0 ji 0e q y Ks exists and is finite by Assumption 3.1.1 (ib), and
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<h'r< i* - Ir(r" s)FixistG),u) 0<s£t<PU.")-| o t<s£l'

By the Bellman-Gronwall Lemma,

l

lxit,G) - xit,G)l £ if f <J)/(^,M)(at<5) - Gis))idu)ds\\eMKs. (5.1.22)

Therefore, by Corollary 5.1.4, for te [0,1], lim \xit,G-) - xit,G)l = 0. Since l<$>'l is
I —» oo

bounded, the convergence is uniform.

52 EXISTENCE OF DIRECTIONAL DERIVATIVES

It turns out that xit,G) is not Gateaux differentiable with respect to o € G. However

for the case in which the dynamics of the system can be described by ordinary differential

equations, L. Williamson and E. Polak [Wil.1] have developed a directional derivative of

xit,G) in the 5o direction for a specific set of directions. These derivatives are sufficient to

generate a necessary optimality condition sufficiently strong that it is interesting. Here we

extend their work to the case in which the dynamics are described by the partial differential

equation (3.1.2).

For X e [-1,1], y e C([0,l]x£/;lRm), and o e G, define x(-,o,X,y) and 8x(-,o,X,y) to

be the mild solutions to

-j-x(t,GXy) =Axit,G%X%y) +fF(x(f,o\A.,y),M +Xyit,u))Git)idu), (5.2.1)

*(0,o, X,y) = x0,

•£bxittG,X,y) =f{04 +|£(xfoc),ii))&fro.X,y)+ {52.2)

4^Wr,a),M)X.y(f,M) Mt)idu), 5x(0,ca,y) =0.
du
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Equation (5.2.2) is the first variation of (5.2.1). By Lemma A1.3, there exists an evolution

system, Uit,s), 0 £ s < t < I such that

t

b-xit,G,X,y) =Xt Uit,s)j j£ixis,G),u)yis,u)Gis)idu). (5.2.3)
Lemma 5.2.1: For all y e C([0,l]xt/;IRm) there exists L < «> such that for any a e G,

te [0,1] and X sufficiently small, U(r,o,X,y) - x(g)\ < UX\.

Proof:

U(f,c,X,y) - jc(f,o)l = f f Tit - s)[Fixis,GtXty),u +Xyis.u)) - Fixis,G),u)]Gis)idu)dsil

t

<< M( { Ks[lxis,G,X,y) - xis,G)l +lMly(-,)L )ds. (5.2.5)

Applying the Bellman-Gronwall Lemma,

U(f,o,X,y) - xit,G)l < LIXI, (5.2.6)

where L = Me *ly(-, )l„ and Ks is defined in the proof of Lemma 3.3.4. •

Lemma 5.2.2: For all ye C([0,l]x(/;Rm), there exists dx <« such that for all

Xe [-1,1], a € (T,

tc(r,o,X,y)-^(r,a)-5^(r,a,X,y)l^^ai2, te [0,1]. (5.2.7)

Proof: We define Ax(r,a,X,y) ^ *(r,a,X,y) - x(f,o). Then,

iln,-s)l>\Axit,G,X,y) - &ca,o,A.,y)l £ 11 | 7(f - s) \Fixis,G,X,y),u)

+ Xy(,y,M))-F(jc(j,o),M)

3F dF- t—ixis,a),m)Sx(j,a,X,y) - —ixis,a),M)Xy(j,u) Gis)idu)ds
dx du
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* il[l ,,f"WJ.oA.y)+rAxis,G,X,y),u +rXyis,u)) - |j(;c(s,o),M)ldrlAx(j,o,X,y)ll

+fl-|^(x(.y,c,X,y) +rAx(j,o,X,y),M +rXy(s,u)) - -|^(x(f ,o),ii)l£WXIIy(-,1-)l.

+l-^(^,o),M)IIAx(5,a,X,y)- 6^,a,X,y)l]o(5)(rfM)^

<Mf f [AT5(IAx(j,o,A„y)l +iXlHyC,•)•.)!Ax(j,a,X,y)l

+ /^IIAxCy.aAoOl + IXIIIyCOIJI^IyCOL

+ fyMyi'.yjAxis^Xy) - SxistGXy)\Ms)idu)ds, (5.2.10)

where thj is defined in Lemma (3.3.3). Since by Lemma 5.2.1 IAx(s,o,k,y)l < LlXl, it fol

lows from the Bellman-Gronwall Lemma that

IAx(r,o,X,y) - Sx(r,o,X,y)l £ MKse \\Axis,aXy)l + IMIy(-,)IJ2

S^IaJ2. (5.2.11)

•

Consequently, lim —8^(f,a,X,y) is the directional derivative in the direction y. The
x-*o A,

natural question is: How can a member of C([0,l]xt/;lRm) be a direction for the set of

relaxed controls? We define p ^ G®y where o e G and y e C([0,l]xl/;lRm),

p(f)CS) 4 { o(f)(K), R^{ue U\u + yit.u) eS)} (5.2.12)

if m+ y(f,M) e £/ for all u e U and almost all t e [0,1], otherwise p is undefined. It is

easily seen that if p is well defined then p e G and *(l,p) = x(l,o,lf>). It follows that

giG®Xy) = hixihG,X,y)).
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We now extend the function g : G -> 1R to g : G -> R by defining g{G) i hixil ,o))

for g e G. Since the maps a -» *(l,o) and jc(1 ,a) -» A(jc(1 ,o)) are continuous, it follows

that gi) is continuous.

We shall call the "gradient" of fat o the map V|(o):[0, l]xt/ -» Rm defined by

VKo)(r,ii) d|^(j:(/,a),M)V(f,o); (5.2.13)
where p(/,o) is the weak solution to

pit,G), pil,c) = Vhixil,G)). (5.2.14)£#*.o)«- A+ f $£-ixit,G),u)Git)idu)
dx

The sense in which f is a gradient is made clear in Theorem 5.2.4. A mild solution to

(5.2.14) exists and is unique by Theorem A1.4. Furthermore p(r,o) = Uil,t)*piltG) where

fdF
—ixit, g) ,u)Git)idu).

Theorem 5.2.3:

(i) For all a e G, Vf(o)(v) is uniformly Lipschitz continuous on [0,l]x£7, i.e., there

exists L < oo such that for all G e G all m,m e U and alTr,f e [0,1],

IV£(a)ft,M) - VKo)(r,M)l £ L[tr- ri + Im - mI]. (5.2.15)

(ii) The function Vg(-) is continuous, i.e., For every sequence { o, } c G such that

Gi^Ge G, IV^Oi) - VgiG)^ -> 0.

Proof:

(i)

IV£(c)0,fc) - V|(<j)a,M)l =ljjj-ix(t,G),u)p(t,G) - |£(x(f,a),M)p(f,o)l. (5.2.16)

Since (a) *(-,o) and p(-,o) are mild solutions to partial differential equations, they arc uni-
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formly Lipschitz continuous on [0,1] for all o e G, (b) the set {Jc(f,o) }{/e [o.u.ae g }is a

dF
subset of the bounded set 5 define in Lemma 3.3.2, and (c) -r— (•,•) is Lipschitz continuous

du

in x and u on with constant Ks, (i) follows.

(ii) Suppose that { o4-} c G^uch that c,—» a e G. Then,

IVKa^r.M) - V|(o)(r,M)l =l-|£-ixit,G$,u) pit.G) - -|j-(*(f,o),M) p(f,a)l. (5.2.17)

dF
Since — (•,•) e BiLiX) is Lipschitz continuous with constant Ks, its adjoint

du

— (•,•)* e B(X;L2) is also Lipschitz continuous with constant K sub S. Therefore,
du

•VKOiXr.ii) - V|(a)(r,M)l < #5lx(f,ot) - xit,G)npittG-)l

+l-^-(*(f,o),M) llp(r.Oi) -p(r,o)l. (5.2.18)

By Theorem 5.1.5 x(,gj) -**(-,o) in the L. norm. Similarly, it can be shown

dF *
p(.Oi)->p(-,o) in the L^ norm. Since -r—(•••) is Lispschitz continuous, the set

du

dF{ — (r,M) }(/6 [o,i],«€ 1/} is bounded and Vg(o;)(v) -> Vf[a)(-,) in the uniform topology

on[0,l]xt/. •

Finally, for each G e G, we define an inner product

(••• )a • C([0,l]x£/;Rm)xC([0,l]xt/;Rm) -• R and a norm Mc : C([0,l]xl/;Rm) -> R as

l

(y.x )a £ f f <y(r,M),z(r,M) )Git)idu)dtt (5.2.22)

lyla£ (y,y)£. (5.2.23)

Theorem 5.2.4: For ye C([0,l]xi/;R'?l),
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\hixil,G,X,y)) - hixil ,o)) - X{VgiG),y )G,lim -v~v ,„ ""I " —'•"« = o. (5.2.24)
x -»o \X\

Proof:

\hixil ,G,X,y)) - Kxil ,c)) - X{Vf[o),y )0I (5.2.25)

= l( V/i(^l,a)),Ax(l, c,A.,y)- &(lfa.X.y)) + ( V/i(;c(l,a),5;c(l,G,X,;y))

l

+ f ( Vhixil ,o) + rAx(l ,GXy)) - VKxil ,c)),Ax(l ,o,X,y) )dr

l

dFX[ f-|̂ Wr,a),M)V(l,r)*V/i(x(l,o))y(r,M)o(r)(rfM)^

i

< AHM2 + f IV/t(;t(l ,a) + rAx(l ,a,X,y)) - VA(jc(1 ,o)IWrMTAJ. (5.2.26)

Since Ax(l,G,X,y) < L\X\ and V/i() is continuous, the theorem is provea •

The map y -» ( Vg{G),y )a is the directional derivative of g(o) in the y direction.

S3 OPTIMIZATION ALGORITHMS H: ALGORITHM WITH RELAXED CON

TROLS

We shall present an algorithm for solving the problem

¥ :mm[^G)\Ge G }, (5.3.1)

which is identical to Algorithm 3.5.1.

Algorithm 5.3.1: (This algorithm is identical to Algorithm 3.5.1)

Data: mq e G, a e (0,1), p e (0,1).

Step 0: i = 0.

Step 1: Compute Vg(u$ using (3.4.6) and (3.4.7).
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Step 2: Compute ©(m^) and v,- using

0(iO ^ min {-±lv- m,I2 +(Vgiud,v - m,-) }. (5.3.2a)
V€ GK 2

Vi =v(Mj) ^ arg min{ -J-lv - m,I2 +(Vg(M;),v - ji,- ) }. (5.3.2b)
V€ G 2

If 0(Mi) = 0, STOP.

Step 3: Compute the step size Xt using

Xi&max{Xe { 0,1,(3,p2, • • }l (5.3.3)

/K*(l,m,- + X(v, - ud)) - Kxil ,Mi)) < oXQiud }.

Step 4: Set ui+i = m,- + A^v,- - m^).

Step 5: Set i = i + 1; go to Step 1. •

Algorithm 5.3.1 produces a sequence of ordinary controls [ ui) a G. Since there is an

injection of the ordinary into the relaxed controls we can associate a relaxed control a,- e G

with each m, e G. The sequence [ Gi) <^G must have accumulation points in G by the

compacmess property of G. We shall show that any accumulation point of { o,- } satisfies a

first order necessary condition for optimality. We begin by stating the optimality condition.

Optimality Function 5.3.2: For o e G, we define the optimality function

©(a) &j\y(c)\2 + {Vf(o),y(o) )c. (5.3.4)

where

y(o)(r,M)4 arg min {-i-lwl2+ (Vg{o)it,u),w) }. (5.3.5)
w € U - «(/) 2

Lemma 5.3.3: If a e G is an ordinary control, i.e., there exists ue G such that

o(0(5) = 8„w(5) for all measurable sets S^U and almost all t e [0,1], then
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(i) For t e [0,1], V£(a)(f,M(f)) = Vgiu)it) where Vg(M)() is defined in (3.4.6), (3.4.7).

(ii) For t e [0,1], v(m)(0 = uit) + yiG)it,u(t)) where v(m)() is defined in (3.5.1b).

(iii) 0(m) = ©(a) where 9() is defined in (3.5.1a).

Proof:

(i) Since x(t,G) = jc(/,m) by Lemma 5.1.0,

VgiG)it,uit)) =|^Wr,M),M(r))p(r,o), (5.3.6)

where

-^p(r,o) =-[A +-^FWr,M),M(f))]p(r,o), p(l,o) =VA(x(l,m)),

and therefore Vf(o)(f,M(f)) = Vg(M)(f).

(ii) By (5.3.5),

y(o)(r ,m(*)) = arg min {-Ilwl2 + (Vf(o)(f,M(f)),w)
w e £/ - «(/) 2

= arg min {-J-lv - m(*)I2 +(V$(m)(0.v - m(0 ) - uit). (5.3.7)
V€ U 2

Therefore, uit) + y(o)(f,M(f)) = v(m)(0.

(iii)

0(a) =-jly(o)l2 +(Vg{G)>y&) )c
l l

=\l Il>(°) '̂u),25«(0^")df +JJ<vKa)(f,u),y(a)(r,M(r)) )Sui0idu)idt)
i l

=-jfWoX'.KC'))!2^ +f (Vf(o)(f,M(r)),y(c)(f,M(f)) )dt
i i

=-j flv(f)(r) - M(r)l2dr +f (V|(M)(f),v(M)(r) - M(f) )<*r
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=±|v(u) - Ml2 + ( V$(M),V(M) - M) =0(M). (5.3.8)

Lemma 53.4: Suppose that a e G is a local minimum for P. Then ©(a) = 0.

Proof: Assume that a e G and 0(a) = -6 < 0. Then aQA,y(a) e G for X e [0,1], and

there exists Xe (0,1] such that for all X e [0A], giaQXyiG)) - |(a) - X ( Vf(c),y(c) )a ^

-^ by Theorem 5.2.4. Since (Vf(o),y(c))<J<-o\ f(aG>A,y(c)) - Ka) <~ for all

Xe [0,X] and hence a is not a local minimizer. •

Lemma 5.3.5: Let L be as defined in Theorem 5.2.3 (i). Then for all o e. G, m,m e £/,

andVe [0,1],

ly(a)0,w) - y(a)(r,M)l < (L + 2)fl>- rl + Im- mI] (5.3.9)

Proof: Since

yiG)it,u) = arg min { \w - (m - V^(a)(f,M))l2 }- m, (5.3.10)

we can apply Lemma 3.5.3 and Theorem 5.2.3 (i) to obtain

ly(a)kfc) - y(a)(r,M)l £ WgiG)(t,u) - V$(o)(f,M)l + 21m- mI

< (L + 2)[Tr- rl + Im- Ml] (5.3.11)

•

Lemma 5.3.6: The function yi) is continuous, i.e., for a sequence {a,} cG such that

a, -» o g G, ly(Oi) - y(a)loe -> 0.

Proof: (By contradiction) Since { yiG-) ) is equi-Lipschitz continuous (Lemma 5.3.5), there

exists aye C([0,l]x(/;lRm) and a subsequence K c 2Z+ such that yiG$ ->yon K. Suppose

y ^y(a). Then,
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-jly(a)!2 +(VKa),y(o)), <1|JI? +(Vffo),}),, (5.3.12)

i

where (y.Oidf f (y(r,M),z(f,M))dMdr and tyl, & {y,yYf.

By the continuity of V|(), there exists /q such that for all i > iQ, i e K,

±\yiG)\2 + {VgiG^yiG))^ <±\yiodi2 + {V|(ai),y(ai)),. (5.3.13)

Hence, we obtain a contradiction. •

Corollary 5.3.7: The function ©(•) is continuous.

Proof: Suppose { o,-} c Gis such that a, -» o e G. Then

QiGd - ©(a) =±lyiGdl% - |ly(a)l2 +(Vg^.y^ )C| - (Vgio),yiG) )a

=[•jWo&t - ^(a)!2,] +[|ly(a)l2, - -±-ly(a)l2]

+ [{Vg(cd*y(od )at ~ <Vg&d,y(o) )c) + [(Vg(od>y&))«,- - (Vs(c),y(a) )0i]

+ [{ Vg(V)>y(o) )<,) - <V«(o),3<o)) J. (5.3.14)

Since \yiG$ - y(a)l.. -> 0, IVtfa,) - Vrfo)L -> 0, ly(a)(-,)l2 e C([0,l]xtf) and

(V£(c)(-,-),y(a)(-,-)) g C([0,l]xt/), lew - ©(o)l -> 0. •

Theorem 5.3.8: Suppose that { «,• } c G is a sequence generated by Algorithm 5.3.1. If

the sequence is finite, then the last control, m,-, satisfies ©(m<) = 0. Otherwise, there exists at

least one accumulation point of the sequence { o,} in G, and for any accumulation point

d e G", ©(d) = 0. Furthermore, lim lg(M1+i) - giu$\ = 0.

Proof: If { Gi} is an infinite sequence, then since G is compact, an accumulation point 6

and a subsequence K such that a, -* b on K exist. Assume ^(d) = -5 < 0. By Lemma
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5.2.4, using the argument in Lemma 3.5.2, there exists Xe (0,1) such that

giG9Xyi&)) - Ko) < (xX@(o), for all Xe [0,%). (5.3.15)

By continuity of K), y(), and ©(•), there exists i0 such that for all i £ i0, i e K

Therefore, the a stepsize of at least Xp is chosen by applying the armijo stepsize rule (Step

3), and so

m^)-^d<^m.=-2f.<0. (5.3.17)

Therefore Ka4) -» -~ contradicting the continuity of gi). Finally, since gi) is continuous

and Gi -» d on K", g(a,) -* g(a), and since gicj) is a non-increasing function of /,

lim \giai+l) - giG$\ = 0.
J _» oo •
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CHAPTER 6

DISCRETIZATION AND IMPLEMENTATION

6.1 PROBLEM STATEMENT

Section 3.5 presents Algorithm 3.5.1 to solve (3.1.3):

P: inf{ giu)\ue G }. (6.1.1)

Theorem 3.5.4 states that any L^^L^ accumulation point of a sequence generated by Algo

rithm 3.5.1 satisfies a necessary condition of optimality. We note in section 5.1 that such a

sequence may not have an L^L^ accumulation point. However, by densely embedding G

in the set G and using the topology of relaxed controls, we guarantee existence of an accu

mulation point and show (Theorem 3.5.6) that any accumulation point satisfies a necessary

condition of optimality for the relaxed problem:

P :min{ giu) \ u e G }. (6.1.2)

However, none of the quantities used in Algorithm 3.5.1 or Algorithm 5.3.1 can be cal

culated exactly, since they require the exact solution of a partial differential equation. Conse

quently, Algorithm 3.5.1 is only a conceptual algorithm; it cannot be implemented directly on

a computer.

In this chapter, we develop two implementable algorithms by performing a series of

discretizations. We solve problem P by introducing a series of discretized problems { Pn }.

We perform iterations to solve each Pn until a specific criterion is met, and then perform

iterations to solve P„+1, using the last iterate determined in solving Pn as an initial guess for

Pn+l. This process produces an infinite sequence, and we shall show that there exists at least

one accumulation point in the relaxed control topology of the sequence, % which satisfies
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©(&) = 0.

62 ABSTRACT IMPLEMENTATION

In this section, we introduce an abstract implementation scheme. We restate some of the

important results from Chapter 3 and 5 as assumptions for Chapter 6.

Assumption 6.2.1:

(i) The function g : G -> R is continuous.

(ii) For each u e G, there exists Vgiu) e L^L^ such that for all v e G,

lim hgiu +X(v - m)) - giu) - X{Vgiu), v- u) I=0.

(iii) The function Vg(-) is uniformly continuous on G in the L^^L^ topology. •

We introduce a sequence of abstract discretized problems, {/*„}. For each n e Z£+,

we define G„ to be a compact, convex, finite-dimensional subset of G and gni) to be a con

tinuously differentiable function from Gn to R which approximates g() on Gn (Assumption

6.2.2.) For each n e 2Z+, the discretized problem Pn is:

Pn: min{ gniu) \ueGn). (6.2.1)

Since gni) is continuous and G„ is compact, a minimum to (6.2.1) exists. A relaxed control

ue G may be isomorphic to an ordinary control in which case u either denotes a relaxed

control or an ordinary control depending on the context We make the following assump

tions:

Assumption 6.2.2:

(i) For all n e Z+, the functions gn : Gn -» R are continuous, i.e., if a sequence

{ u{ } cGn is such that m, -» ue G„, then gniu$ -> gniu).
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(ii) For all n e 7L+ and for each u e Gn, there exists V&,(m) e L%rii£ such that for all

ve G„,

lim -j-lfodi +X(v - ii)) - gniu) - X{Vgniu),v- u)\ =0.
X-*0 A.

(iii) For all n e Z+, if a sequence {mz}cG„ is such that Ui->ueGn, then

lim IVfc,(iO - Vg„(M)l = 0.
I —» oo

(iv) For all n e 2Z+, G„cGn+i.

(v) The closure of \j Gn is G.

(vi) (Uniform Approximation Property.) For all e > 0, there exists nc such that for all n > nt

(a) \giu) - gniu)\ £ e, for all u e G„,

(b) IVg(M) - Vg„(M)l £ e, for all u e Gn. U

For each n e Z+, the function gn is continuously differentiable and Gn is compact and so Pn

can be solved using Algorithm 3.5.1.

63 IMPLEMENTABLE ALGORITHM

Using the above definitions and assumptions, we give an implementable algorithm to

solve P (6.1.2):

Algorithm 6.3.1

Data: n e 2Z+, uq e Gn, a e (0,1), Pe (0,1),ye (0,1), Eq > 0.

Step 0: Set i = 0, e = Vcq.

Step 1: Calculate Vgniu$.
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Step 2: Calculate ©„(M;) and v4- using

eniud £ min {-Ilv - m,I2 +(VgM,v- u-t) }, (6.3.1a)
v e g„ 2

Vi =v„(M;) 4arg min{ -J-lv - m,I2 +(Vgniu$, v- u{) }. (6.3.1b)
v 6 Gn 2

Step 3: If ©„(Mj) = 0, set Xt = 0, otherwise compute the step size Xt using

X,^max{Xe {O.l.p.p2, • • • }l (6.3.2)

gniu{ + Xiv-t - m^) - gniu$ < oiX®niud }.

Step 4: Set uM = m,- + X^v,- - uj), nM = «.

Step 5: If &,(mw) - gM > -£, { Set n = n + 1, e = ye }•

Step 6: Set i = i + 1; go to Step 1. •

This algorithm performs a number of iterations on problem Pn ( compare Steps 2, 3, 4

with Steps 2, 3, 4 of Algorithm 3.5.1.) until g»iuM) - gB(Mj) > -e (The algorithm is making

insufficient progress in decreasing #„(•)). Then, the discretization is refined in is increased),

and the algorithm begins to solve problem Pn+i using the final computed value for Pn as an

initial guess for Pn+\. We shall show in Theorem 6.3.6 that there exists an accumulation point

of the sequence { m,- }, u e G, which satisfies ©(m) = 0, where ©(•) is defined in (5.3.4). We

present some preliminary lemmas.

Lemma 632: For all n e TL+% ©„(•) and vn() are continuous.

Proof: The proof follows the proof of Lemma 3.5.4 and Corollary 3.5.5. •

We make one additional assumption. This assumption is satisfied when Gn is composed

of piecewise constant functions and Vg„(-) is piecewise constant. See Section 6.5.

Assumption 633: For n e TL+% if u e Gn and
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v(m) =arg min{ 4>lv - mI2 + (V^„(m) ,v- u) }, then, v(m) e G„.
veG 2

Lemma 63.4: For all 8 > 0 there exists p > 0 and no such that if u e G is such that

0(m) =-6 <0, then ©„(m) <—| for all ue Gnr\BR(u, p) for all n>no, where BR(u, p) ^

{ mg GlllM-aR<p J1.

Proof:

(i) Recalling the definition of ©„(•) and applying Assumption 6.3.3, for all n e 2Z+ and all

"e G„,

©„(m) = min {hv - Ml2 + (Vgniu), v- u) ), (6.3.4a)
V€ Gl 2

0(m) = min {-i-lv - mI2 + (Vgiu) ,v- u) }. (6.3.4b)
V€ G 2

By the uniform approximation property, Assumption 6.2.2 (vi), for all ex > 0, there exists no

such that for all n > no and all ue G„, v e G„, I( Vgrt(M) - Vg(M), v - u )\ <

IVg„(M) - Vg(M)llv - mI £ Ei. Let v be the arg minimizer of (6.3.4a). Then

©(M) - ©„(M) <[^-IV - Ml2 +Vg(M) ,V- M)] - [-jlv- Ml2 +V$„(m) ,V- M)]

£ I ( Vgiu) - Vgn(M), v - m) I ^ ej (6.3.5)

Similarly by letting v be the arg minimizer of (6.3.4b), @„(m) - ©(m) Sej, and so for all

n ^ /iq and me Gn, I©„(m) - ©(m)I £ e,.

(ii) Since ©(•) is continuous on the compact set G, it is uniformly continuous. So for all

e2 > 0, there exists p > 0 such that for all ufv e G such that Im - vlR < p,

I^(m) - ©(v)l £ e2.

1The norm Mr is defined in (5.1.4).
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c

Combining (i) and (ii) and setting zl = ^ = —• and noting that ©(m) = ©(m) for all u e G

(Lemma 5.3.3), we prove Theorem 6.3.4. •

Next, we show that n increases to infinity.

Lemma 63.5: Let the sequence { nt } be generated by Algorithm 6.3.1. Then,

lim n,- = «».
i —» oo

Proof: Suppose { n,- } is bounded. There exists n, I e 2Z+ such that n, = n for all i >1

Therefore, for i ^f the steps carried out by Algorithm 6.3.1 are identical to Algorithms 3.5.1

and 5.3.1 with g^ and VgA replacing g and Vg. Since gA() is continuously differentiable, by
n n n

Theorem 5.3.8, \gJ.uM) - g*iuj)\ -» 0 thereby contradicting the Step 5 assumption that
n n

8JL**m) ~ g&D * -e for all / 2>1 _
n n ™

Lemma 6-3.6: Let { ut ) c G be the sequence generated by Algorithm 6.3.1. Let A be the

set of all accumulation points of { m,- } in the relaxed control topology. Then A c G is closed

and therefore compact.

Proof: The set A is closed and therefore compact by Theorem 3.5.2 in Munkres [Mun.l].B

Lemma 63.7: For any e > 0, there exists *i such that for all i >1

min{ \ui - u\ \ u e A } < e.

Proof: Suppose there exists e > 0 such that for all i, there exists 7(0 £ / such that

min{ Im,- mI Iue A } > e. We construct a sequence { v,- }, v,- i M/(4-), / e TL+. The

sequence { v,-} must have an accumulation point v e A. However,

min{ Iv - mI I m e A } £ e which is a contradiction. •

Theorem 6.3.8: Let { m,- }cG be the sequence generated by Algorithm 6.3.1. There



§6.3 Im piementable Algorithm 81

exists me G which is an accumulation point of { m,- }, and ©(m) = 0, i.e., a necessary condi

tion for optimality is satisfied.

Proof: Since ©(•) is continuous and A is compact, if ©(m) < 0 for all u e A, there exists

8 > 0 such that @(m) < -6* for all u e A. We set e in Lemma 6.3.7 equal to p in Lemma

6.3.4. By Lemmas 6.3.4, 6.3.5 and 6.3.7, there exists j0 such that for all i > i0,

0fl/(M4)^-|.

By differentiability of #„.(•), Assumption 6.2.2 (ii),

gnfMi + XiVi - M;)) - gniiud = X{ Vgniiud, v.- - Ui) + (6.3.6)

l

M {Vgnfr +sU.Vi - Ui) - V^.(Mi) ,V; - M; )ds.

Subtracting aX@n.(Mj) from each side of the equation and noting that ( Vg„.(Mi). v,- - m, ) <

gniiUi + X^ - m^) - gniiu) - aXe^iO (6.3.7)

l

<(1 - a)XQniiu} +Xl (Vgmfto + XsiVi - ud) - Vgn.iui. v,- - u-t )ds.

We shall now show the existence of ix £ i0 and %e (0,1] such that for all i £ i'i, Xe [0 A]

and ^ € [0,1],

(V^(u,. +Aj(v,- - ud) - Vgrt/(Mi), Vl- - Mi) <l ^"^ . (6.3.8)

Since Vg() is uniformly continuous, Assumption 6.2.1, for all e > 0, there exists p > 0 such

that for all u, v e G such that Im - vl < p., IV#(m) - Vg(v)ll £ e. Therefore, there exists

^€ (0,1] such that for all i e 2Z+, Xe [0,%], s e [0,1],
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lVg(Mi + XsiVi - Mi)) - Vg(Mi)l < e. (6.3.10)

By Assumption 6.2.2 (vi), there exists ij £ Jq sucn mat for ^ ' ^ zi« s € [0.1]#

lV^„.(Mi + Xs^ - m^) - Vs(m; + Xs^ - Mi))l £ e. (6.3.11)

IV*„,.« " V*(Mi)l <e. (6.3.12)

Furthermore, there exists ft < °° such that for all u, v e G, Im - vl < ft. Choose

e= 5(1 " a). Then for i>ilt Xe [0 A], and se [0,1],
12ft

( V£n.(Mi + Xs(Vi - m^) - V£B.(Mi) , v.- - m,- ) <

[lV^,.(Mi +Xs^ -ui- VgiUi + XS^ - Mi))l

+ lVg(Mi + XsiVi - Mi)) - Vg(Mi)l + iVgiud - V^.(Mi)l]IVi - Mtl

£3 5(1 -«)
12ft

S_ 5(1-a)
4

(6.3.13)

By (6.3.13), we see that the Armijo step size rule (Step 3) of Algorithm 6.3.1 chooses

Xi £ (& for i > i\ and so

g>,fei) - Sn,.0O *ap$©flf0O *-^ (6.3.14)

By the uniform approximation property of g(), Assumption 6.2.2 (vi), there exists i2 ^ i'i

such that for all i £ i2

Ifo^^i) " &,(k*i)I ^ •2^— (6.3.15)

Therefore,

Sim^m) - &.,("*) ^ "4~ (6.3.16)
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which contradicts the fact that gn{u$ -> *(&). •

The result in Theorem 6.3.8 is not strong. There may be many accumulation points of

the sequence { Mt} such that at these accumulation points ©< 0, i.e., the necessary condition

for optimality is not satisfied. It may be difficult to find the accumulation point usuch that

©(m) = 0. However, by replacing Assumption 6.2.2 (vi.a) by the stronger Assumption 6.3.9,

we can show that if ue G is any accumulation point of { m,- } in the relaxed control topol

ogy, then 0(m) = 0. A similar algorithm was first proposed by Klessig and Polak [Kle.l] for

the case with ODE dynamics and no hard-control constraints.

Assumption 6.3.9: There exists real numbers o e (0,1) and ft < °° such that for all

n e TL+ and u e Gn:

1*00 - gn(u)\ £ fto". (6.3.17)

Theorem 6J.10: Let Assumption 6.2.2 (vi.a) be replaced by Assumption 6.3.10. Let

{ Mt-} <=G be the sequence generated by Algorithm 6.3.1. If ue G is an accumulation point

of { Mi },then^(M) = 0.

Proof: Assume that u,* -^ mon the subsequence Ka 2Z+ and ©(m) = -5 < 0. By Theorem

6.3.8, there exists iQ such that for all i 2: /q, i e K, 9n.iuj) £ —, and consequently there

exists **! £ j'0 and Xe (0,1) such that X, £ pi for all i > ilt i e AT, and so

for i > ij and i e K.

For i e Z+, gnfuM) - gn.iu$ < 0, and nM = n, if *n.(Ml+1) - gn.iui) < -e, otherwise,
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"h-i =«,• +1. Define K^{ie 7L+\ nM 4 n,- }. If / eKt then since gnMiui+l) =gn.iui+1),

gnM(Ui+i) £ gnW- If i € K, then gnJuM) - gn.iuM) £ Ig^filM) - g(M/+1)l

+l*(w«+i) - *n,(",+i)l £ on'+1 +o\ Consequently, gn.^iui+l) - g„,(Mi) £ a"'*1 +a"'.

For j > /'l there are four cases:

(i) ie Kt&K-K,

(ii) ie K2£ K^K,

gnJui+l) - gniiud <--^+a"'*1 +Gn<, (6.3.20)

(iii) i e K3 £ K- Kt

gnJUi+0 - ft.,GO <oBM +G*, (6.3.21)

(iv) i eK^jK,

gnJUM) - 8*fi*i) £ 0. (6.3.22)

Therefore,

oo

lim gn.iUi) = g^iuj + £ l8nM(unJ - &<"«)]

i =i'i ,i e flfi ^ i =i'i ,i e Af2 *=«i i' € ^3

i =ij,i e K^Ki L i=i,,i€ tf2U*3

<r t w v a3^5 . 2
g<'l(M,,) • • •?*»*" 2 +T^'

gnJui+l)-gniW<-^-t (6.3.19)
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Therefore, lim gn(u-) = -<*> which contradicts the fact that gnfu^ -> g(u)> u
I -> oo '

We shall present an alternative algorithm for the case in which Assumption 6.2.2. (iv.a)

is satisfied, but Assumption 6.3.9 may not be satisfied. This algorithm uses a different

refinement criterion to produce a sequence { m,- } and a filter to produce a sequence

{wn}a{ ut} such that any accumulation point we Gof {wn } satisfies ©(vv) = 0.2 This

algorithm is identical to Algorithm 6.3.1 except that the refinement criterion (Step 5) is

replaced by Step 5':

Step 5': If -0„(m1+1) £ e, { Set wn = uM, n = n+l,e = 7E}.

Algorithm 6.3.11:

Data: mq e G, ae (0,1), P e (0,1), ye (0,1), n e 2£+, Eq > 0.

Step 0: i = 0, e = -ftQ.

Step 1: Calculate Vgniu-).

Step 2: Calculate ©„(Mi) and vt- using (6.3.1a) and (6.3.1b).

Step 3: If Qniui = 0, set X,- = 0, otherwise compute the step size X,- using (6.3.2).

Step 4: Set m^ = m,- + X,<Vi - m^, nM = n.

Step 5': If -©„(mi+1) £ e, { Set wn = Mi+1, n = n + 1, e = ye }.

Step 6: Set i = / + 1; go to Step 1. •

Lemma 6.3.12: Let { ut } and { nt } be generated by Algorithm 6.3.11. Then

lim A,- = oo.

The use of a filter or sieve loobtain a subsequence whose accumulation points satisfy anecessary condition for optimal
ity was first proposed by Klessig and Polak [Kle.2].
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Proof: Suppose { n,-} is bounded. There exists nCie 2£+ such that n,- = n for all i >1

Since { m,- }cGA, and GA is compact, there exists tie G^ and a subsequence #Tc2Z+ such
n n n

K

that m,- -> ft and therefore by Theorem 3.5.6, @a(m) = 0 thereby contradicting the assumption
n

that -©„(Mi) > e for all i £t
n •

Theorem 6.3.13: Let { wn ) be generated by Algorithm 6.3.11. If we G is an accumula

tion point of { wn } in the relaxed control topology, then @(iv) = 0.

_ K
Proof: Suppose that there exists we G and a subsequence K^2Z+ such that wn -» w, and

©(h) = -5 < 0. By Lemma 6.3.4, there exists n such that for all n £ % n e Kt

©n(wJ £ —2-. However, for all n e Z+, -©„(*>„) £ yeo or 0B(wn) £ -/eo which is a con

tradiction. •
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6.4 EXAMPLE - PRELIMINARIES

In Section 6.2, we made a number of assumptions regarding gni) and Vgni). In the

next two sections, we present a simple optimal control problem; we provide a discretization

scheme; and we show that this scheme satisfies the assumptions of Section 6.2.

We seek to solve the following problem:

P : min { giu) \ue G±{ue LS*([0,1]) Iln(r)L ^ b,t e [0,1] } }, (6.4.0)

where giu) can be either the potential or kinetic energy of system (6.4.2) at the final time.

That is

giu) =Piu) =F(1,m), P(mi) £±l-^wit,,u)l2t (6.4.1a)

or

giu) =Kiu) =*(1,m), Kit,u) £^l^-w(f,-,M)l2, .(6.4.1b)
2 at

where w(-,-,m) is the solution to system (6.4.2):

a2 a3 d2•Zjwittx,u) - a-~j>v(f,;c,M) - -~jw(r,^,M) =^,m(0), re [0,1], x e [0,1], (6.4.2)

with boundary conditions:

w(r,0,M) = —wit,ltu) = 0, te [0,1], (6.4.3)

and initial conditions:

w(0,x,m) = TOO, -t-w(0,;c,m) = p(x), x e [0,1], (6.4.4)

with *yO and p(-) chosen to be smooth in x and to satisfy the boundary conditions; a >0;

and /(•,•) chosen such that for all u e Rm such that ImI^ :£ b, f(x,u) is smooth in x and

satisfies the boundary conditions (6.4.3). Finally f(tu) e C([0,1]) is continuously
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differentiable with respect to u.

Let us assume we are interested in minimizing the potential energy at the final time,

giu) = Piu). The case in which giu) = Kiu) follows easily. By putting (6.4.2) into abstract

form as was done for system (A2.2.1) and (A2.2.2) in Appendix 2, we follow the steps in

Appendix 2 to show that the partial differential equation (6.4.2) gives rise to an infinitesimal

generator of semigroup. The semigroup is analytic if a > 0. Furthermore, we can see that

giu) k —l-r-(l ,-,m)I2 is acontinuously differentiable function in ue L^L^ and therefore
2 dx

all requirements of Assumption 6.2.1 are satisfied.

We now derive the gradient V$(m) for gi) defined by (6.4.1) for the case with no

damping ( a = 0 ). The case with positive damping ( a > 0 ) follows easily.

Lemma 6.4.1: Differentiability Let 5h<-,-,m,5m) be the solution to:

-|isw(r,-,M,8M) --|^M/,-,m,5m) =-—/(•,m(0)5m(0, (6.4.5)
with boundary conditions:

8w(r,0,M) =-|-MU,m) =0, te [0,1], (6.4.6)
and initial conditions:

6\v(0,x,m) =-!"8w(0,x,m) =0, xe [0,1]. (6.4.7)
dt

Then,

lim -rKr,-,M + hb*u) - w(r,-,M) - hbwit1tu,bu)h = 0, (6.4.8)
a-»o h

where Y\x is the energy norm, i.e.,

Iw(f,-)l£ 4IiJL^t.)|2 +l|Aw(/t.)|2 (6.4.9)
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Proof: Let r\ittx,h,Su) = wit,x,u + h&u) - wittx,u) - hbwittxtuM) and

by{t,x,hM)£f(x,uit) +ho'uit))-f{x,uit))- h-^fix,uit))b'uit). Then nsatisfies:

-^rT|(f,X,/l,8M) - -|TTia,JC,/ii8M) =8/(f,;c,/i,8M), (6.4.10)
dr dxr

with boundary conditions and initial conditions:

tK*,0,A,8m) =-!"ti(M,a,8u) =0, fe [0,1], (6.4.11)
d*

T|(0,x,/i,8m) =4-T\i0,x,htb'u) =0,xe [0,1].

Multiplying (6.4.10) by -r-T|(f,;c,/i,8M) and integrating from 0 to 1 in * yields
at

-LiLi-l^,,. ,/!,5m)I2 +4"r:l~r|(r,-,/i,8M)ll2 =f8/^*,MM)^ri(f,;c,/i,8M)<ic, (6.4.12)
l

2 9f"8f'lv" """"''" ' 2 df'd*',v" """"'" J"vx '~~'3r

where we integrated the second term by parts and employed the boundary condition (6.4.11)1,

Integrating in time from 0 to t and using the initial conditions,

n

±\±nit,,hMi2+̂l-|^i(f.-,/i,8M)l2 =ffbAsa,hMYt^s^h^dxds- (6-4-13)

i

Noting that f8^,*,Mm)-^ti(5,-,/i,8m)<£c£ ^lbyis,x,hMi2 +Ij-nC*. ^.8m)I2 and
1 fi

adding —I—ti(j,-,/i,8m)I2 to the right hand side of (6.4.13), we obtain
2 dx

±\±r\it,-,hM)l2 +liArKr.-.A.SM)!2 (6.4.14)

1 1*1 denotes theLj norm unless otherwise stated.
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t

*J[^I8^.-,A,8m)I2 +±-\±ms,.,hM)\2+\\4-T\(^'Xhu)\2]ds.
^ 2 2 ds 2 dx

Applying the Bellman-Gronwall Lemma (see Section 6.6),

i-l^-Ti(f,.,/i,8M)l2 +̂ l^-ri(r,-,A,8M)l2 <U \hf{s,AM)\2ds e"2. (6.4.15)
2 dt 2 dx 25

Equivalently,

-\\r\it, ,hMl2x <±j -i-l8y(j,-,A,8M)l2^ e"2. (6.4.16)
h *oh

Since fi,u) is differentiable,

lim Tlr|(r,-,/i,8M)lx = 0, (6.4.17)
h -* on

and the theorem is proved.

1. 3 _..,, ..s,2Lemma 6.4.2: (Differentiability.)Let^(m) =—I—w(l,',M)r. Then,
2 dx

lim i-Wii +hbu) - giu) - h(-|-w(1,-,m),^-8w(1,-,m,8m) )l =0. (6.4.18)
h -* 0 n dx dx

Proof:

±\giu +hbu) - g(M) - A(^w(1,-,m),-^8w(1,-,m,8m) )I= (6.4.19)

'^•t^0'^'6^ +2-JU<1,-,m) +/i^8yv(1,-,m,8m),-|^(1,-,/i,m) +/i-|^8w(1,-,m,8m)

- (^-w(1,-,m),^-8w(1,-,m,8m))I
dx dx

=-^^1Kl. ^.8").^0.-^,8m)) +^(-|^Tl(l.^,6M),-|^8w(lf-,M,8M)V

+i(i?w(1,,,M),^T1(1,',/l,5"))
+T (-|-8vK1,-,m,8m),^-ti(1,-,A,8m) )+/iI^-8w(1,-,m,8m)I2.

2 dx dx dx
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The limit of the right hand side as h approaches zero is zero by (6.4.17). •

d dTherefore the directional derivative of gi), dgiu;bu) = ( — w(l,•,m),—8w(l,•,u,8m) ). By

Lemma 3.4.3, there exists Vgiu) e L^^l^ such that ( V^(m),8m ) = dgiu;bu).

The weak form of (6.4.2) is:

For all <J> e H* £ { \f e Hl I\|/(0) =0 },

{J*Lwit,,u)M)) +a(•^w< '̂»>'"|^<->) +{J^'^'ll*0} (6A20)

= W,u(f))M-)).

We now prove an inequality relating the energy of the system at any time to its initial energy

and input energy. In Section 6.5, we shall propose a discretization scheme and use a discrete

version of this inequality to show stability and convergence of our scheme.

Lemma 6.4.3 Energy Inequality: There exists c < <» such that for all initial states and

inputs and times t e [0,1],

Kit,u) +Pit,u) <; c{ Ki0,u) +Pi0,u) } +ci lfL,uis))\2ds, (6.4.21)

where Kit,u) k\\^-wit,,u)\2, Pit,u) £Ii-i-wCtv.jfli2.
2 dt 2 dx

Proof: Set <K) =-f-w(f,• ,u) in the weak form (6.4.20):
dt

d2 a a2 a2<-^-2>v(r,-,M),—w(r,-,M) >+a(j-r-wit,,U),jyWit,',u)) (6.4.22)

+^^''^-J^'"")' =U."(0).-^H<r,.,M)):

Equivalently,

//'=(n€ ^2([0,1]) Iu isdifferentiate and u € ^([0,1]) }.
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2d..,. ., v _.„ a= (y(',"(0),-^w(r,-,M))-cdl-~jw(r,-,M)l2. (6.4.23)

Integrating with respect to time, we obtain:

-i|̂ w(r,-,M)l2 +l||-M<r,.,M)l2 =1|̂ h<0,-,m)I2 +1|̂ w(0,-,m)I2 (6.4.24)

+FU-,^)),^w(5,-,m) )<fc - af l^~-w(.y.-,M)l2dy.

Since (A,uis)),4-*is,,u)) Z±lft,uis))l2 +±\JLwis,.,u)l2 znd
dt 2 2 dt

-afl-^r-w(,s,-,M)l2 £0£-i-J ly-w(*.'.")i,2<fr. (6.4.24) becomes:

1|-|w(/.-,m)12 +l|-|-w(r,-,M)l2 <; l|-iw(0,-,M)l2 +±|-|-w(0,-,m)B2
/ i t

+\ fW'.iiCj))!2^ +-jJ I-^^.-.m)!2^ +\f I-~w(5,-,m)I2^. (6.4.25)

Finally, by applying the Bellman-Gronwall Lemma to the right hand side of (6.4.25), we

obtain:

-i|-^w(r,-,M)l2 +7l^w(r.-.w)l2 (6.4.26)
t

<[-jI~h<0,-,m)I2 +±l-^wi0,-,u)l2 +-If Ifi-MsVPdsle"2.

6.5 EXAMPLE - DISCRETIZATION

We use the Finite Element Method and Newmark's p integration scheme [New.l] with p = 0

to solve (6.4.2) - (6.4.4). The analysis of this integration scheme with p £ 0 was originally

done by Fujii [Fuj.l] for a class of vibrational problems. In this section we adapt his

analysis to show that the Uniform Approximation Property, Assumption 6.2.2. (vi), is valid
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for optimal control problem (6.4.0). Oden and Fost [Ode.l] have extended Fujii's analysis to

the non-Unear wave equation uu-FiuJ =fix,t) where FiuJ possesses properties generally

encountered in non-linear elasticity.

Spatial Discretization (Finite Element Method)

Since our PDE is of second order, we use linear elements to approximate the solution. For a

given q, there are 2q + 1 discretization points spaced equally over [0,1]. We choose basis

functions {vj(-) fU Let k±2"*.

(x-(/-l))l/Jfc xe [ii-l)k,ik]
1 - ix - ik)llk x e [ik,U + l)k]. (6.5.0)
0 otherwise

tific) =«

This basis generates the subspace Hq:

Hq£ { v e H* Iy = £ Wi» * € r2'+ ' )• C6-5-1)
i = 0

2?

where 2? + 1 is the number of grid points. It is clear that for \y = £ ^«V? to ^ a memDer
i = o

of //* X must be zero. We subsequently ignore the Xo term. We approximate wit,,u) by a

member of //^: w(r,-,M) = 2 *li('»K)vi(") where T|? : [0,l]xG -» R2. The weak form
i = i

(1.9) becomes: For <J) e Ha,

^p\q(t,u)Yqi)M)) +ol(-^£ £ tii(r,M)^(),-^<̂ Z^idYJCMO) +«(33- £ <a.")<()^<t>()) + (6.5.2)

09
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Temporal Discretization

For n e 7L+, we discretize time into a grid of 22" intervals of equal size and consider as

inputs members of

GnkRnr\G, (6.5.3)

where

Rnk{ue LftfO.l]) Iu is piece-wise constant, continuous from the right (6.5.4)

and changes only when t = j2Hh forj e [ 1,2,...2" } },

where h => 2"2n. We approximate t\lqijh,u) by &,,(/». j e {0,1, •. •22n }, and the time

derivatives by finite differences. We use Newmark's p scheme to approximate the

d2
differential equation. We approximate the second order time derivative —r by

dr

•jj^TK/M) =Dp£(j,u) =-jL<5(/+1,m) -26(/.«) +W- 1.«)) (6.5.5)

and the first order time derivative — by
dt

-|il0*,u) «±iDt+D#0\") =-jjfiC/+1.«) - 50* - 1.«))• (6.5.6)

Applying this discretization scheme (6.5.2) becomes:

(DPT"L Zfn,q(J,u)V<,()M)) +a{\iDt +Dj) £ &^>u)-rV£)*4-M')) (6-5.7)
1= 1 * 1= 1 dx ax

for all <|>() e Hq. By setting <!>(•) =yk) e #,, 1e 2*, (6.5.7) becomes

D&j.u) =|($</ +l.«) - $(/.«)); W.«> =7^0.«) -W- !."))•
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MfiP&Jj.u) +%KqiDt +D^n>q(j,u) +Kfin>q(J,u) =fn,qij,u),

where

K =>
'<***:£*> ... <i*i-i< \

/

A9SS ,

M
Wi^O*)))
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(6.5.8)

(6.5.9a)

(6.5.9b)

2* :,M^ is positive definite, and Kq is positive semi-definite. If { %nt<fj,u) }j=o is the solution to

ii

(6.5.8), then we hope that £ Z>n,q(j>u)Vq(')is a good approximation to w(jh,-,u). We shall

determine the validity of this approximation.

Stability

To show stability of this discretization scheme, we shall show the discrete analog of the

energy inequality (6.4.21). We have an important lemma from FujiifFuj.l]:

Lemma 6.5.1 [Fujii]: For q e TL+ and \ e 2q,

%TK£ <-jk^Mfi where yx =2V3 and k=2"*.

Lemma 6.5.2: Discrete Energy Inequality.

For q e 2Z+,n e Z+ such that 2n - q > log23, there exists C < » such that for u e Gn,

lM»D£ir,u)l2 +\K1*Z)ir,u)l2Z ^ (6.5.10)

C(IM*D£(0,m)I2 +I^(0,m)I2) +C2 h\fi,u(jh))\2.
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2«

Proof: Set $(•) £\iDt +D$ £ 5J.^/.m)vJ(-) in equation (6.5.7):
2 *= l

i = l z * = 1

+cxli(Df +D$ £ ^i?0",")^-Yj()l2
Jk= 1 dx

96

+<Ei^.^viCO.^ +̂ I ^0.")t-¥J())
i = l 0* z * = l °x

= WMiffwi^ +^S §J.//.k)vJ(')V (6.5.11)
Z *=1

Define M = Mq and tf = ^ as in (6.5.9). Then (6.5.11) becomes:

±<PP£*tJj,u))TM(Dg +Dfajj.u) +±HDt +Dfcn,q(j,u))TKiDt +Dfa^u)

+̂ n.q(J^)TKiDt +D^ntq(j,u)

*-kW-.«W)"2 +-jKPi +D;) £ ^I<70".")^()«2]. (6.5.12)
2 4 *=l

where we have used the fact that {x,y) £ —• fccl2 + —lyl2. Multiplying (6.5.12) by h and

summing from j = 1 to r - 1,

T72 rZ(5n,,0* +1.«) - 2t,.//.«) +5»,,(/ " 1.U))TM(fuJj +1,M) - $„.,(/ - 1,M))
2/1 y= 1

+T'S Sn.qV'UfK&n.qQ +1.«) - $„,<(/ ~1•«»
2>tl

r-1

2;=1
l/('.^))l2 +-jIPi +D^M'%tq{j,u)\7

-±KDt +D^%ntq(j,u)\7 (6.5.13)

For simplicity, define £, &5„ ,$(/.")• We can remove the a term so that (6.5.13) becomes:



§6.5 Example - Discretization 97

-irKgMt- 2gAieM +Wm) " ffifAfti - 2^M^0 +$^o>] (6.5.14)
2/T

+t^-i^ - tf«o) *4r2MlA-,"0^))l2 +4"KA +D^^B><70',")i2].
2 ^/=i *

Regrouping terms, (6.5.14) becomes:

±(P£r)TM{D£,) - ±<P&>TM{D&) +\\g*Z,+&-i "^r)7^r (6.5.15)

^y =l 4

±(Pfr)TM(P£,) +\i%K%r) ±±(P&>TM(P&) +±%FZ0 (6.5.16)

- l(^D^r,^%) +I(W?^0,/:%)

2y=l 4

Since - (x,y) £ —-Ld2 + tM2 for e >0, Lemma 6.5.1 implies
2e 2

£-|<g*Sr) +̂ ^(D£P)rA/D£r. (6.5.17)

And since

z'̂ +1 - ?i. ti2 s / £l§, - E,._ ,IJ +21!;, - V-1"2.
*=1 £*1

(6.5.16) becomes

M1 - i*z -TXDfr^w*)+ o- 4«f«5r) *2V 2e /fc2 2

2(1 +̂ WW1"^ +<' +yX8*to
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+i'i h[Yfi,u(Jh))\2 +\D^%\2 +$K%j\. (6.5.18)

If there exists a positive constant T| such that for some e > 0,

l-|2Handl-^--|sn, (6.5.19)
then we can apply the discrete Bellman-Gronwall Lemma (see Section 6.6) to (6.5.18) to

obtain (6.5.20) for some C < <». Therefore if 1 = > 0, then there exists such a
kr 2

r| > 0 such that (6.5.19) is true and

lA^D&l2 +IJ^y2 <C[IM*D£ol2 +l^o<2] +CZ Mfi,uijh))\2. (6.5.20)

Convergence

2*

The purpose of this section is to show that the finite element solution £ Qn,q('u)Vq(') con_
i = 1

verges in the L^ and the Hl norms to the true solution w(-,-,m) as n and q become large.

This is done in two parts: we introduce the interpolation of wijh,,u) in the Hq space for

ye { 0,1, • • • 22n }. We determine the error between w(jh,,u) and its interpolation.

Second, the error between the interpolation and the finite element solution is found. The sum

of these two errors bounds the error between the finite element solution and the true solution.

Suppose me Gn for n e 2Z+. Let wi,,u) denote the solution to (6.4.2) which has a

nodal vector *„,,(-,m) e IR*2** 1)x2' (i.e., wijh,^^) =<,(/.") for / e { 1,2,...2* } and

j e { 0,1 ,...22n } ). Again k = 2T* and h = 2"2n.

To obtain the first part, we invoke the following lemma from Strang [Str.l]:
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Lemma 6.5.3 [Strang]: There exists c < °° such that for all u e G such that if w(-,-,m) is

the classical solution to (6.4.2),

IL ^n,q(jh.u)^qi) - wijh,,u)\ £ c*2, (6.5.21)
i= 1

IT- £ ^n,^^)¥i() - -JrMlh,;u)\ <ck. (6.5.22)
0* i = 1 ox B

Since all mg Gn, where G„ is defined in (6.5.3), are piecewise continuous, all ue Gn admit

classical solutions to (6.4.2), see Pazy [Paz.l]. Since u e G^Rn is piecewise constant, a

classical solution exits to (6.4.2). Temporal discretization has been done in the following

way. For any ne 2Z+, the time horizon [0,1] is divided into 22n equal segments for the pur

pose of integration. However, for determining controls, the time horizon is divided into only

2" equal segments. This means the control can change only after 2" integration steps have

been performed. We define Jn &{0,1, •••22n ) and Kn &{0,2",2x2\ •••22" }. For

j e Jn,

h2 A3 »wiij+ l)h,,u) =w(jh,,u) +hw+(jh,,u) +yw^.-.u) +-—• w+(/A,-,m) (6.5.23)

+|̂ vi+((/ +e;)/l,-,M),

wiij- l)h,,u) =w(jh,,u) - hwjjh,,u) +̂ rwjjh,,u) - ^w.(jh,,u) (6.5.24)

+|̂ w-(0'-e>)/z,-,M),

with 8,-,^-e [0,1]. For j e JJKn, w+ijh,-,u) = wjjh,,u), wjjh,,u)=wjjh,,u),

w+(jh,,u) = w_(jh,-,u), and w+(jh,,u) = wjjh,,u). Summing (6.5.23) and (6.5.24),

Dp^(jh,-,u) =w<jh,,u) +JLptfA,.,!!), (6.5.25)
24

where p(jh,,u)£ iwi(j +Qj)h,,u) -wi(j-Qj)h,,u). Substituting (6.5.23), (6.5.24) into
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(6.4.20) and neglecting damping (a =0)2,

{DPp>(jh>',u)M)) +{-^wijh,-,u),fyi)) +-^{p(jh,,u)M)) (6.5.26)

= W.uQ'h))M'))

for all <J>() g Hq and j e J,jKn.

We state the identity:

(DpTZ <,(/.«)>#•).♦(•)) + (T~ E <,(M)vi().<K)) (6.5.27)
i = 1 *i»l

= <£>A-L <,0'.")¥i()^O)+ ^T"Z <,</.«0yJ(-).W-)).
1= 1 0* 1= 1

Adding equations (6.5.27) and (6.5.26) and subtracting (6.5.7), we obtain:

DPtI, £n,q(J>U)-*n,q(J,uWq()M))+ <Z (&.,</.«) ~Kq<J^^Vqi)^() )
l = l i=l ax ox

= (JWZ <,0>)V*O-M/A-w)).<K)/
i=l

+(-J £ <^«)¥i()--^K/^-,M),-|^(t)())

+£ (p(/V.«).<K)) for all <K) g#,. (6.5.28)

For j g Kn, (6.5.26) does not hold. We subtract (6.5.7) from (6.5.27) yielding

i=i 'Bi

i=i i=i

*The case in which a > 0 can be similarly handled.
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- (A,u(jh))M)) for all <t>() € Hq. (6.5.29)

Define ei =en>q(j,u) =*,..*(/.«) - S„t<7(M). and set <J>() £i(D, +£>;) Z <,(/,lOvjO in

equations (6.5.28) and (6.5.29). Multiplying (6.5.28) and (6.5.29) by h and summing from

j = 1 to r - 1, and applying the Discrete Bellman-Gronwall Lemma icx,i e { 1,2, • • } are

real, positive numbers less that infinity.),

i[1" Ti^{^MD*r+(1" iy7Mr*
±[l +̂ -^KD^fMD^o +U- %)elKeQ
2 2e kr *•

+ h 'Z cxk4 +c2/^ +c2h4
is 1,1 »>2"j€ Z.

+ /l I <4
=l,i=>2"je Z*

2 2e j^ 2

(6.5.30)

Let e0 =w„^(0,m) - ^,,^(0,m) =0. Since the forcing function is bounded, \ex\ < cgA. There

fore, when the stability requirement (6.5.19) is met, (6.5.30) becomes

iDfr/MD?, + eTrKer <> c7(2"^ +2~n).

Therefore,

IZ «i^(/.tt>|-vi(-)l2 =eJKej <> off*+2"").
i=i aX

By Friedrich's inequality, l(J)()l < c8l-r-<j)()l for all <J>() g H*,
dx

2"
-«/2xI Z 4,,</.«)ViOI = * *9<2~* +2",/2)

1 = 1

(6.5.31)

(6.5.32)

(6.5.33)
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We define gntqiu) to be an approximation to the potential energy at the final time, gn>qiu) =*

—I £ ^,ntqi22n^-^-y^i^l2. Applying Lemma 6.5.3, we obtain the following theorem:
2 i = l dx

Theorem 6.5.4: There exits c < » such that for all n e TL+ and all u e Gn,

(1) "*(") " gn.qW * cihm + it2) = c(2"" +2"^), (6.5.34)

(2) l^-w(jh,-,u) - £ 5i.^/.«)T-vi(-)l *cihV4 +*) =CC2-"2 +2"^). (6.5.35)

Corollary 6.53: Theorem 6.5.4 is also true for any damping a £ 0. •

2'

We define an approximation to bw(jh,,u,bu) to be 2 SSn.fCM.S'OviO) where
/=i

b^„tqi,u,6u) is the solution to

MfiPfaJj.uM) +^KqiDt +D^ntq(j,u,bu) +J^fi^.ii.&O (6.5.36)

=^fn%q(J^)hu.

We define an approximation to the directional derivative of g(u) to be

dgnqiuM =( £ Si^.^T-viC). Z ^U22fl'"'5")TTVi() )• (6-5.37)
i=i d* 1= 1 oX

Since w(-,-,m) and 6w(-,-,m,8m) solve similar partial differential equations, and §ntqi,u) and

b^ntqi,u,bu) solve similar finite difference equations, a result similar to Theorem 6.5.4

applies.

Theorem 63.6: There exists c' e [c,°°) such that for all n e TL+, ue Gn and

hue Gn- u,

a) |̂ _Sw(1,-,m,6m)- £ ^(7(22fl,M,8M)^-V|r;()l<c'(2-fl/2 +2^), (6.5.38)
dx , = i ox
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(2) \dgiu\bu) - dgntqiwM\ < c'(2-"/2 +2"*). (6.5.39)

Proof: The proof of (1) is similar to that of Theorem 6.5.4, part 2. We must show how

dgn,qiw,ou) approximates dgiu;bu):

\dgiw,bu) - dgn>qiu;bu)l = ( ~w(1,-,m),~8w(1,-,m,8m) )

- <Z &^k)tV«<->. £ Hi^.n.&i^vio))
i = i °* i = l ox

<|Aw(l,-,M)- £ ^.^.M^viOH-^SvKl.-.M^M)!

+l£ ^.^.M^viOII^Swd.-.M.SM)- £ 6^(1,m,8m)J^0I

< c'(2_n/2 + 2'q). (6.5.40)
•

If we choose q = n in the above equations, then all assumptions in Section 6.2 are satisfied

and Theorem 6.3.6 is true.

Summary

We have presented an example problem to illustrate how the assumptions of Section 6.2

can be satisfied. In this example, we chose the spacial and temporal discretization to be the

same and the control to be piecewise constant with Vn discontinuities where n is the number

of time intervals. Fujii suggests that the restriction between space and time discretizations

(6.5.19) can be removed if Newmark's p integration scheme with p>— is used. Further

more, from experimental results (see Chapter 8) it appears that the piecewise constant con

trols with n discontinuities can be used without problems.
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6.6 APPENDIX FOR CHAPTER 6

Bellman-Gronwall Lemma:

Suppose c £ 0, r() ^ 0 and *(•) £ 0.

i

If r{t) < c + f kis)ris)ds for all t e [0,71, then rit) < ce ° for all t e [0,71.

Discrete Bellman-Gronwall Lemma: Suppose c > 0 and kt > 0.

N-l N-\

If rN < c + X V«' "^en rN < fl O + ^c •
i=l i =l

a N"1
Proof: Let jn £ c + Z kiri- Then rN &sn and sn+1 " sn = *Nrtf.

i = i

*n+ i = Vn + ^ < (1 + kN)sN.

N-l N-l

^ ^ sn n o + «*i = n o+w-
i=i i=i
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CHAPTER 7

ADVANCED ALGORITHMS

In chapter 3, we presented a conceptual algorithm to solve fixed-time problems with

control constraints. In Chapter 4, we showed that by using a specific time scaling, free-time

problems can be transcribed into fixed-time problems. In Chapter 6, this conceptual algo

rithm was transcribed into an implementable algorithm by introducing: (1) a scheme to

discretize the PDE spatially into an ODE; (2) a scheme consistent with (1) to discretize the

ODE into a finite difference equation; (3) a rule to determine when and how to refine the

spatial and temporal discretizations.

Chapter 7 provides an extension of the Polak-Trahan-Mayne algorithm to solve both

fixed-time and free-time problems with control, terminal state and state-space constraints. In

Section 7.1, we derive a formulation for these problems. Section 7.2 presents an algorithm to

solve the resulting problems. With the PDE discretized to a finite difference equation, the

algorithm can be implemented. Section 7.3 presents two subprocedures to find a search

direction for the algorithm in Section 7.2.

7.1 FORMULATION

In Chapter 3, we discussed a conceptual algorithm to solve the fixed-time problem with

hard control constraints:

P : inf { g(u)\ue G }. (7.1.1)

In Chapter 4, this was extended to the free-time problem

inf{ g(u,i) I u € G(x),T e [t,™.t^J }. (7.1.2)
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The problems encountered in Chapter 2 are more complicated:

inf{ g(u%z)\gf(u,x)<OJe ^d,<?(u,x,r)<0,r€ [0,x], (7.1.3)

U € G(X),X€ [Xjnin.Xn,^] },

where giU,x) = h/(z, x(\, u)), <?(«, x, r) = /^(x,i(r,«)), for all t e [0, x] and

# : IRxX -»IR are continuously differentiable for all; e { 0, • •• ,/? }, and i(-,m) is the

solution to (4.1.10).

By performing the time scaling as in Section 4.2, we obtain the problem:

inf{ g(K,x) \gf(ji,x)£0Je Ezl.tfii.T.f) ^ 0,r e [0,x], (7.1.4)

Ue G,X€ [Xmin.Xma,] },

where ^'(w,x) = /i/(x,3:(l,M,x)), Je {0, • • ,p-l }, <J)(m,x,0 = ^(x,x(r,u,x)), with

the dynamics from Section 4.2:

4^.".x) =x[>ft(r,M,x) +F(3:(r,u,x),«(0)], re [0.1], *(0,u,x) =%. (7.1.5)

The functions ^ are dependent on both the state and a parameter x. To simplify exposition,

we define an additional state whose value is x for all time. We can therefore transform

(7.1.4) to a new problem in which the function g7 is dependent only on the state.

We define jt°(-,K,x)e C([0,1]) so that xP(t,u,i) = x forr e [0,1]. Then,

d_
dt

jc(r,«,x)
x°(t,u,x)

Define x(t, w, x) =

*0(/,K,xXr£(f,K,X),K(f))
0

*(r,M,x)
Ar,«,x)

e XxIR.

, re [0,1],
x(0,u,x)
A0,a,x)

By defining f(x(t, u, x), «(r)) = Ar,K.x)7a(r,u,x),K(0)
0

, (7.1.7) becomes:

(7.1.7)
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-2-x(t,u,x) =/(;c(r,K,x),u(r)), *(0,u,x) =
at
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(7.1.8)

Hence (7.1.4) becomes

inf{ g°(«,w)l^(u,w)^0j6 £zl,<t>(".w,r)<co, re [0,1], Me G, we C }, (7.L9)

where ^(k,w) = #(;t(l ,k,w)), j e { 0,1,.../>-1 } and

<K", w, r) = tf'Ctfr, u,w)), re [0,1], with #* : Xx IR -» R being continuously

differentiate for ; e { 0,1, • • • ,p }. C^xtx^.x^cXxIR and

*(• ,u,hO e C([0, l]#xIR) satisfies

-§-^r,u,w) =/(^.".w),u(r)), x(0,m,w) =w. (7.1.10)

In what follows, we will generalize to the case in which C is any compact, convex subset of

XxR. The functions #(•) in (7.1.9) are different than those in (7.1.3).

We close this section with a discussion of state-space constraints

(<Kn,w,r) £ 0,r e [0,1]). The algorithm presented in Section 7.2 does not solve problems

with state-space constraints explicitly. However, if we define

f(u,w) £ f [max{ <t>(K,w,r),0 )?du (7.1.11)

Then f(u,w) = 0 if and only if <|>(u,w,r) £ 0 for all r e [0,1]. If we append a new state,

*(•, u, w) e C([0,1]) such that

4*(r,w,u) =max{ hp(y(t,u,w)),0 f, x(0,k,w) =0,
at

we obtain a new system:

(7.1.12)



§7.1

d_
dt

x(t,u, w)
xXt,u,w)

Formulation

){*(/, K,w),u(r))
max{ /i'(jc(r,K,HO),0 }2

x(0,u,w)
x(0,u,>v) •63
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(7.1.13)

With this notation, (7.1.9) is transcribed into (7.1.14) with no explicit state-space constraints.

P„ : inf{ g\u,w)\gi(u,w)<OJe £,«e G.we C }, (7.1.14)

where^(ii,w) = A'Cxd,Ji,w)),Ve { l,2,...p-l }, f(u,w) =*(1 ,tt,w).

Note of Warning: There may be inherent poor conditioning associated with this tran

scription. This shall be discussed in Section 7.2

In Sections 7.2 and 7.3 we present algorithms to solve (7.1.14). It is clear that any

such algorithms are conceptual ; they still require exact solution of an partial differential

equation. However, by applying a discretization scheme with a consistent refinement rule,

we obtain an implementation.

12 POLAK-TRAHAN-MAYNE SEARCH DIRECTION

In 1979, Polak, Trahan, and Mayne [Pol.5] proposed a method based on earlier work of

Polak and Pirroneau [Pir.l, Pir.2] to solve the problem:

minf^OOIstoSOJe*),
ieR"

with gf : R" -> R being continuously differentiable. We define

V(x)4max{ g?(x)\je jl }
and

\y+4max{ y(x),0 }.

The optimality function and search direction are:

(7.2.1)

(7.2.2)

(7.2.3)
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000 =min{ ^\h\2 + (7.2.4)
a 2

max{ - pv+0c) + (Vg°Qt),h) ; g>(x) + (V*fa). A) - \|/+C0 } }.

A(x) =arg min{ \\h\2 + (7.2.5)

max{ -pv+(x)+ (Vg°(;t),/0 \g>(.x)+ {V$>(x), A) - v+(x) } }.

The Polak-Trahan-Mayne Algorithm consists of using (7.2.5) to obtain the search direction,

h(x), and using the Armijo rule to determine a step-size. By taking h = 0 in (7.2.4), it is

easily seen that Q(x) <0 and that @(x) =0 is a necessary condition of optimality (see

Theorem 7.2.2). The positive number p is a scaling factor. For x infeasible, \\f(x) >0, a

larger value of p makes the term -p\|/+(*) + (V£°C0.h) in (7-2.4) more negative for any h.

Consequently, the minimizing h in (7.2.4) is "less concerned" with (Vg°(x), h) being a

large negative number than with smaller p. In the case p = » and x is infeasible, (7.2.4)

reduces to finding a search direction based on minimizing a convex approximation to

y(x + h).

We present an algorithm which is an extension of the Polak-Trahan-Mayne algorithm

and the Polak-Mayne [Pol.2] algorithm for optimal control. We consider the case in which

the explicit state-space constraints have been removed by way of the transcription in Section

7.1. We define an optimality function:

6(u,>v)4min{ 0(w,w,v,z) Iv e G,2 e C }, (7-2.6)

where

,w,v,2) £ylv - u\2 +-jlz - wl2 +max [-p\|/+(u,w) +{Vg°(u,w). £l£j )\

tf(u.w) +W(«,w),[jr£]>-v+(ttfHO} , (7.2.7)
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where

\y(K,w) 4 max{ ^(u,w) }, y+(u,w) k max{ 0,\|/(k,w) }, (72.8)
ye £

|jg;^]A aigeoi.w). (7.2.9)

i.e., v;w ,Wx is the unique minimizer of (7.2.6).

We present the extended Algorithm.

Algorithm 7.2.1:

Data: Uq e G, w0 e C, ae (0,1), (3e (0,1), ye (0,1], p > 0.

Step 0: i = 0.

Step 1: Calculate Vg'dt;) for; e { 0,1, • • • ,p }.

Step 2: Calculate v,- e G and 2,- e C such that <j>(u,-, w;, v,-, z$ £ Y©(u;, w^).

Step 3: If e(K,, wj = 0, X,- 4 0.

Else if y(uit w$ > 0 (Phase I),

Mmax{ Xe [ l,p,p2, • • • }I

V("i + Mvi - "i), *>i + Uzi - w^)) - y(Ui, w^ < c04(Ui, w,-, v,-, z-)

Else (\|/(Mi,Wi) £ 0, (Phase II)

Mmax{ ^-e { 1,(5,p2, • • • } I

g°(«i + X(Vi - «i), Wi + X(Zi - w^) - gVi, w^ < c&4>(«i, w,-, v,-, 2,) and

\|f(«i + X(Vi - Mi) , Wi + A.(Zi - w$) £ 0.

Step 4: Set uM = it; + ^{v, - u$, wM = w4- + ^{z; - w,).

Step 5: Set 1 = 1+ 1; go to Step 1. •
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We now show that with 0(«, w) = 0 is a necessary condition for optimality for Pn

(7.1.14).

Theorem 7.2.2: For u e C and w e G, if &(u, w) = -6 < 0, then (u, w) is not a minim-

izer of (7.1.9) and Algorithm 7.2.1 will not jam up at («, w).

Proof: Assume that (u,w) e GxC is such that 0(k,w) = -5 < 0. Then there exists

(v,2) e GxC such that <|)(u,w,v,2) <-y5 where ye (0,1] is datum in Algorithm 7.2.1.

We consider two cases:

Case I: \|/(u,w) > 0:

Since <$>("»w, v, 2) £ -c*y,

^(m ,w) +(Vgi(u, w), £~w] )- y(u •w) <<J)(v,2,u,w) <-Sy, 7eJ2. (7.2.10)

Let

/(u,w) £ {y e £ I^(u.w) = y(K,w) } (7.2.11)

be the set of active constraints. For je J(u, w), (, Vgtyi ,w), [J ~WJ ' <"^Y- Since ^' •')

is continuously differentiable, it can be seen as in Theorem 3.5.2 that there exists Xj >0 such

that

gi(u +X(v - u),w +X(z - w)) - g>(u,w) <cd<|>(v,z,u,w) (7.2.12)

for Xe [0,Xy]. Let Xdmin{ 1A; I; e 7(«,w) }. Let

e^min{ y(k,w) - g'Ot.w) ly e7(u,w) }. Then e>0 and since $*(•,•) is continuous for

j e j2, there exists X e (0,X] such that

^(u+X(v-m),w +A.(2-w))-\i/(m,w)<oX<|)(v,2,m,w), Xe (0,X] (7.2.13)

for y e £,and therefore
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\j/(u + X(y - u), w+X(z - w)) - v(u, w) <ccX<J>(v,2,m,w) <-«X8Y <0, (7.2.14)

and (u + X(v - u), w + X(2 - w)) e Gx C so (u, w) is not optimal, and Algorithm 7.2.1 will

not jam up at (u, w).

Case II: \j/(u,w) <0:

(V(u.w), £"w] )<i <|)(v,2,W,w), (7.2.15)
'̂(«,w)+ (V '̂(w,w),[j~w])<(|)(v,2,«,w),ye^ (7.2.16)

Let

/o(tt,w) 4 { j e £ I£>(w,w) =0 }U( 0 }. (7.2.17)

Fory e J0(u, w), there exists Xy- >0 such that

'̂(M +X(v - u), w+ X(2 - w)) - ^(u, w) <oX<Kv,2,k,w) , Xe [0, Xy]. (7.2.18)

Let X4 min{ 1,X;-1 j e /o("'w) ) }• Let e=min{ \|/(w,w) - ^(u,w) I ye/0(u,w) }.

Since $*(•, •) is continuous and e is strictly positive, there exists X e (0, X) such that for all

Xe [0,X]:

g°(u + X(v - u),w + X(2 - w)) - g\u, w)< otX4>(v,2,u,w), (7.2.19)

^(u + X(v - m) ,w + X(2 - w)) < otX<t>(v,2,u,w), for all y e J0(u, w)/ { 0 }, (7.2.20)

S/'(K + X(v-u),w + X(2-w))<0, for ally e70("»w), (7.2.21)

and (w + X(v - w), w + X(2 - w)) e G x C so (u, w) is not optimal and Algorithm 7.2.1 will

not jam up at (u, w). •

The requirement 0(u, w) = 0 is not a strong optimality condition for problem Pji

(7.1.14). Suppose that at (m.w), all constraints are satisfied, but that (u,w) is not optimal.

Since the state-space constraint is satisfied, tf(u, w) = 0 and Vf(u, w) =0. Since all con

straints are satisfied, ^(m,w) £ 0 fory e { 1,2, • • • ,p - 1 }, y(u,w) = 0. Consequently,
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(7.2.6) and (7.2.7) become

0(u,w) =min[ <t>(u,w,v,2) I ve Gtze C }, (7.2.22)

<J)(m ,w, v,z) =-jlv - Ml2 +-i-lz - wl2 + (7.2.23)

max{ (VgV,w),[j-w]);^(«,w)+ (V^(«,w), [j ~w] ),; e{1, ••• ,p-l };0}

because /(w,w) + (V/(u,w), lIwJ ) =0 for all ve G, z e C. Hence, 0(k,w) =0

and V/«,S =0- Consequently, as soon as all constraints become satisfied, Algorithm

7.2.1 will stop.

Even in the case that there are no state-space constraints, if for some (u, w) e GxC,

all the constraints are satisfied and one of the constraints is of the form:

g!(u, w) = x(l, u,w)TQx{\, u,w), such as the terminal potential energy constraint in (8.2.8),

0(u,w) = 0.

There are several solutions to this problem:

(1) Use a penalty function method to solve the problem. It is not possible to use exact

penalty functions for this problem since V£(utw) = 0 when ^(m.w) = 0 for some

ye £.

(2) Guarantee that for each iterate some constraint is not satisfied. (Case II in Theorem

7.2.5)

(3) Introduce a tolerance vector e e IR'', e >0, such that each constraint gf(u, w) <0

becomes gf(u, w) - ey £ 0. This allows all of the new constraints to be met, and as

long as Vg*(u, w) =* 0 when y(«, w) < 0, the algorithm will not jam at («, w).

(4) Introduce a vector e e IR'' as in (3) and apply an exact penalty algorithm to solve the

perturbed problem.
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Method (3) has been used successfully for solving the problems involving a flexible,

rotating beam, Px - P4, in Chapters 2 and 8. Because of the physics of the problem, at the

optimal point (u,w), all constraints are active (i.e., ^(u.w) =£,• and VgJ(u,w) 40, j e %}.)

For numerical results, see Chapter 8.

We now proceed to show convergence of Algorithm 7.2.1.

Lemma 7.2.3: The functions v(-, •), z(-, •), and 0(-, •) are continuous.

Proof: Follow proof of Lemma 3.5.4 and Corollary 3.5.5. •

Theorem 7.2.5: If { (m.-.w^ }cGxC is the sequence generated by Algorithm 7.2.1, then

any accumulation point (u, w) e GxC satisfies the optimality condition 0(£,w) = 0.

Proof: Assume that Algorithm 7.2.1 generates a sequence { (.Ui,w$ JcGxC such that

there exists a subsequence KCZ+ and an accumulation point (u,w)cGxC such that «, -> u

and wi -» w. on K, and 0(«, w) = -8 < 0. By continuity of 0(-, •), there exists io such that

for all />to. <!>(",•,"i. v,, z.) <79(11,-, w,) £-*0(«, w) £-~|t.

For each ye {1,2, • • • ,/> } and each subsequence KjC Z+, we examine two possi

ble cases:

(a) lim gf{Ui, w^ - \|/(u,-, w^ =0.

First, there exists ij such that for all 1£ /y, 1e Kj,

(V^'(«i),
v(Ui,w$
z(Ui,wi)

Second, .for all ij.

}£ _Jl

g'iUi, Wi) - \J/(Mi, Wi) + (Vg(Mt-, Wi) ,
v(m,- ,wD
Z<,Ui,Wi) 2 "

) ^(|)(Ui,Wi,Vi,2i)

(7.2.24)

(7.2.25)
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There exists ij £ ij such that for all i > ij, i e Kj,

—(1 - a)<{)(Ui,Wi, v,-,2i) «S —(l - a)5y< '̂(«i,Wi) - \\f(Ui,w$. (7.2.26)

Consequently,

(Vg^-.w,-, z(Ui,w$ )<tfu,, Wi, v.-,Zi)[l - 1(1 - a)] =K*i. w.-. v,-. Zi)(^y^) (7.2.27)

Using the first order expansion for g*:

2ag'iUi + X(Vi - Mi) , Wi + X(Z,- - W$) - \|/(«i,W^ - X ( V^(Ui, Wi) ,
l + a

=̂ ("i. Wi) - Y(Ki, Wi) +«y^) (^(Mi, Wi, v(M,-,Wi)

V(M,,Wi)
2(Mi,Wi)

+Xf (Vg>(Ui + sX(Vi - Ui), Wi + sX(Zi - w^) - Vg>(Ui, w), v(Ui,wd
z(lli,Wi) )ds. (7.2.28a)

Combining (7.2.27) and (7.2.28a), and noting that g{ut, w-) - \j/(m,-, w-) < 0, we obtain

2ag'iui + X(v,- - uD,Wi + X(Zi - w^) - y(Ui, wD - ——X (V^(Mf, w^,
1 + a

<X (jffx-^X-f)

v(Ui,wD
z{Ui,w-)

+ f ( V^(Mi +sUVi - Mi) ,Wi +*X(2i - Wi)) - Vgf(m, W^ ,
V(Mi.Wi)
2(Mi,Wi)

)<fe. (7.2.28b)

By continuity of V^(), there exists X, >0 and ij&lj such that for all Xe [0,Xy] and all

i > ij, i e Kj, the right hand side of (7.2.28b) is less than or equal to zero. And so for all

i > ij, i e Kj, and all X e [0, Xy],

gi(Ui + X(v,- - m^ ,Wi + X(z( - wD) - \j/(m,- ,w-) < aX<KMi, wt, v,, z-). (7.2.29)

(b) There exists e>0 and a sequence A}cA,- such that for all ie Ay,
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g'i.Ui, w^ - y(Mi, wi) < -e. Since,

g>(Ui + X(V,- - M^ ,Wi + X(z,- - W$ - \|/(Mi, wi) = '̂(M,-, wi) - v("i. ^ +

1

Xf ( V '̂(m, + sX(Vi - m^ ,Wi + sX(Zi - w$,
v(M,-,Wi)
z{uL,Wi) )ds,

There exists Xy such that for all Xe [0, Xy], and all i e A,,

IX| (V*(Mi +sX(Vi -m0,Wi +sX(Zi -w$ *%"* )dsl <|

and so

^(Mi + X(Vi- u-),wt + X(Zi- wi)) - y(Ui,w-)<—.
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(7.2.30)

(7.2.31)

(7.2.32)

Choose Xye (0,Xy) such that — < aXfi(Ui,Wi,Vi,zi) for all *e Ay and so for all

Xe [0,Xy],

g/{Ui + X(Vi - Mi), wt + X{zi - wi)) - \|/(m4- , wi) £ aX<|>(Mi, Wi, v,-, zi). (7.2.33)

Similarly, we can show that for any subsequence K0c 2Z+ such that limy+(fi;, wi) = 0, then

there exists i* and Xq > 0 such that for all i > i0, i e K0 and all X e [0, Xq],

g°(Ui + X(v, - Mi) ,Wi + X(z,- - w^) - £°(M4-, w^ £ aX4>(Mi, w,, v.-, z,). (7.2.34)

We now consider three cases:

Case I (\y(M,w)>0)

We construct the proof using a step by step procedure:

Step 0: Set; = 1, KY = Z+, X\ = 1, i\ = 0.

Step 1: If lim gj(Mi,wi) - y(uitwi) = 0, set Xj^ = min{ X],Xj }and i^ = min{ i* ,i} }
I € A:

where Xy and ij are determined in case (a) above; Set Ay+j = ATy, go to Step 3.
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Step 2: Set K^x =Kj. Set X*+1 = min{ X* ,Xy } and j*h = min{ i* ,ij ) where Xy and ij

are determined in case (b) above;

Step 3: Set; = j + 1. If j <> p go to Step 1.

Step 4: End.

Consequently for all i e Kp and Xe [0,Xp),

V("i +X(Vi - m^ ,Wi +X(Zi - wi)) - y(Mi, wi) <> oAtfii,, Wi, v.-, Zi) <-^y*, (7.2.35)

and so y(m,- ,w^ -» -«> which is a contradiction.

Case II (y(m,w) = 0, y(uitwi) > 0 for all i e Z+)

The proof is Identical to Case I.

Case III (\|/(m,w) £ 0 and there exists"* such that for all i "2l\ y{ut,wi) £ 0)

There exists i0 >"i and Xq > 0 such that for all i "> i0 and Xe [0,Xo]

g°(Ui +X(Vi - ui), Wi +X{z-t - wi)) - g°(Ui, wi) <aX4>(Mi, w,-, vf, z() <; -2^X. (7.2.36)

Consequently, g°(Mi, w^) -> -•• which is a contradiction. •

73 SEARCH DIRECTION SUBPROCEDURE

Step 2 of Algorithm 7.2.1 requires computation of (vitzi) e GxC such that

Kui,witVi,wi) <70(Mi,Wi). We will present two methods to solve this subproblem. The

first is to transcribe the calculation of 0(-, •) (7.2.6) into a canonical quadratic program and

solve the QP using a standard routine. The second is a special purpose iterative QP routine

which is truncated when an appropriate (yi,zi) is found. In either case it is necessary to

discretize the* PDE in time and space to make the problem finite dimensional. We assume
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that the discretization is consistent with the requirements of Chapter 6. We assume special

forms for G and C. Let G and C in (7.1.9) be defined:

G^ { Me Z£([0,l])nz£([0,l])lM(f)e U,te [0,1] }, (7.3.1)

C^ { e XxlRxR Ix°(s) e [l\s),h°(s)] all s e S,

^e [/,,S1].a2€ [?,£2]}, (73.2)

where

U 4 { me Rm I/,- <yt < A,-, for i e m } (7.3.3)

and X is a space indexed by s e 5.

METHOD I

We shall transform (7.2.6), (7.2.7) into a canonical QP. By (7.3.1) - (7.3.3),

0(m,w)4 min { —Iv-mI2 + —Iz - wl2 +a I
ve LS([0,l]).z€Xx]Rx]R,ae 1R 2 2

(a) -pV+(M,w)+ (V(M.w),jjrw]}-a£0;

(b) ^(m,w)-\j/(m,w)+ W'(M,w),[j-£])-a<;0,ye/2;

(c) ?(*) - z°(s) £ 0, z%) - h~°(s) <0,se S,

(d) 7'-z><0, z>-/i/<0,ye { 1,2 }

(c) /,• - Vj<r) «£ 0, v,<0 - hi; £ 0, i e m, t e ([0,1]) },

with h°() and7°() chosen so that Cis compact.

(7.3.4)
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We have used Stanford's quadratic programming package, LSSOL, to solve (7.3.4). LSSOL

is an implementation of a two-phase (primal) quadratic active set programming. method

developed by Gill et. al [Gil.l] and is closely related to the method of Stoer [Sto.l]. The

algorithm keeps track of an active set, those constraints which are satisfied exactly, adding a

new constraint when one is encountered and deleting a constraint if (1) the current point is

the minimum on the subspace defined by the active constraints and (2) its deletion provides

for a direction of feasible descent. The algorithm treats constraints (7.3.4.c)-(7.3.4.e) spe

cially, removing the associated variables from the QP calculation when the constraints are

active. This speeds the calculation of the QP particularly when the solution has many values

at its upper or lower limits (e.g., bang-bang solution).

METHOD H

Method II is a dual method. We transcribe 0(m , w) (7.3.5) into dual form (7.3.8):

0(m,w)= min {l|f;:^l2+ (7.3.5)
(v,z)e GxC 2 lz wj

max{-pv+(M,w)+ (Vg°(M.w),[jr^]);^(M,w)+ (V '̂(m,w), £"£j) - \|/+(m,w) }.

This is equivalent to:

0(m ,w) =-i min max [\l \v ""112 - u°PV+(". w) (7.3.6)

where

P

y = l j = o
U-V(M ,W) - \|/+(M ,W)) +(£ \l>Vg>(u ,W) .£_£])}.

Z.p+ l£ {u, e W+ l\ £ u/ =1and u/ >0for ally e {0,1, ••• ,p }. (7.3.7)
j = 0

Since 1P+1 is a compact, convex set and GxC is a closed, bounded, convex set and the

expression between the braces in (7.3.6) is concave in u. and strictly convex in (v, z), we can
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switch the "min" and "max" according to Ky Fan's [Fan.l] extension of Van Neuman's

Minimax Theorem to obtain:

0(m,w)= max { min {44z"w]|2+ {£ ^^M^Z^i) ) (7.3.8)
fteXP*1 (v,z)6GxC 2 if w-i y_o ^ J

P . .

- u°pv+(m ,w) + £ u/(^(m ,w) - \j/+(m ,w)) }.
7=1

For convenience, we define the following quantities,

t(u,w,\L)&^l(u,w,\L) + ri2(u,w,\i) + {)3(u,w,\L), (7.3.9)

where

Ci(M,w,u.)=>-min{ 1|v-mI2 + ( J|iV(«,w),v-a) }, (7.3.10)
ve g 2 ; = 0

1 ^Ct2(u>w,\i)±-mm{±\z-wl2+ ( £ u/V^(m,w),z - w) }, (7.3.11)
ze C 2 y = 0

C3(m,w,u.) => u°p\i/+(M,w) - 2 MW".*) - \|/+(m,w)), (7.3.12)
y=l

where Vg(u, w) =
VgM(M,w)
Vgw(u*w) . With this additional notation, we rewrite (7.3.8) as

0(k,w)=- min { Cti(u,w,\L) + r)2(u>w,\i) + ri3(u,w,\i) } (7.3.13)

= - min { £(m,w,u.) }.

We shall show that £i(m,w,u.), ^("•w.M-) and ^3(u,w,\i) are convex and twice

differentiable in u\ so that so we can use a constrained Newton-type algorithm to find

0(m , w). From inspection, we see that £3(m ,w , u.) is convex and twice differentiable in u..

We now proceed with £i(m , w, p.) and £2("»w»^)-

Lemma 73.1: The function ^(m,w,u.) is convex in u. e EP*1.
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Proof: Let m ,\i2 e IF+1. Then for Xe [0,1], there exists vx e G such that

C1(m,w,^1 +(1-X)^2) =-^Ivx-mI2- ( £(Xp.-i +(l->.)^i)VI '̂(M,w),vx-w)
2 y=o

=-X(±Ivx-mI2+ Z riV^(M,w),vx-M))
2 ; =0

+"(l-X)(|lvX-Ml2+ £ ^V^(M,W),VX-M))

< ^^(M.W.M.!) + (l - X^M.W.U.^. (7.3.14)

Corollary 7.3.2: £2("♦w»I1) and hence C(".w»M-) are convex in u..

We now establish differentiability of ^(m ,w, \l) in u\. We define

1 p
^O^-^m.w.u.) = min {Tlv - uV + ( £ u/V^m,w),v - u) }. (7.3.15)

; = 0ve G 2

By completing the square, £(u.) becomes £(|i) = ^(u.) - ^2(M-) where

1... ... £ ..*, _*,_. ,a^(u.) = min { ~lv - (m - £ u/V^m ,w)l2 }, (7.3.16)
> = oV€ G 2

SiOO = T1 2 M.yV^(M,w)l2. (7.3.17)
2 ; =o

We define

A p
<t>(M-) = L u/V^(m,w). ( (7.3.18)

y = 0

Then, 5a(n) =|l<|)(^)ll2, -^OO =0T(H)-|̂ 4>(H). JT&OO =-^VaO -^4<H).

Define v : U*1 xG-> L^r^L^:

v(u., m) ^ are min{ ~lv' - (m - <Ku-))U2 }• (7.3.19)
v e G 2
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Lemma 7.3.3: The function v(u.) is continuous.

Proof: See Theorem 3.5.4. •

Since G is defined by (7.3.1) and (7.3.3), for t e [0,1] and i e [1,2, • • • ,m },

v0i)(r)i = <

hi if u(t)i-^\i)(t)i >hi,
li ifM(f)t--<Ku)(0i</,-, (7-3.20)

"(0i - Ml0(0i otherwise.

We define

5Qi, m) d { f e [0,1] IM(f),- - $QiXfl,- = hi or 11(f),- - <J)(|i)(0t = 4 for some i e 21 (J7.3.21)

We make the following assumption.

Assumption 7.3.2: S(\l , u) as defined in (7.3.21) is of zero measure. •

Then v(-,u) is differentiable at any |X e I**1 and for t eS(\i, u),

a , wx k v«s°(" •w)«,- ••• v^(m ,w)(o,-), if \u(t)i - <j>cix)co,i e [/,., mj7 322.-gjj-vOiXO.- =| (0 ... 0, ) otherwise. V^ '

Therefore since,

61(H) =\ lv(H) - (m - <Ku-))H2. (7-3.23)

J-SiOO =[(vOl) - u) +<KuOf[y-v(U.) +-^<KH)], (7.3.24)

and since £(u.) = ^(u.) + 62(M0.

•|^00 =(v(n) - (m - (t)(H))7-~v(n) +(vOi) -u)f-^m- (7.3.25)

Since if lv(n)(0,- - ("(0/ - <Ku.)(0i)l >0(i.e., M(r),—^)(0,-e[/,,^]) then -|j-v(n)(0, =0,
the first term in the right hand side of (7.3.25) is zero and
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VftO = i«» =[(v(u) - uf-^-m?

Therefore, the second derivative of §(•) is

(V^°(m,w),v(h)-m)

(V^(m,w),v(^)-m)

^m =-$-v(\L)T-$-m +(vox) - «)-^<kh).
fcr op. dp. auz

Since -^tMO =0,
dpr

•fr«|i) =^-vOO^^Oi) =
an dp. dp.

VrfVw)7"

V^u.w)7"

Therefore, we have proved the following theorem:

i^-
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(7.3.26)

(7.3.27)

(7.3.28)

Theorem 7.3.3: £(•) is twice differentiable and its first and second derivatives are given by

(7.3.26) and (7.3.28). •

Finally, we show that —-!;(•) is continuous. We first prove a lemma.

Lemma 7.3.4: Let { v,- },• 6 {o,i ,-••.#»} cL„([0,1]) and v"e L„([0,1]). We define

r(u.)£{re [0,1] Iv+ £ u/v^O)
i = o

S(M)ft {re [0,1] Iv+ £ u-'v,- =0 }
i=0

R{\i)% { re [0,1] I v+ £ u/v/iSO}
i = 0

(7.3.29)

(7.3.30)

(7.3.31)

and we assume that m(5(p)) = 0 for all u. e R**1 where m() denotes the Lesbegue measure

on [0,1]. Then for all fle HV*1 and e >0, there exists 5 >0 such that m(7(p) A rfll)) < e

for all u. e fl(P., 8) where
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7Xp) A 7Xp) A { r e [0,1] Ire T(p) and re7Tft) )

Vlte [0,1] Ir e7*(p) and r e 7(fl) }. (7.3.32)

p

Proof: We define p, => v(r) + £ nSO). and (2(ft,p) A { re T(p) Ip, <p }. Then there
i = 0

exists p>0 such that m(Q(fi,p)) <-|\ If such at p does not exist, then for all p>0,

"i(fi(ft.p))>4- Since G(H.Pi)cG(fl.P2) if Pi<p2» rn{ r\ ^(fl,p))>-| and so for
2 p > 0 I

re n <2(fl,p), re 5(P), and therefore mCS(P)) >-f- which is a contradiction. Similarly,
p >o 2

there exists pe (0,p~) such that m(P((l,p)) £-| where P((l,p) ={re rt(p) Ip, >-p }.

Consequently, since { v,-} is bounded and m(S(P)) = 0, there exists 5 > 0 such that

mOW A 7(fl)) < e for all u. e B((l, 8). •

J2
an2

Theorem 73.5: The Hessian —^fy) is continuous.

Proof: Since for S(p,m) defined in (7.3.21), m(S(p,m)) = 0, and m(), and V^u() are

bounded measurable functions, the proof follows from an extension on Lemma 7.3.4. •

Therefore, ^(m.w.u.) is twice continuously differentiable in p. We can similarly show that

C2("»w, p.) is twice continuously differentiable in p. Hence,

Corollary 7.3.6: The function £(m ,w,p.) is twice continuously differentiable in p. •

The Levitin-Polyak algorithm [Lev.l] is essentially a constrained Newton method. At

each step, a quadratic approximation is minimized on the feasible set, and this becomes the

new point from which a new quadratic approximation is derived. Levitin and Polyak have

shown that if the method converges, then the convergence is quadratic. For numerical com

putations, we use an implementation by J.E. Higgins [Hig.l]. This implementation has a sta

bilizing step-size procedure. We have slightly modified Higgins' implementation by adding a
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stopping criterion. Since this is the search direction finding subproblem, the algorithm must

stop in a finite number of iterations.

Algorithm 7.3.7: (To solve Step 2 of Algorithm 7.2.1.)

Data: Po e !p+ \ ue G, w e C, a e (0,1), (3 e (0,1), ye (0,1].

Step 0: . i = 0, v0 = u, z0 = w.

32Step 1: Calculate V£(m ,w, p^) and —rC(m, w, p^).

Step 2: Calculate 0(p,) and o(p,) using

a2o(Pi) 4 arg min{ (V«u, w, p.), a - p,-) +(a - Pi)T-^-C(". w, p^Xc - jO }. (7.3.33)
as?41 azp

0(Pi)i min { (V£(M,w,Pi),G-p,-) +

(o - Pi)T-^-C(".w^i)(o - lO }• (7.3.34)
3zp

Step3: Mmax{ke { l.p.p2, •• • } I

C(m ,w, \Li X(a(\id - Pi)) - C(m ,w, p^ £ aXe(Pi).

Step 4: Set p^ = p,- + X^G^i) - p,), and calculate vM and z^j using

vw =v(\iM) £arg min{ ^-lv - mI2 +( £ pi,V^(m ,w), v- u) ), (7.3.35)
ve G 2 j =0

P*m =z(pJ+i) =arg min{ l|z-wl2+ ( £ piiV^m.w^z- w) }. (7.3.36)
26 C 2 j; _ 0

Step 5: Calculate <|)(m ,w, vM, zl+j) by (7.2.7).

If <|)(m ,w, vM, z/+1) £ -tC(m ,w, p1+1), STOP.

Step 6: / = i + 1; go to Step 1. •

Lemma 73.8: The functions v() and z() are continuous.
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Proof: The continuity of v() is proven in Lemma 7.3.3, and the continuity of z() follows

analogously. •

Higgins has proven convergence of Algorithm 7.3.7 for the case with no stopping rule:

Theorem 73.9 [Hig.l]: If the infinite sequence { p,- } is generated by Algorithm 7.3.7

with no stopping condition and the function tjiu,w,) is convex and twice continuously

differentiable, then any accumulation point of { P; }, P, is a minimizer for C,(u,w, •). •

From (7.2.6), (7.2.7), and (7.3.13) it is true that for any u, v e G,w,z e C and p e IP +\

-£(m, w, p) £ 0(m ,w) < <|>(m ,w, v, z). (7.3.37)

When the stopping criteria is met, there exists vM, zJ+1 and p,+1 such that

<K". w, vi+l, zM) < -yC(m ,w, p/+1) < t©(m ,w). (7.3.38)

The pair (yM , z,+1) can then be used by Step 2 in Algorithm 7.2.1.

Theorem 7.3.10: Algorithm 7.3.7 terminates in a finite number of steps.

Proof: Assume that Algorithm 7.3.7 does not terminate in a finite number of steps. Then,

Algorithm 7.3.5 produces an infinite sequence { p,-}. Since IF*l is compact, { p,-} has a

K

subsequence tfcZE+ and an accumulation point fie Zp+1 such that p,- -> fl By Theorem

7.3.8, ft is a minimizer of t>Qi,w, ) and so

lim C(w >w, Jl/) = C(" >w >P) =-®(" »w). (7 339)

Since (|)(m,w,v(ft),z(fl)) = 0(m,v,'), and 0(m,w,•,•), v() and z() are continuous,

K K

<|>(m,w,vL,zi) -> 0(m,w). Consequently, I<|>(m,w,v,-,z^) + ^(u,w,'pj)l -> 0 and Algorithm

7.3.7 terminates in a finite number of steps. •
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CHAPTER 8

NUMERICAL RESULTS

This chapter reports on numerical experiments on the problem of moving a flexible

beam. An optimal control problem is formulated and transcribed into a form which can be

solved using semi-infinite optimization techniques. All experiments were carried out on a

SUN 3 microcomputer with a Floating Point Accelerator.

8.1 PROBLEM STATEMENT

We consider the hollow aluminum tube depicted in figure 8.1 (page 153). The tube has

a length of one meter, a cross sectional radius of 1.0 cm, and a thickness of 1.6 mm.

Attached to one end of the tube is a mass of 1 kg; attached to the other end is a shaft con

nected to a motor. For simplicity, we assume that the torque produced by the motor can be

directly controlled. Our aim is to determine the torque necessary to rotate the tube and bring

it to rest. The maximum torque produced by the motor is 5 newton-meters. The equations

of motion determined by application of the standard Euler-Bemoulli tube with Kelvin-Voigt

visco-elastic damping are:

mwtHt,x) + Clw^Jja) + Elw^ta) - mCl\t)wit,x)

= *- U{t)x,xe [0,/]
M2 +|/7i/3 (8'U)

3

with boundary conditions:

w(f,0) = 0,w,(f,0) = O.C/w^f, 1) + Elwjt, 1) = 0. (8.1.2)

M[Q\t)w(t, 1) - w„(r, 1) - u(t)l) + Clwtxxx{t, 1) +Elw^t, 1) =0, (8.1.3)
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and rigid body dynamics:

dt dt M/2+l /3 (8.1.4)
3

where w(t,x) is the displacement of the tube from the shadow tube (which remains unde-

formed during the motion) due to bending as a function of time and distance along the tube;

m(0 is the torque applied by the motor, and Q(f) is the resulting angular velocity (in radians

per second). We shall denote by 0(f) the angular displacement of the rigid body (in radians).

The values for the parameters in (8.1.1) - (8.1.3) are: / = 1.0 m, m = .257 kg/m,

C =6.30xl07 pascals/sec, E =6.30xl09 pascals, / = 1.005xl0_8m4, M=0.914 kg. The tube

is very lightly damped (0.1 percent).

We assume that the tube is initially at rest with no deformations, and so the following

initial conditions hold:

w(0,jc) = w,(0,*) = 0, x e [0,1]. (8.1.5a)

0(0) = ft(0) = 0. (8.1.5b)

We consider four problems:

Pi: Minimize the time required to rotate the tube 45 degrees, from rest to rest, subject to

the given torque constraint

P2: Minimize the total energy required to rotate the tube 45 degrees, from rest to rest, sub

ject to the given torque constraint and the maneuver time not exceeding a given bound.

P3: Minimize the time required to rotate the tube 45 degrees, from rest to rest, subject to

the given torque constraint and an upper bound on the potential energy due to deforma

tion of the tube throughout the entire maneuver.

P4: Minimize the total energy required to rotate the tube 45 degrees, from rest to rest, sub

ject to the given torque constraint, the maneuver time not exceeding a given bound, and
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an upper bound on the potential energy due to deformation of the tube throughout the

entire maneuver.

8.2 MATHEMATICAL FORMULATION OF THE FOUR PROBLEMS

We will formulate the above problems Px, P2, P3, and P4 in the form of the following

canonical optimization problem:

Po • min { g°(u,T) Igf(u,T) £ OJ e p }, (8 2 \\

where tnjin >0 and i^ <~, p. £ { 1,2, • • • ,p },

GT 4 { me MO,71 IIm(/)I <S 5,t e [0,7] }, (8.2.2)

and g*:GTxT->1R is continuously differentiable for j e { 0,1, • • • ,p }. We define

\|/(M,r) ^ max{ g{u,T) } and y+(M,r) Amax{ 0,\y(M,7) }.

For theoretical purposes, see Chapter4, we constrain the final time, T, to be in an inter

val PWCm«] where ^^ > 0 and !„,„ < ~. These values x^ and t^ can be chosen so

that these constraints are not active at the solutions to P! through P4. We shall be making

use of the following functions. First, noting that T denotes the final time, we define

g\u,T) AT. (8.2.3)

The input energy is defined as the integral of the square of the input; hence we define

7

g\u,T) k Utfdt. (8.2.4)

Next we define

g\u,T) £ (0(7) - 7C/4)2 (8.2.5)

to be the square of the angular error at the final time. We say that the tube is at rest when

the total energy of the tube is zero. This energy is composed of the energy due to rigid body
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motion and energy due to vibration and deformation. Rigid body energy at final time is pro

portional to the square of the angular velocity. Hence we define

g\u,T) AWD2. (8.2.6)

The kinetic energy due to vibration of the tube at time t is given by

l

K{t,u) Â -jwt(t,x)2dx, (8.2.7)

and the potential energy due to deformation of the tube at time t is given by

l

P(t,u) £^fwjf.xfdx. (8.2.8)

We now define the values of the kinetic and potential energies at the final time:

g\u,T) &K(T,u), g\u,T) £ P(T,u). (8.2.9)

The tube is at rest if g\u,T) = g5(u,T) = g\u,T) =0.

For problems P3 and P4, we require that the potential energy due to the tube deforma

tion be within a specified range throughout the entire maneuver. This constraint has the form

P{t,u)£f{t) for all re [0,71, where/(•) is a given positive bound function with a finite

number of discontinuities. This is a state-space constraint, and does not fit the canonical

form P0. However, we can replace it by an equivalent form which requires that we define

T

g\u,T) £ f[max{ P(t,u) - AO.O }]2, (8.2.10)

then since P(t,u) is continuous, g\u,T) = 0 if and only if P{t,u) <fj) for all t e [0,71.

The functions g?: GTx [t^,!,„„] -» R are continuously differentiable for all

je { 1,2, • • • 7 }. To improve conditioning of the problems Pj - P4, we relax each of the

equality constraints by a small amount (Section 7.2). The relaxation can be be chosen to be
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sufficiently small so as not to matter from a practical point of view. The four problems now

acquire the following mathematical form

P! : min{ g\u,T) Ig\u,T) - e <0,g\u,T) - e <0,g\u,T) - e £ 0,

g\u,T)-e£0,ue GT}',

P2 ;min{ ^(u,T) Ig\u,T) - Tf< 0,g\u,T) - e <> 0,g\u,T) - e <0,
g*(u,T) - e £ 0,g\u,T) - e < 0,m e GT };

(8.2.11)

(8.2.12)

P3 ; min{ g\u,T) Ig\u,T) - e <0,g\u,T) - e £ 0,g\u,T) - e <0, (8.2.13)

/(m,7) - e £ O.gV.D - e < 0,m e GT };

P4 ; min{ ^(m,^) Ig\u,T) - 7)< O.gV^ - e£ 0,£4(m,7) - e <0, (8.2.14)

g\u,T) - e £ 0,/(m,7) - e <> 0,g\u,T) - e < 0,m e GT ).

In our experiments, we set e = 10"4. Thus, with this relaxation, we are requiring that the

final value of the angle 0 be in the interval [45 - 0.5,45 + 0.5] degrees.

S3 SPATIAL DISCRETIZATION

In this section using spatial discretization (Chapter 6) and time scaling (Chapter 4), we

transcribe problems P! - P4 into a sequence of problems FJ - Pj. In Section 8.4, we shall

transcribe problems P? - Pj into f?,q - P2,q using Newmark's method. In Section 8.5, we

shall state a refinement criterion that is used to determine when n and q are to be increased.

In Section 8.6, we give solutions to Pi - P4 which are solved using the implementable ver

sions of the algorithms described in Chapter 7. Spatial discretization is accomplished by

applying Galerkin's method. A basis of Hermite cubics is substituted in the weak form of

(8.1.1) to derive an ordinary differential equation. The resulting ODE is discretized by

Newmark's method.
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We begin by deriving the weak form of (8.1.1) - (8.1.3). For r\ e H2E where H2E is the

completion of

Hi A { ti e h\[o,id i ii(0) =n'(0) =o }, (8.3.0)

1

f T\(x)[mwn(t,x) +CIw(rrry(t,x) +Elw^Jit^) - mQ2(t)w(t,x)]dx

+ri(l)[M(wM(r, 1) - Q\tMt, 1)) - Clw^t, 1) - Elwm{t, 1)]

1

=(-pmf rt(;t);u& - Mrt(l))M(r), (8.3.1)

where

hA—*M+m (8.3.2)

Performing integration by parts and applying the boundary conditions (8.1.2) and (8.3.0),

(8.3.1) becomes:

l

f (mwu{t,x)r\(x) + CIw^t^TiaOc) +Elwjj%x)f\Jd - mn\t)w(t,x)riOc))dx

l

+MTi(l)[wM(r, 1) - Cl\t)w(t, 1)] = (-\imfo(x)xdx - A#nOM0 (8.3.3)

for all T| e HE.

Galerkin's Method

Galerkin's method consists of choosing a subspace Sq of H\ and solving (8.3.3) restricted to

that subspace. Let { Nfic) }y6 {1,2, •••,e )• wnere G=2*+1, be a basis for 5,,. (There are £

basis elements.) Then for w e C([0,l],5^)cC([0,l],//£), w(r,x) = 2 wW?(jc) with
y = i

{ ^ lye {1,2, •••,fi }CC([0,1]). Restricting (8.3.3) to the subspace Sq<^HE:
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Q . \ . . Q '
m iX "iG)J Niix)Nk{x)dx +CI 2 w{(0j NJfit&ddx

j=1 0 ;=10

G * G '
+£/£ H/'(r)J WJx)N*Jx)dx ~«Q2(0 £ Jvri(t)rf(x)Nk(x)dx

j=1 0 ;=10

G G
+MJ wfXr)W)W*(l) - Mfl2(f) £ w>(t)N'(l)Nk(l)

j=l y=l

1

=(-pmf N*(^ +MN*(l))M(f) (8-3.4)

for all *e{ 1,2, •••,£}, with initial conditions w*(0) = wf(0) = 0 for all

* e { 1,2, • • • ,Q }. Define matrices M e RfixG, K € JRQxQ, V e R2xfi, G e Re:

1

M,y £ fNi(x)Nk(x)dx, Vij ANXDW). (8.3.5a)

l l

Ky ^ fNiaWN^todx, Gi ApfNl(x)xdx +—AT(1) (8.3.5b)

for/e { 1,2, • • ,Q }Je { 1,2, • • • ,Q }. If we define W() e C^([0,1]),.

W(t) = (w!(r) wfy) • • • wfi(f))T, (8.3.6)

then (8.3.4) can be written in matrix form:

(mM +MV)W,£i) + CIKWt(f) +EIKW(t) - fl2(r)(mM +MV)W(t) =-mGM(r). (8.3.7)

G
For we C([0,1],S?), w(r,x) = £ ^(O^x) and so /i:(r,M) and P(r,M) defined in (8.2.7) and

(8.2.8) are

*(r,M) =y I(~ 2 w>W{x))2ax =-^w^r/MWXr). (8.3.8)

/>(',") =-~j(^TT L vfWJixtfdx =~W(r)TKlV(r). (8.3.9)
2 6 5JT; =1 2

Hermite Splines:
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The subspace Sq consists of functions which are twice differentiable and satisfy the boundary

conditions (8.3.1). Linear elements (see equation (6.5.0)) are only once differentiable and

hence are not an acceptable choice of basis functions for Sq. The standard choice for a basis

for Sq are the Hermite cubics. By using Hermite cubics as abasis, we guarantee existence of

a second derivative. There are two types of Hermite cubics denoted $(•) and co(). Let

h = —. Then for ie { 1,2, • • ,2* }:
2q

VAx) £

©'CO ^

(,JL _ fl - D^iL - i\ +l) fori € [i- 1./+ 1] (g3 10)
0 otherwise.

* A" 00f " ''' " D ft»i«[*-l./+l] (83]1)
0 otherwise.

These cubics are chosen so that such that for all / e { 1,2, • • • ,2q },

¥qm =̂ (Oq(ih)=\, (8.3.12a)

♦j((*l)A) =•^•^(O'iDA) =®q(.m)h) =-^CDi(0±l)/i) =0, (8.3.12b)

thereby guaranteeing continuity of the first derivative and existence of a second derivative.

We define {^() }/e {1.2, ••• ,e }

Af-'AtjCx). N?d<Dj(x), (8.3.13)

for i € { 1,2, ••• ,2q ) and xe [0,1]. Given the basis functions { #£(•) }ie {it2, •••,g j.

the matrices M, K, V, and G can be calculated. There derivation of the matrices M and K

are found in Strang[Str.l]. We first define symmetric matrices m, R€ R4x4 : (only the upper

triangular part is given)
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m =

f =

Spatial Discretization

r «l 156 22/i 54 -13/i

m m A h Ah2 13/i -3/i2
m2x m22\ " 420 156 -22/i

4/z2

_ 12 6/i 12 6/i
*» kn A 1 4/t2 -6/i 2/r2
A21 A22 " P 12 -6/i

»

- 4/i2

then M, K, and V are:

K =

p kn + lP k12
i?1 *» + **

kll + & k12

k» k22

M =

mu+m22 mn
nP m11 + m22 m12

m21 mU+m72

0 0

0 0 0

V =
0 0

1 0

.

0 0

Calculation DfG:

Forie { 1,2, • • • ,2«-l },

m11 + m22 mn

m21 m22

'2*-l =»[*• (x)xdx, and G2j = p | (oUx)xax2/ =M-f «>*<

By combining (8.3.10) and (8.3.19), we obtain for i e { 1,2, • • • ,2q - 1 },

135

(8.3.14)

(8.3.15)

(8.3.16)

(8.3.17)

(8.3.18)

(8.3.19)
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r2M

0+DA

-n J I— - /I - 1
h

Spatial Discretization

21— - /I + 1 xdx.

Define y - — - / so that x = (y + i)h and dx = hdy.
h

136

(8.3.20)

U 1

-G2M =/r2 f (y +1)2(1 - 2y)(y + C)ay +h2\ (y - 1)2(1 +2y)(y +/)rfy
M- -l o

o 1

=h2 J (y2 +2y +l)(-2y2 +(1 - 2/)y +i)dy +/^[(y2 - 2y +l)(2y2 +(1 +2/))' +i)dy

o

=h2 j (-2y4 +(1 - 2i - 4)y* +(z +2- 4/ - 2)f+(2/ +1- 2i)y +0dy

l

+h2[ (2y4 +(1 +2i - 4)y* +(2 - 2- 4/ +Oy2 +(1 +2i - 2/)y +/)rfy

=/l2[_ly5 +z2Lz3/ +_2};3+ 1 2 °
5 4 3 2 -1 .

5 4 3 2c

G2,--i = M2
10/-3 + p/i2 10/ + 3

20 20

/ = 2q,

G2i-i = M2
10/ - 3

m20

= p/r2/.

By combining (8.3.11) and (8.3.19), we obtain for i e { 1,2, • • ,2q - 1 },

0+l)A

G* =P J /i
(«-l)A

X

J-' l-f - /I - 1
h

xdx

o 1

=p/i3 Jy(y +l)2(y +i)dy +p/i3fy(y - l)2(y +i)dy

(8.3.21)

(8.3.21a)

(8.3.22)
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= p/i3f (y(y - l)2(y - 0 + y(y - l)2(y + i))dy

= 2p/z3

For / = 2q,

1 3 2 4.13,
—y y + —y
5^ V 3%

_ p/i3
15 '

G2i = p/i3 [^(y - l)2dy - i\y(y - \)2dy

-^-^

Time Scaling:
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(8.3.23)

(8.3.24)

By appropriate choice of A, B, C, D, and F, (8.3.7) and (8.1.4) can be rewritten:

AW^t) + BWt(t) + CW(t) + £>fl2(r)W(r) = Fu(t), t e [0,71,

ft,(0 = p.K(0, re [0,7]

0,(r) = fl(r), re [0,7]

with initial conditions:

W(0) = Wt(0) = 0, 0(0) = fl(0) = 0.

We introduce an additional state z(t) such that

z,(r) = 0, z(0) = 7\

(8.3.25)

(8.3.26a)

(8.3.26b)

(8.3.27)

(8.3.28)

We define W(t) £ W(tT), u\t) £ u(tT), &£ Q(r7),?5(f) ^ e(tT) and z°(t) £ z(tT) for r e [0,1]

as in Section 4.2. Then (8.3.25) - (8.3.28) can be rewritten:

AW^t) + Bz°(i)Wt(i) + Cz°(t)2W(t) + Dz°(t)2Q2(t)W(t) = Fz\t)2u\i), t e [0,1], (8.3.29)

H,(r) = z\t)W),t e [0,1], (8.3.30a)
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0,(r) = z°(r)«(0,f e [0,1],

z°(r) = 0,re [0,1].

We introduce additional states z!(), z2():

z](t) = z\t)u{t)2, z\0) =0.

z2(r) = max{/>(r,M)-^r),0}2

=max{ ^W{i)TKW{t) -fit),0 }2, z2(0) =0.

We define the state y(t) e RGxRcxR5:

W(r)
W,(r)

e(r)
y(t)= Q(t)

z\t)
z\t)
z\t)
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(8.3.30b)

(8.3.31)

(8.3.32)

(8.3.33)

(8.3.34)

and denoting the dependence of y(t) on the control and initial state co, y(t) is written

y(r,M,co). We define the functions ^(m.co), j e { 1,2,...7 } in terms of the state variables

defined in (8.3.34):

|J(M,C0)^(©(1)-^)2.

#*"> =7^2 "(1)2-
l?(".co) £ —ZL-w^fMWV).

iJ(m.co) £^W(1)TKW(1).

^(M,C0) 4 z2(l).

(8.3.35)

(8.3.36)

(8.3.37)

(8.3.38)

(8.3.39)

(8.3.40)

(8.3.41)
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We define the set C9cRGxRfixR2xRxR2:

Cqk 0x0xOx[Tmin,TmJxO. (8.3.42)

With these definitions, P? - PJ are of the form:

P : inf { tq(u,ti) IgUu,®) <0,j e J } (8 343)
Efe G.cog Cq v ' ' '

where J^-p, k e p and

—ya.w,©) =fly{t,u,ti),u(fy), y(0,M,co) = co. (8.3.44)
at
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8.4 TEMPORAL DISCRETIZATION AND CALCULATION OF GRADIENTS

In Section 8.3, we derived problems P? - Pj from Pj - P4 by discretizing the system

dynamics (8.1.1)-(8.1.3) in space using Galerkin's method with Hermite splines as basis func

tions. In this section, we will discretize the ordinary differential equations (8.3.29)-(8.3.33)

in time to obtain a set of finite difference equations. Let the number of temporal discretiza

tion points be a function of an integer n. Then, problems tfq - ?3,q are derived from P? -

Pq by replacing the final state y(l ,m,co) in gj(M,co),; e [1,2, ••• ,7 } (8.3.35)-(8.3.41)

by the final state of the finite difference equation (8.4.1)-(8.4.6) resulting in (8.4.7)-(8.4.13).

Finally, we derive expressions for the gradients, v3ii?(M,co),y e { 1,2, ••• ,7}.

For n e 2Z+, we discretize time into N = 2" intervals of equal size and consider as

inputs Me Gn (6.5.3). Let u}-,& u(jh) and jjA f(jh) for ; e {0,1, ••• ,N } and mn+1 =0.

To solve (8.3.29), we use Newmark's method[New.l] with (3 = —. Newmark's method is

an implicit method, and is ideally suited for systems described by second order dynamics. We

approximate w(jh) by dj, U(jh) by fy 0(//t) by 0,, z°(jh) by 7}, zl(jh) by z], ^(jh) by z2, for

ye {0,1, ••• ,N }where { dj,Clj,Qj, Tj, z), zj }satisfies

* B ul-^DPjdM +-£r(.Dt +D}dM +(/ +tjDPjCdj+x

+aj(I +̂ •DlDj)Ddj+l =F(/ +̂ -DPj)uj+l, (8.4.1)

aM =nj+\LhTjUj+lt (8.4.2)

0^1 = 0,- +*^, (8.4.3)

TM = Tj, (8.4.4)

We recall that p = -

M + -T"
3
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ijrt =z) +hTfa , (8.4.5)

zjU =zj+ 104/imax{ ^-{dj,Kdj) -JJ,0 }2, (8.4.6)

for 7 e [0,1, ...AM } with D^- and (D, + Dj) defined as in (6.5.5) and (6.5.6). For sim

plicity, we drop the bar on u e Gn. Therefore, for u e Gn, we define the functions

2,,,(m,co), je {1,2, • • • ,7 } in terms of the state variables from the finite difference

equations (8.4.1)-(8.4.6):

?n,q(u,<»)±zh. (8-4-8)

£t9(M,©)£(0„--^)2. (8.4.9)

3J>.0)4^14. (8.4.10)

fntq{u, co) 4-^(d^i - ^)rM(^+1 - dW). (8.4.11)

t,q(.u,(0)^^-dTNKdN. (8.4.12)

2ifGi.a»A* (84.13)

We shall sketch the derivation of VJif,(M,co) for; e { 1,2, • • • ,7 }. We first take

the variation of equations (8.4.1) - (8.4.6):

2AnnJ .„. . B ,r, . „X8J B^DpfdM - ^DPjd^Tj+-^(D, +D^+1 - -^(D, +D^T^

+(/ +-^-D^Cfc^ +«?(/ +*-DtDj)DbdM +2Q, (/ +̂DPj)Ddj,x 50,

=F(/ +̂ DtD$huM , bdo =54 =0, (8.4.14)

80^ = 8fy + VLhTfiuj+i + p/iM^ST,, 8a0 = 0, (8.4.15)
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80^! = 80, +KTjKlj + hQfiTj, 80o =0, (8.4.16)

87^ = 87), 8r0 =87\ (8.4.17)

8z]rt =bz] +2hTjUj+lbuM +huj+fiTj, 8z0 =0, (8.4.18)

bzj+1 =Sz] +2xl04/imax{ -y- (d,,IW,) -jJ-.O }EIdjKbdj, 8z? =0, (8.4.19)

for ye {0,1,..JV-1 } where 8m e /?„, 8m,4Sm(//z) for j e { 0,1, • • ,N } and

8mn+1 = 0. Taking the variation of equations (8.4.7)-(8.4.13):

8&i(?(m,co,8m,Sco) =87V

5^,?(".®.5m,8co) =8z^.

8gt?(M, co, 8m ,8co) =2(0N - -|)80n.

8£>, co, 8m ,8co) =-iz-G$fiTN +-^-0*Sn„
Tn TN

8g!f/M, co, Sm ,So)) =™(4n+i - ^v)rM(8^v+1 - cVfo).

8&tfii, co, 8m ,8co) =EIdJ,KbdN.

8$j(?(m ,co, 8m ,8co) =2z^8zN.

Expanding (8.4.14) and noting that 87) for all values of j e {0,1, • • • ,N } are equal:

8^+2 +*M*i +Cfidj =Djdj+fiTj +£,80,- +Fj&i^i , (8.4.27)

where

^^4 +̂ +-j(C+D£J?), By =̂ "'(-# +-y(C +DQ?)) (8.4.28a)

5=̂ '(^ -# +-j(C +D" '̂ 3=̂"' a2 (^-d<d<-+ ^(D<+ D^ <8A28b>

Ej £A]1 h2 (-2*2// +̂ jDp^Ddp, Fj kAJ1 h2F(I +-jDp$ (8.4.28c)

In order to derive Vg, ^O, •), we recast the dynamics (8.4.1)-(8.4.6) into first order form. We

(8.4.20)

(8.4.21)

(8.4.22)

(8.4.23)

(8.4.24)

(8.4.25)

(8.4.26)
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define

bdj^bdj, Sdf±Sdj+l, (8.4.29)

for ye {0,1, • • • ,N }. Then system (8.4.27), (8.4.2)-(8.4.6) can be written in matrix

form:

5y>fi = A,oy, + BfiuM ,

for j e { 1,2, • • • , N-l } where

fy-

and

' 0 7 0 0 0 0 0"
I

0bdl
So*
SQ

"5
0

-BjEjO Dj 0 0

0 p 0 p/iM^ 0 0

80
87

A •£ 0 0 M) 1 AO, 0 0 -B,A 0
0

bzl 0 0 0 0 1 0 0 2«>>fi
5Z2. J

0 0 0 0 huj 1 0 0

•<v 0 0 0 0 0 1

G; =2xl04/imax{ ^j-{dj.Kdj)-fjt0 )EIdJK

With this notation, (8.4.25) and (8.4.25) become

8^%q{u, co, 8m ,8co) =m(dN+l - dN)TM(bd2N - 84),

8$t<7(M, co, 8m ,8co) =EIdJiKbdlN.

(8.4.30)

(8.4.31)

(8.4.32)

(8.4.35)

(8.4.36)

We observe that 8^9(m,co,8m,8co) is a linear function of the final state, yN (8.4.2).

We can therefore write 8$, tq(u, co, bu, 8co) = ( §£j, tq(u, co), SyN) where

8^,,(M,co)eIR2e+5.

Since the matrices { A; }y€ {o,it.jv} are not commutative, we shall define left and

right products: For u ^ /, the left and right products are defined:
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u u

XL A A A A A A TT« A AYf A,- i A^A,,., • • • A^,A;, n A,- i A,AM • • • A^jA,,.
i = / i = /

Since oy^ =A,8y; +B/i^ forj e {0,1, • •• ,/V-l } and by0 = 8co,

N-1 N

6yN =nLA;5co+ £
i = 0 A = 1

N-1

nLA,
IS*
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(8.4.33)

(8.4.34)

We derive expressions for Vgj i<?(-, •) by noting that for (8m ,8co) e (G„ -u)x(C- co),

(VJii<7(M,co),[|^]) =8&i<7(m,co,8m,8co) =(8&>, co), byN) (8.4.37)

where 8yw is the solution to (8.4.30). We shall drop the j superscript for readability in what

follows. Combining (8.4.34) and (8.4.37),

Is 1 " N-1 n
V&^(m,co), I" ) = (8a,,,(M,co,8m,8co),nLAy8co+ £

L J i = 0 * = 1

N-1

nLA,
i = k

= (

N-1

n"Af
i = 0

8&><?(m,co,8m,8co),8co)

N N-\

+ S (n/?A[ognt/M,co,8M,8co),Bt_18MJk)
* = 1 i = k

If we define

p* -

N-1

i = k

5&,«(a.ct), 8m, 8<»)

B*-i"a>-

(8.4.38)

(8.4.39)

for ike {0,1, ••••/v*-l } then p* = Ajp*+1 and p^ = 8&i(-(m,co,8m,8co). We define

vw&, q0*. oo) and VJj, t?(m , co) such that

(Vg,,,^,-),^]) =(V^t,(M, co), 8co)+(V^t<7(M, co), 8m).

Then by (8.4.38) and (8.4.39), V^^m.co) = p0 and

(8.4.40)
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N N

(V^w(m,co),8m) = 2 (^.B^m*) = 2 {pk,
4=1 *= 1

_0
Fk-l
hTk.x

0 8m*)
0

2hTh.luk
0

0

N
-7*= E (dte«(/.Ail,,l,l.l,l.l)pft,

* = 1

—8"a+i +"2"5"* +"4"5"*-i
hTk_{buk

0

0
2/i7'4_1MA8MJk

0

We partition pk for k e {0,1, • • • , A/ }:

/>* =

where pj and p2 e Rc. To simplify (8.4.41), we define

\2 A A"rn2

Then

N

(V& (ii.©),SiO = E
k= 1

1.2 1.2 l2

ftifrtM +y^Sm^ +—XJ8m4_i
P?^-i5«*

0
0

o
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x(8.4.41)

(8.4.42)

(8.4.43)
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Since

o
0
0
0
0

bUn +

-jM +-jM
P?hT0

0
0

2pfhT0ul
0

N-1

z
k-2

0

n i2 . h *2 , h o

0
0

lpthTk_xuk
0

N

( V^>(7(m,co),8m) = £ (V&^Gi.mXk.&O.
* = 0

bui +

8m* +

0

Pn^n-\
0
0

2PN^N-1%
0
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8m/A44>

(8.4.45)

where Vjgn><?(M,co)(r) =V^&^m.co), if re [jh,(j+l)h), we can readily determine

V&.^u.aflby (8.4.44).

Calculation of p*:

By (8.4.39), we can write a recurrence relation:

Pk =

V
_2
p
Jb
/>
J&
pZ ss

jr
P,
<
/ a

o =c* 0 0 0 0 Gl
/ =** 0 0 0 0 0

0 Ek u. hTk 0 0 0

0 0 0 1 0 0 0

0 D* \ihuk+l Klk 1 hu\ 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

Substituting p2+1 = AfX2+1 into (8.4.46), we obtain:

(8.4.46)

k+\
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* •

A pLi
Ajt-iA* A2^k+l

rf
=C

Pk+l

P? Pk+l

pI T
Pk+l

d Pk+l

pi
22

Pk+l

where

0 -(A - — +—(C +n2kD))T 0vT\ 2Tk 4 * 0 0 0 Gl

0 0 0 0

\LhTk 0 0 0

10 0 0

2A *2rw\T-(~ + ^-(c + np))

.2

r5 2

2/ or> /r^ ^nmn-^KrhH-2nk(I +^DtDj)Ddk)

Bh2{^DPj+^Dp$dlx huM hnk 1hu\ 0
0 0 0 10

0 0 0 0 1
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(8.4.47)

(8.4.48)

Equations (8.4.47) and (8.4.44) can be used to calculate V^g, q{u, co)(r).

S3. REFINEMENT CRITERION

In sections 8.3 and 8.4, we have presented methods to discretize the PDE dynamics in time

and space. The resulting cost and constraint functions are denoted %q : GnxCq -> IR

(8.4.7)-(8.4.13)1 . To present an implementable algorithm, we make the following

definitions:

§n,q :GnxCq->lR, &Htq(u,w) ±min{ \tq(y,z,u,w) \v e G~nt(J,ze CHtq) (8

1G, and Cf are defined in (6.S.3) and (8.3.42) respectively.
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$nq:GnxCqxGnxCq-+1R,

$Bi<?(v,z,m,w) 4ilv- Ml2 +-ilz - vt>l2 +max {-py„,q(u,w)+ +(Vg.^.w), £~£]);

&>,") +(Vji,,(M,w), [j - «] )- V+(M,W) },

Vn.^.w) =max{ &i(?(m,w) }
ye £

¥«,?(".w)+ = max{ 0.¥n,?(".w) )
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(8.5.2)

(8.5.3)

(8.5.4)

The refinement criterion in this chapter is similar to the refinement criterion in Chapter 6.

Namely, we refine the discretization if insufficient progress is being made. If the algorithm is

in Phase I, this means that yn%q is not decreasing sufficiently fast. In Phase II, this means

that JS,^ is not decreasing sufficiently fast.

We present the Implementable Algorithm we used to solve problems Pi - P4.

Algorithm 85.1:

Data: n e Z+, q < n such that 2q e 2Z+. Uq e Gn, w0 e Cq, a e (0,1), p e (0,1),

ye (0,1], pe (0,1), p > 0, Eq > 0.

Step 0: Set / = 0, e = Cq.

Step 1: Calculate Vg,tq{u-) for; e {0,1, ...p }.

Step 2: Calculate v,- e Gn and z,- e Cq such that ^(v,-, z,-, m, ,w-) <y&n q(ui, w$.

Step 3: If §ntq(u(, wi) =0, X, £ 0.

Else if $„,?("« ,wD >0 (Phase I),

\i&max[Xe { l.p.p2, • • • } I

Vji.^Mi + Wv,-- «i), w,- + A,(z, - w^)) - v«,^("i. H'«)
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<C&4>n(V|-,Z,,MJ-,Wi)

Else (yntq(ui,w$ £ 0, (Phase II)

Mmax{Xe { Up.P2. • • • } I

g°(Ui + X(yi - Mj), Wi + Mzi - w$) - g°(Ui, wi) < ctX^v,-, z(,Ui, wi) and

Vn,?("« + MVi - M^, W; + X(zt - Wi)) £ 0.

Step 4: Set uM = m, + X,<vi - m,), wm = w4- + Xfo - wi), nM = n, qM = <?.

Step 5: Refinement Criterion

If$„,,(«,-,h^>0 (Phase I),

//VnW("i+i .wi+1) - y^GO > -e, { Set n = « + 1 ,q = ? + 1,e = pe }.

Else (y(Ui,wi) £ 0, (Phase II)

V&.&M >wM) -^t(7(Mi) >-e, {Set n = n+ 1,<? = q+ 1,e = p£ }.

Step 6: Set i = i + 1; go to Step 1. •

We have implemented Algorithm 8.5.1 on a computer and the results are displayed in the

next section. We have not proven that any accumulation point Me G" of Algorithm 8.5.1

satisfies the optimality condition 0(5) = 0. However, if we assume that the discretization

scheme satisfies Assumption 6.2.2 (vi), the uniform approximation property, then a conver

gence proof can be obtained by combining Theorems 6.3.8 and 7.2.5.

8.6. COMPUTATIONAL RESULTS

This section is divided into two parts. We shall first discuss the solutions to Pi - P4

without reference to the specific algorithm used. In the second part, we compare the relative

efficiency of two different implementations of Algorithm 8.5.1 which use Method I and
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Method II in Section 7.3 to find the search direction for step 2 of Algorithm 8.5.1.

The results presented here are for the case in which the Cl\t) terms are neglected in

equations (8.1.1) - (8.1.3). Similar results have been obtained by performing experiments for

the case in which the Q2(f) terms are included.

PROBLEM SOLUTIONS

For all problems, we choose the zero function as initial control and 2 for an initial value

for the maneuver time. These results are from [Bak.l].

Problem Pj:

Figure 8.2 is a graph of the control after 150 iterations. The number of time steps is

256 and the number of finite elements is 48.

Figure 8.3a is a graph of $„t9(M,co)= max {2,t,(M,co) 1;e { 3,4,5,6 } } as a

function of the iteration number. Figure 8.3b shows $„,9(m, co) for the first 15 iterations. The

initial discretization is 32 time steps (n = 5) and 3 finite elements (q = ln23). The discretiza

tion is refined at iterations 67, 99, and 123. After precision refinement, the algorithm finds a

feasible value for the control and final time for the new problem f?,q in only a few additional

iterations. At each refinement the value of %i? increases. This is due to improvement in the

accuracy of the evaluation of the partial differential equation. This increase in $„ q decreases

each time the discretization is refined and in the limit is zero.

Figure 8.4 is the graph of the cost as a function of iteration number.

Figure 8.5 is the graph of w(t, 1), the displacement of the tip of the tube, from the sha

dow tube, as a function of time. There is a maximum displacement of the tip of about 5 mm.

This is within the range of validity of the Euler-Bemoulli model. The tip displacement is

large between 0.36 seconds and 0.437 seconds.
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Figure 8.6 is a profile of the tube deformation, w(t,x) (see figure 8.1), during this inter

val. The total time for the entire maneuver is 0.7883 seconds.

Problem P2:

Formulating the slewing problem as a minimum time problem has two drawbacks. First,

the solution to the problem is a bang-bang control (figure 8.2). Bang-bang controls may be

undesirable because they may cause premature aging of the equipment. Furthermore, bang-

bang controls tend to excite the high frequency modes of the system. High frequency modes

are less well modeled by system (8.1.1) - (8.1.3), and it is therefore best not to excite them.

Second, the simple minimum time formulation does not take into account the amount of input

energy expended in performing the maneuver. In certain applications, the total input energy

available may be limited, while the total time of the slewing motion is less critical. For

tunately, both of the problems arising from minimum time control can be mitigated by refor

mulating the problem. We minimize the total input energy while constraining the final time

to be less that a specified amount.

Figure 8.7 is the graph of the control produced by minimizing the total input energy

while constraining the final time to be less than 0.800 seconds. The resulting final time is

0.800 seconds. This is an increase of only 1.4 percent in the final time. The control has

become much smoother and the total input energy is reduced from 19.15 to 15.72, a reduc

tion of 18 percent.

Figure 8.8a is the graph of the control for the final time being 0.90 seconds. This is an

increase of 14 percent in the time over the minimum time case, but the total input energy is

reduced to 9.87, a decrease of 48 percent

Figure 8.8b is the graph of the control for final time being 1.00 second. This is an

increase of 27 percent in time over the minimum time case, but the total input energy is
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reduced to 7.27, a decrease of 62 percent

Problem P3:

In Figure 8.9, curve A is the graph of the potential energy of the tube as a function of

time for the control generated in solving the minimum time problem P^ In problem P3, we

have the additional requirement to keep the potential energy, which is a measure of the total

tube deformation, below the parabola (B) for all time.

Figure 8.10 shows the optimal bang-bang control for problem. P3. The optimal final time

for this case is 0.8250 seconds, an increase of 4.6 percent over the solution of problem P^

The total input energy is 16.55. Figure 8.11 shows the potential energy curve for the optimal

control (Figure 8.10).

Problem P4:

The final time is restricted to be less than 0.90 seconds. The minimum input energy is

10.49, a decrease of 57.8 percent from P3 Figure 8.12 shows the optimal control for P4.

The above results are summarized in Table 8.1.
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Figure 8.1 - Configuration of Slewing Experiment
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Figure 8.2 - Problem 1 Control
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Figure 8.12 - Problem 4 Time of Maneuver = 0.900 seconds
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Table 8.1 - Summary of Problem Results

Problem Final Time Input Energy

Pi 0.7883 19.15

P2(0.80) 0.8000 15.72

P2(0.90) 0.9000 9.87

P2(1.00) 1.0000 7.27

P3 0.8250 16.55

P4(0.90) 0.9000 10.49
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IMPLEMENTATION COMPARISONS

We shall compare the performance of the two implementations of Algorithm 8.5.1. In

Method I (Section 7.3), the search direction is calculated using the general purpose quadratic

program LSSOL [Gil.2]. In Method II (Section 7.3), the search direction is calculated using

a special purpose quadratic program. By experimentation, we have determined that the per

formance of Algorithm 8.5.1 is sensitive to two parameters, p > 0 and ye (0,1]. The first

parameter, p, determines the effect of the cost function in determining a search direction

when the algorithm is at an infeasible point (Phase I). If p is large, then the effect of the

cost function is negligible during Phase I. If p is large, then the algorithm finds a feasible

point quickly; however, if p is too large, then the this feasible point is far from a local

minimum. A value of p which is too small results in a very large times to find the first

feasible point. In the limit that p = 0, the algorithm may never reach a feasible point. We

have solved problems Pj - P4 using Method I with various values of p.

The other parameter, v, can only be set in Method II. It is set equal to one in Method

I by the producers of the QP package. The parameter 7 € (0,1] determines how accurately

the QP (7.2.6) is solved. A large value of y, (y near one) forces precise solution of the QP

while a small value (y near zero) requires only an approximate solution of the QP. This solu

tion will also be a direction of descent for Algorithm 8.5.1, but is probably not as good a

direction as if the QP had been solved exactly. Since a more exact solution of the QP is
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more time consuming, we have found that there exists a tradeoff between the quality of the

search direction and the time to find the direction. We have solved problems Pj - P4 using

Method II with various values of p and y.

We examine timings for the solutions to P] - P4 using Method I, Table 8.2. In these

experiments, we have fixed the number of time steps to be 256 and the number of finite ele

ments to be 6. We fix these values to facilitate comparisons. Time to Feasible is the time in

cpu seconds the algorithm required to find a feasible point. Time to 1 percent is the time in

cpu seconds the algorithm required to find a feasible point whose cost is less that one percent

higher than the optimal cost. For problems P2 and P4 the first feasible point has a cost

within this one percent tolerance.

Table 8.2 - Timings with Standard Parameters (Method D

Problem P Final Value of Cost Time to Feasibility Time to 1%

Pi 0.5 0.78837 2539 12500

P2 0.5 15.711 15804 15804

P3 0.5 0.82501 11692 74701

P4 2.0 10.492 33300 33300

We examine in greater depth timings for the solutions to Problem P4, Table 8.3, and Plt

Table 8.4. Blanks in Tables 8.3 and 8.4 correspond to values of parameters for which the

experiments were not carried out. It is immediately apparent that proper selection of p is

imperative. For problem P4, when p is too small (p = 0.5), Method I does not determine a

feasible point after 100,000 cpu seconds. The performance of Method II with y= 1.10 is

similarly poor. As p increases, the time to feasibility decreases and the difference between

the time to 1 percent and time to feasibility usually increases since the first feasible point is

usually farther from the optimal point. It is clear that there is an optimal value of p which

causes the time to 1 percent to be minimized. However, this value is problem dependent, and
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we currently do not know how to determine it apriori. The best values of p which we tried

are 8.0 for P4 and 0.2 for Fx

It is also evident that the performance of Method II surpasses Method I by a factor

between 6 to 10. We believe this is due to the ability of Method II to take advantage of the

structure of the search direction finding problem. In particular, the matrix in the quadratic

term of the QP is the Identity. However, the algorithm on which LSSOL is based does not

make use of this information. We also note that the storage requirements for Method II is

much smaller than for Method I. This is significant for computers which have little core

memory and even more significant for computers which do not support virtual address

memory.

From the available data, it is difficult to determine an optimal value or y e (0,1], how

ever, 1.10 appears to be the best value of y for P4 that we have tried.

Table 8.3 - Timings for P4

Y/P 0.5 2.0 8.0 16.0 32.0

Method I

Time to Feas.

Time to 1%

>100,000 33,300 6452 5800

>100,000 33,300 30957 35468

Method II

Time to Feas.

Time to 1%

1.02

848

4082

Method II

Time to Feas.

Time to 1%

1.10

>100,000 4262 933 1271 1470

>100,000 4262 2972 5568 5964

Method II

Time to Feas.

Time to 1%

1.30

1264

3900

Method II

Time to Feas.

Time to 1%

2.00

975

5945
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Table 8.3 - Timings for T?i

7/P 0.025 0.1 0.2 0.3 0.5 2.0

Method I

Time to Feas.

Time to 1%

10459 2539 1058

10459 12,500 31,526

Method II

Time to Feas.

Time to 1%

1.02

373

1877

Method II

Time to Feas.

Time to 1%

1.10

>100,000 1823 907 568 425 201

>100,000 1823 1695 1819 1913 5146

Method II

Time to Feas.

Time to 1%

1.30

425

1956

Method II

Time to Feas.

Time to 1%

2.00

354

2068

Method II

Time to Feas.

Time to 1%

4.00

355

2074
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CHAPTER 9

CONCLUSION

In this thesis, we have examined a class of optimal control problems with control, ter

minal inequality and state-space constraints in which the dynamics can be described by a

canonical abstract differential equation. We have presented conceptual algorithms to solve

these optimal control problems and shown convergence of these algorithms in the space of

both ordinary controls and relaxed controls. We have also presented implementable algo

rithms and shown that for discretization schemes which satisfy certain reasonable require

ments, the algorithms find stationary points. Finally& we have used these algorithms to solve

several optimal slewing problems rapidly (i.e., less than one hour cpu time on a SUN works

tation) .

We see future work in the areas of

(1) Generalization of the abstract differential equation to admit a larger class of PDEs;

(2) The use of refined models to obtain more precise answers;

(3) More efficient algorithms that utilize recent advances in scaling.

Open loop optimal control is only a partial answer. Work is being done at Berkeley to

integrate these open loop optimal controls with finite dimensional compensators for robust

control of systems described by partial differential equations.
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APPENDIX 1

EVOLUTION SYSTEMS

A two parameter family of bounded linear operators, U(t,s), 0 < s < t < 1 on X is

called an evolution system if the following two conditions are satisfied:

(i) U(s,s) = /, U{t,r)U{r,s) = U(t,s) for 0 < s < t £ 1,

(ii) (t,s) -» U(t,s) is strongly continuous for 0 < s < t < 1.

Evolution Systems are the generalization of state transition matrices. We give a version

of an existence result from Pazy [Paz.l] for evolution systems which is sufficiently general

for our purposes.

Theorem Al.l: Given A'D(A) -* X, the infinitesimal generator of a semigroup { T(f) }ti0

such that IT(f)l < Me™ for M < ~ and co > 0, and £(•) e LJ{0,\],B(X,X)) there exists a

unique evolution system U(t,s) for A + B() such that:

(i) lU(t,s)\ < Me(*-S), for 0 < s £ t £ 1, co > 0,

(ii) ~t7(/,5)v I = (A + B(s))v, for v e D{A), a.e. on 0 £ s < t £ 1 for v e D(A),
at t=s

(iii) ^-U(t,s)v =-U(t,s)(A +fl(,y))v, for ve D(A), a.e. 0<s£r£ 1.
as

Proof: Since fl() e L„([0,1],5(X,X)), IBI < «. For almost all t e [0,1], A + B(t) is the

infinitesimal generator of a semigroup {St(s) }s^q satisfying IS,(j)I £ Me0* where

co £ co + M\B\„.

Since the step functions are dense in L^, we can construct a sequence of partitions { rj jf'SV

forn e Z + ^ '{ 1,2,3, •• • }with 0 = /g <rj <fj < ••• < fN{n) = 1, and
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B(rJ)forrJ<r<rJ+1, ke { 0,1, • • • ,n- 1 }

5W(n)-i)forr= 1Bn(t) &«
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such that

(i) 5n ^ max{ r2+i-rJ}-»0asn-»««,

(ii) ISn(r)l £ IBL, for all r e [0,1],

l

(iii) lim f lfl„(r) - B{r)\2dr -» 0.
n —» oo^

Next, we define a sequence of two parameter operators Un(t,s), 0 < s < t < 1,

n e Z + by:

£/„(/,*) ^
Sfl(t-s), for/jf £ $£*££+1

iV'-©
=/+ i '

«/?+1 - s) for * < /, fk < t <£ rj+lf r? < s < f[+,

The evolution operators £/„(•, •) have the following properties:

(i) £/„(-,) is an evolution system,

(ii) Wn(t,s)\ < A*0* ~s), for 0 < s < t < 1,

(iii) ~t7n(r,5)v = (A + 5n(0)t/n(r,^)v , for v e D(A), for r ^ rj, * e { 0,1,2,...N(n) )
at

(iv) 4-un(t>s)v =- tV„('..y)04 +Bn(t))v> for ve D{A), fort 4rj, *€ [0,1,2,...7V(*) }.

Let v e D(A) and consider the map: r -» Un(t,r)Um(r,s)v. From (iii) and (iv), it fol

lows that except for a finite number of values of r, the map is differentiable in r, s < r < t

and
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Wn(t,s)v - Um(t,s)vl =ij^Lun(t,r)Um(r,s)vdrl =ijUn{t,r){JBn{r) - BJr))Um{r,s)vds\

t

<S AfV*-'>lvlf l£n(r) - Bm(r)Wr £M2^°"s)lBm - Bml2lvl. (Al.l)
s

Since D(A) is dense in X, and (ii) from above, it follows that { Un(t,s) } is a Cauchy

sequence, and therefore, it converges in the operator topology uniformly onO<s<f<l as

n -* ». We denote the limit U(t,s). U(t,s) is an evolution system and property (i) of the

theorem is satisfied.

To prove (ii) and (iii), we consider the map r -> Un(t,r)Sx(r - ,y)v for v e D{A). This func

tion is differentiable except for a finite number of values of r and

\Un{t,s)v - S& - J)vl =\\ ±Un{t,r)SJr - s)vdrl =Ij Un{r,t){Bn(f) - B{z))UJr,s)vds\

t t

<> M2e^ ~5\\v\\\ \Bn{f) - BJX)\dr <, M2e^1" s)lv\j lBn(r) - B{x)\dr. (Al .2)
s s

Passing to the limit as n -» » (A 1.2) yields

t

lU(t,s)v - Sx(t - s)vl «S Af2*0*"5)llvllJ lfl(r) - B(x)\dr. (A1.3)
s

U

CONTINUITY OF EVOLUTION SYSTEMS

Let { Bl }^CX([0,1],B(X,X)) be a sequence of linear operators converging to

B e L2([0,l],B(X,X))r^ LJIO,1],BQC,70) in the Li norm. As previously shown, by choos

ing a sequence of partitions, we can construct a sequence of evolution systems Un(t,s) con

verging to U(t,s) satisfying properties (i),(ii), and (iii) of Theorem A2.1. For each Bl, using

the same partition as for B, we can construct a sequence of evolution systems U'H(t,s) con

verging to an evolution system U\t,s). We state the following lemma.
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Lemma A1.2: For {Bl }cCl([0,1],B(X,X)) such that B'^Be L2([0,l],BM)n

E„>([0,\],B(X,X)) in the L^ norm, U\t,s) -» U(t,s) uniformly in 0 < s < t < 1 in the operator

topology.

Proof:

Ul(t,s)v - U(t,s)v = (U\t,s)v - Uln(t,s)v)

+ (Uln(t,s)v - Un(t,s)v) + (Un(t,s)v - U(t,s)v). (Al.4)

By Theorem Al.l, for e > 0, there exists no such that for all n > «o, \Un(t,s) - U(t,s)\ < e,

and for all i, there exists n,- such that for all n > nt, lU'n(t,s) - U'(t,s)l <e,forO<s<t< 1.

Applying the argument in Theorem Al.l, we see that except for a finite number of values of

re [0,1], the map r -» UR{t,r)Uln(r,s)v is differentiable for all v € D(A),

t t

dlUn(t,s)v - i/i(r,5)vl =\j^Un(t,r)UUr,s)vdr\\ <ij Un{t,r)[Bn{r) - BXrW^r,s)vdr\

t

<> M2e^1 ~s)\v\\ \Bn(r) - Bln{r)\dr, (Al.5)
s

and *

J\Bn(f) - £i(r)lldr <> \Bn - B^ <> \Bn - B\x +\B - Blj +15' - &n\x
s

£ \Bn - B\2 + \B - Bl\2 + \Bl - 5il2. (A1.6)

For e > 0, there exists h0 > n$ such that for all n > n0, \Bn- B\2 < e, there exists i0 such that

for all i > i0, IB - Bl\2 £ e; for all / there exists n,> max{ no,n,-} such that for all

n > hi, \Bl - BJ,I2 < e.

1IB. -Bl, £jIB.OO -B(r)ldr; IB. -Bl21 (j IB„(r) -B(r)l2dr)*
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Consequently, for all i > io, there exists n,- such that for all n > hi, \Bn - BlHli < 3e and

lUn(t,s)x - Utit,s)xl <MVlxBe, (Al.7)

for all x e D(A). Since D(A) is dense in X,

lUn(t,s) - Utit,s)\ < IM^z, (A1.8)

for all i > z0» n > "i» and

\Ul(t,s) - U(t,s)l < 3M2ewE, (A1.9)

for i > iQ. Therefore, U'(t,s) -* U(t,s) in the operator topology, uniformly on 0 < s < t < 1.

•

Lemma A1.3: Consider the Cauchy initial value problem:

4*fl =(4 +*('))*(') +#>. x(0) =x, (ALIO)
of

where A\D(A) -> X is the infinitesimal generator of a continuous semigroup { Tit) }t2 0; and

5€ L2([0,l],B(X,X))nLoo([0,l],B(X,X)), and /e L2([0,l],X)fUto([Ofl]iX). The mild

solution exists and satisfies:

x(t) = U(t,0)x + f t7(r,$)fa)<iy, (Al.l 1)

where U(t,s),0 £ s < t £ 1 is the evolution system generated by { A + B(f) },e [01].

Proof: Since xe X, B e L2([0,1],B(X,X)) and /e LjtfO.l].*), there exists sequences

{ jc*' }cD(A), { £' }cC\[0,\]),BQC,X)) and {/ } cCl([Otl],X) such that ^ -> x, £' -> B

and/ —>/in the appropriate topologies. For each /, the system:

^{t) =(A +W(0 +/(*). x*(Q) =x! (A1.12)

has a classical solution
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t

^'(0 = (/'(r.O) '̂ + f U\t,s)fis)ds (A1.13)

which is also a weak solution i.e.,

t

'̂(f) = Tit)* + f T(/ - j)[BW(^) +As)]ds. (A1.14)

While (ALIO) does not necessarily have a classical solution, it has a weak solution:

t

xit) =Tit)x +[T(t~ s)[Bis)xis) +fis)]ds. (A1.15)

Therefore,

j

<M[tf - x\ +1/ -yi2+suplB'lf tc1^) - x(j)l<fc +WJIB1' - BIJ.

Applying the Bellman-Gronwall Lemma, and noting suplB'l < °°,
i

Ix^r) - xit)\ £ k&W - xt + 1/ -yi2 + IB' - Bl]. (A1.17)

Therefore, **'(*) -• x(f) uniformly in re [0,1]. Since VO-»*Q. l/'(-,)-> t/(-,),

/() -> A0. *'(•) -» 5'(). It follows that xit) =Uit,0)x + f t7(r,sW)ds.

Lemma A1.4: Consider the Cauchy final value problem:

4*C)= -iA* +B\t))xit), re [0,1], xil) =x, (A1.18)
at

where A*:D(A*) -> X and B*():X -> X are the adjoints of A and B() defined in Theorem

Al.l.

t

h?(t) - xit)l = XTiffot - x) + f Tit - sftBWis) - Bis)xis) +fis) -fis))dsl (A1.16)
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Then the mild solution to (A1.18) exists and satisfies xit) = £7(1 ,t)*x for re [0,1].

Proof: We first define s £ 1- t, yis) £ xil - s). (A.2.2) becomes:

4*0 - s) =(A* +B*(l - s)W - s), se [0,1],
ds

fyis) =iA" +B\\ - s))yis), se [0,1], y(0) =x.
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(A1.19)

(A 1.20)

We construct a sequence of partitions { s*k }*(=\for ne Z with 0 =,$(„) ^

• • < 5j < 5JJ f 1 by setting 5J = 1 - rj where { rj } is the sequence of partitions in

Lemma Al.l. Next we define a sequence of two parameter operators Vnit,s), 0 < s < t < 1,

n e 2Z +

Sj,(r-5), 5;+1 £5£f £5*
W.5) = «

SJf-sf+i) n 5jcs;-;+i)
/ =Jk —1 J

SjCsJ-*). ^?+i<r<J?, j{+1^jSjJ

v;a-5,i-r) = .
Sqit-s), qzs£tzr]+l1

W SM+, - r?) (A1.21)
tyi?-*), r?<5<r?+1,rj<f<rj+1.

Therefore Vni\ - s,\ - t) = £/„(f,5) or Vfl(r,j) = l&l - 5,1 - t), 0£s£t<\. Following

Al.l, there exists an evolution operator V(f„s) such that V„it,s) converges to Vit,s) uniformly

in 0 < s £ t < 1, and Vit,s) = U\\ - s,\ - t) with £/*(•,•), the adjoint of Ui,) denned in

Al.l.

By A1.20, yis) = Vis,0)r, x(s) = y(l - s) = V(l - 5,0)* = t7*(l ,^.
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APPENDIX 2

TRANSCRIPTIONS

A2.1 TRANSCRIPTION I

Lemma A2.1.1: A problem of the PDE-FORM II can be transcribed into a problem of

PDE-FORM I.

Proof: Define X £ W x IR", xit,u) 4 wit,u)Qzit,u),

A& 1 0
0 0

Fixit,u),uii)) £ fW-"M'«) +C(ZC")) +E0*(f))\
Az(r,«),u(r))

Then DiA) = d(X) x Rn and

dF

ax
ix,u) =

£(z) B2iz)w + C2iz)
0 0 du

Euiu)
fu(2,U)

Since B, C, and / are continuously differentiable, it follows that Fe CliX xiRn,X).

F e C\X x IRn,X) follows similarly.

For \ = tfQz and x = w9z,

lfft» - fXx.u)l =II *Cz)* +C(z) +£(z)"" B(Z)W " C(Z) - £(Z) I' (A2.1.1)
II fCzft -A*.«) «

=]] (B(z) - *(*))&+Biz)iw- w) +CQz) - C(z) jj
II AM& -A*.*) "

Choose 5 = SJ$StcW x IRrt such that S is bounded, i.e. there exists b such that Ixl < b for

all x e S. By Assumption 3.3.1 (ii) there exists K, L and t> < «> such that

IFfow) - F(jc,u)I < Lffi-zl+ftw-wl + Liz- zl + tf[lz-_zl + Iw- ul]

£M[1k-x\ + tu-ul]

(A2.1.2)

for some A/< °°, showing that Assumption 3.3.1(iva) is valid. Assumptions 3.3.1(ivb) and
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3.3.1(vc) can be similarly shown to be valid.

A2.2 TRANSCRIPTION H

We now show how the rotating beam equations (2.2.5)-(2.2.9) can be transcribed into

PDE-FORM II. The equations of motion are:

mwtjit,x) + Clwtxxxxit,x) + Ebv^r,*) - mQ(f)w(r,;c) = - ma.it)x,x e [0,1]. (A2.2.1)

The boundary conditions are:

wit,0) = 0,w£t,0) = 0,w«(r,l)=0,

M(n2(f)w(f, 1) - wt£t, 1) - ait)) + ClWtxxxit, 1) + Elvt^f, 1) = 0.

We define uit) e X £ ^([0,1]) x IR, and F : Xx IR2 -> X:

uit) &[${•*>], Fiuit)Mt)Mt)) &

We define A with domain of A, D(A):

Cl2if)wit,x) - ait)x
tf(/MM)-a(0

(A2.2.2)

(A2.2.3)

D(A) 4 {w =
w2

•£Wl e ^([0,1]), w,(Q) =-|"wi(°) =tW1) =O'̂ 1) =w2 )
ax ox dxr

A:DiA) -4 X is such that A far.*)! _
kr,l)J "

We define the operator Q : DiQ) -> X:

DiQ) = DiA), Q = ±A,
E

then

EI a4

m dx
EI a3

jw(r,x)

M dx3
w(r,l)

(A2.2.4)

(A2.2.5)
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utl + Qut + Au = F(u,a,Q). (A2.2.6)

Gibson [Gib.l] has developed a recipe to derive an infinitesimal generator of a semigroup

from A and Q if they satisfy the following properties:

(1) DiA) is dense in X.

(2) A is invertible, and A"1 is compact

(3) A is self-adjoint.

(4) A is coercive, i.e. there exists p>0 such that

2i^i2{Ax,x)>oz\x\i (A2.2.7)

(5) A is a closed operator.

(6) Q is a nonnegative, symmetric linear operator.

(7) D(A)cD(0, and there exists y > 0 such that

lQx}x £ f\Ax\x, x e DiA). (A2.2.8)

Assumptions (6) and (7) are trivially satisfied. The proofs in this section were derived with

help from Ywh-Pyng Ham.

Lemma A2.2.1: DiA) is dense in X.

Proof: Choose any
w2

e X. Let

TM&*
0 xe [-l/n,l/n)

wYix) xe [Vn,l - lln) .
W2 xe [1 - l/n,l + 1/n]

(A2.2.9)

Let <|>£ e C°° be such that: (1) $zi~x) =$tix). (2) J $eix)dx = 1. (3) 4>£(;c) =0, xe(-e,e).

(4) $tix) Z 0. We define
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znkzn*$±, xe [0,1],
An

= J $±(x-y)zniy)dy.
An
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(A2.2.10)

Therefore, zn e C°°. It is easily seen that z„(0) = T~z«(0) -^zn(l) =0and zn(l) =w2,

and so,
™2

e DiA). By showing that zn -» w>i we show that DiA) is dense in X.

I'** " wl!2 ^ lzn " znh + "Zn - w\h-

We consider the two terms on the right hand side of (A2.2.11) individually.

1 An

K - zJl = \[\ Kit-y)<* i (y)dy-rnix)f)dx
o-i i:

An

J_
1 An

i(?nix-y)-znix))*lllm
An

Applying the Schwartz Inequality,

<t>j_(y)
An

) $±(y)
An

i

1 An

K - T& <>[\ \znix - y) - z"n(x)l2(t) ! (y)rfydx,
4n

1

4n ^1

* J dy
An

An

Uznix-y)-znix)\2dx

vs
dy\2dx.

(A2.2.11)

(A2.2.12)

(A2.2.13)

Since the map y -» JIz^Cr - y) - zn(x)l2dx is equi-continuous in y for all ne Z + (sec

Theorem 9.5 in Rudin [Rud.l]), for all e>0 there exists 8>0 such that

ijir„( =-/„\i2I \znix - y) - znix)rdx < zl if lyl < 8. Choose no such that -— < 5. Then for all n > n0,
4/ir
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K - zn\2 < e.

We consider the second term on the right hand side of (A2.2.11).

n 1

K- ^i«2 = \">i(x)2dx + J (w2 - wxix))2dx. (A2.2.14)
* i-l

r e2For all e > 0, there exists a continuous function g e C([0,1]) such that \g - wjl^ < — (See

Theorem 3.14 in Rudin).

2
n 1

K - w,li = f (w,0c) - *(*) +*(;t))2<£t + J (w2 - gix) +rfx) - w,ix))2dx (A2.2.15)
n

J_ 2
n n

(gix)2dx+\isix)-wlix))2dx+ J (w2-g(;t))2<k + J (*(x) - w^))2^
n n

Since g() is continuous, there exists n{ > n0 such that for all n > nx

n 1

gix)2dx+ ] iW2-gix))2dx<^-, (A2.2.16)
,_± 2

so that lz„ - wjl2 £ e2 and IzT, - wx\2 < 2e for all n> hq. •

Lemma A2.2.2: The operator Ais invertible, and A"1 is compact.

Proof: We first give the inverse of A, and then show that it is compact. For

e ^([0,1]) xlR,
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i-l

Transcription II

x y z uffjfvxit)dtdudzdy +v2(^. -•£)
1 y z u

((([vlit)dtdudzdy+^v2

187

(A2.2.17)

A"1 is compact if and only if A~]B0 is compact where B04{vllvlsl,

v e £^([0,1]) x R }. We show that A~lB0 is compact in C([0,1]) x R. This implies that

i-iA~lB0 is compact in the coarser ^([0,1]) xR topology. Consider

Iv^ 1 and lv2l£ 1.

X 1 1 ,

\—wxix)\ £ fJJIvrfOkfcfiufe +Iv2I(jc - ^-f <1, lw2l £2.

e Bn. Then

(A2.2.14)

Therefore A_1B0 is equi-Lipschitz continuous and for each xe [0,1], IvvjCc)! £ 1. By the

Arzela-Ascoli Theorem, A~lB0 is pre-compact in the C([0,1]) x R topology. Since A"1 is a

bounded linear operator and B0 is closed, it follows that A~lB0 is closed and therefore com

pact in C([0,1]) x R. •

Lemma A22.3: The operator A is self-adjoint.

Proof: Consider u, v e DiA). Then

«(0) =v(0) =-^u(O) iv(0) =i?"(,)=i?v(1)=a

U.Av) = ( ,A " ( W)r a3

a^3
v(D

(A2.2.15)

=j«(*)-|^v(;c)<£c -«(l)-|^-v(l).
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Applying integration by parts,

1

4 a*4 ax3

Transcription II

a3(m,Av) = f -2-uix)vix)dx - -rrw(l)v(l) = (A«,v)

188

(A2.2.16)

Therefore u e DiA*) and D(A)cD(A*). Now suppose y e D(A*) and p = A*y. Then,

(y.Au) = {p,u) for all u e DiA). Since p e X and A is invertible, there exists v e DiA)

such that Av = p. (y,Au) = (Av,u) = {v,Au) for all u e DiA). Since RiA) = X, y = v

so y e D(A). A is self-adjoint. •

Lemma A2.2.4: The operator A is coercive.

Proof:

a4(Au,u) =fuix)-^uix)dx - uiD-Zjuil) =f ^uW die.

Since u(0) = 0,

iu(x)i2 =iu(0) +]Yu(y)dy{2 -'&mI*

Consequently lid* £l-|^l2. Similarly, l|^l2 <l-^-f l2- Therefore,
ox ox ($xr

\u\x =\u\\ +uil)2 <2\$-$\\ £2{Au,u),
dxr

(A2.2.17)

(A2.2.18)

(A2.2.19)

Lemma A2.2.5: The operator A is closed.

The operator A is closed if for any sequence { u, }cDiA) such that u, -» u and Au, -» v,

then « e D(A) and Au = v. Given a sequence { u,- }cD(A), such that ut -> w, we define

vt- ^ Au,. Since A is invertible, there exists u=A"1v. If u=uthen Ais closed. Since A"1 is

compact, there exists K < «» such that
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\ut -U = lA^Vi- A~lv\\ = IA_1(v,-- v)ll < ifclv,- - vl. (A2.2.20)

Since v,- -> v, u, —> li. Since ut -» u, fc = u. •

With A and Q satisfying the necessary properties we can employ Gibson's method to

derive the infinitesimal generator of a contraction semigroup. We give a brief outline of this

derivation. See Gibson for the details. We define the space W:

W &DiA*) x X,

so that if e V, then

v2
I = (v^Av!) + (v2,v2),

where (•, •) is the L* inner product Define v(r) e V:

v(r)£

wxit,x)

w2(r,*)

h>2(U)

W<f,JC)
w(U)
wit.x)

H<M)

Define the operator A : DiA) -> V where DiA) = DiA) x DiA)aV:

**) A[^ _7Jv(r) =
w2(f,*)
w2(M)

a a4 u , ei a4 „ ,
m ax* m obr

ci a /.. iX , ei o /+1\•w2(r,l) + T7--Twl(r,l)
M dx3 m a*3

(A2.2.21)

(A2.2.22)

(A2.2.23)

(A2.2.24)

By Theorem 2.2 in Gibson, there exists an extension of A to A where A is the generator of a

contraction semigroup. Showalter[Sho.l] has shown that 2 generates an analytic semigroup.

To complete this section, we define: B:R -> B(V,V) and £:R -» X:
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Bimmt) =

0
0

n«)Wt>x)

Transcription II

, £(a(0) =

0
0

-ait)x
L-a(0.

190

(A2.2.25)

Then from (A2.2.1) and (A2.2.2), we obtain the system of coupled partial and ordinary equa

tions:

-f-v(r) =Mt) +BiQit))vit) +Eiait)),
at

-±Clit) = ait),

(A2.2.26)

(A2.2.27)

and therefore all assumptions of PDE-FORM II are satisfied.

A2.3 EXISTENCE OF MILD SOLUTIONS

Lemma A2.3.1: (Existence of Mild Solutions for PDE-FORM I with Condition 3.2.1.)

Given the system:

4-xit) =Axit) +fixit),uit)), xiO) =XQ,ueG±{ue L£([0,1]) I"(0 e U} (A2.3.1)
at

for all t e [0,1], where X is a Hilbert space, A:DiA) -> X is the infinitesimal generator of a

continuous semigroup, Tit), and fX x U -»X is a nonlinear operator and U is a compact

convex subset of Rm. If/ is Lipschitz continuous with constant Kj< » over XxU, then a

mild solution to (A2.3.1) exists.

Proof: Define a map F:C([0,1];X) -» C([0,1];X) by

(Fx)(r) = Tit)xo +\Tit- s)f(xis)Ms))ds. (A2.3.1)

Therefore, for all t e [0,1],

l(F*)(f) - (Fy)(r)l £ f ITit - j)IA)Ix(j) - y(j)l<fc £ M^Kfx - yl0 (A2.3.2)
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t s

(F2jc)(r) =7(0*0 + f Tit - sW«)Xo + f Tis - rtfixir), uir))dr,uis))ds. (A2.3.3)

t s

KF2x)it) - (F^XOI £ (A/yVf KA KWr),«(r)) - Mr)MWdrds (A2.3.4)

<; iMAe*A)2KH \ \xir) - yir)\drds £i^L-SLfc - yf^

By induction,

w, -» iMAe^Kf)n ..,,„IF"(;c) - roOU. £ A , /y I* - yL. (A2.3.5)

iM^Kff
There exists n < <» such that —J— < 1 and so F is a contraction mapping. There exists

n\

a unique fixed point jc* e C([0,\\X) such that x = Fx* or

**(*) =Tit)xQ +\nt- s)fix\s),uis))ds (A2.3.6)

for all re [0,1].
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