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Abstract

A connected web of stochasticity can be generated by a mapping derived from a linear oscillator

perturbed by a periodic delta-function. Such a stochastic web is useful for investigating global diffusion

through a phase space in which the local diffusion within the web is nonuniform. An analytic expres

sion for the global diffusion rate has been obtained using: (1) the basic phase space concept that the

ergodic region is uniformly populated in the asymptotic limit, (2) a local calculation of the thickness of

the stochastic web, and the (3) the average local period for traversing a single mesh of the web. The

results are compared with numerical computations of the diffusion rate and found to be in good agree

ment Although the linearity of the kicked oscillator leads to a connected grid in phase space, the

diffusion rate, unlike Amol'd diffusion, is related to that in two-dimensional phase space, with the

diffusion coefficient Dwe^ 3 Lrms /T scaling as K^% where Ka is a perturbation parameter.

Discrepancies are discussed, and the effect of extrinsic stochasticity is briefly considered.



1. Introduction

The motion of a charged particle gyrating in a magnetic field and interacting with a wave pro

pagating perpendicular to the field is governed, within the non-relativistic approximation, by the equa

tion

x+Qex = — E0sm(kx-<Qt). (1)
171
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Here x (and y) arc transverse to the magnetic field zB0, the wave has amplitude yE0 and propagates in

x with frequency 0) and wave number k, and C0e = eBrfm is the gyrofirequency of the particle. The

dynamics of this motion has been studied in some detail ~~ and it has been shown that for exact reso

nance between the gyromotion and the applied frequency

= > P>4 integer, (2)
<o q

that the topology of the phase space trajectories of the motion are strongly modified even in the limit of

small perturbing amplitude E0. The reason for this modification of the orbit topology is understood in

terms of the linearity of the unperturbed oscillator. Since all of the nonlinearity occurs within the per

turbation itself, the size of the local perturbation in action is independent of the perturbation strength.

The limitation of this phenomenon with increasing nonlinearity of the original oscillator has been stu

died in the context of introducing nonlinearity by allowing a component of the wave propagation in the

magnetic field direction. A similar effect can be found by employing relativistically correct dynamics.

A review of the problem can be found in ref. 5.

A motivation for the study of this problem is that of charged-particle heating by waves. For

strong perturbations the higher order nonlinear interactions generate stochastic layers around the first

order separatrices through which particles can diffuse in action, and therefore heat Because this

diffusion rate is related to the local strength of the perturbation, the original calculations, governed by

interaction with a single wave as in (1), considered large values of Eq and explored regions of the

23 5phase space (in energy) for which the resonant interaction was maximized. w'



Recently a new look at this problem has been undertaken, in which the single wave has been

replaced by a wave packet

oo

E(x,t) = E0 2 sin(fcc-rtar). (3)

This is equivalently represented by a periodic 5-function, kicking the particle, with period T = 2jc/g>.

The differential equation for the motion then has a mapping representation

"n+1 = («n + ^a sin vn)Cos a + v« sin a
(4)

vn+1 = -(un + Ka sin vB)sin a + v„ cos a

where a = CO^T is the rotation angle between kicks, Ka = (e/m)Eo&r2/a is the stochasticity

coefficient and u and v are the normalized velocity components, u = Jfcvx/(oc, v = kvy/(Qc. The

mapping is composed of a product of two involutions, a step change in u, followed by a rotation, and

is therefore measure preserving. At a resonance we have a = 2397 Iq. Taking p = 1, for simplicity,

we see that q is the number of 5-function kicks per gyroperiod.

In a series of papers, Zaslavski and associates have examined various aspects of the map-
6 7 8

ping. ' ' There is an approximate 4-fold rotational symmetry which becomes exact in the limit of

Ka —> 0. Furthermore, for q = 2, 3, 4, and 6, there is also an exact translational symmetry in this

limit The combination of these two symmetries insures that the phase space is tiled by the separatrix

joining the unstable periodic points of the mapping. For other values of q, the separatrices are much

more complicated, but for small Ka tend to produce structures that have a skeleton approximated by a

q -fold rotation of a set of parallel lines. With finite Kat higher order resonances produce stochastic

layers of finite thickness.

The purpose of our study is to calculate the rate of diffusion through stochastic separatrix layers

at finite Ka. The interest in this calculation is not to determine particle heating rates, since nonlineari-

* 4 0ties such as a component of k along zB0 orreladvistic effects will reintroduce energy-limiting KAM

curves for small values of Ka. Our interest rather, is to determine the effect of the divided phase space

and the phase correlations on the global diffusion rate. These higher order effects can be studied for

doubly periodic mappings, such as the standard mapping, but only local approximations can be found
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for mappings whichare periodic in phase, but not in action. For the aperiodic mappings the existence

of KAM barriers to diffusion limits the numerical calculation of diffusion rates. In contrast for

diffusion through a stochastic web the global rate of diffusion depends both on the internal phase space

structure of the web and on the web boundaries. The effect of the internal structure can then be inferred

from the global diffusion rate.

To investigate this effect most easily it is important to have a web with a stochastic layer that is

globally uniform when averaged over a cell. To obtain this uniformity to order Ka we must limit our

selves to q-values with translation symmetry. The simplest of these values is q = 4, for which the map

(4) reduces to the form

«+i n (5)
v„+i = - (Mn+A-asinvB) .

The twist can then be removed, to order Ka, by iterating the map four times, keeping only the lowest

order terms, to obtain

v„+4 = vn -2Kasmun
(o)

"«•* = "» + 2A'asinvn44 .

The map (6) is again a product of two involutions and therefore measure preserving; it will be the fun

damental mapping considered in the following sections. Although (6) was derived from (5) a subtle

difference has arisen which becomes very important for the calculation of the separatrix width in the

next section. That is, the map (5) has one kick per step or 4 kicks per gyroperiod while the map (6)

has 2 kicks per step or two kicks per gyroperiod, each kick being twice as large. The first order struc

ture is the same in both cases, but not the thickness of the separatrix layer which depends exponentially

on the ratio of 5-function period to the period goingaround a cell.

The map (6), being measure preserving, has a Hamiltonian form '



//4 =-2A*a(C0SV+COSM) - 2KaCOSU 2 ^ ^ (7)
n

n«0

where the summation is the Fourier representation of the periodic 5-function. Since the lowest order

oscillation about the fixed point has the frequency CI4 = 2Ka% for small Ka this frequency is very slow

compared to the wave frequency. This allows averaging over the rapidly varying terms to obtain the

averaged Hamiltonian •

Hy = - 2ATa(cos v+cosu) (8)

The averaged Hamiltonian is clearly 2% periodic with a separatrix web of straight lines given by

v = ± (m+ic) + Iran (9)

It is the structure widiin this web, when the rapidly varying terms cannot be completely ignored, that

interests us. Clearly this is significant for Ka sufficiendy large that the nonlinear resonances between

the fundamental frequency and the wave frequency becomeimportant

In Fig. 1 the separatrix web is shown for a rather large value of Ka = 0.6, in order to be able to

see the web thickness. One thousand initial values of u and v were chosen within the stochastic region

at the center of the figure, and were followed for 103 mapping iterations. The edge of the stochastic

region is bounded by KAM curves within each mesh. Both the distortion of the separatrix from the

straight line 45° grid, and the web thickness are clearly seen for this value of Ka.

In section 2 we consider the structure of the separatrix web. We use a combination of analytical

and numerical calculations to obtain the important quantities such as the rotation frequency of a phase

point around a mesh of the web and the thickness of the separatrix layer. We then use these results, in

section 3, to calculate the rates of global diffusion through the web, as a function of Ka, and to com

pare these rates to numerically determined values.

We emphasize here that although the diffusion has in common with higher dimensional Arnol'd

diffusion the topological existence of a continuously connected web, the diffusion mechanisms and the

diffusion rates are fundamentally different For Arnol'd diffusion, motion across a stochastic layer,
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which is exponentially thin in the ratio of two frequencies associated with two degrees of freedom,

drives exponentially slow diffusion along a stochastic layer in a third degree of freedom. In contrast

the diffusion rate studied here has a power law dependence on the corresponding frequency ratio,

despite the exponentially thin layer width. This distinction was obscured in previous work in which the

main interest was in the topology of the connected layer, rather than in the rate of diffusion through

it6-9

2. Structure of the stochastic layer

Near the separatrix of an oscillator which is perturbed by higher frequencies, the motion can be

approximated by a separatrix mapping of the form5

Aw = w0sin9 (10a)

A8 = 2jcr(w)/m (10b)

where w is the energy (or action) deviation from the separatrix, x is the full period (in mapping steps)

to traverse the web, and Wq is an exponentially small function of the ratio Q n of the mapping period to

the linearized mesh frequency, which can be expressed in terms of an Amold-Melnikov integral in the

form5'12

w0 = c j2o exp
2

(11)

with the constant of proportionality c to be determined. We do this numerically by relating Wq to the

5 12
border of stochasticity by use of the Chirikov criterion. • Expanding the mapping (10) about a

periodic point

T(w) = / , / integer , (12)

we obtain the standard mapping

-6-



A/ = A\sin8
(13)

A9 = /

where

At the stochastic borderthe Chirikov criterion is Ks =1, giving

W 3 wi = KwrfKa . (15)

Substituting (11) in (15), with go = n^a*we bave

nc

K.
wia — exP

tt2
2*-0 (16)

Since we shall only need to know the logarithmic value of W\t a numerically determined value of c

will be sufficient for our purposes.

In Fig. 2(a) we show a portion of the separatrix region near an unstable fixed point which is

blownup in Fig. 2(b). The last island chain before a mesh-bounding KAM curve corresponds, roughly,

to the island chain satisfying Ks = 1. Because we must satisfy (12) exacdy, at the fixed point the cri

terion Ks = 1 cannot be satisfied exacdy. However, since Ka varies significantly from island chain to

island chain, a more general criterion for unequal island sizes will usually place the first KAM curve of

the mesh at a w \ greater than that given by (15). We discuss this further, below.

We can numerically determine the width of the stochastic region for the map (6) in two ways.

Expanding (8) in u from an unstable fixed point at (say) u = tc, v = 0 we have

w 3 AH =Kail2 (17)

we then either put in a series of values of w, for a given Ka, and observe the transition from bounded

to unbounded motion, or directly measure the distance (in u) to the edge of the stochastic layer. The

two methods give quite similar results, shown for the first method, in Fig. 3, as the x's. In contrast the

separatrix thicknesses for the original mapping (4) are shown (plusses). These can be brought into

correspondence with the reduced mapping (6) by reducing Ka (proportional to the mesh frequency) by



a factor of 2 (circles), to keep the ratio of kicks to mesh frequency constant A fit to (16) gives c - 20,

which will be used in the following section.

We also need %(w) for our diffusion calculation. Using (8), together with Hamilton's equations

we can then obtain the period

*-•£- f _£ = 08)
Aa 0 Vl-(w-COSK)

where, as previously, w is the deviation in energy (or action) units from the value of H on the separa

trix {Ha = 0). The elliptic integral (18) is logarithmic near the separatrix, and has been found by

numerical integration to be

*(w) =-^- (2-lnw) . (19)
Aa

Referring again to Fig. 3, with Ka = 0.4, the value of W\ =4 x 1(T3, obtained from (16)

corresponds, from (19) to x(w{) = 38. That is, it takes 38 mapping iterations to traverse the mesh.

Since the island chains occur in multiples of 4, we find the next main island chain closer to the separa

trix corresponds to x(w) = 42. Inverting (19) we find wx = 1.66 x'10~3 with a corresponding

Ks ~ 2.4, from (14). The result is that the next island chain closer to the separatrix, as seen in Fig.

2(b), exhibits a strong fourth harmonic resonance, and is well embedded within the stochastic sea. The

process by which island chains become engulfed within the stochastic sea causes jumps in the value of

h>! at discrete values of Ka. However, the strongnonuniformity in neighboring island chains keeps the

last KAM surface relatively constant with respect to the Chirikov criterion Ks = 1. The small varia

tions may explain the wobble in the numerical values of w i(K„) in Fig. 3.

More important for our diffusion calculation, we see from Fig. 2b that the last KAM surface lies

beyond the island chain whose center approximately satisfies the Chirikov criterion (15). This some

what more than compensates for phase space area excluded from the stochastic region by the main

island chain (and smaller islands). In the next section our diffusion calculation uses (15), which we

shall see leads to a small systematic under-estimate of the asymptotic diffusion rate.

-8-



3. Diffusion rate and scaling

We now consider the central problem of the diffusion rate through a stochastic web. If the phase

space density in the web is macroscopically uniform we expect a random process to govern the macros

copic diffusion over the cells. Assuming, that in each dimension, the probability of moving r displace-

13
ments from the origin in N steps has the standard form

» « 1/2 » •

2 r2
ttJV*

V. J

exp
2N

P(rtN)= -=- exp --7- (20)

then the rms distance traveled is L^, s (L2)1/2 =L^N1*2 where L^ is the fixed cell size. For our

mesh we have ustep = vstep =V2 7C with N/2 steps each in u and v, giving

L^ =««2> +<v >2)1/2 =L^N™ =VI tcW"2 (21)

The diffusive nature of the spreading of initial conditions can be seen numerically from the rela

tion between L^ and the number of iterations of the mapping. This is plotted for two values of Ka

in Fig. 4. After an initial transient during which time the initial conditions ergodically fill the stochastic

region, the basic Lmw oe Tl{1 dependence isevident characteristic of a diffusive process.

The important physics is in the determination of the number of mapping periods that are required,

on average, for a single random walk step. We make the following assumptions.

(1) The stochastic region is ergodic. This implies that the stochastically available canonical phase

space out to the KAM barrier is uniformly occupied in the asymptotic (long time) limit This

result has been shown numerically to be a good approximation in the regions of phase space

where no islands exist

(2) As a first approximation we ignore the effect of islands on the calculation, assuming that the

phase space is ergodic from the separatrix (w = 0) to the value w = wh satisfying the Chirikov

criterion. As we have discussed, this a reasonable first orderapproximation, despite the existence

of large islands near the border of stochasticity.



(3) In the small Ka limit appropriate for the derivation of the fundamental map, the lowest order

motion can be described by the continuous Hamiltonian (8), and the stochastic layer is sufficiently

narrow that the period in the stochastic separatrix is everywhere governed by (19).

With these assumptions we calculate the rms spreading from

r 7*1/2

mf - (n^er (22)

where T is the number of iterations, XMe is the average rotation period, and n is the average number

of rotations per separatrix crossing. The average period within the separatrix layer is

%ve =— f f(wyt(w)dw (23)
Wl *

where wl is the border of stochasticity (15). Since w is the canonical action, by assumption (1),

/(w) = 1, and (23) can be integrated directly, using T(w) from (19), to give

2
*ave = -JT- O-lnwO (24)

The logarithmic singularity at w = 0 is sufficiently weak that lme ~ %(w {) as seen by comparing (24)

to (19). Substituting (16) (with c = 20) in (24) we obtain

T™ =TT +T" (3-ln207t+31nA'a). (25)
Kl Ka

For small values of Ka the first term dominates and ime <*= \IK^. We compare the prediction of

(25) with the numerically determined %ave in which 100 initial conditions were integrated over 8000

mapping periods, for each Ka, with the results, shown in Fig. 5, indicatingexcellent agreement

To determine the number of rotations per separatrix crossing we put (15) in the form

-0=t: (26>

Because of the correlations near KAM boundaries it is not possible to calculate separatrix crossings

directly from a random walk. However a simple phase space argument can be invoked to calculate the

10-



fraction of the phase space of the stochastic region that crosses the separatrix on each step of the

separatrix map. The energy steps are given by w0sin6, from (10a), such that the phase space within

Wosin 6 of the separatrix, with sin 6 negative, crosses the separatrix on each mapping step. Phase ran

domization then insures that the phases are equally populated on each time step, such that the phase

2n

space crossing the separatrix on each step is J w0sin9 = 2w0. Since the available phase space is
it

2icwi a fraction Wq/kw j of the total phase space crosses on each separatrix mapping period. Since

there are four such mapping periods per circulation period, using (26), an initial phase point takes a ran

dom walk step (separatrix crossing) in a number of circulation periods

n =7C2/4A'a . (27)

This result is compared with the numerically determined n in Fig. 6. In the numerical determinations

50 points were followed for 105 and 5 x 105 iterations for each Ka. The results indicate that for the

longer numerical iteration, the number of iterations per jump is quite close to that predicted from (27),

with the numerically determined slope somewhat less than the predicted K^1 dependence. These

differences are qualitatively due to the correlations near the border of stochasticity andthe deviations of

the available phase space from the estimate in (26). The first effect is clearly seen to be of importance,

numerically, since lower iteration numbers give shorter separatrix crossing times, resulting from the

difficulty in penetrating into the phase space close to the KAM barrier. The penetration time into this

highly correlated region is longer at small Ka, accounting for the decreased slope. For the second

effect since the actual W\ lies above the value at Ks = 1, but the large island decreases the ergodicly

available phase space, the deviations from the simple approximation (26) tend to cancel, resulting in

relatively good agreement

We substitute (25) and (27) in (22) to obtain the value of L^ for any T. Defining the global

diffusion rate as

D^sL^/T (28a)
yields

-11-



8£|
"* " Jt*+2AV3-ln20jr+31nA'a) (28b)

Without any adjustable parameters L^ from (28) (solid line) is compared to numerical calculations for

1000 initial conditions and for T = 216 iterations per initial condition (crosses), for each A~a, inFig. 7.

We also calculate £»», using the numerical separatrix crossing times from Fig. 6 (triangles). The

difference between the crosses and triangles from the two numerical procedures is indicative of the

breakdown of ergodicity on short time scales. That is, phase space trajectories from which the numeri

cal diffusion rate is calculated employing 65,000 iterations, do not penetrate the phase space near the

border of stochasticity as well as the trajectories from which the separatrix crossings are calculated,

employing 5 x 105 iterations.

4. Conclusions and discussion

For a linear oscillator perturbed by a resonant periodic 5-function, some resonant ratios produce a

stochastic web that globally has nearly uniform thickness in the small perturbation limit This situation

is convenient for studying global diffusion across a stochastic region with locally nonuniform diffusion.

Invoking the theorem that the phase space of the resultant area preserving mapping should become uni

formly filled, asymptotically, an analytic expression was derived for the global diffusion rate, in good

agreement with the numerically observed diffusion. Remarkably, the long time correlations near the

stochastic borders, characteristic of a divided phase space, do not impede the diffusion. Rather, the ina

bility of trajectories, on shorter time scales, to fill the regions of phase space in which strong correla

tions exist tends to increase the rate of intermediate-time-scale diffusion over the asymptotic value.

Although the linearity of the kicked oscillator leads to a connected grid in phase space, the

diffusion rate is related to that in two-dimensional phase space, with the diffusion coefficient

Dweb s Lfmg/T scaling as a"£, where Ka is a small perturbation parameter. In contrast Arnol'd

diffusion in a higher dimensional space has a diffusion rate along the main resonances which scales

with the web thickness, and therefore as DA «= exp(-const/A'„). Although not direcdy related to

our present study, we point out that there is also an important topological difference between the

Arnol'd web and the web studied here. In the Arnol'd web, generated by a small coupling perturbation,

-12-



higher order resonances connect the stochastic web arbitrarily closely to all parts of the phase space,

while leaving the total measure of the web exponentially small In contrast KAM surfaces disconnect

almost the entire center of each mesh from the stochastic grid that surrounds them. The global rate of

Arnol'd diffusion remains an open question.

The theoretical model that we have used gives a quite accurate estimate of the diffusion rate in

the asymptotic limit because of two canceling effects in the estimation of the stochastic phase space

available to the diffusing particles. Improvement in the analytic expressions are possible by introducing

a correction in the ratio of Wi/wq, in (15). This can be accomplished by adding the stochastic phase

space beyond the last island and subtracting the excluded island phase space. The procedure is, how

ever, Ka dependent in a complicated way.

It is clear that we have been discussing diffusion only within the stochastic web. For small Ka

most of the phase space is bounded within the meshes by KAM curves and has no global diffusion. If

a small additional extrinsically stochastic perturbation is added to the mapping, then the phase space in

the mesh will diffuse at the extrinsic rate into the separatrix region of more rapid diffusion. Since the

surrounding meshes have neither sources nor sinks, on an appropriately long time scale the local density

within the meshes and in the bounding web will be the same. In this limit the overall diffusion rate is

a product of the global separatrix rate and the ratio of phase space areas of intrinsic to extrinsic stochas

ticity; this latter ratio is proportional to Wy in (15). For this combined extrinsic and intrinsic diffusion,

treated in ref 6 in a different limit the diffusion of the entire phase space is exponentially small in the

ratio of driving frequency to mesh frequency.
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Figure Captions

Fig. 1. A portion of the separatrix web for mapping (6) with Ka = 0.6. One thousand initial con

ditions within the web were iterated 103 times togenerate the web.

Fig. 2. Structure of the phase space in the neighborhood of an x-point of the stochastic web for

Ka = 0.4.

Fig. 3. Thickness of the stochastic layer, w i as a function of Ka, for the reduced mapping of Eq. 6

(crosses) and the original mapping of Eq. 4 (plusses).

.Fig. 4. Illustrating the diffusive nature of the spreading of initial conditions, Lrmj ©c Txa.

Fig. 5. Comparison of theoretical and numerical values of average mesh period.

Fig. 6. Comparison of theoretical and numerical values of number of revolutions per separatrix

crossing.

Fig. 7. Comparison of theoretical and numerical values of L„„ <*= D^% (for a fixed number of

iterations).
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