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ABSTRACT

Two dimensional mappings are used to model both Hamiltonian and dissipative systems in two

degrees of freedom. Numerical iterations of these mappings are then easily performed to reveal the

phase space structure, transient and invariant phase space density distributions, and the rate of transport

of phase points in "time" (mapping periods). Mappings are chosen for their generic quality, their con

venience in analysis, or their close correspondence to physical systems. For Hamiltonian systems (Part

I), the self-similar structure of the phase space at all scales leads to long-time correlations of trajectories

that decay more slowly than exponentially. The result of these correlations is to modify the quasilinear

diffusion rate, which can be calculated to an arbitrary degree of accuracy for mappings which are on a

torus (periodic in both action and angle). For generic mappings, in which only the angle is periodic,

approximate local diffusion coefficients (averaged over phase) can be obtained and used in a Fokker-

Planck equation to determine phase space transport in action. For mappings on a torus, some values of

parameters give rise to accelerator modes, which lead to streaming particles for which the diffusion rate

may be infinite. For generic mappings which are periodic only in angle, these accelerator modes

enhance diffusion but do not lead to singularities. The diffusion coefficient is also obtained for systems

in the adiabatic limit in which the small parameter is the ratio of the unperturbed frequencies. For dis

sipative systems (Part H), transport and phase space distributions are considered both for parameter

ranges in which regular attractors exist and parameter ranges having a chaotic (strange) attractor. Par

ticular attention is given to dissipative mappings in which the dissipation is a perturbation from an area

preserving (Hamiltonian) mapping. For small dissipation, the rate of decay of the phase space density,
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by absorption into regular attractors (sinks) is shown to increase with the dissipation parameter 5 in an

easily calculable manner. With continued increase in 8, more subtle phenomena appear which lead to a

maximum rate of density decay at some 8 = 6S and then to a vanishing phase averaged decay rate at

some 8 = Scr, beyond which a strange attractor exists. A method of calculating the invariant distribu

tion on the attractor to arbitrary accuracy is described.



Introduction

The study of non-linear dynamical systems has revealed many examples of chaotic behavior. The

simplest systems in which such behavior is observed are two degree-of-freedom Hamiltonian systems

and their dissipative counterparts. Two dimensional area preserving mappings, which have a Hamil

tonian structure, may be used to model the Hamiltonian systems. These can be smoothly transformed

into dissipative mappings by variation of a parameter.

The phase space structure in two-dimensional near-integrable measure-preserving maps is intri

cate. There is persistent regular motion on perturbed KAM orbits and on KAM island orbits surround

ing stable fixed points of the map. Regions of persistent chaotic motion are densely interwoven with

these regular regions. The measures of the regular and the chaotic regions can vary widely, both within

the phase plane and as a function of the system parameters.

New phenomena appear for dissipative systems. Since the (two-dimensional) area of the Poincare"

surface of section contracts (by the Jacobian factor / of the map) after each iteration, the motion ulti

mately lies on a set of lower dimensionality called an attractor. For large dissipation (/ « 1), one or

more chaotic (strange) attractors having fractional dimensionality can- exist It is natural to ask whether

persistent chaos continuously exists when a Hamiltonian system is smoothly transformed into a dissipa

tive system. The numerical evidence suggests that this does not occur. Instead, an intervening regime

of weak dissipation (1-/ « 1) appears for which all persistent chaotic motion is destroyed. Although

the motion may be transiently chaotic over hundreds of thousands of iterations, ultimately the trajectory

is attracted to a periodic orbit

In addition to describing the detailed motion of chaotic orbits it is often useful to predict the sta

tistical properties of families of orbits. In many problems, the evolution of only one of the two phase

space variables, the action (or the energy), is of interest If we assume that the phase variable is ran

domized much more rapidly than the action, then it may be possible to describe the dynamics using a

Fokker-Planck equation for the evolution of the distribution of actions f(u,n), where u is the action

and, for a mapping, n is the "time", in units of the mapping period.



We restrict our attention in this review to two degrees of freedom without external- noise. Con

siderable work has been done on extensions to include external stochasticity and to obtain results with

three degrees of freedom. These topics are reviewed and references to the literature given in ref [1].

For more than three degrees of freedom it was early realized that the phase space tends toward ergodi-

city [2], but few detailed calculations have been made [1, Sec. 6.5].

In Part I we consider Hamiltonian systems. In Section A we introduce the area preserving map

pings that have proven convenient for analyzing such systems, either because of their genencity or

because of their simplicity. In Section B the structure of the phase space is discussed. The methods for

determining the coefficients of the Fokker-Planck equation, including phase correlations, are considered

in Section C. This is followed in Section D by calculations of the distribution function and transport

properties using the Fokker-Planck formalism.

In Part n dissipative systems are considered, with the emphasis being on continuous transforma

tion away from the area preserving mappings. In Section A the phenomenon of transient chaos is

treated, including both the calculation of the transient distribution, using a Fokker-Planck equation, and

the calculation of the absorption rate into the stable attracting fixed points. In Section B the transition

from transient chaos to a chaotic attractor is considered. Finally, in Section C, the calculation of

steady-state distributions on chaotic attractors is described.

I. Hamiltonian Systems

A. Mappings as Dynamical Systems

We consider either autonomous Hamiltonian systems in two degrees of freedom, H = //(z),

where z = (Pi»/?2»<7i»<72)» or nonautonomous Hamiltonian systems in one degree of freedom,

H' = H'(p j,<7i,f). The latter systems can be made autonomous in two degrees of freedom by intro

ducing a new Hamiltonian [I, Sec. 2.1]

H(z) = H'(p1,q1,q£+p2 (1)

defined on the extended phase space (p jf p2 = —H\ qj, q2 = t).



To define an area-preserving map for this system, we introduce a surface of section Z# in the

phase space (see Fig. 1.3a), as follows: Since the motion of the phase point z(f) in the four dimensional

phase space lies on a constant energy surface H(z) = const (see Fig. 1.3b) we can solve for one of the

canonical variables, say p2% in terms of the others:

P2=/>2(x,<72) (2)

where x = (p\tq{). We define a particular ZR by the condition q2 = const As the phase point z

evolves with time, it repeatedly pierces (in the same direction) T,R. As shown in Fig. 1.3a, the succes

sive intersections n, n+1, n+2, etc. of the trajectory with £# generate a two-dimensional map

*«+i = T<?n) • (3)

For this particular choice of £#, the map is area-preserving; i.e., the Jacobian / = dxn+1/dx„ is unity

[1, Sec. 3.1]. There are two such surfaces of section of immediate physical interest (p\,q{) for q2 -

const and (p2,qi) for q\ = const If the phase points are conserved in the motion (no sources or

sinks), an immediate consequence of area-preservation is that the equilibrium invariant distribution

within the chaotic region of the surface of section is uniform, independent of x.

As an illustration of these concepts consider the problem of a ball bouncing in one dimensional

motion along x between a fixed and an oscillating wall, which we shall call the Fermi acceleration

configuration. We can write the difference equations for the motion, using a fixed surface of section

x = const Defining un = vR/2(oa to be the normalized velocity, 0„ to be the phase of the moving

wall at the nth collision of the ball with the fixed surface x = 0 about which the wall oscillates, and

with a wall motion x = aF/ty), where Fj is an even periodic function of the phase \|/ = (of, with

period 2k and with FImax = —Fj,,^ = 1, we have, in implicit form, the equations of motion [1, Sec.

3.4]

"«+i = "«+^(Vc). (4a)



[2kM-^Fj^c)]
ft _.„ . ? (4b)

un+l

Vc=eft-T-^—. (40

Here \jfc is the phase at the next collision with the moving wall, after the nth collision with the fixed

surface x = 0, M = //2tw, with / the distance between the walls, and F = dFf/dy is the velocity

impulse given the ball. In this form it is easy to see that measuring the distance from the fixed wall as

x, conjugate to v, then the phase 9 is a time-like variable conjugate to the energy E = i* . That is, in

the extended phase space (y,x,-E,t\ the choice of a surface of section x = 0 gives an area-

preserving mapping for the remaining pair (—£,6). This can be confirmed by direct computation of

the Jacobian yielding

'" 3ft.e.) _1- (5)

Thus the normalized energy E has a uniform invariant distribution.

Because of its implicit form (4) is not convenient for numerical or analytical study. A much

simpler form can be constructed if the oscillating wall imparts momentum to the ball, according to the

wall velocity, without the wall changing its position in space. The problem defined in this manner has

many of the features of the more physical problem and can be analytically treated with various wall-

forcing functions. In this simplified form the mapping is [3; 1, Sec. 3.4]

w«+i =m«+^(¥n) (6a)

V«+i = V« + -—• (6b)
un+l

A fundamental difference between (4) and (6), however, is that the canonical variables are

different, leading to different variables in which the invariant distribution is a constant For the

simplified problem (6), a proper canonical set of variables are the ball velocity and phase just before the

nth impact with the moving wall. The normalized velocity u then has a constant invariant distribution,

as will be seen in Sec. IB.



Keeping these considerations in mind, a very useful map for investigating dynamics of physical

systems is the simplified Fermi map with a sinusoidal forcing function

"«+i = un + sin \j/„

Yn+i=Y«+^E^(mod2Ti). (7)
un+l

The mapping in (7) serves as an approximation (with suitably defined variables) to many physical sys

tems in which the transit time between kicks is inversely proportional to a velocity, such as cyclotron

resonance heating in a magnetic mirror [4], electron heating in sheaths of an r.f. capacitive discharge

[5] and the free motion of nucleons in a nucleus of large atomic number [6].

Another important mapping is the Chirikov-Taylor or standardmapping [7; 1, Sec. 4.IB]

'»+i = /» +tfsin6„
(8)

e»+i = eB+/n (mod27c).

In contrast to the Fermi map, the standard map is 2k periodic in the action /, as well as the angle.

However diffusion in action can be calculatedover arbitrarily many 271 periods. The standard mapping

also applies to the physical systems, such as the "kicked" rotor [7] and a ball returning to an oscillating

wall under the action of gravity [8,9]. Its primary importance, however is as a local (in action) approx

imation to mappings of form (7). For example an expansion in u about a given fixed point ut = Af//,

with / an integer and \\f{ = n yields

Aun+{ = Ak„ - sin 9n ,

e„+i =e„ - 2^f A"«+i <mod 2lt> • (9)
where\p„ = tc + 8„. Letting /„ = - K Aun, and defining

K=2kM/u{2 (10)

puts the map in the standard form (8). From (10) we see that K depends on ut and therefore the

effective K of the mapping for a given trajectory changes as it diffuses or streams. The doubly

periodic nature of the standard mapping is a very important property for calculating diffusion.



The explicit mappings described above are of the class of invertible twist mappings of the form

[1, Sec. 3.1]

¥«+i = V« +^(w«+i) + eG(wn+1,vB) (mod 2tc)

where

v»

G=--r^- lF(un+l,V)dyf. 02)
oun+i J

Such maps are derivable from the generating function

^2 ="«+i¥n + J A0O<fc' +e J F(un+l,\/)dy' (13)

and are thus area-preserving (Jacobian 7 = 1) and have a Hamiltonian form [1, Sec. 3.1]. An important

special case is a radial twist map with F independent of u, such that G = 0, e.g., the Fermi map.

For the class of radial twist mappings, it is straightforward to construct a Hamiltonian flow using

a periodic S-function to give the kicks in action at the mapping period [3, 7; 1, Sec. 3.4]:

H=JA{u')du' - ej F(u,y')dy"Zl6(n-l), (14)

where n is a continuous time, normalized to the mapping period. For the standard mapping with the

periodic 8-function in Fourier form, this becomes

H=1--K cosQXei2lzmn (15)

where the Fourier representation of the periodic 8-function has been used. For dQ/dn «: 2 rc, an aver

age over the Fourier components leaves only the m = 0 term

I2H =-y -A"cos9 =HQ. (16)

This is just the pendulum Hamiltonian



I2H = G ±- -FcosG = H0 (17)

for the special case F - K, G = 1. The amplitude in action, of the phase space "island" associated

with this motion is

AIm = 2(F/G)1/2, (18)

and the linearized period at the stable fixed point is

Qo = 26k/Qq = {FG)m. (19)

We will return to this formalism in the following sections.

An important radial twist mapping is the separatrix mapping which genetically describes motion

near the separatrix of a resonance in a system with two degrees of freedom [7; 1, Sec. 3.5]. The map-

ping is derived from (15) with m=l, by an expansion near the separatrix of (16), to obtain

w„+i =wn -w0sin8„

eB+i =en+20in-^-, (20)
where

w0 = 16xcQo exp
-rcfii

(21)

Qq is the ratio of the mapping frequency to the fundamental frequency of the resonance, and w is the

normalized energy deviation from the separatrix energy. The mapping (20) behaves very similarly to

(7), if the action is renormalized. A local expansion in w also puts the mapping in the form (8), allow

ing all the results for the standard mapping to be used locally.

In addition to radial twist mappings, many physical problems lead to the more general form (11).

For example, the cyclotron resonance of a charged particle gyrating in a magnetic mirror having qua

dratic potential and resonating with an r.f. field near the turning points in the mirror leads to a mapping

of the form [4,10]

En+l =En +AE& Ai(CEB+1)sinyn



2kM
V«+i = ¥« + —[JT + G<E.+i« ¥«)•

Ai+1

where is is the perpendicular energy, \|S is the phase angle between the particle velocity and the

accelerating field, Ai(x) is the Airy function of argument xt A, C, and M are constants depending on

the parameters, and G is obtained as in (12).

B. Structure of the Phase Space

In Fig. 2, the phase space of mapping (7) with M = 100 is shown schematically, with the shaded

areas representing stochastic trajectories and the lines representing regular trajectories (KAM curves).

The phase plane of the mapping divides naturally into three regions: (1) At velocities below us, the

phase space is predominantly stochastic, and all period one fixed points of the map are unstable. (2) At

intermediate velocities, stable islands (around elliptic fixed points) are separated from the stochastic seas

by KAM trajectories; (3) At high velocities, the motion is predominandy regular, with only thin sto

chastic regions near the separatrices joining hyperbolic fixed points. Regions (2) and (3) are separated

by a phase-spanning KAM barrier to diffusion from below, whose value averaged over phase is denoted

by «£,. An analysis of linear stability at the period one fixed points gives us - (nM/2)m (K = 4).

From the standard mapping approximation, the last KAM curve between 2 7C regions of the action space

occurs at K ~ 1 which corresponds to u = 2us at the center of the last island structure below the first

phase-spanning KAM curve (see Fig. 2).

To illustrate the form of the invariant distributions, we compare the phase space distribution of a

mapping with canonical variables u, \}f, as in (7), with the more physical case of the moving wall map

ping in (4). This is most easily seen for the choice F = sinxy, Fj = -cosxj/. Expanding (4) to first

order in F, we obtain the area-preserving mapping for the moving wall

£«+i = En + 2>f^T cos 0ft , (22a)

G/i+i = 9„ + r=— - r=— . (22b)
2kM sin6H

which can be direcdy compared with (7). We illustrate the invariant distributions for these two maps in

Fig. 3, for M = 100 and 5 x 106 iterations. A barrier to easy flow exists at us = (izM/2)1/2=12.5,
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above which the distribution function falls off due to the presence of islands and higher order correla

tions in the phase space, with the dips near the island centers. The basic distributions for the two map

pings are evident for u < us. For the moving wall mapping (22), since f(u)du = g(E)dE with

g(E) - const and dE = 2udu, then f(u) ©c m, as observed. For the approximate mapping (7), we

expect fill)- const as observed.

The phase space for a Hamiltonian map is considerably more complicated than that immediately

apparent from Fig. 2. To see this complexity we look at the standard mapping (8) for K = 1.19,

which is slighdy within the parameter range of connected stochasticity. In Fig. 4a a number of initial

conditions are shown, exploring both regular (KAM) orbits and stochastic orbits. Second order island

chains are seen to exist near the large island structures. In Fig. 4b, one island from a chain (inside the

dashed box in Fig. 4a) is magnified, revealing a third order structure which is then magnified by the

same factor to obtain Fig. 4c. This self similarity of island structures is a generic feature of a divided

phase space; that is, one containing both regular and stochastic regions [12, 13].

In addition to the self similarity of the KAM island structures, there is also self similarity associ

ated with unstable manifolds. Viewed from the four dimensional phase space, a KAM curve on the sur

face of section represents motion on a torus with the two angle variables specifying the coordinates on

the torus. As a parameter changes such that the KAM surface no longer exists beyond a critical value,

the KAM surface becomes irregular on all space scales, leading to an invariant set having an infinite

number of infinitesimal gaps at the critical value. The set then has the structure of a cantor set, and has

been called a cantorus since it originates from an invariant torus [14]. A schematic picture of the

hierarchy of canton has been developed in order to analytically calculate long-time correlations and

diffusion [15]. This picture, reproduced in Fig. 5, shows the intimate relation between the island hierar

chy and that of the associated cantori. The main gaps in the canton, through which trajectories can

diffuse, are indicated schematically on the figure.

For the standard map there is an additional feature that ranges of K values exist which have

stable fixed points that jump by 2Km, m integer, in action on each iteration [7]. These stable fixed

points and their associated islands are called accelerator modes. Stochastic trajectories that shadow
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these islands for long periods of time will tend to stream, rather than diffuse, which can result in a

singularity in the diffusion coefficient [16]. For the accelerator modes of the standard map, the fixed

points of a single mapping iteration are located at /0 = 2^m, K sin Qq = 2kI and are stable for

12 + K cos 6qI < 2, from which we find a window of stability (in AT) for

2kI <K <V(2jc/)2+16. (23)

corresponding to kI2 < 60 < 2.1376. The modes are born with an inverse tangent bifurcation at

K -2kI and period double at K =V(2tc/)2+ 16. The first mode (/=1) has the largest stable

range of K values and the largest maximum island size, and consequently is most important for modi

fying the local diffusion.

The island phase space area of the accelerator mode is found by constructing a perturbation Ham-
A

iltonian H in the neighborhood of the stable fixed point (/q, 6q). After averaging over the fast mapping

period, as in (16), we obtain

H=-j +K(cos 6+Osin 80) =/?« , (24)
A A A

where H^ is the value of H on the separatrix: H„ = K(cos 8X + 0X sin 90), with Qx the angle at the

unstable fixed point. The stable island area lies within the separatrix; the island is born with zero area

at one limit of stability and approaches zero area again at the other stability limit, where the stable

fixed point bifurcates. The stable area is generally small and tends to go unnoticed within the stochas

tic sea. For more generic mappings in which AT is a local function of action, the accelerator islands are

not truly stable, as the changing action eventually carries the trajectories outside of the window of sta

bility. In a generic mapping this "quasi" accelerator mode can at most locally enhance the diffusion

[17]. We shall see this explicitly in the next section.

C. Diffusion Coefficient and Correlations

To describe the evolution of a distribution function f(u,n) in the action alone, we assume that

the change in action is small on the time scale over which the phases become random, leading to a

Fokker-Planck equation for the action [18,19]
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a/(«.fi) = AJL
dn 2 du »* (25)

where D (w) is the local diffusion coefficient

D(u) =-7- fdu'{u'-u? Wt(u,0;u',An) . (26)
An J

The transition probability Wt(u,0\u',An) is the probability density that a particle has action u' at

time An given that it had action u at time 0. The time An is assumed to be short compared to the

evolution time of the action distribution function, but must be long compared to the phase relaxation

time, such that an average over phases is implicit in (26) at fixed u. It is generally true that only the

first and second moments of Wt are proportional to An and that transport coefficients corresponding to

higher order moments vanish as An —» 00. If the phases are uncorrected over a single mapping step,

we obtain direcdy the quasilinear diffusion

2jc 2

D<* =27i(A/')2rf9° =X- (27)

If the phase space has structure, or the correlations are sufficient that the average over phases at

fixed u for one iteration of the map is not a valid approximation, then a longer time average over both

action and phase must be performed. The techniques that have been used to obtain these coefficients

involve Fourier decomposition of the phase space and thus, strictly speaking, apply only to a doubly

periodic phase space, obtaining a global diffusion coefficient Two somewhat different techniques have

been employed. One, called the Fourier path method, is in an efficient form for calculating higher

order correlations near the border of stochasticity [20,21]. The second involves the calculation of

characteristic functions that give successively higher correlations, which then must be summed to obtain

the diffusion coefficient It gives a straightforward way of calculating specific higher order correlations

[22,23]. Both methods predict the same first order corrections to quasilinear diffusion. We illustrate

one form of the calculation for the doubly-periodic standard map and then show how it is applied to the

Fermi map.

To obtain the higher-order corrections, we calculate the diffusion coefficient
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=<(A/„)\,e. (28)
n

in terms of the conditional probability density W that an initial state (/q, 60) at n =0 evolves to a final

state (/„, 0„) at step n,

A, =- Jw(/rt,eB,n i/0,e0,o)(/n-./0)2d/nde„. (29)
n *

W satisfies the recursion property

W(/,e,nl/0,e0,0)= jdI'dQ'W(I,Q,n\I',0',n-l)

xW(/',0',n-ll/o,0o,O),

where, from the mapping equations,

W(/,0,n l/',0',n-l) = 5(7-7 -A*sin 0')5(0-8'-V-Ksin 0').

An attempt to calculate Dn direcdy from (29) by repeated iterations of the mapping becomes

rapidly very tedious. Alternatively, expanding W in a Fourier series in 0 and a Fourier integral in /,

we can write

W(7,0,n l/o,0o.O) =£ Jdq exp(im Q+iqI)an(m,q), (30)
m

where the Fourier coefficientan is also a function of 70 and 0q:

an(m,q)= M v9 \d0dl exp(-imq-iql)(/,0,n 170,0o.0).
(2tc)2 J

The evaluation of the an, using the recursion properties, is rather lengthy, yielding to K~ , for large K

[20^1]

A =K2i± - J2(^") +J22(^)]. (3D

where J2 is the Bessel function of order 2. The result (without the J2 term) is compared with numeri

cally computed values in Fig. 6. The agreement is good, except where accelerator modes exist which

enhance the diffusion even on the relatively short numerical integration times. For K < 4, KAM

curves encircle stable fixed points, for this region the Fourier method may still be used, but the
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calculation becomes increasingly tedious. An additional difficulty is the existence of non-diffusing tra

jectories that lie inside of the stable islands. This can be resolved by introducing a small amount of

extrinsic noise, such that the result is an average over diffusing and non-diffusing trajectories. A com

parison of the Fourier-path analysis, (carried out numerically) and results from iterating the mapping,

for K < 4, is shown in Fig. 7 [20,24]. For K < Kcrii ~ 0.9716, a KAM barrier exists and there is no

long-time diffusion in the absence of extrinsic noise.

The Fourier path method depends on the peculiar periodicity in action of the standard map to

evaluate the Fourier integrals in the limit of long times (An —» oo, Dn —> D ). Because of this, the

method cannot be applied in the long time limit to maps without this periodicity. For generic maps in

which the phase is randomized within a region of the action space for which the local approximation

gives a near-constant K, it is possible to derive a local (in action) diffusion coefficient [24]. An expan

sion procedure for the Fermi map (7) gives the condition

(MfXdfldu) «: K{u)I2k. (32)

With (32) satisfied, the diffusion coefficient for the Fokker-Planck equation (25) becomes

DJu) =—1— DJK(u)) . (33)
~ K\u) .

For a sharply peaked distribution, we expect good agreement only for times exceeding the time required

for the distribution to broaden over many primary resonances, n » \I(K2D (w)). If this n is

sufficient to spread the distribution over the oscillations in D (K) seen in Fig. 6, then the distribution

function will be smoothed.

If we are interested in using the Fermi map to model a heating mechanism, then particles will

generally start at low velocities, where the stable islands have negligibly small area. As the particles

are heated they enter regions of phase space within which large islands exist Without extrinsic sto

chasticity the particles will not penetrate the islands. For the ergodic phase space surrounding the

embedded islands, the equilibrium distribution would be uniform. Thus to extract the diffusion of the

untrapped species, alone, from the result (31) including noise, we divide that diffusion coefficient by the
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fraction of phase space occupied by stochastic orbits. If we denote the stochastic equilibrium distribu

tion by fs(K,I) normalized to one, then the relevant diffusion coefficient for the Fermi map is

DJK(u))
D(u) = -^ - (34)

/5T2(m)(/',(A:(m/),7(Am))>/

where K(ii[) = 2kM/u2 and 7(Am) = -K Aw. The average over a 2k interval in 7 ignores rapid

variations in the diffusion coefficient which is consistent with (32).

In addition to modifying the average local diffusion, the self-similar structure of mappings with

divided phase spaces gives rise to long time correlations for some particle trajectories. That is, if for

some dynamical quantity one defines a correlation C(x) = (a(f-x) a(?))uufar Cond> men one nnQ,s t*131

for large X, C (x) <*= X"11 with Tl a constant Numerical investigations of a related quantity, the proba

bility that an initial phase space position in the neighborhood of an island remains in that neighborhood,

gave a power law dependence

P(i) <*= ft, (35)

with y ~ 1.4 for a small, isolated island [16] and y ~ 1.45 for the standard mapping [25]. It has been

shown theoretically [16] and confirmed numerically [16, 25] that T\ = y-1. These results may not,

however, be asymptotically correct [14]. The long-time correlations may be viewed physically, in terms

of the properties of the phase space near KAM curves. Since orbits near KAM curves must shadow

them, one would expect long time correlations from these orbits. However, as discussed in Sec. IA, the

phase space in a closed region associated with such orbits must have constant density [26; 1, Sec. 3.1].

The regions in which long time correlations exist must therefore be difficult to penetrate, resulting in a

decreasing number of such orbits. A quantitative calculation of this effect may be made by calculating

the flux through the various canton [14].

The real problem, however, is much more complicated. As seen in the schematic of Fig. 5, tra

jectories in the neighborhood of a KAM torus must penetrate through an increasingly fine grid of can-

tori gaps. On the way they may also be derailed to shadow a second order island chain which itself has

an increasingly fine grid of canton gaps, and so on. This infinite regressive structure leads to a tree

model for calculating the flux, where computational difficulties lead to a consideration of only a few

-16-



branches of the tree. Including just the main branch and the largest island structures within the branch,

a rather involved calculation gives y - 1.96 [15]. This is clearly too large a decay rate, indicating that

either higher order island structures are important for obtaining quantitatively accurate long-time corre

lation decay rates [15], or that the phenomenon is not captured by this theoretical picture [25].

Diffusion in generic systems is affected only slightly by long-time correlations. However there

are special systems, such as those containing accelerator modes, in which the long-time correlations can

have a dominant effect on the diffusion or can lead to non-diffusive transport As discussed in Sec. IB,

accelerator modes are bounded by KAM curves in a doubly periodic phase space. This is not true for

maps which are not doubly periodic, in which case certain phase space regions may contain quasi

accelerator modes over a finite region of action. For these quasi accelerator modes there are two

mechanisms by which diffusion is enhanced: (1) Particles on locally unstable orbits become trapped on

locally stable orbits within the mode as they are transported in the direction of increasing stable island

size (phase space area). They then stream through values of u corresponding first to increasing and

then to decreasing island size, until they are detrapped at values of u having the same island size at

which they were originally trapped. (2) Trajectories near locally stable islands are only weakly

unstable, and therefore shadow the stable trajectories over many mapping periods.

We estimate the effective diffusion arising from the quasi accelerator mode due to trapping and

subsequent detrapping in the action (u) space, from the relation

Dt «S&fL g(K) (36)
zx

where X is the average streaming time, Aw is the average distance over which streaming takes place,

A

and g(K) = Aj(I)/(2k) is the fraction of participating phase space, with Aj the stable island area.

Since for a single iteration 7 steps by 2tc/, A7 = 2rc/x and Aw = x. Using Aj calculated at the

center of the stable range of K, from the island Hamiltonian in (24) we obtain [17]

1 24 85/4

*(*) =-^ft' (37)
and from the equilibrium condition (10) we obtain, by differentiation,
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A (2tcM)1/2 a„
= 2AT3/2 ' ( }

From (23) we find the value of AK = K-2kI at the middle of the mode to be AK = 4//£.

Substituting this into (38) and using (37) and (38) in (36) gives

(2ttM)"*24 g»
T /Tw 5 (2n?K2 ' (39)

We can compare the value and the scaling of DT in (39), with the value obtained from the long

time correlations, but ignoring the trapping and detrapping. To do this we use the result for the correla

tion time of (35) with y = 1.4 to estimate the part of the diffusion coefficient due to long time correla

tions near but outside of the accelerator mode as

°--( ^-P(t)g(K)dX. (40)
2X

Using xmax = Am in (40), assumed large, the integration of (40) gives

(2kM)V2
°.-i Ksa

24 85/4
(41).2^2 '5 (2k)2K

Comparing (39) with (41) we note that except for a numerical factor of order unity, the two

expressions differ only in that the factor Q.kM)xi2IK512 is taken to the 0.6 power in (41), while it is

linear in (39). Since this factor is assumed large for the effect of the quasi accelerator mode to be

important we conclude that the trapping and detrapping dominates the effect of correlations. However,

the requirement that (2kM)1/2/K » 1 puts a severe requirement on the local uniformity (size ofM)

for the effect of the quasi accelerator mode to be significant For example, for the lowest mode with

K = 27C, we require that M » 1.5xl03. The higher modes (in /) become increasingly dependent on

having a large value of M, in order to result in significantly enhanced diffusion.

A two degree of freedom Hamiltonian system can exhibit somewhat different properties from

those described above when the two unperturbed frequencies are widely different For example, con

sider H(p,q,Clt) with 77 periodic in X = Qt and Q small. Fixing X, a transformation of 77 to
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action angle form yields the action /(77). In the limit of Q—>0 there is a separation of orbits such that

for those orbits not crossing a separatrix the action is constant to all orders in Q., while for separatrix

crossing orbits the motion is strongly chaotic. This leads to a sharply divided phase space, rather than

the typical phase space with intermingled regular and chaotic orbits shown in Figs. 2 and 4. For this

case the jump in action due to separatrix crossing and the consequent diffusion has been calculated in

[27-30]. The general formulas are complicated, so we illustrate the results here for the case of sym

metric separatrix crossings only. An example is the Hamiltonian system

d2H = £--A(t)cosx , (42)

where A is periodic in Clt with period 2k and is slowly varying in that «: 1 for all A,
(0o dt

where (0o = A112 is the frequency for deeply trapped orbits. Letting A = 1 —a cosQl with \a I<1,

we can rewrite (42) in the form

2

H=E— - cos* +-| [cos(jt+Qf) +cos(jc-Qf)] , (43)

which shows the equivalence to the general form (14) if we do not take e to be small. The separatrix

I/O _.

action for (42) is Jsx = SA . The appropriate mapping representation has a period T = k/CI for

separatrix crossings from rotation to libration or the reverse. For those orbits, the phase-averaged mean

square deviation in the action can be calculated to be [2930]

- (kJ„/G)0)2<(A7)2> = n° , (44)

where Jsx is evaluated at the separatrix crossing for a given action /. For Hamiltonian (42) this yields

((AJ) ) = —k(—-)2 and consequently the quasilinear diffusion coefficient
3 A

2\
(45)

KK

which is very slow in the "adiabatic" limit CI—>0
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D. Phase Space Transport

In solving the Fokker-Planck equation to obtain transient or steady-state distribution functions,

particle flow rates from sources to sinks, or energy deposition, the main determining factors are the

variation of local DqL with action (random phase assumption), the boundary conditions, and the effect

of correlations on D. For a steady-state problem the higher order correlation corrections to D usually

make minor changes to the relevant quantities. Clearly large islands in the phase space will make some

difference, as they exclude significant phase space from the diffusive process. However, the long-time

correlations near the edges of the islands usually have negligible effect on the diffusion. This is

because it is the fastest diffusing particles that dominate the overall diffusion. The one exception is for

quasi accelerator modes, in which it is the longest correlated trajectories that are the fastest diffusing.

In addition, near the transition at which phase spanning KAM curves are just broken, the existence of

not easily penetrated canton make calculation of the corrections to quasilinear diffusion important In

both of these instances, in order to include the correlation corrections, a generic mapping must be

locally approximated by the standard mapping (or its equivalent) over many fixed points; e.g., the Fermi

map with large M.

As an example of the effects of correlations and embedded KAM islands, we return to the Fermi

map (7) with diffusion coefficient (34). For the ergodic phase space surrounding the islands, the equili

brium invariant distribution is uniform. However, because the chaotic motion does not enter the

islands, the phase-averaged invariant distribution fs(u) is not uniform, but has dips in the regions of

uwhere islands exist (see Fig. 3). The observed distribution function F(u,n) is then related to the

solution of the Fokker-Planck equation / (u ,n) by

f(u,n)fs(u)
F(u,n) =

(46)
\f(u\n)fs(uf)duf

where \F du = 1. Clearly as n -» oo and/(«,n) becomes uniform, F(u,n) —> fs(u).

In addition to comparing F(u,n) directly with distributions obtained by iterating the mapping

equations, it is useful to calculate the second moment or variance of F(u,n). This variance can be

i

-20-



compared to the variance measured by iterating the map. That is, we compare the measured value of

the variance <52 to the theoretical value

2, x 1 \(u-uave)2F(u,n)du
C,(k0,>O = -j : , (47)

n \F(u,n)du
where

\uF(u,n)du
uave(u0,n) = J- .

)F(u,n)du

We integrate the Fokker-Planck equation using the theoretical diffusion coefficient (34) and a delta

function at action Uq as an initial condition. This yields the predicted theoretical distribution function

f(u,n), where the dependence on the initial action Uq is suppressed. The final distribution function is

obtained as in (46).

The mapping equations were solved numerically, and compared to the time-dependent Fokker-

Planck solution, with the results given in Fig. 8. For the case chosen of M = 10,000, Fig. 8a

corresponds to initial conditions in the essentially stochastic phase space below us and Fig. 8b

corresponds to initial conditions in the stochastic sea between us and ub. In Fig. 8a we note that the

distribution is not symmetric due to the inhomogeneity of D(u) given in (34). The theory and experi

ment are in good agreement The bump in the distribution obtained in the numerical experiment at 100

< u < 105 is due to the quasi accelerator mode at K = 2 k. In Fig. 8b, since there were no initial con

ditions inside the island centered at w = 185, the island manifests itself as a dip in the distribution func

tion. Evidence of neighboring period one islands may be seen on the skirts of the distribution function

at w = 189 and w = 182. The effects of the two iteration islands at w = 183 and u = 187 are also visi

ble.

The numerical variance was also calculated, using

1 m<52(uQ%n) = 2 (ui(n) - uave)2 . (48)
run J=1

The results after an iteration time n - 20 are shown as dots in Fig. 9. The solid line obtained by

integrating the Fokker-Planck equation is a linear interpolation of several hundred calculatons of the
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variance, each at a different initial w0. The variances in Fig. 9 both show the characteristic oscillations

for AT > 4 and fall to zero as K approaches one, as in the standard map. However, the oscillations for

the Fermi map occur in action space rather than in parameter space. For w < 40, both the theoretical

and measured variances no longer exhibit oscillations. This is because diffusing particles experience

different local diffusion rates which average the rapid variations in D (u) to the quasilinear value of

1/2.

We can estimate the range of w for which the quasilinear diffusion coefficient can be used. We

expect that quasilinear diffusion is adequate if large islands do not exist (u<us) and if particles diffuse

over a range of action Aw comparable to or larger than the local period of the oscillations in D(u).

For large K the diffusion oscillates as cos AT so we expect averaging when (dKJdu)Au ~ Kl2. Using

Am a ->JnDQL and dK/du =AkMIu? for the Fermi map, we find quasilinear diffusion for

u <(32M2n)1/6 < us . (49)

The validity of (49) has been studied numerically for 102 <M < 108 and 10 < n < 1000. For

actions satisfying (49), the variance is within five percent of the quasilinear value [24].

For actions greater than u ~ 200, i.e., for actions near ub, the numerically determined values of

the variance exceed the theoretical values. Initial conditions near an isolating KAM curve around a

stable fixed point tend to "stick" to the island border, being carried around the island. This effect pro

duces an anomolous variance which decays as 1/n. As n —> oo we expect that the numerical variance

will agree with the theoretical predictions. Numerically iterating the mapping equations for longer times

verifies this 1/n decay. In calculating the variances, only initial conditions outside of stable islands are

selected. This is straightforward for period one fixed points, but increasingly difficult for higher order

fixed points. Initial conditions started in such islands also produce variances which decay as 1/n, lead

ing to a numerical variance lower than that calculated from the Fokker-Planck equation, as was

observed numerically.

We now discuss quasi accelerator modes in greater detail, showing how their effect can be

included, for generic maps, within a Fokker-Planck formalism. To treat the distribution locally, we

consider the streaming explicitly as sources and sinks in the Fokker-Planck equation. This is a natural
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description when only the more important trapping-detrapping mechanism is considered. The diffusion

coefficient is then that of the non-streaming particles, as previously obtained in (33). The Fokker-

Planck equation, including sources and sinks, can be written

dt du i»«* + S(u)-L(u). (50)

The sources and sinks are straightforwardly determined, in principle, from the amount of phase space

captured or lost from the islands. Since there are two symmetric islands at a given w in the mode near

0 = ± tc/2, transporting phase space in opposite directions, the loss and source terms are closely

related, as L = a'(u)f(u,n), S = a'(K)/(K\n), where a'(u) = \A'(u)I2k\ and A'(u) is the

derivative with respect to w of the island area A(u). The barred quantities are defined by

A(u) = A(u), and, for the steady-state, / is independent of n. Taking A' antisymmetric about some

maximum value Am, at umt making the change of variable w = um—xt u = um +x, we expand

f(u) and f(u) in Taylor series about w = um to obtain

S-L = a'(x)f'(0)2x . (51)

Substituting (51) into the Fokker-Planck equation (50), we have, in the variable x

iiD% +*W(0)2*=0. (52)

To obtain a solution of (52) we need to have explicit expressions for D(u) and A(u). In gen

eral, these are complicated functions allowing only numerical calculations. The result of these calcula

tions for the total stable area of the lowest accelerator mode versus K is shown in Fig. 10. The struc

ture of the mode is qualitatively understood in terms of the various resonances, which are indicated on

the figure. The initial mode area growth versus K is similar to that expected, (dash-dot curve) but

decreased due to the growth of the stochastic layer near the mode separatrix. The first major dip in the

regular area near K ~ 6.6 involves the 4:1 resonance between the mapping and local island frequen

cies. The growth of this island chain and its interaction with other second order islands rapidly

increases the stochasticity within the separatrix of the main island. At the bottom of the dip in area

most of the stable area lies in the 4-island chain, rather than in the main island. The reestablishment of
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the stable area near K = 6.7 is achieved by restabilization of the central island, as the 4-island chain

moves outward. The first extinction of the stable island occurs due to a very strong 3:1 resonance

interaction near K = 7.0. Again, the 3-island chain moves outward, reestablishing the central stability

region. The 2:1 resonance, which is the period doubling bifurcation of the central fixed point, appears

at K ~ 7.4, followed by the usual period doubling sequence to chaos. The dashed curve is the analytic

approximation to match the integrated area under the island area curve for use in (52). Because the

solution of the Fokker-Planck equation depends only on J adx, the exact form of the variation of the

island area is of little importance.

For comparison of the analytic solution of (52) with numerical simulations, a source and sink

were placed on opposite sides of the mode, and flux continuity was required [17]. As suggested by the

requirement that M be large, as given previously, M = 10 was used for computations near the first

quasi accelerator mode (K~2k). To insure continuity of flux, we match the theoretical and numerical

slope to 1/D(w), from (31), at the value of w for which the mode is born by an inverse tangent bifur

cation (K = 2k). The comparison of theory and experiment is shown in Fig. 11. We see that the fit is

quite reasonable for that portion of the mode in which the stable island is growing or nearly constant

n. Dissipative Systems

A. Phenomena in Dissipative Maps

We consider chaotic motion in weakly dissipative twist maps of the form

yn+i =yn+ £p(Xn>yn+i>8) (53)
*«+i = xn + A (yn+l) + eG (xn ,yft+1,8)

whereF and G are periodic in x with period 2rc, 8 is the dissipation strength, and z = (x,y) become

the angle-action variables for the unperturbed (e = 0) Hamiltonian system. The Fokker-Planck equation

for the phase-averaged distribution can be written as

dn dy 2 dy dy
(54)
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where D(y) is the diffusion coefficient for the underlying Hamiltonian part of the perturbation, and

B(y) is the friction coefficient due to the dissipative part The diffusion coefficient D is determined,

setting 8 = 0 in (53), as in (26). Considering 8 as perturbative, the friction coefficient can be deter

mined using the random phase assumption

2«

50') =-^ f dxlFQc,y,$)-F(wm- (55)

Some early studies of transient chaos in dissipative maps were reported in references [2,31,32].

In [31,32] the authors considered a quadratic map on a 2-torus

Ph+i = iPn+ Kg(xn) - h(pn - j)) , (56a)

xn+i = {xn +Pn+i-^) . (56b)

where g(x) - x2 —x + — and the brackets {} denote modulo 1. This map has a Jacobian 1-8,
6

where 8 is the dissipation parameter. For the Hamiltonian limit 8 = 0 with K :» 1, the phase space

(0 < /?<14, 0 < x<\) is found to be mosdy chaotic, with small embedded islands. For weak dissipa

tion 8 <s: 1, the chaotic motion becomes transient, and all initial conditions ultimately areattracted into

embedded islands. As 8 is increased from 0, the mean rate of decay a over an ensemble of initial con

ditions from the transiendy chaotic region of phase space at first increases, and then decreases again as

8 approaches a critical value Scr. For 8 > 8^, oT = 0 and persistent chaos on a strange attractor

appears.

This early study illustrates the two types of behavior that are observed in the regime of transient

chaos: (1) For weak dissipation, 0 < 8 < 8,, the mean rate of decay o: of the chaotic transient, aver

aged over an ensemble of initial conditions, is an increasing function of 8. The transient behavior in

this case is determined by the underlying Hamiltonian dynamics and the rate of phase space contraction

1 —8. (2) For 8j < 8 < 8cr, oT decreases with 8 and tends to zero as 8 —> 8cr. This behavior is dom

inated by a boundary crisis [33] in which, as 8 -» 8^, all stable periodic orbits of the map are "discon

nected" from the underlying strange attractor, which exists for b> 6cr. A rescaling argument is used
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to determine the transient behavior in this case. We consider these two cases separately.

B. Transient Chaos with Weak Dissipation

For 0 < 8 < bs, the estimate

oT = A 8 , (57)

has been made [32], where A(K) is the fraction of the total phase space area occupied by the stable

islands in the underlying (8 = 0) Hamiltonian system. This estimate can be understood as follows: In

one iteration of the map, the area of each stable island Ak is reduced by the amount of $Ak. Because

K » 1, we can assume that the area of the chaotic region of phase space is unity and that the distribu

tion of phase points in the chaotic region is uniform. Then a fraction J AkS = A 8 of the initial con-
k

ditions in the chaotic region are captured by the islands each iteration, giving (57).

Another example that has been studied [34-36] is the Henon map [37], restricted to a 2-torus:

*»+i = bn + d + ax2] (58a)

yn+i = [bxn]. (58b)

Here [ ] denotes modulo-4; i.e., \x\ £ 2 and ly I < 2. The Jacobian of this map is -b. For the

case d * 0, (57) for the mean decay rate oT of the transient chaos was verified numerically for a = 1,

8=1-161 = 0.01, 0.02 and 0.05, and 0.1 <> d < 1.0. Furthermore, oT was found to decrease

rapidly as 8 approached some critical value Scr. For 8 > 8cr, a strange attractor was observed.

A variation of (57) results when the Jacobian of the map is not a constant over the phase space.

An example where this arises is the nonuniformly-sampling, digital phase-locked loop [3839]. The

mapping equations for this system on the 2-torus are

4+1 = Un ~ r 8sin<l>B + 8sin(<j)rt - 7B)} (59a)

$»+i = {*.+/«+ij (59b)

where { } denotes modulo-27C. The Jacobian is

/ = 1 - 8 cos (<H) (60)

and can be less than or greater than one depending on the phase space coordinates. This map was stu-
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died numerically for 0.58 < 8 < 0.85 and 3.5 < r < 4.5. Over this parameter range the phase space

contains a single large stable island with an attracting fixed point at 7 = 0, <J> = 0. The local value of

the Jacobian is 1 —8 at the fixed point For a grid of 100 x 100 initial conditions, transient chaotic

behavior was observed numerically. The number of phase points undergoing transient chaotic motion

decays exponentially with iteration number n, having mean decay rate oT.

To find oT analytically, the underlying Hamiltonian map near the 7 = 0, <J> = 0 must be deter

mined by expanding the term 8 sin (<}>„-In) in (59a) in /„. The lowest order part, independent of 7„,

may be combined with the remaining mapping to give

4+1 = 4 - (r-l) 8 sin $n (61a)

0n+i = 4>« + 4+1 . (61b)

which is the standard map with stochasticity parameter K = (r-1) 8. A grid of 25 X 25 initial condi

tions yields the typical surface of section shown in Fig. 12, consisting of a large stable island sur

rounded by a stochastic sea. The stable island area A can be found either numerically or analytically.

It was found [40,41] that in an average sense the stable area could be reasonably approximated for

1 < K < 6 by

A=i- AoK"13 (62)

where A0 = 4k2 is the entire area ofthe phase space.

Assuming, as for (56), that the distribution in the region of transient chaos is uniform and that the

decay is exponential with n, we can estimate that in one iteration the island will capture a fraction of

phase points oT given by

oT = -ln 1_ 5A
Acr-A

(63)

This expression for XX is similar to that given by (57) except that the local contraction rate at the island

center is used, and the rate oT is not assumed to be much less than unity. A typical case studied was r

= 4.0, 8 = 0.688, such that K - 2.06. The measured decay rate was 0.15/iteration, and the theoretical

decay rate from (63) was 0.18/iteration. For the thirteen cases studied [39], the measured decay rate
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was typically within 20% of-the theoretical decay rate over the entire range of parameters.

It is often not the case that the action variable [p in (56)] is defined on a torus. In this case the

distribution / is a function of action and 8 and is not uniform in action. The behavior of the chaotic

transient can still be determined using the basic idea that the stable islands capture a certain fraction of

initial conditions each iteration. Now, however, the fraction of initial conditions captured by each

island depends on the value of the distribution function near that island. The distribution can be deter

mined from the Fokker-Planck equation by including the effects of dissipation.

The calculation procedure can be illustrated using as an example the dissipative Fermi map [42-

44, 35]. The dissipation is introduced by assuming that the ball suffers a fractional loss 8 in velocity

upon collision with the fixed wall. The map is then

u = (1-S)m„ - sin\|/n . (64a)

\jr = \j/„ +2kM/u , (64b)

(Vn+i»««+i) = (¥»")sgnu , (64c)

The function sgn IT = ± 1 for u positive or negative, respectively, is introduced to maintain wn+1 > 0

for low velocities un < (1-8)"1, while preserving the continuity of the map near w = 0. The Jacobian

of the map is 1 —8, and thus the map is area preserving for 8 = 0. The primary fixed points of the

map are found by setting un+i = un and yrt+1 = \|/„ (mod 2 k) in (64), to obtain

(uk»V*) = (M/k, suTl(rUk$)) , (65)

where & is an integer. As in the Hamiltonian map there are two fixed points for each k at yk = 0 and

\|/* = k, for uk8 «c 1,with yk = jc stable for uk > us = (kMI2)112 and yk ~ 0 always unstable.

We summarize the behavior of the motion, determined by numerical iteration, as the parameters

M and 8 are varied. For 8 = 0, there is no dissipation and the usual Hamiltonian chaos ensues, as

described in Part I. For weak dissipation, 0 < 8 < Sc, the fixed points of the Hamiltonian map become

attractors (sinks), and all persistent chaotic motion is destroyed. However, transient chaotic motion sur

rounds the sinks below ub. As an example, for M = 30 (8C = 0.02) and 8 = 0.003, we find that an

initial phase point chosen randomly below us undergoes transient chaotic motion for a mean number of
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iterations N = 13000 before it enters an embedded island between us and ub and becomes trapped in

an island sink. For eleven cases studied numerically [35], the decay from the transiently chaotic region

isobserved to be exponential at arate oT = N~*.

In Fig. 13 we plot the cumulative phase-integrated distribution

f(u)= 100 (dn f d\|//(u,y,n).

for M = 30, 8 ss 0.003, after N =5 x 104 iterations, for 100 initial conditions at low velocities chosen

randomly. We see evidence of attracting sinks between us and ub near the primary resonances at k =

3 (a period-1 and a period-5 sink coexist) and at k = 4 (a period-1 and a period-3 sink coexist). The

density leaving the stochastic region flows into these sinks, forming spikes in the figure. For all cases

studied, the location and structure of these sinks correspond to the Hamiltonian (8 = 0) structure of the

stable fixed points (65) of the Fermi map. The period-3 and period-5 sinks correspond to secondary

fixed points encircling the period-1 primary fixed points [1, Sec. 2.4].

For sinks occupying a sufficiently small fraction of the phase space and / < 1 we might expect

that the phase-averaged distribution function outside of the island sinks could be represented approxi

mately as a quasistatic distribution

f(utn) = /e(M)exp(-oIn) (66)

where /g is the steady state solution to the Fokker-Planck equation (54) with D(u) given approxi

mately as in (26) and B = -u 8 given from (55). Because the Fokker-Planck equation averages over

small scale oscillations in D, as seen in Fig. 9, we can approximate D ~ 1/2, the quasilinear value, for

u < us, and we note that D falls to zero at u = ub. A reasonable estimate over the entire range

0 < u < ub has been found to be [35,44]

D=jd-«V)2 (67)

Using these values in (54), with the quasi-steady-state assumption that the net flux is zero, we obtain

fQ(u) oc exp[-2pM2/(K62 - u2)]. (68)

This distribution, scaled to the value of / at w =0, is plotted as the dashed line in Fig. 13 for
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M = 30 and 8 = 0.003. Equally good agreement is found for all othercases studied.

We can also determine the phase-space area AAk in the transiently chaotic region that is captured

by each primary island during one iteration. Using the standard map (with 8 = 0) to calculate the

stable area A in (7,0) variables surrounding the single iteration fixed pointat each kt then for 8 > 0,

A contracts by the factor 1-8. Thus AA = A 8. Transforming back to (u, \|/) variables, the phase-

space area for each stable fixed point is

AAk(uk) = Ad/K

where A isa function ofK = ublu2 given by (62). The decay rate for the transiently chaotic region

is then estimated as

« = Xa*. (69a)
k

where

a* = /fi(M*)A4fc (69b)

and the sum is over all stable primary fixed points uk in the region us < u < ub.

The numerical and analytical values of the decay rate oT have been compared for eleven cases

spanning the parameters 0.0003 < 8 ^ 0.01 and 30 ^ M < 300. The theory and experiment typically

agree to within a factor of two. As examples, for 8 = 0.01 and for M = 300, XX, = 1.1x10" numeri

cally, and a = 0.9xl0~5 analytically. For M = 30, the corresponding values are a = 2.7xl0~5 and

6.6xl0~5, respectively. The large deviation in the second case is mainly due to local significant varia

tion from the approximation (62) of the stable area, as we have seen for the quasi accelerator mode

islands in Fig. 10. Deviations from the theoretical invariant distribution due to the approximation (67)

also contribute. The fraction ]Xk(=ak/a) of initial phase points that ultimately stick to the various

main-island fixed points (including their secondary fixed points) can also be found analytically with use

of (69) [1, Sec. 4.3; 35].

A local, but more complete description of transient chaos has been put forth by various authors

[45-50]. Because the number of phase points in a region of transient chaos decays exponentially with

iteration number n, there exist initial conditions having arbitrarily long, transiently chaotic trajectories.
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Each such limiting trajectory is a fractal object having zero measure, which can be called a "chaotic

repeller," and which is part of the boundary of the basin of the (nonchaotic) attractor. On each of these

"repellers" embedded in phase space, one generally finds a unique invariant distribution and one can

define topological and metric entropies, Lyapunov exponents and various fractal dimensions, just as

these are defined for the persistent chaos on a "strange attractor." In some cases, initial conditions that

are "close" to a chaotic repeller are immediately repelled. In other cases, nearby initial conditions are

first attracted to the repeller, and repulsion occurs at much latter times, in directions transverse to the

attracting ones. Such chaotic repellers may be called "chaotic semi-attractors."

For a repeller in a one dimensional map, such as the quadratic map [1, Sec. 7.2]

xn+l = ^ "" xn '

it is proposed in [49] that the decay rate a of the chaotic transient near a repeller can be written

a = (l-D)X, (70)

whereD is the information dimension [51] and X is the (positive) Lyapunov exponent on the repeller.

Expression (70) for the decay rate a can be understand as follows: partition an interval / covering the

repeller into equal subintervals of length e <c /. The number M of subintervals required to cover the

repeller within / is M(e) = M0 E~D, where D is the fractal dimension. The total length of these

subintervals is /r = M0 e1_£>. After one iteration, the interval / is mapped to a new interval /' that

covers the repellers, and the interval and subintervals are increased in length by the factor e , where X

is the Lyapunov exponent Subintervals having length ee within / are mapped to subintervals having

length E within /'. The total length of the subintervals within / that lie on the repeller within the inter

val /' is

lR' = M(ee-X)e = M0 e1_° e^

Thus after one iteration, the fraction e~a of phase points remaining on the repeller is

e"01 = '*" = e-Mi-D)t
lRll

and (70) immediately follows.
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Generalizing to higher dimensional systems, one may write

d

a = E'^a-A) (71)
1=1

where the D{- are the information dimensions along the directions defined by the d Lyapunov exponents

Xit and the sum is over the unstable directions (X; > 0) only. The decay rate (71) has been verified for

three different 2-dimensional maps [49].

Returning to the map (56), we illustrate this behavior in Fig. 14 (reproduced from [49]), showing

the attractors and repellers for K = 3.5 and 8 = 0.1. The heavy dots represent a stable period-6

cycle, whose attractor basin is extremely small. The main attractor is the fixed point marked by a cross.

The four-fold structure around this fixed point is a semi-attractor, consisting of a chaotic period-4 cycle.

Phase space in its neighborhood is attracted rapidly onto the structure and is then repelled, leading to a

decay of the density given by (71) with a = 0.00548. Figure 14 also shows a repeller characterized

by the dots scattered all over the figure. Trajectories escape from this repeller by either going directly

towards the fixed point or by being attracted first towards the semi-attractor, with the latter found to be

the more frequent The decay rate of the large repeller was found to be a' = 0.047 ± 0.004. If we

assume that almost all the phase space from the large repeller is first attracted to the semi-attractor then

the two structures are in series. The average life time of the chaotic transient is then the sum of the

individual life times,

r=-i-+-V=204±3.
a a

In general, the repeller structure may be very complicated, with repellers and semi-attractors con

nected in complicated patterns. This is particularly true in weakly dissipative systems, where many

interwoven basins of attraction exists, each having their own connections to local repeller structures. It

is presumably the combination of these complicated local structures that yield the overall global decay

rate, which must be equivalent to the absorption rate into the sinks, as calculated from (69).

C. Transient Chaos near a Crisis

In the regime 5, < 8 < 8cr, the transient behavior is dominated by a boundary crisis [33]. The
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decay rate (X tends toward zero as 8 approaches Scr, and a strange attractor exists for b> bcr. For

values of 8 slightly below dcr, it is often found [33] that

tt ~ (6cr - W

where y is the critical exponent of the chaotic transient.

The one-dimensional quadratic map exhibits this behavior near the critical value Ccr — 2. For

C < Ccr, a Chaotic attractor exists over the range —X\ < x <x2t which itself lies within a basin of

attraction —jc* < x < x*, where

* =i+(i+C)1/2 <72>
and where —x* is the location of the unstable fixed point of the map. As C —> 2, —x j —> -x*, the

strange attractor collides with its basin boundary (the "crisis") and is destroyed. For C > 2, the region

-x i < x < x2 formerly occupied by the chaotic attractor is a region of transient chaos, with the orbit

ultimately tending to an attractor at x = -oo. The decay rate of the chaotic transient is found to scale

as

o: - (C - Ccr)m. (73)

As pointed out in [46], this scaling results because, for C > Ccr, there is an escape region

\x\ < (C - x*y within the region of transient chaos, which first maps into x > x*, then maps into

x < -jc* , and thereafter on repeated iteration to the attractor at x = -oo. Writing C = C^ + AC

and using (72), we obtain

1/2

\x\ < 4(c - ccr)

for the size of the escape region, and the scaling (73) immediately follows.

Similar phenomena are observed in higher dimensions [46, 33]. There appear to be two possible

crises in strictly dissipative (J < 1 everywhere) two dimensional maps. These are illustrated in Fig. 15.

In (a) the stable manifold of an unstable periodic orbit (B) on the basin boundary collides with the

unstable manifold of an unstable periodic orbit (A) on the strange attractor. In (b), the stable and
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unstable manifolds of an unstable periodic orbit (B) on the basin boundary collide. In both cases, the

chaotic attractor is the closure of the branch of the unstable manifold of (B) that points into the basin of

attraction. The critical exponent for crises of type (a) can be written

ya = I+OnlXiiyilnlXftll (74a)

and of type (b),

yb = (In l^l)/(ln \Xt 7^\2). (74b)

Here, Xx and X^ are the contracting andexpanding eigenvalues, respectively, of the periodic orbits A or

B.

Equations (74a) and (74b) have been verified for the Henon map (58) [but not restricted to a

torus]. For a = -1, b = 0.3, there is a crisis of type (a) at dcr ~ 1.4269. For a = -1,

b = -0.3, there is a crisis of type (b) at d^ ~ 2.1247. Plotting log oT versus log (d - dcr) from

numerical results obtained by averaging 300 initial conditions for each value of d, one finds a straight

line whose slope y is in good agreement with (74a) and (74b) respectively.

D. Persistent Chaos and Invariant Distributions

For area-preserving maps, the invariant distribution on any chaotic subset in the surface of section

is trivially a constant For chaotic motion on a strange attractor in a dissipative system, the equilibrium

invariant distribution is not known a priori and must be found for each attractor of interest A method

for obtaining this distribution has been developed for maps of the form (53) [42-43], in the parameter

regime (e, 8) for which a strange attractor exists. The basic assumption is that the equilibrium invariant

distribution, averaged over the unperturbed angle variable, can be determined from a Fokker-Planck

equation in the action alone. Successively better approximations to the invariant distribution are then

found by repeated iteration of the angle-averaged distribution over the map. Typically only a few itera

tions are required.

The phase-averaged invariant distribution f(y) is determined from the steady state (d/dn = 0)

Fokker-Planck equation (54). This equilibrium solution is a good initial guess for the invariant distribu

tion. To find better approximations for the equilibrium invariant distribution f(x,y), we note that
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almost every initial distribution f®\x, y) within the basin B converges under repeated iteration of the

map to /. We choose an /^ for a fast rate of convergence to the equilibrium distribution:

fi0)(x,y) = f(y). (75)

To find successively higher order approximations, we iterate (75) successively by the map. Let

ting / = (x\ y') be the pre-image of z = (x, y), and zrt+1 = T z„, where T is the map (53), then

the i and i + 1 approximations are related by

/(,+1)0t, y)dx dy = f(i)(x', yO dbt' dy',

which yields

/<'+1>(z) = //(,)(z'(z)), (76)

where J(J~lz) = I9(;t', yyd(x, y)\ is the Jacobian of the inverse map T~lz = z'(z). The first

order invariant distribution is then

/(1)(z) = J(T-lz)fi0)(T-lz). (77)

By repeatedly applying (76) we obtain the nth order approximation

/<">(z) = /<°)(r-"z)n/(r-J'z). (78)
»=1

Equations (75) and (78) have been verified for strange attractors in both the dissipative Fermi

map (64) and the dissipative standard map [42,40]. As an example, for the Fermi map with

M = 100, numerical computations suggest that a strange attractor exists for 8 > 0.03. A typical case

is 8 = 0.1. Figure 16a shows a portion of the (u, \]/) surface of section in the range 4.4 < w < 4.8.

The leaved structure of the attractor is quite evident There are finer structures within the leaves. Here

the region has been divided into 100 intervals along w and 100 intervals along \|f, forming 10,000 cells.

The map is iterated 3 x 106 times for a single initial condition, and the number inside each cell (not

readily seen) is a logarithmic measure of the number of occupations. If the number of occupations per

cell is summed over the phases y at a fixed w, the phase-averaged invariant distribution f(u) is

obtained numerically.
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To determine / analytically, the phase-averaged Fokker-Planck equation (54) is used. In the

steady state, with no net flux, this equation becomes

-b/+4d-^ = 0.
2 du

With 8 > .01, the distribution is mainly confined to u < us such that the quasilinear value D =

is a good approximation. Using B = -5w from (55), (79) is integrated to obtain

1/2

/GO =
88

K
exp(-28w2).

(79)

1

(80)

In Fig. 17, this analytical expression (solid line) is compared with the numerical results for 8 = 0.1

and various values of M in the range 20-500. The numerical points all lie along the same straight line,

independent of M, as predicted by (80).

To find the first order distribution, (77) is used with / = (1 - 8)"1 and, inverting the Fermi

map, one obtains

/(1)(Y,w) =
1-8

88

K

1/2 J 28x exp^ —
1 d-8)2

w + sin ¥"
27tAf

(81)

To compare (81) with the numerically calculated invariant distribution /(\|/, w), the expected occupa

tion number is plotted in Fig. 16b using f®\ in the same expanded region of the surface of section as

for the numerical calculation of/ in Fig. 16a. The same number of total occupations (3 x 106) and the

same logarithmic measure for the number of occupations in each of the 100 x 100 cells are used. The

band structure seen in the magnified image of /^ corresponds closely to the numerically determined

bands seen in Fig. 16a. The higher order expressions /® and /^ have also been determined [42] and

are plotted in Figs. 16c and 16d. These show successively better agreement with the numerical calcula

tion.

Phase averaged invariant distributions can also be found in the presence of sources and sinks,

with the source strength determining the normalization of the distribution. For area-preserving maps, a

solution to the Fokker-Planck equation with a source at w{ and a sink at u2 is
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/GO- J^
GO

du, (82)

with A proportional to the source strength. For dissipative systems there is a competition between the

dissipation and the flow which determines the invariant distribution. If we consider a source at low

velocity, then for the dissipative Fermi mapping (64), the time independent Fokker-Planck equation,

using D from (67), is

12

1-

K*

4£ +ubf = r
du

(83)

Dividing by —(1 - u2lu%? we see that the use of the integrating factor exp[f4Mo7(l - u2lug)2]

immediately yields the solution

/ = exp -I
45w du

2/.. 2x2(i - u*iui)
du 4r

2/.. 2\2(1 - ll'/ltf)
exp

45w du
2/.. 2\2(1 - uf-luft (84)

For flow dominated behavior (weak dissipation) we can approximate the solution as in (82), while for

strong dissipation the solution approximates that given in (80). The transition region can be important in

some physical problems., such as the stochastic acceleration of electrons in the r.f. sheaths of a capaci

tive discharge, in which the dissipation arises from interactions with the background gas [5].

This work was supported by National Science Foundation Grant ECS-8517364 and Office of

Naval Research Contract N00014-84-K-0367.
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A

H = const

-*• & — <7.

C) (3)

(b)

Figure 1. Motion in phase space and definition of the Poincare surface of section, (a) Intersections

of a trajectory with the surface of section, (b) Two degrees of freedom showing: (1) four-

dimensional phase space with the trajectory on a three-dimensional energy surface; (2)

projection of the trajectory onto the (p\, q\, q£ volume; and (3) successive intersections

of the trajectory with the two-dimensional surface of section q2 = const [ref. 1].
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Figure 2. An illustration of the transition from local to global stochasticity as the perturbation

strength is increased [ref. 1].
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Figure 3. Comparison of velocity distribution /(«) for the approximate Fermi map (7) [solid line]

and the moving wall Fermi map (22) [dashed line].
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Figure 4. The standard map; ordinate /, abscissa 0 (in degrees); (a), (b), (c). K = 1.19; 150 random

initial conditions for each graph; number of iterations increasing downward as N = 500,

5000, and 10,000. In (b) the boxed region in (a) is magnified; in (c), the boxed region in

(b) is further magnified [ref. 12].
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Figure 5. Schematic illustration ofconnected chaotic regions ofan area-preserving map bounded by

low-flux cantori (states). Inaccessible regions surrounded by an outermost KAM island

surface are shown crosshatched [ref. 15].
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Figure 6. Plot of DIDq^ versus stochasticity parameter K. The dots are the numerically computed

values and the solid line is the theoretical result in the large K limit [ref. 20].
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Figure 7. D (K) vs. K, from A. B. Rechester and R. B. White, private communication; see ref. 24.
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Figure 8. (a) The distribution function obtained by iterating 6400 initial conditions with u0 = 90 and

random phases. The dots indicate the number of particles within Au = .025 at a given

action. The solid line is the prediction of the Fokker-Planck equation; (b) the same as (a),

with u0 = 186 [ref. 24].
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Figure 9. The variance plotted as a function of initial action. Each dot corresponds to a measure

ment of the diffusion obtained by iterating the Fermi map. The solid line is the theoretical

variance obtained by integrating Fokker-Planck equation; (a) after 20 iterations; (b) after

40 iterations [ref. 24].
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Figure 10. Stable area of the first accelerator mode of the standard map as a function of K, normal

ized to the map area (2n)2 [ref. 17].
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Figure 11. Comparison of theoretical and numerical relative values of Id//da I. The theoretical value

is shown as a dashed curve within the mode and a solid curve ( oc yo) outside of the

mode (M = 107) [ref. 17].
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Figure 13. Cumulative, phase-averaged distribution / vs. u, for M=30, 5=0.003, and N =5 x If/

iterations. The solid curve shows the numerical result; the dashed curve shows the quasis-

tatic theory [ref. 41].
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made up by the six heavy dots. The four fans around the main attractor represent the

semi-attractor which governs the long-time transients. The remaining points form a

repeller with shorter life time [ref. 46].
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Figure 15. (a) Schematic illustration of heteroclinic tangencies of the stable manifold of the unstable

periodic orbit B and the unstable manifold of the unstable periodic orbit A. (For simpli

city we take the periods of A and B to be 1.) Crosshatching denotes the basin of another

attractor. (b) Schematic illustration of homoclinic tangencies of the stable and unstable

manifolds of the unstable periodic orbit B [ref. 30].
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Figure 16. A portion of the surface of section u-y for the Fermi map with M = 100 and 8 = 0.1. (a)

one particle with 3,000,000 collisions, of which 9382 occupations appear in the range

4.4 < u <4.8. (b) first order analytical result /(1)(y, u); (c) second order result

/®(Vf "); (d) third order result f0)(y, u); the functions are plotted by computer with the

scales and effective number of iterations the same as for the numerical result (a) [ref. 39].
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Figure 17. Comparison of the numerically calculated phase-averaged invariant distribution with the

Fokker-Planck solution /(u) for 5=0.1 and various values ofM for the Fermi map [ref.

39].
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