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ABSTRACT

Two related optical or acoustic systems are studied: a periodically per

turbed two-dimensional waveguide and a periodic array of nonlinear lenses.
The ray trajectories of the system are computed, using a Poincare surface of
section to study the dynamics. Each system leads to a near-integrable ray
Hamiltonian: the phase space splits into regions showing regular or chaotic
behavior. The solutions to the scalar Helmholtz equation are found via a
secular equation determining the eigenfrequencies. A wave mapping is de
rived for the system in the paraxial regime. We find that localization of
the waves occurs, limiting the beam spread in both wavevector and config
uration space. We briefly consider the effect of higher order terms in the
paraxial expansion on the wave mapping.



I. INTRODUCTION

This report addresses the issue of wave or quantum mechanical behavior for a

simple system whose eikonal or classical limit displays the stochastic behavior generic

to near-integrable Hamiltonian systems. Many model near-integrable systems have

been considered in the literature, with the aim of studying the relation between

quantum features (spectra, wavefunctions) and the classical phase space. Such stud

ies have fallen into two general categories, distinguished by whether the underlying

Hamiltonian is (1) constant in time or (2) periodic in time. Systems in both classes

typically contain a parameter which carries the system from complete integrability to

global stochasticity as this parameter is varied. For the integrable case, the theory

relating classical orbits and wavefunctions is well known: stationary quantum states

are based on invariant tori according to the prescription of Einstein-Brillouin-Keller

(EBK) quantization [1]. When the tori are partially or completely destroyed, the

situation is far less well understood: no complete theory exists. Thus numerical stud

ies have become a crucial tool for understanding quantum states for systems whose

classical limit is chaotic.

The model system we will study is one of physical importance: a parallel plate

waveguide or duct with a periodically perturbed boundary (a grating). As we shall

be interested in solutions to the scalar Helmholtz equation in the guide, various in

terpretations may be ascribed to the scalar wave in question. We may have in mind,

for example, one component of an electromagnetic waveguide mode; the system then

models a distributed feedback (DFB) laser or optical mode coupler [2,3], Or the

wavefunction may be interpreted as an acoustic velocity potential field; this system

has certain device applications [4]. A third interpretation is that of an electron wave-

function in a periodic potential. Appropriate boundary conditions must be chosen

for each case. All of these applications are interesting because they have been studied

in the past without cognizance of the possibility of 'chaotic wavefunctions' which are

suggested by the ray dynamics when strong stochasticity is present. Thus in certain

regimes, perturbation schemes may yield misleading results, just as they would in the



classical case.

While the stationary states are of interest, our principal motivation for studying

this system is to elucidate the relationship between autonomous and nonautonomous

wave systems. Classically, it is frequently convenient to describe a bounded Hamilto

nian system by a mapping, the Poincare map, which samples the dynamics as orbits

pierce a fixed surface of codimension two in the phase space. This mapping, gen

erated by Hamilton's equations, is symplectic: phase volume is conserved [5]. An

autonomous quantum or wave system may sometimes also be described by a map

ping of the wave function, but only in an approximate sense. If the system wavevector

spectrum is concentrated in a particular direction, and the properties of the medium

vary only slowly in this direction, the paraxial approximation may be invoked and

a unitary propagation operator may be found defining a quantum or wave mapping.

The assumption of slow variation allows reflected waves to be ignored, which implies

the unitarity of the propagator. We explicitly derive this unitary propagator for our

waveguide system. The properties of the wave mapping have definite and surprising

consequences for optical beam propagation in the system. In particular, the phe

nomenon of wavevector localization will be seen to apply to this system in certain

important regimes.

Our study is divided into three parts. First we address the time independent

problem of obtaining spectra and modal solutions in the waveguide system, to assess

qualitatively the nature of the spectra and eigenmodes as a function of perturbation

strength. Next we study the ray dynamics by means of an exact Poincare surface of

section mapping; we discuss an approximation to this mapping and obtain a criterion

for global ray stochasticity. Finally, we derive the paraxial wave mapping, and deduce

properties of the wave solution based on the dynamics generated by this mapping.



II. WAVEGUIDE SYSTEM

A. Geometry

The waveguide or cavity under consideration consists of two parallel planes sep

arated by a distance H. Upon the lower plane rests a grating, of thickness h, whose

density is chosen to be sinusoidal in the longitudinal coordinate x:

P(x) = Pol1 + Vcos(Kwx)], (1)

with wavenumber Kw. Here p0 is the ambient density, and 77 is the modulation

strength. The density for the region h < z < H is pl9 which may differ from pQ. For

solid media, p represents the ratio of mass density to the elastic stiffness constant; we

may then think of the system as a uniform substrate region deposited with a film of

periodic density. The origin of the transverse coordinate z is chosen so that the lower

plane is coincident with z = 0 (See fig. 1). In general, we may think of equation (1)

as the first two terms in the Fourier expansion of a density function.

Note that the above acoustical system may be equally well regarded as an electro

magnetic one if the density is understood to be a dielectric function (with appropriate

boundary conditions). Similarly, if p(x) is considered to be a potential field, the prob

lem has a quantum mechanical interpretation. In this report, we focus largely on the

cases of scalar acoustics/optics and quantum mechanics.

B. Boundary Value Problem

For stationary states with time dependence exp(—iut), the field ^,2) in each

region satisfies the Helmholtz equation

d2^Xiz) +^(x,z) +kl(x)1>Q(x,z) =0, a=0,1 (2)
dx2 v ' ' ' dz2

where

Aft*) = *y.)

k\(x) = k2pu



k2 = a>2/cj), and Cq is the speed of sound. The subscripts 0 and 1 denote the fields in

the grating and uniform region, respectively. For acoustic waves, the field i/>(x, z) is

related to the velocity field v(x, z) by p(x)x(x, z) = —V^>(a;, z); equation (2) is exact

for v || y, as is the case for horizontal shear acoustic waves. Otherwise, a term of

order 77 has been neglected. For the electromagnetic case, equation (2) describes a

TE waveguide mode with

E(x,z) = tl>(x,z)y

. * » (3)H(x,z) = VxE,

where y is a unit vector in the transverse direction, c0 the speed of light, and p is the

dielectric function. Finally, for the quantum mechanical case we have

*o2 = --(E - Va(x))
U2,

.2 _ 2m/~ „ , vx I k2-klcos(Kwx), a = 0;
ft1 " I &. a=l,

where k2 = 2mE/1i2 for a particle of energy E, and k2 = 2me/%2; e = rfp0 plays the

role of the potential strength.

We will consider a class of problems defined by the boundary conditions taken

at z = 0 and z = H. For a non-leaky (hard-wall) waveguide, the proper boundary

conditions require the velocity field (wavefunction) to vanish at the walls and to

be continuous across the interface. For a quantum system the wavefunction itself

vanishes. Thus

^(x,0) =f^(x,#) =0 (Acoustic)
oz oz

i>o(xi 0) = V'ifaj H) = 0 (Quantum Mechanical)

tl>0(x,h) = i>1(x1h) (4)

Iffilh^ =7Jh{x'h) (Acoustic)
-^(a;, h) = -^-(x, h) (Quantum Mechanical).

Alternatively, we can consider the system to be periodic in z as well as x, in

which case we are led to the Floquet condition

^(x^) = ^H^(x,H). (5)
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The system then describes a periodic array of grating structures, or doubly periodic

one-dimensional nonlinear lenses. This is the most general boundary condition, since

linear combinations can be taken to satisfy any of the boundary conditions (4).

The wave equation in each region is separable, and a general solution may be

written in the Floquet form

i\ (x> z) =]T[a+ exp(ifc*(l - z)) +a~ exp(-zA£(l - z))] exp(ik*x)
" _ («)

V>2(s> *) =2J6" exP(i/cmz) +6m expH<,z)] 2^ Vmn exp(iAr^),
m n

where

kxn = Px + nKw,

K = +k*2 - (K)2]* (7)

<. = +(M2 - (ft, +KKJ2]h
Px is the Bloch wavevector (Floquet multiplier) in the x direction, and Am denotes

the rnth eigenvalue of the Mathieu operator M = <P/d92 + (k2e/K2)cos9. For the

quantum mechanical case, we have M = <P/d92 + (2me/1i2K%,) cos 9. The associated

eigenfunctions are the periodic Mathieu functions [6], with Fourier coefficients Vmn.

Note that each space harmonic in the uniform region satisfies the wave equation

individually, while a solution inside the grating consists of an infinite sum over space

harmonics induced by the periodic modulation.

The eigenfrequencies of the system are determined by the matching conditions

at the interface, which lead to the requirement that a certain infinite order determi

nant vanish. It is shown in Appendix A that for acoustic boundary conditions this

determinantal condition is given by

det|Vnm f&taaK(l - *)] +̂ tan«/>)} I=0- (8)
I Pi Po )

In this equation, the parameters &J, /cj,, and the expansion coefficients are all func

tions of the frequency.

The computation of the spectrum is greatly simplified by a periodicity require

ment that is now imposed: acceptable wavefunctions have the periodicity of the



grating, so that j3x = 0 (the system lies on a cylinder). In other words, the spectrum

of interest is at the center of the Brillouin zone. A special case of this requirement

is the set of real even or odd periodic solutions: these solutions correspond to creat

ing a physical cavity by putting walls (or conducting surfaces) at x = ±v/Kw. The

eigenvalues and eigenvectors of the Mathieu equation are obtained using a numerical

method due to Hodge [7]. The recursion relations for the Fourier coefficients are re

duced to a symmetric, tridiagonal matrix equation which is solved using the bisection

method.

C. Spectrum and Eigenmodes

We illustrate qualitative features of the typical system behavior in fig. 2a, where

a portion of the frequency spectrum is plotted as a function of the perturbation

strength e = rjpQ. Only even parity modes are shown, as modes of different parity

are decoupled. The spectrum of eigenvalues as a function of e has been determined

for 0 < e < 0.5, a range which encompasses the transition from completely regular

motion at e = 0 to globally stochastic motion in the ray system. Eigenvalues have

been computed for k2 = cj2/cq < 3000 cm"2, about 80 levels total. Note that k2

rather than k is plotted , because the eigenvalue density is (asymptotically) uniform

in k2 for a two-dimensional system (the density of modes in k space is dN = 27rkdk,

and N(k) oc k2. The most striking feature of this plot is the complete absence of

degeneracies: eigenvalues approach one another but do not cross. This behavior

is expectied for a system without symmetry (for given parity) as one parameter is

varied; in general one must vary two parameters to produce a degeneracy [8]. One

such avoided crossing is illustrated in fig. 2b.

In fig. 3, a part of the same region of the (quantum mechanical) spectrum is

shown for two different values of the eikonal parameter %. Each plot shows levels for

the same set of states, i.e., with the same set of quantum numbers at e = 0. The

square wavenumbers k2 = 2E/h2 are the same at e = 0 for each plot, and thus E(k2)

and the level spacings decrease as %decreases. It is apparent that the spectrum grows

more sensitive to the perturbation as %decreases, consistent with the observation that



the classical particle dynamics grow more chaotic for lower energy.

The modes of the system may be obtained by solving the linear system (Al) for

the expansion coefficients a and b. One interesting feature of the wavefunctions is

the intensity distribution in configuration space given by the absolute square. We

show in fig. 4 a contour plot of the intensity for a typical even parity wavefunction,

symmetric about the center of the waveguide. We observe clear concentration of

probability about the stable classical periodic orbit forming a "V in the waveguide.

III. RAY AND PARTICLE DYNAMICS

A. Waveguide Map

We now consider the ray or particle dynamics associated with the wave equation

(2) in the limit k —> oo. Our principal aim is to identify the parameter regimes

and initial conditions leading to regular or stochastic motion in phase space. The

motion is the composition of two integrable motions: free particle trajectories outside

the grating, and a one-dimensional pendulum inside. Therefore it is staightforward

to compute the exact dynamics at all times in terms of straight line trajectories

(outside) and the Jacobi elliptic functions (inside), joining solutions at the interface

such that momentum parallel to the surface is conserved. Thus this system has the

desirable feature of admitting an exact Poincare map without the need to resort

to numerical integration or approximations to the dynamics. Ray trajectories for

geometrical acoustics or optics are identical to the particle paths if the proper choice

of canonical coordinates is made [9]. If ray paths are parametrized by z rather than

the time, one may obtain the equations of motion for the canonical variables (x,p)

from the nonautonomous Hamiltonian

Hopt(x,p]z) = -y/N2(x,z)-p>, (9)

where N(x, z) is the density or index of refraction,
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_ / N2{1 +ri cos{Kwx)}, 0<z<h
N2(x) = < _ "• " (10)\ i\T2, h<z< H.

This Hamiltonian may be obtained by extracting a Lagrangian from Fermat's ac

tion principle and making a Legendre transformation [9]. The momentum p is the

acoustical or optical direction cosine of the ray:

kp = N(x,z)sma = N(x,z)j£r (11)
|«|

where a is the angle the ray makes with the z axis.

If N2(x) is written in the form

N2(x,z) = Nl-6N{x,z), (12)

then equation (9) is equivalent to

Hd = P2X + P2 + 6N2(x, z) = JV2, (13)

where we have identified H^ = —Px and p = Pxi the Cartesian momenta. Therefore

the ray trajectories in a medium of index of refraction N(x, z) areidentical to particle

trajectories in a potential V(x, z) = 6N2(x,z). The constant JVj plays the roleof the

numerical value of the Hamiltonian.

The relevant particle or ray Hamiltonian for the waveguide is thus

HJ.X, *,P„ Pz) = i(Px2 + P?) + V(x, z), (14)

with

' oo, z < 0 or z > H\

V(x, z) = <V0 = const, h < 'z < H; (15)

, —e cos(Kwx), 0 < z < h.

The perturbationstrength £ for anoptical raysystem is £ = t)Nq ; for a particle system

it is just the potential strength. Defining the wallphase 9 = Kwx, and taking p = Px,

a surface of section is chosen such that the pair (9,p) are determined just before the



particle strikes the upper wall at z = H\ Pg is then fixed by energy conservation.

With this choice, the dynamics may be expressed as the composition of three area

preserving maps, taking the particle 1) from the upper wall to the grating surface;

2) from the grating surface until it re-exits; 3) from the grating surface back to the

upper wall (fig. 5). These maps may be written explicitly as follows:

where

1.92 = 91-^-kwH Pl
ft(E - \p\)

P2=Pl

2. 93 = e{92,p2)

P3 = 'P(^P2)
(16)

3. 94 = 93 + kwH

\p)={

},P) = \ 0

y/2(E - \p\)

Pa=Pz

The functions Q,V in step 2, representing the exact dynamics within the layer, may

be given in terms of the Jacobi elliptic functions sn, en, and dn [6] as follows:

, 2 axcsin[IiTsn(u;0t + 6, K)], K2 < 1

2arcsin[sn(KwQt + </>, 1/K)] K2>1

, 0K/Kwcn(w0t + </>, K) K2 < 1<p(e,p) = { ° ' w V° ^ ' (18)
' .KlK^KuJ + *, l/K) K2>1

^2=2(S+i-cos^

y/2h
t = , 1

[£-|p2 + ecos0]2

10



and <j> = <f>(9,p) is chosen to conform to the initial conditions, i.e. (0,7^-0 = (#,J>).

We choose to write the mapping in this three step symmetric form because the surface

of section plot then has both reflection (about 9 = 0) and inversion symmetry.

B. Fixed Points and Linear Stability

The period one fixed points are determined by setting 94 = 91 , p4 = px. This

implies

n^Pi)=Pi (20)

with 92 defined above. By simple geometry one obtains two such points 9n as

0n = 7l7T, rc = 0,l (21)

Thus the pair {9nipn) are determined by solving the transcendental equation

p" =% +kwH ^ p") (22)

for pn. The stability of the central resonance n = 0 at (0,0) is of interest because it

is the last to go unstable as £ is increased. The Jacobian matrix M of the mapping

at this point can be shown to be

/ cos(urt) —Cv/esin(w<) —y/£sin(wt) \
M = I 1, (23)

\ (1/v^e - y/eC2) sin(u;<) + 2cos(urt) cos(a;*) - Cy/isin(urf) /

where C = KwH/y/2. Stability requires TrM < 2 [5]; in this case

•v/eC sin(u;<) - cos(a;t) < 1 (24)

The stability border is then explicitly determined by

KJIy/m^KJiJ^^}-!. (25)
Surface of section plots are shownin fig. 6. The horizontal axis displays the wall

phase 9 = Kwx, which is periodic with period 27r; the vertical axis shows p/y/2E. For
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these plots, the parameters Kw, h, and H are fixed while £ is varied. At the chosen

values, Kw = 10, h = 0.1, H = 1, and E = 1, the central fixed point goes unstable

at £ w .239, according to equation (21). This is borne out numerically, as we witness

a period-doubling bifurcation at this value of e. A notable feature of this map is the

presence of 'trapped' orbits, where the particle is temporarily confined to the grating

or uniform region because Px is too small for penetration to occur. For such an orbit,

specular reflection occurs until the potential is small enough to admit the particle to

the grating. A particle confined to the uniform region in this manner will conserve Px,

hence the map will display consecutive points on a fine Px=constant before re-entry

occurs. Thus a stochastic orbit can appear regular for several iterations. Note also

that stochasticity always exists near grazing incidence of the ray even for small e. This

is due to many overlapping resonances, which grow arbitrarily close in momentum

space near Px = 1. We have also explored the behavior of the mapping as the energy

is varied. Because the interaction of the particle with the layer is greater for smaller

energy, the stochasticity present increases with decreasing energy.

C. Relation to the Standard Mapping

Near normal incidence, the mapping (16) is well approximated by the wellknown

standard mapping, provided the x coordinate of the particle changes little within the

layer. Since the magnitude of the force experienced by the particle within the layer

is Fx ~ £KW, and the interaction time is t = h/Pz « h/y/E + e, we require

TC2h2

F^=e7m<l- . (26)
Then taking Ap = Ft as the impulse received at each encounter with the layer, the

mapping immediately follows as

(27)

where

J= 2KWH
y/ETf
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and

K. =^f™. (28)

This is just Chirikov's standard mapping with stochasticity parameter Kd [5]. If in

addition we have e<l, then

Kd*2(^)(Kah)(KuH), (29)

revealing its dependence on the dimensionless perturbation strength and scale lengths.

Observe that the stability border given by equation (25) is simply a condition on the

standard map Kd in the limit considered here.

Equation (28) or (29) provides a criterion for the transition to global stochasticity

in this system, which occurs in the standard mapping at Kd w 1. Although the

standard mapping is only a local approximation derived here for the central resonance,

we note that this criterion should provide at least an upper bound; the separation

of period one islands decreases with increasing action, accumulating at p = 1, so

that the phase plane has a larger measure of stochastic orbits than the standard map

approximation.

IV. THE WAVE MAPPING

In the regime where the standard mapping is a good approximation to the dynam

ics, the paraxial wave equation is also a valid approximation. The paraxial description

allows us to view the wave dynamics in the context of an initial value problem at fixed

frequency; it is useful for guided beam systems such as optical fibers [10]. In this sec

tion it is convenient to adopt the interpretation of our system as a guiding structure

loadedwith a periodicarrayof nonlinear lenses as in equation (5), although the results

will also apply to waves near normal incidence in the cavity described by (8). The

essential required feature for this section is that the spectrum of transverse modes for

the guiding structure be discrete and not continuous.

13



The paraxial approximation consists in taking p2 << N2 in equation (9), so that

*<*(*.?;*)* 2jvfb)_jv(x'z)- (30)
From the point of view of the wave operators k —• —e'Vj this makes the associated

wave equation first order in z. Alternatively, we can make the substitution [10]

t/;(x] z) = $(x; z) exp(ikz) (31)

in the wave equation (2), and neglect second derivatives with respect to z. The

resulting paraxial wave equation is

i d$ 1 d2$
~k~dz~^z) =~2N^~dx2'{x'iZ) +̂ o «(*.*)[©(*) - 6(* - *)]*(*;*), (32)

where Q(z) denotes the unit step function. We remark that the parabolic wave

equation derived in this manner is not unique, but represents a particular choice of

approximation to the square root operator embodied in equation (9). This issue is

discussed in refs. 11 and 12. Equation (32) is just the Schr6dinger equation with the

z-dependent potential

V{x; z) = rjN0 cos(Kwx)[e(z) - 6(* - h)], (33)

and eikonal parameter k in the role of %. Within this framework, a mapping for the

wavefield $ may be derived for the system. The procedure is similar to the elliptic

case: we solve the wave equation in each region, and match solutions (but not z

derivatives) at the interface. The mapping so obtained is

aJV+i =£ VmnVmniaN exp(i[1 _ h]knl)exp(iKmh)i (34)
mn'

where

h,=k- (*»')2
2k

and

m~ 2fc

14



If we take the thin lens limit h —> 0 and iV0 —• oo, holding fixed the optical length

h<>pt = No?1, the potential (33) becomes

V(x, z) = rjh^ cos{Kwx)S(z - H). (35)

The ray mapping corresponding to this potential is just the standard mapping

with stochasticity parameter rjK^Hh^. It can be shown that in this limit the wave

mapping (34) reduces to

<£+1 =£«(-m)4,-„.M exp(-imJr/2 +i</>)a^, (36)
m

where e= rfkh^, r = K^H/k, and <j> = kffi+h^); J„(e) denotes the Bessel function

of the first kind of order v.

We also remark here on the relation between this problem and a different kind

of boundary perturbation. Frequently it may be desirable to replace the periodic

grating of varying dielectric constant e with one of modulated height and constant e.

Then by applying the appropriate boundary conditions at the interface, one arrives

at a paraxial mapping

a»» =£exp(i[fc»(jy - ft) +Kk})Jn.m(k°„Vh)Jm-„(klh)a%, (37)
m

where fcJJ = Nak —r^K^lN^k, Na is the index of refraction for the region a, h and

H are the (unmodulated) heights of each region, and rj is the modulation depth in

units of h. The Fresnel limit consists in taking h —• 0 and N0 —* oo, holding fixed

^opt = N0h as before. The result is the wave mapping

a?+1 =£ exp(ifci,ff) exp(ifcftopl)J„_m(feft0f)()a^, (38)
m

which is the same as (36) with Nx = 1.

The wavemapping (36) or (38) is identical in form to the much studied quantum

standard mapping [13]. The wavefield defined by the as is localized in kx space, for

t/2tt a generic irrational number [14]; the eigenvectors of the unitary transformation

defined in (36) are concentrated about a particular wavevector site k% = nKw and

decay away from that site with a characteristic decay length 6kx, the localization

15



length. By Floquet's theorem, the associated eigenvalues are of the form exp(iua);

the quasienergies u>Q form a discrete set. In the stochastic regime Kd >• 1, which

corresponds to an unstable optical ray, the localization length 6kx scales as .6kx ~

e2TKw [15,16]. Using the definitions of e and r given previously, we have Skx ~

rj2K^kh2H. This quantity diverges as 1/A in the eikonal limit (k —• oo), as expected

for unstable rays. In practical situations, the effect of localization is important only

if Skx is smaller than some wavevector scale length in the problem. In addition,

for the present situation a large localization length is inconsistent with the paraxial

assumption which requires 6kx/k •< 1. Therefore we are led to ask if there exists

a parameter regime of interest for which (1) rays are unstable, (2) localization is

predicted in kx space, and (3) the paraxial assumption is valid.

The answer is yes. The ray instability border is determined by

T)K2wHh = Kd*l, (39)

while the localization spread Skx/k ~ r^K^h^H. Note that the fractional spread in

the wavevector is independent of k. Requiring the condition 6kx/k <C 1 for Kd < 1,

we obtain

nKJt^ < 1. • (40)

Furthermore, the ray treatment is sensible only if k >> Kw. Therefore we are led to

the ordering

#tAp* < - < KWH (41)

for these three conditions to be valid. Equation (39) also implies KWH ;> 1. These

inequalities are easily satisfied for optical systems of interest.

One is naturally led to ask what wavevector localization implies for the config

uration space wavefunction, whose square is the intensity profile of an optical beam.

To study this, we evolve a Gaussian wavepacket well localized in configuration space,

as in a beam. For an initial state localized about {kx,9) = (0,0), we find that for

Kd = 4.0 the state spreads somewhat in 9 but remains clearly localized about the

initial phase point (see fig. 7a). This might be expected based on the persistence of
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the primary island for this value of Kd. However, at a value of Kd well above the bi

furcation value for the primary island, we still observe spatial localization, in contrast

to the classically expected result. In addition, we have observed that a wave packet

initially localized outside the primary island at Kd = 4 also remains concentrated

about its initial condition. We show in fig. 7b and 7c an example of localization

persisting at Kd = 5, when the classical phase space is globally chaotic. We conclude

that a Gaussian beam in this lens system will remain concentrated about the optical

axis if it is initially so, even in the regime of strong ray stochasticity.

As Kd increases at fixed e, the configuration space intensity remains nonuniform,

although the density is not always concentrated at the initial point 9 = 0. This is

presumably due to fluctuations in phase and amplitude in the kx space wavefunction,

although the envelope remains roughly constant. We illustrate this behavior in fig.

7d.

One might imagine that the phase error inherent in the paraxial approximation

could invalidate our results. Thus we comment here on the importance of higher order

terms in the paraxial expansion (30) of the optical Hamiltonian. Localization results

as a consequence of the pseudorandomness of the sequence Tn = tan(knH), where

knH = (k2 - n2I<l)2H = Jfe - n2K2mEj2k + n^H/Sk3 + ...
(42)

=kH-n22+n48kH +'"
Since we only require n2A"2/fc2 <C 1 and n2K^/k ^ 1 for paraxial behavior and

pseudorandomness respectively, the third term in the expansion may be comparable

to 2tt and introduce significant phase error. However, the conclusions based on (36)

remain valid because the sequence Tn is still a pseudorandom one. In fact, the effect

of the higher order terms could serve to "soften" quantum resonances which occur at

rational values of t/4it [17]. We illustrate this effect in Fig. 8, where we set r = 7r/2

and kH = 100, so the third term in (42) is fc£3) « .003n4. The solid lines show the
results of including the higher order n4 term, whereas the dotted lines include only the

n2 term. In Fig. 9a, we contrast the resonant k space density distribution p with the

clearly exponentially localized solid line. Fig. 9b shows the spread of the distributions

with time: the additional term completely destroys the resonant absorption in mean
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square wavenumber. These results are easily understood in terms of the unperturbed

(e = 0) quasienergy spectrum, which consists of levels with unequal spacings due to

the fourth order term in the expansion of the optical Hamiltonian. Since the spacings

are unequal, a resonant excitation at a frequency equal to a transition frequency

in the system will eventually detune from resonance. Equivalently, at resonance the

unperturbed quasienergy spectrum consists of a finite number of levels equally spaced

on the unit circle; the higher order terms destroy this structure and give instead an

infinite number of levelsuniformly distributed on the circle. Interestingly, the same

modification to the classical standard mapping destroys the classical anologue to

quantum resonance, the accelerator modes.

V. SUMMARY AND CONCLUSIONS

We have demonstrated the relevance of wavevector and spatial localization to a

class of systems with a variety of physical applications. To accomplish this, we have

examined three aspects of a waveguide system, which is described in the eikonal limit

by a ray system having near-integrable dynamics. First, we gave a qualitative picture

of the solutions to the time-independent Helmholtz equation in the system. Second,

the exact ray dynamics were obtained and described by phase portraits, and the

degreeof system stochasticity was determined as a function of perturbation strength.

A simple mapping approximating the exact surface of section mapping was derived.

Third, a wave mapping for the system was obtained valid in the paraxial regime.

Localization in wavevector space was seen to emerge as a consequence of the paraxial

unitary wave propagator, which is closely related to the quantum standard mapping.

Since the quasieigenmodes of the wave mapping are approximate solutions to the

time independent Helmholtz equation for the waveguide, the localized nature of the

solutions reveal qualitative information about the eigenstates of the original system.

The validity of our results is confirmed by considering their sensitivity to the

model assumptions. Because the eigenmodes are found to be localized in kx space,

18



the validity of the paraxial approximation (kx -C k) is confirmed, even in the regime

of strong ray stochasticity. We have also established that the phase error inherent

in the paraxial approximation does not invalidate localization, but rather contributes

to the disorder which produces it. The remaining assumption of unitarity is violated

due to reflected waves at the focusing elements, which will be small provided the

modulation strength 77 is small compared to unity.

Finally, we remark that the results do depend strongly on the boundary con

ditions taken, as suggested at the beginning of section IV. In particular, if we had

allowed a continuous spectrum for the transverse wavevector ffx (by removing the

boundary), then the unperturbed system would have a continuous spectrum and lo

calization would not occur [18]. For the guided lens waveguide and cavity systems

considered above, the boundary conditions and a discrete unperturbed spectrum are

natural.

This work was supported by National Science Foundation Grant ECS-8517364

and Office of Naval Research Contract N00014-84-K-0367.
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APPENDIX A

The determinant (8) yielding the eigenfrequencies is obtained byrequiring the

wave functions (6) to satisfy the boundary conditions (4) at the grating surface z = h.

Substituting from equations (6) into equations (4), one obtains

X)a" cos[*n(l - Wexp(iKx) =J2 hm cos«,/0 Y, Vmn exp^x)
n m n

—S a"k* sintfcn(l - h)] exp(ifc*a;) =-— V bmKgm sin(K*mh) V Vmn exp(zfc*x),

(Al)

where we have made the simplifying assumption of replacing p(x) with p0, so that

the velocity is continuous to zero order in r}. The condition that the coefficients of

exp(ik£x) vanish separately is therefore, in matrix form:

A1b-B1a = 0

A2b + B2a = 0

where

[AJmn = COS(«m^)Knn

PiL, = «»K(1 - *)V,

[B2]mn = k*nsm[k*n(l-h)]6mn

These two matrix equations may be combined to yield

(BaAx - BiA^b = 0 (A3)

which will have non-trivial solutions if

(A2)

Jmn

detlB^-BjA^O. (A4)

After trivial manipulation the determinental condition may then be given compactly

by

det|K,ra{^tan(^(l - h) +^.tan«,A)}| =0, (A5)
Pi Po
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as in equation (8). In practice, this determinant requires careful choice of rows and

columns to ensure convergence of the Newton root-finding routine used.
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Figure Captions

Figure 1. A cross sectional view of one period of the periodic waveguide structure.

Figure 2. (a) The eigenvaluespectrum of equation (2) as a function of perturbation
strength e, for the range 0 < e < 0.5 and 2500 cm"2 < k2 < 3045 cm"2. Other
parameters are fixed at Kw = 10cm, H = 1cm, h = 0.1cm; the parity is even, (b) A
blow up of the boxed region in fig. 2, showing a typical avoided crossing.

Figure 3. The quantum mechanical energy spectrum for 2700 cm"2 < k2 <
3050 cm"2, 0 < c < 0.5 and two values of %: (a) %= .04; (b) %= .01.

Figure 4. The quantum mechanical probability distribution for E = 4.4 x 105,
e = 0.1, and h = .040.

Figure 5. A ray or particle trajectory in the waveguide, showing the location of
the surface of section and the variables appearing in equation (16).

Figure 6. Surface of section plots for the waveguidemap (16); 25 initial conditions
are iterated 500 times. The parameters are Kw = 10, H = 1, h = 0.1, E = 1, and
(a)e = .05; (b)c = 0.1.

Figure 7. The asymptotic time averaged intensity and k space density distributions
for evolution under the mapping (36); the dotted lines indicate the initial distribution.
The parameters are: (a) e = 4.0 and r = 1.0 (Kd = 4.0); (b) e = 5.0 and t = 1.0
(Kd = 5.0); (c) c = 50.0 and r = 0.1 (Kd = 5.0); (d) e = 5.0 and r = 2.0 (Kd = 10.0).

Figure 8. The effectof higher order terms on resonance, for r = ir/2 and kH = 100:
(a) k space density; (b) (k2) vs. iteration number.
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