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ABSTRACT

Grasp planning for an object, held within a multifingered hand, has been

studied from different perspectives by various researchers, hi this work we con

sider grasp choice from the viewpoint of collision avoidance between the mani

pulator links and the object during trajectory execution. A grasp planner is pro

vided in the form of an algorithm which checks for the feasibility of a given

object trajectory, and provides an envelope of feasible contact positions. During

execution of the trajectory, contact positions of the fingertips on the object may

be changed by sliding the fingertip along the object surface in a controlled

manner. A dynamic control law which achieves this is presented here and

integrated with the grasp planner to determine a new feasible contact The

dynamic regrasping algorithm is illustrated by simulation.

t Researchsupportedin partby NSF underPYI grantDMC84-51129 andthe African- American Institute.



1. Introduction

A motivation forthis work is the dynamic coordinated control of a multi-fingered handper

forming the baton-twirling operation (See Fearing [14]). This is a task which requires great dex

terity of the robotic hand in terms of the types of contacts on the object It generally involves

fixed point contacts between the fingertips and the object, with a fair amount of rolling, and slid

ing also, at the contacts. The dynamic coordinated control of a hand performing such a dextrous

task is our goal, and control laws have already been developed for the first two types of contact,

see [5] and [6]. In this work we will present a new coordinated control law for sliding contacts.

This law will be developed for the planar case of a multifingered hand manipulating an object

along a prespecified trajectory. An additional problem of interest is the choice of contact posi

tions on the object for collision avoidance. Some fine motions (or trajectories within the hand)

of the object may not be physically executable, due to collisions between the links of the finger

and the object; while others may be executable for a good choice of grasp positions. It is thus

important to determine which object motions are feasible, and for those which are feasible we

shall provide an envelope of allowable contact positions for the fingertip on the object surface.

The problem of grasp choice will be solved in the planarcase, for convex polygonal objects held

by a two-fingered hand. Each finger will be a planar manipulator of two links with revolute

joints. The contact envelope will be used to determine the initial grasp points, and also dynami

cally to determine new contact positions to slide to, in orderto continue execution of the trajec

tory. The feasibility of a specified trajectory will be determined off-line, and the trajectorymay

not be modified once manipulationbegins, thus any collision problems during manipulation will

be dealt with by regrasping using sliding. This would be the situation if a glass of liquid were

being manipulated within the hand, or for a peg-in-hole type of operation, where the initial grasp

configuration is unsuitable forplacing the object in its final destination.

There are two approaches to regrasping to be found in the literature. The first approach is to

break and remake the contacts, (see Toumassoud [7], Trinkle [11]), and the second is to allow the

object to slip within the hand (see Brock [13], Fearing [14], Brost [18]). The analysis of [13] is

inadequate since all dynamics of the system are completely ignored and the analysis is purely

static. Jameson [3] and Fearing [14] have considered slip from a quasi-static viewpoint to

achieve grasp stability. We shall consider regrasping by dynamically controlling the sliding

motion of the manipulator tip along the object surface. It will, of course, be necessary that we

have a good friction model of the surfaces in contact, and good contact sensors to give exact

information on the contact position. A number of other criterion have been proposed for



determining a good grasp, (see Cutkosky [10]); Tournassoud [7] has proposed a geometric cri

terion for automated graspselection taking stability into account Trinkle [11] does object mani

pulation by a sequence of grasping and ungrasping operations using liftability regions for grasp

selection; Brost [18] does grasp planning for a parallel jaw gripper with polygonal objects by

combining an analysis of object geometry with the physics of friction, to provide regions which

will produce the same final grasp configuration. Cutkosky [15] considers grasp choice from the

perspective of achieving a certain desired overall compliance of the object with respect to the

hand and also for stability. Nguyen [8] has considered stability and force closure of grasps. Force

closure has been studied by Mason [2] and Ohwovoriole [16]. A quality measure called the

manipulability index has been defined in Li [5] and Kerr [17]. This index provides a measure of

the joint torques required to produce forces in any direction. The problem of coordinated control

of planar robots is addressed in Laroussi [9]. It is assumedmat the object is not free to rotate, this

is unrealistic, but the analysis is simplified so that both contacts can be allowed to slip. Explicit

control of the sliding motion of the fingertips is not considered.

In this paper, we consider grasp choice for path feasibility, including collision avoidance.

We shall initially determine the feasibility of a path (off-line), and generate anenvelope of grasp

positions for a specified trajectory for which onecanachieve dynamic manipulation. An underly

ing assumption will be oneof force closure ofthe grasp.

An outline of this paper is as follows. Sectiontwo develops the Grasp Planner, in the form

of an algorithm to determine the feasibility of a specified trajectory, and generate an envelope of

allowable contact points onthe object surface. This is done by simply using theobject geometry

and the finger kinematics, and it is initially purely open-loop, assuming noerror in the object tra

jectory. This envelope is generated off-line and is used to make a choice of initial grasp posi

tions. Section three developes the dynamics of the hand-object system together with a coordi

nated control law to produce the desired sliding motion along the object surface. This will be

done foranyplanar object forwhichwe have alocal parametrization of the surface of thecontact,

and for a planar hand of arbitrary kinematics. A setof conditions under which sliding is possible

in the planar case will be determined. Section four considers the complete overall system, it

integrates the geometric constraints of the grasp planner with the dynamics and control law of

Section three. It takes account of errors in the trajectory, and determines the contact envelope

during execution using only thecurrent state of the system. This generated envelope is then used

to determine a new contact position for the fingertip, usingcertain heuristics.



2. A Grasp Planner for Collision Avoidance

Collision avoidance is a necessary consideration in object manipulation using a

multifingered hand. In this section we provide an algorithm for collision avoidance, which deter

mines the set of allowable contactpositions for the tip of a two link revolute-jointed manipulator

contacting the edge of a convex polygonal object A contact position will be determined to be

acceptable, if contact by the manipulator tip at that position does not cause any part of the mani

pulator to collide with, or lie within the interior of the object For a polygonal object, each edge

is a segment of some straight line in the plane, thus we may equivalentiy consider the contact of

the manipulator tip on the relevant straight line. An algorithm will be provided to produce an

envelope of acceptable contact positions of the manipulator tip on a given edge, by considering

the limiting positions of the tip on the edge of the object It will be a requirement that, during the

course of the manipulation, the fingers remain in contact with a single edge. Thus allowable con

tact positions will be additionally limited by the lower vertices of the object The point of contact

will be specified in terms of a local parametrization of the edge.

2.1 The System Set-up

Consider a convex polygonal object manipulated by a planar two-fingered hand. Each finger is a

manipulator of two links connected by revolute joints as shown in figure 2.1. Figure 2.1 illus

trates, for the right side, exactly the type of collisionthe grasp planner seeks to avoid.

Toft L IC \v **&*1-611 y\ \^» V Manipulator
Manipulator yy \^*** A

e,<0Ak / \e2>P

Figure 2.1: Two-fingered hand grasping polygonal object



Grasp planning will be done by considering one finger at a time. Let us fix a reference frame Cb,

at the base of the finger of interest The straightline edge of contact will be parameterized rela

tive to the frame, Cb as follows. Each edge of the object is a segment of some directed straight

line in the plane. The direction of the line is defined by a unit length vector n, which will be the

inward normal to that edge specified in terms of the reference frame Cb. Let X be the angle

which gives the orientation of the inward normal to the edge relative to the base frame Cb, then

we can write n= W| . The position of the line in the plane is determined by ascalar param
eter d which specifies the perpendicular distance of the line from the origin of Cb. Thus each

straight line in the plane is completely specified by the two parameters X and d, relative to the

frame Cb. These parameters aredefined as shown in Fig 2.2.

Edge .

n-Lsin(X,)J

Figure 2.2: Parameter Definitions

Fix a frame CQ at the object centre of mass. Define x0(t)e R2tobethe position of the ori

gin of C0 relative to Cb. Let (3 e R specify the orientation of the object frame C0 relative to the

base frame C6, then R0{t)= [™$ "jJJJj$|f eSO(2) is the rotation matrix specifying the
orientation of CQ relative to Cb. Letxt denote the position of a fixed point on the edge of contact

relative to the reference frame (Cfr), and c,©, its position with respect to the object frame (C0).

^ is aparameterization of the edge, which provides ameasure of the distance of agiven point on

the edge from some fixed reference point on the edge. For example, in figure 2.2 the reference

point is chosen to be the point which is ofminimum distance from the centre of mass.

Given the trajectory (x0(t), p(r)) of the object through time. The coordinates of point, cit

relativeto the reference frame, aregiven by

xi(t)=x0(t) + R0(t)ci®, (2.1.1)



and d(t) is the projection of the vector *,•(*) onto thevector, n, and givenby the following equa

tion,

d(f)=xjn. (2.1.2)

Note that d(t) is a signed scalar which specifies the positionof the edge relative to the origin of

the base frame (Cb) measuredin the direction of the inwardnormal. Equations (2.1.1) and (2.1.2)

determine the trajectory of the parameter d(t) through time. X differs from p at all times by an

additive constant

Edge

Left
Configuration

d<0

ulterior
Half-Space

*x*axis

Figure 2.3: Left Configuration contact on an edge

Now every straight line in the frame Cb divides the plane into two half-planes which we can

describe by the two sets: (yeR2 :yTn<d) and (yeR2 :yTn>d). Thus, for every line which

corresponds to an edge, the object interior falls in exactly one of these half-planes. For a given

edge, we will refer to that half-plane which contains the object interioras the Interior Half-Plane

of that edge.

Changes in the sign of d(t) will thus provide an analytic tool for collision avoidance. The

actual interpretation of the conditiond < 0 is that the baseof the manipulator lies within the Inte

riorHalf-plane of the edge of contact, andd > 0 implies that the manipulator base lies outside of

the Interior Half-plane.



22. An Algorithm to Determine the Envelopeof Feasible Contacts

For each contactpoint, there are two manipulator configurations whichwill reachthis point. We

will refer these two configurations as a left configuration if -rc<92<0 (see Figure 2.3), and right

configuration ifO<02<rc.

Definition 2.1: {reachable point)

A reachable point on an edge of a given object for a given manipulator configuration (left

or right), is a point on the directed line defining the edge such that this point can be reached

by the manipulator in the given configurationwith the second link not intersecting the Inte

rior Half-plane.

The set of reachable contact points depends on (i) the geometry of the manipulator (i.e., the

length of both links l\ , 12), (ii) the position of the object relative to the manipulator base

(specified by d, A,), and (Hi) the manipulator configuration, (left or right). Next we examine the

set of reachable points under various conditions.

(I) If the origin lies within the Interior Half-Plane (i.e. d < 0) and \d\> lx, then contact cannot

be made by the fingertip on the edge without a collision, since contact must occur from the

object interior and hence, the set of reachable points is empty regardless the given manipu

lator configuration.

no reachable point ^ - *"

.*:::::....:^
*•:::::::::::::•• ^^

«#:::::::::::::•• ^^
»»:::::::::::::•• ^^_

__*»:::::;:::::::•• ^W

^iSJiJJIjpi""" / Interior Half Plane

Figure 2.4 : Condition (I)

(U) If the origin lies outside the InteriorHalf-Plane (i.e. d > 0) and \d\> Ilt the set of reachable

points is the set of point on the directed line that is within the reach of the manipulator. In

the example given in the following figure, this set is the interval fii&l- Again, in this case,

this set does not depend on the given manipulatorconfiguration.



Interior Half Plane

P- %.

Figure 2.5: Condition (II)

(ID) If the origin lies outside the Interior Half-Plane (i.e. d > 0) and \d I< / lt the set of reachable

points is the interval between the point corresponding to the full stretch of the manipulator

and the tip of the second link when the second link coincides the directed line. In the exam

ple given in the following figure, this interval is [£3,£4]. In this casethe set clearly depends

on the given configuration.

Interior Half Plane
reachable points „

Right configuration Left configuration

Figure2.6: Condition (HI)

(TV) If the originlies within the Interior Half-Plane (i.e. d < 0) and \d\< Ilf we determine the set

of reachable point to be the interval betweenthe points that corresponds to the endpointof

the second link when this link coincides the directed line. In the example given in the fol

lowing figure, this interval is [J^&l* In this case this set depends on the given

configuration also.



reachable points

Interior Half Plane

Left configuration Right configuration

Figure 2.7: Condition (TV)

For a given object trajectory [**(/),p(f)]r, d(t) is given by (2.1.1) and (2.1.2). Based on

this d(t) and the length of the fist link of the manipulator /lf we can divide the entire trajectory

into intervals in time. d(t) and li(t) in a time interval satisfy one of the four conditions

described above. In each time interval, the limiting contact positions will then be determined.

Forexample, in a interval that satisfiescondition (II), ^(r) and§2will be derived.

Example 2.1: (Determining the set of reachable points fora given trajectory)

In this example we consider a two-fingered hand manipulating a rectangular object as

shown in the following figure.

edge #2

I22 J.!? /

finger#1 finger #2

2r

Figure 2.8: A two-fingered handwith a rectangular object

Considerthe following two example trajectories:

Trajectory l:x0 = sin(2f)
0.5cos(2t)+yo , p = sin(2f)



The object centre of mass moves on an elliptical trajectory with orientation varying as a

sinusoid.

Trajectory 2: x0 = 0.9sin(2r)
0.5cos(2f)+yo . P=o

The objectcentre of massmoves on anelliptical trajectory of a slightly shorter majoraxis

with constant orientation.

Note that both these trajectories are periodic.

In figure 2.9 are plots of d versus time for trajectories (1) and (2) for the finger #1 and edge #1.

Similar figures, though not shown, can be derived for the finger#2 and edge #2.

d(t)

2

- kmj (id 'on) \m i (o > «v)
.ii iii i

li X __^L —L —I 7-l — J

—f —i 1— \ - i r 4 -

Li i iii i
I • I I I I I I I • I I I I !—«—>- 11

•2 -

0 1 2

'i h h tA ts

Trajectory #1

3

'6

d(t)

14

0.3

0.0

-0J

-1.0

Trajectory #2

Figure 2.9: d(t) versus time

As indicated in the figures, we divide the trajectories into intervals based on the sign of d and the

relative magnitude between d and /^ In each time interval, the limiting positions corresponding

to the left manipulator configuration are derived and is shown in Figure 2.10. For example, in

Figure 2.9, l\>\d\ and d>0 in the time interval [r3,r4], i.e., condition (ID) and the limiting posi

tions £3(0 and £4(0 (as defined in condition (III)) are shown in this time interval as a function of

time in Figure 2.10.
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3 - 2 -

2 -

1 -

1 -

0 -

0 -

-1 -

-2 -

Trajectory #1 Trajectory #2

Figure 2.10: Set of reachable points versus time

Between t5 and 16, the reachable set is empty indicating that this trajectory is, in fact infeasible

(condition (I)).

End-of-Example

Remark 2.1:

Note that in the above example, only the reachable set corresponding the left configuration

is considered. This is because that the manipulator is in the left configuration initially and,

as will be explained in the following section, the manipulator must maintain the initial

configuration (left or right) through out the trajectory. Therefore, for each trajectory, we

only consider the set of reachable points corresponding to one of the two configurations

depending on the initial configuration.

Note that a manipulator may not be able to physically touch a reachable point. For example, as

mentionedearlier, a reachablepoint may not be on the actual edge of the object. Next, we define

a feasible set as a subset of the class of reachablepoints. Any point in this subset can be used as a

contact point between the manipulator tip and the object

Definition 22: {feasiblepoint)

Afeasible point is a reachable point that lies on the actual edge of the object and does not

result in a collision between the first link and the object when the end point of the second

link touches this point
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There are two conditions under which a reachable point is not feasible. These two condi

tions are the following:

(a) a reachablepoint that does not lie on the actualedge of the object (as shown in the following

figure).

A reachable but
not feasible point

Figure 2.11: A reachable point that does not lie on the edge of the object

(b) a reachable point that causes the first link of the manipulator to collide with the object

when the tip of the second link touches this point (as shown in the following figure).

A reachable but

not feasible point

Figure 2.12: A reachablepoint that causes collision.

Example 2.2: (Determination of the set of feasible points)

Consider the same system described in the previous example. We rule out the region above

the line J^per and below the line 5toH*r since only those points which liebetween these
vertex vertex

two lines are physically on the edge of the object To remove those points that satisfy con

dition (b) from the set of reachable points, we must search through all the vertices of the

object to find the one that limits the range of motion of the first link. The new limiting

point can then be determined, hi the example shown in Figure 2.13 the limiting point is

resetfrom £5(as indicated in Figure2.7) to the pointmarked^Mw since the vertexc Ylimits

the motion range of the first link.
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Limiting vertex

Figure 2.13: A limiting vertex.

The following figure shows the set of feasible points of trajectory #2 as a subset of the set of

reachable points shown in Figure 2.10.

p.:—
III reachable points that satisfy condition (a) &(b)

pip] reachable points that satisfy condition (a)

HI feasible points

Figure 2.14: The envelope of feasible points of trajectory #2 as function of time.

End-of-Example

For a given trajectory we first generate the set of feasible points as a function of time as

shown in Figure 2.14 and this information is then used be the dynamic regrasping mechanism

described in section 4.
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3. Kinematics, Dynamics and Control of Sliding

In this section we derive the dynamic equations of motion and a coordinated control law for

a multifingered hand manipulating an object in the plane, where we allow some (but not all)

fingers to slide along the object surfacein a controlled manner. Two types of contact betweenthe

fingertip and the object surfacewill be considered, fixed point contacts with friction and sliding

contacts between the fingertip and the object surface. The sliding motion of the fingertips along

the object surface will be dynamically controlled, while simultaneously controlling the position

and orientation of the object held within the hand.

Dynamic control laws have been developed forfixed point contact with friction [5] and rol

ling contact [61 models. The underlying assumption in both cases, was that the applied forces

remained within the interior of the friction cone at all times. This assumption was validated by

applying an internal force to the object hi this section, we will closely examine the dynamic

coordinated control of a multi-fingered fingered hand manipulating an object where some con

tacts are allowed to slide.

3.1 Kinematics

A multi-fingered hand system consists of two components: an object and a group of multi-

jointed fingers holding this object If all contacts (sliding or fixed) between the ringers and the

object are maintained, they impose a set of holonomic constraints on a multi-fingered hand sys

tem. In this case, these contacts can be treated as if they are mechanical joints when formulating

the system equation. A non-sliding contact can be treated as an unactuated ball-and-socket joint,

and a sliding contact can be treated as a two-dimensional translational joint with frictional force

acting on it If all fingers are non-redundant, i.e., two joints in the planar case, the system

configuration can be specified by the position/orientation of the object (x0 , p) and the relative

positions (§)of the sliding fingertips on theobject surface. These variables (x0, p, 5) willbe used

as the coordinate system to formulate the system dynamic equation in section 3.2.

In this section, with the assumption that all contacts are maintained, we derive a linear rela

tion (described by a matrix H) between the velocity {xot p, £). and finger joint velocities (q ).

The force relation between these two spaces is then obtained by duality. The finger dynamics

with respect to the coordinate system {xQ, p, %) willbe obtained using this force relation (defined

by a matrix HT ). The dynamic equation for the complete system is then obtained bycombining

the finger dynamics with the object dynamics.
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Let the fingertip i be in contact with the object as shown in Fig 3.1. Let the object be

described by a general curvein the plane for whichwe havealocal parameterization.

Finger/ c2

Figure 3.1

Similar to the definitions of Section 2.1, define x0{t) e R2 to bethe position of the origin of CQ

relative to Cb, and R0{t)e SO(2) to be the rotationmatrix specifying the orientation of Cb rela

tive to C0. Let v0{t) and co0(r) be the translational and rotational velocities respectively, of the

frame C0. Define a surface frame Cfi at the point of contact between the t'-th finger and the

object. The y-axis of frame Cfi is aligned withthe surface tangent and its x-axis is in the direc

tion of the inward normal. Let the position, orientation, translational and rotational velocities of

the frame Cfi be given by xfi{t) e R2,Rfi{t) e SO(2), vfi{t) e R2 and (0fi{t) e R respectively,
with respect to the inertial frame Cb.

Now, since the contact at finger i is maintained during sliding, we have the condition that in

terms of the base frame Cb, the position of the fingertip must be identical to that of the contact

point on the object.

xfi =x0 +R0c0(^i). (3.1.1)

[-0. s]

Differentiating (3.1.1), we obtain a velocity relation

Vfi =v0 +(00xRoco{^) +Roco{^). (3.1.2)

Note that the first two terms on the right hand side, specify the velocity (relative to Cb ) of the

Note that R0Rj = a>0

Define co0x = ©<,
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point on the object surface with parameter §,-. The term R0co{%i), represents the relative velo

city between the fingertip and the contact point on the object surface,i.e. the sliding velocity. We

may write this explicitly as

dc„
&o c<> (S«) - Ro "3F~£«"" fy &. (3.1.3)

It is clear that this velocity is in a direction tangential to the object surface, and since this direc

tionwas chosen to be the y-axis of frame Cfi, thesecond equality of equation (3.1.3) applies.

Thus define Bvi = , to specify the direction of sliding in the surface frame.

Let IV =[/ I -(/?0c0&))x] andX =
QX,

eR3,

then equation (3.1.2) may be rewritten

Vfi-U^X =RfiBAi-

Remarks 3.1

Note that, in equation (3.1.4), vfi is the velocity of the i-th contact point (or i-th fingertip) and

UoiTX is thevelocity of a point that is fixed ontheobject and coincides withthe contaa point.

Equation (3.1.4) shows that the difference between these two velocities must always be in the

direction of Bvi (with respect to the contaa frame), i.e., in the tangential direction of the objea

surface. In other words, the velocities in the normal direction are constrained to be equal by the

contaa condition.

(3.1.4)

The fingertip velocity of a non-sliding finger is constrained to be equal in all components to the

velocity of the objea at the point of contact so equation(3.1.4) takes the form

(3.1.5)

On the other hand, the velocity of the fingertip is given in terms of the fingerkinematics by

vfi =/,<& (3.1.6)

where qt is the vector of joint coordinates for the finger, and /,- is the Jacobian matrix of for

ward kinematic function of the i -th finger. The matrix Jt maps the finger joint velocities into the

velocity of the corresponding fingertip.

vfj-UojTX=0.
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Kinematic Constraints for an m-fingered hand

Consider an m-fingered hand manipulating an objea in the plane. Let/? (<m) contacts be

sliding contacts and the remainingm-p contactsbe fixed. We may aggregatep equations of the

form of equation (3.1.4), and m-p equations of the form of equation (3.1.5), and include the

kinematics of the manipulator via the Jacobian expression of (3.1.6), to obtain the velocity con

straint equation for the hand:

J q-GTX=RfBv%

where

%=(£i , %p )T eW is avector ofp sliding variables.

G 4 [uJx Uln] e R3x2m iscalled the Grasp Matrix.

*v =
block diag( 'pcoptes

QlXjn-pyxp

Rf =block diag(/?r,, R&, I2,...Ji) e R2**2'*

/ = block diag(/!,...., Jm) e R2**2*

q=(qTi faVeR2"

qt e R2 are the joint cwrdinates offinger i, for l£i <m .

By Remarks 3.1, the constrained velocity directions are indicated by the all-zero rows in the

matrix Bv. Equation (3.1.7) can be rearrangedin the followingform:

Jq = [Gl I RfBv]

jgmxp

A rnT£ [G1 I RfBv]S

where S is defined by

S £
X

(3.1.7)

(3.1.8)

If all7, are nonsingular, that is, noneof the fingers are in a singularconfiguration, we can express

q in terms ofS as follows:

q =HS, (3.1.9)

where H is defined as
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r-liH § J~l[G' I RfBv]. (3.1.10)

From this equation and the duality between the velocity and force spaces, the matrix HT will

relate the fingerjoint torques to its equivalent force in the [ X, £ ] coordinate system . This rela

tion is shown in the Fig 3.2 where/„• is the frictional force which acts on the translational joint

describing the sliding contaa and/^ represents the force acting at the objcet center of mass. An

expression forthe frictional force /$, is derived insection 3.4.

Velocity
Space

Force/Torque
Space

Finger Joint
Coordinate

Object Position/Orientation
+ Sliding Parameters

Coordinate

Fig 3.2: Velocity - Force Duality

32 System Dynamics

In this section, we derive the complete system dynamic equation by combining the dynamics of

the fingers with the dynamics ofthe object

Finger Dynamics

The dynamics of the i -th finger is usually given in the form of

M,(<7«)& +Ni{qi,qi) = Xi +Of (3.2.1)

where MI(4;)€RR<X"' is the positive definite moment of inertia matrix for the ith finger,

iV,(^-,i)eR"i is a vector of gravity, Coriolis, and friction terms, and Tien* is the vector of

input joint torques, and at- represents the equivalent torque of some externally applied force,

which is usually the reaction force due to motion, hi this section, we will make the added

simplification that there are only two joints per finger, (i.e. nt = 2). For m fingers, the equations

(3.2.1) may be aggregated to give

M{q)q+N{q,q) = Z+ G (3.2.2)



18

with

M(^) =blockdiag(M1(^1) Mm{qm))elR2my2m,

J =block diag(/i>... ,7m)eR2mx2m,

N{q1q) ={Nl{qltqlf,..., tfmfom,<L)T)TeR2w'

T= (T1T,...,TJI)TeR2w.

<J = (a!T aJfeR2".

Object Dynamics

As indicated inFigure 3.2, the force corresponding to the coordinate space [XT, £]r isdenoted by

ifcm* f(iT»wnere/«n is aforce acting on the objea at the mass center and /^ is aforce acting on
the object at the sliding contact, i.e., the frictional force. Thus the resultant force Fc at center of

mass of the objea due to to such a force is given by

and

Fc = [/ GRfBv] Jem

The Newton-Euler equation ofmotion for a rigid body is

Fe +fg = M0X.

(3.2.3)

(3.2.4)

where/- is the gravitational force. From (3.2.3) and (3.2.4), it is clear that a force of the form

J cm

A

M0X-fg-GRfBvf%
A

(3.2.5)

will accelerate the objea at X. Using a pseudo-inverse of HT, we obtain the equivalent joint

torques which will produce the force (3.2.5) on the objea as shown in Fig 3.2. Thus

t = {HT)+
M0X-fg-GRfBJ%

A
+ X/ (3.2.6)

where {HT)+=H{HTH)~l isageneralized inverse ofHT, and zf lies inthe null space ofHT.

Remark 32

Note that in order that the pseudo-inverse defined above exists, it is necessary that HT = GtJ~T

is onto. This implies that / must be non-singular and Gs e rC3^)5*2"1 is onto. The requirement
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that Gs is onto in turn implies that 2m > 3+p andprovides a restriction on the numberof fingers

of an m-fingeredhand, which may be allowedto slide at any one time.

Complete System Equation

Whenthe objea is acceleratedat X by the fingers, the reactionforce reflectedto the fingerjoint is

precisely the negative of that given by equation (3.2.6) i.e.,

o = -{HTy

Now, combining (3.2.3) and (3.2.7), we get

M{q)ij+N{q,q)=%-{HTr

M0X-fg-GRfBvfK
A -*/

M0X-fg-GRfBJ%
A

(3.2.7)

-1/ (3.2.8)

These n equations describe the system dynamics in terms of the finger joint variables. Qeariy,

these equations are not completely independent since the joint variables are constrained by the

fingertip positions which, in turn, are constrained by the geometry of the object The interdepen

dence of these equations is hidden in the internal force term X/. To remove this dependence, we

may transform equation(3.2.8) back to (X ,5) coordinate system using the relations given in Fig

ure 3.2 to obtain

HTM{q)q +HTN{q,q)=HTT-
M0X-fg-GRfBvf%

A
-/TX/ (3.2.9)

Note that the term HTx{ is zero, since x, lies in the null space ofHT. The joint acceleration q

may be eliminated from the above equation, by using the kinematic constraint equation. Dif

ferentiate the velocity constraint equation (3.1.9), to obtain the acceleration constraint equation

q =HS+HS. (3.2.10)

Substituting (3.2.10) into (3.2.9), we get

\htM{q)H +MS~\ S+NS =HT%-

where Ns is defined as

Ns £ HTM{q)HS+HTN{q4)

and Ms is defined by

-fg-GRfBvfk

A
- HTlf (3.2.11)

(3.2.12)
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(3.2.13)

This equation will be used to develop control laws in the following section.

33 Control Law

In this section, we propose a control law for an m -fingered hand. We assume that

(1) All contacts (sliding and nonsliding) are maintained.

(2) No finger goes through a singular configuration.

As will be shown later, the first condition can be satisfied by applying a large internal force (i.e., a

'squeezing force') to the object. The second assumption requires that / is invertible. Intuitively,

when a finger is in a singular configuration, its fingertip is constrained to move in a subspace

(range space of/). Since all contacts must be maintained at all times, this constraint restricts the

motion of the object and therefore, tracking of an arbitrary trajectory is impossible when / is

singular.

hi the following proposition, we propose a control law which guarantees that, if the fric

tional force is negligible on the sliding contacts, both the objea motion and the sliding motion

converge to a pre-planned trajectory.

Proposition (1): (Trackingassumingzero friction at slidingcontacts)

Consider an m-fingered handmanipulating an objea in the plane. Let/?(<m) contacts be

slidingcontacts with the remaining m-p contacts fixed, such that m and/? satisfythe rela

tion 2m £3 +p (cf. Remark 3.2).

The dynamics ofthis system are given by equation(3.2.11).

Assume that (1) all contacts are maintained, (2) the matrix / is non-singular, (3)the matrix

R/Bv has full row rank and (4) the frictional force /^ in(3.2.11) iszero.

The following control law (3.3.1) guarantees that

(a) the actualobjea trajectory (X) and the actual sliding trajectory © converge to pre-planned

trajectories {Xd) and (£«*) respectivelyand

(b) the actual internal force X/ equals to the commanded internal force x/c.

X=[M{q)H +(tfT)+M,] {Sd +KVE +KSE) +{HT)+ fs
0
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+M{q)HS +N{q,q) + x,e (3.3.1)

where

E = Sd - S and E = Sd - S, are the position error and velocity error,

Kv = diagfo lf •••, ^(3^)], Ks = diagft lf • ••, A,^)!, where ^, *„• >0 forall i.

x/e is thecommanded internal force and is chosen to lie in thenull space ofHT.

Note that the desired trajectory Sd{t) contains both the desired objea trajectory Xd and the

desired sliding trajectory ^ and it is necessary that we have good sensors to accurately pro

vide information on the position of contaa (§).

Proof:

With the assumption /^ = 0, system equation (3.2.11) can be rearranged in the following

form.

\HTM{q)H+Ms]s+Ns=HTx +

Substituting the control law (3.3.1) in (3.3.3), we get

\htM{q)H +MS] [i +KvE +Kse\ =HT (x/c -X7) =0 (3.3.4)

The second equality comes from the fact that both X/ and x/c belong to the null space of

HT. Since the matrix HTM{q)H +M, ispositive definite, equation (3.3.4) implies

E+KVE+KSE = 0 (3.3.5)

which, in turn, implies that E, E -» 0. This proves the trajectory tracking property of the

control law. To show that X/ = %!c, i.e., the internal force control property, we combine the

dynamic equation (3.2.8) with (3.2.10) substituting the control law (3.3.1), assuming /^=0,

we get the following equation:

^M{q)H +{HTTlMs] [£ +KVE +KSE^ =x/c -X, (3.3.6)
Substituting (3.3.5) into (3.3.6), we get x/c =x7.

Q.E.D.

fs
0

- Hrx7 (3.3.3)
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hi order to maintain the contacts, all the contact forces must point inward to the object, in particu

lar, the contact forces of those fixed contaa must lie inside the friction cone. This condition can

be satisfied by the proposed control law using a carefully chosen internal force Xjc . For example,

we can chose x/c to be

x/c = yJTfc (3-3.7)

where y is a scalar, fc belongs to the null space of G

of maintaining the contacts. Since this xIc lies in the null space of HT, it does not affect the

motion of the system. It is clear that, if we choose y sufficiently large, the total contaa force

(generated by the control law) will be dominated by the contaa force due to xIc and, hence, the

total contaa forces will also satisfy the condition ofmaintaining the contacts.

Remark

In the above proposition, the assumption of zero frictional force on the sliding contactsmay not

be realistic, since all fingers are often made out of the same material and hence, all contacts are

likely to have similar friction characteristic. This assumption can be removed if an accurate

measurement of the frictional force is available. In this case, the effect of the frictional force can

be cancelled by feeding forward the measured frictional force /$, as described in the following

Proposition.

Proposition (2): (Tracking assuming measurement of friction at sliding contacts)

Consider the multi-fingered hand system described in Proposition 1. In this proposition, the

assumption that /$ = 0 is not necessary. The following control law guarantees that the

S ->Sd andxj =x/c.

BlRT
andfc also satisfies the condition

X= \M{q)H +{HT)+MS] {Sd +KVE +KsE) +M{q)HS

T\++ N{q,q) + xIc+{Hi)

Proof:

-GRfBvf%+fg

A
(3.3.8)

Substituting the control law (3.3.8) into the system equation (3.2.11), we get equation

(3.3.4). The rest of the proof exactly follows the proof given earlier.

Q.E.D.
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3.4 Friction Force

In this section, we derive anexpression for the frictional force /^ and include this expres

sion in the system equation and the control law of the previous sections. By doing so, the force

sensors are not required when implementing the control law. Unfortunately, only in a two-

fingered hand system (in the planar case), can the frictional force /^ beuniquely determined from

measuring the state of the system and therefore, it is only in this case that the need for a force

sensor alleviated.

We will model the frictional force using Coulomb's law : i.e. "The tangential force of fric

tion during sliding is directed opposite to the direction of motion, with magnitude proportional to

the normal force". The constant of proportionality is known as the coefficient of dynamic fric

tion. It depends on the surfaces of contact When there is no sliding a different, slighdy higher

constant applies, the coefficient of static friction. We will assume that the coefficient of static

friction is equal to that ofdynamic friction, and we will ignore problems of stiction.

When a finger slides along an objea surface, it exerts a force on the objea in the direction

of the inward normal to the objea surface. Since a Coulomb friction model is used when the

finger is sliding, the contaa force must lie on the edge of the friction cone. In the case of planar

manipulation, the contact force is simply constrained to lie along one of the two lines which

define the friction cone, depending on the direction of sliding as shown in Figure 3.3.

fingertip

---*• sliding direction

y

friction cone • - - .»>
^ „- force exerted onthe object

slope = |i

Figure 3.3: Forces acting at a Sliding contaa

We can parameterize this force by a scalar, Tfc e R as follows. Let the friction coefficient of the

i -thcontact be u.,-. Define B^ to be a basis setindicating thedirections of thecontact force, then

BA =
1

sign&i) \ii (3.4.1)

The contaa force can then be written as B^ (in the surface frame) where r)t- is just the
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component of force in the inward normal direction to the object surface. In terms of the inertial

base frame, this contact force is given by the following equation,

fbi=RfiBfii\i* ^R2 forl<Si</>. (3.4.2)

By defining Rfi =Bfi=I2 and i\i =/w e R2, for/? <i £m, (i.e. at non-sliding contacts), equa

tion (3.4.2) will also apply to a fixed point contact Then we may aggregate m equations of the

form (3.4.2), to obtain a matrix equation for the applied finger forces.

fb =RfBfx\. (3.4.3)

where

fb~(fb\ tfbm) € R

Tl =flu,'' •.Tip Sb<p+l). .--.fbm)* R'**-*>

Rf =blockdiag^j ,R# ,/2 ^R2"^

Bf = blockdiag^i, JBjp ,/2 ^R^+^D

Now, the resultant force {Fe) at mass center of the object due to the contaa forces fbi>».*fbm is

given by

Fc=[Ulu UjJ

7*1
fbl

fbm

= Gfb. (3.4.4)

where Uji e R2*3 is defined in section 2 for finger i, fbeR2"1, FceR3 and G e r3x2ot.

We obtainanexpression forthe resultant force in terms of the force parameters by substitut

ing (3.4.3) in (3.4.4) to obtain

Fc=Gfr\. (3.4.5)

Gf = GRfBf e R3x<2m-*) is a'Sliding Grasp Matrix', which maps the force parameters at the
respective contaa points into the resultant force at the object centerof mass. Substituting this

equation into (3.2.4), we get

M0X-fg=Gfx\. (3.4.6)

From this equation, ifGf is onto, we can derive ageneral expression for the contact force:

fb =RfBf [Gf+{M0X -/,) + TV] (3.4.7)



25

where Gf =GT/ [Gf GJY1 is the generalized inverse ofGf and T|/ is aforce which lies in the null
space of Gf. The frictional force is exactly the tangential component of the contact force of the

sliding finger, so

f%^B^Bf[Gf\M0X-fg)^xu] (3.4.8)
where By is defined in (3.1.7). In the case of a two-fingered hand, the generalized inverse G/

degenerates to Gf1 and %=0. hithis case expression (3.4.8) is simplified to

f% = P{M0X -fg), where P ± BjBfGfl.

Substituting (3.4.9) into (3.2.11), we get the following system equation:

HTM{q)HS+Ns=HTx-
Is -GRfBvPs

M.S +

where/, =[/ I 0]e R3x(3^)andPJ =[P I0]er^l

I -GRfBvP
P

(3.4.9)

f, (3.4.10)

Proposition (3) (Tracking control law for a planar two-fingered hand)

Consider the multi-fingered hand system described in Proposition 1. Suppose that the

assumption (1), (2), (3) in Proposition 1, and the following assumptions hold.

(1) m =2 and p =1. That is, a two-fingered hand with one finger sliding.

(2)Thematrix Gf is onto.

(3) The friction coefficient u,is known and is sufficiently small.

(4)Thefrictional force/^ is represented byexpression (3.4.9).

Then the following control law guarantees S ->Sd.

x = M{q)H+{HTTl

+M{q)HS+N{q,q)-{HTTl

Is-GRfBvPs
Ps

M, {Sd+KVE+KSE)

fi

Proof:

Substituting (3.4.11) into (3.4.10), we get

I -GRfBvP
P

(3.4.11)

HTM{q)H +
Is-GRfBvPs

M. {E +KVE +KSE) = HT{x,c -x7) (3.4.12)



The right hand side of (3.4.12) is zero and the matrix

rTHiM{q)H +
Is -GRfBvPs

Ps
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Ms (3.4.13)

is positive definite for a sufficientiy small friction coefficient \l Indeed, for a small p., the

first term in (3.4.13) ( which is a positive definite matrix ) will dominate the second term,

since as u,->0, the matrix P converges to zero matrix and the second term (in (3.4.13)) con

verge to a positive semi-definite matrix. The rest of the proof follows exactly the proof

given in Proposition 1.

Q.E.D.

Remarks 3.3

(1) Note that Proposition (3) is valid only if the finger designated to slide is actually sliding

since the frictional force expression (3.4.8) is true only in this case.

(2) It is possible that equation (3.4.9) gives anegative value for/§. A negative /§ means that

the sliding finger exerts a force in the opposite direction of the edge of the friction cone

which, of course, is physically impossible. This condition is ruled out in the above proposi

tion by the assumption that all contacts are maintained, since the contact will be broken if

die finger attempt to exert such a force.

(3) It is of interest to checkunderwhatconditions sliding is possible. In the case thatthe objea

isnot accelerating, the sign of/^ depends on the direction of the gravitational force fg and

the P matrix. Consider the example shownin the Figure 3.4. In this example we can slide

die top finger upward while keeping the objea motionless. If the top finger is to slide

downward, the lower edge of the friction cone would then be used in constructing the P

matrix and this P matrix would give anegative /$. Thus it follows that wecan only slide

the top finger upwards in this instance.
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Figure 3.4: A block being held against gravity
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4. Dynamic Regrasping for a Two-fingered hand

The algorithm described in section 2 was used offline to do an initial check of the feasibility of a

specified path, and produce an initial contaa envelope for a given path. Since the algorithm is to

be implemented dynamically with coordinated control of sliding motion along the object surface,

it can be integrated into the system dynamics as shown in Fig 4.1. The system dynamics deter

mine the actual state of the system at any time instant, and the contaa envelope can be directly

derived from the state.

Xd(t) Control

Law

4iW

%(»

U

Tonpo)

New
Contact
Position

System
Dynamics

X(t)

Figure 4.1

Grasp
Planner

Contact
Envelope

For periods of the trajectory during which the contaa positions are acceptable and hence remain

fixed, the dynamic coordinated control law for all contacts fixed and presented in [5] is used to

control the system. A tolerance limit on the boundaries of the contaa envelope (or 'danger

zone') is defined, and whenever it is determined that the contaa position lies within that tolerance

limit of the boundary of the grasp envelope, the current internal force is adjusted to bring the

applied contact force to the edge of the friction at the sliding contact, and then the sliding control
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law can be invoked to dynamically move the finger to a new contact position. The tolerance

chosen here was "One tenth the width of Contaa envelope" and the heuristics used to determine

the desired contacttrajeaory werethe following: The contaa position remains fixed except when

it lies within the 'danger zone*. When this occurs a new commanded position, equal to the mid

point of the envelope, is added as new input to the control law through a second order filter in

orderto produce a smooth desired trajectory ^, forthe fingertip to follow.

The two trajectories of section 2.2 have been simulated dynamically. Fig 4.2 shows frames

of the dynamic execution of trajectory (1), an elliptical path with orientation varying sinusoidaUy,

which we have previously determined to be an infeasible path.

hi section 2 we have shown trajectory (2) to be feasible, so the contact envelope of figure

2.10 is now determined dynamically. The system was chosen to symmetric in the sense that the

width of the objea was chosen to be equal to the distancebetween the two manipulator bases, so

rf-values for the two manipulators are of equal and opposite sign. Thus a plot of the envelope

corresponding to region (IV) ( described in section 2.2 ) for the two manipulators is shown in

figure 4.3 alternately, togetherwith the actual contaa positions on the object The frames from

the actualdynamic simulation forthis example are shown in figure 4.4.

Rvalue
on edge 2

0 2 4 6 8 10

time

*• ~"Smax

2 —Smin
3 - Indicator
4 - Actual Contact

Figure 4.3: Dynamic Regrasping forTrajectory #2

Fig 4.3 shows the contact envelope and actual finger contact position for trajeaory #2. The

current position of contact is determined by the algorithm of section 2, and according to the

heuristics given above. Fig 4.4 shows frames from the dynamic execution of the trajectory #2

when there is an upward gravitational force. This is equivalent to turning the hand upside-down
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in a gravitational field and performingthe slidingmotion.

5. Conclusions

An algorithm has been presented for determining the feasibility of a trajectory for an objea

being manipulated in the plane, by a two fingered hand. The algorithm also provides an envelope

of allowable grasp positions on a polygonal object, for a trajectory which is feasible. A new

coordinated control law has been presented for the dynamic control of the sliding motion of the

fingertips of a planar multi-fingered hand along an object surface, together with a set of condi

tions under which this is possible. The grasp planner has been integrated with the system

dynamics,and the effectiveness of the dynamic regrasping algorithm has been illustrated by simu

lation.
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