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Abstract

This paper presents an approach for symbolic minimization of combinational logic to be implemented in
multi-level form. We consider the problem of finding optimal binary encodings for the different values of a
symbolic input variable. An optimal encoding is one that leads to a minimal multi-level implementation of the
resulting Boolean logic. Our approach is based on finding encodings that resultin large common divisors among
a set of expressions. We develop a theoretical foundation that permit* us to view all possiblecommon algebraic
divisors resulting from all possible encodings of the symbolic variable. We determine necessary and sufficient
conditions that the encoding must satisfy for a given common divisor to exist in an encoded implementation.
Determining the encoding that results in large common divisors is shown to be equivalent to solving a face
embedding problem, for which efficient heuristics exist. We increase the powerof our approach by extending it
to detect non-algebraic (Boolean) divisors. An interesting aspect is that an initial multi-level decomposition is
produced as a by-product of the encoding process.

1 Introduction

Symbolic minimization of combinational logic involves optimizing a logic description with symbolic inputs and
outputs (e.g. [8]). A symbolic variable u, may take a value from any general set V = {v0,t>i,..., vn_i} as opposed
to a Boolean or binary valued variable which is restricted to the set {0,1}. We consider the case where the logic
description has symbolic inputs. As an example, considerthe combinational logic description of the controllerof a
microprocessor which may have a symbolic input opcode that takes valuesfrom the set {ADD, SUB, J MP, MOV).
The symbolic variable may be represented by a multiple-valued (MV) variable (e.g. [10]). The encoding problem
is to find a binary encoding for each of the values of the MV variable, that results in a minimal implementation
of the resulting Boolean logic. This problem has been studied extensively for implementations in two-level form
([8]). Recently, state assignment techniques (e.g. [6]) using input and output encoding have been developed for
multi-level implementations. However, only common divisors consisting of a single cube have been considered so
far. We present an approach that finds encodings that result in common divisors with one or several cubes and is
therefore potentially more powerful.

Even for the case of Boolean inputs the problem of multi-level logic minimization is NP-hard and all optimization
techniques for any reasonable sized circuits are heuristic Several approaches towards the problem have been used
(e.g. [5,1,7]). An important step in the optimization process in most of these techniquesis the detection of common
sub-expressions. These are then factored out and implemented as intermediate nodes in the network. This leads to
significant savings in the logic, sinceseveral occurrences of the sub-expression are replaced by a single intermediate
variable. The most common technique for extracting common sub-expressions uses kernel intersections ([4]). We
restrict ourselves to this stage of the multi-level optimization process and find encodings that lead to large kernel
intersections. We develop a theoretical foundation that permits us to view all possiblekernel intersectionsresulting
from all possible encodings of the symbolic variables. We determine necessary and sufficient conditions that the
encoding must satisfy for a kernel intersection to exist inanencoded implementation. Determining an encoding that
results in large kernel intersections is shown to be equivalent to solving a face embedding problem ([9]), for which
efficient heuristics exist ([9,11]). We increase the power of our approach by extending it to detect non-algebraic
(Boolean) divisors.



The organization of this paper is as follows. Sections 2 and 3 cover the background material on functions
of multiple-valued variables and on using kernels for extracting common sub-expressions. Section 4 extends the
concept of kernels to expressions of multiple-valued variables. The relationship between kernel intersections in an
encoded implementation and kernels of expressions with multiple-valued variables is explored here. The condition
under which a kernel intersection can be obtained in an encoded representation is expressed as a set of constraints
on the encoding. Section 5 describes the necessary and sufficient conditions for these constraints to be satisfiable
and proves that solving the constraints is equivalent to solving a face embedding problem ([9]). Section 6 extends
these ideas to selecting encodings that result in non-algebraic factors. Finally, in Section 7 we summarize a global
procedure for finding encodings that result in many large common divisors.

2 Function Representation

Since the case of several symbolic variablescan be mapped into the case of a single symbolic variable1, we restrict
ourselves to a single symbolic variable throughout the paper. The rest of the variables are binary valued.

The notation presented in this section is the same as that used in two-level multiple-valued minimization [10].
Let the symbolic variable v take values from the set V = {«©,«i,...,»„_i). v may be represented by a multiple-
valued variable, A", restricted to the set P = {0,1,... ,n —1), where each symbolic value of v maps onto a unique
integer in P. Let B = {0,1}. A binary valued function f of a single MV variable X and m —1 binary-valued
variables is a mapping:

f: P x Bm~l — B

Each element in the domain of the function is called a minterm of the function. Let S C P. Xs represents the
Boolean function:

,s_/ 1 if A'€5
0 otherwise•v.

Xs is called a literal of variable A'. If \S\ = 1 then this literal is a minterm of A'. For example, A*<°> and A**0'1*
are literals and A'<°> a minterm of A'. If S = <£, then the value of the literal isalways 0. If 5 = P then the value of
the literal is always 1. For these two cases, the value of the literal may be used to denote the literal. If A'5' => A'53
then A"5a C A*5». We note the following:

1. A'5' C A's» if and only if Si C 52
2. A'51 u A'5' = As»uS>
3. A'5» n A'Sa = A'5»ns»

The literal of a binary-valued variable y is defined as either the variable or its Boolean complement. A product
term is a Boolean product (AND) of literals. If a product term evaluates to 1 for a given minterm, it is said to
contain the minterm. A cube is a product term in which all the literals are binary valued. Note this distinction
between a product term and a cube; the latter does not involve any MV variables. A sum-of-products (SOP) is
a Boolean sum (OR) of product terms. For example: A'*0,1^^ is a product term, yiya a cube and A'{0,1*yiy2 +
A^3Jy2y3 isa SOP. A function f, may be represented byan SOP expression, /.

3 Kernels and Kernel Intersections

We first review the process of common sub-expression extraction when there are no MV variables. Common sub
expressions consisting of multiple cubes can be extracted from Boolean expressions using the algebraic techniques
described in [4]. We review some definitions presented there.

Definition 3.1 A kernel of an expression g is defined by the following rules:
1. A kernel k of on expression g is the quotient of g and a cube c; k = g/c.
2. A kernelk is cube-free, i.e. no cube is an algebraic factor of k.

A co-kernel associated with a kernel is the cube divisor used in obtain lag that kernel.

!For example, if there are two symbolic variables vl and v2 taking values from sets Vl and V2 respectively, then these may be
replaced by a single symbolic variable t» taking values from thesetVl x V2. This isin fact betterthanconsidering vl and v2separately
since the encoding for v takes into account the interactions between vl and v2.



As an example consider the expression g = at + be + z and the cube e. The quotient of g and this cube; g/e
isa + fr. No other cube isa factor ofa + 6, hence it isa kernel of 9. The cube e is the co-kernel corresponding to
this kernel.

A key result concerning kernels is that two expressions may have common sub-expressions of more that one
cube if and only if there is a kernel intersection of more than one cube for these expressions [4]. Thus, we can
detect all multiple-cube common sub-expressions by finding all multiple-cube kernel intersections. In [2] algorithms
for detecting kernel intersections are described by defining them in terms of the rectangular covering problem. We
use the rectangular covering approach for developing our ideas in the rest of the paper. This is because of the ease
in understanding the concepts involved. However, the ideas hold using any technique of kernel extraction.

As an example of the rectangular covering formulation, consider the expressions g\ and 92:

9i = oJk +

1

frib + c
2 3

92 = aj + bj + d
4 5 6

The integers below each cube are unique identifiers for that cube. Both gi and 02 have two kernels (shown below).

expression co — kernel kernel

9i

9\

92

92

1

k

1

J

ak + bk + c

a+fr

aj -rbj-rd
a + fr

The corresponding rectangular covering formulation has the representation:

a b ak 6* aj bj c d
1 0 0 1 2 0 0 3 0

k 1 2 0 0 0 0 0 0

1 0 0 0 0 4 5 0 6

j 4 5 0 0 0 0 0 0

The above representation is a co-kernel cube matrix for the set of expressions. A row in the matrix cor
responds to a kernel, whose co-kernel is the label for that row. Each column corresponds to a cube which is the
label for that column. A non-zero entry in the matrix specifies the integer identifier of the cube (in the original
expressions) represented by the entry. A rectangle K is defined asa set of rows Sr = {r0,n,..., rm_i} and a set of
columns Se = {co, ci,..., c„-i} 8uch that for each r,- € Sr and each Cj € 5C, the (rjtc,) entryof the co-kernel cube
matrix is non-zero. V. is said to cover each such entry. H is denoted as: {R(r0, ru...,rm.x), C{c0, cx,..., c„_i)}.

A rectangular covering of the matrix is defined as a set of rectangles that cover the non-zero integers in the
matrix at least once (and do not cover a 0 entry). An integer covered by one rectangle need not be covered again.
Alternatively, once an integer is covered, all other occurrences of it are replaced by don't cares (they may or may
not be covered by other rectangles). Each rectangle that has more thai one row indicates a kernel intersection. A
covering for the above co-kernel cube matrix is: {J2(2,4),C(1,2)} , {J2(1),C(7)} , {#(3),C(8)}

The kernel intersection a + fr between the two expressions is indice.t ed by the first rectangle in the cover. The
resulting implementation suggested by the covering is:

9i = ip3 + c

92 - J9z + *

03 = a + fr

We will use the total number of literals in the factored form of all the Boolean expressions as the metric for circuit
size [5]. The above description has two fewer literals than the original description.



4 Kernels and Multiple-Valued Variables

Now consider the case where one of the input variables may be MV. The following example has a single MV variable
X with six values and six binary valued variables.

/i = JT<w>o* + X<2hk+' c
1 2 3

h = XWaj* XWbj+ d
4 5 6

The integers below each product-term are unique identifiers for that product-term.
Our aim is to find a binary encoding for the various values of X that results in large kernel intersections and

thus smaller implementations.

Definition 4.1 An encoding S, of the values of a MV variable X is a mapping of each distinct value of X onto
a distinct vertex in some q dimensional Boolean space, Bq. The encoded value of a minterm Xa, denoted by
enc(Xa), is the singleton set containing the vertex in Bq that X° is mapped onto. The encoded value of a literal
of X is the union of the encoded values of its constituent minierms.

As an example, consider the following encoding, €\% for the values of Ar:

A*<°> : 000 X™ : 100 A"<2> : 001
A'<3> : 110 A'<4> : 010 A<5> : 011

We will use the variables s0, s\ and s2 for this 3 dimensional Boolean space. Here enc{X^) = {sbsisi} and
enctA't0,1)) = {sbsi«2,soSis"2}. A set of points in Bq may be alternatively represented as a sum-of-products
expression equivalent to the vertices in this set. Forexample enc(A"^0,1)) may be expressed as fi"bii«2 + £o«i&2 or
equivalently as sjsV Vertices in Bq that are not images of any value of A* are don't care vertices. For example,
soSiS2 and sqs\S2 are don't care vertices for €\. They may be included in any encoded value for simplification.

Definition 4.2 An encoded implementation of a set of expressions {/i,/2,.../n}; where each fi represents
a P x Bm~l function; is a set of expressions {01,92* •••0n} where each o,- has been obtained from fi by replacing
each MV literal in fi by its encoded value.

Using encoding €\ with f\ and fi we obtain the following encoded implementation,

Oj = si s~2 ak + si 52frfc + c

02 = *i*2 aj + s^frj + d

so does not appear in the expressionsabove. This is because the don't cares {so«i *2» so^i^} were used to simplify
the expressions. Note that 5*2 a + S20 is now a kernel intersection, and can be extracted as an intermediate variable
resulting in the following implementation.

9i = «i 03* + c

92 = S193J+ d

93 —8~2a + 52&

In contrast, consider the following encoding, £2:

A*<°> : 001 A'*1* : 110 A<2) : 100
A'<3>:111 A<41:000 Ar<5> : 011

This encoding results in the following encoded implementation:

91 — ({SO $1 «2 + 5o5i5~2 ) O+ 5o5~i 5~2 b)k + C
92 = ((*0«1*2 + 5"o 5"i 52 )a + s'q S^fyj + d



There are no kernel intersections between the two expressions. This implementation has 26 literals, compared to
12 literals with £\. Thus, we see that the choice of encoding has a profound effect on the resulting kernels and
kernel intersections. In the above case the good encoding was intentionally selected so that it resulted in a good
kernel intersection. The exact nature of the procedure involved in this selection will be described in the following
sections.

The definitions and matrix representations given in Section 3 are for binary valued expressions of binary valued
variables. We now extend these to binary valued expressions with MV variables. As in Section 2 we consider only
one of the variables to be MV, and the remaining variables to be binary valued.

We modify the definitions for the kernel and co-kernel for a binary valued expression / of MV variables as
follows:

Definition 4.3 A kernel of an expression f is a producUterm free quotient of f and a product term. The co-
kernel is the producUterm divisor used in obtaining the kernel.

The co-kernel cube matrix is defined as follows:

Definition 4.4 Each rowrepresents a kernel (labeled by its co-kernelproduct'term) and each column a cube (labeled
by this cube). Each non-zero entry in the matrix now has two parts. The first part is a positive integer that
corresponds to the producUterm in the expression ^product-term part/ The second part is the MV literal (MV
partJ which when ANDed with the cube corresponding to its column and the co-kernel corresponding to its row
forms this product term.

For the example above, both f\ and fi have two kernels as shown below:

expression

h
/i
h
h

co — kernel kernel
akXW+bkXW+c

aX<°>»+bX™
ajX<W+bjXW+d

The co-kernel cube matrix for this is given below:

a fr ak bk aj bj c d

1 0

0

0

0

1

A'<o,i)
2

x<»
0

0

0

0

3 0

1 0

k 1
*{0,1>

2

xw
0

0

0

0

0

0

0

0

0 0

0 0

1 0

0

0

0

0

0

0

0

4
A-{3,4}

5 0 6

0 1

J 4

A'*3-'*
5

A'<8>
0

0

0

0

0

0

0

0

0 0

0 0

In this matrix the product-term part is given above the MV part for each entry. The adjectives MV and binary
will be used with co-kernel cube matrices and rectangles in order to distinguish between the multiple-valued and
the binary case. We will demonstrate how this matrix is used to detect all potential kernel intersections. Each
potential kernel intersection is then usetl to specify a set of constraints. An encoding must satisfy these constraints
for the potential kernel intersection to be an actual kernel intersection in the encoded implementation.

A rectangle is defined as in the case for all binary variables. Associated with each rectangle V. is a constraint
matrix AS* whose entries are the MV parts of the entries of H. For example, consider the MV co-kerne) cube
matrix given above. A/i, given below, is the constraint matrix for the rectangle (R(2,4), C(l,2)}.

Mi
_ f X<W A'<2> 1
" [ *{M> A'<5> J



Definition 4.5 An encoding £ of the values of X is said to satisfy M, if there exists for each row i and each
column j, in M, sum-of-producis representations of logic functions, Jbj" and k? respectively (of the binary encoding
variables) such that for all minterms X°:

enc(Xa) C *?.*; if and only ifX° C M{i,j)
M is said to be satisfied by £. If £ exists, then M is said to be satisfiable.

Informally, *•*. *? contains precisely the vertices that are encoded values of the minterms in M(i,j) and possibly
don't care vertices.

For example consider the matrix Mx. The encoding £\ satisfies M\ with:

*i = «i *J = *i
k\ = 52 k\ s 52

Not all matrices are satisfiable. An example of a matrix that cannot be satisfied is (as will be shown in Section 5):

Af3 =
*<*> A'<2> xw
A'«> XW X™

Definition 4.6 A reduced constraint matrix Mr of a constraint matrix M has the following properties:
1. Mr(hj)*0
2. Mr(iJ)CM(iJ)

Note that- this definition includes the original constraint matrix.
An example of a reduced constraint matrix for Mi is:

•[ ^{3,4) X{9)

Definition 4.7 An encoding £ is said to satisfy a rectangle, 72 if:
J. It satisfies some reduced constraint matrix of that rectangle
2. for the encoding, £,. |*r| > i; j^r| is the number ofcubes in kf. i varies over the rows ofthe rectangle.

K is said to be satisfied by £. If£ exists, then 72 is said to be satisfiable.

We will now show how the rectangles in the MV co-kernel cube matrix can be used to detect kernelintersections
in any encoded implementation without knowing the encoding.

Theorem 4.1 There isa one to one correspondence between the set ofall satisfiable rectangles ofthe MV co-kernel
cube matrix and the set of all kernel intersections ofall encoded implementations.

Proof

Part 1: Each satisfiable rectangle implies a kernel intersection in some encoded implementation.

Let 72 be the satisfiable rectangle. Thus, an encoding can be found that satisfies some reduced constraint matrix
Mr corresponding to this rectangle. This encoding ensures that each literal Mr(hj) can be written as fcftj. We
obtain a binary rectangle 72e„c from 72 as follows. For each row of72 there are \kf\ rows in 72ene. Let A, be the
co-kernel corresponding to row i in 72. The corresponding co-kernel fo- the /th ofthese |fcj"| rows in 72ene is A, JbJ)
(kri} is the /th cube in kf). Let Tj be the cube corresponding to the jth column in 72. For each column j in 72 we
have \kcj\ columns in 72ene. The /th of these corresponds to the cube Tj kejt. Since £• |ibr| >1, 72enc has at least
two rows.

With this encoding, 72e„e is a rectangle in the co-kernel cube matrix of the encoded implementation. Since
72ene has at least two rows, it corresponds to a kernel intersection.

Part 2: Each kernel intersection in an encoded implementation corresponds to asatisfiable rectangle 72 in the MV
co-kernel cube matrix. 72 is satisfied by the encoding.

The proof follows the reverse path traced out by the proof for Part 1. Any kernel intersection of the encoded
implementation implies a rectangle. 72enc, ofat least two rows, in the binary co-kernel cube matrix. Let A, be the



co-kernel corresponding to row t of this rectangle and 7; be the cube corresponding to column j. Let s, be the
cube m Xi that has the bits used in the encoding ofA". Similarly, let Sj be the cube in 7. that has the bits used in
theencoding of X. We construct a rectangle 72" in theMV co-kernel cube matrix as follows.

For each row and column of 72ene construct arow and column of 72". The co-kernel A4, corresponding to row
», and the cube Tjy corresponding to column j in 72~ areobtained as follows.

Case 1: 3j \ 8j 96 1
£i=7i/*i- A, =Ai/*<- The MV part ofentry (i,j) in 72" is assigned the literal corresponding to s. s
Case 2: Vj> sj&l «-©.,.

Here all the bite of the encoding space are in the co-kernel. Let X.t be the literal of Xcorresponding to the
encoded bits s,-. Then, Tj =7j and A, =(A./s,)*.,, where / is the algebraic division operator. The MV part of
each entry of the tth row in 72" is assigned the literal 1.

At this point there may exist columns in 72~ that correspond to the same cube and rows that correspond to
the same co-kernel. Merge each such set of columns (rows) into asingle column (row) corresponding to that cube
(co-kernel). The MV part ofeach entry ofthis column (row) is the disjunction ofthe MV parts ofall the columns
(rows) it replaces. M* is necessarily areduced constraint matrix of some matrix M* for some rectangle 72 in
the MV co-kernel cube matrix. Since 72ene has at least two rows (it was derived from akernel intersection), 72 is
a satisfiable rectangle.

Theorem 4.1 gives the relationship between potential kernel intersections for the MV variable expressions (rect
angles in the MVco-kernel cube matrix) and actual kernel intersections for the encoded implementations (rectangles
in the binary co-kernel cube matrix). Note the significance of the result ofTheorem 4.1. It says that we can view
aU possiblekernel intersections for all possible encodings by constructing the MV co-kernel matrix and considering
all its satisfiable rectangles!

5 Satisfying the Constraints

Theorem 4.1 gives necessary and sufficient conditions, in terms ofthe MV co-kernel cube matrix, for the existence
ofkernel intersections in any encoded implementation. We now look at the necessary and sufficient conditions for
a constraint matrix to be satisfiable and an encoding process that satisfies it.

Definition 5.1 An encoding £ of the values of X is said to minimally satisfy aconstraint matrix M, if, for
each row t and each column j in M, there exist cubes < and c) respectively, in some q dimensional Boolean space
such that for all minterms X°:

enc(Xa) C <.cj if and only if X° C M(i,j).
Mis said to be minimally satisfied by £ and £ is called aminimal encoding. If such an £ exists, M is said
to be minimally satisfiable.

Informally, c^.c^ has only vertices corresponding to the minterms in M{iyj) and possibly don't care vertices.
Note that this definition is a special case ofDefinition 4.5 with the additional constraint that each V and ke-

be a single cube. * J

111 Section 4 the encoding £x minimally satisfies Mx. We observe that if the constraint matrix is minimally
satisfied then both the kernel intersection and/or the set ofco-kernels is the smallest (in terms ofthe number of
cubes) ofall possible encodings. This is desirable since it leads to a smaller number ofcubes in the implemented
logic.

We first determine the conditions under which a constraint matrix can be minimally satisfied. Later in this
section we extend this to determine conditions for satisfying amatrix with anon-minimal encoding.

Definition 5.2 An mx n constraint matrix Msatisfies the intersection condition if:

fc=i f=i



Informally, this implies that ifaminterm Xa is present somewhere in row i and also in column j, then Xa CM(t, j).
As an example, consider matrices Aflf M3 and J/3 in Section 4. While Jl^ and M2 satisfy the intersection

condition, it is not satisfied at Ms(l,2).

Theorem 5.1 IfM is minimally satisfiable then it satisfies the intersection condition.

Proof Suppose that the intersection condition is not satisfied at M(i,j) and there exists a minimal encoding.
Let <and cj be the cubes associated with row t and column j in this encoding. There exists aminterm Xa such
that Xa C(LC-i M(h *))n(U£i M{U j))and Xa £ M(i, j) Le. X° occurs somewhere in row t and also in column
j but not in M(iJ). Therefore; 3k * j, 3/ * i s.t. Xa C M(i,k) and X* C M(/, j). Thus, enc(Xa) C <.c£
and eiu**0') Cef.cj. Hence, enc(Xa) Cef and enc(Xtt) Ccj and therefore enc(X0) C^.e). But <.cj has only
encoded values of minterms of M(t, j) and don't care vertices. This is a contradiction proving that no minimal
encoding could have existed. "

Theorem 5.1 determines the necessary condition for a constraint matrix to be minimally satisfiable. We will
show that this condition is sufficient to ensure the satisfiability by giving a procedure for determining a satisfying
encoding.

The procedure is related to the face embedding problem. In [9] this problem was defined for the optimal
state assignment problem when the target technology is two-level logic. A brief statement ofthe problem is given
below.

Definition 5.3 Face Embedding Problem: Given amulti-valued variable X, and aset X = {Ai,..., A",,} ofliterals
ofX, find an integer q, an encoding £ of the values of X onto B*, and cubes a CJ3«, 1<t <n such that:

enciXa)Cci <» A° C A<, 1 < t < n

Each literal A, to be embedded in Ci is called a face constraint.

Informally, each cube c,- contains only the minterms in A", and possibly don't care vertices.
As an example, consider the set X = {A'*0*1'2*, A*3*4'5*,JC^M),*{W>}. The encoding £x in Section 4

satisfies the face constraints specified byX. The set ofcubes corresponding tothe four constraints are {fl% si, s2, s2}.
Theorem 5.2 specifies how a minimal encoding may be obtained bysolving a face embedding problem.

Theorem 5.2 For inmxn constraint matrix M that satisfies the intersection condition, an encoding £ minimally
satisfies M if and only if it satisfies the following face constraints:

ULi^M) l<t<m
\J7=iM(U) l<j<n

Proof

If Part:
Let £ be the encoding that satisfies the face constraints and let < and cj be the cubes associated with row i and

column j respectively. Since enc(M(t\ j)) Cc\ and enc(M(iJ)) C c] then enc(M(i,j)) Ccj.cj. To show that cf.cj
contains only vertices corresponding to A"a C A/(»\ j), consider any A"° such that en^A'0) C <%.<% Then enc{Xa) C
< and enc(Xa) Cc] implying that A"0 is in row t and column j. Therefore, X° C(UJ-i M(*»*))n(U£i M(l,j))
This implies tha^* C M(iJ) since M satisfies the intersection condition. Thus £ minimally satisfies M.
Only If Part:

Suppose £ minimally satisfies Mand A'° C Af(t, j). Then there exist cubes cjand c) such that enc(Xa) C<*.<*.
Then, enc{Xa) C<and enc(X0) Cc'j; Thus, enc(UJ=1 M(i,k)) Ccf and enc(USi */(/,i)) Q^ fTo sf that
<fi has vertices corresponding only tominterms in row t consider any A'° in M such that enc(Xa) Cc*. X° must
be present in some column of M. Let / be one such column. Therefore, enc{Xa) C tf. Thus enc(A'°) C cj.cf,
implying Xa C A/(t,/) (since £ is a minimal encoding). Therefore Xa does lie in row t satisfying its row face
constraint. A similar argument holds for the face constraint ofcolumn j. Thus, £ satisfies all the face constraints.



Theorem5.2 gives the necessary and sufficient conditions that have to be satisfied by any minimalencoding. In
[9] it wasshown that the face constraintsfor anyset can be satisfied withat most the number of bits (dimension of
the encoding space) equal to the number of distinct values of X. Therefore, we know that if there is no intersection
violation for a matrix M, then it is minimally satisfiable.

It may appear that by forcing the encoding to be minimal we are potentially losing some rectangles that may
have non-minimal encodings satisfying the constraint matrix. In fact, this is not so as the following theorem states.

Theorem 5.3 For a constraint matrix M, the following statements are equivalent:
a) M satisfies the intersection condition
b) M is minimally satisfiable
c) M is satisfiable

Proof

1. a =» 6.

Since any set of face constraintscan be satisfied, then by Theorem 5.2 there exists an encoding that minimally
satisfies M.

2. 6 s* c.

Obvious.

3. c => a.

Let £ bea satisfying encoding and£•" andkj betheexpressions corresponding to row i andcolumn j respectively.
For each hf , if jfcf | > 1 split row t in M into \kf\ rows such that the /th of these rows contains all minterms A'Q
such that enc(A'°) C *[,. (Recall that JbJ) is the /th cube in fcf.) Do the same for all columns j for which |Jb?| > 1.
For this modified matrix A/', obtained by this splitting process, there is a minimal encoding that satisfies it. In
this encoding, fcj) is the cube corresponding to the /th sub-row of row t, and kejp is the cube corresponding to the
pth sub column of column j, in M. Consider any minterm X° that belongs both to row i and to column j in M.
In M\ X° must belong to some row / that was part of row i in M and some column p that was part ofcolumn j
in M. Since M' satisfies the intersection condition, X* C A/'(/,p). Since A/'(/,p) C M{i,j), M also satisfies the
intersection condition. bj

We note that even though Theorem 5.3 demonstrates the equivalence betweensatisfiability and minimal satis
fiability, it does not follow that Theorem 5.2 is valid with "minimally" eliminated from its statement. There may
exist a non-minimal encoding that does not satisfy the face constraints3.

Since the intersection condition gives the precise relation for a matrix to be satisfiable, it can be used to derive
a satisfiable reduced constraint matrix in case the original constraint matrix is not satisfiable. Let Af(», j) be the
entry of the constraint matrix M where the intersection condition is not met. Now, A"* = ((UJei **(*»*)) n
(USi M(IJ)) - M(i,j) is the literal that has the offending minterms. For each minterm, X° C X*, we need to
drop Ap° from either row i or column j. When there are several entries in M where the intersection condition fails,
the above reduction needs to be doneat eachviolation. The problem ofdetermining the least set of minterms to be
dropped from A/, so that the resulting reduced constraint matrix Mr issatisfiable, can be formulated as a covering
problem. We do not pursue this further in this paper.

6 Non-Algebraic Factors

Theprevious sections demonstrated the encoding procedure used to obtain kernel intersections which are algebraic
factors. In this section we extend this technique to extract non-algebraic (Boolean) factors.

We illustrate this with the following example. Consider the expres: ;ons:

fi=aX™+bX™

f2 = aXW+cXW

/3 = 6A«>+cA'<3>

3For example, ifMhas a row with at least two minterms per entry, then this row could be split into two rows and then encode using
the face constraints of the split matrix. Thisencoding can easily violate the face constraints of the original matrix



Each of these has a single kernel corresponding to the co-kernel 1. The co-kernel cube matrix for these expressions
is given below. For clarity, only the MV part of the matrix has been shown since the product term part is obvious.

xw xw—0~
XM 0 XW

0 *«) *<3>

Consider the rectangle V. ={R(1, 2, 3), C(l, 2, 3)}. This does not correspond to the original definition of
a rectangle since it has entries corresponding to the 0 literal of X. However, we will show that satisfying the
constraint matrix of this rectangle will lead to Boolean factors in the encoded implementation.

The constraint matrix M for 71 is:

M = A<*> 0 A<3>
0 A'<4> A<3>

There are no intersection violations in A/. The face constraints for M are satisfied by the following encoding:

XM : 01 XW : 11
A<3> : 00 A<4> : 10

If «o &nd sj are the bits used in the encoding, then c\ = Sj and c§= sb*i« Therefore, c\. c§= si.s'qSi = 0. Also,
Af(1,3) = 0. This isnot unexpected. Theencoding ensures thatc\. cj has only vertices corresponding to minterms
in M{i,j) or don't care vertices. Therefore, if M(i,j) = 0 then c£. cj can contain only don't care vertices. In this
case the entire 2-dimensional encoding space was used up, therefore c\. c§ had to be the empty cube.

In general, the 0 entries in M result in null or don't care cubes in the encoded implementation. Therefore, the
rectangle in the co-kernel cube matrix is a common non-algebraic factor between the expressions corresponding to
its rows.

For the example above, the selected encoding leads to the following encoded implementation:

9i = *i 9a

92 = *b 9a

93 = «"i 9a

04 = s"o Si a + 8q b-r s~o si c

04 is a non-algebraic factor of pi, pj and 93* Rowsandcolumns that contain0 literals may be addedto the rectangles
in the rectangular covering process to result in non-algebraic factors with potentially greater literal savings in the
encoded implementation. In this example, there are no satisfiable rectangles without using the 0 entries, and hence
no kernel intersections no matter what encoding is chosen.

We now generalize this idea. A constraint matrix that has entries corresponding to the zero literal is referred
to as a non-algebraic matrix and the rectangle it wasderived from referred to as a non-algebraic rectangle.
The following theorem formalizes the concept presented through the example above.

Theorem 6.1 Each satisfiable non-algebraic rectangle corresponds to a common Boolean factor in some encoded
implementation.

Proof Let M be the constraint matrix (non-algebraic) corresponding to such a rectangle. Since the rectangle is
satisfiable, we know that for each (»,i), 4f. Jbj has only vertices corresponding to minterms in A/(»,j). Therefore,
when M(i,j) = 0, fcf. kj must be either the null cube or have only don't care vertices. Hence, ifej". kj may be
included in the factor while retaining the functionality. Thus, the rectangle in the co-kernel cube matrix results in
a common Boolean factor. •

Note how this theorem extends Theorem 4.1 to consider potential factors that could not be detected by purely
algebraic techniques. The definition of the reduced constraint matrix in Section 4 can now be relaxed for the
non-algebraic case. The condition Mr(i,j) ^ 0 is not required. This leads to additional freedom in dropping the
constraints, as discussed in Section 5, in order to make a constraint matrix satisfiable.
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7 The Global Encoding Process

In Section 4, the procedure for detecting all potential kernel intersections was given and in Section 5 the encoding
process for converting potential kernel intersections to actual kernel intersections was described. This was extended
to recognize non-algebraic factors in Section 6. We now tie up these ideas for encoding of the values of X given

The first step is the extraction of kernels for each /,. Even though this part was not described in the earlier
sections, it can be done using the algorithms in [2] or [4]. The co-kernel cube-matrix is constructed for these kernels.
Arectangular covering of this matrix with satisfiable rectangles (possibly non-algebraic), defines the set ofpotential
common factors. We know that by solving the row and column face constraints for each such rectangle, we can
convert that potential factor into an actual factor. Given acovering with several such rectangles we can realize all
the factors by solving the row and column face constraints of all these rectangles simultaneously 3. We know that
given enough bits this can always be done. These constraints can be satisfied using the techniques described in [9]
and [11].

An interesting side-effect ofthe proposed approach for encoding is that it performs the first stage ofthe multi
level logic optimization process, viz. the extraction of common sub-expressions. In fact, because of the don't
cares that mav be used in the encoding process, it is imperative that the encoding process itself do the initial
decomposition/factorization. Atwo-level minimizer such as ESPRESSO ([3]) ininimizing each node with the don't
cares, followed by kernel extraction may not produce the same result as the decomposition/factorization done by
the encoding process. This is because the minimizer works independently ofthe kernel extraction process and may
use the don't cares in such a way that thealgebraic factors do not correspond to those determined by the encoding
process.

8 Conclusions

In this paper we have proposed an approach for the encoding of input variables for multi-level implementation.
We have established a theoretical framework for this encoding process that can result in many large common
factors. Necessary and sufficient conditions were determined for any encoding so as to result in a common factor.
It was shown that these conditions are satisfied if and only if a set of face constraints is satisfied. The theoretical
foundation of this approach is analogous to the theoretical foundation of the symbolic minimization techniques
that were successful for two-level implementations [9]. This makes us quite optimistic about the quality of multi
level minimization algorithms based on these ideas. These will be reported in a subsequent paper. We are also
investigating combining these techniques with output encoding, leading to state assignment algorithms for multi
level logic implementation.
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