
 

 

 

 

 

 

 

 

 

Copyright © 1988, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



CODECS: A MIXED-LEVEL CIRCUIT

AND DEVICE SIMULATOR

by

Kartikeya Mayaram

Memorandum No. UCB/ERL M88/71

21 November 1988



CODECS: A MIXED-LEVEL CIRCUIT

AND DEVICE SIMULATOR

by

Kartikeya Mayaram

Memorandum No. UCB/ERL M88/71

21 November 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



CODECS: A MIXED-LEVEL CIRCUIT

AND DEVICE SIMULATOR

by

Kartikeya Mayaram

Memorandum No. UCB/ERL M88/71

21 November 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



CODECS: A Mixed-Level Circuit and Device Simulator

by

Kartikeya Mayaram

Abstract

CODECS is a mixed-level circuit and device simulator that provides a direct link

between technology parameters and circuit performance. Detailed and accurate analyses

of semiconductor circuits are possible by use of physical (numerical) models for critical

devices. The numerical models are based upon solution of Poisson's equation and the

current-continuity equations. Analytical models can be used for the noncritical devices.

The goal of this research has been to develop a general framework for mixed-level

circuit and device simulation that supports a wide variety of analyses capabilities and

numerical models. Emphasis has been on algorithms to couple the device simulator with

the circuit simulator and an evaluation of the convergence properties of the coupled

simulator. Different algorithms have been implemented and evaluated in CODECS.

Another aspect of this research has been to investigate critical applications of

mixed-level circuit and device simulation. Typical examples include simulation of high-

level injection effects in BiCMOS driver circuits, non-quasi-static MOS operation,

switch-induced error in MOS switched-capacitor circuits, and inductive turn off of pin

rectifiers. For these examples conventional circuit simulation with analytical models

gives inaccurate results.

CODECS incorporates SPICE3 for the circuit-simulation capability and for analyti

cal models. A new one- and two-dimensional device simulator has been developed.

CODECS supports dc, transient, small-signal ac, and pole-zero analyses of circuits



containing one- and two-dimensional numerical models for diodes and bipolar transistors

and two-dimensional numerical models for MOSFETs. The numerical models in

CODECS include physical effects such as bandgap narrowing, Shockley-Hall-Read and

Auger recombinations, concentration and field-dependent mobilities, concentration-

dependent lifetimes, and avalanche generation.

Donald O. Pederson

Committee Chairman
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CHAPTER 1

Introduction

Simulation plays an important role in the design of present day integrated circuits

(ICs), devices, and processes. Alternative design techniques can be quickly evaluated and

various tradeoffs can be determined before a circuit or device is fabricated. Since fabri

cation of circuits and devices is time consuming and costly, simulation provides an

efficient and attractive way to explore the design space [1.1].

Various types of simulations currently in use, from the process level to the circuit

level, are depicted in Figure 1.1. Also shown is the relationship between fabrication and

simulation. Two branches are shown, one the experimental branch and the other the

computational or simulation branch. Corresponding to each step in the experimental

branch there is a simulation step that serves a similar purpose. The eventual goal is to

produce circuits that are functionally correct and meet the desired specifications. This is

achieved in an iterative manner until the design converges to the specifications. Simula

tions may not completely eliminate repeated fabrications but they significantly reduce the

number of iterations that are required. As an example, there is a thousand-to-one cost

savings in simulating a process step compared to laboratory costs [1.1].

A simulator that combines two or more levels of simulation is called a mixed-level

simulator. The key idea behind a mixed-level simulator is to use detailed forms of simu

lation on the critical parts of a circuit, to get precise waveform information, and less

accurate but faster forms of simulations for the rest of the circuit There is a definite tra

deoff between the accuracy of the simulations and the runtime. The mixed-level circuit
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and device simulator CODECS is described in this dissertation. Some critical applica

tions of mixed-level circuit and device simulation are also presented.

Early work in mixed-level simulation was devoted to combining circuit, timing and

logic-level simulations SPLICE1 [1.2], DIANA [1.3]. In later work mixed-level simula-

don was used to combine circuit and logic simulations in SAMSON [1.4], and circuit,

logic and register-transfer-level simulations in SFLICE2 [1.5].

In general, mixed-level simulation has been used extensively to combine the circuit

level of simulation with higher levels of simulation. Another direction in which mixed-

level simulation can be used is to combine circuit simulation with device simulation as

has been done in MEDUSA [1.6] and SIFCOD [1.7]. This approach has several advan

tages. Devices can be simulated under realistic dc and time-dependent boundary condi

tions imposed by the circuit in which they are embedded. Conventional device-level

simulation typically allows only voltage or current boundary conditions for a device;

and, hence, cannot account for circuit embedding. Furthermore, with a mixed-level cir

cuit and device simulator one can simulate circuits even in the absence of analytical

models9" for semiconductor devices. If the doping profiles and the geometry of the dev

ice are available, then circuits can be simulated. This provides a predictive capability at

the circuit level, since the impact of process changes and alternate device designs on cir

cuit performance can be determined. Such a simulator provides a direct link between

technology and circuit performance. In addition, developers of analytical models for

semiconductor devices can use the mixed-level circuit and device simulator as a means

for verifying the models for the circuit simulator. Physical effects, that are important and

must be incorporated, can be determined and their effect on circuit performance can be

evaluated.

* Analytical models refer to mathematical expressions that relate the terminal currents to the terminal vol
tages of a device.



There is, however, one disadvantage to this approach. Device-level simulation

requires the solution of partial-differential equations (Poisson's equation and the current-

continuity equations) and is computationally expensive. The tradeoff between accuracy

and runtime can be significant. Mixed-level circuit and device simulation is suitable for

leaf-cell-based designs, where the leaf cells are made up of a small number of transis

tors. Alternatively, critical devices can be identified and simulated at the device level

with the rest of the circuit being simulated at the circuit level.

MEDUSA provides a general-purpose circuit-simulation capability with a one-

dimensional device simulator for bipolar transistors, and an approximate quasi-two-

dimensional simulator for MOSFETs. SIFCOD, on the other hand, provides one-

dimensional and two-dimensional numerical models but has a very simple circuit-

simulation capability. Recently a coupled device and circuit simulator has been reported

[1.8] which is based on the two-dimensional device-level simulator PISCES [1.9]. The

simulator is a modified version of PISCES that incorporates a circuit-simulation capabil

ity. All of these simulators provide only dc and transient simulations of circuits with

numerical devices. Although these simulators could be extremely useful to process, dev

ice, and circuit designers as well as the device modeling community, they are unfor

tunately not available in the public domain.

The goal of this research has been to develop a general framework for mixed-level

circuit and device simulation that supports a wide variety of analyses and numerical

models. A coupled device and circuit simulator, called CODECS, is the result of this

research. The simulation environment of CODECS enables one to model critical devices

within a circuit by physical (numerical) models based upon the solution of Poisson's

equation and the current-continuity equations. Analytical models can be used for the

noncritical devices. CODECS supports dc, transient, small-signal ac, and pole/zero ana

lyses of circuits containing one- and two-dimensional numerical models for diodes and



bipolar transistors, and two-dimensional numerical models for MOSFETs. In addition dc

and transient sensitivities to doping profiles can be computed at the device level. The

numerical models in CODECS include physical effects such as bandgap narrowing,

Shockley-Hall-Read and Auger recombinations, concentration and field-dependent mobil

ities, concentration-dependent lifetimes and avalanche generation.

An effective coupling of the device and circuit-simulation capabilities is achieved

by a proper choice of algorithms and architecture. Various algorithms to couple the

device-level and circuit-level simulators have been implemented in CODECS. These

algorithms are evaluated based on the convergence properties and runtime performance

of the coupled simulator. This study also provides guidelines for choice of a particular

algorithm.

Another aspect of this research has been to investigate critical applications of

mixed-level circuit and device simulation. Typical examples include simulation of high-

level injection effects in BiCMOS buffer circuits, non-quasi-static MOS operation,

switch-induced error in MOS switched-capacitor circuits, and inductive turn off of pin

rectifiers. For these examples conventional circuit simulation with analytical models

gives inaccurate results.

This report is organized in the following manner. Chapter 2 provides an overview

of circuit simulation and the various techniques used for modeling of semiconductor dev

ices for use in circuit simulators. In Chapter 3 an overview of the physical models used

at the device level of simulation is provided. This is followed by a description of the

space-discretization techniques and the solution algorithms. The problem of mixed-level

circuit and device simulation is addressed in Chapter 4. A framework is proposed for the

mixed-level simulator and algorithms to couple the device and circuit simulators are

described. The convergence properties of the coupled simulator are also investigated.

Chapter 5 describes in detail the algorithms used in CODECS and the techniques used



for enhancing dc convergence. An initial prototype of CODECS was developed in LISP

and Chapter 6 provides a speed performance comparison of the LISP-based version with

the new version in the C language. A comparison of the tradeoffs involved in use of

analytical models is described in Chapter 7 and several applications of CODECS are

illustrated in Chapter 8. Finally, the major contributions of this research are summarized

in Chapter 9 and possible directions for future research are also listed.



CHAPTER 2

An Overview of Circuit Simulation and

Semiconductor Device Modeling

2.1. Introduction

Circuit-level simulation is one major component of a mixed-level circuit and device

simulator. This "chapter provides an overview of the circuit-simulation problem. First,

the nonlinear dc and transient analyses are introduced and the solution techniques

currently in use, namely, the direct and relaxation-based methods are described. This is

followed by a description of the small-signal ac and pole-zero analyses.

Modeling of semiconductor devices plays an important role in circuit simulation.

The simulation results are reliable only if accurate models are used for the devices.

Accuracy of a model is related to the application. For some simulations, such as those of

digital circuits, precise models are not necessary. On the other hand, simulation of ana

log and other high-performance circuits mandates the use of "exact" models. A model

that is suited to the simulation of digital circuits may be inappropriate for simulating

analog circuits. There is a tradeoff between the accuracy of a model and the simulation

runtime. Therefore, different models are used depending on the speed and accuracy

requirements of a simulation. Commonly used approaches to modeling of semiconductor

devices can be classified as: analytical models, empirical/table models, quasi-numerical

models, and numerical models.
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The modeling task involves use of a particular technique to model accurately the

static (dc) and dynamic (transient) operation of the device. First, a model is developed

for the dc operation. Then, the dc model is enhanced for use in transient analysis by

incorporating charge-storage effects.

Analytical models are by far the most popular and are addressed in detail in this

chapter. These models relate the terminal currents and voltages of a device by closed-

form expressions. An understanding of the device physics provides a first-order relation

ship between the terminal currents and voltages. Second-order physical effects are incor

porated by empirical factors. Nonetheless, several deficiencies exist in analytical models

and these are also described.

A brief description of the other modeling techniques is also provided along with

their advantages and limitations.

22. The Circuit-Simulation Problem

Circuit simulation consists of two distinct phases, an equation-assembly phase fol

lowed by an equation-solution phase. Circuit-level equations can be assembled by the

combined use of the Kirchoffs current and voltage laws (KCL and KVL) along with the

branch-constitutive relations for each element in the circuit [2.1]. Such an approach to

formulating the circuit equations is called the Sparse-Tableau Approach (STA) and is

used in the simulation program ASTAP [2.2]. However, the number of equations

describing the circuit is large; n +2b equations for a circuit with n + 1 nodes and b

branches.

Nodal Analysis (NA) [2.1] requires only n equations, for a circuit with n + 1

nodes. However, NA is restrictive in that it allows only elements which are voltage con

trolled, i.e., elements for which the terminal currents can be expressed as a function of

the terminal voltages. Modified Nodal Analysis (MNA), first used by [2.3] and later



formalized by [2.4], accommodates nonnodal elements and for this reason is preferred

and has been used in SPICE [2.3, 2.5]. MNA allows all types of circuit elements and

results in a system of equations that, although larger in size compared to NA, is still

considerably smaller than STA.

2.2.1. Dc and Transient Analyses

Dc and transient analyses are presented in this section. The transient simulation

problem is introduced and the dc operating point analysis is shown to be a special case

of the general transient problem. The dc operating point solution provides the initial con

dition for transient analysis and is computed before starting the transient simulation.

Transient simulations are by far the mostfrequently used analyses in circuitdesign.

The dynamic response of a circuit is described by a system of nonlinear differential-

algebraic equations obtained from the equation-assembly phase. These equations can be

written in a general form as

f(z(f),x(0,u(f)) = O

z(0 = g(x(0) (2.1)

where x is the vector of unknowns, i.e., the node voltages and the currents through non

nodal elements, u is the excitation vector, z is the vector of capacitor charges and induc

tor fluxes, f is a nonlinear vector-valued function obtained from an MNA formulation of

the circuit equations, and g is a nonlinear vector-valued function that relates the capaci

tor charges and inductor fluxes to the capacitor voltages and inductor currents, respec

tively. The initial conditions are obtained by setting z(0) = 0 and solving the nonlinear

algebraic equations

f(0, x(0). u(0)) = O (2.2)

The solution vector Xq = x(0) is called the dc operating point solution of the circuit. The
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capacitor charges and inductor fluxes at time t = 0 are given by the algebraic relation

ship

2(0) = g(xo) (2.3)

For a dc operating point analysis the nonlinear Equation (2.2) is solved. This is

done by an iterative approach and the Newton-Raphson method is frequently used since

it has local quadratic convergence [2.3, 2.6]. Use of Newton's method results in the

solution of a linear system of equations for each iteration. This system of equations is

given by

J(x*)Ax*+1 =-f(x*) (2.4)

k

where J(x*) = it
dx

is the Jacobian matrix of the circuit-level equations, and k is the

iteration number. Equation (2.4) is solved at each iteration for Ax*+I, which is used to

calculate the new iterate, x*+1 =x* + Ax*+1. This is done until convergence is reached

(I IAx*+1l I <e, where e is a user-specified error tolerance). Alternatively, Equation

(2.4) can be written as

x*+1
f I"1=x*- [j(x*)J f(x*) (2.5)

This system of equations is obtained from the companion circuit [2.7] of the circuit

under consideration. The companion circuit is a linear circuit obtained from the original

nonlinear circuit by replacing all nonlinear elements by their linear companion models

[2.7]. SPICE makes use of the companion circuit and the equations are assembled in the

form of Equation (2.5). The linear equations are solved by Gaussian elimination or LU

decomposition. In general, the system of circuit equations is very sparse; hence, sparse-

matrix techniques are used [2.6, 2.8].
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For transient analysis, the equations can be solved in two different ways, the stan

dard approach being the direct method and the other techniques being relaxation-based

methods. The flow-chart for the direct method is shown in Figure 2.1. The simulation

interval is divided into time points, and Equation (2.1) is solved at each of these

timepoints. At timepoint r„+1 Equation (2.1) can be expressed as

f(Zn+b X«+b Un+l) = O

Z»+l = g(*n+l) (2.6)

where the computed values xn+1 are used. These are the approximate values of the exact

solution x(rn+1) that are obtained from the numerical solution. The above equation can be

solved for the unknowns x„+1, once z„+1 is expressed in terms of the values of the unk

nowns x at the present and previous timepoints. This is done by use of an integration

formula where all time derivatives are replaced by discretized approximations [2.3, 2.6,

2.8]. This step is know as time discretization. For the backward-differentiation formulae

(BDF) [2.9] of order k, 1 < k < 6, zn+1 is given by

*n+i =-~ 2X+i-; =7-Ig(xB+w) (2.7)
nn i=0 nn j==0

Use of zn+1 from Equation (2.7) in Equation (2.6), results in a system of nonlinear alge

braic equations that can be expressed in a general form as,

F(xn+1) = O (2.8)

The solution of Equation (2.8) provides the solution at timepoint rn+1. The nonlinear

equations are solved in a manner similar to that used for the dc operating point analysis.

Newton's method is used whereby linear equations are assembled for the companion cir

cuit at each iteration and these are then solved by sparse Gaussian-elimination or LU-

decomposition techniques. Once convergence is achieved, the solution at the present

timepoint is available. A new timestep is then selected as described below, and the
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equations are solved at the new timepoint in a similar manner. The timestep is selected

such that error in time discretization due to the integration formula is less than a user-

specified error tolerance [2.3, 2.9].

The relaxation-based methods differ from the direct method in that all equations are

not solved simultaneously; rather they are solved in a decoupled manner. Thus Gaussian

elimination or LU decomposition is not required, and a substantial improvement in run

time performance can be achieved, particularly for large circuits where a large system of

equations has to be solved. These methods work extremely well when there is no feed

back or strong coupling between nodes; the equations are effectively decoupled. With

feedback some of the equations are coupled; hence, a relaxation approach may converge

very slowly, if at all. Two relaxation-based methods that have been successfully used are

Iterated Timing Analysis (ITA) [2.10] and Waveform Relaxation (WR) [2.11, 2.12].

These methods differ in the manner in which the equations are decoupled.

In ITA, the nonlinear differential-algebraic equations are discretized in time as in

the direct method. The nonlinear algebraic equations at each timepoint are then solved

by use of a Gauss-Seidel or a Gauss-Jacobi approach [2.10] instead of a direct solution.

The relaxation is at the nonlinear algebraic-equation level. For a Gauss-Jacobi algo

rithm, the n -th equation is solved for the n -th unknown, with an estimate for the values

of all the other unknowns at the first iteration. At other iterations the values from the

previous iteration are used. This process is repeated until convergence is reached on the

whole system of equations.

In general, each equation is a nonlinear equation, and the nonlinear equations have

to be solved by use of an iterative method. In ITA Newton's method is used. However,

the equations are not solved to convergence, instead only one iteration of Newton's

method is used. It can be shown that both the Gauss-Jacobi-Newton and Gauss-Seidel-

Newton loops have linear convergence [2.10]. Once the solution has been obtained at a



14

timepoint, the next timepoint is selected based on an error-control criteria, and the whole

process is repeated. It can be shown that if there is a grounded capacitor at each node,

ITA will converge. This assumption is quite realistic for many digital-MOS circuits.

With ITA the multirate and latency present in the circuit can also be exploited using an

event-driven simulation technique [2.10].

With WR the relaxation is applied at the nonlinear differential-equation level

[2.11]. The unknowns are the node-voltage waveforms. For each relaxation iteration,

new waveforms are computed for the node voltages. The differential equations can be

decoupled by use of a Gauss-Seidel or a Gauss-Jacobi method [2.12]. For the Gauss-

Jacobi algorithm, the n-th differential equation is solved for the voltage waveform at

node n, with an estimate for the voltage waveforms at the other nodes of the circuit at

the first iteration. For subsequent iterations, the waveforms from the previous iteration

are used. Convergence is checked by comparing waveforms from the previous iteration

to the waveforms at the present iteration, for each node. As with ITA, convergence is

guaranteed if there exists a grounded capacitor at each node [2.11].

As mentioned earlier, relaxation-based methods provide no advantage in simulating

tightly coupled circuits. They work well for many digital-MOS circuits where the signal

flow is essentially in one direction and there is no feedback. Whenever feedback exists,

some of the nodes are strongly coupled to one another and the equations must be solved

simultaneously as in the direct method. Thus, another approach combines the advan

tages of the direct method with that of the relaxation-based approaches. Partitioning

algorithms [2.12, 2.13] are used to identify the strongly coupled blocks within a circuit.

Direct methods are used on these subcircuits, and a relaxation-based method is used

between the subcircuits. In this manner the relaxation method is used only on subcircuits

which are decoupled and works extremely well. This combination of direct and

relaxation-based methods takes advantage of both solution techniques.
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2.2.2. Small-Signal Ac Analysis

Small-signal ac analysis is of interest in the simulation of analog circuits. It

involves determining the response of a circuit to a "small" sinusoidal excitation after a

dc operating point has been established. The magnitude of the excitation is such that the

operation of the nonlinear circuit is linear around the operating point and no significant

harmonics are generated.

Consider the circuit equations given by Equation (2.1). Assume the dc operating

point is given by Xq and Uq. A small perturbation is assumed in the excitation vector and

the new excitation, represented as a phasor, is given by u = u0 + ueytor, where u is a

complex quantity and © is the frequency of the sinusoidal sources. All input sources are

assumed to be of the same frequency. In response to this perturbation the solution vec

tor x is given by x = Xq + xejtoi such that the circuit constraints (KCL and KVL) are

still satisfied. The small-signal ac response is obtained by a truncated Taylor series

expansion of Equation (2.1) around the operating point; the linear terms are retained, and

f(z, x, u) =f(0, x0, u0) +Jri +-^-(x - xo) +-~(u - u0) (2.9)

In Equation (2.9), f(0, Xq, u0) is zero since x0 is the dc operating point solution. The

left-hand-side is also zero, since the perturbed response does not violate the circuit con

straints. Therefore, the linearized equations are given by

§g'(x0);(Dx +fx +-£u =O (2.10)

From Equation (2.10) the small-signal ac solution x is given by
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The above equations are a function of the frequency, co; hence, the solution x is

also a function of the same frequency. At a particular frequency, the linearized equations

are assembled with MNA or NA as in dc or transient analyses. All nonlinear devices

are represented by linearized admittances which are used for assembling the equations.

The complex linear system of equations is then solved by sparse Gaussian-elimination or

LU-decomposition techniques. With different values of co the solution x can be obtained

over a range of frequencies.

2.2.3. Pole-zero Analysis

Pole-zero analysis is useful when a designer is interested in determining the poles

and zeros of a transfer function, i.e., the natural frequencies of the circuit and the

transmission zeros of the transfer function. The transfer function, T(s), of a circuit

linearized at an operating point can be represented as,

D(s)

where s = o + yco is the complex frequency. The zeros of N(s) are the zeros of T(s)

and the zeros of D (s) are the poles of T(s). Therefore, the poles and zeros of T(s) can

be obtained from the zeros of the polynomials N (s) and D (s). These polynomials are

determinants of admittance matrices; the determinant can be obtained by decomposing

the matrix in LU factors and taking the product of the diagonal terms.

The zeros of the polynomials are found by an iterative root-finding method such as

Muller's method [2.8]. Since the number of roots are not known a priori, a termination

procedure [2.8] must also be used to terminate the root-finding algorithm. Alternatively,

other techniques can be used [2.14].
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23. Semiconductor Device Modeling for Circuit Simulation

Regardless of the circuit-level analysis and the solution methods used to solve the

circuit-level equations, branch-constitutive relations are required that model the semicon

ductor devices. Device models describe the physical operation of a device by providing a

relationship between the terminal currents and the terminal voltages. Once this relation

ship is known, the companion circuit for the nonlinear semiconductor device can be

obtained given the terminal voltages.

Several approaches are currently in use for modeling of the semiconductor devices.

These can be classified under four major categories: analytical, empirical/table, semi-

numerical, and numerical. There is always a tradeoff between the accuracy obtained with

a model and the computation time required to calculate the equivalent conductances and

currents, to be used in the companion circuit, for given terminal voltages. A simulation

is only as good as the models used for the semiconductor devices. An inaccurate model

results in erroneous simulation results. Therefore, modeling is very critical for circuit

simulation and this section addresses the different approaches used in modeling. Various

approaches to modeling are described along with their advantages and disadvantages.

23.1. Analytical Models

Analytical models are generally derived from an understanding of the physics of

device operation under some restricted conditions such that closed-form expressions can

be obtained for the terminal characteristics. Typically, a piecewise-uniform doping is

assumed within the device, and use is made of the drift-diffusion equations to obtain the

current-voltage characteristics for the semiconductor devices under dc conditions. Empir

ical parameters are introduced to model higher-order physical effects. Some simple

examples of this approach are the Ebers-Moll model [2.15] for the bipolar transistor and

the Shichman-Hodges model [2.16] for MOSFETs. These models are often inadequate
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for modeling present day integrated devices; hence, there is a significant research effort

for obtaining better models that account for all the important physical phenomena within

the device. The Gummel-Poon model [2.15, 2.17] has been the workhorse for simulation

of bipolar integrated circuits and has proved to be extremely useful. However, present

day bipolar devices cannot be adequately modeled by this model and once again there is

need for a better model to replace the Gummel-Poon model [2.18, 2.19]. For MOSFETs

a unified model has not emerged [2.20-2.31] and even today new models are constantly

being developed [2.32-2.36].

A model that is used for a particular device is characterized by a set of parameters

called the model parameters. These parameters are the various constants that appear in

the closed-form expressions relating the terminal currents to the terminal voltages. Their

values are determined from the measured characteristics of a device. Typically, parame

ter extraction relies on curve fitting such that the data from the analytical model is in

reasonable agreement with the measured data. Since the number of parameters to be

determined is usually quite large, parameter extraction makes use of optimization tech

niques such as those used in TECAP [2.37] or SUXES [2.38].

Optimization is used to minimize the error between the simulated and measured

current-voltage characteristics and the model parameters are chosen to minimize this

error. Even though the simulated current-voltage characteristics may be in good agree

ment with experimental data, the values of the terminal conductances could be inaccu

rate. Therefore, the optimization procedure should also minimize the error of the simu

lated and measured conductance values [2.39]. In the parameter extraction phase several

model parameters are used as curve-fitting parameters and loose their physical

significance. Although the model was originally based on the physics of device opera

tion, the parameters are not Therefore, any correlation that existed between the process

parameters, such as the doping levels, may disappear, and the model cannot be used to
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predict the effect of process variations on circuit performance.

Analytical models are based on the physics and the structure of the device; hence,

a new model is required for each device type and structure. The model parameters can

only be determined after actual devices have been fabricated, and their characteristics

have been measured. In fact, the model may have to be modified significantly to obtain a

good agreement with measured data, if some physical effect that was not incorporated in

the model is important in the fabricated devices, e.g., velocity saturation in short-channel

MOSFETs [2.40]. Good analytical models, therefore, become available only after an IC

fabrication process is in production. Circuit designers are often faced with the problem

of designing and simulating circuits without a good set of model parameters; therefore,

the circuit design may be quite conservative and it is difficult to push a technology to its

limits. Furthermore, even if the device structure does not change significantly, the opera

tion of the device may be altered considerably, e.g., a lightly doped drain MOSFET

[2.41] operates differently from a conventional MOSFET [2.42, 2.43]. In this case a new

analytical model is required for the modified structure, which again necessitates fabrica

tion of devices and determination of the experimental characteristics. Analytical models

do not possess a predictive capability, and cannot be used to evaluate the impact of pro

cess changes on circuit performance.

Once the dc model has been obtained for the device it is extended to account for

the dynamic or transient operation. This requires identifying the depletion regions and

the charge-storage regions within the device and modeling them as capacitors attached

between the various internal and external terminals of the device. The capacitance

models are derived under the assumption that the terminal voltages vary slowly during

transient analysis, i.e., quasi-static operation is assumed. Therefore, expressions for the

dc charges can be used to model the incremental capacitances. Examples of such a

modeling approach are the MOS-capacitance models [2.44] and the depletion-region
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capacitance of pn junctions.

The capacitance models are based on the concept of incremental-charge partitioning

[2.45]. The incremental capacitances are defined by

C<7 = — (2.13)

where A<2, is an incremental charge associated with terminal / due to a change in vol

tage AVj at terminal j. Physical insight into device operation is necessary to determine

the charge partitioning.

As an example, consider the depletion-region capacitance of a pn-junction obtained

by use of incremental-charge partitioning. This capacitance is given by

C;(V)= f Cj0 ,w (2.14)
1 - —

where C;0 is the zero-bias junction capacitance, V is the forward voltage across the

junction, and Vbi is the built-in potential of the pn junction and m is the junction-

grading coefficient Under reverse-bias conditions this capacitance model is adequate.

For forward-bias conditions the depletion region decreases and the capacitance increases.

The capacitance model of Equation (2.14) suggests that the depletion-region capacitance

becomes very large, as shown in Figure 2.2, when the junction is biased such that opera

tion is in high-level-injection conditions, i.e., V is close to Vbi. This is incorrect as has

been demonstrated in [2.46, 2.47]. The capacitance model fails to predict the correct

trend since the incremental charge cannot be uniquely associated with the contacts

[2.45]. Under reverse-bias conditions, the incremental charge can be uniquely assigned to

each contact and the assumption of incremental-charge partitioning is a good one. Circuit

simulators use a modification of the Equation (2.14) under forward-bias conditions. The

nonlinear capacitance model is linearized at a voltage Vx, where, 0 < Vx < Vbi, and use
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Equation (2.14)
/ Linearized Capacitance

Actual Capacitance

Figure 22: Junction capacitance-voltage characteristics
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is made of the linearized characteristics. However, this still predicts an increase in the

depletion-region capacitance whereas the capacitance decreases for higher forward biases

as shown in Figure 2.2 [2.15].

For MOSFET-capacitance models, the application of incremental-charge partition

ing provides correct results only for capacitances connected between the gate contact and

any of the other contacts [2.45]. However, there is no rigorous basis for partitioning the

channel charge between the drain and source terminals. The partitioning that is usually

performed is arbitrary and is only motivated by physical operation of the device. There

is no theoretical justification that one particular charge-partitioning scheme is better than

another [2.32]. Ward [2.44] has developed a channel-charge partitioning scheme that is

used in several MOSFET models. This partitioning scheme leads to nonreciprocal capa

citances and the source-drain and drain-source capacitances are negative [2.32].

The capacitance models are based on a low-frequency analysis or the quasi-static

assumption. A mathematical analysis in [2.45] indicates that this approach is not valid

at high frequencies. Thus, low-frequency models do not suffice for high-frequency

operation or operation under fast transient conditions.

If a charge-storage model is based on capacitances, it can lead to nonconservation

of charge during a transient simulation. It has been shown that a charge-based model is

essential for conserving charge [2.12, 2.31]. Therefore, analytical models frequently use

closed-form expressions to relate the charges to the terminal voltages. The incremental

capacitances are derived from the charge expressions for experimental verification. All

experimental device data are based on capacitance measurements since measurement of

charges is difficult. However, the capacitance data are obtained from low-frequency

measurements rendering them useless for high-frequency operation of the device.

Charge storage of minority carriers is important in diodes and bipolar transistors.

The removal of the stored charge results in a delay when the device is turned off and is
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of concem in switching circuits. Minority carrier charge storage is modeled by means of

an effective transit time in a charge-control representation of the diode or bipolar transis

tor [2.48]. For the low-frequency or quasi-static model the charge storage is given by the

product of the transit time and the current, and the associated capacitance is called the

diffusion capacitance [2.48]. At frequencies higher than the reciprocal of the transit

time, the frequency dependence of the diffusion capacitance is important; the diffusion

capacitance decreases as the frequency increases [2.49]. Commonly available SPICE

analytical models use a constant value of the diffusion capacitance for all frequencies

and are inaccurate at high frequencies.

Even if the analytical model works well under dc conditions, the transient response

may be questionable for some regions of device operation. The problems with some of

the existing analytical models are now summarized. A detailed comparison of analytical

and numerical models is provided in Chapter 7 and substantiates some of the deficiencies

outlined here.

The diode models do not account for conductivity modulation [2.50] under high-

level-injection conditions. Furthermore, the charge-storage model is inadequate to study

the turn off of diodes which is important for the study of power-diode circuits.

Bipolar transistor models are inaccurate for operation under high-level-injection

conditions in the collector region, i.e., when base pushout occurs [2.49, 2.50]. Since the

charge stored in the collector region is not properly modeled the delay predicted during

the turn off of the transistor would be inaccurate. Attempts have been made to modify

the Gummel-Poon bipolar model to take into account the base pushout in [2.18, 2.19].

All these models, however, make use of low-frequency capacitance models.

In MOSFET modeling the capacitance models are also based on a quasi-static

analysis. Recent attempts in modeling have addressed this problem [2.34, 2.35]; these

models effectively solve a one-dimensional electron current-continuity equation for n-
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channel MOSFETs. There appears to be no simpler way to model the non-quasi-static

operation and hence quasi-numerical approaches are used. Most MOS models make use

of a scheme for channel-charge partitioning which is somewhat arbitrary and has no

sound theoretical basis. This can lead to errors particularly in circuits in which the

charge that flows out of each terminal must be accurately modeled. In spite of some of

these shortcomings analytical models have been and are extremely useful for circuit

design. If a circuit designer is aware of the limitations of the model, he/she can design a

circuit ensuring that devices never operate in regions which are not adequately modeled

by the model in use with the circuit simulator.

2.3.2. Empirical or Table Models

As the name suggests empirical models are not based on the physical operation of

the device. These models are based on the terminal characteristics of the device; and,

therefore, they can be expected to be technology independent when compared with

analytical models. The basic idea in a table model is to store a set of discrete data, for

the current-voltage and charge-voltage characteristics, in multi-dimensional arrays or

tables. The model-evaluation subroutine of the circuit simulator then interpolates between

the discrete values that are stored to obtain the current and conductance values for a

given set of terminal voltages. Table models have been commonly used for modeling the

dc characteristics of a device. These models ensure accuracy in the current-voltage

characteristics, but in general do not address the accuracy in conductances which is of

concern for analog circuits. The models are very efficient since no complex function

evaluations are required; only simple arithmetic operations have to be performed to com

pute the conductance and current values.

Table models have been successfully used for the simulation of MOS circuits

[2.51, 2.52, 2.53]. However, they have not been used for simulation of bipolar transistor
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circuits because of the exponential nonlinearity in bipolar devices.

The accuracy of a table model depends upon the number of data points stored in

the tables. If a large number of discrete data points are stored, the table model would be

very accurate. Various approaches have tried to reduce the dimensions of the problem

by use of a smaller number of tables and by modeling some dependencies with analyti

cal expressions [2.51, 2.52]. The dependency on device sizes is incorporated in the

tables. Therefore, different tables have to be used for different device sizes. This places

a restriction on the device sizes that can be used in simulating a circuit The various

table models differ in the way in which they interpolate data; some models just make

use of linear interpolation, whereas others use splines [2.53], or piecewise cubic interpo

lation [2.54, 2.55]. Alternatively, B-splines can be used for device modeling [2.56].

Table models rely on measured data to generate the multi-dimensional tables of the

current-voltage characteristics; therefore, they can be used only after devices have been

fabricated with a process. In this mode, table models do not posses any predictive capa

bility. If use is made of data obtained from device-level simulations, table models can

also be used in a predictive manner. Since table models only need experimental data,

they are insensitive to changes in technology. In fact, the models do not change when

the underlying process is modified. This is one of the reasons for using a table-based

approach for hardware implementation [2.55].

The use of table models for modeling the intrinsic capacitances of a MOSFET has

been very limited. In [2.57] the capacitance model is based on analytical models, and a

table model is presented in a later work [2.58]. This table model makes use of measured

capacitance data for generating the charge-based tables. An elaborate interpolation

scheme and a fixed-charge partition scheme are used for calculating the capacitances.

However, no circuit simulation examples have been presented with this model, and it is

not clear if the model conserves charge during transient simulations. An alternate
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charge-based formulation has been used in [2.59]. A channel-charge partitioning scheme

has to be incorporated in the table model similar to that for analytical models. The

capacitance/charge tables are again based on data from dc characteristics, and therefore

are accurate only for low-frequency operation.

Table models are simple, efficient, and technology independent. They are not very

general and have been used only for MOS devices. Furthermore, a good table represen

tation for charge is not available from experimental data. Thus, generation of charge-

based table models from experimental data is difficult, and device simulations must be

used. The existing charge-based table models are inadequate for high-frequency opera

tion.

2.3.3. Quasi-Numerical Models

These models make use of the basic physical laws that govern the device opera

tion. Simplifications are introduced such that the equations can be solved efficiently by

numerical techniques. The models are referred as quasi-numerical models since complete

numerical solutions are not used.

In [2.60] a quasi-numerical model is presented for the bipolar transistor in which

one-dimensional expressions for device characteristics are integrated across a device to

yield two-dimensional characteristics. This approach has been successful in modeling the

two-dimensional operation of the device and is at least an order of magnitude faster than

conventional device-level simulation [2.60]. However, the model is a dc model and no

simple extensions are possible for modeling the transient operation. In addition, the

model has been derived for a particular type of bipolar device structure, namely, oxide-

isolated walled-emitter npn transistors.

The simulation program BIPOLE [2.61] uses one-dimensional transport equations

with a variable boundary regional approach. Two-dimensional effects are handled by
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combining one-dimensional analyses in the lateral and vertical dimensions. However, this

approach is also restricted to a steady-state solution of the device-level equations and no

time-dependent analysis can be performed.

MOS modeling has been addressed by [2.62] and [2.63]. In [2.62] the emphasis

has been on an environment for developing quasi-numerical models. A model has been

developed only for the threshold voltage of the device. The threshold-voltage model

alone is not sufficient for circuit simulation; and, hence, this model is not suitable for

use in a circuit simulator.

A quasi-numerical model for the drain current is presented in [2.63] along with a

threshold-voltage model. The drain current is obtained by a numerical solution of the

one-dimensional current-continuity equation. However, both of these approaches are

limited to dc conditions and are inadequate for dynamic operation of the device.

The non-quasi-static MOS models of [2.34] and [2.35] address the problem of

dynamic operation of MOSFETs. The one-dimensional current-continuity equation is

solved assuming analytical expressions for the various charges. In this sense these

models are quasi-numerical instead of being pure analytical models. The model in [2.34]

employs a charge-partitioning scheme, whereas the model in [2.35] makes use of quasi-

static-charge models for the gate and substrate currents. Physical effects such as velo

city saturation are difficult to account for in the models of [2.34] and [2.35].

23.4. Numerical Models

Numerical models employ the solution of the basic physical laws governing device

operation for determining the characteristics of a device. This involves a numerical solu

tion of Poisson's equation and the current-continuity equations; hence, the name numeri

cal models. These models are accurate and useful for detailed simulations. They also

provide a means for predicting the impact of process variations on circuit performance.
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However, the CPU time required with numerical models is prohibitive for use in large

circuits. They can be used to advantage in the simulation of leaf cells or small circuits.

Commonly, numerical models are used to study internal device operation and the

current-voltage characteristics at the device terminals. One of the first application

towards circuit simulation was in the SITCAP [2.64] program, where a one-dimensional

numerical model for the bipolar transistor is used to generate model parameters for the

analytical Gummel-Poon model. The use of numerical models in circuit simulation has

been limited to the circuit simulator MEDUSA [2.65]. However, this simulator is not

available in the public domain; therefore, numerical models have not found widespread

use in circuit simulation in spite of the accuracy that they can provide.
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CHAPTER 3

An Overview of Device Simulation

3.1. Introduction

The second component of a mixed-level circuit and device simulator is the device-

simulation capability. The semiconductor device-simulation problem can be formulated

as a set of three coupled nonlinear partial-differential equations (PDEs) in space and

time, which are obtained from the underlying physics. These equations are solved for

applied terminal voltages which constitute the boundary conditions for the PDEs. Dev

ice simulation also relies on physical models for several phenomena and the models in

common use are described. However, an exhaustive survey of models [3.1, 3.2] is

beyond the scope of this chapter. The device-simulation problem can be reformulated in

different ways by use of transformations that lead to a new set of basic variables. These

choices are. surveyed along with various techniques for scaling the semiconductor device

equations.

The continuous device-simulation problem is discretized both in space and time.

Space discretization plays an important role in the overall accuracy of a simulation.

Different techniques are available for performing the discretization. Of these, the finite-

difference scheme is described in detail, as this technique has been used in CODECS.

The finite-box and finite-element formulations are also presented for completeness. The

problem of automatic mesh generation and grid refinement is then described.
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After space discretization the device equations result in a system of nonlinear

differential algebraic equations. For time-domain transient analysis application of a suit

able integration scheme leads to a system of nonlinear algebraic equations. These equa

tions are linearized using the Newton-Raphson technique and solved by means of relaxa

tion or direct methods. Some of the main solution techniques currently in use are

reviewed.

Small-signal ac analysis is performed on a device by linearizing the device equa

tions at a dc operating point The problem is described and the approaches to solve it are

presented.

32. The Device-Simulation Problem

The operation of a semiconductor device can be described by three fundamental

equations obtained from the Boltzmann transport equation [3.1]. These are Poisson's

equation and the electron and hole-current continuity equations.

V.€E = q(ND -NA +p -n) (3.1a)

1VJn=^;-(G-R) (3.1b)
q at

-VJ,=-% +(G -*) (3.1c)

where

and

q p dt

E = -V\|/ (3.2a)

J„ = -q u„nVy + qDn Vn (3.2b)

JP =-q VPP Vy - qDp Vp (3.2c)
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e = dielectric constant of the material (FcnT1)

q = electronic charge (C)

\y = electrostatic potential (V)

n (p) = electron (hole) concentration (cm"3)

E = electric field (Vcm"1)

Jii Up) = electron (hole) current density (Acm"2)

H» (Hp) = electron (hole) mobility (cn^V1 s"1)

D„ (Dp) = electron (hole) diffusivity (cm2s"1)

Nd (Na ) = donor (acceptor) concentration (cm"3)

G = net generation rate (cm"3 s"1)

R = net recombination rate (cm"3 s"1)

The solution of the above system of equations provides the internal distribution of elec

trostatic potential and the carrier densities, and the external terminal currents. These

equations cannot be solved analytically; therefore, numerical methods have to be used.

The first efforts in numerical solution of these semiconductor device equations date back

to 1964 when Gummel [3.3] solved the steady-state equations in one dimension for the

bipolar transistor. The solution of the time-dependent problem was presented in [3.4].

Solution of the one-dimensional problem was also employed by DeMari for the steady-

state [3.5] and transient analysis [3.6] of pn-junction diodes. The steady-state and time-

dependent problems have been solved in two-dimensions by several researchers. Some

examples of these efforts are the simulation programs PISCES [3.7], HFIELDS[3.8],

BAMBI [3.9], GALENE [3.10], FEELDAY [3.11], and CADDET [3.12]. Recent work

has been in the solution of the basic equations in three dimensions. As device dimen

sions are scaled down three-dimensional effects become important. Device-simulation

programs that provide three-dimensional analysis are FEELDAY [3.13], TRANAL [3.14],
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WATMOS [3.15], and CADDETH [3.16].

'33. Physical Models for Device Simulation

The basic semiconductor device equations rely on physical models for several

different quantities, such as the mobilities and the recombination and generation rates.

The models are used to provide a relationship between these quantities and the doping

levels, thecarrier densities, current densities, and the electric fields. A brief survey of the

various models currently in use is provided here.

33.1. Carrier•Mobility Models

The modeling of carriermobilities is important for predicting accurate values of the

current densities. The mobility model is used to account for different scattering mechan

isms. Carriers are scattered by phonons and defects within the material and this scatter

ing mechanism is called lattice scattering. Scattering due to the ionized impurities results

in a reduction of the mobility. Different models have been proposed to model the mobil

ity reduction due to ionized impurities. The first model was proposed by Caughey and

Thomas [3.17], where an empirical expression is used that fits the experimental data, and

is given by

^r) = mnin + r*r.
1 +

Nn
(33)

where NT = ND + NA is the total doping concentration. Equation (3.3) is used to model

the mobilities for both the majority and the minority carriers, although the expression

was originally proposed for majority-carrier mobilities. Data for the various constants

appearing in Equation (3.3) is available in the literature for silicon at a temperature of

300 K; there is no agreement in the literature as to a consistent set of parameters. This is
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possibly due to the differences in processes on which the experimental devices are fabri

cated and in reality the mobility models have to be "tuned" to a process.

Two other models that are in use in device simulators are the Scharfetter-Gummel

model [3.4] and a model due to Arora et al., [3.18]. For the Scharfetter-Gummel mobil

ity model

\Wt) =
Ho

1 +
to

Nref+NT/S

ITT (3.4)

However, this model is valid only at a temperature of 300 K. The model of Arora et al.,

is similar in form to the model of Caughey and Thomas but has a built-in temperature

dependence

V2.33

-0.57

\WT) = Ur

Au

1 +

T_

To

N,

N,ref
T_

To

(3.5)

2.546

where T0 = 300K.

The scattering due to electrons and holes becomes important when the carrier den

sities are large. One approach to account for carrier-carrier scattering is to simply use an

alternate expression for NT of Equation (33), namely,

NT=a(NA +ND) + (i-a)(n + p) (3.6)

where a is assumed to be 0.34 [3.10].

Mobility is also degraded by the electric field. In fact, for large parallel electric

fields the drift velocity of the carriers saturates and the mobility model must account for

the phenomenon of velocity saturation. Two frequently used models are the Caughey-

Thomas model [3.17] and the Scharfetter-Gummel mobility model [3.4]. In the former
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|i(N, £,) =-7 U^l
1 +

u(N)£/
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W\=W (3.7)

where Pis 1 for holes and 2 for electrons and vmax is 1.1 x 107 cm/sec for electrons and

9.5 xlO6 cm/sec for holes [3.10]. £/ is the component of electric field parallel to the

current-flow direction. A more physical viewpoint requires the use of the quasi-Fermi

level instead of the electric field. However, the differences between use of the electric

field and quasi-Fermi levels is small and the use of £/ has been preferred [3.1, 3.10].

For the Scharfetter-Gummel mobility model the electric field dependence is given by

\i(N,El) =
Ho

\h
+ — +\L(N) J Ej/A+F

Another scattering mechanism, that is important in MOSFETs, is surface scattering due

to roughness at the silicon-oxide interface and due to interface states. The mobility

models for this scattering phenomenon are empirical in nature. The first mobility model

to account for surface scattering was proposed by Yamaguchi [3.19], where the electric

field is split into two components £/, the component parallel to the current (lateral elec

tric field), and Et, the component of electric field perpendicular to current-flow direction

(transverse electric field). The mobility is given by

u(N, £„£,) = (l+cx£,]l/2

B

TTW (3.8)

(3.9)

This model was later revised by Yamaguchi [3.20] to a physically acceptable empirical

model. In this case the mobility is first calculated as

u(N,£/) = -r
1 + a£,

V/2
(3.10)
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The above value of \i(Nt Et) is used in Equation (3.7) or (3.8) instead of \i(N).

Selberherr [3.21] has proposed a mobility model for surface scattering that also

depends on the distance perpendicular to the interface. In PISCES [3.22] use is made of

the Watt-Plummer [3.23] model for surface mobility.

33.2. Carrier Generation and Recombination Models

The important recombination and generation mechanisms for silicon are Shockley-

Read-Hall (SRH) recombination, Auger recombination, and avalanche generation. The

recombination rate for the SRH process is given by

np - n.-2
ip(n +nt) + xn(p +pt)

where n, p are the electron and hole concentrations, nie is the effective intrinsic carrier

concentration, in (xp) the electron (hole) lifetime and nt (pt) is the concentration of

traps at an energy level £,. In the SRH recombination process, transitions between the

conduction and valence bands are assisted by traps in the band gap. Since the energy

levels of the traps are not known, the most effective trap level is assumed, i.e., at the

center of the bandgap [3.24]. Therefore, nt =pt = nie.

At higher concentrations the lifetimes decrease due to the creation of additional

recombination centers. The dependence of lifetimes on doping is given by empirical rela

tions that fit experimental data. A commonly used expression given in [3.25] is

NT
1 +——

where NT = ND + NA is the total doping concentration. The experimental data again

shows a wide scatter in the various parameters, t0 and N„j.
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Another recombination process that involves direct band-to-band transitions is

Auger recombination. The model for Auger recombination is given by

Rau8 =(c„n+ cpp)(np - n£) (3.13)

where cn, cp are the Auger-capture coefficients. The typical values of these constants at

300JT are 2.8 xlO"31 cm6/s and 9.9 xlO""32 cm6/s, respectively. The Auger coefficients

have a very weak dependence on the doping levels, carrier densities, and temperature.

Carrier generation due to impact ionization (avalanche generation) is modeled by

GAv^a„\J„\+ap\3p\ (3.14)

The ionization coefficients afl (Op) depend on the electric field according to

Chynoweth's law [3.26],

a = a^e ' (3.15)

where £/ is the component of electric field parallel to the current density. The electric

field component perpendicular to the current flow does not cause ionization [3.27]. The

values of impact ionization parameters a,,,, and B are available in the literature [3.1].

33.3. Heavy-Doping Effects

In heavily doped regions of silicon the material becomes degenerate and the

bandgap narrows and becomes position dependent. A simple approach to model bandgap

narrowing and degeneration is by the use of an effective intrinsic carrier concentration

niey related to the intrinsic concentration for low doping ni0.

*£ = i.-o e kT (3.16)

where AEg is the effective bandgap narrowing and is determined by electrical measure

ments. A frequently used model for A£^ is due to Slotboom [3.28],
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(3.17)

where EBGN = 9mV, and NBCN = 1x 1017 cm"3. Since only the total bandgap narrowing

can be determined from measurements it is assumed that the shift in conduction and

valence band edges is identical, i.e,

A£.
A£c = A£v = —£- = jfcrin

2

The electron and hole concentrations are given by

v-$»

n = ni0e

4>» -v

P =niee

(3.18)

(3.19a)

(3.19b)

where <J>n (<J>p) is the quasi-Fermi level for electrons (holes). Due to the position-

dependent bandgap, an additional electric field is created and the expressions for current

densities are now given by [3.29]

J„ = -<7Hn"V y +

JP =-<7M>V V-

A£c

A£„

+ qDnVn

-qDpVp

(3.20a)

(3.20b)

Once the above physical phenomena have been modeled the basic semiconductor equa

tions can be solved; the device terminal voltages establish the boundary conditions for

the PDEs.
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3.4. Boundary Conditions

The boundary conditions can be classified as Dirichlet or Neumann [330], or a

combination of the two called a mixed-boundary condition. The boundary conditions

used in semiconductor device simulation can be classified as physical and artificial boun

dary conditions [3.1]. The latter boundary conditions have to be imposed to simulate

only the intrinsic device.

The physical boundaries are those due to the contacts and interfaces with the oxide

or other insulators. The simplest type of contact is an ohmic contact which can be either

voltage controlled or current controlled. For a voltage-controlled contact the boundary

condition for the electrostatic potential is given by

\|fc = \jfo + V,app (3.21)

where \|/c is the electrostatic potential at the contact for an applied voltage Vapp and \j/0

is the equilibrium potential. If the ohmic contact is to a silicon region the boundary

values of the carrier concentrations are obtained by assuming thermal equilibrium and

charge neutrality at the contact These conditions are given by

np - n£ = 0

ND-NA+p-n=0

From these two conditions it can be shown that

\ND - NA I
Yo = sgn(Ak -NA)ln

Vo

V-r
nc = n0 = niee

Pc =Po = niee

In;
1 +

\ND -NA\

4n,-2

2 V2

(3.22a)

(3.22b)

(3.23a)

(3.23b)

(3.23b)

The function sgn(;t) is -1 if x < 0 and +1 if x > 0. Equations (3.21), (3.23b) and
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(3.23c) are the Dirichlet boundary conditions for the potential, electron concentration,

and hole concentration, respectively.

For the gate contact of a MOSFET, \|f0 has to be evaluated in a different manner.

To derive the boundary condition, consider the energy-band diagram under equilibrium

for a MOS-capacitor as shown (the substrate is p-type) in Figure 3.1. With the quasi-

Fermi level of the substrate as the reference, the gate potential at equilibrium is given

by,

= ®SM ~ l$i (3.24)

where <&MS is the metal-semiconductor work-function difference, and typ is the hole

quasi-Fermi level. With d>5 expressed in terms of the electron affinity x» Equation (3.24)

can be written as

^° =*+i Eg + *7*ln

which can be rearranged to,

1
V*o = X +

2°
Eg + Win

Nc_
Nv

Nc_
Nv

+ IV-**- «<M

_<D
'A/

(3.25)

(3.26)

where Eg is the bandgap, Nc (Nv) is the density of states at the edge of the conduction

(valence) band. It should be noted that yg0 from Equation (3.26) can be calculated

independent of the doping level in the silicon region, whereas Equation (3.24) requires

information of the doping level.

The interface boundary conditions make use of Gauss's Law in differential form.

At the interface,

*5iESi - %xEox - Qi (3.27a)
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where Qx is the interface-charge density. The implementation of this boundary condition

is described in Chapter 5. The components of current perpendicular to the interface are

given by

J».t = -qRsuRF (3.27b)

JpA = qRsvRF (3.27c)

where ft is a unit normal vector, and Rsurf is me surface recombination rate. If Rsurf *s

assumed to be zero the boundary conditions (3.27b) and (3.27c) reduce to homogeneous

Neumann boundary conditions.

Finally, the artificial boundaries are inserted so that only the intrinsic portion of the

device is simulated. These boundaries have to be determined by the physical operation of

the device. For a MOSFET as shown in Figure 3.2 these boundaries correspond to the

edges A-B and C-D. At such boundaries it is assumed that the components of electric

field and current densities normal to the boundary are zero. Thus

E„.fi = 0 (3.28a)

J„.fi = 0 (3.28b)

^.6 = 0 (3.28c)

Naturally, the boundaries A-B, C-D should be placed such that the above conditions

hold good. Otherwise the simulation results would be questionable.

3.5. Choice of Independent Variables

The semiconductor device-simulation problem can be solved as given by Equation

(3.1) with \j/, n and p being the basic set of independent variables. One problem with

this set of variables is that it can lead to negative, unphysical, values for carrier concen

trations due to roundoff errors. Thus, care must be taken to ensure that the carrier
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Drain Contact
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concentrations are not negative. However, this set of variables is preferred by [3.1], and

experiments have indicated that faster convergence is achieved by the use of y, n, and

p [3.31]. For this reason CODECS makes use of \}f, «, and p as the independent vari

ables. A brief summary of the other variables is included for completeness.

An attractive set is \y, §„, and typ, i.e., the electrostatic potential and the electron

and hole quasi-Fermi levels. The advantages are that all the variables are of the same

order of magnitude, and carrier concentrations can never become negative. However, the

continuity equations become exponentially nonlinear in tyn, §p. This choice of variables

has been used in [3.32]. A comparison in [3.31] indicates that a larger number of itera

tions is required to reach convergence, possibly due to the severe nonlinearity of the

problem.
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Slotboom [3.33] has used another set of variables denoted by \y, u, and v, where

u = e

v = e T

(3.29a)

(3.29b)

The disadvantage is the large range of values that u and v can take, and this set of vari

ables can also lead to negative values of n and p due to roundoff errors.

3.6. Scaling of Semiconductor Equations

The variables xp, n, p are of widely different orders of magnitude, hence the dev

ice equations have to be scaled in an appropriate manner. The classical scaling approach

was developed by [3.4] and has been widely used. Another scaling that is rigorous from

a mathematical point of view is that used by Markowich [3.34]. Finally, a third scaling

scheme is that used in SEDAN [3.35]. The scaling factors for the three different

approaches to scaling are presented in Table 3.1.

Variables Scale Factors DeMari's Singular Pert. SEDAN

potential

concentration

length

mobility

^0

*o

Lo

Vo

kTlq kTlq

max \N(xt y)\

max (x,y)

qlkT xmax (Dn,Dp)

kTlq

WCNV

Wv/qNo

qlkT

-JtVolqNo

1

Table 3.1: Various scaling techniques

Based on the above scale factors, the scale factors for the other variables can be

obtained as in Table 3.2
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Variables Scale Factors Relation

Electric Field *o VqIL0

Current Density Jo qViFoZo

Time To LiWo
Frequency r<> IIT0

Recombination Rate Ro NJTo

Table 3.2: Dependent scale factors

If the scale factors of DeMari or SEDAN are used with a constant e, the semicon

ductor equations can be expressed as

VJE, = (ND-NA +p-n)

V.J„=-|--(G-*)

VJ,=-|U(G-tf)

The electric fields and current densities are given by

E = -V\y

J„ =-u« [nV\|/-V^

(3.30a)

(3.30b)

(3.30c)

(3.31a)

(3.31b)

(3.31c)

3.7. Space-Discretization Techniques

The numerical solution of the basic semiconductor device equations involves solu

tion of a discrete problem over a simulation domain. The domain is divided into smaller

regions, and the discrete problem is solved for each of these regions with the applied

boundary conditions. A nonlinear algebraic system of equations is obtained under
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steady-state conditions and the unknowns are the discrete approximations to the continu

ous variables. The space discretization can be performed by either a finite-difference

[3.36] or a finite-element formulation [3.37] and these discretization techniques are now

described.

3.7.1. Finite-Difference Discretization

The classical finite-difference scheme can be easily applied only to a rectangular

domain. The simulation domain is divided into nonoverlapping rectangular regions by

grid lines parallel to the x and y axes. The discretized equations are assembled at each

grid node by approximating the spatial derivatives with difference expressions. For this

reason the grid lines should be carefully chosen such that the discrete problem is a good

approximation to the continuous problem.

For a rectangular mesh with grid spacings h( =*,+1 -*,- and kj =y;+i -yy, the

derivatives of a function f(x,y) are approximated at grid node (/, j) shown in Figure

3.3 by

it
dx

J*.;

_ /(*«+i/2»yj) -/(^,-i/2>yj)
hi + A,--i

dy

_ f (Xj, yj+lf2) - / (xt, yhm)
ij kj + khX

(3.32a)

(3.32b)

where *,_1/2 =*, - -~, xMI2 =*,- +y, yy_1/2 =y} - -£±, and yj+ia =*; +-j-.

Use of this approximation results in the following discretizations for Poisson's and the

current-continuity equations

Ex U+U2J - Ex lj-l/2,; Ey l/J+1/2 ~ Ey *i,>-1/2 _
"i + fr-i kj + kj.}

N +p - n
«.;

(3.33a)



46

Jnx 'i+l/2J ~ Jnx U-l/2,j Jny 1/J+l/2 *" Jny *tJ-l/2
K + hi-l ^ + kj_x

2 2

Jpx U+l/2,j ~ Jpx U-MJ Jpy ljJ+1/2 ~ Jpy ^J-l/2
*i + hi-l ^ + kj^

2 2

i«
dr

v. j

- (g-*]<v (3.33b)

i-[g-/?]iV (3.33c)

<*M.yj)

dr

(xi»V

J

h ^ni-l

k <1

hi

- f (i -

J

1

I

' 1

(Xj.yp

(xj.y^j)

(xi+r yj >

Figure 3.3: Schematic of grid for finite-difference discretization.

In the above equations the discrete values of Ex y, /„ y and 7 are required at

the midpoints of each interval uitxi+l or k-.y^, . These values are approximated

from the nodal values of the electrostatic potential and carrier concentrations. For the

electric field use is made of a simple difference scheme, whereby
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Ex U+1/2J "
hi

(3.34)

This approximation corresponds to the assumption of a constant electric field between

two adjacent grid points. However, a similar difference scheme cannot be used for the

current densities at the midpoint of an edge, as this scheme is unstable for a mesh in

which the electrostatic potential between two grid points is larger than twice the thermal

voltage [3.38]. Scharfetter and Gummel [3.4] found this instability in the simple discreti

zation scheme and proposed an alternate way for computing the current densities. This

scheme can be illustrated by considering the electron current density J„ l,+i/2j» that has

to be evaluated between grid points (Xj-.y-) and (xl+1, y;). From the normalized drift-

diffusion equation for electrons

«* nx ~~ M-n "**+t (3.35)

If the electric field, current density, and mobility are assumed to be constant between the

grid points, at their midpoint values, the above expression can be written as

Jnx 11+1/2,; - Mti U+V2J nEx 11+1/2J + ~7~ (3.36)

which is an ordinary differential equation in the electron concentration n. Equation

(3.36) can be integrated to get an expression for n(x,yj) for the interval U,-,jtl+1 .

Using the value of n(x, yy) at (x,+1, y •), one can express /„ Ii+x/2j as

T I - ^n *«'+l/2J
Jnx ' i-f-1/2,/ = ,

where B(x) =
ex -1

tion can be used with coarse grids to obtain stable estimates for the current densities.

This completes the space discretization of the device equations.

"MjB(Vi+u -Y;,;) - ntJB HVi+w -V.-.;))] (3-37)

is the Bernoulli's function. The Scharfetter-Gummel discretiza-
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As described, the finite-difference scheme can be applied only to a rectangular grid

and appears to be very limited, since it cannot be used for an arbitrary simulation

domain. Finite-element schemes allow the use of different types of elements for space

discretization which can be used for arbitrary domains. Extensions of the finite-

difference scheme have been made such that it can be used with triangular grids. The

discretization is performed by the box integration method. The finite-difference scheme

on triangular grids is used in several device simulators [3.7, 3.8, 3.11]. Triangular grids

make it possible to discretize the device equations over an arbitrary simulation domain.

In addition grid nodes can be selectively placed in active regions of the device. The

box-integration method for a rectangular grid is described in Chapter 5, along with the

discretization of the boundary conditions.

An extension of the finite-difference approach is the method of finite boxes. In this

method grid points in superfluous or inactive regions of the simulation domain can be

eliminated by the use of grid lines terminating in the interior of the simulation region.

Adler [3.39] has used the approach of terminating grid lines in only one direction. A

generalization of this approach, wherein grid lines can terminate in both directions, is the

method of finite boxes as used by [3.40]. The advantage of the finite-box method is the

reduction in the number of grid points. However, this is achieved at the expense of addi

tional storage and elaboratedata structures [3.40].

3.7.2. The Finite-Element Method

The method of finite elements has been extensively applied to problems of struc

tural engineering for several years. However, its application to the problem of semicon

ductor device simulation is fairly recent [3.41].

In this method, analogous to the finite-difference method, the domain of simulation

is partitioned into a finite number of nonoverlapping subdomains or elements. These
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elements are taken to be triangular or rectangular in shape. Once the elements have been

selected, an approximation / ofthe exact solution / is found for each element The par

tial solution for each element is such that its contribution to the complete approximate

solution is zero outside the element. Then, the complete solution is the sum of partial

solutions over each of the elements,

N ^

/ =Z/« (3.38)
1=1

where N is the number of elements and /,- is the partial solution for element i.

The commonly used approximation for /,- is a low-order polynomial which can be

formulated in terms of basis or shape functions as

fi = 1,/fij (3.39)

where k is the number of nodes in the element (k = 3 for a triangular element and k = 4

for a rectangular element), /;- are the values of / at these nodes, that are to be deter

mined by the finite-element method, and %j are the shape functions. The shape functions

are nonzero over the specified element and zero outside the element. The complete solu

tion is then given by

N

.•=1 U=i
h& (3.40)

Let F(w) = O denote the basic partial-differential equations for the semiconductor

device and G(w) = O denote the boundary conditions. Then F(?) and G(?) are the residu

als obtained by substituting the approximate solution into the differential equations and

the boundary conditions, respectively. The next step is to use a sum of integrated

weighted residuals of the differential equation and the boundary conditions, and equate

the sum to zero for a given set of weight functions. This system of equations is then
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solved for //. If the weighting functions are chosen to be the same as the shape func

tions the method of weighted residuals is called a Galerkin method [3.42].

One problem with the use of the classical finite-element method when applied to

semiconductor device problems is the use of low-order polynomials for approximating

the carrier concentrations. The carrier concentrations are exponential functions and this

results in poor performance of the finite-element method compared to the finite-

difference method in which Scharfetter-Gummel discretization is used for the current

continuity equations.

3.73. Grid/Mesh Generation

In the previous discussion of finite-difference and finite-element methods, a grid is

assumed and the discretization is performed with this grid in mind. The grid spacings

were assumed to be such that the electrostatic potential and the carrier densities could be

computed accurately from the discretized equations. However, the problem of grid gen

eration, which involves use of a suitable mesh with the smallest number of grid points,

was not addressed. With a very large number of grid points a solution with greater accu

racy can be computed but it requires a significant amount of computational effort It is

for this reason that an efficient mesh is required, which provides accuracy without exces

sive computational burden. Heuristics are necessary for the design of a good mesh since

an appropriate mesh cannot be designed a priori.

In general, adaptive-grid refinement is used to generate an efficient grid for the

structure to be simulated. The starting point is a grid that resolves the geometry and the

doping levels in the device. An initial solution is computed on this grid and then error

estimates are computed from the solution. Grid points are inserted in regions where the

solution does not meet the user-specified accuracy criterion. The solution has to be inter

polated for the new grid points that have been inserted. Then the solution is recomputed
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on this new grid and the grid is readapted if the desired error tolerances are not achieved

or a minimum grid spacing is reached. For certain devices, such as the MOSFET and the

bipolar transistor, a grid can be designed a priori by a knowledge of the operation of the

device. In other situations, such as latchup, adaptive-grid refinement is a must Some

adaptive-grid generation strategies tend to align the grids with the current-flow direction

[3.43].

3.8. Solution Methods for Device Equations

The techniques used to solve the device-level equations for dc, transient and

small-signal ac analysis are described in this section. After space discretization, the equa

tions at a grid node i can be expressed in symbolic form as

(3.41a)

(3.41b)

Poisson's equation: F# = 13

n-continuity equation: Fni-
dn

dt

p-continuity equation: ppi-

» «

id
dr

V. J

= 0

= 0 (3.41c)

The complete system of equations when assembled can be represented in a general form

as

F(w(r),w(r)) = 0 (3.42)

where w is the vector of electrostatic potential, electron concentration, and hole concen

tration at each grid node.
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3.8.1. Dc and Transient Analyses

After space discretization, a system of nonlinear differential-algebraic equations is

obtained for transient analysis; for dc analysis this reduces to a system of nonlinear alge

braic equations. The system of nonlinear equations obtained from dc analysis can be

solved by a direct method using a Newton scheme. This method is the best from a per

formance and convergence point of view [3.31]. However, it requires a large amount of

storage and computational effort, since a large system of equations has to be solved.

Thus, efficient ways of solving the above nonlinear problem are currently under investi

gation.

The very first numerical solution of the semiconductor device equations due to

Gummel [3.3] made use of a relaxation-based approach. The equations are solved by use

of nonlinear relaxation. This method can be explained by assuming the variables to be

¥> §n» $p •Let the nonlinear system of equations be expressed as

Fv(\MB,4>/>) = 0 (3.43a)

F^CV, ♦„.♦,) = <> (3.43b)

V*.*,.*,)8*0 (3-43c)

then Gummers algorithm can be described as follows. Equation (3.43a) is solved for

\|r*+1 with the values of <J>„ and typ from the previous iteration. The computed value of

y*+1 is used in Equations (3.43b) and (3.43c) to solve for $*+1 and $*+1, respectively.

The whole process is repeated until convergence is achieved, whereby a consistent value

has been obtained for \y, $„, and §p. Each equation is nonlinear and Newton's method

is used to solve the nonlinear system of equations.

Gummers method works well under low-level injection conditions when Poisson's

equation is effectively decoupled from the current-continuity equations. However, under

high-level injection conditions Poisson's equation becomes strongly coupled with the
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continuity equations; the mobile charges affect the electric field distribution. Under such

conditions the relaxation method has extremely slow convergence and may require a

very large number of iterations to reach convergence. From a performance point of view,

this method loses its advantage under high-level injection conditions and cannot be used

for device-level simulations employing arbitrary bias conditions.

Two modifications have been proposed for Gummel's method which ensure better

convergence under high-level injection conditions. The first method referred to as quasi-

simultaneous relaxation (QSR) [3.44] has been applied to the simulation of MOSFETs

operating under strong inversion. This is again a condition under which Gummel's

method has very slow convergence. In QSR, Poisson's equation and the one-dimensional

current-continuity equation for the carriers in the channel are solved in a coupled

manner. Then the electron and hole continuity equations are solved as in the regular

Gummel's method. This method inherently takes into account the coupling of Poisson's

equation with one continuity equation; thus, the nonlinear relaxation is accelerated.

The other approach [3.45] considers a partial coupling between Poisson's equation

and the current-continuity equation for the carrier that dominates the current flow. The

coupling of Poisson's equation to the other continuity equation is ignored as in

Gummel's method. As a consequence of the assumption that one carrier contributes to

the total current flow, the above approach is useful for one-carrier simulation of MOS

FETs or of highly asymmetric pn-junctions. It cannot be applied for the simulation of

bipolar transistors, where current flow is due to both carriers under high-level injection

conditions.

tin 3dFor transient analysis, the terms -r- and -^- have to be discretized in time. This is
dt dt

done by use of an integration formula as in the circuit-simulation problem described in

Chapter 2. Some device simulators use semi-explicit integration methods so that the
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equations can be solved in a decoupled manner. However, these decoupled schemes are

restrictive in the allowable timesteps. A stable decoupled scheme due to [3.46] is stable

independent of the timestep. In [3.1, 3.47] the use of an implicit integration method has

been recommended to obtain reliable results.

3.8.2. Small-Signal Ac Analysis

As in the small-signal ac analysis at the circuit level, small-signal analysis at the

device level involves determining the terminal currents of a device in response to

"small" sinusoidal voltages applied to its terminals, after a dc operating point has been

established. The magnitude of the excitation is such that the operation of the nonlinear

device is linear around the operating point and negligible harmonics are generated.

Consider the device equations to be written in a general form as

FyO|f, n, p) = O (3.46a)

Fn(V,n,p)--|2- =0 (3.46b)

F„(Y, n, p) +&. =o (3.46c)

where the time-derivative terms have been specified explicitly. Small-signal ac analysis

involves finding the ac response at an established dc operating point (xjfo, n0, p0, VQ)

where V0 is the applied bias. The dc quantities are perturbed by an ac signal of a small

magnitude, i.e., all quantities, u, are expressed as the sum of a dc value and an ac value

u = u0 + uej(0i (3.47)

where u is a complex quantity. Substituting these expressions for the internal variables

in Equation (3.46) and retaining the linear terms from a Taylor series expansion around

the operating point, one can write the device-level equations as
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(3.48)

where all the derivatives are evaluated at the dc operating point. The above system of

equations can be written in a compact form as

[j +/DJw =B (3.49)
where J is the dc Jacobian matrix of the device-level equations, D is a diagonal matrix

with entries 0, -co, co, corresponding to Poisson's equation and the electron and hole

current-continuity equations, respectively, w is the vector of small-signal values of the

electrostatic potential, and electron and hole concentrations, and B is the right-hand-side

vector that accounts for the boundary conditions. This system of equations can be solved

using direct-solution techniques to compute the small-signal quantities. A faster solution

technique due to Laux [3.48] can be used at low frequencies. This technique is based on

a sphtting of the original system of equations into its real and imaginary parts. Let

w = w* + j W; then

(3.50)

This system of equations can be solved by a Block-SOR technique [3.48] as

wj£+1 =fl - co* ]w£+1 +co* J"1 [Dw/ +b] (3.51a)

w/+1 = fl - co* lw7*+1 +co* J-'DwjJ (3.51b)

J -d"
p J . =

b"
.0.

where co* is the SOR relaxation parameter. The advantage with the above scheme is

that J is available in its LU factors from the dc operating point solution and calculation

of J"1 requires only forward and back substitutions. Since the LU factors from the dc
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operating point analysis can be used to calculate the solution at other frequencies, this

method is considerably faster than a direct solution of the small-signal equations. How

ever, at high frequencies f > fj /10, where fT is the unity-gain frequency of the device,

the convergence of the block-relaxation method degrades and at very high frequencies a

direct-solution method is favored [3.48].

Ac analysis at the device level as described above is quite useful. It can be used

to verify compact circuit-level analytical models. In addition, it provides information on

the unity-gain frequency of the device.
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CHAPTER 4

Coupled Circuit and Device Simulation

4.1. Introduction

A mixed-level circuit and device simulator should support a variety of analyses and

numerical models. It should provide capabilities for dc, transient, small-signal ac, and

pole-zero analyses. These analyses must be available for one- and two-dimensional

numerical devices and, if computational resources permit, even for three-dimensional

numerical devices. In this chapter the problem of coupled circuit and device simulation

is addressed. The techniques are applicable to one-, two-, or three-dimensional numerical

devices but have been implemented for only one- and two-dimensional devices. The

emphasis is on algorithms to couple the device-simulation capability with the circuit

simulator for dc, transient, small-signal ac, and pole-zero analyses.

The problem of coupled circuit and device simulation is illustrated by an example

of a dc problem. A circuit-level interpretation of the simulation problem provides a

motivation for the two-level Newton algorithm. This scheme requires calculation of

linearized equivalent conductances for the numerical devices which are then used in the

linearized circuit-level equations. It is shown that the linearized conductances can be

obtained by forward and back substitutions and do not require a large computational

effort.

The two-level Newton algorithm is used to propose an architecture for coupling the

device simulator to the circuit simulator. The proposed architecture allows complete
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decoupling between the circuit and device simulators; the numerical models are viewed

as another model type from the circuit simulation point of view. The interface between

the two simulators is well defined and the interface routines necessary for this coupling

are described.

A general formulation for the coupled problem under dc conditions is then pro

vided, by means of an example. This leads to other approaches for coupling the device

and circuit simulators. In particular the full LU-decomposition technique and the block-

iterative algorithm used in MEDUSA [4.1] are described. A modification of the two-

level Newton algorithm is also proposed wherein a linear prediction is used to provide a

better initial guess. The implementation of all four algorithms: (1) the two-level Newton

algorithm, (2) the full LU-decomposition algorithm, (3) MEDUSA'S block-iterative algo

rithm, and (4) the modified two-level Newton algorithm, within the framework of

CODECS is presented. It is shown that all of these algorithms can be implemented in

the proposed framework in a decoupled manner.

The convergence properties of these algorithms are then examined for dc and tran

sient analyses. A performance analysis indicates that the modified two-level Newton

method is the best for dc analysis, since the other three schemes do not converge on

some benchmark circuits. For transient analysis the full LU-decomposition scheme is

better from a convergence and performance point of view. The MEDUSA algorithm is

found to be unsuitable for both dc and transient analysis. Some parallelization issues of

the four algorithms are also presented.

The last part of this chapter is devoted to coupling the two simulators for small-

signal ac and pole-zero analyses. Admittances for the numerical devices are calculated

by a numerical small-signal analysis of the device and used in the circuit-level equations.
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42. DC and Transient Analyses

Since dc and transient simulations are by far the most useful, a major part of this

chapter addresses algorithms for dc and transient analyses in a mixed-level circuit and

device-simulation environment A dc operating point analysis is required before a tran

sient run is initiated or for small-signal ac and pole-zero analyses. For this reason con

vergence under dc conditions is extremely important; hence, the algorithms used for dc

analysis must exhibit good convergence properties. The transient analysis problem is

better conditioned than the dc problem and solutions from the previous timepoints pro

vide a good initial prediction for the solution at the present timepoint It can be antici

pated that an algorithm different from the one used in dc analysis may perform better.

This section investigates different ways to couple the device and circuit simulation capa

bilities for dc and transient analyses. An evaluation is then made on their convergence

properties and runtime performance using a variety of benchmark examples.

42.1. The Two-Level Newton Algorithm

The problem of mixed-level device and circuit simulation is best illustrated by an

example of dc operating point analysis. Consider the simple circuit shown in Figure 4.1.

G is a linear conductance and Es is a dc voltage source. The nonlinear device is a diode

for which the characteristics are specified by a doping profile N(x). The simulation

problem can be stated as:

Given Es% G, and N(x)

Find V.

One solution for this problem is motivated by examining the problem from a cir

cuit simulation point of view. In this case, analytical models are used for the nonlinear

devices; the diode terminal characteristics are described by a closed-form expression,

/ =/(V). When Newton's method is used to solve the nonlinear circuit equations, a
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V Y 1-Kw.V)

Figure 4.1: Circuit used as an example.

linear circuit (the companion circuit) is solved at each iteration until convergence is

achieved. The companion circuit for the example under consideration is shown in Figure

4.2.

Figure 4.2: Linearized companion circuit.

The linear conductance, Gea, and the current source, Iea, are obtained from the nonlineareq *i"

characteristics as depicted in Figure 4.3, and can be expressed as

Geq -
dv

(4.1)



dv

where k is the iteration number.

i-«V)

k+1
Slope =Ggq

Figure 43: Calculation of linearized conductance and current.
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(4.2)

Once C^ and /^ are known, the circuit-level iteration can be performed. With

numerical devices, the current-voltage characteristics are not known as closed-form

expressions. Thus, G^ and ltq cannot be calculated by function evaluations and numeri

cal techniques must be used. The partial-differential equations describing a device have

to be solved for each operating point before leq and Ge- can be calculated.

As shown in Chapter 3 the steady-state device-level equations result in a system of

nonlinear algebraic equations after a space discretization. These nonlinear equations are

also solved by a Newton method. Once the equations have been solved for an applied

bias V, the equivalent currents and conductances can be calculated as described in
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Section 4.2.2. The overall solution technique is a two-level Newton scheme wherein

Newton*s method is used at the device level and also at the circuit level. This is a spe

cial case of the multi-level Newton algorithm proposed in [4.2] for circuit simulation.

The flowchart of the two-level Newton algorithm is illustrated in Figure 4.4. First,

the contributions of all circuit elements that are represented by analytical models are

entered into the circuit-level Jacobian matrix and the right-hand-side vector. The partial-

differential equations are solved for each numerical device, with the terminal voltages

establishing the boundary conditions, until convergence is achieved at the device level.

Once the solution at the device level has been obtained, G^ and /^ are calculated and

assembled in the circuit-level equations. The linearized circuit-level equations are then

solved and convergence is checked at the circuit level. If convergence is achieved, the

solution has been obtained; otherwise the outer circuit-level loop is repeated.

42.2. Calculation of Conductances

This section describes the technique used for calculating the equivalent conduc

tances and is applicable to all types of numerical models. After space and time discreti

zation the device-level equations can be represented as a set of nonlinear algebraic equa

tions,

F(w, V) = O (4.3)

where w is the vector of internal variables, i.e., the electrostatic potential, and the elec

tron and hole concentrations at each spatial grid point. If there are n spatial grid points

in the silicon region and m grid points in the oxide region within the device, then the

dimension of w is 3n+m. The dependence on the boundary condition V is explicitly

written in the above equation. For a two-terminal device, let i = /(w, V) represent the

terminal current as a function of w and V\ i is calculated by summing the current
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Figure 4.4: Flowchart of the two-level Newton scheme.
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density components around a contact It should be noted that w is also an implicit func

tion of V, since the value of w depends on the applied voltage. The system of Equation

(4.3) is solved for an applied voltage V0. This is done by Newton's method whereby

Aw= -Jw-1F(w,V0) (4.4)

3Fis solved at each iteration; Jw = -r-- is the Jacobian matrix of the device-level equa-
ow

tions. Jw is decomposed into its LU factors at each iteration and Aw is obtained by for

ward and back substitutions. The iterations terminate when Aw satisfies the convergence

tolerance and IF(w,V0)l is sufficiently small. At this stage w is the solution of

F(w, V0) = O and /(w, VQ) can be calculated, since w(V0) is known. To calculate the

linearized conductance G^ = -r-~, use is made of the chain rule which gives

G"> ~W ~ d^lv +W (4-5)

dl dl
where tr— and -r— are obtained by symbolic differentiation of the function /(w, V).

ow aV

-r— is determined in the following manner. The partial derivative of Equation (4.3)
oV

with respect to V is

Jw-^+Jv =0 (4.6)

dF aw
with Jv = -r—. From Equation (4.6) one can solve for -r— as

Ok oV

|^=-Jw-1Jv (4.7)

Since Jw is available in its LU factors that were calculated during the solution of Equa

tion (4.3) by use of Equation (4.4), only forward and back substitutions are required in

calculating -r—> which is computationally inexpensive. Then Gea can be calculated from
aV *
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Equation (4.5).

An alternative way to compute G^ is to perturb the terminal voltage V0 by a small

amount SV and then calculate the current for the new voltage V0 +5V. G^ is com

puted as

_ i(y<,+oT)-/(y0)
* 6V

•\.

which is an approximation to —. This approach is computationally expensive requiring
aV

two device-level solutions for each bias point Furthermore, the difference

i(Yo + SV) - /(V0) is prone to errors especially when i(V0 +bV) and i(V0) are close

to one another, since it involves the difference of two nearly equal quantities. It is also

difficult to choose an appropriate value of 8V such that the divided-difference scheme

provides accurate results [4.3]. Therefore, the first scheme to calculate conductances is

used.

423. Architecture of CODECS

It is clear from the previous sections that a numerical device model is similar to an

analytical device model in several respects for circuit simulation. Given the terminal vol

tages the equivalent currents and conductances have to be calculated and used in the

circuit-level equations. For an analytical model this task involves function evaluations,

whereas for a numerical device the three PDEs have to be solved. The interface to a cir

cuit simulator can be identical for the two types of models as shown in Figure 4.5,

where the task of model evaluation is illustrated. The interface to the circuit simulator is

through routines for model evaluation, and for loading the equivalent current and con

ductances in the circuit-level Jacobian and right-hand-side vector.
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Figure 4.5: The task of model evaluation.
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The overall framework of CODECS is shown in Figure 4.6. The circuit simulator

is the controlling program. It supports analytical models for the circuit elements and also

stores the vector of node voltages. These voltages are available to the model-evaluation

subroutines that calculate the equivalent conductances and currents for a device. The

numerical devices are simulated by the device simulator of CODECS, and the interface

to the circuit simulator is identical to that for analytical models. Device-level simulation

is used to solve the PDEs for a numerical device for given terminal voltages. Then the

terminal conductances and currents are calculated at the operating point, and assembled

in the circuit-level Jacobian matrix and right-hand-side vector.

4.2.4. The Full-Newton Algorithm

With this method the problem is formulated in an alternate manner. The device-

level and circuit-level equations are combined and expressed as one system of equations.

Newton's method is then applied to the complete system of equations. Unlike the two-
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CIRCUIT SIMULATOR

NUMERICAL DEVICES D1..J5N

DEVICE SIMULATOR

Figure 4.6: Architecture of CODECS. Numerical devices are inter
faced with the circuit simulator in a manner similar to that for analyti
cal devices. The circuit node voltages establish the boundary condi
tions for the numerical devices. The PDEs are solved by the device-
level simulator of CODECS.
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level Newton algorithm where the device and circuit-level unknowns are solved

separately in a decoupled manner, the complete set of unknowns is solved simultane

ously. For the circuit of Figure 4.1, the device-level equations are F(w, V) =O and

these are combined with KCL at the circuit level to get

F(w, V) = O

/(w, V) + G(V-£,) = 0

(4.8)

(4.9)

Equations (4.8) and (4.9) are solved using the Newton-Raphson method. The equa

tions to be solved at each iteration of the Newton's method are then,

JwAw + JvAV=-F(w, V)

-|^-Aw +^-AV +GAV =- /(w, V) - G(V - Es)
dw BV

From Equation (4.10), Aw can be expressed as

Aw = Jw-1(-F(w,V)-JvAV)

Equation (4.12) can be rewritten as

Aw = Aw - J^JyAV

(4.10)

(4.11)

(4.12)

(4.13)

where Aft = Jw~l(-F(wtV)). Substituting Aw from Equation (4.13) into Equauon

(4.11), one obtains

"dw"Jw",Jv+af+ GAV = - /(w, V) - ~-Aw - G(V - Es) (4.14)
aw

This equation can be rewritten as

Geq +g]aV=-/t-G(V-£,)

with GM =--I^-JhT'Jv +-1^- and IT =/(w, V) +-^-Aw. Equation (4.15) is similar
^ dw dV dw

in form to that obtained with an analytical model for the diode or by use of the two-

(4.15)
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level Newton algorithm. Thus the above technique can also be used to embed numerical

models within a circuit-simulation program. The full-Newton scheme can be imple

mented in two different ways.

4.2.4.1. Full LU-Decomposition Technique

Jw is decomposed into its LU factors and used to calculate Aw and Jw_1Jv of

Equation (4.13) by forward and back substitutions. Then G^ and IT are computed by

matrix multiplications. Equation (4.15) is solved, whereby AV is obtained and Aw is cal

culated from Equation (4.13), using the previously computed values of Aw and J^Jv

The equations are solved to convergence. This technique is similar to the use of block-

LU decomposition with bordered-block-diagonal matrices in circuit simulation [4.4, 4.5].

4.2.4.2. MEDUSA'S Block-Iterative Technique

Jw is decomposed into its LU factors; Aw, G^ and IT are calculated as above.

Then AV is obtained from Equation (4.15), and Aw is assigned the value of Aw. This is

equivalent to assuming AV = 0 in equation Equation (4.13) and ignoring the coupling

term due to AV. The equations are solved to convergence. This algorithm is used in

MEDUSA [4.1].

4.2.5. Implementation Issues

The three algorithms described above have been implemented in the framework of

CODECS shown in Figure 4.5. The interface to the circuit simulator is through a

model-evaluation subroutine which calculates and loads the device contributions in the

circuit-level equations. The subroutines differ according to the algorithm used but the

essential features are identical. First, the new voltages are calculated and used to estab

lish the boundary conditions for the device-level equations; then the device equations are
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solved. This is followed by calculation of the terminal currents and conductances which

are then loaded in the circuit Jacobian matrix and right-hand-side vector. The pseudo-C

code for the three algorithms is shown below and illustrates the similarity between them.

Furthermore, no algorithm has any significant advantage from an implementation point

of view and all three techniques effectively decouple the device-level equations from the

circuit-level equations. The function setBoundaryConditions is used to establish the

boundary conditions for the device, the function biasSolution solves the device equations

to convergence or the iteration limit iterLimit, whichever is reached first. An iterLimit

value of one allows calculation of Aw of Equation (4.13). The function updateSolution is

used to calculate Aw from Equation (4.13) given Aw and AV.

4.2.5.1. The Two-level Newton Algorithm

For the two-level Newton scheme, at each operating point the new terminal vol

tages (boundary conditions) are imposed on the device and a solution is obtained for the

new bias conditions.

setBoundaryConditions( device );

biasSolution( device, iterLimit);

4.2.5.2. The Full LU-Decomposition Algorithm

For the full LU-decomposition scheme Jw_1 and Aw are calculated by the device

simulator. Then the circuit node voltages are calculated. Aw can be obtained only after

the circuit-level equations have been solved since AV is required for its calculation.

Thus, the following approach is used. At the completion of the device-level solution only

Aw is calculated and stored. Before starting the next device-level iteration, Aw is calcu

lated from Aw and AV, and w is updated. The new updated value of w is used for the

next iteration. This sequence of operations allows a decoupling between the circuit and

device simulators. At the first iteration of an operating point the terminal voltages are
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imposed on the device. However, in the subsequent iterations the subroutine updateSolu-

tion is used to establish the new boundary conditions and to calculate Aw and hence the

correct value of w to be used for the new iteration.

ift predictionStep ) {

setBoundaryConditions( device);

} else {

updateSolution( device );

}
biasSolution( device, 1 );

42.53. Medusa's Algorithm

Algorithm Med is similar to the two-level Newton scheme except that only one

pass is made through the device-level equations for each circuit-level iteration and the

calculation of conductances and currents is done in a different manner.

setBoundaryConditions( device);
biasSolution( device, 1 );

4.2.5.4. Modified Two-Level Newton Algorithm

From the above pseudo-C code it is seen that the two-level Newton algorithm and

algorithm Med are similar. The difference is that in the two-level Newton scheme the

device equations are solved to convergence with a Newton method. A modified 2-level

Newton algorithm can also be used similar to the full LU-decomposition algorithm in

which the device-level equations are solved to convergence. The pseudo-C code for this

algorithm is given as

if( predictionStep) {

setBoundaryConditionsf device );

} else {

updateSolution( device );

>
biasSolutionf device, iterLimit);



72

It is shown in Chapter 5 that the updateSolution step with a two-level Newton

method provides a linear prediction of the solution at the new operating point. Some

modifications described therein are necessary for the algorithm to work under dc condi

tions.

Four possible techniques to couple the device simulator to the circuit simulator

have been described. These are the

(1) modified two-level Newton algorithm (M21ev),

(4) two-level Newton algorithm (21ev),

(3) full LU decomposition technique (FullLU), and

(4) block-iterative technique of MEDUSA (Med).

The algorithms are now evaluated on the basis of their convergence properties and run

time performance.

42.6. Convergence Properties for Dc Analysis.

The convergence properties of these algorithms has been examined by evaluating

their performance on several benchmark circuits. A short summary of the circuits and

the numerical models which are used is given in Table 4.1. CODECS input listings and

the details of the numerical models are given in Appendix B.

In Table 4.2 the results for the dc operating point analysis of circuits with one-

dimensional numerical models for the bipolar transistor are given. The results are given

as the number of circuit-level iterations followed by the total simulation time. A '-' indi

cates that convergence was not achieved in 100 iterations.

As can be seen from Table 4.2 the modified two-level Newton scheme (M21ev)

was always successful in finding an operating point, whereas the two-level Newton and

full LU-decomposition schemes were only partially successful, and the MEDUSA



73

Circuit # Nodes # Circuit # Numerical Model #Grid

Elements Devices Type Points

RTLinv 4 4 1BJT ID 61

Oscillator 5 8 1 BJT ID 61

VCO 7 10 6BJT ID 61

Invchain 10 10 4 BJT ID 61

Astable 6 8 2 BJT ID 61

MECLgate 26 24 11 BJT ID 61

Pass 6 7 1 MOS 2D 31x19

MOSinv 5 5 1 MOS 2D 31 x 19

ChargePump 7 7 1 MOS 2D 21x21

Table 4.1: Description of benchmark circuits

Circuit M21ev 21ev FullLU Med

RTLinv 8/5.0s 8/5.5s 8/2.42S -

Oscillator 8/4.5s 8/4.9s 9/2.6s -

VCO 8/25s - 10/16s -

Invchain 9/22s - - -

Astable 9/1 Is - - -

MECLgate 51/81s 51/94s - -

Table 4.2: Comparison of iterations and runtimes

algorithm failed the test in all of these cases. This has been found to be true on other

examples as well. For this reason CODECS uses the modified two-level Newton scheme

for dc operating point analysis. The modified two-level Newton scheme is computation

ally expensive compared to full-LU decomposition but is preferred for dc analysis since

it has worked well over a wide variety of examples.
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42.1. Transient Analysis Comparisons

The transient simulation problem is better conditioned than the problem of simulat

ing the dc operating point; hence, the algorithm that works best for simulation of the dc

operating point may not be optimal for transient analysis. In this section the four algo

rithms are compared on the basis of their performance for transient simulations. The

simulations are started with the dc operating point of the circuit being obtained by the

modified two-level Newton algorithm. All simulations have been run with a latency

check that is described in Chapter 5. The second order backward-differentiation formula

[4.6] is used for time discretization. A starred entry indicates that the simulation did not

complete successfully due to a "timestep too small" error, and the result is reported with

the latency check turned off. In Table 4.3, the number of circuit iterations are presented

for transient analysis of the benchmark circuits.

Circuit M21ev 21ev FullLU Med

Oscillator 16916 16916 18333 23836

VCO 5093 5109 5864 7028

Invchain 1563 1578 1716 2324

Astable 5930 6305 6369 9087

MECLgate 2450 2450 2609 3236*

Pass 236 236 295 338

MOSinv 287 313 336 533

ChargePump 1644 1661 1850 2661

Table 43: Comparison of number of circuit iterations

The modified two-level Newton algorithm requires the smallest number of circuit-

level iterations. The two-level Newton algorithm requires ten percent more iterations, in

some examples, and the full-LU technique takes approximately twenty-five percent more

iterations compared to the modified two-level Newton method. In all examples
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algorithm Med takes the largest number of circuit iterations and in the MECL-gate

example the simulation could only be performed by turning off the latency check.

In Table 4.4 are presented the number of timepoints that were accepted and

rejected during the transient analysis. It is seen that the timepoints accepted and rejected

are of the same order.

Circuit M21ev 21ev FullLU Med

Oscillator 5274 / 366 5274 / 366 5274 / 361 5274 / 361

VCO 1099 / 161 1106/161 1125/176 1093 / 164

Invchain 401 /17 404/18 401 / 17 410/20

Astable 1473 / 198 1583/234 1465/181 1554 / 219

MECLgate 619 / 30 619 / 30 619/31 619/31*

Pass 82/8 82/8 82/8 82/8

MOSinv 95/4 104/8 95/4 104/8

ChargePump 497 / 74 497 / 74 493 / 73 492 / 75

Table 4.4: Comparison of timepoints accepted and rejected

The simulation runtimes are presented in Table 4.5. The full LU-decomposition

scheme takes the smallest amount of time. The modified two-level Newton scheme, on

an average, is a factor of 1.7 slower than the full LU-decomposition scheme and in some

cases does even better than algorithm Med. This might appear surprising at first because

the modified two-level Newton scheme requires more CPU time for each circuit-level

iteration. However, as seen from Table 4.6, a fewer number of circuit-level iterations are

required at each timepoint. Algorithm Med has no apparent advantage; it requires more

computational effort and does not work well with the latency check.



Circuit M21ev 21ev FullLU Med

Oscillator 3126 3636 2352 3123

VCO 4805 5440 2911 3901

Invchain 890 965 514 806

Astable 2085 2538 1230 2031

MECLgate 3629 3931 2121 4577*

Pass 1786 1955 1059 1235

MOSinv 1626 2194 1155 1800

ChargePump 7172 8045 4039 5910

Table 4.5: Comparison of total analysis time

Circuit M21ev 21ev FullLU Med

Oscillator 3.0 3.0 3.3 4.2

VCO 4.0 4.0 4.5 5.6

Invchain 3.7 3.7 4.1 5.4

Astable 3.5 3.5 3.9 5.1

MECLgate 3.8 3.8 4.0 5.0*

Pass 2.6 2.6 3.3 3.8

MOSinv 2.9 2.8 3.4 4.8

ChargePump 2.9 2.9 3.3 4.7

Table 4.6: Comparison of iterations per timepoint
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The four algorithms can also be compared on a time per iterationbasis. This gives

the raw speed of each algorithm. It is seen from Table 4.7 that on a time per iteration

basis the modified two-level Newton scheme is marginally better than the two-level

Newton scheme in all examples, and it is significantly better in the MOSinv example.

However, the two-level Newton schemes are approximately a factor of two slower than

the full LU scheme and algorithm Med. On a time per iteration basis, algorithm Med
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and the full LU-decomposition scheme are almost identical except in the MECL gate

example. The full-LU scheme requires fewer iterations per timepoint than algorithm Med

and is preferable since it results in an overall smaller simulation time.

Circuit M21ev 21ev FullLU Med

Oscillator 0.18 0.21 0.13 0.13

VCO 0.94 1.06 0.50 0.56

Invchain 0.57 0.61 0.30 0.35

Astable 0.35 0.40 0.19 0.22

MECLgate 1.48 1.60 0.81 1.41

Pass 7.60 8.30 3.60 3.65

MOSinv 5.67 7.00 3.49 3.38

ChargePump 4.36 4.84 2.18 2.22

Table 4.7: Comparison of time per iteration

4.2.8. Conclusions on Performance, Convergence, and Memory Requirements

Theoretical results suggest that the two-level Newton and the full-Newton schemes

have local quadratic convergence. Algorithm Med has been shown to have superlinear

convergence [4.1]. The practical implementations are in agreement with the theoretical

results; the previous results indicate the higher rate of convergence for the two-level and

full-Newton schemes. However, for dc analysis the modified two-level Newton algorithm

is better in a practical implementation. It has better convergence than the full-Newton

scheme.

A possible explanation for this is the strong decoupling between the circuit and the

device-level equations provided by the two-level Newton scheme. In transient analysis

the matrices are better conditioned and all schemes can be used. However, the full LU-

decomposition algorithm requires the smallest amount of simulation time and is,
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therefore, most suitable for transient analysis. The modified two-level Newton scheme

could also be used for transient analysis but there is a speed penalty of a factor of two

compared to the full LU-decomposition technique. From a performance and conver

gence point of view, MEDUSA'S algorithm has no advantage.

An argument in favor of the MEDUSA algorithm is a smaller memory requirement

[4.1] since the coupling terms in Equation (4.13) are not stored. This, however, leads to

a slower convergence. For a mixed-level device and circuit-simulation environment with

capabilities to simulate devices with at most four terminals (this is typical of semicon

ductor devices), the coupling matrix can be stored as three vectors. In CODECS this has

been done by temporarily using memory locations that have been allocated for the right-

hand-side vector, the solution vector, and a scratch vector at the device level. Thus, there

is no additional memory requirement in CODECS when implementing the full LU-

decomposition scheme. Furthermore, a significant improvement in performance is also

achieved. It should be noted that the two-level Newton algorithm requires the same

amount of memory as the MEDUSA algorithm, whereas the modified two-level Newton

method and the full-Newton method are identical in terms of memory requirements.

4.2.9. Parallelization Issues

All four algorithms provide a decoupling between the circuit equations and the

device equations. This decoupling can be used to advantage in a multiprocessing com

puting environment Once again no particular algorithm has an edge over the others in

terms of having a higher degree of parallelism.

The task of model evaluation with analytical models has been found to be highly

parallelizable [4.7]. In parallel model evaluation each device is spawned off to a different

processor and the calculation of conductances and currents takes place in parallel. The

same approach can be extended to numerical devices. Here the model evaluation task
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involves solution of the PDEs, thus each processor would solve the device equations in

parallel with other processors. One could then expect an almost linear speedup with the

number of processors, similar to what has been achieved with the use of analytical

models [4.7].

43. Small-Signal Ac Analysis

Ac analysis is useful for analog circuit simulations. Since CODECS is intended to

be a general-purpose coupled device and circuit simulator, it also provides a capability

for small-signal ac analysis. Alternatively, one could run a transient simulation and

extract the frequency-domain response using Fourier transform techniques. However, this

approach is computationally expensive and ac analysis provides a good way of obtaining

the small-signal frequency-domain response.

The ac admittances for each device have to be computed and loaded in the linear

circuit-level equations. The admittances are functions of frequency, and at a particular

frequency, co, the solution of the algebraic circuit-level equations gives the small-signal

circuit node voltages and voltage source currents. For analytical device models the

admittances are calculated around an operating point by function evaluations. For a

numerical device the admittances can be calculated at the frequency co by solving the

small-signal device-level equations as described in Chapter 3. The solution of the

device-level equations gives the small-signal ac values of the internal variables, the elec

trostatic potential, and the carrier concentrations at each spatial grid point From this

information the ac admittances for a numerical device can be calculated and then used in

the circuit-level equations.
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43.1. Calculation of Ac Admittances

The small-signal ac terminal current 7 for a device can be expressed as

7(co) = 7(w(co), V.co) (4.16)

where w is the vector of small-signal values of the electrostatic potential and electron

and hole concentrations, V is the applied small-signal voltage, and co is the radian fre

quency. The explicit dependence on co, in Equation (4.16), is through the displacement

current component of the total current The small-signal ac admittance is given by

r(co) =-^1 (4.17)
V

If V is taken to be unity

r(co) = 7(co) (4.18)

The small-signal ac current is given by the linear term of the Taylor series expansion of

i = /(w, V) around the operating point (w0, V0). Therefore,

y(co) =7(co) =JU +-g: (4.19)

where -r— and -r— are evaluated at the dc operating point by use of symbolic
dw BV

differentiation, and w is calculated as described in Chapter 3.

4.4. Pole-Zero analysis

Pole-zero analysis requires computation of admittances for a device as a function

of the complex frequency s = o + y'co. The technique used to calculate the admittance

for a numerical device is an extension of the method used for small-signal ac analysis.

Instead of using a frequency co, the complex frequency s is used and the admittances are

expressed as Y(s). Given a value for s, Y(s) can be calculated and used in the circuit-

level equations. The circuit-level transfer function can then be computed and its poles
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and zeros can be determined.

For numerical devices Y(s) is computed starting from the basic device equations.

As in Chapter 3, the unknowns are assumed to be of the form

w = w0 + we5* (4.20)

Using a Taylor series expansion around an operating point and retaining the linear terms,

one can assemble the device-level equations in the form (similar to the equations for

small-signal ac analysis given in Chapter 3)

[jw +£>]w =B (4.21)

where Jw is the dc Jacobian matrix of the device-level equations, D is a diagonal matrix

with entries 0 corresponding to Poisson's equation, -s corresponding to the electron

current-continuity equation, and s corresponding to the hole current-continuity equation,

w is the vector of small-signal values of the electrostatic potential, and electron and hole

concentrations, and B is the right-hand-side vector that accounts for the boundary condi

tions.

The above equations are solved for w(s) by a direct-solution method and then Y(s)

is computed by

rW-gw +jL (4.22)

where —— and -r— are computed by symbolic differentiation.

4.5. Requirements on Circuit and Device Simulators

The architecture described earlier mandates that the circuit and device simulators

possess several basic characteristics. The circuit simulator should allow easy incorpora

tion of new device models since this capability is used to embed the numerical devices
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within the circuit simulator. In addition all the necessary analysis capabilities must be

supported at the circuit level of simulation. SPICE3 [4.8] is modular and allows incor

poration of new devices and models. Furthermore, it supports all the important analysis

capabilities at the circuit level. This makes SPICE3 attractive for developing a mixed-

level circuit and device-simulation environment

The device simulator must be quite general. It should have capabilities for simulat

ing one- and two-dimensional structures and support the various analyses at the device

level of simulation. Furthermore, it should be able to simulate multiple devices as

opposed to simulating a single device. Most present day device simulators are structured

to simulate only one device which makes them unsuitable for use in a mixed-level simu

lation framework as shown in Fig 4.6. The device simulator should also provide subrou

tines that compute the terminal currents and conductances of a numerical device for

given terminal voltages. Since many of the above features are not available in existing

device simulators, a new device-level simulator has been developed for CODECS.
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CHAPTER 5

Device-Level Algorithms of CODECS

5.1. Introduction

The algorithms used for one- and two-dimensional numerical device simulation for

dc, transient, small-signal ac and pole-zero, and sensitivity analyses are described in this

chapter. The algorithms at the circuit level are those of SPICE and are not included;

they can be found in [5.1, 5.2].

The first part of this chapter describes the space discretization used in CODECS

for one- and two-dimensional devices. This is followed by a description of the base

boundary condition for a one-dimensional bipolar transistor. The traditional way of

implementing the base boundary condition in a one-dimensional bipolar transistor leads

to nonconvergence under negative base-emitter voltages. For this reason a different for

mulation has been used which overcomes the problem and in addition provides a more

physical representation of the one-dimensional bipolar transistor.

Dc analysis is important for finding the steady-state solution of a circuit. The dc

operating point information is necessary for small-signal ac analysis and frequently used

as the starting point for transient analysis. However, in the mixed-level environment dc

convergence is a serious problem. The dc convergence problem is examined and

approaches to improve convergence in CODECS are described. These include use of a

modified two-level Newton scheme with a norm-reducing Newton's method at the device

level. Device-based limiting along with a voltage-step backtracking scheme have been
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found to give reasonable convergence.

Transient analysis is extremely important in determining the dynamic response of a

circuit Section 5.4 describes the integration formulae used and the calculation of local

error for control of timesteps and integration order. A comparison is made between two

different schemes for timestep and order control based on accuracy and performance.

Latency at the device level should be exploited since the device-level simulation requires

a large amount of computational time. As seen in Chapter 4 a full-Newton algorithm

performs the best for transient analysis; hence, the implementation of latency check for

the full-Newton algorithm is described. The performance with the latency check is com

pared with the run times without latency exploitation. Finally, the current-conservation

property of the integration formulae has also been examined.

The algorithms for ac and pole-zero analyses are an extension of the technique for

small-signal ac analysis described in Chapter 3. Some implementation issues are

presented.

The last part of this chapter is devoted to the calculation of sensitivities at the dev

ice level. This results in a capability whereby the sensitivity of device performance to

process parameters can be determined. Although the effect of process variations can be

determined by repeated simulations, they are computationally extremely expensive. Sen

sitivity calculations are a good alternative. The sensitivity problem is formulated for both

dc and transient analyses and the implementation details are described. Examples of sen

sitivities to doping profile variations are also presented.

5.2. Space Discretization in Two Dimensions

TTie fundamental semiconductor equations are Poisson's equation and the current-

continuity equations. These are given in normalized form (Chapter 3) by
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VJE = (Ak -Afc + p-n) (5.1a)

V.Jn=-|i--(G-/c) (5.1b)

VJ, =-i^+(G-/c) (5.1c)

where

E = -Vy (5.2a)

Jn=-\i„nVy + D„Vn (5.2b)

Jp^-MppVv-D^Vp (5.2c)

In CODECS the above system of equations is discretized in space by the Box Integra

tion Method [5.3]. For a rectangular simulation domain, a rectangular mesh M is

defined as

M=<Qcit y;) I1£/ £AT, +1, 1£y£Ny +1 L (5.3)

where there are Nx + 1 grid lines in the x direction and Ny + 1 grid lines in the y direc

tion resulting in a total of (/v*x + l)x(Ny + 1) grid points in the simulation domain. The

device equations can be expressed in a general form as

VJF = r (5.4)

where F is a vector-valued function, F = (fXtfy\ and r is the right-hand side of the

equation. From Green's theorem [5.4]

jjV.Fdxdy=jfxdy-fydx (5.5)

where R is a region in the x-y plane and C is the contour that encloses the region R.

The mesh spacings in the x and y directions are defined to be A,- = xi+i - *,- and

kj = v;+i - vj» respectively.
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Consider an internal grid point (/, j) located at (r,, y;) such that 1<i <Nx +1

and 1<j <Ny + 1. For such a grid point there are four neighboring grid points as

shown in Figure 5.1. Region R is defined by the rectangle shown in dashed

(xi,yj+1)

(xi-rvP ••
(Xj.Vj)

- (Vr yJ>

(xi'vj_l)

Figure 5.1: An internal grid point with four neighboring nodes.

lines; the edges of the rectangle intersect the respective grid lines at their mid points.

This choice of R allows the complete rectangular domain to be covered by non-

overlapping rectangles. For grid point (i,;) Equation (5.5) can be written as

[fxdy -fydx = J -fy(x,yj.in)dx + J fAxi+u2,y)dy +
yj-mXi-V2

xt-\n y*-i/2

J -/y(*.yJ+1/2>fr + J fx(Xi-ia,y)dy
xi*l/2

The four integrals are approximated in the following manner:

(5.6)



xi*\a

j -fy (*. yj-vd&c =-fy&, y,_1/2) hi + *,•-!

xi-i/a

J.
y>-i/2

J fxOa+in, yyty =fx(Xi+m,yj) J -1 l

xt-\a

\ -fy(xtyj+v^dx =fy(xhyj+in) hi+h^

N+l/2

yj-vi

J fx(Xi-v2, y)dy =-/,(x/_1/2, y;) J 2;"1
yj*\a
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(5.7a)

(5.7b)

(5.7c)

(5.7d)

The right-hand side is approximated by assuming that r is a constant over the rectangle

at the value r«, then

j\rdxdy =ri}J\dxdy =r/;- xArea of rectangle

= r-,
hi + A/-i *j + */-i

(5.8)

With the above approximations the space discretization of Equation (5.4) can be

expressed as

ht + /i,_i k: + kt^i hi + hi_x
-fy (Xi, yy_1/2) + /x(*/+i/2> yj) 0 + fy (Xi, y;+1/2)

2

hi + /*,-i
-fx(Xi-in,yj) V+*/-i

= r;
kj + */-i

Equation (5.9) can be used to write the discretized semiconductor equations,

hi + fy_i kj + kj_}
~Ey 'if;'-l/2 Z + Ex '«+l/2,j « + Ey U,j+lf2

k: + k:}
- 5c',--i/2t; 0 = (Nij +Pij - *ij)

hi + A.--i

hi + h;.X
I

2

'kJ + *;-i

(5.9)

(5.10a)



hi + /i/.i kj + kj_i ' hi + hi_x
-Jny lfJ-l/2 « +^nx ' 1+1/2,; « — +^ny 'i.y+1/2 ~

2

*/ + *j-i
-'«!.•-1/2,;

dr
-{G-R)tJ

hi + A/-i *> + *;-i

py '»J-i/2
A/ + A*-i

+Jpx ' 1+1/2,;
*; + *;-!

+ •'/jy ' ij+1/2
hi + A/-1

Jpx '1-I/2,;
*; + *;-]

9r
+ (G -*)<

K + AM *J + *;-!

J»)
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(5.10b)

(5.10c)

For a grid node where a homogeneous Neumann boundary condition is applied

either /, = 0 or fy = 0 on the boundary. In such a situation one edge of the rectangle R

is the boundary segment as shown in Figure 5.2 and the discretized equation is given by

-fy (Xi, )>j-i/2)-7r- + fy C*f. yj+ll2)-TT

-fxiXi-Y&yj)
kj +*j-i _ hi_}

= r:
kj + */-i

(5.11)

where the right-hand side is given by r^ xArea of rectangle.

For a node with Dirichlet boundary conditions, an ohmic-contact node, no equa

tions have to be solved since all the quantities \|/, n, and p at that grid node are known

from the equilibrium solution and the applied voltage.

Grid points that are on the silicon-oxide interface have to be treated in a different

manner. Such a situation is shown in Figure 5.3; in this case two rectangles are con

sidered, one above and and the other below the interface line. The box integration

method is then used on each of these rectangles. The contributions along the common

edge of the two rectangles cancel and the discretized equation is



<xi-r y j>

(x|,yj+1)

fcM.yj) • <> (xj.yj)

(xi.y^)

Figure 52: A grid node on the boundary segment.

fci-V

Oxide

- (x-,+ryj>

Silicon

(xi.y^)

Figure 53: A grid node on the sihcon-oxide interface.
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hi + Af-i[-/y(*«.>7-l/2)]

+[/y(jC«.y;+l/2)j

silicon

- [/'('.•-la.y;)]^^-- [r.Ot-ia.yy)]

<mde 2

^ + A,_,
ji'/tcon 2

_ •*,., A; + A._,

[ lJ jsOicon 2
*,• + *,-!

[ryJ««le (5.12)

The above scheme is used for discretizing the Poisson's equation at the interface grid

nodes. Since there is no charge in the oxide region, rf;- . =0. Furthermore, fy is

continuous at the interface if there are no interface charges. Therefore,

dy = £r
ij,silicon 9y Jij,oxide

where er = .

As seen from Equation (5.10) EXty, J^ and Jpx;y involve derivatives of the vari

ables y, n and p. Approximations have to be made to obtain values of the electric

fields and current densities at the midpoints of each edge since they are required in

Equation (5.10). To calculate the electric field values at the midpoint of each grid line,

the potential is assumed to vary linearly between grid points, i.e., the electric field is a

constant between two grid points and is given by

F . y«+u - v«v
cx ' 1+1/2,;" ~" . (5.13a)

For the current densities at the midpoints use is made of the Scharfetter-Gummel discret

ization, which also makes use of the fact that the electric field is constant between two

grid points. Therefore,

Jnx lf+l/2J =̂ l^1/2,;' [^+1.;5(V;+1.; "¥,%/> ""/.;* KVi+lJ "¥/,;))] (5.13b)
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Jpx I.+1/2,; =^'^ |ftJ*(Y/+1J "V/,;) "A+l^HVi+lJ "ViJ»] (5-13c)

where B(x) = is the Bernoulli's function. As indicated in [5.5], Bernoulli's
ex - 1

function has to be evaluated with care and CODECS makes use of the method suggested

in [5.5].

53. Space Discretization in One Dimension

Analogous to the space discretization for two dimensions, the following discretiza

tions can be obtained for the semiconductor equations in one space dimension. For grid

node i located at x{, the equations are

V.+i " ¥«• ¥/ ~ Vi-i {KT^ ] hi+hi-i
— 357- —r+'-4—j— (5-14a)

•'n,1+1/2 /b.j-1/2— •^-(G-/?) 2" (5.14b)

/p ,«+l/2 «/p,i-1/2 "~ -f+(G-«) *£ + A/-1
(5.14c)

5.3.1. Base Boundary Condition for One-Dimensional Bipolar Transistor

The traditional way of setting the base boundary conditions for a one-dimensional

bipolar transistor treats the base node as a point contact To account for the lateral base

current flow in a bipolar transistor a two-dimensional structure must be simulated. How

ever, it is also possible to do one-dimensional simulations by using a special boundary

condition for the base node. The quasi-Fermi level of the the majority carriers at the

base contact is assumed to be equal to the applied base-emitter voltage [5.6]. This condi

tion results in a discontinuity in the current at the base node and the discontinuity equals
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the base current [5.7]. The discontinuity in current is inevitable for a one-dimensional

model since lateral and vertical current flows cannot be modeled simultaneously in one

dimension.

With the use of the above boundary condition for an npn transistor, the hole

current-continuity equation (holes are the majority carriers) is replaced by

p =njeexp
q<yBE-V)

kT
(5.15)

where VBE is the base-emitter voltage. This approach leads to nonconvergence during

transient analysis, particularly so for negative values of VBE. The hole-current continuity

equation is not solved; hence, the rate of change of holes with time is not monitored by

the timestep-control scheme described later in this chapter. For this reason CODECS

makes use of a different formulation for the base boundary condition. The hole current-

continuity equation is used, thereby providing a more physical representation of the

one-dimensional bipolar transistor.

The discretized equations at the base node B, located at x = xBt for an npn transis

tor can be expressed as

Vfl+i-Y* Yb-Vb-i f„ . 1 hB+hB_x

hR.B-\

1 L± 1 *fi + (5.16a)

^i.B+l/2 ~^n,fl-l/2 -
3/i \ hB + hB\

(5.16b)

JpJ+\/2 ~ /p ,0-1/2 - -f +(G-K) hB + hB_i
+ JB (5.16c)

where JB is the lateral base-current density. Equation (5.16c) states that the lateral

current injected into the base contact is like a generation term. This is similar to the

approach of [5.8] where the base current is taken to be a generation term over the whole

base region. The hole current-continuity equation expresses the boundary condition at the
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base node in terms of an injected current The above system of equations could be used

except that with a current boundary condition convergence is harder to achieve [5.9]. For

this reason JB has to be modeled in terms of the applied base-emitter voltage and this is

done by a physical understanding of the operationof a bipolar transistor.

Consider the T-structure shown in Figure 5.4, which represents

T XB-1

B

Remote Base XB

B+l

Figure 5.4: A T-representation for the one-dimensional bipolar transistor.

the simplest approximation to the two-dimensional nature of the bipolar transistor. The

base current is injected at a remote base contact instead of xB. Since the base current is

due to the flow of majority carriers (holes for an npn transistor), JB (in normalized form)

can be expressed as [5.10]

d*.Cx.y)
h -Jjr, =~PVi dy

(5.17)

where §p(x, y) is the quasi-Fermi level of the majority carriers. Assume that §p(x,y) is

fairly constant with x in the base region. This can be expected since the majority carriers
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in the base flow laterally. Furthermore, this has been shown to be a reasonable assump

tion by use of two-dimensional numerical simulations [5.11]. Thus,

4^C*. 30 = 4^00 (5.18)

and

*—PPp-^^ (5.19)

Equation (5.19) is now discretized as

h=>Pj+v&p ^i/2*N*y~*^ (5*20)
With the assumption Pj+mlip \j+m~PsVpf» me Dase current can be expressed as

•ft--PjHPl»^V*J <5-21>

At the remote base contact $p = VB£, then

•fr =PbVp*VbB^P* <5-22)
In normalized form p =niee p* ~v*; therefore, /B can be written as

r .. VB£-^^ -ln(pg/»lg)
4* =Pb ^3 a (5-23)

where Ay is the distance of the intemal base node from the remote base contact and can

be used to model the base resistance of the bipolar transistor. It should be noted that the

base resistance is conductivity modulated since pB appears in the expression for JB.

Thus Equation (5.23) provides a physical representation of the bipolar transistor and is

used in CODECS. Ay is a user specified parameter and has a default value of AxB. The

above scheme exhibits no convergence problems in all transient one-dimensional bipolar

transistor simulations that have been performed with CODECS.
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5.4. Dc Analysis

At the device level dc analysis involves the solution of the device equations for an

applied terminal voltage V. The device equations after space discretization can be

expressed as

F(w(V), V) = O (5.24)

where w(V) is the vector of internal variables corresponding to the applied bias. A solu

tion of these highly nonlinear equations by iterative methods is prone to severe conver

gence problems. Newton's method is guaranteed to converge only when the initial guess

is close to the solution. However, if the initial guess is far from the final solution then

nothing can be said about the convergence of Newton's method. In order to alleviate the

convergence problem, several modifications and heuristics have to be used along with

the classical Newton's method. This section describes the enhancements used in

CODECS to obtain reasonable convergence under dc conditions.

5.4.1. Device-Based Limiting Scheme

Consider the problem of tracing out the dc current-voltage characteristics of a sem

iconductor device by use of device-level simulation. The change in the terminal voltages

from one bias point to the next must be small, otherwise convergence is not possible in

the device simulation. In typical device-level simulations the user specifies the voltage

increments to be used for generating the dc characteristics. In case of nonconvergence

the user refines the voltage increments to be smaller than those used previously. Thus,

by trial and error and by the use of small increments the user can obtain the solution.

This corresponds to a source-stepping scheme [5.1], the stepping increments for which

are provided by the user.
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In a mixed-level circuit and device simulator, nonconvergence at the device level

manifests itself as a serious problem. When the devices are part of a circuit iterative

loop, the terminal voltages may change by quite a significant amount from iteration to

iteration, particularly so in the first few circuit-level iterations when the iterates are far

from the solution. Applying these circuit node voltages as boundary conditions to a dev

ice will cause nonconvergence in almost all cases. Thus it is essential to limit the per

iteration change of the terminal voltages. The limiting schemes are based on physical

operation of a device and are therefore referred to as device-based limiting techniques.

Device-based limiting is also required with analytical models [5.1] to restrict the

per iteration change in terminal voltages, to avoid overflow problems, and to guide

Newton's method into its region of convergence. These limiting schemes are derived

from the current-voltage characteristics of the device, such as pnjlim the subroutine for

limiting pn-junction voltages in SPICE. However, a similar voltage-limiting scheme can

not be used for limiting the voltage change across pn-junctions modeled numerically,

since the current-voltage characteristics are not known a priori. CODECS relies on a

simple limiting scheme similar in flavor to that used in [5.12].

For the pn-junction it is known that under low-level-injection conditions the vol

tage increments can be larger than those used under high-level-injection conditions. Let

the built-in potential of a pn-junction be Vbi, then the limiting is performed as shown in

Figure 5.5 for positive values of the diode voltage. At present CODECS uses AV{ = 4Vt

and AV2 = 2Vt. The values of AVj and AV2 may appear to be conservative, but this

choice has performed well over a wide variety of examples.
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Figure 5.5: Limiting scheme for forward-biased pn junctions.

5.4.2. Voltage-Step Backtracking

The above limiting scheme can lead to nonconvergence under some operating con

ditions. As an aid to convergence a voltage-step backtracking scheme has also been

implemented in CODECS. If convergence is not achieved at the device level for a cer

tain increment in the terminal voltage AV, the device internal state is restored to the pre

vious solution, and a new voltage increment of AV/2 is used. This process may be

repeated until a voltage increment is found for which the device-level equations con

verge. Without exception, convergence can be achieved at the device level with a

sufficiently small increment in the terminal voltage. Device-based limiting combined

with the backtracking scheme exhibits good convergence for dc analysis.
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5.43. Linear Prediction of Initial Guess

A linear-projection scheme as used in [5.13] is also essential for faster conver

gence. This scheme is derived in an alternate manner here. Consider the device-level

equations as in Equation (5.24). These equations are solved by use of Newton's method

whereby,

Aw = -Jw_1F(w, V) (5.25)

dFis solved at each iteration until convergence is achieved; Jw = -r— is the Jacobian of the
ow

device-level equations. Newton's method requires a good initial guess to ensure conver

gence and the linear prediction step attempts to provide such a guess. The first-order

prediction is made by use of a forward-Euler scheme

w*+1 = w* +
9w

av
AV

J*

(5.26)

dw
where AV is the change in voltage from bias point k to k+l. To obtain

differentiate Equation (5.24) with respect to V, then

dF dw . 9F

dv

dw dV dV
= o

from which

9w

dV
= -J -1

JF
9V

(5.27)

(5.28)

3F

av
has nonzero terms corresponding only to the contact nodes and can be easily assem

bled. Jw is available in its LU-factors from the solution of Equation (5.24) by use of

dwEquation (5.25), hence calculation of -r— requires only forward and back substitutions.
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The above scheme does provide a good initial guess as demonstrated in [5.13].

However, it has also been suggested that convergence is faster if a fraction of AV is

used for predicting the electron and hole concentrations. A typical value suggested was

0.7AV. This indicates that a straight-forward implementation of the above scheme may

not provide a speed up.

A careful analysis of the linear prediction scheme has shown that nonconvergence

may occur when the prediction step results in a negative value for the carrier concentra

tions. This is unphysical; therefore, the prediction step has to be modified to predict phy

sically acceptable values. The improved linear prediction scheme in CODECS uses a

Fibonacci search sequence to determine acceptable values of An and Ap whenever the

initial values of An or Ap result in negative carrier concentrations.

The prediction schemes are now examined based on their convergence properties.

Since the application is for a mixed-level circuit- and device-simulation environment,

these schemes have been evaluated for a dc operating point analysis using the two-level

Newton algorithm on circuit examples with numerical models for the semiconductor dev

ices. In Table 5.1 are summarized the results for the classical Newton's method

(NewtonA), Newton's method with linear prediction (NewtonB), and Newton's method

with improved linear prediction (NewtonC). The numbers are given in the sequence:

number of device iterations, number of circuit iterations, and the runtime in seconds on a

VAX 8650.

The schemes without prediction and with linear prediction have convergence prob

lems. The Newton scheme with prediction requires a smaller number of device-level

iterations on the examples in which convergence is achieved; 36 and 30, respectively, for

the Invchain example and 34 and 28, respectively, for the Oscillator example. The New

ton scheme without prediction converges in the MECLgate circuit but does not when

prediction is used. This depicts that if the prediction step is implemented without any



Circuit NewtonA NewtonB NewtonC

RTLinv 3678/5.4S 30/8/4.8S 31/8/5S

Oscillator 34/8/4.5S 28/8/4.5S 28/8/4.5S

VCO - 147/8/24s 152/8/25S

Invchain - - 150/9/22s

Astable - - 76/9/1 Is

MECLgate 668/51/94s - 521/51/Sls
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Table 5.1: Comparison of iterations and runtimes

modifications it could also lead to nonconvergence. The modified prediction scheme does

the best; it converges on all examples. Furthermore, for the examples in which the pred

iction step without modifications converges the iteration counts are similar. The modified

prediction scheme requires twenty-two percent fewer device-level iterations compared

with Newton's method for the MECLgate example. From the above results it is borne

out that the prediction step must ensure that carrier concentrations are never negative;

this results in an overall better convergence. The modified two-level Newton algorithm

described in Chapter 4 makes use of the modified linear prediction scheme for dc

analysis and a simple prediction during transient analysis.

The above analysis may suggest that use of a modified updating scheme for the

full-Newton algorithm of Chapter 4 may give better dc convergence. However, this is

not the case, since with the full-Newton algorithm the update scheme is part of a New

ton step and is not used to predict an initial guess for the solution as in the two-level

Newton algorithm. In the full-Newton scheme any modification in the updating scheme

corrupts the Newton direction and can actually degrade the convergence. The results

obtained by use of a simple and modified updating for the full-Newton method are com

pared in Table 5.2. The numbers are in the sequence of number of device iterations, cir

cuit iterations, and the runtime in seconds on a VAX 8650. For the full-Newton



101

algorithm the number of device-level iterations is the product of the number of circuit-

level iterations and the number of numerical devices. In addition some iterations are

required to obtain an initial solution for the numerical devices, typically 8 iterations per

device. For the VCO example with 10 circuit-level iterations and 6 numerical devices the

number of iterations is 60. An additional 6x8 iterations are required for generating the

initial solution giving a total of 108 device-level iterations.

Circuit Simple Updating Modified Updating

RTLinv 16/8/2.4s 17/9/2.7

Oscillator 17/9/2.6s 17/9/2.7

VCO 108/10/16s 114/11/18s

Invchain - -

Astable - -

MECLgate - -

Table 5.2: Comparison of simple and modified updating schemes

5.4.4. Norm-Reducing Newton's Method

In addition to the above schemes, Newton's method at the device level has to be

guided into its region of convergence. The classical Newton method tends to overshoot,

particularly so if the initial guess is a poor one. It may so happen that Newton's method

may never enter its region of convergence and may eventually result in nonconvergence.

A typical way of avoiding overshoot in Newton's method is to use a norm-reducing

scheme in which the Newton update is chosen such that the norm of the right-hand-side

vector reduces from iteration to iteration. Such schemes have been proposed by [5.14]

and [5.15].

The norm-reducing Newton method is now described. Let Aw* be the Newton

update at iteration k, then w*+1 is calculated as
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w*+1 = w* + XAw* (5.29)

where X is chosen such that

I IF(w*+1)l I < I IF(w*)l I (5.30)

i.e., the norm of the right-hand-side vector decreases monotonically. The calculation of

X can be done in several ways as in [5.15-5.17]. The Armijo step-size rule of [5.17] has

been used in CODECS, in which the search technique instead of being exponential in

nature is based on the Fibonacci sequence. This technique has been previously imple

mented for circuit-simulation problems [5.18] and gave good results. When w* is close

to the solution, the rate of convergence of Newton's method is quadratic, whereby Equa

tion (5.30) would be satisfied from one iteration to the next with X = 1. Thus, near the

solution the norm-reducing Newton method reduces to the classical Newton method.

An appropriate norm must be used in Equation (5.30) otherwise the convergence

may be extremely slow. The L2 norm has been frequently used [5.15, 5.16]. However,

as shown in [5.19], the steepest-descent direction of the L2 norm may not coincide with

the Newton-update direction and results in slow convergence of the norm-reducing New

ton method. An alternate norm, the 'Nu' norm, has been proposed in [5.19] which

ensures that the direction of steepest descent of the norm coincides with the update

direction. In CODECS the max norm is used; it gives good performance and can be

easily calculated. The 'Nu' norm requires forward and back substitutions with the LU-

factored device-level Jacobian matrix and hence is more expensive to evaluate. A com

parison of the convergence in the max and 'Nu' norms when used at the device level

with the two-level Newton scheme is given in Table 5.3. Device-based limiting and the

modified linear prediction are used in both cases. The numbers are in the sequence:

device-level iterations, circuit-level iterations, and runtime in seconds on a VAX 8650.



Circuit Max Norm Nu Norm

RTLinv 31/8/5S 32/8/6S

Oscillator 28/8/4.5S 28/8/4.7S

VCO 152/8/25S 158/8/28S

Invchain 150/9/22S 152/9/25S

Astable 76/9/1 Is 77/9/12.5S

MECLgate 521/51/81S 583/51/97S
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Table 53: Comparison of Max and 'Nu' norms

It is seen from Table 5.3 that for all the examples the convergence with the max

norm is similar to that with the *Nu' norm. For the MECLgate example, however, a

much larger number of device-level iterations are required to achieve convergence with

the 'Nu' norm. Based on the results of these experiments, the max norm is used in

CODECS for the norm-reducing Newton method.

5.5. Transient Analysis

Nonlinear time-domain simulation is an extremely useful analysis, particularly so in

a mixed-level circuit and device simulator since it provides a way of evaluating the

dynamic performance of devices within a circuit environment. The transient behavior of

a device can vary depending upon its region of operation and the applied terminal vol

tages. Even with good analytical models for the dc characteristics of a device it is

difficult to predict the dynamic operation of the device.

In Chapter 4 it has been shown that convergence is not as serious a problem in

transient analysis as it is for dc analysis. The full-Newton scheme was found to have

the best runtime performance and is therefore used in CODECS. This section describes

the integration formulae and timestep-control schemes used at the device level of

CODECS.
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The nonlinear device-level equations after space discretization can be expressed in

the form

F(w(f).w(0.V(f)) = O (5.31)

where w is the vector of internal variables and V(t) are the applied terminal voltages.

This system of differential-algebraic equations is transformed to a system of nonlinear

algebraic equations after discretization in time, i.e., at timepoint fn+1,

F(wB+1) = O (5.32)

These nonlinear equations can be solved by Newton's method. The discretization in

time is done by use of an integration formula which provides an approximation for the

time derivative of a variable x(t) at time fn+1 in terms of the values of the variable at

tn+i and values of the variable and its derivatives at the previous timepoints. Linear mul-

tistep (p-step) integration formulae of order k, that are in common use in computer-

aided circuit and device analysis, are given by

£*,•*,+,-,• - KXbiXn+l_i =0 (5.33)
i=0 i'=0

where 2p+l-k of the a{ and bt are assigned arbitrarily and hn = rn+1 - tn. The rest of

the coefficients are determined from exactness constraints, i.e., a fcth-order integration

formula is exact for polynomials in t of degree less than or equal to k. An integration

method is an implicit method when a0 * 0. Implicit methods require an iterative solution

but have larger regions of stability and hence are preferred. The integration methods

must be stiffly stable to be of practical use since the time constants of the equations may

vary by several orders of magnitude [5.1, 5.20].

Trapezoidal integration has been widely used in circuit simulation [5.1]. It is an

A-stable method that has the smallest local error [5.21], However, it is not suitable for

device-level simulation because it is not L-stable [5.22]. Device-simulation problems are
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extremely stiff and if the local error is not monitored carefully the results exhibit ringing,

an artifact of the integration method. With a proper control on the error, the timesteps

taken may be small whereby there is a restriction on the timestep and no advantage in

using the trapezoidal method [5.23]. The backward-Euler method has been used in

several device simulators [5.4, 5.24], even though it is a first-order method and has a

large local error. A second-order method that is both A-stable and L-stable is the

backward-differentiation formula of second order, BDF2. Thus, it is well suited to

device-level simulation problems. However, it also has a local error that is larger than

the trapezoidal method and an alternate integration formula is the TR-BDF2 scheme pro

posed in [5.23]. The TR-BDF2 method requires two solutions for each timepoint, the

first makes use of the trapezoidal integration for a fraction of the timestep and then

BDF2 is used for the rest of the interval. Implementation of this integration scheme in

CODECS would require modifications to the core of the circuit simulator, which controls

the simulation. Since the intent has been to keep the circuit-simulation algorithms unal

tered, the algorithms have to be chosen to ensure decoupling between the circuit and

device simulators. For this reason the TR-BDF2 has not been considered for time-

domain transient analysis in CODECS.

5.5.1. Local Error and Error Estimates

Assume the linear multistep integration method is given by Equation (5.33). Furth-

p

ermore, assume that this equation has been normalized such that £&/ = 1. The local
j'=0

error of the integration method at time point tn+] is then defined as

^n+i =2>*('„+i-,) - Ki>,i(rn+M) (5.34)
i'=0 i=0

where x(tn+l) denotes the exact solution to the differential equation at time tn+l. Thus,
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local error is the amount by which the exact solution fails to satisfy the difference equa

tion, Equation (5.33). The above equation can be expanded around tn by use of Taylor

series. For a &th-order integration method, with the assumption of uniform stepsizes, the

local error [5.25] is

LEn+l = Ck+lhk+lxk+\tn) (5.35)

where Ck+l is called the error constant of the integration method. A method of order k

that has the smallest value of Ck+l will have the smallest local error and will therefore

be more accurate. From Equation (5.35) it might appear that by scaling Equation (5.33),

Ck+i could be reduced thereby reducing the error of the method. However, the values of

x computed from Equation (5.33) will not change; therefore, the accuracy of the method

p

will not be affected. It is for this reason that the normalization ££>,- = 1 was introduced;
i=0

after this normalization the constant Ck+l is invariant to such scalings [5.25] and hence

can be used as a measure of the accuracy. The local error for two second-order methods,

BDF2 (second-order BDF) and trapezoidal method, is now derived for the case of

nonuniform step sizes.

5.5.1.1. Local Error for the BDF2 Integration Method

The BDF2 integration method is given by

2

2>**n+i-/ - h„xn+l_i = 0 (5.36)
«=0

where a0, a i and a2 are obtained from the exactness constraints. Their values are

=

2hn + «„-!
a0

K + «„-!

a*

h n + «n-l

«„-!
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a2 =
hi

ha-i(hn + n„_,)

where n„= fn+1 - t„. To obtain the error, the exact solution x(t) is substituted in Equa

tion (5.36)

£E»+i = 2>«*&.+i-«) - h„x(tn+l_i)
i=0

From a Taylor series expansion around tn, it can be shown that

hhK + «„-i) d2x(tn)
LEn+i ~ -

dr

(5.37)

(5.38)

5.5.1.2. Local Error for the Trapezoidal Rule Integration Method

The trapezoidal method when expressed in the form of Equation (5.33) with the

normalization j^i = 1 is given by
i=0

xn+i —xn —hn
xn+i x„

~~2 2
= 0

Substituting the exact solution x(t) in Equation (5.39), one obtains

x(tn+l) x(t„)
LEn+l=x(tn+l)-x(t„)-hr

From a Taylor series expansion around t„, it can be shown that

^"^-12 *3
h„ d3x(tm)

(5.39)

(5.40)

(5.41)
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5.5.2. Estimation of Local Error

The calculation of local error for a second-order integration method requires an

d3x(tn)
estimation of =—, i.e., the third derivative of the solution. One way to do this is to

dt*

make use of divided differences as in SPICE [5.1]. However, divided differences are

prone to errors and may not provide a good estimate of the local error. An alternative

approach is the use of a predictor-corrector technique which is illustrated for a second-

order method.

Consider a second-order polynomial predictor to be used with a second-order

integration method. Let x(t) be the actual solution, then a predicted value for x at time

'„+i is given by

XP(.tn+l) =Cxx(tn) + C2X(t„^) +CyX(t„_2) (5.42)

where the coefficients cx, c^ and c3 are determined by exactness constraints.

m . h„(h„ + 2h„.x + An_2)
H ~ *> hn_i(h„„Y + hn_2)

h„(h„ +/z„_1 + An_2)
c2 ~

hn-\K-2

h»(h„ + h„_x)

hn-2(hn-\ + h„_2)

Consider the difference between the exact solution x(tn+l) and the predicted value

xp(tn+x). From aTaylor series expansion around r„, it can be shown that [5.26]

P hn d3x(tn)
Sff a = -JL{hn + h„.x)(hn + A„_, + An_2)——"

6 dr
x(tn+l) - *'(/n+1) =-f(A„ + hn.x){hn + h„.x +hn_2)—-£- (5-43>

d3x(tn)
Thus, -— can be approximated by

d3x(tn) 6 , P . fKAA.
dx* K (hn + /in_,)(A„ + hn_x + hn_2)
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where *B+1 and x£+x the computed values of x(t„+x) and jc^(rn+1), respectively, have

been used. The above formula is quite useful since it relates the local error to the

difference between the corrected and predicted values. Furthermore, the predicted value

provides a good initial solution for the new time point

Based on the above approximation for the third derivative of x{t) the local errors

for the BDF2 and trapezoidal integrationmethods can be expressed as

BDF2: LEn+1 = *" (xn+1 - j&,) (5.45)
K + "n-l + ««-2

A linear test problem has been used to evaluate these error estimates. The linear

problem is

x =Xx , X = -\ , *(0) = 5

The computed local-error estimate from Equations (5.45) and (5.46) is compared with

the actual local error, using the definition of the local error. The solution is started with

an hmin = lfisec. The timestep is doubled every timepoint until it reaches the maximum

allowed timestep of 0.25sec. The results for BDF2 and TR are shown in Figure 5.6. It is

seen that BDF2 has a higher local error compared to TR as expected. Furthermore, the

agreement between the calculated value of local error and the actual local error is good.

One can only expect the above estimates to be reasonable for a nonlinear problem, such

as the device-simulation problem.
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LE(t)xlO"3

A (trap.estiraate)

16.00
B (trap.actual)

14.00 C (bdfLestimate)

12.00
_ D (bdf2.actual)

10.00

8.00

6.00

4.00

2.00

0.00

Time (sec)

0.00 2.00 4.00

Figure 5.6: Estimated and actual values of local error for the tra
pezoidal and BDF2 integration methods.
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533. Time-Step Control in CODECS

Timesteps used during transient analysis must ensure accuracy of a stiffly-stable

integration scheme which is used for the solution of stiff systems. The simplest scheme

is to use a fixed timestep over the whole time interval. However, this is not appropriate

for stiff problems, such as the circuit- and device-simulation problems, because the time

constants of the equations may vary by several orders of magnitude. The timestep must

be small enough to accurately resolve the fast transients. This results in the use of an

extremely large number of timepoints when computing a solution with fast and slow

transients. Varying the timestep during the simulation can provide speed as well as accu

racy. Thus, fast transients would be resolved with small timesteps whereas during the

slow transient larger timesteps are used. This section describes the timestep control used

at the device level in CODECS. The allowed timesteps are determined from the local-

error estimates derived earlier.

A solution computed at timepoint rn+1 by use of an integration method is con

sidered to be acceptable if the local error £n+1 is less than a user-specified error toler

ance, i.e.,

En+l < E^gf. (5.47)

where E^^ can be expressed in terms of a relative error tolerance and an absolute

error-tolerance parameter er and ea, respectively. These parameters are used to control

the accuracy,

Euser - Er '*n+l ' + E<i (5.48)

The timesteps can be controlled by considering the relative error of the allowable local

error and the actual local error.

r =
<n+\ \ck+xhrx{k+i\tn)\

Ck+lhallowablex (tn )'

*+l

(5.49)
'allowable



Thus, the allowable timestep for the /:th-order method is given by

where

hallowable = ^n XrLC

-l

r _ - *+i

'n+l

1

*+l
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(5.50)

(5.51)

The value of r^ is used to select or reject the new timestep based on an a posteriori

analysis. For device-level equations it is appropriate to use a root-mean-squared norm for

calculating the relative error [5.23]. Thus r is calculated as

r =
1 N

yvi-\

'user,i

'"+!,«

n 1

(5.52)

where N is the number of equations.

The timestep selection criterion is now described. Consider the solution at time tn+x

which was computed using a timestep hn. If r^ < 0.9 then timestep h„ is rejected and

the solution for rn+1 is attempted with a new timestep h* = hn xr^. For values of

ri£ £ 0.9, the timestep is considered acceptable and the new timestep is taken to be

MIN(ru£ xhn, 2.0xh„, hpriM), where hprint is the print-time interval. At each timepoint

the timestep is allowed to increase by at most a factor of two and never allowed to

exceed the print-time interval. In addition to the relative error criterion a timepoint is

also rejected if too many iterations are required for convergence at that timepoint. The

timestep is rejected whenever convergence is not achieved in ten iterations and a new

A.
solution is attempted with a timestep of h* =

8

It is well known that stability results for the various integration methods are appli

cable only when uniform timesteps are used. Nothing can be said about the stability of

an integration method when the timesteps are allowed to vary. It can only be hoped that
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the local error will lead to small enough timesteps such that the integration method

remains stable. However, most linear multistep methods (except for one-step methods)

can be made unstable by a suitable variation in the timesteps [5.27]. It can be shown that

the second-order BDF is stable with nonuniform step sizes when the ratio of timesteps

hn+i
—-— is kept smaller than 1.2 [5.28]. Intuitively, it appears that if the variations in

hn

timesteps are made gradual, stability problems can be avoided.

An alternate scheme for timestep control is described that provides for a gradual

change in the timesteps. For 0.9 £ r^g £ 1.2 the step size is left unchanged, hn+x = hn.

With r^ > 1.2 a linear increase in timestep is allowed whereby

hn+l = MlN(hn{\ + 0.9(7-^ - 1.2)), 2hn, hprint)

When 0.5 £ r^ < 0.9, the timepoint is rejected and the step size is reduced by a factor

of two. For ri£ < 0.5 the timepoint is rejected and a new solution is computed by using

the first-order BDF with a timestep of r^xh,,. This scheme also keeps a check on the

number of iterations required for convergence at a particular timepoint. Whenever the

number of iteration exceeds ten, the timepoint is rejected and a new solution is attempted

with a step size of —2-.

The two schemes for timestep control are compared for the BDF2 integration

method in Table 5.4. The data is given for the benchmark examples using the full-

Newton algorithm. The numbers for the various examples are in the following sequence:

number of iterations, number of timepoints accepted, number of timepoints rejected, total

number of timepoints, and the run times in seconds on a VAX 8800.

The second scheme for timestep control does better in only one example, the VCO

circuit; the number of iterations and hence the runtime is smaller. In all the other exam

ples the first scheme does almost the same or better. Scheme 2 requires a larger number
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of timepoints and this is due to the restrictions imposed on the timesteps. Since the first

scheme does not show any instability in these examples, there may be no apparent

advantage in using a timestep-control strategy that is as restrictive as the second scheme.

Therefore, in CODECS, the first scheme is used for controlling the timesteps.

For the trapezoidal integration method, the two schemes are compared in Table 5.5.

The conclusions again are similar to those obtained with the BDF2 integration. The first

scheme does better in almost all the examples.

Finally, the results for the BDF2 and trapezoidal methods are compared for the first

timestep control scheme in Table 5.6. This comparison allows an evaluation of which

integration method is more suitable for use in a mixed-level circuit and device simulator.

The TR integration performs remarkedly better on the Oscillator, MECLgate and

Pass circuits. For the other examples it performs almost similar to BDF2 or slightly

worse than it From this data it is clear that TR integration does not provide as

significant an improvement in performance as it did for circuit simulation [5.1]. The total

number of timepoints (accepted and rejected) are smaller with the TR algorithm but the

number of rejected timepoints is significantly larger when compared with BDF2. This

indicates that computational effort is wasted in determining the solution at timepoints

that are eventually rejected. The timepoints are rejected whenever the timestep fails to

meet the error criterion or when convergence is not achieved in ten iterations. A breakup

of the timepoint rejections is presented in Table 5.7, where the statistics of timepoints

rejected by the error criteria ( Local Error Reject) and due to nonconvergence (Noncon

Reject) are given for the BDF2 and TR integration methods. The number of iterations

required per timepoint are also included.

For the BDF2 method, a significant number of timepoints are rejected due to non-

convergence only in the VCO and Astable examples. This is to be expected since the

circuit waveforms have sudden transitions which result in a large change in the terminal



Circuit Scheme 1 Scheme 2

Oscillator 16127 16712

3491 3939

705 539

4196 4478

2063 2103

VCO 5890 5923

1003 1049

209 186

1212 1235

3000 3029

Invchain 1738 1715

322 346

66 45

388 391

545 514

Astable 5744 6406

1107 1331

216 219

1323 1550

1139 1232

MECLgate 1966 2138

429 476

55 53

484 529

1680 1806

Pass 240 232

67 71

4 2

71 73

865 858

MOSinv 326 317

86 85

7 3

93 88

1120 1108

ChargePump 1853 1887

399 441

81 73

480 514

4124 4396

Table 5.5: Comparison of two timestep control schemes
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Circuit

BDF2 Trapezoidal

Local Error Noncon Iter per Local Error Noncon Iter per

Rejects Rejects Timepoint Rejects Rejects Timepoint

Oscillator 361 0 3.3 504 201 3.8

VCO 103 73 4.5 91 118 4.9

Invchain 15 2 4.1 52 14 4.5

Astable 148 33 4.1 139 77 4.3

MECLgate 30 1 4.0 53 2 4.1

Pass 8 0 3.3 4 0 3.4

MOSinv 4 0 3.4 4 3 3.5

ChargePump 62 11 3.3 42 39 3.9

Table 5.7: Comparison of rejected timesteps

voltages of the device. Consequently a large number of iterations are required for con

vergence at such timepoints. Whenever, the number of iterations exceeds ten the

timepoint is rejected and the timestep is reduced by a factor of eight. For the TR method

a large number of timepoints are rejected due to nonconvergence in all but three exam

ples. The larger number of nonconvergent timepoints with the trapezoidal integration can

be explained in the following manner. Since TR allows larger timesteps at each

timepoint, due to the smaller local error, the terminal voltages of the device will change

by larger amounts. As a result a larger number of iterations will be required for conver

gence, increasing the occurrence of nonconvergent timepoints.

The waveforms obtained by the two integration methods for different circuits are

almost identical and indicate that the trapezoidal integration method showed no ringing.

This was achieved by properly monitoring and controlling the local error. However, the

advantage gained by use of the trapezoidal method is not as significant as it is for circuit

simulation [5.1]. For this reason both the BDF2 and TR algorithms are available in
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CODECS.

5.5.4. Higher-Order Integration Methods

In mixed-level circuit and device simulation each timepoint requires the solution of

device-level equations. If the number of timepoints can be reduced without substantially

increasing the number of iterations per timepoint then significant improvement in speed

performance is possible. One way of achieving a smaller number of timepoints is by the

use of higher-order integration methods which have smaller local errors. Backward-

differentiation formulae of order k, 1 £ k £ 6, have been used for circuit-simulation

problems and are now evaluated for CODECS. A Jfcth-order BDF [5.27] is given by

k

Xaix»+i-i " M„+i = 0 (5-53)

The first- and second-order BDF are astable; and, hence, stiffly stable. Methods of order

k, 3 £ k £ 6, are stiffly stable and methods of order greater than seven are unstable

[5.27]. The coefficients ax are functions of the step sizes and are determined by the

exactness constraints whereby a system of k+l linear equations is solved at each

timepoint. In SPICE, full-matrix solution of the linear equations is performed to deter

mine the a,-'s [5.1]. However, CODECS uses closed-form expressions for a-x as given in

[5.26].

* 1
flO^nl

;=1ft, - '„-,)

h k (t -1 •)
ax = Yl — » i = 1, 2, • • • , * (5.54)

vn —*n-i) j=l,j#i \*n-i —*n-j'/

A /:th-order polynomial predictor is given by

xL\ = Zci*»+i-i (5-55)
i=l
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where c,- can be determined by exacmess constraints. Closed-form expressions for c,- are

also available [5.26] and are given by

t+i (t -t )

(f ... 0 P-M)
j&l,j*i V'n-i *n-y/

It can be shown that the local error at time fn+1 using a fcth-order integration method is

[5.27]

*•+>= a +* +"—r*-^ ~^} (5-57)«n + nn-\ + + "n-*

where **+1 is the computed value of the solution ^(fn+1) and jc*+J is the predicted value.

The above error estimates are examined for the linear test problem

i=te, X = -1.0, x(0) = 5

This differential equation is integrated by use of higher-order BDF methods and the

computed local error is compared to the actual error. The integration is started with a

minimum timestep of ljisec, and the timestep is doubled every timepoint until it reaches

a maximum value of 0.25sec. The integration order is raised from order k to k+l after

k+l steps of the Jfcth-order method, which is similar to the scheme of [5.27] for increas

ing the integration order. The estimates of local error from Equation (5.57) and the

actual error are compared in Figures 5.7(a) and 5.7(b). The error estimates are very close

to the actual error for integration orders k, 2 < k < 5. For the sixth-order BDF, the local

error estimate shows some ringing and overestimates the error, but the error is quite

small; less than 10"4.
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A (bdfZactual)

B(bdniesti'mate)
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Figure 5.7(a): Estimated and actual values of local error for BDF2
and BDF3 integration methods.
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Figure 5.7(b): Estimated and actual values of local error for for the
fourth, fifth, and sixth order BDF integration methods.
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5.5.5. Timestep and Order Control for Higher-Order BDF

Higher-order BDF methods allow the choice of an integration order along with a

new timestep. Thus, both timesteps and integration order can be varied and this must be

done in a manner that ensures accuracy and provides an improvement in performance. A

method of order k is used at a particular timepoint whenever it allows the largest

timestep. The order-selection criterion is based on [5.27].

Assume that the solution at a particular timepoint rn+1 has been computed by use

of a fcth-order integration method, 2 £ k £ 5. If the local-error criterion accepts the

timepoint, the local error for the (&-l)th-order method is compared to that of the fcth-

order method. If the lower-order method allows a timestep greater than that of the £th-

order method by a factor of orderDownFactor, then the (fc-l)th-order integration

method is used for calculating the solution at the next timepoint. When there is no

advantage in using the low-order method, the possibility of increasing the integration

order is evaluated. If the (Jfc+l)th-order method allows a timestep greater than that for the

fcth-order method by a factor orderVpFactor then order Jfc+1 is selected for computing

the solution at the next timepoint Obviously for the first-order method only an increase

in order is attempted, whereas for the sixth-order method only a decrease in order is pos

sible. The condition for changing orders is evaluated after every k+l timepoints have

been computed with the fcth-order integration method.

The timestep-control scheme is the same as that used for the second-order BDF. To

compare the performance of variable timestep, variable integration order schemes a non

linear device-level problem has been solved. A transient simulation is performed on a

MOSFET connected as a capacitor, the source, drain, and substrate terminals are

grounded and the gate voltage is ramped from +5V to -5V in lOnsec; the MOS-gate

capacitor-voltage characteristics can be determined. In Table 5.8, the results obtained for

various values of the relative tolerance parameter er for an orderVpFactor of 1.2 and an
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orderDownFactor of unity are compared. The latter condition ensures that a lower order

will be used whenever two integration orders allow the same timestep. The nonlinear

equations are solved with a relative error tolerance of £r, whereas the local-error check

uses a relative error tolerance of 10er. The data is given in the sequence: number of

accepted timepoints, number of rejected timepoints, number of iterations, and analysis

time in seconds on a VAX 8800. No statistics are given for a maximum order of 6 since

the highest order that was used was 5. From Table 5.8 it is seen that for tighter error

tolerances the higher-order methods provide some speedup. However, going beyond the

third-order method does not provide significant improvement. For an er = lxlO"5, a

maximum order of five results in a poorer performance compared with a maximum order

of three. Thus, methods higher than three do not provide any significant improvement in

performance. For looser tolerances, the second-order method is quite adequate.

As additional data, consider the data of Table 5.9 obtained by using an

orderVpFactor of 2.0 and an orderDownFactor of unity. This choice of parameter

allows a higher-order method to be used only if the timestep is larger by a factor of two

compared with the lower-order integration method. With this choice of parameters, it is

seen that the highest order used was three. Furthermore, it does not provide any addi

tional speedup compared with the second-order method. In conclusion, a second-order

method provides reasonable performance for transient analysis.

5.5.6. Iteration-Domain Latency

At each timepoint the numerical devices converge in a different number of itera

tions depending on how their terminal voltages vary. If a device converges at a particu

lar operating point and its terminal voltages do not change then there is no need to

evaluate the device. This form of latency, called iteration-domain latency, has been

found to be useful in event-driven simulation [5.29]. The latency check in CODECS is



Method/Order £,. = lxlO"3 Er = lxHT* Er = lxl0-5

Trapezoidal 114 143 218

22 25 21

423 530 761

5948 7882 11155

BDF/Max Order 1 147 334 860

12 31 50

444 1081 2714

6210 15090 37758

BDF/Max Order 2 111 171 291

11 15 31

340 551 959

4656 7950 13178

BDF/Max Order 3 105 137 201

11 15 29

324 453 691

4492 6384 9250

BDF/Max Order 4 105 126 176

11 16 29

324 424 619

4500 5887 8566

BDF/Max Order 5 105 126 199

11 16 34

324 424 710

4500 5887 9768

Table 5.8: Comparison of higher order methods
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Method/Order er = 1x 10"3 er =lxl0--* er = lxl0"5

Trapezoidal 135 153 256

22 36 18

452 581 839

6664 8601 12484

BDF/Max Order 1 147 334 860

12 31 50

444 1081 2714

6210 15090 37758

BDF/Max Order 2 142 185 301

13 25 21

433 620 955

6042 8541 13170

BDF/Max Order 3 142 181 285

13 27 23

433 614 916

6100 8305 12910

Table 5.9: Comparison of higher order methods
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based on a similar idea and is also similar to the bypass scheme of SPICE [5.1]. A

numerical device is considered to be latent when all the following conditions are met,

(a) the device-level equations have converged

(b) the terminal voltages meet the convergence criterion, i.e., they are within the error

tolerances, and

(c) the change of current is also below the tolerance for device currents

The last two conditions can be described by the following equations.

Wk - Vk_xI < trMAX(\Vk I, IVk_x I) + efl

I/*-4 I <zrMAX(\Ik\, l/*l) + £a

where fk is the the linearized terminal current that corresponds to the voltage Vk. A

comparison of the use of the above latency scheme in CODECS is given in Table 5.10.

The data is given in the following sequence: total number of iterations, number of

timepoints accepted, number of timepoints rejected, total number of timepoints, and the

total analysis time in seconds on a VAX 8800.

The improvement in speed obtained by the use of the latency check is summarized

as a ratio in Table 5.11.

It is seen that the number of timepoints remain almost the same. An improvement

in speed is achieved since the devices that have converged need not be re-evaluated. The

circuits Oscillator, Pass, MOSinv, ChargePump, have only one numerical device; there

fore, there is no improvement in performance. Latency check in the iteration domain is

appropriate for circuits in which there are multiple numerical devices. On average a

fifty-percent speedup is obtained for these test examples.
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Circuit Latency No Latency Ratio

Check Check

Oscillator 2352 2353 1.0

VCO 2911 4467 1.5

Invchain 514 908 1.8

astable 1230 1713 1.4

MECLgate 2121 3893 1.8

Pass 1059 1160 1.1

MOSinv 1155 1239 1.0

ChargePump 4039 4356 1.1

Table 5.11: Comparison of total analysis time
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5.5.7. Current-Conservation Property of BDF

In this section it is shown that the space-discretized equations conserve total

current when discretized in time by use of the backward-differentiation formula. It is

shown in [5.30] that the first-order BDF conserves current Here the result is generalized

to the higher-order BDF. In fact, it can be shown that any linear-multistep integration

method will possess this property.

Current conservation is easily demonstrated for a one-dimensional diode, and can

be extended to two-dimensional devices. The device equations for grid node i located at

Xi can be expressed as

hi + hi_x¥,+i - ¥; Vi - ¥»-i \„ _,_ }

*n,i+l/2 " *'»,i-l/2 +

Jp,i+V2 - Jp,i-\t2 +

$-<G-A)

-f +(G-K)

hj + hj.x

2

hi + A.--1

(5.58a)

(5.58b)

(5.58c)

The total current for the interval (xit xi+x ) is the sum of the electron current, the hole

current, and the displacement current

Jt ,i+1/2 - ^n ,j+1/2 + Jp ,«'+l/2 +^.i+1/2 (5.59)

To show current conservation it suffices to show that

Jr.i+i/2 - ^r,/-1/2
(5.60)

since current will be a constant in a one-dimensional diode when the total current is con

served. Recall that the displacement current is related to the electric field. In normalized

form

J*j +1/2 -

dE:i+1/2

dt
(5.61a)



With the finite-difference scheme for space discretization, described earlier,

h,i+1/2 -
dt

V,-+i - ¥,•

hi

From Equation (5.58a) /</,,+i/2 can be related to Jd,i-\a **

9 r l*i+ *i-i
Jdj+w =Jdj-w + gj- p +Pi ~ni J 2—
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(5.61b)

(5.62)

Now discretizing the time derivatives by use of BDF of order k, 1 £ k £ 6, at time

r = tm, and evaluating Jtj+w> one obtains

•Jr.i+l/2 - ^T.i-l/2 +Za; K L+1_;

iaj[Ni+Pi-ni}m+H
;=0

which can be simplified to

** + hi-i
2

A* + hi.x

-k>bU-j

2>; kl i •^r./+i/2 = Jtj-m +
*/ + Aw

hi + A|-i

(5.63)

(5.64)

The term in the summation is zero, since A/,- is a constant for all time points and the

k

integration method satisfies the exacmess constraint, i.e., Ja;- = 0. This gives the
;=0

desired result; the space-discretized equations exhibit continuity of current when time

discretization is performed by the fcth-order backward-differentiation formula.

5.6. Small-Signal Ac and Pole-Zero Analyses

Steady-state sinusoidal analysis at the device level was described in Chapter 3.

There it was shown that the device-level equations can be assembled in the form

4p-+7D(a»
ow

w(co) = b (5.65)
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dFwhere -r— is the Jacobian matrix of the device-level equations at the dc operating point,

and D is a diagonal matrix with diagonal entries 0, -©A,-, and coA,, corresponding to the

Poisson equation, the electron current-continuity equation, and the hole current-continuity

equation, respectively. At is the area of the region associated with grid node i, and

w = wr + jw,« is the vector of the small-signal internal device variables. The above sys

tem of equations can be solved by a SOR-technique as described in Chapter 3, which

works well at low frequencies. At higher frequencies it can be shown that the relaxation

method will have very slow convergence. For this reason, CODECS uses a Gauss-

Siedel relaxation at low frequencies and switches to a direct method whenever the relax

ation method fails to converge in five iterations. The direct method solves the complete

system of linear coupled equations simultaneously and always obtains the solution. This

process is explained in detail below.

At low frequencies, CODECS solves the decoupled system of equations obtained

by Gauss-Siedel (GS) relaxation as

-~-wr*+1 = br + Dw* (5.66a)
ow

^w?+1=-Dwr*+1 (5.66b)
ow

where k is the iteration count for the relaxation method. The above decoupling has the

dF
advantage that —— is available in its LU-factors from the dc operating point solution of

ow

the device-level equations; only forward and back substitutions are required in solving

wr and w,, which makes the computations extremely efficient As an example, a fifty-

point ac analysis of a single MOSFET circuit took 3\5sec with the GS method, whereas

the direct method required 2608.sec. Clearly the GS approach is more efficient and can

result in significant savings of CPU time, particularly so for low frequencies and larger

circuit examples.
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Once the small-signal values of the internal variables have been obtained at a par

ticular frequency co, the admittances of the device can be calculated at co. The pseudo-C

code below illustrates calculation of the admittance for a numerical one-dimensional

diode.

computeDiodeAdmittance( pDevice, omega, area, yd )
/* pDevice is the device pointer */

/* omega is the analysis frequency */

/* area is the diode area */

/* yd is the calculated admittance value */

{
if( AcAnalysisMethod IS SOR ) {

zeroRhsVector( pDevice);
/* store contribution of boundary terms in rhs vector */

assembleBoundaryRhsTerms( pDevice);
/* compute SOR solution, if converged OK */
SORfailed = getSORSolution( pDevice, omega );
if( SORfailed) {

/* SOR didn't converge, switch to direct method */
AcAnalysisMethod = DIRECT;

}

}
if( AcAnalysisMethod IS DIRECT ) {

zeroRhsVector( pDevice);
/* assemble the dc jacobian matrix */
loadJacobian( pDevice);

/* store contribution of boundary nodes in rhs */
assembleBoundaryRhsTerms( pDevice);
/* assemble the complex diagonal terms for Silicon nodes */
foreach( node) {

if( nodeType IS SILICON ) {
addComplexTerms( node );

}

}
/* factor and solve matrix */

spFactor( pDevice->matrix);
spSolve( pDevice->matrix );

}
yd = computeAdmittance( pDevice, omega, area );

}
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The function assembleBoundaryRhsTerms needs further explanation. The right-

9Fhand-side vector corresponds to the terms 3-, and an example illustrates the calculation
oV

of — for a one-dimensional numerical diode. The diode is discretized in space as
oV

shown in Figure 5.8 using L+l grid points. For an ohmic contact, the potential

AV

Ohmic

contact

L+l

Figure 5.8: One-dimensional space discretization for a diode.

at node L+l is given by

Vl+i =Vox* +V (5'67)

where \|/0x+i k »* equilibrium potential and V is the applied voltage. Only the equa

tions at node L have a dependence on V, through the dependence ofyL+1 on V; there

fore, only the entries corresponding to node L are nonzero in the right-hand-side vector.

The equations at grid node L are given by

V^^_I^^+^^ (5.68a)
hL hL-

Fn = ^nX+1/2 ~ •AiX-itt +

Fp =JpJ*+V2 ~ JpM-\f2 +

-•|U<G-*)
dt

4£-(G-K)
dt

hL + hL_x
= 0 (5.68b)

hL + hL.x
= 0 (5.68c)



these equations one>obtains,

a/>
dv

aFv

^Vl+i

1

dF„

dv ' ^L+l

^nX+l/2
^L+l

*>.- *f 3/Px+i/2
dv 9¥l+i fyl+1
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(5.69a)

(5.69b)

(5.69c)

These derivative terms are used to assemble the right-hand-side vector. Recall, that the

boundary terms are also assembled in the right-hand-side vector for calculating conduc

tances for dc and transient analyses and this is done in an identical manner.

The pole-zero analysis is simply an extension of the small-signal ac analysis tech

nique. Instead of using a frequency go, a complex frequency s = o + j co is used. Small-

signal analysis then results in a linear system of equations that can be expressed as

JjU/DCD w = b (5.64)

where D(s) is a diagonal matrix with 0, -sAh and sAt as the diagonal entries for grid

node i. This system of equations is assembled, and solved by a direct method for a

given frequency s. Once w(y) has been obtained, the admittance Y(s) is calculated in a

manner similar to the calculation of admittances described earlier for s = j<a. A SOR-

solution is not attempted in this case, since the system of equations cannot be partitioned

as with s =yco. These admittances are then used in the circuit-level equations to deter

mine the poles and zeros of the circuit transfer function.
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5.7. Calculation of Sensitivity to Doping Profiles

Sensitivity calculations have been found to be extremely useful at the circuit level

of simulation where they allow a designer to determine the elements of the circuit that

are critical to the performance. By estimating the sensitivity of the response to all the

elements in the circuit, critical components can be identified and tuned to achieve better

performance. In addition, sensitivity calculations provide a basis for gradient-based

optimizations [5.31]. A similar capability would be useful at the device level as has been

indicated in [5.32] where device-level sensitivities have been implemented under dc con

ditions. Differential-sensitivity calculations are particularly useful for device simulation

because repeated simulation of a device with different doping profiles requires significant

computational effort, particularly for two and three-dimensional devices. On the other

hand, as illustrated later in this section, sensitivities are quite inexpensive to evaluate and

provide a first-order analysis of the tradeoffs involved in device design.

The sensitivity problem is formulated as a problem for calculation of transient sen

sitivities. The dc sensitivities are then obtained as a special case of the transient problem

by setting the time-derivative terms to zero. Calculation of sensitivities is done by a

direct-differentiation approach which has been preferred for use in circuit simulators [

5.33, 5.34].

At the device-simulation level, the system of equations that is solved can be

represented as

F(w(0,w(D,V(0) = O (5-71)

where w(r) is the vector of internal variables and V(t) are the applied terminal voltages.

For assumed analytical doping profiles, let u be a doping-profile parameter, u is the

peak concentration or characteristic length for a Gaussian profile, or the concentration for

a uniform doping. The implicit dependence of w on u can be incorporated in the above



equation, which can then be expressed as

F(w(r,u),w(f,u),u,V(r)) = 0
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(5.72)

To compute differential sensitivities this equation is differentiated with respect to the

doping-profile parameter u to obtain

Since

dF dw { dF dw ( dF __ Q
dw du dw du du

dw

du

d dw d dw

du dt dt du

Equation (5.73) can be rewritten as

dF d dw dF_dw + dF =Q
dw dt du dw du du

(5.73)

(5.74)

(5.75)

dw
which is a system of linear differential equations in -r—, the sensitivities of the internal

du

variables to the parameter u. The initial condition for this system of differential equa

tions is obtained by setting the time derivative term to zero, i.e.,

_dF
dw

dw

du Jo

dF

du

The above equation also provides the dc sensitivities
dw

du

JF
dw

(5.76)

is available in LU-

factors from the solution of the device-level equations under dc conditions and only for

ward and back substitutions are required to calculate the dc differential sensitivities.

When a Jfcth-order backward-differentiation formula (1 £ & £ 2) is used for time

d dw
discretization at time t = tn+x,

dt du
can be expressed as



dr

or,

dt

r ^

dw

du

r ^

dw

du

1 *

n+l nn j=0

k

n+l-i »=0

dw

du
= CCo

r "\

dw

du

dw

du
it+i-i

n+l

k

+ 2>
n+l i=l

dw

du
n+l-i
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(5.77)

(5.78)

Substitution of the discrete approximation for the time derivative terms in Equation

(5.75) results in

r r ^

k

+ 2a,-
n+l «=1

dw

du

_dF
dw

Oo
dw

du
v. J J n+l-* „

JF
dw

dw

du Jn+1
+&- =O (5.79)

du

Assembling the terms in

dw dw

dw

du
, one obtains

dw

du
v. J

n+l

n+l dwt=i

dw

du Jn+l-«'

dF

du
(5.80)

The above equation is a system of linear equations that is solved once the device-level

equations have converged at time point tn+]. ct0_§L +JL
dw dw

is the Jacobian used for

the solution of the device-level equations at time point t„+x. Hence, it is available in its

LU factors and
dw

du
can be obtained by forward and back substitutions, which are

Jn+l

not computationally expensive.

dF
It should be noted that —- is a diagonal matrix with diagonal entries 0, —A,-, and

dw

Ai corresponding to Poisson's equation and the electron and hole current-continuity

equations, respectively. Equation (5.80) requires values of the differential sensitivities

from the previous timepoints, i.e., values of

quantities must be stored.

dw

du
and

dw

du
; therefore, these

Jn-l



139

5.7.1. Implementation of Sensitivity Calculations

As seen from the previous derivation the sensitivities of all internal variables at

previous timepoints have to be stored; they are required for integrating the sensitivity

differential equation. Thus, in addition to storing the values of \|f,-, n,- and pf at grid node

dwi dn( dpi . .
i, the quantities, ——, -r—, and -r— have to be stored at previous timepoints m the

du du du

state vector. This leads to an increase in the size of the state vector by a factor of two.

Once the right-hand-side vector for the sensitivity equation has been assembled the

sensitivities can be obtained by forward and back substitutions. The right-hand-side vec

tor is made up of two terms: the first one is due to the time discretization of the sensi-

dFtivity equation and the other term is due to -r—. The second term requires computing the
Bu

derivatives of the equations at each grid node with respect to the doping-profile parame

ter u. Poisson's equation has a direct dependence on doping through the term NA - ND.

The dependence on doping enters the current-continuity equations through the carrier

mobility and carrier lifetime dependencies on doping. The band-gap narrowing term is

also doping dependent and should be taken into account However, for the present

implementation, this dependence has been ignored and only the doping dependent mobil

ities and lifetimes are accounted for.

Variations in the doping also change the electrostatic potential and electron and

hole concentrations at the contact nodes. For ohmic-contact nodes the sensitivities can

be easily calculated from equilibrium conditions and the charge-neutrality condition. It

can be shown for the ohmic contact that,

4* : i— (5.81a)
dN n0+p0

ii =_?»_ (5.81b)
dN n0+p0
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and

i£ =—^— (5.81c)
dN n0+p0

where N is the net doping, and n0 and p0 are the equilibrium electron and hole concen

trations at the contact

<tyi d/i; dp,-
Once the sensitivity equations have been solved -r—, -r—, and -r— are known at

each grid point. From this information the sensitivities of terminal currents to the dop

ing can be determined. Thus, for given terminal voltages one can determine the change

in terminal current for a change in the doping within some region of the device.

5.7.2. Sensitivity Simulation Examples

A pn-junction diode with the doping profile shown in Figure 5.9 is used as the

example. The dc sensitivity of diode current to the doping level in the lightly doped

region, ND, as a function of voltage is plotted in Figure 5.10. The sensitivity plot indi

cates that initially the current decreases with an increase in ND, but at higher voltages an

increase in ND will result in an increase of the current This behavior can be explained

by examining the operation of the diode under low-level and high-level-injection condi

tions. Under low-level injection an increase in ND reduces the amount of injected car

riers and hence one can expect a reduction in the current However, under high-level-

injection conditions, which occur at higher voltages, the current increases with an

increase in ND\ the current roll-off occurs at a higher voltage. In Figure 5.10 are also

shown the sensitivities of diode current to ND obtained by use of repeated simulations

for 1%, 10%, and 100% variations in the doping level. The agreement with the 1% and

the 10% deviations is extremely good, showing the accuracy of the sensitivity calcula

tions. The 100% deviations show a trend similar to that obtained by the differential-
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Figure 5.9: Doping profile for one-dimensional diode.
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Figure 5.10: Dc sensitivities of diode current to the doping level
obtianed from sensitivity computations and solutions with 1%, 10%,
and 100% perturbations in the doping level.
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sensitivity calculations; however, the values are quite different

For transient analysis, tiie error made in time discretization of the sensitivity equa

tions should be taken into account while calculating an acceptable timestep. In circuit

simulation, the error control on circuit equations provides reasonable accuracy for the

sensitivity equations and the timestep selection is done based only on the circuit-level

equations [5.33]. It is not clear as to what the behavior would be for device-level equa

tions and this is investigated. A error check has also been implemented for the sensi

tivity equations. In Figure 5.11 the transient sensitivity of diode current is plotted as a

function of time, after the diode is turned off, by monitoring the error in the time

discretization of the sensitivity equations. For comparison the result obtained with only a

check on the device-level equations is also shown. It is seen that the sensitivity calcula

tions with timestep control are different from those without the timestep control for the

sensitivity equations. However, the difference is not that significant and it is expected

that timestep control of the device-level equations should provide reasonably accurate

sensitivity calculations. This results in smaller runtimes as illustrated in Table 5.12,

where the runtime statistics for the two cases are compared.

Statistics without LE withLE

check check

Number of iterations 154 316

Timepoints accepted 75 119

Timepoints rejected 3 40

Analysis time (s) 42 87

Table 5.12: Statistics for local-error control
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Figure 5.11: Differential sensitivity for transient simulations obtained
by use of a local-error control on the sensitivity equations compared to
that without the local-error control.
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Finally, a comparison is made with the sensitivities calculated by use of repeated

simulations with 1%, 10%, and 100% variations in the doping profiles in Figure 5.12.

Good agreement is achieved with the 1% and 10% variation results. The 100% variation

result differs by about 50% from the differential-sensitivity calculation.
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Figure 5.12: Transient sensitivities of diode current to the doping
level obtianed from sensitivity computations and solutions with 1%,
10%, and 100% perturbations in the doping level.
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CHAPTER 6

CODECS Design Considerations

6.1. Introduction

An initial prototype of CODECS was implemented in Lisp using object-oriented

programming. The Lisp programming language was used because of enhanced software

productivity. Furthermore, object-oriented programming allowed easy coupling between

the circuit and device simulators. Previous experience with Lisp-based circuit simulation

[6.1-6.3] indicated that there would not be a significant performance penalty on a Lisp

machine.

Consequently, a one- and two-dimensional device-simulation capability was

developed in Lisp. Object-oriented programming provides a simple interface between the

device simulator and the circuit simulator. The runtime performance of the mixed-level

circuit and device simulator is extremely poor, even on a Symbolics 3600 Lisp machine

[6.4], as illustrated in this chapter. Benchmark examples are used to evaluate the run

time performance. Detailed profiling of one- and two-dimensional simulation examples

is provided to identify the bottlenecks in the program. It is shown that adequate perfor

mance cannot be achieved on the Lisp machine.

As a result of the above study, a new version of CODECS has been developed in

the C programming language. A new one- and two-dimensional device-simulation capa

bility has been written in C. SPICE3 [6.5] has been incorporated for the circuit-

simulation capability and for analytical models of semiconductor devices. A comparison
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is made between the runtime performances of the Lisp- and C-based versions of

CODECS. The C-based version has a significantly improved performance, particularly

for two-dimensional simulation examples.

6.2. Lisp-based implementation - CODECSlisp

A prototype of CODECS was developed using object-oriented programming in

Lisp. The program is written in Zetalisp; object-oriented programming is available

through the Flavors system [6.6]. The choices that led to the prototype being developed

in Lisp were: high software productivity, rapid prototyping, availability of object-

oriented programming, and adequate performance for circuit simulation on the Symbolics

3600 Lisp machine [6.1-6.3].

The two main components of a mixed-level circuit and device simulation environ

ment are a circuit simulator and a device simulator. For the circuit-simulation component

CODECSlisp makes use of BIASlisp, an object-oriented circuit simulator [6.3]. A new

one- and two-dimensional device simulation capability DSIM has been developed in Lisp

using object-oriented programming. The features of CODECSlisp, the choice of objects,

and the coupling between BIASlisp and DSIM are described in [6.7].

6.2.1. Runtime Performance

This section examines the runtime performance of CODECSlisp for transient

analysis using one- and two-dimensional numerical models. Detailed profiling is pro

vided to identify the portions where the program spends most of its time.

The first set of examples make use of one-dimensional numerical models for bipo

lar transistors and are the Invchain and VCO examples introduced in Chapter 4. Results

for transient analysis of these two circuits are presented in Table 6.1 for the Symbolics

3600 Lisp machine without hardware floating-point support



Description Invchain VCO

# iterations 2211 6284

# timepoints accepted 446 1108

# timepoints rejected 43 265

Analysis time (hrs) 31.5 152.9

Table 6.1: Runtime performance of CODECSlisp
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It is seen that even for the small one-dimensional examples the simulation times

are in the order of days (1.3 and 6.4 days, respectively). This is a significant amount of

time and makes CODECSlisp unsuitable for practical use.

A breakup of die total analysis time is given in Table 6.2 for the device-level com

putations during die transient analysis. LUDecomp is the time taken to perform the LU

decomposition of the device-level matrices. Solve is die time required for forward and

back substitutions which are used in obtaining the solution of the device-level equations

and for calculating the terminal conductances. LoadJacobianRhs is the time taken for

loading the device-level Jacobian matrices and the right-hand-side vectors.

CalcCurrDeriv is the time required for calculating the current densities and recombina

tion rates and their derivatives. These tasks are performed by calls to three other func

tions which are Bernoulli to evaluate the Bernoulli function and its derivatives, Mobility

to calculate the field-dependent mobility values and their derivatives, and Recomb to

compute the recombination rates and their derivatives. LocalError is the time spent in

calculating the local error during transient analysis and in estimating a new timestep.

It is seen that a major portion of the total time is spent in the equation assembly

phase, i.e., in CalcCurrDeriv and LoadJacobianRhs. This phase takes about 57% of the

total simulation time with calculation of the currents and derivatives taking approxi

mately 43% of the total time. In the process of computing the current densities and their



Description Invchain VCO

Time (hrs) Time (hrs)

LUDecomp 5.0 (15.7%) 24.25 (15.9%)

Solve 5.9 (18.7%) 28.85 (18.9%)

LoadJacobianRhs 4.54 (14.4%) 22.2 (14.5%)

CalcCurrDeriv 13.5 (42.9%) 65.56 (42.9%)

Bernoulli 3.67 17.8

Mobility 3.32 15.9

Recomb 2.43 11.8

LocalError 0.14 (0.4%) 0.63 (0.4%)

Table 62: Detailed runtime profile of CODECSlisp
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derivatives, 70% of the time is spent in evaluating the Bernoulli function, the carrier

mobilities, and the recombination rates. The remaining 30% is spent in computing the

time-dependent terms and in the computation of all current densities and their deriva

tives. LU decomposition takes up 16% of the total time with forward and back substitu

tions taking up another 19%. The remaining 8% of the total simulation time is spent in

solving die circuit-level equations, calculating the integration and prediction coefficients,

and in performing convergence checks. All simulation times are reported with the gar

bage collection [6.1] turned on and include the overhead of automatic reclamation of

unused memory space. It is impossible to run any of these examples with garbage col

lection turned off.

The other example is a series resistor diode circuit; the diode is modeled by a

two-dimensional numerical device. Three transient simulations have been performed with

the diode modeled by 21x3, 51x3, and 101x3 grid points, respectively. The results are

reported in Table 6.3. It is seen that as the equations increase in the ratio 1 : 2.5 : 5, the

runtimes increase in the ratio 1 : 3.1 : 8.9, i.e., a super-linear increase with the number



Description 21x3 51x3 101x3

# iterations 412 436 444

# timepoints accepted 113 116 107

# timepoints rejected 14 18 30

Analysis time (hrs) 3.7 11.56 32.8

Table 63: Runtime performance for diode example
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of equations. The detailed breakup of the total simulation time is presented in Table 6.4.

Description 21x3 51x3 101x3

Time (sec) Time (sec) Time (sec)

LUDecomp 6385 (47.7%) 20260 (48.7%) 66077 (56%)

Solve 2020 (15.1%) 6950 (16.7%) 17148 (14.5%)

LoadJacobianRhs 1243 (9.3%) 3720 (8.9%) 9456 (8.0%)

CalcCurrDeriv 3223 (24.0%) 9664 (23.0%) 22996 (19.5%)

Bernoulli 802 2423 5694

Mobility 917 2676 6369

Recomb 27 1278 3113

LocalError 27 (0.2%) 79 (0.2%) 220 (0.2%)

Table 6.4: Detailed runtime profile of CODECSlisp

For the above example, LU decomposition takes almost 50% of the total simulation

time. The matrices are larger in size and hence the matrix-decomposition time becomes

significant. For the one-dimensional examples, assembly of the device-level equations

requires a larger amount of CPU time. For two-dimensional examples one can expect the

LU-decomposition time to be important since the matrices are significantly larger in size.

An idea of the penalty in performance due to the use of Lisp can be obtained by

translating the functions Bernoulli, Mobility, and Recomb into C. As an additional data
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point, the above functions are also compiled for the VAX Common Lisp on a VAX

8650. The numbers in parenthesis for VAX Common Lisp are obtained when the data

types of all variables are declared explicitly and all possible compiler optimizations are

used. A comparison of the time per call, for the three cases, is given in Table 6.5.

Function Zetalisp Common Lisp C

(Symbolics 3600) (VAX 8650) (VAX 8650)

(msec) (msec) (msec)

Bernoulli 3.3 0.82 (0.34) 0.08

Mobility 5.7 0.9 (0.6) 0.12

Recomb 2.6 0.68 (0.3) 0.035

Table 6.5: Comparison of Zetalisp, Common Lisp and C

The same data is presented in Table 6.6 with the results normalized to the runtimes for

the C code. It is seen that the VAX Common Lisp with all possible optimizations is

significantly better than Zetalisp on the Symbolics 3600, but even with carefully optim

ized code one cannot get the same performance as with C. The Symbolics 3600 is

roughly a 1.5 MIPS machine whereas the VAX 8650 is a 6 MIPS machine. If one takes

into account the difference in the MIPS rating of the machines, the results for the Sym

bolics 3600 should be scaled down by a factor of four. Then, the Symbolics 3600

without floating-point hardware is about 10-20 times slower than an equivalent C code.

The results for VAX Common Lisp indicate that the Lisp code is a factor of 5-10 slower

than an equivalent code in C even after extensive optimizations.

From the above performance analysis it appears that Common Lisp on the VAX

8650 may perform better compared to Zetalisp on the Symbolics 3600 Lisp machine on

all examples. However, this is not the case when object-oriented programming is used.

The object-oriented system for Common Lisp is Portable Common Loops [6.8] and has



Function Zetalisp (Symbolics 3600) /

C (VAX 8650)

Common Lisp (VAX 8650) /

C (VAX 8650)

Bernoulli

Mobility

Recomb

41.5

47.5

74

10.3 (4.3)

7.5 (5.0)

19.5 (8.6)
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Table 6.6: Normalized Performance

been used to evaluate the performance of BIASlisp on one example. The example is the

dc operating point analysis of an NMOS depletion-load inverter chain, with twenty-five

inverters. The runtime statistics are presented in Table 6.7. MatrixLoad is the time

required for assembling the modified-nodal admittance (MNA) matrix. LUDecomp is the

time required to decompose the MNA matrix into LU factors and Solve is the time for

obtaining the solution by forward and back substitutions.

Description BIASlisp Common Lisp

(Symbolics 3600) (VAX 8650)

# iterations 40 40

Analysis time (sec) 65 235

MatrixLoad (sec) 60 229

LUDecomp (sec) 0.8 0.4

Solve (sec) 2.2 2.9

Table 6.6: Comparison of BIASlisp under Zetalisp and Common Lisp

Matrix-assembly time is the most significant in this example. This is the time spent in

calculating and loading the MOSFET conductances and currents. The calculation of these

quantities is done by message passing; the overhead in Common Lisp on a VAX 8650 is

quite significant. The times for LU decomposition and solve are comparable since these

parts of the program are not coded using object-oriented programming. Thus, adequate
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performance is not obtained for Lisp on a VAX 8650. There is a definite penalty in per

formance by use of Lisp and for this reason CODECS is written in the C programming

language.

63. C-based implementation of CODECS

As shown in the previous sections the performance of CODECSlisp is extremely

poor which makes it unsuitable for any practical applications. In particular, it is impos

sible to simulate circuits with two-dimensional numerical devices. For this reason,

CODECS has been re-written in the C programming language. The new version of

CODECS has been used as the test bed for evaluating the algorithms described in

Chapters 4 and 5. SPICE3, also written in the C language, provides the circuit-

simulation capability for CODECS. The advantages in using SPICE3 are: modular struc

ture, the capability to add new device models, and the availability of a wide variety of

analytical models and analysis capabilities. A new one- and two-dimensional device

simulator has been developed to provide the capability for simulating numerical devices.

The numerical devices are embedded as additional devices and models within SPICE3.

In addition to using SPICE3, CODECS also makes use of the sparse-matrix package

Sparse1.3 [6.9]. Since Sparse1.3 is a highly optimized package for sparse-matrix mani

pulations, additional improvement in performance has been obtained.

The architecture and algorithms of CODECS have been presented in Chapters 4

and 5. One major difference between CODECS and CODECSlisp has been the use of an

element-based assembly of equations. The partial-differential equations are discretized on

a rectangular grid using the box-integration method. Assembling the equations on a rec

tangle by rectangle basis allows simulation of arbitrary two-dimensional rectangular

structures. CODECSlisp was fairly limited in terms of its capabilities of simulating rec

tangular geometries. The new C-based two-dimensional simulation capability also allows
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one-carrier simulation, thereby, providing an efficient technique for simulation of MOS

devices.

63.1. Runtime Performance and Comparisons to CODECSlisp

The performance of the C-based version of CODECS is examined in this section.

The examples are the same as those used in die evaluation of CODECSlisp. In Table 6.7

are presented the results for the Invchain and VCO examples. The times reported are for

the two-level Newton algorithm without latency checking so that comparisons can be

made with the runtime statistics of CODECSlisp. The hardware used is a VAX 8650

computer with hardware floating-point arithmetic.

Description Invchain VCO

# iterations 1611 5220

# timepoints accepted 404 1091

# timepoints rejected 18 160

Analysis time (sec) 1904 9617

Table 6.7: Runtime performance of CODECS

The above runtimes indicate significant improvement in performance over

CODECSlisp, approximately a factor of sixty. The number of iterations are different and

this is possible due to the differences in equation assembly and the sparse-matrix pack

age. Furthermore, the base boundary conditions in the new version of CODECS have

been implemented in the manner described in Chapter 5 and this could also result in a

different number of iterations. If one considers the time per iteration as a measure of the

raw speed of the two programs, the improvement in performance is approximately a fac

tor of forty-five. The above runtimes were obtained with profiling turned on. However,

with profiling turned off the runtimes are 1655 seconds and 8210 seconds, respectively;
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the overheard of profiling is approximately twelve percent

A breakup of the total simulation time is shown in Table 6.8. It is seen that the

major part of the simulation time is spent in assembling the device-level matrix; this is

similar to the conclusion derived from CODECSlisp. However, the matrix-decomposition

time and the time for forward and back substitutions is smaller due to the use of the

optimized sparse-matrix package Sparse 1.3.

Description Invchain VCO

Time (sec) Time (sec)

LUDecomp 187 (9.8%) 983 (10.2%)

Solve 148 (7.7%) 750 (7.8%)

LoadJacobianRhs 142 (7.5%) 740 (7.7%)

CalcCurrDeriv 897.5 (47%) 4578 (47.6%)

Bernoulli 223 1164

Mobility 318 1579

Recomb 68 345

LocalError 15.9 (0.8%) 66.5 (0.7%)

Table 6.8: Detailed runtime profile of CODECS

The detailed runtime profile is compared to CODECSlisp in Table 6.9 where the

ratio of improvement in performance is given for each function. There is a significant

improvement in the runtimes of LUDecomp, Solve, LoadJacobianRhs, and Recomb. The

other functions also show an improvement, although not as significant.



Description Invchain VCO

LUDecomp 96 89

Solve 144 139

LoadJacobianRhs 115 108

CalcCurrDeriv 54 52

Bernoulli 59 58

Mobility 38 36

Recomb 128 123

LocalError 32 34
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Table 6.9: Improvement in runtime performance

The other example is the transient analysis of a series resistor diode circuit in

which the diode is modeled as a two-dimensional numerical device with 21x3, 51x3, and

101x3 grid points, respectively. The runtimes for this set of examples is presented in

Table 6.10. Compared to CODECSlisp the improvement in performance is by factors of

66, 72, and 99, respectively. As the problem size increases the improvement in perfor

mance is larger mainly due to the use of a good sparse-matrix package.

Description 21x3 51x3 101x3

# iterations 362 363 360

# timepoints accepted 123 126 126

# timepoints rejected 13 18 32

Analysis time (sec) 202 575 1195

Table 6.10: Runtime performance for diode example

A detailed breakup of the simulation time for these examples is provided in Table 6.11.

The time for LU decomposition and matrix assembly is a major part of the total time.

For larger examples the time for LU decomposition is dominant.



Description 21x3 51x3 101x3

Time (sec) Time (sec) Time (sec)

LUDecomp 58 (29%) 184 (32%) 393 (33%)

Solve 16 (7.9%) 52 (9%) 108 (9%)

LoadJacobianRhs 19.3 (9.6%) 53.7 (9.3%) 114(9.5%)

CalcCurrDeriv 73.8 (36.5%) 194.6 (33.8%) 395.6 (33%)

Bernoulli 20.3 53.0 108.7

Mobility 22.8 58.9 118.3

Recomb 4.4 11.8 25.0

LocalError 1.3 (0.6%) 3,1 (0.5%) 6.2 (0.5%)
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Table 6.11: Detailed runtime profile of CODECS

Finally, to compare the improvement in performance on a per component basis, data is

given in Table 6.12 as a ratio of CODECSlisp to CODECS. For all cases it is seen that

as the number of equations increases CODECSlisp tends to be slower in all the func

tions. Hence, for larger examples, in particular two-dimensional examples CODECS in C

provides significant speed up.

Description 21x3 51x3 101x3

LUDecomp 110 110 168

Solve 126 134 159

LoadJacobianRhs 64 69 83

CalcCurrDeriv 44 50 60

Bernoulli 40 46 52

Mobility 40 45 54

Recomb 66 108 125

LocalError 21 25 35

Table 6.12: Improvement in runtime performance
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CHAPTER 7

Comparison of Analytical and Numerical Models

7.1. Introduction

In Chapter 2 it was indicated that analytical models are inadequate under certain

regimes of device operation. This problem is addressed in detail in the present chapter

such that the tradeoffs between accuracy and speed performance can be made. Several

one- and two-dimensional examples are used and the emphasis is on transient and

small-signal ac response since the deficiencies of analytical models show up significantly

in these analyses. The benchmark circuits that have been used in the experiments are

also described.

The starting point for all comparisons is a set of model parameters for the analyti

cal SPICE model that gives a good agreement in the dc characteristics of the numerical

and analytical models. It is shown for both bipolar and MOS examples that even though

the agreement between dc characteristics is good and the charge-storage effects are

modeled as accurately as possible, the dynamic response can be significantly different.

The reasons for tiiese differences are examined and provide a guideline as to when

numerical models must be used.

A comparison is made in the runtime performance of the analytical and numerical

models. Analytical models are naturally faster in performance but do not always provide

accurate results. The comparison only indicates the differences in runtime performance

between analytical and numerical models. This then motivates the use of a mixed-level
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simulation wherein only thecritical devices should be evaluated numerically.

12. One-dimensional Diode Example

The simplest example using one-dimensional numerical models is the diode circuit

as shown in Figure 7.1(a). This example is used to study the transient voltage across the

diode when the source voltage is stepped from +Vy to -Vr. An analytical model does

not accurately predict the voltage as illustrated with this example.

The diode doping profile and dimensions used for the simulation are shown in Fig

ure 7.1(b); the diode is a p+nn+ structure. The dc current-voltage characteristics of the

diode obtained from the numerical model are shown in Figure 7.1(c). Included in this

figure are also the dc characteristics for an analytical model (the SPICE diode model),

that best fits the numerical results. For the analytical model the characteristics are plot

ted for different values of the diode series resistance, the only parameter for the analyti

cal model with significant impact on the current-voltage characteristics in the high-

current region. There is a good agreement for diode voltages up to 0.6V; at voltages

larger than 0.6V the differences in the two characteristics becomes significant due to the

onset of high-level injection. CODECS, as other numerical simulators, predicts the

correct result since conductivity modulation [7.1] under high-level-injection conditions

and other physical phenomena are modeled.

The internal carrier distribution for a diode voltage of 0.8V are shown in Figure

7.2 and indicates high-level injection. Because of conductivity modulation the resistance

of the diode decreases with an increase in its voltage. The analytical model uses a fixed

value for the diode series resistance and there is no bias dependence; thus, conductivity

modulation cannot be modeled. As a consequence the diode resistance does not change

under high-level-injection conditions and an exact match cannot be obtained with the

numerical model or with experimental device characteristics at large bias voltages.



N(x) (cmA-3)

le+20

le+19

le+18

le+17

le+16

le+15

le-t-14

le+13

le+12

le+11

le+10

0.00

R

+vr- V
•Vr L~

Figure 7.1(a): Resistor diode circuit

10.00 20.00 30.00

Figure 7.1(b): Doping profile and dimension of diode.

161

DOPINCmodl

X (urn)



I (A)

le+01

le+OO

le-01

le-02

le-03

le-04

le-05

0.20 0.40 0.60 0.80 1.00

162

A (num)

B*(rs^02)

C"(rs^0.i)"

D"(rs=0J)'

E (r^ij)

V (V)

Figure 7.1(c): Dc current-voltage characteristics of diode. The results
for the analytical model are for different values of the series resis
tance.



N(x) (cmA-3)

le+20

le+19

le+18

le+17

le-t-16

le+15

le+14

le+13

le+12

le+11

le+10

0.00 10.00 20.00 30.00

163

DOPING.modi

n.t=0

p.t=6

X (um)

Figure 7.2: Internal electron and hole distribution for a forward vol
tage of 0.8V. Notice that the n-region is conductivity modulated.
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The dynamic response of the device is determined by the regions of carrier charge

storage and the depletion regions within the device. Thus, for transient simulations the

depletion-region capacitance and the transit-time parameter have to be extracted for the

analytical model. The depletion-region capacitance is given by the capacitance-voltage

(C-V) characteristics of the diode under reverse-bias conditions. For the diode of this

example the C-V characteristics are obtained by use of small-signal ac analysis on the

numerical device under reverse-bias conditions. Small-signal ac analysis is performed

on the diode for different values of the reverse voltage and the imaginary part of the

small-signal ac current is used to calculate the capacitance value. The capacitance is then

plotted as a function of the reverse voltage as shown in Figure 7.3. The C-V characteris

tics of the analytical diode model are also shown and a good fit is possible with the

numerical data. It is, however, difficult to extract the transit-time parameter, 7T; there

fore, simulations with the analytical model have been performed for different values of

77".

The simulated diode voltage as a function of time is shown in Figure 7.4(a). The

results from the analytical model are plotted for different values of the parameter 77*. A

variation in TT only changes the time of zero crossing of the diode voltage and does not

alter the dynamic behavior otherwise. The diode voltage switches from a positive value

to a negative value over a very small time interval and the diode voltage obtained from

the analytical model does not emulate the behavior of the diode voltage obtained from

numerical simulations. The simulations from CODECS are physically correct [7.1] and

can be explained by examining the charge storage within the device. At the time at

which the diode voltage becomes zero there is a large number of carriers stored in the

n-region of the diode. The distribution of the electrons and holes within the diode are

shown for two instances of time in Figure 7.4(b). The two instances correspond to the

time at which the diode voltage is zero and at a time t =70nsec, when the diode voltage
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Figure 7.4(a): Diode voltage as a function of time for the turn-off
transient. The simulations with the analytical model are for different
values of the model parameter TT.
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is near its steady-state value of -5V. It is clear from Figure 7.4(b) that a large amount of

stored charge has to be removed from the n-region in addition to the charging up of the

depletion-region capacitance. This additional charge is responsible for the slow decay of

the diode voltage in Figure 7.4(a). The analytical model does not predict the correct

nature of the transient voltage across the diode.

7.3. One-Dimensional Bipolar Transistor Examples

For the simulation examples of this section numerical one-dimensional models are

used for the bipolar transistors. The bipolar transistor is assumed to have a uniform dop

ing profile as shown in Figure 7.5(a). Uniform doping is assumed only for convenience,

since depletion-region capacitances can be easily calculated. In particular the expression

for abrupt-junction capacitance [7.2] can be used, and the forward transit time can also

be calculated. Although the doping profiles are not realistic they suffice to illustrate the

deficiencies of the analytical bipolar transistor model of SPICE.

The dc current-voltage characteristics obtained from numerical simulation are

shown in Figure 7.5(b). Also shown are the characteristics of an analytical Gummel-

Poon model [7.3] that best fits the results obtained from physical simulations. A good

agreement exists between the dc characteristics of the analytical and numerical models.

To verify that the values of junction capacitances and the transit-time parameters

for the analytical model are indeed accurate, transient simulations have been performed

on the Oscillator and VCO examples introduced in Chapter 4. The transient responses of

the two circuits simulated by use of analytical and numerical models are shown in Fig

ures 7.6 and 7.7. It is seen that the analytical model predicts the frequencies of oscilla

tion and the voltage magnitudes in agreement with the numerical model. For these exam

ples the transistors are never driven into quasi-saturation or saturation [7.1, 7.2] and the

analytical model can be used without loss of accuracy. However, whenever the transistor
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operates under high-level-injection conditions the analytical model fails to produce the

correct results.

Consider the simple example of the RTL-inverter circuit shown in Figure 7.8; the

transient response of the output voltage to a step input voltage is shown in Figure 7.9.

For the analytical model the parameter TR, the reverse transit time, is required when the

transistor is operating in bipolar saturation. Since this parameter depends on bias condi

tions it is again difficult to use one single value of TR for the complete analysis. A com

parison of the responses for different values of TR is provided in Figure 7.9, where it is

seen that no value of TR provides a good agreement with the physical simulations. The

lack of a proper value of TR can produce significantly different characteristics in other

circuits as well.

Consider the four-transistor inverter chain of Figure 7.10. The simulations with the

analytical model are performed with TR = 3.5ns, the value that appears to be most rea

sonable from Figure 7.9. The voltages at nodes 3 and 9 are plotted in Figure 7.11, and

the differences in the response are obvious.

The fT* of the bipolar transistor is a function of collector current and is plotted in

Figure 7.12 for both the numerical and analytical models. From the numerical model fT

reaches a peak value of 5.0 GHz at a collector current of approximately 1mA; the

analytical model predicts a peak fT of 3.8 GHz. At large collector currents the fT

degrades significantly as seen with the numerical simulations. However, the analytical

model predicts substantially higher values of fj at large collector currents. Since the

numerical models are based on the physics it is expected that the results from the numer

ical simulations are correct, and that the analytical model does not provide a good esti

mate of fr for large collector currents.

* fT is the frequency at which the short-circuit, common-emitter current gain falls to unity.
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Another example in which the analytical model will not give accurate results is the

operation of the transistor under quasi-saturation conditions. The GP-model does not

accurately model the base pushout; and, hence, the charge stored in the collector region.

Therefore, it does not provide physically accurate results whenever base pushout occurs.

High-level-injection conditions are critical to the performance of bipolar transistors that

are used to drive large capacitive loads such as the output transistors in BiCMOS or

ECL driver circuits. Shown in Figure 7.13(a) is a BiCMOS driver circuit during the

pull-up transient; the bipolar transistor doping profile is again assumed to be uniform as

shown in Figure 7.13(b). The bipolar transistor operates under high-level injection in

the collector for large capacitive loads. Base pushout occurs and as a consequence the

current gain decreases and the base transit time increases. The following example once

again illustrates that analytical models that provide a good match in the dc current-

voltage characteristics with numerical models may give considerably different results

under transient simulations. In addition, this example illustrates how numerical models

can be used to evaluate the impact of technological changes on circuit performance, a

task that is very difficult if not impossible to do with analytical models.

The dc current-voltage characteristics for the bipolar transistor, obtained from

numerical and analytical models are shown in Figure 7.14(a). In Figure 7.14(b) the dc

current-voltage characteristics of two different transistors are compared; the first transis

tor has the doping profile of Figure 7.13(b) and the doping profile of the second transis

tor is given in Figure 7.15. As seen from Figure 7.14(b), the addition of the buried layer

to the original transistor does not alter the dc characteristics and hence the same analyti

cal model can be used. The transient response for the two different profiles would be the

same when computed using the analytical model, whereas the numerical simulations

indicate significantly different operation.
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In Figures 7.16(a) and 7.16(b) are shown the simulated collectorcurrent waveforms

as a function of time for the pull-up transient The simulations have been performed for

two different values of load capacitance, 0.1pF and lOpF, respectively. The SPICE

Level-2 MOS model is used for the MOSFET, and a numerical one-dimensional model

or the analytical Gummel-Poon model is used for the bipolar transistor. For small

values of load capacitance the bipolar transistor operates under low-level-injection condi

tions and the simulated collector currents with the three different models are in agree

ment as seen in Figure 7.16(a). However, for large values of load capacitance base-

pushout effects become important The collector currents for the three different models

are substantially different in Figure 7.16(b). The numerical models show a distinct roll-

off of collector current at the onset of high-level injection in the collector. The transistor

with the buried layer goes into high-level injection at a larger collector current as seen in

Figure 7.16(b). The simulated results from the analytical model do not depict the same

behavior in collector current, and it is clear that the analytical model cannot be used for

simulation of base-pushout effects. The internal carrier distributions for the two bipolar

transistor profiles are shown in Figure 7.17. The transistor with a buried layer has less

base pushout compared with the transistor without the buried layer. Therefore, a larger

current is available to charge up the load capacitance leading to a smaller delay. The

analytical model cannot be used to evaluate the effect of the buried layer, since the dc

characteristics do not change and the same analytical model is applicable to both types

of transistor structures.

7.4. Two-Dimensional MOS Examples

CODECS simulation of MOS circuits is presented in this section. Consider the

MOS transistor geometry shown in Figure 7.18(a) and the two-dimensional doping

profile shown in Figure 7.18(b). Again for simplicity uniform doping profiles are
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assumed as shown. The dc characteristics of the MOS device are shown in Figure 7.19

where the Ip-Vcs characteristics with the substrate bias as a parameter are given in Fig

ure 7.19(a) and the Id—Vds characteristics for different gate voltages are given in Figure

7.19(b). Also shown in these figures are the characteristics of the SPICE Level-2 MOS

model that best fits the numerical results. Reasonable agreement is seen between the

characteristics generated from the two models.

Charge nonconservation has been of serious concern in MOSFET circuits. Some

analytical MOS models do not conserve charge and are not suited to simulation of

switched-capacitor circuits, where charge transfers are important Any MOSFET model

must possess the property of charge conservation. In analytical models charge conserva

tion can be achieved by use of charge as the state variable [7.4, 7.5]. Physical models

should conserve charge since charge conservation is implied in the basic equations, and

mis is indeed the case. Two examples are used to illustrate charge conservation in the

numerical model. They are the bootstrap circuit of Figure 7.20(a) [7.6] and the charge

pump circuit of Figure 7.20(b) [7.4]. The first circuit is a simple circuit to study charge

conservation, whereas the second circuit provides a better test for charge conservation

since the MOS transistor goes through all its regions of operation. The capacitor voltages

as a function of time are shown in Figures 7.21(a) and 7.21(b). The capacitor voltage

from the numerical model is maintained at its constant value from cycle to cycle, thereby

depicting that charge is conserved. The SPICE Level-2 MOS model, with the Meyer

capacitance model [7.7], is known to have charge conservation problems [7.4]. This is

seen to be the case in Figures 7.21(a) and 7.21(b), where the results from the Level-2

model are also included; a shift in the capacitor voltages can be seen due to nonconser

vation of charge.

Next consider the turn-on and turn-off transients of a MOS transistor; the simula

tions are performed by use of the simple circuit of Figure 7.22. The gate voltage is
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Figure 7.19(a): Iq-Vcs characteristics for the MOS transistor
(W/L = 100u73u,). Simulated results from analytical and numerical
models are shown for substrate bias voltages of OV, -IV, and -2V,
respectively.
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Figure 7.19(b): Id-^ds characteristics for the MOS transistor
(W/L = \00\l/3\i). Simulated results from analytical and numerical
models are shown for Vcs of 1.5V, 2.5V, 3.5V, and 4.5V, respec
tively.
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Figure 7.21(b): Output voltage for the charge-pump circuit. The
analytical model does not conserve charge since the capacitor voltage
decays from one cycle to the next.
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ramped from OV to 5V in 100 psec for turn on and from 5V to OV for turn off. These

are fast switching conditions for the MOS transistor and lead to non-quasi-static opera

tion. The simulated drain and source currents as a function of time, during turn on, are

plotted for the the analytical (quasi-static) model in Figure 7.23(a) and for the numerical

model in Figure 7.23(b). The currents for the turn off are plotted as a function of time in

Figures 7.24(a) and 7.24(b), for the analytical and numerical models, respectively. The

shape of the drain and source currents and the difference between the analytical and

numerical models can be explained by an examination of the surface electron concentra

tion, shown as function of time and space in Figures 7.25(a) and 7.25(b) for turn on and

turn off, respectively.

Consider the turn on of the MOS transistor. The transistor is switched from cut off,

through saturation, to the linear region. Initially there is no charge in the channel since

the transistor is cut off. The current that flows in the source and drain leads is the capa

citive current due to gate-drain and gate-source overlap capacitances. As the gate voltage

increases, the source starts injecting electrons into the channel and the source current

increases with time. A certain amount of time elapses before the drain starts collecting

electrons, whereby the drain current increases at a later time as seen in Figure 7.23(b).

The delay is associated with the finite transit time of the carriers.

For the quasi-static model, it is assumed that the charge reaches its steady-state

value instantaneously. Therefore, the drain and source currents can be expressed as the

sum of a dc channel current and a capacitive current. The capacitive current is due to the

channel charge partitioned between the source and the drain; the channel charge for

steady-state operation is used. In Figures 7.26(a), 7.26(b), 7.26(c), and 7.26(d) are

shown the schematic of the MOS model and the various capacitances for the Meyer's

model as a function of the gate voltage. The simulated current waveforms can be

explained in the following manner. Initially the source and drain currents are due to the
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overlap capacitances. When the gate voltage exceeds the threshold voltage the transistor

turns on, the gate-source capacitance steps from 0 to 2730^ and the gate-drain capaci

tance is zero. Thus the source current steps instantaneously, whereas the drain current

does not show a step since it is only due to the dc channel current, as seen in Figure

7.23(a). However, the drain current does increase, as the dc current increases, thereby

exhibiting a zero delay between the source and drain currents. A charge-based capaci

tance model such as that due to [7.4, 7.7, 7.8] would not depict the step in the source

current, but a zero delay will exist between the source and drain currents due to the

assumption of quasi-static operation.

When the gate voltage reaches its steady-state value and becomes a constant, the

capacitive currents due to the overlap capacitances become zero and there is a step in the

drain and source currents. The quasi-static analytical model predicts that the drain and

source currents reach their steady-state values instantaneously, whereas the numerical

model depicts that the source (drain) current decreases (increases) exponentially to its

steady-state value. This indicates that the channel-charge does not relax instantaneously

to its steady-state value; there is a time-constant associated with it [7.9]. Similar argu

ments can be used to explain the turn-off characteristics of the source and drain current.

The non-quasi-static operation of the MOS transistor can be illustrated more

dramatically with the pass transistor circuit of Figure 7.27. The gate voltage is ramped

from 5V to OV in lOOps. The drain current is shown as a function of time in Figure 7.28

for both analytical and numerical models. The analytical model indicates a sudden

increase in drain current after which the drain current remains constant and drops to zero

immediately as the gate voltage goes to zero. The non-quasi-static current has a com

pletely different behavior as seen from Figure 7.28.
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7.5. Runtime Comparisons with Analytical Models

Simulation with analytical models will always be faster in performance compared

to that with numerical models. This is to be expected since analytical models only

require function evaluations to compute the conductances and currents of a device. With

a numerical model the device-level matrix has to be decomposed into its LU factors and

forward and back substitutions are required to compute the currents and conductances.

The latter task requires more CPU time resulting in the higher computational cost associ

ated with numerical models. However, under several situations an analytical model may

give inaccurate results due to its simplicity in modeling the actual physical behavior of a

device. Thus a comparison between numerical and analytical models is not appropriate.

Numerical models will be used only in situations where analytical models are inade

quate, and computation cost should not be of concern when accuracy is desired.

Nonetheless, the comparison is given to provide an estimate of the increase in computa

tional effort when using a numerical model.

In Table 7.1 a comparison is presented between numerical and analytical models

for the benchmark examples. The results for the numerical simulation are obtained by

the use of trapezoidal integration method. The numbers for the various examples are in

the following sequence: number of iterations, number of timepoints accepted, number of

timepoints rejected, total number of timepoints, and the runtimes in seconds on a VAX

8800. From Table 7.1 it is clear that the numerical models require a larger number of

timepoints; and, hence, a larger number of iterations. Numerical models require larger

number of timepoints because they are solving for the Poisson's and the electron and

hole current-continuity equations, which have time constants that are quite different from

the circuit. Since the timesteps are decided based on the activity internal to a device,

smaller timesteps will be used to resolve accurately the carrier concentrations, requiring

a larger number of timepoints to complete the transient analysis.



Circuit Numerical

Model

Analytical
Model

Oscillator 16127

3491

705
4196

2063

4479

1022

488

1510

12.9

VCO 5890

1003

209
1212

3000

2174

531

126

657

20

Invchain 1738
322

66

388

545

360

83

15

98
2.2

Astable 5744

1107

216
1323

1139

2630

575

218

793

10

MECLgate 1966

429

55

484

1680

497

138

25

163

8.2

Pass 240

67

4

71

865

150

71

2

73
0.6

MOSinv 326

86

7

93

1120

225

79

13

92

0.8

ChargePump 1853

399

81

480

4124

1430

441

97

538

6.2

Table 7.1: Comparison of numerical and analytical models
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The data of Table 7.1 is summarized in Table 7.2 where the ratio of the CPU time

required by use of numerical models to that required for analytical models is presented.

The first column presents the comparison on a time per iteration basis and the second

column presents a ratio of the total analysis time. Since a larger number of timepoints

are required with the numerical models the simulation time will be larger. For one-

dimensional models the simulation time is slower by factors of 114 to 250. This number

is larger for the MOS examples using one-carrier simulation; the overall simulation time

is about 1500 times larger compared with the analytical models.

Comparison on a time per iteration basis provides an idea of the the raw speed of

each model. With one-dimensional examples the numerical model is slower by a factor

of 50 and approximately 1000 for the MOS examples. This ratio can be made worse by

using a larger number of grid points for the numerical model. However, numerical

models can be used even when analytical models fail. Under such circumstances addi

tional computational effort is justified.

Circuit Numerical / Analytical Numerical / Analytical

(time/iteration) (analysis time)

Oscillator 44.4 160

VCO 55 150

Invchain 51.3 248

Astable 52 114

MECLgate 51.8 205

Pass 901 1442

MOSinv 966 1400

ChargePump 513 665

Table 72: Comparison of analysis times
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A tradeoff between runtimes and simulation accuracy can be achieved by modeling

only the critical devices numerically and using analytical models for the rest of the cir

cuit The BiCMOS driver circuit is a typical example of such an approach. Since model

ing of bipolar transistors is critical for simulations, numerical models have been used for

the bipolar transistor, whereas the MOSFET is modeled by an analytical model. Use of a

two-dimensional numerical MOSFET model would not have provided additional insight

into the operation of the circuit Mixed-level simulation allows the use of detailed simu

lation models for the critical devices and less accurate but faster models for the noncriti-

cal devices.
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CHAPTER 8

Applications of CODECS

8.1. Introduction

A variety of applications of CODECS are presented in this chapter. The applica

tions span from use of only the device-simulation capability to use of the mixed-level

circuit and device-simulation environment. All of these applications demonstrate the use

fulness of CODECS as a simulation program. In addition, CODECS can be used to

evaluate technology tradeoffs; hence, it provides a predictive capability.

The first application illustrates the use of CODECS for estimating the delay of

BiCMOS driver circuits. While driving large capacitive loads, the bipolar transistors

operate in high-level injection. As indicated in Chapter 7, commonly available SPICE

bipolar transistor models are inadequate for simulating high-level-injection effects critical

to the operation of BiCMOS circuits. Therefore, SPICE simulations cannot be used to

accurately estimate the delay. With the use of physical models in CODECS, however, it

is possible to analyze the delay and to evaluate the effect of technology and supply vol

tage scaling on the delay of the BiCMOS driver.

The second application concerns power devices. Simulation examples in Chapter 7

show that the SPICE diode model is inadequate to study the turn off of p-i-n diodes with

a resistive load. For an inductive load, the situation is even more complicated. Conse

quently, the problem is extremely difficult to model analytically and coupled device and

circuit simulation provides a way to study the turn-offcharacteristics. The soft recovery
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of p-i-n rectifiers is investigated. CODECS is also used to study the transient break

down of p-i-n rectifiers with an inductive load. Oscillations are observed when operation

is near the breakdown voltage. A physical model is used to explain this phenomena

based on insight gained from CODECS simulations.

The problem of charge injection in MOS switched-capacitor circuits is examined in

Section 8.4. The numerical MOS model in CODECS conserves charge and does not use

an empirical scheme for channel-charge partitioning. Therefore, the charge that flows out

of the various terminals of a MOSFET during the turn off is calculated accurately, and

CODECS can be used to study switch-induced error voltages. Thus, different error-

cancellation schemes can be evaluated in terms of their effectiveness in reducing the

switch error. Although analytical results are available under very specific conditions, no

general solution exists. CODECS can be used to simulate realistic driving source condi

tions. In addition, it also allows simulation of non-quasi-static MOS operation that can

influence the charge transfer in switched-capacitor circuits. A comparison of the analyti

cal and numerical MOS models in Chapter 7 demonstrated the inadequacy of analytical

MOS models for non-quasi-static operation.

As a last application, CODECS is shown to be a tool that can be used to verify

analytical models. The numerical models can be used as a reference with respect to

which analytical models can be evaluated. An analytical model for the lateral electric

field in lightly doped drain MOSFETs and a non-quasi-static MOSFET model are used

as examples of such an application.

8.2. Analysis of BiCMOS Driver Circuits

The BiCMOS driver circuit shown in Figure 8.1 is a common configuration used in

BiCMOS circuits. This gate is used in static memories [8.1] and gate arrays [8.2] to

drive large output capacitors. For large capacitive loads the collector current will be
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large and the bipolar transistor operates in high-level injection in the collector, i.e.,

quasi-saturation or Kirk effect [8.3, 8.4]. SPICE simulations are inadequate since high-

level-injection effects critical to the performance of the bipolar transistors are not accu

rately modeled with commonly available SPICE bipolar transistor models. Simulations

from CODECS can be used since base pushout under high-level injection is properly

modeled with the numerical bipolar transistor models. In addition, CODECS simulations

can be used to study the effect mat IC fabrication technology and supply voltage scaling

have on the delay of the gate.

The delay of the BiCMOS driver depends on the region of operation of the bipolar

transistors. Three different regions of operation exist, namely, operation under low-

level-injection conditions, operation in high-level injection, and collector-resistance dom

inated operation. The relative values of the device parameters and the load capacitance

determine the operating region of the bipolar transistors. Although various delay models

have been considered for the BiCMOS buffer circuit, they are restricted to one region of

operation. In [8.5] only high-level-injection effects in the base region are considered

which are not as important as the high-level-injection effects in the collectorregion. The

analysis of [8.6], on the other hand, considers only the collector-resistance dominated

case and assumes that high-level-injection effects do not occur. In practice, while driving

large load capacitors both high-level injection in the collector and the collector resistance

must be taken into account

8.2.1. Delay Analysis

A delay model is necessary to identify the important bipolar device parameters and

their effect on the performance of the gate. CODECS simulations provide a means for

verifying analytical delay formulas. In this section the delay for operation under high-

level injection is examined. A detailed analysis for the other regions is available in [8.7].
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The delay of the BiCMOS driver is a function of both the MOSFET and the bipo

lar transistor parameters. For the bipolar transistor the parameters that influence the delay

are: the current gain, p (a function of the collector current), the base transit time, y

(also a function of the collector current), the collector current at onset of high-level

injection in the collector, /*-, and the parasitic capacitances and resistances. For the

MOSFET the parameters are: the transconductance parameter k , the W/L% the threshold

voltage, VT, and the parasitic capacitances. The delay of the gate is estimated as a func

tion of these parameters.

Consider the pull-up transient of the gate, the circuit diagram for the pull-up circuit

is shown in Figure 8.2. The pull-down transient is similar and will not be considered.

The input voltage is stepped from VDD to OV and the MOS transistor turns on. The

MOSFET can be replaced by a current source of value equal to the average MOSFET

current and the circuit to be analyzed is shown in Figure 8.3. If the transit time of the

transistor is small, this circuit can be analyzed by modeling the degradation in |3 due to

the base-pushout effect. However, as shown later, the transit-time effects cannot be

ignored when base pushout occurs and the analysis based on p degradation does not

suffice.

Assume that the load capacitor is initially uncharged and that the transit-time

effects are negligible, the delay can then be expressed as

T _ VBE{on)C\ , CLVS
T° - ~h~ +Ifc" (81)

where / is the average current of the MOS transistor, C\ is the total capacitance at the

base of the bipolar transistor, CL is the total output load capacitance, Vs is the output

voltage swing, and Ic is the collector current. The first term accounts for the time

required to charge up the base of the bipolar transistor to VBE(fiH) and is the time taken

to charge C\ to a voltage Vbe{oh) w»th a current ID. The second term models the time
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required to charge the output capacitor to half the voltage swing (Vs) with a current lc-

The first term of the delay equation is usually much smaller than the second term.

Under high-level injection the current gain p can be related to the current gain

under low-level injection conditions Po by [8.8]

P=—^-=Pof- (8-2)
1 + — C

The collector current is then given by

Ic =p/B =p/D =%-?-ID (8.3)
'C

or

lc = VPo'd h (8.4)

Thus, the delay can be written as

- v«*iPi • c<-vs g

From CODECS simulations it is seen that the above formula is inaccurate when transit-

time effects are important However, by the use of a fitting parameter rj, Equation (8.5)

can be used to provide a first-order estimate of the delay.

x _ VBE(on)C\ i\CLVs
T . + (8.6)

h 2VPo/o'ir

The fitting parameter rj depends on the value of CL and can be determined from

CODECS simulations. In Figure 8.4 the simulated and calculated delays are plotted as a

function of the area of the bipolar transistor for a load capacitor of lOpF. As the area of

the bipolar transistor increases, Ik increases; hence, the delay goes down. Equation

(8.6) provides a good approximation for the delay. The delay as a function of the width
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Figure 8.4: Simulated and approximated delay as a function of the
emitter area of the bipolar transistor.
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of the MOS transistor for a load capacitance of lOpF is shown in Figure 8.5. Again the

approximate delay equation provides a reasonable estimate of the delay. As seen from

Equation (8.6), an increase in W increasesIp and the delay goes down.

8.2.2. Technology and Supply-Voltage Scaling Effects

Simulations have been performed to study the influence of different doping profiles

on the delay of the BiCMOS driver. It should be noted that such simulations are possi

ble only with CODECS and not with a SPICE-like circuit simulator. As pointed out in

Chapter 7, conventional circuit simulation uses analytical models for which, in general, it

is difficult to express the dependencies of model parameters on doping profiles.

The simulated collector current for the pull-up transient is shown in Figure 8.6 for

a one-dimensional numerical bipolar transistor model with the doping profile of Figure

8.7. Initially the current rises rapidly, this rise being determined by Zf. At a certain

current level (approximately 2.5mA in this case) the rate of increase of current

decreases. This takes place when high-level injection occurs in the collectorof the bipo

lar transistor. The base widens, the p of the transistor decreases, and the transit time

increases. As a consequence the current increases at a smaller rate.

From Figure 8.6 and Equation (8.6) it is clear that a high IK is desirable to reduce

the delay. 1K depends on the doping and thickness of the epi layer [8.3, 8.4]. An

increase in the epi-layer doping or a reduction in the epi-layer thickness results in a

larger 1K. It has been shown in Chapter 7 that a transistor with a buried layer has a

higher IK compared to one without the buried layer; therefore, a buried layer is essential

for reducing the delay.

In Figure 8.8 simulated collector currents are plotted as a function of time for

transist rs with an epi-layer doping of 8xl015 and a buried layer. The doping profile of

the transistor, for an epi-layer thickness of 2.1uvn, is shown in Figure 8.7. The epi-layer
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Figure 8.5: Simulated and approximated delay as a function of the
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Figure 8.6: Simulated collector current for the pull-up transient.
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Figure 8.7: Bipolar transistor doping profile.
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Figure 8.8: Simulated collector currents for the pull-up transient for
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thickness is changed by varying the thickness of the buried layer. It is seen that a nar

rower epi layer results in a larger IK% whereby a larger current is available to charge the

output capacitance, resulting in a smaller delay.

Next consider the delay as a function of the epi-layer doping for the transistor with

the doping profile of Figure 8.7. The simulated delay is plotted as a function of the load

capacitance and the collector epi-layer doping, ND, in Figure 8.9. Initially an increase in

ND results in a decrease in the delay. However, for large values of ND the bipolar

transistor no longer operates in high-level injection; hence, there is no improvement in

the delay with an increase in the collector doping (the curves for ND of 5xl016 cm~*

and lxlO17 cm"3 coincide in Figure 8.9). The breakdown of the base-collector junction

places a limit on the doping used in the collector. An increase in the doping of the col

lector also increases the base-collector capacitance. However, this effect is less important

since the delay reduces due to an improved high-level-injection behavior of the bipolar

transistors.

The influence of the supply-voltage scaling on the delay of the gate has been

examined in [8.9], and the main conclusions are: for large supply voltages the delay is a

weak function of the supply voltage. The delay increases as the supply voltage is

reduced for both the pull-up and pull-down transients. However, the pull-down delay

increases much more rapidly than the pull-up delay at lower voltages since the VBE{pn)

drop of the bipolar transistor Q2, in Figure 8.1, becomes important.

8J. P-i-n Diode Turn Off

The transient behavior of power devices such as rectifiers, transistors, and thyris-

tors in an RLC circuit is an interesting problem. However, adequate analytical models

which can accurately describe the complete turn-off process do not exist. Numerical

device-level simulations are a useful alternative if the device can be simulated with



Delay (ns)

3.50 -

3.00 -

2.50 -

2.00 -

1.50 -

1.00 -

0.50 -

0.00 -

0.00 5.00 10.00

226

A (nd=8el5)

B"(nd=lel6)

C"(nd=2el6)

V(nd=5el6)

E (nd=Tel7)

CL (pF)

Figure 8.9: Delay as a function of the load capacitance and epi-layer
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circuit elements attached to its terminals. Most device simulators [8.10, 8.11] only allow

voltage or current boundary conditions (some also allow parasitic resistive and capacitive

elements [8.11]), and are not useful for such simulations. A coupled circuit and device

simulator provides a flexible environment to study the interactions between devices and

the circuits in which they are embedded.

83.1. Reverse Recovery of p-i-n Diodes

The reverse recovery of p-i-n rectifiers is an important phenomena in power sem

iconductor circuits not only because it impacts circuit speed, but also because it affects

power loss and inductive voltage-spike generation. The problem is difficult and analytical

results are available only under special conditions. The reverse recovery with a resistive

load has been analyzed in [8.12]. For practical situations the recovery with a current

ramp is of interest. This problem has been analyzed for part of the recovery in [8.13],

but a solution is not available for the complete turn-off process. No analytical model is

able to predict the peak reverse voltage that appears across the rectifier during turn off.

The recovery process is complicated since there is a strong interaction of the device

dynamics with the circuit. Device simulation with inductive boundary conditions is one

way of analyzing the turn off under special conditions and has been used in [8.14, 8.15].

Consider the simplified circuit of Figure 8.10(a) which is representative of a typical

turn-off situation. The voltage steps from a positive to a negative value when the diode

has to be turned off; the inductor in series models the inductance present in the circuit

For this example, the p*nn* diode is modeled as a one-dimensional device with the uni

form doping profile shown in Figure 8.10(b).

The simulated current and voltage waveforms for a dl/dt of 20 A/jxs are shown in

Figure 8.11. The particular characteristics of these curves can be explained by physical

arguments; however, an estimation of the magnitude of the voltage spike is not possible.



Figure 8.10(a): A simple circuit used of simulating the reverse
recovery of p-i-n diodes.
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Figure 8.10(b): Diode doping profile. The n-region > 15um wide.
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The carrier concentrations and electric fields corresponding to the time instants A-H in

Figure 8.11, are shown in Figures 8.12(a) and 8.12(b), respectively.

Initially, before the source voltage switches, the circuit is in a steady state with a

forward current Ip flowing through the diode. The n-region is conductivity modulated

because the diode is operating in high-level injection. When the source voltage switches,

the current through the diode decreases at a rate given by

«_-Vt-rj, v* (8.7)
dt L L

when Vfl » VDt the diode voltage. At a time T0 (corresponding to time instant B in Fig

ure 8.11),

Tn = p \ (8.8)o f \
dl_
dt

the current reverses its direction and the diode continues to conduct because of the

charge stored in the n-region. This charge is removed by the reverse current and due to

recombination within the n-region. The diode voltage becomes negative only after a

depletion region starts forming at the p+n junction and the diode starts blocking the vol

tage. As the depletion region increases the diode blocks a larger voltage. At a time

instant Tx (corresponding to time instant E in Figure 8.11) the diode voltage equals the

reverse voltage of the source and the current reaches its peak reverse value, i.e.,

vD(Ti) = -vR

flr,-0 (8.9)

It should be noted that at 7j a large portion of the 15p.m n-region is depleted. The

analytical model of [8.13] assumes that the width of the depletion region is negligible

which is certainly not true for this example.
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Figure 8.12(a): Electron concentrations as a function of time during
the reverse recovery.
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Figure 8.12(b): Electric field as a function of time during the reverse
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From time Tx to T2 (corresponding to the time instant H in Figure 8.11) the

current through the diode decreases but is still negative in value, and dl/dt > 0. As a

result a voltage spike appears across the diode. The diode voltage is related to dl/dt by

VD=-V*-L-|. (8.10)

This region of operation is hard to analyze since dl/dt and, hence, VD are determined

by the amount of stored charge remaining within the device. The stored charge in turn

depends upon both the circuit and device parameters and its estimation is difficult for a

general situation. As a consequence the peak reverse voltage cannot be determined.

At a time T2 the diode current becomes zero, and may go positive because of

oscillations resulting from the LC circuit formed by the inductance and the depletion-

region capacitance of the diode if sufficient damping is not present in the circuit.

The current waveform during the reverse recovery is idealized to be triangular in

nature as shown in Figure 8.13. TA and TB, indicated in Figure 8.13, are important

parameters for the reverse recovery. The sum of TA and TB is the total time for the

T
reverse recovery and is denoted as 7^. The ratio —r- is called the softness factor S. A

'a

large value of S results in a softer recovery and hence a small peak reverse voltage

across the diode. In general, a good rectifier will have a large value of S which ensures

that dl/dt is not excessively large during the TB portion of the reverse recovery.

Although the various time instants can be identified on the reverse recovery waveforms,

these cannot be calculated analytically. Hence, a mixed-level circuit and device simula

tor is essential for estimating the parameters of interest.

The reverse-recovery waveform of the rectifier can also be used to determine the

high-level-injection carrier lifetimes. A charge-control analysis can be used as in [8.16,

8.17]. In [8.16] the device is assumed to be extremely "snappy" and therefore the
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analysis is not valid for devices with a softer recovery. The analysis of [8.171 is more

general; a triangular current waveform is assumed which is representative of a wider

range of conditions. The procedure for lifetime extraction is verified by simulations

from CODECS and experimental data in [8.18].

Although the charge-control analysis provides a good estimate for the carrier life

times from measured characteristics, it cannot be used to provide an a priori estimate of

the softness factor or the magnitude of the voltage spike.

The factors that affect S can be understood by studying the dependence of TA and

TB on W, the width of the n-region, and x, the high-level-injection carrier lifetime. In

Figure 8.14(a) simulated TA is plotted as a function of I, with W as a parameter, and

Figure 8.14(b) gives the dependence on W with x as a parameter. The corresponding

dependencies of TB are shown in Figures 8.15(a) and 8.15(b), respectively. It can be

seen from Figure 8.14(a) that TA can be fit as TA = *(JV)x, where k (W) £ 1 is a weak

function of W. The dependence of TB on W and x is hard to model analytically and,

therefore, simulations are necessary for determining S. The simulated values of S are

shown in Figures 8.16(a) and 8.16(b).

CODECS can also be used to determine the magnitude of the inductive voltage

spike that appears across the rectifier during the turn off. Simulations have been per

formed for different values of L, and a fixed value of Vfl=10V, for two different values

of high-level-injection lifetimes. S and the peak reverse voltage, Vp, as a function of L

are given in Table 8.1.
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Figure 8.14(a): Simulated value of TA as a function of x for different
values of W, the width of the n-region.
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values of W.
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LGiH) X-=30ns x = 60ns

V>(V) S Vp(V) S

0.25 134 0.196 252 0.138

0.4 HI 0.206 210 0.136

0.5 101 0.215 190 0.137

0.6 94 0.224 178 0.140

0.8 84 0.242 160 0.146

1.0 77 0.257 145 0.153
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Table 8.1: Simulated VP and S as a function of L

S is seen to have a weak dependence on L. A smaller L results in a proportionally

larger dl/dt during TA, and even larger dl/dt during TB due to the decreasing S. Hence,

larger reverse-voltage spikes are obtained for smaller inductances.

8.3.2. Operation Under Breakdown Conditions

Consider the situation of an undamped reverse recovery with an inductive load

such that the diode operates near its breakdown voltage. The diode doping profile and

dimensions are shown in Figure 8.17(a), and the reverse current-voltage characteristics

are shown in Figure 8.17(b).

The current and voltage waveforms for the reverse recovery are shown in Figure

8.18(a). For these conditions the diode voltage exceeds the breakdown voltage and oscil

lations are observed during the second phase of the turn off (during TB); the oscillations

are shown in greater detail in Figure 8.18(b). Experimental data that subsequently

verified the existence of such oscillations in real devices is shown in Figure 8.19, and

provides evidence that oscillations are possible.
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Figure 8.17(a): p+-n-n+ diode doping profile.
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These oscillations might appear surprising at first but can be explained by means of

a simple physical model for die recovery process. An equivalent circuit for the diode

during the reverse recovery is shown in Hgure 8.20. The inductor and voltage source

are replaced by a current source Is that provides a ramping current waveform as shown;

Ig€H(V) is a nonlinear voltage-dependent current source. This equivalent circuit is valid

only after the n-region of the rectifier is depleted, i.e., when a large Vd appears across

the diode or t > TA. Cd is simply the depletion-region capacitance. The current source

Igtn(V) models the current flow due to avalanche carrier generation. When the reverse

voltage is less than the breakdown voltage, IgeH(V) is zero and is nonzero only under

breakdown conditions. This current is a conduction current since it is due to free carriers

generated by the avalanche multiplication process. The difference between Is and Igen is

responsible for charging and discharging Cd and determines the capacitor voltage Vd(t).

For the initial part of the mm off, t < Tx in Figure 8.18(b), the current Igen is zero

and the current Is charges the capacitor, whereby the reverse voltage across the diode

continues to increase. The simulated conduction and displacement currents for the diode

are shown in Figures 8.21(a) and 8.21(b), respectively, for four different time instants,

7*i, 7*2, T3, and 7*4. These time instants are identical to those marked in Figure 8.18(b).

It is seen that at Tlt the conduction current is zero and the diode current is a pure dis

placement current. When the voltage exceeds the breakdown voltage, Igen increases

rapidly due to the large number of carriers generated by the avalanche multiplication

process, e.g., at time instants T2, and 7*3. The current could be large and discharges the

capacitor, leading to a sudden decrease in the diode voltage. This is confirmed by exa

mining the current components at T2 and 7*3 in Figure 8.21(b). After breakdown occurs,

the conduction current increases and the displacement current becomes a large positive

value. During this interval the capacitor is discharged. The sudden discharging of the

capacitor causes the diode voltage \Vd\ to drop. Once the diode voltage goes below the
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Figure 8.19: Experimental diode current and voltage under inductive
turn off. Note the presence of oscillations in the diode voltage.

247



Is

Figure 8.20: A physical model to explain the oscillations under
inductive turn off of the diode.
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breakdown value, IgtH becomes zero (as seen from Figure 8.21(b), the conduction

current is zero at 74); the very effect that caused the voltage to decrease disappears.

Since the diode current (Is) is still nonzero, the capacitor charges up again, leading to an

increase in the reverse voltage across the diode. The above process can repeat resulting

in several cycles of oscillation; the number of oscillation cycles depends on the duration

of the second phase of reverse recovery. The longer it is, the greater the number of

oscillation cycles.

8-33. Snubber Circuit Design

The voltage spike and the power dissipation observed during the rectifier turn off

can be limited by the use of additional circuitry called a snubber. An RC snubber is

commonly used to dissipate the energy stored in the inductance present in the circuit. A

detailed analysis for the peak reverse voltage and snubber design is given in [8.19]. The

analysis is based on the assumption that the diode current goes to zero as soon as the

snubber circuit starts conducting. Thus, any interaction between the diode and the

snubber circuit is ignored and a linear RLC circuit is analyzed. The analysis provides a

means for selecting the values of R and C for an optimum design. CODECS simula

tions confirm that this analysis provides a good optimum design. However, it is pes

simistic or conservative under other conditions.

The pin diode is shown with an RC snubber connected in parallel in Figure 8.22.

The simulated and calculated [8.19] values of peak reverse voltage for a peak reverse

current of 2A and a circuit inductance of 0.5 |iH are shown in Figure 8.23. It is seen

that the analysis considerably over estimates the peak reverse voltage for large values of

the damping factor (§ = . ).



Figure 8.22: Snubber circuit used for simulation.
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The energy dissipated in the diode and the snubber over a 100ns time interval for

various values of R are summarized in Table 8.2. These results are obtained from

repeated simulations with CODECS for a fixed value of C with the value of R being

varied. As seen from Table 8.2 there is a remarkable tolerance of the power dissipation

to die choice of R. This example illustrates the usefulness of CODECS in evaluation of

snubber circuit designs.

R (C-50pf) Diode Snubber

(ohms) (uJ) (uJ)

0 0.4 0.05

10 0.32 1.58

50 0.43 1.55

60 0.39 1.55

70 0.32 1.59

100 0.31 1.59

Table 8.2: Energy dissipated in diode and snubber

8.4. Evaluation of Switch-Induced Errors

The turning off of a MOSFET switch in switched-capacitor circuits results in an

error voltage on the data-storage capacitor. This error voltage places a fundamental limit

on the accuracy of A/D and D/A converters and filters implemented using switched-

capacitor circuits. A simple switched-capacitor circuit is shown in Figure 8.24. Initially

the MOS transistor is on and charges the storage capacitor CL to the source voltage.

Once the capacitor has been charged to the source voltage the MOS switch is turned off.

The MOS transistor stores a certain amount of mobile charge in the channel and when

the transistor is turned off this charge flows out of the drain, source, and substrate nodes.

Some of the channel charge is transferred to the storage capacitor which discharges CL
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and gives rise to an error voltage. Clock-feed-through due to the overlap capacitances is

another source of error. The error voltage can be reduced by turning off the switch at a

very slow rate but cannot be completely eliminated.

The switch-induced error has been analyzed in [8.20] and a model has been

obtained for the error voltage with a two-lump approximation. The dependence of the

error voltage on die gate voltage has been examined under the quasi-static assumption.

This model produces results that are significantiy different from those obtained with a

non-quasi-static MOSFET model [8.21]. In [8.22] the model has been extended to

include the effect of source resistance and capacitance, but the analytical model is lim

ited to some special cases. An analytical model for charge injection has also been given

in [8.23] and verified by a numerical solution of the one-dimensional current-continuity

equation. However, the model does not include the effect of the driving source

impedance. Numerical solution of the one-dimensional current-continuity equation has

also been used for the turn-off analysis of a MOS pass transistor [8.24]; based on this, a

two-lump model is presented. However, this analysis also assumes a zero source

impedance. With CODECS it is possible to simulate arbitrary switched-capacitor circuit

configurations. In particular, the influence of source resistance and capacitance on the

error voltage can be determined. In fact, realistic driving sources such as opamps can be

used for the simulations.

For simulations the MOS transistor geometry and doping are as in Figure 7.18.

The width of the transistor is assumed to be 4pvn . For CL of 2pF the ratio of load capa

citance to the gate capacitance of the MOS pass transistor, CLICoxt is 242 and the ratio

of the overlap capacitance to the gate capacitance, Cov/Cox, is 0.133.

The error voltage at the end of the falling ramp of the gate voltage is plotted in

Figure 8.25 as a function of the ramp fall rate for different values of the source voltage.

The error voltage increases with the fall rate and reaches a maximum. For very high fall
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Figure 8.25: Switch-induced error voltage as a function of the gate
voltage fall rate (Tf) for source voltages of OV and IV.
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rates the error voltage drops due to non-quasi-static operation.

Next consider the influence of source resistance, Rs, on the error voltage. The

simulated error voltages as a function of Rs, and the gate voltage fall rates, for a zero

source voltage, are presented in Figure 8.26. It is seen that the switch error increases

with an increase in die source resistance. This is to be expected, since a larger amount of

channel charge flows into the storage capacitor than into the source. The source resis

tance restricts the flow of charge to the voltage source. The error voltage also increases

with an increase in the fall rate initially, but decreases at high fall rates.

The effect of source capacitance, C$, is shown in Figure 8.27. The error voltage is

plotted as a function of C$ for different fall rates, Vs = 0, and Rs = 10K. The source

capacitance has negligible effect at very small and very large fall rates. However, for

values of fall rate in between the two extremes the error voltage decreases as Cs

increases.

Next the circuit shown in Figure 8.28 is considered. The error voltage for different

circuit configurations is plotted as a function of the fall rate of the gate voltage in Figure

8.29. The different configurations are

(i) Cs = 0, Rs = 10K and no M2,

(ii) Cs = 2pF, Rs = 10K and no M2,

(iii) Cs = OpF, Rs = 10K and M2 as shown (dummy technique), and

(iv) Cs = 2pF, Rs = 10K and M2 as shown (balanced technique).

Thus, various techniques for error cancellation such as the dummy technique [8.25] and

the balanced technique [8.26] can be evaluated. It is seen from Figure 8.29 that the bal

anced technique is most effective in reducing the switch-induced error voltage.
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260

Phi Phi

Figure 8.28: Another switched-capacitor circuit
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Figure 8.29: Switch-induced error voltage as a function of the gate
voltage fall rate for different circuit configurations. The balanced tech
nique for error cancellation results in the smallest error voltage.
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8.5. Evaluation of Analytical Models

This section illustrates the application of CODECS for verification of analytical

models. CODECS provides a capability to evaluate analytical models, and to see if an

analytical model properly incorporates the physical operation of the device.

As a first example CODECS is used as a device simulator. An analytical model for

the lateral electric field in lightly doped drain MOSFETs has been derived using a

quasi-two-dimensional analysis [8.27]. Simulations from CODECS are used to verify the

model. The electric fields obtained from the analytical model, for the full-overlap and

non-overlap devices are plotted in Figures 8.30 and 8.31, respectively. Results of two-

dimensional CODECS simulations for the same device and bias conditions are also

included in these figures. The analytical model shows good physical agreement with the

numerical simulations.

The second example concerns the turn-on and turn-off transients of a MOSFET as

illustrated in Chapter 7. In Figure 8.32 are plotted the simulated drain and source

currents for the turn-on transient. Figure 8.33 gives the corresponding results for the

turn-off transient The simulated results are from CODECS and the non-quasi-static

model of Park [8.28]. The analytical model predicts that the currents cannot change

instantaneously and the nature of the simulated waveforms is similar to that obtained

from CODECS. The steady-state values of the currents for the turn on are different

because of the differences in the dc characteristics of the numerical and analytical

models It can, therefore, be concluded that the model of [8.28] properly simulates non-

quasi-static operation.
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Figure 8.30: Lateral electric field versus distance for a LDD MOS
FET with full gate/LDD-region overlap. The curves are shown for Vc
- 4V, VD > 5V, and n~ concentrations of 8xl016 and 5xl017. There is
good agreement between the simulated results and the model predic
tions.
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Figure 8.31: Lateral electric field versus distance for a LDD MOS
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good agreement between the simulated results and the model predic
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Figure 832: Drain and source currents for the turn-on transient of a
MOSFET. The results from the non-quasi-static model of [8.28] are in
good agreement with numerical simulations.
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CHAPTER 9

Conclusions

Usually circuit simulators make use of analytical models for semiconductor dev

ices. These models are derived from the basic physical laws governing device operation

under simplifying assumptions. Empirical factors are introduced such that a good fit can

be obtained with measured data from fabricated devices. Parameter-extraction programs

are used to obtain the model parameters for a device model from experimentally meas

ured data. These models cannot predict the effect of changes in process technology and

device design on circuit performance. Repeated fabrication of devices and circuits is an

expensive and time consuming way to make such evaluations.

Device simulations can be used to predict the effect of technology changes on dev

ice performance. This information could be used with a circuit simulator to predict cir

cuit performance. However, the use of curve fitting to obtain the model parameters for

the analytical models, from the simulated current-voltage characteristics, results in a

loose coupling between the device simulator and the circuit simulator. Such an approach

may not provide adequate information for a predictive analysis.

A coupled device and circuit simulator is a general solution to the modeling prob

lem. Detailed information from the device-level simulations can be used at the circuit

level. It provides a direct link between technology and circuit performance and can be

used to evaluate the impact of alternate processes and device designs on circuit perfor

mance. In addition, such a simulatorextends the capabilities of a device simulator in that

devices can be simulated with circuit embedding. Present day device simulators allow
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only voltage or current boundary conditions and resistive or capacitive elements at the

terminals; therefore, they cannot be used to simulate realistic boundary conditions. In

practice the device is embedded in a circuit and a mixed-level circuit and device simula

tor can be used to study its performance with circuit boundary conditions.

The accuracy of analytical models used for circuit simulation can also be verified

by mixed-level circuit and device simulations. If some important physical effects are

ignored in the analytical model, then the model has to be modified to account for those

effects. Using coupled simulations, one can also identify circuit applications where better

analytical models are essential.

This dissertation presents a general framework for mixed-level circuit and device

simulation. The goal has been to implement frequently required analyses capabilities

with a wide variety of numerical models. A new coupled device and circuit simulation

program, CODECS, has been developed as part of this research. It incorporates SPICE3

for the circuit-simulation capability and for analytical models of semiconductor devices.

The coupling techniques are general and can be used with other circuit simulators. A

new one- and two-dimensional device simulator has been developed that supports dc,

transient, small-signal ac, pole-zero, and sensitivity analyses at the device level. The dev

ice simulator provides a comprehensive set of analyses capabilities that are not available

with any existing device-simulation programs.

Various algorithms to couple the device and circuit simulators for dc and transient

analyses have been implemented in CODECS. These algorithms are evaluated based on

their convergence properties and runtime performance. This study provides guidelines for

choice of a particular coupling algorithm. A modified two-level Newton algorithm is

used for dc analysis whereas a full-block-LU decomposition algorithm is used for tran

sient analysis. This combination of algorithms provides reasonable convergence and run

time performance. Coupling for small-signal ac and pole-zero analyses is also described.
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Dc convergence is a serious problem in coupled circuit and device simulation. The

device-level equations are highly nonlinear and iterative methods fail to converge to a

solution if the terminal voltages change by a large amount Heuristics have been investi

gated to improve convergence for dc analysis. Some of the techniques used are the

modified two-level Newton algorithm with device-based limiting, a damped-Newton

method, and a backtracking scheme if convergence is not achieved for a particular bias

point The limiting schemes may be conservative but are justified since dc analysis is a

very small fraction of a complete transient simulation. Schemes for timestep and

integration-order control in transient analysis are also described. CODECS uses the local

error estimates for automatic control of timesteps and integration order. Latency check

is extremely important for mixed-level circuit and device simulation since evaluation of

numerical models is computationally expensive. A scheme for device bypass is presented

and evaluated. The implementation of small-signal ac and pole-zero analyses, and dc and

transient sensitivity computations at the device level are also described.

Analytical models are compared with numerical models to indicate their

weaknesses under various regions of device operation. Since numerical models are based

on physics they provide more reliable results and a means for identifying the shortcom

ings of analytical models. It is shown that even if the model parameters are extracted

such mat there is a good agreement with the dc characteristics obtained experimentally,

the transient response may be significantly different A good dc model does not guaran

tee accurate transient operation. The speed-performance comparison indicates the cost of

using numerical models instead of analytical models. However, some applications well

justify the computational costs to obtain physically meaningful simulation results.

Applications have been used to illustrate the advantages of mixed-level circuit and

device simulation. These examples again provide evidence that analytical models are of

limited utility in some applications. Typical examples are high-level-injection effects in
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diodes and bipolar transistors, high-frequency or non-quasi-static operation of semicon

ductor devices, charge redistribution during the turn off of an MOS switch in MOS

switched-capacitor circuits, and simulation of power devices. The last application is par

ticularly suited to mixed-level circuit and device simulation, since most power circuits

employ a small number of power devices for which accurate models are necessary; the

rest of the circuit can be simulated with analytical models.

CODECS has also been used as a vehicle to study the performance of Lisp-based

mixed-level circuit and device simulation. An initial prototype for CODECS was

developed in Lisp using object-oriented programming on the Symbolics 3600 Lisp

machine. Although Lisp provided an environment for rapid prototyping, the Lisp-based

simulator was extremely slow to be suitable for practical applications. Detailed runtime

profiles are presented to identify the portions where the program spends most of the

time. Comparisons are provided with the new version of CODECS in the C program

ming language.

Future research should focus on speeding up the mixed-level circuit and device

simulator. This can be achieved by the use of vector or multiprocessing computers.

Parallel model evaluation [9.1] in a mixed-level circuit and device simulator should pro

vide an almost linear speedup with the number of processors. Loosely coupled multipro

cessors may be quite suited since the time required for model evaluation will

significantly dominate the interprocessor communication times. The device-level simula

tion can be parallelized as in [9.2] and circuit-level simulation can be parallelized using

some existing techniques [9.1, 9.3, 9.4]. Algorithmic approaches to speed up the

device-simulation task also need to be investigated; the Boundary-Value method of [9.5]

should be evaluated for simulation of MOS devices in a mixed-level environment

Development of a special-purpose hardware solver for solving the Poisson's and the

current-continuity equations would provide a significant improvement in speed
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performance.

A mixed-level circuit and device simulator is only as good as the physical models

used at the device-simulation level. CODECS currently uses physical models that have

been widely accepted in the literature. These models should be updated as better models

become available. In addition, the device-simulation capability should be tuned to a pro

cess line and the models verified with actual measurements. This will provide a basis for

comparing experimentally fabricated circuits and simulated results.

Additional analysis capabilities need to be implemented at the device-simulation

level. These include the use of numerical models for noise calculations. Numerical tech

niques have been used for calculating the low-frequency noise of MOSFET's in [9.6].

To be useful for power device designers CODECS should also allow the simulation

of thyristor circuits. This can be achieved by implementing current boundary conditions

at the device-simulation level. Temperature gradients are important in power devices.

Consequently, the heat-flow equation must be solved coupled with the Poisson's and the

current-continuity equations. Some device simulators allow non-isothermal simulations

[9.7], and such a capability will be extremely beneficial in CODECS.

As devices are scaled down three-dimensional effects become important. Modern

IC fabrication processes may dictate the use of three-dimensional numerical models in a

mixed-level circuit and device-simulation environment The coupling techniques used in

CODECS can be extended to three-dimensional numerical devices. However, computa

tional costs are going to be of serious concern and multiprocessors should be used.

Mixed-level circuit and device simulations could be extremely useful for future three-

dimensional or multi-layer technologies.

At present CODECS works for rectangular geometry silicon devices. The present

capabilities of CODECS should be enhanced to other materials such as GaAs and

heterostructure semiconductor devices. CODECS should also be extended to simulate
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generalized geometries; this could be done by use of triangular grids as in PISCES [9.8].

A mixed-level circuit and device simulator provides an environment that should be

useful to process, device and circuit designers. Process designers could use CODECS

coupled with a process simulator to design a high-performance process that meets a

desired set of specifications for a given circuit design. This would then result in a true

custom IC process. Device designers can evaluate alternate device designs and their

impact on circuit performance. Circuit designers could use the numerical models when

greater accuracy is desired for simulations as would be the case with some high-

performance circuits.
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APPENDIX A

CODECS User's Guide

A.l. Introduction

CODECS is a coupled device and circuit simulator that allows accurate and

detailed simulation of semiconductor circuits. The simulation environment of CODECS

enables one to model critical devices within a circuit by physical (numerical) models

based upon the solution of Poisson's equation and the current-continuity equations.

Analytical models can be used for the noncritical devices. CODECS incorporates

SPICE3 for the circuit-simulation capability and for analytical models of semiconductor

devices. Numerical models are provided by a new one- and two-dimensional device

simulator. Dc, transient, and small-signal ac and pole/zero analyses can be performed on

circuits containing one and two-dimensional numerical models. The numerical models in

CODECS include physical effects such as bandgap narrowing, Shockley-Hall-Read and

Auger recombinations, concentration- and field-dependent mobilities, concentration-

dependent lifetimes, and avalanche generation.

The input format is similar to that of SPICE3. All circuit elements and analytical

semiconductor device models can be used as described in the SPICE3 User's Guide. A

description of the numerical models of CODECS is provided here.
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AX Circuit Description

The circuit description can be entered in a manner similar to that of SPICE3. Cir

cuit element description lines contain the element name, the circuit nodes to which it is

connected, and the values of the parameters that determine the electrical characteristics

of that element A numerical diode name must begin with the letter A, a numerical BJT

name must begin with the letter B, and a numerical MOSFET with the letter N.

Data fields that are enclosed in *< >' in the description below are optional.

AJ. Element Descriptions

AJ.l. Numerical Diodes

General form:

AXXXXXXX N+ N- MNAME <AREA VALUE> <WIDTH VALUE>

N+ and N- are the positive and negative nodes, respectively. MNAME is the

model name. AREA is the area for a one-dimensional diode in cm2. WIDTH is the

width of a two-dimensional diode in cm. The default values of AREA and WIDTH are

lcm2 and 1cm, respectively, and are used when these parameters are not specified.

Examples:

ACLAMP 1 2 AREA=1U

ACLAMP 1 2 WIDTH=lE-2



275

A3J2. Numerical Bipolar Junction Transistors

General form:

BXXXXXXX NC NB NE MNAME <AREA VALUE> <WIDTH VALUE>

NC, NB, and NE are the collector, base, and emitter nodes, respectively. MNAME

is the model name. AREA is the area for a one-dimensional BJT in cm2. WIDTH is the

width of a two-dimensional BJT in cm. The default values of AREA and WIDTH are

lcm2 and 1cm, respectively, and are used when these parameters are not specified.

Examples:

BINV 1 2 0 AREA=lE-6

BINV 1 2 0 WIDTH=lE-2

A J J. Numerical MOSFETs

General form:

NXXXXXXX ND NG NS NB MNAME <WIDTH VALUE>

ND, NG, NS, and NB are the drain, gate, source, and bulk (substrate) nodes,

respectively. MNAME is the model name. WIDTH is the width of the two-dimensional

MOSFET structure in cm. The default value of the width is lcm, and is used when the

WIDTH parameter is not specified in the input.

Examples:

MPULLDN VOUT VIN 0 0 ENH WIDTH=20E-4

MPASS 2 4 10 0 ENH WIDTH=1M
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A.4. Model Descriptions

The numerical semiconductor device models are specified using the .MODEL com

mand similar to that used for the analytical models in SPICE3.

General form:

.MODEL MNAME TYPE PNAME1 PVAL1 PNAME2 PVAL2 ...

MNAME is the model name. TYPE is NUMD for a numerical diode model, NBJT

for a numerical BJT model, and NUMOS for a numerical MOSFET model. The param

eters can be single valued, vector valued, or logical flags. One-dimensional and two-

dimensional numerical models differ in their input parameters. A description of the

model parameters is given below. First the common model parameters that model the

various physical effects are described. This is followed by a description of the model

parameters for one-dimensional models and two-dimensional models, respectively.

A.4.1. Parameters for Physical Effects

CODECS includes several physical effects which can be included in a simulation

by specifying the corresponding parameters. The model parameters are

A.5. Model Parameters for One-Dimensional Numerical models

The parameters described in this section are used to define the mesh for space

discretization, the doping profiles, and the material regions for the device.

A.5.1. Mesh Description

The mesh for a one-dimensional device is specified by the MESH model parame

ter.

General form:
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name parameter default

SRH Shockley-Read-Hall recombination not included

AUGER Auger recombination not included

BGNW bandgap narrowing not included

CONCTAU concentration-dependent lifetimes not included

CONCMOB concentration-dependent mobility not included

HELDMOB field-dependent mobility not included

AVAL avalanche generation not included

NBGN reference concentration for

bandgap narrowing model

lxlO17 cm'3

TNO low doping electron lifetime 20 ns

TPO low doping hole lifetime 20 ns

MUNO low doping, low field electron mobility 1400 cm2IV-s

MUPO low doping, low field hole mobility 480 cm2IV-s

MOBMODEL mobility model Scharfetter-Gummel

MESH MESHNO XPOS

XPOS is the X position, in urn, of the mesh point specified by MESHNO. The

mesh parametercan be used any number of times to generate a nonuniform grid.

Example:

MESH 1 0 MESH 11 1 MESH 51 2

The above command line specifies the mesh as follows. The first mesh point is

located at X = 0|im. The 11th mesh point is at X = lum, and the 51st mesh point is at

X = 2\im. Thus, ten mesh points are uniformly placed in the interval (0, lum) and forty

mesh points are uniformly placed in the interval (ljim, 2\im). The mesh spacing is uni

form within an interval but nonuniform from interval to interval.
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A.5.2. Doping Description

The doping profile for the device is specified by analytical formulas. The allowed

profile types are uniform, Gaussian, exponential, or error function. The general form of

each of these profiles is as follows.

A.5.2.1. Uniform Doping Profile

General form:

UNIF CONC XLO XHI

UNIF specifies a uniform doping profile between XLO and XHI. Both XLO and

XHI are given in cm. CONC is the doping level in cm"3. A negative value is specified

for a p-type material and a positive value for an n-type material.

The doping N(x) is calculated using the following expression,

0 x <XLO

CONC XLO <x ZXHI

0 x > XHI

N(x)=<

Examples:

UNIF 1E15 0 1E-4

This defines a /i-type uniform doping of 1x 1015 cm'3 for the interval (0, l\im).

UNIF -1E16 0 5E-4

This defines ap-type uniform doping of 1x 1016 cm'3 for the interval (0, 5\im).
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A.5.2.2. Gaussian Implantation Profile

General form:

GIMP CONC CHAR XPOS

GIMP specifies a Gaussian implantation profile with a peak concentration CONC

in cm'3, a characteristic length of CHAR in cm, and the peak is located at XPOS in

cm. CONC is a negative value for a p-type material The doping N(x) is calculated as

N(x) = CONCxexp

r r ^2'

x-XPOS

CHAR

Examples:

GIMP 5E18 1.35E-4 6E-4

This defines a n-type Gaussian profile of peak concentration 5xlO18 cm"3, a

characteristic length of 1.35 urn, with the peak of the profile placed at 6[Lm.

GIMP -1E19 0.15E-4 0

This defines a p-type Gaussian profile of peak concentration 1x 1019 cm'3, charac

teristic length of 0.15 urn, with the peak of the profile at the origin.

A.5.2J. Exponential Doping Profile

General form:

EXP CONC CHAR XPOS

EXP specifies an exponential profile with a peak concentration CONC in cm'3, a

characteristic length of CHAR in cm, and the peak is located at XPOS in cm. CONC is

a negative value for a />-type material. The doping N(x) is calculated as

N(x) = CCWCxexp \XPOS -x\

CHAR
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Example:

EXP 5E18 1.35E-4 6E-4

This defines a n-type exponential doping profile of peak concentration

5x 1018 cm'3, a characteristic length of 1.35 \xm, with the peak of the profile placed at

6\im.

A.5.2.4. Error-Function Doping Profile

General form:

ERFC CONC CHAR XPOS

ERFC specifies an error-function profile with a peak concentration CONC in cm'3,

a characteristic length of CHAR in cm, and the peak is located at XPOS in cm. CONC

is a negative value for a p-type material. The doping N(x) is calculated as

N(x) = CONC xerf
\XPOS -x\

CHAR

Example:

ERFC -1E19 0.15E-4 0

This defines a p-type error-function profile of peak concentration 1x 1019 cm'3, a

characteristic length of 0.15 |im, with the peak of the profile at the origin.

A.5J. Region Description

The REGION parameter describes the presence of different materials in the simula

tion domain. All mesh points must belong to some region. A region is specified as fol

lows,

General form:
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REGION MESHLO MESHHI

REGION is either SILICON or OXIDE. MESHLO is the mesh number at which

the region begins and MESHHI is the mesh number at which the region ends.

Example:

SILICON 1 20 OXIDE 20 30

The above command line demarcates a silicon and an oxide region on a thirty-point

mesh. Mesh points from 1 to 20 lie in the silicon region, and the oxide region extends

from the 20th mesh point to the 30th mesh point

A.6. Model Parameters for Two-Dimensional Numerical models

The parameters described in mis section are used to define the mesh for space

discretization, the doping profiles, the material regions, and the contact locations for the

device. The coordinate system used for two-dimensional devices is shown in Figure A.l.

A.6.1. Mesh Description

Two-dimensional devices that can be simulated by CODECS must be rectangular

in geometry. A rectangular mesh is used to partition the simulation domain. The

XMESH and YMESH model parameters are used to specify the mesh in a manner simi

lar to that for one-dimensional devices. The XMESH parameter is used to specify the

mesh in the X direction and the YMESH parameter specifies the mesh for the Y direc

tion.

General form:

XMESH XMESHNO XPOS
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Figure A.1: Coordinate system used for two-dimensional devices.
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YMESH YMESHNO YPOS

XPOS (YPOS) is the X (Y) position (in \im) of the mesh point specified by

XMESHNO (YMESHNO). The mesh parameters, XMESH and YMESH, can be used

any number of times to generate a nonuniform grid.

Example:

XMESH 1 6 XMESH 11 1 XMESH 51 2 YMESH 1 0 YMESH 21 2

The above command line specifies the two-dimensional mesh as follows. The simu

lation region is divided into subdomains by a 51 x 21 mesh. The mesh spacing is nonuni

form in the X direction and uniform in the Y direction.

A.6.2. Doping Description

The doping profile for the device is specified by analytical formulas. The allowed

two-dimensional doping profile types are uniform and Gaussian. The general form of

each of these profiles is as follows

A.6.2.1. Two-Dimensional Uniform Doping Profile

General form:

UNIF CONC XLO XHI YLO YHI

UNIF specifies a uniform doping in the rectangle formed by XLO, XHI and YLO,

YHI. XLO, XHI and YLO, YHI are given in cm. CONC is the doping level in cm'3. A

negative value is specified for a p-type material and a positive value for an n-type

material. The doping N(x) is calculated using the following expression,

fcONC XLO ZxZXHI and YLO £y <YHI
^' ~~ (0 otherwise
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Examples:

UNIF 1E16 0 1E-4 0 0.2E-4

This defines a n-type uniform doping of 1x 1016 cm'3 for the rectangular region

0£X£lU7nandO£r£ 0.2\im.

UNIF -2.5E16 0 4E-4 1E-4 2E-4

This defines a p-type uniform doping of 2.5 x 1016 cm'3 for the rectangular region

0 £ X < A\im and \\im <Y<, 2\im.

A.622. Two-Dimensional Gaussian Implantation Doping Profile

General form:

GIMP CONC CHAR POS LATRATIO DIRECTION XLO XHI YLO YHI

GIMP specifies a Gaussian implantation profile with a peak concentration CONC

in cm'3, a characteristic length of CHAR in cm, and the peak is located at POS in cm.

CONC is a negative value for a p-type material. DIRECTION is the axis along which

the profile is directed; 0 for the X axis and 1 for the Y axis. The lateral profile is

assumed to have the same form but the characteristic length is shrunk by a factor of

LATRATIO. The rectangle specified by XLO, XHI and YLO, YHI bounds the profile to

a region inside the device. Within this rectangle the profile is a Gaussian profile along

the principal axis. Outside the rectangle the profile falls off along the lateral axis accord

ing to LATRATIO.

Examples:

GIMP 1E19 1.6E-4 20E-4 0.8 1 0 1E-4 0 0

This defines a n-type Gaussian profile of peak concentration 1x 1019 cm'3, a

characteristic length of 1.6jim, with the peak of the profile placed at 20um. The profile
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is aligned to the Y axis and the lateral profile has a characteristic length of 0.8 times the

primary profile. The doping is assumed to be Gaussian in the Y direction in the region

0 £ X £ \\im. Outside this region the profile falls of along the X axis as a Gaussian

profile with a characteristic length of 0.8 x 1.6|im = 1.28|im.

GIMP -1E15 1.2E-4 0 0.1 0 0 0 0 .5E-4

This defines ap-type Gaussian profile of peak concentration 1x 1015 cm'3, charac

teristic length of 1.2|im, with the peak of the profile at 0|im. The profile is aligned to

the X axis and the lateral profile has a characteristic length of 0.1 times the primary

profile. The doping is assumed to be Gaussian in the X direction in the region

0 < y £ 0.5um. Outside this region the profile falls of along the Y axis as a Gaussian

profile with a characteristic length of 0.1 x 1.2am = 0.12um.

A.6.3. Region Description

The REGION parameter describes the presence of different materials in the

specified mesh. A region is specified as follows,

General form:

REGION XMESHLO XMESHHI YMESHLO YMESHHI

REGION is either SILICON or OXIDE. XMESHLO, XMESHHI, YMESHLO, and

YMESHHI are mesh numbers that define a rectangle whose material type is specified by

REGION.

Example:

OXIDE 1 21 1 5 SILICON 1 21 5 11

The above command line demarcates a silicon and an oxide region on a two-

dimensional mesh. The rectangle formed by XMESH numbers 1 and 21 and YMESH
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numbers 1 and 5 is made up of oxide, whereas the rectangle formed by XMESH

numbers 1 and 21 and YMESH numbers 5 and 11 constitutes the silicon region.

A.6.4. Contact Description

The CONTACT parameter specifies the location of contact nodes on the rectangu

lar mesh. A specific sequence has to be used for each device. For the numerical diode

the CONTACT model parameter is given in the sequence positive node, and negative

node. For the numerical bipolar transistor CONTACT'S are specified as collector, base,

and emitter nodes. In the case of the numerical MOSFET the CONTACT sequence is

drain, gate, source, and substrate nodes. The contact nodes to silicon are assumed to be

ohmic, whereas the contact to an oxide region is assumed to be an aluminum/n-poly

contact.

General form:

CONTACT XMESHLO XMESHHI YMESHLO YMESHHI

XMESHLO, XMESHHI, YMESHLO, and YMESHHI define the mesh numbers

for the CONTACTS. These are the terminals at which the device is attached to the exter

nal circuit.

Example: Contacts for a MOSFET

CONTACT 28 31 5 5 CONTACT 5 27 1 1 CONTACT 14 5 5 CONTACT 1 31

19 19

The contacts are specified in the sequence drain, gate, source, and bulk (substrate).

It is seen that contacts can be either horizontal or vertical consistent with the rectangular

grid used for space discretization.
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A.6.5. Level Parameter

The LEVEL model parameter is used to specify the dimensionality of the model.

Specifying LEVEL-1 implies a one-dimensional device and LEVEL-2 specifies a two-

dimensional device. The default value is 1 for numerical diodes and BJT models. Since

the MOSFET is a two-dimensional device, it does not require a LEVEL specification,

and LEVEL is an invalid parameter.

A.6.6. One-Carrier Simulations

For MOSFETs, simulation of one carrier-continuity equation provides good accu

racy for most of the operating range. However, for conditions like avalanche generation

and punchthru both carrier-continuity equations have to be solved. A flag can be used to

specify the use of one-carrier simulation when it is known a priori that the MOSFET

will be operating under normal conditions. The model parameter is denoted ONEC. By

default both carrier-continuity equations are solved, and ONEC specifies mat only one-

carrier simulation should be performed. This model parameter is applicable only to

numerical MOSFET models and is an invalid parameter for the other numerical devices.

A.7. Example Circuits

A.7.1. Circuit 1

The following deck determines the dc operating point of a simple RTL inverter cir

cuit The bipolar transistor is assumed to be a one-dimensional device with a uniform

doping profile as shown in Figure A.2. A uniform grid is used for the simulations.

RTL INVERTER CIRCUIT

VIN 1 0 DC 4
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Figure A.2: BJT doping profile for Example 1.
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VCC 12 0 DC 5.0

RC1 12 3 2.5K

RBI 1 2 8K

Bl 3 2 0 MODI AREA- 1U

.MODEL MODI NBJT

+ NBGN - 1E17 BGNW SRH CONCTAU CONCMOB FIELDMOB AUGER

+ MESH 1 0 MESH 61 3

+ UNIF 1E17 0 1E-4

+ UNIF -1E16 0 1.5E-4

+ UNIF 1E15 0 5E-4

+ SILICON 1 61

.OP

.END
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A.7.2. Circuit 2

The following deck computes the transient response of the pull-up circuit of a BiC-

MOS driver. A realistic doping profile is used for the transistor as shown in Figure A.3.

This is a typical example of mixed-level simulation with CODECS; the MOSFET is

modeled by the Level-2 MOS model, whereas a numerical one-dimensional model is

used for the bipolar transistor. Note the use of the .OPTION BYPASS = 1. This

specification should be used with numerical models as it provides some speedup.

BiCMOS BUFFER

VDD 10 0 5

VIN2 00

VC 10 1 0

VB350

Bl 1 5 4 MOD2 AREA - 0.2U

Ml 3 2 10 10 MODP W = 60U L - 2U AD = 90P AS = 90P PD = 61U PS = 61U

CL 4 0 10PF

* Level-2 MOS model
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Figure AJ: BJT doping profile for Example 2.



.MODEL MODP PMOS VTO - -0.8 UO - 250 TOX - 25N NSUB - 5E16

+ UCRTT - 10K UEXP - .15 VMAX - 50K NEFF - 2 XJ - .02U

+ LD - .15U CGSO - .IN CGDO - .IN CJ - .12M MJ - 0.5

+ CJSW - 3E-10 MJSW - 5 LEVEL - 2

* numerical bjt model

.MODEL MOD2 NBJT

+ SRH BGNW CONCTAU CONCMOB FIELDMOB AUGER

+ NBGN - 1E17 TNO - 100NS TPO - 100NS

+ MESH 1 0 MESH 6 .1 MESH 36 .34 MESH 56 .6 MESH 146 6.0

+ UNIF 1E20 0 .2E-4

+ GIMP -9E17 .12E-4 .2E-4

+ UNIF 8E15 0 6E-4

+ GIMP 5E18 1.35E-4 6E-4

+ SILICON 1 146

.IC V(l) - 5 V(2) = 0 V(3) = 0 V(4) . 0.8 V(10) - 5 V(5) - 0

.TRAN 0.02N 5NS

.OPTION ACCT BYPASS-1

.PRINT TRAN V(3) V(4)

.END
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A.7J. Circuit 3

The following deck is used to simulate the transient response of an NMOS

enhancement-load bootstrap inverter circuit This is an example of two-dimensional

numerical models. The only physical effects considered are concentration and field

dependent mobilities. One-carrier simulation is used for the MOSFETs. The geometry

and doping profile of the MOSFET are shown in Figures A.4(a) and A.4(b), respec

tively.

SIMULATION OF ENHANCEMENT LOAD INVERTER

VDD 1 0 5.0

VIN 5 0 PWL 0 0 IN 5 ION 5 UN 0 20N 0 21N 5 30N 5 31N 0
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3d

Gate

OSu

? 500A° "••*
1E19

n+
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P-type 2.5E16

Substral e

Figure A.4(a): Geometry of MOS transistor.
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Figure A.4(b): Doping profile of MOS transistor.



Nl 1 1 3 0 MODI WIDTH - 5E-4

N2 1 3 4 4 MODI WIDTH - 5e-4

N3 4 5 0 0 MODI WIDTH - 5E-4

CL 4 0 .1PF

.MODEL MODI NUMOS

+ CONCMOB FEELDMOB ONEC

+ XMESH 1 0 XMESH 4 0.6 XMESH 5 0.7

+ XMESH 7 1.0 XMESH 11 1.2 XMESH 21 3.2

+ XMESH 25 3.4 XMESH 27 3.7 XMESH 28 3.8 XMESH 31 4.4

+ YMESH 1 -.05 YMESH 5 0.0 YMESH 9 0.05 YMESH 14 .3 YMESH 19 2.0

+ UNIF 1E20 0 1.1E-4 0 .2E-4

+ UNIF 1E20 3.3E-4 4.4E-4 0 .2E-4

+ UNIF -2.5E16 0 4.4E-4 0 2E-4

+ UNIF -1E16 0 4.4E-4 0 .05E-4

+ OXIDE 5 27 1 5

+ SILICON 1 31 5 19

+ CONTACT 28 31 5 5

+ CONTACT 5 27 1 1

+ CONTACT 14 5 5

+ CONTACT 1 31 19 19

.TRAN .2NS 40NS

.OPTIONS ACCT BYPASS-1

.PRINT TRAN V(3) V(4)

.END
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A.7.4. Circuit 4

The following deck is used to simulate the tumoff transient of a two-dimensional

diode with an inductive load and a RC snubber circuit Notice the use of the LEVEL

parameter. The doping profile is shown in Figure A.5.

TWO-DIMENSIONAL PIN DIODE CIRCUIT

VIN 1 0 PWL 0 0.8 In -50
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1 x 1020
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Figure A.5: Doping profile for Example 4.



LI 1 2 0.5UH

VD23DC0

Al 3 0 MODI WIDTH - 0.2

VRC 2 4 DC 0

Rl 4 5 100

CI 5 0 INF

.MODEL MODI NUMD LEVEL - 2

+ TNO - 20N TPO - 20N SRH CONCTAU CONCMOB FIELDMOB AUGER

+ XMESH 1 0 XMESH 2 .2 XMESH 4 .4 XMESH 8 .6 XMESH 13 1.0

+ YMESH 1 0 YMESH 9 4 YMESH 24 10 YMESH 29 15 YMESH 34 20

+ GIMP -1E20 1.076E-4 0 0.1 1 0.75E-4 1E-4 0 0

+ UNIF 1E14 0 1E-4 0 20E-4

+ GIMP 1E20 1.614E-4 20E-4 0.8 1 0 1E-4 0 0

+ CONTACT 8 13 1 1

+ CONTACT 1 13 34 34

+ SILICON 1 13 1 34

.OPTION ACCT BYPASS=1

.TRAN IN 100N

.PRINT TRAN V(3) I(VIN)

.END
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APPENDIX B

CODECS Benchmark Circuits

RTL INVERTER CIRCUIT

VIN 1 0 DC 1 PWL 0 4 IN 0

VCC 12 0 DC 5.0

RC1 12 3 2.5K

RBI 1 2 8K

Bl 3 2 0 MODI AREA - 1E-6

♦NUMERICALMODEL FOR BIPOLAR TRANSISTOR

.MODEL MODI NBJT BASE 1.25E-4

+ NBGN = 1E17 BGNW SRH CONCTAU CONCMOB FIELDMOB AUGER

+ MESH 1 0 MESH 61 3

+ UNIF 1E17 0 1E-4

+ UNIF -1E16 0 1.5E-4

+ UNIF 1E15 0 5E-4

+ SILICON 1 61

.OPTION ACCT BYPASS=1

.TRAN 0.5N 5N

*.OP

.PRINT TRAN V(3)

.END

COLPTTTS OSCILLATOR CIRCUIT

Rl 1 0 1

Bl 2 1 3 MODI AREA = 1E-6

VCC 4 0 5

RL 4 2 750

CI 2 3 500P

C2 4 3 4500P
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L14 2 5UH

RE 3 6 4.65K

VEE 6 0 DC -15 PWL 0 -15 IN -10

.MODEL MODI NBJT BASE 1.25E-4

+ NBGN - 1E17 BGNW SRH AUGER CONCTAU CONCMOB FIELDMOB

+ MESH 1 0 MESH 61 3

+ SILICON 1 61

+ UNIF 1E17 0 1E-4

+ UNIF -1E16 0 1.5E-4

+ UNIF 1E15 0 5E-4

.OPTION ACCT BYPASS=1

.TRAN 30N 12U

♦.OP

.PRINT TRAN V(2)

.END

VOLTAGE CONTROLLED OSCILLATOR

RC17 5 IK

RC2 7 6 IK

B5 7 7 5 MODI AREA - 1E-6

B6 7 7 6 MODI AREA = 1E-6

B3 7 5 2 MODI AREA = 1E-6

B4 7 6 1 MODI AREA = 1E-6

IB1 2 0.5MA

IB2 1 0 .5MA

CB1 2 0 1PF

CB2 1 0 lPf

Bl 5 1 3 MODI AREA - 1E-6

B2 6 2 4 MODI AREA = 1E-6

CI 3 4.1UF

151 3 0 DC 2.5MA PULSE 2.5MA 0.5MA 0 1US 1US 50MS

152 4 0 IMA

VCC 7 0 10

.MODEL MODI NBJT BASE 1.25E-4
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+ SRH AUGER BGNW CONCTAU CONCMOB FIELDMOB NBGN - 1E17

+ MESH 1 0 MESH 61 3

+ SILICON 1 61

+ UNIF 1E17 0 1E-4

+ UNIF -1E16 0 1.5E-4

+ UNIF 1E15 0 5E-4

.OPTION ACCT BYPASS-1

.TRAN 3US 600US 0 3US

♦.OP

.PRINT TRAN V(4)

.END

FOUR RTL INVERTER CHAIN

VIN 1 0 DC 0 PWL 0 0 IN 5

VCC 12 0 DC 5.0

RC1 12 3 2.5K

RBI 1 2 8K

Bl 3 2 0 MODI AREA - 1E-6

RB2 3 4 8K

RC2 12 5 2.5K

B2 5 4 0 MODI AREA - 1E-6

RB3 5 6 8K

RC3 12 7 2.5K

B3 7 6 0 MODI AREA = 1E-6

RB4 7 8 8K

RC4 12 9 2.5K

B4 9 8 0 MODI AREA = 1E-6

.MODEL MODI NBJT BASE = 1.25E-4

+ NBGN = 1E17 BGNW SRH AUGER CONCTAU CONCMOB FIELDMOB

+ MESH 1 0 MESH 61 3.0

+ SILICON 1 61

+ UNIF 1E17 0 1E-4

+ UNIF -1E16 0 1.5E-4

+ UNIF 1E15 0 5E-4

299



.OPTION ACCT BYPASS-1

♦.OP •

.PRINT TRAN V(3) V(5) V(9)

.TRAN IN ION

.END

ASTABLE MULTIVIBRATOR

VIN 5 0 DC 0 PULSE( 0 5 0 1US 1US 100US 100US )

VCC 6 0 5.0

RC16 1 IK

RC2 6 2 IK

RBI 6 3 30K

RB2 5 4 30K

CI 1 4 150PF

C2 2 3 150PF

Bl 1 3 0 MODI AREA - 1E-6

B2 2 4 0 MODI AREA = 1E-6

.MODEL MODI NBJT BASE = 1.25E-4

+ NBGN - 1E17 BGNW SRH CONCTAU CONCMOB FIELDMOB AUGER

+ MESH 1 0 MESH 61 3

+ SILICON 1 61

+ UNIF 1E17 0 1E-4

+ UNIF -1E16 0 1.5E-4

+ UNIF 1E15 0 5E-4

.OPTION ACCT BYPASS=1

.TRAN .05US 8US 0 .05Us

♦.OP

.PRINT TRAN V(l) V(2) V(3) V(4)

.END

MECLIII CKT - MOTOROLA MECL HI ECL GATE

.TRAN 0.2NS 20NS

♦.OP
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VEE 22 0 -6.0

VIN 1 0 PULSE -0.8 -1.8 0.2NS 0.2NS 0.2NS IONS 20NS

RS 1 2 50

Bl 4 2 6 QNUM AREA - 1E-6

B2 4 3 6 QNUM AREA - 1E-6

B3 5 7 6 QNUM AREA - 1E-6

B4 0 8 7 QNUM AREA = 1E-6

Dl 8 9 DMOD

D2 9 10 DMOD

RP1 3 22 50K

RC1 0 4 100

RC2 0 5 112

RE 6 22 380

Rl 7 22 2K

R2 0 8 350

R3 10 22 1958

B5 0 5 11 QNUM AREA - 1E-6

B6 0 4 12 QNUM AREA - 1E-6

RP2 11 22 560

RP3 12 22 560

B7 13 12 15 QNUM AREA - 1E-6

B8 14 16 15 QNUM AREA = 1E-6

RE2 15 22 380

RC3 0 13 100

RC4 0 14 112

B9 0 17 16 QNUM AREA = 1E-6

R4 16 22 2K

R5 0 17 350

D3 17 18 DMOD

D4 18 19 DMOD

R6 19 22 1958

B10 0 14 20 QNUM AREA = 1E-6

Bll 0 13 21 QNUM AREA = 1E-6

RP4 20 22 560

RP5 21 22 560
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.MODEL DMOD D RS-40 1T-0.1NS CJO-0.9PF N-l IS-1E-14

+ EG-1.11 VJ-0.8M-0.5

.MODEL QNUM NBJT BASE 1.25E-4

+ NBGN - 1E17 BGNW SRH AUGER CONCTAU CONCMOB FIELDMOB

+ MESH 1 0 MESH 10 0.9 MESH 20 1.1 MESH 30 1.4 MESH 40 1.6 MESH 61 3.0

+ SILICON 1 61

+ UNIF 1E17 0 1E-4

+ UNIF -1E16 0 1.5E-4

+ UNIF 1E15 0 5E-4

.OPTIONS ACCT BYPASS=1

.PRINT TRAN V(12) V(21)

.END

TURNOFF TRANSIENT OF PASS TRANSISTOR

Nl 11 2 3 4 NCH WIDTH=20E-4

CS 1 0 6.0PF

CL 3 0 6.0PF

Rl 3 6 200K

VIN60DC0

VDRN 1 11 DC 0

VG 2 0 DC 5 PWL 0 5 0.1N 0 1 0

VB 4 0 DC 0.0

.TRAN 0.05N .2N 0 .05N

.PRINT TRAN V(l) I(VDRN)

.IC V(1)=0 V(3)=0

.OPTION ACCT BYPASS=1

.MODEL NCH NUMOS

+ CONCMOB FIELDMOB ONEC

+ XMESH 1 0 XMESH 4 0.6 XMESH 5 0.7

+ XMESH 7 1.0 XMESH 11 1.2 XMESH 21 3.2

+ XMESH 25 3.4 XMESH 27 3.7 XMESH 28 3.8 XMESH 31 4.4

+ YMESH 1 -.05 YMESH 5 0.0 YMESH 9 0.05 YMESH 14 .3 YMESH 19 2.0

+ UNIF 1E20 0 1.1E-4 0 .2E-4

+ UNIF 1E20 3.3E-4 4.4E-4 0 .2E-4



+ UNIF -2.5E16 0 4.4E-4 0 2E-4

+ UNIF -1E16 0 4.4E-4 0 .05E-4

+ OXIDE 5 27 1 5

+ SILICON 1 31 5 19

+ CONTACT 28 31 5 5

+ CONTACT 5 27 1 1

+ CONTACT 14 5 5

+ CONTACT 1 31 19 19

.END
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MOS INVERTER CIRCUIT

VIN 1 0 PWL 0 0.0 2N 5

VDD 3 0 DC 5.0

RD 3 2 2.5K

Nl 2 1 4 5 MODI WIDTH - 1E-3

CL 2 0 2PF

VB500

VS400

.MODEL MODI NUMOS

+ CONCMOB FIELDMOB ONEC

+ XMESH 1 0 XMESH 4 0.6 XMESH 5 0.7 XMESH 7 1.0 XMESH 11 1.2

+ XMESH 21 3.2 XMESH 25 3.4 XMESH 27 3.7 XMESH 28 3.8 XMESH 31 4.4

+ YMESH 1 -.05 YMESH 5 0.0 YMESH 9 0.05 YMESH 14 .3 YMESH 19 2.0

+ UNIF 1E20 0 1.1E-4 0 .2E-4

+ UNIF 1E20 3.3E-4 4.4E-4 0 .2E-4

+ UNIF -2.5E16 0 4.4E-4 0 2E-4

+ UNIF -1E16 0 4.4E-4 0 .05E-4

+ OXIDE 5 27 1 5

+ SILICON 1 31 5 19

+ CONTACT 28 31 5 5

+ CONTACT 5 27 1 1

+ CONTACT 14 5 5

+ CONTACT 1 31 19 19

.TRAN .2NS 30NS



.IC V(l) - 0.0 V(2) - 5.0 V(3)-5.0 V(4)=0.0 V(5)=0.0

.OPTIONS ACCT BYPASS-1

.PRINT TRAN V(l) V(2)

.END

CHARGE PUMP CIRCUIT

VIN 4 0 PULSE 0 5 15NS 5NS 5NS 50NS 100NS

VDD 5 6 PULSE 0 5 25NS 5NS 5NS 50NS 100NS

VBB 0 7 PULSE 0 5 0 5NS 5NS 50NS 100NS

RD 6 2 10K

Nl 5 4 3 7 MODI WIDTH - 1E-2

VS3 20

VC2 10

C2 1 0 10PF

.MODEL MODI NUMOS

+ CONCMOB FIELDMOB ONEC

+ XMESH 1 0 XMESH 3 0.4 XMESH 7 0.6 XMESH 15 1.4

+ XMESH 19 1.6 XMESH 21 2.0

+ YMESH 1 0 YMESH 4 0.015 YMESH 8 0.05 YMESH 12 0.25

+ YMESH 14 0.35 YMESH 17 0.5 YMESH 21 1.0

+ UNIF 1E18 0 0.5E-4 0.015E-4 .25E-4

+ UNIF 1E18 1.5E-4 2.0E-4 0.015E-4 0.25E-4

+ UNIF -1E15 0 2E-4 0.015E-4 1E-4

+ UNIF -1.3E17 0.5E-4 1.5E-4 0.015E-4 .05E-4

+ OXIDE 5 17 1 4

+ SILICON 1 21 4 21

+ CONTACT 18 21 4 4

+ CONTACT 5 17 1 1

+ CONTACT 14 4 4

+ CONTACT 1 21 21 21

.IC V(4) = 0 V(3) = 1.0 V(2) = 1.0 V(l) - 1.0 V(5)=1.0 V(7)=0.0 V(6)=1.0

♦.OP

.TRAN 2NS 200NS

.OPTIONS ACCT BYPASS-1
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.PRINT TRAN V(l) V(2)

.END
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APPENDIX C

Source Listing of CODECS

The source listing of CODECS is available at the following address:

Software Distribution Office

Industrial Liaison Program

Department of Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720
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