

Copyright © 1988, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

J

PERFORMANCE OPTIMIZATION OF

INTEGRATED CIRCUITS

by

Jyuo-Min Shyu

Memorandum No. UCB/ERL M88/74

22 November 1988

PERFORMANCE OPTIMIZATION OF

INTEGRATED CIRCUITS

by

Jyuo-Min Shyu

Memorandum No. UCB/ERL M88/74

22 November 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PERFORMANCE OPTIMIZATION OF

INTEGRATED CIRCUITS

by

Jyuo-Min Shyu

Memorandum No. UCB/ERL M88/74

22 November 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Performance Optimization of Integrated Circuits

Jyuo-Min Shyu

Ph.D. Department of Electrical Engineering
and Computer Science

Abstract

Optimization tools are valuablein designing high-performanceintegrated circuits (ICs).

Depending on the design environment, these tools perform optimization in two ways

- interactive and automatic. Interactive optimization is performed in an interactive

design environment where it is desirable to guide tradeoffs among competing perfor

mances of the circuit. Automatic optimization is embedded in an automated design

environment where design specifications are easily obtainable from higher-level design

tools. This thesis addresses techniques for both interactive and automatic optimization

of ICs at the transistor level - an area in which early efforts were not very successful.

Two tools have been developed - one primarily for analog design in the interactive

case, and the other solely for digital CMOS design in the automatic case. The interac

tive system developed for analog design uses a forms-based user interface to allow the

designer to formulate design problems easily. In this system, both gradient-based and

random searchalgorithms are employed in the interest of avoiding numerical difficulties

in the optimization. The automatic system developed for digital CMOS design is a

transistor sizer which incorporates desirable features of both heuristic and nonlinear

programming techniques. Experimental results are presented to demonstrate the ef

fectiveness of the proposed approaches.

Alberto Sangiovanni-Vincentelli
Thesis Committee Chairman

Acknowledgments

I wish to express my sincere gratitude first and foremost to my

research advisor, Professor Alberto Sangiovanni-Vincentelli for his guidance

and support throughout my study at Berkeley. His comprehensive and deep

knowledge of computer-aided design has served as an example, motivating

me to spend the many many hours invested in this research work. I would

also like to thank him along with Professors Robert Brayton and Henry

Helson for serving on my thesis committee. Professor Elijah Polak also took

interest in my research. I have benefited from the many discussions I had

with him.

I wish also to gratefully acknowledge the financial support received

from DARPA under Grant N00039-87-C-0182.

I am very grateful to those at AT&T Bell Laboratories who made

my appointment there in the summer of 1986 so valuable and unforgettable.

Specifically, Al Dunlop and Jack Fishburn provided me with an excellent

research environment. On my first day there, Jack patiently explained his

highly regarded transistor sizing algorithm to me, and valuable discussions

about techniques for CMOS performance optimization became a daily oc

currence.

I would like to thank my office partners, Dave Riley, Nick Weiner,

and Hormoz Yaghutiel, for their advice and help on a wide variety of prob

lems both technicaland administrative. Dave's effort in reviewing and mak

ing suggestions for oral and written presentations of my research has been

especially significant. In addition, Dave has allowed me to be more com

fortable in my working and living environments by clearly answering many

questions about English language usage and about American culture.

The implementation of ECSTASY would not have been possible

without the work of Tom Quarles and Wayne Christopher, on SPICE3, and

Dave Riley and Umakanta Choudhury, on techniques for the computation of

sensitivity. Many of the ideas Bill Nye has incorporated in the DELIGHT

n

optimization system have had a major influence on ECSTASY. Bill also

impacted my results positively by bringing my attention to a wider range of

relevant published research than I might otherwise have seen.

I am very grateful to Nick Weiner for spending one of his busiest

nights proofreading a preliminary draft of the first three chapters of this

thesis. I would also like to thank Joe Higgins and Joe Wiest, both very

knowledgeable about optimization theory, for proofreading Chapter 3.

The friendship of many Chinese students, especially Wen-Bin Hsu,

has added greatly to the enjoyment of my years in Berkeley. I am also

grateful to many of the fellow students in CAD Group for their help and

friendship. Among them are Andrea Casotto, Kwang-Ting Cheng, Srinivas

Devadas, Tammy Huang, Theologos Kelessoglou, Young Kim, Ken Kundert,

Bill Lin, Tony Ma, Abdul Malik, Kartikeya Mayaram, Linda Milor, Fabio

Romeo, Kanwar Singh, Rick Spickelmier, Ren-Song Tsay, and Don Webber.

Finally, I would like to express my most sincere gratitude to mem

bers of my family. My grandmother (ARMAH), mother, and brothers have

provided support and encouragement throughout my Berkeley years. It is

difficult to express in words my appreciation for the role that my wife Yih-

Ting and my daughters, Chih-Min (Cory) and Chia-Chi (Terry) played in

my Berkeley experience. I will simply say that they have endured many of

my absences, and many other hardships, so that I might reach my goal.

Contents

Table of Contents iii

1 Introduction 1

1.1 Motivation . 1

1.2 Optimization Environment . 2
1.2.1 Interactive Optimization . 3
1.2.2 Automatic Optimization 4

1.3 Difficulties and Strategies 5
1.4 Outline of the Thesis 6

2 Survey of Existing Tools 8
2.1 Introduction 8

2.2 General-Purpose Interactive Systems 8
2.2.1 Early Efforts 8
2.2.2 Shortcomings of Existing Approaches 10

2.3 Transistor Sizers 12

2.3.1 Early Efforts 12
2.3.2 Shortcomings of Existing Approaches . : 15

3 Algorithmic Considerations in IC Optimization 17
3.1 Introduction 17

3.2 Problem Formulation 18

3.3 Semi-infinite Programming 19
3.4 Finding a Feasible Design 20
3.5 Heuristic Methods 22

3.6 Multiobjective Optimization 25
3.7 Feasible Directions Algorithms 28
3.8 Numerical Difficulties Arising in Circuit Optimization 35

3.8.1 Scaling 37
3.8.2 Finite Difference Approximation 41
3.8.3 A Random Search Scheme to Remedy the Problem . . 42

iii

IV

4 A General-Purpose Interactive Optimization System 46
4.1 Introduction 46

4.2 Optimization Algorithms 47
4.2.1 Sensitivity Computation 49
4.2.2 Controlled Random Search 51

4.3 User Interface Design 52
4.3.1 Design Criteria 52
4.3.2 Forms-Based Interface 56

4.3.3 Simulation Control 60

4.3.4 User Interaction 60

4.4 Circuit Simulation Interface 61

4.5 Design Examples 65
4.5.1 CMOS I/O Driver Circuit 66
4.5.2 Switched-Capacitor Filter 70
4.5.3 Bipolar Operational Amplifier 78

5 A Transistor Sizer for Digital CMOS Circuits 81
5.1 Introduction 81

5.2 A Two-Stage Combined Approach 82
5.2.1 The Approach 82
5.2.2 The Algorithm 84
5.2.3 A Variable Bump-Size Scheme 86

5.3 Modeling Circuit Delays 86
5.3.1 MOSFET Model 88

5.3.2 Distributed RC Delay Model 88
5.4 Feasible Directions Algorithm and Generalized Gradient ... 95

5.4.1 Feasible Directions Algorithm 95
5.4.2 Generalized Gradient 96

5.4.3 Problem Scaling 104
5.5 Delay Sensitivity Computation 104
5.6 Experimental Results 109

6 Conclusions and Future Research 112
6.1 Conclusions 112
6.2 Future Research 113

Bibliography 115

Chapter 1

Introduction

1.1 Motivation

Hierarchical design of integrated circuits (ICs) is an iterative proce

dure consisting of several levels of design tasks. Given a design specification,

the iterative procedure is to design the architecture, modularize each func

tional block of the architecture, realize the circuit to perform each module

function, and layout the circuit. The process is repeated until the final circuit

satisfies the specification requirements.

Usually, the design task at each level involves a number of design

options, each affecting the circuit performance. Optimization, i.e., the pro

cedure to modify the design to minimize the deviation of actual performance

from the desired, can be applied at all levels of design. Since the pro

cess to find manually the best possible choice for meeting the performance

requirements is very time-consuming, and seldom produces a circuit with

optimum performance, optimization tools become important in achieving

high-performance design. Unfortunately the complexity and sophistication

of modern ICs hinder the development of fully automatic design and opti
mization systems.

This thesis focuses on the problem of performance optimization at

the transistor level - an area in which early efforts were not very successful.

It is assumed that the circuit topology and component types are given and

fixed throughout the optimization. Furthermore, parasitic effects, which can

only be modeled after physical design is complete, and statistical effects on

parameters such as transistor sizes and resistor values, are ignored. The

design goals in the work presented here are described in terms of the per

formance of individual circuits which may, as in the case of totally analog

ICs, comprise the entire IC, but, more generally, comprise a subcircuit of the

entire IC.

The problem is simplified further by another approximation. Due

to the limitations in IC process technology, the design parameters are subject

to finite process resolution constraints. As a consequence, their values are

restricted to a discrete set of values. Direct solution of optimization problems

with design parameters restricted to discrete set is in general very difficult

to solve. For this reason, it is initially assumed that the design parameters

may take on real values in an interval. Once optimal real-valued results are

obtained, these are rounded to the nearest values belonging to the required

discrete set.

1.2 Optimization Environment

At the transistor level, performance optimization can be viewed as

an integral part of module generation which iterates the procedure of synthe

sis, optimization, and layout to realize a given design specification. There are

two ways of performing this optimization task - interactive, and automatic.

Both require an integration of sophisticated optimization algorithms and cir

cuit analysis tools. Interactive optimization is performed in an interactive

design environment where it is desirable to trade off the various aspects of

the circuit behavior; automatic optimization is embedded in an automated

design environment where design specifications are easily obtainable from

higher-level design tools.

1.2.1 Interactive Optimization

Consider the design of analog circuits (which, for the purpose of

this research, encompasses aspects of the design of digital systems in which

detailed circuit behavior, such as switching waveforms and output driving

capabilities, is of interest). Two approaches can be used. One of them is

to use synthesis techniques to produce circuits directly from design speci

fications. This approach has been used successfully in the design of some

limited classes of circuits, such as filters [1]. Recently, researchers [2] [3] [4]

have made considerable progress in the synthesis of certain classes of analog

building blocks such as operational amplifiers and voltage references. How

ever, these synthesis tools have limited optimization capabilities. This may

lead to their failure to produce any solution satisfying a given set of design

specifications, even though one may exist.

Much more common than the analog synthesis approach is one in

which design is viewed as an iterative procedure consisting of heuristic syn

thesis, circuit analysis, and optimization. This approach depends heavily on

the designer's past experience, knowledge, and intuition. The designer starts

with an initial circuit realization which is to satisfy the design specifications.

This initial design is then analyzed to determine the discrepancy between

the actual and desired performance. Optimization is then used to reduce

the deviation to within given tolerances. If, after the optimization step, the

circuit performance still cannot meet the required specification, the circuit

topology is modified and the iterative cycle is repeated. Clearly in this design

approach, the designer plays an active role throughout.

The design of analog (in the sense defined above) circuits generally

entails consideration of numerous performance criteria (such as input offsets,

noise, gain, and slew rate for a strictly analog circuit and rise time and quies

cent power consumption for a digital system subcircuit). These performance

criteria depend in a complex way on the design parameters of interest, and

may present conflicting considerations in setting design parameters, leading

to a need for the designer to trade off the criteria, one against the other, until

a compromise is reached. Consequently, it is desirable that the optimization

be based on circuit simulation, and be performed in an interactive way. Tools

for this purpose are therefore interactive systems for general-purpose use.

Note that, in this environment, circuit element values that can be

treated as design parameters may include resistance, capacitance, and tran

sistor size.

1.2.2 Automatic Optimization

In automated digital design systems, by contrast, it is generally de

sirable that optimization be carried out fully automatically. In the case of

digital systems, design often proceeds in a top-down manner, partitioning the

initial problem into smaller subproblems until their complexity becomes man

ageable. The design abstractions in this hierarchy are rather well-developed

and allow the systematic use of synthesis tools. In fact, recent advances

in computer-aided design (CAD) tools have made possible fully automatic

compilation of digital systems from high-level descriptions [5]. Tools with

this capability, however, generally do not contain mature solutions to the

problem of automatic optimization of performance objectives such as power,

speed, and area.

Note that, in this hierarchical design environment, while each de

sign abstraction may have a number of design options, the corresponding

performance requirement is rather well-defined. Typically, at the subcircuit

level, only a few aspects of circuit performance, such as delay or power, are

of interest. Also, since digital design has to deal with very large circuit size,

circuit behavior is often characterized based on macromodelling or timing

analysis using simplified device models.

For example, in the Berkeley synthesis environment [6], the objec

tive function is total active area, and the constraints are delay constraints. To

achieve this goal, the approach is first to minimize the area without consid-

eration of delay, then to meet the system timing requirements obtained from

higher-level synthesis tools. Optimization proceeds in two stages. The first is

logic restructuring, where alternatives of the structure of logic equations are

searched for better timing characteristics. The second stage involves itera

tions between transistor sizing and timing-driven placement and routing tech

niques. Similar approaches have been reported in other performance-oriented

synthesis systems [7] [8], although the objective and constraint functions are

somewhat different from those described above.

Therefore, in digital design, it is desirable to perform automatic op

timization, based on macromodelling or timing analysis, in an environment

where design specifications are available from other tools. In this environ

ment, since the only designable parameters are the transistor sizes, tools,

assuming fixed circuit topology, for this purpose are often called transistor

sizers.

1.3 Difficulties and Strategies

Optimization theory has provided many numerical techniques appli

cable to circuit optimization problems formulated as standard optimization

programs.

The goal of these techniques is to find a stationary point, i.e., a

point that satisfies a set of necessary optimality conditions. In the appli

cation of robust algorithms such as the feasible directions algorithms [9] to

circuit problems, convergence to a stationary point may be slow. Further

more, convergence may not even be achieved due to the finite precision of

the computations performed to evaluate the objective functions, the con

straint functions and their derivatives. Nevertheless, at least theoretically,

convergence is guaranteed under rather mild conditions.

Despite the fact that optimization has been applied successfully in

many applications, the acceptance of either automatic or interactive opti

mization by circuit designers is unfortunately still limited, due to difficulties

they have faced in applying these techniques. Most of these difficulties arise

either from poor problem formulation, or from difficulties in the implementa

tion of the optimization algorithms. While optimization experts working in

an interactive environment can generally overcome some of these difficulties,

most IC designers without a background in optimization, even with the aid

of a powerful computer and a library of algorithms, cannot.

This thesis attempts to alleviate both the problem formulation and

the algorithmic difficulties. For problem formulation, when interaction is

desirable, user interface is designed so that the designer can formulate the

problem easily without understanding optimization theory. To aid in avoid

ing algorithmic problems, special methods based on considerations particular

to IC design are provided, and optimization algorithms are designed so that

they can proceed without human intervention.

1.4 Outline of the Thesis

The organization of the thesis is as follows. Chapter 2 reviews the

previous efforts in general-purpose optimization systems for the interactive

optimization of analog circuits, and in transistor sizers for the automatic

optimization of digital circuits. Both contributions and limitations of the

existing tools are discussed. Chapter 3 details the algorithmic considera

tions in IC optimization. Beginning with a standard formulation for IC

optimization problems, the chapter surveys solution methods suitable for

circuit optimization. In particular, heuristic, nonlinear programming, and

random search algorithms are discussed, in the context of IC performance

optimization. Chapter 4 describes a general-purpose interactive system, EC

STASY, for optimization of analog circuits. A forms-based, menu-driven

user interface is proposed for easy problem formulation and user interaction.

The implementation of optimization algorithms based on sensitivity com

putation and random search is discussed, and several design examples are

provided. Chapter 5 presents an automatic transistor sizer for combinational

static CMOS circuits. The program uses a combined heuristic and nonlinear

programming approach to size transistors. Results from the optimization

of some benchmark circuits are shown, to justify the proposed approach.

Chapter 6 summarizes the main, contributions of this thesis and suggests

some directions for future research.

Chapter 2

Survey of Existing Tools

2.1 Introduction

The use of optimization techniques in IC design has been a goal of

the computer-aided circuit design community for a considerably long time.

Many software tools for performance optimization have been designed, tar

geting at different circuit applications. This thesis focuses on interactive

optimization systems that interface with general-purpose circuit simulators

to optimize circuits whose detailed circuit behavior is of importance, and

on transistor sizers that use macromodels, or interface with timing analysis

tools, to optimize digital CMOS circuits.

Section 2.2 reviews three important interactive optimization sys

tems. Section 2.3 surveys existing tools and techniques for transistor sizing.

Both contributions and limitations of these tools are discussed.

2.2 General-Purpose Interactive Systems

2.2.1 Early Efforts

In the past years, advances in optimization theory and design method

ologies based on interactive computing have led to the appearance of power-

ful general-purpose interactive optimization systems. These systems provide

environments for designers to design and optimize electronic circuits in an in

teractive way. Specifically, the systems report undesirable results, if any, and

allow designers to modify the circuit, relax design constraints, and change

problem formulations.

Chronologically, there are three important contributions in inter

active optimization: AOP [10], APLSTAP [11], and DELIGHT.SPICE [12].

These systems, although not widely used in industry, have proved the feasi

bility and usefulness of interactive optimization techniques in the design of

complex ICs.

AOP is based on IBM's ASTAP [13] circuit simulator with adjoint

sensitivity computation capability. The system allows the designer to specify,

in ASTAP input language, a wide range of objective and constraint functions,

and to request analysis, sensitivity computation, and optimization. To deal

with multiple objectives, AOP employs a weighted-sum approach to combine

objective and constraint functions into a single cost function, with constraints

as penalty terms. The resulting function is then minimized using a variable

metric rank-one method. The system has been used to minimize the memory

cycle of a read-only memory cell.

APLSTAP is also based on ASTAP. It provides an APL environ

ment with good interactive capabilities and ease of experimentation with

various optimization algorithms. APLSTAP uses an interactive linear pro

gramming (LP) approach to capture the customary optimization practice of

trading off multiple objectives and constraints. The system presents linear

prediction of circuit performance, at the solution of LP step, to the designer,

who then selects a maximally effective LP step to update the design. It

places emphasis on the first few optimization steps, emphasizing design im
provement rather than optimization. APLSTAP has been used to solve many

general circuit optimization problems such as nominal design, modeling, and
worst-case design [14].

DELIGHT.SPICE is based on the widely distributed circuit simula-

10

tor SPICE2 [15] with sensitivity computation capability. The environment is

based on a structured programming language RATTLE (evolved from ratio

nal FORTRAN, RATFOR [16]) which allows the designer to describe design

problems in a structured way. Optimization is placed in a framework of

circuit design oriented problem formulation and places heavy emphasis on

designer interaction. The multiobjective problem formulation employed by

the system provides a means of effectively conveying the relative importance

of the design specifications. A methodology for performing design tradeoffs

using a graphical display is also provided.

As an environment for sophisticated designers with optimization

background, DELIGHT.SPICE provides a a large library of optimization al

gorithms. By default, the system uses an algorithm which is an extension

of Phase I/Phase II Method of Feasible Directions [17] [18]. The algorithm

can handle functional constraints (i.e., constraints which depend, not only

on design parameters, but also on an independent parameter such as tem

perature, time, or frequency) which are very important in IC design. The

system has been used to improve the circuit performances of many industrial

analog circuits and digital cells.

2.2.2 Shortcomings of Existing Approaches

An interactive circuit optimization system is composed of a user

interface, optimization algorithms, and circuit simulator. While the system

cannot work without any of the constituent parts, its success depends heavily

on the user interface. In other words, the effectiveness of an interactive

system is judged from the point of view of how much effort a designer spends

in guiding the system to achieve a satisfactory design.

To use AOP, a designer has to specify the weights required in the

problem formulation. Since design specifications may involve arbitrary func

tions with units ranging from nano-second to mega-herz, choosing a set

of weights with such differing units is cumbersome. Unfortunately, these

11

weights affect the results of multiobjective optimization, as a result, the de

signer may have to spend a long time adjusting these weights before any

noticeable improvement is achieved.

APLSTAP assumes that the designers have little optimization back

ground but still places the responsibility for algorithmic control in their

hands. Problems therefore arise when the selected LP step does not im

prove the design significantly or when the algorithm jams. Furthermore, the

APL language suffers from being difficult to read and, as a result, it may

be difficult for the designer to use it to formulate a design problem as a

well-posed optimization problem.

DELIGHT.SPICE offers more flexibility, more transportability, and

more mathematical sophistication than AOP or APLSTAP. However, from

the user interface point of view, the system is not friendly. Specifically, the

designer has to use the RATTLE language to prepare various problem de

scription files. Although, as a programming language, RATTLE has many

good features, it was originally designed for general purpose engineering op

timization use [19], the designer is thus forced to specify rather tedious low-

level constructs of the IC optimization problem formulation.

A common problem with these systems lies in the user model.

The optimization algorithms in these systems involve numerous problem-

dependent decisions which are reflected in certain parameters associated with

the implementation of the algorithms (e.g., those for use in the computation

of step size). Since, to use the algorithms effectively, the designer has to know

optimization theory and be able to adjust these algorithm-related parame

ters, it is not uncommon for ordinary designers to face convergence problems

even for simple circuits.

To summarize, existing interactive systems rely too heavily on the

designer to pose a design problem as a standard nonlinear program and to

manipulate the optimization algorithms. Recognition of these shortcomings

motivated the idea of employing a new user interface and built-in optimiza

tion algorithms in ECSTASY, to be described in Chapter 4.

12

2.3 Transistor Sizers

2.3.1 Early Efforts

The speed of a digital IC is limited by its critical paths, i.e., paths

with worst-case delay. Most approaches to transistor sizing are therefore

based on optimizing critical paths. Since speeding up one path may slow

down another due to the capacitive loading effects, achieving the optimum

design requires the optimization of multiple paths simultaneously.

Analytic approaches to the optimization of delay or power consump

tion along a delay path have been addressed in many papers. Algorithms

using different delay models for optimizing the propagation delay of an in

verter chain driving a capacitive load are proposed in [20] and [21]. Heden-

stierna and Jeppson [22] consider the slope of input waveforms, and proposed

an analytic timing model for CMOS inverter chains. The model is used in

the design of CMOS output buffers. Minimization of delays associated with

driving and sensing signals from large capacitance paths for NMOS circuits

is discussed by Mohsen and Mead [23]. The idea is to optimize the fanout

factor of the driver stages, the gain of the input sensing stages, and the path

voltage swing. Lewis [24] extends the idea to deal with general I/O inter

facing problems in gate-array, semi-custom, and full-custom CMOS designs.

Kang [25] describes an algorithm for the minimization of delay-area prod

uct under noise margin conditions for CMOS polyceUs. Glasser and Hoyte

[26] use a simple macromodel for gate delays to minimize NMOS power con

sumption under delay constraints. Lee and Soukup [27] propose a method

to minimize delay and area along a path of simple CMOS logic gates. The

algorithm associates a scale factor with each gate for transistor sizing; all

the transistors within a gate are therefore of the same size. Sizing is hence

performed per gate. A closed form solution to size simple CMOS (library)

cells is proposed in [28].

A heuristic approach to optimizing delay and power for NMOS

13

circuits is proposed by Trimberger [29]. Starting from the output node of a

critical path, the algorithm computes the load of the output gate, then sizes

the gate according to an optimum fanout factor [30]. The algorithm then

goes backward to size the preceding stage with the output gate as the load.

The procedure is repeated until the input of the path is reached. Power

optimization is performed on paths of gates off the critical paths which can

be slowed down without degrading the speed of the circuit as a whole. The

sizes of the gates on these paths are decreased until the path delays are

slowed down to that of the critical paths.

The hueristic algorithm of [31] sizes transistors per gate. Given a

critical path violating the speed requirement, it picks a gate with the largest

delay-per-area contribution. The widths of all the transistors within the

gates are increased by one micron. This process is repeated until the worst

case delay of the entire circuit satisfies the specification.

The TILOS heuristic by Fishburn and Dunlop [32] minimizes total

active area subject to delay and minimum device size constraints. The algo

rithm selects iteratively the output that is failing to meet its user-specified

delay by the greatest amount, and examines transistors along the worst-delay

path leading to this output. For each transistor that could affect the delay of

this path, the sensitivity of the delay with respect to transistor size is calcu

lated. The transistor with greatest sensitivity is increased by multiplying it

by a user-settable constant (greater than one), after which the static timing

analysis is updated. This procedure is repeated until all outputs meet their

specifications. The paper also points out that, under a simple delay model,

the transistor sizing problem for static CMOS circuits is convex.

Both Hofmann [8] and De Micheli [7] employ TILOS-like heuristic

sizing techniques, using table-driven approaches to characterize gate delays.

Hofmann searches from outputs backward to inputs fora gate with the largest

"sensitivity". The critical input devices of the gate are grown or shrunk by

one unit at each sizing, according to the sign of the sensitivity. De Micheli

searches for the driver gates with greatest "sensitivity" and increments the

14

sizes of the gates by one unit.

A more global approach that considers all design constraints simul

taneously is used by many authors. In this approach, the transistor sizing

problem is formulated as a constrained, nonlinear mathematical program.

The delay constraints are evaluated either through repeated calls to tim

ing analysis tools during optimization or through macromodeling performed

prior to optimization. (DELIGHT.SPICE and APLSTAP can also be used

to size transistors accurately, but the computation time limits their use to

fairly small circuits only.)

Ruehli, et al [33] [34] [35] use a simple analytic macromodel for the

delay and power of general MOS circuits. The design parameter in a gate

is the width of the active device. A smoothing function is defined to deal

with the nondifferentiability of circuit delays which are maximum functions

of path delays. (The effect of the parameter controlling the sharpness of

the smoothing function on the convergence is not investigated.) A Quasi-

Newton method is then employed in the optimization using sparse matrix

updating. The same optimization technique is used by Hedlund [36] [37]

[38] to optimize delay and area for both NMOS and CMOS circuits. The

gate delay is estimated by a very simple linear RC single time constant ap

proximation without considering the capacitance contribution of the internal

nodes. Transistor sizing is thus performed per gate by Hedlund.

An improved macromodel is used by Matson [39] to optimize power

consumption for NMOS circuits. The behavior of each logic gate is modeled

in a set of simple yet accurate formulas. Most of the modeling work is per

formed prior to optimization. The separability of power and delay functions

of MOS circuits is exploited and a dual approach utilizing the Lagrangian is

proposed to simplify the optimization problem.

Marple [40] optimizes layout area for CMOS circuits. The delay

model is based on RC trees [41] and optimum circuits are defined in terms

of graphical constructs. The delay-area optimization problem with physical

layout constraints is then formulated as a nonlinear constrained optimiza-

15

tion problem which is solved using the augmented Lagrangian and projected

Lagrangian algorithms. Obermeier and Katz [42] implement augmented La

grangian algorithm and the TILOS heuristic in their program to size tran

sistors with circuit performance evaluated by symbolic polynomials.

2.3.2 Shortcomings of Existing Approaches

Tools which associate with each gate a scale factor, and size tran

sistors per gate generally work faster than those treating each transistor size

as a separate design parameter. However, since it is necessary for optimum

design to size each transistor according to its position within a gate [43], a

transistor sizer of the latter type is often needed for high performance chip

design.

The approach of using symbolic expressions or closed form solution

to evaluate circuit performance can avoid repeated calls to timing analysis

tools. However, existing algorithms make use of very complicated expres

sions and require large memory to store the expressions and the associated

Jacobian matrix. Therefore, unless better analytic models can be devised,

the approach can only be used in applications where the circuit size is small.

Both analytic and heuristic approaches to sizing transistors along

a critical path offer the designer a quick way of improving circuit perfor

mance. These approaches are useful in applications where limited objective

functions, such as delay or total active area, are desired. However, when the

designer wants to minimize arbitrary objective functions such as layout area

or delay-area product, it is difficult to generalize these algorithms to satisfy

the wide range of design requirements. Furthermore, it is difficult to claim

the optimality of the entire circuit design.

The nonlinear programming approach can optimize arbitrary ob

jective functions subject to arbitrary design constraints. By considering all

of the constraints simultaneously, this approach guarantees that, if the algo

rithm converges, then the solution is at least locally optimum. (As a conse-

16

quence, if the objective and constraints are convex functions, the solution is

a global optimum.)

However, from a computational point of view, this approach has

several drawbacks. Firstly, it lacks an efficient method of obtaining a good

initial guess for the transistor sizes. Secondly, it solves the problem in an

unnecessarily large dimensional space by treating all of the transistors as

design parameters. Thirdly, if numerical convergence is a problem (which

is not uncommon in nonlinear optimization), the result obtained may not

yield a satisfactory design. Furthermore, the use of optimization algorithms

in their standard form requires the objective function and the constraints

to be continuously differentiate functions of the design parameters. If the

constraint or the objective functions are expressed as circuit delays, then the

mathematical expression of these delays is the maximum among the path

delays, i.e., of the delays along all the paths from the input ports to the

output ports. Since the max function is not continuously differentiable, ver

sions of the optimization algorithms especially devised for nondifferentiable

functions have to be used.

Recognition of the shortcomings of both heuristic and nonlinear

programming approaches leads to the combined approach in Chapter 5.

Chapter 3

Algorithmic Considerations in

IC Optimization

3.1 Introduction

In order to apply the numerical techniques of optimization theory to

solve circuit optimization problems, it is necessary to bring together circuit

designknowledge and optimization theory. In fact, blindly applying a general

purpose optimization algorithm often results in premature termination of the

algorithm.

As with all engineering analysis techniques, posing a circuit opti

mization problem as a nonlinear mathematical program is only an approxi

mation to the original design problem. Many factors such as the selection of

circuit performance criteria or the choice of design parameters may influence

the quality of the results. Furthermore, although optimization theory has

suggested many methods to solve a nonlinear program, in practice, the choice

and implementation of a particular solution method, as well as the compu
tational accuracy of the circuit analysis tools, may also affect the quality of
the solution.

This chapter begins with the formulation of a general circuit opti
mization problem. By considering the techniques of semi-infinite program-

17

18

ming, the problem is simplified to a multiobjective constrained optimization

program. Section 3.4 describes a finite termination Newton-type algorithm

to find a feasible solution. Section 3.5 discusses the possibility of employing

heuristic methods to solve for a feasible design. After a feasible solution is

found, the multiobjective optimization problem is solved, in Section 3.6, by

classical optimization algorithms. The final section addresses the numeri

cal difficulties arising in circuit optimization and proposes a random search

scheme to remedy the problem.

3.2 Problem Formulation

IC design is characterized by complex tradeoffs of multiple objec

tives and constraints. In general, the objectives and constraints are nonlinear

functions of the design parameters, and, in some applications, these functions

may involve an independent variable such as time, frequency, temperature,

or power supply, ranging over a given interval. In contrast to the ordinary

specifications which depend only on design parameters, these functions are

commonly referred to as functional specifications. Mathematically, the de

sign problem can be formulated as determining a design parameter vector

x £ Rn such that a multiple-objective optimization problem V:

minimize:

/'"(*), j = 1,2, ...,r

<£J'(*,u;), j = 1,2, ...,s, u> € [uij,U2j]
such that:

9j(x)<0, i = l,2,...p

(pj(x,u>) < 0, j = 1,2, ...,g, u e [u>3j-,w4J

is solved. In its general form, V is known as a semi-infinite programming

problem, since a functional specification can be viewed as an infinite number

of functions.

19

3,3 Semi-infinite Programming

Several authors have addressed techniques for solving a semi-infinite

programming problem [17] [44] [45] [46] [47] [48] [49] [50]. Algorithms with

guaranteed convergence properties require the computation of better and

better approximations to local maxima of <j^(x,uj) and ip*(xtu) with respect

to LJ. Under mild assumptions on the continuity and differentiability of

<j>*(x,Lj) and (pi(x,u) with respect to u>, these algorithms make use of the

fact which is usually true in engineering design, that for each x, both <f>*(x, •)

and <p*{x, •) have only a finite number of local maxima with respect to u>.

Computing accurately such maxima is obviously an expensive proposition.

Adaptive schemes thus have been devised to provide better and better ap

proximations while the optimization algorithms progress towards a solution.

These schemes discretize the u axis with finer and finer meshes. In prac

tice, however, convergent algorithms such as [45], while working well with a

small discretization mesh, may jam in the early stages when the discretiza

tion is still coarse (although a globally convergent algorithm can be used

to remedy the problem [50]). In addition, the overall speed of convergence

may be affected by the quality of the approximations computed even in the

early stage of the optimization algorithm. Indeed, semi-infinite programming

techniques are still relatively immature compared to the standard finite di

mensional nonlinear programming techniques.

Most of the design problems encountered in this research involve

specification of the frequency and/or time domain behavior of the circuit.

Often these specifications are formulated as infinite dimensional functions of

the form introduced above. To perform simulation in the frequency domain

with a circuit simulator, an IC designer usually has to provide a set of fre

quencies where the circuit response is to be computed. These frequencies are

selected so that an accurate representation of the frequency domain behav

ior of the circuit is computed. This manual discretization of frequency can

be considered to be the finest approximation the designer is interested in to

20

characterize the circuit. It is thus reasonable to use the mesh provided by

the designer. In this thesis, it is assumed that, when lj represents variables

other than time (e.g., temperature, frequency, or voltage), the discretiza

tion scheme provided by the designer can accurately represent the circuit

behavior.

When a circuit specification is given in terms of its time domain

response, a circuit simulator has to perform a transient simulation to eval

uate the corresponding function. Any efficient circuit simulator automati

cally selects a time-step that yields a suitably accurate representation of the

time-domain behavior of the circuit. In this case, it is natural to use the

discretization of time selected by the circuit simulator as the mesh.

When the lj interval over which the functions are given is dis-

cretized, the optimization can be recast into a standard nonlinear mathe

matical programming problem of the form Q:

minimize f*(x), j = 1,2,..., t

such that g*(x) < 0, j = 1,2, ...,m

Note that in digital applications where the specification functions, such

as area, power consumption (which depends only on a single clocking fre

quency), or delay, are typically of non-functional type, the problem can often

be cast in this form directly without discretization schemes.

3.4 Finding a Feasible Design

The first step in solving Q is to find a feasible design in the feasible

region J7 = {x\i>{x) < 0}, where

ip(x) = max{gj(x)\j Gm}, m = {l,2,...,m}

is the maximum function of all the constraints. Finding a feasible design for

Q is very important in the context of circuit optimization, since in many sit

uations, the design specifications only involve a set of inequality constraints.

21

Several algorithms have been proposed to solve the problem. One

of the approaches is to use standard feasible directions algorithms to de

crease progressively i>(x) until it becomes non-positive [9] [18]. While it can

be shown that the method can find a feasible design in a finite number of

iterations, it is rather slow. Another approach is to use Newton's method

to compute a search direction which points toward the interior of the lin

earized feasible region. The method can generate a sequence of points which

converge superlinearly to a point in T. While some of the proposed algo

rithms, such as [51], do not converge in a finite number of iterations, some

do [52] [53] [54]. Note that, although the rate of convergence is not relevant

to an algorithm stopping in a finite number of iterations, several examples

in [53] [54] show that it does contribute to the efficiency of the algorithm. In

this thesis, the algorithm in [54] is used since it behaves well experimentally

and is rather insensitive to the choice of algorithm-related parameters, in

contrast with most feasible directions algorithms where the choice of these

values affects convergence rather significantly.

The algorithm is based on the idea of finding a search direction

h £ Rn, of minimum norm, which solves:

gi(x)+ < Vgj{x),h >< -e, j em

where < •, • > represents inner product and e > 0 is chosen to be as large as

possible. Since e cannot be chosen a priori, and such an h may not exist, a

modification of the basic idea is necessary. Consider

ij>(x,h) = max{gJ(x)+ < Vg3(x),h > \j e m}

which is the first-order estimate of ip(x + h). Then the Newton step at x, if

exists, is that h which solves:

min{||/i|||^(:c,fc)<0}

However, this Newton step may not exist, i.e., the set {h\xp(x, h) < 0} may be

empty. The modified search direction hc which solves the quadratic program:

22

•ron{||ft.||tf(*A)<#}

where:

^° = max{^°{x), —e}

^°(x) = min{^(x, h)\h 6 -Rn, ||A||oo < £}

for e > 0 and L some suitably chosen large number (to ensure that the

solution is bounded), is used instead. Then even if the Newton step does not

exist, the step still is a descent direction for i/>(x). These considerations have

motivated Algorithm 3.1.

To ensure that the algorithm terminates in a finite number of itera-

tions, [54] assumes that, for all x in the set {x|^>(x) > 0}, rj>°(x)—^(x), which

is a first-order estimate of ij>(x + h) —i/>(x), is negative (this ensures that i/>(x)

can be decreased at all points where it is non-negative). It then shows that,

if {a?,} and {et} are infinite sequences generated by the algorithm, then there

exists e* > 0 such that e,- = e* for all i sufficiently large, and xt- converges

superlinearly to an x satisfying il>(x) < —e*. Since i>(x) < 0, it follows that

there exists a finite i such that tp(xi) < 0, i.e., the inequalities are solved

in a finite number of iterations. Note that, in [54], the condition checked

to perform e adjustment in Step 5 is: "If if)' (x,) > —€,-, then ..." However,

since i/> (x.) may be positive (when the Newton step does not exist) and,

consequently, no matter how e,- is adjusted, the condition: "V> (xt) < —e,"

can never be satisfied, resulting in looping forever in the adjustment step for

c. The condition is thus modified here to avoid this problem.

3.5 Heuristic Methods

At this point, it is appropriate to discuss the approach of using

heuristic methods to solve optimization problems. While optimization the

ory has provided numerical methods for solving general nonlinear programs,

23

Algorithm 3.1 (Finite Termination Newton Algorithm)

Data: x0 <= Rn,e G (0,1), L » 1, fi e (0,1).

Step 0:

Set i = 0, €o = e'i>(xo).
Step 1:

Ifi/>(xi) < 0, stop.

Step 2:

Compute ^°(a?i),^°(xi).
Step 3:

Compute search direction ht. using:

hti = argmin {||A||'|l(z,,&) < #.(x.)}.
Step 4'-

Set step size X{ to the largest value in the set {I,f3,j32,...} such that:

*(«< + VO - *(*i) < Hi>l(*i) - ^(*.)]/2.
Step 5:

Update X{+i = x,- + A,-/ie..

J/^°(xt)<0, then
set €l+i equal to the largest in the set {c,-, e;/2, et/4,...}

such that if? (xj) < —€,-.

else

set e,-+i = €,-.

Set t = i + 1.

Go to Step 1.

24

in practice, if specific knowledge can be utilized to exploit general circuit

properties, then heuristic methods x may be effective in finding a feasible

design.

A heuristic method is an exploratory problem-solving technique

that utilizes circuit properties to improve the progress towards an acceptable

solution. Oftentimes, based on intuition and experience, practicing designers

use heuristics to analyze and improve the circuit performance.

In digital applications when delay constraints are involved, a com

mon technique to speed up a circuit is to use large devices on critical paths

and on output stages to drive large capacitive loads. The reason is that larger

transistors have larger current driving capabilities and hence can charge and

discharge node capacitance in shorter time, even though larger parasitic ca

pacitance may be produced. Interestingly, in practical applications, it often

suffices to widen a subset of transistors on critical paths to speed up the

circuit. This is more efficient than solving a nonlinear program directly in

the entire parameter space. From this observation and the fact that most

high performance designs impose constraints on the circuit delay, the TILOS

heuristic [32] exploits a general circuit property which does not depend on

the particular circuit topology. Therefore, it is a good heuristic algorithm; it

is effective in selecting and adjusting a set of design parameters to satisfy the

delay constraints of a digital circuit, even though theoretical convergence is

not guaranteed. (In Chapter 5, a scheme to speed up the TILOS algorithm

is described.)

In the most general case, when additional constraints are to be

satisfied, the result obtained from applying such a heuristic can be used

as a good starting point which already satisfies the delay constraints. The

problem of finding a feasible design for all of the constraints then becomes

a constrained optimization problem which is to be iterated to find a point

1Although the down-hill process of most optimization methods are heuristic in nature,
algorithms which are not based on rigorous mathematical treatment are called heuristics in
this thesis.

25

where all of the constraints are non-positive.

By contrast, due to the complex nature of analog circuits, it is dif

ficult to develop a heuristic that works for a large class of circuits. Recently,

advances in analog synthesis techniques have made it possible to capture

and store an experienced designer's knowledge as rules for estimating the

performance of some class of circuits [2] [3] [4]. These rules are mostly based

on first-order analytic models and are stored in the database of the syn

thesis systems. In theory, if the models are accurate enough, they can be

used directly by optimization without performing circuit analysis. In prac

tice, however, especially in complex analog designs, accurate analytic models

may be difficult to obtain or too complex to handle. Therefore, good synthe

sis results are still not available for practical use. Good heuristics for analog

design are yet to be developed.

From the CAD point of view, an algorithmic approach, if realizable,

is often desirable due to its deterministic nature and predictable results. A

good heuristic for solving a general problem thus should not simply contain a

set of rules each corresponding to a certain type of circuit. Rather, it should

be an algorithm that works for at least a large class of circuits, irrespective

of the particular circuit topology. Therefore, instead of employing a set

of rules as heuristic optimization algorithms, circuit optimization tools for

analog design should be integrated with synthesis tools in a module generator

through proper user interface so that a synthesis result can be used as an

initial design.

3.6 Multiobjective Optimization

Once a feasible design has been obtained, it is desirable to optimize

the multiple objective functions within the feasible region. However, unlike

the classical nonlinear programming with a single objective function, the so

lution of a multiobjective optimization problem is difficult since, in problem

Q, it is not clear how to compare solutions Xi and X2 where it cannot be

26

claimed that /J(a?i) < /J(a?2)> for all j. Since only the designer, i.e., the deci

sion maker, can judge whether or not a solution point is preferred to another,

the concept of optimal solutions to multiobjective optimization problems is

therefore closely related to the preference attitudes of the designer.

In multiobjective optimization, a commonly adopted concept of op

timality criterion is Pareto optimality [14] [55]. By definition, a Pareto point

is a point where no other point can cause one objective function to decrease

without causing another to increase. More precisely, a point x G F is called

a Pareto point for the problem Q if there exists no other point x £ T such

that:

where not all of the above inequalities are equalities. The same definition

can be used to define a Pareto critical point if x is restricted to a small

neighborhood of x. Thus, by analogy with the case of dealing with a single

objective function; Pareto points can be considered as global optimum points

and Pareto critical points as local optimum points. It is easy to show that

the best circuit design occurs at a Pareto point. Multiobjective optimiza

tion is therefore linked to finding Pareto points in J- (although optimization

algorithms can only hope to find Pareto critical points). Note that, since

there is not enough information in the problem formulation to allow for the

automatic selection of the "best" point, the choice among the Pareto points

has to be left to the designer.

Many techniques have been proposed to convert a multiobjective

optimization problem into a standard optimization problem with a single

objective function [14] [56] [55]. One of the techniques is to combine the

multiple objectives into a single weighted sum,

»(«)-E*>/'(*)
3

where the weight Wj represents the designer's preference of minimizing fj(x).

One of the problems with this approach is that adjusting the weights is very

27

cumbersome for the designer. Another problem is that, in general, not all

Pareto points are realizable through the adjustment of these weights, thus

excluding a priori some interesting solutions. Another approach is to convert

the problem into a weighted minimax optimization problem. It can be shown

that, by adjusting the weights interactively, this approach can obtain all of

the Pareto points. However, to adjust a set of weights effectively, the designer

has to wait until the completion of an optimization corresponding to these

weights. Since in circuit optimization, it is very expensive to wait for even

a complete optimization run, this approach is still cumbersome. In fact, a

key point in multiobjective optimization is to extract additional information

from the designer in the easiest possible way without forcing him/her to

exclude points that may be interesting.

One of the contributions of DELIGHT.SPICE is to encourage the

designer to specify a good value and a bad value for eaich objective (and

constraint) function. The good and bad values of a specification function

represent the level of the designer's satisfaction with respect to that func

tion. This methodology provides a simple way for the designer to perform

tradeoffs. The idea is adopted in this research. However, the good and bad

values are used not only as a means of trading off and scale the objectives

and constraints, but also as the goals to achieve at different phases of opti

mization.

The solution method for Q consists of five phases. Phase I searches

for a solution point such that the bad values of all of the constraints are sat

isfied. Phase II attempts to satisfy the good values of the constraints. Phase

III improves the design until the bad values of all of the objective functions

are satisfied, within the feasible regioncorresponding to the good constraint

values. Phase IV pushes the design to a point within good objective values.

At this point, since all the good values, which quantify the full degree of the

designer's satisfaction, have been met, it is reasonable to assume that fur

ther improvements in all the objective functions are equally valued. Phase

V thus combines all the objectives, scaled according to the good and bad

28

values, into a single equally-weighted sum. The weighted sum is minimized

within the feasible region formed by the good values of all the objective and

constraint functions. Note that, in the first four phases, if the assumption

made in Algorithm 3.1 holds, then the desired solutions are achieved in a

finite number of iterations.

Since the same technique to obtain a feasible point can be used

in all first four phases, the remaining problem is a standard constrained

optimization problem 71:

minimize f(x)

such that g*(x) < 0, j = 1,2, ...,m

where only one objective function is to be optimized. Hence classical algo

rithms for solving nonlinear constrained optimization problems can be ap

plied.

3.7 Feasible Directions Algorithms

Before discussing the algorithms to solve 11, it should be stressed

that, since it is generally impossible to find a global optimum to 1Z, one must

usually be satisfied with computing a stationary point which satisfies a first

order necessary optimality condition. However, since even this computation

may require infinite time, practical algorithms often settle for an approxima

tion to a solution and are stopped when no more noticeable improvements

in the objective function are possible.

There has been a great diversity in methods for solving a nonlinear

constrained optimization problem. Each method has advantages and dis

advantages and is best applied where its advantages can be fully exploited.

While evaluations of nonlinear optimization algorithms are abundant [57]

[58] [59] [60], and many good methods, such as sequential quadratic program

ming (SQP) methods, have been used in many applications, the methods

of feasible directions (MFD) are used in tins research due to the following

considerations [61]:

29

• These methods generate feasible points in the search procedure. Since

in many practical design situations, especially in interactive circuit

optimization, convergence is not affordable and the process often has

to be terminated before reaching a stationary point, it is desirable that

the termination point is feasible. This final point, being feasible, may

thus represent an acceptable solution to the practical problem that

motivated the nonlinear program.

• These methods are globally convergent, i.e., under rather mild condi

tions, convergence to a point satisfying some necessary conditions for

optimality is guaranteed, independent of the initial value of the design

parameters. Thus, if they generate a convergent sequence, the accu

mulation points of that sequence are often at least local constrained

minima. In contrast, several optimization algorithms have only local

convergence properties and must start sufficiently close to a point that

satisfies optimality conditions in order to converge to it.

• These methods do not rely on special problem structure, such as con

vexity, and hence are applicable to general nonlinear programming

problems.

In fact, MFD has been used in DELIGHT.SPICE to solve many

circuit optimization problems successfully. The algorithm used is based on

[18] and has been enhanced by Tits, Nye, and Sangiovanni-Vincentelli. They

improved the computational efficiency by special schemes to handle many

practical difficulties, such as box constraints, arising in circuit optimization

environment [62].

The algorithm has a nice geometrical interpretation, and is based

on the observation that, if e > 0, x is a feasible point, and Je(x) is the index
set of the e-active constraints:

U*) = U € rn\^(x) > -e],

then the vector.

30

(») = -Nr co{{V/(z)} U {Vg(x),j € J.(x)}},

where Nr co denotes the nearest point to the origin in the convex hull of a

set, is a feasible descent direction for f(x). In fact, the search direction h€(x)

used by the algorithm is computed by:

ft(x)
«() =

llfc(«)ll

By defining an optimality function B€(x) = —H^GOH) it is easy to show that,

at a stationary point x, 6q(x) = 0. The algorithm is formalized in Algorithm

3.2. It can be shown that, if the initial point is feasible, then the algorithm

generates a sequence of feasible points. Furthermore, any accumulation point

(or the last point, if the sequence is finite) of that sequence is a stationary

point of It.

Recently, MFD algorithms with a superlinear rate of convergence

have been developed [63] [64]. The algorithm in [64] is particularly attractive

since, at each iteration, it only needs to solve three sets of linear systems of

equations, as compared to that of [63] where two quadratic programs and

a linear least squares problem must be solved at each iteration. Since the

algorithm is very complicated and is presented in detail in [64], only the

essence is described here.

The idea is to use a quasi-Newton method to solve the system of

equations in the Kuhn-Tucker first order necessary optimality conditions:

VxL(x,X) = Q

Xjg3(x) = 0, j e m

where L(x, X) = f(x) + 2 ^j9J(x) is the Lagrangian and A the Lagrange

multiplier vector associated with 1Z. Let:

H = estimate of the Hessian of L

x = current estimate of the solution to 1Z

h° = search direction

31

Algorithm 3.2 (Basic Feasible Directions Algorithm)

Data: x0 € T, e0 > 0, a, /3 e (0,1), 7 > 0.

Step 0:

Set i = 0, Xi = x0.

Step 1:

Set € = €0.

Step 2:

lfd0(xi) = 0, stop.

Step 3:

Compute hc(xi),9€(xi).

Step 4-'

Set e to the largest value in {e,e/2, e/4,...} such that:

0t(xi) > -7e.

Step 5:

Set step size At- to the largest value in the set {1,0, ft2,...} such that:

rl>(xi + XMxi)) < 0

/(«• + XMxd) - f(xi) < aXA(Xi)
Step 6:

Update xi+i = a:,- + A,-Ae(a:f-).

Set t = t +1.

Go to Step 1.

32

fi = current estimate of A

A0 = next estimate of A

then each quasi-Newton iteration yields (h°, A0) which solves the linear sys

tem,

Hh° + VxL(x,X°) = 0

\ij < Vgj(x),h° > +X°j9j(x) = 0, j 6 m

which is a first-order Taylor series approximation to the previous system

of equations about (x,ft). The solution h° can be shown to be a descent

direction for / at x if fij > 0, g3\x) < 0, for all j, and H positive definite.

A closer look at the system of equations reveals that, as any gJ(x)

approaches zero, h° tends to a direction tangent to the feasible set. Therefore,

to ensure feasibility at each iteration, after h° is obtained, a small negative

term —1|^°||", v > 1, which tends to zero faster than h°, is added to the

right-hand side of the last m equations of the previous linear system. The

result is a new system of equations in (h1, A1):

Hh1 + VxL(x,X1) = 0

H < ^9\x),h> > +X)g3(x) = -/iill*°ir,i <E m

where h1 is solved for as a correction direction. Note that the introduction of

fij in the right-hand side of the equations reflects the fact that the correction

is performed only close to the constraint boundaries. However, since h1 may

not be a descent direction for /, a search direction of the form:

h = (1 - p)h°+ ph1

is computed, with p 6 [0,1] as large as possible, such that

<Vf(x),h><6< Vf{x),h°>

33

is satisfied for some 9 € (0,1). It can be shown that, with such a search

direction, the convergence properties of the quasi-Newton iteration are pre

served.

To see the step size rule, it is necessary to understand a problem,

called Maratos effect [65], arising in some SQP-type methods for solving "R.

Consider the method of Han-Powell to combine the quasi-Newton approach

with an absolute-value penalty function and sequential quadratic program

ming. The algorithm proceeds as follows [61]:

Step 0. Start with an initial point xq and an initial positive definite matrix

Jf0. Set k = 0.

Step 1. Compute the search direction h^ by minimizing the quadratic func

tion: ^hTHish-\-^7f(xie)h, subject to theconstraints: ^g(xjc)h-]-g(xie) <
0, where hT represents the transpose of h.

Step 2. Stop if hk = 0; the current point satisfies the first-order necessary

condition for a solution to 11.

Step 3. Compute a step size a* £ [0,1] by performing a line search along

the direction hk, using the absolute-value penalty function: P(xk) =

f(xk)+H /fjl^fajfc)! as a merit function, where the parameters p,j,j Grn
are set to some sufficiently large positive constants.

Step 4. Set Xk+i = x^. + a*/ifc, and update H^ so that it is positive definite

(typically using a modification of the BFGS formula [61]).

This algorithm tries to generate the matrices {Hk} so that the search direc

tions {hk} satisfy the superlinear convergence condition:

liml'V^-f'Uo

where x* is a solution to 1Z. It can be shown that under some standard

assumptions, if the initial point is sufficiently close to a solution and the step

sizes taken equal to unity, then the algorithm converges superlinearly [66].

34

Unfortunately, the assumption of unit step size may not hold in some cases.

In fact, examples have been found that, even when x* is close, i.e., when

||arfc + hk —x*\\ <C ||a;jb —x*\\ and \\xk —x*\\ is small, the step size a* = 1 may

not be acceptable (because it causes the merit function to increase, rather

than decrease) [65]. This destroys the superlinear convergence.

One of the methods to remedy the problem, proposed by Polak

and Mayne [67], is to modify the search direction so that searching along

a suitably defined "arc" (tangent to the search direction computed in the

previous SQP algorithm) preserves the superlinear convergence. This idea

is also adopted by Panier, Tits, and Herskovits [63] [64]. They compute a

correction direction Ti to "bend" the search direction towards the feasible

region, and the search is performed along the arc x + cth + a2Ti, for ct the

largest value in the set {l,/9,/?2,...}, where /3 6 (0,1). It is shown in [64]

that the algorithm converges superlinearly to a stationary point with all the

iterates in the feasible region.

However, since this algorithm requires a full n x n matrix to ap

proximate the Hessian for use in quasi-Newton iteration, for large problems

in digital applications, it may need large memory, and sparse updating tech

niques. Therefore, in this research, the algorithm is only used in analog

design where the number of design parameters is fairly small; the enhanced

version of MFD [62] is employed in transistor sizing for digital circuits. (In

fact, the SQP method of Han-Powell has once been studied and implemented

in this research. It is observed that, the iterates generated by the algorithm

vary rather "wildly" in the parameter space, which is often not acceptable

in practice. In circuit optimization, most of the function values are obtained

through performing circuit simulation. K the values of the design parameters

are too far away from that of a good "nominal design", e.g., a very small

resistor value, numerical difficulties may arise in simulation. As a result,

even though the simulation of the initial design converges easily, interme

diate iterates may be too close to or even in the infeasible region, and are

difficult to simulate. For this reason, the method is not used in the final

35

implementation.)

3.8 Numerical Difficulties Arising in Circuit

Optimization

In theory, algorithms based on gradient information can compute

descent directions of the objective functions and are effective in solving op

timization problems. In practice, however, numerical difficulties often arise

and cause premature termination of these algorithms. The problem can be

traced to poor problem formulation and implementation difficulties, assum

ing that no programming errors exist.

The formulation of a circuit optimization problem consists of three

parts: the selection of performance criteria, the choice of design parameters,

and the definition of how the circuit performance is related to the design

parameters. Each part influences the quality of the solution. As an example,

it is important to include in the problem formulation all the design parame

ters that have significant effects on circuit performance, since the exclusion

of some of them may lead to suboptimal solutions. In fact, problem for

mulation plays the key role in the success of circuit optimization. However,

since some of the factors influencing problem formulation are related to user

interface design and the designer's knowledge, and will not be considered

here, it is assumed that the formulated problem is a proper representation

of the design problem.

Unfortunately, such problems may be ill-conditioned in the numer

ical sense such that, whenstandard numerical methods are applied, satisfac

tory solutions are difficult to obtain. For instance, in Algorithm 3.2, a feasible

directions algorithm, the search direction is determined by the gradient vec

tors of the objective and e-active constraint functions. If the magnitudes

of these gradient vectors are not balanced, then the search direction will be

dominated by the vector with the smallest magnitude. Furthermore, a mere

36

scaling of a constraint by a scalar can move it in or out of the €-active set.

Both affect the search direction computation and hence the convergence.

However, practical circuit optimization problems may involve specifications,

such as amplifier gain and settling time, possibly with different orders of

magnitude in both functions and their gradient vectors. Such problems arise,

in all but the most trivial problems formulated by even the most experienced

designers and cannot be considered pathological. Schemes to overcome the

problem thus should be standard components of circuit optimization algo

rithms. In fact, this problem has motivated the development of many meth

ods to enhance the efficiency of optimization. Unfortunately, most existing

schemes are empirical and may fail in some cases. User interaction is thus

desirable to guide the optimization program towards a successful design.

Implementation difficulties have come from several sources. Firstly,

most algorithms require the tuning of some algorithm-related parameters.

When a problem is formulated as a nonlinear program, it is often possi

ble to tune these parameters experimentally to give the best performance.

Unfortunately, when the algorithms used are to optimize a wide variety of

circuits, it is difficult to find the best values for these parameters to "hard

wire" into the implementation. Secondly, circuit analysis tools have inherent

error tolerances. The finite precision of function and sensitivity evaluations

may generate "noise" which misleads the algorithm, especially when a finite

difference approximation is employed to compute the gradient vectors.

The numerical difficulties mentioned above may cause optimization

algorithms to jam at some point. For example, it may not be possible to

compute a descent direction from the gradient information. As a result, in

many cases, the solution of the optimization problem cannot be carried out

by a single procedure. Since, for the purpose of this research, it is desirable

that the algorithms be transparent to the designers, it is proposed that these

difficulties be remedied by reverting to methods, such as random search,

which are less sensitive to these numerical problems.

In this section, two main causes of numerical difficulties, scaling and

37

finite difference approximation, are analyzed, and a random search scheme

is proposed to continue the optimization run automatically when numerical

difficulties arise.

3.8.1 Scaling

Scaling refers to the relative magnitude of the quantities that appear

in the optimization problem to be solved. Its importance and difficulties have

been emphasized by Gill, Murray, and Wright [68]:

The term "scaling" is invariably used in a vague sense to dis
cuss numerical difficulties whose existence is universally acknowl
edged, but cannot be described precisely in general terms. There
fore, it is not surprising that much confusion exists about scaling,
and that authors tend to avoid all but its most elementary as
pects.

Luenberger [61] shows that the convergence rate of many nonlinear program

ming algorithms depends on the condition numberof the Hessian V2xL(xm, A*)

where a;* is the optimum solution, A* an optimum multiplier, and L the La

grangian function of the problem. To perceive this, consider the simplest

case of applying the method of steepest descent to solve a quadratic pro

gram: q(x) = \xTQx —bTx, where Q is an n x n symmetric positive definite

matrix with eigenvalues 0 < Aroin = Ax < A2 < ... < An = Xmax. The method

of steepest descent is denned by the iterative process:

**+i = xk - akVq(xk)T

where ak is a nonnegative scalar minimizing q(xk —aVq(xk)T). Obviously,
q is strictly convex and has a unique minimum at x* = Q~lb. It is easy to
show that, the method of steepest descent has linear rate of convergence and

that the asymptotic error constant is:

3 t lim ^(^Ar+i) - g(s*)|| <,Amax-Amt- 2_ r-1 2
*— lk(**) - <Z(**)|| -^Amax +AmJ V +1;

38

where r = Amax/Amin is the condition number of Q. Note that the asymptotic

error constant ft gives the factor of reduction in the error at each iteration.

The smaller ft is, the more rapid the convergence is. It is clear that, when

the condition number r becomes large, ft can be close to unity, resulting in

slow convergence.

Since second derivatives are costly to compute in circuit optimiza

tion and good approximations to xm and A* are generally unknown, choosing

scale factors to reduce the condition number is difficult. It is for this rea

son that most scaling schemes are heuristic in nature [68]. Unfortunately,

these schemes may work in some cases but fail in other cases [69]. Reliable

automatic scaling methods thus remain a research topic. Nevertheless, in

practice, scaling should be a regular component of the problem formulation

under all circumstances.

The first step in scaling is to scale the objective and constraint

functions. Consider a nonlinear program where the constraint functions

gJ(x),j = 1,2, ...,m have different orders of magnitude, e.g., in an opera

tional amplifier, the settling time is of the order of 10~6 (micro-second) and

the unity-gain bandwidth is of the order of 106 (mega-herz). Since most

algorithms test for a constraint to be active using absolute tolerances of the

form: g3\x) < e where e is a small positive number, if g3\x) is very large in

magnitude, then a small perturbation in x may have large effect on g3(x)

and hence affects the selection of g3(x) as an active constraint. Therefore, it

is desirable to scale all of the constraint functions so that their magnitudes

are near unity. On the other hand, if two objective functions have different

orders of magnitude, then the optimization algorithm will tend to minimize

the objective with larger magnitude (depending, of course, on the relative

sizes of the gradients of the functions).

DELIGHT.SPICE suggests a scheme for scaling the problem speci

fication functions, i.e., the objectives and constraints. For each specification

function f(x) which is associated with a good value and a bad value, the

value of f(x) is scaled to:

39

f(x) —GoodValue
BadValue — GoodValue

This scheme not only normalizes all the specification functions, but also

correlates 0 and 1, respectively, to the designer's good and bad values so

that it is always desirable to achieve a decrease of the normalized functions.

However, in some cases, the designer may only need to achieve a goal which is

specified by a set of desirable specification values. In this case, the good and

bad values may be viewed as equal, and therefore, it does not make sense

to correlate them to 0 and 1, respectively. Thus, to avoid computational

problems and to normalize each specification function relative to its desired

goal, i.e., the good (or bad) value, the scaling scheme in this thesis is modified

to:

f(x) —GoodValue
(GoodValue + BadValue)/2

Of course, since this function scaling may affect the magnitude of the cor

responding gradient vector and this, in turn, may affect search direction

computation, convergence will be influenced. Hence, it is important for the

designer to make tradeoffs between the specifications during optimization

runs, if some specification functions cannot be satisfied.

The second issue in scalingis parameter scaling, which is even more

crucial to obtaining reasonable convergence in real situations. Since the de

sign parameters in a circuit optimization problem may have widely different

magnitudes, it is desirable to scale the parameters, as is often recommended

in practical optimization. The purpose is to improve the convergence. To

be more specific, consider the problem of minimizing f(x). The effect of

changing the scales of the parameters is equivalent to performing a linear

transformation: x = Ay, where y is the new parameter vector. The problem

is thus equivalent to finding y to minimize f(Ay). But then the Hessian of

the new problem becomes ATH(x)A, where H is the Hessian of f(x). It is
hoped that the condition number of the new Hessian is changed in such a

way as to improve the convergence.

40

To this end and to exploit the designer's experience and intuitive

knowledge of the problem, DELIGHT.SPICE employs a uniform parameter

influence rule to let the designer manually adjust parameters such that a

change in each parameter by its nominal variation influences the most binding

objectives and constraints to roughly the same degree. Although this scheme

can be effective for competent designers, it is difficult to use if they do not

have a clear idea of what the nominal variations are. This is especially

true in complex designs. Automatic scaling is hence preferred in practical

optimization.

Many researchers have recommended scaling parameters to a value

near unity [68] [70] [71], according to the upper and lower bounds of the

design parameters estimated by the designer. The scheme is adopted in this

thesis to scale each parameter to between 0 and 1 by using its nominal value

computed as the mean value of its upper and lower bounds (Note that these

parameter bounds are usually needed if the search direction calculations re

quire the use of linear or quadratic programming subroutine. For example, in

Algorithm 3.1, the computation of ^°(a?) requires solving a linear program

ming problem, and the computation of he requires solving a quadratic pro

gramming problem. To use standard subroutines such as from those Harwell

library, it is necessary to specify the parameter bounds). In practice, while

the initial bounds of the parameter values may not be good enough to provide

good nominal values, the designer still can adjust these values through in

teraction. For example, if the optimization algorithm pushes against a lower

or upper bound in an attempt to achieve a better result, and the designer is

willing to compromise the original limits, then these values may be changed.

It should be stressed that, numerical difficulties still may arise if information

provided by the designer, such as good and bad values, is improper.

41

3.8.2 Finite Difference Approximation

Accurate sensitivity computation is essential to the success of using

a gradient-based optimization algorithm. However, in applications where

sensitivity is difficult or expensive to compute, or when high precision is

not important, the finite difference scheme is often employed to approximate

the sensitivity information. This method is easily implemented, as it requires

only repeated calls to the circuit analysis tools, with design parameter values

perturbed from the nominals.

One of the problems associated with this method is the high com

putational cost. As an example, for a circuit with n design parameters, it is

necessary to call circuit analysis tools n + \ times to get a sensitivity vector.

In analog designs when time-consuming transient analysis is involved, the

computational cost may be too high, even if there are only a few design pa

rameters. In transistor sizing for a digital design, this approach is obviously

unacceptable since the number of design parameters is often very large (over

100).

Another problem is that, due to the finite tolerance control in most

circuit simulators such as SPICE, the inaccuracies incurred in gradient com

putation may invalidate the search direction computation and hence make

the nonlinear optimization technique useless. This problem is most serious

in applications involving transient analyses for analog design. To be precise,

suppose the forward difference scheme (with a finite difference interval Ax)
is used to estimate the first derivative:

9(x)
g(x + Ax) - g(x)

Ax

where g : R —• R. However, since each circuit simulator has an internal error

tolerance control, the values of g(x) and g(x+ Ax) in the expression for finite

difference approximation are actually the computed values:

g{x + Ax) = g(x + Ax) ± e\g(x + Ax)|

g(x) = g(x) ± e\g(x)\

42

where e is the relative error tolerance in circuit simulation (default value is

0.1 % in SPICE). Since by Taylor expansion,

Ax2g(x + Ax) = g(x) + Axg(x) + ——g"(Q

where { G [x,x + Ax], the computed finite difference, when substituted into

these expressions, differs from the exact first derivative by an amount:

Arr 1=V(oi+•£? {w«)i+w*+ax)|}
As a result, choosing a Ax too large or too small can result in large errors.

While automatic algorithms exist for determining a good finite difference

interval Ax throughout the course of optimization [68], the adjustment of Ax

requires additional simulation and does not actually eliminate the inherent

finite errors.

It must be stressed here that, in cases where \g(x)\ is large, the

error may not be acceptable even for a 1 % finite difference interval Ax/x.

Furthermore, although it is possible to control this term by controlling the

relative tolerance 6, the convergence of simulation may be slowed down, espe

cially for transient analysis. Experience with SPICE shows that Ax should

not be below a few percent for transient analysis, although it may be as low

as 0.1 % for AC analysis, when function values are small.

3.8.3 A Random Search Scheme to Remedy the Prob

lem

As is clear from the previous sections, gradient-based algorithms

may not work well in practice when numerical difficulties arise. More robust

methods, such as random search, should thus be provided in a system in

which optimization algorithms are hidden from the designers. While many

random sampling schemes have been proposed in the literature [72] [73] [74]

[56], in this thesis, a controlled random search is proposed.

Consider using the pure random search to find a feasible design.

Let A be the entire parameter space and T = {z|^(z) < 0} be the feasible

43

region. To find a feasible point, a pseudo-random number generator is used

to generate random trial points which are uniformly distributed in the pa

rameter space. The trial points are used to evaluate the value of i/>(x) until

it becomes non-positive. Clearly, if m(T) < oo, where m(-) represents the

Lebesgue measure, then the probability of obtaining a feasible design is equal

to a = m(F) I m(A).

In general, since random search requires only function evaluations

and can be applied to any functions, smooth or not, the method is very

reliable in yielding improved designs and is very easy to code (It seems this

technique will be valuable in the future when computing power becomes

cheaper). However, the method may not be as efficient as gradient-based

deterministic algorithms, since the probability of obtaining a feasible design

can be low, especially in applications such as transistor sizing where the

number of design parameters is large. Experience shows that, waiting for a

feasible design through pure random sampling is often not acceptable when

time-consuming circuit simulations are required at each trial point.

However, the idea can be modified and used as a robust algorithm

in analog design. In fact, it can be used to continue the optimization runs

when gradient-based algorithms encounter numerical difficulties. To see this,

consider the efficiency of the algorithm. Suppose N trial points are sampled

uniformly in the parameter space. Then the probability that at least one

point lies in T is:

1 _ (i _ a)N

Unfortunately, the feasible region is in general unknown. Thus the probabil

ity a is not predictable.

In analog design, the initial design may be quite close to a feasible

region, and it is desirable to improve the design from that point. A good

approach to obtaining a feasible design thus seems to be to avoid sampling in

the "bad regions" experienced from the past trials. This consideration leads

to a controlled random search algorithm.

44

Algorithm 3.3 (Controlled Random Search Algorithm)

Notation: x3 = j-th component of x. xmin < x < xmax.

Data: x0 € A, e0,emin € (0,l),emin < e0, N » 1.

Step 0:

Set i = 0, € = €q, X{ = x0, failure = 0.

Step 1:

If termination criterion is satisfied, stop.

Step 3:

Generate a random trial point yi in the neighborhood of x,- such that:

yt = x3i+ €((x3max - x3min),j = l,2,...,n

where { is a random number in [—0.5,+0.5].

Step 5:

If acceptance criterion is satisfied, then

set X{ = i/i, failure = 0.

else

set failure = failure + 1.

Step 6:

If failure > N, then

set e = e2, failure = 0.

Step 7:

Ife< €m,n, then

generate a random point xq € A, and go to Step 0.

else

set i = i + 1, and go to Step 1.

45

One way of improving the probability of being in T is to limit

the sampling of random .points to a region A C A so that T C A and

hence m(A') < m(A). In fact, it is possible to limit the search space by

"windowing" dynamically the parameter space. Suppose Xq is the initial

value for the design parameters. If xo is not a local minimum, there must be

a region A(x0) where Vx £ -4(x0), if>(x) < fp(x0). Now pick a ^-neighborhood

of Xo: Ns(xq) = {x|||x —xo|| < S}. Under the previous assumption, the set

Ns(x0)nA(xo) is nonempty. Therefore, if i>(x) is continuous, then m(Ns(x0)D

«4(xo)) > 0. The idea is to limit the random search to Ng(x0) and to stop

after a point X! is produced so that i>(xi) < VK^o); ^l 1S then chosen as the

next base point for random search. If the random search fails to produce

such Xx after a certain number of trials, then S is reduced and the procedure

is repeated. However, if the random search still fails when 6 is reduced to

a very small value, then it is assumed that the current design is a local

minimum of tl>(x). A point in A' is then chosen randomly and the process

restarted. Algorithm 3.3 formalizes this procedure.

The algorithm can be applied both to find and to optimize a feasible

design. Referring to Algorithm 3.3, to find a feasible design, the termination

criterion at z-th iteration is: VK^i) < 0> and the acceptance criterion for

the trial point yi is: ip(yi) < ip(xi). Note that, in case the feasible region is

empty, the design can still be improved iteratively. To optimize a feasible

design, the termination criterion is when a stationary point is "detected",

i.e., when e < €roin, and the acceptance criterion is: y, G T and /(y,) < /(a?,).

Experience shows that, it is effective to set N to fifty times the

number of design parameters and to Hmit the initial search space to within

10% of each parameter dimension, i.e., e = 0.1.

Chapter 4

A General-Purpose Interactive

Optimization System

4.1 Introduction

The value of interactive nonlinear programming as a general opti

mization framework for complex IC design has been demonstrated in earlier

efforts using this framework. But while powerful, the approach is limited

by difficulties designers have to face in posing design problems of interest

as nonlinear programs, and in controlling convergence of the optimization

algorithms implemented.

ECSTASY is an experimental system to alleviate these difficulties.

The system provides a forms-based, menu-driven user interface for problem

formulation and user interaction, as well as built-in optimization algorithms,

and a simulation interface to SPICE3 [75]. Fig. 4.1 shows the system con

figuration. On start-up, the system reads in a SPICE3 input deck provided

by the designer to evaluate the initial circuit performance. Through the user

interface, the designer can easily describe a design problem. The system

then transforms the design problem into a standard formulation and solves

it using built-in optimization algorithms. The algorithms interface with the

circuit simulator to improve the circuit performance iteratively. During the

46

47

optimization runs, the designer is informed of the status of the circuit per

formance. They are able to interact with the system to trade off problem

specifications until satisfactory results are obtained.

Gradient-based algorithms are used to begin the problem solution

in Section 4.2. If numerical difficulties arise, a random search algorithm

is automatically invoked, to enable the solution process to continue. The

gradient-based algorithms implemented are provably convergent, but require

the computation of circuit sensitivities. Techniques for this computation,

for arbitrary specification functions., are detailed in Section 4.2. Section

4.3 describes the user interface design. In particular, the design issues of

forms-based interface, simulation control, and user interaction are detailed.

Section 4.4 describes the interfacing of the SPICE3 circuit simulator to the

optimization algorithms. Section 4.5 presents four problem examples, which

demonstrate the performance of the proposed algorithms.

4.2 Optimization Algorithms

As is clear from Chapter 3, the general formulation of an IC op

timization problem is a semi-infinite multiobjective program V. Under the

assumption that the designer can approximate the problem with accurate dis

cretization schemes, the problem can be transformed into a finite-dimensional

multiobjective optimization program Q. In ECSTASY, the problem is solved

in five phases, with the first four solving a set of inequality constraints, and

the last a classical constrained optimization problem.

Based upon the considerations discussed in Chapter 3, the algo

rithms of Mayne and Sahba [54], for solving a set of inequalities, and of

Panier and Tits [64], for solving a constrained optimization problem, are

employed as built-in optimization algorithms.

User Interface

V

Problem

rmulation

JL Jl

XL

Circuit

imulato
7r

Optimization Algorithms

Figure 4.1: ECSTASY System Configuration

48

49

4.2.1 Sensitivity Computation

These algorithms require the computation of the gradient vectors

of the objective and constraint functions with respect to all the design pa

rameters. In general, problem specifications are arbitrary functions of the

circuit variables and design parameters. However, since the circuit sensitiv

ities which are available form circuit simulators are the derivatives of the

circuit variables with respect to the design parameters, special techniques

are required to compute the desired gradient vectors.

The technique used in ECSTASY is based on [76]. Using chain-

rules, a perturbation scheme is employed to compute all the partials except

the circuit sensitivities. These are computed efficiently by the so-called direct

method, which exploits the internal Modified Nodal Analysis formulation of

SPICE3 and camputes the transient sensitivities forward in time [12] [77].

At this point, it is necessary to discuss a special type of design

parameters: track parameters. In IC design, the values of some circuit pa

rameters may need to match (e.g., to be equal or to be in proportional to each

other) to a fairly high degree. The accuracy with which these parameters

can match has a substantial effect on the circuit performance. Therefore, the

designer only need to declare one of the parameters in the matched set as a

design parameter; the others in the set will track, in some manner, the value

of the declared design parameter. For example, in designing a differential

pair, it is necessary for the two transistor areas to be equal. Thus, one is

declared as a design parameter and the other as a track parameter.

In IC design, the specification functions to be treated are of the

form: g(xd, xt, v(x<t, xt, u>), w), where the arguments of g are:

xj = vector of design parameters

xt = vector of track parameters

v = vector of circuit variables

lj = independent variable such as frequency or time

For the purposes of this research, two cases are considered. In the first case,

50

uj does not depend on any conditions; the desired gradient with respect to

xd is therefore given by:

_ dg dg dxt dg dv dg dv dxt
Xd dxd dxt dxd dv dxd dv dxt dxd

In the second case, lj varies with the values of the design parameters and

track parameters, i.e., lj is actually w(xd,xt), and is forced to satisfy an

equation:

h(xd, xt, v(xd, xt, w), u(xd, xt)) = 0

An example is the phase margin computation, in which u is computed by

solving the equation when the magnitude of the output node voltage is 0

db. By differentiating g and the equation h = 0, and canceling the common

terms, the following expression can be obtained:

v = dg dg dxt ®9 dv ®9 dv dxt
Xd dxd dxt dxd dv dxd dv dxt dxd

,. fdh dh dxt dh dv dh dv dxt\
~raUo \&Td +d7taTd +aZWd +a^^m

where ratio 1 is equal to:

\du +dv du>) ' \b\) +dv~fo)
As proposed, the perturbation method is used to compute all the partials

except dv/dxd and dv/dxt which are available from the circuit simulator

SPICE3.

Note that when transient sensitivity is computed by the direct

method, the result is obtained immediately after a simulation run. For the

AC analysis case, however, this method may not be efficient. Since AC anal

ysis is performed at each frequency independently, and only the sensitivity

information at the local maxima of ^(x,^) and <p3(x,cj) with respect to lj

are needed in the optimization algorithms, it is recommended to perform

1In [76], the ratio is computed as §j^§£ which is not correct.

51

normal simulation runs without sensitivity computation during the problem

evaluation and step size computation phases of the optimization. Sensitivity

is computed only after these local maxima are known. In other words, for

AC analysis, after evaluating all the functional specifications, the sensitivity

computation is performed at each local maximum point - a single frequency.

This technique saves computation time for the AC case.

4.2.2 Controlled Random Search

Gradient-based algorithms, although effective in optimizing circuits

when sensitivity information is either available, or can be approximated by

finite differences, may encounter numerical difficulties. Since the built-in

algorithms are hidden from the designer, even if this problem is encountered

by the designer, the situation may not be easily improved. To resolve this

problem, ECSTASY automatically switches to the controlled random search

algorithm to enable solution of the problem to continue. In the meantime,

in order to allow the designer to interact with the system to rescale the

problem, or to perform simulation tolerance control, informative messages

are displayed on the screen for designer's reference.

From circuit design point of view, the algorithm has the following

desirable features:

• It effectively avoids the past "bad regions" and moves along a good

descent direction toward the feasible region.

• It is relatively insensitive to the parameter dimensionality, compared

to pure random search, since it searches in a small region and the

probability of obtaining an improved design is high.

• It gives the designer "sensitivity" information, since it improves the

design locally. In fact, since the parameter changes are shown on the

screen in ECSTASY immediately after the circuit performance is im

proved, the user can trade off the design specifications, as well as adjust

52

design parameter values from this information.

• It is easy to maintain feasibility while improving the objective functions

after a feasible point is obtained.

4.3 User Interface Design

An ideal interactive circuit optimization system is one which not

only solves a given optimization problem within shortest possible time, but

also provides a friendly environment for the circuit designer to enjoy the task

of interactive optimization.

Solving an optimization problem effectively can be achieved through

the use of efficient optimization algorithms, as has been described in the

previous section. Providing a friendly environment requires an analysis of

human factors in circuit optimization systems, a choice of design criteria,

and the exploitation of modern design principles for friendly user interfaces.

4.3.1 Design Criteria

There have been quite a few quality measures for man-machine

interface designs [78] [79] [80]. Most of them are more or less linked to, or a

combination of the three primary criteria [78]:

• the time the user spends accomplishing a task which the system is

intended to support,

• the accuracy with which the user can accomplish the task, and

• the pleasure the user derives from using the system.

These criteria are in turn influenced by a number of secondary criteria, such

as learning time, error and fatigue susceptibility, naturalness, and so on.

Although these quality measures are obtained from experiments with general

53

interactive systems, they can also be applied to the user interface design of

interactive optimization systems.

The design of complex ICs generally involves complicated specifica

tion functions. In order to formulate an optimization problem, the designer

has to describe these specification functions precisely so that the system

knows how to evaluate the functions needed in the optimization. Since most

designers do not have a background in optimization theory, and no system

can provide a good solution if the problem is not well-posed, the first de

sign criterion of ECSTASY pertains to its problem formulation capability.

The user interface must allow the designer to describe a problem easily and

precisely, without the use of technical terminology relating to optimization.

After formulating the problem, the designer begins the optimiza

tion. A salient feature of circuit optimization is that it can be a very time-

consuming process. Achieving a noticeable performance improvement for a

complex design often requires a considerable length of time. Since user inter

face mediates between the designer and the optimization functions performed

by the system, a poorly designed user interface will result in user frustration

and degraded productivity. Minimizing the designer's boredom, frustration,

and discomfort in using the system before a performance improvement is

observed is therefore an important goal of user interface. Since the designer

may want to interact with the system to trade off the design specifications,

they must be informed of the current optimization status, and be able to

control the optimization runs at will.

Note that the capabilities and performance of the circuit simulator

used in a circuit optimization system are in general a very important de

terminant of the overall effectiveness of the system. However, in designing

an interactive optimization system, a circuit simulator is treated as a "black

box". Therefore, it is assumed that the circuit simulator has reasonably good

performance.

To summarize, the three design criteria for ECSTASY are:

54

• Design problem must be specified easily and precisely.

• Optimization status must be perceived by the designer immediately.

• The system must respond to the designer's request promptly.

Many general design guidelines have been proposed for designing a friendly

user interface [81] [82]. To achieve the three design criteria, the following

design principles are employed to design ECSTASY user interface:

• Know the user.

• Communicate visually.

• Speak the user's language.

• Give the user control.

• Avoid frustrating the user.

• Respond to the user's actions.

For example, to meet the first criterion and avoid the programming language

problem with existing systems, ECSTASY employs a forms-based interface

for problem description, in the interest of eliminating the need for a program

ming language. To achieve the second and third criteria, informative visual

feedback is provided through the use of tiled windows, and two concurrent

processes are created for efficient user interaction.

The resulting user interface provides five static menus for user's

selection: objectives, constraints, parameters, simulation control, and opti

mization control. The first three are for problem descriptions; the last two are

for controlling the circuit simulator and monitoring optimization runs. Each

menu pane contains several selections, including on-line helps and printer

commands for producing design reports. Fig. 4.2 shows the screen format

design. Note that, although on-line help and the documentation capability

are not directly related to the functionalities of interactive optimization, they

are important to the designer's productivity.

55

objective
menu

constraint

menu

parameter
menu

simulation

menu

optimization
menu

functional objective plot
ordinary objective gauge

ordinary constraint gauge
functional constraint plot

message status

parameter gauge

Figure 4.2: Screen Format Design

56

4.3.2 Forms-Based Interface

In IC design, a specification is characterized by a value (for ordi

nary specifications) or a curve (for functional specifications) and a sequence

of measurement steps to compute the corresponding function value. EC

STASY provides a forms-based interface for the detailing of problem specifi

cations. The various specially-formated forms offer uniform interfaces which

standardize the way data is entered into the system, and allow the user to

specify computing rules for problem specifications.

The advantages of forms-based user interface approach to devel

oping interactive information systems, over approaches based on extending

conventional programming languages, have been discussed in [83]. The ap

proach has the desirable feature of uniform interfaces which standardize how

data is displayed and entered into the system. While this observation may

not be related directly to interactive optimization systems, the idea can be

exploited.

Unlike ordinary forms in which only relevant entries are entered

as input data, ECSTASY forms are designed to allow the user to set up

(i.e., to program) test configurations for optimization purposes. According

to user's mouse selection, the system displays various forms for the user to

input. Each form consists of two parts: the data part, and the rule part,

each consisting of two columns of fields, separated into a left-hand side (LHS)

and a right-hand side (RHS). In the data part, keywords are displayed by

the system in the LHS; the user only needs to fill in data in the RHS. The

specification title, the command to perform simulation runs, the specification

values, etc, are entered in this part. In the rule part, the user has to fill in

both the LHS and the RHS to set up the measurement procedure. In this

part, the LHS is a variable or a parameter name; the RHS is an expression to

compute the LHS value. Since each computing rule in the form represents a

procedure to compute a specification function using the interfaced simulator,

the expression is of the same syntax as the simulator front-end language -

57

the designer's language (In user interface design, it is important to speak the

same language as the users [81]). This effectively eliminates the need for a

new language.

Two examples of problem formulation using the forms are illus

trated. It is assumed that all the simulation input decks (prepared before

optimization) contain appropriate elements for test configurations. Fig. 4.3

describes a constraint where the delay of a buffer circuit is to be less than

5 ns. Suppose the circuit is driven by a pulse with a 0.5 ns delay and a

20 ns duration. Then the delay requirement can be satisfied if the output

waveform v(5) from 5.5 ns to 20 ns stays above 2.5 V. This requires transient

analysis, and is a functional constraint.

Fig. 4.4 shows a phase margin constraint. It is an ordinary con

straint, requiring AC analysis to be performed. To ensure that the circuit

works properly, initial values for RI and RF have to be provided. The 0-db

frequency of the output waveform v(3) is computed by passing the mag

nitude waveform, vm(3), to a built-in routine zdbfreq (ECSTASY provides

some built-in routines that can be invoked by the user). The computed fre

quency is used to find the corresponding phase from the phase waveform

vp(3). Since the phase is in radians, some computation is necessary to ob

tain the desired value. After the measurement, RI and RF are reset to their

default values. Note that all the computing rules are in SPICE3 front-end

language.

ECSTASY provides a what-you-see-is-what-you-get type editor for

the user to fill in or to modify a form. When a form is displayed, the system

directs the cursor to the beginning of the first field. Then whatever the user

types is displayed in the form; the content displayed in the form is exactly

what is stored internally in the system buffer. The user can use CTRL-H,

CTRL-L, CTRL-K, CTRL-J, and carriage return to move the cursor without

changing the contents. In case the problem specification is so long that the

current form cannot accommodate it, the system will scroll-up the form

(when the cursor reaches the bottom of the form) and display more blank

58

Functional Constraint 1

label Delay Constraint
analysis tran 0.4ns 20ns 0 0.4ns

>= or <= >=

good value 2.5 V

bad value 2.5 V

sweep

variable TIME

from 5.5ns

to 20ns

scale lin

increment 0.4ns

computing rules delay
delay v(5)

Figure 4.3: Delay Constraint

59

Ordinary Constraint 2

label Phase Margin

analysis ac dec 10 1MEG 20MEG

>= or <= >=

good value -135

bad value -160

computing rules phase

RI 10K

RF 2MEG

FREQ zdbfreg (vm(3), 1MEG, 20MEG)
phase 57.29578 * vp(3) - 180
RI 10MEG

RF 1

Figure 4.4: Phase Margin Constraint

60

fields to be filled in by the user.

4.3.3 Simulation Control

In circuit optimization, there are special needs, such as for track pa

rameters, which need special treatment. From the algorithmic point of view,

a design parameter is simply an independent variable in the parameter space.

However, to a designer, some of the circuit parameters are closely related.

While track parameters need to track the changes of design parameters, the

device model parameters AD, AS, PD, and PS in MOS models also play

similar roles. These model parameters are often set in proportional to the

values of the size of a MOS transistor to account for second-order parasitic

effects. Furthermore, some circuit-elements, called settable parameters, are

used only for setting up test configurations for optimization purposes; these

parameter values are not tunable by optimization algorithms.

Since these requirements are transparent to optimization algorithms

but play a very important role in circuit design, a special simulation con

trol interface must be provided to perform this special task. In ECSTASY,

the designer can specify three types of parameters: design parameters, track

parameters, and settable parameters. Simulator option control such as tem

perature and tolerance controls are also provided through this simulation

control interface. Again, this design is forms-based.

4.3.4 User Interaction

After the specifications are described, the user may request opti

mization runs and perceive the performance improvement through visual

feedback displayed on the screen. ECSTASY converts the problem into a

standard formulation, carries out the optimization, and displays circuit per

formances automatically during optimization runs.

To allow efficient user interaction, ECSTASY creates two concur

rent processes: one to talk to the user in the foreground, and the other to

61

run simulations in the background. Since the foreground process does not

consume CPU power while waiting for the user's mouse event, the system

can respond to user's requests immediately without degrading the system's

performance. Thus, any time during optimization runs, the user can interact

with the system by clicking the mouse to halt the optimization session, trade

off problem specifications, and resume the job.

To provide visual feedback in both analog and digital ways, EC

STASY displays gauges and functional plots in tiled windows. Each gauge

represents an ordinary specification, and is divided into a.bad region (in red),

an ok region (in yellow), and a good region (in green); each functional plot

represents a functional specification, with two lines to indicate if the perfor

mance is good (green line) or bad (red line). The ultimate goal is to push

every dial in the gauge into the green region, and every functional plot under

the green line. To compare two consecutive optimization runs, the current

performance is shown in black, while the previous one is in plum. Fig. 4.5

shows an example of a performance gauge in which the offset voltage is im

proved from 10 mV to 8.06 mV.

4.4 Circuit Simulation Interface

Circuit simulation interfacebridges the optimization algorithms and

the circuit simulator. Since each computing rule in the form represents a step

to measure a specification function using the interfaced simulator, the expres

sion of that rule is assumed to be of similar syntax to the simulator front-end

language (it is desirable to speak the same language as the simulator user).
Before optimization, a built-in parser converts each expression (in infix no
tation) into a stack of identifiers, operators, function calls, and parentheses
(in postfix notation) [84] [85]; the piles ofstacks are then maintained by each
form. Thus, during optimization, whenever the optimizer needs to evaluate

a function value, the stacks are popped out one by one to be evaluated or to

request simulations.

62

Good Val vos Bad Val

3.00e-03 8.06e-03 7.00e-03

i n
(green) (yellow) (red)

Figure 4.5: Performance Gauge

63

To parse an expression, the parser operates on two stacks SI and S2.

SI is a push-down stack which stores the output of the parser and maintains

the final postfix notation; S2 is a temporary scratchpad stack. Currently, the

allowed syntactic units are: identifier, operators (-f, -, *, /, %, and exponent

*), keyword functions (db, zdbfreq, findzero, etc), separator (,), parentheses,

and end of expression "END". Table 4.1 shows the parsing action table where

the top row represents the input symbol, and the leftmost column represents

the top of S2.

As an example, if the input expression is db(vm(3)-2), then db is a

function, vm(3) and 2 areidentifiers, and "-" is an operator. Accordingto the

parsing action table, Si will contain "db", "-", "2", "vm(3)", with "db" at

the top, and "vm(3)" at the bottom. When the optimizer needs to evaluate

the expression whose postfix notation is in SI, the interpreter treats SI as a

queueby reading the syntacticunits from bottom to top, one by one, using S2

for temporary storage. At first, when "vm(3)" is read, the interpreter calls for

the simulator to run an AC analysis, accesses the waveform of the magnitude

of node voltage at node 3, and pushes it onto S2. Then "2" is read and is

pushed onto S2 since no simulation call is needed. Next, when "-" is read,

the interpreter pops out the top two elements on S2, applies the operator to

get the waveform "vm(3)-2", and pushes this result onto S2. Finally, when

"db" is read, the interpreter pops out the top atom of S2 as the argument to

the function call "db". The returned waveform thus represents "db(vm(3)-
2)". Note that, in general, the operands are waveforms, so interpolation
techniques must be used toextract the desired responses incase the sampling
points are different on two operands, especially for transient analyses.

Since each rule has a left-hand side (a variable) and a right-hand
side (an expression), after the expression is evaluated, the resulting wave
form is assigned to the left-hand side variable, which can then be used as

a waveform in the succeeding rules. Of course, the parser knows that a de

sign parameter cannot be assigned a waveform; type checking is performed

64

id + - */% " () func
»

END

NULL si s2 s2 s2 s2 s2 s2 ERR ERR

+ - si ul s2 s2 s2 uc s2 d u2

*/% si ul ul s2 s2 uc s2 d u2

** si ul ul ul s2 uc s2 d u2

(si s2 s2 s2 s2 uc s2 d u2

func ERR ERR ERR ERR s2 ERR ERR ERR ERR

si: stack input onto SI

s2: stack input onto S2

ul: unstack S2 => SI;

unstack all the top of S2 which has higher priority than input;

stack input onto S2

u2: unstack S2 =^ Si until S2 empty

uc: unstack S2 ^ Si until "(" is encountered; discard "(";

if top of S2 is a function, then unstack S2 =>• SI

d: discard input

ERR: invalid input, error occurred

Table 4.1: Parsing Action Table

65

during parsing. (It should be noted that changing a design parameter in the

computing rule is different from doing so in the optimization routine. In the

computing rules, when a design parameter is changed, it is reflected directly

into the simulator, no other side effect will happen, e.g., need to change a

corresponding track parameter; while in the optimization, routine, whenever

a design parameter is changed, the corresponding track parameter must be

changed. This is very important for applications in which offset effects such

as voltage offset are to be measured.)

One of the original goals in forms-based user interface is to keep the

syntax of the "measurement" language as simple as possible, since it is not

desirable for the user to have to learn a complex new language. Hence only

SPICE3-like simulation language (particularized to the specific simulator) is

allowed. While such syntax is rather limited and may not be powerful for

general programming use (for sophisticated users), it is considered best that

the library of keyword functions be augmented as needs arise. For example,

to cope with the measurement of quantities which satisfy an equation, the

findzero function call is used to find the zero of a waveform. As an example,

to measure the switching time of node 3 at a constant level K, findzero(v(3)-

K) can be called.

4.5 Design Examples

Interfacing with SPICE3, ECSTASY has been run on a DEC VAXs-

tation II/GPX under Ultrix V2.0. A C language interface to the X win

dow system [86] is used as the graphics interface. The use of the network-

transparent window system X allows ECSTASY to utilize displays on other

machines. Currently, for efficiency purposes, ECSTASY interfaces to the

circuit simulator directly. A future direction is to use remote procedure call

(RPC) protocols, so that circuit simulations can be performed in a more

powerful distributed computing environment.

To justify the proposed optimization algorithms, ECSTASY runs

66

remotely on a DEC VAX 8650, with the outputs displayed on a VAXstation

II/GPX. Three design problems are presented: a CMOS driver circuit, a

switched-capacitor (SC) filter, and a bipolar operational amplifier (Op-Amp).

All the examples have as their goal the achieving of a set of specifications,

i.e., inequality constraints. To compare the efficiencies of the algorithms,

the (internal) scaled violations, i.e., the values of the maximum of all of the

constraint functions, are shown. These become non-positive when all the

specifications are satisfied. Note that, in all cases, the controlled random

search algorithm uses an initial search space generated by allowing each

parameter dimension to change 10%.

4.5.1 CMOS I/O Driver Circuit

Fig. 4.6 shows the schematic of the CMOS I/O driver circuit. The

.circuit is from a real chip design where a high-speed driver is required at

the I/O bonding pads. Due to the inherent inductance associated with each

power and ground lines, the overshoot/undershoot at the output may inval

idate the logic when the capacitive load is large. The objective is to adjust

the transistor sizes such that the delay is within 5 ns when driving a 140 pF

load. (The original design was 11.2 ns delay.) The circuit has four design

parameters and four track parameters. The results for the CMOS driver cir

cuit are shown in Fig. 4.7. Fig. 4.8 compares the circuit performance before

and after the optimization.

It is clear that the sensitivity computation gives the best result.

Finite difference approximation, due to the inherent inaccuracies with the

scheme, dies at iteration no. 9, marked by x (the algorithm complains that

a descent direction cannot be computed from the gradient information) and

random search is used to continue the optimization run. Note that, from

Fig. 4.7, the overhead in sensitivity computation makes the average time for

a function evaluation approximately 15 seconds, compared to the 4 seconds

when normal simulations are performed without computing sensitivities.

IN

original delay = 11.2 ns
desired delay ^ 5 ns

Vdd

design parameters:
L transistor sizes

Gnd

Figure 4.6: CMOS I/O Driver Circuit

67

OUT

= C

Gnd

68

CMOS Driver Circuit
violation

300 time (sec)

Figure 4.7: Computational Statistics for CMOS I/O Driver Example

69

v(OUT)

50 time (ns)

Figure 4.8: Optimization of CMOS I/O Driver Circuit

70

To justify the robustness of the proposed random search algorithm

and the arguments on scaling, the same initial point was used to restart

the optimization run. However, the upper bounds of three of the design

parameters were increased significantly. Fig. 4.9 shows the execution re

sults for sensitivity computation and the controlled random search. (Some

intermediate results for random search were omitted.) Due to poor scaling,

the gradient-based algorithm, even with accurate sensitivity computation,

has difficulty in obtaining a feasible design after several iterations and was

terminated, since it took too much time. In contrast, random search worked

just as well, although spending more time due to the augmented search space.

4.5.2 Switched-Capacitor Filter

The second example is an SC filter design. The circuit is a ninth-

order SC low-pass filter, clocked at 64 KHz, serving as an anti-aliasing filter

for a digital signal processor. Fig. 4.10 shows the schematic. The spec

ification requires a ±0.125 dB passband ripple with cutoff frequency at 6

KHz. The attenuation requirements for the stop-bands are: -26 dB at 7.5

KHz, -45 dB at 9 KHz, and -80 dB at 18 KHz. The design was based on

a common approximation method for ladder SC filters. The approximation

is valid for clock frequencies many times (> 100) larger than the pass-band.

For this filter, the ratio is only 10:1 (due to other considerations), and hence

the deviation from the desired frequency response is large. For this reason,

adjustment of the capacitor ratios is required to satisfy the specifications.

To simulate the circuit in the frequency domain (other than the

^-domain) using SPICE3, an equivalent transmission-line network [87] mod

eling the delay caused by the switch is used as the input to SPICE3. The

original ripple is 0.44 dB. Five design parameters were specified by the de

signer. At first, the bounds on the design parameters were arbitrarily speci

fied. After one iteration, guided by the parameter changes displayed on the

CMOS Driver Circuit
violation (scaling effect)

0.6 1

1 1 1

•— sensitivity computation —

0.5 —L
•— controlled random search

0.4 —

0.3 —

0.2 —

01

0.0
1

71

0 1000 2000 3000 time (sec)

Figure 4.9: Effect of Scaling on Optimization Algorithms

passband (6 KHz) ripple: ± 0.125 dB

original ripple: 0.44 dB

design parameters: d/cO, c2/c0, c3/c0, c4/c0, c5/c0

72

Vout

stopband attenuation: - 26 dB @ 75 KHz
- 45 dB @ 9 KHz

- 80 dB @ 18 KHz

Figure 4.10: SC Filter Circuit

screen, the designer felt that all the lower bounds were too high and decreas

ing all the parameter values might help. All the parameter values were reset

(rather arbitrarily) to a much lower value, and the optimization process was

restarted. Fig. 4.11 shows the optimization results after the restart. Fig.

4.12 compares the circuit performance before and after the optimization.

Again, the gradient-based algorithm based on sensitivity computa

tion gives the best performance. Finite difference approximation, although

not as efficient as exact sensitivity (since it needs more simulation calls),

performs well. This is because it is rather reliable for AC analysis in which,

after the DC operating point is obtained, only backward and forward sub

stitutions are required to compute the solution, and hence less errors are

created than for transient analysis. It should be noted that, by the proposed

sensitivity computation scheme, some simulations are performed at a single

frequency and others at all the sampling frequencies.

From this example, it might seem that for AC and DC cases, a finite

difference interval may be fixed that would work well for most circuits. This

is not true, as has been explained in Chapter 3. Consider the bipolar current

source in Fig. 4.13. The circuit is to provide a low temperature coefficient

(TC) current source from a band-gap voltage reference. The design goals

are:

ioi,io2 = 400^A±0.1%

TC of J0i,io2 < 50 ppm/°C over -55°C to +125°C

Maximum current drawn from Vcc is 3 mA

The same finite difference interval as in the SC filter example is used. Op

timization results show that when finite difference approximation is used,

the gradient-based algorithm dies after 7 iterations (marked by x). Again,

controlled random search are used to take over the job. Fig. 4.14 shows the

numerical results.

Ninth-Order SC Filter
violation

3.5

T I I I

•— sensitivity computation

3.0 ♦ »— finite difference

2.5 — I
1 •— controlled random search

2.0 — I

1.5 —

1.0 —

0.5 -w-—-—_
0.0

vv^. —-—
I • "I I I

0 100 200 300

74

time (sec)

Figure 4.11: Computational Statistics for SC Filter Circuit

75

passband ripple (db)

0.3 -

0.2

0.1

0.0

-0.1

— original
— optimized

0 1000 2000 3000 4000 5000 6000 Hz

Figure 4.12: Optimization of SC Filter Circuit

Vcc = 5V

76

lo1, lo2 = 400 uA =fc 0.1 %
TC < 50 ppm/°C over -55*C to 125 *C
Max current drawn from Vcc = 3 mA

design parameters: R2, R3

Figure 4.13: Bipolar Current Source

77

violation

Bipolar Current Source

200 400 600 time (sec)

Figure 4.14: Computational Statistics for Current Source Example

78

4.5.3 Bipolar Operational Amplifier

Fig. 4.15 shows the bipolar Op-Amp circuit. The optimization

results are shown in Fig. 4.16. The example is taken from [19], and has

five design parameters and three track parameters. After trading off some

constraints, the interaction focuses on improving the settling time of the

circuit from 2.1 fjLs to 1.5//3, while keeping the gain-bandwidth product within

the desired specification.

As in the first example, due to the errors incurred in the approxima

tion scheme with transient analyses, convergence problem occurs in the finite

difference approximation (marked by x). Controlled random search is used

to continue the searching. It is interesting to note that, although sensitivity

computation achieves a feasible design in 10 iterations and requires only 18

function evaluations, the computational cost is higher than that of the other

two algorithms. The average time for a function evaluation with sensitivity

computation is approximately 40 seconds, compared to the 10 seconds when

normal simulations are performed without sensitivity computations. In this

example, controlled random search is the most efficient.

o ?
+15V

"^QCS
y\

RE1 RE2

on
K

QI2 — +

j
^ ^

QA1
k: ^QA2

-15V

p

79

settling time:
n original > 2 jus

^99 -r desired ^ 1.5 jus

design parameters:
^ QCS, RE1, RE2, CC

QH, QI2, QA1, QA2

Figure 4.15: Bipolar Operational Amplifier Circuit

Bipolar Op—Amp
violation

•— sensitivity computation
°— finite difference

<»— controlled random search

switched to
controlled random search

0 200 400 600 time (sec)

Figure 4.16: Computational Statistics for Bipolar Op-Amp Example

80

Chapter 5

A Transistor Sizer for Digital

CMOS Circuits

5.1 Introduction

Both heuristic and nonlinear programming techniques have been

shown to be effective in transistor sizing for digital CMOS circuits. Heuristic

method offers a quick way of obtaining feasible design, but cannot guarantee

the quality. Nonlinear programming can optimize arbitrary objective func

tions with guaranteed convergence properties, but lacks a systematic way of

choosing relevant parameters for good inital design.

It is possible to combine the advantages of the two approaches. A

heuristic algorithm is used initially to do a quick sizing of the entire circuit;

then the problem is converted into a nonlinear programming problem. The

problem is solved in a space of reduced dimensionality, in which, to cope

with the nondifferentiability of the circuit delays, the concept of generalized

gradients is used to compute the delay sensitivities.

In this chapter, a transistor sizer based on this combined approach

is described. The main body of the program consists of a timing analyzer

and an optimizer. It reads in a transistor netlist and the delay constraints

at the I/O ports of the circuit, as well as a set of process technology data for

81

82

evaluating circuit delays. To optimize the circuit performance, the optimizer

adjusts the transistor sizes through interfacing with the timing analyzer. The

output of the program is an optimally-sized circuit. Fig. 5.1 shows the block

diagram of the transistor sizer.

Section 5.2 describes the algorithm for the combined approach. A

scheme to speed up the heuristic is proposed and justified by experiments.

Sections 5.3 - 5.5 detail the ingredients of the computation. Section 5.3 de

scribes the modeling of digital static combinational CMOS circuits. Section

5.4 discusses the optimization technique and explains the use of generalized

gradients to cope with the nondifferentiability of circuit delays. Section 5.5

details the delay sensitivity computations. Experimental results are shown

in Section 5.6.

To compare the results with TILOS, the transistor sizing problem is

restricted to that of minimizing the total active area under delay constraints;

all the test circuits are restricted to static combinational CMOS circuits.

5.2 A Two-Stage Combined Approach

5.2.1 The Approach

As has been explained in Chapter 3, the TILOS algorithm is a good

heuristic for meeting the delay constraints in transistor sizing problem. In

fact, the TILOS authors have used the algorithm to size many static CMOS

circuits with up to 26,000 transistors. The circuits obtained are typically

twice as fast as the equivalent circuits implemented with standard cells. It

is observed that the algorithm works very fast and, oftentimes, only part of

the transistors need to be sized. Interestingly, the algorithm is very similar

to the steps a human designer takes to speed up a circuit while minimizing

the power consumption.

It is shown in [32] that, under a simple distributed RC model, the

transistor sizing problem for static CMOS is convex. Unfortunately, despite

Connectivity Delay Constraints Technology

2iL \L

Timing Analyzer
7K

^L

Optimizer

\L
Optimally-sized Circuit

\ki

Figure 5.1: Block Diagram of the Transistor Sizer

83

84

the fact that in a convex function a local minimum is a global minimum,

TILOS fails to guarantee optimality for the following reasons:

• It lacks a global view of the whole circuit - TILOS picks a greatest-

sensitivity transistor on a worst-delay path to size up.

• It increases the sizes of the transistors only, while in certain cases it

may be effective to decrease the size of some of the devices.

• Signal delay in a circuit is calculated as the maximum function of all

possible delays within the circuit. This may cause discontinuities in

sensitivity calculations, resulting in over-sized transistors.

Nonlinear programming can be employed to remedy these shortcomings since

multiple constraints can be considered simultaneously and the transistor sizes

can be tuned for best performance, if delay sensitivity can be computed

accurately. In fact, this method can start from arbitrary transistor sizes,

if robust algorithms such as the feasible directions method are used. If in

addition, the objective and constraints are convex functions, these algorithms

are guaranteed to converge to the global minimum.

This consideration leads to a two-stage approach to combine the

speed of heuristic and the power of nonlinear programming.

5.2.2 The Algorithm

It is desired to minimize the sum of transistor sizes under delay

constraints, with transistor sizes as design parameters. Since, in practice,

the size of a transistor should be larger than a minimum imposed by process

technology, it is necessary to satisfy the same number of minimum-sized

constraints as the number of transistors in the circuit. Fortunately, although

the number of minimum-sized constraints may be large for large circuits,

these constraints are rarely violated once the transistors are sized, since in

general transistor sizes are increased in the procedure. Often, the constraints

85

we strive to meet are the delay constraints. Usually, the number of delay

constraints (the specifications) is not proportional to the circuit size; it is 2N

for a circuit with N output ports (there are two delay constraints, rising and

falling, at each output port). Thus, the total number of design constraints is

equal to 2N plus the number of transistors. Note that for a delay constraint

specification at an output port, there may be several delay paths that violate

the constraint. In general, the number of delay constraints is much less than

the minimum-size constraints.

The combined approach starts with minimum transistor sizes. At

first, the TILOS heuristic is used to do an initial sizing for the entire circuit.

After the heuristic finds a solution which satisfies the constraints, the sized-

up transistors are used as design parameters. The problem is then converted

into a standard nonlinear optimization formulation:

minimize J2^i

such that: G(X) < T and X > K

where

X = vector of the selected transistor sizes from TILOS

G(X) = the signal delays on the output ports

T = the delay constraints on output ports

K = the minimum-size constraints on X

which takes into account the global path interactions automatically. The

optimizer solves this nonlinear programming problem by adjusting the design

parameters such that the sum of these parameters is minimized and all the

constraints are satisfied.

Note that the heuristic approach is not guaranteed to find a solu

tion which satisfies any optimality condition. However, it gives an excellent

starting point for a more rigorous approach based on nonlinear program
ming techniques. The nonhnear optimization algorithms that can be used to

solve the sizing problem have complexity that depends superlinearly on the
number of design parameters. Hence it is convenient to solve the original
optimization problem by solving a sequence of problems that have a smaller

86

number of design parameters. Note that, by confining the problem to a sub

set of the design parameters, it is possible to find a solution which has a

larger value for the objective function than the solution obtained using all

the design parameters. This argument can be justified in Section 5.6, where

the solutions obtained from the reduced parameter space and the entire space

are compared.

5.2.3 A Variable Bump-Size Scheme

In the originalTILOS algorithm, a constant bump-size factor (> 1)

is used throughout the optimization to increase the transistor sizes. While

the algorithm is fast enough for practical use, it can be further accelerated

by using a scheme with variable bump-size factor (in contrast to using a fixed

bump-size factor as in the original scheme). The idea is to adjust adaptively

the bump-size factor in the algorithm such that when the delay violation is

large, the bump-size factor is large (e.g., 1.5), while when the delay violation

is small, the bump-size factor becomes small (e.g., 1.1); the value of the

factor varies linearly in between.

Tables 5.1 and 5.2 show the effect of using variable bump-size factor

on sizing some benchmark circuits from [88]. Throughout the experiment,

all the circuits are initially of minimum transistor sizes. The fixed bump-size

factor is 1.1; the variable scheme adjusts the factor from 1.5 to 1.09. It is

clear that, over all the test cases with different delay constraints, the CPU

time savings are more than 20% with same area quality.

5.3 Modeling Circuit Delays

The accuracy of a timing analyzer depends on the delay model,

but the algorithm should be independent of the model used. In transistor

sizing, it is important to compute circuit delays to within required accuracy

efficiently. If the model is not accurate enough to estimate the circuit perfor-

Examples Fixed Bump-Size Variable Bump-Size
Name FETs Delay Area Time Area Time Saving

(nsec) (fim) (sec) (H (sec) (%)
5xpl 318 10.0 1562 144.8 1560 90.6 37.4

9sym 180 10.0 900 37.6 892 21.1 43.9

bw 518 10.0 2319 513.6 2309 260.4 49.3

duke2 1130 19.85 4530 3539.5 4528 2763.1 21.9

rd53 124 5.0 1364 31.3 1367 22.5 28.1

rd73 278 7.0 2960 185.3 2955 127.3 31.3

saol 350 10.0 3333 367.3 3318 249.6 32.0

sao2 416 10.0 2536 291.6 2549 202.4 30.6

vg2 266 10.0 1920 158.7 1920 103.4 34.8

Table 5.1: Fixed Bump Size Versus Variable Bump Size (I)

Examples Fixed Bump-Size Variable Bump-Size
Name FETs Delay Area Time Area Time Saving

(nsec) (fim) (sec) (fim) (sec) (%)
5xpl 318 7.0 2367 231.2 2360 158.5 31.4
9sym 180 12.0 730 26.4 729 13.9 47.3

bw 518 7.0 3332 797.0 3339 605.7 24.0

rd53 124 3.0 4113 59.0 4102 46.4 21.4
rd73 278 5.0 5711 274.1 5662 200.8 26.7
saol 350 7.0 6292 575.9 6292 406.5 29.4
sao2 416 7.0 4317 470.5 4301 331.0 29.6
vg2 266 7.0 3448 . 235.6 3445 170.7 27.5

Table 5.2: Fixed Bump Size Versus Variable Bump Size (II)

87

88

mance, then the quality of the optimization will be offset by the inaccuracies

incurred. However, if the model is too complex, then delay computation will

be too time-consuming to be useful in practical applications.

5.3.1 MOSFET Model

Fig. 5.2 shows the MOSFET model used in this thesis. Although

the transistor size x is treated as design parameter, in CMOS design, the

channel length is fixed, so x is actually the transistor width. It should be

noted that the capacitances Cg, Cj, and C3, are all proportional to x, but

the channel resistance R^ is inversely proportional to x.

5.3.2 Distributed RC Delay Model

Fig. 5.3 illustrates the distributed RC model [41] used in this thesis

to compute time delays for logic gates. In general, a logic gate has a different

delay for each input. For a rising-edge input, this delay is defined to be the

time from when the input rises to the midpoint voltage to when the output

drops below the midpoint voltage. In the figure, the discharge time Trf

for the NFET pulldown network can be expressed in terms of the channel

resistances RI, R2, R3 and the node capacitances Cl, C2. Note that in the

expression for Trf, (Rl + R2) is equal to the resistance from node N2 to

power rail and (Rl + R2 + R3) is equal to the resistance from N3 to power

rail. The model also holds for PFET pullup networks.

To compute the delays, it is necessary to know how the R's and

C's in the distributed RC model are computed. First, consider the node

capacitance. Let N be a node and Cpj the corresponding node capacitance.

Then C^ is computed as follows:

• UN sees a drain node or a source node with transistor size x (fim), then

a capacitance of CJA x DIFFJIANG x x + 2 x CJP x (DIFFJHANG

+ x) is added, where CJA = diffusion area capacitance (pf j fim2),

Cg

Gate

Drain

o Cd

Rds

1 \ Cs

6

Source

Figure 5.2: MOSFET Model

89

V

V

N3

1 —| [03
N2

Q2

N1

1 —| [at

1^

C3

^

=>

90

C3

5 1 1
1 1

1

> R3

1 1

V

L 1 1

C2
V

R2

N1

Rl

V V

discharge time = (R1+R2)C2 + (R1+R2+R3)C3

Figure 5.3: RC Delay Model

91

DIFF.HANG = the length diffusion extends beyond the active area

(fim), CJP = diffusion perimeter capacitance (pf / fim).

• UN sees a gate node with transistor size x (fim), then a capacitance

of CGTA x MASKCHANNEL x x is added, where CGTA = gate ca

pacitance (pf J fim2), MASKCHANNEL = mask channel length (fim).

• UN sees n fanouts, then a wiring capacitance is added. The wiring

capacitance for N is either user specified or PARASITIC x (0.5 + n),

where PARASITIC = default wiring capacitance per fanout (pf).

• If the user specifies that the node is connected to an external load

capacitance, then that capacitance is added.

Next, consider the R's. From the delay model, only two types of R's are

needed:

• Rq - the channel resistance of a transistor Q. This is equal to the unit

sheet resistance (H-cm) divided by the width x of Q.

• Rjsr-p - the resistance from a node N to the power rail. This is equal

to the maximum value of path resistance over all possible paths to the

rail from N.

Although the actualresistance may be less than this, depending on the other

input values, this model gives an upper bound on the delay through the
circuit. Fig. 5.4 illustrates an example.

Now the delay of a digital circuit can be computed. Since a digital

circuit consists of logic gates and each logic gate consists of a pullup and a

pulldown network only, the time delay of a circuit is the sum of the times

to charge/discharge a chain of pullup/pulldown networks. Thus it suffices to

know the delay computation for a logic gate. Suppose a logic gate has one
and only one output node. (It can have more than one input node and each

node can be connected to more than one input transistor.) To compute the

R = R1 + R2 + R3

R2

R3

\i/

GND

Figure 5.4: Resistance Calculation

Rl

92

93

delay through a logic gate, consider the circuit shown in Fig. 5.5. Let T^j be

the discharge time for transistor Q when other transistors on the discharging

path to OUT are on. Let Tj?/TtN be the time reference when the signal at

node N goes high/low. Then

T°UT= max {r™ + T?/*)

Similarly, the Tf*UT can be computed by considering the pullup network.

This scheme will be used to compute the delay sensitivities later.

Note that for combinational CMOS circuits which are currently

supported by the program, the user only needs to specify the transistor

netlist, the actual data-ready time for each input port, and the desired data-

ready time for each output port. (For sequential circuits, the timing analyzer

also needs to knowthe input clock waveforms.) Based upon this information,

the transistors are grouped into logic gates. More specifically, given a node

which is the output node of a gate, the transistors whose drains/sources are

connected to that node are searched to form the pullup/pulldown networks;

these transistors are then grouped into a gate.

In order to validate the accuracy of the delay model with regard to

complex gates, the following experiment was performed by TILOS authors

using the ADVICE circuit simulator (a program based on SPICE2) which
has been used extensively in AT&T Bell Laboratories: An 8-bit adder in 1.75

fim CMOS was sized five times by TILOS which uses this delay model to

achieve delays of 20, 18, 15, 13.5, and 12 ns. Table 5.3 compares the delays
given by ADVICE and TILOS for these circuits. Since the TILOS runs are

performed prior to layout, wire capacitances are conservatively estimated (by
the formula used in capacitance computation rules) based onits fanout. The
circuit file input for the above ADVICE runs, by contrast, are the result of
a complete mask extraction on the actual layout, in which wire capacitances
happen to be so small as to be negligible. The net result is that the delay
model over-estimates the wire capacitances, and hence the gate delays, when
transistor sizes are small (i.e., when the delays are large). When transistor

94

OUT

GND

Figure 5.5: Delay Computation

TILOS delay (nsec) ADVICE delay (nsec) TILOS/ADVICE
20.0 17.8 1.12

18.0 16.3 1.10

15.0 14.2 1.06

13.5 13.4 1.10

12.0 12.3 0.98

95

Table 5.3: ADVICE Versus TILOS Delay Characterization of an 8-bit Ripple-

Carry Adder

sizes are large (i.e., when the delays are small), the over-estimate is not

serious, because the contribution of the wire capacitance is relatively small.

This trend accounts for much of the model's over-estimate of delays for the

slower versions of this circuit.

5,4 Feasible Directions Algorithm and Gen

eralized Gradient

5.4.1 Feasible Directions Algorithm

As has been explained in Chapter 3, feasible directions methods

have a desirable feature that once the feasible region (the set of transistor
sizes where all the constraints are satisfied) is entered, all the subsequent
improvements will remain feasible. The algorithm used here is an enhanced

version of thePhase I/Phase IImethod of feasible directions (MFD) [18] [62].
Phase I of MFD tries to obtain a solution that satisfies all the constraints,
i.e., to enter the feasible region. Once a feasible solution is obtained, the

method reduces thevalue of the objective function without leaving theregion.
Phase I and Phase II have the same structure, only the objective function is

different. In both phases, given a point x, a search direction, i.e., a vector
in the n-dimensional space of the design parameters, is found based on the

gradients of the objective and of some of the constraints. It is possible to

96

prove that there exists a step small enough along the search direction that

decreases the objective function and some of the constraints. Once the search

direction has been computed, a step along this direction is computed so that

the decrease in the objective and constraint functions is large enough. In

theory, the algorithm converges to a point where the length of the vector

representing the search direction is zero. At this point a first order necessary

optimality condition is satisfied. In practice, the computation is stopped

when the length of this vector is small enough.

5.4.2 Generalized Gradient

Note that the MFD, as most of the optimization algorithms with

guaranteed convergence properties, requires that the objective and constraint

functions be continuously differentiable to converge to a stationary point.

Unfortunately, in digital circuits, the delay between an input port .and an

output port is nondifferentiable since it is defined to be the maximum of all

possible path delays between the two ports. As an example, consider Fig.

5.6 where g\(x) and ^(s) are two path delay functions with equal delays at

some point xq in the design parameter space. The maximum function of the

two is nondifferentiable at x0.

At this point, the importance of optimizing all the competing delay

paths at the same time should be emphasized. Consider a gate D driving

several fanout gates. If all fanouts are equally critical, then obviously more

resources should be devoted toward speeding up gate D than the other fanout

gates, since all paths go through D. If only a longest-delay path were to be

optimized, both gate D and its fanout gates would be speeded up, resulting

in an over-sized circuit. In fact, an experiment has been performed opti

mizing along a single path on one such circuit at each iteration; the result is

significantly worse than what could be obtained by optimizing all the critical

paths (38% more area for a gate driving 8 fanouts).

To cope with this problem, a modification of MFD is used which

delay
A

gi(x)
nondifferentiable

g2(x)

Xo
>x

Figure 5.6: Geometry of Nondifferentiable (Max) Functions

97

9S

uses the concept of generalized gradient [89]. This version of the algorithm

can converge to a stationary point even though the objective and constraint

functions are not continuously differentiable. It will be shown in the experi

mental result section, that algorithms with guaranteed convergence proper

ties work faster and produce better final results than algorithms that do not

possess such properties.

The nondifferentiability of the circuit delay originates from the max

function used to define the circuit delay. Let

ip(x) = ma.xgi(x),i = l,...,m
i

be the circuit delay, where x is the vector of the design parameters (transistor

sizes) and the gfs are the path delays. Let:

J(xj = {%,(x) = V(*)}

If the set I(x) has only one element, then the circuit delay is obviously

differentiable at x since all the path delay are continuously differentiable

functions. However, if I(x) has more than one element, then the circuit

delay is nondifferentiable at a? as demonstrated in Fig. 5.6. The generalized

gradient is introduced to compute descent directions for ip(x) in these points.

Its formal definition is as follows:

dil>(x) = co {Vgi(x) \i e I(x) }

where co denotes the convex hull of the vectors V<7,(a;), i.e., the set defined

by

£ fiiVgi(x) = 0
iei(x)

2 ^i = i,fii>o,i e i(x)
t€/(x)

Note that whenever I(x) is a singleton, the generalized gradient is a standard

gradient, while if it has more than one element, dtj)(x) is a set as shown in

Fig. 5.7.

99

V93W
generalized gradient

V92(x)

V91(x)

l(x) = |1, 2, 3\

0

Figure 5.7: Geometrical Interpretation of Generalized Gradient

100

It can be shown that if x is a local minimum of ij>(x), i.e., there
exists S > 0 such that

ip(x)<i/>(x),xeB(x,6)

then

0 G di>(x)

which is analogous to the standard necessary optimality condition

Vij)(x) = 0

for a continuously differentiable function.

In this version of the MFD algorithm a set which is closely related

to the generalized gradient is used. This set is defined as follows: Let

It(x) = {i\j>(x)-9i(x)<e}

be the e-active index set, where € is a small positive number. Then the set

used here is

d€j>(x) = coie/<(ar) {Vgj(x)}

In fact, if the generalized gradient as defined above is used to com

pute the search direction, it can be shown that the algorithm may jam at

a non-stationary point. In this case the search direction is computed tak

ing into account not only the "critical" path delays that define the circuit

delay but also the "important" path delays, i.e., the ones that may become

"critical" delays soon.

The MFD algorithm uses the shortest vector in the set dtij>(x) to

compute the search direction, he(x), i.e.,

he(x) = -Nr(d€il,(x))

101

- h£ (x)

Figure 5.8: Geometrical Calculation of Generalized Gradient

102

where Nr denotes the nearest vector to the origin or in other words the

shortest vector in the set deif>(x). In Fig. 5.8, he(x) is computed graphically.

In summary, to apply the MFD algorithm to our problem it is nec

essary to find the e-active delay paths and compute their derivatives with

respect to the design parameters. In circuit design terminology, it is neces

sary to compute the sensitivities of the e-active delay paths.

Note that to compute the e-active delay paths, it is only necessary

to consider the e-active paths for the output stage. The reason is that, as the

gate delays propagate to the output ports, the e-active paths are reflected in

the inputs pf the last stage. Thus, once they are found, the algorithm can

simply go backward through preceding stages to input ports for each e-active

path.

An efficient way of collecting the sensitivity information is depicted

in Fig. 5.9 where each rectangular box represents a logic gate. Let the gradi

ent vectors (the sensitivity information) of these e-active paths be KIHFDA,

KIHFDB, KIHGDA, KIHGDB, KIHGEC, KLHFDA, KLHFDB, KLHGDA,

KLHGDB, and KLHGEC. These vectors can be computed by the path-delay

sensitivity computation rules as the corresponding paths are traced out. To

collect them efficiently, a simple recursive routine can be written to go back

ward from OUT to IN to trace out these paths and form the gradient vectors

row by row into a matrix. Whenever more than one input in a gate (marked

by *) is detected, the part of the sensitivity information which belongs to

the preceding stages (looking back to OUT) are "duplicated". For instance,

after KIHFDA is traced out, the routine goes to the * at the output of gate

B; KIHFD is duplicated and B is computed taking into account the effect

of the input transistors of gate D (some of those transistors are the fanouts

of gate B). Thus, as the paths are traced out, all the sensitivity information

can be obtained. Note that although in theory, combinatorial problem may

arise, in many practical examples, only several e-active delay paths need be

collected.

IN1
A

R *

C

D

F

IN2

1c

F

G
*

H
r ' —

i—i *
L L

K

IN3

103

OUT

paths: KIHFDA, KIHFDB, KIHGDA, KIHGDB, KIHGEC
KLHFDA, KLHFDB, KLHGDA, KLHGDB, KLHGEC

Figure 5.9: Enumerating the e-active Patlis

104

5.4.3 Problem Scaling

The use of the gradients of the objective and of the path delays with

their unsealed values may produce poor descent search directions. The reason

for this can be traced to the large difference in magnitude of the gradients of

the objective and constraint functions. If a gradient has a magnitude that

is much smaller than the other gradients, it dominates the search direction,

thus producing a poor descent direction for the other constraints and/or for

the objective function since the nearest vector to the origin will be almost

identical to this gradient. To see that indeed the magnitude of the gradients

may be quite different, consider the problem to solve:

minimize £ -X*

such that: G(X) < T and X > K

Here the objective function is the sum of the sizes of all the selected transis

tors, and the constraints are G(X) —T<0 and —X+ K < 0. It is obvious

that the gradient of the objective function with respect to each transistor

size is [1 1 ... 1 1] and the gradient of the fc-th minimum-size constraint is

[0 ... 0—10 ... 0] where —1 is in the fc-th position. However, the elements

in the gradient of G(X) —T are of the order of 10~7. To solve this problem,

note that (1) minimizing £ Xi is equivalent to minimizing 10"7 £ X> and (2)

X > K is equivalent to lO"7*,- > 10~7K. Thus, multiplying a factor of 10~7

(to the objective function and the minimum-size constraints) scales down the

gradients and makes the direction searching problem better conditioned. In

fact, all the gradients have approximately the same magnitude.

5.5 Delay Sensitivity Computation

As was explained in the last section, the sensitivity calculation of

the path delay is a crucial step in the application of the MFD to the tran

sistor sizing problem. Although when high precision is not important, finite

difference approximation can be used to compute the sensitivities, the com-

105

putational cost is very high in sizing even a medium size circuit. Hence

sensitivity computation based on the delay model is desirable.

Before discussing the path-delay sensitivity computation, the criti

cal paths and the critical transistors must be defined. Suppose a circuit has

M input ports INi,» = 1,..., M, and N output ports OUTj, j = 1,..., JV. For

any OUTj, there is an INi such that the going high/low of the signal at INt

makes OUTj go high/low at some later time. Among all the possible paths

from IN{ to OUTj, there is at least one path with maximal delay. This path

is called a critical path. For a critical path, a transistor is called a critical

transistor of the path delay if it belongs to one of the following three types

of transistors:

• CritTran: the transistor through whosedrain and gate the critical path

goes.

• BlockTran: the (blocking) transistor which is in series between the

drain of CritTran and the output node (the target).

• SupTran: the (supporting) transistor in series between the source of

CritTran and the power rail (SupTran is on the maximum-resistance

path to power rail).

In Fig. 5.3, if the critical path goes from the gate of Q2 to N3, then Q2 is a

CritTran, Q3 is a BlockTran and Ql is a SupTran.

To see how to compute the path-delay sensitivities, consider a path

between an input port and an output port. Since the path consists of a series

connection of alternating pullup and pulldown networks, the total delay on

the path is the sum of the gate delays on the path. If the logic gates are
numbered sequentially as G0 (the input stage), Gu ..., Gn (the output stage),
then it is clear that T/ = Tj"1 +T{rJ and T{h = T/-1 +T*rf, where Tlr} is the
charge/discharge time depending on the pullup/pulldown transistors in G,
and the input transistors of Gl+1. From delay computations, it is clear that if

a transistor Q is in G„ then it isonlynecessary to consider its effect onTf/Tl

106

and possibly T/"1/^"1 if Q is also an input transistor. Hence it suffices to

know the sensitivity of the delay of a logic gate with respect to the size of a

transistor.

Consider the NFET pulldown network in Fig. 5.10 where the delay

path is IN - Qi - Q3 - OUT. Note that Qi is a CritTran, Q2 is a SupTran,

Qz is a BlockTran, Q4 is a fanout, and Q5 is a transistor which is not on the

delay path but whose drain node touches the output node. Let D be the

delay from IN to OUT. To derive expressions for path-delay sensitivities,

we define the following:

Q = transistor Q (Q can be Qi, i = 1, 2, 3, 4, 5)

Xi = transistor size of Qi

Qd — the drain node of Q

Qa = the source node of Q

Qg = the gate node of Q

Cjv = node capacitance at node N (N can be any node)

Cm-out = capacitance looking from node N2 to output node

= Cjv2 + Cout

Rn-p = resistance looking from node N to power rail

Rq = channel resistance of Q

By the delay model, D is given by:

D = C^Rm-p + CoutRout-p

= CmRm-P + CoUT(RN2-P + R0.3)

= Cn2-outRn2-p + CoutRqz

Hence, the delay sensitivities are:

dD 8Rn2-p . dCw-ouT „Wi = Cm.0UT-g— + Qxi Rm_P
dRQi dCN2-0UT 73

= Ism-OUT—Z 1 Z K-N2-P
OXi OX\

- CN*-OUT-^+^-Rn2-P
dRQl dCQld
dx\ dx\

IsQU-OUT-Z 1 ^ liQU-P

107

Q4

own network

Figure 5.10: Path-Delay Sensitivity Computation

oDndRm-P
A—=^N2-OUT5
OX2OX2

_r9R>Q2 —^N2-OUT-
dx

_rdRQ2 —^Q\d-OUT-Q

dx~l=dx3Rn2~P+~dxTQ*+°OUT'dxT
dCQZdpdCQ3dp,n&Rq3
dxTRm~p+~dxTRQ3+CouT~dxT

dCQ3dy,dCQMr>j_rdRQ3
OX*C7X3ox*

dDdCpj2-OUTD.oC0UT
o—=oMN2-PH5-KQ3
aa?40x40x4

0C0UTr>
dx4

dCQ4gp —5MOUT-P
OX4

^OUT-P

dD0Cn2-outd,oCoutD ___IIN2-PH5-ttQ3

_dcQSJ
--dxTRovT-p

Ingeneral,thefollowingrulescanbeobtained:

•If(JisaCritTran,then

dD_dRQacQd

•IfQisaSupTran,andQiistheCritTran,then

=Gn\A-t
3DdRQ
97=c<**-«*-er

•IfQisaBlockTran,then

108

109

• If Q is a driven by the output node, then

3D _ acQa
IT ~ -arRouT-p

• If Q is not any of the previous types but touches the output node, then

dD dCQd
ai"= -blTRoUT-p

• If Q does not belong to any of the previous types, then

dx

Since the Rq, Cqj, and Cq9 are available from the MOSFET model, and

^Qd-ouTi R-Qd-p, Rqs-p-, and Rout-p are available from the delay model,

the path-delay sensitivities can be obtained with virtually no cost.

5.6 Experimental Results

The algorithm has been implemented to size static combinational

CMOS circuits. Tables 5.4 - 5.6 summarize the experimental results on

several examples. The asterisk-marked examples are benchmark circuits from

[88]. The CPU times are in seconds of DEC VAX 785. Table 5.4 shows some

examples which are sized both in their reduced parameter space and in their

complete parameter space. (It should be noted, however, that for high speed

designs, a circuit may have to be sizedin its complete parameter space.) It is

observed that working in the complete parameterspaces does not give better

results. Note that the slight differences in the areas are due to termination

criterion and round-off mechanism.

Table 5.5 shows the effect of optimized transistor sizing over TI

LOS heuristic results. The area of TILOS results are obtained by using a

Examples Complete Space Reduced Space
Name FETs Delay

(nsec)
Dimension Area

(fim)
Dimension Area

(fim)
add2

buffer

alul

9sym*
add8

5xpl*
saol*

sao2*

bw*

54

72

86

180

222

318

350

416

518

5.0

5.0

8.0

12.0

15.0

11.0

11.0

11.0

11.0

54

72

86

180

222

318

350

416

518

604

424

969

733

2278

1446

2862

2397

2103

40

56

72

132

102

158

290

287

264

602

415

952

740

2277

1451

2834

2400

2074

Table 5.4: Complete Space Versus Reduced Space

110

BUMPSIZE of 1.1. Note that although for most cases, smaller BUMPSIZE

(closer to 1) can produce better results (but takes longer time), for some ex

amples such as buffer and random, the effect is not obvious. The optimized

results using generalized gradients are obtained by using an initial guess with

BUMPSIZE 1.5, with all the algorithm-related parameters pre-adjusted. It is

interesting to note that, while in all cases, the new algorithm produces a bet

ter result, in some of the examples shown, the. presented approach improves

little over TILOS results.

Table 5.6 compares the sensitivity computation using generalized

gradient and using finite difference. It is clear that the generalized gradient

approach is much faster and also provides better solutions.

£
/
^
v

b
-

IO
O

S
C

O
C

O
C

O
o

o
C

D
b

-
'•a

a
u

r
-
t

r
-
t

b
-

T
~

t
rt*

o
r
H

IO
C

U
cu

r
-
t

r
-
t

r
H

r
-
t

N

1•
i
h

Hd
^

O
O

l
IO

lO
o

0
0

b
-

C
O

r
-
t

r
-
t

P
.

cu
a3

o
o

r
-
t

b
-

C
O

b
-

O
I

C
O

C
O

C
O

O
>

h
O

S
C

O
<

tf
<

tf
0

0
o

i
IO

C
N

r
f

O
l

<
r
H

O
l

r
-
t

C
O

C
M

C
N

r
o

a
^
^

0
0

b
-

T
f

O
S

o
C

O
C

O
T

j*
O

S
b

-

O
o>

a3
o

o
b

-
O

S
o

0
0

C
O

C
O

C
O

T
-t

tH
C

M
C

O
IO

T
f

O
S

o
i

lO
C

O
lO

C
O

l-
H

«
i

r
H

i
H

C
N

t
H

C
O

O
l

C
M

H

>
>
^
^

0
0

o
o

o
o

o
O

o
o

o
uc
u

r-I
IO

i
o

b
-

o
lO

O
o

o
o

C
O

C
U

Q
1

T
-t

r
-
t

r
H

r
-
I

T
-t

T
-t

c
u

c
o

<
tf

«
tf

O
l

C
O

o
o

i
0

0
O

C
O

0
0

r>
.

H
C

O
lO

b
-

0
0

0
0

O
l

i
-
l

IO
T

-t
T

-t

W
T

-t
O

I
C

O
C

O
*

#
lO

facua
.

a0
•
d9

•
dA

)
13 \

1
0

O
S

0
0

*
d

•
d

*ftIO

*r
HoC

t)
C

O sao2*bw*

b
0

a•
«

H

N
•
•
h

in8.531
0

a•
dcuN

1•
t
-
t

-t-»

P
h

Oi
o

lOju

c
u

fl
,
^

C
O

C
N

b
-

»
o

»
o

C
O

0
0

b
-

0
0

O

d
a•
«

H

uc
u

o
lO

0
0

T
j<

o
C

O
O

C
O

0
0

o
T

f
tH

0
0

T
-t

IO
T

-t
O

S
C

M
IO

c
u

u(1)
H

r
-
t

T
-t

T
-t

C
M

C
O

r
H

C
M

r
H

C
M

W•
<

h

Q
cu

A
3

3

C
M

C
M

C
M

lO
lO

0
0

C
M

rj<
lO

iO

"3•
«

H

c
u

C
O

O
b

-
C

O
T

-t
b

-
0

0
T

-t
O

S
O

tH
r
H

C
O

i
o

^
«

O
S

C
M

IO
C

M
IO

C
O

fa
r
H

T
-t

C
M

r-t
C

O
C

M
C

M

cu

3

fl
^

b
-

i
o

O
S

C
O

C
O

C
O

O
O

C
O

b
-

fl
oc
u

r
H

r
H

b
-

T
-t

-*!*
O

T
-t

IO
•
i
-
i

T
-t

T
-t

T
-t

T
-t

H
«

j
u

o•
dc
u

NtHC
U

R
)

a3

O
C

M
iO

IO
o

0
0

b
-

C
O

T
-t

r
-t

d
c
u

O
o

r
H

b
-

C
O

b
-

C
M

C
O

C
O

C
O

C
U

M
O

S
C

O
-tf

•^
0

0
C

M
IO

C
M

T
F

O
l

o
T

-t
C

M
rH

C
O

C
N

O
l

"cT
0

0
o

O
o

o
O

O
O

O
O

c
u

r-I
lO

lO
b-*

o
iO

O
O

O
O

$

C
U

Q
1

T
-t

r
-
t

r
-
t

r
-
t

r
-
t

r
-
t

C
O

^
^

C
M

C
O

o
C

N
C

O
O

C
O

0
0

a
H

C
O

IO
b

-
0

0
0

0
P

\
r
-t

IO
i-

l
r
-t

a
fa

T
-t

C
M

C
O

C
O

T
t*

IO

fa1
a0

*
dItH

C
M

*
d

*
d

ucu

1
O

S
ro

IO
co

to

C
U

udcutH

fcacu

•a•
t
H

faC
O

de+
>

dcuau

O'dcuNin
C

U
dc
u

oC
O

IO*

3e3

Chapter 6

Conclusions and Future

Research

6.1 Conclusions

Optimization tools are becoming important in high-performance IC

designs. This thesis has addressed both interactive and automatic optimiza

tion techniques for improving the performances of ICs at the transistor level.

While in theory, circuit optimization can be thought of as problem formula

tion plus optimization, it is observed that many factors such as poor problem

formulation and implementation difficulties of algorithms, may cause numer

ical problems, resulting in premature termination of the algorithms.

The purpose of this research has been to provide tools to alleviate

these difficulties, under the assumption that most designers do not have an

extensive optimization background. For interactive optimization, the user

interface has been designed so that the designer can formulate the problem

easily. While efficient gradient-based algorithms are used to solve optimiza

tion problems, robust random search is invoked automatically to continue

the optimization in case numerical difficulties arise in the gradient-based al

gorithms. For automatic optimization of digital circuits, a combination of

fast heuristic and powerful nonlinear programming is used.

112

113

An interactive optimization system, ECSTASY, utilizing circuit

simulation, has been proposed for optimizing general analog circuits. The

system interfaces to SPICE3 with sensitivity computation capability, and

optimizes circuit performance by using gradient-based algorithms. A forms-

based user interface is provided to allow the designer to specify the problem

easily. The system also offers informative visual feedback and menu-driven

control for efficient user interaction. During optimization, when numeri

cal difficulties occur, a controlled random search algorithm takes over the

optimization process automatically. Thus, the optimization algorithms are

transparent to the designer. To illustrate the performance of the proposed

design system, the solutions of four circuit optimization examples have been

described.

Optimization of digital circuits is performed by a proposed tran

sistor sizer which adjusts the transistor sizes so that the total active area

is optimized with all delay constraints satisfied. The program combines the

TILOS heuristic and the method of feasible directions. It is observed that a

variable bump-size scheme is effective in speeding up the heuristic for meet

ing circuit delays. After applying the TILOS heuristic to obtain a feasible

design for the delay constraints, the program converts the problem into a

nonlinear program, and solves it in a space of reduced dimensionality. The

program also demonstrated the use of generalized gradients in computing

the delay sensitivities.

6.2 Future Research

One of the assumptions in user interface design for general-purpose

interactive optimization systems is "to speak the same language as the de

signers". This assumption is valid only if the front-end language of the inter

faced simulator is powerful enough for both the simulation and optimization

purposes. Since most existing simulators have their own languages, it would

be beneficial to develop a standard simulation language for the circuit design

114

community, for this purpose.

Another possible future research direction is to perform optimiza

tion in a distributed or parallel computing environment. Although optimiza

tion is expensive on Von Neumann machines, the algorithm is inherently

parallelizable. For instance, parallel versions of optimization algorithms can

be devised so that function evaluations are performed concurrently. In a

computer-aided engineering (CAE) environment in which optimization is an

integral part of the system, it is desirable for the designer to specify the

available computing facilities to perform distributed or parallel optimization

from within the CAE environment. This requires the integration of parallel

algorithms and simulation interfaces through remote procedure calls.

Since sensitivity computation is expensive, and may not be available

in many existing circuit simulators, it is beneficial to have algorithms which

can optimize circuits without using sensitivity information. Random search,

although effective in improving circuit performance, may not be efficient

enough in some situations. Research into nongradient-based algorithms will

thus be important in the future.

Concerning transistor sizing, since the program focuses on the per

formance at the transistor level, many important issues such as those of

placement and routing are ignored. Therefore, a worthwhile research objec

tive would be to provide an environment to automatically integrate transistor

sizing with other design tools so that the chip performance can be globally

optimized.

Bibliography

[1] M. E. Van Valkenburg. Introduction to Modern Network Synthesis. Wi

ley, New York, 1960.

[2] M. G. R. Degrauwe et al. IDAC: An Interactive Design Tool for Analog

CMOS Circuits. IEEE Journal of Solid-State Circuits, SC-22(6):1106-

1116, December 1987.

[3] H. Y. Koh, C. H. Sequin, and P. R. Gray. Automatic Synthesis of

Operational Amplifiers Based On Analytic Circuit Models. In Digest of

Technical Papers, 1987 IEEE International Conference on Computer-

Aided Design, pages 502-505, November 1987.

[4] R. Harjani, R. A. Rutenbar, and L. R. Carley. A Prototype Framework

for Knowledge-Based Analog Circuit Synthesis. In Proceedings of the

24th Design Automation Conference, pages 42-49, July 1987.

[5] D. D. Gajski, editor. Silicon Compilation. Addison-Wesley Publishing
Company, Inc., 1988.

[6] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A. Wang.
MIS: A Multiple-Level Logic Optimization System. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, CAD-

6(6):1062-1081, November 1987.

115

116

[7] G. De Micheli. Performance-Oriented Synthesis in the Yorktown Sili

con Compiler. In Digest of Technical Papers, 1986 IEEE International

Conference on Computer-Aided Design, pages 138-141, November 1986.

[8] M. Hofmann. Delay Optimization of Combinational Static CMOS

Logic. In Proceedings of the 24th Design Automation Conference,

pages 125-132, July 1987.

[9] E. Polak. Computational Methods in Optimization. Academic Press,

1971.

[10] G. D. Hachtel, M. R. Lightner, and H. J. Kelly. Application of the

Optimization Program AOP to the Design of Memory Circuits. IEEE

Transactions on Circuits and Systems, CAS-22(6):496-503, June 1975.

[11] G. D. Hachtel and P. Zug. APLSTAP - Circuit Design and Optimization

System - User's Guide. Technical Report, IBM Yorktown Research

Facility, 1981.

[12] W. T. Nye, D. Riley, A. Sangiovanni-Vincentelli, and A. L. Tits. DE-

LIGHT.SPICE: An Optimization-Based System for the Design of In

tegrated Circuits. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, CAD-7(4):501-519, April 1988.

[13] ASTAP Advanced Statistical Analysis Program. IBM Program Product

Document SH20-1118-0 edition, 1973.

[14] R. K. Brayton and R. Spence. Sensitivity and Optimization. Elsevier

Scientific, the Netherlands, 1980.

[15] L. W. Nagel. SPICE2: A Computer Program to Simulate Semiconduc

tor Circuits. Technical Report ERL-M520, Electronics Research Labo

ratories, University of California, Berkeley, 1975.

117

[16] B. W. Kernighan. RATFOR - A Preprocessor for a Rational Fortran.

Software - Practice & Experience, 5(4):395-406, October-December

1975.

[17] E. Polak and D. Q. Mayne. An Algorithm for Optimization Problems

with Functional Inequality Constraints. IEEE Transactions on Auto

matic Control, AC-21(2):184-193, April 1976.

[18] E. Polak, R. Trahan, and D. Q. Mayne. Combined Phase I-Phase II

Methods of Feasible Directions. Mathematical Programming, 17(1):61-

73, 1979.

[19] W. T. Nye. DELIGHT: An Interactive System for Optimization-Based

Engineering Design. PhD thesis, Department of Electrical Engineering

and Computer Sciences, University of California, Berkeley, May 1983.

[20] H. C. Lin and L. W. Linholm. An Optimized Output Stage for MOS

Integrated Circuits. Journal of Solid-State Circuits, SC-10(2):106-109,

April 1975.

[21] A. Kanuma. CMOS Circuit Optimization. Solid-State Electronics,

26(l):47-58, January 1983.

[22] N. Hedenstiema and K. O. Jeppson. CMOS Circuit Speed and Buffer

Optimization. IEEE Transactions on Computer-Aided Design of Inte

grated Circuits and Systems, CAD-6(2):270-281, March 1987.

[23] A. Mohsen and C. Mead. Delay-Time Optimization for Driving and

Sensing of Signals on High Capacitance Paths of VLSI Systems. Journal

of Solid-State Circuits, SC-14(2):462-470, April 1979.

[24] E. T. Lewis. Optimization of Device Area and Overall Delay for CMOS

VLSI Designs. Proceedings of the IEEE, 72(6):670-689, June 1984.

[25] S. M.Kang. A Design of CMOS PolyceUs for LSI Circuits. IEEE Trans

actions on Circuits and Systems, CAS-2S(8):838-S43, August 1981.

118

[26] L. A. Glasser and L. P. J. Hoyte. Delay and Power Optimization in VLSI

Circuits. In Proceedings of the 21st Design Automation Conference,

pages 529-535, June 1984.

[27] C. M. Lee and H. Soukup. An Algorithm for CMOS Timing and Area

Optimization. IEEE Journal of Solid-State Circuits, SC-19(5):781-787,

October 1984.

[28] B. A. Richman, J. E. Hansen, and K. Cameron. A Deterministic Al

gorithm for Automatic CMOS Transistor Sizing. In Proceedings of the

IEEE 1987 Custom Integrated Circuits Conference, pages 421-424, May

1987.

[29] S. Trimberger. Automated Performance Optimization of Custom Inte

grated Circuits. In Proceedings of the IEEE 1983 International Sympo

sium on Circuits and Systems, pages 194-197, May 1983.

[30] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-

Wesley, Reading, Massachusetts, 1980.

[31] W. H. Kao, N. Fathi, and C. H. Lee. Algorithms for Automatic Transis

tor Sizing in CMOS Digital Circuits. In Proceedings of the 22nd Design

Automation Conference, pages 781-784, July 1985.

[32] J. P. Fishbum and A. E. Dunlop. TILOS: A Posynomial Programming

Approach to Transistor Sizing. In Digest of Technical Papers, 1985

IEEE International Conference on Computer-Aided Design, pages 326-

328, November 1985.

[33] A. E. Ruehli, P. K. Wolff, and G. Goertzel. Power and Timing Op

timization of Large Digital Systems. In Proceedings of the IEEE 1976

International Symposium on Circuits and Systems, pages 402-405, April

1976.

119

[34] A. E. Ruehli, P. K. Wolff, and G. Goertzel. Analytical Power/Timing

Optimization Technique for Digital System. In Proceedings of the 14th

Design Automation Conference, pages 142-146, June 1977.

[35] B. J. Agule, J. D. Lesser, A. E. Ruehli, and P. K. Wolff. An Experi

mental System for Power/Timing Optimization. In Proceedings of the

14th Design Automation Conference, pages 147-152, June 1977.

[36] K. S. Hedlund. Models and Algorithms for Transistor Sizing in MOS

Circuits. In Digest of Technical Papers, 1984 IEEE International Con

ference on Computer-Aided Design, pages 12-14, November 1984.

[37] K. S. Hedlund. Electrical Optimization of PLAs. In Proceedings of the

22nd Design Automation Conference, pages 681-687, June 1985.

[38] K. S. Hedlund. Aesop: A Tool for Automated Transistor Sizing. In

Proceedings of the 24nd Design Automation Conference, pages 114-120,

June 1987.

[39] M. D. Matson. Macromodeling and Optimization of Digital MOS VLSI
Circuits. PhD thesis, MIT, January 1985.

[40] D.P. Marple. Performance Optimization of Digital VLSI Circuits. PhD

thesis, Stanford, September 1986.

[41] J. Rubinstein, P. Penfield, and M. A. Horowitz. Signal Delay in RC Tree

Networks. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, CAD-2(3):202-211, July 1983.

[42] F. W. Obermeier and R. H. Katz. An Electrical Optimizer that Con

siders Physical Layout. In Proceedings of the 25th Design Automation

Conference, pages 453-459, June 1988.

[43] M. Shoji. Electrical Design of the BELLMAC-32A Microprocessor. In
Proceedings of the IEEE 1982 International Conference on Circuits and

Computers, pages 112-115, September 1982.

120

[44] E. Polak and A. L. Sangiovanni-VincenteUi. Theoretical and Compu

tational Aspects of the Optimal Design Centering, Tolerancing, and

Tuning Problem. IEEE Transactions on Circuits and Systems, CAS-

26(9):795-813, September 1979.

[45] C. Gonzaga, E. Polak, and R. Trahan. An Improved Algorithm for

Optimization Problems with Functional Inequality Constraints. IEEE

Transactions on Automatic Control, AC-25(l):49-54, February 1980.

[46] E. Polak and A. L. Tits. A Recursive Quadratic Programming Algo

rithm for Semi-Infinite Optimization Problems. Applied Mathematics

and Optimization, 8(4):325-349, August 1982.

[47] D. Q. Mayne and E. Polak. A Quadratically Convergent Algorithm

for Solving Infinite Dimensional Inequalities. Applied Mathematics and

Optimization, 9(l):25-40, October 1982.

[48] R. Hettich and W. van Honstede. On quadratically convergent methods

for semi-infinite programming. In Hettich, editor, Semi-Infinite Pro

gramming, pages 97-111, Springer-Verlag, 1979. lecture notes in control

and information sciences, Vol. 15.

[49] R. Hettich and W. van Honstede. An approximation method for

semi-infinite problems. In Hettich, editor, Semi-Infinite Programming,

pages 126-136, Springer-Verlag, 1979. lecture notes in control and in

formation sciences, Vol. 15.

[50] E. R. Panier and A. L. Tits. Globally Convergent Algorithms for Semi-

Infinite Optimization Problems Arising in Engineering Design. Techni

cal Report TR-87-28, System Research Center, University of Maryland,

College Park, Maryland, 1987.

[51] U. M. Garcia-Palomares and A. Restuccia. A Global Quadratic Algo

rithm for Solving a System of Mixed Equalities and Inequalities. Math

ematical Programming, 21(3):290-300, November 1981.

121

[52] E. Polak and D. Q. Mayne. On the Finite Solution of Nonlinear Inequali

ties. IEEE Transactions on Automatic Control, AC-24(3):443-444, June

1979.

[53] D. Q. Mayne, E. Polak, and A. J. Heunis. Solving Nonlinear Inequalities

in a Finite Number of Iterations. Journal of Optimization Theory and

Applications, 33(2):207-222, February 1981.

[54] D. Q. Mayne and M. Sahba. An Efficient Algorithm for Solving Inequal

ities. Journal of Optimization Theory and Applications, 45(3):407-423,

March 1985.

[55] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective

Optimization. Academic Press, Inc., 1985.

[56] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. A

Survey of Optimization Techniques for Integrated-Circuit Design. Pro

ceedings of the IEEE, 69(10):1334-1362, October 1981.

[57] E. Sandgren and K. M. Ragsdell. The Utility of Nonlinear Programming

Algorithms: A Comparative Study - Parts I and II. ASME Journal of

Mechanical Design, 102(3):540-551, July 1980.

[58] F. A. Lootsma. Ranking of Nonlinear Optimization Codes According

to Efficiency and Robustness. In L. Collatz, G. Meinardus, and W.

Wetterling, editors, Konstruktive Methoden der Finiten Nichtlinearen

Optimierung, pages 157-158, Birkhauser, Basel, Switzerland, 1980.

[59] K. Schittkowski. Nonlinear Programming Codes: Information, Tests,
Performance. Volume 183 of Lecture Notes in Economics and Mathe

matical Systems, Springer-Verlag, Berlin Heidelberg New York, 1980.

[60] J. M. Mulvey, editor. Evaluating Mathematical Programming Tech

niques. Volume 199 of Lecture Notes in Economics and Mathematical

Systems, Springer-Verlag, Berlin Heidelberg New York, 1982.

122

[61] D. G. Luenberger. Linear and Nonlinear Programming. Addison-

Wesley, Reading, Massachusetts, 1984.

[62] A. L. Tits, W. T. Nye, and A. L. Sangiovanni-Vincentelli. Enhanced

Methods of Feasible Directions for Engineering Design Problems. Jour

nal of Optimization Theory and Applications, 5(3), December 1986.

[63] E. R. Panier and A. L. Tits. A Superlinearly Convergent Feasible

Method for the Solution of Inequality Constrained Optimization Prob

lems. SIAM Journal on Control and Optimization, 25(4):934-950, July

1987.

[64] E. R. Panier, A. L. Tits, and J. N. Herskovits. A QP-Free, Globally

Convergent, Locally Superlinearly Convergent Algorithm for Inequality

Constraint Optimization. SIAM Journal on Control and Optimization,

26(4), September 1988.

[65] M. J. D. Powell. Convergence Properties of Algorithms for Nonhnear

Optimization. SIAM Review, 28(4):487-500, December 1986.

[66] M. J. D. Powell. A Fast Algorithm for Nonlinearly Constrained Op

timization Calculations. In G. A. Watson, editor, Numerical Analysis

Proceedings, Dundee 1977, pages 144-157, Springer-Verlag, Berlin, 1978.

[67] D. Q. Mayne and E. Polak. A Superlinearly Convergent Algorithm

for Constrained Optimization Problems. Mathematical Programming
Study, 16:45-61, 1982.

[68] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Aca
demic Press, London, 1981.

[69] L. S. Lasdon and P. 0. Beck. Scaling Nonlinear Programs. Operations
Research Letters, l(l):6-9, October 1981.

123

[70] D. Agnew. Improved Minimax Optimization for Circuit Design. IEEE

Transactions on Circuits and Systems, CAS-28(8):791-803, August

1981.

[71] D. A. Pierre. Mathematical Programming via Augmented Lagrangians.

Addison-Wesley, Reading, Massachusetts, 1975.

[72] R. A. Jarvis. Optimization Strategy in Adaptive Control: A Selective

Survey. IEEE Transactions on System, Man, and Cybernetics, SMC-

5(l):83-94, January 1975.

[73] L. C. W. Dixon and G. D. Szego, editors. Toward Global Optimisation.
North-Holland, Armsterdam, 1975.

[74] L. C. W. Dixon and G. D. Szego, editors. Toward Global Optimisation

2. North-Holland, Armsterdam, 1978.

[75] T. Quarles. Analysis of Performance and Convergence Issues for Circuit

Simulation. PhD thesis, University of California, Berkeley, December

1988.

[76] W. Nye. Techniques for Using SPICE Sensitivity Computations in

DELIGHT.SPICE Optimization. In Digest of Technical Papers, 1986

IEEE International Conference on Computer-Aided Design, pages 92-

95, Santa Clara, CA, November 1986.

[77] U. Choudhury. Sensitivity Computations in SPICES. Master Thesis,

University of California, Berkeley, December 1988.

[78] J. D. Foley, V. L. Wallace, and P. Chan. The Human Factors of Com

puter Graphics Interaction Techniques. IEEE Computer Graphics and

Applications, 4(ll):13-48, November 1984.

[79] W. D. Penniman. A Methodology for Evaluating Interactive System

Usage. ACM-SIGCHI Bulletin, 15(4):6-11, April 1984.

124

[80] K. Maeda, Y. Miyake, J. Nievergelt, and Y. Saito. A Comparative

Study of Man-Machine Interfaces in Interactive Systems. A CM-SIGCHI

Bulletin, 16(2):44-61, October 1984.

[81] P. Heckel. The Elements of Friendly Software Design. Warner Books,

1984.

[82] J. D. Gould and C. Lewis. Designing for Usability: Key Principles and

What Designers Think. Communications of the ACM, 28(3):300-311,

March 1985.

[83] L. A. Rowe. Fill-in-the-Form Programming. In Proceedings of the 1985

Very Large Database Conference, Stockholm, Sweden, August 1985.

[84] A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-

Wesley, Reading, Massachusetts, 1979.

[85] T. G. Lewis and M. Z. Smith. Applying Data Structures. Houghton

Mifflin Co., Boston, Massachusetts, 1976.

[86] J. Gettys, R. Newman, and T. Delia Fera. Xlib - C Language X Inter

face, Protocol Version 10. MIT, Cambridge, Massachusetts, 1986.

[87] B. D. Nelin. Analysis of Switched-Capacitor Networks Using General-

Purpose Circuit Simulation Programs. IEEE Transactions on Circuits

and Systems, CAS-30(l):43-48, January 1983.

[88] A. J. de Geus. Logic Synthesis and Optimization Benchmarks for the

1986 Design Automation Conference. In Proceedings of the 23rd Design

Automation Conference, page 78, June 1986.

[89] F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley-

Interscience, New York, 1983.

	Copyright notice1988
	ERL-88-74 (1 of 2)
	ERL-88-74 (2 of 2)

